Sample records for spatio-temporal structures progress

  1. Application research on temporal GIS in the transportation information management system

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Qin, Qianqing; Wang, Chao

    2006-10-01

    The application, development and key matters of applying spatio-temporal GIS to traffic information management system are discussed in this paper by introducing the development of spatio-temporal database, current models of spatio-temporal data, traits of traffic information management system. This paper proposes a method of organizing spatio-temporal data taking road object changes into consideration, and describes its data structure in 3 aspects, including structure of spatio-temporal object, organizing method spatio-temporal data and storage means of spatio-temporal data. Trying to manage types of spatio-temporal data involved in traffic system, such as road information, river information, railway information, social and economical data, and etc, uniformly, efficiently and with low redundancy.

  2. The Voronoi spatio-temporal data structure

    NASA Astrophysics Data System (ADS)

    Mioc, Darka

    2002-04-01

    Current GIS models cannot integrate the temporal dimension of spatial data easily. Indeed, current GISs do not support incremental (local) addition and deletion of spatial objects, and they can not support the temporal evolution of spatial data. Spatio-temporal facilities would be very useful in many GIS applications: harvesting and forest planning, cadastre, urban and regional planning, and emergency planning. The spatio-temporal model that can overcome these problems is based on a topological model---the Voronoi data structure. Voronoi diagrams are irregular tessellations of space, that adapt to spatial objects and therefore they are a synthesis of raster and vector spatial data models. The main advantage of the Voronoi data structure is its local and sequential map updates, which allows us to automatically record each event and performed map updates within the system. These map updates are executed through map construction commands that are composed of atomic actions (geometric algorithms for addition, deletion, and motion of spatial objects) on the dynamic Voronoi data structure. The formalization of map commands led to the development of a spatial language comprising a set of atomic operations or constructs on spatial primitives (points and lines), powerful enough to define the complex operations. This resulted in a new formal model for spatio-temporal change representation, where each update is uniquely characterized by the numbers of newly created and inactivated Voronoi regions. This is used for the extension of the model towards the hierarchical Voronoi data structure. In this model, spatio-temporal changes induced by map updates are preserved in a hierarchical data structure that combines events and corresponding changes in topology. This hierarchical Voronoi data structure has an implicit time ordering of events visible through changes in topology, and it is equivalent to an event structure that can support temporal data without precise temporal information. This formal model of spatio-temporal change representation is currently applied to retroactive map updates and visualization of map evolution. It offers new possibilities in the domains of temporal GIS, transaction processing, spatio-temporal queries, spatio-temporal analysis, map animation and map visualization.

  3. Spatio-temporal networks: reachability, centrality and robustness.

    PubMed

    Williams, Matthew J; Musolesi, Mirco

    2016-06-01

    Recent advances in spatial and temporal networks have enabled researchers to more-accurately describe many real-world systems such as urban transport networks. In this paper, we study the response of real-world spatio-temporal networks to random error and systematic attack, taking a unified view of their spatial and temporal performance. We propose a model of spatio-temporal paths in time-varying spatially embedded networks which captures the property that, as in many real-world systems, interaction between nodes is non-instantaneous and governed by the space in which they are embedded. Through numerical experiments on three real-world urban transport systems, we study the effect of node failure on a network's topological, temporal and spatial structure. We also demonstrate the broader applicability of this framework to three other classes of network. To identify weaknesses specific to the behaviour of a spatio-temporal system, we introduce centrality measures that evaluate the importance of a node as a structural bridge and its role in supporting spatio-temporally efficient flows through the network. This exposes the complex nature of fragility in a spatio-temporal system, showing that there is a variety of failure modes when a network is subject to systematic attacks.

  4. A Hybrid Spatio-Temporal Data Indexing Method for Trajectory Databases

    PubMed Central

    Ke, Shengnan; Gong, Jun; Li, Songnian; Zhu, Qing; Liu, Xintao; Zhang, Yeting

    2014-01-01

    In recent years, there has been tremendous growth in the field of indoor and outdoor positioning sensors continuously producing huge volumes of trajectory data that has been used in many fields such as location-based services or location intelligence. Trajectory data is massively increased and semantically complicated, which poses a great challenge on spatio-temporal data indexing. This paper proposes a spatio-temporal data indexing method, named HBSTR-tree, which is a hybrid index structure comprising spatio-temporal R-tree, B*-tree and Hash table. To improve the index generation efficiency, rather than directly inserting trajectory points, we group consecutive trajectory points as nodes according to their spatio-temporal semantics and then insert them into spatio-temporal R-tree as leaf nodes. Hash table is used to manage the latest leaf nodes to reduce the frequency of insertion. A new spatio-temporal interval criterion and a new node-choosing sub-algorithm are also proposed to optimize spatio-temporal R-tree structures. In addition, a B*-tree sub-index of leaf nodes is built to query the trajectories of targeted objects efficiently. Furthermore, a database storage scheme based on a NoSQL-type DBMS is also proposed for the purpose of cloud storage. Experimental results prove that HBSTR-tree outperforms TB*-tree in some aspects such as generation efficiency, query performance and query type. PMID:25051028

  5. A hybrid spatio-temporal data indexing method for trajectory databases.

    PubMed

    Ke, Shengnan; Gong, Jun; Li, Songnian; Zhu, Qing; Liu, Xintao; Zhang, Yeting

    2014-07-21

    In recent years, there has been tremendous growth in the field of indoor and outdoor positioning sensors continuously producing huge volumes of trajectory data that has been used in many fields such as location-based services or location intelligence. Trajectory data is massively increased and semantically complicated, which poses a great challenge on spatio-temporal data indexing. This paper proposes a spatio-temporal data indexing method, named HBSTR-tree, which is a hybrid index structure comprising spatio-temporal R-tree, B*-tree and Hash table. To improve the index generation efficiency, rather than directly inserting trajectory points, we group consecutive trajectory points as nodes according to their spatio-temporal semantics and then insert them into spatio-temporal R-tree as leaf nodes. Hash table is used to manage the latest leaf nodes to reduce the frequency of insertion. A new spatio-temporal interval criterion and a new node-choosing sub-algorithm are also proposed to optimize spatio-temporal R-tree structures. In addition, a B*-tree sub-index of leaf nodes is built to query the trajectories of targeted objects efficiently. Furthermore, a database storage scheme based on a NoSQL-type DBMS is also proposed for the purpose of cloud storage. Experimental results prove that HBSTR-tree outperforms TB*-tree in some aspects such as generation efficiency, query performance and query type.

  6. Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system

    NASA Astrophysics Data System (ADS)

    Huang, Ronghui; Chen, Jilong; Wang, Lin; Lin, Zhongda

    2012-09-01

    Recent advances in the study of the characteristics, processes, and causes of spatio-temporal variabilities of the East Asian monsoon (EAM) system are reviewed in this paper. The understanding of the EAM system has improved in many aspects: the basic characteristics of horizontal and vertical structures, the annual cycle of the East Asian summer monsoon (EASM) system and the East Asian winter monsoon (EAWM) system, the characteristics of the spatio-temporal variabilities of the EASM system and the EAWM system, and especially the multiple modes of the EAM system and their spatio-temporal variabilities. Some new results have also been achieved in understanding the atmosphere-ocean interaction and atmosphere-land interaction processes that affect the variability of the EAM system. Based on recent studies, the EAM system can be seen as more than a circulation system, it can be viewed as an atmosphere-ocean-land coupled system, namely, the EAM climate system. In addition, further progress has been made in diagnosing the internal physical mechanisms of EAM climate system variability, especially regarding the characteristics and properties of the East Asia-Pacific (EAP) teleconnection over East Asia and the North Pacific, the "Silk Road" teleconnection along the westerly jet stream in the upper troposphere over the Asian continent, and the dynamical effects of quasi-stationary planetary wave activity on EAM system variability. At the end of the paper, some scientific problems regarding understanding the EAM system variability are proposed for further study.

  7. Spatio-Temporal Progression of Cortical Activity Related to Continuous Overt and Covert Speech Production in a Reading Task.

    PubMed

    Brumberg, Jonathan S; Krusienski, Dean J; Chakrabarti, Shreya; Gunduz, Aysegul; Brunner, Peter; Ritaccio, Anthony L; Schalk, Gerwin

    2016-01-01

    How the human brain plans, executes, and monitors continuous and fluent speech has remained largely elusive. For example, previous research has defined the cortical locations most important for different aspects of speech function, but has not yet yielded a definition of the temporal progression of involvement of those locations as speech progresses either overtly or covertly. In this paper, we uncovered the spatio-temporal evolution of neuronal population-level activity related to continuous overt speech, and identified those locations that shared activity characteristics across overt and covert speech. Specifically, we asked subjects to repeat continuous sentences aloud or silently while we recorded electrical signals directly from the surface of the brain (electrocorticography (ECoG)). We then determined the relationship between cortical activity and speech output across different areas of cortex and at sub-second timescales. The results highlight a spatio-temporal progression of cortical involvement in the continuous speech process that initiates utterances in frontal-motor areas and ends with the monitoring of auditory feedback in superior temporal gyrus. Direct comparison of cortical activity related to overt versus covert conditions revealed a common network of brain regions involved in speech that may implement orthographic and phonological processing. Our results provide one of the first characterizations of the spatiotemporal electrophysiological representations of the continuous speech process, and also highlight the common neural substrate of overt and covert speech. These results thereby contribute to a refined understanding of speech functions in the human brain.

  8. Spatio-Temporal Progression of Cortical Activity Related to Continuous Overt and Covert Speech Production in a Reading Task

    PubMed Central

    Brumberg, Jonathan S.; Krusienski, Dean J.; Chakrabarti, Shreya; Gunduz, Aysegul; Brunner, Peter; Ritaccio, Anthony L.; Schalk, Gerwin

    2016-01-01

    How the human brain plans, executes, and monitors continuous and fluent speech has remained largely elusive. For example, previous research has defined the cortical locations most important for different aspects of speech function, but has not yet yielded a definition of the temporal progression of involvement of those locations as speech progresses either overtly or covertly. In this paper, we uncovered the spatio-temporal evolution of neuronal population-level activity related to continuous overt speech, and identified those locations that shared activity characteristics across overt and covert speech. Specifically, we asked subjects to repeat continuous sentences aloud or silently while we recorded electrical signals directly from the surface of the brain (electrocorticography (ECoG)). We then determined the relationship between cortical activity and speech output across different areas of cortex and at sub-second timescales. The results highlight a spatio-temporal progression of cortical involvement in the continuous speech process that initiates utterances in frontal-motor areas and ends with the monitoring of auditory feedback in superior temporal gyrus. Direct comparison of cortical activity related to overt versus covert conditions revealed a common network of brain regions involved in speech that may implement orthographic and phonological processing. Our results provide one of the first characterizations of the spatiotemporal electrophysiological representations of the continuous speech process, and also highlight the common neural substrate of overt and covert speech. These results thereby contribute to a refined understanding of speech functions in the human brain. PMID:27875590

  9. New robust algorithm for tracking cells in videos of Drosophila morphogenesis based on finding an ideal path in segmented spatio-temporal cellular structures.

    PubMed

    Bellaïche, Yohanns; Bosveld, Floris; Graner, François; Mikula, Karol; Remesíková, Mariana; Smísek, Michal

    2011-01-01

    In this paper, we present a novel algorithm for tracking cells in time lapse confocal microscopy movie of a Drosophila epithelial tissue during pupal morphogenesis. We consider a 2D + time video as a 3D static image, where frames are stacked atop each other, and using a spatio-temporal segmentation algorithm we obtain information about spatio-temporal 3D tubes representing evolutions of cells. The main idea for tracking is the usage of two distance functions--first one from the cells in the initial frame and second one from segmented boundaries. We track the cells backwards in time. The first distance function attracts the subsequently constructed cell trajectories to the cells in the initial frame and the second one forces them to be close to centerlines of the segmented tubular structures. This makes our tracking algorithm robust against noise and missing spatio-temporal boundaries. This approach can be generalized to a 3D + time video analysis, where spatio-temporal tubes are 4D objects.

  10. Spatio-temporal hierarchical modeling of rates and variability of Holocene sea-level changes in the western North Atlantic and the Caribbean

    NASA Astrophysics Data System (ADS)

    Ashe, E.; Kopp, R. E.; Khan, N.; Horton, B.; Engelhart, S. E.

    2016-12-01

    Sea level varies over of both space and time. Prior to the instrumental period, the sea-level record depends upon geological reconstructions that contain vertical and temporal uncertainty. Spatio-temporal statistical models enable the interpretation of RSL and rates of change as well as the reconstruction of the entire sea-level field from such noisy data. Hierarchical models explicitly distinguish between a process level, which characterizes the spatio-temporal field, and a data level, by which sparse proxy data and its noise is recorded. A hyperparameter level depicts prior expectations about the structure of variability in the spatio-temporal field. Spatio-temporal hierarchical models are amenable to several analysis approaches, with tradeoffs regarding computational efficiency and comprehensiveness of uncertainty characterization. A fully-Bayesian hierarchical model (BHM), which places prior probability distributions upon the hyperparameters, is more computationally intensive than an empirical hierarchical model (EHM), which uses point estimates of hyperparameters, derived from the data [1]. Here, we assess the sensitivity of posterior estimates of relative sea level (RSL) and rates to different statistical approaches by varying prior assumptions about the spatial and temporal structure of sea-level variability and applying multiple analytical approaches to Holocene sea-level proxies along the Atlantic coast of North American and the Caribbean [2]. References: 1. N Cressie, Wikle CK (2011) Statistics for spatio-temporal data (John Wiley & Sons). 2. Kahn N et al. (2016). Quaternary Science Reviews (in revision).

  11. Travelling waves and spatial hierarchies in measles epidemics

    NASA Astrophysics Data System (ADS)

    Grenfell, B. T.; Bjørnstad, O. N.; Kappey, J.

    2001-12-01

    Spatio-temporal travelling waves are striking manifestations of predator-prey and host-parasite dynamics. However, few systems are well enough documented both to detect repeated waves and to explain their interaction with spatio-temporal variations in population structure and demography. Here, we demonstrate recurrent epidemic travelling waves in an exhaustive spatio-temporal data set for measles in England and Wales. We use wavelet phase analysis, which allows for dynamical non-stationarity-a complication in interpreting spatio-temporal patterns in these and many other ecological time series. In the pre-vaccination era, conspicuous hierarchical waves of infection moved regionally from large cities to small towns; the introduction of measles vaccination restricted but did not eliminate this hierarchical contagion. A mechanistic stochastic model suggests a dynamical explanation for the waves-spread via infective `sparks' from large `core' cities to smaller `satellite' towns. Thus, the spatial hierarchy of host population structure is a prerequisite for these infection waves.

  12. A Spatio-Temporally Explicit Random Encounter Model for Large-Scale Population Surveys

    PubMed Central

    Jousimo, Jussi; Ovaskainen, Otso

    2016-01-01

    Random encounter models can be used to estimate population abundance from indirect data collected by non-invasive sampling methods, such as track counts or camera-trap data. The classical Formozov–Malyshev–Pereleshin (FMP) estimator converts track counts into an estimate of mean population density, assuming that data on the daily movement distances of the animals are available. We utilize generalized linear models with spatio-temporal error structures to extend the FMP estimator into a flexible Bayesian modelling approach that estimates not only total population size, but also spatio-temporal variation in population density. We also introduce a weighting scheme to estimate density on habitats that are not covered by survey transects, assuming that movement data on a subset of individuals is available. We test the performance of spatio-temporal and temporal approaches by a simulation study mimicking the Finnish winter track count survey. The results illustrate how the spatio-temporal modelling approach is able to borrow information from observations made on neighboring locations and times when estimating population density, and that spatio-temporal and temporal smoothing models can provide improved estimates of total population size compared to the FMP method. PMID:27611683

  13. Spatio-temporal Eigenvector Filtering: Application on Bioenergy Crop Impacts

    NASA Astrophysics Data System (ADS)

    Wang, M.; Kamarianakis, Y.; Georgescu, M.

    2017-12-01

    A suite of 10-year ensemble-based simulations was conducted to investigate the hydroclimatic impacts due to large-scale deployment of perennial bioenergy crops across the continental United States. Given the large size of the simulated dataset (about 60Tb), traditional hierarchical spatio-temporal statistical modelling cannot be implemented for the evaluation of physics parameterizations and biofuel impacts. In this work, we propose a filtering algorithm that takes into account the spatio-temporal autocorrelation structure of the data while avoiding spatial confounding. This method is used to quantify the robustness of simulated hydroclimatic impacts associated with bioenergy crops to alternative physics parameterizations and observational datasets. Results are evaluated against those obtained from three alternative Bayesian spatio-temporal specifications.

  14. Spatio-temporally resolved spectral measurements of laser-produced plasma and semiautomated spectral measurement-control and analysis software

    NASA Astrophysics Data System (ADS)

    Cao, S. Q.; Su, M. G.; Min, Q.; Sun, D. X.; O'Sullivan, G.; Dong, C. Z.

    2018-02-01

    A spatio-temporally resolved spectral measurement system of highly charged ions from laser-produced plasmas is presented. Corresponding semiautomated computer software for measurement control and spectral analysis has been written to achieve the best synchronicity possible among the instruments. This avoids the tedious comparative processes between experimental and theoretical results. To demonstrate the capabilities of this system, a series of spatio-temporally resolved experiments of laser-produced Al plasmas have been performed and applied to benchmark the software. The system is a useful tool for studying the spectral structures of highly charged ions and for evaluating the spatio-temporal evolution of laser-produced plasmas.

  15. Spatio-temporal interactions facilitate large carnivore sympatry across a resource gradient

    PubMed Central

    Karanth, K. Ullas; Srivathsa, Arjun; Puri, Mahi; Parameshwaran, Ravishankar; Kumar, N. Samba

    2017-01-01

    Species within a guild vary their use of time, space and resources, thereby enabling sympatry. As intra-guild competition intensifies, such behavioural adaptations may become prominent. We assessed mechanisms of facilitating sympatry among dhole (Cuon alpinus), leopard (Panthera pardus) and tiger (Panthera tigris) in tropical forests of India using camera-trap surveys. We examined population-level temporal, spatial and spatio-temporal segregation among them across four reserves representing a gradient of carnivore and prey densities. Temporal and spatial overlaps were higher at lower prey densities. Combined spatio-temporal overlap was minimal, possibly due to chance. We found fine-scale avoidance behaviours at one high-density reserve. Our results suggest that: (i) patterns of spatial, temporal and spatio-temporal segregation in sympatric carnivores do not necessarily mirror each other; (ii) carnivores are likely to adopt temporal, spatial, and spatio-temporal segregation as alternative mechanisms to facilitate sympatry; and (iii) carnivores show adaptability across a gradient of resource availability, a driver of inter-species competition. We discuss behavioural mechanisms that permit carnivores to co-occupy rather than dominate functional niches, and adaptations to varying intensities of competition that are likely to shape structure and dynamics of carnivore guilds. PMID:28179511

  16. Spatio-temporal interactions facilitate large carnivore sympatry across a resource gradient.

    PubMed

    Karanth, K Ullas; Srivathsa, Arjun; Vasudev, Divya; Puri, Mahi; Parameshwaran, Ravishankar; Kumar, N Samba

    2017-02-08

    Species within a guild vary their use of time, space and resources, thereby enabling sympatry. As intra-guild competition intensifies, such behavioural adaptations may become prominent. We assessed mechanisms of facilitating sympatry among dhole ( Cuon alpinus ), leopard ( Panthera pardus ) and tiger ( Panthera tigris ) in tropical forests of India using camera-trap surveys. We examined population-level temporal, spatial and spatio-temporal segregation among them across four reserves representing a gradient of carnivore and prey densities. Temporal and spatial overlaps were higher at lower prey densities. Combined spatio-temporal overlap was minimal, possibly due to chance. We found fine-scale avoidance behaviours at one high-density reserve. Our results suggest that: (i) patterns of spatial, temporal and spatio-temporal segregation in sympatric carnivores do not necessarily mirror each other; (ii) carnivores are likely to adopt temporal, spatial, and spatio-temporal segregation as alternative mechanisms to facilitate sympatry; and (iii) carnivores show adaptability across a gradient of resource availability, a driver of inter-species competition. We discuss behavioural mechanisms that permit carnivores to co-occupy rather than dominate functional niches, and adaptations to varying intensities of competition that are likely to shape structure and dynamics of carnivore guilds. © 2017 The Author(s).

  17. Similarity-Based Fusion of MEG and fMRI Reveals Spatio-Temporal Dynamics in Human Cortex During Visual Object Recognition

    PubMed Central

    Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude

    2016-01-01

    Every human cognitive function, such as visual object recognition, is realized in a complex spatio-temporal activity pattern in the brain. Current brain imaging techniques in isolation cannot resolve the brain's spatio-temporal dynamics, because they provide either high spatial or temporal resolution but not both. To overcome this limitation, we developed an integration approach that uses representational similarities to combine measurements of magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) to yield a spatially and temporally integrated characterization of neuronal activation. Applying this approach to 2 independent MEG–fMRI data sets, we observed that neural activity first emerged in the occipital pole at 50–80 ms, before spreading rapidly and progressively in the anterior direction along the ventral and dorsal visual streams. Further region-of-interest analyses established that dorsal and ventral regions showed MEG–fMRI correspondence in representations later than early visual cortex. Together, these results provide a novel and comprehensive, spatio-temporally resolved view of the rapid neural dynamics during the first few hundred milliseconds of object vision. They further demonstrate the feasibility of spatially unbiased representational similarity-based fusion of MEG and fMRI, promising new insights into how the brain computes complex cognitive functions. PMID:27235099

  18. Motion-adaptive spatio-temporal regularization for accelerated dynamic MRI.

    PubMed

    Asif, M Salman; Hamilton, Lei; Brummer, Marijn; Romberg, Justin

    2013-09-01

    Accelerated magnetic resonance imaging techniques reduce signal acquisition time by undersampling k-space. A fundamental problem in accelerated magnetic resonance imaging is the recovery of quality images from undersampled k-space data. Current state-of-the-art recovery algorithms exploit the spatial and temporal structures in underlying images to improve the reconstruction quality. In recent years, compressed sensing theory has helped formulate mathematical principles and conditions that ensure recovery of (structured) sparse signals from undersampled, incoherent measurements. In this article, a new recovery algorithm, motion-adaptive spatio-temporal regularization, is presented that uses spatial and temporal structured sparsity of MR images in the compressed sensing framework to recover dynamic MR images from highly undersampled k-space data. In contrast to existing algorithms, our proposed algorithm models temporal sparsity using motion-adaptive linear transformations between neighboring images. The efficiency of motion-adaptive spatio-temporal regularization is demonstrated with experiments on cardiac magnetic resonance imaging for a range of reduction factors. Results are also compared with k-t FOCUSS with motion estimation and compensation-another recently proposed recovery algorithm for dynamic magnetic resonance imaging. . Copyright © 2012 Wiley Periodicals, Inc.

  19. Modeling spatio-temporal wildfire ignition point patterns

    Treesearch

    Amanda S. Hering; Cynthia L. Bell; Marc G. Genton

    2009-01-01

    We analyze and model the structure of spatio-temporal wildfire ignitions in the St. Johns River Water Management District in northeastern Florida. Previous studies, based on the K-function and an assumption of homogeneity, have shown that wildfire events occur in clusters. We revisit this analysis based on an inhomogeneous K-...

  20. A semiparametric spatio-temporal model for solar irradiance data

    DOE PAGES

    Patrick, Joshua D.; Harvill, Jane L.; Hansen, Clifford W.

    2016-03-01

    Here, we evaluate semiparametric spatio-temporal models for global horizontal irradiance at high spatial and temporal resolution. These models represent the spatial domain as a lattice and are capable of predicting irradiance at lattice points, given data measured at other lattice points. Using data from a 1.2 MW PV plant located in Lanai, Hawaii, we show that a semiparametric model can be more accurate than simple interpolation between sensor locations. We investigate spatio-temporal models with separable and nonseparable covariance structures and find no evidence to support assuming a separable covariance structure. These results indicate a promising approach for modeling irradiance atmore » high spatial resolution consistent with available ground-based measurements. Moreover, this kind of modeling may find application in design, valuation, and operation of fleets of utility-scale photovoltaic power systems.« less

  1. Progressive Dictionary Learning with Hierarchical Predictive Structure for Scalable Video Coding.

    PubMed

    Dai, Wenrui; Shen, Yangmei; Xiong, Hongkai; Jiang, Xiaoqian; Zou, Junni; Taubman, David

    2017-04-12

    Dictionary learning has emerged as a promising alternative to the conventional hybrid coding framework. However, the rigid structure of sequential training and prediction degrades its performance in scalable video coding. This paper proposes a progressive dictionary learning framework with hierarchical predictive structure for scalable video coding, especially in low bitrate region. For pyramidal layers, sparse representation based on spatio-temporal dictionary is adopted to improve the coding efficiency of enhancement layers (ELs) with a guarantee of reconstruction performance. The overcomplete dictionary is trained to adaptively capture local structures along motion trajectories as well as exploit the correlations between neighboring layers of resolutions. Furthermore, progressive dictionary learning is developed to enable the scalability in temporal domain and restrict the error propagation in a close-loop predictor. Under the hierarchical predictive structure, online learning is leveraged to guarantee the training and prediction performance with an improved convergence rate. To accommodate with the stateof- the-art scalable extension of H.264/AVC and latest HEVC, standardized codec cores are utilized to encode the base and enhancement layers. Experimental results show that the proposed method outperforms the latest SHVC and HEVC simulcast over extensive test sequences with various resolutions.

  2. Cubic map algebra functions for spatio-temporal analysis

    USGS Publications Warehouse

    Mennis, J.; Viger, R.; Tomlin, C.D.

    2005-01-01

    We propose an extension of map algebra to three dimensions for spatio-temporal data handling. This approach yields a new class of map algebra functions that we call "cube functions." Whereas conventional map algebra functions operate on data layers representing two-dimensional space, cube functions operate on data cubes representing two-dimensional space over a third-dimensional period of time. We describe the prototype implementation of a spatio-temporal data structure and selected cube function versions of conventional local, focal, and zonal map algebra functions. The utility of cube functions is demonstrated through a case study analyzing the spatio-temporal variability of remotely sensed, southeastern U.S. vegetation character over various land covers and during different El Nin??o/Southern Oscillation (ENSO) phases. Like conventional map algebra, the application of cube functions may demand significant data preprocessing when integrating diverse data sets, and are subject to limitations related to data storage and algorithm performance. Solutions to these issues include extending data compression and computing strategies for calculations on very large data volumes to spatio-temporal data handling.

  3. Evaluating the Spatio-Temporal Factors that Structure Network Parameters of Plant-Herbivore Interactions

    PubMed Central

    López-Carretero, Antonio; Díaz-Castelazo, Cecilia; Boege, Karina; Rico-Gray, Víctor

    2014-01-01

    Despite the dynamic nature of ecological interactions, most studies on species networks offer static representations of their structure, constraining our understanding of the ecological mechanisms involved in their spatio-temporal stability. This is the first study to evaluate plant-herbivore interaction networks on a small spatio-temporal scale. Specifically, we simultaneously assessed the effect of host plant availability, habitat complexity and seasonality on the structure of plant-herbivore networks in a coastal tropical ecosystem. Our results revealed that changes in the host plant community resulting from seasonality and habitat structure are reflected not only in the herbivore community, but also in the emergent properties (network parameters) of the plant-herbivore interaction network such as connectance, selectiveness and modularity. Habitat conditions and periods that are most stressful favored the presence of less selective and susceptible herbivore species, resulting in increased connectance within networks. In contrast, the high degree of selectivennes (i.e. interaction specialization) and modularity of the networks under less stressful conditions was promoted by the diversification in resource use by herbivores. By analyzing networks at a small spatio-temporal scale we identified the ecological factors structuring this network such as habitat complexity and seasonality. Our research offers new evidence on the role of abiotic and biotic factors in the variation of the properties of species interaction networks. PMID:25340790

  4. Applying spatio-temporal models to assess variations across health care areas and regions: Lessons from the decentralized Spanish National Health System.

    PubMed

    Librero, Julián; Ibañez, Berta; Martínez-Lizaga, Natalia; Peiró, Salvador; Bernal-Delgado, Enrique

    2017-01-01

    To illustrate the ability of hierarchical Bayesian spatio-temporal models in capturing different geo-temporal structures in order to explain hospital risk variations using three different conditions: Percutaneous Coronary Intervention (PCI), Colectomy in Colorectal Cancer (CCC) and Chronic Obstructive Pulmonary Disease (COPD). This is an observational population-based spatio-temporal study, from 2002 to 2013, with a two-level geographical structure, Autonomous Communities (AC) and Health Care Areas (HA). The Spanish National Health System, a quasi-federal structure with 17 regional governments (AC) with full responsibility in planning and financing, and 203 HA providing hospital and primary care to a defined population. A poisson-log normal mixed model in the Bayesian framework was fitted using the INLA efficient estimation procedure. The spatio-temporal hospitalization relative risks, the evolution of their variation, and the relative contribution (fraction of variation) of each of the model components (AC, HA, year and interaction AC-year). Following PCI-CCC-CODP order, the three conditions show differences in the initial hospitalization rates (from 4 to 21 per 10,000 person-years) and in their trends (upward, inverted V shape, downward). Most of the risk variation is captured by phenomena occurring at the HA level (fraction variance: 51.6, 54.7 and 56.9%). At AC level, the risk of PCI hospitalization follow a heterogeneous ascending dynamic (interaction AC-year: 17.7%), whereas in COPD the AC role is more homogenous and important (37%). In a system where the decisions loci are differentiated, the spatio-temporal modeling allows to assess the dynamic relative role of different levels of decision and their influence on health outcomes.

  5. Hierarchic spatio-temporal dynamics in glycolysis

    NASA Astrophysics Data System (ADS)

    Shinjyo, Takahiro; Nakagawa, Yoshiyuki; Ueda, Tetsuo

    Yeast extracts exhibit oscillations when the glycolytic system is far away from equilibrium. Spatio-temporal dynamics in this system was studied in the newly developed gel as well as in the solution. Small regions (about 10 um) with very complex shape with high or low concentrations of NADH appeared, and upon these small structures large-scale dynamics were superimposed. Concentration waves propagated, and the source of wave was induced by contact with high ADP. Sink of waves was generated by contacting the reaction gel to two small gels rich in ADP. Upon these spatio-temporal dynamics were superimposed much slower global oscillations throughout the system with a period of about 40 min. Similar dynamics was seen in a solution of yeast extract, but the size of domains was about ten times larger than that in the gel. In this way, the multi-enzyme system of glycolysis exhibits self-organization of hierarchy in spatio-temporal dynamics.

  6. Community ecology in 3D: Tensor decomposition reveals spatio-temporal dynamics of large ecological communities.

    PubMed

    Frelat, Romain; Lindegren, Martin; Denker, Tim Spaanheden; Floeter, Jens; Fock, Heino O; Sguotti, Camilla; Stäbler, Moritz; Otto, Saskia A; Möllmann, Christian

    2017-01-01

    Understanding spatio-temporal dynamics of biotic communities containing large numbers of species is crucial to guide ecosystem management and conservation efforts. However, traditional approaches usually focus on studying community dynamics either in space or in time, often failing to fully account for interlinked spatio-temporal changes. In this study, we demonstrate and promote the use of tensor decomposition for disentangling spatio-temporal community dynamics in long-term monitoring data. Tensor decomposition builds on traditional multivariate statistics (e.g. Principal Component Analysis) but extends it to multiple dimensions. This extension allows for the synchronized study of multiple ecological variables measured repeatedly in time and space. We applied this comprehensive approach to explore the spatio-temporal dynamics of 65 demersal fish species in the North Sea, a marine ecosystem strongly altered by human activities and climate change. Our case study demonstrates how tensor decomposition can successfully (i) characterize the main spatio-temporal patterns and trends in species abundances, (ii) identify sub-communities of species that share similar spatial distribution and temporal dynamics, and (iii) reveal external drivers of change. Our results revealed a strong spatial structure in fish assemblages persistent over time and linked to differences in depth, primary production and seasonality. Furthermore, we simultaneously characterized important temporal distribution changes related to the low frequency temperature variability inherent in the Atlantic Multidecadal Oscillation. Finally, we identified six major sub-communities composed of species sharing similar spatial distribution patterns and temporal dynamics. Our case study demonstrates the application and benefits of using tensor decomposition for studying complex community data sets usually derived from large-scale monitoring programs.

  7. Spatio-temporal analysis of wildfire ignitions in the St. Johns River Water Management District, Florida

    Treesearch

    Marc G. Genton; David T. Butry; Marcia L. Gumpertz; Jeffrey P. Prestemon

    2006-01-01

    We analyse the spatio-temporal structure of wildfire ignitions in the St. Johns River Water Management District in north-eastern Florida. We show, using tools to analyse point patterns (e.g. the L-function), that wildfire events occur in clusters. Clustering of these events correlates with irregular distribution of fire ignitions, including lightning...

  8. An agent-based model driven by tropical rainfall to understand the spatio-temporal heterogeneity of a chikungunya outbreak.

    PubMed

    Dommar, Carlos J; Lowe, Rachel; Robinson, Marguerite; Rodó, Xavier

    2014-01-01

    Vector-borne diseases, such as dengue, malaria and chikungunya, are increasing across their traditional ranges and continuing to infiltrate new, previously unaffected, regions. The spatio-temporal evolution of these diseases is determined by the interaction of the host and vector, which is strongly dependent on social structures and mobility patterns. We develop an agent-based model (ABM), in which each individual is explicitly represented and vector populations are linked to precipitation estimates in a tropical setting. The model is implemented on both scale-free and regular networks. The spatio-temporal transmission of chikungunya is analysed and the presence of asymptomatic silent spreaders within the population is investigated in the context of implementing travel restrictions during an outbreak. Preventing the movement of symptomatic individuals is found to be an insufficient mechanism to halt the spread of the disease, which can be readily carried to neighbouring nodes via sub-clinical individuals. Furthermore, the impact of topology structure vs. precipitation levels is assessed and precipitation is found to be the dominant factor driving spatio-temporal transmission. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Spatio-Temporal Regularization for Longitudinal Registration to Subject-Specific 3d Template

    PubMed Central

    Guizard, Nicolas; Fonov, Vladimir S.; García-Lorenzo, Daniel; Nakamura, Kunio; Aubert-Broche, Bérengère; Collins, D. Louis

    2015-01-01

    Neurodegenerative diseases such as Alzheimer's disease present subtle anatomical brain changes before the appearance of clinical symptoms. Manual structure segmentation is long and tedious and although automatic methods exist, they are often performed in a cross-sectional manner where each time-point is analyzed independently. With such analysis methods, bias, error and longitudinal noise may be introduced. Noise due to MR scanners and other physiological effects may also introduce variability in the measurement. We propose to use 4D non-linear registration with spatio-temporal regularization to correct for potential longitudinal inconsistencies in the context of structure segmentation. The major contribution of this article is the use of individual template creation with spatio-temporal regularization of the deformation fields for each subject. We validate our method with different sets of real MRI data, compare it to available longitudinal methods such as FreeSurfer, SPM12, QUARC, TBM, and KNBSI, and demonstrate that spatially local temporal regularization yields more consistent rates of change of global structures resulting in better statistical power to detect significant changes over time and between populations. PMID:26301716

  10. Community ecology in 3D: Tensor decomposition reveals spatio-temporal dynamics of large ecological communities

    PubMed Central

    Lindegren, Martin; Denker, Tim Spaanheden; Floeter, Jens; Fock, Heino O.; Sguotti, Camilla; Stäbler, Moritz; Otto, Saskia A.; Möllmann, Christian

    2017-01-01

    Understanding spatio-temporal dynamics of biotic communities containing large numbers of species is crucial to guide ecosystem management and conservation efforts. However, traditional approaches usually focus on studying community dynamics either in space or in time, often failing to fully account for interlinked spatio-temporal changes. In this study, we demonstrate and promote the use of tensor decomposition for disentangling spatio-temporal community dynamics in long-term monitoring data. Tensor decomposition builds on traditional multivariate statistics (e.g. Principal Component Analysis) but extends it to multiple dimensions. This extension allows for the synchronized study of multiple ecological variables measured repeatedly in time and space. We applied this comprehensive approach to explore the spatio-temporal dynamics of 65 demersal fish species in the North Sea, a marine ecosystem strongly altered by human activities and climate change. Our case study demonstrates how tensor decomposition can successfully (i) characterize the main spatio-temporal patterns and trends in species abundances, (ii) identify sub-communities of species that share similar spatial distribution and temporal dynamics, and (iii) reveal external drivers of change. Our results revealed a strong spatial structure in fish assemblages persistent over time and linked to differences in depth, primary production and seasonality. Furthermore, we simultaneously characterized important temporal distribution changes related to the low frequency temperature variability inherent in the Atlantic Multidecadal Oscillation. Finally, we identified six major sub-communities composed of species sharing similar spatial distribution patterns and temporal dynamics. Our case study demonstrates the application and benefits of using tensor decomposition for studying complex community data sets usually derived from large-scale monitoring programs. PMID:29136658

  11. A Tentative Application Of Morphological Filters To Time-Varying Images

    NASA Astrophysics Data System (ADS)

    Billard, D.; Poquillon, B.

    1989-03-01

    In this paper, morphological filters, which are commonly used to process either 2D or multidimensional static images, are generalized to the analysis of time-varying image sequence. The introduction of the time dimension induces then interesting prop-erties when designing such spatio-temporal morphological filters. In particular, the specification of spatio-temporal structuring ele-ments (equivalent to time-varying spatial structuring elements) can be adjusted according to the temporal variations of the image sequences to be processed : this allows to derive specific morphological transforms to perform noise filtering or moving objects discrimination on dynamic images viewed by a non-stationary sensor. First, a brief introduction to the basic principles underlying morphological filters will be given. Then, a straightforward gener-alization of these principles to time-varying images will be pro-posed. This will lead us to define spatio-temporal opening and closing and to introduce some of their possible applications to process dynamic images. At last, preliminary results obtained us-ing a natural forward looking infrared (FUR) image sequence are presented.

  12. Baseline study of the spatio-temporal patterns of reef fish assemblages prior to a major mining project in New Caledonia (South Pacific).

    PubMed

    Chabanet, Pascale; Guillemot, Nicolas; Kulbicki, Michel; Vigliola, Laurent; Sarramegna, Sébastien

    2010-01-01

    From 2008 onwards, the coral reefs of Koné (New Caledonia) will be subjected to a major anthropogenic perturbation linked to development of a nickel mine. Dredging and sediment runoff may directly damage the reef environment whereas job creation should generate a large demographic increase and thus a rise in fishing activities. This study analyzed reef fish assemblages between 2002 and 2007 with a focus on spatio-temporal variability. Our results indicate strong spatial structure of fish assemblages through time. Total species richness, density and biomass were highly variable between years but temporal variations were consistent among biotopes. A remarkable spatio-temporal stability was observed for trophic (mean 4.6% piscivores, 53.1% carnivores, 30.8% herbivores and 11.4% planktivores) and home range structures of species abundance contributions. These results are discussed and compared with others sites of the South Pacific. For monitoring perspectives, some indicators related to expected disturbances are proposed. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. Spatiotemporal database of US congressional elections, 1896–2014

    PubMed Central

    Wolf, Levi John

    2017-01-01

    High-quality historical data about US Congressional elections has long provided common ground for electoral studies. However, advances in geographic information science have recently made it efficient to compile, distribute, and analyze large spatio-temporal data sets on the structure of US Congressional districts. A single spatio-temporal data set that relates US Congressional election results to the spatial extent of the constituencies has not yet been developed. To address this, existing high-quality data sets of elections returns were combined with a spatiotemporal data set on Congressional district boundaries to generate a new spatio-temporal database of US Congressional election results that are explicitly linked to the geospatial data about the districts themselves. PMID:28809849

  14. An event-version-based spatio-temporal modeling approach and its application in the cadastral management

    NASA Astrophysics Data System (ADS)

    Li, Yangdong; Han, Zhen; Liao, Zhongping

    2009-10-01

    Spatiality, temporality, legality, accuracy and continuality are characteristic of cadastral information, and the cadastral management demands that the cadastral data should be accurate, integrated and updated timely. It's a good idea to build an effective GIS management system to manage the cadastral data which are characterized by spatiality and temporality. Because no sound spatio-temporal data models have been adopted, however, the spatio-temporal characteristics of cadastral data are not well expressed in the existing cadastral management systems. An event-version-based spatio-temporal modeling approach is first proposed from the angle of event and version. Then with the help of it, an event-version-based spatio-temporal cadastral data model is built to represent spatio-temporal cadastral data. At last, the previous model is used in the design and implementation of a spatio-temporal cadastral management system. The result of the application of the system shows that the event-version-based spatio-temporal data model is very suitable for the representation and organization of cadastral data.

  15. Spatio-temporal variability of ichthyophagous bird assemblage around western Mediterranean open-sea cage fish farms.

    PubMed

    Aguado-Giménez, Felipe; Eguía-Martínez, Sergio; Cerezo-Valverde, Jesús; García-García, Benjamín

    2018-06-14

    Ichthyophagous birds aggregate at cage fish farms attracted by caged and associated wild fish. Spatio-temporal variability of such birds was studied for a year through seasonal visual counts at eight farms in the western Mediterranean. Correlation with farm and location descriptors was assessed. Considerable spatio-temporal variability in fish-eating bird density and assemblage structure was observed among farms and seasons. Bird density increased from autumn to winter, with the great cormorant being the most abundant species, also accounting largely for differences among farms. Grey heron and little egret were also numerous at certain farms during the coldest seasons. Cattle egret was only observed at one farm. No shags were observed during winter. During spring and summer, bird density decreased markedly and only shags and little egrets were observed at only a few farms. Season and distance from farms to bird breeding/wintering grounds helped to explain some of the spatio-temporal variability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Spatio-temporal patterns of tree establishment are indicative of biotic interactions during early invasion of a montane meadow

    Treesearch

    J.M. Rice; C.B. Halpern; J.A. Antos; J.A. Jones

    2012-01-01

    Tree invasions of grasslands are occurring globally, with profound consequences for ecosystem structure and function. We explore the spatio-temporal dynamics of tree invasion of a montane meadow in the Cascade Mountains of Oregon, where meadow loss is a conservation concern. We examine the early stages of invasion, where extrinsic and intrinsic processes can be clearly...

  17. Time-Distance Helioseismology

    NASA Technical Reports Server (NTRS)

    Duvall, Thomas L., Jr.

    2010-01-01

    Time-distance helioseismology is a method of ambient noise imaging using the solar oscillations. The basic realization that led to time-distance helioseismology was that the temporal cross correlation of the signals at two 'surface' (or photospheric) locations should show a feature at the time lag corresponding to the subsurface travel time between the locations. The temporal cross correlation, as a function of the location separation, is the Fourier transform of the spatio-temporal power spectrum of the solar oscillations, a commonly used function in helioseismology. It is therefore likely the characteristic ridge structure of the correlation function had been seen before without appreciation of its significance. Travel times are measured from the cross correlations. The times are sensitive to a number of important subsurface solar phenomena. These include sound speed variations, flows, and magnetic fields. There has been much interesting progress in the 17 years since the first paper on this subject (Duvall et al., Nature, 1993, 362, 430-432). This progress will be reviewed in this paper.

  18. Complex, Dynamic Combination of Physical, Chemical and Nutritional Variables Controls Spatio-Temporal Variation of Sandy Beach Community Structure

    PubMed Central

    Ortega Cisneros, Kelly; Smit, Albertus J.; Laudien, Jürgen; Schoeman, David S.

    2011-01-01

    Sandy beach ecological theory states that physical features of the beach control macrobenthic community structure on all but the most dissipative beaches. However, few studies have simultaneously evaluated the relative importance of physical, chemical and biological factors as potential explanatory variables for meso-scale spatio-temporal patterns of intertidal community structure in these systems. Here, we investigate macroinfaunal community structure of a micro-tidal sandy beach that is located on an oligotrophic subtropical coast and is influenced by seasonal estuarine input. We repeatedly sampled biological and environmental variables at a series of beach transects arranged at increasing distances from the estuary mouth. Sampling took place over a period of five months, corresponding with the transition between the dry and wet season. This allowed assessment of biological-physical relationships across chemical and nutritional gradients associated with a range of estuarine inputs. Physical, chemical, and biological response variables, as well as measures of community structure, showed significant spatio-temporal patterns. In general, bivariate relationships between biological and environmental variables were rare and weak. However, multivariate correlation approaches identified a variety of environmental variables (i.e., sampling session, the C∶N ratio of particulate organic matter, dissolved inorganic nutrient concentrations, various size fractions of photopigment concentrations, salinity and, to a lesser extent, beach width and sediment kurtosis) that either alone or combined provided significant explanatory power for spatio-temporal patterns of macroinfaunal community structure. Overall, these results showed that the macrobenthic community on Mtunzini Beach was not structured primarily by physical factors, but instead by a complex and dynamic blend of nutritional, chemical and physical drivers. This emphasises the need to recognise ocean-exposed sandy beaches as functional ecosystems in their own right. PMID:21858213

  19. Complex, dynamic combination of physical, chemical and nutritional variables controls spatio-temporal variation of sandy beach community structure.

    PubMed

    Ortega Cisneros, Kelly; Smit, Albertus J; Laudien, Jürgen; Schoeman, David S

    2011-01-01

    Sandy beach ecological theory states that physical features of the beach control macrobenthic community structure on all but the most dissipative beaches. However, few studies have simultaneously evaluated the relative importance of physical, chemical and biological factors as potential explanatory variables for meso-scale spatio-temporal patterns of intertidal community structure in these systems. Here, we investigate macroinfaunal community structure of a micro-tidal sandy beach that is located on an oligotrophic subtropical coast and is influenced by seasonal estuarine input. We repeatedly sampled biological and environmental variables at a series of beach transects arranged at increasing distances from the estuary mouth. Sampling took place over a period of five months, corresponding with the transition between the dry and wet season. This allowed assessment of biological-physical relationships across chemical and nutritional gradients associated with a range of estuarine inputs. Physical, chemical, and biological response variables, as well as measures of community structure, showed significant spatio-temporal patterns. In general, bivariate relationships between biological and environmental variables were rare and weak. However, multivariate correlation approaches identified a variety of environmental variables (i.e., sampling session, the C∶N ratio of particulate organic matter, dissolved inorganic nutrient concentrations, various size fractions of photopigment concentrations, salinity and, to a lesser extent, beach width and sediment kurtosis) that either alone or combined provided significant explanatory power for spatio-temporal patterns of macroinfaunal community structure. Overall, these results showed that the macrobenthic community on Mtunzini Beach was not structured primarily by physical factors, but instead by a complex and dynamic blend of nutritional, chemical and physical drivers. This emphasises the need to recognise ocean-exposed sandy beaches as functional ecosystems in their own right.

  20. Spatio-Temporal Patterning in Primary Motor Cortex at Movement Onset.

    PubMed

    Best, Matthew D; Suminski, Aaron J; Takahashi, Kazutaka; Brown, Kevin A; Hatsopoulos, Nicholas G

    2017-02-01

    Voluntary movement initiation involves the engagement of large populations of motor cortical neurons around movement onset. Despite knowledge of the temporal dynamics that lead to movement, the spatial structure of these dynamics across the cortical surface remains unknown. In data from 4 rhesus macaques, we show that the timing of attenuation of beta frequency local field potential oscillations, a correlate of locally activated cortex, forms a spatial gradient across primary motor cortex (MI). We show that these spatio-temporal dynamics are recapitulated in the engagement order of ensembles of MI neurons. We demonstrate that these patterns are unique to movement onset and suggest that movement initiation requires a precise spatio-temporal sequential activation of neurons in MI. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Spatio-temporal Organization During Ventricular Fibrillation in the Human Heart.

    PubMed

    Robson, Jinny; Aram, Parham; Nash, Martyn P; Bradley, Chris P; Hayward, Martin; Paterson, David J; Taggart, Peter; Clayton, Richard H; Kadirkamanathan, Visakan

    2018-06-01

    In this paper, we present a novel approach to quantify the spatio-temporal organization of electrical activation during human ventricular fibrillation (VF). We propose three different methods based on correlation analysis, graph theoretical measures and hierarchical clustering. Using the proposed approach, we quantified the level of spatio-temporal organization during three episodes of VF in ten patients, recorded using multi-electrode epicardial recordings with 30 s coronary perfusion, 150 s global myocardial ischaemia and 30 s reflow. Our findings show a steady decline in spatio-temporal organization from the onset of VF with coronary perfusion. We observed transient increases in spatio-temporal organization during global myocardial ischaemia. However, the decline in spatio-temporal organization continued during reflow. Our results were consistent across all patients, and were consistent with the numbers of phase singularities. Our findings show that the complex spatio-temporal patterns can be studied using complex network analysis.

  2. Visual representation of spatiotemporal structure

    NASA Astrophysics Data System (ADS)

    Schill, Kerstin; Zetzsche, Christoph; Brauer, Wilfried; Eisenkolb, A.; Musto, A.

    1998-07-01

    The processing and representation of motion information is addressed from an integrated perspective comprising low- level signal processing properties as well as higher-level cognitive aspects. For the low-level processing of motion information we argue that a fundamental requirement is the existence of a spatio-temporal memory. Its key feature, the provision of an orthogonal relation between external time and its internal representation, is achieved by a mapping of temporal structure into a locally distributed activity distribution accessible in parallel by higher-level processing stages. This leads to a reinterpretation of the classical concept of `iconic memory' and resolves inconsistencies on ultra-short-time processing and visual masking. The spatial-temporal memory is further investigated by experiments on the perception of spatio-temporal patterns. Results on the direction discrimination of motion paths provide evidence that information about direction and location are not processed and represented independent of each other. This suggests a unified representation on an early level, in the sense that motion information is internally available in form of a spatio-temporal compound. For the higher-level representation we have developed a formal framework for the qualitative description of courses of motion that may occur with moving objects.

  3. Mapping the spatio-temporal structure of motor cortical LFP and spiking activities during reach-to-grasp movements

    PubMed Central

    Riehle, Alexa; Wirtssohn, Sarah; Grün, Sonja; Brochier, Thomas

    2013-01-01

    Grasping an object involves shaping the hand and fingers in relation to the object’s physical properties. Following object contact, it also requires a fine adjustment of grasp forces for secure manipulation. Earlier studies suggest that the control of hand shaping and grasp force involve partially segregated motor cortical networks. However, it is still unclear how information originating from these networks is processed and integrated. We addressed this issue by analyzing massively parallel signals from population measures (local field potentials, LFPs) and single neuron spiking activities recorded simultaneously during a delayed reach-to-grasp task, by using a 100-electrode array chronically implanted in monkey motor cortex. Motor cortical LFPs exhibit a large multi-component movement-related potential (MRP) around movement onset. Here, we show that the peak amplitude of each MRP component and its latency with respect to movement onset vary along the cortical surface covered by the array. Using a comparative mapping approach, we suggest that the spatio-temporal structure of the MRP reflects the complex physical properties of the reach-to-grasp movement. In addition, we explored how the spatio-temporal structure of the MRP relates to two other measures of neuronal activity: the temporal profile of single neuron spiking activity at each electrode site and the somatosensory receptive field properties of single neuron activities. We observe that the spatial representations of LFP and spiking activities overlap extensively and relate to the spatial distribution of proximal and distal representations of the upper limb. Altogether, these data show that, in motor cortex, a precise spatio-temporal pattern of activation is involved for the control of reach-to-grasp movements and provide some new insight about the functional organization of motor cortex during reaching and object manipulation. PMID:23543888

  4. HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recognition.

    PubMed

    Lagorce, Xavier; Orchard, Garrick; Galluppi, Francesco; Shi, Bertram E; Benosman, Ryad B

    2017-07-01

    This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.

  5. Spatio-temporal organization of replication in bacteria and eukaryotes (nucleoids and nuclei).

    PubMed

    Jackson, Dean; Wang, Xindan; Rudner, David Z

    2012-08-01

    Here we discuss the spatio-temporal organization of replication in eubacteria and eukaryotes. Although there are significant differences in how replication is organized in cells that contain nuclei from those that do not, you will see that organization of replication in all organisms is principally dictated by the structured arrangement of the chromosome. We will begin with how replication is organized in eubacteria with particular emphasis on three well studied model organisms. We will then discuss spatial and temporal organization of replication in eukaryotes highlighting the similarities and differences between these two domains of life.

  6. Spatio-Temporal Organization of Replication in Bacteria and Eukaryotes (Nucleoids and Nuclei)

    PubMed Central

    Jackson, Dean; Wang, Xindan; Rudner, David Z.

    2012-01-01

    Here we discuss the spatio-temporal organization of replication in eubacteria and eukaryotes. Although there are significant differences in how replication is organized in cells that contain nuclei from those that do not, you will see that organization of replication in all organisms is principally dictated by the structured arrangement of the chromosome. We will begin with how replication is organized in eubacteria with particular emphasis on three well studied model organisms. We will then discuss spatial and temporal organization of replication in eukaryotes highlighting the similarities and differences between these two domains of life. PMID:22855726

  7. A BAYESIAN SPATIAL AND TEMPORAL MODELING APPROACH TO MAPPING GEOGRAPHIC VARIATION IN MORTALITY RATES FOR SUBNATIONAL AREAS WITH R-INLA.

    PubMed

    Khana, Diba; Rossen, Lauren M; Hedegaard, Holly; Warner, Margaret

    2018-01-01

    Hierarchical Bayes models have been used in disease mapping to examine small scale geographic variation. State level geographic variation for less common causes of mortality outcomes have been reported however county level variation is rarely examined. Due to concerns about statistical reliability and confidentiality, county-level mortality rates based on fewer than 20 deaths are suppressed based on Division of Vital Statistics, National Center for Health Statistics (NCHS) statistical reliability criteria, precluding an examination of spatio-temporal variation in less common causes of mortality outcomes such as suicide rates (SRs) at the county level using direct estimates. Existing Bayesian spatio-temporal modeling strategies can be applied via Integrated Nested Laplace Approximation (INLA) in R to a large number of rare causes of mortality outcomes to enable examination of spatio-temporal variations on smaller geographic scales such as counties. This method allows examination of spatiotemporal variation across the entire U.S., even where the data are sparse. We used mortality data from 2005-2015 to explore spatiotemporal variation in SRs, as one particular application of the Bayesian spatio-temporal modeling strategy in R-INLA to predict year and county-specific SRs. Specifically, hierarchical Bayesian spatio-temporal models were implemented with spatially structured and unstructured random effects, correlated time effects, time varying confounders and space-time interaction terms in the software R-INLA, borrowing strength across both counties and years to produce smoothed county level SRs. Model-based estimates of SRs were mapped to explore geographic variation.

  8. Spatio-Temporal Analysis of Forest Fire Risk and Danger Using LANDSAT Imagery.

    PubMed

    Saglam, Bülent; Bilgili, Ertugrul; Dincdurmaz, Bahar; Kadiogulari, Ali Ihsan; Kücük, Ömer

    2008-06-20

    Computing fire danger and fire risk on a spatio-temporal scale is of crucial importance in fire management planning, and in the simulation of fire growth and development across a landscape. However, due to the complex nature of forests, fire risk and danger potential maps are considered one of the most difficult thematic layers to build up. Remote sensing and digital terrain data have been introduced for efficient discrete classification of fire risk and fire danger potential. In this study, two time-series data of Landsat imagery were used for determining spatio-temporal change of fire risk and danger potential in Korudag forest planning unit in northwestern Turkey. The method comprised the following two steps: (1) creation of indices of the factors influencing fire risk and danger; (2) evaluation of spatio-temporal changes in fire risk and danger of given areas using remote sensing as a quick and inexpensive means and determining the pace of forest cover change. Fire risk and danger potential indices were based on species composition, stand crown closure, stand development stage, insolation, slope and, proximity of agricultural lands to forest and distance from settlement areas. Using the indices generated, fire risk and danger maps were produced for the years 1987 and 2000. Spatio-temporal analyses were then realized based on the maps produced. Results obtained from the study showed that the use of Landsat imagery provided a valuable characterization and mapping of vegetation structure and type with overall classification accuracy higher than 83%.

  9. Joint level-set and spatio-temporal motion detection for cell segmentation.

    PubMed

    Boukari, Fatima; Makrogiannis, Sokratis

    2016-08-10

    Cell segmentation is a critical step for quantification and monitoring of cell cycle progression, cell migration, and growth control to investigate cellular immune response, embryonic development, tumorigenesis, and drug effects on live cells in time-lapse microscopy images. In this study, we propose a joint spatio-temporal diffusion and region-based level-set optimization approach for moving cell segmentation. Moving regions are initially detected in each set of three consecutive sequence images by numerically solving a system of coupled spatio-temporal partial differential equations. In order to standardize intensities of each frame, we apply a histogram transformation approach to match the pixel intensities of each processed frame with an intensity distribution model learned from all frames of the sequence during the training stage. After the spatio-temporal diffusion stage is completed, we compute the edge map by nonparametric density estimation using Parzen kernels. This process is followed by watershed-based segmentation and moving cell detection. We use this result as an initial level-set function to evolve the cell boundaries, refine the delineation, and optimize the final segmentation result. We applied this method to several datasets of fluorescence microscopy images with varying levels of difficulty with respect to cell density, resolution, contrast, and signal-to-noise ratio. We compared the results with those produced by Chan and Vese segmentation, a temporally linked level-set technique, and nonlinear diffusion-based segmentation. We validated all segmentation techniques against reference masks provided by the international Cell Tracking Challenge consortium. The proposed approach delineated cells with an average Dice similarity coefficient of 89 % over a variety of simulated and real fluorescent image sequences. It yielded average improvements of 11 % in segmentation accuracy compared to both strictly spatial and temporally linked Chan-Vese techniques, and 4 % compared to the nonlinear spatio-temporal diffusion method. Despite the wide variation in cell shape, density, mitotic events, and image quality among the datasets, our proposed method produced promising segmentation results. These results indicate the efficiency and robustness of this method especially for mitotic events and low SNR imaging, enabling the application of subsequent quantification tasks.

  10. The ultimate picture-the combination of live cell superresolution microscopy and single molecule tracking yields highest spatio-temporal resolution.

    PubMed

    Dersch, Simon; Graumann, Peter L

    2018-06-01

    We are witnessing a breathtaking development in light (fluorescence) microscopy, where structures can be resolved down to the size of a ribosome within cells. This has already yielded surprising insight into the subcellular structure of cells, including the smallest cells, bacteria. Moreover, it has become possible to visualize and track single fluorescent protein fusions in real time, and quantify molecule numbers within individual cells. Combined, super resolution and single molecule tracking are pushing the limits of our understanding of the spatio-temporal organization even of the smallest cells to an unprecedented depth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Hierarchical Bayesian Spatio-Temporal Analysis of Climatic and Socio-Economic Determinants of Rocky Mountain Spotted Fever.

    PubMed

    Raghavan, Ram K; Goodin, Douglas G; Neises, Daniel; Anderson, Gary A; Ganta, Roman R

    2016-01-01

    This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF) prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio-economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio-temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio-economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main-effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C) in the region, and the relevance of these factors in the context of climate-change impacts on tick-borne diseases are discussed.

  12. Research on spatio-temporal database techniques for spatial information service

    NASA Astrophysics Data System (ADS)

    Zhao, Rong; Wang, Liang; Li, Yuxiang; Fan, Rongshuang; Liu, Ping; Li, Qingyuan

    2007-06-01

    Geographic data should be described by spatial, temporal and attribute components, but the spatio-temporal queries are difficult to be answered within current GIS. This paper describes research into the development and application of spatio-temporal data management system based upon GeoWindows GIS software platform which was developed by Chinese Academy of Surveying and Mapping (CASM). Faced the current and practical requirements of spatial information application, and based on existing GIS platform, one kind of spatio-temporal data model which integrates vector and grid data together was established firstly. Secondly, we solved out the key technique of building temporal data topology, successfully developed a suit of spatio-temporal database management system adopting object-oriented methods. The system provides the temporal data collection, data storage, data management and data display and query functions. Finally, as a case study, we explored the application of spatio-temporal data management system with the administrative region data of multi-history periods of China as the basic data. With all the efforts above, the GIS capacity of management and manipulation in aspect of time and attribute of GIS has been enhanced, and technical reference has been provided for the further development of temporal geographic information system (TGIS).

  13. Bayesian spatio-temporal modeling of particulate matter concentrations in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Manga, Edna; Awang, Norhashidah

    2016-06-01

    This article presents an application of a Bayesian spatio-temporal Gaussian process (GP) model on particulate matter concentrations from Peninsular Malaysia. We analyze daily PM10 concentration levels from 35 monitoring sites in June and July 2011. The spatiotemporal model set in a Bayesian hierarchical framework allows for inclusion of informative covariates, meteorological variables and spatiotemporal interactions. Posterior density estimates of the model parameters are obtained by Markov chain Monte Carlo methods. Preliminary data analysis indicate information on PM10 levels at sites classified as industrial locations could explain part of the space time variations. We include the site-type indicator in our modeling efforts. Results of the parameter estimates for the fitted GP model show significant spatio-temporal structure and positive effect of the location-type explanatory variable. We also compute some validation criteria for the out of sample sites that show the adequacy of the model for predicting PM10 at unmonitored sites.

  14. Dynamic design of ecological monitoring networks for non-Gaussian spatio-temporal data

    USGS Publications Warehouse

    Wikle, C.K.; Royle, J. Andrew

    2005-01-01

    Many ecological processes exhibit spatial structure that changes over time in a coherent, dynamical fashion. This dynamical component is often ignored in the design of spatial monitoring networks. Furthermore, ecological variables related to processes such as habitat are often non-Gaussian (e.g. Poisson or log-normal). We demonstrate that a simulation-based design approach can be used in settings where the data distribution is from a spatio-temporal exponential family. The key random component in the conditional mean function from this distribution is then a spatio-temporal dynamic process. Given the computational burden of estimating the expected utility of various designs in this setting, we utilize an extended Kalman filter approximation to facilitate implementation. The approach is motivated by, and demonstrated on, the problem of selecting sampling locations to estimate July brood counts in the prairie pothole region of the U.S.

  15. Convective boundary layer heights over mountainous terrain - A review of concepts -

    NASA Astrophysics Data System (ADS)

    De Wekker, Stephan; Kossmann, Meinolf

    2015-12-01

    Mountainous terrain exerts an important influence on the Earth's atmosphere and affects atmospheric transport and mixing at a wide range of temporal and spatial scales. The vertical scale of this transport and mixing is determined by the height of the atmospheric boundary layer, which is therefore an important parameter in air pollution studies, weather forecasting, climate modeling, and many other applications. It is recognized that the spatio-temporal structure of the daytime convective boundary layer (CBL) height is strongly modified and more complex in hilly and mountainous terrain compared to flat terrain. While the CBL over flat terrain is mostly dominated by turbulent convection, advection from multi-scale thermally driven flows plays an important role for the CBL evolution over mountainous terrain. However, detailed observations of the CBL structure and understanding of the underlying processes are still limited. Characteristics of CBL heights in mountainous terrain are reviewed for dry, convective conditions. CBLs in valleys and basins, where hazardous accumulation of pollutants is of particular concern, are relatively well-understood compared to CBLs over slopes, ridges, or mountain peaks. Interests in the initiation of shallow and deep convection, and of budgets and long-range transport of air pollutants and trace gases, have triggered some recent studies on terrain induced exchange processes between the CBL and the overlying atmosphere. These studies have helped to gain more insight into CBL structure over complex mountainous terrain, but also show that the universal definition of CBL height over mountains remains an unresolved issue. The review summarizes the progress that has been made in documenting and understanding spatio-temporal behavior of CBL heights in mountainous terrain and concludes with a discussion of open research questions and opportunities for future research.

  16. The influence of natural factors on the spatio-temporal distribution of Oncomelania hupensis.

    PubMed

    Cheng, Gong; Li, Dan; Zhuang, Dafang; Wang, Yong

    2016-12-01

    We analyzed the influence of natural factors, such as temperature, rainfall, vegetation and hydrology, on the spatio-temporal distribution of Oncomelania hupensis and explored the leading factors influencing these parameters. The results will provide reference methods and theoretical a basis for the schistosomiasis control. GIS (Geographic Information System) spatial display and analysis were used to describe the spatio-temporal distribution of Oncomelania hupensis in the study area (Dongting Lake in Hunan Province) from 2004 to 2011. Correlation analysis was used to detect the natural factors associated with the spatio-temporal distribution of O. hupensis. Spatial regression analysis was used to quantitatively analyze the effects of related natural factors on the spatio-temporal distribution of snails and explore the dominant factors influencing this parameter. (1) Overall, the spatio-temporal distribution of O. hupensis was governed by the comprehensive effects of natural factors. In the study area, the average density of living snails showed a downward trend, with the exception of a slight rebound in 2009. The density of living snails showed significant spatial clustering, and the degree of aggregation was initially weak but enhanced later. Regions with high snail density and towns with an HH distribution pattern were mostly distributed in the plain areas in the northwestern and inlet and outlet of the lake. (2) There were space-time differences in the influence of natural factors on the spatio-temporal distribution of O. hupensis. Temporally, the comprehensive influence of natural factors on snail distribution increased first and then decreased. Natural factors played an important role in snail distribution in 2005, 2006, 2010 and 2011. Spatially, it decreased from the northeast to the southwest. Snail distributions in more than 20 towns located along the Yuanshui River and on the west side of the Lishui River were less affected by natural factors, whereas relatively larger in areas around the outlet of the lake (Chenglingji) were more affected. (3) The effects of natural factors on the spatio-temporal distribution of O. hupensis were spatio-temporally heterogeneous. Rainfall, land surface temperature, NDVI, and distance from water sources all played an important role in the spatio-temporal distribution of O. hupensis. In addition, due to the effects of the local geographical environment, the direction of the influences the average annual rainfall, land surface temperature, and NDVI had on the spatio-temporal distribution of O. hupensis were all spatio-temporally heterogeneous, and both the distance from water sources and the history of snail distribution always had positive effects on the distribution O. hupensis, but the direction of the influence was spatio-temporally heterogeneous. (4) Of all the natural factors, the leading factors influencing the spatio-temporal distribution of O. hupensis were rainfall and vegetation (NDVI), and the primary factor alternated between these two. The leading role of rainfall decreased year by year, while that of vegetation (NDVI) increased from 2004 to 2011. The spatio-temporal distribution of O. hupensis was significantly influenced by natural factors, and the influences were heterogeneous across space and time. Additionally, the variation in the spatial-temporal distribution of O. hupensis was mainly affected by rainfall and vegetation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Visualization of Spatio-Temporal Relations in Movement Event Using Multi-View

    NASA Astrophysics Data System (ADS)

    Zheng, K.; Gu, D.; Fang, F.; Wang, Y.; Liu, H.; Zhao, W.; Zhang, M.; Li, Q.

    2017-09-01

    Spatio-temporal relations among movement events extracted from temporally varying trajectory data can provide useful information about the evolution of individual or collective movers, as well as their interactions with their spatial and temporal contexts. However, the pure statistical tools commonly used by analysts pose many difficulties, due to the large number of attributes embedded in multi-scale and multi-semantic trajectory data. The need for models that operate at multiple scales to search for relations at different locations within time and space, as well as intuitively interpret what these relations mean, also presents challenges. Since analysts do not know where or when these relevant spatio-temporal relations might emerge, these models must compute statistical summaries of multiple attributes at different granularities. In this paper, we propose a multi-view approach to visualize the spatio-temporal relations among movement events. We describe a method for visualizing movement events and spatio-temporal relations that uses multiple displays. A visual interface is presented, and the user can interactively select or filter spatial and temporal extents to guide the knowledge discovery process. We also demonstrate how this approach can help analysts to derive and explain the spatio-temporal relations of movement events from taxi trajectory data.

  18. Soil erodibility for water erosion: A perspective and Chinese experiences

    USDA-ARS?s Scientific Manuscript database

    Erodibility is a key indicator to evaluate soil’s susceptibility to erosion and crucial for predicting and evaluating soil loss and its environmental effects. This review aims to synthesize almost a century’s worth of research progress on the concept, indicators, and spatio-temporal variations of so...

  19. Spatio-temporal models of mental processes from fMRI.

    PubMed

    Janoos, Firdaus; Machiraju, Raghu; Singh, Shantanu; Morocz, Istvan Ákos

    2011-07-15

    Understanding the highly complex, spatially distributed and temporally organized phenomena entailed by mental processes using functional MRI is an important research problem in cognitive and clinical neuroscience. Conventional analysis methods focus on the spatial dimension of the data discarding the information about brain function contained in the temporal dimension. This paper presents a fully spatio-temporal multivariate analysis method using a state-space model (SSM) for brain function that yields not only spatial maps of activity but also its temporal structure along with spatially varying estimates of the hemodynamic response. Efficient algorithms for estimating the parameters along with quantitative validations are given. A novel low-dimensional feature-space for representing the data, based on a formal definition of functional similarity, is derived. Quantitative validation of the model and the estimation algorithms is provided with a simulation study. Using a real fMRI study for mental arithmetic, the ability of this neurophysiologically inspired model to represent the spatio-temporal information corresponding to mental processes is demonstrated. Moreover, by comparing the models across multiple subjects, natural patterns in mental processes organized according to different mental abilities are revealed. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Spatio-temporal Bayesian model selection for disease mapping

    PubMed Central

    Carroll, R; Lawson, AB; Faes, C; Kirby, RS; Aregay, M; Watjou, K

    2016-01-01

    Spatio-temporal analysis of small area health data often involves choosing a fixed set of predictors prior to the final model fit. In this paper, we propose a spatio-temporal approach of Bayesian model selection to implement model selection for certain areas of the study region as well as certain years in the study time line. Here, we examine the usefulness of this approach by way of a large-scale simulation study accompanied by a case study. Our results suggest that a special case of the model selection methods, a mixture model allowing a weight parameter to indicate if the appropriate linear predictor is spatial, spatio-temporal, or a mixture of the two, offers the best option to fitting these spatio-temporal models. In addition, the case study illustrates the effectiveness of this mixture model within the model selection setting by easily accommodating lifestyle, socio-economic, and physical environmental variables to select a predominantly spatio-temporal linear predictor. PMID:28070156

  1. Spatio-temporal Hotelling observer for signal detection from image sequences

    PubMed Central

    Caucci, Luca; Barrett, Harrison H.; Rodríguez, Jeffrey J.

    2010-01-01

    Detection of signals in noisy images is necessary in many applications, including astronomy and medical imaging. The optimal linear observer for performing a detection task, called the Hotelling observer in the medical literature, can be regarded as a generalization of the familiar prewhitening matched filter. Performance on the detection task is limited by randomness in the image data, which stems from randomness in the object, randomness in the imaging system, and randomness in the detector outputs due to photon and readout noise, and the Hotelling observer accounts for all of these effects in an optimal way. If multiple temporal frames of images are acquired, the resulting data set is a spatio-temporal random process, and the Hotelling observer becomes a spatio-temporal linear operator. This paper discusses the theory of the spatio-temporal Hotelling observer and estimation of the required spatio-temporal covariance matrices. It also presents a parallel implementation of the observer on a cluster of Sony PLAYSTATION 3 gaming consoles. As an example, we consider the use of the spatio-temporal Hotelling observer for exoplanet detection. PMID:19550494

  2. Spatio-temporal Hotelling observer for signal detection from image sequences.

    PubMed

    Caucci, Luca; Barrett, Harrison H; Rodriguez, Jeffrey J

    2009-06-22

    Detection of signals in noisy images is necessary in many applications, including astronomy and medical imaging. The optimal linear observer for performing a detection task, called the Hotelling observer in the medical literature, can be regarded as a generalization of the familiar prewhitening matched filter. Performance on the detection task is limited by randomness in the image data, which stems from randomness in the object, randomness in the imaging system, and randomness in the detector outputs due to photon and readout noise, and the Hotelling observer accounts for all of these effects in an optimal way. If multiple temporal frames of images are acquired, the resulting data set is a spatio-temporal random process, and the Hotelling observer becomes a spatio-temporal linear operator. This paper discusses the theory of the spatio-temporal Hotelling observer and estimation of the required spatio-temporal covariance matrices. It also presents a parallel implementation of the observer on a cluster of Sony PLAYSTATION 3 gaming consoles. As an example, we consider the use of the spatio-temporal Hotelling observer for exoplanet detection.

  3. Spatio-temporal response of maize yield to edaphic and meteorological conditions in a saline farmland

    USDA-ARS?s Scientific Manuscript database

    Spatio-temporal variability of crop production strongly depends on soil heterogeneity, meteorological conditions, and their interaction. Canopy reflectance can be used to describe crop status and yield spatial variability. The objectives of this work were to understand the spatio-temporal variabilit...

  4. Incorporating time and spatial-temporal reasoning into situation management

    NASA Astrophysics Data System (ADS)

    Jakobson, Gabriel

    2010-04-01

    Spatio-temporal reasoning plays a significant role in situation management that is performed by intelligent agents (human or machine) by affecting how the situations are recognized, interpreted, acted upon or predicted. Many definitions and formalisms for the notion of spatio-temporal reasoning have emerged in various research fields including psychology, economics and computer science (computational linguistics, data management, control theory, artificial intelligence and others). In this paper we examine the role of spatio-temporal reasoning in situation management, particularly how to resolve situations that are described by using spatio-temporal relations among events and situations. We discuss a model for describing context sensitive temporal relations and show have the model can be extended for spatial relations.

  5. Spatio-temporal Event Classification using Time-series Kernel based Structured Sparsity

    PubMed Central

    Jeni, László A.; Lőrincz, András; Szabó, Zoltán; Cohn, Jeffrey F.; Kanade, Takeo

    2016-01-01

    In many behavioral domains, such as facial expression and gesture, sparse structure is prevalent. This sparsity would be well suited for event detection but for one problem. Features typically are confounded by alignment error in space and time. As a consequence, high-dimensional representations such as SIFT and Gabor features have been favored despite their much greater computational cost and potential loss of information. We propose a Kernel Structured Sparsity (KSS) method that can handle both the temporal alignment problem and the structured sparse reconstruction within a common framework, and it can rely on simple features. We characterize spatio-temporal events as time-series of motion patterns and by utilizing time-series kernels we apply standard structured-sparse coding techniques to tackle this important problem. We evaluated the KSS method using both gesture and facial expression datasets that include spontaneous behavior and differ in degree of difficulty and type of ground truth coding. KSS outperformed both sparse and non-sparse methods that utilize complex image features and their temporal extensions. In the case of early facial event classification KSS had 10% higher accuracy as measured by F1 score over kernel SVM methods1. PMID:27830214

  6. Spatio-Temporal Pattern Analysis for Regional Climate Change Using Mathematical Morphology

    NASA Astrophysics Data System (ADS)

    Das, M.; Ghosh, S. K.

    2015-07-01

    Of late, significant changes in climate with their grave consequences have posed great challenges on humankind. Thus, the detection and assessment of climatic changes on a regional scale is gaining importance, since it helps to adopt adequate mitigation and adaptation measures. In this paper, we have presented a novel approach for detecting spatio-temporal pattern of regional climate change by exploiting the theory of mathematical morphology. At first, the various climatic zones in the region have been identified by using multifractal cross-correlation analysis (MF-DXA) of different climate variables of interest. Then, the directional granulometry with four different structuring elements has been studied to detect the temporal changes in spatial distribution of the identified climatic zones in the region and further insights have been drawn with respect to morphological uncertainty index and Hurst exponent. The approach has been evaluated with the daily time series data of land surface temperature (LST) and precipitation rate, collected from Microsoft Research - Fetch Climate Explorer, to analyze the spatio-temporal climatic pattern-change in the Eastern and North-Eastern regions of India throughout four quarters of the 20th century.

  7. Hierarchical Spatio-temporal Visual Analysis of Cluster Evolution in Electrocorticography Data

    DOE PAGES

    Murugesan, Sugeerth; Bouchard, Kristofer; Chang, Edward; ...

    2016-10-02

    Here, we present ECoG ClusterFlow, a novel interactive visual analysis tool for the exploration of high-resolution Electrocorticography (ECoG) data. Our system detects and visualizes dynamic high-level structures, such as communities, using the time-varying spatial connectivity network derived from the high-resolution ECoG data. ECoG ClusterFlow provides a multi-scale visualization of the spatio-temporal patterns underlying the time-varying communities using two views: 1) an overview summarizing the evolution of clusters over time and 2) a hierarchical glyph-based technique that uses data aggregation and small multiples techniques to visualize the propagation of clusters in their spatial domain. ECoG ClusterFlow makes it possible 1) tomore » compare the spatio-temporal evolution patterns across various time intervals, 2) to compare the temporal information at varying levels of granularity, and 3) to investigate the evolution of spatial patterns without occluding the spatial context information. Lastly, we present case studies done in collaboration with neuroscientists on our team for both simulated and real epileptic seizure data aimed at evaluating the effectiveness of our approach.« less

  8. Pollutant fate and spatio-temporal variability in the choptank river estuary: factors influencing water quality

    USDA-ARS?s Scientific Manuscript database

    Restoration of the Chesapeake Bay, a national treasure and the largest estuary in the United States, is a national priority, and documentation of progress of this restoration effort is needed. A study was conducted to examine water quality conditions in a tributary of the Chesapeake, the Choptank R...

  9. Spatio-temporal dynamics of security investments in an interdependent risk environment

    NASA Astrophysics Data System (ADS)

    Shafi, Kamran; Bender, Axel; Zhong, Weicai; Abbass, Hussein A.

    2012-10-01

    In a globalised world where risks spread through contagion, the decision of an entity to invest in securing its premises from stochastic risks no longer depends solely on its own actions but also on the actions of other interacting entities in the system. This phenomenon is commonly seen in many domains including airline, logistics and computer security and is referred to as Interdependent Security (IDS). An IDS game models this decision problem from a game-theoretic perspective and deals with the behavioural dynamics of risk-reduction investments in such settings. This paper enhances this model and investigates the spatio-temporal aspects of the IDS games. The spatio-temporal dynamics are studied using simple replicator dynamics on a variety of network structures and for various security cost tradeoffs that lead to different Nash equilibria in an IDS game. The simulation results show that the neighbourhood configuration has a greater effect on the IDS game dynamics than network structure. An in-depth empirical analysis of game dynamics is carried out on regular graphs, which leads to the articulation of necessary and sufficient conditions for dominance in IDS games under spatial constraints.

  10. Spatio-temporal statistical models for river monitoring networks.

    PubMed

    Clement, L; Thas, O; Vanrolleghem, P A; Ottoy, J P

    2006-01-01

    When introducing new wastewater treatment plants (WWTP), investors and policy makers often want to know if there indeed is a beneficial effect of the installation of a WWTP on the river water quality. Such an effect can be established in time as well as in space. Since both temporal and spatial components affect the output of a monitoring network, their dependence structure has to be modelled. River water quality data typically come from a river monitoring network for which the spatial dependence structure is unidirectional. Thus the traditional spatio-temporal models are not appropriate, as they cannot take advantage of this directional information. In this paper, a state-space model is presented in which the spatial dependence of the state variable is represented by a directed acyclic graph, and the temporal dependence by a first-order autoregressive process. The state-space model is extended with a linear model for the mean to estimate the effect of the activation of a WWTP on the dissolved oxygen concentration downstream.

  11. Spatio-temporal modelling of wind speed variations and extremes in the Caribbean and the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Rychlik, Igor; Mao, Wengang

    2018-02-01

    The wind speed variability in the North Atlantic has been successfully modelled using a spatio-temporal transformed Gaussian field. However, this type of model does not correctly describe the extreme wind speeds attributed to tropical storms and hurricanes. In this study, the transformed Gaussian model is further developed to include the occurrence of severe storms. In this new model, random components are added to the transformed Gaussian field to model rare events with extreme wind speeds. The resulting random field is locally stationary and homogeneous. The localized dependence structure is described by time- and space-dependent parameters. The parameters have a natural physical interpretation. To exemplify its application, the model is fitted to the ECMWF ERA-Interim reanalysis data set. The model is applied to compute long-term wind speed distributions and return values, e.g., 100- or 1000-year extreme wind speeds, and to simulate random wind speed time series at a fixed location or spatio-temporal wind fields around that location.

  12. Spontaneous formation of spiral-like patterns with distinct periodic physical properties by confined electrodeposition of Co-In disks

    NASA Astrophysics Data System (ADS)

    Golvano-Escobal, Irati; Gonzalez-Rosillo, Juan Carlos; Domingo, Neus; Illa, Xavi; López-Barberá, José Francisco; Fornell, Jordina; Solsona, Pau; Aballe, Lucia; Foerster, Michael; Suriñach, Santiago; Baró, Maria Dolors; Puig, Teresa; Pané, Salvador; Nogués, Josep; Pellicer, Eva; Sort, Jordi

    2016-07-01

    Spatio-temporal patterns are ubiquitous in different areas of materials science and biological systems. However, typically the motifs in these types of systems present a random distribution with many possible different structures. Herein, we demonstrate that controlled spatio-temporal patterns, with reproducible spiral-like shapes, can be obtained by electrodeposition of Co-In alloys inside a confined circular geometry (i.e., in disks that are commensurate with the typical size of the spatio-temporal features). These patterns are mainly of compositional nature, i.e., with virtually no topographic features. Interestingly, the local changes in composition lead to a periodic modulation of the physical (electric, magnetic and mechanical) properties. Namely, the Co-rich areas show higher saturation magnetization and electrical conductivity and are mechanically harder than the In-rich ones. Thus, this work reveals that confined electrodeposition of this binary system constitutes an effective procedure to attain template-free magnetic, electric and mechanical surface patterning with specific and reproducible shapes.

  13. Spatio-temporal scaling of channels in braided streams.

    Treesearch

    A.G. Hunt; G.E. Grant; V.K. Gupta

    2006-01-01

    The spatio-temporal scaling relationship for individual channels in braided streams is shown to be identical to the spatio-temporal scaling associated with constant Froude number, e.g., Fr = l. A means to derive this relationship is developed from a new theory of sediment transport. The mechanism by which the Fr = l condition apparently governs the scaling seems to...

  14. Spatio-temporal cluster detection of chickenpox in Valencia, Spain in the period 2008-2012.

    PubMed

    Iftimi, Adina; Martínez-Ruiz, Francisco; Míguez Santiyán, Ana; Montes, Francisco

    2015-05-18

    Chickenpox is a highly contagious airborne disease caused by Varicella zoster, which affects nearly all non-immune children worldwide with an annual incidence estimated at 80-90 million cases. To analyze the spatiotemporal pattern of the chickenpox incidence in the city of Valencia, Spain two complementary statistical approaches were used. First, we evaluated the existence of clusters and spatio-temporal interaction; secondly, we used this information to find the locations of the spatio-temporal clusters via the space-time permutation model. The first method used detects any aggregation in our data but does not provide the spatial and temporal information. The second method gives the locations, areas and time-frame for the spatio-temporal clusters. An overall decreasing time trend, a pronounced 12-monthly periodicity and two complementary periods were observed. Several areas with high incidence, surrounding the center of the city were identified. The existence of aggregation in time and space was observed, and a number of spatio-temporal clusters were located.

  15. Formally grounding spatio-temporal thinking.

    PubMed

    Klippel, Alexander; Wallgrün, Jan Oliver; Yang, Jinlong; Li, Rui; Dylla, Frank

    2012-08-01

    To navigate through daily life, humans use their ability to conceptualize spatio-temporal information, which ultimately leads to a system of categories. Likewise, the spatial sciences rely heavily on conceptualization and categorization as means to create knowledge when they process spatio-temporal data. In the spatial sciences and in related branches of artificial intelligence, an approach has been developed for processing spatio-temporal data on the level of coarse categories: qualitative spatio-temporal representation and reasoning (QSTR). Calculi developed in QSTR allow for the meaningful processing of and reasoning with spatio-temporal information. While qualitative calculi are widely acknowledged in the cognitive sciences, there is little behavioral assessment whether these calculi are indeed cognitively adequate. This is an astonishing conundrum given that these calculi are ubiquitous, are often intended to improve processes at the human-machine interface, and are on several occasions claimed to be cognitively adequate. We have systematically evaluated several approaches to formally characterize spatial relations from a cognitive-behavioral perspective for both static and dynamically changing spatial relations. This contribution will detail our framework, which is addressing the question how formal characterization of space can help us understand how people think with, in, and about space.

  16. Mining moving object trajectories in location-based services for spatio-temporal database update

    NASA Astrophysics Data System (ADS)

    Guo, Danhuai; Cui, Weihong

    2008-10-01

    Advances in wireless transmission and mobile technology applied to LBS (Location-based Services) flood us with amounts of moving objects data. Vast amounts of gathered data from position sensors of mobile phones, PDAs, or vehicles hide interesting and valuable knowledge and describe the behavior of moving objects. The correlation between temporal moving patterns of moving objects and geo-feature spatio-temporal attribute was ignored, and the value of spatio-temporal trajectory data was not fully exploited too. Urban expanding or frequent town plan change bring about a large amount of outdated or imprecise data in spatial database of LBS, and they cannot be updated timely and efficiently by manual processing. In this paper we introduce a data mining approach to movement pattern extraction of moving objects, build a model to describe the relationship between movement patterns of LBS mobile objects and their environment, and put up with a spatio-temporal database update strategy in LBS database based on trajectories spatiotemporal mining. Experimental evaluation reveals excellent performance of the proposed model and strategy. Our original contribution include formulation of model of interaction between trajectory and its environment, design of spatio-temporal database update strategy based on moving objects data mining, and the experimental application of spatio-temporal database update by mining moving objects trajectories.

  17. Dynamic CRM occupancy reflects a temporal map of developmental progression.

    PubMed

    Wilczyński, Bartek; Furlong, Eileen E M

    2010-06-22

    Development is driven by tightly coordinated spatio-temporal patterns of gene expression, which are initiated through the action of transcription factors (TFs) binding to cis-regulatory modules (CRMs). Although many studies have investigated how spatial patterns arise, precise temporal control of gene expression is less well understood. Here, we show that dynamic changes in the timing of CRM occupancy is a prevalent feature common to all TFs examined in a developmental ChIP time course to date. CRMs exhibit complex binding patterns that cannot be explained by the sequence motifs or expression of the TFs themselves. The temporal changes in TF binding are highly correlated with dynamic patterns of target gene expression, which in turn reflect transitions in cellular function during different stages of development. Thus, it is not only the timing of a TF's expression, but also its temporal occupancy in refined time windows, which determines temporal gene expression. Systematic measurement of dynamic CRM occupancy may therefore serve as a powerful method to decode dynamic changes in gene expression driving developmental progression.

  18. Spatio-temporal wildland arson crime functions

    Treesearch

    David T. Butry; Jeffrey P. Prestemon

    2005-01-01

    Wildland arson creates damages to structures and timber and affects the health and safety of people living in rural and wildland urban interface areas. We develop a model that incorporates temporal autocorrelations and spatial correlations in wildland arson ignitions in Florida. A Poisson autoregressive model of order p, or PAR(p)...

  19. Identifying food deserts and swamps based on relative healthy food access: a spatio-temporal Bayesian approach.

    PubMed

    Luan, Hui; Law, Jane; Quick, Matthew

    2015-12-30

    Obesity and other adverse health outcomes are influenced by individual- and neighbourhood-scale risk factors, including the food environment. At the small-area scale, past research has analysed spatial patterns of food environments for one time period, overlooking how food environments change over time. Further, past research has infrequently analysed relative healthy food access (RHFA), a measure that is more representative of food purchasing and consumption behaviours than absolute outlet density. This research applies a Bayesian hierarchical model to analyse the spatio-temporal patterns of RHFA in the Region of Waterloo, Canada, from 2011 to 2014 at the small-area level. RHFA is calculated as the proportion of healthy food outlets (healthy outlets/healthy + unhealthy outlets) within 4-km from each small-area. This model measures spatial autocorrelation of RHFA, temporal trend of RHFA for the study region, and spatio-temporal trends of RHFA for small-areas. For the study region, a significant decreasing trend in RHFA is observed (-0.024), suggesting that food swamps have become more prevalent during the study period. For small-areas, significant decreasing temporal trends in RHFA were observed for all small-areas. Specific small-areas located in south Waterloo, north Kitchener, and southeast Cambridge exhibited the steepest decreasing spatio-temporal trends and are classified as spatio-temporal food swamps. This research demonstrates a Bayesian spatio-temporal modelling approach to analyse RHFA at the small-area scale. Results suggest that food swamps are more prevalent than food deserts in the Region of Waterloo. Analysing spatio-temporal trends of RHFA improves understanding of local food environment, highlighting specific small-areas where policies should be targeted to increase RHFA and reduce risk factors of adverse health outcomes such as obesity.

  20. A bayesian hierarchical model for spatio-temporal prediction and uncertainty assessment using repeat LiDAR acquisitions for the Kenai Peninsula, AK, USA

    Treesearch

    Chad Babcock; Hans Andersen; Andrew O. Finley; Bruce D. Cook

    2015-01-01

    Models leveraging repeat LiDAR and field collection campaigns may be one possible mechanism to monitor carbon flux in remote forested regions. Here, we look to the spatio-temporally data-rich Kenai Peninsula in Alaska, USA to examine the potential for Bayesian spatio-temporal mapping of terrestrial forest carbon storage and uncertainty.

  1. Spatio-temporal modelling of electrical supply systems to optimize the site planning process for the "power to mobility" technology

    NASA Astrophysics Data System (ADS)

    Karl, Florian; Zink, Roland

    2016-04-01

    The transformation of the energy sector towards decentralized renewable energies (RE) requires also storage systems to ensure security of supply. The new "Power to Mobility" (PtM) technology is one potential solution to use electrical overproduction to produce methane for i.e. gas vehicles. Motivated by these fact, the paper presents a methodology for a GIS-based temporal modelling of the power grid, to optimize the site planning process for the new PtM-technology. The modelling approach is based on a combination of the software QuantumGIS for the geographical and topological energy supply structure and OpenDSS for the net modelling. For a case study (work in progress) of the city of Straubing (Lower Bavaria) the parameters of the model are quantified. The presentation will discuss the methodology as well as the first results with a view to the application on a regional scale.

  2. Spatio-temporal dynamics in the origin of genetic information

    NASA Astrophysics Data System (ADS)

    Kim, Pan-Jun; Jeong, Hawoong

    2005-04-01

    We study evolutionary processes induced by spatio-temporal dynamics in prebiotic evolution. Using numerical simulations, we demonstrate that hypercycles emerge from complex interaction structures in multispecies systems. In this work, we also find that ‘hypercycle hybrid’ protects the hypercycle from its environment during the growth process. There is little selective advantage for one hypercycle to maintain coexistence with others. This brings the possibility of the outcompetition between hypercycles resulting in the negative effect on information diversity. To enrich the information in hypercycles, symbiosis with parasites is suggested. It is shown that symbiosis with parasites can play an important role in the prebiotic immunology.

  3. The Central Italy Seismic Sequence (2016): Spatial Patterns and Dynamic Fingerprints

    NASA Astrophysics Data System (ADS)

    Suteanu, Cristian; Liucci, Luisa; Melelli, Laura

    2018-01-01

    The paper investigates spatio-temporal aspects of the seismic sequence that started in Central Italy (Amatrice, Lazio region) in August 2016, causing hundreds of fatalities and producing major damage to settlements. On one hand, scaling properties of the landscape topography are identified and related to geomorphological processes, supporting the identification of preferential spatial directions in tectonic activity and confirming the role of the past tectonic periods and ongoing processes with respect to the driving of the geomorphological evolution of the area. On the other hand, relations between the spatio-temporal evolution of the sequence and the seismogenic fault systems are studied. The dynamic fingerprints of seismicity are established with the help of events thread analysis (ETA), which characterizes anisotropy in spatio-temporal earthquake patterns. ETA confirms the fact that the direction of the seismogenic normal fault-oriented (N)NW-(S)SE is characterized by persistent seismic activity. More importantly, it also highlights the role of the pre-existing compressive structures, Neogenic thrust and transpressive regional fronts, with a trend-oriented (N)NE-(S)SW, in the stress transfer. Both the fractal features of the topographic surface and the dynamic fingerprint of the recent seismic sequence point to the hypothesis of an active interaction between the Quaternary fault systems and the pre-existing compressional structures.

  4. Discriminability limits in spatio-temporal stereo block matching.

    PubMed

    Jain, Ankit K; Nguyen, Truong Q

    2014-05-01

    Disparity estimation is a fundamental task in stereo imaging and is a well-studied problem. Recently, methods have been adapted to the video domain where motion is used as a matching criterion to help disambiguate spatially similar candidates. In this paper, we analyze the validity of the underlying assumptions of spatio-temporal disparity estimation, and determine the extent to which motion aids the matching process. By analyzing the error signal for spatio-temporal block matching under the sum of squared differences criterion and treating motion as a stochastic process, we determine the probability of a false match as a function of image features, motion distribution, image noise, and number of frames in the spatio-temporal patch. This performance quantification provides insight into when spatio-temporal matching is most beneficial in terms of the scene and motion, and can be used as a guide to select parameters for stereo matching algorithms. We validate our results through simulation and experiments on stereo video.

  5. Dynamical Properties of Transient Spatio-Temporal Patterns in Bacterial Colony of Proteus mirabilis

    NASA Astrophysics Data System (ADS)

    Watanabe, Kazuhiko; Wakita, Jun-ichi; Itoh, Hiroto; Shimada, Hirotoshi; Kurosu, Sayuri; Ikeda, Takemasa; Yamazaki, Yoshihiro; Matsuyama, Tohey; Matsushita, Mitsugu

    2002-02-01

    Spatio-temporal patterns emerged inside a colony of bacterial species Proteus mirabilis on the surface of nutrient-rich semisolid agar medium have been investigated. We observed various patterns composed of the following basic types: propagating stripe, propagating stripe with fixed dislocation, expanding and shrinking target, and rotating spiral. The remarkable point is that the pattern changes immediately when we alter the position for observation, but it returns to the original if we restore the observing position within a few minutes. We further investigated mesoscopic and microscopic properties of the spatio-temporal patterns. It turned out that whenever the spatio-temporal patterns are observed in a colony, the areas are composed of two superimposed monolayers of elongated bacterial cells. In each area they are aligned almost parallel with each other like a two-dimensional nematic liquid crystal, and move collectively and independently of another layer. It has been found that the observed spatio-temporal patterns are explained as the moiré effect.

  6. Spatio-temporal alignment of multiple sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Tinghua; Ni, Guoqiang; Fan, Guihua; Sun, Huayan; Yang, Biao

    2018-01-01

    Aiming to achieve the spatio-temporal alignment of multi sensor on the same platform for space target observation, a joint spatio-temporal alignment method is proposed. To calibrate the parameters and measure the attitude of cameras, an astronomical calibration method is proposed based on star chart simulation and collinear invariant features of quadrilateral diagonal between the observed star chart. In order to satisfy a temporal correspondence and spatial alignment similarity simultaneously, the method based on the astronomical calibration and attitude measurement in this paper formulates the video alignment to fold the spatial and temporal alignment into a joint alignment framework. The advantage of this method is reinforced by exploiting the similarities and prior knowledge of velocity vector field between adjacent frames, which is calculated by the SIFT Flow algorithm. The proposed method provides the highest spatio-temporal alignment accuracy compared to the state-of-the-art methods on sequences recorded from multi sensor at different times.

  7. Spatiotemporal multivariate mixture models for Bayesian model selection in disease mapping.

    PubMed

    Lawson, A B; Carroll, R; Faes, C; Kirby, R S; Aregay, M; Watjou, K

    2017-12-01

    It is often the case that researchers wish to simultaneously explore the behavior of and estimate overall risk for multiple, related diseases with varying rarity while accounting for potential spatial and/or temporal correlation. In this paper, we propose a flexible class of multivariate spatio-temporal mixture models to fill this role. Further, these models offer flexibility with the potential for model selection as well as the ability to accommodate lifestyle, socio-economic, and physical environmental variables with spatial, temporal, or both structures. Here, we explore the capability of this approach via a large scale simulation study and examine a motivating data example involving three cancers in South Carolina. The results which are focused on four model variants suggest that all models possess the ability to recover simulation ground truth and display improved model fit over two baseline Knorr-Held spatio-temporal interaction model variants in a real data application.

  8. Spatio-Temporal Regression Based Clustering of Precipitation Extremes in a Presence of Systematically Missing Covariates

    NASA Astrophysics Data System (ADS)

    Kaiser, Olga; Martius, Olivia; Horenko, Illia

    2017-04-01

    Regression based Generalized Pareto Distribution (GPD) models are often used to describe the dynamics of hydrological threshold excesses relying on the explicit availability of all of the relevant covariates. But, in real application the complete set of relevant covariates might be not available. In this context, it was shown that under weak assumptions the influence coming from systematically missing covariates can be reflected by a nonstationary and nonhomogenous dynamics. We present a data-driven, semiparametric and an adaptive approach for spatio-temporal regression based clustering of threshold excesses in a presence of systematically missing covariates. The nonstationary and nonhomogenous behavior of threshold excesses is describes by a set of local stationary GPD models, where the parameters are expressed as regression models, and a non-parametric spatio-temporal hidden switching process. Exploiting nonparametric Finite Element time-series analysis Methodology (FEM) with Bounded Variation of the model parameters (BV) for resolving the spatio-temporal switching process, the approach goes beyond strong a priori assumptions made is standard latent class models like Mixture Models and Hidden Markov Models. Additionally, the presented FEM-BV-GPD provides a pragmatic description of the corresponding spatial dependence structure by grouping together all locations that exhibit similar behavior of the switching process. The performance of the framework is demonstrated on daily accumulated precipitation series over 17 different locations in Switzerland from 1981 till 2013 - showing that the introduced approach allows for a better description of the historical data.

  9. [Spatio-temporal problems of geographic information system in marine fishery].

    PubMed

    Su, Fenzhen; Zhou, Chenghu; Du, Yunyan; Zhang, Tianyu; Shao, Quanqin

    2003-09-01

    In marine fisheries, it is very important to understand and grasp the spatio-temporal nature. Geographical Information System (GIS) has been applied to describe or forecast the dynamic trend of resources or to set up evaluation model, which is one of high technologies in modern marine fisheries. Based on the review of the development of marine fishery GIS (MFGIS), four spatio-temporal problems it occurred were discussed, and the possible resolutions were prospected.

  10. Modeling space-time correlations of velocity fluctuations in wind farms

    NASA Astrophysics Data System (ADS)

    Lukassen, Laura J.; Stevens, Richard J. A. M.; Meneveau, Charles; Wilczek, Michael

    2018-07-01

    An analytical model for the streamwise velocity space-time correlations in turbulent flows is derived and applied to the special case of velocity fluctuations in large wind farms. The model is based on the Kraichnan-Tennekes random sweeping hypothesis, capturing the decorrelation in time while including a mean wind velocity in the streamwise direction. In the resulting model, the streamwise velocity space-time correlation is expressed as a convolution of the pure space correlation with an analytical temporal decorrelation kernel. Hence, the spatio-temporal structure of velocity fluctuations in wind farms can be derived from the spatial correlations only. We then explore the applicability of the model to predict spatio-temporal correlations in turbulent flows in wind farms. Comparisons of the model with data from a large eddy simulation of flow in a large, spatially periodic wind farm are performed, where needed model parameters such as spatial and temporal integral scales and spatial correlations are determined from the large eddy simulation. Good agreement is obtained between the model and large eddy simulation data showing that spatial data may be used to model the full temporal structure of fluctuations in wind farms.

  11. Water Quality Sensing and Spatio-Temporal Monitoring Structure with Autocorrelation Kernel Methods.

    PubMed

    Vizcaíno, Iván P; Carrera, Enrique V; Muñoz-Romero, Sergio; Cumbal, Luis H; Rojo-Álvarez, José Luis

    2017-10-16

    Pollution on water resources is usually analyzed with monitoring campaigns, which consist of programmed sampling, measurement, and recording of the most representative water quality parameters. These campaign measurements yields a non-uniform spatio-temporal sampled data structure to characterize complex dynamics phenomena. In this work, we propose an enhanced statistical interpolation method to provide water quality managers with statistically interpolated representations of spatial-temporal dynamics. Specifically, our proposal makes efficient use of the a priori available information of the quality parameter measurements through Support Vector Regression (SVR) based on Mercer's kernels. The methods are benchmarked against previously proposed methods in three segments of the Machángara River and one segment of the San Pedro River in Ecuador, and their different dynamics are shown by statistically interpolated spatial-temporal maps. The best interpolation performance in terms of mean absolute error was the SVR with Mercer's kernel given by either the Mahalanobis spatial-temporal covariance matrix or by the bivariate estimated autocorrelation function. In particular, the autocorrelation kernel provides with significant improvement of the estimation quality, consistently for all the six water quality variables, which points out the relevance of including a priori knowledge of the problem.

  12. Water Quality Sensing and Spatio-Temporal Monitoring Structure with Autocorrelation Kernel Methods

    PubMed Central

    Vizcaíno, Iván P.; Muñoz-Romero, Sergio; Cumbal, Luis H.

    2017-01-01

    Pollution on water resources is usually analyzed with monitoring campaigns, which consist of programmed sampling, measurement, and recording of the most representative water quality parameters. These campaign measurements yields a non-uniform spatio-temporal sampled data structure to characterize complex dynamics phenomena. In this work, we propose an enhanced statistical interpolation method to provide water quality managers with statistically interpolated representations of spatial-temporal dynamics. Specifically, our proposal makes efficient use of the a priori available information of the quality parameter measurements through Support Vector Regression (SVR) based on Mercer’s kernels. The methods are benchmarked against previously proposed methods in three segments of the Machángara River and one segment of the San Pedro River in Ecuador, and their different dynamics are shown by statistically interpolated spatial-temporal maps. The best interpolation performance in terms of mean absolute error was the SVR with Mercer’s kernel given by either the Mahalanobis spatial-temporal covariance matrix or by the bivariate estimated autocorrelation function. In particular, the autocorrelation kernel provides with significant improvement of the estimation quality, consistently for all the six water quality variables, which points out the relevance of including a priori knowledge of the problem. PMID:29035333

  13. Spatio-temporal dynamics of turbulence trapped in geodesic acoustic modes

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Kobayashi, T.; Itoh, K.; Kasuya, N.; Kosuga, Y.; Fujisawa, A.; Itoh, S.-I.

    2018-01-01

    The spatio-temporal dynamics of turbulence with the interaction of geodesic acoustic modes (GAMs) are investigated, focusing on the phase-space structure of turbulence, where the phase-space consists of real-space and wavenumber-space. Based on the wave-kinetic framework, the coupling equation between the GAM and the turbulence is numerically solved. The turbulence trapped by the GAM velocity field is obtained. Due to the trapping effect, the turbulence intensity increases where the second derivative of the GAM velocity (curvature of the GAM) is negative. While, in the positive-curvature region, the turbulence is suppressed. Since the trapped turbulence propagates with the GAMs, this relationship is sustained spatially and temporally. The dynamics of the turbulence in the wavenumber spectrum are converted in the evolution of the frequency spectrum, and the simulation result is compared with the experimental observation in JFT-2M tokamak, where the similar patterns are obtained. The turbulence trapping effect is a key to understand the spatial structure of the turbulence in the presence of sheared flows.

  14. SpikeTemp: An Enhanced Rank-Order-Based Learning Approach for Spiking Neural Networks With Adaptive Structure.

    PubMed

    Wang, Jinling; Belatreche, Ammar; Maguire, Liam P; McGinnity, Thomas Martin

    2017-01-01

    This paper presents an enhanced rank-order-based learning algorithm, called SpikeTemp, for spiking neural networks (SNNs) with a dynamically adaptive structure. The trained feed-forward SNN consists of two layers of spiking neurons: 1) an encoding layer which temporally encodes real-valued features into spatio-temporal spike patterns and 2) an output layer of dynamically grown neurons which perform spatio-temporal classification. Both Gaussian receptive fields and square cosine population encoding schemes are employed to encode real-valued features into spatio-temporal spike patterns. Unlike the rank-order-based learning approach, SpikeTemp uses the precise times of the incoming spikes for adjusting the synaptic weights such that early spikes result in a large weight change and late spikes lead to a smaller weight change. This removes the need to rank all the incoming spikes and, thus, reduces the computational cost of SpikeTemp. The proposed SpikeTemp algorithm is demonstrated on several benchmark data sets and on an image recognition task. The results show that SpikeTemp can achieve better classification performance and is much faster than the existing rank-order-based learning approach. In addition, the number of output neurons is much smaller when the square cosine encoding scheme is employed. Furthermore, SpikeTemp is benchmarked against a selection of existing machine learning algorithms, and the results demonstrate the ability of SpikeTemp to classify different data sets after just one presentation of the training samples with comparable classification performance.

  15. A unified framework for group independent component analysis for multi-subject fMRI data

    PubMed Central

    Guo, Ying; Pagnoni, Giuseppe

    2008-01-01

    Independent component analysis (ICA) is becoming increasingly popular for analyzing functional magnetic resonance imaging (fMRI) data. While ICA has been successfully applied to single-subject analysis, the extension of ICA to group inferences is not straightforward and remains an active topic of research. Current group ICA models, such as the GIFT (Calhoun et al., 2001) and tensor PICA (Beckmann and Smith, 2005), make different assumptions about the underlying structure of the group spatio-temporal processes and are thus estimated using algorithms tailored for the assumed structure, potentially leading to diverging results. To our knowledge, there are currently no methods for assessing the validity of different model structures in real fMRI data and selecting the most appropriate one among various choices. In this paper, we propose a unified framework for estimating and comparing group ICA models with varying spatio-temporal structures. We consider a class of group ICA models that can accommodate different group structures and include existing models, such as the GIFT and tensor PICA, as special cases. We propose a maximum likelihood (ML) approach with a modified Expectation-Maximization (EM) algorithm for the estimation of the proposed class of models. Likelihood ratio tests (LRT) are presented to compare between different group ICA models. The LRT can be used to perform model comparison and selection, to assess the goodness-of-fit of a model in a particular data set, and to test group differences in the fMRI signal time courses between subject subgroups. Simulation studies are conducted to evaluate the performance of the proposed method under varying structures of group spatio-temporal processes. We illustrate our group ICA method using data from an fMRI study that investigates changes in neural processing associated with the regular practice of Zen meditation. PMID:18650105

  16. Higher order memories for objects encountered in different spatio-temporal contexts in mice: evidence for episodic memory.

    PubMed

    Dere, Ekrem; Silva, Maria A De Souza; Huston, Joseph P

    2004-01-01

    The ability to build higher order multi-modal memories comprising information about the spatio-temporal context of events has been termed 'episodic memory'. Deficits in episodic memory are apparent in a number of neuropsychiatric diseases. Unfortunately, the development of animal models of episodic memory has made little progress. Towards the goal of such a model we devised an object exploration task for mice, providing evidence that rodents can associate object, spatial and temporal information. In our task the mice learned the temporal sequence by which identical objects were introduced into two different contexts. The 'what' component of an episodic memory was operationalized via physically distinct objects; the 'where' component through physically different contexts, and, most importantly, the 'when' component via the context-specific inverted sequence in which four objects were presented. Our results suggest that mice are able to recollect the inverted temporal sequence in which identical objects were introduced into two distinct environments. During two consecutive test trials mice showed an inverse context-specific exploration pattern regarding identical objects that were previously encountered with even frequencies. It seems that the contexts served as discriminative stimuli signaling which of the two sequences are decisive during the two test trials.

  17. An Efficient Method of Sharing Mass Spatio-Temporal Trajectory Data Based on Cloudera Impala for Traffic Distribution Mapping in an Urban City.

    PubMed

    Zhou, Lianjie; Chen, Nengcheng; Yuan, Sai; Chen, Zeqiang

    2016-10-29

    The efficient sharing of spatio-temporal trajectory data is important to understand traffic congestion in mass data. However, the data volumes of bus networks in urban cities are growing rapidly, reaching daily volumes of one hundred million datapoints. Accessing and retrieving mass spatio-temporal trajectory data in any field is hard and inefficient due to limited computational capabilities and incomplete data organization mechanisms. Therefore, we propose an optimized and efficient spatio-temporal trajectory data retrieval method based on the Cloudera Impala query engine, called ESTRI, to enhance the efficiency of mass data sharing. As an excellent query tool for mass data, Impala can be applied for mass spatio-temporal trajectory data sharing. In ESTRI we extend the spatio-temporal trajectory data retrieval function of Impala and design a suitable data partitioning method. In our experiments, the Taiyuan BeiDou (BD) bus network is selected, containing 2300 buses with BD positioning sensors, producing 20 million records every day, resulting in two difficulties as described in the Introduction section. In addition, ESTRI and MongoDB are applied in experiments. The experiments show that ESTRI achieves the most efficient data retrieval compared to retrieval using MongoDB for data volumes of fifty million, one hundred million, one hundred and fifty million, and two hundred million. The performance of ESTRI is approximately seven times higher than that of MongoDB. The experiments show that ESTRI is an effective method for retrieving mass spatio-temporal trajectory data. Finally, bus distribution mapping in Taiyuan city is achieved, describing the buses density in different regions at different times throughout the day, which can be applied in future studies of transport, such as traffic scheduling, traffic planning and traffic behavior management in intelligent public transportation systems.

  18. How spatio-temporal habitat connectivity affects amphibian genetic structure.

    PubMed

    Watts, Alexander G; Schlichting, Peter E; Billerman, Shawn M; Jesmer, Brett R; Micheletti, Steven; Fortin, Marie-Josée; Funk, W Chris; Hapeman, Paul; Muths, Erin; Murphy, Melanie A

    2015-01-01

    Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations.

  19. Spatio-temporal clustering and density estimation of lightning data for the tracking of convective events

    NASA Astrophysics Data System (ADS)

    Strauss, Cesar; Rosa, Marcelo Barbio; Stephany, Stephan

    2013-12-01

    Convective cells are cloud formations whose growth, maturation and dissipation are of great interest among meteorologists since they are associated with severe storms with large precipitation structures. Some works suggest a strong correlation between lightning occurrence and convective cells. The current work proposes a new approach to analyze the correlation between precipitation and lightning, and to identify electrically active cells. Such cells may be employed for tracking convective events in the absence of weather radar coverage. This approach employs a new spatio-temporal clustering technique based on a temporal sliding-window and a standard kernel density estimation to process lightning data. Clustering allows the identification of the cells from lightning data and density estimation bounds the contours of the cells. The proposed approach was evaluated for two convective events in Southeast Brazil. Image segmentation of radar data was performed to identify convective precipitation structures using the Steiner criteria. These structures were then compared and correlated to the electrically active cells in particular instants of time for both events. It was observed that most precipitation structures have associated cells, by comparing the ground tracks of their centroids. In addition, for one particular cell of each event, its temporal evolution was compared to that of the associated precipitation structure. Results show that the proposed approach may improve the use of lightning data for tracking convective events in countries that lack weather radar coverage.

  20. Spatio-temporal modeling and optimization of a deformable-grating compressor for short high-energy laser pulses

    DOE PAGES

    Qiao, Jie; Papa, J.; Liu, X.

    2015-09-24

    Monolithic large-scale diffraction gratings are desired to improve the performance of high-energy laser systems and scale them to higher energy, but the surface deformation of these diffraction gratings induce spatio-temporal coupling that is detrimental to the focusability and compressibility of the output pulse. A new deformable-grating-based pulse compressor architecture with optimized actuator positions has been designed to correct the spatial and temporal aberrations induced by grating wavefront errors. An integrated optical model has been built to analyze the effect of grating wavefront errors on the spatio-temporal performance of a compressor based on four deformable gratings. Moreover, a 1.5-meter deformable gratingmore » has been optimized using an integrated finite-element-analysis and genetic-optimization model, leading to spatio-temporal performance similar to the baseline design with ideal gratings.« less

  1. Neuronal cell fate specification by the molecular convergence of different spatio-temporal cues on a common initiator terminal selector gene

    PubMed Central

    Stratmann, Johannes

    2017-01-01

    The extensive genetic regulatory flows underlying specification of different neuronal subtypes are not well understood at the molecular level. The Nplp1 neuropeptide neurons in the developing Drosophila nerve cord belong to two sub-classes; Tv1 and dAp neurons, generated by two distinct progenitors. Nplp1 neurons are specified by spatial cues; the Hox homeotic network and GATA factor grn, and temporal cues; the hb -> Kr -> Pdm -> cas -> grh temporal cascade. These spatio-temporal cues combine into two distinct codes; one for Tv1 and one for dAp neurons that activate a common terminal selector feedforward cascade of col -> ap/eya -> dimm -> Nplp1. Here, we molecularly decode the specification of Nplp1 neurons, and find that the cis-regulatory organization of col functions as an integratory node for the different spatio-temporal combinatorial codes. These findings may provide a logical framework for addressing spatio-temporal control of neuronal sub-type specification in other systems. PMID:28414802

  2. A computational theory of visual receptive fields.

    PubMed

    Lindeberg, Tony

    2013-12-01

    A receptive field constitutes a region in the visual field where a visual cell or a visual operator responds to visual stimuli. This paper presents a theory for what types of receptive field profiles can be regarded as natural for an idealized vision system, given a set of structural requirements on the first stages of visual processing that reflect symmetry properties of the surrounding world. These symmetry properties include (i) covariance properties under scale changes, affine image deformations, and Galilean transformations of space-time as occur for real-world image data as well as specific requirements of (ii) temporal causality implying that the future cannot be accessed and (iii) a time-recursive updating mechanism of a limited temporal buffer of the past as is necessary for a genuine real-time system. Fundamental structural requirements are also imposed to ensure (iv) mutual consistency and a proper handling of internal representations at different spatial and temporal scales. It is shown how a set of families of idealized receptive field profiles can be derived by necessity regarding spatial, spatio-chromatic, and spatio-temporal receptive fields in terms of Gaussian kernels, Gaussian derivatives, or closely related operators. Such image filters have been successfully used as a basis for expressing a large number of visual operations in computer vision, regarding feature detection, feature classification, motion estimation, object recognition, spatio-temporal recognition, and shape estimation. Hence, the associated so-called scale-space theory constitutes a both theoretically well-founded and general framework for expressing visual operations. There are very close similarities between receptive field profiles predicted from this scale-space theory and receptive field profiles found by cell recordings in biological vision. Among the family of receptive field profiles derived by necessity from the assumptions, idealized models with very good qualitative agreement are obtained for (i) spatial on-center/off-surround and off-center/on-surround receptive fields in the fovea and the LGN, (ii) simple cells with spatial directional preference in V1, (iii) spatio-chromatic double-opponent neurons in V1, (iv) space-time separable spatio-temporal receptive fields in the LGN and V1, and (v) non-separable space-time tilted receptive fields in V1, all within the same unified theory. In addition, the paper presents a more general framework for relating and interpreting these receptive fields conceptually and possibly predicting new receptive field profiles as well as for pre-wiring covariance under scaling, affine, and Galilean transformations into the representations of visual stimuli. This paper describes the basic structure of the necessity results concerning receptive field profiles regarding the mathematical foundation of the theory and outlines how the proposed theory could be used in further studies and modelling of biological vision. It is also shown how receptive field responses can be interpreted physically, as the superposition of relative variations of surface structure and illumination variations, given a logarithmic brightness scale, and how receptive field measurements will be invariant under multiplicative illumination variations and exposure control mechanisms.

  3. Pragmatic estimation of a spatio-temporal air quality model with irregular monitoring data

    NASA Astrophysics Data System (ADS)

    Sampson, Paul D.; Szpiro, Adam A.; Sheppard, Lianne; Lindström, Johan; Kaufman, Joel D.

    2011-11-01

    Statistical analyses of health effects of air pollution have increasingly used GIS-based covariates for prediction of ambient air quality in "land use" regression models. More recently these spatial regression models have accounted for spatial correlation structure in combining monitoring data with land use covariates. We present a flexible spatio-temporal modeling framework and pragmatic, multi-step estimation procedure that accommodates essentially arbitrary patterns of missing data with respect to an ideally complete space by time matrix of observations on a network of monitoring sites. The methodology incorporates a model for smooth temporal trends with coefficients varying in space according to Partial Least Squares regressions on a large set of geographic covariates and nonstationary modeling of spatio-temporal residuals from these regressions. This work was developed to provide spatial point predictions of PM 2.5 concentrations for the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) using irregular monitoring data derived from the AQS regulatory monitoring network and supplemental short-time scale monitoring campaigns conducted to better predict intra-urban variation in air quality. We demonstrate the interpretation and accuracy of this methodology in modeling data from 2000 through 2006 in six U.S. metropolitan areas and establish a basis for likelihood-based estimation.

  4. Spatio-temporal variability of soil water content on the local scale in a Mediterranean mountain area (Vallcebre, North Eastern Spain). How different spatio-temporal scales reflect mean soil water content

    NASA Astrophysics Data System (ADS)

    Molina, Antonio J.; Latron, Jérôme; Rubio, Carles M.; Gallart, Francesc; Llorens, Pilar

    2014-08-01

    As a result of complex human-land interactions and topographic variability, many Mediterranean mountain catchments are covered by agricultural terraces that have locally modified the soil water content dynamic. Understanding these local-scale dynamics helps us grasp better how hydrology behaves on the catchment scale. Thus, this study examined soil water content variability in the upper 30 cm of the soil on a Mediterranean abandoned terrace in north-east Spain. Using a dataset of high spatial (regular grid of 128 automatic TDR probes at 2.5 m intervals) and temporal (20-min time step) resolution, gathered throughout a 84-day period, the spatio-temporal variability of soil water content at the local scale and the way that different spatio-temporal scales reflect the mean soil water content were investigated. Soil water content spatial variability and its relation to wetness conditions were examined, along with the spatial structuring of the soil water content within the terrace. Then, the ability of single probes and of different combinations of spatial measurements (transects and grids) to provide a good estimate of mean soil water content on the terrace scale was explored by means of temporal stability analyses. Finally, the effect of monitoring frequency on the magnitude of detectable daily soil water content variations was studied. Results showed that soil water content spatial variability followed a bimodal pattern of increasing absolute variability with increasing soil water content. In addition, a linear trend of decreasing soil water content as the distance from the inner part of the terrace increased was identified. Once this trend was subtracted, resulting semi-variograms suggested that the spatial resolution examined was too high to appreciate spatial structuring in the data. Thus, the spatial pattern should be considered as random. Of all the spatial designs tested, the 10 × 10 m mesh grid (9 probes) was considered the most suitable option for a good, time-stable estimate of mean soil water content, as no improvement was obtained with the 5 × 5 m mesh grid (30 probes). Finally, the results of temporal aggregation showed that decreasing the monitoring frequency down to 8 h during wetting-up periods and to 1 day during drying-down ones did not result in a loss of information on daily soil water content variations.

  5. Mining and Integration of Environmental Data

    NASA Astrophysics Data System (ADS)

    Tran, V.; Hluchy, L.; Habala, O.; Ciglan, M.

    2009-04-01

    The project ADMIRE (Advanced Data Mining and Integration Research for Europe) is a 7th FP EU ICT project aims to deliver a consistent and easy-to-use technology for extracting information and knowledge. The project is motivated by the difficulty of extracting meaningful information by data mining combinations of data from multiple heterogeneous and distributed resources. It will also provide an abstract view of data mining and integration, which will give users and developers the power to cope with complexity and heterogeneity of services, data and processes. The data sets describing phenomena from domains like business, society, and environment often contain spatial and temporal dimensions. Integration of spatio-temporal data from different sources is a challenging task due to those dimensions. Different spatio-temporal data sets contain data at different resolutions (e.g. size of the spatial grid) and frequencies. This heterogeneity is the principal challenge of geo-spatial and temporal data sets integration - the integrated data set should hold homogeneous data of the same resolution and frequency. Thus, to integrate heterogeneous spatio-temporal data from distinct source, transformation of one or more data sets is necessary. Following transformation operation are required: • transformation to common spatial and temporal representation - (e.g. transformation to common coordinate system), • spatial and/or temporal aggregation - data from detailed data source are aggregated to match the resolution of other resources involved in the integration process, • spatial and/or temporal record decomposition - records from source with lower resolution data are decomposed to match the granularity of the other data source. This operation decreases data quality (e.g. transformation of data from 50km grid to 10 km grid) - data from lower resolution data set in the integrated schema are imprecise, but it allows us to preserve higher resolution data. We can decompose the spatio-temporal data integration to following phases: • pre-integration data processing - different data set can be physically stored in different formats (e.g. relational databases, text files); it might be necessary to pre-process the data sets to be integrated, • identification of transformation operations necessary to integrate data in spatio-temporal dimensions, • identification of transformation operations to be performed on non-spatio-temporal attributes and • output data schema and set generation - given prepared data and the set of transformation, operations, the final integrated schema is produces. Spatio-temporal dimension brings its specifics also to the problem of mining spatio-temporal data sets. Spatio-temporal relationships exist among records in (s-t) data sets and those relationships should be considered in mining operation. This means that when analyzing a record in spatio-temporal data set, the records in its spatial and/or temporal proximity should be taken into account. In addition, the relationships discovered in spatio-temporal data can be different when mining the same data on different scales (e.g. mining the same data sets on 50 km grid with daily data vs. 10 km grid with hourly data). To be able to do effective data mining, we first needed to gather a sufficient amount of environmental data covering similar area and time span. For this purpose we have engaged in cooperation with several organizations working in the environmental domain in Slovakia, some of which are also our partners from previous research efforts. The organizations which volunteered some of their data are the Slovak Hydro-meteorological Institute (SHMU), the Slovak Water Enterprise (SVP), the Soil Science and Conservation Institute (VUPOP), and the Institute of Hydrology of the Slovak Academy of Sciences (UHSAV). We have prepared scenarios from general meteorology, as well as specialized in hydrology and soil protection.

  6. Research on target tracking algorithm based on spatio-temporal context

    NASA Astrophysics Data System (ADS)

    Li, Baiping; Xu, Sanmei; Kang, Hongjuan

    2017-07-01

    In this paper, a novel target tracking algorithm based on spatio-temporal context is proposed. During the tracking process, the camera shaking or occlusion may lead to the failure of tracking. The proposed algorithm can solve this problem effectively. The method use the spatio-temporal context algorithm as the main research object. We get the first frame's target region via mouse. Then the spatio-temporal context algorithm is used to get the tracking targets of the sequence of frames. During this process a similarity measure function based on perceptual hash algorithm is used to judge the tracking results. If tracking failed, reset the initial value of Mean Shift algorithm for the subsequent target tracking. Experiment results show that the proposed algorithm can achieve real-time and stable tracking when camera shaking or target occlusion.

  7. Factors Related to Rape Reporting Behavior in Brazil: Examining the Role of Spatio-Temporal Factors.

    PubMed

    Melo, Silas Nogueira de; Beauregard, Eric; Andresen, Martin A

    2016-07-01

    The reporting of rape to police is an important component of this crime to have the criminal justice system involved and, potentially, punish offenders. However, for a number of reasons (fear of retribution, self-blame, etc.), most rapes are not reported to police. Most often, the research investigating this phenomenon considers incident and victim factors with little attention to the spatio-temporal factors of the rape. In this study, we consider incident, victim, and spatio-temporal factors relating to rape reporting in Campinas, Brazil. Our primary research question is whether or not the spatio-temporal factors play a significant role in the reporting of rape, over and above incident and victim factors. The subjects under study are women who were admitted to the Women's Integrated Healthcare Center at the State University of Campinas, Brazil, and surveyed by a psychologist or a social worker. Rape reporting to police was measured using a dichotomous variable. Logistic regression was used to predict the probability of rape reporting based on incident, victim, and spatio-temporal factors. Although we find that incident and victim factors matter for rape reporting, spatio-temporal factors (rape/home location and whether the rape was in a private or public place) play an important role in rape reporting, similar to the literature that considers these factors. This result has significant implications for sexual violence education. Only when we know why women decide not to report a rape may we begin to work on strategies to overcome these hurdles.

  8. Time-Resolved and Spatio-Temporal Analysis of Complex Cognitive Processes and their Role in Disorders like Developmental Dyscalculia

    PubMed Central

    Mórocz, István Akos; Janoos, Firdaus; van Gelderen, Peter; Manor, David; Karni, Avi; Breznitz, Zvia; von Aster, Michael; Kushnir, Tammar; Shalev, Ruth

    2012-01-01

    The aim of this article is to report on the importance and challenges of a time-resolved and spatio-temporal analysis of fMRI data from complex cognitive processes and associated disorders using a study on developmental dyscalculia (DD). Participants underwent fMRI while judging the incorrectness of multiplication results, and the data were analyzed using a sequence of methods, each of which progressively provided more a detailed picture of the spatio-temporal aspect of this disease. Healthy subjects and subjects with DD performed alike behaviorally though they exhibited parietal disparities using traditional voxel-based group analyses. Further and more detailed differences, however, surfaced with a time-resolved examination of the neural responses during the experiment. While performing inter-group comparisons, a third group of subjects with dyslexia (DL) but with no arithmetic difficulties was included to test the specificity of the analysis and strengthen the statistical base with overall fifty-eight subjects. Surprisingly, the analysis showed a functional dissimilarity during an initial reading phase for the group of dyslexic but otherwise normal subjects, with respect to controls, even though only numerical digits and no alphabetic characters were presented. Thus our results suggest that time-resolved multi-variate analysis of complex experimental paradigms has the ability to yield powerful new clinical insights about abnormal brain function. Similarly, a detailed compilation of aberrations in the functional cascade may have much greater potential to delineate the core processing problems in mental disorders. PMID:22368322

  9. Finding Spatio-Temporal Patterns in Large Sensor Datasets

    ERIC Educational Resources Information Center

    McGuire, Michael Patrick

    2010-01-01

    Spatial or temporal data mining tasks are performed in the context of the relevant space, defined by a spatial neighborhood, and the relevant time period, defined by a specific time interval. Furthermore, when mining large spatio-temporal datasets, interesting patterns typically emerge where the dataset is most dynamic. This dissertation is…

  10. Determining Spatio-Temporal Cadastral Data Requirement for Infrastructure of Ladm for Turkey

    NASA Astrophysics Data System (ADS)

    Alkan, M.; Polat, Z. A.

    2016-06-01

    Nowadays, the nature of land title and cadastral (LTC) data in the Turkey is dynamic from a temporal perspective which depends on the LTC operations. Functional requirements with respect to the characteristics are investigated based upon interviews of professionals in public and private sectors. These are; Legal authorities, Land Registry and Cadastre offices, Highway departments, Foundations, Ministries of Budget, Transportation, Justice, Public Works and Settlement, Environment and Forestry, Agriculture and Rural Affairs, Culture and Internal Affairs, State Institute of Statistics (SIS), execution offices, tax offices, real estate offices, private sector, local governments and banks. On the other hand, spatio-temporal LTC data very important component for creating infrastructure of Land Administration Model (LADM). For this reason, spatio-temporal LTC data needs for LADM not only updated but also temporal. The investigations ended up with determine temporal analyses of LTC data, traditional LTC system and tracing temporal analyses in traditional LTC system. In the traditional system, the temporal analyses needed by all these users could not be performed in a rapid and reliable way. The reason for this is that the traditional LTC system is a manual archiving system. The aims and general contents of this paper: (1) define traditional LTC system of Turkey; (2) determining the need for spatio-temporal LTC data and analyses for core domain model for LADM. As a results of temporal and spatio-temporal analysis LTC data needs, new system design is important for the Turkish LADM model. Designing and realizing an efficient and functional Temporal Geographic Information Systems (TGIS) is inevitable for the Turkish LADM core infrastructure. Finally this paper outcome is creating infrastructure for design and develop LADM for Turkey.

  11. Spatio-Temporal Story Mapping Animation Based On Structured Causal Relationships Of Historical Events

    NASA Astrophysics Data System (ADS)

    Inoue, Y.; Tsuruoka, K.; Arikawa, M.

    2014-04-01

    In this paper, we proposed a user interface that displays visual animations on geographic maps and timelines for depicting historical stories by representing causal relationships among events for time series. We have been developing an experimental software system for the spatial-temporal visualization of historical stories for tablet computers. Our proposed system makes people effectively learn historical stories using visual animations based on hierarchical structures of different scale timelines and maps.

  12. Hierarchical Bayesian modeling of spatio-temporal patterns of lung cancer incidence risk in Georgia, USA: 2000-2007

    NASA Astrophysics Data System (ADS)

    Yin, Ping; Mu, Lan; Madden, Marguerite; Vena, John E.

    2014-10-01

    Lung cancer is the second most commonly diagnosed cancer in both men and women in Georgia, USA. However, the spatio-temporal patterns of lung cancer risk in Georgia have not been fully studied. Hierarchical Bayesian models are used here to explore the spatio-temporal patterns of lung cancer incidence risk by race and gender in Georgia for the period of 2000-2007. With the census tract level as the spatial scale and the 2-year period aggregation as the temporal scale, we compare a total of seven Bayesian spatio-temporal models including two under a separate modeling framework and five under a joint modeling framework. One joint model outperforms others based on the deviance information criterion. Results show that the northwest region of Georgia has consistently high lung cancer incidence risk for all population groups during the study period. In addition, there are inverse relationships between the socioeconomic status and the lung cancer incidence risk among all Georgian population groups, and the relationships in males are stronger than those in females. By mapping more reliable variations in lung cancer incidence risk at a relatively fine spatio-temporal scale for different Georgian population groups, our study aims to better support healthcare performance assessment, etiological hypothesis generation, and health policy making.

  13. Outlier Detection in Urban Air Quality Sensor Networks.

    PubMed

    van Zoest, V M; Stein, A; Hoek, G

    2018-01-01

    Low-cost urban air quality sensor networks are increasingly used to study the spatio-temporal variability in air pollutant concentrations. Recently installed low-cost urban sensors, however, are more prone to result in erroneous data than conventional monitors, e.g., leading to outliers. Commonly applied outlier detection methods are unsuitable for air pollutant measurements that have large spatial and temporal variations as occur in urban areas. We present a novel outlier detection method based upon a spatio-temporal classification, focusing on hourly NO 2 concentrations. We divide a full year's observations into 16 spatio-temporal classes, reflecting urban background vs. urban traffic stations, weekdays vs. weekends, and four periods per day. For each spatio-temporal class, we detect outliers using the mean and standard deviation of the normal distribution underlying the truncated normal distribution of the NO 2 observations. Applying this method to a low-cost air quality sensor network in the city of Eindhoven, the Netherlands, we found 0.1-0.5% of outliers. Outliers could reflect measurement errors or unusual high air pollution events. Additional evaluation using expert knowledge is needed to decide on treatment of the identified outliers. We conclude that our method is able to detect outliers while maintaining the spatio-temporal variability of air pollutant concentrations in urban areas.

  14. Experimental study on spatio-temporal behavior of a single particle forming a particle accumulation structure (PAS) in half-zone liquid bridge

    NASA Astrophysics Data System (ADS)

    Oba, Takeru; Ueno, Ichiro; Kaneko, Toshihiro

    2017-11-01

    We focus on particle behavior due to thermocapillary-driven convection in a half-zone liquid bridge of high-Prandtl number fluid. It has been known that the suspended particles exhibit a unique solid-like structure known as 'particle accumulation structure (PAS)' in a rotating frame of reference with traveling-type hydrothermal wave. It is said that PAS is caused by interaction between particles and the free surface of a half-zone liquid bridge. Such structures arise even under small Stokes number conditions. When observing PAS two-dimensionally, it looks like a closed single string, but the actual movement of particles is different. Therefore we employ three-dimensional particle tracking velocimetry to the half-zone liquid bridge of 2.5 mm in radius and 1.7 mm in height, and detect the particle behaviors close to the free surface. We explain the spatio-temporal correlation between the solid-like global structure of PAS and the local particle motions, and make comparisons with proposed physical models of PAS formation.

  15. Application of 3D Spatio-Temporal Data Modeling, Management, and Analysis in DB4GEO

    NASA Astrophysics Data System (ADS)

    Kuper, P. V.; Breunig, M.; Al-Doori, M.; Thomsen, A.

    2016-10-01

    Many of todaýs world wide challenges such as climate change, water supply and transport systems in cities or movements of crowds need spatio-temporal data to be examined in detail. Thus the number of examinations in 3D space dealing with geospatial objects moving in space and time or even changing their shapes in time will rapidly increase in the future. Prominent spatio-temporal applications are subsurface reservoir modeling, water supply after seawater desalination and the development of transport systems in mega cities. All of these applications generate large spatio-temporal data sets. However, the modeling, management and analysis of 3D geo-objects with changing shape and attributes in time still is a challenge for geospatial database architectures. In this article we describe the application of concepts for the modeling, management and analysis of 2.5D and 3D spatial plus 1D temporal objects implemented in DB4GeO, our service-oriented geospatial database architecture. An example application with spatio-temporal data of a landfill, near the city of Osnabrück in Germany demonstrates the usage of the concepts. Finally, an outlook on our future research focusing on new applications with big data analysis in three spatial plus one temporal dimension in the United Arab Emirates, especially the Dubai area, is given.

  16. Characterization of New Otic Enhancers of the Pou3f4 Gene Reveal Distinct Signaling Pathway Regulation and Spatio-Temporal Patterns

    PubMed Central

    Robert-Moreno, Àlex; Naranjo, Silvia; de la Calle-Mustienes, Elisa; Gómez-Skarmeta, José Luis; Alsina, Berta

    2010-01-01

    POU3F4 is a member of the POU-homedomain transcription factor family with a prominent role in inner ear development. Mutations in the human POU3F4 coding unit leads to X-linked deafness type 3 (DFN3), characterized by conductive hearing loss and progressive sensorineural deafness. Microdeletions found 1 Mb 5′ upstream of the coding region also displayed the same phenotype, suggesting that cis-regulatory elements might be present in that region. Indeed, we and others have recently identified several enhancers at the 1 Mb 5′ upstream interval of the pou3f4 locus. Here we characterize the spatio-temporal patterns of these regulatory elements in zebrafish transgenic lines. We show that the most distal enhancer (HCNR 81675) is activated earlier and drives GFP reporter expression initially to a broad ear domain to progressively restrict to the sensory patches. The proximal enhancer (HCNR 82478) is switched later during development and promotes expression, among in other tissues, in sensory patches from its onset. The third enhancer (HCNR 81728) is also active at later stages in the otic mesenchyme and in the otic epithelium. We also characterize the signaling pathways regulating these enhancers. While HCNR 81675 is regulated by very early signals of retinoic acid, HCNR 82478 is regulated by Fgf activity at a later stage and the HCNR 81728 enhancer is under the control of Hh signaling. Finally, we show that Sox2 and Pax2 transcription factors are bound to HCNR 81675 genomic region during otic development and specific mutations to these transcription factor binding sites abrogates HCNR 81675 enhancer activity. Altogether, our results suggest that pou3f4 expression in inner ear might be under the control of distinct regulatory elements that fine-tune the spatio-temporal activity of this gene and provides novel data on the signaling mechanisms controlling pou3f4 function. PMID:21209840

  17. Topologically Consistent Models for Efficient Big Geo-Spatio Data Distribution

    NASA Astrophysics Data System (ADS)

    Jahn, M. W.; Bradley, P. E.; Doori, M. Al; Breunig, M.

    2017-10-01

    Geo-spatio-temporal topology models are likely to become a key concept to check the consistency of 3D (spatial space) and 4D (spatial + temporal space) models for emerging GIS applications such as subsurface reservoir modelling or the simulation of energy and water supply of mega or smart cities. Furthermore, the data management for complex models consisting of big geo-spatial data is a challenge for GIS and geo-database research. General challenges, concepts, and techniques of big geo-spatial data management are presented. In this paper we introduce a sound mathematical approach for a topologically consistent geo-spatio-temporal model based on the concept of the incidence graph. We redesign DB4GeO, our service-based geo-spatio-temporal database architecture, on the way to the parallel management of massive geo-spatial data. Approaches for a new geo-spatio-temporal and object model of DB4GeO meeting the requirements of big geo-spatial data are discussed in detail. Finally, a conclusion and outlook on our future research are given on the way to support the processing of geo-analytics and -simulations in a parallel and distributed system environment.

  18. Numerical solution of a spatio-temporal gender-structured model for hantavirus infection in rodents.

    PubMed

    Bürger, Raimund; Chowell, Gerardo; Gavilán, Elvis; Mulet, Pep; Villada, Luis M

    2018-02-01

    In this article we describe the transmission dynamics of hantavirus in rodents using a spatio-temporal susceptible-exposed-infective-recovered (SEIR) compartmental model that distinguishes between male and female subpopulations [L.J.S. Allen, R.K. McCormack and C.B. Jonsson, Bull. Math. Biol. 68 (2006), 511--524]. Both subpopulations are assumed to differ in their movement with respect to local variations in the densities of their own and the opposite gender group. Three alternative models for the movement of the male individuals are examined. In some cases the movement is not only directed by the gradient of a density (as in the standard diffusive case), but also by a non-local convolution of density values as proposed, in another context, in [R.M. Colombo and E. Rossi, Commun. Math. Sci., 13 (2015), 369--400]. An efficient numerical method for the resulting convection-diffusion-reaction system of partial differential equations is proposed. This method involves techniques of weighted essentially non-oscillatory (WENO) reconstructions in combination with implicit-explicit Runge-Kutta (IMEX-RK) methods for time stepping. The numerical results demonstrate significant differences in the spatio-temporal behavior predicted by the different models, which suggest future research directions.

  19. A Statistical Physics Characterization of the Complex Systems Dynamics: Quantifying Complexity from Spatio-Temporal Interactions

    PubMed Central

    Koorehdavoudi, Hana; Bogdan, Paul

    2016-01-01

    Biological systems are frequently categorized as complex systems due to their capabilities of generating spatio-temporal structures from apparent random decisions. In spite of research on analyzing biological systems, we lack a quantifiable framework for measuring their complexity. To fill this gap, in this paper, we develop a new paradigm to study a collective group of N agents moving and interacting in a three-dimensional space. Our paradigm helps to identify the spatio-temporal states of the motion of the group and their associated transition probabilities. This framework enables the estimation of the free energy landscape corresponding to the identified states. Based on the energy landscape, we quantify missing information, emergence, self-organization and complexity for a collective motion. We show that the collective motion of the group of agents evolves to reach the most probable state with relatively lowest energy level and lowest missing information compared to other possible states. Our analysis demonstrates that the natural group of animals exhibit a higher degree of emergence, self-organization and complexity over time. Consequently, this algorithm can be integrated into new frameworks to engineer collective motions to achieve certain degrees of emergence, self-organization and complexity. PMID:27297496

  20. A Statistical Physics Characterization of the Complex Systems Dynamics: Quantifying Complexity from Spatio-Temporal Interactions

    NASA Astrophysics Data System (ADS)

    Koorehdavoudi, Hana; Bogdan, Paul

    2016-06-01

    Biological systems are frequently categorized as complex systems due to their capabilities of generating spatio-temporal structures from apparent random decisions. In spite of research on analyzing biological systems, we lack a quantifiable framework for measuring their complexity. To fill this gap, in this paper, we develop a new paradigm to study a collective group of N agents moving and interacting in a three-dimensional space. Our paradigm helps to identify the spatio-temporal states of the motion of the group and their associated transition probabilities. This framework enables the estimation of the free energy landscape corresponding to the identified states. Based on the energy landscape, we quantify missing information, emergence, self-organization and complexity for a collective motion. We show that the collective motion of the group of agents evolves to reach the most probable state with relatively lowest energy level and lowest missing information compared to other possible states. Our analysis demonstrates that the natural group of animals exhibit a higher degree of emergence, self-organization and complexity over time. Consequently, this algorithm can be integrated into new frameworks to engineer collective motions to achieve certain degrees of emergence, self-organization and complexity.

  1. Spatio-Temporal Process Simulation of Dam-Break Flood Based on SPH

    NASA Astrophysics Data System (ADS)

    Wang, H.; Ye, F.; Ouyang, S.; Li, Z.

    2018-04-01

    On the basis of introducing the SPH (Smooth Particle Hydrodynamics) simulation method, the key research problems were given solutions in this paper, which ere the spatial scale and temporal scale adapting to the GIS(Geographical Information System) application, the boundary condition equations combined with the underlying surface, and the kernel function and parameters applicable to dam-break flood simulation. In this regards, a calculation method of spatio-temporal process emulation with elaborate particles for dam-break flood was proposed. Moreover the spatio-temporal process was dynamic simulated by using GIS modelling and visualization. The results show that the method gets more information, objectiveness and real situations.

  2. Spatio-temporal characterisation of a 100 kHz 24 W sub-3-cycle NOPCPA laser system

    NASA Astrophysics Data System (ADS)

    Witting, Tobias; Furch, Federico J.; Vrakking, Marc J. J.

    2018-04-01

    In recent years, OPCPA and NOPCPA laser systems have shown the potential to supersede Ti:sapphire plus post-compression based laser systems to drive next generation attosecond light sources via direct amplification of few-cycle pulses to high pulse energies at high repetition rates. In this paper, we present a sub 3-cycle, 100 kHz, 24 W NOPA laser system and characterise its spatio-temporal properties using the SEA-F-SPIDER technique. Our results underline the importance of spatio-temporal diagnostics for these emerging laser systems.

  3. Spatio-Temporal Cellular Imaging of Polymer-pDNA Nanocomplexes Affords In Situ Morphology and Trafficking Trends

    PubMed Central

    Ingle, Nilesh P.; Lian, Xue; Reineke, Theresa M.

    2013-01-01

    Synthetic polymers are ubiquitous in the development of drug and polynucleotide delivery vehicles, offering promise for personalized medicine. However, the polymer structure plays a central yet elusive role in dictating the efficacy, safety, mechanisms, and kinetics of therapeutic transport in a spatial and temporal manner. Here, we decipher the intracellular evolutionary pathways pertaining to shape, size, location, and mechanism of four structurally-divergent polymer vehicles (Tr455, Tr477, jetPEI™ and Glycofect™) that create colloidal nanoparticles (polyplexes) when complexed with fluorescently-labeled plasmid DNA (pDNA). Multiple high resolution tomographic images of whole HeLa (human cervical adenocarcinoma) cells were captured via confocal microscopy at 4, 8, 12 and 24 hours. The images were reconstructed to visualize and quantify trends in situ in a four-dimensional spatio-temporal manner. The data revealed heretofore-unseen images of polyplexes in situ and structure-function relationships, i.e., Glycofect™ polyplexes are trafficked as the smallest polyplex complexes and Tr455 polyplexes have expedited translocation to the perinuclear region. Also, all of the polyplex types appeared to be preferentially internalized and trafficked via early endosomes affiliated with caveolae, a Rab-5-dependent pathway, actin, and microtubules. PMID:24007201

  4. Neurovision processor for designing intelligent sensors

    NASA Astrophysics Data System (ADS)

    Gupta, Madan M.; Knopf, George K.

    1992-03-01

    A programmable multi-task neuro-vision processor, called the Positive-Negative (PN) neural processor, is proposed as a plausible hardware mechanism for constructing robust multi-task vision sensors. The computational operations performed by the PN neural processor are loosely based on the neural activity fields exhibited by certain nervous tissue layers situated in the brain. The neuro-vision processor can be programmed to generate diverse dynamic behavior that may be used for spatio-temporal stabilization (STS), short-term visual memory (STVM), spatio-temporal filtering (STF) and pulse frequency modulation (PFM). A multi- functional vision sensor that performs a variety of information processing operations on time- varying two-dimensional sensory images can be constructed from a parallel and hierarchical structure of numerous individually programmed PN neural processors.

  5. NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data.

    PubMed

    Kasabov, Nikola K

    2014-04-01

    The brain functions as a spatio-temporal information processing machine. Spatio- and spectro-temporal brain data (STBD) are the most commonly collected data for measuring brain response to external stimuli. An enormous amount of such data has been already collected, including brain structural and functional data under different conditions, molecular and genetic data, in an attempt to make a progress in medicine, health, cognitive science, engineering, education, neuro-economics, Brain-Computer Interfaces (BCI), and games. Yet, there is no unifying computational framework to deal with all these types of data in order to better understand this data and the processes that generated it. Standard machine learning techniques only partially succeeded and they were not designed in the first instance to deal with such complex data. Therefore, there is a need for a new paradigm to deal with STBD. This paper reviews some methods of spiking neural networks (SNN) and argues that SNN are suitable for the creation of a unifying computational framework for learning and understanding of various STBD, such as EEG, fMRI, genetic, DTI, MEG, and NIRS, in their integration and interaction. One of the reasons is that SNN use the same computational principle that generates STBD, namely spiking information processing. This paper introduces a new SNN architecture, called NeuCube, for the creation of concrete models to map, learn and understand STBD. A NeuCube model is based on a 3D evolving SNN that is an approximate map of structural and functional areas of interest of the brain related to the modeling STBD. Gene information is included optionally in the form of gene regulatory networks (GRN) if this is relevant to the problem and the data. A NeuCube model learns from STBD and creates connections between clusters of neurons that manifest chains (trajectories) of neuronal activity. Once learning is applied, a NeuCube model can reproduce these trajectories, even if only part of the input STBD or the stimuli data is presented, thus acting as an associative memory. The NeuCube framework can be used not only to discover functional pathways from data, but also as a predictive system of brain activities, to predict and possibly, prevent certain events. Analysis of the internal structure of a model after training can reveal important spatio-temporal relationships 'hidden' in the data. NeuCube will allow the integration in one model of various brain data, information and knowledge, related to a single subject (personalized modeling) or to a population of subjects. The use of NeuCube for classification of STBD is illustrated in a case study problem of EEG data. NeuCube models result in a better accuracy of STBD classification than standard machine learning techniques. They are robust to noise (so typical in brain data) and facilitate a better interpretation of the results and understanding of the STBD and the brain conditions under which data was collected. Future directions for the use of SNN for STBD are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Automated detection of qualitative spatio-temporal features in electrocardiac activation maps.

    PubMed

    Ironi, Liliana; Tentoni, Stefania

    2007-02-01

    This paper describes a piece of work aiming at the realization of a tool for the automated interpretation of electrocardiac maps. Such maps can capture a number of electrical conduction pathologies, such as arrhytmia, that can be missed by the analysis of traditional electrocardiograms. But, their introduction into the clinical practice is still far away as their interpretation requires skills that belongs to very few experts. Then, an automated interpretation tool would bridge the gap between the established research outcome and clinical practice with a consequent great impact on health care. Qualitative spatial reasoning can play a crucial role in the identification of spatio-temporal patterns and salient features that characterize the heart electrical activity. We adopted the spatial aggregation (SA) conceptual framework and an interplay of numerical and qualitative information to extract features from epicardial maps, and to make them available for reasoning tasks. Our focus is on epicardial activation isochrone maps as they are a synthetic representation of spatio-temporal aspects of the propagation of the electrical excitation. We provide a computational SA-based methodology to extract, from 3D epicardial data gathered over time, (1) the excitation wavefront structure, and (2) the salient features that characterize wavefront propagation and visually correspond to specific geometric objects. The proposed methodology provides a robust and efficient way to identify salient pieces of information in activation time maps. The hierarchical structure of the abstracted geometric objects, crucial in capturing the prominent information, facilitates the definition of general rules necessary to infer the correlation between pathophysiological patterns and wavefront structure and propagation.

  7. User requirements for geo-collaborative work with spatio-temporal data in a web-based virtual globe environment.

    PubMed

    Yovcheva, Zornitza; van Elzakker, Corné P J M; Köbben, Barend

    2013-11-01

    Web-based tools developed in the last couple of years offer unique opportunities to effectively support scientists in their effort to collaborate. Communication among environmental researchers often involves not only work with geographical (spatial), but also with temporal data and information. Literature still provides limited documentation when it comes to user requirements for effective geo-collaborative work with spatio-temporal data. To start filling this gap, our study adopted a User-Centered Design approach and first explored the user requirements of environmental researchers working on distributed research projects for collaborative dissemination, exchange and work with spatio-temporal data. Our results show that system design will be mainly influenced by the nature and type of data users work with. From the end-users' perspective, optimal conversion of huge files of spatio-temporal data for further dissemination, accuracy of conversion, organization of content and security have a key role for effective geo-collaboration. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  8. Image Motion Detection And Estimation: The Modified Spatio-Temporal Gradient Scheme

    NASA Astrophysics Data System (ADS)

    Hsin, Cheng-Ho; Inigo, Rafael M.

    1990-03-01

    The detection and estimation of motion are generally involved in computing a velocity field of time-varying images. A completely new modified spatio-temporal gradient scheme to determine motion is proposed. This is derived by using gradient methods and properties of biological vision. A set of general constraints is proposed to derive motion constraint equations. The constraints are that the second directional derivatives of image intensity at an edge point in the smoothed image will be constant at times t and t+L . This scheme basically has two stages: spatio-temporal filtering, and velocity estimation. Initially, image sequences are processed by a set of oriented spatio-temporal filters which are designed using a Gaussian derivative model. The velocity is then estimated for these filtered image sequences based on the gradient approach. From a computational stand point, this scheme offers at least three advantages over current methods. The greatest advantage of the modified spatio-temporal gradient scheme over the traditional ones is that an infinite number of motion constraint equations are derived instead of only one. Therefore, it solves the aperture problem without requiring any additional assumptions and is simply a local process. The second advantage is that because of the spatio-temporal filtering, the direct computation of image gradients (discrete derivatives) is avoided. Therefore the error in gradients measurement is reduced significantly. The third advantage is that during the processing of motion detection and estimation algorithm, image features (edges) are produced concurrently with motion information. The reliable range of detected velocity is determined by parameters of the oriented spatio-temporal filters. Knowing the velocity sensitivity of a single motion detection channel, a multiple-channel mechanism for estimating image velocity, seldom addressed by other motion schemes in machine vision, can be constructed by appropriately choosing and combining different sets of parameters. By applying this mechanism, a great range of velocity can be detected. The scheme has been tested for both synthetic and real images. The results of simulations are very satisfactory.

  9. An Efficient Method of Sharing Mass Spatio-Temporal Trajectory Data Based on Cloudera Impala for Traffic Distribution Mapping in an Urban City

    PubMed Central

    Zhou, Lianjie; Chen, Nengcheng; Yuan, Sai; Chen, Zeqiang

    2016-01-01

    The efficient sharing of spatio-temporal trajectory data is important to understand traffic congestion in mass data. However, the data volumes of bus networks in urban cities are growing rapidly, reaching daily volumes of one hundred million datapoints. Accessing and retrieving mass spatio-temporal trajectory data in any field is hard and inefficient due to limited computational capabilities and incomplete data organization mechanisms. Therefore, we propose an optimized and efficient spatio-temporal trajectory data retrieval method based on the Cloudera Impala query engine, called ESTRI, to enhance the efficiency of mass data sharing. As an excellent query tool for mass data, Impala can be applied for mass spatio-temporal trajectory data sharing. In ESTRI we extend the spatio-temporal trajectory data retrieval function of Impala and design a suitable data partitioning method. In our experiments, the Taiyuan BeiDou (BD) bus network is selected, containing 2300 buses with BD positioning sensors, producing 20 million records every day, resulting in two difficulties as described in the Introduction section. In addition, ESTRI and MongoDB are applied in experiments. The experiments show that ESTRI achieves the most efficient data retrieval compared to retrieval using MongoDB for data volumes of fifty million, one hundred million, one hundred and fifty million, and two hundred million. The performance of ESTRI is approximately seven times higher than that of MongoDB. The experiments show that ESTRI is an effective method for retrieving mass spatio-temporal trajectory data. Finally, bus distribution mapping in Taiyuan city is achieved, describing the buses density in different regions at different times throughout the day, which can be applied in future studies of transport, such as traffic scheduling, traffic planning and traffic behavior management in intelligent public transportation systems. PMID:27801869

  10. Encoding dependence in Bayesian causal networks

    USDA-ARS?s Scientific Manuscript database

    Bayesian networks (BNs) represent complex, uncertain spatio-temporal dynamics by propagation of conditional probabilities between identifiable states with a testable causal interaction model. Typically, they assume random variables are discrete in time and space with a static network structure that ...

  11. Spatio-temporal interpolation of precipitation during monsoon periods in Pakistan

    NASA Astrophysics Data System (ADS)

    Hussain, Ijaz; Spöck, Gunter; Pilz, Jürgen; Yu, Hwa-Lung

    2010-08-01

    Spatio-temporal estimation of precipitation over a region is essential to the modeling of hydrologic processes for water resources management. The changes of magnitude and space-time heterogeneity of rainfall observations make space-time estimation of precipitation a challenging task. In this paper we propose a Box-Cox transformed hierarchical Bayesian multivariate spatio-temporal interpolation method for the skewed response variable. The proposed method is applied to estimate space-time monthly precipitation in the monsoon periods during 1974-2000, and 27-year monthly average precipitation data are obtained from 51 stations in Pakistan. The results of transformed hierarchical Bayesian multivariate spatio-temporal interpolation are compared to those of non-transformed hierarchical Bayesian interpolation by using cross-validation. The software developed by [11] is used for Bayesian non-stationary multivariate space-time interpolation. It is observed that the transformed hierarchical Bayesian method provides more accuracy than the non-transformed hierarchical Bayesian method.

  12. Spatio-temporal analysis of sub-hourly rainfall over Mumbai, India: Is statistical forecasting futile?

    NASA Astrophysics Data System (ADS)

    Singh, Jitendra; Sekharan, Sheeba; Karmakar, Subhankar; Ghosh, Subimal; Zope, P. E.; Eldho, T. I.

    2017-04-01

    Mumbai, the commercial and financial capital of India, experiences incessant annual rain episodes, mainly attributable to erratic rainfall pattern during monsoons and urban heat-island effect due to escalating urbanization, leading to increasing vulnerability to frequent flooding. After the infamous episode of 2005 Mumbai torrential rains when only two rain gauging stations existed, the governing civic body, the Municipal Corporation of Greater Mumbai (MCGM) came forward with an initiative to install 26 automatic weather stations (AWS) in June 2006 (MCGM 2007), which later increased to 60 AWS. A comprehensive statistical analysis to understand the spatio-temporal pattern of rainfall over Mumbai or any other coastal city in India has never been attempted earlier. In the current study, a thorough analysis of available rainfall data for 2006-2014 from these stations was performed; the 2013-2014 sub-hourly data from 26 AWS was found useful for further analyses due to their consistency and continuity. Correlogram cloud indicated no pattern of significant correlation when we considered the closest to the farthest gauging station from the base station; this impression was also supported by the semivariogram plots. Gini index values, a statistical measure of temporal non-uniformity, were found above 0.8 in visible majority showing an increasing trend in most gauging stations; this sufficiently led us to conclude that inconsistency in daily rainfall was gradually increasing with progress in monsoon. Interestingly, night rainfall was lesser compared to daytime rainfall. The pattern-less high spatio-temporal variation observed in Mumbai rainfall data signifies the futility of independently applying advanced statistical techniques, and thus calls for simultaneous inclusion of physics-centred models such as different meso-scale numerical weather prediction systems, particularly the Weather Research and Forecasting (WRF) model.

  13. A Flexible Spatio-Temporal Model for Air Pollution with Spatial and Spatio-Temporal Covariates.

    PubMed

    Lindström, Johan; Szpiro, Adam A; Sampson, Paul D; Oron, Assaf P; Richards, Mark; Larson, Tim V; Sheppard, Lianne

    2014-09-01

    The development of models that provide accurate spatio-temporal predictions of ambient air pollution at small spatial scales is of great importance for the assessment of potential health effects of air pollution. Here we present a spatio-temporal framework that predicts ambient air pollution by combining data from several different monitoring networks and deterministic air pollution model(s) with geographic information system (GIS) covariates. The model presented in this paper has been implemented in an R package, SpatioTemporal, available on CRAN. The model is used by the EPA funded Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) to produce estimates of ambient air pollution; MESA Air uses the estimates to investigate the relationship between chronic exposure to air pollution and cardiovascular disease. In this paper we use the model to predict long-term average concentrations of NO x in the Los Angeles area during a ten year period. Predictions are based on measurements from the EPA Air Quality System, MESA Air specific monitoring, and output from a source dispersion model for traffic related air pollution (Caline3QHCR). Accuracy in predicting long-term average concentrations is evaluated using an elaborate cross-validation setup that accounts for a sparse spatio-temporal sampling pattern in the data, and adjusts for temporal effects. The predictive ability of the model is good with cross-validated R 2 of approximately 0.7 at subject sites. Replacing four geographic covariate indicators of traffic density with the Caline3QHCR dispersion model output resulted in very similar prediction accuracy from a more parsimonious and more interpretable model. Adding traffic-related geographic covariates to the model that included Caline3QHCR did not further improve the prediction accuracy.

  14. Temporal and spatio-temporal vibrotactile displays for voice fundamental frequency: an initial evaluation of a new vibrotactile speech perception aid with normal-hearing and hearing-impaired individuals.

    PubMed

    Auer, E T; Bernstein, L E; Coulter, D C

    1998-10-01

    Four experiments were performed to evaluate a new wearable vibrotactile speech perception aid that extracts fundamental frequency (F0) and displays the extracted F0 as a single-channel temporal or an eight-channel spatio-temporal stimulus. Specifically, we investigated the perception of intonation (i.e., question versus statement) and emphatic stress (i.e., stress on the first, second, or third word) under Visual-Alone (VA), Visual-Tactile (VT), and Tactile-Alone (TA) conditions and compared performance using the temporal and spatio-temporal vibrotactile display. Subjects were adults with normal hearing in experiments I-III and adults with severe to profound hearing impairments in experiment IV. Both versions of the vibrotactile speech perception aid successfully conveyed intonation. Vibrotactile stress information was successfully conveyed, but vibrotactile stress information did not enhance performance in VT conditions beyond performance in VA conditions. In experiment III, which involved only intonation identification, a reliable advantage for the spatio-temporal display was obtained. Differences between subject groups were obtained for intonation identification, with more accurate VT performance by those with normal hearing. Possible effects of long-term hearing status are discussed.

  15. How spatio-temporal habitat connectivity affects amphibian genetic structure

    PubMed Central

    Watts, Alexander G.; Schlichting, Peter E.; Billerman, Shawn M.; Jesmer, Brett R.; Micheletti, Steven; Fortin, Marie-Josée; Funk, W. Chris; Hapeman, Paul; Muths, Erin; Murphy, Melanie A.

    2015-01-01

    Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations. PMID:26442094

  16. How spatio-temporal habitat connectivity affects amphibian genetic structure

    USGS Publications Warehouse

    Watts, Alexander G.; Schlichting, P; Billerman, S; Jesmer, B; Micheletti, S; Fortin, M.-J.; Funk, W.C.; Hapeman, P; Muths, Erin L.; Murphy, M.A.

    2015-01-01

    Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations.

  17. A geostatistical state-space model of animal densities for stream networks.

    PubMed

    Hocking, Daniel J; Thorson, James T; O'Neil, Kyle; Letcher, Benjamin H

    2018-06-21

    Population dynamics are often correlated in space and time due to correlations in environmental drivers as well as synchrony induced by individual dispersal. Many statistical analyses of populations ignore potential autocorrelations and assume that survey methods (distance and time between samples) eliminate these correlations, allowing samples to be treated independently. If these assumptions are incorrect, results and therefore inference may be biased and uncertainty under-estimated. We developed a novel statistical method to account for spatio-temporal correlations within dendritic stream networks, while accounting for imperfect detection in the surveys. Through simulations, we found this model decreased predictive error relative to standard statistical methods when data were spatially correlated based on stream distance and performed similarly when data were not correlated. We found that increasing the number of years surveyed substantially improved the model accuracy when estimating spatial and temporal correlation coefficients, especially from 10 to 15 years. Increasing the number of survey sites within the network improved the performance of the non-spatial model but only marginally improved the density estimates in the spatio-temporal model. We applied this model to Brook Trout data from the West Susquehanna Watershed in Pennsylvania collected over 34 years from 1981 - 2014. We found the model including temporal and spatio-temporal autocorrelation best described young-of-the-year (YOY) and adult density patterns. YOY densities were positively related to forest cover and negatively related to spring temperatures with low temporal autocorrelation and moderately-high spatio-temporal correlation. Adult densities were less strongly affected by climatic conditions and less temporally variable than YOY but with similar spatio-temporal correlation and higher temporal autocorrelation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. A LANGUAGE FOR MODULAR SPATIO-TEMPORAL SIMULATION (R824766)

    EPA Science Inventory

    Creating an effective environment for collaborative spatio-temporal model development will require computational systems that provide support for the user in three key areas: (1) Support for modular, hierarchical model construction and archiving/linking of simulation modules; (2)...

  19. A Million-Plus Neuron Model of the Hippocampal Dentate Gyrus: Critical Role for Topography in Determining Spatio-Temporal Network Dynamics

    PubMed Central

    Hendrickson, Phillip J.; Yu, Gene J.; Song, Dong; Berger, Theodore W.

    2016-01-01

    Goal This manuscript describes a million-plus granule cell compartmental model of the rat hippocampal dentate gyrus, including excitatory, perforant path input from the entorhinal cortex, and feedforward and feedback inhibitory input from dentate interneurons. Methods The model includes experimentally determined morphological and biophysical properties of granule cells, together with glutamatergic AMPA-like EPSP and GABAergic GABAA-like IPSP synaptic excitatory and inhibitory inputs, respectively. Each granule cell was composed of approximately 200 compartments having passive and active conductances distributed throughout the somatic and dendritic regions. Modeling excitatory input from the entorhinal cortex was guided by axonal transport studies documenting the topographical organization of projections from subregions of the medial and lateral entorhinal cortex, plus other important details of the distribution of glutamatergic inputs to the dentate gyrus. Information contained within previously published maps of this major hippocampal afferent were systematically converted to scales that allowed the topographical distribution and relative synaptic densities of perforant path inputs to be quantitatively estimated for inclusion in the current model. Results Results showed that when medial and lateral entorhinal cortical neurons maintained Poisson random firing, dentate granule cells expressed, throughout the million-cell network, a robust, non-random pattern of spiking best described as spatio-temporal “clustering”. To identify the network property or properties responsible for generating such firing “clusters”, we progressively eliminated from the model key mechanisms such as feedforward and feedback inhibition, intrinsic membrane properties underlying rhythmic burst firing, and/or topographical organization of entorhinal afferents. Conclusion Findings conclusively identified topographical organization of inputs as the key element responsible for generating a spatio-temporal distribution of clustered firing. These results uncover a functional organization of perforant path afferents to the dentate gyrus not previously recognized: topography-dependent clusters of granule cell activity as “functional units” or “channels” that organize the processing of entorhinal signals. This modeling study also reveals for the first time how a global signal processing feature of a neural network can evolve from one of its underlying structural characteristics. PMID:26087482

  20. Effective and efficient analysis of spatio-temporal data

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongnan

    Spatio-temporal data mining, i.e., mining knowledge from large amount of spatio-temporal data, is a highly demanding field because huge amounts of spatio-temporal data have been collected in various applications, ranging from remote sensing, to geographical information systems (GIS), computer cartography, environmental assessment and planning, etc. The collection data far exceeded human's ability to analyze which make it crucial to develop analysis tools. Recent studies on data mining have extended to the scope of data mining from relational and transactional datasets to spatial and temporal datasets. Among the various forms of spatio-temporal data, remote sensing images play an important role, due to the growing wide-spreading of outer space satellites. In this dissertation, we proposed two approaches to analyze the remote sensing data. The first one is about applying association rules mining onto images processing. Each image was divided into a number of image blocks. We built a spatial relationship for these blocks during the dividing process. This made a large number of images into a spatio-temporal dataset since each image was shot in time-series. The second one implemented co-occurrence patterns discovery from these images. The generated patterns represent subsets of spatial features that are located together in space and time. A weather analysis is composed of individual analysis of several meteorological variables. These variables include temperature, pressure, dew point, wind, clouds, visibility and so on. Local-scale models provide detailed analysis and forecasts of meteorological phenomena ranging from a few kilometers to about 100 kilometers in size. When some of above meteorological variables have some special change tendency, some kind of severe weather will happen in most cases. Using the discovery of association rules, we found that some special meteorological variables' changing has tight relation with some severe weather situation that will happen very soon. This dissertation is composed of three parts: an introduction, some basic knowledges and relative works, and my own three contributions to the development of approaches for spatio-temporal data mining: DYSTAL algorithm, STARSI algorithm, and COSTCOP+ algorithm.

  1. Spatio-temporal conditional inference and hypothesis tests for neural ensemble spiking precision

    PubMed Central

    Harrison, Matthew T.; Amarasingham, Asohan; Truccolo, Wilson

    2014-01-01

    The collective dynamics of neural ensembles create complex spike patterns with many spatial and temporal scales. Understanding the statistical structure of these patterns can help resolve fundamental questions about neural computation and neural dynamics. Spatio-temporal conditional inference (STCI) is introduced here as a semiparametric statistical framework for investigating the nature of precise spiking patterns from collections of neurons that is robust to arbitrarily complex and nonstationary coarse spiking dynamics. The main idea is to focus statistical modeling and inference, not on the full distribution of the data, but rather on families of conditional distributions of precise spiking given different types of coarse spiking. The framework is then used to develop families of hypothesis tests for probing the spatio-temporal precision of spiking patterns. Relationships among different conditional distributions are used to improve multiple hypothesis testing adjustments and to design novel Monte Carlo spike resampling algorithms. Of special note are algorithms that can locally jitter spike times while still preserving the instantaneous peri-stimulus time histogram (PSTH) or the instantaneous total spike count from a group of recorded neurons. The framework can also be used to test whether first-order maximum entropy models with possibly random and time-varying parameters can account for observed patterns of spiking. STCI provides a detailed example of the generic principle of conditional inference, which may be applicable in other areas of neurostatistical analysis. PMID:25380339

  2. Spatio-temporal variations in the diversity and abundance of commercially important Decapoda and Stomatopoda in subtropical Hong Kong waters

    NASA Astrophysics Data System (ADS)

    Lui, Karen K. Y.; Ng, Jasmine S. S.; Leung, Kenneth M. Y.

    2007-05-01

    In subtropical Hong Kong, western waters (WW) are strongly influenced by the freshwater input from the Pearl River estuary, especially during summer monsoon, whereas eastern waters (EW) are predominantly influenced by oceanic currents throughout the year. Such hydrographical differences may lead to spatio-temporal differences in biodiversity of benthic communities. This study investigated the diversity and abundance of commercially important decapods and stomatopods in EW (i.e. Tolo Harbour and Channel) and WW (i.e. Tuen Mun and Lantau Island) of Hong Kong using monthly trawl surveys (August 2003-May 2005). In total, 22 decapod and nine stomatopod species were recorded. The penaeid Metapenaeopsis sp. and stomatopod Oratosquillina interrupta were the most abundant and dominant crustaceans in EW and WW, respectively. Both univariate and multivariate analyses showed that WW supported significantly higher abundance, biomass and diversity of crustaceans than EW, although there were significant between-site and within-site variations in community structure. Higher abundance and biomass of crustaceans were recorded in summer than winter. Such spatio-temporal variations could be explained by differences in the hydrography, environmental conditions and anthropogenic impacts between the two areas. Temporal patterns in the abundance-biomass comparison curves and negative W-statistics suggest that the communities have been highly disturbed in both areas, probably due to anthropogenic activities such as bottom trawling and marine pollution.

  3. Integrating real-time and manual monitored data to predict hillslope soil moisture dynamics with high spatio-temporal resolution using linear and non-linear models

    USDA-ARS?s Scientific Manuscript database

    Spatio-temporal variability of soil moisture (') is a challenge that remains to be better understood. A trade-off exists between spatial coverage and temporal resolution when using the manual and real-time ' monitoring methods. This restricted the comprehensive and intensive examination of ' dynamic...

  4. Visual Benefits in Apparent Motion Displays: Automatically Driven Spatial and Temporal Anticipation Are Partially Dissociated

    PubMed Central

    Ahrens, Merle-Marie; Veniero, Domenica; Gross, Joachim; Harvey, Monika; Thut, Gregor

    2015-01-01

    Many behaviourally relevant sensory events such as motion stimuli and speech have an intrinsic spatio-temporal structure. This will engage intentional and most likely unintentional (automatic) prediction mechanisms enhancing the perception of upcoming stimuli in the event stream. Here we sought to probe the anticipatory processes that are automatically driven by rhythmic input streams in terms of their spatial and temporal components. To this end, we employed an apparent visual motion paradigm testing the effects of pre-target motion on lateralized visual target discrimination. The motion stimuli either moved towards or away from peripheral target positions (valid vs. invalid spatial motion cueing) at a rhythmic or arrhythmic pace (valid vs. invalid temporal motion cueing). Crucially, we emphasized automatic motion-induced anticipatory processes by rendering the motion stimuli non-predictive of upcoming target position (by design) and task-irrelevant (by instruction), and by creating instead endogenous (orthogonal) expectations using symbolic cueing. Our data revealed that the apparent motion cues automatically engaged both spatial and temporal anticipatory processes, but that these processes were dissociated. We further found evidence for lateralisation of anticipatory temporal but not spatial processes. This indicates that distinct mechanisms may drive automatic spatial and temporal extrapolation of upcoming events from rhythmic event streams. This contrasts with previous findings that instead suggest an interaction between spatial and temporal attention processes when endogenously driven. Our results further highlight the need for isolating intentional from unintentional processes for better understanding the various anticipatory mechanisms engaged in processing behaviourally relevant stimuli with predictable spatio-temporal structure such as motion and speech. PMID:26623650

  5. A dynamic spatio-temporal model for spatial data

    USGS Publications Warehouse

    Hefley, Trevor J.; Hooten, Mevin B.; Hanks, Ephraim M.; Russell, Robin; Walsh, Daniel P.

    2017-01-01

    Analyzing spatial data often requires modeling dependencies created by a dynamic spatio-temporal data generating process. In many applications, a generalized linear mixed model (GLMM) is used with a random effect to account for spatial dependence and to provide optimal spatial predictions. Location-specific covariates are often included as fixed effects in a GLMM and may be collinear with the spatial random effect, which can negatively affect inference. We propose a dynamic approach to account for spatial dependence that incorporates scientific knowledge of the spatio-temporal data generating process. Our approach relies on a dynamic spatio-temporal model that explicitly incorporates location-specific covariates. We illustrate our approach with a spatially varying ecological diffusion model implemented using a computationally efficient homogenization technique. We apply our model to understand individual-level and location-specific risk factors associated with chronic wasting disease in white-tailed deer from Wisconsin, USA and estimate the location the disease was first introduced. We compare our approach to several existing methods that are commonly used in spatial statistics. Our spatio-temporal approach resulted in a higher predictive accuracy when compared to methods based on optimal spatial prediction, obviated confounding among the spatially indexed covariates and the spatial random effect, and provided additional information that will be important for containing disease outbreaks.

  6. Spatial distribution of tree species governs the spatio-temporal interaction of leaf area index and soil moisture across a forested landscape.

    PubMed

    Naithani, Kusum J; Baldwin, Doug C; Gaines, Katie P; Lin, Henry; Eissenstat, David M

    2013-01-01

    Quantifying coupled spatio-temporal dynamics of phenology and hydrology and understanding underlying processes is a fundamental challenge in ecohydrology. While variation in phenology and factors influencing it have attracted the attention of ecologists for a long time, the influence of biodiversity on coupled dynamics of phenology and hydrology across a landscape is largely untested. We measured leaf area index (L) and volumetric soil water content (θ) on a co-located spatial grid to characterize forest phenology and hydrology across a forested catchment in central Pennsylvania during 2010. We used hierarchical Bayesian modeling to quantify spatio-temporal patterns of L and θ. Our results suggest that the spatial distribution of tree species across the landscape created unique spatio-temporal patterns of L, which created patterns of water demand reflected in variable soil moisture across space and time. We found a lag of about 11 days between increase in L and decline in θ. Vegetation and soil moisture become increasingly homogenized and coupled from leaf-onset to maturity but heterogeneous and uncoupled from leaf maturity to senescence. Our results provide insight into spatio-temporal coupling between biodiversity and soil hydrology that is useful to enhance ecohydrological modeling in humid temperate forests.

  7. Spatio-temporal scaling effects on longshore sediment transport pattern along the nearshore zone

    NASA Astrophysics Data System (ADS)

    Khorram, Saeed; Ergil, Mustafa

    2018-03-01

    A measure of uncertainties, entropy has been employed in such different applications as coastal engineering probability inferences. Entropy sediment transport integration theories present novel visions in coastal analyses/modeling the application and development of which are still far-reaching. Effort has been made in the present paper to propose a method that needs an entropy-power index for spatio-temporal patterns analyses. Results have shown that the index is suitable for marine/hydrological ecosystem components analyses based on a beach area case study. The method makes use of six Makran Coastal monthly data (1970-2015) and studies variables such as spatio-temporal patterns, LSTR (long-shore sediment transport rate), wind speed, and wave height all of which are time-dependent and play considerable roles in terrestrial coastal investigations; the mentioned variables show meaningful spatio-temporal variability most of the time, but explanation of their combined performance is not easy. Accordingly, the use of an entropy-power index can show considerable signals that facilitate the evaluation of water resources and will provide an insight regarding hydrological parameters' interactions at scales as large as beach areas. Results have revealed that an STDDPI (entropy based spatio-temporal disorder dynamics power index) can simulate wave, long-shore sediment transport rate, and wind when granulometry, concentration, and flow conditions vary.

  8. Spatio-temporal autocorrelation of Neogene-Quaternary volcanic and clastic sedimentary rocks in SW Montana and SE Idaho: Relationship to Cenozoic tectonic and thermally induced extensional events

    NASA Astrophysics Data System (ADS)

    Davarpanah, A.; Babaie, H. A.; Dai, D.

    2013-12-01

    Two systems of full and half grabens have been forming since the mid-Tertiary through tectonic and thermally induced extensional events in SW Montana and neighboring SE Idaho. The earlier mid-Tertiary Basin and Range (BR) tectonic event formed the NW- and NE-striking mountains around the Snake River Plain (SRP) in Idaho and SW Montana, respectively. Since the mid-Tertiary, partially synchronous with the BR event, diachronous bulging and subsidence due to the thermally induced stress field of the Yellowstone hotspot (YHS) has produced the second system of variably-oriented grabens through faulting across the older BR fault blocks. The track of the migration of the YHS is defined by the presence of six prominent volcanic calderas along the SRP which become younger toward the present location of the YHS. Graben basins bounded by both the BR faults and thermally induced cross-faults (CF) systems are now filled with Tertiary-Quaternary clastic sedimentary and volcanic-volcaniclastic rocks. Neogene mafic and felsic lava which erupted along the SRP and clastic sedimentary units (Sixmile Creek Fm., Ts) deposited in both types of graben basins were classified based on their lithology and age, and mapped in ArcGIS 10 as polygon using a combination of MBMG and USGS databases and geological maps at scales of 1:250.000, 1:100,000, and 1:48,000. The spatio-temporal distributions of the lava polygons were then analyzed applying the Global and Local Moran`s I methods to detect any possible spatial or temporal autocorrelation relative to the track of the YHS. The results reveal the spatial autocorrelation of the lithology and age of the Neogene lavas, and suggest a spatio-temporal sequence of eruption of extrusive rocks between Miocene and late Pleistocene along the SRP. The sequence of eruptions, which progressively becomes younger toward the Yellowstone National Park, may track the migration of the YSH. The sub-parallelism of the trend of the SRP with the long axis of the standard deviation ellipses (SDEs), that give the trend of the dispersion of the centroids of lavas erupted at different times, and the spatio-temporally ordered overlap of older lavas by younger ones which were progressively erupted to the northeast of the older lavas, indicate the spatio-temporal migration of the centers of eruption along the SRP. Prominent graben basins which formed and filled during and after the BR normal faulting event were identified from those that formed during and after the cross faulting event based on cross cutting relationships and the trend of their long dimension (determined by applying the Dissolve and Minimum Bounding Geometry tools in ArcGIS 10) relative to the linear directional mean (LDM) of the BR and CF sets. The parallelism of the mean trend of the Ts graben fill polygons with the linear directional mean (LDM) of each of the two BR fault trace sets in the eastern SRP indicates that the Neogene deposition of the Ts is post-BR and pre-to syn-cross faulting. Cross-fault-bounded graben valleys filled with Ts roughly sub-parallel the mean trend of the CF sets, indicating that they formed after the BR faulting event.

  9. Research on Visual Analysis Methods of Terrorism Events

    NASA Astrophysics Data System (ADS)

    Guo, Wenyue; Liu, Haiyan; Yu, Anzhu; Li, Jing

    2016-06-01

    Under the situation that terrorism events occur more and more frequency throughout the world, improving the response capability of social security incidents has become an important aspect to test governments govern ability. Visual analysis has become an important method of event analysing for its advantage of intuitive and effective. To analyse events' spatio-temporal distribution characteristics, correlations among event items and the development trend, terrorism event's spatio-temporal characteristics are discussed. Suitable event data table structure based on "5W" theory is designed. Then, six types of visual analysis are purposed, and how to use thematic map and statistical charts to realize visual analysis on terrorism events is studied. Finally, experiments have been carried out by using the data provided by Global Terrorism Database, and the results of experiments proves the availability of the methods.

  10. Discrete simulations of spatio-temporal dynamics of small water bodies under varied stream flow discharges

    NASA Astrophysics Data System (ADS)

    Daya Sagar, B. S.

    2005-01-01

    Spatio-temporal patterns of small water bodies (SWBs) under the influence of temporally varied stream flow discharge are simulated in discrete space by employing geomorphologically realistic expansion and contraction transformations. Cascades of expansion-contraction are systematically performed by synchronizing them with stream flow discharge simulated via the logistic map. Templates with definite characteristic information are defined from stream flow discharge pattern as the basis to model the spatio-temporal organization of randomly situated surface water bodies of various sizes and shapes. These spatio-temporal patterns under varied parameters (λs) controlling stream flow discharge patterns are characterized by estimating their fractal dimensions. At various λs, nonlinear control parameters, we show the union of boundaries of water bodies that traverse the water body and non-water body spaces as geomorphic attractors. The computed fractal dimensions of these attractors are 1.58, 1.53, 1.78, 1.76, 1.84, and 1.90, respectively, at λs of 1, 2, 3, 3.46, 3.57, and 3.99. These values are in line with general visual observations.

  11. Wheat landraces: A mini review

    USDA-ARS?s Scientific Manuscript database

    Farmers developed and utilized diverse wheat landraces to meet the complexity of a multitude of spatio-temporal, agro-ecological systems and to provide reliable sustenance and a sustainable food source to local communities. The genetic structure of wheat landraces is an evolutionary approach to surv...

  12. Network-constrained spatio-temporal clustering analysis of traffic collisions in Jianghan District of Wuhan, China

    PubMed Central

    Fan, Yaxin; Zhu, Xinyan; Guo, Wei; Guo, Tao

    2018-01-01

    The analysis of traffic collisions is essential for urban safety and the sustainable development of the urban environment. Reducing the road traffic injuries and the financial losses caused by collisions is the most important goal of traffic management. In addition, traffic collisions are a major cause of traffic congestion, which is a serious issue that affects everyone in the society. Therefore, traffic collision analysis is essential for all parties, including drivers, pedestrians, and traffic officers, to understand the road risks at a finer spatio-temporal scale. However, traffic collisions in the urban context are dynamic and complex. Thus, it is important to detect how the collision hotspots evolve over time through spatio-temporal clustering analysis. In addition, traffic collisions are not isolated events in space. The characteristics of the traffic collisions and their surrounding locations also present an influence of the clusters. This work tries to explore the spatio-temporal clustering patterns of traffic collisions by combining a set of network-constrained methods. These methods were tested using the traffic collision data in Jianghan District of Wuhan, China. The results demonstrated that these methods offer different perspectives of the spatio-temporal clustering patterns. The weighted network kernel density estimation provides an intuitive way to incorporate attribute information. The network cross K-function shows that there are varying clustering tendencies between traffic collisions and different types of POIs. The proposed network differential Local Moran’s I and network local indicators of mobility association provide straightforward and quantitative measures of the hotspot changes. This case study shows that these methods could help researchers, practitioners, and policy-makers to better understand the spatio-temporal clustering patterns of traffic collisions. PMID:29672551

  13. Spatio-temporal genetic variation of the biting midge vector species Culicoides imicola (Ceratopogonidae) Kieffer in France.

    PubMed

    Jacquet, Stéphanie; Huber, Karine; Guis, Hélène; Setier-Rio, Marie-Laure; Goffredo, Maria; Allène, Xavier; Rakotoarivony, Ignace; Chevillon, Christine; Bouyer, Jérémy; Baldet, Thierry; Balenghien, Thomas; Garros, Claire

    2016-03-11

    Introduction of vector species into new areas represents a main driver for the emergence and worldwide spread of vector-borne diseases. This poses a substantial threat to livestock economies and public health. Culicoides imicola Kieffer, a major vector species of economically important animal viruses, is described with an apparent range expansion in Europe where it has been recorded in south-eastern continental France, its known northern distribution edge. This questioned on further C. imicola population extension and establishment into new territories. Studying the spatio-temporal genetic variation of expanding populations can provide valuable information for the design of reliable models of future spread. Entomological surveys and population genetic approaches were used to assess the spatio-temporal population dynamics of C. imicola in France. Entomological surveys (2-3 consecutive years) were used to evaluate population abundances and local spread in continental France (28 sites in the Var department) and in Corsica (4 sites). We also genotyped at nine microsatellite loci insects from 3 locations in the Var department over 3 years (2008, 2010 and 2012) and from 6 locations in Corsica over 4 years (2002, 2008, 2010 and 2012). Entomological surveys confirmed the establishment of C. imicola populations in Var department, but indicated low abundances and no apparent expansion there within the studied period. Higher population abundances were recorded in Corsica. Our genetic data suggested the absence of spatio-temporal genetic changes within each region but a significant increase of the genetic differentiation between Corsican and Var populations through time. The lack of intra-region population structure may result from strong gene flow among populations. We discussed the observed temporal variation between Corsica and Var as being the result of genetic drift following introduction, and/or the genetic characteristics of populations at their range edge. Our results suggest that local range expansion of C. imicola in continental France may be slowed by the low population abundances and unsuitable climatic and environmental conditions.

  14. Modeling Geometric-Temporal Context With Directional Pyramid Co-Occurrence for Action Recognition.

    PubMed

    Yuan, Chunfeng; Li, Xi; Hu, Weiming; Ling, Haibin; Maybank, Stephen J

    2014-02-01

    In this paper, we present a new geometric-temporal representation for visual action recognition based on local spatio-temporal features. First, we propose a modified covariance descriptor under the log-Euclidean Riemannian metric to represent the spatio-temporal cuboids detected in the video sequences. Compared with previously proposed covariance descriptors, our descriptor can be measured and clustered in Euclidian space. Second, to capture the geometric-temporal contextual information, we construct a directional pyramid co-occurrence matrix (DPCM) to describe the spatio-temporal distribution of the vector-quantized local feature descriptors extracted from a video. DPCM characterizes the co-occurrence statistics of local features as well as the spatio-temporal positional relationships among the concurrent features. These statistics provide strong descriptive power for action recognition. To use DPCM for action recognition, we propose a directional pyramid co-occurrence matching kernel to measure the similarity of videos. The proposed method achieves the state-of-the-art performance and improves on the recognition performance of the bag-of-visual-words (BOVWs) models by a large margin on six public data sets. For example, on the KTH data set, it achieves 98.78% accuracy while the BOVW approach only achieves 88.06%. On both Weizmann and UCF CIL data sets, the highest possible accuracy of 100% is achieved.

  15. Evidence-based Controls for Epidemics Using Spatio-temporal Stochastic Model as a Bayesian Framwork

    USDA-ARS?s Scientific Manuscript database

    The control of highly infectious diseases of agricultural and plantation crops and livestock represents a key challenge in epidemiological and ecological modelling, with implemented control strategies often being controversial. Mathematical models, including the spatio-temporal stochastic models con...

  16. Spatio-temporal Outlier Detection in Precipitation Data

    NASA Astrophysics Data System (ADS)

    Wu, Elizabeth; Liu, Wei; Chawla, Sanjay

    The detection of outliers from spatio-temporal data is an important task due to the increasing amount of spatio-temporal data available and the need to understand and interpret it. Due to the limitations of current data mining techniques, new techniques to handle this data need to be developed. We propose a spatio-temporal outlier detection algorithm called Outstretch, which discovers the outlier movement patterns of the top-k spatial outliers over several time periods. The top-k spatial outliers are found using the Exact-Grid Top- k and Approx-Grid Top- k algorithms, which are an extension of algorithms developed by Agarwal et al. [1]. Since they use the Kulldorff spatial scan statistic, they are capable of discovering all outliers, unaffected by neighbouring regions that may contain missing values. After generating the outlier sequences, we show one way they can be interpreted, by comparing them to the phases of the El Niño Southern Oscilliation (ENSO) weather phenomenon to provide a meaningful analysis of the results.

  17. Emergent dynamics of spatio-temporal chaos in a heterogeneous excitable medium.

    PubMed

    Bittihn, Philip; Berg, Sebastian; Parlitz, Ulrich; Luther, Stefan

    2017-09-01

    Self-organized activation patterns in excitable media such as spiral waves and spatio-temporal chaos underlie dangerous cardiac arrhythmias. While the interaction of single spiral waves with different types of heterogeneity has been studied extensively, the effect of heterogeneity on fully developed spatio-temporal chaos remains poorly understood. We investigate how the complexity and stability properties of spatio-temporal chaos in the Bär-Eiswirth model of excitable media depend on the heterogeneity of the underlying medium. We employ different measures characterizing the chaoticity of the system and find that the spatial arrangement of multiple discrete lower excitability regions has a strong impact on the complexity of the dynamics. Varying the number, shape, and spatial arrangement of the heterogeneities, we observe strong emergent effects ranging from increases in chaoticity to the complete cessation of chaos, contrasting the expectation from the homogeneous behavior. The implications of our findings for the development and treatment of arrhythmias in the heterogeneous cardiac muscle are discussed.

  18. Spatio-temporal mapping of variation potentials in leaves of Helianthus annuus L. seedlings in situ using multi-electrode array

    PubMed Central

    Zhao, Dong-Jie; Wang, Zhong-Yi; Huang, Lan; Jia, Yong-Peng; Leng, John Q.

    2014-01-01

    Damaging thermal stimuli trigger long-lasting variation potentials (VPs) in higher plants. Owing to limitations in conventional plant electrophysiological recording techniques, recorded signals are composed of signals originating from all of the cells that are connected to an electrode. This limitation does not enable detailed spatio-temporal distributions of transmission and electrical activities in plants to be visualised. Multi-electrode array (MEA) enables the recording and imaging of dynamic spatio-temporal electrical activities in higher plants. Here, we used an 8 × 8 MEA with a polar distance of 450 μm to measure electrical activities from numerous cells simultaneously. The mapping of the data that were recorded from the MEA revealed the transfer mode of the thermally induced VPs in the leaves of Helianthus annuus L. seedlings in situ. These results suggest that MEA can enable recordings with high spatio-temporal resolution that facilitate the determination of the bioelectrical response mode of higher plants under stress. PMID:24961469

  19. Spatio-temporal mapping of variation potentials in leaves of Helianthus annuus L. seedlings in situ using multi-electrode array.

    PubMed

    Zhao, Dong-Jie; Wang, Zhong-Yi; Huang, Lan; Jia, Yong-Peng; Leng, John Q

    2014-06-25

    Damaging thermal stimuli trigger long-lasting variation potentials (VPs) in higher plants. Owing to limitations in conventional plant electrophysiological recording techniques, recorded signals are composed of signals originating from all of the cells that are connected to an electrode. This limitation does not enable detailed spatio-temporal distributions of transmission and electrical activities in plants to be visualised. Multi-electrode array (MEA) enables the recording and imaging of dynamic spatio-temporal electrical activities in higher plants. Here, we used an 8 × 8 MEA with a polar distance of 450 μm to measure electrical activities from numerous cells simultaneously. The mapping of the data that were recorded from the MEA revealed the transfer mode of the thermally induced VPs in the leaves of Helianthus annuus L. seedlings in situ. These results suggest that MEA can enable recordings with high spatio-temporal resolution that facilitate the determination of the bioelectrical response mode of higher plants under stress.

  20. Emergent dynamics of spatio-temporal chaos in a heterogeneous excitable medium

    NASA Astrophysics Data System (ADS)

    Bittihn, Philip; Berg, Sebastian; Parlitz, Ulrich; Luther, Stefan

    2017-09-01

    Self-organized activation patterns in excitable media such as spiral waves and spatio-temporal chaos underlie dangerous cardiac arrhythmias. While the interaction of single spiral waves with different types of heterogeneity has been studied extensively, the effect of heterogeneity on fully developed spatio-temporal chaos remains poorly understood. We investigate how the complexity and stability properties of spatio-temporal chaos in the Bär-Eiswirth model of excitable media depend on the heterogeneity of the underlying medium. We employ different measures characterizing the chaoticity of the system and find that the spatial arrangement of multiple discrete lower excitability regions has a strong impact on the complexity of the dynamics. Varying the number, shape, and spatial arrangement of the heterogeneities, we observe strong emergent effects ranging from increases in chaoticity to the complete cessation of chaos, contrasting the expectation from the homogeneous behavior. The implications of our findings for the development and treatment of arrhythmias in the heterogeneous cardiac muscle are discussed.

  1. Real-Time Spatio-Temporal Twice Whitening for MIMO Energy Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humble, Travis S; Mitra, Pramita; Barhen, Jacob

    2010-01-01

    While many techniques exist for local spectrum sensing of a primary user, each represents a computationally demanding task to secondary user receivers. In software-defined radio, computational complexity lengthens the time for a cognitive radio to recognize changes in the transmission environment. This complexity is even more significant for spatially multiplexed receivers, e.g., in SIMO and MIMO, where the spatio-temporal data sets grow in size with the number of antennae. Limits on power and space for the processor hardware further constrain SDR performance. In this report, we discuss improvements in spatio-temporal twice whitening (STTW) for real-time local spectrum sensing by demonstratingmore » a form of STTW well suited for MIMO environments. We implement STTW on the Coherent Logix hx3100 processor, a multicore processor intended for low-power, high-throughput software-defined signal processing. These results demonstrate how coupling the novel capabilities of emerging multicore processors with algorithmic advances can enable real-time, software-defined processing of large spatio-temporal data sets.« less

  2. Adaptive spatio-temporal filtering of disturbed ECGs: a multi-channel approach to heartbeat detection in smart clothing.

    PubMed

    Wiklund, Urban; Karlsson, Marcus; Ostlund, Nils; Berglin, Lena; Lindecrantz, Kaj; Karlsson, Stefan; Sandsjö, Leif

    2007-06-01

    Intermittent disturbances are common in ECG signals recorded with smart clothing: this is mainly because of displacement of the electrodes over the skin. We evaluated a novel adaptive method for spatio-temporal filtering for heartbeat detection in noisy multi-channel ECGs including short signal interruptions in single channels. Using multi-channel database recordings (12-channel ECGs from 10 healthy subjects), the results showed that multi-channel spatio-temporal filtering outperformed regular independent component analysis. We also recorded seven channels of ECG using a T-shirt with textile electrodes. Ten healthy subjects performed different sequences during a 10-min recording: resting, standing, flexing breast muscles, walking and pushups. Using adaptive multi-channel filtering, the sensitivity and precision was above 97% in nine subjects. Adaptive multi-channel spatio-temporal filtering can be used to detect heartbeats in ECGs with high noise levels. One application is heartbeat detection in noisy ECG recordings obtained by integrated textile electrodes in smart clothing.

  3. A rigorous statistical framework for spatio-temporal pollution prediction and estimation of its long-term impact on health.

    PubMed

    Lee, Duncan; Mukhopadhyay, Sabyasachi; Rushworth, Alastair; Sahu, Sujit K

    2017-04-01

    In the United Kingdom, air pollution is linked to around 40000 premature deaths each year, but estimating its health effects is challenging in a spatio-temporal study. The challenges include spatial misalignment between the pollution and disease data; uncertainty in the estimated pollution surface; and complex residual spatio-temporal autocorrelation in the disease data. This article develops a two-stage model that addresses these issues. The first stage is a spatio-temporal fusion model linking modeled and measured pollution data, while the second stage links these predictions to the disease data. The methodology is motivated by a new five-year study investigating the effects of multiple pollutants on respiratory hospitalizations in England between 2007 and 2011, using pollution and disease data relating to local and unitary authorities on a monthly time scale. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Spatio-Temporal Dynamics of Exploited Groundfish Species Assemblages Faced to Environmental and Fishing Forcings: Insights from the Mauritanian Exclusive Economic Zone

    PubMed Central

    Kidé, Saïkou Oumar; Manté, Claude; Dubroca, Laurent; Demarcq, Hervé; Mérigot, Bastien

    2015-01-01

    Environmental changes and human activities can have strong impacts on biodiversity and ecosystem functioning. This study investigates how, from a quantitative point of view, simultaneously both environmental and anthropogenic factors affect species composition and abundance of exploited groundfish assemblages (i.e. target and non-target species) at large spatio-temporal scales. We aim to investigate (1) the spatial and annual stability of groundfish assemblages, (2) relationships between these assemblages and structuring factors in order to better explain the dynamic of the assemblages’ structure. The Mauritanian Exclusive Economic Zone (MEEZ) is of particular interest as it embeds a productive ecosystem due to upwelling, producing abundant and diverse resources which constitute an attractive socio-economic development. We applied the multi-variate and multi-table STATICO method on a data set consisting of 854 hauls collected during 14-years (1997–2010) from scientific trawl surveys (species abundance), logbooks of industrial fishery (fishing effort), sea surface temperature and chlorophyll a concentration as environmental variables. Our results showed that abiotic factors drove four main persistent fish assemblages. Overall, chlorophyll a concentration and sea surface temperature mainly influenced the structure of assemblages of coastal soft bottoms and those of the offshore near rocky bottoms where upwellings held. While highest levels of fishing effort were located in the northern permanent upwelling zone, effects of this variable on species composition and abundances of assemblages were relatively low, even if not negligible in some years and areas. The temporal trajectories between environmental and fishing conditions and assemblages did not match for all the entire time series analyzed in the MEEZ, but interestingly for some specific years and areas. The quantitative approach used in this work may provide to stakeholders, scientists and fishers a useful assessment for the spatio-temporal dynamics of exploited assemblages under stable or changing conditions in fishing and environment. PMID:26505198

  5. Memory on time

    PubMed Central

    Eichenbaum, Howard

    2013-01-01

    Considerable recent work has shown that the hippocampus is critical for remembering the order of events in distinct experiences, a defining feature of episodic memory. Correspondingly, hippocampal neuronal activity can ‘replay’ sequential events in memories and hippocampal neuronal ensembles represent a gradually changing temporal context signal. Most strikingly, single hippocampal neurons – called time cells – encode moments in temporally structured experiences much as the well-known place cells encode locations in spatially structured experiences. These observations bridge largely disconnected literatures on the role of the hippocampus in episodic memory and spatial mapping, and suggest that the fundamental function of the hippocampus is to establish spatio-temporal frameworks for organizing memories. PMID:23318095

  6. [Mortality from Suicide in the Municipalities of Mainland Portugal: Spatio-Temporal Evolution between 1980 and 2015].

    PubMed

    Loureiro, Adriana; Almendra, Ricardo; Costa, Cláudia; Santana, Paula

    2018-01-31

    Suicide is considered a public health priority. It is a complex phenomenon resulting from the interaction of several factors, which do not depend solely on individual conditions. This study analyzes the spatio-temporal evolution of suicide mortality between 1980 and 2015, identifying areas of high risk, and their variation, in the 278 municipalities of Continental Portugal. Based on the number of self-inflicted injuries and deaths from suicide and the resident population, the spatio-temporal evolution of the suicide mortality rate was assessed via: i) a Poisson joinpoint regression model, and ii) spatio-temporal clustering methods. The suicide mortality rate evolution showed statistically significant increases over three periods (1980 - 1984; 1999 - 2002 and 2006 - 2015) and two statistically significant periods of decrease (1984 - 1995 and 1995 - 1999). The spatio-temporal analysis identified five clusters of high suicide risk (relative risk >1) and four clusters of low suicide risk (relative risk < 1). The periods when suicide mortality increases seem to overlap with times of economic and financial instability. The geographical pattern of suicide risk has changed: presently, the suicide rates from the municipalities in the Center and North are showing more similarity with those seen in the South, thus increasing the ruralization of the phenomenon of suicide. Between 1980 and 2015 the spacio-temporal pattern of mortality from suicide has been changing and is a phenomenon that is currently experiencing a growing trend (since 2006) and is of higher risk in rural areas.

  7. Bayesian hierarchical models for regional climate reconstructions of the last glacial maximum

    NASA Astrophysics Data System (ADS)

    Weitzel, Nils; Hense, Andreas; Ohlwein, Christian

    2017-04-01

    Spatio-temporal reconstructions of past climate are important for the understanding of the long term behavior of the climate system and the sensitivity to forcing changes. Unfortunately, they are subject to large uncertainties, have to deal with a complex proxy-climate structure, and a physically reasonable interpolation between the sparse proxy observations is difficult. Bayesian Hierarchical Models (BHMs) are a class of statistical models that is well suited for spatio-temporal reconstructions of past climate because they permit the inclusion of multiple sources of information (e.g. records from different proxy types, uncertain age information, output from climate simulations) and quantify uncertainties in a statistically rigorous way. BHMs in paleoclimatology typically consist of three stages which are modeled individually and are combined using Bayesian inference techniques. The data stage models the proxy-climate relation (often named transfer function), the process stage models the spatio-temporal distribution of the climate variables of interest, and the prior stage consists of prior distributions of the model parameters. For our BHMs, we translate well-known proxy-climate transfer functions for pollen to a Bayesian framework. In addition, we can include Gaussian distributed local climate information from preprocessed proxy records. The process stage combines physically reasonable spatial structures from prior distributions with proxy records which leads to a multivariate posterior probability distribution for the reconstructed climate variables. The prior distributions that constrain the possible spatial structure of the climate variables are calculated from climate simulation output. We present results from pseudoproxy tests as well as new regional reconstructions of temperatures for the last glacial maximum (LGM, ˜ 21,000 years BP). These reconstructions combine proxy data syntheses with information from climate simulations for the LGM that were performed in the PMIP3 project. The proxy data syntheses consist either of raw pollen data or of normally distributed climate data from preprocessed proxy records. Future extensions of our method contain the inclusion of other proxy types (transfer functions), the implementation of other spatial interpolation techniques, the use of age uncertainties, and the extension to spatio-temporal reconstructions of the last deglaciation. Our work is part of the PalMod project funded by the German Federal Ministry of Education and Science (BMBF).

  8. Spatio-temporal variation in Helicoverpa egg parasitism by Trichogramma in a tropical Bt-transgenic cotton landscape

    USDA-ARS?s Scientific Manuscript database

    Understanding the spatio-temporal dynamics of insects in agroecosystems is crucial when developing effective management strategies that emphasise biological control of pests. Wild populations of Trichogramma Westwood egg parasitoids are utilised for biological suppression of the potentially resistan...

  9. Nanoscale diffractive probing of strain dynamics in ultrafast transmission electron microscopy

    PubMed Central

    Feist, Armin; Rubiano da Silva, Nara; Liang, Wenxi; Ropers, Claus; Schäfer, Sascha

    2018-01-01

    The control of optically driven high-frequency strain waves in nanostructured systems is an essential ingredient for the further development of nanophononics. However, broadly applicable experimental means to quantitatively map such structural distortion on their intrinsic ultrafast time and nanometer length scales are still lacking. Here, we introduce ultrafast convergent beam electron diffraction with a nanoscale probe beam for the quantitative retrieval of the time-dependent local deformation gradient tensor. We demonstrate its capabilities by investigating the ultrafast acoustic deformations close to the edge of a single-crystalline graphite membrane. Tracking the structural distortion with a 28-nm/700-fs spatio-temporal resolution, we observe an acoustic membrane breathing mode with spatially modulated amplitude, governed by the optical near field structure at the membrane edge. Furthermore, an in-plane polarized acoustic shock wave is launched at the membrane edge, which triggers secondary acoustic shear waves with a pronounced spatio-temporal dependency. The experimental findings are compared to numerical acoustic wave simulations in the continuous medium limit, highlighting the importance of microscopic dissipation mechanisms and ballistic transport channels. PMID:29464187

  10. Nanoscale diffractive probing of strain dynamics in ultrafast transmission electron microscopy.

    PubMed

    Feist, Armin; Rubiano da Silva, Nara; Liang, Wenxi; Ropers, Claus; Schäfer, Sascha

    2018-01-01

    The control of optically driven high-frequency strain waves in nanostructured systems is an essential ingredient for the further development of nanophononics. However, broadly applicable experimental means to quantitatively map such structural distortion on their intrinsic ultrafast time and nanometer length scales are still lacking. Here, we introduce ultrafast convergent beam electron diffraction with a nanoscale probe beam for the quantitative retrieval of the time-dependent local deformation gradient tensor. We demonstrate its capabilities by investigating the ultrafast acoustic deformations close to the edge of a single-crystalline graphite membrane. Tracking the structural distortion with a 28-nm/700-fs spatio-temporal resolution, we observe an acoustic membrane breathing mode with spatially modulated amplitude, governed by the optical near field structure at the membrane edge. Furthermore, an in-plane polarized acoustic shock wave is launched at the membrane edge, which triggers secondary acoustic shear waves with a pronounced spatio-temporal dependency. The experimental findings are compared to numerical acoustic wave simulations in the continuous medium limit, highlighting the importance of microscopic dissipation mechanisms and ballistic transport channels.

  11. Individuation of objects and events: a developmental study.

    PubMed

    Wagner, Laura; Carey, Susan

    2003-12-01

    This study investigates children's ability to use language to guide their choice of individuation criterion in the domains of objects and events. Previous work (Shipley, E. F., & Shepperson, B. (1990). Countable entities: developmental changes. Cognition, 34, 109-136.) has shown that children have a strong bias to use a spatio-temporal individuation strategy when counting objects and that children will ignore a conflicting linguistic description in favor of this spatio-temporal bias. Experiment 1 asked children (3-, 4-, and 5-year-olds) and adults to count objects and events under different linguistic descriptions. In the object task, subjects counted pictures of familiar objects split into multiple pieces (as in Shipley, E. F., & Shepperson, B. (1990). Countable entities: developmental changes. Cognition, 34, 109-136.) and described either using an appropriate kind label (e.g. "car") or the general term "thing". In the event task, subjects watched short animated movies consisting of a goal-oriented event achieved via multiple, temporally separated steps. The events were described either with an appropriate telic predicate targeting the goal (e.g. "paint a flower") or with an atelic predicate targeting the steps in the process (e.g. "paint") and the subjects' task was to count the events. Relative to adults, children preferred a spatio-temporal counting strategy in both tasks; there was no difference among the three groups of children. However, children were able to significantly change their counting strategy to follow the linguistic description in the event but not the object task. Experiment 2 extended the object task to include counting of other types of non-spatio-temporal units such as sub-parts of objects and collections. Results showed that children could use the linguistic descriptions to guide their counting strategy for these new items, though they continued to show a bias for a spatio-temporal individuation strategy with the collections. We suggest potential cognitive origins for the spatio-temporal individuation bias and how it interacts with children's developing linguistic knowledge.

  12. Mapping child maltreatment risk: a 12-year spatio-temporal analysis of neighborhood influences.

    PubMed

    Gracia, Enrique; López-Quílez, Antonio; Marco, Miriam; Lila, Marisol

    2017-10-18

    'Place' matters in understanding prevalence variations and inequalities in child maltreatment risk. However, most studies examining ecological variations in child maltreatment risk fail to take into account the implications of the spatial and temporal dimensions of neighborhoods. In this study, we conduct a high-resolution small-area study to analyze the influence of neighborhood characteristics on the spatio-temporal epidemiology of child maltreatment risk. We conducted a 12-year (2004-2015) small-area Bayesian spatio-temporal epidemiological study with all families with child maltreatment protection measures in the city of Valencia, Spain. As neighborhood units, we used 552 census block groups. Cases were geocoded using the family address. Neighborhood-level characteristics analyzed included three indicators of neighborhood disadvantage-neighborhood economic status, neighborhood education level, and levels of policing activity-, immigrant concentration, and residential instability. Bayesian spatio-temporal modelling and disease mapping methods were used to provide area-specific risk estimations. Results from a spatio-temporal autoregressive model showed that neighborhoods with low levels of economic and educational status, with high levels of policing activity, and high immigrant concentration had higher levels of substantiated child maltreatment risk. Disease mapping methods were used to analyze areas of excess risk. Results showed chronic spatial patterns of high child maltreatment risk during the years analyzed, as well as stability over time in areas of low risk. Areas with increased or decreased child maltreatment risk over the years were also observed. A spatio-temporal epidemiological approach to study the geographical patterns, trends over time, and the contextual determinants of child maltreatment risk can provide a useful method to inform policy and action. This method can offer a more accurate description of the problem, and help to inform more localized prevention and intervention strategies. This new approach can also contribute to an improved epidemiological surveillance system to detect ecological variations in risk, and to assess the effectiveness of the initiatives to reduce this risk.

  13. Spatio-temporal evolution of female lung cancer mortality in a region of Spain, is it worth taking migration into account?

    PubMed

    Zurriaga, Oscar; Vanaclocha, Hermelinda; Martinez-Beneito, Miguel A; Botella-Rocamora, Paloma

    2008-01-31

    The Comunitat Valenciana (CV) is a tourist region on the Mediterranean coast of Spain with a high rate of retirement migration. Lung cancer in women is the cancer mortality cause that has increased most in the CV during the period 1991 to 2000. Moreover, the geographical distribution of risk from this cause in the CV has been previously described and a non-homogenous pattern was determined. The present paper studies the spatio-temporal distribution of lung cancer mortality for women in the CV during the period 1987-2004, in order to gain some insight into the factors, such as migration, that have had an influence on these changes. A novel methodology, consisting of a Bayesian hierarchical model, is used in this paper. Such a model allows the handling of data with a very high disaggregation, while at the same time taking advantage of its spatial and temporal structure. The spatio-temporal pattern which was found points to geographical differences in the time trends of risk. In fact, the southern coastal side of the CV has had a higher increase in risk, coinciding with the settlement of a large foreign community in that area, mainly comprised of elderly people from the European Union. Migration has frequently been ignored as a risk factor in the description of the geographical risk of lung cancer and it is suggested that this factor should be considered, especially in tourist regions. The temporal component in disease mapping provides a more accurate depiction of risk factors acting on the population.

  14. Unconstrained handwritten numeral recognition based on radial basis competitive and cooperative networks with spatio-temporal feature representation.

    PubMed

    Lee, S; Pan, J J

    1996-01-01

    This paper presents a new approach to representation and recognition of handwritten numerals. The approach first transforms a two-dimensional (2-D) spatial representation of a numeral into a three-dimensional (3-D) spatio-temporal representation by identifying the tracing sequence based on a set of heuristic rules acting as transformation operators. A multiresolution critical-point segmentation method is then proposed to extract local feature points, at varying degrees of scale and coarseness. A new neural network architecture, referred to as radial-basis competitive and cooperative network (RCCN), is presented especially for handwritten numeral recognition. RCCN is a globally competitive and locally cooperative network with the capability of self-organizing hidden units to progressively achieve desired network performance, and functions as a universal approximator of arbitrary input-output mappings. Three types of RCCNs are explored: input-space RCCN (IRCCN), output-space RCCN (ORCCN), and bidirectional RCCN (BRCCN). Experiments against handwritten zip code numerals acquired by the U.S. Postal Service indicated that the proposed method is robust in terms of variations, deformations, transformations, and corruption, achieving about 97% recognition rate.

  15. Effects of climate change adaptation scenarios on perceived spatio-temporal characteristics of drought events

    NASA Astrophysics Data System (ADS)

    Vidal, J.-P.; Martin, E.; Kitova, N.; Najac, J.; Soubeyroux, J.-M.

    2012-04-01

    Drought events develop in both space and time and they are therefore best described through summary joint spatio-temporal characteristics, like mean duration, mean affected area and total magnitude. This study addresses the issue of future projections of such characteristics of drought events over France through three main research questions: (1) Are downscaled climate projections able to reproduce spatio-temporal characteristics of meteorological and agricultural droughts in France over a present-day period? (2) How such characteristics will evolve over the 21st century under different emissions scenarios? (3) How would perceived drought characteristics evolve under theoretical adaptation scenarios? These questions are addressed using the Isba land surface model, downscaled climate projections from the ARPEGE General Circulation Model under three emissions scenarios, as well as results from a previously performed 50-year multilevel and multiscale drought reanalysis over France (Vidal et al., 2010). Spatio-temporal characteristics of meteorological and agricultural drought events are computed using the Standardized Precipitation Index (SPI) and the Standardized Soil Wetness Index (SSWI), respectively, and for time scales of 3 and 12 months. Results first show that the distributions of joint spatio-temporal characteristics of observed events are well reproduced by the downscaled hydroclimate projections over a present-day period. All spatio-temporal characteristics of drought events are then found to dramatically increase over the 21st century under all considered emissions scenarios, with stronger changes for agricultural droughts. Two theoretical adaptation scenarios are eventually built based on hypotheses of adaptation to evolving climate and hydrological normals. The two scenarios differ by the way the transient adaptation is performed for a given date in the future, with reference to the normals over either the previous 30-year window ("retrospective" adaptation) or over a 30-year period centred around the date considered ("prospective" adaptation). These adaptation scenarios are translated into local-scale transient drought thresholds, as opposed to a non-adaptation scenario where the drought threshold remains constant. The perceived spatio-temporal characteristics derived from the theoretical adaptation scenarios show much reduced changes, but they call for more realistic scenarios at both the catchment and national scale in order to accurately assess the combined effect of local-scale adaptation and global-scale mitigation. This study thus proposes a proof of concept for using standardized drought indices for (1) assessing projections of spatio-temporal drought characteristics and (2) building theoretical adaptation scenarios and associated perceived changes in hydrological impact studies (Vidal et al., submitted). Vidal J.-P., Martin E., Franchistéguy L., Habets F., Soubeyroux J.-M., Blanchard M. & Baillon M. (2010) Multilevel and multiscale drought reanalysis over France with the Safran-Isba-Modcou hydrometeorological suite. Hydrology and Earth System Sciences, 14, 459-478.doi: 10.5194/hess-14-459-2010 Vidal J.-P., Martin E., Kitova N., Najac J. & Soubeyroux, J. M. (submitted) Evolution of spatio-temporal drought characteristics: validation, projections and effect of adaptation scenarios. Submitted to Hydrology and earth System Sciences

  16. Effects of Spatio-Temporal Aliasing on Pilot Performance in Active Control Tasks

    NASA Technical Reports Server (NTRS)

    Zaal, Peter; Sweet, Barbara

    2010-01-01

    Spatio-temporal aliasing affects pilot performance and control behavior. For increasing refresh rates: 1) Significant change in control behavior: a) Increase in visual gain and neuromuscular frequency. b) Decrease in visual time delay. 2) Increase in tracking performance: a) Decrease in RMSe. b) Increase in crossover frequency.

  17. Fast Spatio-Temporal Data Mining from Large Geophysical Datasets

    NASA Technical Reports Server (NTRS)

    Stolorz, P.; Mesrobian, E.; Muntz, R.; Santos, J. R.; Shek, E.; Yi, J.; Mechoso, C.; Farrara, J.

    1995-01-01

    Use of the UCLA CONQUEST (CONtent-based Querying in Space and Time) is reviewed for performance of automatic cyclone extraction and detection of spatio-temporal blocking conditions on MPP. CONQUEST is a data analysis environment for knowledge and data mining to aid in high-resolution modeling of climate modeling.

  18. Fire, native species, and soil resource interactions influence the spatio-temporal invasion pattern of Bromus tectorum

    Treesearch

    Michael J. Gundale; Steve Sutherland; Thomas H. DeLuca; others

    2008-01-01

    Bromus tectorum (cheatgrass) is an invasive annual that occupies perennial grass and shrub communities throughout the western United States. Bromus tectorum exhibits an intriguing spatio-temporal pattern of invasion in low elevation ponderosa pine Pinus ponderosa/bunchgrass communities in western Montana where it...

  19. Cortical Spatio-Temporal Dynamics Underlying Phonological Target Detection in Humans

    ERIC Educational Resources Information Center

    Chang, Edward F.; Edwards, Erik; Nagarajan, Srikantan S.; Fogelson, Noa; Dalal, Sarang S.; Canolty, Ryan T.; Kirsch, Heidi E.; Barbaro, Nicholas M.; Knight, Robert T.

    2011-01-01

    Selective processing of task-relevant stimuli is critical for goal-directed behavior. We used electrocorticography to assess the spatio-temporal dynamics of cortical activation during a simple phonological target detection task, in which subjects press a button when a prespecified target syllable sound is heard. Simultaneous surface potential…

  20. Rich do not rise early: spatio-temporal patterns in the mobility networks of different socio-economic classes

    PubMed Central

    Hurtado, Rafael G.; Floría, Luis Mario

    2016-01-01

    We analyse the urban mobility in the cities of Medellín and Manizales (Colombia). Each city is represented by six mobility networks, each one encoding the origin-destination trips performed by a subset of the population corresponding to a particular socio-economic status. The nodes of each network are the different urban locations whereas links account for the existence of a trip between two different areas of the city. We study the main structural properties of these mobility networks by focusing on their spatio-temporal patterns. Our goal is to relate these patterns with the partition into six socio-economic compartments of these two societies. Our results show that spatial and temporal patterns vary across these socio-economic groups. In particular, the two datasets show that as wealth increases the early-morning activity is delayed, the midday peak becomes smoother and the spatial distribution of trips becomes more localized. PMID:27853531

  1. An event map of memory space in the hippocampus

    PubMed Central

    Deuker, Lorena; Bellmund, Jacob LS; Navarro Schröder, Tobias; Doeller, Christian F

    2016-01-01

    The hippocampus has long been implicated in both episodic and spatial memory, however these mnemonic functions have been traditionally investigated in separate research strands. Theoretical accounts and rodent data suggest a common mechanism for spatial and episodic memory in the hippocampus by providing an abstract and flexible representation of the external world. Here, we monitor the de novo formation of such a representation of space and time in humans using fMRI. After learning spatio-temporal trajectories in a large-scale virtual city, subject-specific neural similarity in the hippocampus scaled with the remembered proximity of events in space and time. Crucially, the structure of the entire spatio-temporal network was reflected in neural patterns. Our results provide evidence for a common coding mechanism underlying spatial and temporal aspects of episodic memory in the hippocampus and shed new light on its role in interleaving multiple episodes in a neural event map of memory space. DOI: http://dx.doi.org/10.7554/eLife.16534.001 PMID:27710766

  2. What Is Spatio-Temporal Data Warehousing?

    NASA Astrophysics Data System (ADS)

    Vaisman, Alejandro; Zimányi, Esteban

    In the last years, extending OLAP (On-Line Analytical Processing) systems with spatial and temporal features has attracted the attention of the GIS (Geographic Information Systems) and database communities. However, there is no a commonly agreed definition of what is a spatio-temporal data warehouse and what functionality such a data warehouse should support. Further, the solutions proposed in the literature vary considerably in the kind of data that can be represented as well as the kind of queries that can be expressed. In this paper we present a conceptual framework for defining spatio-temporal data warehouses using an extensible data type system. We also define a taxonomy of different classes of queries of increasing expressive power, and show how to express such queries using an extension of the tuple relational calculus with aggregated functions.

  3. The use of spatio-temporal correlation to forecast critical transitions

    NASA Astrophysics Data System (ADS)

    Karssenberg, Derek; Bierkens, Marc F. P.

    2010-05-01

    Complex dynamical systems may have critical thresholds at which the system shifts abruptly from one state to another. Such critical transitions have been observed in systems ranging from the human body system to financial markets and the Earth system. Forecasting the timing of critical transitions before they are reached is of paramount importance because critical transitions are associated with a large shift in dynamical regime of the system under consideration. However, it is hard to forecast critical transitions, because the state of the system shows relatively little change before the threshold is reached. Recently, it was shown that increased spatio-temporal autocorrelation and variance can serve as alternative early warning signal for critical transitions. However, thus far these second order statistics have not been used for forecasting in a data assimilation framework. Here we show that the use of spatio-temporal autocorrelation and variance in the state of the system reduces the uncertainty in the predicted timing of critical transitions compared to classical approaches that use the value of the system state only. This is shown by assimilating observed spatio-temporal autocorrelation and variance into a dynamical system model using a Particle Filter. We adapt a well-studied distributed model of a logistically growing resource with a fixed grazing rate. The model describes the transition from an underexploited system with high resource biomass to overexploitation as grazing pressure crosses the critical threshold, which is a fold bifurcation. To represent limited prior information, we use a large variance in the prior probability distributions of model parameters and the system driver (grazing rate). First, we show that the rate of increase in spatio-temporal autocorrelation and variance prior to reaching the critical threshold is relatively consistent across the uncertainty range of the driver and parameter values used. This indicates that an increase in spatio-temporal autocorrelation and variance are consistent predictors of a critical transition, even under the condition of a poorly defined system. Second, we perform data assimilation experiments using an artificial exhaustive data set generated by one realization of the model. To mimic real-world sampling, an observational data set is created from this exhaustive data set. This is done by sampling on a regular spatio-temporal grid, supplemented by sampling locations at a short distance. Spatial and temporal autocorrelation in this observational data set is calculated for different spatial and temporal separation (lag) distances. To assign appropriate weights to observations (here, autocorrelation values and variance) in the Particle Filter, the covariance matrix of the error in these observations is required. This covariance matrix is estimated using Monte Carlo sampling, selecting a different random position of the sampling network relative to the exhaustive data set for each realization. At each update moment in the Particle Filter, observed autocorrelation values are assimilated into the model and the state of the model is updated. Using this approach, it is shown that the use of autocorrelation reduces the uncertainty in the forecasted timing of a critical transition compared to runs without data assimilation. The performance of the use of spatial autocorrelation versus temporal autocorrelation depends on the timing and number of observational data. This study is restricted to a single model only. However, it is becoming increasingly clear that spatio-temporal autocorrelation and variance can be used as early warning signals for a large number of systems. Thus, it is expected that spatio-temporal autocorrelation and variance are valuable in data assimilation frameworks in a large number of dynamical systems.

  4. A geomatic methodology for spatio-temporal analysis of climatologic variables and water related diseases

    NASA Astrophysics Data System (ADS)

    Quentin, E.; Gómez Albores, M. A.; Díaz Delgado, C.

    2009-04-01

    The main objective of this research is to propose, by the way of geomatic developments, an integrated tool to analyze and model the spatio-temporal pattern of human diseases related to environmental conditions, in particular the ones that are linked to water resources. The geomatic developments follows four generic steps : requirement analysis, conceptual modeling, geomatic modeling and implementation (in Idrisi GIS software). A first development consists of the preprocessing of water, population and health data in order to facilitate the conversion and validation of tabular data into the required structure for spatio-temporal analysis. Three parallel developments follow : water balance, demographic state and evolution, epidemiological measures (morbidity and mortality rates, diseases burden). The new geomatic modules in their actual state have been tested on various regions of Mexico Republic (Lerma watershed, Chiapas state) focusing on diarrhea and vector borne diseases (dengue and malaria) and considering records over the last decade : a yearly as well as seasonal spreading trend can be observed in correlation with precipitation and temperature data. In an ecohealth perspective, the geomatic approach results particularly appropriate since one of its purposes is the integration of the various spatial themes implied in the study problem, environmental as anthropogenic. By the use of powerful spatial analysis functions, it permits the detection of spatial trends which, combined to the temporal evolution, can be of particularly use for example in climate change context, if sufficiently valid historical data can be obtain.

  5. Tensor-based Dictionary Learning for Dynamic Tomographic Reconstruction

    PubMed Central

    Tan, Shengqi; Zhang, Yanbo; Wang, Ge; Mou, Xuanqin; Cao, Guohua; Wu, Zhifang; Yu, Hengyong

    2015-01-01

    In dynamic computed tomography (CT) reconstruction, the data acquisition speed limits the spatio-temporal resolution. Recently, compressed sensing theory has been instrumental in improving CT reconstruction from far few-view projections. In this paper, we present an adaptive method to train a tensor-based spatio-temporal dictionary for sparse representation of an image sequence during the reconstruction process. The correlations among atoms and across phases are considered to capture the characteristics of an object. The reconstruction problem is solved by the alternating direction method of multipliers. To recover fine or sharp structures such as edges, the nonlocal total variation is incorporated into the algorithmic framework. Preclinical examples including a sheep lung perfusion study and a dynamic mouse cardiac imaging demonstrate that the proposed approach outperforms the vectorized dictionary-based CT reconstruction in the case of few-view reconstruction. PMID:25779991

  6. Spatio-Temporal Change Modeling of Lulc: a Semantic Kriging Approach

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, S.; Ghosh, S. K.

    2015-07-01

    Spatio-temporal land-use/ land-cover (LULC) change modeling is important to forecast the future LULC distribution, which may facilitate natural resource management, urban planning, etc. The spatio-temporal change in LULC trend often exhibits non-linear behavior, due to various dynamic factors, such as, human intervention (e.g., urbanization), environmental factors, etc. Hence, proper forecasting of LULC distribution should involve the study and trend modeling of historical data. Existing literatures have reported that the meteorological attributes (e.g., NDVI, LST, MSI), are semantically related to the terrain. Being influenced by the terrestrial dynamics, the temporal changes of these attributes depend on the LULC properties. Hence, incorporating meteorological knowledge into the temporal prediction process may help in developing an accurate forecasting model. This work attempts to study the change in inter-annual LULC pattern and the distribution of different meteorological attributes of a region in Kolkata (a metropolitan city in India) during the years 2000-2010 and forecast the future spread of LULC using semantic kriging (SemK) approach. A new variant of time-series SemK is proposed, namely Rev-SemKts to capture the multivariate semantic associations between different attributes. From empirical analysis, it may be observed that the augmentation of semantic knowledge in spatio-temporal modeling of meteorological attributes facilitate more precise forecasting of LULC pattern.

  7. Modeling the spatio-temporal heterogeneity in the PM10-PM2.5 relationship

    NASA Astrophysics Data System (ADS)

    Chu, Hone-Jay; Huang, Bo; Lin, Chuan-Yao

    2015-02-01

    This paper explores the spatio-temporal patterns of particulate matter (PM) in Taiwan based on a series of methods. Using fuzzy c-means clustering first, the spatial heterogeneity (six clusters) in the PM data collected between 2005 and 2009 in Taiwan are identified and the industrial and urban areas of Taiwan (southwestern, west central, northwestern, and northern Taiwan) are found to have high PM concentrations. The PM10-PM2.5 relationship is then modeled with global ordinary least squares regression, geographically weighted regression (GWR), and geographically and temporally weighted regression (GTWR). The GTWR and GWR produce consistent results; however, GTWR provides more detailed information of spatio-temporal variations of the PM10-PM2.5 relationship. The results also show that GTWR provides a relatively high goodness of fit and sufficient space-time explanatory power. In particular, the PM2.5 or PM10 varies with time and space, depending on weather conditions and the spatial distribution of land use and emission patterns in local areas. Such information can be used to determine patterns of spatio-temporal heterogeneity in PM that will allow the control of pollutants and the reduction of public exposure.

  8. Abnormal early dynamic individual patterns of functional networks in low gamma band for depression recognition.

    PubMed

    Bi, Kun; Chattun, Mahammad Ridwan; Liu, Xiaoxue; Wang, Qiang; Tian, Shui; Zhang, Siqi; Lu, Qing; Yao, Zhijian

    2018-06-13

    The functional networks are associated with emotional processing in depression. The mapping of dynamic spatio-temporal brain networks is used to explore individual performance during early negative emotional processing. However, the dysfunctions of functional networks in low gamma band and their discriminative potentialities during early period of emotional face processing remain to be explored. Functional brain networks were constructed from the MEG recordings of 54 depressed patients and 54 controls in low gamma band (30-48 Hz). Dynamic connectivity regression (DCR) algorithm analyzed the individual change points of time series in response to emotional stimuli and constructed individualized spatio-temporal patterns. The nodal characteristics of patterns were calculated and fed into support vector machine (SVM). Performance of the classification algorithm in low gamma band was validated by dynamic topological characteristics of individual patterns in comparison to alpha and beta band. The best discrimination accuracy of individual spatio-temporal patterns was 91.01% in low gamma band. Individual temporal patterns had better results compared to group-averaged temporal patterns in all bands. The most important discriminative networks included affective network (AN) and fronto-parietal network (FPN) in low gamma band. The sample size is relatively small. High gamma band was not considered. The abnormal dynamic functional networks in low gamma band during early emotion processing enabled depression recognition. The individual information processing is crucial in the discovery of abnormal spatio-temporal patterns in depression during early negative emotional processing. Individual spatio-temporal patterns may reflect the real dynamic function of subjects while group-averaged data may neglect some individual information. Copyright © 2018. Published by Elsevier B.V.

  9. Zero-inflated spatio-temporal models for disease mapping.

    PubMed

    Torabi, Mahmoud

    2017-05-01

    In this paper, our aim is to analyze geographical and temporal variability of disease incidence when spatio-temporal count data have excess zeros. To that end, we consider random effects in zero-inflated Poisson models to investigate geographical and temporal patterns of disease incidence. Spatio-temporal models that employ conditionally autoregressive smoothing across the spatial dimension and B-spline smoothing over the temporal dimension are proposed. The analysis of these complex models is computationally difficult from the frequentist perspective. On the other hand, the advent of the Markov chain Monte Carlo algorithm has made the Bayesian analysis of complex models computationally convenient. Recently developed data cloning method provides a frequentist approach to mixed models that is also computationally convenient. We propose to use data cloning, which yields to maximum likelihood estimation, to conduct frequentist analysis of zero-inflated spatio-temporal modeling of disease incidence. One of the advantages of the data cloning approach is that the prediction and corresponding standard errors (or prediction intervals) of smoothing disease incidence over space and time is easily obtained. We illustrate our approach using a real dataset of monthly children asthma visits to hospital in the province of Manitoba, Canada, during the period April 2006 to March 2010. Performance of our approach is also evaluated through a simulation study. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Spatio-temporal dependencies between hospital beds, physicians and health expenditure using visual variables and data classification in statistical table

    NASA Astrophysics Data System (ADS)

    Medyńska-Gulij, Beata; Cybulski, Paweł

    2016-06-01

    This paper analyses the use of table visual variables of statistical data of hospital beds as an important tool for revealing spatio-temporal dependencies. It is argued that some of conclusions from the data about public health and public expenditure on health have a spatio-temporal reference. Different from previous studies, this article adopts combination of cartographic pragmatics and spatial visualization with previous conclusions made in public health literature. While the significant conclusions about health care and economic factors has been highlighted in research papers, this article is the first to apply visual analysis to statistical table together with maps which is called previsualisation.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murugesan, Sugeerth; Bouchard, Kristofer; Chang, Edward

    There exists a need for effective and easy-to-use software tools supporting the analysis of complex Electrocorticography (ECoG) data. Understanding how epileptic seizures develop or identifying diagnostic indicators for neurological diseases require the in-depth analysis of neural activity data from ECoG. Such data is multi-scale and is of high spatio-temporal resolution. Comprehensive analysis of this data should be supported by interactive visual analysis methods that allow a scientist to understand functional patterns at varying levels of granularity and comprehend its time-varying behavior. We introduce a novel multi-scale visual analysis system, ECoG ClusterFlow, for the detailed exploration of ECoG data. Our systemmore » detects and visualizes dynamic high-level structures, such as communities, derived from the time-varying connectivity network. The system supports two major views: 1) an overview summarizing the evolution of clusters over time and 2) an electrode view using hierarchical glyph-based design to visualize the propagation of clusters in their spatial, anatomical context. We present case studies that were performed in collaboration with neuroscientists and neurosurgeons using simulated and recorded epileptic seizure data to demonstrate our system's effectiveness. ECoG ClusterFlow supports the comparison of spatio-temporal patterns for specific time intervals and allows a user to utilize various clustering algorithms. Neuroscientists can identify the site of seizure genesis and its spatial progression during various the stages of a seizure. Our system serves as a fast and powerful means for the generation of preliminary hypotheses that can be used as a basis for subsequent application of rigorous statistical methods, with the ultimate goal being the clinical treatment of epileptogenic zones.« less

  12. Local overfishing may be avoided by examining parameters of a spatio-temporal model

    PubMed Central

    Shackell, Nancy; Mills Flemming, Joanna

    2017-01-01

    Spatial erosion of stock structure through local overfishing can lead to stock collapse because fish often prefer certain locations, and fisheries tend to focus on those locations. Fishery managers are challenged to maintain the integrity of the entire stock and require scientific approaches that provide them with sound advice. Here we propose a Bayesian hierarchical spatio-temporal modelling framework for fish abundance data to estimate key parameters that define spatial stock structure: persistence (similarity of spatial structure over time), connectivity (coherence of temporal pattern over space), and spatial variance (variation across the seascape). The consideration of these spatial parameters in the stock assessment process can help identify the erosion of structure and assist in preventing local overfishing. We use Atlantic cod (Gadus morhua) in eastern Canada as a case study an examine the behaviour of these parameters from the height of the fishery through its collapse. We identify clear signals in parameter behaviour under circumstances of destructive stock erosion as well as for recovery of spatial structure even when combined with a non-recovery in abundance. Further, our model reveals the spatial pattern of areas of high and low density persists over the 41 years of available data and identifies the remnant patches. Models of this sort are crucial to recovery plans if we are to identify and protect remaining sources of recolonization for Atlantic cod. Our method is immediately applicable to other exploited species. PMID:28886179

  13. Local overfishing may be avoided by examining parameters of a spatio-temporal model.

    PubMed

    Carson, Stuart; Shackell, Nancy; Mills Flemming, Joanna

    2017-01-01

    Spatial erosion of stock structure through local overfishing can lead to stock collapse because fish often prefer certain locations, and fisheries tend to focus on those locations. Fishery managers are challenged to maintain the integrity of the entire stock and require scientific approaches that provide them with sound advice. Here we propose a Bayesian hierarchical spatio-temporal modelling framework for fish abundance data to estimate key parameters that define spatial stock structure: persistence (similarity of spatial structure over time), connectivity (coherence of temporal pattern over space), and spatial variance (variation across the seascape). The consideration of these spatial parameters in the stock assessment process can help identify the erosion of structure and assist in preventing local overfishing. We use Atlantic cod (Gadus morhua) in eastern Canada as a case study an examine the behaviour of these parameters from the height of the fishery through its collapse. We identify clear signals in parameter behaviour under circumstances of destructive stock erosion as well as for recovery of spatial structure even when combined with a non-recovery in abundance. Further, our model reveals the spatial pattern of areas of high and low density persists over the 41 years of available data and identifies the remnant patches. Models of this sort are crucial to recovery plans if we are to identify and protect remaining sources of recolonization for Atlantic cod. Our method is immediately applicable to other exploited species.

  14. Learning large-scale dynamic discrete choice models of spatio-temporal preferences with application to migratory pastoralism in East Africa

    USDA-ARS?s Scientific Manuscript database

    Understanding spatio-temporal resource preferences is paramount in the design of policies for sustainable development. Unfortunately, resource preferences are often unknown to policy-makers and have to be inferred from data. In this paper we consider the problem of inferring agents’ preferences fro...

  15. A spatio-temporal model for estimating the long-term effects of air pollution on respiratory hospital admissions in Greater London.

    PubMed

    Rushworth, Alastair; Lee, Duncan; Mitchell, Richard

    2014-07-01

    It has long been known that air pollution is harmful to human health, as many epidemiological studies have been conducted into its effects. Collectively, these studies have investigated both the acute and chronic effects of pollution, with the latter typically based on individual level cohort designs that can be expensive to implement. As a result of the increasing availability of small-area statistics, ecological spatio-temporal study designs are also being used, with which a key statistical problem is allowing for residual spatio-temporal autocorrelation that remains after the covariate effects have been removed. We present a new model for estimating the effects of air pollution on human health, which allows for residual spatio-temporal autocorrelation, and a study into the long-term effects of air pollution on human health in Greater London, England. The individual and joint effects of different pollutants are explored, via the use of single pollutant models and multiple pollutant indices. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Spatio-Temporal Modelling of the Pre-Eruptive Strain Localization in a Volcanic Edifice Using a Maxwell-Elasto-Brittle Rheology

    NASA Astrophysics Data System (ADS)

    Dansereau, V.; Got, J. L.

    2017-12-01

    Before a volcanic eruption, the pressurization of the volcanic edifice by a magma reservoir induces earthquakes and damage in the edifice; damage lowers the strength of the edifice and decreases its elastic properties. Anelastic deformations cumulate and lead to rupture and eruption. These deformations translate into surface displacements, measurable via GPS or InSAR (e.g., Kilauea, southern flank, or Piton de la Fournaise, eastern flank).Attempts to represent these processes are usually based on a linear-elastic rheology. More recently, linear elastic-perfectly plastic or elastic-brittle damage approaches were used to explain the time evolution of the surface displacements in basaltic volcanoes before an eruption. However these models are non-linear elastic, and can not account for the anelastic deformation that occurs during the pre-eruptive process. Therefore, they can not be used to represent the complete eruptive cycle, comprising loading and unloading phases. Here we present a new rheological approach for modelling the eruptive cycle called Maxwell-Elasto-Brittle, which incorporates a viscous-like relaxation of the stresses in an elastic-brittle damage framework. This mechanism allows accounting for the anelastic deformations that cumulate and lead to rupture and eruption. The inclusion of healing processes in this model is another step towards a complete spatio-temporal representation of the eruptive cycle. Plane-strain Maxwell-EB modelling of the deformation of a magma reservoir and volcanic edifice will be presented. The model represents the propagation of damage towards the surface and the progressive localization of the deformation along faults under the pressurization of the magma reservoir. This model allows a complete spatio-temporal representation of the rupture process. We will also discuss how available seismicity records and time series of surface displacements could be used jointly to constrain the model.

  17. Spatio-temporal distribution of stored-product inects around food processing and storage facilities

    USDA-ARS?s Scientific Manuscript database

    Grain storage and processing facilities consist of a landscape of indoor and outdoor habitats that can potentially support stored-product insect pests, and understanding patterns of species diversity and spatial distribution in the landscape surrounding structures can provide insight into how the ou...

  18. Spatio-temporal dynamics of Fusarium head blight and Trichothecene toxin types in Canada

    USDA-ARS?s Scientific Manuscript database

    In many parts of the world Fusarium graminearum is the primary causal agent of Fusarium head blight (FHB), a disease of cereal crops that adversely affects crop yield, food safety, and animal health. We previously demonstrated population structure associated with differences in trichothecene toxin t...

  19. Spatio-temporal variation in foodscapes modifies deer browsing impact on vegetation

    Treesearch

    Alejandro A. Royo; David W. Kramer; Karl V. Miller; Nathan P. Nibbelink; Susan L. Stout

    2017-01-01

    Context. Ungulate browsers often alter plant composition and reduce diversity in forests worldwide, yet our ability to predict browse impact on vegetation remains equivocal. Theory suggests, however, that ungulate distribution and foraging impacts are shaped by scale-dependent decisions based on variation in habitat composition and structure...

  20. Spatio-temporal analysis of irregular vocal fold oscillations: Biphonation due to desynchronization of spatial modes

    NASA Astrophysics Data System (ADS)

    Neubauer, Jürgen; Mergell, Patrick; Eysholdt, Ulrich; Herzel, Hanspeter

    2001-12-01

    This report is on direct observation and modal analysis of irregular spatio-temporal vibration patterns of vocal fold pathologies in vivo. The observed oscillation patterns are described quantitatively with multiline kymograms, spectral analysis, and spatio-temporal plots. The complex spatio-temporal vibration patterns are decomposed by empirical orthogonal functions into independent vibratory modes. It is shown quantitatively that biphonation can be induced either by left-right asymmetry or by desynchronized anterior-posterior vibratory modes, and the term ``AP (anterior-posterior) biphonation'' is introduced. The presented phonation examples show that for normal phonation the first two modes sufficiently explain the glottal dynamics. The spatio-temporal oscillation pattern associated with biphonation due to left-right asymmetry can be explained by the first three modes. Higher-order modes are required to describe the pattern for biphonation induced by anterior-posterior vibrations. Spatial irregularity is quantified by an entropy measure, which is significantly higher for irregular phonation than for normal phonation. Two asymmetry measures are introduced: the left-right asymmetry and the anterior-posterior asymmetry, as the ratios of the fundamental frequencies of left and right vocal fold and of anterior-posterior modes, respectively. These quantities clearly differentiate between left-right biphonation and anterior-posterior biphonation. This paper proposes methods to analyze quantitatively irregular vocal fold contour patterns in vivo and complements previous findings of desynchronization of vibration modes in computer modes and in in vitro experiments.

  1. Annotating spatio-temporal datasets for meaningful analysis in the Web

    NASA Astrophysics Data System (ADS)

    Stasch, Christoph; Pebesma, Edzer; Scheider, Simon

    2014-05-01

    More and more environmental datasets that vary in space and time are available in the Web. This comes along with an advantage of using the data for other purposes than originally foreseen, but also with the danger that users may apply inappropriate analysis procedures due to lack of important assumptions made during the data collection process. In order to guide towards a meaningful (statistical) analysis of spatio-temporal datasets available in the Web, we have developed a Higher-Order-Logic formalism that captures some relevant assumptions in our previous work [1]. It allows to proof on meaningful spatial prediction and aggregation in a semi-automated fashion. In this poster presentation, we will present a concept for annotating spatio-temporal datasets available in the Web with concepts defined in our formalism. Therefore, we have defined a subset of the formalism as a Web Ontology Language (OWL) pattern. It allows capturing the distinction between the different spatio-temporal variable types, i.e. point patterns, fields, lattices and trajectories, that in turn determine whether a particular dataset can be interpolated or aggregated in a meaningful way using a certain procedure. The actual annotations that link spatio-temporal datasets with the concepts in the ontology pattern are provided as Linked Data. In order to allow data producers to add the annotations to their datasets, we have implemented a Web portal that uses a triple store at the backend to store the annotations and to make them available in the Linked Data cloud. Furthermore, we have implemented functions in the statistical environment R to retrieve the RDF annotations and, based on these annotations, to support a stronger typing of spatio-temporal datatypes guiding towards a meaningful analysis in R. [1] Stasch, C., Scheider, S., Pebesma, E., Kuhn, W. (2014): "Meaningful spatial prediction and aggregation", Environmental Modelling & Software, 51, 149-165.

  2. Detecting spatio-temporal modes in multivariate data by entropy field decomposition

    NASA Astrophysics Data System (ADS)

    Frank, Lawrence R.; Galinsky, Vitaly L.

    2016-09-01

    A new data analysis method that addresses a general problem of detecting spatio-temporal variations in multivariate data is presented. The method utilizes two recent and complimentary general approaches to data analysis, information field theory (IFT) and entropy spectrum pathways (ESPs). Both methods reformulate and incorporate Bayesian theory, thus use prior information to uncover underlying structure of the unknown signal. Unification of ESP and IFT creates an approach that is non-Gaussian and nonlinear by construction and is found to produce unique spatio-temporal modes of signal behavior that can be ranked according to their significance, from which space-time trajectories of parameter variations can be constructed and quantified. Two brief examples of real world applications of the theory to the analysis of data bearing completely different, unrelated nature, lacking any underlying similarity, are also presented. The first example provides an analysis of resting state functional magnetic resonance imaging data that allowed us to create an efficient and accurate computational method for assessing and categorizing brain activity. The second example demonstrates the potential of the method in the application to the analysis of a strong atmospheric storm circulation system during the complicated stage of tornado development and formation using data recorded by a mobile Doppler radar. Reference implementation of the method will be made available as a part of the QUEST toolkit that is currently under development at the Center for Scientific Computation in Imaging.

  3. 40 years of progress in female cancer death risk: a Bayesian spatio-temporal mapping analysis in Switzerland.

    PubMed

    Herrmann, Christian; Ess, Silvia; Thürlimann, Beat; Probst-Hensch, Nicole; Vounatsou, Penelope

    2015-10-09

    In the past decades, mortality of female gender related cancers declined in Switzerland and other developed countries. Differences in the decrease and in spatial patterns within Switzerland have been reported according to urbanisation and language region, and remain controversial. We aimed to investigate geographical and temporal trends of breast, ovarian, cervical and uterine cancer mortality, assess whether differential trends exist and to provide updated results until 2011. Breast, ovarian, cervical and uterine cancer mortality and population data for Switzerland in the period 1969-2011 was retrieved from the Swiss Federal Statistical office (FSO). Cases were grouped into <55 year olds, 55-74 year olds and 75+ year olds. The geographical unit of analysis was the municipality. To explore age- specific spatio-temporal patterns we fitted Bayesian hierarchical spatio-temporal models on subgroup-specific death rates indirectly standardized by national references. We used linguistic region and degree of urbanisation as covariates. Female cancer mortality continuously decreased in terms of rates in all age groups and cancer sites except for ovarian cancer in 75+ year olds, especially since 1990 onwards. Contrary to other reports, we found no systematic difference between language regions. Urbanisation as a proxy for access to and quality of medical services, education and health consciousness seemed to have no influence on cancer mortality with the exception of uterine and ovarian cancer in specific age groups. We observed no obvious spatial pattern of mortality common for all cancer sites. Rate reduction in cervical cancer was even stronger than for other cancer sites. Female gender related cancer mortality is continuously decreasing in Switzerland since 1990. Geographical differences are small, present on a regional or canton-overspanning level, and different for each cancer site and age group. No general significant association with cantonal or language region borders could be observed.

  4. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences

    PubMed Central

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns. PMID:26147887

  5. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences.

    PubMed

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns.

  6. Extending Geographic Weights of Evidence Models for Use in Location Based Services

    ERIC Educational Resources Information Center

    Sonwalkar, Mukul Dinkar

    2012-01-01

    This dissertation addresses the use and modeling of spatio-temporal data for the purposes of providing applications for location based services. One of the major issues in dealing with spatio-temporal data for location based services is the availability and sparseness of such data. Other than the hardware costs associated with collecting movement…

  7. Spatio-temporal variability of hyporheic exchange through a pool-riffle-pool sequence

    Treesearch

    Frank P. Gariglio; Daniele Tonina; Charles H. Luce

    2013-01-01

    Stream water enters and exits the streambed sediment due to hyporheic fluxes, which stem primarily from the interaction between surface water hydraulics and streambed morphology. These fluxes sustain a rich ecotone, whose habitat quality depends on their direction and magnitude. The spatio-temporal variability of hyporheic fluxes is not well understood over several...

  8. Spatio-temporal dynamics of pond use and recruitment in Florida gopher frogs (Rana capito aesopus)

    Treesearch

    Cathryn H. Greenberg

    2001-01-01

    This study examines spatio-temporal dynamics of Florida gopher frog (Rang capito aesopus) breeding and juvenile recruitment. Ponds were situated within a hardwood-invaded or a savanna-like longleaf pine-wiregrass upland matrix. Movement (N = 1444) was monitored using intermittent drift fences with pitfall and funnel traps at eight...

  9. Meteor tracking via local pattern clustering in spatio-temporal domain

    NASA Astrophysics Data System (ADS)

    Kukal, Jaromír.; Klimt, Martin; Švihlík, Jan; Fliegel, Karel

    2016-09-01

    Reliable meteor detection is one of the crucial disciplines in astronomy. A variety of imaging systems is used for meteor path reconstruction. The traditional approach is based on analysis of 2D image sequences obtained from a double station video observation system. Precise localization of meteor path is difficult due to atmospheric turbulence and other factors causing spatio-temporal fluctuations of the image background. The proposed technique performs non-linear preprocessing of image intensity using Box-Cox transform as recommended in our previous work. Both symmetric and asymmetric spatio-temporal differences are designed to be robust in the statistical sense. Resulting local patterns are processed by data whitening technique and obtained vectors are classified via cluster analysis and Self-Organized Map (SOM).

  10. Spatio-temporal pattern of viral meningitis in Michigan, 1993-2001

    NASA Astrophysics Data System (ADS)

    Greene, Sharon K.; Schmidt, Mark A.; Stobierski, Mary Grace; Wilson, Mark L.

    2005-05-01

    To characterize Michigan's high viral meningitis incidence rates, 8,803 cases from 1993-2001 were analyzed for standard epidemiological indices, geographic distribution, and spatio-temporal clusters. Blacks and infants were found to be high-risk groups. Annual seasonality and interannual variability in epidemic magnitude were apparent. Cases were concentrated in southern Michigan, and cumulative incidence was correlated with population density at the county level (r=0.45, p<0.001). Kulldorff's Scan test identified the occurrence of spatio-temporal clusters in Lower Michigan during July-October 1998 and 2001 (p=0.01). More extensive data on cases, laboratory isolates, sociodemographics, and environmental exposures should improve detection and enhance the effectiveness of a Space-Time Information System aimed at prevention.

  11. Implicit transfer of reversed temporal structure in visuomotor sequence learning.

    PubMed

    Tanaka, Kanji; Watanabe, Katsumi

    2014-04-01

    Some spatio-temporal structures are easier to transfer implicitly in sequential learning. In this study, we investigated whether the consistent reversal of triads of learned components would support the implicit transfer of their temporal structure in visuomotor sequence learning. A triad comprised three sequential button presses ([1][2][3]) and seven consecutive triads comprised a sequence. Participants learned sequences by trial and error, until they could complete it 20 times without error. Then, they learned another sequence, in which each triad was reversed ([3][2][1]), partially reversed ([2][1][3]), or switched so as not to overlap with the other conditions ([2][3][1] or [3][1][2]). Even when the participants did not notice the alternation rule, the consistent reversal of the temporal structure of each triad led to better implicit transfer; this was confirmed in a subsequent experiment. These results suggest that the implicit transfer of the temporal structure of a learned sequence can be influenced by both the structure and consistency of the change. Copyright © 2013 Cognitive Science Society, Inc.

  12. Spatio-Temporal Neural Networks for Vision, Reasoning and Rapid Decision Making

    DTIC Science & Technology

    1994-08-31

    something that is obviously not pattern for long-term knowledge base (LTKB) facts. As a matter possiblc in common neural networks (as units in a...Conferences on Neural Davis, P. (19W0) Application of op~tical chaos to temporal pattern search in a Networks . Piscataway, NJ. [SC] nonlinear optical...Science Institute PROJECT TITLE: Spatio-temporal Neural Networks for Vision, Reasoning and Rapid Decision Making (N00014-93-1-1149) Number of ONR

  13. Spatio-Temporal Data Comparisons for Global Highly Pathogenic Avian Influenza (HPAI) H5N1 Outbreaks

    PubMed Central

    Chen, Dongmei; Chen, Yue; Wang, Lei; Zhao, Fei; Yao, Baodong

    2010-01-01

    Highly pathogenic avian influenza subtype H5N1 is a zoonotic disease and control of the disease is one of the highest priority in global health. Disease surveillance systems are valuable data sources for various researches and management projects, but the data quality has not been paid much attention in previous studies. Based on data from two commonly used databases (Office International des Epizooties (OIE) and Food and Agriculture Organization of the United Nations (FAO)) of global HPAI H5N1 outbreaks during the period of 2003–2009, we examined and compared their patterns of temporal, spatial and spatio-temporal distributions for the first time. OIE and FAO data showed similar trends in temporal and spatial distributions if they were considered separately. However, more advanced approaches detected a significant difference in joint spatio-temporal distribution. Because of incompleteness for both OIE and FAO data, an integrated dataset would provide a more complete picture of global HPAI H5N1 outbreaks. We also displayed a mismatching profile of global HPAI H5N1 outbreaks and found that the degree of mismatching was related to the epidemic severity. The ideas and approaches used here to assess spatio-temporal data on the same disease from different sources are useful for other similar studies. PMID:21187964

  14. An integrated GIS-based data model for multimodal urban public transportation analysis and management

    NASA Astrophysics Data System (ADS)

    Chen, Shaopei; Tan, Jianjun; Ray, C.; Claramunt, C.; Sun, Qinqin

    2008-10-01

    Diversity is one of the main characteristics of transportation data collected from multiple sources or formats, which can be extremely complex and disparate. Moreover, these multimodal transportation data are usually characterised by spatial and temporal properties. Multimodal transportation network data modelling involves both an engineering and research domain that has attracted the design of a number of spatio-temporal data models in the geographic information system (GIS). However, the application of these specific models to multimodal transportation network is still a challenging task. This research addresses this challenge from both integrated multimodal data organization and object-oriented modelling perspectives, that is, how a complex urban transportation network should be organized, represented and modeled appropriately when considering a multimodal point of view, and using object-oriented modelling method. We proposed an integrated GIS-based data model for multimodal urban transportation network that lays a foundation to enhance the multimodal transportation network analysis and management. This modelling method organizes and integrates multimodal transit network data, and supports multiple representations for spatio-temporal objects and relationship as both visual and graphic views. The data model is expressed by using a spatio-temporal object-oriented modelling method, i.e., the unified modelling language (UML) extended to spatial and temporal plug-in for visual languages (PVLs), which provides an essential support to the spatio-temporal data modelling for transportation GIS.

  15. Discovery of spatio-temporal patterns from location-based social networks

    NASA Astrophysics Data System (ADS)

    Béjar, J.; Álvarez, S.; García, D.; Gómez, I.; Oliva, L.; Tejeda, A.; Vázquez-Salceda, J.

    2016-03-01

    Location-based social networks (LBSNs) such as Twitter or Instagram are a good source for user spatio-temporal behaviour. These networks collect data from users in such a way that they can be seen as a set of collective and distributed sensors of a geographical area. A low rate sampling of user's location information can be obtained during large intervals of time that can be used to discover complex patterns, including mobility profiles, points of interest or unusual events. These patterns can be used as the elements of a knowledge base for different applications in different domains such as mobility route planning, touristic recommendation systems or city planning. The aim of this paper is twofold, first to analyse the frequent spatio-temporal patterns that users share when living and visiting a city. This behaviour is studied by means of frequent itemsets algorithms in order to establish some associations among visits that can be interpreted as interesting routes or spatio-temporal connections. Second, to analyse how the spatio-temporal behaviour of a large number of users can be segmented in different profiles. These behavioural profiles are obtained by means of clustering algorithms that show the different patterns of behaviour of visitors and citizens. The data analysed were obtained from the public data feeds of Twitter and Instagram within an area surrounding the cities of Barcelona and Milan for a period of several months. The analysis of these data shows that these kinds of algorithms can be successfully applied to data from any city (or general area) to discover useful patterns that can be interpreted on terms of singular places and areas and their temporal relationships.

  16. Spatio-temporal propagation of cascading overload failures in spatially embedded networks

    NASA Astrophysics Data System (ADS)

    Zhao, Jichang; Li, Daqing; Sanhedrai, Hillel; Cohen, Reuven; Havlin, Shlomo

    2016-01-01

    Different from the direct contact in epidemics spread, overload failures propagate through hidden functional dependencies. Many studies focused on the critical conditions and catastrophic consequences of cascading failures. However, to understand the network vulnerability and mitigate the cascading overload failures, the knowledge of how the failures propagate in time and space is essential but still missing. Here we study the spatio-temporal propagation behaviour of cascading overload failures analytically and numerically on spatially embedded networks. The cascading overload failures are found to spread radially from the centre of the initial failure with an approximately constant velocity. The propagation velocity decreases with increasing tolerance, and can be well predicted by our theoretical framework with one single correction for all the tolerance values. This propagation velocity is found similar in various model networks and real network structures. Our findings may help to predict the dynamics of cascading overload failures in realistic systems.

  17. Spatio-temporal propagation of cascading overload failures in spatially embedded networks

    PubMed Central

    Zhao, Jichang; Li, Daqing; Sanhedrai, Hillel; Cohen, Reuven; Havlin, Shlomo

    2016-01-01

    Different from the direct contact in epidemics spread, overload failures propagate through hidden functional dependencies. Many studies focused on the critical conditions and catastrophic consequences of cascading failures. However, to understand the network vulnerability and mitigate the cascading overload failures, the knowledge of how the failures propagate in time and space is essential but still missing. Here we study the spatio-temporal propagation behaviour of cascading overload failures analytically and numerically on spatially embedded networks. The cascading overload failures are found to spread radially from the centre of the initial failure with an approximately constant velocity. The propagation velocity decreases with increasing tolerance, and can be well predicted by our theoretical framework with one single correction for all the tolerance values. This propagation velocity is found similar in various model networks and real network structures. Our findings may help to predict the dynamics of cascading overload failures in realistic systems. PMID:26754065

  18. Spatio-Temporal Video Segmentation with Shape Growth or Shrinkage Constraint

    NASA Technical Reports Server (NTRS)

    Tarabalka, Yuliya; Charpiat, Guillaume; Brucker, Ludovic; Menze, Bjoern H.

    2014-01-01

    We propose a new method for joint segmentation of monotonously growing or shrinking shapes in a time sequence of noisy images. The task of segmenting the image time series is expressed as an optimization problem using the spatio-temporal graph of pixels, in which we are able to impose the constraint of shape growth or of shrinkage by introducing monodirectional infinite links connecting pixels at the same spatial locations in successive image frames. The globally optimal solution is computed with a graph cut. The performance of the proposed method is validated on three applications: segmentation of melting sea ice floes and of growing burned areas from time series of 2D satellite images, and segmentation of a growing brain tumor from sequences of 3D medical scans. In the latter application, we impose an additional intersequences inclusion constraint by adding directed infinite links between pixels of dependent image structures.

  19. Spatio-temporal precipitation climatology over complex terrain using a censored additive regression model.

    PubMed

    Stauffer, Reto; Mayr, Georg J; Messner, Jakob W; Umlauf, Nikolaus; Zeileis, Achim

    2017-06-15

    Flexible spatio-temporal models are widely used to create reliable and accurate estimates for precipitation climatologies. Most models are based on square root transformed monthly or annual means, where a normal distribution seems to be appropriate. This assumption becomes invalid on a daily time scale as the observations involve large fractions of zero observations and are limited to non-negative values. We develop a novel spatio-temporal model to estimate the full climatological distribution of precipitation on a daily time scale over complex terrain using a left-censored normal distribution. The results demonstrate that the new method is able to account for the non-normal distribution and the large fraction of zero observations. The new climatology provides the full climatological distribution on a very high spatial and temporal resolution, and is competitive with, or even outperforms existing methods, even for arbitrary locations.

  20. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence

    PubMed Central

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude

    2016-01-01

    The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain. PMID:27282108

  1. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence.

    PubMed

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude

    2016-06-10

    The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain.

  2. A model for optimizing file access patterns using spatio-temporal parallelism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boonthanome, Nouanesengsy; Patchett, John; Geveci, Berk

    2013-01-01

    For many years now, I/O read time has been recognized as the primary bottleneck for parallel visualization and analysis of large-scale data. In this paper, we introduce a model that can estimate the read time for a file stored in a parallel filesystem when given the file access pattern. Read times ultimately depend on how the file is stored and the access pattern used to read the file. The file access pattern will be dictated by the type of parallel decomposition used. We employ spatio-temporal parallelism, which combines both spatial and temporal parallelism, to provide greater flexibility to possible filemore » access patterns. Using our model, we were able to configure the spatio-temporal parallelism to design optimized read access patterns that resulted in a speedup factor of approximately 400 over traditional file access patterns.« less

  3. Spatio-temporal dynamics of ocean conditions and forage taxa reveal regional structuring of seabird–prey relationships.

    PubMed

    Santora, Jarrod A; Schroeder, Isaac D; Field, John C; Wells, Brian K; Sydeman, William J

    Studies of predator–prey demographic responses and the physical drivers of such relationships are rare, yet essential for predicting future changes in the structure and dynamics of marine ecosystems. Here, we hypothesize that predator–prey relationships vary spatially in association with underlying physical ocean conditions, leading to observable changes in demographic rates, such as reproduction. To test this hypothesis, we quantified spatio-temporal variability in hydrographic conditions, krill, and forage fish to model predator (seabird) demographic responses over 18 years (1990–2007). We used principal component analysis and spatial correlation maps to assess coherence among ocean conditions, krill, and forage fish, and generalized additive models to quantify interannual variability in seabird breeding success relative to prey abundance. The first principal component of four hydrographic measurements yielded an index that partitioned “warm/weak upwelling” and “cool/strong upwelling” years. Partitioning of krill and forage fish time series among shelf and oceanic regions yielded spatially explicit indicators of prey availability. Krill abundance within the oceanic region was remarkably consistent between years, whereas krill over the shelf showed marked interannual fluctuations in relation to ocean conditions. Anchovy abundance varied on the shelf, and was greater in years of strong stratification, weak upwelling and warmer temperatures. Spatio-temporal variability of juvenile forage fish co-varied strongly with each other and with krill, but was weakly correlated with hydrographic conditions. Demographic responses between seabirds and prey availability revealed spatially variable associations indicative of the dynamic nature of “predator–habitat” relationships. Quantification of spatially explicit demographic responses, and their variability through time, demonstrate the possibility of delineating specific critical areas where the implementation of protective measures could maintain functions and productivity of central place foraging predators.

  4. Visual search of cyclic spatio-temporal events

    NASA Astrophysics Data System (ADS)

    Gautier, Jacques; Davoine, Paule-Annick; Cunty, Claire

    2018-05-01

    The analysis of spatio-temporal events, and especially of relationships between their different dimensions (space-time-thematic attributes), can be done with geovisualization interfaces. But few geovisualization tools integrate the cyclic dimension of spatio-temporal event series (natural events or social events). Time Coil and Time Wave diagrams represent both the linear time and the cyclic time. By introducing a cyclic temporal scale, these diagrams may highlight the cyclic characteristics of spatio-temporal events. However, the settable cyclic temporal scales are limited to usual durations like days or months. Because of that, these diagrams cannot be used to visualize cyclic events, which reappear with an unusual period, and don't allow to make a visual search of cyclic events. Also, they don't give the possibility to identify the relationships between the cyclic behavior of the events and their spatial features, and more especially to identify localised cyclic events. The lack of possibilities to represent the cyclic time, outside of the temporal diagram of multi-view geovisualization interfaces, limits the analysis of relationships between the cyclic reappearance of events and their other dimensions. In this paper, we propose a method and a geovisualization tool, based on the extension of Time Coil and Time Wave, to provide a visual search of cyclic events, by allowing to set any possible duration to the diagram's cyclic temporal scale. We also propose a symbology approach to push the representation of the cyclic time into the map, in order to improve the analysis of relationships between space and the cyclic behavior of events.

  5. Self-organization of bacterial communities against environmental pH variation: Controlled chemotactic motility arranges cell population structures in biofilms

    PubMed Central

    Nakayama, Madoka; Shoji, Wataru

    2017-01-01

    As with many living organisms, bacteria often live on the surface of solids, such as foods, organisms, buildings and soil. Compared with dispersive behavior in liquid, bacteria on surface environment exhibit significantly restricted mobility. They have access to only limited resources and cannot be liberated from the changing environment. Accordingly, appropriate collective strategies are necessarily required for long-term growth and survival. However, in spite of our deepening knowledge of the structure and characteristics of individual cells, strategic self-organizing dynamics of their community is poorly understood and therefore not yet predictable. Here, we report a morphological change in Bacillus subtilis biofilms due to environmental pH variations, and present a mathematical model for the macroscopic spatio-temporal dynamics. We show that an environmental pH shift transforms colony morphology on hard agar media from notched ‘volcano-like’ to round and front-elevated ‘crater-like’. We discover that a pH-dependent dose-response relationship between nutritional resource level and quantitative bacterial motility at the population level plays a central role in the mechanism of the spatio-temporal cell population structure design in biofilms. PMID:28253348

  6. Self-organization of bacterial communities against environmental pH variation: Controlled chemotactic motility arranges cell population structures in biofilms.

    PubMed

    Tasaki, Sohei; Nakayama, Madoka; Shoji, Wataru

    2017-01-01

    As with many living organisms, bacteria often live on the surface of solids, such as foods, organisms, buildings and soil. Compared with dispersive behavior in liquid, bacteria on surface environment exhibit significantly restricted mobility. They have access to only limited resources and cannot be liberated from the changing environment. Accordingly, appropriate collective strategies are necessarily required for long-term growth and survival. However, in spite of our deepening knowledge of the structure and characteristics of individual cells, strategic self-organizing dynamics of their community is poorly understood and therefore not yet predictable. Here, we report a morphological change in Bacillus subtilis biofilms due to environmental pH variations, and present a mathematical model for the macroscopic spatio-temporal dynamics. We show that an environmental pH shift transforms colony morphology on hard agar media from notched 'volcano-like' to round and front-elevated 'crater-like'. We discover that a pH-dependent dose-response relationship between nutritional resource level and quantitative bacterial motility at the population level plays a central role in the mechanism of the spatio-temporal cell population structure design in biofilms.

  7. A spatial analysis of hierarchical waste transport structures under growing demand.

    PubMed

    Tanguy, Audrey; Glaus, Mathias; Laforest, Valérie; Villot, Jonathan; Hausler, Robert

    2016-10-01

    The design of waste management systems rarely accounts for the spatio-temporal evolution of the demand. However, recent studies suggest that this evolution affects the planning of waste management activities like the choice and location of treatment facilities. As a result, the transport structure could also be affected by these changes. The objective of this paper is to study the influence of the spatio-temporal evolution of the demand on the strategic planning of a waste transport structure. More particularly this study aims at evaluating the effect of varying spatial parameters on the economic performance of hierarchical structures (with one transfer station). To this end, three consecutive generations of three different spatial distributions were tested for hierarchical and non-hierarchical transport structures based on costs minimization. Results showed that a hierarchical structure is economically viable for large and clustered spatial distributions. The distance parameter was decisive but the loading ratio of trucks and the formation of clusters of sources also impacted the attractiveness of the transfer station. Thus the territories' morphology should influence strategies as regards to the installation of transfer stations. The use of spatial-explicit tools such as the transport model presented in this work that take into account the territory's evolution are needed to help waste managers in the strategic planning of waste transport structures. © The Author(s) 2016.

  8. A tool for exploring space-time patterns: an animation user research.

    PubMed

    Ogao, Patrick J

    2006-08-29

    Ever since Dr. John Snow (1813-1854) used a case map to identify water well as the source of a cholera outbreak in London in the 1800s, the use of spatio-temporal maps have become vital tools in a wide range of disease mapping and control initiatives. The increasing use of spatio-temporal maps in these life-threatening sectors warrants that they are accurate, and easy to interpret to enable prompt decision making by health experts. Similar spatio-temporal maps are observed in urban growth and census mapping--all critical aspects a of a country's socio-economic development. In this paper, a user test research was carried out to determine the effectiveness of spatio-temporal maps (animation) in exploring geospatial structures encompassing disease, urban and census mapping. Three types of animation were used, namely; passive, interactive and inference-based animation, with the key differences between them being on the level of interactivity and complementary domain knowledge that each offers to the user. Passive animation maintains the view only status. The user has no control over its contents and dynamic variables. Interactive animation provides users with the basic media player controls, navigation and orientation tools. Inference-based animation incorporates these interactive capabilities together with a complementary automated intelligent view that alerts users to interesting patterns, trends or anomalies that may be inherent in the data sets. The test focussed on the role of animation passive and interactive capabilities in exploring space-time patterns by engaging test-subjects in thinking aloud evaluation protocol. The test subjects were selected from a geoinformatics (map reading, interpretation and analysis abilities) background. Every test-subject used each of the three types of animation and their performances for each session assessed. The results show that interactivity in animation is a preferred exploratory tool in identifying, interpreting and providing explanations about observed geospatial phenomena. Also, exploring geospatial data structures using animation is best achieved using provocative interactive tools such as was seen with the inference-based animation. The visual methods employed using the three types of animation are all related and together these patterns confirm the exploratory cognitive structure and processes for visualization tools. The generic types of animation as defined in this paper play a crucial role in facilitating the visualization of geospatial data. These animations can be created and their contents defined based on the user's presentational and exploratory needs. For highly explorative tasks, maintaining a link between the data sets and the animation is crucial to enabling a rich and effective knowledge discovery environment.

  9. A tool for exploring space-time patterns : an animation user research

    PubMed Central

    Ogao, Patrick J

    2006-01-01

    Background Ever since Dr. John Snow (1813–1854) used a case map to identify water well as the source of a cholera outbreak in London in the 1800s, the use of spatio-temporal maps have become vital tools in a wide range of disease mapping and control initiatives. The increasing use of spatio-temporal maps in these life-threatening sectors warrants that they are accurate, and easy to interpret to enable prompt decision making by health experts. Similar spatio-temporal maps are observed in urban growth and census mapping – all critical aspects a of a country's socio-economic development. In this paper, a user test research was carried out to determine the effectiveness of spatio-temporal maps (animation) in exploring geospatial structures encompassing disease, urban and census mapping. Results Three types of animation were used, namely; passive, interactive and inference-based animation, with the key differences between them being on the level of interactivity and complementary domain knowledge that each offers to the user. Passive animation maintains the view only status. The user has no control over its contents and dynamic variables. Interactive animation provides users with the basic media player controls, navigation and orientation tools. Inference-based animation incorporates these interactive capabilities together with a complementary automated intelligent view that alerts users to interesting patterns, trends or anomalies that may be inherent in the data sets. The test focussed on the role of animation passive and interactive capabilities in exploring space-time patterns by engaging test-subjects in thinking aloud evaluation protocol. The test subjects were selected from a geoinformatics (map reading, interpretation and analysis abilities) background. Every test-subject used each of the three types of animation and their performances for each session assessed. The results show that interactivity in animation is a preferred exploratory tool in identifying, interpreting and providing explanations about observed geospatial phenomena. Also, exploring geospatial data structures using animation is best achieved using provocative interactive tools such as was seen with the inference-based animation. The visual methods employed using the three types of animation are all related and together these patterns confirm the exploratory cognitive structure and processes for visualization tools. Conclusion The generic types of animation as defined in this paper play a crucial role in facilitating the visualization of geospatial data. These animations can be created and their contents defined based on the user's presentational and exploratory needs. For highly explorative tasks, maintaining a link between the data sets and the animation is crucial to enabling a rich and effective knowledge discovery environment. PMID:16938138

  10. Segregation of Brain Structural Networks Supports Spatio-Temporal Predictive Processing.

    PubMed

    Ciullo, Valentina; Vecchio, Daniela; Gili, Tommaso; Spalletta, Gianfranco; Piras, Federica

    2018-01-01

    The ability to generate probabilistic expectancies regarding when and where sensory stimuli will occur, is critical to derive timely and accurate inferences about updating contexts. However, the existence of specialized neural networks for inferring predictive relationships between events is still debated. Using graph theoretical analysis applied to structural connectivity data, we tested the extent of brain connectivity properties associated with spatio-temporal predictive performance across 29 healthy subjects. Participants detected visual targets appearing at one out of three locations after one out of three intervals; expectations about stimulus location (spatial condition) or onset (temporal condition) were induced by valid or invalid symbolic cues. Connectivity matrices and centrality/segregation measures, expressing the relative importance of, and the local interactions among specific cerebral areas respect to the behavior under investigation, were calculated from whole-brain tractography and cortico-subcortical parcellation. Results: Response preparedness to cued stimuli relied on different structural connectivity networks for the temporal and spatial domains. Significant covariance was observed between centrality measures of regions within a subcortical-fronto-parietal-occipital network -comprising the left putamen, the right caudate nucleus, the left frontal operculum, the right inferior parietal cortex, the right paracentral lobule and the right superior occipital cortex-, and the ability to respond after a short cue-target delay suggesting that the local connectedness of such nodes plays a central role when the source of temporal expectation is explicit. When the potential for functional segregation was tested, we found highly clustered structural connectivity across the right superior, the left middle inferior frontal gyrus and the left caudate nucleus as related to explicit temporal orienting. Conversely, when the interaction between explicit and implicit temporal orienting processes was considered at the long interval, we found that explicit processes were related to centrality measures of the bilateral inferior parietal lobule. Degree centrality of the same region in the left hemisphere covaried with behavioral measures indexing the process of attentional re-orienting. These results represent a crucial step forward the ordinary predictive processing description, as we identified the patterns of connectivity characterizing the brain organization associated with the ability to generate and update temporal expectancies in case of contextual violations.

  11. Economic agglomerations and spatio-temporal cycles in a spatial growth model with capital transport cost

    NASA Astrophysics Data System (ADS)

    Juchem Neto, J. P.; Claeyssen, J. C. R.; Pôrto Júnior, S. S.

    2018-03-01

    In this paper we introduce capital transport cost in a unidimensional spatial Solow-Swan model of economic growth with capital-induced labor migration, considered in an unbounded domain. Proceeding with a stability analysis, we show that there is a critical value for the capital transport cost where the dynamic behavior of the economy changes, provided that the intensity of capital-induced labor migration is strong enough. On the one hand, if the capital transport cost is higher than this critical value, the spatially homogeneous equilibrium of coexistence of the model is stable, and the economy converges to this spatially homogeneous state in the long run; on the other hand, if transport cost is lower than this critical value, the equilibrium is unstable, and the economy may develop different spatio-temporal dynamics, including the formation of stable economic agglomerations and spatio-temporal economic cycles, depending on the other parameters in the model. Finally, numerical simulations support the results of the stability analysis, and illustrate the spatio-temporal dynamics generated by the model, suggesting that the economy as a whole benefits from the formation of economic agglomerations and cycles, with a higher capital transport cost reducing this gain.

  12. Decoding-Accuracy-Based Sequential Dimensionality Reduction of Spatio-Temporal Neural Activities

    NASA Astrophysics Data System (ADS)

    Funamizu, Akihiro; Kanzaki, Ryohei; Takahashi, Hirokazu

    Performance of a brain machine interface (BMI) critically depends on selection of input data because information embedded in the neural activities is highly redundant. In addition, properly selected input data with a reduced dimension leads to improvement of decoding generalization ability and decrease of computational efforts, both of which are significant advantages for the clinical applications. In the present paper, we propose an algorithm of sequential dimensionality reduction (SDR) that effectively extracts motor/sensory related spatio-temporal neural activities. The algorithm gradually reduces input data dimension by dropping neural data spatio-temporally so as not to undermine the decoding accuracy as far as possible. Support vector machine (SVM) was used as the decoder, and tone-induced neural activities in rat auditory cortices were decoded into the test tone frequencies. SDR reduced the input data dimension to a quarter and significantly improved the accuracy of decoding of novel data. Moreover, spatio-temporal neural activity patterns selected by SDR resulted in significantly higher accuracy than high spike rate patterns or conventionally used spatial patterns. These results suggest that the proposed algorithm can improve the generalization ability and decrease the computational effort of decoding.

  13. An empirical investigation of taxi driver response behavior to ride-hailing requests: A spatio-temporal perspective

    PubMed Central

    Xu, Ke; Sun, Luping; Wang, Hansheng

    2018-01-01

    Using data provided by a ride-hailing platform, this paper examines the factors that affect taxi driver response behavior to ride-hailing requests. The empirical investigation from a driver’s perspective is of great importance for ride-hailing service providers, given that approximately 40% of the hailing requests receive no response from any driver. To comprehensively understand taxi driver response behavior, we use a rich dataset to generate variables related to the spatio-temporal supply-demand intensities, the economic incentives, the requests’ and the drivers’ characteristics. The results show that drivers are more likely to respond to requests with economic incentives (especially a firm subsidy), and those with a lower spatio-temporal demand intensity or a higher spatio-temporal supply intensity. In addition, drivers are more likely to respond to requests involving rides covering a greater geographical distance and to those with a smaller number of repeated submissions. The drivers’ characteristics, namely, the number of requests received and the number of requests responded, however, have relatively little impacts on their response probability to the current request. Our findings contribute to the related literature and provide managerial implications for ride-hailing service providers. PMID:29883478

  14. A full time-domain approach to spatio-temporal dynamics of semiconductor lasers. II. Spatio-temporal dynamics

    NASA Astrophysics Data System (ADS)

    Böhringer, Klaus; Hess, Ortwin

    The spatio-temporal dynamics of novel semiconductor lasers is discussed on the basis of a space- and momentum-dependent full time-domain approach. To this means the space-, time-, and momentum-dependent Full-Time Domain Maxwell Semiconductor Bloch equations, derived and discussed in our preceding paper I [K. Böhringer, O. Hess, A full time-domain approach to spatio-temporal dynamics of semiconductor lasers. I. Theoretical formulation], are solved by direct numerical integration. Focussing on the device physics of novel semiconductor lasers that profit, in particular, from recent advances in nanoscience and nanotechnology, we discuss the examples of photonic band edge surface emitting lasers (PBE-SEL) and semiconductor disc lasers (SDLs). It is demonstrated that photonic crystal effects can be obtained for finite crystal structures, and leading to a significant improvement in laser performance such as reduced lasing thresholds. In SDLs, a modern device concept designed to increase the power output of surface-emitters in combination with near-diffraction-limited beam quality, we explore the complex interplay between the intracavity optical fields and the quantum well gain material in SDL structures. Our simulations reveal the dynamical balance between carrier generation due to pumping into high energy states, momentum relaxation of carriers, and stimulated recombination from states near the band edge. Our full time-domain approach is shown to also be an excellent framework for the modelling of the interaction of high-intensity femtosecond and picosecond pulses with semiconductor nanostructures. It is demonstrated that group velocity dispersion, dynamical gain saturation and fast self-phase modulation (SPM) are the main causes for the induced changes and asymmetries in the amplified pulse shape and spectrum of an ultrashort high-intensity pulse. We attest that the time constants of the intraband scattering processes are critical to gain recovery. Moreover, we present new insight into the physics of nonlinear coherent pulse propagation phenomena in active (semiconductor) gain media. Our numerical full time-domain simulations are shown to generally agree well with analytical predictions, while in the case of optical pulses with large pulse areas or few-cycle pulses they reveal the limits of analytic approaches. Finally, it is demonstrated that coherent ultrafast nonlinear propagation effects become less distinctive if we apply a realistic model of the quantum well semiconductor gain material, consider characteristic loss channels and take into account de-phasing processes and homogeneous broadening.

  15. Quantifying Diurnal and Spatial Variations in CO2 Concentrations and Partial Columns using High-Resolution Global Model Simulations

    NASA Astrophysics Data System (ADS)

    Pawson, S.; Nielsen, J.; Ott, L. E.; Darmenov, A.; Putman, W.

    2015-12-01

    Model-data fusion approaches, such as global inverse modeling for surface flux estimation, have traditionally been performed at spatial resolutions of several tens to a few hundreds of kilometers. Use of such coarse scales presents a fundamental limitation in reconciling the modeled field with both the atmospheric observations and the distribution of surface emissions and uptake. Emissions typically occur on small scales, including point sources (e.g. power plants, forest fires) or with inhomegeneous structure. Biological uptake can have spatial variations related to complex, diverse vegetation, etc. Atmospheric observations of CO2 are either surface based, providing information at a single point, or space based with a finite-sized footprint. For instance, GOSAT and OCO-2 have footprint sizes of around 10km and proposed active sensors (such as ASCENDS) will likely have even finer footprints. One important aspect of reconciling models to measurements is the representativeness of the observation for the model field, and this depends on the generally unknown spatio-temporal variations of the CO2 field around the measurement location and time. This work presents an assessment of the global spatio-temporal variations of the CO2 field using the "7km GEOS-5 Nature Run" (7km-G5NR), which includes CO2 emissions and uptake mapped to the finest possible resolution. Results are shown for surface CO2 concentrations, total-column CO2, and separate upper and lower tropospheric columns. Spatial variability is shown to be largest in regions with strong point sources and at night in regions with complex terrain, especially where biological processes dominate the local CO2 fluxes, where the day-night differences are also most marked. The spatio-temporal variations are strongest for surface concentrations and for lower tropospheric CO2. While these results are largely anticipated, these high resolution simulations provide quantitative estimates of the global nature of spatio-temporal CO2 variability. Implications for characterizing representativeness of passive CO2 observations will be discussed. Differences between daytime and nighttime structures will be considered in light of active CO2 sensors. Finally, some possible limitations of the model will be highlighted, using some global 3-km simulations.

  16. On the implementation of faults in finite-element glacial isostatic adjustment models

    NASA Astrophysics Data System (ADS)

    Steffen, Rebekka; Wu, Patrick; Steffen, Holger; Eaton, David W.

    2014-01-01

    Stresses induced in the crust and mantle by continental-scale ice sheets during glaciation have triggered earthquakes along pre-existing faults, commencing near the end of the deglaciation. In order to get a better understanding of the relationship between glacial loading/unloading and fault movement due to the spatio-temporal evolution of stresses, a commonly used model for glacial isostatic adjustment (GIA) is extended by including a fault structure. Solving this problem is enabled by development of a workflow involving three cascaded finite-element simulations. Each step has identical lithospheric and mantle structure and properties, but evolving stress conditions along the fault. The purpose of the first simulation is to compute the spatio-temporal evolution of rebound stress when the fault is tied together. An ice load with a parabolic profile and simple ice history is applied to represent glacial loading of the Laurentide Ice Sheet. The results of the first step describe the evolution of the stress and displacement induced by the rebound process. The second step in the procedure augments the results of the first, by computing the spatio-temporal evolution of total stress (i.e. rebound stress plus tectonic background stress and overburden pressure) and displacement with reaction forces that can hold the model in equilibrium. The background stress is estimated by assuming that the fault is in frictional equilibrium before glaciation. The third step simulates fault movement induced by the spatio-temporal evolution of total stress by evaluating fault stability in a subroutine. If the fault remains stable, no movement occurs; in case of fault instability, the fault displacement is computed. We show an example of fault motion along a 45°-dipping fault at the ice-sheet centre for a two-dimensional model. Stable conditions along the fault are found during glaciation and the initial part of deglaciation. Before deglaciation ends, the fault starts to move, and fault offsets of up to 22 m are obtained. A fault scarp at the surface of 19.74 m is determined. The fault is stable in the following time steps with a high stress accumulation at the fault tip. Along the upper part of the fault, GIA stresses are released in one earthquake.

  17. Does robot-assisted gait training ameliorate gait abnormalities in multiple sclerosis? A pilot randomized-control trial.

    PubMed

    Straudi, S; Benedetti, M G; Venturini, E; Manca, M; Foti, C; Basaglia, N

    2013-01-01

    Gait disorders are common in multiple sclerosis (MS) and lead to a progressive reduction of function and quality of life. Test the effects of robot-assisted gait rehabilitation in MS subjects through a pilot randomized-controlled study. We enrolled MS subjects with Expanded Disability Status Scale scores within 4.5-6.5. The experimental group received 12 robot-assisted gait training sessions over 6 weeks. The control group received the same amount of conventional physiotherapy. Outcomes measures were both biomechanical assessment of gait, including kinematics and spatio-temporal parameters, and clinical test of walking endurance (six-minute walk test) and mobility (Up and Go Test). 16 subjects (n = 8 experimental group, n = 8 control group) were included in the final analysis. At baseline the two groups were similar in all variables, except for step length. Data showed walking endurance, as well as spatio-temporal gait parameters improvements after robot-assisted gait training. Pelvic antiversion and reduced hip extension during terminal stance ameliorated after aforementioned intervention. Robot-assisted gait training seems to be effective in increasing walking competency in MS subjects. Moreover, it could be helpful in restoring the kinematic of the hip and pelvis.

  18. Spatio-temporal regulations and functions of neuronal alternative RNA splicing in developing and adult brains.

    PubMed

    Iijima, Takatoshi; Hidaka, Chiharu; Iijima, Yoko

    2016-08-01

    Alternative pre-mRNA splicing is a fundamental mechanism that generates molecular diversity from a single gene. In the central nervous system (CNS), key neural developmental steps are thought to be controlled by alternative splicing decisions, including the molecular diversity underlying synaptic wiring, plasticity, and remodeling. Significant progress has been made in understanding the molecular mechanisms and functions of alternative pre-mRNA splicing in neurons through studies in invertebrate systems; however, recent studies have begun to uncover the potential role of neuronal alternative splicing in the mammalian CNS. This article provides an overview of recent findings regarding the regulation and function of neuronal alternative splicing. In particular, we focus on the spatio-temporal regulation of neurexin, a synaptic adhesion molecule, by neuronal cell type-specific factors and neuronal activity, which are thought to be especially important for characterizing neural development and function within the mammalian CNS. Notably, there is increasing evidence that implicates the dysregulation of neuronal splicing events in several neurological disorders. Therefore, understanding the detailed mechanisms of neuronal alternative splicing in the mammalian CNS may provide plausible treatment strategies for these diseases. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  19. Identifying spatio-temporal dynamics of Ebola in Sierra Leone using virus genomes

    PubMed Central

    Proctor, Joshua L.

    2017-01-01

    Containing the recent West African outbreak of Ebola virus (EBOV) required the deployment of substantial global resources. Despite recent progress in analysing and modelling EBOV epidemiological data, a complete characterization of the spatio-temporal spread of Ebola cases remains a challenge. In this work, we offer a novel perspective on the EBOV epidemic in Sierra Leone that uses individual virus genome sequences to inform population-level, spatial models. Calibrated to phylogenetic linkages of virus genomes, these spatial models provide unique insight into the disease mobility of EBOV in Sierra Leone without the need for human mobility data. Consistent with other investigations, our results show that the spread of EBOV during the beginning and middle portions of the epidemic strongly depended on the size of and distance between populations. Our phylodynamic analysis also revealed a change in model preference towards a spatial model with power-law characteristics in the latter portion of the epidemic, correlated with the timing of major intervention campaigns. More generally, we believe this framework, pairing molecular diagnostics with a dynamic model selection procedure, has the potential to be a powerful forecasting tool along with offering operationally relevant guidance for surveillance and sampling strategies during an epidemic. PMID:29187639

  20. Dissipative and Autonomous Square-Wave Self-Oscillation of a Macroscopic Hybrid Self-Assembly under Continuous Light Irradiation.

    PubMed

    Ikegami, Tomonori; Kageyama, Yoshiyuki; Obara, Kazuma; Takeda, Sadamu

    2016-07-11

    Building a bottom-up supramolecular system to perform continuously autonomous motions will pave the way for the next generation of biomimetic mechanical systems. In biological systems, hierarchical molecular synchronization underlies the generation of spatio-temporal patterns with dissipative structures. However, it remains difficult to build such self-organized working objects via artificial techniques. Herein, we show the first example of a square-wave limit-cycle self-oscillatory motion of a noncovalent assembly of oleic acid and an azobenzene derivative. The assembly steadily flips under continuous blue-light irradiation. Mechanical self-oscillation is established by successively alternating photoisomerization processes and multi-stable phase transitions. These results offer a fundamental strategy for creating a supramolecular motor that works progressively under the operation of molecule-based machines. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Sensing Solutions for Collecting Spatio-Temporal Data for Wildlife Monitoring Applications: A Review

    PubMed Central

    Baratchi, Mitra; Meratnia, Nirvana; Havinga, Paul J. M.; Skidmore, Andrew K.; Toxopeus, Bert A. G.

    2013-01-01

    Movement ecology is a field which places movement as a basis for understanding animal behavior. To realize this concept, ecologists rely on data collection technologies providing spatio-temporal data in order to analyze movement. Recently, wireless sensor networks have offered new opportunities for data collection from remote places through multi-hop communication and collaborative capability of the nodes. Several technologies can be used in such networks for sensing purposes and for collecting spatio-temporal data from animals. In this paper, we investigate and review technological solutions which can be used for collecting data for wildlife monitoring. Our aim is to provide an overview of different sensing technologies used for wildlife monitoring and to review their capabilities in terms of data they provide for modeling movement behavior of animals. PMID:23666132

  2. Causal relations among events and states in dynamic geographical phenomena

    NASA Astrophysics Data System (ADS)

    Huang, Zhaoqiang; Feng, Xuezhi; Xuan, Wenling; Chen, Xiuwan

    2007-06-01

    There is only a static state of the real world to be recorded in conventional geographical information systems. However, there is not only static information but also dynamic information in geographical phenomena. So that how to record the dynamic information and reveal the relations among dynamic information is an important issue in a spatio-temporal information system. From an ontological perspective, we can initially divide the spatio-temporal entities in the world into continuants and occurrents. Continuant entities endure through some extended (although possibly very short) interval of time (e.g., houses, roads, cities, and real-estate). Occurrent entities happen and are then gone (e.g., a house repair job, road construction project, urban expansion, real-estate transition). From an information system perspective, continuants and occurrents that have a unique identity in the system are referred to as objects and events, respectively. And the change is represented implicitly by static snapshots in current spatial temporal information systems. In the previous models, the objects can be considered as the fundamental components of the system, and the change is modeled by considering time-varying attributes of these objects. In the spatio-temporal database, the temporal information that is either interval or instant is involved and the underlying data structures and indexes for temporal are considerable investigated. However, there is the absence of explicit ways of considering events, which affect the attributes of objects or the state. So the research issue of this paper focuses on how to model events in conceptual models of dynamic geographical phenomena and how to represent the causal relations among events and the objects or states. Firstly, the paper reviews the conceptual modeling in a temporal GIS by researchers. Secondly, this paper discusses the spatio-temporal entities: objects and events. Thirdly, this paper investigates the causal relations amongst events and states. The qualitative spatiotemporal change is an important issue in the dynamic geographic-scale phenomena. In real estate transition, the events and states are needed to be represented explicitly. In our modeling the evolution of a dynamic system, it can not avoid fetching in the view of causality. The object's transition is represented by the state of object. Event causes the state of objects changing and causes other events happen. Events connect with objects closely. The basic causal relations are the state-event and event-state relationships. Lastly, the paper concludes with the overview about the causal relations amongst events and states. And this future work is pointed.

  3. Spatio-temporal Dynamics of Audiovisual Speech Processing

    PubMed Central

    Bernstein, Lynne E.; Auer, Edward T.; Wagner, Michael; Ponton, Curtis W.

    2007-01-01

    The cortical processing of auditory-alone, visual-alone, and audiovisual speech information is temporally and spatially distributed, and functional magnetic resonance imaging (fMRI) cannot adequately resolve its temporal dynamics. In order to investigate a hypothesized spatio-temporal organization for audiovisual speech processing circuits, event-related potentials (ERPs) were recorded using electroencephalography (EEG). Stimuli were congruent audiovisual /bα/, incongruent auditory /bα/ synchronized with visual /gα/, auditory-only /bα/, and visual-only /bα/ and /gα/. Current density reconstructions (CDRs) of the ERP data were computed across the latency interval of 50-250 milliseconds. The CDRs demonstrated complex spatio-temporal activation patterns that differed across stimulus conditions. The hypothesized circuit that was investigated here comprised initial integration of audiovisual speech by the middle superior temporal sulcus (STS), followed by recruitment of the intraparietal sulcus (IPS), followed by activation of Broca's area (Miller and d'Esposito, 2005). The importance of spatio-temporally sensitive measures in evaluating processing pathways was demonstrated. Results showed, strikingly, early (< 100 msec) and simultaneous activations in areas of the supramarginal and angular gyrus (SMG/AG), the IPS, the inferior frontal gyrus, and the dorsolateral prefrontal cortex. Also, emergent left hemisphere SMG/AG activation, not predicted based on the unisensory stimulus conditions was observed at approximately 160 to 220 msec. The STS was neither the earliest nor most prominent activation site, although it is frequently considered the sine qua non of audiovisual speech integration. As discussed here, the relatively late activity of the SMG/AG solely under audiovisual conditions is a possible candidate audiovisual speech integration response. PMID:17920933

  4. Atomistic observation and simulation analysis of spatio-temporal fluctuations during radiation-induced amorphization.

    PubMed

    Watanabe, Seiichi; Hoshino, Misaki; Koike, Takuto; Suda, Takanori; Ohnuki, Soumei; Takahashi, Heishichirou; Lam, Nighi Q

    2003-01-01

    We performed a dynamical-atomistic study of radiation-induced amorphization in the NiTi intermetallic compound using in situ high-resolution high-voltage electron microscopy and molecular dynamics simulations in connection with image simulation. Spatio-temporal fluctuations as non-equilibrium fluctuations in an energy-dissipative system, due to transient atom-cluster formation during amorphization, were revealed by the present spatial autocorrelation analysis.

  5. [Spatio-temporal variations of origin, distribution and diffusion of Oncomelania hupensis in Yangtze River Basin].

    PubMed

    Deng, Chen; Li-Yong, Wen

    2017-10-24

    As the only intermediate host of Schistosoma japonicum, Oncomelania hupensis in China is mainly distributed in the Yangtze River Basin. The origin of the O. hupensis and the spatio-temporal variations of its distribution and diffusion in the Yangtze River Basin and the influencing factors, as well as significances in schistosomiasis elimination in China are reviewed in this paper.

  6. Using geovisual analytics in Google Earth to understand disease distribution: a case study of campylobacteriosis in the Czech Republic (2008-2012).

    PubMed

    Marek, Lukáš; Tuček, Pavel; Pászto, Vít

    2015-01-28

    Visual analytics aims to connect the processing power of information technologies and the user's ability of logical thinking and reasoning through the complex visual interaction. Moreover, the most of the data contain the spatial component. Therefore, the need for geovisual tools and methods arises. Either one can develop own system but the dissemination of findings and its usability might be problematic or the widespread and well-known platform can be utilized. The aim of this paper is to prove the applicability of Google Earth™ software as a tool for geovisual analytics that helps to understand the spatio-temporal patterns of the disease distribution. We combined the complex joint spatio-temporal analysis with comprehensive visualisation. We analysed the spatio-temporal distribution of the campylobacteriosis in the Czech Republic between 2008 and 2012. We applied three main approaches in the study: (1) the geovisual analytics of the surveillance data that were visualised in the form of bubble chart; (2) the geovisual analytics of the disease's weekly incidence surfaces computed by spatio-temporal kriging and (3) the spatio-temporal scan statistics that was employed in order to identify high or low rates clusters of affected municipalities. The final data are stored in Keyhole Markup Language files and visualised in Google Earth™ in order to apply geovisual analytics. Using geovisual analytics we were able to display and retrieve information from complex dataset efficiently. Instead of searching for patterns in a series of static maps or using numerical statistics, we created the set of interactive visualisations in order to explore and communicate results of analyses to the wider audience. The results of the geovisual analytics identified periodical patterns in the behaviour of the disease as well as fourteen spatio-temporal clusters of increased relative risk. We prove that Google Earth™ software is a usable tool for the geovisual analysis of the disease distribution. Google Earth™ has many indisputable advantages (widespread, freely available, intuitive interface, space-time visualisation capabilities and animations, communication of results), nevertheless it is still needed to combine it with pre-processing tools that prepare the data into a form suitable for the geovisual analytics itself.

  7. GRASS GIS: The first Open Source Temporal GIS

    NASA Astrophysics Data System (ADS)

    Gebbert, Sören; Leppelt, Thomas

    2015-04-01

    GRASS GIS is a full featured, general purpose Open Source geographic information system (GIS) with raster, 3D raster and vector processing support[1]. Recently, time was introduced as a new dimension that transformed GRASS GIS into the first Open Source temporal GIS with comprehensive spatio-temporal analysis, processing and visualization capabilities[2]. New spatio-temporal data types were introduced in GRASS GIS version 7, to manage raster, 3D raster and vector time series. These new data types are called space time datasets. They are designed to efficiently handle hundreds of thousands of time stamped raster, 3D raster and vector map layers of any size. Time stamps can be defined as time intervals or time instances in Gregorian calendar time or relative time. Space time datasets are simplifying the processing and analysis of large time series in GRASS GIS, since these new data types are used as input and output parameter in temporal modules. The handling of space time datasets is therefore equal to the handling of raster, 3D raster and vector map layers in GRASS GIS. A new dedicated Python library, the GRASS GIS Temporal Framework, was designed to implement the spatio-temporal data types and their management. The framework provides the functionality to efficiently handle hundreds of thousands of time stamped map layers and their spatio-temporal topological relations. The framework supports reasoning based on the temporal granularity of space time datasets as well as their temporal topology. It was designed in conjunction with the PyGRASS [3] library to support parallel processing of large datasets, that has a long tradition in GRASS GIS [4,5]. We will present a subset of more than 40 temporal modules that were implemented based on the GRASS GIS Temporal Framework, PyGRASS and the GRASS GIS Python scripting library. These modules provide a comprehensive temporal GIS tool set. The functionality range from space time dataset and time stamped map layer management over temporal aggregation, temporal accumulation, spatio-temporal statistics, spatio-temporal sampling, temporal algebra, temporal topology analysis, time series animation and temporal topology visualization to time series import and export capabilities with support for NetCDF and VTK data formats. We will present several temporal modules that support parallel processing of raster and 3D raster time series. [1] GRASS GIS Open Source Approaches in Spatial Data Handling In Open Source Approaches in Spatial Data Handling, Vol. 2 (2008), pp. 171-199, doi:10.1007/978-3-540-74831-19 by M. Neteler, D. Beaudette, P. Cavallini, L. Lami, J. Cepicky edited by G. Brent Hall, Michael G. Leahy [2] Gebbert, S., Pebesma, E., 2014. A temporal GIS for field based environmental modeling. Environ. Model. Softw. 53, 1-12. [3] Zambelli, P., Gebbert, S., Ciolli, M., 2013. Pygrass: An Object Oriented Python Application Programming Interface (API) for Geographic Resources Analysis Support System (GRASS) Geographic Information System (GIS). ISPRS Intl Journal of Geo-Information 2, 201-219. [4] Löwe, P., Klump, J., Thaler, J. (2012): The FOSS GIS Workbench on the GFZ Load Sharing Facility compute cluster, (Geophysical Research Abstracts Vol. 14, EGU2012-4491, 2012), General Assembly European Geosciences Union (Vienna, Austria 2012). [5] Akhter, S., Aida, K., Chemin, Y., 2010. "GRASS GIS on High Performance Computing with MPI, OpenMP and Ninf-G Programming Framework". ISPRS Conference, Kyoto, 9-12 August 2010

  8. Multi-scale visual analysis of time-varying electrocorticography data via clustering of brain regions

    DOE PAGES

    Murugesan, Sugeerth; Bouchard, Kristofer; Chang, Edward; ...

    2017-06-06

    There exists a need for effective and easy-to-use software tools supporting the analysis of complex Electrocorticography (ECoG) data. Understanding how epileptic seizures develop or identifying diagnostic indicators for neurological diseases require the in-depth analysis of neural activity data from ECoG. Such data is multi-scale and is of high spatio-temporal resolution. Comprehensive analysis of this data should be supported by interactive visual analysis methods that allow a scientist to understand functional patterns at varying levels of granularity and comprehend its time-varying behavior. We introduce a novel multi-scale visual analysis system, ECoG ClusterFlow, for the detailed exploration of ECoG data. Our systemmore » detects and visualizes dynamic high-level structures, such as communities, derived from the time-varying connectivity network. The system supports two major views: 1) an overview summarizing the evolution of clusters over time and 2) an electrode view using hierarchical glyph-based design to visualize the propagation of clusters in their spatial, anatomical context. We present case studies that were performed in collaboration with neuroscientists and neurosurgeons using simulated and recorded epileptic seizure data to demonstrate our system's effectiveness. ECoG ClusterFlow supports the comparison of spatio-temporal patterns for specific time intervals and allows a user to utilize various clustering algorithms. Neuroscientists can identify the site of seizure genesis and its spatial progression during various the stages of a seizure. Our system serves as a fast and powerful means for the generation of preliminary hypotheses that can be used as a basis for subsequent application of rigorous statistical methods, with the ultimate goal being the clinical treatment of epileptogenic zones.« less

  9. Modeling of spatio-temporal variation in plague incidence in Madagascar from 1980 to 2007.

    PubMed

    Giorgi, Emanuele; Kreppel, Katharina; Diggle, Peter J; Caminade, Cyril; Ratsitorahina, Maherisoa; Rajerison, Minoarisoa; Baylis, Matthew

    2016-11-01

    Plague is an infectious disease caused by the bacterium Yersinia pestis, which, during the fourteenth century, caused the deaths of an estimated 75-200 million people in Europe. Plague epidemics still occur in Africa, Asia and South America. Madagascar is today one of the most endemic countries, reporting nearly one third of the human cases worldwide from 2004 to 2009. The persistence of plague in Madagascar is associated with environmental and climatic conditions. In this paper we present a case study of the spatio-temporal analysis of plague incidence in Madagascar from 1980 to 2007. We study the relationship of plague with temperature and precipitation anomalies, and with elevation. A joint spatio-temporal analysis of the data proves to be computationally intractable. We therefore develop a spatio-temporal log-Gaussian Cox process model, but then carry out marginal temporal and spatial analyses. We also introduce a spatially discrete approximation for Gaussian processes, whose parameters retain a spatially continuous interpretation. We find evidence of a cumulative effect, over time, of temperature anomalies on plague incidence, and of a very high relative risk of plague occurrence for locations above 800 m in elevation. Our approach provides a useful modeling framework to assess the relationship between exposures and plague risk, irrespective of the spatial resolution at which the latter has been recorded. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Bayesian inference for the spatio-temporal invasion of alien species.

    PubMed

    Cook, Alex; Marion, Glenn; Butler, Adam; Gibson, Gavin

    2007-08-01

    In this paper we develop a Bayesian approach to parameter estimation in a stochastic spatio-temporal model of the spread of invasive species across a landscape. To date, statistical techniques, such as logistic and autologistic regression, have outstripped stochastic spatio-temporal models in their ability to handle large numbers of covariates. Here we seek to address this problem by making use of a range of covariates describing the bio-geographical features of the landscape. Relative to regression techniques, stochastic spatio-temporal models are more transparent in their representation of biological processes. They also explicitly model temporal change, and therefore do not require the assumption that the species' distribution (or other spatial pattern) has already reached equilibrium as is often the case with standard statistical approaches. In order to illustrate the use of such techniques we apply them to the analysis of data detailing the spread of an invasive plant, Heracleum mantegazzianum, across Britain in the 20th Century using geo-referenced covariate information describing local temperature, elevation and habitat type. The use of Markov chain Monte Carlo sampling within a Bayesian framework facilitates statistical assessments of differences in the suitability of different habitat classes for H. mantegazzianum, and enables predictions of future spread to account for parametric uncertainty and system variability. Our results show that ignoring such covariate information may lead to biased estimates of key processes and implausible predictions of future distributions.

  11. Event Networks and the Identification of Crime Pattern Motifs

    PubMed Central

    2015-01-01

    In this paper we demonstrate the use of network analysis to characterise patterns of clustering in spatio-temporal events. Such clustering is of both theoretical and practical importance in the study of crime, and forms the basis for a number of preventative strategies. However, existing analytical methods show only that clustering is present in data, while offering little insight into the nature of the patterns present. Here, we show how the classification of pairs of events as close in space and time can be used to define a network, thereby generalising previous approaches. The application of graph-theoretic techniques to these networks can then offer significantly deeper insight into the structure of the data than previously possible. In particular, we focus on the identification of network motifs, which have clear interpretation in terms of spatio-temporal behaviour. Statistical analysis is complicated by the nature of the underlying data, and we provide a method by which appropriate randomised graphs can be generated. Two datasets are used as case studies: maritime piracy at the global scale, and residential burglary in an urban area. In both cases, the same significant 3-vertex motif is found; this result suggests that incidents tend to occur not just in pairs, but in fact in larger groups within a restricted spatio-temporal domain. In the 4-vertex case, different motifs are found to be significant in each case, suggesting that this technique is capable of discriminating between clustering patterns at a finer granularity than previously possible. PMID:26605544

  12. Detecting Spatio-Temporal Modes in Multivariate Data by Entropy Field Decomposition

    PubMed Central

    Frank, Lawrence R.; Galinsky, Vitaly L.

    2016-01-01

    A new data analysis method that addresses a general problem of detecting spatio-temporal variations in multivariate data is presented. The method utilizes two recent and complimentary general approaches to data analysis, information field theory (IFT) and entropy spectrum pathways (ESP). Both methods reformulate and incorporate Bayesian theory, thus use prior information to uncover underlying structure of the unknown signal. Unification of ESP and IFT creates an approach that is non-Gaussian and non-linear by construction and is found to produce unique spatio-temporal modes of signal behavior that can be ranked according to their significance, from which space-time trajectories of parameter variations can be constructed and quantified. Two brief examples of real world applications of the theory to the analysis of data bearing completely different, unrelated nature, lacking any underlying similarity, are also presented. The first example provides an analysis of resting state functional magnetic resonance imaging (rsFMRI) data that allowed us to create an efficient and accurate computational method for assessing and categorizing brain activity. The second example demonstrates the potential of the method in the application to the analysis of a strong atmospheric storm circulation system during the complicated stage of tornado development and formation using data recorded by a mobile Doppler radar. Reference implementation of the method will be made available as a part of the QUEST toolkit that is currently under development at the Center for Scientific Computation in Imaging. PMID:27695512

  13. Comparing apples and oranges: the Community Intercomparison Suite

    NASA Astrophysics Data System (ADS)

    Schutgens, Nick; Stier, Philip; Pascoe, Stephen

    2014-05-01

    Visual representation and comparison of geoscientific datasets presents a huge challenge due to the large variety of file formats and spatio-temporal sampling of data (be they observations or simulations). The Community Intercomparison Suite attempts to greatly simplify these tasks for users by offering an intelligent but simple command line tool for visualisation and colocation of diverse datasets. In addition, CIS can subset and aggregate large datasets into smaller more manageable datasets. Our philosophy is to remove as much as possible the need for specialist knowledge by the user of the structure of a dataset. The colocation of observations with model data is as simple as: "cis col ::" which will resample the simulation data to the spatio-temporal sampling of the observations, contingent on a few user-defined options that specify a resampling kernel. CIS can deal with both gridded and ungridded datasets of 2, 3 or 4 spatio-temporal dimensions. It can handle different spatial coordinates (e.g. longitude or distance, altitude or pressure level). CIS supports both HDF, netCDF and ASCII file formats. The suite is written in Python with entirely publicly available open source dependencies. Plug-ins allow a high degree of user-moddability. A web-based developer hub includes a manual and simple examples. CIS is developed as open source code by a specialist IT company under supervision of scientists from the University of Oxford as part of investment in the JASMIN superdatacluster facility at the Centre of Environmental Data Archival.

  14. Sparse Representation with Spatio-Temporal Online Dictionary Learning for Efficient Video Coding.

    PubMed

    Dai, Wenrui; Shen, Yangmei; Tang, Xin; Zou, Junni; Xiong, Hongkai; Chen, Chang Wen

    2016-07-27

    Classical dictionary learning methods for video coding suer from high computational complexity and interfered coding eciency by disregarding its underlying distribution. This paper proposes a spatio-temporal online dictionary learning (STOL) algorithm to speed up the convergence rate of dictionary learning with a guarantee of approximation error. The proposed algorithm incorporates stochastic gradient descents to form a dictionary of pairs of 3-D low-frequency and highfrequency spatio-temporal volumes. In each iteration of the learning process, it randomly selects one sample volume and updates the atoms of dictionary by minimizing the expected cost, rather than optimizes empirical cost over the complete training data like batch learning methods, e.g. K-SVD. Since the selected volumes are supposed to be i.i.d. samples from the underlying distribution, decomposition coecients attained from the trained dictionary are desirable for sparse representation. Theoretically, it is proved that the proposed STOL could achieve better approximation for sparse representation than K-SVD and maintain both structured sparsity and hierarchical sparsity. It is shown to outperform batch gradient descent methods (K-SVD) in the sense of convergence speed and computational complexity, and its upper bound for prediction error is asymptotically equal to the training error. With lower computational complexity, extensive experiments validate that the STOL based coding scheme achieves performance improvements than H.264/AVC or HEVC as well as existing super-resolution based methods in ratedistortion performance and visual quality.

  15. Historical amphibian declines and extinctions in Brazil linked to chytridiomycosis

    PubMed Central

    Carvalho, Tamilie; Becker, C. Guilherme

    2017-01-01

    The recent increase in emerging fungal diseases is causing unprecedented threats to biodiversity. The origin of spread of the frog-killing fungus Batrachochytrium dendrobatidis (Bd) is a matter of continued debate. To date, the historical amphibian declines in Brazil could not be attributed to chytridiomycosis; the high diversity of hosts coupled with the presence of several Bd lineages predating the reported declines raised the hypothesis that a hypervirulent Bd genotype spread from Brazil to other continents causing the recent global amphibian crisis. We tested for a spatio-temporal overlap between Bd and areas of historical amphibian population declines and extinctions in Brazil. A spatio-temporal convergence between Bd and declines would support the hypothesis that Brazilian amphibians were not adapted to Bd prior to the reported declines, thus weakening the hypothesis that Brazil was the global origin of Bd emergence. Alternatively, a lack of spatio-temporal association between Bd and frog declines would indicate an evolution of host resistance in Brazilian frogs predating Bd's global emergence, further supporting Brazil as the potential origin of the Bd panzootic. Here, we Bd-screened over 30 000 museum-preserved tadpoles collected in Brazil between 1930 and 2015 and overlaid spatio-temporal Bd data with areas of historical amphibian declines. We detected an increase in the proportion of Bd-infected tadpoles during the peak of amphibian declines (1979–1987). We also found that clusters of Bd-positive samples spatio-temporally overlapped with most records of amphibian declines in Brazil's Atlantic Forest. Our findings indicate that Brazil is post epizootic for chytridiomycosis and provide another piece to the puzzle to explain the origin of Bd globally. PMID:28179514

  16. Historical amphibian declines and extinctions in Brazil linked to chytridiomycosis.

    PubMed

    Carvalho, Tamilie; Becker, C Guilherme; Toledo, Luís Felipe

    2017-02-08

    The recent increase in emerging fungal diseases is causing unprecedented threats to biodiversity. The origin of spread of the frog-killing fungus Batrachochytrium dendrobatidis ( Bd ) is a matter of continued debate. To date, the historical amphibian declines in Brazil could not be attributed to chytridiomycosis; the high diversity of hosts coupled with the presence of several Bd lineages predating the reported declines raised the hypothesis that a hypervirulent Bd genotype spread from Brazil to other continents causing the recent global amphibian crisis. We tested for a spatio-temporal overlap between Bd and areas of historical amphibian population declines and extinctions in Brazil. A spatio-temporal convergence between Bd and declines would support the hypothesis that Brazilian amphibians were not adapted to Bd prior to the reported declines, thus weakening the hypothesis that Brazil was the global origin of Bd emergence. Alternatively, a lack of spatio-temporal association between Bd and frog declines would indicate an evolution of host resistance in Brazilian frogs predating Bd 's global emergence , further supporting Brazil as the potential origin of the Bd panzootic. Here, we Bd -screened over 30 000 museum-preserved tadpoles collected in Brazil between 1930 and 2015 and overlaid spatio-temporal Bd data with areas of historical amphibian declines. We detected an increase in the proportion of Bd -infected tadpoles during the peak of amphibian declines (1979-1987). We also found that clusters of Bd -positive samples spatio-temporally overlapped with most records of amphibian declines in Brazil's Atlantic Forest. Our findings indicate that Brazil is post epizootic for chytridiomycosis and provide another piece to the puzzle to explain the origin of Bd globally. © 2017 The Author(s).

  17. Money Walks: Implicit Mobility Behavior and Financial Well-Being.

    PubMed

    Singh, Vivek Kumar; Bozkaya, Burcin; Pentland, Alex

    2015-01-01

    Traditional financial decision systems (e.g. credit) had to rely on explicit individual traits like age, gender, job type, and marital status, while being oblivious to spatio-temporal mobility or the habits of the individual involved. Emerging trends in geo-aware and mobile payment systems, and the resulting "big data," present an opportunity to study human consumption patterns across space and time. Taking inspiration from animal behavior studies that have reported significant interconnections between animal spatio-temporal "foraging" behavior and their life outcomes, we analyzed a corpus of hundreds of thousands of human economic transactions and found that financial outcomes for individuals are intricately linked with their spatio-temporal traits like exploration, engagement, and elasticity. Such features yield models that are 30% to 49% better at predicting future financial difficulties than the comparable demographic models.

  18. How can knowledge discovery methods uncover spatio-temporal patterns in environmental data?

    NASA Astrophysics Data System (ADS)

    Wachowicz, Monica

    2000-04-01

    This paper proposes the integration of KDD, GVis and STDB as a long-term strategy, which will allow users to apply knowledge discovery methods for uncovering spatio-temporal patterns in environmental data. The main goal is to combine innovative techniques and associated tools for exploring very large environmental data sets in order to arrive at valid, novel, potentially useful, and ultimately understandable spatio-temporal patterns. The GeoInsight approach is described using the principles and key developments in the research domains of KDD, GVis, and STDB. The GeoInsight approach aims at the integration of these research domains in order to provide tools for performing information retrieval, exploration, analysis, and visualization. The result is a knowledge-based design, which involves visual thinking (perceptual-cognitive process) and automated information processing (computer-analytical process).

  19. Money Walks: Implicit Mobility Behavior and Financial Well-Being

    PubMed Central

    Singh, Vivek Kumar; Bozkaya, Burcin; Pentland, Alex

    2015-01-01

    Traditional financial decision systems (e.g. credit) had to rely on explicit individual traits like age, gender, job type, and marital status, while being oblivious to spatio-temporal mobility or the habits of the individual involved. Emerging trends in geo-aware and mobile payment systems, and the resulting “big data,” present an opportunity to study human consumption patterns across space and time. Taking inspiration from animal behavior studies that have reported significant interconnections between animal spatio-temporal “foraging” behavior and their life outcomes, we analyzed a corpus of hundreds of thousands of human economic transactions and found that financial outcomes for individuals are intricately linked with their spatio-temporal traits like exploration, engagement, and elasticity. Such features yield models that are 30% to 49% better at predicting future financial difficulties than the comparable demographic models. PMID:26317339

  20. Relating triggering processes in lab experiments with earthquakes.

    NASA Astrophysics Data System (ADS)

    Baro Urbea, J.; Davidsen, J.; Kwiatek, G.; Charalampidou, E. M.; Goebel, T.; Stanchits, S. A.; Vives, E.; Dresen, G.

    2016-12-01

    Statistical relations such as Gutenberg-Richter's, Omori-Utsu's and the productivity of aftershocks were first observed in seismology, but are also common to other physical phenomena exhibiting avalanche dynamics such as solar flares, rock fracture, structural phase transitions and even stock market transactions. All these examples exhibit spatio-temporal correlations that can be explained as triggering processes: Instead of being activated as a response to external driving or fluctuations, some events are consequence of previous activity. Although different plausible explanations have been suggested in each system, the ubiquity of such statistical laws remains unknown. However, the case of rock fracture may exhibit a physical connection with seismology. It has been suggested that some features of seismology have a microscopic origin and are reproducible over a vast range of scales. This hypothesis has motivated mechanical experiments to generate artificial catalogues of earthquakes at a laboratory scale -so called labquakes- and under controlled conditions. Microscopic fractures in lab tests release elastic waves that are recorded as ultrasonic (kHz-MHz) acoustic emission (AE) events by means of piezoelectric transducers. Here, we analyse the statistics of labquakes recorded during the failure of small samples of natural rocks and artificial porous materials under different controlled compression regimes. Temporal and spatio-temporal correlations are identified in certain cases. Specifically, we distinguish between the background and triggered events, revealing some differences in the statistical properties. We fit the data to statistical models of seismicity. As a particular case, we explore the branching process approach simplified in the Epidemic Type Aftershock Sequence (ETAS) model. We evaluate the empirical spatio-temporal kernel of the model and investigate the physical origins of triggering. Our analysis of the focal mechanisms implies that the occurrence of the empirical laws extends well beyond purely frictional sliding events, in contrast to what is often assumed.

  1. Spatio-temporal processing of tactile stimuli in autistic children

    PubMed Central

    Wada, Makoto; Suzuki, Mayuko; Takaki, Akiko; Miyao, Masutomo; Spence, Charles; Kansaku, Kenji

    2014-01-01

    Altered multisensory integration has been reported in autism; however, little is known concerning how the autistic brain processes spatio-temporal information concerning tactile stimuli. We report a study in which a crossed-hands illusion was investigated in autistic children. Neurotypical individuals often experience a subjective reversal of temporal order judgments when their hands are stimulated while crossed, and the illusion is known to be acquired in early childhood. However, under those conditions where the somatotopic representation is given priority over the actual spatial location of the hands, such reversals may not occur. Here, we showed that a significantly smaller illusory reversal was demonstrated in autistic children than in neurotypical children. Furthermore, in an additional experiment, the young boys who had higher Autism Spectrum Quotient (AQ) scores generally showed a smaller crossed hands deficit. These results suggest that rudimentary spatio-temporal processing of tactile stimuli exists in autistic children, and the altered processing may interfere with the development of an external frame of reference in real-life situations. PMID:25100146

  2. Spatio-Temporal Trends and Identification of Correlated Variables with Water Quality for Drinking-Water Reservoirs

    PubMed Central

    Gu, Qing; Wang, Ke; Li, Jiadan; Ma, Ligang; Deng, Jinsong; Zheng, Kefeng; Zhang, Xiaobin; Sheng, Li

    2015-01-01

    It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006–2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS) technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes). According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources. PMID:26492263

  3. Calibration of a parsimonious distributed ecohydrological daily model in a data-scarce basin by exclusively using the spatio-temporal variation of NDVI

    NASA Astrophysics Data System (ADS)

    Ruiz-Pérez, Guiomar; Koch, Julian; Manfreda, Salvatore; Caylor, Kelly; Francés, Félix

    2017-12-01

    Ecohydrological modeling studies in developing countries, such as sub-Saharan Africa, often face the problem of extensive parametrical requirements and limited available data. Satellite remote sensing data may be able to fill this gap, but require novel methodologies to exploit their spatio-temporal information that could potentially be incorporated into model calibration and validation frameworks. The present study tackles this problem by suggesting an automatic calibration procedure, based on the empirical orthogonal function, for distributed ecohydrological daily models. The procedure is tested with the support of remote sensing data in a data-scarce environment - the upper Ewaso Ngiro river basin in Kenya. In the present application, the TETIS-VEG model is calibrated using only NDVI (Normalized Difference Vegetation Index) data derived from MODIS. The results demonstrate that (1) satellite data of vegetation dynamics can be used to calibrate and validate ecohydrological models in water-controlled and data-scarce regions, (2) the model calibrated using only satellite data is able to reproduce both the spatio-temporal vegetation dynamics and the observed discharge at the outlet and (3) the proposed automatic calibration methodology works satisfactorily and it allows for a straightforward incorporation of spatio-temporal data into the calibration and validation framework of a model.

  4. Spatio-Temporal Trends and Identification of Correlated Variables with Water Quality for Drinking-Water Reservoirs.

    PubMed

    Gu, Qing; Wang, Ke; Li, Jiadan; Ma, Ligang; Deng, Jinsong; Zheng, Kefeng; Zhang, Xiaobin; Sheng, Li

    2015-10-20

    It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006-2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS) technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes). According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources.

  5. Predictability of spatio-temporal patterns in a lattice of coupled FitzHugh–Nagumo oscillators

    PubMed Central

    Grace, Miriam; Hütt, Marc-Thorsten

    2013-01-01

    In many biological systems, variability of the components can be expected to outrank statistical fluctuations in the shaping of self-organized patterns. In pioneering work in the late 1990s, it was hypothesized that a drift of cellular parameters (along a ‘developmental path’), together with differences in cell properties (‘desynchronization’ of cells on the developmental path) can establish self-organized spatio-temporal patterns (in their example, spiral waves of cAMP in a colony of Dictyostelium discoideum cells) starting from a homogeneous state. Here, we embed a generic model of an excitable medium, a lattice of diffusively coupled FitzHugh–Nagumo oscillators, into a developmental-path framework. In this minimal model of spiral wave generation, we can now study the predictability of spatio-temporal patterns from cell properties as a function of desynchronization (or ‘spread’) of cells along the developmental path and the drift speed of cell properties on the path. As a function of drift speed and desynchronization, we observe systematically different routes towards fully established patterns, as well as strikingly different correlations between cell properties and pattern features. We show that the predictability of spatio-temporal patterns from cell properties contains important information on the pattern formation process as well as on the underlying dynamical system. PMID:23349439

  6. Spatio-temporal re-organization of replication foci accompanies replication domain consolidation during human pluripotent stem cell lineage specification

    PubMed Central

    Wilson, Korey A.; Elefanty, Andrew G.; Stanley, Edouard G.; Gilbert, David M.

    2016-01-01

    ABSTRACT Lineage specification of both mouse and human pluripotent stem cells (PSCs) is accompanied by spatial consolidation of chromosome domains and temporal consolidation of their replication timing. Replication timing and chromatin organization are both established during G1 phase at the timing decision point (TDP). Here, we have developed live cell imaging tools to track spatio-temporal replication domain consolidation during differentiation. First, we demonstrate that the fluorescence ubiquitination cell cycle indicator (Fucci) system is incapable of demarcating G1/S or G2/M cell cycle transitions. Instead, we employ a combination of fluorescent PCNA to monitor S phase progression, cytokinesis to demarcate mitosis, and fluorescent nucleotides to label early and late replication foci and track their 3D organization into sub-nuclear chromatin compartments throughout all cell cycle transitions. We find that, as human PSCs differentiate, the length of S phase devoted to replication of spatially clustered replication foci increases, coincident with global compartmentalization of domains into temporally clustered blocks of chromatin. Importantly, re-localization and anchorage of domains was completed prior to the onset of S phase, even in the context of an abbreviated PSC G1 phase. This approach can also be employed to investigate cell fate transitions in single PSCs, which could be seen to differentiate preferentially from G1 phase. Together, our results establish real-time, live-cell imaging methods for tracking cell cycle transitions during human PSC differentiation that can be applied to study chromosome domain consolidation and other aspects of lineage specification. PMID:27433885

  7. Spatio-temporal pattern analysis for evaluation of the spread of human infections with avian influenza A(H7N9) virus in China, 2013-2014.

    PubMed

    Dong, Wen; Yang, Kun; Xu, Quanli; Liu, Lin; Chen, Juan

    2017-10-24

    A large number (n = 460) of A(H7N9) human infections have been reported in China from March 2013 through December 2014, and H7N9 outbreaks in humans became an emerging issue for China health, which have caused numerous disease outbreaks in domestic poultry and wild bird populations, and threatened human health severely. The aims of this study were to investigate the directional trend of the epidemic and to identify the significant presence of spatial-temporal clustering of influenza A(H7N9) human cases between March 2013 and December 2014. Three distinct epidemic phases of A(H7N9) human infections were identified in this study. In each phase, standard deviational ellipse analysis was conducted to examine the directional trend of disease spreading, and retrospective space-time permutation scan statistic was then used to identify the spatio-temporal cluster patterns of H7N9 outbreaks in humans. The ever-changing location and the increasing size of the three identified standard deviational ellipses showed that the epidemic moved from east to southeast coast, and hence to some central regions, with a future epidemiological trend of continue dispersing to more central regions of China, and a few new human cases might also appear in parts of the western China. Furthermore, A(H7N9) human infections were clustering in space and time in the first two phases with five significant spatio-temporal clusters (p < 0.05), but there was no significant cluster identified in phase III. There was a new epidemiologic pattern that the decrease in significant spatio-temporal cluster of A(H7N9) human infections was accompanied with an obvious spatial expansion of the outbreaks during the study period, and identification of the spatio-temporal patterns of the epidemic can provide valuable insights for better understanding the spreading dynamics of the disease in China.

  8. Identification of Vibrotactile Patterns Encoding Obstacle Distance Information.

    PubMed

    Kim, Yeongmi; Harders, Matthias; Gassert, Roger

    2015-01-01

    Delivering distance information of nearby obstacles from sensors embedded in a white cane-in addition to the intrinsic mechanical feedback from the cane-can aid the visually impaired in ambulating independently. Haptics is a common modality for conveying such information to cane users, typically in the form of vibrotactile signals. In this context, we investigated the effect of tactile rendering methods, tactile feedback configurations and directions of tactile flow on the identification of obstacle distance. Three tactile rendering methods with temporal variation only, spatio-temporal variation and spatial/temporal/intensity variation were investigated for two vibration feedback configurations. Results showed a significant interaction between tactile rendering method and feedback configuration. Spatio-temporal variation generally resulted in high correct identification rates for both feedback configurations. In the case of the four-finger vibration, tactile rendering with spatial/temporal/intensity variation also resulted in high distance identification rate. Further, participants expressed their preference for the four-finger vibration over the single-finger vibration in a survey. Both preferred rendering methods with spatio-temporal variation and spatial/temporal/intensity variation for the four-finger vibration could convey obstacle distance information with low workload. Overall, the presented findings provide valuable insights and guidance for the design of haptic displays for electronic travel aids for the visually impaired.

  9. Spatio-temporal source cluster analysis reveals fronto-temporal auditory change processing differences within a shared autistic and schizotypal trait phenotype.

    PubMed

    Ford, Talitha C; Woods, Will; Crewther, David P

    2017-01-01

    Social Disorganisation (SD) is a shared autistic and schizotypal phenotype that is present in the subclinical population. Auditory processing deficits, particularly in mismatch negativity/field (MMN/F) have been reported across both spectrum disorders. This study investigates differences in MMN/F cortical spatio-temporal source activity between higher and lower quintiles of the SD spectrum. Sixteen low (9 female) and 19 high (9 female) SD subclinical adults (18-40years) underwent magnetoencephalography (MEG) during an MMF paradigm where standard tones (50ms) were interrupted by infrequent duration deviants (100ms). Spatio-temporal source cluster analysis with permutation testing revealed no difference between the groups in source activation to the standard tone. To the deviant tone however, there was significantly reduced right hemisphere fronto-temporal and insular cortex activation for the high SD group ( p = 0.038). The MMF, as a product of the cortical response to the deviant minus that to the standard, did not differ significantly between the high and low Social Disorganisation groups. These data demonstrate a deficit in right fronto-temporal processing of an auditory change for those with more of the shared SD phenotype, indicating that right fronto-temporal auditory processing may be associated with psychosocial functioning.

  10. Assessing spatio-temporal eruption forecasts in a monogenetic volcanic field

    NASA Astrophysics Data System (ADS)

    Bebbington, Mark S.

    2013-02-01

    Many spatio-temporal models have been proposed for forecasting the location and timing of the next eruption in a monogenetic volcanic field. These have almost invariably been fitted retrospectively. That is, the model has been tuned to all of the data, and hence an assessment of the goodness of fit has not been carried out on independent data. The low rate of eruptions in monogenetic fields means that there is not the opportunity to carry out a purely prospective test, as thousands of years would be required to accumulate the necessary data. This leaves open the possibility of a retrospective sequential test, where the parameters are calculated only on the basis of prior events and the resulting forecast compared statistically with the location and time of the next eruption. In general, events in volcanic fields are not dated with sufficient accuracy and precision to pursue this line of investigation; An exception is the Auckland Volcanic Field (New Zealand), consisting of c. 50 centers formed during the last c. 250 kyr, for which an age-order model exists in the form of a Monte Carlo sampling algorithm, facilitating repeated sequential testing. I examine a suite of spatial, temporal and spatio-temporal hazard models, comparing the degree of fit, and attempt to draw lessons from how and where each model is particularly successful or unsuccessful. A relatively simple (independent) combination of a renewal model (temporal term) and a spatially uniform ellipse (spatial term) performs as well as any other model. Both avoid over fitting the data, and hence large errors, when the spatio-temporal occurrence pattern changes.

  11. Spatio-temporal cerebral blood flow perfusion patterns in cortical spreading depression

    NASA Astrophysics Data System (ADS)

    Verisokin, Andrey Yu.; Verveyko, Darya V.; Postnov, Dmitry E.

    2017-04-01

    Cortical spreading depression (CSD) is an example of one of the most common abnormalities in biophysical brain functioning. Despite the fact that there are many mathematical models describing the cortical spreading depression (CSD), most of them do not take into consideration the role of redistribution of cerebral blood flow (CBF), that results in the formation of spatio-temporal patterns. The paper presents a mathematical model, which successfully explains the CBD role in the CSD process. Numerical study of this model has revealed the formation of stationary dissipative structures, visually analogous to Turing structures. However, the mechanism of their formation is not diffusion. We show these structures occur due to another type of spatial coupling, that is related to tissue perfusion rate. The proposed model predicts that at similar state of neurons the distribution of blood flow and oxygenation may by different. Currently, this effect is not taken into account when the Blood oxygen-level dependent (BOLD) contrast imaging used in functional magnetic resonance imaging (fMRI). Thus, the diagnosis on the BOLD signal can be ambiguous. We believe that our results can be used in the future for a more correct interpretation of the data obtained with fMRI, NIRS and other similar methods for research of the brain activity.

  12. Impact of large-scale atmospheric refractive structures on optical wave propagation

    NASA Astrophysics Data System (ADS)

    Nunalee, Christopher G.; He, Ping; Basu, Sukanta; Vorontsov, Mikhail A.; Fiorino, Steven T.

    2014-10-01

    Conventional techniques used to model optical wave propagation through the Earth's atmosphere typically as- sume flow fields based on various empirical relationships. Unfortunately, these synthetic refractive index fields do not take into account the influence of transient macroscale and mesoscale (i.e. larger than turbulent microscale) atmospheric phenomena. Nevertheless, a number of atmospheric structures that are characterized by various spatial and temporal scales exist which have the potential to significantly impact refractive index fields, thereby resulting dramatic impacts on optical wave propagation characteristics. In this paper, we analyze a subset of spatio-temporal dynamics found to strongly affect optical waves propagating through these atmospheric struc- tures. Analysis of wave propagation was performed in the geometrical optics approximation using a standard ray tracing technique. Using a numerical weather prediction (NWP) approach, we simulate multiple realistic atmospheric events (e.g., island wakes, low-level jets, etc.), and estimate the associated refractivity fields prior to performing ray tracing simulations. By coupling NWP model output with ray tracing simulations, we demon- strate the ability to quantitatively assess the potential impacts of coherent atmospheric phenomena on optical ray propagation. Our results show a strong impact of spatio-temporal characteristics of the refractive index field on optical ray trajectories. Such correlations validate the effectiveness of NWP models as they offer a more comprehensive representation of atmospheric refractivity fields compared to conventional methods based on the assumption of horizontal homogeneity.

  13. Unveiling TRPV1 Spatio-Temporal Organization in Live Cell Membranes

    PubMed Central

    Storti, Barbara; Di Rienzo, Carmine; Cardarelli, Francesco; Bizzarri, Ranieri; Beltram, Fabio

    2015-01-01

    Transient Receptor Potential Vanilloid 1 (TRPV1) is a non-selective cation channel that integrates several stimuli into nociception and neurogenic inflammation. Here we investigated the subtle TRPV1 interplay with candidate membrane partners in live cells by a combination of spatio-temporal fluctuation techniques and fluorescence resonance energy transfer (FRET) imaging. We show that TRPV1 is split into three populations with fairly different molecular properties: one binding to caveolin-1 and confined into caveolar structures, one actively guided by microtubules through selective binding, and one which diffuses freely and is not directly implicated in regulating receptor functionality. The emergence of caveolin-1 as a new interactor of TRPV1 evokes caveolar endocytosis as the main desensitization pathway of TRPV1 receptor, while microtubule binding agrees with previous data suggesting the receptor stabilization in functional form by these cytoskeletal components. Our results shed light on the hitherto unknown relationships between spatial organization and TRPV1 function in live-cell membranes. PMID:25764349

  14. Mapping historical landscape changes with the use of a space-time cube

    NASA Astrophysics Data System (ADS)

    Bogucka, Edyta P.; Jahnke, Mathias

    2018-05-01

    In this contribution, we introduce geographic concepts in the humanities and present the results of a spacetime visualization of ancient buildings over the last centuries. The techniques and approaches used were based on cartographic research to visualize spatio-temporal information. As a case study, we applied cartographic styling techniques to a model of the Royal Castle in Warsaw and its different spatial elements, which were constructed and destroyed during their eventful history. In our case, the space-time cube approach seems to be the most suitable representation of this spatio-temporal information. Therefore, we digitized the different footprints of the castle during the ancient centuries as well as the landscape structure around, and annotated them with monarchies, epochs and time. During the digitization process, we had to cope with difficulties like sources in various scales and map projections, which resulted in varying accuracies. The results were stored in KML to support a wide variety of visualization platforms.

  15. Spatio-temporal shaping of photocathode laser pulses for linear electron accelerators

    NASA Astrophysics Data System (ADS)

    Mironov, S. Yu; Andrianov, A. V.; Gacheva, E. I.; Zelenogorskii, V. V.; Potemkin, A. K.; Khazanov, E. A.; Boonpornprasert, P.; Gross, M.; Good, J.; Isaev, I.; Kalantaryan, D.; Kozak, T.; Krasilnikov, M.; Qian, H.; Li, X.; Lishilin, O.; Melkumyan, D.; Oppelt, A.; Renier, Y.; Rublack, T.; Felber, M.; Huck, H.; Chen, Y.; Stephan, F.

    2017-10-01

    Methods for the spatio-temporal shaping of photocathode laser pulses for generating high brightness electron beams in modern linear accelerators are discussed. The possibility of forming triangular laser pulses and quasi-ellipsoidal structures is analyzed. The proposed setup for generating shaped laser pulses was realised at the Institute of Applied Physics (IAP) of the Russian Academy of Sciences (RAS). Currently, a prototype of the pulse-shaping laser system is installed at the Photo Injector Test facility at DESY, Zeuthen site (PITZ). Preliminary experiments on electron beam generation using ultraviolet laser pulses from this system were carried out at PITZ, in which electron bunches with a 0.5-nC charge and a transverse normalized emittance of 1.1 mm mrad were obtained. A new scheme for the three-dimensional shaping of laser beams using a volume Bragg profiled grating is proposed at IAP RAS and is currently being tested for further electron beam generation experiments at the PITZ photoinjector.

  16. Decomposition of the complex system into nonlinear spatio-temporal modes: algorithm and application to climate data mining

    NASA Astrophysics Data System (ADS)

    Feigin, Alexander; Gavrilov, Andrey; Loskutov, Evgeny; Mukhin, Dmitry

    2015-04-01

    Proper decomposition of the complex system into well separated "modes" is a way to reveal and understand the mechanisms governing the system behaviour as well as discover essential feedbacks and nonlinearities. The decomposition is also natural procedure that provides to construct adequate and concurrently simplest models of both corresponding sub-systems, and of the system in whole. In recent works two new methods of decomposition of the Earth's climate system into well separated modes were discussed. The first method [1-3] is based on the MSSA (Multichannel Singular Spectral Analysis) [4] for linear expanding vector (space-distributed) time series and makes allowance delayed correlations of the processes recorded in spatially separated points. The second one [5-7] allows to construct nonlinear dynamic modes, but neglects delay of correlations. It was demonstrated [1-3] that first method provides effective separation of different time scales, but prevent from correct reduction of data dimension: slope of variance spectrum of spatio-temporal empirical orthogonal functions that are "structural material" for linear spatio-temporal modes, is too flat. The second method overcomes this problem: variance spectrum of nonlinear modes falls essentially sharply [5-7]. However neglecting time-lag correlations brings error of mode selection that is uncontrolled and increases with growth of mode time scale. In the report we combine these two methods in such a way that the developed algorithm allows constructing nonlinear spatio-temporal modes. The algorithm is applied for decomposition of (i) multi hundreds years globally distributed data generated by the INM RAS Coupled Climate Model [8], and (ii) 156 years time series of SST anomalies distributed over the globe [9]. We compare efficiency of different methods of decomposition and discuss the abilities of nonlinear spatio-temporal modes for construction of adequate and concurrently simplest ("optimal") models of climate systems. 1. Feigin A.M., Mukhin D., Gavrilov A., Volodin E.M., and Loskutov E.M. (2013) "Separation of spatial-temporal patterns ("climatic modes") by combined analysis of really measured and generated numerically vector time series", AGU 2013 Fall Meeting, Abstract NG33A-1574. 2. Alexander Feigin, Dmitry Mukhin, Andrey Gavrilov, Evgeny Volodin, and Evgeny Loskutov (2014) "Approach to analysis of multiscale space-distributed time series: separation of spatio-temporal modes with essentially different time scales", Geophysical Research Abstracts, Vol. 16, EGU2014-6877. 3. Dmitry Mukhin, Dmitri Kondrashov, Evgeny Loskutov, Andrey Gavrilov, Alexander Feigin, and Michael Ghil (2014) "Predicting critical transitions in ENSO models, Part II: Spatially dependent models", Journal of Climate (accepted, doi: 10.1175/JCLI-D-14-00240.1). 4. Ghil, M., R. M. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, et al. (2002) "Advanced spectral methods for climatic time series", Rev. Geophys. 40(1), 3.1-3.41. 5. Dmitry Mukhin, Andrey Gavrilov, Evgeny M Loskutov and Alexander M Feigin (2014) "Nonlinear Decomposition of Climate Data: a New Method for Reconstruction of Dynamical Modes", AGU 2014 Fall Meeting, Abstract NG43A-3752. 6. Andrey Gavrilov, Dmitry Mukhin, Evgeny Loskutov, and Alexander Feigin (2015) "Empirical decomposition of climate data into nonlinear dynamic modes", Geophysical Research Abstracts, Vol. 17, EGU2015-627. 7. Dmitry Mukhin, Andrey Gavrilov, Evgeny Loskutov, Alexander Feigin, and Juergen Kurths (2015) "Reconstruction of principal dynamical modes from climatic variability: nonlinear approach", Geophysical Research Abstracts, Vol. 17, EGU2015-5729. 8. http://83.149.207.89/GCM_DATA_PLOTTING/GCM_INM_DATA_XY_en.htm. 9. http://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/.EXTENDED/.v2/.ssta/.

  17. Low-rank matrix decomposition and spatio-temporal sparse recovery for STAP radar

    DOE PAGES

    Sen, Satyabrata

    2015-08-04

    We develop space-time adaptive processing (STAP) methods by leveraging the advantages of sparse signal processing techniques in order to detect a slowly-moving target. We observe that the inherent sparse characteristics of a STAP problem can be formulated as the low-rankness of clutter covariance matrix when compared to the total adaptive degrees-of-freedom, and also as the sparse interference spectrum on the spatio-temporal domain. By exploiting these sparse properties, we propose two approaches for estimating the interference covariance matrix. In the first approach, we consider a constrained matrix rank minimization problem (RMP) to decompose the sample covariance matrix into a low-rank positivemore » semidefinite and a diagonal matrix. The solution of RMP is obtained by applying the trace minimization technique and the singular value decomposition with matrix shrinkage operator. Our second approach deals with the atomic norm minimization problem to recover the clutter response-vector that has a sparse support on the spatio-temporal plane. We use convex relaxation based standard sparse-recovery techniques to find the solutions. With extensive numerical examples, we demonstrate the performances of proposed STAP approaches with respect to both the ideal and practical scenarios, involving Doppler-ambiguous clutter ridges, spatial and temporal decorrelation effects. As a result, the low-rank matrix decomposition based solution requires secondary measurements as many as twice the clutter rank to attain a near-ideal STAP performance; whereas the spatio-temporal sparsity based approach needs a considerably small number of secondary data.« less

  18. Spatio-Temporal Process Variability in Watershed Scale Wetland Restoration Planning

    NASA Astrophysics Data System (ADS)

    Evenson, G. R.

    2012-12-01

    Watershed scale restoration decision making processes are increasingly informed by quantitative methodologies providing site-specific restoration recommendations - sometimes referred to as "systematic planning." The more advanced of these methodologies are characterized by a coupling of search algorithms and ecological models to discover restoration plans that optimize environmental outcomes. Yet while these methods have exhibited clear utility as decision support toolsets, they may be critiqued for flawed evaluations of spatio-temporally variable processes fundamental to watershed scale restoration. Hydrologic and non-hydrologic mediated process connectivity along with post-restoration habitat dynamics, for example, are commonly ignored yet known to appreciably affect restoration outcomes. This talk will present a methodology to evaluate such spatio-temporally complex processes in the production of watershed scale wetland restoration plans. Using the Tuscarawas Watershed in Eastern Ohio as a case study, a genetic algorithm will be coupled with the Soil and Water Assessment Tool (SWAT) to reveal optimal wetland restoration plans as measured by their capacity to maximize nutrient reductions. Then, a so-called "graphical" representation of the optimization problem will be implemented in-parallel to promote hydrologic and non-hydrologic mediated connectivity amongst existing wetlands and sites selected for restoration. Further, various search algorithm mechanisms will be discussed as a means of accounting for temporal complexities such as post-restoration habitat dynamics. Finally, generalized patterns of restoration plan optimality will be discussed as an alternative and possibly superior decision support toolset given the complexity and stochastic nature of spatio-temporal process variability.

  19. A class of cellular automata modeling winnerless competition

    NASA Astrophysics Data System (ADS)

    Afraimovich, V.; Ordaz, F. C.; Urías, J.

    2002-06-01

    Neural units introduced by Rabinovich et al. ("Sensory coding with dynamically competitive networks," UCSD and CIT, February 1999) motivate a class of cellular automata (CA) where spatio-temporal encoding is feasible. The spatio-temporal information capacity of a CA is estimated by the information capacity of the attractor set, which happens to be finitely specified. Two-dimensional CA are studied in detail. An example is given for which the attractor is not a subshift.

  20. Visual pattern recognition based on spatio-temporal patterns of retinal ganglion cells’ activities

    PubMed Central

    Jing, Wei; Liu, Wen-Zhong; Gong, Xin-Wei; Gong, Hai-Qing

    2010-01-01

    Neural information is processed based on integrated activities of relevant neurons. Concerted population activity is one of the important ways for retinal ganglion cells to efficiently organize and process visual information. In the present study, the spike activities of bullfrog retinal ganglion cells in response to three different visual patterns (checker-board, vertical gratings and horizontal gratings) were recorded using multi-electrode arrays. A measurement of subsequence distribution discrepancy (MSDD) was applied to identify the spatio-temporal patterns of retinal ganglion cells’ activities in response to different stimulation patterns. The results show that the population activity patterns were different in response to different stimulation patterns, such difference in activity pattern was consistently detectable even when visual adaptation occurred during repeated experimental trials. Therefore, the stimulus pattern can be reliably discriminated according to the spatio-temporal pattern of the neuronal activities calculated using the MSDD algorithm. PMID:21886670

  1. Learning of spatio-temporal codes in a coupled oscillator system.

    PubMed

    Orosz, Gábor; Ashwin, Peter; Townley, Stuart

    2009-07-01

    In this paper, we consider a learning strategy that allows one to transmit information between two coupled phase oscillator systems (called teaching and learning systems) via frequency adaptation. The dynamics of these systems can be modeled with reference to a number of partially synchronized cluster states and transitions between them. Forcing the teaching system by steady but spatially nonhomogeneous inputs produces cyclic sequences of transitions between the cluster states, that is, information about inputs is encoded via a "winnerless competition" process into spatio-temporal codes. The large variety of codes can be learned by the learning system that adapts its frequencies to those of the teaching system. We visualize the dynamics using "weighted order parameters (WOPs)" that are analogous to "local field potentials" in neural systems. Since spatio-temporal coding is a mechanism that appears in olfactory systems, the developed learning rules may help to extract information from these neural ensembles.

  2. Towards human behavior recognition based on spatio temporal features and support vector machines

    NASA Astrophysics Data System (ADS)

    Ghabri, Sawsen; Ouarda, Wael; Alimi, Adel M.

    2017-03-01

    Security and surveillance are vital issues in today's world. The recent acts of terrorism have highlighted the urgent need for efficient surveillance. There is indeed a need for an automated system for video surveillance which can detect identity and activity of person. In this article, we propose a new paradigm to recognize an aggressive human behavior such as boxing action. Our proposed system for human activity detection includes the use of a fusion between Spatio Temporal Interest Point (STIP) and Histogram of Oriented Gradient (HoG) features. The novel feature called Spatio Temporal Histogram Oriented Gradient (STHOG). To evaluate the robustness of our proposed paradigm with a local application of HoG technique on STIP points, we made experiments on KTH human action dataset based on Multi Class Support Vector Machines classification. The proposed scheme outperforms basic descriptors like HoG and STIP to achieve 82.26% us an accuracy value of classification rate.

  3. Real time eye tracking using Kalman extended spatio-temporal context learning

    NASA Astrophysics Data System (ADS)

    Munir, Farzeen; Minhas, Fayyaz ul Amir Asfar; Jalil, Abdul; Jeon, Moongu

    2017-06-01

    Real time eye tracking has numerous applications in human computer interaction such as a mouse cursor control in a computer system. It is useful for persons with muscular or motion impairments. However, tracking the movement of the eye is complicated by occlusion due to blinking, head movement, screen glare, rapid eye movements, etc. In this work, we present the algorithmic and construction details of a real time eye tracking system. Our proposed system is an extension of Spatio-Temporal context learning through Kalman Filtering. Spatio-Temporal Context Learning offers state of the art accuracy in general object tracking but its performance suffers due to object occlusion. Addition of the Kalman filter allows the proposed method to model the dynamics of the motion of the eye and provide robust eye tracking in cases of occlusion. We demonstrate the effectiveness of this tracking technique by controlling the computer cursor in real time by eye movements.

  4. Interocular suppression in normal and amblyopic vision: spatio-temporal properties.

    PubMed

    Huang, Pi-Chun; Baker, Daniel H; Hess, Robert F

    2012-10-31

    We measured the properties of interocular suppression in strabismic amblyopes and compared these to dichoptic masking in binocularly normal observers. We used a dichoptic version of the well-established probed-sinewave paradigm that measured sensitivity to a brief target stimulus (one of four letters to be discriminated) in the amblyopic eye at different times relative to a suppression-inducing mask in the fixing eye. This was done using both sinusoidal steady state and transient approaches. The suppression-inducing masks were either modulations of luminance or contrast (full field, just overlaying the target, or just surrounding the target). Our results were interpreted using a descriptive model that included contrast gain control and spatio-temporal filtering prior to excitatory binocular combination. The suppression we measured, other than in magnitude, was not fundamentally different from normal dichoptic masking: lowpass spatio-temporal properties with similar contributions from both surround and overlay suppression.

  5. Life-stage differences in spatial genetic structure in an irruptive forest insect: implications for dispersal and spatial synchrony

    Treesearch

    Patrick M.A. James; Barry Cooke; Bryan M.T. Brunet; Lisa M. Lumley; Felix A.H. Sperling; Marie-Josee Fortin; Vanessa S. Quinn; Brian R. Sturtevant

    2015-01-01

    Dispersal determines the flux of individuals, energy and information and is therefore a key determinant of ecological and evolutionary dynamics. Yet, it remains difficult to quantify its importance relative to other factors. This is particularly true in cyclic populations in which demography, drift and dispersal contribute to spatio-temporal variability in genetic...

  6. Micro-epidemiological structuring of Plasmodium falciparum parasite populations in regions with varying transmission intensities in Africa.

    PubMed Central

    Omedo, Irene; Mogeni, Polycarp; Bousema, Teun; Rockett, Kirk; Amambua-Ngwa, Alfred; Oyier, Isabella; C. Stevenson, Jennifer; Y. Baidjoe, Amrish; de Villiers, Etienne P.; Fegan, Greg; Ross, Amanda; Hubbart, Christina; Jeffreys, Anne; N. Williams, Thomas; Kwiatkowski, Dominic; Bejon, Philip

    2017-01-01

    Background: The first models of malaria transmission assumed a completely mixed and homogeneous population of parasites.  Recent models include spatial heterogeneity and variably mixed populations. However, there are few empiric estimates of parasite mixing with which to parametize such models. Methods: Here we genotype 276 single nucleotide polymorphisms (SNPs) in 5199 P. falciparum isolates from two Kenyan sites (Kilifi county and Rachuonyo South district) and one Gambian site (Kombo coastal districts) to determine the spatio-temporal extent of parasite mixing, and use Principal Component Analysis (PCA) and linear regression to examine the relationship between genetic relatedness and distance in space and time for parasite pairs. Results: Using 107, 177 and 82 SNPs that were successfully genotyped in 133, 1602, and 1034 parasite isolates from The Gambia, Kilifi and Rachuonyo South district, respectively, we show that there are no discrete geographically restricted parasite sub-populations, but instead we see a diffuse spatio-temporal structure to parasite genotypes.  Genetic relatedness of sample pairs is predicted by relatedness in space and time. Conclusions: Our findings suggest that targeted malaria control will benefit the surrounding community, but unfortunately also that emerging drug resistance will spread rapidly through the population. PMID:28612053

  7. Spatio-temporal mapping of Madagascar's Malaria Indicator Survey results to assess Plasmodium falciparum endemicity trends between 2011 and 2016.

    PubMed

    Kang, Su Yun; Battle, Katherine E; Gibson, Harry S; Ratsimbasoa, Arsène; Randrianarivelojosia, Milijaona; Ramboarina, Stéphanie; Zimmerman, Peter A; Weiss, Daniel J; Cameron, Ewan; Gething, Peter W; Howes, Rosalind E

    2018-05-23

    Reliable measures of disease burden over time are necessary to evaluate the impact of interventions and assess sub-national trends in the distribution of infection. Three Malaria Indicator Surveys (MISs) have been conducted in Madagascar since 2011. They provide a valuable resource to assess changes in burden that is complementary to the country's routine case reporting system. A Bayesian geostatistical spatio-temporal model was developed in an integrated nested Laplace approximation framework to map the prevalence of Plasmodium falciparum malaria infection among children from 6 to 59 months in age across Madagascar for 2011, 2013 and 2016 based on the MIS datasets. The model was informed by a suite of environmental and socio-demographic covariates known to influence infection prevalence. Spatio-temporal trends were quantified across the country. Despite a relatively small decrease between 2013 and 2016, the prevalence of malaria infection has increased substantially in all areas of Madagascar since 2011. In 2011, almost half (42.3%) of the country's population lived in areas of very low malaria risk (<1% parasite prevalence), but by 2016, this had dropped to only 26.7% of the population. Meanwhile, the population in high transmission areas (prevalence >20%) increased from only 2.2% in 2011 to 9.2% in 2016. A comparison of the model-based estimates with the raw MIS results indicates there was an underestimation of the situation in 2016, since the raw figures likely associated with survey timings were delayed until after the peak transmission season. Malaria remains an important health problem in Madagascar. The monthly and annual prevalence maps developed here provide a way to evaluate the magnitude of change over time, taking into account variability in survey input data. These methods can contribute to monitoring sub-national trends of malaria prevalence in Madagascar as the country aims for geographically progressive elimination.

  8. Spatio-temporal dynamics and laterality effects of face inversion, feature presence and configuration, and face outline

    PubMed Central

    Marinkovic, Ksenija; Courtney, Maureen G.; Witzel, Thomas; Dale, Anders M.; Halgren, Eric

    2014-01-01

    Although a crucial role of the fusiform gyrus (FG) in face processing has been demonstrated with a variety of methods, converging evidence suggests that face processing involves an interactive and overlapping processing cascade in distributed brain areas. Here we examine the spatio-temporal stages and their functional tuning to face inversion, presence and configuration of inner features, and face contour in healthy subjects during passive viewing. Anatomically-constrained magnetoencephalography (aMEG) combines high-density whole-head MEG recordings and distributed source modeling with high-resolution structural MRI. Each person's reconstructed cortical surface served to constrain noise-normalized minimum norm inverse source estimates. The earliest activity was estimated to the occipital cortex at ~100 ms after stimulus onset and was sensitive to an initial coarse level visual analysis. Activity in the right-lateralized ventral temporal area (inclusive of the FG) peaked at ~160 ms and was largest to inverted faces. Images containing facial features in the veridical and rearranged configuration irrespective of the facial outline elicited intermediate level activity. The M160 stage may provide structural representations necessary for downstream distributed areas to process identity and emotional expression. However, inverted faces additionally engaged the left ventral temporal area at ~180 ms and were uniquely subserved by bilateral processing. This observation is consistent with the dual route model and spared processing of inverted faces in prosopagnosia. The subsequent deflection, peaking at ~240 ms in the anterior temporal areas bilaterally, was largest to normal, upright faces. It may reflect initial engagement of the distributed network subserving individuation and familiarity. These results support dynamic models suggesting that processing of unfamiliar faces in the absence of a cognitive task is subserved by a distributed and interactive neural circuit. PMID:25426044

  9. Spatio-temporal modelling for assessing air pollution in Santiago de Chile

    NASA Astrophysics Data System (ADS)

    Nicolis, Orietta; Camaño, Christian; Mařın, Julio C.; Sahu, Sujit K.

    2017-01-01

    In this work, we propose a space-time approach for studying the PM2.5 concentration in the city of Santiago de Chile. In particular, we apply the autoregressive hierarchical model proposed by [1] using the PM2.5 observations collected by a monitoring network as a response variable and numerical weather forecasts from the Weather Research and Forecasting (WRF) model as covariate together with spatial and temporal (periodic) components. The approach is able to provide short-term spatio-temporal predictions of PM2.5 concentrations on a fine spatial grid (at 1km × 1km horizontal resolution.)

  10. Conformable actively multiplexed high-density surface electrode array for brain interfacing

    DOEpatents

    Rogers, John; Kim, Dae-Hyeong; Litt, Brian; Viventi, Jonathan

    2015-01-13

    Provided are methods and devices for interfacing with brain tissue, specifically for monitoring and/or actuation of spatio-temporal electrical waveforms. The device is conformable having a high electrode density and high spatial and temporal resolution. A conformable substrate supports a conformable electronic circuit and a barrier layer. Electrodes are positioned to provide electrical contact with a brain tissue. A controller monitors or actuates the electrodes, thereby interfacing with the brain tissue. In an aspect, methods are provided to monitor or actuate spatio-temporal electrical waveform over large brain surface areas by any of the devices disclosed herein.

  11. Highly efficient intracellular transduction in three-dimensional gradients for programming cell fate.

    PubMed

    Eltaher, Hoda M; Yang, Jing; Shakesheff, Kevin M; Dixon, James E

    2016-09-01

    Fundamental behaviour such as cell fate, growth and death are mediated through the control of key genetic transcriptional regulators. These regulators are activated or repressed by the integration of multiple signalling molecules in spatio-temporal gradients. Engineering these gradients is complex but considered key in controlling tissue formation in regenerative medicine approaches. Direct programming of cells using exogenously delivered transcription factors can by-pass growth factor complexity but there is still a requirement to deliver such activity spatio-temporally. We previously developed a technology termed GAG-binding enhanced transduction (GET) to efficiently deliver a variety of cargoes intracellularly using GAG-binding domains to promote cell targeting, and cell penetrating peptides (CPPs) to allow cell entry. Herein we demonstrate that GET can be used in a three dimensional (3D) hydrogel matrix to produce gradients of intracellular transduction of mammalian cells. Using a compartmentalised diffusion model with a source-gel-sink (So-G-Si) assembly, we created gradients of reporter proteins (mRFP1-tagged) and a transcription factor (TF, myogenic master regulator MyoD) and showed that GET can be used to deliver molecules into cells spatio-temporally by monitoring intracellular transduction and gene expression programming as a function of location and time. The ability to spatio-temporally control the intracellular delivery of functional proteins will allow the establishment of gradients of cell programming in hydrogels and approaches to direct cellular behaviour for many regenerative medicine applications. Regenerative medicine aims to reform functional biological tissues by controlling cell behaviour. Growth factors (GFs) are soluble cues presented to cells in spatio-temporal gradients and play important roles programming cell fate and gene expression. The efficient transduction of cells by GET (Glycosaminoglycan-enhanced transducing)-tagged transcription factors (TFs) can be used to by-pass GF-stimulation and directly program cells. For the first time we demonstrate diffusion of GET proteins generate stable protein transduction gradients. We demonstrated the feasibility of creating spatio-temporal gradients of GET-MyoD and show differential programing of myogenic differentiation. We believe that GET could provide a powerful tool to program cell behaviour using gradients of recombinant proteins that allow tissue generation directly by programming gene expression with TFs. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. A Spatio-Temporal Understanding of Growth Regulation during the Salt Stress Response in Arabidopsis[W

    PubMed Central

    Geng, Yu; Wu, Rui; Wee, Choon Wei; Xie, Fei; Wei, Xueliang; Chan, Penny Mei Yeen; Tham, Cliff; Duan, Lina; Dinneny, José R.

    2013-01-01

    Plant environmental responses involve dynamic changes in growth and signaling, yet little is understood as to how progress through these events is regulated. Here, we explored the phenotypic and transcriptional events involved in the acclimation of the Arabidopsis thaliana seedling root to a rapid change in salinity. Using live-imaging analysis, we show that growth is dynamically regulated with a period of quiescence followed by recovery then homeostasis. Through the use of a new high-resolution spatio-temporal transcriptional map, we identify the key hormone signaling pathways that regulate specific transcriptional programs, predict their spatial domain of action, and link the activity of these pathways to the regulation of specific phases of growth. We use tissue-specific approaches to suppress the abscisic acid (ABA) signaling pathway and demonstrate that ABA likely acts in select tissue layers to regulate spatially localized transcriptional programs and promote growth recovery. Finally, we show that salt also regulates many tissue-specific and time point–specific transcriptional responses that are expected to modify water transport, Casparian strip formation, and protein translation. Together, our data reveal a sophisticated assortment of regulatory programs acting together to coordinate spatially patterned biological changes involved in the immediate and long-term response to a stressful shift in environment. PMID:23898029

  13. Climate change and human infectious diseases: A synthesis of research findings from global and spatio-temporal perspectives.

    PubMed

    Liang, Lu; Gong, Peng

    2017-06-01

    The life cycles and transmission of most infectious agents are inextricably linked with climate. In spite of a growing level of interest and progress in determining climate change effects on infectious disease, the debate on the potential health outcomes remains polarizing, which is partly attributable to the varying effects of climate change, different types of pathogen-host systems, and spatio-temporal scales. We summarize the published evidence and show that over the past few decades, the reported negative or uncertain responses of infectious diseases to climate change has been growing. A feature of the research tendency is the focus on temperature and insect-borne diseases at the local and decadal scale. Geographically, regions experiencing higher temperature anomalies have been given more research attention; unfortunately, the Earth's most vulnerable regions to climate variability and extreme events have been less studied. From local to global scales, agreements on the response of infectious diseases to climate change tend to converge. So far, an abundance of findings have been based on statistical methods, with the number of mechanistic studies slowly growing. Research gaps and trends identified in this study should be addressed in the future. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. From Maximum Entropy Models to Non-Stationarity and Irreversibility

    NASA Astrophysics Data System (ADS)

    Cofre, Rodrigo; Cessac, Bruno; Maldonado, Cesar

    The maximum entropy distribution can be obtained from a variational principle. This is important as a matter of principle and for the purpose of finding approximate solutions. One can exploit this fact to obtain relevant information about the underlying stochastic process. We report here in recent progress in three aspects to this approach.1- Biological systems are expected to show some degree of irreversibility in time. Based on the transfer matrix technique to find the spatio-temporal maximum entropy distribution, we build a framework to quantify the degree of irreversibility of any maximum entropy distribution.2- The maximum entropy solution is characterized by a functional called Gibbs free energy (solution of the variational principle). The Legendre transformation of this functional is the rate function, which controls the speed of convergence of empirical averages to their ergodic mean. We show how the correct description of this functional is determinant for a more rigorous characterization of first and higher order phase transitions.3- We assess the impact of a weak time-dependent external stimulus on the collective statistics of spiking neuronal networks. We show how to evaluate this impact on any higher order spatio-temporal correlation. RC supported by ERC advanced Grant ``Bridges'', BC: KEOPS ANR-CONICYT, Renvision and CM: CONICYT-FONDECYT No. 3140572.

  15. Evolving spatio-temporal data machines based on the NeuCube neuromorphic framework: Design methodology and selected applications.

    PubMed

    Kasabov, Nikola; Scott, Nathan Matthew; Tu, Enmei; Marks, Stefan; Sengupta, Neelava; Capecci, Elisa; Othman, Muhaini; Doborjeh, Maryam Gholami; Murli, Norhanifah; Hartono, Reggio; Espinosa-Ramos, Josafath Israel; Zhou, Lei; Alvi, Fahad Bashir; Wang, Grace; Taylor, Denise; Feigin, Valery; Gulyaev, Sergei; Mahmoud, Mahmoud; Hou, Zeng-Guang; Yang, Jie

    2016-06-01

    The paper describes a new type of evolving connectionist systems (ECOS) called evolving spatio-temporal data machines based on neuromorphic, brain-like information processing principles (eSTDM). These are multi-modular computer systems designed to deal with large and fast spatio/spectro temporal data using spiking neural networks (SNN) as major processing modules. ECOS and eSTDM in particular can learn incrementally from data streams, can include 'on the fly' new input variables, new output class labels or regression outputs, can continuously adapt their structure and functionality, can be visualised and interpreted for new knowledge discovery and for a better understanding of the data and the processes that generated it. eSTDM can be used for early event prediction due to the ability of the SNN to spike early, before whole input vectors (they were trained on) are presented. A framework for building eSTDM called NeuCube along with a design methodology for building eSTDM using this is presented. The implementation of this framework in MATLAB, Java, and PyNN (Python) is presented. The latter facilitates the use of neuromorphic hardware platforms to run the eSTDM. Selected examples are given of eSTDM for pattern recognition and early event prediction on EEG data, fMRI data, multisensory seismic data, ecological data, climate data, audio-visual data. Future directions are discussed, including extension of the NeuCube framework for building neurogenetic eSTDM and also new applications of eSTDM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Walking variations in healthy women wearing high-heeled shoes: Shoe size and heel height effects.

    PubMed

    Di Sipio, Enrica; Piccinini, Giulia; Pecchioli, Cristiano; Germanotta, Marco; Iacovelli, Chiara; Simbolotti, Chiara; Cruciani, Arianna; Padua, Luca

    2018-05-03

    The use of high heels is widespread in modern society in professional and social contests. Literature showed that wearing high heels can produce injurious effects on several structures from the toes to the pelvis. No studies considered shoe length as an impacting factor on walking with high heels. The aim of this study is to evaluate walking parameters in young healthy women wearing high heels, considering not only the heel height but also the foot/shoe size. We evaluate spatio-temporal, kinematic and kinetic data, collected using a 8-camera motion capture system, in a sample of 21 healthy women in three different walking conditions: 1) barefoot, 2) wearing 12 cm high heel shoes independently from shoe size, and 3) wearing shoes with heel height based on shoe size, keeping the ankles' plantar flexion angle constant. The main outcome measures were: spatio-temporal parameters, gait harmony measurement, range of motion, flexion and extension maximal values, power and moment of lower limb joints. Comparing the three walking conditions, the Mixed Anova test, showed significant differences between both high heeled conditions (variable and constant height) and barefoot in spatio-temporal, kinematic and kinetic parameters. Regardless of the shoe size, both heeled conditions presented a similar gait pattern and were responsible for negative effects on walking parameters. Considering our results and the relevance of the heel height, further studies are needed to identify a threshold, over which it is possible to observe that wearing high heels could cause harmful effects, independently from the foot/shoe size. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Climate-driven mathematical models to understand the spatio-temporal heterogeneity of a chikungunya outbreak in the presence of widespread asymptomatic infection

    NASA Astrophysics Data System (ADS)

    Dommar, Carlos J.; Robinson, Marguerite; Lowe, Rachel; Conan, Anne; Buchy, Philippe; Tarantola, Arnaud; Rodó, Xavier

    2014-05-01

    The emergence and persistence of human pathogens in the environment represents a constant threat to society, with global implications for human health, economies and ecosystems. Of particular concern are vector-borne diseases, such as dengue, malaria and chikungunya, which are increasing across their traditional ranges and continuing to infiltrate new regions. This unprecedented situation has been partly attributed to the increase in global temperatures in recent decades which has allowed non-native mosquito species to invade and successfully colonise previously inhospitable environments. The spatio-temporal evolution of these diseases is determined by the interaction of the host and vector, which is strongly dependent on social structures and mobility patterns. In turn, vector populations are thought to be driven by external environmental variables, such as precipitation and temperature. Furthermore, the ability of asymptomatic individuals to successfully transmit the infection and evade control measures can undermine public health interventions. We employed a stochastic model, which explicitly included asymptomatic and undocumented laboratory confirmed cases, and applied it to a documented outbreak in Cambodia in 2012 (Trapeang Roka village, Kampong Speu Province). The resulting estimate of the reproduction number was considerably higher than values obtained for previous outbreaks and highlights the importance of asymptomatic transmission. Subsequently, we develop an agent-based model (ABM), in which each individual is explicitly represented and vector populations are linked to precipitation estimates in a tropical setting. The model is implemented on both scale-free and regular networks. The spatio-temporal transmission of chikungunya is analysed and the presence of asymptomatic silent spreaders within the population is investigated in the context of implementing travel restrictions during an outbreak. Preventing the movement of symptomatic individuals alone is found to be an insufficient mechanism to halt the spread of the disease, which can be readily carried to neighbouring nodes via sub-clinical individuals. Furthermore, the impact of topology structure versus precipitation levels is assessed and precipitation is found to be the dominant factor driving spatio-temporal transmission. Our results highlight the urgent need to establish adequate monitoring and mosquito control programs in vulnerable countries. These models can help to inform public health officials on both the impact and potential spatial expansion of vector-borne diseases through both urban and rural regions under the influence of dynamic climatic conditions. Given the climate sensitivity of vector-borne diseases, such as chikungunya, it is important to link the monitoring of meteorological conditions to public health surveillance and control.

  18. Using climate information to understand the spatio-temporal heterogeneity of a chikungunya outbreak in the presence of widespread asymptomatic infection

    NASA Astrophysics Data System (ADS)

    Dommar, C. J.; Lowe, R.; Robinson, M.; Rodó, X.

    2013-12-01

    The emergence and persistence of human pathogens in the environment represents a constant threat to society, with global implications for human health, economies and ecosystems. Of particular concern are vector-borne diseases, such as dengue, malaria and chikungunya, which are increasing across their traditional ranges and continuing to infiltrate new regions. This unprecedented situation has been partly attributed to the increase in global temperatures in recent decades which has allowed non-native mosquito species to invade and successfully colonise previously inhospitable environments The spatio-temporal evolution of these diseases is determined by the interaction of the host and vector, which is strongly dependent on social structures and mobility patterns. In turn, vector populations are thought to be driven by external environmental variables, such as precipitation and temperature. Furthermore, the ability of asymptomatic individuals to successfully transmit the infection and evade control measures can undermine public health interventions. We employed a stochastic model, which explicitly included asymptomatic and undocumented laboratory confirmed cases, and applied it to a documented outbreak in Cambodia in 2012 (Trapeang Roka village, Kampong Speu Province). The resulting estimate of the reproduction number was considerably higher than values obtained for previous outbreaks and highlights the importance of asymptomatic transmission. Subsequently, we develop an agent-based model (ABM), in which each individual is explicitly represented and vector populations are linked to precipitation estimates in a tropical setting. The model is implemented on both scale-free and regular networks. The spatio-temporal transmission of chikungunya is analysed and the presence of asymptomatic silent spreaders within the population is investigated in the context of implementing travel restrictions during an outbreak. Preventing the movement of symptomatic individuals alone is found to be an insufficient mechanism to halt the spread of the disease, which can be readily carried to neighbouring nodes via sub-clinical individuals. Furthermore, the impact of topology structure versus precipitation levels is assessed and precipitation is found to be the dominant factor driving spatio-temporal transmission. Our results highlight the urgent need to establish adequate monitoring and mosquito control programs in vulnerable countries. These models can help to inform public health officials on both the impact and potential spatial expansion of vector-borne diseases through both urban and rural regions under the influence of dynamic climatic conditions. Given the climate sensitivity of vector-borne diseases, such as chikungunya, it is important to link the monitoring of meteorological conditions to public health surveillance and control.

  19. The role of turbulence-flow interactions in L- to H-mode transition dynamics: recent progress

    NASA Astrophysics Data System (ADS)

    Schmitz, L.

    2017-02-01

    Recent experimental and simulation work has substantially advanced the understanding of L-mode plasma edge turbulence and plasma flows and their mutual interaction across the L-H transition. Flow acceleration and E   ×   B shear flow amplification via the turbulent Reynolds stress have been directly observed in multiple devices, using multi-tip probe arrays, Doppler backscattering, beam emission spectroscopy, and gas puff imaging diagnostics. L-H transitions characterized by limit-cycle oscillations (LCO) allow probing of the trigger dynamics and the synergy of turbulence-driven and pressure-gradient-driven flows with high spatio-temporal resolution. L-mode turbulent structures exhibit characteristic changes in topology (tilting) and temporal and radial correlation preceding the L-H transition. Long-range toroidal flow correlations increase preceding edge-transport-barrier formation. The energy transfer from the turbulence spectrum to large-scale axisymmetric flows has been quantified in L-LCO and fast L-H transitions in several devices. After formation of a transient barrier, the increasing ion pressure gradient (via the E   ×   B flow shear associated with diamagnetic flow) sustains fluctuation suppression and secures the transition to H-mode. Heuristic models of the L-H trigger dynamics have progressed from 0D predator-prey models to 1D extended models, including neoclassical ion flow-damping and pressure-gradient evolution. Initial results from 2D and 3D reduced fluid models have been obtained for high-collisionality regimes.

  20. On the Characterization of the Spatio-Temporal Profiles of Brain Activity Associated with Face Naming and the Tip-of-the-Tongue State: A Magnetoencephalographic (MEG) Study

    ERIC Educational Resources Information Center

    Lindin, Monica; Diaz, Fernando; Capilla, Almudena; Ortiz, Tomas; Maestu, Fernando

    2010-01-01

    The tip-of-the-tongue state (TOT) in face naming is a transient state of difficulty in access to a person's name along with the conviction that the name is known. The aim of the present study was to characterize the spatio-temporal course of brain activation in the successful naming and TOT states, by means of magnetoencephalography, during a…

  1. Sickle cell disease diagnosis based on spatio-temporal cell dynamics analysis using 3D printed shearing digital holographic microscopy.

    PubMed

    Javidi, Bahram; Markman, Adam; Rawat, Siddharth; O'Connor, Timothy; Anand, Arun; Andemariam, Biree

    2018-05-14

    We present a spatio-temporal analysis of cell membrane fluctuations to distinguish healthy patients from patients with sickle cell disease. A video hologram containing either healthy red blood cells (h-RBCs) or sickle cell disease red blood cells (SCD-RBCs) was recorded using a low-cost, compact, 3D printed shearing interferometer. Reconstructions were created for each hologram frame (time steps), forming a spatio-temporal data cube. Features were extracted by computing the standard deviations and the mean of the height fluctuations over time and for every location on the cell membrane, resulting in two-dimensional standard deviation and mean maps, followed by taking the standard deviations of these maps. The optical flow algorithm was used to estimate the apparent motion fields between subsequent frames (reconstructions). The standard deviation of the magnitude of the optical flow vectors across all frames was then computed. In addition, seven morphological cell (spatial) features based on optical path length were extracted from the cells to further improve the classification accuracy. A random forest classifier was trained to perform cell identification to distinguish between SCD-RBCs and h-RBCs. To the best of our knowledge, this is the first report of machine learning assisted cell identification and diagnosis of sickle cell disease based on cell membrane fluctuations and morphology using both spatio-temporal and spatial analysis.

  2. An adaptive spatio-temporal Gaussian filter for processing cardiac optical mapping data.

    PubMed

    Pollnow, S; Pilia, N; Schwaderlapp, G; Loewe, A; Dössel, O; Lenis, G

    2018-06-04

    Optical mapping is widely used as a tool to investigate cardiac electrophysiology in ex vivo preparations. Digital filtering of fluorescence-optical data is an important requirement for robust subsequent data analysis and still a challenge when processing data acquired from thin mammalian myocardium. Therefore, we propose and investigate the use of an adaptive spatio-temporal Gaussian filter for processing optical mapping signals from these kinds of tissue usually having low signal-to-noise ratio (SNR). We demonstrate how filtering parameters can be chosen automatically without additional user input. For systematic comparison of this filter with standard filtering methods from the literature, we generated synthetic signals representing optical recordings from atrial myocardium of a rat heart with varying SNR. Furthermore, all filter methods were applied to experimental data from an ex vivo setup. Our developed filter outperformed the other filter methods regarding local activation time detection at SNRs smaller than 3 dB which are typical noise ratios expected in these signals. At higher SNRs, the proposed filter performed slightly worse than the methods from literature. In conclusion, the proposed adaptive spatio-temporal Gaussian filter is an appropriate tool for investigating fluorescence-optical data with low SNR. The spatio-temporal filter parameters were automatically adapted in contrast to the other investigated filters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Dynamic CT perfusion imaging of the myocardium: a technical note on improvement of image quality.

    PubMed

    Muenzel, Daniela; Kabus, Sven; Gramer, Bettina; Leber, Vivian; Vembar, Mani; Schmitt, Holger; Wildgruber, Moritz; Fingerle, Alexander A; Rummeny, Ernst J; Huber, Armin; Noël, Peter B

    2013-01-01

    To improve image and diagnostic quality in dynamic CT myocardial perfusion imaging (MPI) by using motion compensation and a spatio-temporal filter. Dynamic CT MPI was performed using a 256-slice multidetector computed tomography scanner (MDCT). Data from two different patients-with and without myocardial perfusion defects-were evaluated to illustrate potential improvements for MPI (institutional review board approved). Three datasets for each patient were generated: (i) original data (ii) motion compensated data and (iii) motion compensated data with spatio-temporal filtering performed. In addition to the visual assessment of the tomographic slices, noise and contrast-to-noise-ratio (CNR) were measured for all data. Perfusion analysis was performed using time-density curves with regions-of-interest (ROI) placed in normal and hypoperfused myocardium. Precision in definition of normal and hypoperfused areas was determined in corresponding coloured perfusion maps. The use of motion compensation followed by spatio-temporal filtering resulted in better alignment of the cardiac volumes over time leading to a more consistent perfusion quantification and improved detection of the extend of perfusion defects. Additionally image noise was reduced by 78.5%, with CNR improvements by a factor of 4.7. The average effective radiation dose estimate was 7.1±1.1 mSv. The use of motion compensation and spatio-temporal smoothing will result in improved quantification of dynamic CT MPI using a latest generation CT scanner.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiali; Swati, F. N. U.; Stein, Michael L.

    Regional climate models (RCMs) are a standard tool for downscaling climate forecasts to finer spatial scales. The evaluation of RCMs against observational data is an important step in building confidence in the use of RCMs for future prediction. In addition to model performance in climatological means and marginal distributions, a model’s ability to capture spatio-temporal relationships is important. This study develops two approaches: (1) spatial correlation/variogram for a range of spatial lags, with total monthly precipitation and non-seasonal precipitation components used to assess the spatial variations of precipitation; and (2) spatio-temporal correlation for a wide range of distances, directions, andmore » time lags, with daily precipitation occurrence used to detect the dynamic features of precipitation. These measures of spatial and spatio-temporal dependence are applied to a high-resolution RCM run and to the National Center for Environmental Prediction (NCEP)-U.S. Department of Energy (DOE) AMIP II reanalysis data (NCEP-R2), which provides initial and lateral boundary conditions for the RCM. The RCM performs better than NCEP-R2 in capturing both the spatial variations of total and non-seasonal precipitation components and the spatio-temporal correlations of daily precipitation occurrences, which are related to dynamic behaviors of precipitating systems. The improvements are apparent not just at resolutions finer than that of NCEP-R2, but also when the RCM and observational data are aggregated to the resolution of NCEP-R2.« less

  5. A Novel Method to Verify Multilevel Computational Models of Biological Systems Using Multiscale Spatio-Temporal Meta Model Checking

    PubMed Central

    Gilbert, David

    2016-01-01

    Insights gained from multilevel computational models of biological systems can be translated into real-life applications only if the model correctness has been verified first. One of the most frequently employed in silico techniques for computational model verification is model checking. Traditional model checking approaches only consider the evolution of numeric values, such as concentrations, over time and are appropriate for computational models of small scale systems (e.g. intracellular networks). However for gaining a systems level understanding of how biological organisms function it is essential to consider more complex large scale biological systems (e.g. organs). Verifying computational models of such systems requires capturing both how numeric values and properties of (emergent) spatial structures (e.g. area of multicellular population) change over time and across multiple levels of organization, which are not considered by existing model checking approaches. To address this limitation we have developed a novel approximate probabilistic multiscale spatio-temporal meta model checking methodology for verifying multilevel computational models relative to specifications describing the desired/expected system behaviour. The methodology is generic and supports computational models encoded using various high-level modelling formalisms because it is defined relative to time series data and not the models used to generate it. In addition, the methodology can be automatically adapted to case study specific types of spatial structures and properties using the spatio-temporal meta model checking concept. To automate the computational model verification process we have implemented the model checking approach in the software tool Mule (http://mule.modelchecking.org). Its applicability is illustrated against four systems biology computational models previously published in the literature encoding the rat cardiovascular system dynamics, the uterine contractions of labour, the Xenopus laevis cell cycle and the acute inflammation of the gut and lung. Our methodology and software will enable computational biologists to efficiently develop reliable multilevel computational models of biological systems. PMID:27187178

  6. Effects of a structured midsole on spatio-temporal variables and running economy in overground running.

    PubMed

    Wunsch, Tobias; Kröll, Josef; Stöggl, Thomas; Schwameder, Hermann

    2017-04-01

    Research to enhance running performance has led to the design of a leaf spring-structured midsole shoe (LEAF). In treadmill running, it has been shown that LEAF led to an increased running economy and increased stride length (SL) through a horizontal foot shift during stance compared to a standard foam shoe (FOAM). The purpose of this study was to analyse whether (a) these findings can also be observed in overground running and (b) relations exist between spatio-temporal variables and running economy. Ten male long-distance heel-strike runners ran at their individual 2 mmol/l blood lactate speed with LEAF and FOAM in randomized order. Kinematic data were recorded with an inertial measurement unit synchronized with 2D video. Oxygen consumption was measured using an automated metabolic gas analysis system. Blood lactate was collected after each run. The strike pattern was unaffected by LEAF. SL was increased by 0.9 ± 1.1 cm (95% CI 0.2 to 1.5; p = .040; d z  = 0.76), stride rate (SR) was reduced by -0.4 ± 0.3 strides/min (95% CI -0.6 to -0.1; p = .029; d z  = 0.82) and oxygen consumption tended to be reduced by 1% (-0.4 ± 0.6 ml/min/kg; 95% CI -0.8 to 0.0; p = .082; d z  = 0.62) when running with LEAF compared to FOAM. Changes in oxygen consumption in LEAF were correlated with SL (r = 0.71; p = .022) and SR (r = -0.68; p = .031). It can be concluded that LEAF has the potential to cause small changes in spatio-temporal variables during running. Runners increasing SL and decreasing SR in response to LEAF can achieve small improvements in running economy, which is beneficial in terms of performance.

  7. A Novel Method to Verify Multilevel Computational Models of Biological Systems Using Multiscale Spatio-Temporal Meta Model Checking.

    PubMed

    Pârvu, Ovidiu; Gilbert, David

    2016-01-01

    Insights gained from multilevel computational models of biological systems can be translated into real-life applications only if the model correctness has been verified first. One of the most frequently employed in silico techniques for computational model verification is model checking. Traditional model checking approaches only consider the evolution of numeric values, such as concentrations, over time and are appropriate for computational models of small scale systems (e.g. intracellular networks). However for gaining a systems level understanding of how biological organisms function it is essential to consider more complex large scale biological systems (e.g. organs). Verifying computational models of such systems requires capturing both how numeric values and properties of (emergent) spatial structures (e.g. area of multicellular population) change over time and across multiple levels of organization, which are not considered by existing model checking approaches. To address this limitation we have developed a novel approximate probabilistic multiscale spatio-temporal meta model checking methodology for verifying multilevel computational models relative to specifications describing the desired/expected system behaviour. The methodology is generic and supports computational models encoded using various high-level modelling formalisms because it is defined relative to time series data and not the models used to generate it. In addition, the methodology can be automatically adapted to case study specific types of spatial structures and properties using the spatio-temporal meta model checking concept. To automate the computational model verification process we have implemented the model checking approach in the software tool Mule (http://mule.modelchecking.org). Its applicability is illustrated against four systems biology computational models previously published in the literature encoding the rat cardiovascular system dynamics, the uterine contractions of labour, the Xenopus laevis cell cycle and the acute inflammation of the gut and lung. Our methodology and software will enable computational biologists to efficiently develop reliable multilevel computational models of biological systems.

  8. Facilitating insights with a user adaptable dashboard, illustrated by airport connectivity data

    NASA Astrophysics Data System (ADS)

    Dobraja, Ieva; Kraak, Menno-Jan; Engelhardt, Yuri

    2018-05-01

    Since the movement data exist, there have been approaches to collect and analyze them to get insights. This kind of data is often heterogeneous, multiscale and multi-temporal. Those interested in spatio-temporal patterns of movement data do not gain insights from textual descriptions. Therefore, visualization is required. As spatio-temporal movement data can be complex because size and characteristics, it is even challenging to create an overview of it. Plotting all the data on the screen will not be the solution as it likely will result into cluttered images where no data exploration is possible. To ensure that users will receive the information they are interested in, it is important to provide a graphical data representation environment where exploration to gain insights are possible not only in the overall level but at sub-levels as well. A dashboard would be a solution the representation of heterogeneous spatio- temporal data. It provides an overview and helps to unravel the complexity of data by splitting data in multiple data representation views. The adaptability of dashboard will help to reveal the information which cannot be seen in the overview.

  9. Spatio-Temporal Variability of Water Vapor in the Free Troposphere Investigated by Dial and Ftir Vertical Soundings

    NASA Astrophysics Data System (ADS)

    Vogelmann, H.; Sussmann, R.; Trickl, T.; Reichert, A.

    2016-06-01

    We report on the free tropospheric spatio-temporal variability of water vapor investigated by the analysis of a five-year period of water vapor vertical soundings above Mt. Zugspitze (2962 m a.s.l., Germany). Our results are obtained from a combination of measurements of vertically integrated water vapor (IWV), recorded with a solar Fourier Transform InfraRed (FTIR) spectrometer and of water vapor profiles recorded with the nearby differential absorption lidar (DIAL). The special geometrical arrangement of one zenith-viewing and one sun-pointing instrument and the temporal resolution of both optical instruments allow for an investigation of the spatio-temporal variability of IWV on a spatial scale of less than one kilometer and on a time scale of less than one hour. We investigated the short-term variability of both IWV and water vapor profiles from statistical analyses. The latter was also examined by case studies with a clear assignment to certain atmospheric processes as local convection or long-range transport. This study is described in great detail in our recent publication [1].

  10. A spatial-temporal system for dynamic cadastral management.

    PubMed

    Nan, Liu; Renyi, Liu; Guangliang, Zhu; Jiong, Xie

    2006-03-01

    A practical spatio-temporal database (STDB) technique for dynamic urban land management is presented. One of the STDB models, the expanded model of Base State with Amendments (BSA), is selected as the basis for developing the dynamic cadastral management technique. Two approaches, the Section Fast Indexing (SFI) and the Storage Factors of Variable Granularity (SFVG), are used to improve the efficiency of the BSA model. Both spatial graphic data and attribute data, through a succinct engine, are stored in standard relational database management systems (RDBMS) for the actual implementation of the BSA model. The spatio-temporal database is divided into three interdependent sub-databases: present DB, history DB and the procedures-tracing DB. The efficiency of database operation is improved by the database connection in the bottom layer of the Microsoft SQL Server. The spatio-temporal system can be provided at a low-cost while satisfying the basic needs of urban land management in China. The approaches presented in this paper may also be of significance to countries where land patterns change frequently or to agencies where financial resources are limited.

  11. The Perception of Dynamic and Static Facial Expressions of Happiness and Disgust Investigated by ERPs and fMRI Constrained Source Analysis

    PubMed Central

    Trautmann-Lengsfeld, Sina Alexa; Domínguez-Borràs, Judith; Escera, Carles; Herrmann, Manfred; Fehr, Thorsten

    2013-01-01

    A recent functional magnetic resonance imaging (fMRI) study by our group demonstrated that dynamic emotional faces are more accurately recognized and evoked more widespread patterns of hemodynamic brain responses than static emotional faces. Based on this experimental design, the present study aimed at investigating the spatio-temporal processing of static and dynamic emotional facial expressions in 19 healthy women by means of multi-channel electroencephalography (EEG), event-related potentials (ERP) and fMRI-constrained regional source analyses. ERP analysis showed an increased amplitude of the LPP (late posterior positivity) over centro-parietal regions for static facial expressions of disgust compared to neutral faces. In addition, the LPP was more widespread and temporally prolonged for dynamic compared to static faces of disgust and happiness. fMRI constrained source analysis on static emotional face stimuli indicated the spatio-temporal modulation of predominantly posterior regional brain activation related to the visual processing stream for both emotional valences when compared to the neutral condition in the fusiform gyrus. The spatio-temporal processing of dynamic stimuli yielded enhanced source activity for emotional compared to neutral conditions in temporal (e.g., fusiform gyrus), and frontal regions (e.g., ventromedial prefrontal cortex, medial and inferior frontal cortex) in early and again in later time windows. The present data support the view that dynamic facial displays trigger more information reflected in complex neural networks, in particular because of their changing features potentially triggering sustained activation related to a continuing evaluation of those faces. A combined fMRI and EEG approach thus provides an advanced insight to the spatio-temporal characteristics of emotional face processing, by also revealing additional neural generators, not identifiable by the only use of an fMRI approach. PMID:23818974

  12. Role of Laboratory Plasma Experiments in exploring the Physics of Solar Eruptions

    NASA Astrophysics Data System (ADS)

    Tripathi, S.

    2017-12-01

    Solar eruptive events are triggered over a broad range of spatio-temporal scales by a variety of fundamental processes (e.g., force-imbalance, magnetic-reconnection, electrical-current driven instabilities) associated with arched magnetoplasma structures in the solar atmosphere. Contemporary research on solar eruptive events is at the forefront of solar and heliospheric physics due to its relevance to space weather. Details on the formation of magnetized plasma structures on the Sun, storage of magnetic energy in such structures over a long period (several Alfven transit times), and their impulsive eruptions have been recorded in numerous observations and simulated in computer models. Inherent limitations of space observations and uncontrolled nature of solar eruptions pose significant challenges in testing theoretical models and developing the predictive capability for space-weather. The pace of scientific progress in this area can be significantly boosted by tapping the potential of appropriately scaled laboratory plasma experiments to compliment solar observations, theoretical models, and computer simulations. To give an example, recent results from a laboratory plasma experiment on arched magnetic flux ropes will be presented and future challenges will be discussed. (Work supported by National Science Foundation, USA under award number 1619551)

  13. Spatio-temporal assessment of food safety risks in Canadian food distribution systems using GIS.

    PubMed

    Hashemi Beni, Leila; Villeneuve, Sébastien; LeBlanc, Denyse I; Côté, Kevin; Fazil, Aamir; Otten, Ainsley; McKellar, Robin; Delaquis, Pascal

    2012-09-01

    While the value of geographic information systems (GIS) is widely applied in public health there have been comparatively few examples of applications that extend to the assessment of risks in food distribution systems. GIS can provide decision makers with strong computing platforms for spatial data management, integration, analysis, querying and visualization. The present report addresses some spatio-analyses in a complex food distribution system and defines influence areas as travel time zones generated through road network analysis on a national scale rather than on a community scale. In addition, a dynamic risk index is defined to translate a contamination event into a public health risk as time progresses. More specifically, in this research, GIS is used to map the Canadian produce distribution system, analyze accessibility to contaminated product by consumers, and estimate the level of risk associated with a contamination event over time, as illustrated in a scenario. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  14. Review of complex networks application in hydroclimatic extremes with an implementation to characterize spatio-temporal drought propagation in continental USA

    NASA Astrophysics Data System (ADS)

    Konapala, Goutam; Mishra, Ashok

    2017-12-01

    The quantification of spatio-temporal hydroclimatic extreme events is a key variable in water resources planning, disaster mitigation, and preparing climate resilient society. However, quantification of these extreme events has always been a great challenge, which is further compounded by climate variability and change. Recently complex network theory was applied in earth science community to investigate spatial connections among hydrologic fluxes (e.g., rainfall and streamflow) in water cycle. However, there are limited applications of complex network theory for investigating hydroclimatic extreme events. This article attempts to provide an overview of complex networks and extreme events, event synchronization method, construction of networks, their statistical significance and the associated network evaluation metrics. For illustration purpose, we apply the complex network approach to study the spatio-temporal evolution of droughts in Continental USA (CONUS). A different drought threshold leads to a new drought event as well as different socio-economic implications. Therefore, it would be interesting to explore the role of thresholds on spatio-temporal evolution of drought through network analysis. In this study, long term (1900-2016) Palmer drought severity index (PDSI) was selected for spatio-temporal drought analysis using three network-based metrics (i.e., strength, direction and distance). The results indicate that the drought events propagate differently at different thresholds associated with initiation of drought events. The direction metrics indicated that onset of mild drought events usually propagate in a more spatially clustered and uniform approach compared to onsets of moderate droughts. The distance metric shows that the drought events propagate for longer distance in western part compared to eastern part of CONUS. We believe that the network-aided metrics utilized in this study can be an important tool in advancing our knowledge on drought propagation as well as other hydroclimatic extreme events. Although the propagation of droughts is investigated using the network approach, however process (physics) based approaches is essential to further understand the dynamics of hydroclimatic extreme events.

  15. Different horse's paces during hippotherapy on spatio-temporal parameters of gait in children with bilateral spastic cerebral palsy: A feasibility study.

    PubMed

    Antunes, Fabiane Nunes; Pinho, Alexandre Severo do; Kleiner, Ana Francisca Rozin; Salazar, Ana Paula; Eltz, Giovana Duarte; de Oliveira Junior, Alcyr Alves; Cechetti, Fernanda; Galli, Manuela; Pagnussat, Aline Souza

    2016-12-01

    Hippotherapy is often carried out for the rehabilitation of children with Cerebral Palsy (CP), with the horse riding at a walking pace. This study aimed to explore the immediate effects of a hippotherapy protocol using a walk-trot pace on spatio-temporal gait parameters and muscle tone in children with Bilateral Spastic CP (BS-CP). Ten children diagnosed with BS-CP and 10 healthy aged-matched children (reference group) took part in this study. The children with BS-CP underwent two sessions of hippotherapy for one week of washout between them. Two protocols (lasting 30min) were applied on separate days: Protocol 1: the horse's pace was a walking pace; and Protocol 2: the horse's pace was a walk-trot pace. Children from the reference group were not subjected to treatment. A wireless inertial measurement unit measured gait spatio-temporal parameters before and after each session. The Modified Ashworth Scale was applied for muscle tone measurement of hip adductors. The participants underwent the gait assessment on a path with surface irregularities (ecological context). The comparisons between BS-CP and the reference group found differences in all spatio-temporal parameters, except for gait velocity. Within-group analysis of children with BS-CP showed that the swing phase did not change after the walk pace and after the walk-trot pace. The percentage of rolling phase and double support improved after the walk-trot. The spasticity of the hip adductors was significantly reduced as an immediate result of both protocols, but this decrease was more evident after the walk-trot. The walk-trot protocol is feasible and is able to induce an immediate effect that improves the gait spatio-temporal parameters and the hip adductors spasticity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Wholly Patient-tailored Ablation of Atrial Fibrillation Guided by Spatio-Temporal Dispersion of Electrograms in the Absence of Pulmonary Veins Isolation

    PubMed Central

    Seitz, Julien; Bars, Clément; Théodore, Guillaume; Beurtheret, Sylvain; Lellouche, Nicolas; Bremondy, Michel; Ferracci, Ange; Faure, Jacques; Penaranda, Guillaume; Yamazaki, Masatoshi; Avula, Uma Mahesh R.; Curel, Laurence; Siame, Sabrina; Berenfeld, Omer; Pisapia, André; Kalifa, Jérôme

    2017-01-01

    Background The use of intra-cardiac electrograms to guide atrial fibrillation (AF) ablation has yielded conflicting results. We evaluated an electrogram marker of AF drivers: the clustering of electrograms exhibiting spatio-temporal dispersion — regardless of whether such electrograms were fractionated or not. Objective To evaluate the usefulness of spatio-temporal dispersion, a visually recognizable electric footprint of AF drivers, for the ablation of all forms of AF. Methods We prospectively enrolled 105 patients admitted for AF ablation. AF was sequentially mapped in both atria with a 20-pole PentaRay catheter. We tagged and ablated only regions displaying electrogram dispersion during AF. Results were compared to a validation set in which a conventional ablation approach was used (pulmonary vein isolation/stepwise approach). To establish the mechanism underlying spatio-temporal dispersion of AF electrograms, we conducted realistic numerical simulations of AF drivers in a 2-dimensional model and optical mapping of ovine atrial scar-related AF. Results Ablation at dispersion areas terminated AF in 95%. After ablation of 17±10% of the left atrial surface and 18 months of follow-up, the atrial arrhythmia recurrence rate was 15% after 1.4±0.5 procedure/patient vs 41% in the validation set after 1.5±0.5 procedure/patient (arrhythmia free-survival rates: 85% vs 59%, log rank P<0.001). In comparison with the validation set, radiofrequency times (49 ± 21 minutes vs 85 ± 34.5 minutes, p=0.001) and procedure times (168 ± 42 minutes vs. 230 ± 67 minutes, p<.0001) were shorter. In simulations and optical mapping experiments, virtual PentaRay recordings demonstrated that electrogram dispersion is mostly recorded in the vicinity of a driver. Conclusions The clustering of intra-cardiac electrograms exhibiting spatio-temporal dispersion is indicative of AF drivers. Their ablation allows for a non-extensive and patient-tailored approach to AF ablation. Clinical trial.gov number: NCT02093949 PMID:28104073

  17. Spatio-temporal patterns of Barmah Forest virus disease in Queensland, Australia.

    PubMed

    Naish, Suchithra; Hu, Wenbiao; Mengersen, Kerrie; Tong, Shilu

    2011-01-01

    Barmah Forest virus (BFV) disease is a common and wide-spread mosquito-borne disease in Australia. This study investigated the spatio-temporal patterns of BFV disease in Queensland, Australia using geographical information system (GIS) tools and geostatistical analysis. We calculated the incidence rates and standardised incidence rates of BFV disease. Moran's I statistic was used to assess the spatial autocorrelation of BFV incidences. Spatial dynamics of BFV disease was examined using semi-variogram analysis. Interpolation techniques were applied to visualise and display the spatial distribution of BFV disease in statistical local areas (SLAs) throughout Queensland. Mapping of BFV disease by SLAs reveals the presence of substantial spatio-temporal variation over time. Statistically significant differences in BFV incidence rates were identified among age groups (χ(2) = 7587, df = 7327,p<0.01). There was a significant positive spatial autocorrelation of BFV incidence for all four periods, with the Moran's I statistic ranging from 0.1506 to 0.2901 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. This is the first study to examine spatial and temporal variation in the incidence rates of BFV disease across Queensland using GIS and geostatistics. The BFV transmission varied with age and gender, which may be due to exposure rates or behavioural risk factors. There are differences in the spatio-temporal patterns of BFV disease which may be related to local socio-ecological and environmental factors. These research findings may have implications in the BFV disease control and prevention programs in Queensland.

  18. Fast multidimensional ensemble empirical mode decomposition for the analysis of big spatio-temporal datasets.

    PubMed

    Wu, Zhaohua; Feng, Jiaxin; Qiao, Fangli; Tan, Zhe-Min

    2016-04-13

    In this big data era, it is more urgent than ever to solve two major issues: (i) fast data transmission methods that can facilitate access to data from non-local sources and (ii) fast and efficient data analysis methods that can reveal the key information from the available data for particular purposes. Although approaches in different fields to address these two questions may differ significantly, the common part must involve data compression techniques and a fast algorithm. This paper introduces the recently developed adaptive and spatio-temporally local analysis method, namely the fast multidimensional ensemble empirical mode decomposition (MEEMD), for the analysis of a large spatio-temporal dataset. The original MEEMD uses ensemble empirical mode decomposition to decompose time series at each spatial grid and then pieces together the temporal-spatial evolution of climate variability and change on naturally separated timescales, which is computationally expensive. By taking advantage of the high efficiency of the expression using principal component analysis/empirical orthogonal function analysis for spatio-temporally coherent data, we design a lossy compression method for climate data to facilitate its non-local transmission. We also explain the basic principles behind the fast MEEMD through decomposing principal components instead of original grid-wise time series to speed up computation of MEEMD. Using a typical climate dataset as an example, we demonstrate that our newly designed methods can (i) compress data with a compression rate of one to two orders; and (ii) speed-up the MEEMD algorithm by one to two orders. © 2016 The Authors.

  19. A bio-inspired system for spatio-temporal recognition in static and video imagery

    NASA Astrophysics Data System (ADS)

    Khosla, Deepak; Moore, Christopher K.; Chelian, Suhas

    2007-04-01

    This paper presents a bio-inspired method for spatio-temporal recognition in static and video imagery. It builds upon and extends our previous work on a bio-inspired Visual Attention and object Recognition System (VARS). The VARS approach locates and recognizes objects in a single frame. This work presents two extensions of VARS. The first extension is a Scene Recognition Engine (SCE) that learns to recognize spatial relationships between objects that compose a particular scene category in static imagery. This could be used for recognizing the category of a scene, e.g., office vs. kitchen scene. The second extension is the Event Recognition Engine (ERE) that recognizes spatio-temporal sequences or events in sequences. This extension uses a working memory model to recognize events and behaviors in video imagery by maintaining and recognizing ordered spatio-temporal sequences. The working memory model is based on an ARTSTORE1 neural network that combines an ART-based neural network with a cascade of sustained temporal order recurrent (STORE)1 neural networks. A series of Default ARTMAP classifiers ascribes event labels to these sequences. Our preliminary studies have shown that this extension is robust to variations in an object's motion profile. We evaluated the performance of the SCE and ERE on real datasets. The SCE module was tested on a visual scene classification task using the LabelMe2 dataset. The ERE was tested on real world video footage of vehicles and pedestrians in a street scene. Our system is able to recognize the events in this footage involving vehicles and pedestrians.

  20. Spatio-temporal distribution of soil-transmitted helminth infections in Brazil.

    PubMed

    Chammartin, Frédérique; Guimarães, Luiz H; Scholte, Ronaldo Gc; Bavia, Mara E; Utzinger, Jürg; Vounatsou, Penelope

    2014-09-18

    In Brazil, preventive chemotherapy targeting soil-transmitted helminthiasis is being scaled-up. Hence, spatially explicit estimates of infection risks providing information about the current situation are needed to guide interventions. Available high-resolution national model-based estimates either rely on analyses of data restricted to a given period of time, or on historical data collected over a longer period. While efforts have been made to take into account the spatial structure of the data in the modelling approach, little emphasis has been placed on the temporal dimension. We extracted georeferenced survey data on the prevalence of infection with soil-transmitted helminths (i.e. Ascaris lumbricoides, hookworm and Trichuris trichiura) in Brazil from the Global Neglected Tropical Diseases (GNTD) database. Selection of the most important predictors of infection risk was carried out using a Bayesian geostatistical approach and temporal models that address non-linearity and correlation of the explanatory variables. The spatial process was estimated through a predictive process approximation. Spatio-temporal models were built on the selected predictors with integrated nested Laplace approximation using stochastic partial differential equations. Our models revealed that, over the past 20 years, the risk of soil-transmitted helminth infection has decreased in Brazil, mainly because of the reduction of A. lumbricoides and hookworm infections. From 2010 onwards, we estimate that the infection prevalences with A. lumbricoides, hookworm and T. trichiura are 3.6%, 1.7% and 1.4%, respectively. We also provide a map highlighting municipalities in need of preventive chemotherapy, based on a predicted soil-transmitted helminth infection risk in excess of 20%. The need for treatments in the school-aged population at the municipality level was estimated at 1.8 million doses of anthelminthic tablets per year. The analysis of the spatio-temporal aspect of the risk of infection with soil-transmitted helminths contributes to a better understanding of the evolution of risk over time. Risk estimates provide the soil-transmitted helminthiasis control programme in Brazil with useful benchmark information for prioritising and improving spatial and temporal targeting of interventions.

  1. Dispersive optical solitons and modulation instability analysis of Schrödinger-Hirota equation with spatio-temporal dispersion and Kerr law nonlinearity

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru

    2018-01-01

    This paper obtains the dark, bright, dark-bright or combined optical and singular solitons to the perturbed nonlinear Schrödinger-Hirota equation (SHE) with spatio-temporal dispersion (STD) and Kerr law nonlinearity in optical fibers. The integration algorithm is the Sine-Gordon equation method (SGEM). Furthermore, the modulation instability analysis (MI) of the equation is studied based on the standard linear-stability analysis and the MI gain spectrum is got.

  2. The 4-D approach to visual control of autonomous systems

    NASA Technical Reports Server (NTRS)

    Dickmanns, Ernst D.

    1994-01-01

    Development of a 4-D approach to dynamic machine vision is described. Core elements of this method are spatio-temporal models oriented towards objects and laws of perspective projection in a foward mode. Integration of multi-sensory measurement data was achieved through spatio-temporal models as invariants for object recognition. Situation assessment and long term predictions were allowed through maintenance of a symbolic 4-D image of processes involving objects. Behavioral capabilities were easily realized by state feedback and feed-foward control.

  3. High-throughput analysis of spatio-temporal dynamics in Dictyostelium

    PubMed Central

    Sawai, Satoshi; Guan, Xiao-Juan; Kuspa, Adam; Cox, Edward C

    2007-01-01

    We demonstrate a time-lapse video approach that allows rapid examination of the spatio-temporal dynamics of Dictyostelium cell populations. Quantitative information was gathered by sampling life histories of more than 2,000 mutant clones from a large mutagenesis collection. Approximately 4% of the clonal lines showed a mutant phenotype at one stage. Many of these could be ordered by clustering into functional groups. The dataset allows one to search and retrieve movies on a gene-by-gene and phenotype-by-phenotype basis. PMID:17659086

  4. Space-time airborne disease mapping applied to detect specific behaviour of varicella in Valencia, Spain.

    PubMed

    Iftimi, Adina; Montes, Francisco; Santiyán, Ana Míguez; Martínez-Ruiz, Francisco

    2015-01-01

    Airborne diseases are one of humanity's most feared sicknesses and have regularly caused concern among specialists. Varicella is an airborne disease which usually affects children before the age of 10. Because of its nature, varicella gives rise to interesting spatial, temporal and spatio-temporal patterns. This paper studies spatio-temporal exploratory analysis tools to detect specific behaviour of varicella in the city of Valencia, Spain, from 2008 to 2013. These methods have shown a significant association between the spatial and the temporal component, confirmed by the space-time models applied to the data. High relative risk of varicella is observed in economically disadvantaged regions, areas less involved in vaccination programmes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A spatio-temporally compensated acousto-optic scanner for two-photon microscopy providing large field of view.

    PubMed

    Kremer, Y; Léger, J-F; Lapole, R; Honnorat, N; Candela, Y; Dieudonné, S; Bourdieu, L

    2008-07-07

    Acousto-optic deflectors (AOD) are promising ultrafast scanners for non-linear microscopy. Their use has been limited until now by their small scanning range and by the spatial and temporal dispersions of the laser beam going through the deflectors. We show that the use of AOD of large aperture (13mm) compared to standard deflectors allows accessing much larger field of view while minimizing spatio-temporal distortions. An acousto-optic modulator (AOM) placed at distance of the AOD is used to compensate spatial and temporal dispersions. Fine tuning of the AOM-AOD setup using a frequency-resolved optical gating (GRENOUILLE) allows elimination of pulse front tilt whereas spatial chirp is minimized thanks to the large aperture AOD.

  6. Complexities in Subsetting Level 2 Data

    NASA Technical Reports Server (NTRS)

    Huwe, Paul; Wei, Jennifer; Meyer, David; Silberstein, David S.; Alfred, Jerome; Savtchenko, Andrey K.; Johnson, James E.; Albayrak, Arif; Hearty, Thomas

    2017-01-01

    Satellite Level 2 data presents unique challenges for tools and services. From nonlinear spatial geometry to inhomogeneous file data structure to inconsistent temporal variables to complex data variable dimensionality to multiple file formats, there are many difficulties in creating general tools for Level 2 data support. At NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), we are implementing a general Level 2 Subsetting service for Level 2 data to a user-specified spatio-temporal region of interest (ROI). In this presentation, we will unravel some of the challenges faced in creating this service and the strategies we used to surmount them.

  7. Spatio-temporal Analysis for New York State SPARCS Data

    PubMed Central

    Chen, Xin; Wang, Yu; Schoenfeld, Elinor; Saltz, Mary; Saltz, Joel; Wang, Fusheng

    2017-01-01

    Increased accessibility of health data provides unique opportunities to discover spatio-temporal patterns of diseases. For example, New York State SPARCS (Statewide Planning and Research Cooperative System) data collects patient level detail on patient demographics, diagnoses, services, and charges for each hospital inpatient stay and outpatient visit. Such data also provides home addresses for each patient. This paper presents our preliminary work on spatial, temporal, and spatial-temporal analysis of disease patterns for New York State using SPARCS data. We analyzed spatial distribution patterns of typical diseases at ZIP code level. We performed temporal analysis of common diseases based on 12 years’ historical data. We then compared the spatial variations for diseases with different levels of clustering tendency, and studied the evolution history of such spatial patterns. Case studies based on asthma demonstrated that the discovered spatial clusters are consistent with prior studies. We visualized our spatial-temporal patterns as animations through videos. PMID:28815148

  8. Tomographic particle image velocimetry of desert locust wakes: instantaneous volumes combine to reveal hidden vortex elements and rapid wake deformation

    PubMed Central

    Bomphrey, Richard J.; Henningsson, Per; Michaelis, Dirk; Hollis, David

    2012-01-01

    Aerodynamic structures generated by animals in flight are unstable and complex. Recent progress in quantitative flow visualization has advanced our understanding of animal aerodynamics, but measurements have hitherto been limited to flow velocities at a plane through the wake. We applied an emergent, high-speed, volumetric fluid imaging technique (tomographic particle image velocimetry) to examine segments of the wake of desert locusts, capturing fully three-dimensional instantaneous flow fields. We used those flow fields to characterize the aerodynamic footprint in unprecedented detail and revealed previously unseen wake elements that would have gone undetected by two-dimensional or stereo-imaging technology. Vortex iso-surface topographies show the spatio-temporal signature of aerodynamic force generation manifest in the wake of locusts, and expose the extent to which animal wakes can deform, potentially leading to unreliable calculations of lift and thrust when using conventional diagnostic methods. We discuss implications for experimental design and analysis as volumetric flow imaging becomes more widespread. PMID:22977102

  9. Spatio-temporal analysis of Modified Omori law in Bayesian framework

    NASA Astrophysics Data System (ADS)

    Rezanezhad, V.; Narteau, C.; Shebalin, P.; Zoeller, G.; Holschneider, M.

    2017-12-01

    This work presents a study of the spatio temporal evolution of the modified Omori parameters in southern California in then time period of 1981-2016. A nearest-neighbor approach is applied for earthquake clustering. This study targets small mainshocks and corresponding big aftershocks ( 2.5 ≤ mmainshocks ≤ 4.5 and 1.8 ≤ maftershocks ≤ 2.8 ). We invert for the spatio temporal behavior of c and p values (especially c) all over the area using a MCMC based maximum likelihood estimator. As parameterizing families we use Voronoi cells with randomly distributed cell centers. Considering that c value represents a physical character like stress change we expect to see a coherent c value pattern over seismologically coacting areas. This correlation of c valus can actually be seen for the San Andreas, San Jacinto and Elsinore faults. Moreover, the depth dependency of c value is studied which shows a linear behavior of log(c) with respect to aftershock's depth within 5 to 15 km depth.

  10. A dense array stimulator to generate arbitrary spatio-temporal tactile stimuli

    PubMed Central

    Killebrew, Justin H.; Bensmaïa, Sliman J.; Dammann, John F.; Denchev, Peter; Hsiao, Steven S.; Craig, James C.

    2007-01-01

    The generation and presentation of tactile stimuli presents a unique challenge. Unlike vision and audition, in which standard equipment such as monitors and audio systems can be used for most experiments, tactile stimuli and/or stimulators often have to be tailor-made for a given study. Here, we present a novel tactile stimulator designed to present arbitrary spatio-temporal stimuli to the skin. The stimulator consists of 400 pins, arrayed over a 1 cm2 area, each under independent computer control. The dense array allows for an unprecedented number of stimuli to be presented within an experimental session (e.g., up to 1200 stimuli per minute) and for stimuli to be generated adaptively. The stimulator can be used in a variety of modes and can deliver indented and scanned patterns as well as stimuli defined by mathematical spatio-temporal functions (e.g., drifting sinusoids). We describe the hardware and software of the system, and discuss previous and prospective applications. PMID:17134760

  11. Spatio-temporal dynamics of a fish spawning aggregation and its fishery in the Gulf of California

    PubMed Central

    Erisman, Brad; Aburto-Oropeza, Octavio; Gonzalez-Abraham, Charlotte; Mascareñas-Osorio, Ismael; Moreno-Báez, Marcia; Hastings, Philip A.

    2012-01-01

    We engaged in cooperative research with fishers and stakeholders to characterize the fine-scale, spatio-temporal characteristics of spawning behavior in an aggregating marine fish (Cynoscion othonopterus: Sciaenidae) and coincident activities of its commercial fishery in the Upper Gulf of California. Approximately 1.5–1.8 million fish are harvested annually from spawning aggregations of C. othonopterus during 21–25 days of fishing and within an area of 1,149 km2 of a biosphere reserve. Spawning and fishing are synchronized on a semi-lunar cycle, with peaks in both occurring 5 to 2 days before the new and full moon, and fishing intensity and catch are highest at the spawning grounds within a no-take reserve. Results of this study demonstrate the benefits of combining GPS data loggers, fisheries data, biological surveys, and cooperative research with fishers to produce spatio-temporally explicit information relevant to the science and management of fish spawning aggregations and the spatial planning of marine reserves. PMID:22359736

  12. Retrieval of Spatio-temporal Distributions of Particle Parameters from Multiwavelength Lidar Measurements Using the Linear Estimation Technique and Comparison with AERONET

    NASA Technical Reports Server (NTRS)

    Veselovskii, I.; Whiteman, D. N.; Korenskiy, M.; Kolgotin, A.; Dubovik, O.; Perez-Ramirez, D.; Suvorina, A.

    2013-01-01

    The results of the application of the linear estimation technique to multiwavelength Raman lidar measurements performed during the summer of 2011 in Greenbelt, MD, USA, are presented. We demonstrate that multiwavelength lidars are capable not only of providing vertical profiles of particle properties but also of revealing the spatio-temporal evolution of aerosol features. The nighttime 3 Beta + 1 alpha lidar measurements on 21 and 22 July were inverted to spatio-temporal distributions of particle microphysical parameters, such as volume, number density, effective radius and the complex refractive index. The particle volume and number density show strong variation during the night, while the effective radius remains approximately constant. The real part of the refractive index demonstrates a slight decreasing tendency in a region of enhanced extinction coefficient. The linear estimation retrievals are stable and provide time series of particle parameters as a function of height at 4 min resolution. AERONET observations are compared with multiwavelength lidar retrievals showing good agreement.

  13. Evaluation of spatio-temporal Bayesian models for the spread of infectious diseases in oil palm.

    PubMed

    Denis, Marie; Cochard, Benoît; Syahputra, Indra; de Franqueville, Hubert; Tisné, Sébastien

    2018-02-01

    In the field of epidemiology, studies are often focused on mapping diseases in relation to time and space. Hierarchical modeling is a common flexible and effective tool for modeling problems related to disease spread. In the context of oil palm plantations infected by the fungal pathogen Ganoderma boninense, we propose and compare two spatio-temporal hierarchical Bayesian models addressing the lack of information on propagation modes and transmission vectors. We investigate two alternative process models to study the unobserved mechanism driving the infection process. The models help gain insight into the spatio-temporal dynamic of the infection by identifying a genetic component in the disease spread and by highlighting a spatial component acting at the end of the experiment. In this challenging context, we propose models that provide assumptions on the unobserved mechanism driving the infection process while making short-term predictions using ready-to-use software. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Exploring the Spatio-Temporal Dynamics of Reservoir Hosts, Vectors, and Human Hosts of West Nile Virus: A Review of the Recent Literature

    PubMed Central

    Ozdenerol, Esra; Taff, Gregory N.; Akkus, Cem

    2013-01-01

    Over the last two decades West Nile Virus (WNV) has been responsible for significant disease outbreaks in humans and animals in many parts of the World. Its extremely rapid global diffusion argues for a better understanding of its geographic extent. The purpose of this inquiry was to explore spatio-temporal patterns of WNV using geospatial technologies to study populations of the reservoir hosts, vectors, and human hosts, in addition to the spatio-temporal interactions among these populations. Review of the recent literature on spatial WNV disease risk modeling led to the conclusion that numerous environmental factors might be critical for its dissemination. New Geographic Information Systems (GIS)-based studies are monitoring occurrence at the macro-level, and helping pinpoint areas of occurrence at the micro-level, where geographically-targeted, species-specific control measures are sometimes taken and more sophisticated methods of surveillance have been used. PMID:24284356

  15. The evolution of meaning: spatio-temporal dynamics of visual object recognition.

    PubMed

    Clarke, Alex; Taylor, Kirsten I; Tyler, Lorraine K

    2011-08-01

    Research on the spatio-temporal dynamics of visual object recognition suggests a recurrent, interactive model whereby an initial feedforward sweep through the ventral stream to prefrontal cortex is followed by recurrent interactions. However, critical questions remain regarding the factors that mediate the degree of recurrent interactions necessary for meaningful object recognition. The novel prediction we test here is that recurrent interactivity is driven by increasing semantic integration demands as defined by the complexity of semantic information required by the task and driven by the stimuli. To test this prediction, we recorded magnetoencephalography data while participants named living and nonliving objects during two naming tasks. We found that the spatio-temporal dynamics of neural activity were modulated by the level of semantic integration required. Specifically, source reconstructed time courses and phase synchronization measures showed increased recurrent interactions as a function of semantic integration demands. These findings demonstrate that the cortical dynamics of object processing are modulated by the complexity of semantic information required from the visual input.

  16. Violence in the prehistoric period of Japan: the spatio-temporal pattern of skeletal evidence for violence in the Jomon period.

    PubMed

    Nakao, Hisashi; Tamura, Kohei; Arimatsu, Yui; Nakagawa, Tomomi; Matsumoto, Naoko; Matsugi, Takehiko

    2016-03-01

    Whether man is predisposed to lethal violence, ranging from homicide to warfare, and how that may have impacted human evolution, are among the most controversial topics of debate on human evolution. Although recent studies on the evolution of warfare have been based on various archaeological and ethnographic data, they have reported mixed results: it is unclear whether or not warfare among prehistoric hunter-gatherers was common enough to be a component of human nature and a selective pressure for the evolution of human behaviour. This paper reports the mortality attributable to violence, and the spatio-temporal pattern of violence thus shown among ancient hunter-gatherers using skeletal evidence in prehistoric Japan (the Jomon period: 13 000 cal BC-800 cal BC). Our results suggest that the mortality due to violence was low and spatio-temporally highly restricted in the Jomon period, which implies that violence including warfare in prehistoric Japan was not common. © 2016 The Author(s).

  17. Violence in the prehistoric period of Japan: the spatio-temporal pattern of skeletal evidence for violence in the Jomon period

    PubMed Central

    Nakao, Hisashi; Tamura, Kohei; Arimatsu, Yui; Nakagawa, Tomomi; Matsumoto, Naoko; Matsugi, Takehiko

    2016-01-01

    Whether man is predisposed to lethal violence, ranging from homicide to warfare, and how that may have impacted human evolution, are among the most controversial topics of debate on human evolution. Although recent studies on the evolution of warfare have been based on various archaeological and ethnographic data, they have reported mixed results: it is unclear whether or not warfare among prehistoric hunter–gatherers was common enough to be a component of human nature and a selective pressure for the evolution of human behaviour. This paper reports the mortality attributable to violence, and the spatio-temporal pattern of violence thus shown among ancient hunter–gatherers using skeletal evidence in prehistoric Japan (the Jomon period: 13 000 cal BC–800 cal BC). Our results suggest that the mortality due to violence was low and spatio-temporally highly restricted in the Jomon period, which implies that violence including warfare in prehistoric Japan was not common. PMID:27029838

  18. Spatiotemporal Dynamics of Insulitis in Human Type 1 Diabetes

    PubMed Central

    Wedgwood, Kyle C. A.; Richardson, Sarah J.; Morgan, Noel G.; Tsaneva-Atanasova, Krasimira

    2016-01-01

    Type 1 diabetes (T1D) is an auto-immune disease characterized by the selective destruction of the insulin secreting beta cells in the pancreas during an inflammatory phase known as insulitis. Patients with T1D are typically dependent on the administration of externally provided insulin in order to manage blood glucose levels. Whilst technological developments have significantly improved both the life expectancy and quality of life of these patients, an understanding of the mechanisms of the disease remains elusive. Animal models, such as the NOD mouse model, have been widely used to probe the process of insulitis, but there exist very few data from humans studied at disease onset. In this manuscript, we employ data from human pancreases collected close to the onset of T1D and propose a spatio-temporal computational model for the progression of insulitis in human T1D, with particular focus on the mechanisms underlying the development of insulitis in pancreatic islets. This framework allows us to investigate how the time-course of insulitis progression is affected by altering key parameters, such as the number of the CD20+ B cells present in the inflammatory infiltrate, which has recently been proposed to influence the aggressiveness of the disease. Through the analysis of repeated simulations of our stochastic model, which track the number of beta cells within an islet, we find that increased numbers of B cells in the peri-islet space lead to faster destruction of the beta cells. We also find that the balance between the degradation and repair of the basement membrane surrounding the islet is a critical component in governing the overall destruction rate of the beta cells and their remaining number. Our model provides a framework for continued and improved spatio-temporal modeling of human T1D. PMID:28082906

  19. Regional spatial-temporal spread of citrus huanglongbing is affected by rain in Florida.

    PubMed

    Shimwela, Mpoki; Schubert, Timothy S; Albritton, Matthew; Halbert, Susan E; Jones, Debra J; Sun, Xiaoan; Roberts, Pamela; Singer, Burton; Lee, Wen Suk; Jones, Jeffrey B; Ploetz, Randy; van Bruggen, Ariena H C

    2018-06-06

    Citrus huanglongbing (HLB), associated with Candidatus Liberibacter asiaticus (Las), disseminated by Asian Citrus Psyllid (ACP), has devastated citrus in Florida since 2005. Data on HLB occurrence were stored in databases (2005-2012). Cumulative HLB-positive citrus blocks were subjected to kernel density analysis and kriging. Relative disease incidence per county was calculated by dividing HLB numbers by relative tree numbers and maximum incidence. Spatio-temporal HLB distributions were correlated with weather. Relative HLB incidence correlated positively with rainfall. The focus expansion rate was 1626 m month-1, similar to that in Brazil. Relative HLB incidence in counties with primarily large groves increased at a lower rate (0.24 year-1) than in counties with smaller groves in hotspot areas (0.67 year-1), confirming reports that large-scale HLB management may slow epidemic progress.

  20. Gait functional assessment: Spatio-temporal analysis and classification of barefoot plantar pressure in a group of 11-12-year-old children.

    PubMed

    Latour, Ewa; Latour, Marek; Arlet, Jarosław; Adach, Zdzisław; Bohatyrewicz, Andrzej

    2011-07-01

    Analysis of pedobarographical data requires geometric identification of specific anatomical areas extracted from recorded plantar pressures. This approach has led to ambiguity in measurements that may underlie the inconsistency of conclusions reported in pedobarographical studies. The goal of this study was to design a new analysis method less susceptible to the projection accuracy of anthropometric points and distance estimation, based on rarely used spatio-temporal indices. Six pedobarographic records per person (three per foot) from a group of 60 children aged 11-12 years were obtained and analyzed. The basis of the analysis was a mutual relationship between two spatio-temporal indices created by excursion of the peak pressure point and the center-of-pressure point on the dynamic pedobarogram. Classification of weight-shift patterns was elaborated and performed, and their frequencies of occurrence were assessed. This new method allows an assessment of body weight shift through the plantar pressure surface based on distribution analysis of spatio-temporal indices not affected by the shape of this surface. Analysis of the distribution of the created index confirmed the existence of typical ways of weight shifting through the plantar surface of the foot during gait, as well as large variability of the intrasubject occurrence. This method may serve as the basis for interpretation of foot functional features and may extend the clinical usefulness of pedobarography. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Self-organized mechano-chemical dynamics in amoeboid locomotion of Physarum fragments

    NASA Astrophysics Data System (ADS)

    Zhang, Shun; Guy, Robert D.; Lasheras, Juan C.; del Álamo, Juan C.

    2017-05-01

    The aim of this work is to quantify the spatio-temporal dynamics of flow-driven amoeboid locomotion in small (∼100 μm) fragments of the true slime mold Physarum polycephalum. In this model organism, cellular contraction drives intracellular flows, and these flows transport the chemical signals that regulate contraction in the first place. As a consequence of these non-linear interactions, a diversity of migratory behaviors can be observed in migrating Physarum fragments. To study these dynamics, we measure the spatio-temporal distributions of the velocities of the endoplasm and ectoplasm of each migrating fragment, the traction stresses it generates on the substratum, and the concentration of free intracellular calcium. Using these unprecedented experimental data, we classify migrating Physarum fragments according to their dynamics, finding that they often exhibit spontaneously coordinated waves of flow, contractility and chemical signaling. We show that Physarum fragments exhibiting symmetric spatio-temporal patterns of endoplasmic flow migrate significantly slower than fragments with asymmetric patterns. In addition, our joint measurements of ectoplasm velocity and traction stress at the substratum suggest that forward motion of the ectoplasm is enabled by a succession of stick-slip transitions, which we conjecture are also organized in the form of waves. Combining our experiments with a simplified convection-diffusion model, we show that the convective transport of calcium ions may be key for establishing and maintaining the spatio-temporal patterns of calcium concentration that regulate the generation of contractile forces.

  2. Spatio-temporal Granger causality: a new framework

    PubMed Central

    Luo, Qiang; Lu, Wenlian; Cheng, Wei; Valdes-Sosa, Pedro A.; Wen, Xiaotong; Ding, Mingzhou; Feng, Jianfeng

    2015-01-01

    That physiological oscillations of various frequencies are present in fMRI signals is the rule, not the exception. Herein, we propose a novel theoretical framework, spatio-temporal Granger causality, which allows us to more reliably and precisely estimate the Granger causality from experimental datasets possessing time-varying properties caused by physiological oscillations. Within this framework, Granger causality is redefined as a global index measuring the directed information flow between two time series with time-varying properties. Both theoretical analyses and numerical examples demonstrate that Granger causality is a monotonically increasing function of the temporal resolution used in the estimation. This is consistent with the general principle of coarse graining, which causes information loss by smoothing out very fine-scale details in time and space. Our results confirm that the Granger causality at the finer spatio-temporal scales considerably outperforms the traditional approach in terms of an improved consistency between two resting-state scans of the same subject. To optimally estimate the Granger causality, the proposed theoretical framework is implemented through a combination of several approaches, such as dividing the optimal time window and estimating the parameters at the fine temporal and spatial scales. Taken together, our approach provides a novel and robust framework for estimating the Granger causality from fMRI, EEG, and other related data. PMID:23643924

  3. Mushroom biomass and diversity are driven by different spatio-temporal scales along Mediterranean elevation gradients

    NASA Astrophysics Data System (ADS)

    Alday, Josu G.; Martínez de Aragón, Juan; de-Miguel, Sergio; Bonet, José Antonio

    2017-04-01

    Mushrooms are important non-wood-forest-products in many Mediterranean ecosystems, being highly vulnerable to climate change. However, the ecological scales of variation of mushroom productivity and diversity, and climate dependence has been usually overlooked due to a lack of available data. We determined the spatio-temporal variability of epigeous sporocarps and the climatic factors driving their fruiting to plan future sustainable management of wild mushrooms production. We collected fruiting bodies in Pinus sylvestris stands along an elevation gradient for 8 consecutive years. Overall, sporocarp biomass was mainly dependent on inter-annual variations, whereas richness was more spatial-scale dependent. Elevation was not significant, but there were clear elevational differences in biomass and richness patterns between ectomycorrhizal and saprotrophic guilds. The main driver of variation was late-summer-early-autumn precipitation. Thus, different scale processes (inter-annual vs. spatial-scale) drive sporocarp biomass and diversity patterns; temporal effects for biomass and ectomycorrhizal fungi vs. spatial scale for diversity and saprotrophic fungi. The significant role of precipitation across fungal guilds and spatio-temporal scales indicates that it is a limiting resource controlling sporocarp production and diversity in Mediterranean regions. The high spatial and temporal variability of mushrooms emphasize the need for long-term datasets of multiple spatial points to effectively characterize fungal fruiting patterns.

  4. Spatio-temporal variation in age structure and abundance of the endangered snail kite: Pooling across regions masks a declining and aging population

    USGS Publications Warehouse

    Reichert, Brian E.; Kendall, William L.; Fletcher, Robert J.; Kitchens, Wiley M.

    2016-01-01

    While variation in age structure over time and space has long been considered important for population dynamics and conservation, reliable estimates of such spatio-temporal variation in age structure have been elusive for wild vertebrate populations. This limitation has arisen because of problems of imperfect detection, the potential for temporary emigration impacting assessments of age structure, and limited information on age. However, identifying patterns in age structure is important for making reliable predictions of both short- and long-term dynamics of populations of conservation concern. Using a multistate superpopulation estimator, we estimated region-specific abundance and age structure (the proportion of individuals within each age class) of a highly endangered population of snail kites for two separate regions in Florida over 17 years (1997–2013). We find that in the southern region of the snail kite—a region known to be critical for the long-term persistence of the species—the population has declined significantly since 1997, and during this time, it has increasingly become dominated by older snail kites (> 12 years old). In contrast, in the northern region—a region historically thought to serve primarily as drought refugia—the population has increased significantly since 2007 and age structure is more evenly distributed among age classes. Given that snail kites show senescence at approximately 13 years of age, where individuals suffer higher mortality rates and lower breeding rates, these results reveal an alarming trend for the southern region. Our work illustrates the importance of accounting for spatial structure when assessing changes in abundance and age distribution and the need for monitoring of age structure in imperiled species.

  5. Buoyancy Effects on Flow Structure and Instability of Low-Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Pasumarthi, Kasyap Sriramachandra

    2004-01-01

    A low-density gas jet injected into a high-density ambient gas is known to exhibit self-excited global oscillations accompanied by large vortical structures interacting with the flow field. The primary objective of the proposed research is to study buoyancy effects on the origin and nature of the flow instability and structure in the near-field of low-density gas jets. Quantitative rainbow schlieren deflectometry, Computational fluid dynamics (CFD) and Linear stability analysis were the techniques employed to scale the buoyancy effects. The formation and evolution of vortices and scalar structure of the flow field are investigated in buoyant helium jets discharged from a vertical tube into quiescent air. Oscillations at identical frequency were observed throughout the flow field. The evolving flow structure is described by helium mole percentage contours during an oscillation cycle. Instantaneous, mean, and RMS concentration profiles are presented to describe interactions of the vortex with the jet flow. Oscillations in a narrow wake region near the jet exit are shown to spread through the jet core near the downstream location of the vortex formation. The effects of jet Richardson number on characteristics of vortex and flow field are investigated and discussed. The laminar, axisymmetric, unsteady jet flow of helium injected into air was simulated using CFD. Global oscillations were observed in the flow field. The computed oscillation frequency agreed qualitatively with the experimentally measured frequency. Contours of helium concentration, vorticity and velocity provided information about the evolution and propagation of vortices in the oscillating flow field. Buoyancy effects on the instability mode were evaluated by rainbow schlieren flow visualization and concentration measurements in the near-field of self-excited helium jets undergoing gravitational change in the microgravity environment of 2.2s drop tower at NASA John H. Glenn Research Center. The jet Reynolds number was varied from 200 to 1500 and jet Richardson number was varied from 0.72 to 0.002. Power spectra plots generated from Fast Fourier Transform (FFT) analysis of angular deflection data acquired at a temporal resolution of 1000Hz reveal substantial damping of the oscillation amplitude in microgravity at low Richardson numbers (0.002). Quantitative concentration data in the form of spatial and temporal evolutions of the instability data in Earth gravity and microgravity reveal significant variations in the jet flow structure upon removal of buoyancy forces. Radial variation of the frequency spectra and time traces of helium concentration revealed the importance of gravitational effects in the jet shear layer region. Linear temporal and spatio-temporal stability analyses of a low-density round gas jet injected into a high-density ambient gas were performed by assuming hyper-tan mean velocity and density profiles. The flow was assumed to be non parallel. Viscous and diffusive effects were ignored. The mean flow parameters were represented as the sum of the mean value and a small normal-mode fluctuation. A second order differential equation governing the pressure disturbance amplitude was derived from the basic conservation equations. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the temporal and spatio-temporal results were delineated. A decrease in the density ratio (ratio of the density of the jet to the density of the ambient gas) resulted in an increase in the temporal amplification rate of the disturbances. The temporal growth rate of the disturbances increased as the Froude number was reduced. The spatio-temporal analysis performed to determine the absolute instability characteristics of the jet yield positive absolute temporal growth rates at all Fr and different axial locations. As buoyancy was removed (Fr . 8), the previously existing absolute instability disappeared at all locations establhing buoyancy as the primary instability mechanism in self-excited low-density jets.

  6. The role of soil communities in improving ecosystem services in organic farming

    NASA Astrophysics Data System (ADS)

    Zandbergen, Jelmer; Koorneef, Guusje; Veen, Cees; Schrama, Jan; van der Putten, Wim

    2017-04-01

    Worldwide soil fertility decreases and it is generally believed that organic matter (OM) addition to agricultural soils can improve soil properties leading to beneficial ecosystem services. However, it remains unknown under which conditions and how fast biotic, physical and chemical soil properties respond to varying quality and quantity of OM inputs. Therefore, the aims of this research project are (1) to unravel biotic, physical and chemical responses of soils to varying quantity and quality of OM addition; and (2) to understand how we can accelerate the response of soils in order to improve beneficial soil ecosystem services faster. The first step in our research project is to determine how small-scale spatio-temporal patterns in soil biotic, physical and chemical properties relate to crop production and quality. To do this we combine field measurements on soil properties with remote and proximate sensing measures on crop development and yield in a long-term farming systems experiment in the Netherlands (Vredepeel). We hypothesize that spatio-temporal variation in crop development and yield are strongly related to spatio-temporal variation in soil parameters. In the second step of our project we will use this information to identify biological interactions underlying improving soil functions in response to OM addition over time. We will specifically focus on the role of soil communities in driving nutrient cycling, disease suppression and the formation of soil structure, all crucial elements of key soil services in agricultural soils. The knowledge that will be generated in our project can be used to detect specific organic matter qualities that support the underlying ecological processes to accelerate the transition towards improved soil functioning thereby governing enhanced crop yields.

  7. Spatio-temporal variability of the North Sea cod recruitment in relation to temperature and zooplankton.

    PubMed

    Nicolas, Delphine; Rochette, Sébastien; Llope, Marcos; Licandro, Priscilla

    2014-01-01

    The North Sea cod (Gadus morhua, L.) stock has continuously declined over the past four decades linked with overfishing and climate change. Changes in stock structure due to overfishing have made the stock largely dependent on its recruitment success, which greatly relies on environmental conditions. Here we focus on the spatio-temporal variability of cod recruitment in an effort to detect changes during the critical early life stages. Using International Bottom Trawl Survey (IBTS) data from 1974 to 2011, a major spatio-temporal change in the distribution of cod recruits was identified in the late 1990s, characterized by a pronounced decrease in the central and southeastern North Sea stock. Other minor spatial changes were also recorded in the mid-1980s and early 1990s. We tested whether the observed changes in recruits distribution could be related with direct (i.e. temperature) and/or indirect (i.e. changes in the quantity and quality of zooplankton prey) effects of climate variability. The analyses were based on spatially-resolved time series, i.e. sea surface temperature (SST) from the Hadley Center and zooplankton records from the Continuous Plankton Recorder Survey. We showed that spring SST increase was the main driver for the most recent decrease in cod recruitment. The late 1990s were also characterized by relatively low total zooplankton biomass, particularly of energy-rich zooplankton such as the copepod Calanus finmarchicus, which have further contributed to the decline of North Sea cod recruitment. Long-term spatially-resolved observations were used to produce regional distribution models that could further be used to predict the abundance of North Sea cod recruits based on temperature and zooplankton food availability.

  8. Spatio-temporal correlations in the Manna model in one, three and five dimensions

    NASA Astrophysics Data System (ADS)

    Willis, Gary; Pruessner, Gunnar

    2018-02-01

    Although the paradigm of criticality is centered around spatial correlations and their anomalous scaling, not many studies of self-organized criticality (SOC) focus on spatial correlations. Often, integrated observables, such as avalanche size and duration, are used, not least as to avoid complications due to the unavoidable lack of translational invariance. The present work is a survey of spatio-temporal correlation functions in the Manna Model of SOC, measured numerically in detail in d = 1,3 and 5 dimensions and compared to theoretical results, in particular relating them to “integrated” observables such as avalanche size and duration scaling, that measure them indirectly. Contrary to the notion held by some of SOC models organizing into a critical state by re-arranging their spatial structure avalanche by avalanche, which may be expected to result in large, nontrivial, system-spanning spatial correlations in the quiescent state (between avalanches), correlations of inactive particles in the quiescent state have a small amplitude that does not and cannot increase with the system size, although they display (noisy) power law scaling over a range linear in the system size. Self-organization, however, does take place as the (one-point) density of inactive particles organizes into a particular profile that is asymptotically independent of the driving location, also demonstrated analytically in one dimension. Activity and its correlations, on the other hand, display nontrivial long-ranged spatio-temporal scaling with exponents that can be related to established results, in particular avalanche size and duration exponents. The correlation length and amplitude are set by the system size (confirmed analytically for some observables), as expected in systems displaying finite size scaling. In one dimension, we find some surprising inconsistencies of the dynamical exponent. A (spatially extended) mean field theory (MFT) is recovered, with some corrections, in five dimensions.

  9. Spontaneous switching among multiple spatio-temporal patterns in three-oscillator systems constructed with oscillatory cells of true slime mold

    NASA Astrophysics Data System (ADS)

    Takamatsu, Atsuko

    2006-11-01

    Three-oscillator systems with plasmodia of true slime mold, Physarum polycephalum, which is an oscillatory amoeba-like unicellular organism, were experimentally constructed and their spatio-temporal patterns were investigated. Three typical spatio-temporal patterns were found: rotation ( R), partial in-phase ( PI), and partial anti-phase with double frequency ( PA). In pattern R, phase differences between adjacent oscillators were almost 120 ∘. In pattern PI, two oscillators were in-phase and the third oscillator showed anti-phase against the two oscillators. In pattern PA, two oscillators showed anti-phase and the third oscillator showed frequency doubling oscillation with small amplitude. Actually each pattern is not perfectly stable but quasi-stable. Interestingly, the system shows spontaneous switching among the multiple quasi-stable patterns. Statistical analyses revealed a characteristic in the residence time of each pattern: the histograms seem to have Gamma-like distribution form but with a sharp peak and a tail on the side of long period. That suggests the attractor of this system has complex structure composed of at least three types of sub-attractors: a “Gamma attractor”-involved with several Poisson processes, a “deterministic attractor”-the residence time is deterministic, and a “stable attractor”-each pattern is stable. When the coupling strength was small, only the Gamma attractor was observed and switching behavior among patterns R, PI, and PA almost always via an asynchronous pattern named O. A conjecture is as follows: Internal/external noise exposes each pattern of R, PI, and PA coexisting around bifurcation points: That is observed as the Gamma attractor. As coupling strength increases, the deterministic attractor appears then followed by the stable attractor, always accompanied with the Gamma attractor. Switching behavior could be caused by regular existence of the Gamma attractor.

  10. Comparing apples and oranges: the Community Intercomparison Suite

    NASA Astrophysics Data System (ADS)

    Schutgens, Nick; Stier, Philip; Kershaw, Philip; Pascoe, Stephen

    2015-04-01

    Visual representation and comparison of geoscientific datasets presents a huge challenge due to the large variety of file formats and spatio-temporal sampling of data (be they observations or simulations). The Community Intercomparison Suite attempts to greatly simplify these tasks for users by offering an intelligent but simple command line tool for visualisation and colocation of diverse datasets. In addition, CIS can subset and aggregate large datasets into smaller more manageable datasets. Our philosophy is to remove as much as possible the need for specialist knowledge by the user of the structure of a dataset. The colocation of observations with model data is as simple as: "cis col ::" which will resample the simulation data to the spatio-temporal sampling of the observations, contingent on a few user-defined options that specify a resampling kernel. As an example, we apply CIS to a case study of biomass burning aerosol from the Congo. Remote sensing observations, in-situe observations and model data are shown in various plots, with the purpose of either comparing different datasets or integrating them into a single comprehensive picture. CIS can deal with both gridded and ungridded datasets of 2, 3 or 4 spatio-temporal dimensions. It can handle different spatial coordinates (e.g. longitude or distance, altitude or pressure level). CIS supports both HDF, netCDF and ASCII file formats. The suite is written in Python with entirely publicly available open source dependencies. Plug-ins allow a high degree of user-moddability. A web-based developer hub includes a manual and simple examples. CIS is developed as open source code by a specialist IT company under supervision of scientists from the University of Oxford and the Centre of Environmental Data Archival as part of investment in the JASMIN superdatacluster facility.

  11. Spatio-Temporal Variability of the North Sea Cod Recruitment in Relation to Temperature and Zooplankton

    PubMed Central

    Nicolas, Delphine; Rochette, Sébastien; Llope, Marcos; Licandro, Priscilla

    2014-01-01

    The North Sea cod (Gadus morhua, L.) stock has continuously declined over the past four decades linked with overfishing and climate change. Changes in stock structure due to overfishing have made the stock largely dependent on its recruitment success, which greatly relies on environmental conditions. Here we focus on the spatio-temporal variability of cod recruitment in an effort to detect changes during the critical early life stages. Using International Bottom Trawl Survey (IBTS) data from 1974 to 2011, a major spatio-temporal change in the distribution of cod recruits was identified in the late 1990s, characterized by a pronounced decrease in the central and southeastern North Sea stock. Other minor spatial changes were also recorded in the mid-1980s and early 1990s. We tested whether the observed changes in recruits distribution could be related with direct (i.e. temperature) and/or indirect (i.e. changes in the quantity and quality of zooplankton prey) effects of climate variability. The analyses were based on spatially-resolved time series, i.e. sea surface temperature (SST) from the Hadley Center and zooplankton records from the Continuous Plankton Recorder Survey. We showed that spring SST increase was the main driver for the most recent decrease in cod recruitment. The late 1990s were also characterized by relatively low total zooplankton biomass, particularly of energy-rich zooplankton such as the copepod Calanus finmarchicus, which have further contributed to the decline of North Sea cod recruitment. Long-term spatially-resolved observations were used to produce regional distribution models that could further be used to predict the abundance of North Sea cod recruits based on temperature and zooplankton food availability. PMID:24551103

  12. Localized atrophy of the thalamus and slowed cognitive processing speed in MS patients.

    PubMed

    Bergsland, Niels; Zivadinov, Robert; Dwyer, Michael G; Weinstock-Guttman, Bianca; Benedict, Ralph Hb

    2016-09-01

    Deep gray matter (DGM) atrophy is common in multiple sclerosis (MS), but no studies have investigated surface-based structure changes over time with respect to healthy controls (HCs). Moreover, the relationship between cognition and the spatio-temporal evolution of DGM atrophy is poorly understood. To explore DGM structural differences between MS and HCs over time in relation to neuropsychological (NP) outcomes. The participants were 44 relapsing-remitting and 20 secondary progressive MS patients and 22 HCs. All were scanned using 3T magnetic resonance imaging (MRI) at baseline and 3-year follow-up. NP examination emphasized consensus standard tests of processing speed and memory. We performed both volumetric and shape analysis of DGM structures and assessed their relationships with cognition. Compared to HCs, MS patients presented with significantly smaller DGM volumes. For the thalamus and caudate, differences in shape were mostly localized along the lateral ventricles. NP outcomes were related to both volume and shape of the DGM structures. Over 3 years, decreased cognitive processing speed was related to localized atrophy on the anterior and superior surface of the left thalamus. These findings highlight the role of atrophy in the anterior nucleus of the thalamus and its relation to cognitive decline in MS. © The Author(s), 2015.

  13. Spatial Memory in the Morris Water Maze and Activation of Cyclic AMP Response Element-Binding (CREB) Protein within the Mouse Hippocampus

    ERIC Educational Resources Information Center

    Porte, Yves; Buhot, Marie Christine; Mons, Nicole E.

    2008-01-01

    We investigated the spatio-temporal dynamics of learning-induced cAMP response element-binding protein activation/phosphorylation (pCREB) in mice trained in a spatial reference memory task in the water maze. Using immunohistochemistry, we examined pCREB immunoreactivity (pCREB-ir) in hippocampal CA1 and CA3 and related brain structures. During the…

  14. Spatial and temporal variability of microgeographic genetic structure in white-tailed deer

    USGS Publications Warehouse

    Scribner, Kim T.; Smith, Michael H.; Chesser, Ronald K.

    1997-01-01

    Techniques are described that define contiguous genetic subpopulations of white-tailed deer (Odocoileus virginianus) based on the spatial dispersion of 4,749 individuals that possessed discrete character values (alleles or genotypes) during each of 6 years (1974-1979). White-tailed deer were not uniformly distributed in space, but exhibited considerable spatial genetic structuring. Significant non-random clusters of individuals were documented during each year based on specific alleles and genotypes at the Sdh locus. Considerable temporal variation was observed in the position and genetic composition of specific clusters, which reflected changes in allele frequency in small geographic areas. The position of clusters did not consistently correspond with traditional management boundaries based on major discontinuities in habitat (swamp versus upland) and hunt compartments that were defined by roads and streams. Spatio-temporal stability of observed genetic contiguous clusters was interpreted relative to method and intensity of harvest, movements, and breeding ecology.

  15. High spatial and temporal resolution cell manipulation techniques in microchannels.

    PubMed

    Novo, Pedro; Dell'Aica, Margherita; Janasek, Dirk; Zahedi, René P

    2016-03-21

    The advent of microfluidics has enabled thorough control of cell manipulation experiments in so called lab on chips. Lab on chips foster the integration of actuation and detection systems, and require minute sample and reagent amounts. Typically employed microfluidic structures have similar dimensions as cells, enabling precise spatial and temporal control of individual cells and their local environments. Several strategies for high spatio-temporal control of cells in microfluidics have been reported in recent years, namely methods relying on careful design of the microfluidic structures (e.g. pinched flow), by integration of actuators (e.g. electrodes or magnets for dielectro-, acousto- and magneto-phoresis), or integrations thereof. This review presents the recent developments of cell experiments in microfluidics divided into two parts: an introduction to spatial control of cells in microchannels followed by special emphasis in the high temporal control of cell-stimulus reaction and quenching. In the end, the present state of the art is discussed in line with future perspectives and challenges for translating these devices into routine applications.

  16. Impacts of industrial transition on water use intensity and energy-related carbon intensity in China: A spatio-temporal analysis during 2003-2012

    NASA Astrophysics Data System (ADS)

    Cai, J.; Yin, H.; Varis, O.

    2016-12-01

    China faces a complicated puzzle in balancing the country's trade-offs among water and energy security, economic competitiveness, and environmental sustainability. It is therefore of prime importance to comprehend China's water and energy security under the effect of its economic structural changes. Analyses on this entity still remain few and far between though, and a comprehensive picture has not been available that would help understand China's recent development in economic structure as well as its spatial features and links to water and energy security, and policy-making. Consequently, we addressed this information gap by performing an integrated and quantitative spatio-temporal analysis of the impacts of China's industrial transition on water use intensity (WUI) and energy-related carbon intensity (ERCI). Those two factors serve as the national targets of its water and energy security. Our results for the first time quantitatively demonstrated the following significant and novel information: 1) the primary industry (PI) appeared to dominate the WUI although its relative share decreased, and PI's WUI continued to be far higher than that of secondary and tertiary industries (SI and TI); 2) SI dominated in affecting the total ERCI at both national and provincial scales; 3) the total WUI and ERCI had a significant positive correlation.

  17. Morphology and the gradient of a symmetric potential predict gait transitions of dogs.

    PubMed

    Wilshin, Simon; Haynes, G Clark; Porteous, Jack; Koditschek, Daniel; Revzen, Shai; Spence, Andrew J

    2017-08-01

    Gaits and gait transitions play a central role in the movement of animals. Symmetry is thought to govern the structure of the nervous system, and constrain the limb motions of quadrupeds. We quantify the symmetry of dog gaits with respect to combinations of bilateral, fore-aft, and spatio-temporal symmetry groups. We tested the ability of symmetries to model motion capture data of dogs walking, trotting and transitioning between those gaits. Fully symmetric models performed comparably to asymmetric with only a [Formula: see text] increase in the residual sum of squares and only one-quarter of the parameters. This required adding a spatio-temporal shift representing a lag between fore and hind limbs. Without this shift, the symmetric model residual sum of squares was [Formula: see text] larger. This shift is related to (linear regression, [Formula: see text], [Formula: see text]) dog morphology. That this symmetry is respected throughout the gaits and transitions indicates that it generalizes outside a single gait. We propose that relative phasing of limb motions can be described by an interaction potential with a symmetric structure. This approach can be extended to the study of interaction of neurodynamic and kinematic variables, providing a system-level model that couples neuronal central pattern generator networks and mechanical models.

  18. MapMyFlu: visualizing spatio-temporal relationships between related influenza sequences

    PubMed Central

    Nolte, Nicholas; Kurzawa, Nils; Eils, Roland; Herrmann, Carl

    2015-01-01

    Understanding the molecular dynamics of viral spreading is crucial for anticipating the epidemiological implications of disease outbreaks. In the case of influenza, reassortments or point mutations affect the adaption to new hosts or resistance to anti-viral drugs and can determine whether a new strain will result in a pandemic infection or a less severe progression. To this end, tools integrating molecular information with epidemiological parameters are important to understand how molecular characteristics reflect in the infection dynamics. We present a new web tool, MapMyFlu, which allows to spatially and temporally display influenza viruses related to a query sequence on a Google Map based on BLAST results against the NCBI Influenza Database. Temporal and geographical trends appear clearly and may help in reconstructing the evolutionary history of a particular sequence. The tool is accessible through a web server, hence without the need for local installation. The website has an intuitive design and provides an easy-to-use service, and is available at http://mapmyflu.ipmb.uni-heidelberg.de PMID:25940623

  19. Spatio-temporal modelling of climate-sensitive disease risk: Towards an early warning system for dengue in Brazil

    NASA Astrophysics Data System (ADS)

    Lowe, Rachel; Bailey, Trevor C.; Stephenson, David B.; Graham, Richard J.; Coelho, Caio A. S.; Sá Carvalho, Marilia; Barcellos, Christovam

    2011-03-01

    This paper considers the potential for using seasonal climate forecasts in developing an early warning system for dengue fever epidemics in Brazil. In the first instance, a generalised linear model (GLM) is used to select climate and other covariates which are both readily available and prove significant in prediction of confirmed monthly dengue cases based on data collected across the whole of Brazil for the period January 2001 to December 2008 at the microregion level (typically consisting of one large city and several smaller municipalities). The covariates explored include temperature and precipitation data on a 2.5°×2.5° longitude-latitude grid with time lags relevant to dengue transmission, an El Niño Southern Oscillation index and other relevant socio-economic and environmental variables. A negative binomial model formulation is adopted in this model selection to allow for extra-Poisson variation (overdispersion) in the observed dengue counts caused by unknown/unobserved confounding factors and possible correlations in these effects in both time and space. Subsequently, the selected global model is refined in the context of the South East region of Brazil, where dengue predominates, by reverting to a Poisson framework and explicitly modelling the overdispersion through a combination of unstructured and spatio-temporal structured random effects. The resulting spatio-temporal hierarchical model (or GLMM—generalised linear mixed model) is implemented via a Bayesian framework using Markov Chain Monte Carlo (MCMC). Dengue predictions are found to be enhanced both spatially and temporally when using the GLMM and the Bayesian framework allows posterior predictive distributions for dengue cases to be derived, which can be useful for developing a dengue alert system. Using this model, we conclude that seasonal climate forecasts could have potential value in helping to predict dengue incidence months in advance of an epidemic in South East Brazil.

  20. High spatio-temporal resolution observations of crater-lake temperatures at Kawah Ijen volcano, East Java, Indonesia

    USGS Publications Warehouse

    Lewicki, Jennifer L.; Corentin Caudron,; Vincent van Hinsberg,; George Hilley,

    2016-01-01

    The crater lake of Kawah Ijen volcano, East Java, Indonesia, has displayed large and rapid changes in temperature at point locations during periods of unrest, but measurement techniques employed to-date have not resolved how the lake’s thermal regime has evolved over both space and time. We applied a novel approach for mapping and monitoring variations in crater-lake apparent surface (“skin”) temperatures at high spatial (~32 cm) and temporal (every two minutes) resolution at Kawah Ijen on 18 September 2014. We used a ground-based FLIR T650sc camera with digital and thermal infrared (TIR) sensors from the crater rim to collect (1) a set of visible imagery around the crater during the daytime and (2) a time series of co-located visible and TIR imagery at one location from pre-dawn to daytime. We processed daytime visible imagery with the Structure-from-Motion photogrammetric method to create a digital elevation model onto which the time series of TIR imagery was orthorectified and georeferenced. Lake apparent skin temperatures typically ranged from ~21 to 33oC. At two locations, apparent skin temperatures were ~ 4 and 7 oC less than in-situ lake temperature measurements at 1.5 and 5 m depth, respectively. These differences, as well as the large spatio-temporal variations observed in skin temperatures, were likely largely associated with atmospheric effects such as evaporative cooling of the lake surface and infrared absorption by water vapor and SO2. Calculations based on orthorectified TIR imagery thus yielded underestimates of volcanic heat fluxes into the lake, whereas volcanic heat fluxes estimated based on in-situ temperature measurements (68 to 111 MW) were likely more representative of Kawah Ijen in a quiescent state. The ground-based imaging technique should provide a valuable tool to continuously monitor crater-lake temperatures and contribute insight into the spatio-temporal evolution of these temperatures associated with volcanic activity.

  1. Improving exposure assessment in environmental epidemiology: Application of spatio-temporal visualization tools

    NASA Astrophysics Data System (ADS)

    Meliker, Jaymie R.; Slotnick, Melissa J.; Avruskin, Gillian A.; Kaufmann, Andrew; Jacquez, Geoffrey M.; Nriagu, Jerome O.

    2005-05-01

    A thorough assessment of human exposure to environmental agents should incorporate mobility patterns and temporal changes in human behaviors and concentrations of contaminants; yet the temporal dimension is often under-emphasized in exposure assessment endeavors, due in part to insufficient tools for visualizing and examining temporal datasets. Spatio-temporal visualization tools are valuable for integrating a temporal component, thus allowing for examination of continuous exposure histories in environmental epidemiologic investigations. An application of these tools to a bladder cancer case-control study in Michigan illustrates continuous exposure life-lines and maps that display smooth, continuous changes over time. Preliminary results suggest increased risk of bladder cancer from combined exposure to arsenic in drinking water (>25 μg/day) and heavy smoking (>30 cigarettes/day) in the 1970s and 1980s, and a possible cancer cluster around automotive, paint, and organic chemical industries in the early 1970s. These tools have broad application for examining spatially- and temporally-specific relationships between exposures to environmental risk factors and disease.

  2. Probing the Spatio-Temporal Characteristics of Temporal Aliasing Errors and their Impact on Satellite Gravity Retrievals

    NASA Astrophysics Data System (ADS)

    Wiese, D. N.; McCullough, C. M.

    2017-12-01

    Studies have shown that both single pair low-low satellite-to-satellite tracking (LL-SST) and dual-pair LL-SST hypothetical future satellite gravimetry missions utilizing improved onboard measurement systems relative to the Gravity Recovery and Climate Experiment (GRACE) will be limited by temporal aliasing errors; that is, the error introduced through deficiencies in models of high frequency mass variations required for the data processing. Here, we probe the spatio-temporal characteristics of temporal aliasing errors to understand their impact on satellite gravity retrievals using high fidelity numerical simulations. We find that while aliasing errors are dominant at long wavelengths and multi-day timescales, improving knowledge of high frequency mass variations at these resolutions translates into only modest improvements (i.e. spatial resolution/accuracy) in the ability to measure temporal gravity variations at monthly timescales. This result highlights the reliance on accurate models of high frequency mass variations for gravity processing, and the difficult nature of reducing temporal aliasing errors and their impact on satellite gravity retrievals.

  3. Tropospheric Ozone Lidar Network (TOLNet) Observations of Processes Controlling Spatio-Temporal Tropospheric-Ozone Distributions

    NASA Astrophysics Data System (ADS)

    Newchurch, M.; Johnson, M. S.; Leblanc, T.; Langford, A. O.; Senff, C. J.; Kuang, S.; Strawbridge, K. B.; McGee, T. J.; Berkoff, T.; Chen, G.

    2017-12-01

    The Tropospheric Ozone Lidar Network, TOLNet, has matured into a credible scientific group of six ozone lidars that are capable of accurate, high-spatio-temporal-resolution measurement of tropospheric ozone structures and morphology These lidars have demonstrated their 10% accuracy in several intercomparison campaigns and have participated in several scientific investigations both in small and large instrumentation groups. They have investigated many scientific phenomena including stratosphere-to-troposphere exchange, boundary-layer development, the interaction between the boundary layer and the free troposphere, Front-range-ozone morphology, urban outflow, land/sea interactions, et al. These processes determine the ozone distribution affecting large portions of the population. The TOLNet group is now making significant contributions to the innovation of ozone lidar instrumentation and retrieval techniques. The campaigns proposed over the next few years build on demonstrated capability to address more difficult scientific issues, especially the ozone production potential and distribution from wildfires and prescribed burns. Through scientific cooperation with other ground-based profiling instrumentation, TOLNet is also contributing to the validation of the new measurement capabilities of TEMPO.

  4. Modelling larval dispersal dynamics of common sole (Solea solea) along the western Iberian coast

    NASA Astrophysics Data System (ADS)

    Tanner, Susanne E.; Teles-Machado, Ana; Martinho, Filipe; Peliz, Álvaro; Cabral, Henrique N.

    2017-08-01

    Individual-based coupled physical-biological models have become the standard tool for studying ichthyoplankton dynamics and assessing fish recruitment. Here, common sole (Solea solea L.), a flatfish of high commercial importance in Europe was used to evaluate transport of eggs and larvae and investigate the connectivity between spawning and nursery areas along the western Iberian coast as spatio-temporal variability in dispersal and recruitment patterns can result in very strong or weak year-classes causing large fluctuations in stock size. A three-dimensional particle tracking model coupled to Regional Ocean Modelling System model was used to investigate variability of sole larvae dispersal along the western Iberian coast over a five-year period (2004-2009). A sensitivity analysis evaluating: (1) the importance of diel vertical migrations of larvae and (2) the size of designated recruitment areas was performed. Results suggested that connectivity patterns of sole larvae dispersal and their spatio-temporal variability are influenced by the configuration of the coast with its topographical structures and thus the suitable recruitment area available as well as the wind-driven mesoscale circulation along the Iberian coast.

  5. Buckling instability in ordered bacterial colonies

    NASA Astrophysics Data System (ADS)

    Boyer, Denis; Mather, William; Mondragón-Palomino, Octavio; Orozco-Fuentes, Sirio; Danino, Tal; Hasty, Jeff; Tsimring, Lev S.

    2011-04-01

    Bacterial colonies often exhibit complex spatio-temporal organization. This collective behavior is affected by a multitude of factors ranging from the properties of individual cells (shape, motility, membrane structure) to chemotaxis and other means of cell-cell communication. One of the important but often overlooked mechanisms of spatio-temporal organization is direct mechanical contact among cells in dense colonies such as biofilms. While in natural habitats all these different mechanisms and factors act in concert, one can use laboratory cell cultures to study certain mechanisms in isolation. Recent work demonstrated that growth and ensuing expansion flow of rod-like bacteria Escherichia coli in confined environments leads to orientation of cells along the flow direction and thus to ordering of cells. However, the cell orientational ordering remained imperfect. In this paper we study one mechanism responsible for the persistence of disorder in growing cell populations. We demonstrate experimentally that a growing colony of nematically ordered cells is prone to the buckling instability. Our theoretical analysis and discrete-element simulations suggest that the nature of this instability is related to the anisotropy of the stress tensor in the ordered cell colony.

  6. Remote sensing and water quality indicators in the Korean West coast: Spatio-temporal structures of MODIS-derived chlorophyll-a and total suspended solids.

    PubMed

    Kim, Hae-Cheol; Son, Seunghyun; Kim, Yong Hoon; Khim, Jong Seong; Nam, Jungho; Chang, Won Keun; Lee, Jung-Ho; Lee, Chang-Hee; Ryu, Jongseong

    2017-08-15

    The Yellow Sea is a shallow marginal sea with a large tidal range. In this study, ten areas located along the western coast of the Korean Peninsula are investigated with respect to remotely sensed water quality indicators derived from NASA MODIS aboard of the satellite Aqua. We found that there was a strong seasonal trend with spatial heterogeneity. In specific, a strong six-month phase-lag was found between chlorophyll-a and total suspended solid owing to their inversed seasonality, which could be explained by different dynamics and environmental settings. Chlorophyll-a concentration seemed to be dominantly influenced by temperature, while total suspended solid was largely governed by local tidal forcing and bottom topography. This study demonstrated the potential and applicability of satellite products in coastal management, and highlighted find that remote-sensing would be a promising tool in resolving orthogonality of large spatio-temporal scale variabilities when combining with proper time series analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Spatio-Temporal Patterns of Barmah Forest Virus Disease in Queensland, Australia

    PubMed Central

    Naish, Suchithra; Hu, Wenbiao; Mengersen, Kerrie; Tong, Shilu

    2011-01-01

    Background Barmah Forest virus (BFV) disease is a common and wide-spread mosquito-borne disease in Australia. This study investigated the spatio-temporal patterns of BFV disease in Queensland, Australia using geographical information system (GIS) tools and geostatistical analysis. Methods/Principal Findings We calculated the incidence rates and standardised incidence rates of BFV disease. Moran's I statistic was used to assess the spatial autocorrelation of BFV incidences. Spatial dynamics of BFV disease was examined using semi-variogram analysis. Interpolation techniques were applied to visualise and display the spatial distribution of BFV disease in statistical local areas (SLAs) throughout Queensland. Mapping of BFV disease by SLAs reveals the presence of substantial spatio-temporal variation over time. Statistically significant differences in BFV incidence rates were identified among age groups (χ2 = 7587, df = 7327,p<0.01). There was a significant positive spatial autocorrelation of BFV incidence for all four periods, with the Moran's I statistic ranging from 0.1506 to 0.2901 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. Conclusions/Significance This is the first study to examine spatial and temporal variation in the incidence rates of BFV disease across Queensland using GIS and geostatistics. The BFV transmission varied with age and gender, which may be due to exposure rates or behavioural risk factors. There are differences in the spatio-temporal patterns of BFV disease which may be related to local socio-ecological and environmental factors. These research findings may have implications in the BFV disease control and prevention programs in Queensland. PMID:22022430

  8. Spatio-Temporal Variation in Landscape Composition May Speed Resistance Evolution of Pests to Bt Crops.

    PubMed

    Ives, Anthony R; Paull, Cate; Hulthen, Andrew; Downes, Sharon; Andow, David A; Haygood, Ralph; Zalucki, Myron P; Schellhorn, Nancy A

    2017-01-01

    Transgenic crops that express insecticide genes from Bacillus thuringiensis (Bt) are used worldwide against moth and beetle pests. Because these engineered plants can kill over 95% of susceptible larvae, they can rapidly select for resistance. Here, we use a model for a pyramid two-toxin Bt crop to explore the consequences of spatio-temporal variation in the area of Bt crop and non-Bt refuge habitat. We show that variability over time in the proportion of suitable non-Bt breeding habitat, Q, or in the total area of Bt and suitable non-Bt habitat, K, can increase the overall rate of resistance evolution by causing short-term surges of intense selection. These surges can be exacerbated when temporal variation in Q and/or K cause high larval densities in refuges that increase density-dependent mortality; this will give resistant larvae in Bt fields a relative advantage over susceptible larvae that largely depend on refuges. We address the effects of spatio-temporal variation in a management setting for two bollworm pests of cotton, Helicoverpa armigera and H. punctigera, and field data on landscape crop distributions from Australia. Even a small proportion of Bt fields available to egg-laying females when refuges are sparse may result in high exposure to Bt for just a single generation per year and cause a surge in selection. Therefore, rapid resistance evolution can occur when Bt crops are rare rather than common in the landscape. These results highlight the need to understand spatio-temporal fluctuations in the landscape composition of Bt crops and non-Bt habitats in order to design effective resistance management strategies.

  9. Spatio-temporal Change Patterns of Tropical Forests from 2000 to 2014 Using MOD09A1 Dataset

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Xiao, X.; Dong, J.

    2016-12-01

    Large-scale deforestation and forest degradation in the tropical region have resulted in extensive carbon emissions and biodiversity loss. However, restricted by the availability of good-quality observations, large uncertainty exists in mapping the spatial distribution of forests and their spatio-temporal changes. In this study, we proposed a pixel- and phenology-based algorithm to identify and map annual tropical forests from 2000 to 2014, using the 8-day, 500-m MOD09A1 (v005) product, under the support of Google cloud computing (Google Earth Engine). A temporal filter was applied to reduce the random noises and to identify the spatio-temporal changes of forests. We then built up a confusion matrix and assessed the accuracy of the annual forest maps based on the ground reference interpreted from high spatial resolution images in Google Earth. The resultant forest maps showed the consistent forest/non-forest, forest loss, and forest gain in the pan-tropical zone during 2000 - 2014. The proposed algorithm showed the potential for tropical forest mapping and the resultant forest maps are important for the estimation of carbon emission and biodiversity loss.

  10. Spatio-temporal features for tracking and quadruped/biped discrimination

    NASA Astrophysics Data System (ADS)

    Rickman, Rick; Copsey, Keith; Bamber, David C.; Page, Scott F.

    2012-05-01

    Techniques such as SIFT and SURF facilitate efficient and robust image processing operations through the use of sparse and compact spatial feature descriptors and show much potential for defence and security applications. This paper considers the extension of such techniques to include information from the temporal domain, to improve utility in applications involving moving imagery within video data. In particular, the paper demonstrates how spatio-temporal descriptors can be used very effectively as the basis of a target tracking system and as target discriminators which can distinguish between bipeds and quadrupeds. Results using sequences of video imagery of walking humans and dogs are presented, and the relative merits of the approach are discussed.

  11. The future of human cerebral cartography: a novel approach

    PubMed Central

    Frackowiak, Richard; Markram, Henry

    2015-01-01

    Cerebral cartography can be understood in a limited, static, neuroanatomical sense. Temporal information from electrical recordings contributes information on regional interactions adding a functional dimension. Selective tagging and imaging of molecules adds biochemical contributions. Cartographic detail can also be correlated with normal or abnormal psychological or behavioural data. Modern cerebral cartography is assimilating all these elements. Cartographers continue to collect ever more precise data in the hope that general principles of organization will emerge. However, even detailed cartographic data cannot generate knowledge without a multi-scale framework making it possible to relate individual observations and discoveries. We propose that, in the next quarter century, advances in cartography will result in progressively more accurate drafts of a data-led, multi-scale model of human brain structure and function. These blueprints will result from analysis of large volumes of neuroscientific and clinical data, by a process of reconstruction, modelling and simulation. This strategy will capitalize on remarkable recent developments in informatics and computer science and on the existence of much existing, addressable data and prior, though fragmented, knowledge. The models will instantiate principles that govern how the brain is organized at different levels and how different spatio-temporal scales relate to each other in an organ-centred context. PMID:25823868

  12. Prospects for Electron Imaging with Ultrafast Time Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, M R; Reed, B W; Torralva, B R

    2007-01-26

    Many pivotal aspects of material science, biomechanics, and chemistry would benefit from nanometer imaging with ultrafast time resolution. Here we demonstrate the feasibility of short-pulse electron imaging with t10 nanometer/10 picosecond spatio-temporal resolution, sufficient to characterize phenomena that propagate at the speed of sound in materials (1-10 kilometer/second) without smearing. We outline resolution-degrading effects that occur at high current density followed by strategies to mitigate these effects. Finally, we present a model electron imaging system that achieves 10 nanometer/10 picosecond spatio-temporal resolution.

  13. Storyline Visualizations of Eye Tracking of Movie Viewing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balint, John T.; Arendt, Dustin L.; Blaha, Leslie M.

    Storyline visualizations offer an approach that promises to capture the spatio-temporal characteristics of individual observers and simultaneously illustrate emerging group behaviors. We develop a visual analytics approach to parsing, aligning, and clustering fixation sequences from eye tracking data. Visualization of the results captures the similarities and differences across a group of observers performing a common task. We apply our storyline approach to visualize gaze patterns of people watching dynamic movie clips. Storylines mitigate some of the shortcomings of existent spatio-temporal visualization techniques and, importantly, continue to highlight individual observer behavioral dynamics.

  14. Spatio-temporal water quality mapping from satellite images using geographically and temporally weighted regression

    NASA Astrophysics Data System (ADS)

    Chu, Hone-Jay; Kong, Shish-Jeng; Chang, Chih-Hua

    2018-03-01

    The turbidity (TB) of a water body varies with time and space. Water quality is traditionally estimated via linear regression based on satellite images. However, estimating and mapping water quality require a spatio-temporal nonstationary model, while TB mapping necessitates the use of geographically and temporally weighted regression (GTWR) and geographically weighted regression (GWR) models, both of which are more precise than linear regression. Given the temporal nonstationary models for mapping water quality, GTWR offers the best option for estimating regional water quality. Compared with GWR, GTWR provides highly reliable information for water quality mapping, boasts a relatively high goodness of fit, improves the explanation of variance from 44% to 87%, and shows a sufficient space-time explanatory power. The seasonal patterns of TB and the main spatial patterns of TB variability can be identified using the estimated TB maps from GTWR and by conducting an empirical orthogonal function (EOF) analysis.

  15. Modeling structural change in spatial system dynamics: A Daisyworld example.

    PubMed

    Neuwirth, C; Peck, A; Simonović, S P

    2015-03-01

    System dynamics (SD) is an effective approach for helping reveal the temporal behavior of complex systems. Although there have been recent developments in expanding SD to include systems' spatial dependencies, most applications have been restricted to the simulation of diffusion processes; this is especially true for models on structural change (e.g. LULC modeling). To address this shortcoming, a Python program is proposed to tightly couple SD software to a Geographic Information System (GIS). The approach provides the required capacities for handling bidirectional and synchronized interactions of operations between SD and GIS. In order to illustrate the concept and the techniques proposed for simulating structural changes, a fictitious environment called Daisyworld has been recreated in a spatial system dynamics (SSD) environment. The comparison of spatial and non-spatial simulations emphasizes the importance of considering spatio-temporal feedbacks. Finally, practical applications of structural change models in agriculture and disaster management are proposed.

  16. Genome-wide alterations of the DNA replication program during tumor progression

    NASA Astrophysics Data System (ADS)

    Arneodo, A.; Goldar, A.; Argoul, F.; Hyrien, O.; Audit, B.

    2016-08-01

    Oncogenic stress is a major driving force in the early stages of cancer development. Recent experimental findings reveal that, in precancerous lesions and cancers, activated oncogenes may induce stalling and dissociation of DNA replication forks resulting in DNA damage. Replication timing is emerging as an important epigenetic feature that recapitulates several genomic, epigenetic and functional specificities of even closely related cell types. There is increasing evidence that chromosome rearrangements, the hallmark of many cancer genomes, are intimately associated with the DNA replication program and that epigenetic replication timing changes often precede chromosomic rearrangements. The recent development of a novel methodology to map replication fork polarity using deep sequencing of Okazaki fragments has provided new and complementary genome-wide replication profiling data. We review the results of a wavelet-based multi-scale analysis of genomic and epigenetic data including replication profiles along human chromosomes. These results provide new insight into the spatio-temporal replication program and its dynamics during differentiation. Here our goal is to bring to cancer research, the experimental protocols and computational methodologies for replication program profiling, and also the modeling of the spatio-temporal replication program. To illustrate our purpose, we report very preliminary results obtained for the chronic myelogeneous leukemia, the archetype model of cancer. Finally, we discuss promising perspectives on using genome-wide DNA replication profiling as a novel efficient tool for cancer diagnosis, prognosis and personalized treatment.

  17. Nanoelectronics Meets Biology: From Novel Nanoscale Devices for Live Cell Recording to 3D Innervated Tissues†

    PubMed Central

    Duan, Xiaojie; Lieber, Charles M.

    2013-01-01

    High spatio-temporal resolution interfacing between electrical sensors and biological systems, from single live cells to tissues, is crucial for many areas, including fundamental biophysical studies as well as medical monitoring and intervention. This focused review summarizes recent progresses in the development and application of novel nanoscale devices for intracellular electrical recordings of action potentials, and the effort of merging electronic and biological systems seamlessly in three dimension using macroporous nanoelectronic scaffolds. The uniqueness of these nanoscale devices for minimally invasive, large scale, high spatial resolution, and three dimensional neural activity mapping will be highlighted. PMID:23946279

  18. A Framework for Modeling Competitive and Cooperative Computation in Retinal Processing

    NASA Astrophysics Data System (ADS)

    Moreno-Díaz, Roberto; de Blasio, Gabriel; Moreno-Díaz, Arminda

    2008-07-01

    The structure of the retina suggests that it should be treated (at least from the computational point of view), as a layered computer. Different retinal cells contribute to the coding of the signals down to ganglion cells. Also, because of the nature of the specialization of some ganglion cells, the structure suggests that all these specialization processes should take place at the inner plexiform layer and they should be of a local character, prior to a global integration and frequency-spike coding by the ganglion cells. The framework we propose consists of a layered computational structure, where outer layers provide essentially with band-pass space-time filtered signals which are progressively delayed, at least for their formal treatment. Specialization is supposed to take place at the inner plexiform layer by the action of spatio-temporal microkernels (acting very locally), and having a centerperiphery space-time structure. The resulting signals are then integrated by the ganglion cells through macrokernels structures. Practically all types of specialization found in different vertebrate retinas, as well as the quasilinear behavior in some higher vertebrates, can be modeled and simulated within this framework. Finally, possible feedback from central structures is considered. Though their relevance to retinal processing is not definitive, it is included here for the sake of completeness, since it is a formal requisite for recursiveness.

  19. Human Genome Replication Proceeds through Four Chromatin States

    PubMed Central

    Julienne, Hanna; Zoufir, Azedine; Audit, Benjamin; Arneodo, Alain

    2013-01-01

    Advances in genomic studies have led to significant progress in understanding the epigenetically controlled interplay between chromatin structure and nuclear functions. Epigenetic modifications were shown to play a key role in transcription regulation and genome activity during development and differentiation or in response to the environment. Paradoxically, the molecular mechanisms that regulate the initiation and the maintenance of the spatio-temporal replication program in higher eukaryotes, and in particular their links to epigenetic modifications, still remain elusive. By integrative analysis of the genome-wide distributions of thirteen epigenetic marks in the human cell line K562, at the 100 kb resolution of corresponding mean replication timing (MRT) data, we identify four major groups of chromatin marks with shared features. These states have different MRT, namely from early to late replicating, replication proceeds though a transcriptionally active euchromatin state (C1), a repressive type of chromatin (C2) associated with polycomb complexes, a silent state (C3) not enriched in any available marks, and a gene poor HP1-associated heterochromatin state (C4). When mapping these chromatin states inside the megabase-sized U-domains (U-shaped MRT profile) covering about 50% of the human genome, we reveal that the associated replication fork polarity gradient corresponds to a directional path across the four chromatin states, from C1 at U-domains borders followed by C2, C3 and C4 at centers. Analysis of the other genome half is consistent with early and late replication loci occurring in separate compartments, the former correspond to gene-rich, high-GC domains of intermingled chromatin states C1 and C2, whereas the latter correspond to gene-poor, low-GC domains of alternating chromatin states C3 and C4 or long C4 domains. This new segmentation sheds a new light on the epigenetic regulation of the spatio-temporal replication program in human and provides a framework for further studies in different cell types, in both health and disease. PMID:24130466

  20. Three Decades of Farmed Escapees in the Wild: A Spatio-Temporal Analysis of Atlantic Salmon Population Genetic Structure throughout Norway

    PubMed Central

    Glover, Kevin A.; Quintela, María; Wennevik, Vidar; Besnier, François; Sørvik, Anne G. E.; Skaala, Øystein

    2012-01-01

    Each year, hundreds of thousands of domesticated farmed Atlantic salmon escape into the wild. In Norway, which is the world’s largest commercial producer, many native Atlantic salmon populations have experienced large numbers of escapees on the spawning grounds for the past 15–30 years. In order to study the potential genetic impact, we conducted a spatio-temporal analysis of 3049 fish from 21 populations throughout Norway, sampled in the period 1970–2010. Based upon the analysis of 22 microsatellites, individual admixture, FST and increased allelic richness revealed temporal genetic changes in six of the populations. These changes were highly significant in four of them. For example, 76% and 100% of the fish comprising the contemporary samples for the rivers Vosso and Opo were excluded from their respective historical samples at P = 0.001. Based upon several genetic parameters, including simulations, genetic drift was excluded as the primary cause of the observed genetic changes. In the remaining 15 populations, some of which had also been exposed to high numbers of escapees, clear genetic changes were not detected. Significant population genetic structuring was observed among the 21 populations in the historical (global FST = 0.038) and contemporary data sets (global FST = 0.030), although significantly reduced with time (P = 0.008). This reduction was especially distinct when looking at the six populations displaying temporal changes (global FST dropped from 0.058 to 0.039, P = 0.006). We draw two main conclusions: 1. The majority of the historical population genetic structure throughout Norway still appears to be retained, suggesting a low to modest overall success of farmed escapees in the wild; 2. Genetic introgression of farmed escapees in native salmon populations has been strongly population-dependent, and it appears to be linked with the density of the native population. PMID:22916215

  1. Spatio-temporal filtering techniques for the detection of disaster-related communication.

    PubMed

    Fitzhugh, Sean M; Ben Gibson, C; Spiro, Emma S; Butts, Carter T

    2016-09-01

    Individuals predominantly exchange information with one another through informal, interpersonal channels. During disasters and other disrupted settings, information spread through informal channels regularly outpaces official information provided by public officials and the press. Social scientists have long examined this kind of informal communication in the rumoring literature, but studying rumoring in disrupted settings has posed numerous methodological challenges. Measuring features of informal communication-timing, content, location-with any degree of precision has historically been extremely challenging in small studies and infeasible at large scales. We address this challenge by using online, informal communication from a popular microblogging website and for which we have precise spatial and temporal metadata. While the online environment provides a new means for observing rumoring, the abundance of data poses challenges for parsing hazard-related rumoring from countless other topics in numerous streams of communication. Rumoring about disaster events is typically temporally and spatially constrained to places where that event is salient. Accordingly, we use spatio and temporal subsampling to increase the resolution of our detection techniques. By filtering out data from known sources of error (per rumor theories), we greatly enhance the signal of disaster-related rumoring activity. We use these spatio-temporal filtering techniques to detect rumoring during a variety of disaster events, from high-casualty events in major population centers to minimally destructive events in remote areas. We consistently find three phases of response: anticipatory excitation where warnings and alerts are issued ahead of an event, primary excitation in and around the impacted area, and secondary excitation which frequently brings a convergence of attention from distant locales onto locations impacted by the event. Our results demonstrate the promise of spatio-temporal filtering techniques for "tuning" measurement of hazard-related rumoring to enable observation of rumoring at scales that have long been infeasible. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Demand-supply dynamics in tourism systems: A spatio-temporal GIS analysis. The Alberta ski industry case study

    NASA Astrophysics Data System (ADS)

    Bertazzon, Stefania

    The present research focuses on the interaction of supply and demand of down-hill ski tourism in the province of Alberta. The main hypothesis is that the demand for skiing depends on the socio-economic and demographic characteristics of the population living in the province and outside it. A second, consequent hypothesis is that the development of ski resorts (supply) is a response to the demand for skiing. From the latter derives the hypothesis of a dynamic interaction between supply (ski resorts) and demand (skiers). Such interaction occurs in space, within a range determined by physical distance and the means available to overcome it. The above hypotheses implicitly define interactions that take place in space and evolve over time. The hypotheses are tested by temporal, spatial, and spatio-temporal regression models, using the best available data and the latest commercially available software. The main purpose of this research is to explore analytical techniques to model spatial, temporal, and spatio-temporal dynamics in the context of regional science. The completion of the present research has produced more significant contributions than was originally expected. Many of the unexpected contributions resulted from theoretical and applied needs arising from the application of spatial regression models. Spatial regression models are a new and largely under-applied technique. The models are fairly complex and a considerable amount of preparatory work is needed, prior to their specification and estimation. Most of this work is specific to the field of application. The originality of the solutions devised is increased by the lack of applications in the field of tourism. The scarcity of applications in other fields adds to their value for other applications. The estimation of spatio-temporal models has been only partially attained in the present research. This apparent limitation is due to the novelty and complexity of the analytical methods applied. This opens new directions for further work in the field of spatial analysis, in conjunction with the development of specific software.

  3. A general science-based framework for dynamical spatio-temporal models

    USGS Publications Warehouse

    Wikle, C.K.; Hooten, M.B.

    2010-01-01

    Spatio-temporal statistical models are increasingly being used across a wide variety of scientific disciplines to describe and predict spatially-explicit processes that evolve over time. Correspondingly, in recent years there has been a significant amount of research on new statistical methodology for such models. Although descriptive models that approach the problem from the second-order (covariance) perspective are important, and innovative work is being done in this regard, many real-world processes are dynamic, and it can be more efficient in some cases to characterize the associated spatio-temporal dependence by the use of dynamical models. The chief challenge with the specification of such dynamical models has been related to the curse of dimensionality. Even in fairly simple linear, first-order Markovian, Gaussian error settings, statistical models are often over parameterized. Hierarchical models have proven invaluable in their ability to deal to some extent with this issue by allowing dependency among groups of parameters. In addition, this framework has allowed for the specification of science based parameterizations (and associated prior distributions) in which classes of deterministic dynamical models (e. g., partial differential equations (PDEs), integro-difference equations (IDEs), matrix models, and agent-based models) are used to guide specific parameterizations. Most of the focus for the application of such models in statistics has been in the linear case. The problems mentioned above with linear dynamic models are compounded in the case of nonlinear models. In this sense, the need for coherent and sensible model parameterizations is not only helpful, it is essential. Here, we present an overview of a framework for incorporating scientific information to motivate dynamical spatio-temporal models. First, we illustrate the methodology with the linear case. We then develop a general nonlinear spatio-temporal framework that we call general quadratic nonlinearity and demonstrate that it accommodates many different classes of scientific-based parameterizations as special cases. The model is presented in a hierarchical Bayesian framework and is illustrated with examples from ecology and oceanography. ?? 2010 Sociedad de Estad??stica e Investigaci??n Operativa.

  4. Contrast affects flicker and speed perception differently

    NASA Technical Reports Server (NTRS)

    Thompson, P.; Stone, L. S.

    1997-01-01

    We have previously shown that contrast affects speed perception, with lower-contrast, drifting gratings perceived as moving slower. In a recent study, we examined the implications of this result on models of speed perception that use the amplitude of the response of linear spatio-temporal filters to determine speed. In this study, we investigate whether the contrast dependence of speed can be understood within the context of models in which speed estimation is made using the temporal frequency of the response of linear spatio-temporal filters. We measured the effect of contrast on flicker perception and found that contrast manipulations produce opposite effects on perceived drift rate and perceived flicker rate, i.e., reducing contrast increases the apparent temporal frequency of counterphase modulated gratings. This finding argues that, if a temporal frequency-based algorithm underlies speed perception, either flicker and speed perception must not be based on the output of the same mechanism or contrast effects on perceived spatial frequency reconcile the disparate effects observed for perceived temporal frequency and speed.

  5. SVM-based classification of LV wall motion in cardiac MRI with the assessment of STE

    NASA Astrophysics Data System (ADS)

    Mantilla, Juan; Garreau, Mireille; Bellanger, Jean-Jacques; Paredes, José Luis

    2015-01-01

    In this paper, we propose an automated method to classify normal/abnormal wall motion in Left Ventricle (LV) function in cardiac cine-Magnetic Resonance Imaging (MRI), taking as reference, strain information obtained from 2D Speckle Tracking Echocardiography (STE). Without the need of pre-processing and by exploiting all the images acquired during a cardiac cycle, spatio-temporal profiles are extracted from a subset of radial lines from the ventricle centroid to points outside the epicardial border. Classical Support Vector Machines (SVM) are used to classify features extracted from gray levels of the spatio-temporal profile as well as their representations in the Wavelet domain under the assumption that the data may be sparse in that domain. Based on information obtained from radial strain curves in 2D-STE studies, we label all the spatio-temporal profiles that belong to a particular segment as normal if the peak systolic radial strain curve of this segment presents normal kinesis, or abnormal if the peak systolic radial strain curve presents hypokinesis or akinesis. For this study, short-axis cine- MR images are collected from 9 patients with cardiac dyssynchrony for which we have the radial strain tracings at the mid-papilary muscle obtained by 2D STE; and from one control group formed by 9 healthy subjects. The best classification performance is obtained with the gray level information of the spatio-temporal profiles using a RBF kernel with 91.88% of accuracy, 92.75% of sensitivity and 91.52% of specificity.

  6. An Online Atlas for Exploring Spatio-Temporal Patterns of Cancer Mortality (1972–2011) and Incidence (1995–2008) in Taiwan

    PubMed Central

    Ku, Wen-Yuan; Liaw, Yung-Po; Huang, Jing-Yang; Nfor, Oswald Ndi; Hsu, Shu-Yi; Ko, Pei-Chieh; Lee, Wen-Chung; Chen, Chien-Jen

    2016-01-01

    Abstract Public health mapping and Geographical Information Systems (GIS) are already being used to locate the geographical spread of diseases. This study describes the construction of an easy-to-use online atlas of cancer mortality (1972–2011) and incidence (1995–2008) in Taiwan. Two sets of color maps were made based on “age-adjusted mortality by rate” and “age-adjusted mortality by rank.” AJAX (Asynchronous JavaScript and XML), JSON (JavaScript Object Notation), and SVG (Scaling Vector Graphic) were used to create the online atlas. Spatio-temporal patterns of cancer mortality and incidence in Taiwan over the period from 1972 to 2011 and from 1995 to 2008. The constructed online atlas contains information on cancer mortality and incidence (http://taiwancancermap.csmu-liawyp.tw/). The common GIS functions include zoom and pan and identity tools. Users can easily customize the maps to explore the spatio-temporal trends of cancer mortality and incidence using different devices (such as personal computers, mobile phone, or pad). This study suggests an easy- to-use, low-cost, and independent platform for exploring cancer incidence and mortality. It is expected to serve as a reference tool for cancer prevention and risk assessment. This online atlas is a cheap and fast tool that integrates various cancer maps. Therefore, it can serve as a powerful tool that allows users to examine and compare spatio-temporal patterns of various maps. Furthermore, it is an-easy-to use tool for updating data and assessing risk factors of cancer in Taiwan. PMID:27227915

  7. Imaging the Spatio-Temporal Dynamics of Supragranular Activity in the Rat Somatosensory Cortex in Response to Stimulation of the Paws

    PubMed Central

    Morales-Botello, M. L.; Aguilar, J.; Foffani, G.

    2012-01-01

    We employed voltage-sensitive dye (VSD) imaging to investigate the spatio-temporal dynamics of the responses of the supragranular somatosensory cortex to stimulation of the four paws in urethane-anesthetized rats. We obtained the following main results. (1) Stimulation of the contralateral forepaw evoked VSD responses with greater amplitude and smaller latency than stimulation of the contralateral hindpaw, and ipsilateral VSD responses had a lower amplitude and greater latency than contralateral responses. (2) While the contralateral stimulation initially activated only one focus, the ipsilateral stimulation initially activated two foci: one focus was typically medial to the focus activated by contralateral stimulation and was stereotaxically localized in the motor cortex; the other focus was typically posterior to the focus activated by contralateral stimulation and was stereotaxically localized in the somatosensory cortex. (3) Forepaw and hindpaw somatosensory stimuli activated large areas of the sensorimotor cortex, well beyond the forepaw and hindpaw somatosensory areas of classical somatotopic maps, and forepaw stimuli activated larger cortical areas with greater activation velocity than hindpaw stimuli. (4) Stimulation of the forepaw and hindpaw evoked different cortical activation dynamics: forepaw responses displayed a clear medial directionality, whereas hindpaw responses were much more uniform in all directions. In conclusion, this work offers a complete spatio-temporal map of the supragranular VSD cortical activation in response to stimulation of the paws, showing important somatotopic differences between contralateral and ipsilateral maps as well as differences in the spatio-temporal activation dynamics in response to forepaw and hindpaw stimuli. PMID:22829873

  8. Gait characteristics and spatio-temporal variables of climbing in bonobos (Pan paniscus).

    PubMed

    Schoonaert, Kirsten; D'Août, Kristiaan; Samuel, Diana; Talloen, Willem; Nauwelaerts, Sandra; Kivell, Tracy L; Aerts, Peter

    2016-11-01

    Although much is known about the terrestrial locomotion of great apes, their arboreal locomotion has been studied less extensively. This study investigates arboreal locomotion in bonobos (Pan paniscus), focusing on the gait characteristics and spatio-temporal variables associated with locomotion on a pole. These features are compared across different substrate inclinations (0°, 30°, 45°, 60°, and 90°), and horizontal quadrupedal walking is compared between an arboreal and a terrestrial substrate. Our results show greater variation in footfall patterns with increasing incline, resulting in more lateral gait sequences. During climbing on arboreal inclines, smaller steps and strides but higher stride frequencies and duty factors are found compared to horizontal arboreal walking. This may facilitate better balance control and dynamic stability on the arboreal substrate. We found no gradual change in spatio-temporal variables with increasing incline; instead, the results for all inclines were clustered together. Bonobos take larger strides at lower stride frequencies and lower duty factors on a horizontal arboreal substrate than on a flat terrestrial substrate. We suggest that these changes are the result of the better grip of the grasping feet on an arboreal substrate. Speed modulation of the spatio-temporal variables is similar across substrate inclinations and between substrate types, suggesting a comparable underlying motor control. Finally, we contrast these variables of arboreal inclined climbing with those of terrestrial bipedal locomotion, and briefly discuss the results with respect to the origin of habitual bipedalism. Am. J. Primatol. 78:1165-1177, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. A Fresh Look at Spatio-Temporal Remote Sensing Data: Data Formats, Processing Flow, and Visualization

    NASA Astrophysics Data System (ADS)

    Gens, R.

    2017-12-01

    With increasing number of experimental and operational satellites in orbit, remote sensing based mapping and monitoring of the dynamic Earth has entered into the realm of `big data'. Just the Landsat series of satellites provide a near continuous archive of 45 years of data. The availability of such spatio-temporal datasets has created opportunities for long-term monitoring diverse features and processes operating on the Earth's terrestrial and aquatic systems. Processes such as erosion, deposition, subsidence, uplift, evapotranspiration, urbanization, land-cover regime shifts can not only be monitored and change can be quantified using time-series data analysis. This unique opportunity comes with new challenges in management, analysis, and visualization of spatio-temporal datasets. Data need to be stored in a user-friendly format, and relevant metadata needs to be recorded, to allow maximum flexibility for data exchange and use. Specific data processing workflows need to be defined to support time-series analysis for specific applications. Value-added data products need to be generated keeping in mind the needs of the end-users, and using best practices in complex data visualization. This presentation systematically highlights the various steps for preparing spatio-temporal remote sensing data for time series analysis. It showcases a prototype workflow for remote sensing based change detection that can be generically applied while preserving the application-specific fidelity of the datasets. The prototype includes strategies for visualizing change over time. This has been exemplified using a time-series of optical and SAR images for visualizing the changing glacial, coastal, and wetland landscapes in parts of Alaska.

  10. Similarities and differences among half-marathon runners according to their performance level

    PubMed Central

    Morante, Juan Carlos; Gómez-Molina, Josué; García-López, Juan

    2018-01-01

    This study aimed to identify the similarities and differences among half-marathon runners in relation to their performance level. Forty-eight male runners were classified into 4 groups according to their performance level in a half-marathon (min): Group 1 (n = 11, < 70 min), Group 2 (n = 13, < 80 min), Group 3 (n = 13, < 90 min), Group 4 (n = 11, < 105 min). In two separate sessions, training-related, anthropometric, physiological, foot strike pattern and spatio-temporal variables were recorded. Significant differences (p<0.05) between groups (ES = 0.55–3.16) and correlations with performance were obtained (r = 0.34–0.92) in training-related (experience and running distance per week), anthropometric (mass, body mass index and sum of 6 skinfolds), physiological (VO2max, RCT and running economy), foot strike pattern and spatio-temporal variables (contact time, step rate and length). At standardized submaximal speeds (11, 13 and 15 km·h-1), no significant differences between groups were observed in step rate and length, neither in contact time when foot strike pattern was taken into account. In conclusion, apart from training-related, anthropometric and physiological variables, foot strike pattern and step length were the only biomechanical variables sensitive to half-marathon performance, which are essential to achieve high running speeds. However, when foot strike pattern and running speeds were controlled (submaximal test), the spatio-temporal variables were similar. This indicates that foot strike pattern and running speed are responsible for spatio-temporal differences among runners of different performance level. PMID:29364940

  11. An Online Atlas for Exploring Spatio-Temporal Patterns of Cancer Mortality (1972-2011) and Incidence (1995-2008) in Taiwan.

    PubMed

    Ku, Wen-Yuan; Liaw, Yung-Po; Huang, Jing-Yang; Nfor, Oswald Ndi; Hsu, Shu-Yi; Ko, Pei-Chieh; Lee, Wen-Chung; Chen, Chien-Jen

    2016-05-01

    Public health mapping and Geographical Information Systems (GIS) are already being used to locate the geographical spread of diseases. This study describes the construction of an easy-to-use online atlas of cancer mortality (1972-2011) and incidence (1995-2008) in Taiwan.Two sets of color maps were made based on "age-adjusted mortality by rate" and "age-adjusted mortality by rank." AJAX (Asynchronous JavaScript and XML), JSON (JavaScript Object Notation), and SVG (Scaling Vector Graphic) were used to create the online atlas. Spatio-temporal patterns of cancer mortality and incidence in Taiwan over the period from 1972 to 2011 and from 1995 to 2008.The constructed online atlas contains information on cancer mortality and incidence (http://taiwancancermap.csmu-liawyp.tw/). The common GIS functions include zoom and pan and identity tools. Users can easily customize the maps to explore the spatio-temporal trends of cancer mortality and incidence using different devices (such as personal computers, mobile phone, or pad). This study suggests an easy- to-use, low-cost, and independent platform for exploring cancer incidence and mortality. It is expected to serve as a reference tool for cancer prevention and risk assessment.This online atlas is a cheap and fast tool that integrates various cancer maps. Therefore, it can serve as a powerful tool that allows users to examine and compare spatio-temporal patterns of various maps. Furthermore, it is an-easy-to use tool for updating data and assessing risk factors of cancer in Taiwan.

  12. A new space-time characterization of Northern Hemisphere drought in model simulations of the past and future as compared to the paleoclimate record

    NASA Astrophysics Data System (ADS)

    Coats, S.; Smerdon, J. E.; Stevenson, S.; Fasullo, J.; Otto-Bliesner, B. L.

    2017-12-01

    The observational record, which provides only limited sampling of past climate variability, has made it difficult to quantitatively analyze the complex spatio-temporal character of drought. To provide a more complete characterization of drought, machine learning based methods that identify drought in three-dimensional space-time are applied to climate model simulations of the last millennium and future, as well as tree-ring based reconstructions of hydroclimate over the Northern Hemisphere extratropics. A focus is given to the most persistent and severe droughts of the past 1000 years. Analyzing reconstructions and simulations in this context allows for a validation of the spatio-temporal character of persistent and severe drought in climate model simulations. Furthermore, the long records provided by the reconstructions and simulations, allows for sufficient sampling to constrain projected changes to the spatio-temporal character of these features using the reconstructions. Along these lines, climate models suggest that there will be large increases in the persistence and severity of droughts over the coming century, but little change in their spatial extent. These models, however, exhibit biases in the spatio-temporal character of persistent and severe drought over parts of the Northern Hemisphere, which may undermine their usefulness for future projections. Despite these limitations, and in contrast to previous claims, there are no systematic changes in the character of persistent and severe droughts in simulations of the historical interval. This suggests that climate models are not systematically overestimating the hydroclimate response to anthropogenic forcing over this period, with critical implications for confidence in hydroclimate projections.

  13. Ultra-low-power hybrid light–matter solitons

    PubMed Central

    Walker, P. M.; Tinkler, L.; Skryabin, D. V.; Yulin, A.; Royall, B.; Farrer, I.; Ritchie, D. A.; Skolnick, M. S.; Krizhanovskii, D. N.

    2015-01-01

    New functionalities in nonlinear optics will require systems with giant optical nonlinearity as well as compatibility with photonic circuit fabrication techniques. Here we introduce a platform based on strong light–matter coupling between waveguide photons and quantum-well excitons. On a sub-millimetre length scale we generate picosecond bright temporal solitons at a pulse energy of only 0.5 pJ. From this we deduce a nonlinear refractive index three orders of magnitude larger than in any other ultrafast system. We study both temporal and spatio-temporal nonlinear effects and observe dark–bright spatio-temporal polariton solitons. Theoretical modelling of soliton formation in the strongly coupled system confirms the experimental observations. These results show the promise of our system as a high speed, low power, integrated platform for physics and devices based on strong interactions between photons. PMID:26400748

  14. Ultra-low-power hybrid light-matter solitons.

    PubMed

    Walker, P M; Tinkler, L; Skryabin, D V; Yulin, A; Royall, B; Farrer, I; Ritchie, D A; Skolnick, M S; Krizhanovskii, D N

    2015-09-24

    New functionalities in nonlinear optics will require systems with giant optical nonlinearity as well as compatibility with photonic circuit fabrication techniques. Here we introduce a platform based on strong light-matter coupling between waveguide photons and quantum-well excitons. On a sub-millimetre length scale we generate picosecond bright temporal solitons at a pulse energy of only 0.5 pJ. From this we deduce a nonlinear refractive index three orders of magnitude larger than in any other ultrafast system. We study both temporal and spatio-temporal nonlinear effects and observe dark-bright spatio-temporal polariton solitons. Theoretical modelling of soliton formation in the strongly coupled system confirms the experimental observations. These results show the promise of our system as a high speed, low power, integrated platform for physics and devices based on strong interactions between photons.

  15. RSS Fingerprint Based Indoor Localization Using Sparse Representation with Spatio-Temporal Constraint

    PubMed Central

    Piao, Xinglin; Zhang, Yong; Li, Tingshu; Hu, Yongli; Liu, Hao; Zhang, Ke; Ge, Yun

    2016-01-01

    The Received Signal Strength (RSS) fingerprint-based indoor localization is an important research topic in wireless network communications. Most current RSS fingerprint-based indoor localization methods do not explore and utilize the spatial or temporal correlation existing in fingerprint data and measurement data, which is helpful for improving localization accuracy. In this paper, we propose an RSS fingerprint-based indoor localization method by integrating the spatio-temporal constraints into the sparse representation model. The proposed model utilizes the inherent spatial correlation of fingerprint data in the fingerprint matching and uses the temporal continuity of the RSS measurement data in the localization phase. Experiments on the simulated data and the localization tests in the real scenes show that the proposed method improves the localization accuracy and stability effectively compared with state-of-the-art indoor localization methods. PMID:27827882

  16. Assessing global vegetation activity using spatio-temporal Bayesian modelling

    NASA Astrophysics Data System (ADS)

    Mulder, Vera L.; van Eck, Christel M.; Friedlingstein, Pierre; Regnier, Pierre A. G.

    2016-04-01

    This work demonstrates the potential of modelling vegetation activity using a hierarchical Bayesian spatio-temporal model. This approach allows modelling changes in vegetation and climate simultaneous in space and time. Changes of vegetation activity such as phenology are modelled as a dynamic process depending on climate variability in both space and time. Additionally, differences in observed vegetation status can be contributed to other abiotic ecosystem properties, e.g. soil and terrain properties. Although these properties do not change in time, they do change in space and may provide valuable information in addition to the climate dynamics. The spatio-temporal Bayesian models were calibrated at a regional scale because the local trends in space and time can be better captured by the model. The regional subsets were defined according to the SREX segmentation, as defined by the IPCC. Each region is considered being relatively homogeneous in terms of large-scale climate and biomes, still capturing small-scale (grid-cell level) variability. Modelling within these regions is hence expected to be less uncertain due to the absence of these large-scale patterns, compared to a global approach. This overall modelling approach allows the comparison of model behavior for the different regions and may provide insights on the main dynamic processes driving the interaction between vegetation and climate within different regions. The data employed in this study encompasses the global datasets for soil properties (SoilGrids), terrain properties (Global Relief Model based on SRTM DEM and ETOPO), monthly time series of satellite-derived vegetation indices (GIMMS NDVI3g) and climate variables (Princeton Meteorological Forcing Dataset). The findings proved the potential of a spatio-temporal Bayesian modelling approach for assessing vegetation dynamics, at a regional scale. The observed interrelationships of the employed data and the different spatial and temporal trends support our hypothesis. That is, the change of vegetation in space and time may be better understood when modelling vegetation change as both a dynamic and multivariate process. Therefore, future research will focus on a multivariate dynamical spatio-temporal modelling approach. This ongoing research is performed within the context of the project "Global impacts of hydrological and climatic extremes on vegetation" (project acronym: SAT-EX) which is part of the Belgian research programme for Earth Observation Stereo III.

  17. Agreement between the spatio-temporal gait parameters from treadmill-based photoelectric cell and the instrumented treadmill system in healthy young adults and stroke patients.

    PubMed

    Lee, Myungmo; Song, Changho; Lee, Kyoungjin; Shin, Doochul; Shin, Seungho

    2014-07-14

    Treadmill gait analysis was more advantageous than over-ground walking because it allowed continuous measurements of the gait parameters. The purpose of this study was to investigate the concurrent validity and the test-retest reliability of the OPTOGait photoelectric cell system against the treadmill-based gait analysis system by assessing spatio-temporal gait parameters. Twenty-six stroke patients and 18 healthy adults were asked to walk on the treadmill at their preferred speed. The concurrent validity was assessed by comparing data obtained from the 2 systems, and the test-retest reliability was determined by comparing data obtained from the 1st and the 2nd session of the OPTOGait system. The concurrent validity, identified by the intra-class correlation coefficients (ICC [2, 1]), coefficients of variation (CVME), and 95% limits of agreement (LOA) for the spatial-temporal gait parameters, were excellent but the temporal parameters expressed as a percentage of the gait cycle were poor. The test-retest reliability of the OPTOGait System, identified by ICC (3, 1), CVME, 95% LOA, standard error of measurement (SEM), and minimum detectable change (MDC95%) for the spatio-temporal gait parameters, was high. These findings indicated that the treadmill-based OPTOGait System had strong concurrent validity and test-retest reliability. This portable system could be useful for clinical assessments.

  18. Moving Beyond Streamflow Observations: Lessons From A Multi-Objective Calibration Experiment in the Mississippi Basin

    NASA Astrophysics Data System (ADS)

    Koppa, A.; Gebremichael, M.; Yeh, W. W. G.

    2017-12-01

    Calibrating hydrologic models in large catchments using a sparse network of streamflow gauges adversely affects the spatial and temporal accuracy of other water balance components which are important for climate-change, land-use and drought studies. This study combines remote sensing data and the concept of Pareto-Optimality to address the following questions: 1) What is the impact of streamflow (SF) calibration on the spatio-temporal accuracy of Evapotranspiration (ET), near-surface Soil Moisture (SM) and Total Water Storage (TWS)? 2) What is the best combination of fluxes that can be used to calibrate complex hydrological models such that both the accuracy of streamflow and the spatio-temporal accuracy of ET, SM and TWS is preserved? The study area is the Mississippi Basin in the United States (encompassing HUC-2 regions 5,6,7,9,10 and 11). 2003 and 2004, two climatologically average years are chosen for calibration and validation of the Noah-MP hydrologic model. Remotely sensed ET data is sourced from GLEAM, SM from ESA-CCI and TWS from GRACE. Single objective calibration is carried out using DDS Algorithm. For Multi objective calibration PA-DDS is used. First, the Noah-MP model is calibrated using a single objective function (Minimize Mean Square Error) for the outflow from the 6 HUC-2 sub-basins for 2003. Spatial correlograms are used to compare the spatial structure of ET, SM and TWS between the model and the remote sensing data. Spatial maps of RMSE and Mean Error are used to quantify the impact of calibrating streamflow on the accuracy of ET, SM and TWS estimates. Next, a multi-objective calibration experiment is setup to determine the pareto optimal parameter sets (pareto front) for the following cases - 1) SF and ET, 2) SF and SM, 3) SF and TWS, 4) SF, ET and SM, 5) SF, ET and TWS, 6) SF, SM and TWS, 7) SF, ET, SM and TWS. The best combination of fluxes that provides the optimal trade-off between accurate streamflow and preserving the spatio-temporal structure of ET, SM and TWS is then determined by validating the model outputs for the pareto-optimal parameter sets. Results from single-objective calibration experiment with streamflow shows that it does indeed negatively impact the accuracy of ET, SM and TWS estimates.

  19. Attempting to physically explain space-time correlation of extremes

    NASA Astrophysics Data System (ADS)

    Bernardara, Pietro; Gailhard, Joel

    2010-05-01

    Spatial and temporal clustering of hydro-meteorological extreme events is scientific evidence. Moreover, the statistical parameters characterizing their local frequencies of occurrence show clear spatial patterns. Thus, in order to robustly assess the hydro-meteorological hazard, statistical models need to be able to take into account spatial and temporal dependencies. Statistical models considering long term correlation for quantifying and qualifying temporal and spatial dependencies are available, such as multifractal approach. Furthermore, the development of regional frequency analysis techniques allows estimating the frequency of occurrence of extreme events taking into account spatial patterns on the extreme quantiles behaviour. However, in order to understand the origin of spatio-temporal clustering, an attempt to find physical explanation should be done. Here, some statistical evidences of spatio-temporal correlation and spatial patterns of extreme behaviour are given on a large database of more than 400 rainfall and discharge series in France. In particular, the spatial distribution of multifractal and Generalized Pareto distribution parameters shows evident correlation patterns in the behaviour of frequency of occurrence of extremes. It is then shown that the identification of atmospheric circulation pattern (weather types) can physically explain the temporal clustering of extreme rainfall events (seasonality) and the spatial pattern of the frequency of occurrence. Moreover, coupling this information with the hydrological modelization of a watershed (as in the Schadex approach) an explanation of spatio-temporal distribution of extreme discharge can also be provided. We finally show that a hydro-meteorological approach (as the Schadex approach) can explain and take into account space and time dependencies of hydro-meteorological extreme events.

  20. Understanding spatio-temporal mobility patterns for seniors, child/student and adult using smart card data

    NASA Astrophysics Data System (ADS)

    Huang, X.; Tan, J.

    2014-11-01

    Commutes in urban areas create interesting travel patterns that are often stored in regional transportation databases. These patterns can vary based on the day of the week, the time of the day, and commuter type. This study proposes methods to detect underlying spatio-temporal variability among three groups of commuters (senior citizens, child/students, and adults) using data mining and spatial analytics. Data from over 36 million individual trip records collected over one week (March 2012) on the Singapore bus and Mass Rapid Transit (MRT) system by the fare collection system were used. Analyses of such data are important for transportation and landuse designers and contribute to a better understanding of urban dynamics. Specifically, descriptive statistics, network analysis, and spatial analysis methods are presented. Descriptive variables were proposed such as density and duration to detect temporal features of people. A directed weighted graph G ≡ (N , L, W) was defined to analyze the global network properties of every pair of the transportation link in the city during an average workday for all three categories. Besides, spatial interpolation and spatial statistic tools were used to transform the discrete network nodes into structured human movement landscape to understand the role of transportation systems in urban areas. The travel behaviour of the three categories follows a certain degree of temporal and spatial universality but also displays unique patterns within their own specialties. Each category is characterized by their different peak hours, commute distances, and specific locations for travel on weekdays.

  1. Stability Switches, Hopf Bifurcations, and Spatio-temporal Patterns in a Delayed Neural Model with Bidirectional Coupling

    NASA Astrophysics Data System (ADS)

    Song, Yongli; Zhang, Tonghua; Tadé, Moses O.

    2009-12-01

    The dynamical behavior of a delayed neural network with bi-directional coupling is investigated by taking the delay as the bifurcating parameter. Some parameter regions are given for conditional/absolute stability and Hopf bifurcations by using the theory of functional differential equations. As the propagation time delay in the coupling varies, stability switches for the trivial solution are found. Conditions ensuring the stability and direction of the Hopf bifurcation are determined by applying the normal form theory and the center manifold theorem. We also discuss the spatio-temporal patterns of bifurcating periodic oscillations by using the symmetric bifurcation theory of delay differential equations combined with representation theory of Lie groups. In particular, we obtain that the spatio-temporal patterns of bifurcating periodic oscillations will alternate according to the change of the propagation time delay in the coupling, i.e., different ranges of delays correspond to different patterns of neural activities. Numerical simulations are given to illustrate the obtained results and show the existence of bursts in some interval of the time for large enough delay.

  2. Geovisualization of Local and Regional Migration Using Web-mined Demographics

    NASA Astrophysics Data System (ADS)

    Schuermann, R. T.; Chow, T. E.

    2014-11-01

    The intent of this research was to augment and facilitate analyses, which gauges the feasibility of web-mined demographics to study spatio-temporal dynamics of migration. As a case study, we explored the spatio-temporal dynamics of Vietnamese Americans (VA) in Texas through geovisualization of mined demographic microdata from the World Wide Web. Based on string matching across all demographic attributes, including full name, address, date of birth, age and phone number, multiple records of the same entity (i.e. person) over time were resolved and reconciled into a database. Migration trajectories were geovisualized through animated sprites by connecting the different addresses associated with the same person and segmenting the trajectory into small fragments. Intra-metropolitan migration patterns appeared at the local scale within many metropolitan areas. At the scale of metropolitan area, varying degrees of immigration and emigration manifest different types of migration clusters. This paper presents a methodology incorporating GIS methods and cartographic design to produce geovisualization animation, enabling the cognitive identification of migration patterns at multiple scales. Identification of spatio-temporal patterns often stimulates further research to better understand the phenomenon and enhance subsequent modeling.

  3. Building a Billion Spatio-Temporal Object Search and Visualization Platform

    NASA Astrophysics Data System (ADS)

    Kakkar, D.; Lewis, B.

    2017-10-01

    With funding from the Sloan Foundation and Harvard Dataverse, the Harvard Center for Geographic Analysis (CGA) has developed a prototype spatio-temporal visualization platform called the Billion Object Platform or BOP. The goal of the project is to lower barriers for scholars who wish to access large, streaming, spatio-temporal datasets. The BOP is now loaded with the latest billion geo-tweets, and is fed a real-time stream of about 1 million tweets per day. The geo-tweets are enriched with sentiment and census/admin boundary codes when they enter the system. The system is open source and is currently hosted on Massachusetts Open Cloud (MOC), an OpenStack environment with all components deployed in Docker orchestrated by Kontena. This paper will provide an overview of the BOP architecture, which is built on an open source stack consisting of Apache Lucene, Solr, Kafka, Zookeeper, Swagger, scikit-learn, OpenLayers, and AngularJS. The paper will further discuss the approach used for harvesting, enriching, streaming, storing, indexing, visualizing and querying a billion streaming geo-tweets.

  4. Multiscale recurrence analysis of spatio-temporal data

    NASA Astrophysics Data System (ADS)

    Riedl, M.; Marwan, N.; Kurths, J.

    2015-12-01

    The description and analysis of spatio-temporal dynamics is a crucial task in many scientific disciplines. In this work, we propose a method which uses the mapogram as a similarity measure between spatially distributed data instances at different time points. The resulting similarity values of the pairwise comparison are used to construct a recurrence plot in order to benefit from established tools of recurrence quantification analysis and recurrence network analysis. In contrast to other recurrence tools for this purpose, the mapogram approach allows the specific focus on different spatial scales that can be used in a multi-scale analysis of spatio-temporal dynamics. We illustrate this approach by application on mixed dynamics, such as traveling parallel wave fronts with additive noise, as well as more complicate examples, pseudo-random numbers and coupled map lattices with a semi-logistic mapping rule. Especially the complicate examples show the usefulness of the multi-scale consideration in order to take spatial pattern of different scales and with different rhythms into account. So, this mapogram approach promises new insights in problems of climatology, ecology, or medicine.

  5. Multiscale recurrence analysis of spatio-temporal data.

    PubMed

    Riedl, M; Marwan, N; Kurths, J

    2015-12-01

    The description and analysis of spatio-temporal dynamics is a crucial task in many scientific disciplines. In this work, we propose a method which uses the mapogram as a similarity measure between spatially distributed data instances at different time points. The resulting similarity values of the pairwise comparison are used to construct a recurrence plot in order to benefit from established tools of recurrence quantification analysis and recurrence network analysis. In contrast to other recurrence tools for this purpose, the mapogram approach allows the specific focus on different spatial scales that can be used in a multi-scale analysis of spatio-temporal dynamics. We illustrate this approach by application on mixed dynamics, such as traveling parallel wave fronts with additive noise, as well as more complicate examples, pseudo-random numbers and coupled map lattices with a semi-logistic mapping rule. Especially the complicate examples show the usefulness of the multi-scale consideration in order to take spatial pattern of different scales and with different rhythms into account. So, this mapogram approach promises new insights in problems of climatology, ecology, or medicine.

  6. Visualizing and communicating uncertainty in the earth and environmental sciences: a review

    NASA Astrophysics Data System (ADS)

    Pebesma, Edzer

    2014-05-01

    I will review past attempts to visualising uncertainty in spatial or spatio-temporal predictions of groundwater quality, quality predictions, sea bed sediment, bird densities, air quality measurements, and exposure to air quality of individuals and populations. The attempts involved software development (aguila [1], greenland [2]), the development of standards for communicating uncertain spatial and spatio-temporal information (UncertML, [3]), and have been illustrated by applications in a number of EU projects (Apmosphere [4], INTAMAP [5], UncertWeb [6] and GeoViQua [7]). I will also report on usability studies that were carried out (e.g. [8]). [1] http://pcraster.geo.uu.nl/projects/developments/aguila/ [2] https://wiki.52north.org/bin/view/Geostatistics/Greenland [3] http://www.uncertml.org/ [4] http://www.apmosphere.org/ [5] http://www.intamap.org/ [6] http://www.uncertweb.org/ [7] http://www.geoviqua.org/ [8] Senaratne, H. L. Gerharz, E. Pebesma, A. Schwering, 2012. Usability of Spatio-Temporal Uncertainty Visualisation Methods. In: Bridging the Geographic Information Sciences, Lecture Notes in Geoinformation and Cartography, J. Gensel, D. Josselin and D. Vandenbroucke. Springer Berlin Heidelberg.

  7. Spatio-Temporal Dynamics of Fructan Metabolism in Developing Barley Grains[W

    PubMed Central

    Peukert, Manuela; Thiel, Johannes; Peshev, Darin; Weschke, Winfriede; Van den Ende, Wim; Mock, Hans-Peter; Matros, Andrea

    2014-01-01

    Barley (Hordeum vulgare) grain development follows a series of defined morphological and physiological stages and depends on the supply of assimilates (mainly sucrose) from the mother plant. Here, spatio-temporal patterns of sugar distributions were investigated by mass spectrometric imaging, targeted metabolite analyses, and transcript profiling of microdissected grain tissues. Distinct spatio-temporal sugar balances were observed, which may relate to differentiation and grain filling processes. Notably, various types of oligofructans showed specific distribution patterns. Levan- and graminan-type oligofructans were synthesized in the cellularized endosperm prior to the commencement of starch biosynthesis, while during the storage phase, inulin-type oligofructans accumulated to a high concentration in and around the nascent endosperm cavity. In the shrunken endosperm mutant seg8, with a decreased sucrose flux toward the endosperm, fructan accumulation was impaired. The tight partitioning of oligofructan biosynthesis hints at distinct functions of the various fructan types in the young endosperm prior to starch accumulation and in the endosperm transfer cells that accomplish the assimilate supply toward the endosperm at the storage phase. PMID:25271242

  8. VAUD: A Visual Analysis Approach for Exploring Spatio-Temporal Urban Data.

    PubMed

    Chen, Wei; Huang, Zhaosong; Wu, Feiran; Zhu, Minfeng; Guan, Huihua; Maciejewski, Ross

    2017-10-02

    Urban data is massive, heterogeneous, and spatio-temporal, posing a substantial challenge for visualization and analysis. In this paper, we design and implement a novel visual analytics approach, Visual Analyzer for Urban Data (VAUD), that supports the visualization, querying, and exploration of urban data. Our approach allows for cross-domain correlation from multiple data sources by leveraging spatial-temporal and social inter-connectedness features. Through our approach, the analyst is able to select, filter, aggregate across multiple data sources and extract information that would be hidden to a single data subset. To illustrate the effectiveness of our approach, we provide case studies on a real urban dataset that contains the cyber-, physical-, and socialinformation of 14 million citizens over 22 days.

  9. Resting state networks in empirical and simulated dynamic functional connectivity.

    PubMed

    Glomb, Katharina; Ponce-Alvarez, Adrián; Gilson, Matthieu; Ritter, Petra; Deco, Gustavo

    2017-10-01

    It is well-established that patterns of functional connectivity (FC) - measures of correlated activity between pairs of voxels or regions observed in the human brain using neuroimaging - are robustly expressed in spontaneous activity during rest. These patterns are not static, but exhibit complex spatio-temporal dynamics. Over the last years, a multitude of methods have been proposed to reveal these dynamics on the level of the whole brain. One finding is that the brain transitions through different FC configurations over time, and substantial effort has been put into characterizing these configurations. However, the dynamics governing these transitions are more elusive, specifically, the contribution of stationary vs. non-stationary dynamics is an active field of inquiry. In this study, we use a whole-brain approach, considering FC dynamics between 66 ROIs covering the entire cortex. We combine an innovative dimensionality reduction technique, tensor decomposition, with a mean field model which possesses stationary dynamics. It has been shown to explain resting state FC averaged over time and multiple subjects, however, this average FC summarizes the spatial distribution of correlations while hiding their temporal dynamics. First, we apply tensor decomposition to resting state scans from 24 healthy controls in order to characterize spatio-temporal dynamics present in the data. We simultaneously utilize temporal and spatial information by creating tensors that are subsequently decomposed into sets of brain regions ("communities") that share similar temporal dynamics, and their associated time courses. The tensors contain pairwise FC computed inside of overlapping sliding windows. Communities are discovered by clustering features pooled from all subjects, thereby ensuring that they generalize. We find that, on the group level, the data give rise to four distinct communities that resemble known resting state networks (RSNs): default mode network, visual network, control networks, and somatomotor network. Second, we simulate data with our stationary mean field model whose nodes are connected according to results from DTI and fiber tracking. In this model, all spatio-temporal structure is due to noisy fluctuations around the average FC. We analyze the simulated data in the same way as the empirical data in order to determine whether stationary dynamics can explain the emergence of distinct FC patterns (RSNs) which have their own time courses. We find that this is the case for all four networks using the spatio-temporal information revealed by tensor decomposition if nodes in the simulation are connected according to model-based effective connectivity. Furthermore, we find that these results require only a small part of the FC values, namely the highest values that occur across time and ROI pair. Our findings show that stationary dynamics can account for the emergence of RSNs. We provide an innovative method that does not make strong assumptions about the underlying data and is generally applicable to resting state or task data from different subject populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Concurrent temporal stability of the apparent electrical conductivity and soil water content

    USDA-ARS?s Scientific Manuscript database

    Knowledge of spatio-temporal soil water content (SWC) variability within agricultural fields is useful to improve crop management. Spatial patterns of soil water contents can be characterized using the temporal stability analysis, however high density sampling is required. Soil apparent electrical c...

  11. A new framework to increase the efficiency of large-scale solar power plants.

    NASA Astrophysics Data System (ADS)

    Alimohammadi, Shahrouz; Kleissl, Jan P.

    2015-11-01

    A new framework to estimate the spatio-temporal behavior of solar power is introduced, which predicts the statistical behavior of power output at utility scale Photo-Voltaic (PV) power plants. The framework is based on spatio-temporal Gaussian Processes Regression (Kriging) models, which incorporates satellite data with the UCSD version of the Weather and Research Forecasting model. This framework is designed to improve the efficiency of the large-scale solar power plants. The results are also validated from measurements of the local pyranometer sensors, and some improvements in different scenarios are observed. Solar energy.

  12. Transition from complete synchronization to spatio-temporal chaos in coupled chaotic systems with nonhyperbolic and hyperbolic attractors

    NASA Astrophysics Data System (ADS)

    Rybalova, Elena; Semenova, Nadezhda; Strelkova, Galina; Anishchenko, Vadim

    2017-06-01

    We study the transition from coherence (complete synchronization) to incoherence (spatio-temporal chaos) in ensembles of nonlocally coupled chaotic maps with nonhyperbolic and hyperbolic attractors. As basic models of a partial element we use the Henon map and the Lozi map. We show that the transition to incoherence in a ring of coupled Henon maps occurs through the appearance of phase and amplitude chimera states. An ensemble of coupled Lozi maps demonstrates the coherence-incoherence transition via solitary states and no chimera states are observed in this case.

  13. Early-warning signals for catastrophic soil degradation

    NASA Astrophysics Data System (ADS)

    Karssenberg, Derek

    2010-05-01

    Many earth systems have critical thresholds at which the system shifts abruptly from one state to another. Such critical transitions have been described, among others, for climate, vegetation, animal populations, and geomorphology. Predicting the timing of critical transitions before they are reached is of importance because of the large impact on nature and society associated with the transition. However, it is notably difficult to predict the timing of a transition. This is because the state variables of the system show little change before the threshold is reached. As a result, the precision of field observations is often too low to provide predictions of the timing of a transition. A possible solution is the use of spatio-temporal patterns in state variables as leading indicators of a transition. It is becoming clear that the critically slowing down of a system causes spatio-temporal autocorrelation and variance to increase before the transition. Thus, spatio-temporal patterns are important candidates for early-warning signals. In this research we will show that these early-warning signals also exist in geomorphological systems. We consider a modelled vegetation-soil system under a gradually increasing grazing pressure causing an abrupt shift towards extensive soil degradation. It is shown that changes in spatio-temporal patterns occur well ahead of this catastrophic transition. A distributed model describing the coupled processes of vegetation growth and geomorphological denudation is adapted. The model uses well-studied simple process representations for vegetation and geomorphology. A logistic growth model calculates vegetation cover as a function of grazing pressure and vegetation growth rate. Evolution of the soil thickness is modelled by soil creep and wash processes, as a function of net rain reaching the surface. The vegetation and soil system are coupled by 1) decreasing vegetation growth with decreasing soil thickness and 2) increasing soil wash with decreasing vegetation cover. The model describes a critical, catastrophic transition of an underexploited system with low grazing pressure towards an overexploited system. The underexploited state has high vegetation cover and well developed soils, while the overexploited state has low vegetation cover and largely degraded soils. We first show why spatio-temporal patterns in vegetation cover, morphology, erosion rate, and sediment load should be expected to change well before the critical transition towards the overexploited state. Subsequently, spatio-temporal patterns are quantified by calculating statistics, in particular first order statistics and autocorrelation in space and time. It is shown that these statistics gradually change before the transition is reached. This indicates that the statistics may serve as early-warning signals in real-world applications. We also discuss the potential use of remote sensing to predict the critical transition in real-world landscapes.

  14. Small-Scale Spatio-Temporal Distribution of Bactrocera minax (Enderlein) (Diptera: Tephritidae) Using Probability Kriging.

    PubMed

    Wang, S Q; Zhang, H Y; Li, Z L

    2016-10-01

    Understanding spatio-temporal distribution of pest in orchards can provide important information that could be used to design monitoring schemes and establish better means for pest control. In this study, the spatial and temporal distribution of Bactrocera minax (Enderlein) (Diptera: Tephritidae) was assessed, and activity trends were evaluated by using probability kriging. Adults of B. minax were captured in two successive occurrences in a small-scale citrus orchard by using food bait traps, which were placed both inside and outside the orchard. The weekly spatial distribution of B. minax within the orchard and adjacent woods was examined using semivariogram parameters. The edge concentration was discovered during the most weeks in adult occurrence, and the population of the adults aggregated with high probability within a less-than-100-m-wide band on both of the sides of the orchard and the woods. The sequential probability kriged maps showed that the adults were estimated in the marginal zone with higher probability, especially in the early and peak stages. The feeding, ovipositing, and mating behaviors of B. minax are possible explanations for these spatio-temporal patterns. Therefore, spatial arrangement and distance to the forest edge of traps or spraying spot should be considered to enhance pest control on B. minax in small-scale orchards.

  15. A modeling approach for aerosol optical depth analysis during forest fire events

    NASA Astrophysics Data System (ADS)

    Aube, Martin P.; O'Neill, Normand T.; Royer, Alain; Lavoue, David

    2004-10-01

    Measurements of aerosol optical depth (AOD) are important indicators of aerosol particle behavior. Up to now the two standard techniques used for retrieving AOD are; (i) sun photometry which provides measurements of high temporal frequency and sparse spatial frequency, and (ii) satellite based approaches such as DDV (Dense Dark Vegetation) based inversion algorithms which yield AOD over dark targets in remotely sensed imagery. Although the latter techniques allow AOD retrieval over appreciable spatial domains, the irregular spatial pattern of dark targets and the typically low repeat frequencies of imaging satellites exclude the acquisition of AOD databases on a continuous spatio-temporal basis. We attempt to fill gaps in spatio-temporal AOD measurements using a new assimilation methodology that links AOD measurements and the predictions of a particulate matter Transport Model. This modelling package (AODSEM V2.0 for Aerosol Optical Depth Spatio-temporal Evolution Model) uses a size and aerosol type segregated semi-Lagrangian trajectory algorithm driven by analysed meteorological data. Its novelty resides in the fact that the model evolution may be tied to both ground based and satellite level AOD measurement and all physical processes have been optimized to track this important and robust parameter. We applied this methodology to a significant smoke event that occurred over the eastern part of North America in July 2002.

  16. Investigation on the dominant factors controlling the spatio-temporal distribution of soil moisture in experimental grasslands

    NASA Astrophysics Data System (ADS)

    Schwichtenberg, G.; Hildebrandt, A.; Samaniego-Eguiguren, L.; Kreutziger, Y.; Attinger, S.

    2009-04-01

    The spatio-temporal distribution of soil moisture in the unsaturated zone influences the vegetation growth, governs the runoff generation processes as well as the energy balance at the interface between biosphere and the atmosphere, by influencing evapotranspiration. A better understanding of the spatio-temporal variability and dependence of soil moisture on living versus abiotic environment would lead to an improved representation of the soil-vegetation-atmosphere processes in hydrological and climate models. The Jena Experiment site (Germany) was established October 2001 in order to analyse the interaction between plant diversity and ecosystem processes. The main experiment covers 92 plots of 20 x 20 m arranged into a grid, on which a mixture of up to 60 grassland species and of one to four plant functional groups have been seeded. Each of these plots is equipped with at least one measurement tube for soil moisture. Measurements have been conducted weekly for four growing seasons (SSF). Here, we use geostatistical methods, like variograms and multivariate regressions, to investigate in how far abiotic environment and ecosystem explain the spatial and temporal variation of soil moisture at the Jena Experiment site. We test the influence of the soil environment, biodiversity, leaf area index and groundwater table. The poster will present the results of this analysis.

  17. Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas.

    PubMed

    Gandolfi, I; Bertolini, V; Bestetti, G; Ambrosini, R; Innocente, E; Rampazzo, G; Papacchini, M; Franzetti, A

    2015-06-01

    The study of spatio-temporal variability of airborne bacterial communities has recently gained importance due to the evidence that airborne bacteria are involved in atmospheric processes and can affect human health. In this work, we described the structure of airborne microbial communities in two urban areas (Milan and Venice, Northern Italy) through the sequencing, by the Illumina platform, of libraries containing the V5-V6 hypervariable regions of the 16S rRNA gene and estimated the abundance of airborne bacteria with quantitative PCR (qPCR). Airborne microbial communities were dominated by few taxa, particularly Burkholderiales and Actinomycetales, more abundant in colder seasons, and Chloroplasts, more abundant in warmer seasons. By partitioning the variation in bacterial community structure, we could assess that environmental and meteorological conditions, including variability between cities and seasons, were the major determinants of the observed variation in bacterial community structure, while chemical composition of atmospheric particulate matter (PM) had a minor contribution. Particularly, Ba, SO4 (2-) and Mg(2+) concentrations were significantly correlated with microbial community structure, but it was not possible to assess whether they simply co-varied with seasonal shifts of bacterial inputs to the atmosphere, or their variation favoured specific taxa. Both local sources of bacteria and atmospheric dispersal were involved in the assembling of airborne microbial communities, as suggested, to the one side by the large abundance of bacteria typical of lagoon environments (Rhodobacterales) observed in spring air samples from Venice and to the other by the significant effect of wind speed in shaping airborne bacterial communities at all sites.

  18. Integration of smartphones and webcam for the measure of spatio-temporal gait parameters.

    PubMed

    Barone, V; Maranesi, E; Fioretti, S

    2014-01-01

    A very low cost prototype has been made for the spatial and temporal analysis of human movement using an integrated system of last generation smartphones and a highdefinition webcam, controlled by a laptop. The system can be used to analyze mainly planar motions in non-structured environments. In this paper, the accelerometer signal as captured by the 3D sensor embedded in one smartphone, and the position of colored markers derived by the webcam frames, are used for the computation of spatial-temporal parameters of gait. Accuracy of results is compared with that obtainable by a gold-standard instrumentation. The system is characterized by a very low cost and by a very high level of automation. It has been thought to be used by non-expert users in ambulatory settings.

  19. Defined types of cortical interneurone structure space and spike timing in the hippocampus

    PubMed Central

    Somogyi, Peter; Klausberger, Thomas

    2005-01-01

    The cerebral cortex encodes, stores and combines information about the internal and external environment in rhythmic activity of multiple frequency ranges. Neurones of the cortex can be defined, recognized and compared on the comprehensive application of the following measures: (i) brain area- and cell domain-specific distribution of input and output synapses, (ii) expression of molecules involved in cell signalling, (iii) membrane and synaptic properties reflecting the expression of membrane proteins, (iv) temporal structure of firing in vivo, resulting from (i)–(iii). Spatial and temporal measures of neurones in the network reflect an indivisible unity of evolutionary design, i.e. neurones do not have separate structure or function. The blueprint of this design is most easily accessible in the CA1 area of the hippocampus, where a relatively uniform population of pyramidal cells and their inputs follow an instantly recognizable laminated pattern and act within stereotyped network activity patterns. Reviewing the cell types and their spatio-temporal interactions, we suggest that CA1 pyramidal cells are supported by at least 16 distinct types of GABAergic neurone. During a given behaviour-contingent network oscillation, interneurones of a given type exhibit similar firing patterns. During different network oscillations representing two distinct brain states, interneurones of the same class show different firing patterns modulating their postsynaptic target-domain in a brain-state-dependent manner. These results suggest roles for specific interneurone types in structuring the activity of pyramidal cells via their respective target domains, and accurately timing and synchronizing pyramidal cell discharge, rather than providing generalized inhibition. Finally, interneurones belonging to different classes may fire preferentially at distinct time points during a given oscillation. As different interneurones innervate distinct domains of the pyramidal cells, the different compartments will receive GABAergic input differentiated in time. Such a dynamic, spatio-temporal, GABAergic control, which evolves distinct patterns during different brain states, is ideally suited to regulating the input integration of individual pyramidal cells contributing to the formation of cell assemblies and representations in the hippocampus and, probably, throughout the cerebral cortex. PMID:15539390

  20. Spatio-temporal analysis of the genetic diversity and complexity of Plasmodium falciparum infections in Kedougou, southeastern Senegal.

    PubMed

    Niang, Makhtar; Thiam, Laty G; Loucoubar, Cheikh; Sow, Abdourahmane; Sadio, Bacary D; Diallo, Mawlouth; Sall, Amadou A; Toure-Balde, Aissatou

    2017-01-19

    Genetic analyses of the malaria parasite population and its temporal and spatial dynamics could provide an assessment of the effectiveness of disease control strategies. The genetic diversity of Plasmodium falciparum has been poorly documented in Senegal, and limited data are available from the Kedougou Region. This study examines the spatial and temporal variation of the genetic diversity and complexity of P. falciparum infections in acute febrile patients in Kedougou, southeastern Senegal. A total of 263 sera from patients presenting with acute febrile illness and attending Kedougou health facilities between July 2009 and July 2013 were obtained from a collection established as part of arbovirus surveillance in Kedougou. Samples identified as P. falciparum by nested PCR were characterized for their genetic diversity and complexity using msp-1 and msp-2 polymorphic markers. Samples containing only P. falciparum accounted for 60.83% (160/263) of the examined samples. All three msp-1 allelic families (K1, MAD20 and RO33) and two msp-2 allelic families (FC27 and 3D7) were detected in all villages investigated over the 5-year collection period. The average genotype per allelic family was comparable between villages. Frequencies of msp-1 and msp-2 allelic types showed no correlation with age (Fisher's exact test, P = 0.59) or gender (Fisher's exact test, P = 0.973), and were similarly distributed throughout the 5-year sampling period (Fisher's exact test, P = 0.412) and across villages (Fisher's exact test, P = 0.866). Mean multiplicity of infection (MOI) for both msp-1 and msp-2 was highest in Kedougou village (2.25 and 2.21, respectively) and among younger patients aged ≤ 15 years (2.12 and 2.00, respectively). The mean MOI was highest in 2009 and decreased progressively onward. Characterization of the genetic diversity and complexity of P. falciparum infections in Kedougou revealed no spatio-temporal variation in the genetic diversity of P. falciparum isolates. However, mean MOI varied with time of sera collection and decreased over the course of the study (July 2009 to July 2013). This suggests a slow progressive decrease of malaria transmission intensity in Kedougou Region despite the limited impact of preventive and control measures implemented by the National Malaria Control Programme on malaria morbidity and mortality.

  1. Sequential Dictionary Learning From Correlated Data: Application to fMRI Data Analysis.

    PubMed

    Seghouane, Abd-Krim; Iqbal, Asif

    2017-03-22

    Sequential dictionary learning via the K-SVD algorithm has been revealed as a successful alternative to conventional data driven methods such as independent component analysis (ICA) for functional magnetic resonance imaging (fMRI) data analysis. fMRI datasets are however structured data matrices with notions of spatio-temporal correlation and temporal smoothness. This prior information has not been included in the K-SVD algorithm when applied to fMRI data analysis. In this paper we propose three variants of the K-SVD algorithm dedicated to fMRI data analysis by accounting for this prior information. The proposed algorithms differ from the K-SVD in their sparse coding and dictionary update stages. The first two algorithms account for the known correlation structure in the fMRI data by using the squared Q, R-norm instead of the Frobenius norm for matrix approximation. The third and last algorithm account for both the known correlation structure in the fMRI data and the temporal smoothness. The temporal smoothness is incorporated in the dictionary update stage via regularization of the dictionary atoms obtained with penalization. The performance of the proposed dictionary learning algorithms are illustrated through simulations and applications on real fMRI data.

  2. Spatio-temporal patterns of Campylobacter colonization in Danish broilers.

    PubMed

    Chowdhury, S; Themudo, G E; Sandberg, M; Ersbøll, A K

    2013-05-01

    Despite a number of risk-factor studies in different countries, the epidemiology of Campylobacter colonization in broilers, particularly spatial dependencies, is still not well understood. A series of analyses (visualization and exploratory) were therefore conducted in order to obtain a better understanding of the spatial and temporal distribution of Campylobacter in the Danish broiler population. In this study, we observed a non-random temporal occurrence of Campylobacter, with high prevalence during summer and low during winter. Significant spatio-temporal clusters were identified in the same areas in the summer months from 2007 to 2009. Range of influence between broiler farms were estimated at distances of 9.6 km and 13.5 km in different years. Identification of areas and time with greater risk indicates variable presence of risk factors with space and time. Implementation of safety measures on farms within high-risk clusters during summer could have an impact in reducing prevalence.

  3. Spatio-Temporal Self-Organization in Mudstones (Invited)

    NASA Astrophysics Data System (ADS)

    Dewers, T. A.

    2010-12-01

    Shales and other mudstones are the most abundant rock types in sedimentary basins, yet have received comparatively little attention. Common as hydrocarbon seals, these are increasingly being targeted as unconventional gas reservoirs, caprocks for CO2 sequestration, and storage repositories for waste. The small pore and grain size, large specific surface areas, and clay mineral structures lend themselves to rapid reaction rates, high capillary pressures, and semi-permeable membrane behavior accompanying changes in stress, pressure, temperature and chemical conditions. Under far from equilibrium conditions, mudrocks display a variety of spatio-temporal self-organized phenomena arising from nonlinear thermo-mechano-chemo-hydro coupling. Beginning with a detailed examination of nano-scale pore network structures in mudstones, we discuss the dynamics behind such self-organized phenomena as pressure solitons in unconsolidated muds, chemically-induced flow self focusing and permeability transients, localized compaction, time dependent well-bore failure, and oscillatory osmotic fluxes as they occur in clay-bearing sediments. Examples are draw from experiments, numerical simulation, and the field. These phenomena bear on the ability of these rocks to serve as containment barriers. This work is funded by the US Department of Energy, Office of Basic Energy Sciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000

  4. Spatio-temporal changes in the structure of an Australian frog hybrid zone: a 40-year perspective.

    PubMed

    Smith, Katie L; Hale, Joshua M; Gay, Laurène; Kearney, Michael; Austin, Jeremy J; Parris, Kirsten M; Melville, Jane

    2013-12-01

    Spatio-temporal studies of hybrid zones provide an opportunity to test evolutionary hypotheses of hybrid zone maintenance and movement. We conducted a landscape genetics study on a classic hybrid zone of the south-eastern Australian frogs, Litoria ewingii and Litoria paraewingi. This hybrid zone has been comprehensively studied since the 1960s, providing the unique opportunity to directly assess changes in hybrid zone structure across time. We compared both mtDNA and male advertisement call data from two time periods (present and 1960s). Clinal analysis of the coincidence (same center) and concordance (same width) of these traits indicated that the center of the hybrid zone has shifted 1 km south over the last 40 years, although the width of the zone and the rate of introgression remained unchanged. The low frequency of hybrids, the strong concordance of clines within a time period, and the small but significant movement across the study period despite significant anthropogenic changes through the region, suggest the hybrid zone is a tension zone located within a low-density trough. Hybrid zone movement has not been considered common in the past but our findings highlight that it should be considered a crucial component to our understanding of evolution. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  5. Spatio-temporal evolution of shoreline changes along the coast between sousse- Monastir (Eastearn of Tunisia)

    NASA Astrophysics Data System (ADS)

    Fathallah, S.; Ben Amor, R.; Gueddari, M.

    2009-04-01

    Spatio-temporal evolution of shoreline Changes along the coast between Sousse-Monastir (Eastern of Tunisia). Safa Fathallah*, Rim Ben Amor and Moncef Gueddari Unit of Research of Geochemistry and Environmental Geology. Faculty of Science of Tunis, University of Tunis El Manar, 2092. (*) Corresponding author: safa_fathallah@yahoo.fr The coast of Sousse-Monastir in eastern of Tunisia, has undergone great changes, due to natural and anthropic factors. Increasing human use, the construction of two ports and coastal urbanization (hotels and industries) has accelerated the erosion process. The coastal defense structures (breakwaters and enrockment), built to protect the most eroded zone are efficient, but eroded zones appeared in the southern part of breakwaters. Recent and historic aerial photography was used to estimate, observe, and analyze past shoreline and bathymetric positions and trends involving shore evolution for Sousse-Monastir coast. All of the photographs were calibrated and mosaicked by Arc Map Gis 9.1, the years used are 1925, 1962, 1988, 1996, and 2001 for shoreline change analysis and 1884 and 2001 for bathymetric changes. The analyze of this photographs show that the zone located at the south of breakwater are mostly eroded with high speed process (2m/year). Another zone appears as eroded at the south part of Hamdoun River, with 1,5m/year erosion speed . Keywords: Shoreline evolution, defense structures, Sousse-Monastir coast, Tunisia.

  6. A Kinect based sign language recognition system using spatio-temporal features

    NASA Astrophysics Data System (ADS)

    Memiş, Abbas; Albayrak, Songül

    2013-12-01

    This paper presents a sign language recognition system that uses spatio-temporal features on RGB video images and depth maps for dynamic gestures of Turkish Sign Language. Proposed system uses motion differences and accumulation approach for temporal gesture analysis. Motion accumulation method, which is an effective method for temporal domain analysis of gestures, produces an accumulated motion image by combining differences of successive video frames. Then, 2D Discrete Cosine Transform (DCT) is applied to accumulated motion images and temporal domain features transformed into spatial domain. These processes are performed on both RGB images and depth maps separately. DCT coefficients that represent sign gestures are picked up via zigzag scanning and feature vectors are generated. In order to recognize sign gestures, K-Nearest Neighbor classifier with Manhattan distance is performed. Performance of the proposed sign language recognition system is evaluated on a sign database that contains 1002 isolated dynamic signs belongs to 111 words of Turkish Sign Language (TSL) in three different categories. Proposed sign language recognition system has promising success rates.

  7. Has the economic crisis widened the intraurban socioeconomic inequalities in mortality? The case of Barcelona, Spain.

    PubMed

    Maynou, Laia; Saez, Marc; Lopez-Casasnovas, Guillem

    2016-02-01

    There is considerable evidence demonstrating socioeconomic inequalities in mortality, some of which focuses on intraurban inequalities. However, all the studies assume that the spatial variation of inequalities is stable over the time. We challenge this assumption and propose two hypotheses: (i) have spatial variations in socioeconomic inequalities in mortality at an intraurban level changed over time? and (ii) as a result of the economic crisis, has the gap between such disparities widened? In this paper, our objective is to assess the effect of the economic recession on the spatio-temporal variation of socioeconomic inequalities in mortality in Barcelona (Catalonia, Spain). We used a spatio-temporal ecological design to analyse mortality inequalities at small area level in Barcelona. Mortality data and socioeconomic indicators correspond to the years 2005 and 2008-2011. We specified spatio-temporal ecological mixed regressions for both men and women using two indicators, neighbourhood and year. We allowed the coefficients of the socioeconomic variables to differ according to the levels and explicitly took into account spatio-temporal adjustment. For men and women both absolute and, above all, relative risks for mortality have increased since 2009. In relative terms, this means that the risk of dying has increased much more in the most economically deprived neighbourhoods than in the more affluent ones. Although the geographical pattern in relative risks for mortality in neighbourhoods in Barcelona remained very stable between 2005 and 2011, socioeconomic inequalities in mortality at an intraurban level have surged since 2009. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. How innate is locomotion in precocial animals? A study on the early development of spatio-temporal gait variables and gait symmetry in piglets.

    PubMed

    Vanden Hole, Charlotte; Goyens, Jana; Prims, Sara; Fransen, Erik; Ayuso Hernando, Miriam; Van Cruchten, Steven; Aerts, Peter; Van Ginneken, Chris

    2017-08-01

    Locomotion is one of the most important ecological functions in animals. Precocial animals, such as pigs, are capable of independent locomotion shortly after birth. This raises the question whether coordinated movement patterns and the underlying muscular control in these animals is fully innate or whether there still exists a rapid maturation. We addressed this question by studying gait development in neonatal pigs through the analysis of spatio-temporal gait characteristics during locomotion at self-selected speed. To this end, we made video recordings of piglets walking along a corridor at several time points (from 0 h to 96 h). After digitization of the footfalls, we analysed self-selected speed and spatio-temporal characteristics (e.g. stride and step lengths, stride frequency and duty factor) to study dynamic similarity, intralimb coordination and interlimb coordination. To assess the variability of the gait pattern, left-right asymmetry was studied. To distinguish neuromotor maturation from effects caused by growth, both absolute and normalized data (according to the dynamic similarity concept) were included in the analysis. All normalized spatio-temporal variables reached stable values within 4 h of birth, with most of them showing little change after the age of 2 h. Most asymmetry indices showed stable values, hovering around 10%, within 8 h of birth. These results indicate that coordinated movement patterns are not entirely innate, but that a rapid neuromotor maturation, potentially also the result of the rearrangement or recombination of existing motor modules, takes place in these precocial animals. © 2017. Published by The Company of Biologists Ltd.

  9. Spatio-temporal distribution of soil nitrogen in Poyang lake ecological economic zone (South-China).

    PubMed

    Jiang, Yefeng; Rao, Lei; Sun, Kai; Han, Yi; Guo, Xi

    2018-06-01

    Revealing the spatio-temporal distribution of soil nitrogen (N) contributes to N management and prevention of N pollution. The objective of this work is to study the spatio-temporal distribution of soil N and their driving factors in the topsoil (0-20 cm) of farmland in Yugan county, China in 1982 and 2012. Data were collected from 200 sampling sites of the second national soil survey in Yugan in 1982 and 423 sampling sites of the soil testing and formula fertilization project in 2012. On average total N (TN) and available N (AN) significantly increased from 1.50 g kg -1 and 153.04 mg kg -1 in 1982 to 1.58 g kg -1 and 179.75 mg kg -1 in 2012, respectively. The distance of spatial autocorrelation for TN increased from 2.79 to 6.18 km and from 2.97 to 18.00 km for AN from 1982 to 2012. The nugget/sill ratio for TN (0.472 in 1982 and 0.581 in 2012) indicated that soil TN driving by natural characteristics in 1982 to human activities in 2012. The nugget/sill ratio for soil AN (0.471 in 1982 and 0.688 in 2012) indicated that soil AN is more influenced by human activities. The major factors driving the spatio-temporal distribution of soil N was N application rate. To promote the sustainable development of agriculture and eco-environment, we should improve the awareness of farmers on chemical fertilizers (particularly N) and the level of N fertilizer management, increase the use of manure and organic fertilizer and facilitate rational fertilization by farmers. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  10. Spatio-temporal characterization imaging of Ca2+ oscillations in rat hippocampal neurons

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihong; Lu, Jinling; Zhou, Wei; Liu, Rengang; Zeng, Shaoqun; Luo, Qingming

    2001-08-01

    Ca2+ is the most common signal transduction element in cells and plays critical rolls in neuronal development and plasticity. Ca2+ signals encode information in their oscillation frequency or amplitude and response time to regular cellular function. In this study, in order to reveal the spatio-temporal characterization of Ca2+ oscillations in rat hippocampal neurons, two kinds of Ca2+ fluorescent probes, yellow cameleons 2.1 (YC2.1) and Fluo-3, were used to monitor the change of the intracellular free Ca2+ concentration (]Ca2+[i). Spontaneous Ca2+ oscillations and glutamate elicited Ca2+ oscillations were observed with multi-photon excitation laser scan microscope (MPELSM) and confocal laser scan microscope (CLSM). The observation showed that the spatio- temporal characterization of either spontaneous or glutamate provoked Ca2+ oscillations had difference between the neurites and somata in individual nerons, especially in some distal end of neurites. The result indicated that Ca2+ oscillations were most important signal transduction pattern in neuronal development and activation. The spatio-temporal characterization of difference of Ca2+ signals between the distal endo of neurites and the somata might be associated with the distribution of ionotropic receptor and metabotropic glutamate receptors, and Ca2+ response mechanism mediated by two kinds of glutamate receptor. Ca2+ signal elicited by glutamate in the distal end of neurites appeared more complex and generated faster than that in the somata. It was suggested that Ca2+ signal in glutamate stimulated hippacamal neurons first generated from the distal end of neurites and then transduted to the somata. The complicated Ca2+ signal characterization in the distal end of neurites might be associated with neuronal activitation, neurotransmitter releasing, and other functions of neurons.

  11. Pattern formation in a class of homogeneous photochemical reactions

    NASA Astrophysics Data System (ADS)

    Schiller, Robert; Hámori, András

    1999-03-01

    Based on earlier observations of Avnir et al. [D. Avnir, M.L. Kagan, W. Ross, Chem. Phys. Lett. 135 (1987) 177; D. Avnir, M.L. Kagan, Chaos 5 (1995) 589] we investigated the kinetics of the spatial structures of the precipitate, Turnbull-blue, formed in aqueous mixtures of potassium ferrioxalate plus potassium ferricyanide under continuous laser illumination. Similar structures were observed when ferricyanide was replaced by some other Fe 2+ ions reagent. Spatio-temporal and thermochemical analyses led us to the conclusion that the formation of the dissipative structures is due to convection which, in turn, is greatly affected by the heat of reaction.

  12. Modeling the spatial spread of infectious diseases: the GLobal Epidemic and Mobility computational model

    PubMed Central

    Balcan, Duygu; Gonçalves, Bruno; Hu, Hao; Ramasco, José J.; Colizza, Vittoria

    2010-01-01

    Here we present the Global Epidemic and Mobility (GLEaM) model that integrates sociodemographic and population mobility data in a spatially structured stochastic disease approach to simulate the spread of epidemics at the worldwide scale. We discuss the flexible structure of the model that is open to the inclusion of different disease structures and local intervention policies. This makes GLEaM suitable for the computational modeling and anticipation of the spatio-temporal patterns of global epidemic spreading, the understanding of historical epidemics, the assessment of the role of human mobility in shaping global epidemics, and the analysis of mitigation and containment scenarios. PMID:21415939

  13. Spatial, temporal and spatio-temporal clusters of measles incidence at the county level in Guangxi, China during 2004-2014: flexibly shaped scan statistics.

    PubMed

    Tang, Xianyan; Geater, Alan; McNeil, Edward; Deng, Qiuyun; Dong, Aihu; Zhong, Ge

    2017-04-04

    Outbreaks of measles re-emerged in Guangxi province during 2013-2014, where measles again became a major public health concern. A better understanding of the patterns of measles cases would help in identifying high-risk areas and periods for optimizing preventive strategies, yet these patterns remain largely unknown. Thus, this study aimed to determine the patterns of measles clusters in space, time and space-time at the county level over the period 2004-2014 in Guangxi. Annual data on measles cases and population sizes for each county were obtained from Guangxi CDC and Guangxi Bureau of Statistics, respectively. Epidemic curves and Kulldorff's temporal scan statistics were used to identify seasonal peaks and high-risk periods. Tango's flexible scan statistics were implemented to determine irregular spatial clusters. Spatio-temporal clusters in elliptical cylinder shapes were detected by Kulldorff's scan statistics. Population attributable risk percent (PAR%) of children aged ≤24 months was used to identify regions with a heavy burden of measles. Seasonal peaks occurred between April and June, and a temporal measles cluster was detected in 2014. Spatial clusters were identified in West, Southwest and North Central Guangxi. Three phases of spatio-temporal clusters with high relative risk were detected: Central Guangxi during 2004-2005, Midwest Guangxi in 2007, and West and Southwest Guangxi during 2013-2014. Regions with high PAR% were mainly clustered in West, Southwest, North and Central Guangxi. A temporal uptrend of measles incidence existed in Guangxi between 2010 and 2014, while downtrend during 2004-2009. The hotspots shifted from Central to West and Southwest Guangxi, regions overburdened with measles. Thus, intensifying surveillance of timeliness and completeness of routine vaccination and implementing supplementary immunization activities for measles should prioritized in these regions.

  14. Ultrasound and Microbubble Guided Drug Delivery: Mechanistic Understanding and Clinical Implications

    PubMed Central

    Wang, Tzu-Yin; Wilson, Katheryne E.; Machtaler, Steven; Willmann, Jürgen K.

    2014-01-01

    Ultrasound mediated drug delivery using microbubbles is a safe and noninvasive approach for spatially localized drug administration. This approach can create temporary and reversible openings on cellular membranes and vessel walls (a process called “sonoporation”), allowing for enhanced transport of therapeutic agents across these natural barriers. It is generally believed that the sonoporation process is highly associated with the energetic cavitation activities (volumetric expansion, contraction, fragmentation, and collapse) of the microbubble. However, a thorough understanding of the process was unavailable until recently. Important progress on the mechanistic understanding of sonoporation and the corresponding physiological responses in vitro and in vivo has been made. Specifically, recent research shed light on the cavitation process of microbubbles and fluid motion during insonation of ultrasound, on the spatio-temporal interactions between microbubbles and cells or vessel walls, as well as on the temporal course of the subsequent biological effects. These findings have significant clinical implications on the development of optimal treatment strategies for effective drug delivery. In this article, current progress in the mechanistic understanding of ultrasound and microbubble mediated drug delivery and its implications for clinical translation is discussed. PMID:24372231

  15. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures

    NASA Astrophysics Data System (ADS)

    Deilami, Kaveh; Kamruzzaman, Md.; Liu, Yan

    2018-05-01

    Despite research on urban heat island (UHI) effect has increased exponentially over the last few decades, a systematic review of factors contributing to UHI effect has scarcely been reported in the literature. This paper provides a systematic and overarching review of different spatial and temporal factors affecting the UHI effect. UHI is a phenomenon when urban areas experience a higher temperature than their surrounding non-urban areas and is considered as a critical factor contributing to global warming, heat related mortalities, and unpredictable climatic changes. Therefore, there is a pressing need to identify the spatio-temporal factors that contribute to (or mitigate) the UHI effect in order to develop a thorough understanding of their causal mechanism so that these are addressed through urban planning policies. This paper systematically identified 75 eligible studies on UHI effect and reviews the nature and type of satellite images used, the techniques applied to classify land cover/use changes, the models to assess the link between spatio-temporal factors and UHI effect, and the effects of these factors on UHI. The review results show that: a) 54% of the studies used Landsat TM images for modelling the UHI effect followed by Landsat ETM (34%), and MODIS (28%); b) land cover indices (46%), followed by supervised classification (17%) were the dominant methods to derive land cover/use changes associated with UHI effect; c) ordinary least square regression is the most commonly applied method (68%) to investigate the link between different spatio-temporal factors and the UHI effect followed by comparative analysis (33%); and d) the most common factors affecting the UHI effect as reported in the reviewed studies, include vegetation cover (44%), season (33%), built-up area (28%), day/night (25%), population density (14%), water body (12%) together with others. This research discusses the findings in policy terms and provides directions for future research.

  16. Spatio-temporal patterns in land use and management affecting surface runoff response of agricultural catchments - a review

    NASA Astrophysics Data System (ADS)

    Fiener, P.; Auerswald, K.; van Oost, K.

    2009-04-01

    In many landscapes, land use creates a complex pattern in addition to the patterns resulting from soil, topography and rain. Despite the static layout of fields, a spatio-temporally highly variable situation regarding the surface runoff and erosion processes results from the asynchronous seasonal variation associated with different land uses. While the behaviour of individual land-uses and their seasonal variation is analyzed in many studies, the spatio-temporal interaction related to this pattern is rarely studied despite its crucial influence on hydrological and geomorphic response of catchments. The difficulty in studying such interactions mainly results from the fact that it is impossible to set up a replicated experiment on the landscape scale. The purpose of this review is to present the advances made thus far in quantifying the effects of patchiness of land use and management on surface runoff response in agricultural catchments. We will focus on the effects of spatio-temporal patterns in land use patches on hydraulic connectivity between patches and within catchments. This will include the temporal patterns in land management affecting infiltration, surface roughness and hence runoff concentration within single fields or land use patches insofar as these effects must be known to evaluate the combined effect of patch behaviour in space and time on catchment connectivity and surface runoff. Surface runoff effects of patchiness and connectivity between patches or within a catchment, can either be addressed by modelling studies or by comprehensive catchment field measurements, e.g. paired-watershed experiments or landscape scale studies on different scales. This limits our review to studies at the scale of small catchments < 10 km², where the time constant of the network (i.e. travel time through it) is smaller than the infiltration phase. Despite this limitation, these small catchments are important as they constitute 2/3 of the total surface of large water drainage networks.

  17. Complex analysis of the ionospheric response to operation of ``Progress'' cargo spacecraft according to the data of GNSS receivers in Baikal region

    NASA Astrophysics Data System (ADS)

    Ishin, Artem; Voeykov, Sergey; Perevalova, Natalia; Khakhinov, Vitaliy

    2017-12-01

    As a part of the Plasma-Progress and Radar-Progress space experiments conducted from 2006 to 2014, effects of the Progress spacecraft engines on the ionosphere have been studied using data from Global Navigation Satellite System (GNSS) receivers. 72 experiments have been carried out. All these experiments were based on data from the International GNSS Service (IGS) to record ionospheric plasma irregularities caused by engine operation. 35 experiments used data from the ISTP SB RAS network SibNet. The analysis of the spatio-temporal structure of total electron content (TEC) variations has shown that the problem of identifying the TEC response to engine operation is complicated by a number of factors: 1) the engine effect on ionospheric plasma is strongly localized in space and has a relatively low intensity; 2) a small number of satellite-receiver radio rays due to the limited number of GNSS stations, particularly before 2013; 3) a potential TEC response is masked with background ionospheric disturbances of various intensities. However, TEC responses are identified with certainty when a satellite-receiver radio ray crosses a disturbed region within minutes after the impact. TEC responses have been registered in 7 experiments (10 % of cases). The amplitude of ionospheric response (0.3-0.16 TECU) exceeded the background TEC variations (~0.25 TECU) several times. The TEC data indicate that the ionospheric irregularity lifetime is from 4 to 10 minutes. According to the estimates we made, the transverse size of irregularities is from 12 to 30 km.

  18. Spatio-Temporal Equalizer for a Receiving-Antenna Feed Array

    NASA Technical Reports Server (NTRS)

    Mukai, Ryan; Lee, Dennis; Vilnrotter, Victor

    2010-01-01

    A spatio-temporal equalizer has been conceived as an improved means of suppressing multipath effects in the reception of aeronautical telemetry signals, and may be adaptable to radar and aeronautical communication applications as well. This equalizer would be an integral part of a system that would also include a seven-element planar array of receiving feed horns centered at the focal point of a paraboloidal antenna that would be nominally aimed at or near the aircraft that would be the source of the signal that one seeks to receive (see Figure 1). This spatio-temporal equalizer would consist mostly of a bank of seven adaptive finite-impulse-response (FIR) filters one for each element in the array - and the outputs of the filters would be summed (see Figure 2). The combination of the spatial diversity of the feedhorn array and the temporal diversity of the filter bank would afford better multipath-suppression performance than is achievable by means of temporal equalization alone. The seven-element feed array would supplant the single feed horn used in a conventional paraboloidal ground telemetry-receiving antenna. The radio-frequency telemetry signals re ceiv ed by the seven elements of the array would be digitized, converted to complex baseband form, and sent to the FIR filter bank, which would adapt itself in real time to enable reception of telemetry at a low bit error rate, even in the presence of multipath of the type found at many flight test ranges.

  19. Componential Network for the Recognition of Tool-Associated Actions: Evidence from Voxel-based Lesion-Symptom Mapping in Acute Stroke Patients.

    PubMed

    Martin, Markus; Dressing, Andrea; Bormann, Tobias; Schmidt, Charlotte S M; Kümmerer, Dorothee; Beume, Lena; Saur, Dorothee; Mader, Irina; Rijntjes, Michel; Kaller, Christoph P; Weiller, Cornelius

    2017-08-01

    The study aimed to elucidate areas involved in recognizing tool-associated actions, and to characterize the relationship between recognition and active performance of tool use.We performed voxel-based lesion-symptom mapping in a prospective cohort of 98 acute left-hemisphere ischemic stroke patients (68 male, age mean ± standard deviation, 65 ± 13 years; examination 4.4 ± 2 days post-stroke). In a video-based test, patients distinguished correct tool-related actions from actions with spatio-temporal (incorrect grip, kinematics, or tool orientation) or conceptual errors (incorrect tool-recipient matching, e.g., spreading jam on toast with a paintbrush). Moreover, spatio-temporal and conceptual errors were determined during actual tool use.Deficient spatio-temporal error discrimination followed lesions within a dorsal network in which the inferior parietal lobule (IPL) and the lateral temporal cortex (sLTC) were specifically relevant for assessing functional hand postures and kinematics, respectively. Conversely, impaired recognition of conceptual errors resulted from damage to ventral stream regions including anterior temporal lobe. Furthermore, LTC and IPL lesions impacted differently on action recognition and active tool use, respectively.In summary, recognition of tool-associated actions relies on a componential network. Our study particularly highlights the dissociable roles of LTC and IPL for the recognition of action kinematics and functional hand postures, respectively. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Spatio-temporal analysis of prodelta dynamics by means of new satellite generation: the case of Po river by Landsat-8 data

    NASA Astrophysics Data System (ADS)

    Manzo, Ciro; Braga, Federica; Zaggia, Luca; Brando, Vittorio Ernesto; Giardino, Claudia; Bresciani, Mariano; Bassani, Cristiana

    2018-04-01

    This paper describes a procedure to perform spatio-temporal analysis of river plume dispersion in prodelta areas by multi-temporal Landsat-8-derived products for identifying zones sensitive to water discharge and for providing geostatistical patterns of turbidity linked to different meteo-marine forcings. In particular, we characterized the temporal and spatial variability of turbidity and sea surface temperature (SST) in the Po River prodelta (Northern Adriatic Sea, Italy) during the period 2013-2016. To perform this analysis, a two-pronged processing methodology was implemented and the resulting outputs were analysed through a series of statistical tools. A pixel-based spatial correlation analysis was carried out by comparing temporal curves of turbidity and SST hypercubes with in situ time series of wind speed and water discharge, providing correlation coefficient maps. A geostatistical analysis was performed to determine the spatial dependency of the turbidity datasets per each satellite image, providing maps of correlation and variograms. The results show a linear correlation between water discharge and turbidity variations in the points more affected by the buoyant plumes and along the southern coast of Po River delta. Better inverse correlation was found between turbidity and SST during floods rather than other periods. The correlation maps of wind speed with turbidity show different spatial patterns depending on local or basin-scale wind effects. Variogram maps identify different spatial anisotropy structures of turbidity in response to ambient conditions (i.e. strong Bora or Scirocco winds, floods). Since the implemented processing methodology is based on open source software and free satellite data, it represents a promising tool for the monitoring of maritime ecosystems and to address water quality analyses and the investigations of sediment dynamics in estuarine and coastal waters.

  1. Dynamical Structure of Madden-Julian Oscillation over Malay Peninsula

    NASA Astrophysics Data System (ADS)

    Djamil, Y. S.; Koh, T. Y.; Chandimala, J.; Teo, C. K.

    2014-12-01

    Madden-Julian Oscillation (MJO) is the dominant weather event in the intraseasonal time scale over Malay Peninsula region. The MJO signals are represented by the first two modes of radiosonde records extracted using Extended Empirical Orthogonal Function (EEOF) analyses which we label as Local Multivariate MJO (LMM). LMM is able to capture the spatio-temporal profile of MJO along the global tropics in all seasons. With the help of LMM, we clarify the dynamical and thermodynamical structure of the MJO over Malay Peninsula, including the unique "boomerang-shaped" feature in the time-height temperature profile identified in previous literature.

  2. Challenges for modelling spatio-temporal variations of malaria risk in Malawi

    NASA Astrophysics Data System (ADS)

    Lowe, R.; Chirombo, J.; Tompkins, A. M.

    2012-04-01

    Malaria is the leading cause of morbidity and mortality in Malawi with more than 6 million episodes reported each year. Malaria poses a huge economic burden to Malawi in terms of the direct cost of treating malaria patients and also indirect costs resulting from workdays lost in agriculture and industry and absenteeism from school. Malawi implements malaria control activities within the Roll Back Malaria framework, with the objective to provide those most at risk (i.e. children under five years, pregnant woman and individuals with suppressed immune systems) access to personal and community protective measures. However, at present there is no mechanism by which to target the most 'at risk' populations ahead of an impending epidemic. Malaria transmission is influenced by variations in meteorological conditions, which impact the biology of the mosquito and the availability of breeding sites, but also socio-economic conditions such as levels of urbanisation, poverty and education, which influence human vulnerability and vector habitat. The many potential drivers of malaria, both extrinsic, such as climate, and intrinsic, such as population immunity are often difficult to disentangle. This presents a challenge for modelling of malaria risk in space and time. Using an age-stratified spatio-temporal dataset of malaria cases at the district level from July 2004 - June 2011, we use a spatio-temporal modelling framework to model variations in malaria risk in Malawi. Climatic and topographic variations are accounted for using an interpolation method to relate gridded products to administrative districts. District level data is tested in the model to account for confounding factors, including the proportion of the population living in urban areas; residing in traditional housing; with no toilet facilities; who do not attend school, etc, the number of health facilities per population and yearly estimates of insecticide-treated mosquito net distribution. In order to account for the unobserved confounding factors that influence malaria, which are not accounted for using measured covariates, a negative binomial generalised linear mixed model (GLMM) is adopted, which includes structured and unstructured spatial and temporal random effects. The parameters in this spatio-temporal Bayesian hierarchical model are estimated using Markov Chain Monte Carlo (MCMC). This allows posterior predictive distributions for disease risk to be derived for each spatial location and time period. A novel visualisation technique is then used to display seasonal probabilistic forecasts of malaria risk, derived from the developed model using pre-defined risk category thresholds, on a map. This technique allows decision makers to identify areas where the model predicts with certainty a particular malaria risk category (high, medium or low); in order to effectively target limited resources to those districts most at risk for a given season.

  3. Spatio-Temporal Patterns in Colonies of Rod-Shaped Bacteria

    NASA Astrophysics Data System (ADS)

    Kitsunezaki, S.

    In incubation experiments of bacterial colonies of Proteus Mirabilis, macroscopic spatio-temporal patterns, such as turbulent and unidirectional spiral patterns, appear in colonies. Considering only kinetic propeties of rod-shaped bacteria, we propose a phenomenological model for the directional and positional distributions. As the average density increases, homogeneous states bifurcate sub-critically into nonuniform states exhibiting localized collective motion, and spiral patterns appear for sufficiently large density. These patterns result from interactions between the local bacteria densities and the order parameter representing collective motion. Our model can be described by reduced equations using a perturbative method for large density. The unidirectionality of sprial rotation is also discussed.

  4. Optical solitons, explicit solutions and modulation instability analysis with second-order spatio-temporal dispersion

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Isa Aliyu, Aliyu; Yusuf, Abdullahi; Baleanu, Dumitru

    2017-12-01

    This paper obtains the dark, bright, dark-bright or combined optical and singular solitons to the nonlinear Schrödinger equation (NLSE) with group velocity dispersion coefficient and second-order spatio-temporal dispersion coefficient, which arises in photonics and waveguide optics and in optical fibers. The integration algorithm is the sine-Gordon equation method (SGEM). Furthermore, the explicit solutions of the equation are derived by considering the power series solutions (PSS) theory and the convergence of the solutions is guaranteed. Lastly, the modulation instability analysis (MI) is studied based on the standard linear-stability analysis and the MI gain spectrum is obtained.

  5. Health impact assessment of industrial development projects: a spatio-temporal visualization.

    PubMed

    Winkler, Mirko S; Krieger, Gary R; Divall, Mark J; Singer, Burton H; Utzinger, Jürg

    2012-05-01

    Development and implementation of large-scale industrial projects in complex eco-epidemiological settings typically require combined environmental, social and health impact assessments. We present a generic, spatio-temporal health impact assessment (HIA) visualization, which can be readily adapted to specific projects and key stakeholders, including poorly literate communities that might be affected by consequences of a project. We illustrate how the occurrence of a variety of complex events can be utilized for stakeholder communication, awareness creation, interactive learning as well as formulating HIA research and implementation questions. Methodological features are highlighted in the context of an iron ore development in a rural part of Africa.

  6. Cellular automata rule characterization and classification using texture descriptors

    NASA Astrophysics Data System (ADS)

    Machicao, Jeaneth; Ribas, Lucas C.; Scabini, Leonardo F. S.; Bruno, Odermir M.

    2018-05-01

    The cellular automata (CA) spatio-temporal patterns have attracted the attention from many researchers since it can provide emergent behavior resulting from the dynamics of each individual cell. In this manuscript, we propose an approach of texture image analysis to characterize and classify CA rules. The proposed method converts the CA spatio-temporal patterns into a gray-scale image. The gray-scale is obtained by creating a binary number based on the 8-connected neighborhood of each dot of the CA spatio-temporal pattern. We demonstrate that this technique enhances the CA rule characterization and allow to use different texture image analysis algorithms. Thus, various texture descriptors were evaluated in a supervised training approach aiming to characterize the CA's global evolution. Our results show the efficiency of the proposed method for the classification of the elementary CA (ECAs), reaching a maximum of 99.57% of accuracy rate according to the Li-Packard scheme (6 classes) and 94.36% for the classification of the 88 rules scheme. Moreover, within the image analysis context, we found a better performance of the method by means of a transformation of the binary states to a gray-scale.

  7. Spatio-temporal correlations in models of collective motion ruled by different dynamical laws.

    PubMed

    Cavagna, Andrea; Conti, Daniele; Giardina, Irene; Grigera, Tomas S; Melillo, Stefania; Viale, Massimiliano

    2016-11-15

    Information transfer is an essential factor in determining the robustness of biological systems with distributed control. The most direct way to study the mechanisms ruling information transfer is to experimentally observe the propagation across the system of a signal triggered by some perturbation. However, this method may be inefficient for experiments in the field, as the possibilities to perturb the system are limited and empirical observations must rely on natural events. An alternative approach is to use spatio-temporal correlations to probe the information transfer mechanism directly from the spontaneous fluctuations of the system, without the need to have an actual propagating signal on record. Here we test this method on models of collective behaviour in their deeply ordered phase by using ground truth data provided by numerical simulations in three dimensions. We compare two models characterized by very different dynamical equations and information transfer mechanisms: the classic Vicsek model, describing an overdamped noninertial dynamics and the inertial spin model, characterized by an underdamped inertial dynamics. By using dynamic finite-size scaling, we show that spatio-temporal correlations are able to distinguish unambiguously the diffusive information transfer mechanism of the Vicsek model from the linear mechanism of the inertial spin model.

  8. Evaluating and implementing temporal, spatial, and spatio-temporal methods for outbreak detection in a local syndromic surveillance system

    PubMed Central

    Lall, Ramona; Levin-Rector, Alison; Sell, Jessica; Paladini, Marc; Konty, Kevin J.; Olson, Don; Weiss, Don

    2017-01-01

    The New York City Department of Health and Mental Hygiene has operated an emergency department syndromic surveillance system since 2001, using temporal and spatial scan statistics run on a daily basis for cluster detection. Since the system was originally implemented, a number of new methods have been proposed for use in cluster detection. We evaluated six temporal and four spatial/spatio-temporal detection methods using syndromic surveillance data spiked with simulated injections. The algorithms were compared on several metrics, including sensitivity, specificity, positive predictive value, coherence, and timeliness. We also evaluated each method’s implementation, programming time, run time, and the ease of use. Among the temporal methods, at a set specificity of 95%, a Holt-Winters exponential smoother performed the best, detecting 19% of the simulated injects across all shapes and sizes, followed by an autoregressive moving average model (16%), a generalized linear model (15%), a modified version of the Early Aberration Reporting System’s C2 algorithm (13%), a temporal scan statistic (11%), and a cumulative sum control chart (<2%). Of the spatial/spatio-temporal methods we tested, a spatial scan statistic detected 3% of all injects, a Bayes regression found 2%, and a generalized linear mixed model and a space-time permutation scan statistic detected none at a specificity of 95%. Positive predictive value was low (<7%) for all methods. Overall, the detection methods we tested did not perform well in identifying the temporal and spatial clusters of cases in the inject dataset. The spatial scan statistic, our current method for spatial cluster detection, performed slightly better than the other tested methods across different inject magnitudes and types. Furthermore, we found the scan statistics, as applied in the SaTScan software package, to be the easiest to program and implement for daily data analysis. PMID:28886112

  9. Evaluating and implementing temporal, spatial, and spatio-temporal methods for outbreak detection in a local syndromic surveillance system.

    PubMed

    Mathes, Robert W; Lall, Ramona; Levin-Rector, Alison; Sell, Jessica; Paladini, Marc; Konty, Kevin J; Olson, Don; Weiss, Don

    2017-01-01

    The New York City Department of Health and Mental Hygiene has operated an emergency department syndromic surveillance system since 2001, using temporal and spatial scan statistics run on a daily basis for cluster detection. Since the system was originally implemented, a number of new methods have been proposed for use in cluster detection. We evaluated six temporal and four spatial/spatio-temporal detection methods using syndromic surveillance data spiked with simulated injections. The algorithms were compared on several metrics, including sensitivity, specificity, positive predictive value, coherence, and timeliness. We also evaluated each method's implementation, programming time, run time, and the ease of use. Among the temporal methods, at a set specificity of 95%, a Holt-Winters exponential smoother performed the best, detecting 19% of the simulated injects across all shapes and sizes, followed by an autoregressive moving average model (16%), a generalized linear model (15%), a modified version of the Early Aberration Reporting System's C2 algorithm (13%), a temporal scan statistic (11%), and a cumulative sum control chart (<2%). Of the spatial/spatio-temporal methods we tested, a spatial scan statistic detected 3% of all injects, a Bayes regression found 2%, and a generalized linear mixed model and a space-time permutation scan statistic detected none at a specificity of 95%. Positive predictive value was low (<7%) for all methods. Overall, the detection methods we tested did not perform well in identifying the temporal and spatial clusters of cases in the inject dataset. The spatial scan statistic, our current method for spatial cluster detection, performed slightly better than the other tested methods across different inject magnitudes and types. Furthermore, we found the scan statistics, as applied in the SaTScan software package, to be the easiest to program and implement for daily data analysis.

  10. Spatio-temporal Genetic Structuring of Leishmania major in Tunisia by Microsatellite Analysis

    PubMed Central

    Harrabi, Myriam; Bettaieb, Jihène; Ghawar, Wissem; Toumi, Amine; Zaâtour, Amor; Yazidi, Rihab; Chaâbane, Sana; Chalghaf, Bilel; Hide, Mallorie; Bañuls, Anne-Laure; Ben Salah, Afif

    2015-01-01

    In Tunisia, cases of zoonotic cutaneous leishmaniasis caused by Leishmania major are increasing and spreading from the south-west to new areas in the center. To improve the current knowledge on L. major evolution and population dynamics, we performed multi-locus microsatellite typing of human isolates from Tunisian governorates where the disease is endemic (Gafsa, Kairouan and Sidi Bouzid governorates) and collected during two periods: 1991–1992 and 2008–2012. Analysis (F-statistics and Bayesian model-based approach) of the genotyping results of isolates collected in Sidi Bouzid in 1991–1992 and 2008–2012 shows that, over two decades, in the same area, Leishmania parasites evolved by generating genetically differentiated populations. The genetic patterns of 2008–2012 isolates from the three governorates indicate that L. major populations did not spread gradually from the south to the center of Tunisia, according to a geographical gradient, suggesting that human activities might be the source of the disease expansion. The genotype analysis also suggests previous (Bayesian model-based approach) and current (F-statistics) flows of genotypes between governorates and districts. Human activities as well as reservoir dynamics and the effects of environmental changes could explain how the disease progresses. This study provides new insights into the evolution and spread of L. major in Tunisia that might improve our understanding of the parasite flow between geographically and temporally distinct populations. PMID:26302440

  11. A nanobuffer reporter library for fine-scale imaging and perturbation of endocytic organelles | Office of Cancer Genomics

    Cancer.gov

    Endosomes, lysosomes and related catabolic organelles are a dynamic continuum of vacuolar structures that impact a number of cell physiological processes such as protein/lipid metabolism, nutrient sensing and cell survival. Here we develop a library of ultra-pH-sensitive fluorescent nanoparticles with chemical properties that allow fine-scale, multiplexed, spatio-temporal perturbation and quantification of catabolic organelle maturation at single organelle resolution to support quantitative investigation of these processes in living cells.

  12. Spatio-Temporal Characteristics of Resident Trip Based on Poi and OD Data of Float CAR in Beijing

    NASA Astrophysics Data System (ADS)

    Mou, N.; Li, J.; Zhang, L.; Liu, W.; Xu, Y.

    2017-09-01

    Due to the influence of the urban inherent regional functional distribution, the daily activities of the residents presented some spatio-temporal patterns (periodic patterns, gathering patterns, etc.). In order to further understand the spatial and temporal characteristics of urban residents, this paper research takes the taxi trajectory data of Beijing as a sample data and studies the spatio-temporal characteristics of the residents' activities on the weekdays. At first, according to the characteristics of the taxi trajectory data distributed along the road network, it takes the Voronoi generated by the road nodes as the research unit. This paper proposes a hybrid clustering method - based on grid density, which is used to cluster the OD (origin and destination) data of taxi at different times. Then combining with the POI data of Beijing, this research calculated the density of the POI data in the clustering results, and analyzed the relationship between the activities of residents in different periods and the functional types of the region. The final results showed that the residents were mainly commuting on weekdays. And it found that the distribution of travel density showed a concentric circle of the characteristics, focusing on residential areas and work areas. The results of cluster analysis and POI analysis showed that the residents' travel had experienced the process of "spatial relative dispersion - spatial aggregation - spatial relative dispersion" in one day.

  13. Spatio-Temporal Brain Mapping of Motion-Onset VEPs Combined with fMRI and Retinotopic Maps

    PubMed Central

    Pitzalis, Sabrina; Strappini, Francesca; De Gasperis, Marco; Bultrini, Alessandro; Di Russo, Francesco

    2012-01-01

    Neuroimaging studies have identified several motion-sensitive visual areas in the human brain, but the time course of their activation cannot be measured with these techniques. In the present study, we combined electrophysiological and neuroimaging methods (including retinotopic brain mapping) to determine the spatio-temporal profile of motion-onset visual evoked potentials for slow and fast motion stimuli and to localize its neural generators. We found that cortical activity initiates in the primary visual area (V1) for slow stimuli, peaking 100 ms after the onset of motion. Subsequently, activity in the mid-temporal motion-sensitive areas, MT+, peaked at 120 ms, followed by peaks in activity in the more dorsal area, V3A, at 160 ms and the lateral occipital complex at 180 ms. Approximately 250 ms after stimulus onset, activity fast motion stimuli was predominant in area V6 along the parieto-occipital sulcus. Finally, at 350 ms (100 ms after the motion offset) brain activity was visible again in area V1. For fast motion stimuli, the spatio-temporal brain pattern was similar, except that the first activity was detected at 70 ms in area MT+. Comparing functional magnetic resonance data for slow vs. fast motion, we found signs of slow-fast motion stimulus topography along the posterior brain in at least three cortical regions (MT+, V3A and LOR). PMID:22558222

  14. Life on Earth is an individual.

    PubMed

    Hermida, Margarida

    2016-06-01

    Life is a self-maintaining process based on metabolism. Something is said to be alive when it exhibits organization and is actively involved in its own continued existence through carrying out metabolic processes. A life is a spatio-temporally restricted event, which continues while the life processes are occurring in a particular chunk of matter (or, arguably, when they are temporally suspended, but can be restarted at any moment), even though there is continuous replacement of parts. Life is organized in discrete packages, particular cells and multicellular organisms with differing degrees of individuality. Biological species, too, have been shown to be individuals, and not classes, as these collections of organisms are spatio-temporally localized, restricted, continuous, and somewhat cohesive entities, with a definite beginning and end. Assuming that all life on Earth has a common origin, all living organisms, cells, and tissues descending from this origin exhibit continuity of the life processes at the cellular level, as well as many of the features that define the individual character of species: spatio-temporal localization and restriction, continuity, historicity, and cohesiveness. Therefore, life on Earth is an ontological individual. Independent origins of life will have produced other such individuals. These provisionally called 'life-individuals' constitute a category of organization of life which has seldom been recognized. The discovery of at least one independent life-individual would go a long way toward the project of the universality of biology.

  15. Multi-dimension feature fusion for action recognition

    NASA Astrophysics Data System (ADS)

    Dong, Pei; Li, Jie; Dong, Junyu; Qi, Lin

    2018-04-01

    Typical human actions last several seconds and exhibit characteristic spatio-temporal structure. The challenge for action recognition is to capture and fuse the multi-dimension information in video data. In order to take into account these characteristics simultaneously, we present a novel method that fuses multiple dimensional features, such as chromatic images, depth and optical flow fields. We built our model based on the multi-stream deep convolutional networks with the help of temporal segment networks and extract discriminative spatial and temporal features by fusing ConvNets towers multi-dimension, in which different feature weights are assigned in order to take full advantage of this multi-dimension information. Our architecture is trained and evaluated on the currently largest and most challenging benchmark NTU RGB-D dataset. The experiments demonstrate that the performance of our method outperforms the state-of-the-art methods.

  16. Field Injection Test in the Host Rock nearby a Fault Zone - Stress Determination and Fault Hydraulic Diffusivity

    NASA Astrophysics Data System (ADS)

    Tsopela, A.; Guglielmi, Y.; Donze, F. V.; De Barros, L.; Henry, P.; Castilla, R.; Gout, C.

    2017-12-01

    Fluid injections associated with human activities are well known to induce perturbations in the ambient rock mass. In particular, the hydromechanical response of a nearby fault under an increase of the pore pressure is of great interest in permeability as well as seismicity related problems. We present a field injection experiment conducted in the host rock 4m away from a fault affecting Toarcian shales (Tournemire massif, France). The site was densely instrumented and during the test the pressure, displacements and seismicity were recorded in order to capture the hydro-mechanical response of the surrounding stimulated volume. A numerical model was used including the reactivated structure at the injection point interacting with a plane representing the main fault orientation. A number of calculations were performed in order to estimate the injection characteristics and the state of stress of the test. By making use of the recorded seismic events location an attempt is made to reproduce the spatio-temporal characteristics of the microseismicity cloud. We have introduced in the model heterogeneous frictional properties along the fault plane that result in flow and rupture channeling effects. Based on the spatio-temporal characteristics of these rupture events we attempt to estimate the resulting hydraulic properties of the fault according to the triggering front concept proposed by Shapiro et al. (2002). The effect of the frictional heterogeneities and the fault orientation on the resulting hydraulic diffusivity is discussed. We have so far observed in our model that by statistically taking into account the frictional heterogeneities in our analysis, the spatio-temporal characteristics of the rupture events and the recovered hydraulic properties of the fault are in a satisfying agreement. References: Shapiro, S. A., Rothert, E., Rath, V., & Rindschwentner, J. (2002). Characterization of fluid transport properties of reservoirs using induced microseismicity. Geophysics, 67(1), 212-220.

  17. Coherent structures shed by multiscale cut-in trailing edge serrations on lifting wings

    NASA Astrophysics Data System (ADS)

    Prigent, S. L.; Buxton, O. R. H.; Bruce, P. J. K.

    2017-07-01

    This experimental study presents the effect of multiscale cut-in trailing edge serrations on the coherent structures shed into the wake of a lifting wing. Two-probe span-wise hot-wire traverses are performed to study spectra, coherence, and phase shift. In addition, planar particle image velocimetry is used to study the spatio-temporal structure of the vortices shed by the airfoils. Compared with a single tone sinusoidal serration, the multiscale ones reduce the vortex shedding energy as well as the span-wise coherence. Results indicate that the vortex shedding is locked into an arch-shaped cell structure. This structure is weakened by the multiscale patterns, which explains the reduction in both shedding energy and coherence.

  18. Complex small pelagic fish population patterns arising from individual behavioral responses to their environment

    NASA Astrophysics Data System (ADS)

    Brochier, Timothée; Auger, Pierre-Amaël; Pecquerie, Laure; Machu, Eric; Capet, Xavier; Thiaw, Modou; Mbaye, Baye Cheikh; Braham, Cheikh-Baye; Ettahiri, Omar; Charouki, Najib; Sène, Ousseynou Ndaw; Werner, Francisco; Brehmer, Patrice

    2018-05-01

    Small pelagic fish (SPF) species are heavily exploited in eastern boundary upwelling systems (EBUS) as their transformation products are increasingly used in the world's food chain. Management relies on regular monitoring, but there is a lack of robust theories for the emergence of the populations' traits and their evolution in highly variable environments. This work aims to address existing knowledge gaps by combining physical and biogeochemical modelling with an individual life-cycle based model applied to round sardinella (Sardinella aurita) off northwest Africa, a key species for regional food security. Our approach focused on the processes responsible for seasonal migrations, spatio-temporal size-structure, and interannual biomass fluctuations. Emergence of preferred habitat resulted from interactions between natal homing behavior and environmental variability that impacts early life stages. Exploration of the environment by the fishes was determined by swimming capabilities, mesoscale to regional habitat structure, and horizontal currents. Fish spatio-temporal abundance variability emerged from a complex combination of distinct life-history traits. An alongshore gradient in fish size distributions is reported and validated by in situ measurements. New insights into population structure are provided, within an area where the species is abundant year-round (Mauritania) and with latitudinal migrations of variable (300-1200 km) amplitude. Interannual biomass fluctuations were linked to modulations of fish recruitment over the Sahara Bank driven by variability in alongshore current intensity. The identified processes constitute an analytical framework that can be implemented in other EBUS and used to explore impacts of regional climate change on SPF.

  19. Spatio-temporal variability of hydro-chemical characteristics of coastal waters of Gulf of Mannar Marine Biosphere Reserve (GoMMBR), South India

    NASA Astrophysics Data System (ADS)

    Kathiravan, K.; Natesan, Usha; Vishnunath, R.

    2017-03-01

    The intention of this study was to appraise the spatial and temporal variations in the physico-chemical parameters of coastal waters of Rameswaram Island, Gulf of Mannar Marine Biosphere Reserve, south India, using multivariate statistical techniques, such as cluster analysis, factor analysis and principal component analysis. Spatio-temporal variations among the physico-chemical parameters are observed in the coastal waters of Gulf of Mannar, especially during northeast and post monsoon seasons. It is inferred that the high loadings of pH, temperature, suspended particulate matter, salinity, dissolved oxygen, biochemical oxygen demand, chlorophyll a, nutrient species of nitrogen and phosphorus strongly determine the discrimination of coastal water quality. Results highlight the important role of monsoonal variations to determine the coastal water quality around Rameswaram Island.

  20. Video repairing under variable illumination using cyclic motions.

    PubMed

    Jia, Jiaya; Tai, Yu-Wing; Wu, Tai-Pang; Tang, Chi-Keung

    2006-05-01

    This paper presents a complete system capable of synthesizing a large number of pixels that are missing due to occlusion or damage in an uncalibrated input video. These missing pixels may correspond to the static background or cyclic motions of the captured scene. Our system employs user-assisted video layer segmentation, while the main processing in video repair is fully automatic. The input video is first decomposed into the color and illumination videos. The necessary temporal consistency is maintained by tensor voting in the spatio-temporal domain. Missing colors and illumination of the background are synthesized by applying image repairing. Finally, the occluded motions are inferred by spatio-temporal alignment of collected samples at multiple scales. We experimented on our system with some difficult examples with variable illumination, where the capturing camera can be stationary or in motion.

  1. Lifetimes and spatio-temporal response of protein crystals in intense X-ray microbeams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warkentin, Matthew A.; Atakisi, Hakan; Hopkins, Jesse B.

    Serial synchrotron-based crystallography using intense microfocused X-ray beams, fast-framing detectors and protein microcrystals held at 300 K promises to expand the range of accessible structural targets and to increase overall structure-pipeline throughputs. To explore the nature and consequences of X-ray radiation damage under microbeam illumination, the time-, dose- and temperature-dependent evolution of crystal diffraction have been measured with maximum dose rates of 50 MGy s −1 . At all temperatures and dose rates, the integrated diffraction intensity for a fixed crystal orientation shows non-exponential decays with dose. Non-exponential decays are a consequence of non-uniform illumination and the resulting spatial evolution of diffracted intensitymore » within the illuminated crystal volume. To quantify radiation-damage lifetimes and the damage state of diffracting crystal regions, a revised diffraction-weighted dose (DWD) is defined and it is shown that for Gaussian beams the DWD becomes nearly independent of actual dose at large doses. An apparent delayed onset of radiation damage seen in some intensity–dose curves is in fact a consequence of damage. Intensity fluctuations at high dose rates may arise from the impulsive release of gaseous damage products. Accounting for these effects, data collection at the highest dose rates increases crystal radiation lifetimes near 300 K (but not at 100 K) by a factor of ∼1.5–2 compared with those observed at conventional dose rates. Improved quantification and modeling of the complex spatio-temporal evolution of protein microcrystal diffraction in intense microbeams will enable more efficient data collection, and will be essential in improving the accuracy of structure factors and structural models.« less

  2. Lifetimes and spatio-temporal response of protein crystals in intense X-ray microbeams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warkentin, Matthew A.; Atakisi, Hakan; Hopkins, Jesse B.

    Serial synchrotron-based crystallography using intense microfocused X-ray beams, fast-framing detectors and protein microcrystals held at 300 K promises to expand the range of accessible structural targets and to increase overall structure-pipeline throughputs. To explore the nature and consequences of X-ray radiation damage under microbeam illumination, the time-, dose- and temperature-dependent evolution of crystal diffraction have been measured with maximum dose rates of 50 MGy s –1. At all temperatures and dose rates, the integrated diffraction intensity for a fixed crystal orientation shows non-exponential decays with dose. Non-exponential decays are a consequence of non-uniform illumination and the resulting spatial evolution ofmore » diffracted intensity within the illuminated crystal volume. To quantify radiation-damage lifetimes and the damage state of diffracting crystal regions, a revised diffraction-weighted dose (DWD) is defined and it is shown that for Gaussian beams the DWD becomes nearly independent of actual dose at large doses. An apparent delayed onset of radiation damage seen in some intensity–dose curves is in fact a consequence of damage. Intensity fluctuations at high dose rates may arise from the impulsive release of gaseous damage products. Accounting for these effects, data collection at the highest dose rates increases crystal radiation lifetimes near 300 K (but not at 100 K) by a factor of ~1.5–2 compared with those observed at conventional dose rates. As a result, improved quantification and modeling of the complex spatio-temporal evolution of protein microcrystal diffraction in intense microbeams will enable more efficient data collection, and will be essential in improving the accuracy of structure factors and structural models.« less

  3. Lifetimes and spatio-temporal response of protein crystals in intense X-ray microbeams

    DOE PAGES

    Warkentin, Matthew A.; Atakisi, Hakan; Hopkins, Jesse B.; ...

    2017-10-13

    Serial synchrotron-based crystallography using intense microfocused X-ray beams, fast-framing detectors and protein microcrystals held at 300 K promises to expand the range of accessible structural targets and to increase overall structure-pipeline throughputs. To explore the nature and consequences of X-ray radiation damage under microbeam illumination, the time-, dose- and temperature-dependent evolution of crystal diffraction have been measured with maximum dose rates of 50 MGy s –1. At all temperatures and dose rates, the integrated diffraction intensity for a fixed crystal orientation shows non-exponential decays with dose. Non-exponential decays are a consequence of non-uniform illumination and the resulting spatial evolution ofmore » diffracted intensity within the illuminated crystal volume. To quantify radiation-damage lifetimes and the damage state of diffracting crystal regions, a revised diffraction-weighted dose (DWD) is defined and it is shown that for Gaussian beams the DWD becomes nearly independent of actual dose at large doses. An apparent delayed onset of radiation damage seen in some intensity–dose curves is in fact a consequence of damage. Intensity fluctuations at high dose rates may arise from the impulsive release of gaseous damage products. Accounting for these effects, data collection at the highest dose rates increases crystal radiation lifetimes near 300 K (but not at 100 K) by a factor of ~1.5–2 compared with those observed at conventional dose rates. As a result, improved quantification and modeling of the complex spatio-temporal evolution of protein microcrystal diffraction in intense microbeams will enable more efficient data collection, and will be essential in improving the accuracy of structure factors and structural models.« less

  4. Lifetimes and spatio-temporal response of protein crystals in intense X-ray microbeams

    DOE PAGES

    Warkentin, Matthew A.; Atakisi, Hakan; Hopkins, Jesse B.; ...

    2017-10-13

    Serial synchrotron-based crystallography using intense microfocused X-ray beams, fast-framing detectors and protein microcrystals held at 300 K promises to expand the range of accessible structural targets and to increase overall structure-pipeline throughputs. To explore the nature and consequences of X-ray radiation damage under microbeam illumination, the time-, dose- and temperature-dependent evolution of crystal diffraction have been measured with maximum dose rates of 50 MGy s −1 . At all temperatures and dose rates, the integrated diffraction intensity for a fixed crystal orientation shows non-exponential decays with dose. Non-exponential decays are a consequence of non-uniform illumination and the resulting spatial evolution of diffracted intensitymore » within the illuminated crystal volume. To quantify radiation-damage lifetimes and the damage state of diffracting crystal regions, a revised diffraction-weighted dose (DWD) is defined and it is shown that for Gaussian beams the DWD becomes nearly independent of actual dose at large doses. An apparent delayed onset of radiation damage seen in some intensity–dose curves is in fact a consequence of damage. Intensity fluctuations at high dose rates may arise from the impulsive release of gaseous damage products. Accounting for these effects, data collection at the highest dose rates increases crystal radiation lifetimes near 300 K (but not at 100 K) by a factor of ∼1.5–2 compared with those observed at conventional dose rates. Improved quantification and modeling of the complex spatio-temporal evolution of protein microcrystal diffraction in intense microbeams will enable more efficient data collection, and will be essential in improving the accuracy of structure factors and structural models.« less

  5. Swim-Training Changes the Spatio-Temporal Dynamics of Skeletogenesis in Zebrafish Larvae (Danio rerio)

    PubMed Central

    Fiaz, Ansa W.; Léon-Kloosterziel, Karen M.; Gort, Gerrit; Schulte-Merker, Stefan; van Leeuwen, Johan L.; Kranenbarg, Sander

    2012-01-01

    Fish larvae experience many environmental challenges during development such as variation in water velocity, food availability and predation. The rapid development of structures involved in feeding, respiration and swimming increases the chance of survival. It has been hypothesized that mechanical loading induced by muscle forces plays a role in prioritizing the development of these structures. Mechanical loading by muscle forces has been shown to affect larval and embryonic bone development in vertebrates, but these investigations were limited to the appendicular skeleton. To explore the role of mechanical load during chondrogenesis and osteogenesis of the cranial, axial and appendicular skeleton, we subjected zebrafish larvae to swim-training, which increases physical exercise levels and presumably also mechanical loads, from 5 until 14 days post fertilization. Here we show that an increased swimming activity accelerated growth, chondrogenesis and osteogenesis during larval development in zebrafish. Interestingly, swim-training accelerated both perichondral and intramembranous ossification. Furthermore, swim-training prioritized the formation of cartilage and bone structures in the head and tail region as well as the formation of elements in the anal and dorsal fins. This suggests that an increased swimming activity prioritized the development of structures which play an important role in swimming and thereby increasing the chance of survival in an environment where water velocity increases. Our study is the first to show that already during early zebrafish larval development, skeletal tissue in the cranial, axial and appendicular skeleton is competent to respond to swim-training due to increased water velocities. It demonstrates that changes in water flow conditions can result into significant spatio-temporal changes in skeletogenesis. PMID:22529905

  6. Spatio-temporal and kinematic gait analysis in patients with Frontotemporal dementia and Alzheimer's disease through 3D motion capture.

    PubMed

    Rucco, Rosaria; Agosti, Valeria; Jacini, Francesca; Sorrentino, Pierpaolo; Varriale, Pasquale; De Stefano, Manuela; Milan, Graziella; Montella, Patrizia; Sorrentino, Giuseppe

    2017-02-01

    Alzheimer's disease (AD) and behavioral variant of Frontotemporal Dementia (bvFTD) are characterized respectively by atrophy in the medial temporal lobe with memory loss and prefrontal and anterior temporal degeneration with dysexecutive syndrome. In this study, we hypothesized that specific gait patterns are induced by either frontal or temporal degeneration. To test this hypothesis, we studied the gait pattern in bvFTD (23) and AD (22) patients in single and dual task ("motor" and "cognitive") conditions. To detect subtle alterations, we performed motion analysis estimating both spatio-temporal parameters and joint excursions. In the single task condition, the bvFTD group was more unstable and slower compared to healthy subjects, while only two stability parameters were compromised in the AD group. During the motor dual task, both velocity and stability parameters worsened further in the bvFTD group. In the same experimental conditions, AD patients showed a significantly lower speed and stride length than healthy subjects. During the cognitive dual task, a further impairment of velocity and stability parameters was observed in the bvFTD group. Interestingly, during the cognitive dual task, the gait performance of the AD group markedly deteriorated, as documented by the impairment of more indices of velocity and stability. Finally, the kinematic data of thigh, knee, and ankle were more helpful in revealing gait impairment than the spatio-temporal parameters alone. In conclusion, our data showed that the dysexecutive syndrome induces specific gait alterations. Furthermore, our results suggest that the gait worsens in the AD patients when the cognitive resources are stressed. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The Immediate and Chronic Influence of Spatio-Temporal Metaphors on the Mental Representations of Time in English, Mandarin, and Mandarin-English Speakers

    PubMed Central

    Lai, Vicky Tzuyin; Boroditsky, Lera

    2013-01-01

    In this paper we examine whether experience with spatial metaphors for time has an influence on people’s representation of time. In particular we ask whether spatio-temporal metaphors can have both chronic and immediate effects on temporal thinking. In Study 1, we examine the prevalence of ego-moving representations for time in Mandarin speakers, English speakers, and Mandarin-English (ME) bilinguals. As predicted by observations in linguistic analyses, we find that Mandarin speakers are less likely to take an ego-moving perspective than are English speakers. Further, we find that ME bilinguals tested in English are less likely to take an ego-moving perspective than are English monolinguals (an effect of L1 on meaning-making in L2), and also that ME bilinguals tested in Mandarin are more likely to take an ego-moving perspective than are Mandarin monolinguals (an effect of L2 on meaning-making in L1). These findings demonstrate that habits of metaphor use in one language can influence temporal reasoning in another language, suggesting the metaphors can have a chronic effect on patterns in thought. In Study 2 we test Mandarin speakers using either horizontal or vertical metaphors in the immediate context of the task. We find that Mandarin speakers are more likely to construct front-back representations of time when understanding front-back metaphors, and more likely to construct up-down representations of time when understanding up-down metaphors. These findings demonstrate that spatio-temporal metaphors can also have an immediate influence on temporal reasoning. Taken together, these findings demonstrate that the metaphors we use to talk about time have both immediate and long-term consequences for how we conceptualize and reason about this fundamental domain of experience. PMID:23630505

  8. Spatio-Temporal Tracking and Phylodynamics of an Urban Dengue 3 Outbreak in São Paulo, Brazil

    PubMed Central

    Mondini, Adriano; Bronzoni, Roberta Vieira de Moraes; Nunes, Silvia Helena Pereira; Chiaravalloti Neto, Francisco; Massad, Eduardo; Alonso, Wladimir J.; Lázzaro, Eduardo S. M.; Ferraz, Amena Alcântara; de Andrade Zanotto, Paolo Marinho; Nogueira, Maurício Lacerda

    2009-01-01

    The dengue virus has a single-stranded positive-sense RNA genome of ∼10.700 nucleotides with a single open reading frame that encodes three structural (C, prM, and E) and seven nonstructural (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) proteins. It possesses four antigenically distinct serotypes (DENV 1–4). Many phylogenetic studies address particularities of the different serotypes using convenience samples that are not conducive to a spatio-temporal analysis in a single urban setting. We describe the pattern of spread of distinct lineages of DENV-3 circulating in São José do Rio Preto, Brazil, during 2006. Blood samples from patients presenting dengue-like symptoms were collected for DENV testing. We performed M-N-PCR using primers based on NS5 for virus detection and identification. The fragments were purified from PCR mixtures and sequenced. The positive dengue cases were geo-coded. To type the sequenced samples, 52 reference sequences were aligned. The dataset generated was used for iterative phylogenetic reconstruction with the maximum likelihood criterion. The best demographic model, the rate of growth, rate of evolutionary change, and Time to Most Recent Common Ancestor (TMRCA) were estimated. The basic reproductive rate during the epidemics was estimated. We obtained sequences from 82 patients among 174 blood samples. We were able to geo-code 46 sequences. The alignment generated a 399-nucleotide-long dataset with 134 taxa. The phylogenetic analysis indicated that all samples were of DENV-3 and related to strains circulating on the isle of Martinique in 2000–2001. Sixty DENV-3 from São José do Rio Preto formed a monophyletic group (lineage 1), closely related to the remaining 22 isolates (lineage 2). We assumed that these lineages appeared before 2006 in different occasions. By transforming the inferred exponential growth rates into the basic reproductive rate, we obtained values for lineage 1 of R0 = 1.53 and values for lineage 2 of R0 = 1.13. Under the exponential model, TMRCA of lineage 1 dated 1 year and lineage 2 dated 3.4 years before the last sampling. The possibility of inferring the spatio-temporal dynamics from genetic data has been generally little explored, and it may shed light on DENV circulation. The use of both geographic and temporally structured phylogenetic data provided a detailed view on the spread of at least two dengue viral strains in a populated urban area. PMID:19478848

  9. Spatial and Temporal Variation of Water Quality in the Bertam Catchment, Cameron Highlands, Malaysia.

    PubMed

    Rasul, M G; Islam, Mir Sujaul; Yunus, Rosli Bin Mohd; Mokhtar, Mazlin Bin; Alam, Lubna; Yahaya, F M

    2017-12-01

      The spatio-temporal variability of water quality associated with anthropogenic activities was studied for the Bertam River and its main tributaries within the Bertam Catchment, Cameron Highlands, Malaysia. A number of physico-chemical parameters of collected samples were analyzed to evaluate their spatio-temporal variability. Nonparametric statistical analysis showed significant temporal and spatial differences (p < 0.05) in most of the parameters across the catchment. Parameters except dissolved oxygen and chemical oxygen demand displayed higher values in rainy season. The higher concentration of total suspended solids was caused by massive soil erosion and sedimentation. Seasonal variations in contaminant concentrations are largely affected by precipitation and anthropogenic influences. Untreated domestic wastewater discharge as well as agricultural runoff significantly influenced the water quality. Poor agricultural practices and development activities at slope areas also affected the water quality within the catchment. The analytical results provided a basis for protection of river environments and ecological restoration in mountainous Bertam Catchment.

  10. Spatio-temporal variability of faunal and floral assemblages in Mediterranean temporary wetlands.

    PubMed

    Rouissi, Maya; Boix, Dani; Muller, Serge D; Gascón, Stéphanie; Ruhí, Albert; Sala, Jordi; Bouattour, Ali; Ben Haj Jilani, Imtinen; Ghrabi-Gammar, Zeineb; Ben Saad-Limam, Samia; Daoud-Bouattour, Amina

    2014-12-01

    Six temporary wetlands in the region of Sejenane (Mogods, NW Tunisia) were studied in order to characterize the aquatic flora and fauna and to quantify their spatio-temporal variability. Samplings of aquatic fauna, phytosociological relevés, and measurements of the physicochemical parameters of water were taken during four different field visits carried out during the four seasons of the year (November 2009-July 2010). Despite the strong anthropic pressures on them, these temporary wetlands are home to rich and diversified biodiversity, including rare and endangered species. Spatial and temporal variations affect fauna and flora differently, as temporal variability influences the fauna rather more than the plants, which are relatively more dependent on spatial factors. These results demonstrate the interest of small water bodies for maintaining biodiversity at the regional level, and thus underscore the conservation issues of Mediterranean temporary wetlands that are declining on an ongoing basis currently. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  11. Spatio-temporal patterns of gun violence in Syracuse, New York 2009-2015.

    PubMed

    Larsen, David A; Lane, Sandra; Jennings-Bey, Timothy; Haygood-El, Arnett; Brundage, Kim; Rubinstein, Robert A

    2017-01-01

    Gun violence in the United States of America is a large public health problem that disproportionately affects urban areas. The epidemiology of gun violence reflects various aspects of an infectious disease including spatial and temporal clustering. We examined the spatial and temporal trends of gun violence in Syracuse, New York, a city of 145,000. We used a spatial scan statistic to reveal spatio-temporal clusters of gunshots investigated and corroborated by Syracuse City Police Department for the years 2009-2015. We also examined predictors of areas with increased gun violence using a multi-level zero-inflated Poisson regression with data from the 2010 census. Two space-time clusters of gun violence were revealed in the city. Higher rates of segregation, poverty and the summer months were all associated with increased risk of gun violence. Previous gunshots in the area were associated with a 26.8% increase in the risk of gun violence. Gun violence in Syracuse, NY is both spatially and temporally stable, with some neighborhoods of the city greatly afflicted.

  12. Spatio-temporal patterns of gun violence in Syracuse, New York 2009-2015

    PubMed Central

    Lane, Sandra; Jennings-Bey, Timothy; Haygood-El, Arnett; Brundage, Kim; Rubinstein, Robert A.

    2017-01-01

    Gun violence in the United States of America is a large public health problem that disproportionately affects urban areas. The epidemiology of gun violence reflects various aspects of an infectious disease including spatial and temporal clustering. We examined the spatial and temporal trends of gun violence in Syracuse, New York, a city of 145,000. We used a spatial scan statistic to reveal spatio-temporal clusters of gunshots investigated and corroborated by Syracuse City Police Department for the years 2009–2015. We also examined predictors of areas with increased gun violence using a multi-level zero-inflated Poisson regression with data from the 2010 census. Two space-time clusters of gun violence were revealed in the city. Higher rates of segregation, poverty and the summer months were all associated with increased risk of gun violence. Previous gunshots in the area were associated with a 26.8% increase in the risk of gun violence. Gun violence in Syracuse, NY is both spatially and temporally stable, with some neighborhoods of the city greatly afflicted. PMID:28319125

  13. Open chromatin encoded in DNA sequence is the signature of ‘master’ replication origins in human cells

    PubMed Central

    Audit, Benjamin; Zaghloul, Lamia; Vaillant, Cédric; Chevereau, Guillaume; d'Aubenton-Carafa, Yves; Thermes, Claude; Arneodo, Alain

    2009-01-01

    For years, progress in elucidating the mechanisms underlying replication initiation and its coupling to transcriptional activities and to local chromatin structure has been hampered by the small number (approximately 30) of well-established origins in the human genome and more generally in mammalian genomes. Recent in silico studies of compositional strand asymmetries revealed a high level of organization of human genes around 1000 putative replication origins. Here, by comparing with recently experimentally identified replication origins, we provide further support that these putative origins are active in vivo. We show that regions ∼300-kb wide surrounding most of these putative replication origins that replicate early in the S phase are hypersensitive to DNase I cleavage, hypomethylated and present a significant enrichment in genomic energy barriers that impair nucleosome formation (nucleosome-free regions). This suggests that these putative replication origins are specified by an open chromatin structure favored by the DNA sequence. We discuss how this distinctive attribute makes these origins, further qualified as ‘master’ replication origins, priviledged loci for future research to decipher the human spatio-temporal replication program. Finally, we argue that these ‘master’ origins are likely to play a key role in genome dynamics during evolution and in pathological situations. PMID:19671527

  14. High-speed imaging of submerged jet: visualization analysis using proper orthogonality decomposition

    NASA Astrophysics Data System (ADS)

    Liu, Yingzheng; He, Chuangxin

    2016-11-01

    In the present study, the submerged jet at low Reynolds numbers was visualized using laser induced fluoresce and high-speed imaging in a water tank. Well-controlled calibration was made to determine linear dependency region of the fluoresce intensity on its concentration. Subsequently, the jet fluid issuing from a circular pipe was visualized using a high-speed camera. The animation sequence of the visualized jet flow field was supplied for the snapshot proper orthogonality decomposition (POD) analysis. Spatio-temporally varying structures superimposed in the unsteady fluid flow were identified, e.g., the axisymmetric mode and the helical mode, which were reflected from the dominant POD modes. The coefficients of the POD modes give strong indication of temporal and spectral features of the corresponding unsteady events. The reconstruction using the time-mean visualization and the selected POD modes was conducted to reveal the convective motion of the buried vortical structures. National Natural Science Foundation of China.

  15. Spatio-temporal error growth in the multi-scale Lorenz'96 model

    NASA Astrophysics Data System (ADS)

    Herrera, S.; Fernández, J.; Rodríguez, M. A.; Gutiérrez, J. M.

    2010-07-01

    The influence of multiple spatio-temporal scales on the error growth and predictability of atmospheric flows is analyzed throughout the paper. To this aim, we consider the two-scale Lorenz'96 model and study the interplay of the slow and fast variables on the error growth dynamics. It is shown that when the coupling between slow and fast variables is weak the slow variables dominate the evolution of fluctuations whereas in the case of strong coupling the fast variables impose a non-trivial complex error growth pattern on the slow variables with two different regimes, before and after saturation of fast variables. This complex behavior is analyzed using the recently introduced Mean-Variance Logarithmic (MVL) diagram.

  16. The Distribution and Abundance of Bird Species: Towards a Satellite, Data Driven Avian Energetics and Species Richness Model

    NASA Technical Reports Server (NTRS)

    Smith, James A.

    2003-01-01

    This paper addresses the fundamental question of why birds occur where and when they do, i.e., what are the causative factors that determine the spatio-temporal distributions, abundance, or richness of bird species? In this paper we outline the first steps toward building a satellite, data-driven model of avian energetics and species richness based on individual bird physiology, morphology, and interaction with the spatio-temporal habitat. To evaluate our model, we will use the North American Breeding Bird Survey and Christmas Bird Count data for species richness, wintering and breeding range. Long term and current satellite data series include AVHRR, Landsat, and MODIS.

  17. Expression of Glycosaminoglycan Epitopes During Zebrafish Skeletogenesis

    PubMed Central

    Hayes, Anthony J; Mitchell, Ruth E; Bashford, Andrew; Reynolds, Scott; Caterson, Bruce; Hammond, Chrissy L

    2013-01-01

    Background: The zebrafish is an important developmental model. Surprisingly, there are few studies that describe the glycosaminoglycan composition of its extracellular matrix during skeletogenesis. Glycosaminoglycans on proteoglycans contribute to the material properties of musculo skeletal connective tissues, and are important in regulating signalling events during morphogenesis. Sulfation motifs within the chain structure of glycosaminoglycans on cell-associated and extracellular matrix proteoglycans allow them to bind and regulate the sequestration/presentation of bioactive signalling molecules important in musculo-skeletal development. Results: We describe the spatio-temporal expression of different glycosaminoglycan moieties during zebrafish skeletogenesis with antibodies recognising (1) native sulfation motifs within chondroitin and keratan sulfate chains, and (2) enzyme-generated neoepitope sequences within the chain structure of chondroitin sulfate (i.e., 0-, 4-, and 6-sulfated isoforms) and heparan sulfate glycosaminoglycans. We show that all the glycosaminoglycan moieties investigated are expressed within the developing skeletal tissues of larval zebrafish. However, subtle changes in their patterns of spatio-temporal expression over the period examined suggest that their expression is tightly and dynamically controlled during development. Conclusions: The subtle differences observed in the domains of expression between different glycosaminoglycan moieties suggest differences in their functional roles during establishment of the primitive analogues of the skeleton. Developmental Dynamics 242:778–789, 2013. © 2013 Wiley Periodicals, Inc. Key Findings The developing zebrafish skeleton expresses many different glycosaminoglycan modifications. Multiple different glycosaminoglycan epitopes are dynamically expressed in the craniofacial skeleton. Expression of chondroitin sulfate moieties are dynamically expressed in the vertebral column and precede mineralisation. PMID:23576310

  18. Statistical Analysis of Small-Scale Magnetic Flux Emergence Patterns: A Useful Subsurface Diagnostic?

    NASA Astrophysics Data System (ADS)

    Lamb, Derek A.

    2016-10-01

    While sunspots follow a well-defined pattern of emergence in space and time, small-scale flux emergence is assumed to occur randomly at all times in the quiet Sun. HMI's full-disk coverage, high cadence, spatial resolution, and duty cycle allow us to probe that basic assumption. Some case studies of emergence suggest that temporal clustering on spatial scales of 50-150 Mm may occur. If clustering is present, it could serve as a diagnostic of large-scale subsurface magnetic field structures. We present the results of a manual survey of small-scale flux emergence events over a short time period, and a statistical analysis addressing the question of whether these events show spatio-temporal behavior that is anything other than random.

  19. A spatio-temporal index for aerial full waveform laser scanning data

    NASA Astrophysics Data System (ADS)

    Laefer, Debra F.; Vo, Anh-Vu; Bertolotto, Michela

    2018-04-01

    Aerial laser scanning is increasingly available in the full waveform version of the raw signal, which can provide greater insight into and control over the data and, thus, richer information about the scanned scenes. However, when compared to conventional discrete point storage, preserving raw waveforms leads to vastly larger and more complex data volumes. To begin addressing these challenges, this paper introduces a novel bi-level approach for storing and indexing full waveform (FWF) laser scanning data in a relational database environment, while considering both the spatial and the temporal dimensions of that data. In the storage scheme's upper level, the full waveform datasets are partitioned into spatial and temporal coherent groups that are indexed by a two-dimensional R∗-tree. To further accelerate intra-block data retrieval, at the lower level a three-dimensional local octree is created for each pulse block. The local octrees are implemented in-memory and can be efficiently written to a database for reuse. The indexing solution enables scalable and efficient three-dimensional (3D) spatial and spatio-temporal queries on the actual pulse data - functionalities not available in other systems. The proposed FWF laser scanning data solution is capable of managing multiple FWF datasets derived from large flight missions. The flight structure is embedded into the data storage model and can be used for querying predicates. Such functionality is important to FWF data exploration since aircraft locations and orientations are frequently required for FWF data analyses. Empirical tests on real datasets of up to 1 billion pulses from Dublin, Ireland prove the almost perfect scalability of the system. The use of the local 3D octree in the indexing structure accelerated pulse clipping by 1.2-3.5 times for non-axis-aligned (NAA) polyhedron shaped clipping windows, while axis-aligned (AA) polyhedron clipping was better served using only the top indexing layer. The distinct behaviours of the hybrid indexing for AA and NAA clipping windows are attributable to the different proportion of the local-index-related overheads with respect to the total querying costs. When temporal constraints were added, generally the number of costly spatial checks were reduced, thereby shortening the querying times.

  20. Spatio-Temporal Clustering of Monitoring Network

    NASA Astrophysics Data System (ADS)

    Hussain, I.; Pilz, J.

    2009-04-01

    Pakistan has much diversity in seasonal variation of different locations. Some areas are in desserts and remain very hot and waterless, for example coastal areas are situated along the Arabian Sea and have very warm season and a little rainfall. Some areas are covered with mountains, have very low temperature and heavy rainfall; for instance Karakoram ranges. The most important variables that have an impact on the climate are temperature, precipitation, humidity, wind speed and elevation. Furthermore, it is hard to find homogeneous regions in Pakistan with respect to climate variation. Identification of homogeneous regions in Pakistan can be useful in many aspects. It can be helpful for prediction of the climate in the sub-regions and for optimizing the number of monitoring sites. In the earlier literature no one tried to identify homogeneous regions of Pakistan with respect to climate variation. There are only a few papers about spatio-temporal clustering of monitoring network. Steinhaus (1956) presented the well-known K-means clustering method. It can identify a predefined number of clusters by iteratively assigning centriods to clusters based. Castro et al. (1997) developed a genetic heuristic algorithm to solve medoids based clustering. Their method is based on genetic recombination upon random assorting recombination. The suggested method is appropriate for clustering the attributes which have genetic characteristics. Sap and Awan (2005) presented a robust weighted kernel K-means algorithm incorporating spatial constraints for clustering climate data. The proposed algorithm can effectively handle noise, outliers and auto-correlation in the spatial data, for effective and efficient data analysis by exploring patterns and structures in the data. Soltani and Modarres (2006) used hierarchical and divisive cluster analysis to categorize patterns of rainfall in Iran. They only considered rainfall at twenty-eight monitoring sites and concluded that eight clusters existed. Soltani and Modarres (2006) classified the sites by using only average rainfall of sites, they did not consider time replications and spatial coordinates. Kerby et.al (2007) purposed spatial clustering method based on likelihood. They took account of the geographic locations through the variance covariance matrix. Their purposed method works like hierarchical clustering methods. Moreovere, it is inappropiriate for time replication data and could not perform well for large number of sites. Tuia.et.al (2008) used scan statistics for identifying spatio-temporal clusters for fire sequences in the Tuscany region in Italy. The scan statistics clustering method was developed by Kulldorff et al. (1997) to detect spatio-temporal clusters in epidemiology and assessing their significance. The purposed scan statistics method is used only for univariate discrete stochastic random variables. In this paper we make use of a very simple approach for spatio-temporal clustering which can create separable and homogeneous clusters. Most of the clustering methods are based on Euclidean distances. It is well known that geographic coordinates are spherical coordinates and estimating Euclidean distances from spherical coordinates is inappropriate. As a transformation from geographic coordinates to rectangular (D-plane) coordinates we use the Lambert projection method. The partition around medoids clustering method is incorporated on the data including D-plane coordinates. Ordinary kriging is taken as validity measure for the precipitation data. The kriging results for clusters are more accurate and have less variation compared to complete monitoring network precipitation data. References Casto.V.E and Murray.A.T (1997). Spatial Clustering with Data Mining with Genetic Algorithms. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.8573 Kaufman.L and Rousseeuw.P.J (1990). Finding Groups in Data: An Introduction to Cluster Analysis. Wiley series of Probability and Mathematical Statistics, New York. Kulldorf.M (1997). A spatial scan statistic. Commun. Stat.-Theor. Math. 26(6), 1481-1496 Kerby. A , Marx. D, Samal. A and Adamchuck. V. (2007). Spatial Clustering Using the Likelihood Function. Seventh IEEE International Conference on Data Mining - Workshops Steinhaus.H (1956). Sur la division des corp materiels en parties. Bull. Acad. Polon. Sci., C1. III vol IV:801- 804 Snyder, J. P. (1987). Map Projection: A Working Manual. U. S. Geological Survey Professional Paper 1395. Washington, DC: U. S. Government Printing Office, pp. 104-110 Sap.M.N and Awan. A.M (2005). Finding Spatio-Temporal Patterns in Climate Data Using Clustering. Proceedings of the International Conference on Cyberworlds (CW'05) Soltani.S and Modarres.R (2006). Classification of Spatio -Temporal Pattern of Rainfall in Iran: Using Hierarchical and Divisive Cluster Analysis. Journal of Spatial Hydrology Vol.6, No.2 Tuia.D, Ratle.F, Lasaponara.R, Telesca.L and Kanevski.M (2008). Scan Statistics Analysis for Forest Fire Clusters. Commun. in Nonlinear science and numerical simulation 13,1689-1694.

  1. Optical mapping of optogenetically shaped cardiac action potentials.

    PubMed

    Park, Sarah A; Lee, Shin-Rong; Tung, Leslie; Yue, David T

    2014-08-19

    Light-mediated silencing and stimulation of cardiac excitability, an important complement to electrical stimulation, promises important discoveries and therapies. To date, cardiac optogenetics has been studied with patch-clamp, multielectrode arrays, video microscopy, and an all-optical system measuring calcium transients. The future lies in achieving simultaneous optical acquisition of excitability signals and optogenetic control, both with high spatio-temporal resolution. Here, we make progress by combining optical mapping of action potentials with concurrent activation of channelrhodopsin-2 (ChR2) or halorhodopsin (eNpHR3.0), via an all-optical system applied to monolayers of neonatal rat ventricular myocytes (NRVM). Additionally, we explore the capability of ChR2 and eNpHR3.0 to shape action-potential waveforms, potentially aiding the study of short/long QT syndromes that result from abnormal changes in action potential duration (APD). These results show the promise of an all-optical system to acquire action potentials with precise temporal optogenetics control, achieving a long-sought flexibility beyond the means of conventional electrical stimulation.

  2. Optical mapping of optogenetically shaped cardiac action potentials

    PubMed Central

    Park, Sarah A.; Lee, Shin-Rong; Tung, Leslie; Yue, David T.

    2014-01-01

    Light-mediated silencing and stimulation of cardiac excitability, an important complement to electrical stimulation, promises important discoveries and therapies. To date, cardiac optogenetics has been studied with patch-clamp, multielectrode arrays, video microscopy, and an all-optical system measuring calcium transients. The future lies in achieving simultaneous optical acquisition of excitability signals and optogenetic control, both with high spatio-temporal resolution. Here, we make progress by combining optical mapping of action potentials with concurrent activation of channelrhodopsin-2 (ChR2) or halorhodopsin (eNpHR3.0), via an all-optical system applied to monolayers of neonatal rat ventricular myocytes (NRVM). Additionally, we explore the capability of ChR2 and eNpHR3.0 to shape action-potential waveforms, potentially aiding the study of short/long QT syndromes that result from abnormal changes in action potential duration (APD). These results show the promise of an all-optical system to acquire action potentials with precise temporal optogenetics control, achieving a long-sought flexibility beyond the means of conventional electrical stimulation. PMID:25135113

  3. Is timber insurable? A study of wildfire Risks in the U.S. forest sector using spatio-temporal models.

    Treesearch

    Xuan Chen; Barry K. Goodwin; Jeffrey P. Prestemon

    2014-01-01

    In the U.S. forest products industry, wildfire is one of the leading causes of damage and economic losses. While individual wildfire behavior is well studied, new literature is emerging on broad-scale (e.g., county-level) wildfire risks. Our paper studies wildfire risks using crucial informational vari­ ables across both spatio units and time periods....

  4. Dynamic complexity: plant receptor complexes at the plasma membrane.

    PubMed

    Burkart, Rebecca C; Stahl, Yvonne

    2017-12-01

    Plant receptor complexes at the cell surface perceive many different external and internal signalling molecules and relay these signals into the cell to regulate development, growth and immunity. Recent progress in the analyses of receptor complexes using different live cell imaging approaches have shown that receptor complex formation and composition are dynamic and take place at specific microdomains at the plasma membrane. In this review we focus on three prominent examples of Arabidopsis thaliana receptor complexes and how their dynamic spatio-temporal distribution at the PM has been studied recently. We will elaborate on the newly emerging concept of plasma membrane microdomains as potential hubs for specific receptor complex assembly and signalling outputs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Eddy-induced salinity pattern in the North Pacific

    NASA Astrophysics Data System (ADS)

    Abe, H.; Ebuchi, N.; Ueno, H.; Ishiyama, H.; Matsumura, Y.

    2017-12-01

    This research examines spatio-temporal behavior of sea surface salinity (SSS) after intense rainfall events using observed data from Aquarius. Aquarius SSS in the North Pacific reveals one notable event in which SSS is locally freshened by intense rainfall. Although SSS pattern shortly after the rainfall reflects atmospheric pattern, its final form reflects ocean dynamic structure; an anticyclonic eddy. Since this anticyclonic eddy was located at SSS front created by precipitation, this eddy stirs the water in a clockwise direction. This eddy stirring was visible for several months. It is expected horizontal transport by mesoscale eddies would play significant role in determining upper ocean salinity structure.

  6. Semi-quantitative assessment of the physical vulnerability of buildings for the landslide risk analysis. A case study in the Loures municipality, Lisbon district, Portugal

    NASA Astrophysics Data System (ADS)

    Guillard-Gonçalves, Clémence; Zêzere, José Luis; Pereira, Susana; Garcia, Ricardo

    2016-04-01

    The physical vulnerability of the buildings of Loures (a Portuguese municipality) to landslides was assessed, and the landslide risk was computed as the product of the landslide hazard by the vulnerability and the market economic value of the buildings. First, the hazard was assessed by combining the spatio-temporal probability and the frequency-magnitude relationship of the landslides, which was established by plotting the probability of a landslide area. The susceptibility of deep-seated and shallow landslides was assessed by a bi-variate statistical method and was mapped. The annual and multiannual spatio-temporal probabilities were estimated, providing a landslide hazard model. Then, an assessment of buildings vulnerability to landslides, based on an inquiry of a pool of landslide European experts, was developed and applied to the study area. The inquiry was based on nine magnitude scenarios and four structural building types. A sub-pool of the landslide experts who know the study area was extracted from the pool, and the variability of the answers coming from the pool and the sub-pool was assessed with standard deviation. Moreover, the average vulnerability of the basic geographic entities was compared by changing the map unit and applying the vulnerability to all the buildings of a test site (included in the study area), the inventory of which was listed on the field. Next, the market economic value of the buildings was calculated using an adaptation of the Portuguese Tax Services approach. Finally, the annual and multiannual landslide risk was computed for the nine landslide magnitude scenarios and different spatio-temporal probabilities by multiplying the potential loss (Vulnerability × Economic Value) by the hazard probability. As a rule, the vulnerability values given by the sub-pool of experts who know the study area are higher than those given by the European experts, namely for the high magnitude landslides. The obtained vulnerabilities vary from 0.2 to 1 as a function of the structural building types and the landslide magnitude, and are maximal for 10 and 20 meters landslide depths. However, the highest annual risk was found for the 3 m deep landslides, with a maximum value of 25.68 € per 5 m pixel, which is explained by the combination of a relatively high frequency in the Loures municipality with a substantial potential damage.

  7. Estimating spatio-temporal dynamics of stream total phosphate concentration by soft computing techniques.

    PubMed

    Chang, Fi-John; Chen, Pin-An; Chang, Li-Chiu; Tsai, Yu-Hsuan

    2016-08-15

    This study attempts to model the spatio-temporal dynamics of total phosphate (TP) concentrations along a river for effective hydro-environmental management. We propose a systematical modeling scheme (SMS), which is an ingenious modeling process equipped with a dynamic neural network and three refined statistical methods, for reliably predicting the TP concentrations along a river simultaneously. Two different types of artificial neural network (BPNN-static neural network; NARX network-dynamic neural network) are constructed in modeling the dynamic system. The Dahan River in Taiwan is used as a study case, where ten-year seasonal water quality data collected at seven monitoring stations along the river are used for model training and validation. Results demonstrate that the NARX network can suitably capture the important dynamic features and remarkably outperforms the BPNN model, and the SMS can effectively identify key input factors, suitably overcome data scarcity, significantly increase model reliability, satisfactorily estimate site-specific TP concentration at seven monitoring stations simultaneously, and adequately reconstruct seasonal TP data into a monthly scale. The proposed SMS can reliably model the dynamic spatio-temporal water pollution variation in a river system for missing, hazardous or costly data of interest. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Velocity landscape correlation resolves multiple flowing protein populations from fluorescence image time series.

    PubMed

    Pandžić, Elvis; Abu-Arish, Asmahan; Whan, Renee M; Hanrahan, John W; Wiseman, Paul W

    2018-02-16

    Molecular, vesicular and organellar flows are of fundamental importance for the delivery of nutrients and essential components used in cellular functions such as motility and division. With recent advances in fluorescence/super-resolution microscopy modalities we can resolve the movements of these objects at higher spatio-temporal resolutions and with better sensitivity. Previously, spatio-temporal image correlation spectroscopy has been applied to map molecular flows by correlation analysis of fluorescence fluctuations in image series. However, an underlying assumption of this approach is that the sampled time windows contain one dominant flowing component. Although this was true for most of the cases analyzed earlier, in some situations two or more different flowing populations can be present in the same spatio-temporal window. We introduce an approach, termed velocity landscape correlation (VLC), which detects and extracts multiple flow components present in a sampled image region via an extension of the correlation analysis of fluorescence intensity fluctuations. First we demonstrate theoretically how this approach works, test the performance of the method with a range of computer simulated image series with varying flow dynamics. Finally we apply VLC to study variable fluxing of STIM1 proteins on microtubules connected to the plasma membrane of Cystic Fibrosis Bronchial Epithelial (CFBE) cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Holocene forest dynamics in central and western Mediterranean: periodicity, spatio-temporal patterns and climate influence.

    PubMed

    Di Rita, Federico; Fletcher, William J; Aranbarri, Josu; Margaritelli, Giulia; Lirer, Fabrizio; Magri, Donatella

    2018-06-12

    It is well-known that the Holocene exhibits a millennial-scale climate variability. However, its periodicity, spatio-temporal patterns and underlying processes are not fully deciphered yet. Here we focus on the central and western Mediterranean. We show that recurrent forest declines from the Gulf of Gaeta (central Tyrrhenian Sea) reveal a 1860-yr periodicity, consistent with a ca. 1800-yr climate fluctuation induced by large-scale changes in climate modes, linked to solar activity and/or AMOC intensity. We show that recurrent forest declines and dry events are also recorded in several pollen and palaeohydrological proxy-records in the south-central Mediterranean. We found coeval events also in several palaeohydrological records from the south-western Mediterranean, which however show generally wet climate conditions, indicating a spatio-temporal hydrological pattern opposite to the south-central Mediterranean and suggesting that different expressions of climate modes occurred in the two regions at the same time. We propose that these opposite hydroclimate regimes point to a complex interplay of the prevailing or predominant phases of NAO-like circulation, East Atlantic pattern, and extension and location of the North African anticyclone. At a larger geographical scale, displacements of the ITCZ, modulated by solar activity and/or AMOC intensity, may have also indirectly influenced the observed pattern.

  10. Bio-inspired nano-sensor-enhanced CNN visual computer.

    PubMed

    Porod, Wolfgang; Werblin, Frank; Chua, Leon O; Roska, Tamas; Rodriguez-Vazquez, Angel; Roska, Botond; Fay, Patrick; Bernstein, Gary H; Huang, Yih-Fang; Csurgay, Arpad I

    2004-05-01

    Nanotechnology opens new ways to utilize recent discoveries in biological image processing by translating the underlying functional concepts into the design of CNN (cellular neural/nonlinear network)-based systems incorporating nanoelectronic devices. There is a natural intersection joining studies of retinal processing, spatio-temporal nonlinear dynamics embodied in CNN, and the possibility of miniaturizing the technology through nanotechnology. This intersection serves as the springboard for our multidisciplinary project. Biological feature and motion detectors map directly into the spatio-temporal dynamics of CNN for target recognition, image stabilization, and tracking. The neural interactions underlying color processing will drive the development of nanoscale multispectral sensor arrays for image fusion. Implementing such nanoscale sensors on a CNN platform will allow the implementation of device feedback control, a hallmark of biological sensory systems. These biologically inspired CNN subroutines are incorporated into the new world of analog-and-logic algorithms and software, containing also many other active-wave computing mechanisms, including nature-inspired (physics and chemistry) as well as PDE-based sophisticated spatio-temporal algorithms. Our goal is to design and develop several miniature prototype devices for target detection, navigation, tracking, and robotics. This paper presents an example illustrating the synergies emerging from the convergence of nanotechnology, biotechnology, and information and cognitive science.

  11. What calls for service tell us about suicide: A 7-year spatio-temporal analysis of neighborhood correlates of suicide-related calls.

    PubMed

    Marco, Miriam; Gracia, Enrique; López-Quílez, Antonio; Lila, Marisol

    2018-04-30

    Previous research has shown that neighborhood-level variables such as social deprivation, social fragmentation or rurality are related to suicide risk, but most of these studies have been conducted in the U.S. or northern European countries. The aim of this study was to analyze the spatio-temporal distribution of suicide in a southern European city (Valencia, Spain), and determine whether this distribution was related to a set of neighborhood-level characteristics. We used suicide-related calls for service as an indicator of suicide cases (n = 6,537), and analyzed the relationship of the outcome variable with several neighborhood-level variables: economic status, education level, population density, residential instability, one-person households, immigrant concentration, and population aging. A Bayesian autoregressive model was used to study the spatio-temporal distribution at the census block group level for a 7-year period (2010-2016). Results showed that neighborhoods with lower levels of education and population density, and higher levels of residential instability, one-person households, and an aging population had higher levels of suicide-related calls for service. Immigrant concentration and economic status did not make a relevant contribution to the model. These results could help to develop better-targeted community-level suicide prevention strategies.

  12. Multivariate space-time modelling of multiple air pollutants and their health effects accounting for exposure uncertainty.

    PubMed

    Huang, Guowen; Lee, Duncan; Scott, E Marian

    2018-03-30

    The long-term health effects of air pollution are often estimated using a spatio-temporal ecological areal unit study, but this design leads to the following statistical challenges: (1) how to estimate spatially representative pollution concentrations for each areal unit; (2) how to allow for the uncertainty in these estimated concentrations when estimating their health effects; and (3) how to simultaneously estimate the joint effects of multiple correlated pollutants. This article proposes a novel 2-stage Bayesian hierarchical model for addressing these 3 challenges, with inference based on Markov chain Monte Carlo simulation. The first stage is a multivariate spatio-temporal fusion model for predicting areal level average concentrations of multiple pollutants from both monitored and modelled pollution data. The second stage is a spatio-temporal model for estimating the health impact of multiple correlated pollutants simultaneously, which accounts for the uncertainty in the estimated pollution concentrations. The novel methodology is motivated by a new study of the impact of both particulate matter and nitrogen dioxide concentrations on respiratory hospital admissions in Scotland between 2007 and 2011, and the results suggest that both pollutants exhibit substantial and independent health effects. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  13. Patient-Adaptive Reconstruction and Acquisition in Dynamic Imaging with Sensitivity Encoding (PARADISE)

    PubMed Central

    Sharif, Behzad; Derbyshire, J. Andrew; Faranesh, Anthony Z.; Bresler, Yoram

    2010-01-01

    MR imaging of the human heart without explicit cardiac synchronization promises to extend the applicability of cardiac MR to a larger patient population and potentially expand its diagnostic capabilities. However, conventional non-gated imaging techniques typically suffer from low image quality or inadequate spatio-temporal resolution and fidelity. Patient-Adaptive Reconstruction and Acquisition in Dynamic Imaging with Sensitivity Encoding (PARADISE) is a highly-accelerated non-gated dynamic imaging method that enables artifact-free imaging with high spatio-temporal resolutions by utilizing novel computational techniques to optimize the imaging process. In addition to using parallel imaging, the method gains acceleration from a physiologically-driven spatio-temporal support model; hence, it is doubly accelerated. The support model is patient-adaptive, i.e., its geometry depends on dynamics of the imaged slice, e.g., subject’s heart-rate and heart location within the slice. The proposed method is also doubly adaptive as it adapts both the acquisition and reconstruction schemes. Based on the theory of time-sequential sampling, the proposed framework explicitly accounts for speed limitations of gradient encoding and provides performance guarantees on achievable image quality. The presented in-vivo results demonstrate the effectiveness and feasibility of the PARADISE method for high resolution non-gated cardiac MRI during a short breath-hold. PMID:20665794

  14. The acquired immunodeficiency syndrome in the State of Rio de Janeiro, Brazil: a spatio-temporal analysis of cases reported in the period 2001-2010.

    PubMed

    Alves, André T J; Nobre, Flávio F

    2014-05-01

    Despite increased funding for research on the human immunodeficiency virus (HIV) and the acquired immunodeficiency syndrome (AIDS), neither vaccine nor cure is yet in sight. Surveillance and prevention are essential for disease intervention, and it is recognised that spatio-temporal analysis of AIDS cases can assist the decision-making process for control of the disease. This study investigated the dynamic, spatial distribution of notified AIDS cases in the State of Rio de Janeiro, Brazil, between 2001 and 2010, based on the annual incidence in each municipality. Sequential choropleth maps were developed and used to analyse the incidence distribution and Moran's I spatial autocorrelation statistics was applied for characterisation of the spatio-temporal distribution pattern. A significant, positive spatial autocorrelation of AIDS incidence was observed indicating that municipalities with high incidence are likely to be close to other municipalities with similarly high incidence and, conversely, municipalities with low incidence are likely to be surrounded by municipalities with low incidence. Two clusters were identified; one hotspot related to the State Capital and the other with low to intermediate AIDS incidence comprising municipalities in the north-eastern region of the State of Rio de Janeiro.

  15. Optimized spatio-temporal descriptors for real-time fall detection: comparison of support vector machine and Adaboost-based classification

    NASA Astrophysics Data System (ADS)

    Charfi, Imen; Miteran, Johel; Dubois, Julien; Atri, Mohamed; Tourki, Rached

    2013-10-01

    We propose a supervised approach to detect falls in a home environment using an optimized descriptor adapted to real-time tasks. We introduce a realistic dataset of 222 videos, a new metric allowing evaluation of fall detection performance in a video stream, and an automatically optimized set of spatio-temporal descriptors which fed a supervised classifier. We build the initial spatio-temporal descriptor named STHF using several combinations of transformations of geometrical features (height and width of human body bounding box, the user's trajectory with her/his orientation, projection histograms, and moments of orders 0, 1, and 2). We study the combinations of usual transformations of the features (Fourier transform, wavelet transform, first and second derivatives), and we show experimentally that it is possible to achieve high performance using support vector machine and Adaboost classifiers. Automatic feature selection allows to show that the best tradeoff between classification performance and processing time is obtained by combining the original low-level features with their first derivative. Hence, we evaluate the robustness of the fall detection regarding location changes. We propose a realistic and pragmatic protocol that enables performance to be improved by updating the training in the current location with normal activities records.

  16. Spatio-temporal modelling of rainfall in the Murray-Darling Basin

    NASA Astrophysics Data System (ADS)

    Nowak, Gen; Welsh, A. H.; O'Neill, T. J.; Feng, Lingbing

    2018-02-01

    The Murray-Darling Basin (MDB) is a large geographical region in southeastern Australia that contains many rivers and creeks, including Australia's three longest rivers, the Murray, the Murrumbidgee and the Darling. Understanding rainfall patterns in the MDB is very important due to the significant impact major events such as droughts and floods have on agricultural and resource productivity. We propose a model for modelling a set of monthly rainfall data obtained from stations in the MDB and for producing predictions in both the spatial and temporal dimensions. The model is a hierarchical spatio-temporal model fitted to geographical data that utilises both deterministic and data-derived components. Specifically, rainfall data at a given location are modelled as a linear combination of these deterministic and data-derived components. A key advantage of the model is that it is fitted in a step-by-step fashion, enabling appropriate empirical choices to be made at each step.

  17. Unsupervised learning of temporal features for word categorization in a spiking neural network model of the auditory brain.

    PubMed

    Higgins, Irina; Stringer, Simon; Schnupp, Jan

    2017-01-01

    The nature of the code used in the auditory cortex to represent complex auditory stimuli, such as naturally spoken words, remains a matter of debate. Here we argue that such representations are encoded by stable spatio-temporal patterns of firing within cell assemblies known as polychronous groups, or PGs. We develop a physiologically grounded, unsupervised spiking neural network model of the auditory brain with local, biologically realistic, spike-time dependent plasticity (STDP) learning, and show that the plastic cortical layers of the network develop PGs which convey substantially more information about the speaker independent identity of two naturally spoken word stimuli than does rate encoding that ignores the precise spike timings. We furthermore demonstrate that such informative PGs can only develop if the input spatio-temporal spike patterns to the plastic cortical areas of the model are relatively stable.

  18. Unsupervised learning of temporal features for word categorization in a spiking neural network model of the auditory brain

    PubMed Central

    Stringer, Simon

    2017-01-01

    The nature of the code used in the auditory cortex to represent complex auditory stimuli, such as naturally spoken words, remains a matter of debate. Here we argue that such representations are encoded by stable spatio-temporal patterns of firing within cell assemblies known as polychronous groups, or PGs. We develop a physiologically grounded, unsupervised spiking neural network model of the auditory brain with local, biologically realistic, spike-time dependent plasticity (STDP) learning, and show that the plastic cortical layers of the network develop PGs which convey substantially more information about the speaker independent identity of two naturally spoken word stimuli than does rate encoding that ignores the precise spike timings. We furthermore demonstrate that such informative PGs can only develop if the input spatio-temporal spike patterns to the plastic cortical areas of the model are relatively stable. PMID:28797034

  19. Shot boundary detection and label propagation for spatio-temporal video segmentation

    NASA Astrophysics Data System (ADS)

    Piramanayagam, Sankaranaryanan; Saber, Eli; Cahill, Nathan D.; Messinger, David

    2015-02-01

    This paper proposes a two stage algorithm for streaming video segmentation. In the first stage, shot boundaries are detected within a window of frames by comparing dissimilarity between 2-D segmentations of each frame. In the second stage, the 2-D segments are propagated across the window of frames in both spatial and temporal direction. The window is moved across the video to find all shot transitions and obtain spatio-temporal segments simultaneously. As opposed to techniques that operate on entire video, the proposed approach consumes significantly less memory and enables segmentation of lengthy videos. We tested our segmentation based shot detection method on the TRECVID 2007 video dataset and compared it with block-based technique. Cut detection results on the TRECVID 2007 dataset indicate that our algorithm has comparable results to the best of the block-based methods. The streaming video segmentation routine also achieves promising results on a challenging video segmentation benchmark database.

  20. Vegetation cover dynamics of the Mongolian semiarid zone according to multi-temporal LANDSAT imagery (the case of Darkhan test range)

    NASA Astrophysics Data System (ADS)

    Zharnikova, M. A.; Alymbaeva, ZH B.; Ayurzhanaev, A. A.; Garmaev, E. ZH

    2016-11-01

    At present much attention is given to the spatio-temporal dynamics of plant communities of steppes to assess their response to the current climate changes. In this study, a mapping of a selected modeling polygon was carried out on the basis of data decoding and field surveys of vegetation cover in the semi-arid zone. The resulting large-scale map of actual vegetation reflects the current state of the vegetation cover and its horizontal structure. It is a valuable material for monitoring of changes in the chosen area. With multi-temporal satellite Landsat imagery we consider the vegetation cover dynamics of the test range. To analyze the transformation of the environment by the climatic factors, we compared series of NDVI versus the precipitation and of NDVI versus the temperatures. Then we calculated the degree of correlation between them.

Top