Sample records for spatiotemporal distribution patterns

  1. Spatiotemporal distribution patterns of forest fires in northern Mexico

    Treesearch

    Gustavo Pérez-Verdin; M. A. Márquez-Linares; A. Cortes-Ortiz; M. Salmerón-Macias

    2013-01-01

    Using the 2000-2011 CONAFOR databases, a spatiotemporal analysis of the occurrence of forest fires in Durango, one of the most affected States in Mexico, was conducted. The Moran's index was used to determine a spatial distribution pattern; also, an analysis of seasonal and temporal autocorrelation of the data collected was completed. The geographically weighted...

  2. Synchronization and spatiotemporal patterns in coupled phase oscillators on a weighted planar network

    NASA Astrophysics Data System (ADS)

    Kagawa, Yuki; Takamatsu, Atsuko

    2009-04-01

    To reveal the relation between network structures found in two-dimensional biological systems, such as protoplasmic tube networks in the plasmodium of true slime mold, and spatiotemporal oscillation patterns emerged on the networks, we constructed coupled phase oscillators on weighted planar networks and investigated their dynamics. Results showed that the distribution of edge weights in the networks strongly affects (i) the propensity for global synchronization and (ii) emerging ratios of oscillation patterns, such as traveling and concentric waves, even if the total weight is fixed. In-phase locking, traveling wave, and concentric wave patterns were, respectively, observed most frequently in uniformly weighted, center weighted treelike, and periphery weighted ring-shaped networks. Controlling the global spatiotemporal patterns with the weight distribution given by the local weighting (coupling) rules might be useful in biological network systems including the plasmodial networks and neural networks in the brain.

  3. Are species photosynthetic characteristics good predictors of seedling post-hurricane demographic patterns and species spatiotemporal distribution in a hurricane impacted wet montane forest?

    NASA Astrophysics Data System (ADS)

    Luke, Denneko; McLaren, Kurt

    2018-05-01

    In situ measurements of leaf level photosynthetic response to light were collected from seedlings of ten tree species from a tropical montane wet forest, the John Crow Mountains, Jamaica. A model-based recursive partitioning ('mob') algorithm was then used to identify species associations based on their fitted photosynthetic response curves. Leaf area dark respiration (RD) and light saturated maximum photosynthetic (Amax) rates were also used as 'mob' partitioning variables, to identify species associations based on seedling demographic patterns (from June 2007 to May 2010) following a hurricane (Aug. 2007) and the spatiotemporal distribution patterns of stems in 2006 and 2012. RD and Amax rates ranged from 1.14 to 2.02 μmol (CO2) m-2s-1 and 2.97-5.87 μmol (CO2) m-2s-1, respectively, placing the ten species in the range of intermediate shade tolerance. Several parsimonious species 'mob' groups were formed based on 1) interspecific differences among species response curves, 2) variations in post-hurricane seedling demographic trends and 3) RD rates and species spatiotemporal distribution patterns at aspects that are more or less exposed to hurricanes. The composition of parsimonious groupings based on photosynthetic curves was not concordant with the groups based on demographic trends but was partially concordant with the RD - species spatiotemporal distribution groups. Our results indicated that the influence of photosynthetic characteristics on demographic traits and species distributions was not straightforward. Rather, there was a complex pattern of interaction between ecophysiological and demographic traits, which determined species successional status, post-hurricane response and ultimately, species distribution at our study site.

  4. Spatiotemporal modelling and mapping of the bubonic plague epidemic in India.

    PubMed

    Yu, Hwa-Lung; Christakos, George

    2006-03-17

    This work studies the spatiotemporal evolution of bubonic plague in India during 1896-1906 using stochastic concepts and geographical information science techniques. In the past, most investigations focused on selected cities to conduct different kinds of studies, such as the ecology of rats. No detailed maps existed incorporating the space-time dependence structure and uncertainty sources of the epidemic system and providing a composite space-time picture of the disease propagation characteristics. Informative spatiotemporal maps were generated that represented mortality rates and geographical spread of the disease, and epidemic indicator plots were derived that offered meaningful characterizations of the spatiotemporal disease distribution. The bubonic plague in India exhibited strong seasonal and geographical features. During its entire duration, the plague continued to invade new geographical areas, while it followed a re-emergence pattern at many localities; its rate changed significantly during each year and the mortality distribution exhibited space-time heterogeneous patterns; prevalence usually occurred in the autumn and spring, whereas the plague stopped moving towards new locations during the summers. Modern stochastic modelling and geographical information science provide powerful means to study the spatiotemporal distribution of the bubonic plague epidemic under conditions of uncertainty and multi-sourced databases; to account for various forms of interdisciplinary knowledge; and to generate informative space-time maps of mortality rates and propagation patterns. To the best of our knowledge, this kind of plague maps and plots become available for the first time, thus providing novel perspectives concerning the distribution and space-time propagation of the deadly epidemic. Furthermore, systematic maps and indicator plots make possible the comparison of the spatial-temporal propagation patterns of different diseases.

  5. Spatiotemporal modelling and mapping of the bubonic plague epidemic in India

    PubMed Central

    Yu, Hwa-Lung; Christakos, George

    2006-01-01

    Background This work studies the spatiotemporal evolution of bubonic plague in India during 1896–1906 using stochastic concepts and geographical information science techniques. In the past, most investigations focused on selected cities to conduct different kinds of studies, such as the ecology of rats. No detailed maps existed incorporating the space-time dependence structure and uncertainty sources of the epidemic system and providing a composite space-time picture of the disease propagation characteristics. Results Informative spatiotemporal maps were generated that represented mortality rates and geographical spread of the disease, and epidemic indicator plots were derived that offered meaningful characterizations of the spatiotemporal disease distribution. The bubonic plague in India exhibited strong seasonal and geographical features. During its entire duration, the plague continued to invade new geographical areas, while it followed a re-emergence pattern at many localities; its rate changed significantly during each year and the mortality distribution exhibited space-time heterogeneous patterns; prevalence usually occurred in the autumn and spring, whereas the plague stopped moving towards new locations during the summers. Conclusion Modern stochastic modelling and geographical information science provide powerful means to study the spatiotemporal distribution of the bubonic plague epidemic under conditions of uncertainty and multi-sourced databases; to account for various forms of interdisciplinary knowledge; and to generate informative space-time maps of mortality rates and propagation patterns. To the best of our knowledge, this kind of plague maps and plots become available for the first time, thus providing novel perspectives concerning the distribution and space-time propagation of the deadly epidemic. Furthermore, systematic maps and indicator plots make possible the comparison of the spatial-temporal propagation patterns of different diseases. PMID:16545128

  6. Spatiotemporal analysis of dengue fever in Nepal from 2010 to 2014.

    PubMed

    Acharya, Bipin Kumar; Cao, ChunXiang; Lakes, Tobia; Chen, Wei; Naeem, Shahid

    2016-08-22

    Due to recent emergence, dengue is becoming one of the major public health problems in Nepal. The numbers of reported dengue cases in general and the area with reported dengue cases are both continuously increasing in recent years. However, spatiotemporal patterns and clusters of dengue have not been investigated yet. This study aims to fill this gap by analyzing spatiotemporal patterns based on monthly surveillance data aggregated at district. Dengue cases from 2010 to 2014 at district level were collected from the Nepal government's health and mapping agencies respectively. GeoDa software was used to map crude incidence, excess hazard and spatially smoothed incidence. Cluster analysis was performed in SaTScan software to explore spatiotemporal clusters of dengue during the above-mentioned time period. Spatiotemporal distribution of dengue fever in Nepal from 2010 to 2014 was mapped at district level in terms of crude incidence, excess risk and spatially smoothed incidence. Results show that the distribution of dengue fever was not random but clustered in space and time. Chitwan district was identified as the most likely cluster and Jhapa district was the first secondary cluster in both spatial and spatiotemporal scan. July to September of 2010 was identified as a significant temporal cluster. This study assessed and mapped for the first time the spatiotemporal pattern of dengue fever in Nepal. Two districts namely Chitwan and Jhapa were found highly affected by dengue fever. The current study also demonstrated the importance of geospatial approach in epidemiological research. The initial result on dengue patterns and risk of this study may assist institutions and policy makers to develop better preventive strategies.

  7. Visual pattern recognition based on spatio-temporal patterns of retinal ganglion cells’ activities

    PubMed Central

    Jing, Wei; Liu, Wen-Zhong; Gong, Xin-Wei; Gong, Hai-Qing

    2010-01-01

    Neural information is processed based on integrated activities of relevant neurons. Concerted population activity is one of the important ways for retinal ganglion cells to efficiently organize and process visual information. In the present study, the spike activities of bullfrog retinal ganglion cells in response to three different visual patterns (checker-board, vertical gratings and horizontal gratings) were recorded using multi-electrode arrays. A measurement of subsequence distribution discrepancy (MSDD) was applied to identify the spatio-temporal patterns of retinal ganglion cells’ activities in response to different stimulation patterns. The results show that the population activity patterns were different in response to different stimulation patterns, such difference in activity pattern was consistently detectable even when visual adaptation occurred during repeated experimental trials. Therefore, the stimulus pattern can be reliably discriminated according to the spatio-temporal pattern of the neuronal activities calculated using the MSDD algorithm. PMID:21886670

  8. Spatiotemporal Heterogeneity Analysis of Hemorrhagic Fever with Renal Syndrome in China Using Geographically Weighted Regression Models

    PubMed Central

    Li, Shujuan; Ren, Hongyan; Hu, Wensheng; Lu, Liang; Xu, Xinliang; Zhuang, Dafang; Liu, Qiyong

    2014-01-01

    Hemorrhagic fever with renal syndrome (HFRS) is an important public health problem in China. The identification of the spatiotemporal pattern of HFRS will provide a foundation for the effective control of the disease. Based on the incidence of HFRS, as well as environmental factors, and social-economic factors of China from 2005–2012, this paper identified the spatiotemporal characteristics of HFRS distribution and the factors that impact this distribution. The results indicate that the spatial distribution of HFRS had a significant, positive spatial correlation. The spatiotemporal heterogeneity was affected by the temperature, precipitation, humidity, NDVI of January, NDVI of August for the previous year, land use, and elevation in 2005–2009. However, these factors did not explain the spatiotemporal heterogeneity of HFRS incidences in 2010–2012. Spatiotemporal heterogeneity of provincial HFRS incidences and its relation to environmental factors would provide valuable information for hygiene authorities to design and implement effective measures for the prevention and control of HFRS in China. PMID:25429681

  9. Spatial distribution of tree species governs the spatio-temporal interaction of leaf area index and soil moisture across a forested landscape.

    PubMed

    Naithani, Kusum J; Baldwin, Doug C; Gaines, Katie P; Lin, Henry; Eissenstat, David M

    2013-01-01

    Quantifying coupled spatio-temporal dynamics of phenology and hydrology and understanding underlying processes is a fundamental challenge in ecohydrology. While variation in phenology and factors influencing it have attracted the attention of ecologists for a long time, the influence of biodiversity on coupled dynamics of phenology and hydrology across a landscape is largely untested. We measured leaf area index (L) and volumetric soil water content (θ) on a co-located spatial grid to characterize forest phenology and hydrology across a forested catchment in central Pennsylvania during 2010. We used hierarchical Bayesian modeling to quantify spatio-temporal patterns of L and θ. Our results suggest that the spatial distribution of tree species across the landscape created unique spatio-temporal patterns of L, which created patterns of water demand reflected in variable soil moisture across space and time. We found a lag of about 11 days between increase in L and decline in θ. Vegetation and soil moisture become increasingly homogenized and coupled from leaf-onset to maturity but heterogeneous and uncoupled from leaf maturity to senescence. Our results provide insight into spatio-temporal coupling between biodiversity and soil hydrology that is useful to enhance ecohydrological modeling in humid temperate forests.

  10. Data Flow Analysis and Visualization for Spatiotemporal Statistical Data without Trajectory Information.

    PubMed

    Kim, Seokyeon; Jeong, Seongmin; Woo, Insoo; Jang, Yun; Maciejewski, Ross; Ebert, David S

    2018-03-01

    Geographic visualization research has focused on a variety of techniques to represent and explore spatiotemporal data. The goal of those techniques is to enable users to explore events and interactions over space and time in order to facilitate the discovery of patterns, anomalies and relationships within the data. However, it is difficult to extract and visualize data flow patterns over time for non-directional statistical data without trajectory information. In this work, we develop a novel flow analysis technique to extract, represent, and analyze flow maps of non-directional spatiotemporal data unaccompanied by trajectory information. We estimate a continuous distribution of these events over space and time, and extract flow fields for spatial and temporal changes utilizing a gravity model. Then, we visualize the spatiotemporal patterns in the data by employing flow visualization techniques. The user is presented with temporal trends of geo-referenced discrete events on a map. As such, overall spatiotemporal data flow patterns help users analyze geo-referenced temporal events, such as disease outbreaks, crime patterns, etc. To validate our model, we discard the trajectory information in an origin-destination dataset and apply our technique to the data and compare the derived trajectories and the original. Finally, we present spatiotemporal trend analysis for statistical datasets including twitter data, maritime search and rescue events, and syndromic surveillance.

  11. Cross-Diffusion Induced Turing Instability and Amplitude Equation for a Toxic-Phytoplankton-Zooplankton Model with Nonmonotonic Functional Response

    NASA Astrophysics Data System (ADS)

    Han, Renji; Dai, Binxiang

    2017-06-01

    The spatiotemporal pattern induced by cross-diffusion of a toxic-phytoplankton-zooplankton model with nonmonotonic functional response is investigated in this paper. The linear stability analysis shows that cross-diffusion is the key mechanism for the formation of spatial patterns. By taking cross-diffusion rate as bifurcation parameter, we derive amplitude equations near the Turing bifurcation point for the excited modes in the framework of a weakly nonlinear theory, and the stability analysis of the amplitude equations interprets the structural transitions and stability of various forms of Turing patterns. Furthermore, we illustrate the theoretical results via numerical simulations. It is shown that the spatiotemporal distribution of the plankton is homogeneous in the absence of cross-diffusion. However, when the cross-diffusivity is greater than the critical value, the spatiotemporal distribution of all the plankton species becomes inhomogeneous in spaces and results in different kinds of patterns: spot, stripe, and the mixture of spot and stripe patterns depending on the cross-diffusivity. Simultaneously, the impact of toxin-producing rate of toxic-phytoplankton (TPP) species and natural death rate of zooplankton species on pattern selection is also explored.

  12. Spatio-temporal conditional inference and hypothesis tests for neural ensemble spiking precision

    PubMed Central

    Harrison, Matthew T.; Amarasingham, Asohan; Truccolo, Wilson

    2014-01-01

    The collective dynamics of neural ensembles create complex spike patterns with many spatial and temporal scales. Understanding the statistical structure of these patterns can help resolve fundamental questions about neural computation and neural dynamics. Spatio-temporal conditional inference (STCI) is introduced here as a semiparametric statistical framework for investigating the nature of precise spiking patterns from collections of neurons that is robust to arbitrarily complex and nonstationary coarse spiking dynamics. The main idea is to focus statistical modeling and inference, not on the full distribution of the data, but rather on families of conditional distributions of precise spiking given different types of coarse spiking. The framework is then used to develop families of hypothesis tests for probing the spatio-temporal precision of spiking patterns. Relationships among different conditional distributions are used to improve multiple hypothesis testing adjustments and to design novel Monte Carlo spike resampling algorithms. Of special note are algorithms that can locally jitter spike times while still preserving the instantaneous peri-stimulus time histogram (PSTH) or the instantaneous total spike count from a group of recorded neurons. The framework can also be used to test whether first-order maximum entropy models with possibly random and time-varying parameters can account for observed patterns of spiking. STCI provides a detailed example of the generic principle of conditional inference, which may be applicable in other areas of neurostatistical analysis. PMID:25380339

  13. Spatio-Temporal Patterns in Colonies of Rod-Shaped Bacteria

    NASA Astrophysics Data System (ADS)

    Kitsunezaki, S.

    In incubation experiments of bacterial colonies of Proteus Mirabilis, macroscopic spatio-temporal patterns, such as turbulent and unidirectional spiral patterns, appear in colonies. Considering only kinetic propeties of rod-shaped bacteria, we propose a phenomenological model for the directional and positional distributions. As the average density increases, homogeneous states bifurcate sub-critically into nonuniform states exhibiting localized collective motion, and spiral patterns appear for sufficiently large density. These patterns result from interactions between the local bacteria densities and the order parameter representing collective motion. Our model can be described by reduced equations using a perturbative method for large density. The unidirectionality of sprial rotation is also discussed.

  14. Defining multiple, distinct, and shared spatiotemporal patterns of DNA replication and endoreduplication from 3D image analysis of developing maize (Zea mays L.) root tip nuclei.

    PubMed

    Bass, Hank W; Hoffman, Gregg G; Lee, Tae-Jin; Wear, Emily E; Joseph, Stacey R; Allen, George C; Hanley-Bowdoin, Linda; Thompson, William F

    2015-11-01

    Spatiotemporal patterns of DNA replication have been described for yeast and many types of cultured animal cells, frequently after cell cycle arrest to aid in synchronization. However, patterns of DNA replication in nuclei from plants or naturally developing organs remain largely uncharacterized. Here we report findings from 3D quantitative analysis of DNA replication and endoreduplication in nuclei from pulse-labeled developing maize root tips. In both early and middle S phase nuclei, flow-sorted on the basis of DNA content, replicative labeling was widely distributed across euchromatic regions of the nucleoplasm. We did not observe the perinuclear or perinucleolar replicative labeling patterns characteristic of middle S phase in mammals. Instead, the early versus middle S phase patterns in maize could be distinguished cytologically by correlating two quantitative, continuous variables, replicative labeling and DAPI staining. Early S nuclei exhibited widely distributed euchromatic labeling preferentially localized to regions with weak DAPI signals. Middle S nuclei also exhibited widely distributed euchromatic labeling, but the label was preferentially localized to regions with strong DAPI signals. Highly condensed heterochromatin, including knobs, replicated during late S phase as previously reported. Similar spatiotemporal replication patterns were observed for both mitotic and endocycling maize nuclei. These results revealed that maize euchromatin exists as an intermingled mixture of two components distinguished by their condensation state and replication timing. These different patterns might reflect a previously described genome organization pattern, with "gene islands" mostly replicating during early S phase followed by most of the intergenic repetitive regions replicating during middle S phase.

  15. Recent human history governs global ant invasion dynamics

    Treesearch

    Cleo Bertelsmeier; Sébastien Ollier; Andrew Liebhold; Laurent Keller

    2017-01-01

    Human trade and travel are breaking down biogeographic barriers, resulting in shifts in the geographical distribution of organisms, yet it remains largely unknown whether different alien species generally follow similar spatiotemporal colonization patterns and how such patterns are driven by trends in global trade. Here, we analyse the global distribution of 241 alien...

  16. Community ecology in 3D: Tensor decomposition reveals spatio-temporal dynamics of large ecological communities.

    PubMed

    Frelat, Romain; Lindegren, Martin; Denker, Tim Spaanheden; Floeter, Jens; Fock, Heino O; Sguotti, Camilla; Stäbler, Moritz; Otto, Saskia A; Möllmann, Christian

    2017-01-01

    Understanding spatio-temporal dynamics of biotic communities containing large numbers of species is crucial to guide ecosystem management and conservation efforts. However, traditional approaches usually focus on studying community dynamics either in space or in time, often failing to fully account for interlinked spatio-temporal changes. In this study, we demonstrate and promote the use of tensor decomposition for disentangling spatio-temporal community dynamics in long-term monitoring data. Tensor decomposition builds on traditional multivariate statistics (e.g. Principal Component Analysis) but extends it to multiple dimensions. This extension allows for the synchronized study of multiple ecological variables measured repeatedly in time and space. We applied this comprehensive approach to explore the spatio-temporal dynamics of 65 demersal fish species in the North Sea, a marine ecosystem strongly altered by human activities and climate change. Our case study demonstrates how tensor decomposition can successfully (i) characterize the main spatio-temporal patterns and trends in species abundances, (ii) identify sub-communities of species that share similar spatial distribution and temporal dynamics, and (iii) reveal external drivers of change. Our results revealed a strong spatial structure in fish assemblages persistent over time and linked to differences in depth, primary production and seasonality. Furthermore, we simultaneously characterized important temporal distribution changes related to the low frequency temperature variability inherent in the Atlantic Multidecadal Oscillation. Finally, we identified six major sub-communities composed of species sharing similar spatial distribution patterns and temporal dynamics. Our case study demonstrates the application and benefits of using tensor decomposition for studying complex community data sets usually derived from large-scale monitoring programs.

  17. Modeling distributional changes in winter precipitation of Canada using Bayesian spatiotemporal quantile regression subjected to different teleconnections

    NASA Astrophysics Data System (ADS)

    Tan, Xuezhi; Gan, Thian Yew; Chen, Shu; Liu, Bingjun

    2018-05-01

    Climate change and large-scale climate patterns may result in changes in probability distributions of climate variables that are associated with changes in the mean and variability, and severity of extreme climate events. In this paper, we applied a flexible framework based on the Bayesian spatiotemporal quantile (BSTQR) model to identify climate changes at different quantile levels and their teleconnections to large-scale climate patterns such as El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO) and Pacific-North American (PNA). Using the BSTQR model with time (year) as a covariate, we estimated changes in Canadian winter precipitation and their uncertainties at different quantile levels. There were some stations in eastern Canada showing distributional changes in winter precipitation such as an increase in low quantiles but a decrease in high quantiles. Because quantile functions in the BSTQR model vary with space and time and assimilate spatiotemporal precipitation data, the BSTQR model produced much spatially smoother and less uncertain quantile changes than the classic regression without considering spatiotemporal correlations. Using the BSTQR model with five teleconnection indices (i.e., SOI, PDO, PNA, NP and NAO) as covariates, we investigated effects of large-scale climate patterns on Canadian winter precipitation at different quantile levels. Winter precipitation responses to these five teleconnections were found to occur differently at different quantile levels. Effects of five teleconnections on Canadian winter precipitation were stronger at low and high than at medium quantile levels.

  18. Spatio-Temporal Change Modeling of Lulc: a Semantic Kriging Approach

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, S.; Ghosh, S. K.

    2015-07-01

    Spatio-temporal land-use/ land-cover (LULC) change modeling is important to forecast the future LULC distribution, which may facilitate natural resource management, urban planning, etc. The spatio-temporal change in LULC trend often exhibits non-linear behavior, due to various dynamic factors, such as, human intervention (e.g., urbanization), environmental factors, etc. Hence, proper forecasting of LULC distribution should involve the study and trend modeling of historical data. Existing literatures have reported that the meteorological attributes (e.g., NDVI, LST, MSI), are semantically related to the terrain. Being influenced by the terrestrial dynamics, the temporal changes of these attributes depend on the LULC properties. Hence, incorporating meteorological knowledge into the temporal prediction process may help in developing an accurate forecasting model. This work attempts to study the change in inter-annual LULC pattern and the distribution of different meteorological attributes of a region in Kolkata (a metropolitan city in India) during the years 2000-2010 and forecast the future spread of LULC using semantic kriging (SemK) approach. A new variant of time-series SemK is proposed, namely Rev-SemKts to capture the multivariate semantic associations between different attributes. From empirical analysis, it may be observed that the augmentation of semantic knowledge in spatio-temporal modeling of meteorological attributes facilitate more precise forecasting of LULC pattern.

  19. Using geovisual analytics in Google Earth to understand disease distribution: a case study of campylobacteriosis in the Czech Republic (2008-2012).

    PubMed

    Marek, Lukáš; Tuček, Pavel; Pászto, Vít

    2015-01-28

    Visual analytics aims to connect the processing power of information technologies and the user's ability of logical thinking and reasoning through the complex visual interaction. Moreover, the most of the data contain the spatial component. Therefore, the need for geovisual tools and methods arises. Either one can develop own system but the dissemination of findings and its usability might be problematic or the widespread and well-known platform can be utilized. The aim of this paper is to prove the applicability of Google Earth™ software as a tool for geovisual analytics that helps to understand the spatio-temporal patterns of the disease distribution. We combined the complex joint spatio-temporal analysis with comprehensive visualisation. We analysed the spatio-temporal distribution of the campylobacteriosis in the Czech Republic between 2008 and 2012. We applied three main approaches in the study: (1) the geovisual analytics of the surveillance data that were visualised in the form of bubble chart; (2) the geovisual analytics of the disease's weekly incidence surfaces computed by spatio-temporal kriging and (3) the spatio-temporal scan statistics that was employed in order to identify high or low rates clusters of affected municipalities. The final data are stored in Keyhole Markup Language files and visualised in Google Earth™ in order to apply geovisual analytics. Using geovisual analytics we were able to display and retrieve information from complex dataset efficiently. Instead of searching for patterns in a series of static maps or using numerical statistics, we created the set of interactive visualisations in order to explore and communicate results of analyses to the wider audience. The results of the geovisual analytics identified periodical patterns in the behaviour of the disease as well as fourteen spatio-temporal clusters of increased relative risk. We prove that Google Earth™ software is a usable tool for the geovisual analysis of the disease distribution. Google Earth™ has many indisputable advantages (widespread, freely available, intuitive interface, space-time visualisation capabilities and animations, communication of results), nevertheless it is still needed to combine it with pre-processing tools that prepare the data into a form suitable for the geovisual analytics itself.

  20. Mining User spatiotemporal Behavior in Geospatial Cyberinfrastructure --using GEOSS Clearinghouse as an example

    NASA Astrophysics Data System (ADS)

    XIA, J.; Yang, C.; Liu, K.; Huang, Q.; Li, Z.

    2013-12-01

    Big Data becomes increasingly important in almost all scientific domains, especially in geoscience where hundreds to millions of sensors are collecting data of the Earth continuously (Whitehouse News 2012). With the explosive growth of data, various Geospatial Cyberinfrastructure (GCI) (Yang et al. 2010) components are developed to manage geospatial resources and provide data access for the public. These GCIs are accessed by different users intensively on a daily basis. However, little research has been done to analyze the spatiotemporal patterns of user behavior, which could be critical to the management of Big Data and the operation of GCIs (Yang et al. 2011). For example, the spatiotemporal distribution of end users helps us better arrange and locate GCI computing facilities. A better indexing and caching mechanism could be developed based on the spatiotemporal pattern of user queries. In this paper, we use GEOSS Clearinghouse as an example to investigate spatiotemporal patterns of user behavior in GCIs. The investigation results show that user behaviors are heterogeneous but with patterns across space and time. Identified patterns include (1) the high access frequency regions; (2) local interests; (3) periodical accesses and rush hours; (4) spiking access. Based on identified patterns, this presentation reports several solutions to better support the operation of the GEOSS Clearinghouse and other GCIs. Keywords: Big Data, EarthCube, CyberGIS, Spatiotemporal Thinking and Computing, Data Mining, User Behavior Reference: Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., & Uthurusamy, R. 1996. Advances in knowledge discovery and data mining. Whitehouse. 2012. Obama administration unveils 'BIG DATA' initiative: announces $200 million in new R&D investments. Whitehouse. Retrieved from http://www.whitehouse.gov/sites/default/files/microsites/ostp/big_data_press_release_final_2.pdf [Accessed 14 June 2013] Yang, C., Wu, H., Huang, Q., Li, Z., & Li, J. 2011. Using spatial principles to optimize distributed computing for enabling the physical science discoveries. Proceedings of the National Academy of Sciences, 108(14), 5498-5503. doi:10.1073/pnas.0909315108 Yang, C., Raskin, R., Goodchild, M., & Gahegan, M. 2010. Geospatial Cyberinfrastructure: Past, present and future. Computers, Environment and Urban Systems, 34(4), 264-277. doi:10.1016/j.compenvurbsys.2010.04.001

  1. Three-dimensional spatiotemporal focusing of holographic patterns

    PubMed Central

    Hernandez, Oscar; Papagiakoumou, Eirini; Tanese, Dimitrii; Fidelin, Kevin; Wyart, Claire; Emiliani, Valentina

    2016-01-01

    Two-photon excitation with temporally focused pulses can be combined with phase-modulation approaches, such as computer-generated holography and generalized phase contrast, to efficiently distribute light into two-dimensional, axially confined, user-defined shapes. Adding lens-phase modulations to 2D-phase holograms enables remote axial pattern displacement as well as simultaneous pattern generation in multiple distinct planes. However, the axial confinement linearly degrades with lateral shape area in previous reports where axially shifted holographic shapes were not temporally focused. Here we report an optical system using two spatial light modulators to independently control transverse- and axial-target light distribution. This approach enables simultaneous axial translation of single or multiple spatiotemporally focused patterns across the sample volume while achieving the axial confinement of temporal focusing. We use the system's capability to photoconvert tens of Kaede-expressing neurons with single-cell resolution in live zebrafish larvae. PMID:27306044

  2. The influence of natural factors on the spatio-temporal distribution of Oncomelania hupensis.

    PubMed

    Cheng, Gong; Li, Dan; Zhuang, Dafang; Wang, Yong

    2016-12-01

    We analyzed the influence of natural factors, such as temperature, rainfall, vegetation and hydrology, on the spatio-temporal distribution of Oncomelania hupensis and explored the leading factors influencing these parameters. The results will provide reference methods and theoretical a basis for the schistosomiasis control. GIS (Geographic Information System) spatial display and analysis were used to describe the spatio-temporal distribution of Oncomelania hupensis in the study area (Dongting Lake in Hunan Province) from 2004 to 2011. Correlation analysis was used to detect the natural factors associated with the spatio-temporal distribution of O. hupensis. Spatial regression analysis was used to quantitatively analyze the effects of related natural factors on the spatio-temporal distribution of snails and explore the dominant factors influencing this parameter. (1) Overall, the spatio-temporal distribution of O. hupensis was governed by the comprehensive effects of natural factors. In the study area, the average density of living snails showed a downward trend, with the exception of a slight rebound in 2009. The density of living snails showed significant spatial clustering, and the degree of aggregation was initially weak but enhanced later. Regions with high snail density and towns with an HH distribution pattern were mostly distributed in the plain areas in the northwestern and inlet and outlet of the lake. (2) There were space-time differences in the influence of natural factors on the spatio-temporal distribution of O. hupensis. Temporally, the comprehensive influence of natural factors on snail distribution increased first and then decreased. Natural factors played an important role in snail distribution in 2005, 2006, 2010 and 2011. Spatially, it decreased from the northeast to the southwest. Snail distributions in more than 20 towns located along the Yuanshui River and on the west side of the Lishui River were less affected by natural factors, whereas relatively larger in areas around the outlet of the lake (Chenglingji) were more affected. (3) The effects of natural factors on the spatio-temporal distribution of O. hupensis were spatio-temporally heterogeneous. Rainfall, land surface temperature, NDVI, and distance from water sources all played an important role in the spatio-temporal distribution of O. hupensis. In addition, due to the effects of the local geographical environment, the direction of the influences the average annual rainfall, land surface temperature, and NDVI had on the spatio-temporal distribution of O. hupensis were all spatio-temporally heterogeneous, and both the distance from water sources and the history of snail distribution always had positive effects on the distribution O. hupensis, but the direction of the influence was spatio-temporally heterogeneous. (4) Of all the natural factors, the leading factors influencing the spatio-temporal distribution of O. hupensis were rainfall and vegetation (NDVI), and the primary factor alternated between these two. The leading role of rainfall decreased year by year, while that of vegetation (NDVI) increased from 2004 to 2011. The spatio-temporal distribution of O. hupensis was significantly influenced by natural factors, and the influences were heterogeneous across space and time. Additionally, the variation in the spatial-temporal distribution of O. hupensis was mainly affected by rainfall and vegetation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Attempting to physically explain space-time correlation of extremes

    NASA Astrophysics Data System (ADS)

    Bernardara, Pietro; Gailhard, Joel

    2010-05-01

    Spatial and temporal clustering of hydro-meteorological extreme events is scientific evidence. Moreover, the statistical parameters characterizing their local frequencies of occurrence show clear spatial patterns. Thus, in order to robustly assess the hydro-meteorological hazard, statistical models need to be able to take into account spatial and temporal dependencies. Statistical models considering long term correlation for quantifying and qualifying temporal and spatial dependencies are available, such as multifractal approach. Furthermore, the development of regional frequency analysis techniques allows estimating the frequency of occurrence of extreme events taking into account spatial patterns on the extreme quantiles behaviour. However, in order to understand the origin of spatio-temporal clustering, an attempt to find physical explanation should be done. Here, some statistical evidences of spatio-temporal correlation and spatial patterns of extreme behaviour are given on a large database of more than 400 rainfall and discharge series in France. In particular, the spatial distribution of multifractal and Generalized Pareto distribution parameters shows evident correlation patterns in the behaviour of frequency of occurrence of extremes. It is then shown that the identification of atmospheric circulation pattern (weather types) can physically explain the temporal clustering of extreme rainfall events (seasonality) and the spatial pattern of the frequency of occurrence. Moreover, coupling this information with the hydrological modelization of a watershed (as in the Schadex approach) an explanation of spatio-temporal distribution of extreme discharge can also be provided. We finally show that a hydro-meteorological approach (as the Schadex approach) can explain and take into account space and time dependencies of hydro-meteorological extreme events.

  4. Spontaneous formation of spiral-like patterns with distinct periodic physical properties by confined electrodeposition of Co-In disks

    NASA Astrophysics Data System (ADS)

    Golvano-Escobal, Irati; Gonzalez-Rosillo, Juan Carlos; Domingo, Neus; Illa, Xavi; López-Barberá, José Francisco; Fornell, Jordina; Solsona, Pau; Aballe, Lucia; Foerster, Michael; Suriñach, Santiago; Baró, Maria Dolors; Puig, Teresa; Pané, Salvador; Nogués, Josep; Pellicer, Eva; Sort, Jordi

    2016-07-01

    Spatio-temporal patterns are ubiquitous in different areas of materials science and biological systems. However, typically the motifs in these types of systems present a random distribution with many possible different structures. Herein, we demonstrate that controlled spatio-temporal patterns, with reproducible spiral-like shapes, can be obtained by electrodeposition of Co-In alloys inside a confined circular geometry (i.e., in disks that are commensurate with the typical size of the spatio-temporal features). These patterns are mainly of compositional nature, i.e., with virtually no topographic features. Interestingly, the local changes in composition lead to a periodic modulation of the physical (electric, magnetic and mechanical) properties. Namely, the Co-rich areas show higher saturation magnetization and electrical conductivity and are mechanically harder than the In-rich ones. Thus, this work reveals that confined electrodeposition of this binary system constitutes an effective procedure to attain template-free magnetic, electric and mechanical surface patterning with specific and reproducible shapes.

  5. Community ecology in 3D: Tensor decomposition reveals spatio-temporal dynamics of large ecological communities

    PubMed Central

    Lindegren, Martin; Denker, Tim Spaanheden; Floeter, Jens; Fock, Heino O.; Sguotti, Camilla; Stäbler, Moritz; Otto, Saskia A.; Möllmann, Christian

    2017-01-01

    Understanding spatio-temporal dynamics of biotic communities containing large numbers of species is crucial to guide ecosystem management and conservation efforts. However, traditional approaches usually focus on studying community dynamics either in space or in time, often failing to fully account for interlinked spatio-temporal changes. In this study, we demonstrate and promote the use of tensor decomposition for disentangling spatio-temporal community dynamics in long-term monitoring data. Tensor decomposition builds on traditional multivariate statistics (e.g. Principal Component Analysis) but extends it to multiple dimensions. This extension allows for the synchronized study of multiple ecological variables measured repeatedly in time and space. We applied this comprehensive approach to explore the spatio-temporal dynamics of 65 demersal fish species in the North Sea, a marine ecosystem strongly altered by human activities and climate change. Our case study demonstrates how tensor decomposition can successfully (i) characterize the main spatio-temporal patterns and trends in species abundances, (ii) identify sub-communities of species that share similar spatial distribution and temporal dynamics, and (iii) reveal external drivers of change. Our results revealed a strong spatial structure in fish assemblages persistent over time and linked to differences in depth, primary production and seasonality. Furthermore, we simultaneously characterized important temporal distribution changes related to the low frequency temperature variability inherent in the Atlantic Multidecadal Oscillation. Finally, we identified six major sub-communities composed of species sharing similar spatial distribution patterns and temporal dynamics. Our case study demonstrates the application and benefits of using tensor decomposition for studying complex community data sets usually derived from large-scale monitoring programs. PMID:29136658

  6. Analysis of the Spatiotemporal Characteristics of Hemorrhagic Fever with Renal Syndrome in Hubei Province, China

    NASA Astrophysics Data System (ADS)

    Fan, H.; Ge, L.; Song, L.; Zhao, Q.

    2015-07-01

    Hemorrhagic fever with renal syndrome(HFRS) is a worldwide fulminant infectious disease. Since the first HFRS cases in Hubei Province were reported in 1957, the disease has spread across the province and Hubei has become one of seriously affected areas in China. However, the epidemic characteristics of HFRS are still not entirely clear. Therefore, a systematic investigation of spatial and temporal distribution pattern of HFRS system is needed. In order to facilitate better prevention and control of HFRS in Hubei Province, in this paper, a GIS spatiotemporal analysis and modeling tool was developed to analyze the spatiotemporal dynamics of the HFRS epidemic, as well as providinga comprehensive examination the dynamic pattern of HFRS in Hubei over the past 30 years (1980-2009), to determine spatiotemporal change trends and the causes of HFRS. This paper describes the experiments and their results.

  7. Spatio-temporal analysis of wildfire ignitions in the St. Johns River Water Management District, Florida

    Treesearch

    Marc G. Genton; David T. Butry; Marcia L. Gumpertz; Jeffrey P. Prestemon

    2006-01-01

    We analyse the spatio-temporal structure of wildfire ignitions in the St. Johns River Water Management District in north-eastern Florida. We show, using tools to analyse point patterns (e.g. the L-function), that wildfire events occur in clusters. Clustering of these events correlates with irregular distribution of fire ignitions, including lightning...

  8. Spatio-Temporal Characteristics of Resident Trip Based on Poi and OD Data of Float CAR in Beijing

    NASA Astrophysics Data System (ADS)

    Mou, N.; Li, J.; Zhang, L.; Liu, W.; Xu, Y.

    2017-09-01

    Due to the influence of the urban inherent regional functional distribution, the daily activities of the residents presented some spatio-temporal patterns (periodic patterns, gathering patterns, etc.). In order to further understand the spatial and temporal characteristics of urban residents, this paper research takes the taxi trajectory data of Beijing as a sample data and studies the spatio-temporal characteristics of the residents' activities on the weekdays. At first, according to the characteristics of the taxi trajectory data distributed along the road network, it takes the Voronoi generated by the road nodes as the research unit. This paper proposes a hybrid clustering method - based on grid density, which is used to cluster the OD (origin and destination) data of taxi at different times. Then combining with the POI data of Beijing, this research calculated the density of the POI data in the clustering results, and analyzed the relationship between the activities of residents in different periods and the functional types of the region. The final results showed that the residents were mainly commuting on weekdays. And it found that the distribution of travel density showed a concentric circle of the characteristics, focusing on residential areas and work areas. The results of cluster analysis and POI analysis showed that the residents' travel had experienced the process of "spatial relative dispersion - spatial aggregation - spatial relative dispersion" in one day.

  9. Modeling the Spatial Distribution and Fruiting Pattern of a Key Tree Species in a Neotropical Forest: Methodology and Potential Applications

    PubMed Central

    Scarpino, Samuel V.; Jansen, Patrick A.; Garzon-Lopez, Carol X.; Winkelhagen, Annemarie J. S.; Bohlman, Stephanie A.; Walsh, Peter D.

    2010-01-01

    Background The movement patterns of wild animals depend crucially on the spatial and temporal availability of resources in their habitat. To date, most attempts to model this relationship were forced to rely on simplified assumptions about the spatiotemporal distribution of food resources. Here we demonstrate how advances in statistics permit the combination of sparse ground sampling with remote sensing imagery to generate biological relevant, spatially and temporally explicit distributions of food resources. We illustrate our procedure by creating a detailed simulation model of fruit production patterns for Dipteryx oleifera, a keystone tree species, on Barro Colorado Island (BCI), Panama. Methodology and Principal Findings Aerial photographs providing GPS positions for large, canopy trees, the complete census of a 50-ha and 25-ha area, diameter at breast height data from haphazardly sampled trees and long-term phenology data from six trees were used to fit 1) a point process model of tree spatial distribution and 2) a generalized linear mixed-effect model of temporal variation of fruit production. The fitted parameters from these models are then used to create a stochastic simulation model which incorporates spatio-temporal variations of D. oleifera fruit availability on BCI. Conclusions and Significance We present a framework that can provide a statistical characterization of the habitat that can be included in agent-based models of animal movements. When environmental heterogeneity cannot be exhaustively mapped, this approach can be a powerful alternative. The results of our model on the spatio-temporal variation in D. oleifera fruit availability will be used to understand behavioral and movement patterns of several species on BCI. PMID:21124927

  10. Spatio-Temporal Dynamics of Fructan Metabolism in Developing Barley Grains[W

    PubMed Central

    Peukert, Manuela; Thiel, Johannes; Peshev, Darin; Weschke, Winfriede; Van den Ende, Wim; Mock, Hans-Peter; Matros, Andrea

    2014-01-01

    Barley (Hordeum vulgare) grain development follows a series of defined morphological and physiological stages and depends on the supply of assimilates (mainly sucrose) from the mother plant. Here, spatio-temporal patterns of sugar distributions were investigated by mass spectrometric imaging, targeted metabolite analyses, and transcript profiling of microdissected grain tissues. Distinct spatio-temporal sugar balances were observed, which may relate to differentiation and grain filling processes. Notably, various types of oligofructans showed specific distribution patterns. Levan- and graminan-type oligofructans were synthesized in the cellularized endosperm prior to the commencement of starch biosynthesis, while during the storage phase, inulin-type oligofructans accumulated to a high concentration in and around the nascent endosperm cavity. In the shrunken endosperm mutant seg8, with a decreased sucrose flux toward the endosperm, fructan accumulation was impaired. The tight partitioning of oligofructan biosynthesis hints at distinct functions of the various fructan types in the young endosperm prior to starch accumulation and in the endosperm transfer cells that accomplish the assimilate supply toward the endosperm at the storage phase. PMID:25271242

  11. Discovery of spatio-temporal patterns from location-based social networks

    NASA Astrophysics Data System (ADS)

    Béjar, J.; Álvarez, S.; García, D.; Gómez, I.; Oliva, L.; Tejeda, A.; Vázquez-Salceda, J.

    2016-03-01

    Location-based social networks (LBSNs) such as Twitter or Instagram are a good source for user spatio-temporal behaviour. These networks collect data from users in such a way that they can be seen as a set of collective and distributed sensors of a geographical area. A low rate sampling of user's location information can be obtained during large intervals of time that can be used to discover complex patterns, including mobility profiles, points of interest or unusual events. These patterns can be used as the elements of a knowledge base for different applications in different domains such as mobility route planning, touristic recommendation systems or city planning. The aim of this paper is twofold, first to analyse the frequent spatio-temporal patterns that users share when living and visiting a city. This behaviour is studied by means of frequent itemsets algorithms in order to establish some associations among visits that can be interpreted as interesting routes or spatio-temporal connections. Second, to analyse how the spatio-temporal behaviour of a large number of users can be segmented in different profiles. These behavioural profiles are obtained by means of clustering algorithms that show the different patterns of behaviour of visitors and citizens. The data analysed were obtained from the public data feeds of Twitter and Instagram within an area surrounding the cities of Barcelona and Milan for a period of several months. The analysis of these data shows that these kinds of algorithms can be successfully applied to data from any city (or general area) to discover useful patterns that can be interpreted on terms of singular places and areas and their temporal relationships.

  12. Modulation of Spatiotemporal Particle Patterning in Evaporating Droplets: Applications to Diagnostics and Materials Science.

    PubMed

    Guha, Rajarshi; Mohajerani, Farzad; Mukhopadhyay, Ahana; Collins, Matthew D; Sen, Ayusman; Velegol, Darrell

    2017-12-13

    Spatiotemporal particle patterning in evaporating droplets lacks a common design framework. Here, we demonstrate autonomous control of particle distribution in evaporating droplets through the imposition of a salt-induced self-generated electric field as a generalized patterning strategy. Through modeling, a new dimensionless number, termed "capillary-phoresis" (CP) number, arises, which determines the relative contributions of electrokinetic and convective transport to pattern formation, enabling one to accurately predict the mode of particle assembly by controlling the spontaneous electric field and surface potentials. Modulation of the CP number allows the particles to be focused in a specific region in space or distributed evenly. Moreover, starting with a mixture of two different particle types, their relative placement in the ensuing pattern can be controlled, allowing coassemblies of multiple, distinct particle populations. By this approach, hypermethylated DNA, prevalent in cancerous cells, can be qualitatively distinguished from normal DNA of comparable molecular weights. In other examples, we show uniform dispersion of several particle types (polymeric colloids, multiwalled carbon nanotubes, and molecular dyes) on different substrates (metallic Cu, metal oxide, and flexible polymer), as dictated by the CP number. Depending on the particle, the highly uniform distribution leads to surfaces with a lower sheet resistance, as well as superior dye-printed displays.

  13. Modeling the spatio-temporal heterogeneity in the PM10-PM2.5 relationship

    NASA Astrophysics Data System (ADS)

    Chu, Hone-Jay; Huang, Bo; Lin, Chuan-Yao

    2015-02-01

    This paper explores the spatio-temporal patterns of particulate matter (PM) in Taiwan based on a series of methods. Using fuzzy c-means clustering first, the spatial heterogeneity (six clusters) in the PM data collected between 2005 and 2009 in Taiwan are identified and the industrial and urban areas of Taiwan (southwestern, west central, northwestern, and northern Taiwan) are found to have high PM concentrations. The PM10-PM2.5 relationship is then modeled with global ordinary least squares regression, geographically weighted regression (GWR), and geographically and temporally weighted regression (GTWR). The GTWR and GWR produce consistent results; however, GTWR provides more detailed information of spatio-temporal variations of the PM10-PM2.5 relationship. The results also show that GTWR provides a relatively high goodness of fit and sufficient space-time explanatory power. In particular, the PM2.5 or PM10 varies with time and space, depending on weather conditions and the spatial distribution of land use and emission patterns in local areas. Such information can be used to determine patterns of spatio-temporal heterogeneity in PM that will allow the control of pollutants and the reduction of public exposure.

  14. Spatio-temporal distribution of stored-product inects around food processing and storage facilities

    USDA-ARS?s Scientific Manuscript database

    Grain storage and processing facilities consist of a landscape of indoor and outdoor habitats that can potentially support stored-product insect pests, and understanding patterns of species diversity and spatial distribution in the landscape surrounding structures can provide insight into how the ou...

  15. Oscillatory neural network for pattern recognition: trajectory based classification and supervised learning.

    PubMed

    Miller, Vonda H; Jansen, Ben H

    2008-12-01

    Computer algorithms that match human performance in recognizing written text or spoken conversation remain elusive. The reasons why the human brain far exceeds any existing recognition scheme to date in the ability to generalize and to extract invariant characteristics relevant to category matching are not clear. However, it has been postulated that the dynamic distribution of brain activity (spatiotemporal activation patterns) is the mechanism by which stimuli are encoded and matched to categories. This research focuses on supervised learning using a trajectory based distance metric for category discrimination in an oscillatory neural network model. Classification is accomplished using a trajectory based distance metric. Since the distance metric is differentiable, a supervised learning algorithm based on gradient descent is demonstrated. Classification of spatiotemporal frequency transitions and their relation to a priori assessed categories is shown along with the improved classification results after supervised training. The results indicate that this spatiotemporal representation of stimuli and the associated distance metric is useful for simple pattern recognition tasks and that supervised learning improves classification results.

  16. Prediction of Spatiotemporal Patterns of Neural Activity from Pairwise Correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marre, O.; El Boustani, S.; Fregnac, Y.

    We designed a model-based analysis to predict the occurrence of population patterns in distributed spiking activity. Using a maximum entropy principle with a Markovian assumption, we obtain a model that accounts for both spatial and temporal pairwise correlations among neurons. This model is tested on data generated with a Glauber spin-glass system and is shown to correctly predict the occurrence probabilities of spatiotemporal patterns significantly better than Ising models only based on spatial correlations. This increase of predictability was also observed on experimental data recorded in parietal cortex during slow-wave sleep. This approach can also be used to generate surrogatesmore » that reproduce the spatial and temporal correlations of a given data set.« less

  17. Size-dependent diffusion promotes the emergence of spatiotemporal patterns

    NASA Astrophysics Data System (ADS)

    Zhang, Lai; Thygesen, Uffe Høgsbro; Banerjee, Malay

    2014-07-01

    Spatiotemporal patterns, indicating the spatiotemporal variability of individual abundance, are a pronounced scenario in ecological interactions. Most of the existing models for spatiotemporal patterns treat species as homogeneous groups of individuals with average characteristics by ignoring intraspecific physiological variations at the individual level. Here we explore the impacts of size variation within species resulting from individual ontogeny, on the emergence of spatiotemporal patterns in a fully size-structured population model. We found that size dependency of animal's diffusivity greatly promotes the formation of spatiotemporal patterns, by creating regular spatiotemporal patterns out of temporal chaos. We also found that size-dependent diffusion can substitute large-amplitude base harmonics with spatiotemporal patterns with lower amplitude oscillations but with enriched harmonics. Finally, we found that the single-generation cycle is more likely to drive spatiotemporal patterns compared to predator-prey cycles, meaning that the mechanism of Hopf bifurcation might be more common than hitherto appreciated since the former cycle is more widespread than the latter in case of interacting populations. Due to the ubiquity of individual ontogeny in natural ecosystems we conclude that diffusion variability within populations is a significant driving force for the emergence of spatiotemporal patterns. Our results offer a perspective on self-organized phenomena, and pave a way to understand such phenomena in systems organized as complex ecological networks.

  18. Spatiotemporal distribution of Holocene populations in North America

    PubMed Central

    Chaput, Michelle A.; Kriesche, Björn; Betts, Matthew; Martindale, Andrew; Kulik, Rafal; Schmidt, Volker; Gajewski, Konrad

    2015-01-01

    As the Cordilleran and Laurentide Ice Sheets retreated, North America was colonized by human populations; however, the spatial patterns of subsequent population growth are unclear. Temporal frequency distributions of aggregated radiocarbon (14C) dates are used as a proxy of population size and can be used to track this expansion. The Canadian Archaeological Radiocarbon Database contains more than 35,000 14C dates and is used in this study to map the spatiotemporal demographic changes of Holocene populations in North America at a continental scale for the past 13,000 y. We use the kernel method, which converts the spatial distribution of 14C dates into estimates of population density at 500-y intervals. The resulting maps reveal temporally distinct, dynamic patterns associated with paleodemographic trends that correspond well to genetic, archaeological, and ethnohistoric evidence of human occupation. These results have implications for hypothesizing and testing migration routes into and across North America as well as the relative influence of North American populations on the evolution of the North American ecosystem. PMID:26351683

  19. Spatio-temporal Analysis for New York State SPARCS Data

    PubMed Central

    Chen, Xin; Wang, Yu; Schoenfeld, Elinor; Saltz, Mary; Saltz, Joel; Wang, Fusheng

    2017-01-01

    Increased accessibility of health data provides unique opportunities to discover spatio-temporal patterns of diseases. For example, New York State SPARCS (Statewide Planning and Research Cooperative System) data collects patient level detail on patient demographics, diagnoses, services, and charges for each hospital inpatient stay and outpatient visit. Such data also provides home addresses for each patient. This paper presents our preliminary work on spatial, temporal, and spatial-temporal analysis of disease patterns for New York State using SPARCS data. We analyzed spatial distribution patterns of typical diseases at ZIP code level. We performed temporal analysis of common diseases based on 12 years’ historical data. We then compared the spatial variations for diseases with different levels of clustering tendency, and studied the evolution history of such spatial patterns. Case studies based on asthma demonstrated that the discovered spatial clusters are consistent with prior studies. We visualized our spatial-temporal patterns as animations through videos. PMID:28815148

  20. Variations of the spatiotemporal patterns of CVOCs concentrations in northern karst of Puerto Rico

    NASA Astrophysics Data System (ADS)

    Yu, X.; Ghasemizadeh, R.; Padilla, I. Y.; Irizarry, C.; Yegen, C.; Kaeli, D.; Alshawabkeh, A. N.

    2013-12-01

    The northern Puerto Rico is characterized as karst topography, where the groundwater is a major source of water use to the island. Various types of Chlorinated Volatile Organic Compounds (CVOCs), which are due to improper disposal of industrial waste, are detected in these karst aquifers. It is important to study the spatiotemporal distribution patterns of the CVOCs in this region, which are posing a serious threat to both the ecological and human health. In this study, various historical CVOCs data from 264 wells across the northern karst region from January 1982 to December 2000 were collected from a number of reports and studies. We found that 38% (99 out of 264) of the sites had at least one sample with CVOC concentration above the standards established to protect human health over the study period. We found that the distribution of the CVOCs spatially varied with areas containing clusters of sites contaminated by different organic compound. The response of CVOC concentrations were occasionally retarded even though they were depleted significantly in the source zones. The study confirmed that the measured CVOC concentrations decreased during the study period at most of the sites. The source origin (toxics release locations and quantities) and the intrinsic characteristics of the karst (high heterogeneity and complex hydraulic behavior) are most likely related with the spatial and temporal distribution patterns of CVOCs. The study of the spatiotemporal patterns of CVOCs concentrations in the northern karst aquifers has important implications on the public water use, especially when it coincides with the recent population growth in this region. Locations of Puerto Rico, the northern karst region of Puerto Rico and 264 sampling sites in the karst region.

  1. A spatiotemporal analysis of hydrological patterns based on a wireless sensor network system

    NASA Astrophysics Data System (ADS)

    Plaza, F.; Slater, T. A.; Zhong, X.; Li, Y.; Liang, Y.; Liang, X.

    2017-12-01

    Understanding complicated spatiotemporal patterns of eco-hydrological variables at a small scale plays a profound role in improving predictability of high resolution distributed hydrological models. However, accurate and continuous monitoring of these complex patterns has become one of the main challenges in the environmental sciences. Wireless sensor networks (WSNs) have emerged as one of the most widespread potential solutions to achieve this. This study presents a spatiotemporal analysis of hydrological patterns (e.g., soil moisture, soil water potential, soil temperature and transpiration) based on observational data collected from a dense multi-hop wireless sensor network (WSN) in a steep-forested testbed located in Southwestern Pennsylvania, USA. At this WSN testbed with an approximate area of 3000 m2, environmental variables are collected from over 240 sensors that are connected to more than 100 heterogeneous motes. The sensors include the soil moisture of EC-5, soil temperature and soil water potential of MPS-1 and MPS-2, and sap flow sensors constructed in house. The motes consist of MICAz, IRIS and TelosB. In addition, several data loggers have been installed along the site to provide a comparative reference to the WSN measurements for the purpose of checking the WSN data quality. The edaphic properties monitored by the WSN sensors show strong agreement with the data logger measurements. Moreover, sap flow measurements, scaled to tree stand transpiration, are found to be reasonable. This study also investigates the feasibility and roles that these sensor measurements play in improving the performance of high-resolution distributed hydrological models. In particular, we explore this using a modified version of the Distributed Hydrological Soil Vegetation Model (DHSVM).

  2. Spatiotemporal patterns of severe fever with thrombocytopenia syndrome in China, 2011-2016.

    PubMed

    Sun, Jimin; Lu, Liang; Wu, Haixia; Yang, Jun; Liu, Keke; Liu, Qiyong

    2018-05-01

    Severe fever with thrombocytopenia syndrome (SFTS) is emerging and the number of SFTS cases have increased year by year in China. However, spatiotemporal patterns and trends of SFTS are less clear up to date. In order to explore spatiotemporal patterns and predict SFTS incidences, we analyzed temporal trends of SFTS using autoregressive integrated moving average (ARIMA) model, spatial patterns, and spatiotemporal clusters of SFTS cases at the county level based on SFTS data in China during 2011-2016. We determined the optimal time series model was ARIMA (2, 0, 1) × (0, 0, 1) 12 which fitted the SFTS cases reasonably well during the training process and forecast process. In the spatial clustering analysis, the global autocorrelation suggested that SFTS cases were not of random distribution. Local spatial autocorrelation analysis of SFTS identified foci mainly concentrated in Hubei Province, Henan Province, Anhui Province, Shandong Province, Liaoning Province, and Zhejiang Province. A most likely cluster including 21 counties in Henan Province and Hubei Province was observed in the central region of China from April 2015 to August 2016. Our results will provide a sound evidence base for future prevention and control programs of SFTS such as allocation of the health resources, surveillance in high-risk regions, health education, improvement of diagnosis and so on. Copyright © 2018 Elsevier GmbH. All rights reserved.

  3. Incremental Principal Component Analysis Based Outlier Detection Methods for Spatiotemporal Data Streams

    NASA Astrophysics Data System (ADS)

    Bhushan, A.; Sharker, M. H.; Karimi, H. A.

    2015-07-01

    In this paper, we address outliers in spatiotemporal data streams obtained from sensors placed across geographically distributed locations. Outliers may appear in such sensor data due to various reasons such as instrumental error and environmental change. Real-time detection of these outliers is essential to prevent propagation of errors in subsequent analyses and results. Incremental Principal Component Analysis (IPCA) is one possible approach for detecting outliers in such type of spatiotemporal data streams. IPCA has been widely used in many real-time applications such as credit card fraud detection, pattern recognition, and image analysis. However, the suitability of applying IPCA for outlier detection in spatiotemporal data streams is unknown and needs to be investigated. To fill this research gap, this paper contributes by presenting two new IPCA-based outlier detection methods and performing a comparative analysis with the existing IPCA-based outlier detection methods to assess their suitability for spatiotemporal sensor data streams.

  4. Spatiotemporal Distribution of Chinavia hilaris (Hemiptera: Pentatomidae) in Corn Farmscapes

    PubMed Central

    Cottrell, Ted E.; Tillman, P. Glynn

    2015-01-01

    The green stink bug, Chinavia hilaris (Say) (Hemiptera: Pentatomidae), is a pest of cotton in the southeastern United States but little is known concerning its spatiotemporal distribution in corn cropping systems. Therefore, the spatiotemporal distribution of C. hilaris in farmscapes, when corn was adjacent to cotton, peanut, or both, was examined weekly. The spatial patterns of C. hilaris counts were analyzed using Spatial Analysis by Distance Indices methodology. Interpolated maps of C. hilaris density were used to visualize abundance and distribution of C. hilaris in crops in corn–peanut–cotton farmscapes. This stink bug was detected in six of seven corn–cotton farmscapes, four of six corn–peanut farmscapes, and in both corn–peanut–cotton farmscapes. The frequency of C. hilaris in cotton (89.47%) was significantly higher than in peanut (7.02%) or corn (3.51%). This stink bug fed on noncrop hosts that grew in field borders adjacent to crops. The spatial distribution of C. hilaris in crops and the capture of C. hilaris adults and nymphs in pheromone-baited traps near noncrop hosts indicated that these hosts were sources of this stink bug dispersing into crops, primarily cotton. Significant aggregated spatial distributions were detected in cotton on some dates within corn–peanut–cotton farmscapes. Maps of local clustering indices depicted small patches of C. hilaris in cotton or cotton–sorghum at the peanut–cotton interface. Factors affecting the spatiotemporal dynamics of C. hilaris in corn farmscapes are discussed. PMID:25843581

  5. Distributional patterns in an insect community inhabiting a sandy beach of Uruguay

    NASA Astrophysics Data System (ADS)

    Mourglia, Virginia; González-Vainer, Patricia; Defeo, Omar

    2015-12-01

    Most studies of sandy beach macrofauna have been restricted to semiterrestrial species and do not include insects when providing species richness and abundance estimates. Particularly, spatio-temporal patterns of community structure of the entomofauna inhabiting these ecosystems have been scarcely documented. This study assessed spatio-temporal distributional patterns of the night active entomofauna on a beach-dune system of Uruguay, including variations in species richness, abundance and diversity, and their relationship with environmental factors. A deconstructive taxonomic analysis was also performed, considering richness and abundance patterns separately for the most abundant insect Orders (Hymenoptera and Coleoptera) to better understand the factors which drive their patterns. We found clear temporal and across-shore patterns in the insect community inhabiting a land-ocean interface, which matched spatiotemporal variations in the environment. Abundance and species richness were highest in spring and summer, concurrently with high temperatures and low values of sediment moisture and compaction. Multivariate ordinations showed two well-defined species groups, which separated summer, autumn and spring samples from winter ones. Generalized Linear Models allowed us to describe a clear segregation in space of the most important orders of the insect community, with specific preferences for the terrestrial (Hymenoptera) and beach (Coleoptera) fringes. Hymenoptera preferred the dune zone, characterized by high elevation and low sand moisture and compaction levels, whereas Coleoptera preferred gentle slopes and fine and humid sands of the beach. Our results suggest that beach and dune ecosystems operate as two separate components in regard to their physical and biological features. The high values of species richness and abundance of insects reveal that this group has a more significant ecological role than that originally considered so far in sandy beach ecology.

  6. Concentric superlattice pattern in dielectric barrier discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Jianyu; Dong, Lifang, E-mail: donglfhbu@163.com; Wei, Lingyan

    2016-09-15

    The concentric superlattice pattern with three sub-lattices is observed in the dielectric barrier discharge in air/argon for the first time. Its spatiotemporal structure investigated by an intensified charge-coupled device shows that it is an interleaving of three different sub-lattices, which are concentric-ring, concentric-framework, and concentric-dot, respectively. The images of single-frame indicate that the concentric-ring and concentric-framework are composed of individual filaments. By using the optical emission spectrum method, it is found that plasma parameters of the concentric-dot are different from those of the concentric-ring and concentric-framework. The spatiotemporal dynamics of the concentric superlattice pattern is dependent upon the effective fieldmore » of the distribution of the wall charges field and the applied field.« less

  7. Mining spatiotemporal patterns of urban dwellers from taxi trajectory data

    NASA Astrophysics Data System (ADS)

    Mao, Feng; Ji, Minhe; Liu, Ting

    2016-06-01

    With the widespread adoption of locationaware technology, obtaining long-sequence, massive and high-accuracy spatiotemporal trajectory data of individuals has become increasingly popular in various geographic studies. Trajectory data of taxis, one of the most widely used inner-city travel modes, contain rich information about both road network traffic and travel behavior of passengers. Such data can be used to study the microscopic activity patterns of individuals as well as the macro system of urban spatial structures. This paper focuses on trajectories obtained from GPS-enabled taxis and their applications for mining urban commuting patterns. A novel approach is proposed to discover spatiotemporal patterns of household travel from the taxi trajectory dataset with a large number of point locations. The approach involves three critical steps: spatial clustering of taxi origin-destination (OD) based on urban traffic grids to discover potentially meaningful places, identifying threshold values from statistics of the OD clusters to extract urban jobs-housing structures, and visualization of analytic results to understand the spatial distribution and temporal trends of the revealed urban structures and implied household commuting behavior. A case study with a taxi trajectory dataset in Shanghai, China is presented to demonstrate and evaluate the proposed method.

  8. Spatiotemporal changes of CVOC concentrations in karst aquifers: analysis of three decades of data from Puerto Rico

    PubMed Central

    Yu, Xue; Ghasemizadeh, Reza; Padilla, Ingrid; Irizarry, Celys; Kaeli, David; Alshawabkeh, Akram

    2014-01-01

    We studied the spatial and temporal distribution patterns of Chlorinated Volatile Organic Compounds (CVOCs) in the karst aquifers in northern Puerto Rico (1982-2013). Seventeen CVOCs were widely detected across the study area, with the most detected and persistent contaminated CVOCs including trichloroethylene (TCE), tetrachloroethylene (PCE), carbon tetrachloride (CT), chloroform (TCM), and methylene chloride (DCM). Historically, 471 (76%) and 319 (52%) of the 615 sampling sites have CVOC concentrations above the detection limit and maximum contamination level (MCL), respectively. The spatiotemporal patterns of the CVOC concentrations showed two clusters of contaminated areas, one near the Superfund site “Upjohn” and another near “Vega Alta Public Supply Wells.” Despite a decreasing trend in concentrations, there is a general northward movement and spreading of contaminants even beyond the extent of known sources of the Superfund and landfill sites. Our analyses suggest that, besides the source conditions, karst characteristics (high heterogeneity, complex hydraulic and biochemical environment) are linked to the long-term spatiotemporal patterns of CVOCs in groundwater. PMID:25522355

  9. Spatio-Temporal Pattern Analysis for Regional Climate Change Using Mathematical Morphology

    NASA Astrophysics Data System (ADS)

    Das, M.; Ghosh, S. K.

    2015-07-01

    Of late, significant changes in climate with their grave consequences have posed great challenges on humankind. Thus, the detection and assessment of climatic changes on a regional scale is gaining importance, since it helps to adopt adequate mitigation and adaptation measures. In this paper, we have presented a novel approach for detecting spatio-temporal pattern of regional climate change by exploiting the theory of mathematical morphology. At first, the various climatic zones in the region have been identified by using multifractal cross-correlation analysis (MF-DXA) of different climate variables of interest. Then, the directional granulometry with four different structuring elements has been studied to detect the temporal changes in spatial distribution of the identified climatic zones in the region and further insights have been drawn with respect to morphological uncertainty index and Hurst exponent. The approach has been evaluated with the daily time series data of land surface temperature (LST) and precipitation rate, collected from Microsoft Research - Fetch Climate Explorer, to analyze the spatio-temporal climatic pattern-change in the Eastern and North-Eastern regions of India throughout four quarters of the 20th century.

  10. a Web-Based Framework for Visualizing Industrial Spatiotemporal Distribution Using Standard Deviational Ellipse and Shifting Routes of Gravity Centers

    NASA Astrophysics Data System (ADS)

    Song, Y.; Gui, Z.; Wu, H.; Wei, Y.

    2017-09-01

    Analysing spatiotemporal distribution patterns and its dynamics of different industries can help us learn the macro-level developing trends of those industries, and in turn provides references for industrial spatial planning. However, the analysis process is challenging task which requires an easy-to-understand information presentation mechanism and a powerful computational technology to support the visual analytics of big data on the fly. Due to this reason, this research proposes a web-based framework to enable such a visual analytics requirement. The framework uses standard deviational ellipse (SDE) and shifting route of gravity centers to show the spatial distribution and yearly developing trends of different enterprise types according to their industry categories. The calculation of gravity centers and ellipses is paralleled using Apache Spark to accelerate the processing. In the experiments, we use the enterprise registration dataset in Mainland China from year 1960 to 2015 that contains fine-grain location information (i.e., coordinates of each individual enterprise) to demonstrate the feasibility of this framework. The experiment result shows that the developed visual analytics method is helpful to understand the multi-level patterns and developing trends of different industries in China. Moreover, the proposed framework can be used to analyse any nature and social spatiotemporal point process with large data volume, such as crime and disease.

  11. Response of frugivorous primates to changes in fruit supply in a northern Amazonian forest.

    PubMed

    Mourthé, I

    2014-08-01

    Few attempts have been made to understand how spatiotemporal changes in fruit supply influence frugivores in tropical forests. The marked spatiotemporal variation in fruit supply can affect frugivore abundance and distribution, but studies addressing the effects of this variation on primates are scarce. The present study aimed to investigate how the spatiotemporal distribution of fruits influences the local distribution of three frugivorous primates in the eastern part of the Maracá Ecological Station, a highly seasonal Amazonian rainforest. Specifically, it was hypothesised that primate distribution will track changes in fruit supply, resulting that sites with high fruit availability should be heavily used by primates. During a 1-year study, fruit supply (ground fruit surveys) and primate density (line-transects) were monitored in twelve 2 km-long transects at monthly intervals. Fruit supply varied seasonally, being low during the dry season. The density of Ateles belzebuth was positively related to fruit supply during fruit shortage, but Cebus olivaceus and Alouatta macconnelli did not follow the same pattern. The supply of Sapotaceae fruit was an important component determining local distribution of A. belzebuth during the overall fruit shortage. Highly frugivorous primates such as A. belzebuth respond to seasonal decline in fruit supply by congregating at places with high fruit supply in this forest, particularly, those with many individuals of species of Sapotaceae. This study underscores the importance of small-scale spatiotemporal changes of fruit supply as a key component of frugivorous primate ecology in highly seasonal environments.

  12. Spatiotemporal Distribution of Chinavia hilaris (Hemiptera: Pentatomidae) in Peanut-Cotton Farmscapes

    PubMed Central

    Tillman, P. Glynn; Cottrell, Ted E.

    2015-01-01

    The green stink bug, Chinavia hilaris (Say) (Hemiptera: Pentatomidae), is a pest of cotton in the southeastern United States, but little is known concerning its spatiotemporal distribution in agricultural farmscapes. Therefore, spatiotemporal distribution of C. hilaris in farmscapes where cotton fields adjoined peanut was examined weekly. Spatial patterns of C. hilaris counts were analyzed using SADIE (Spatial Analysis by Distance Indices) methodology. Interpolated maps of C. hilaris density were used to visualize abundance and distribution of C. hilaris in crops. For the six peanut-cotton farmscapes studied, the frequency of C. hilaris in cotton (94.8%) was significantly higher than in peanut (5.2%), and nymphs were rarely detected in peanut, indicating that peanut was not a source of C. hilaris into cotton. Significantly, aggregated spatial distributions were detected in cotton. Maps of local clustering indices depicted patches of C. hilaris in cotton, mainly at field edges including the peanut-to-cotton interface. Black cherry (Prunus serotina Ehrh.) and elderberry (Sambucus nigra subsp. canadensis [L.] R. Bolli) grew in habitats adjacent to crops, C. hilaris were captured in pheromone-baited stink bug traps in these habitats, and in most instances, C. hilaris were observed feeding on black cherry and elderberry in these habitats before colonization of cotton. Spatial distribution of C. hilaris in these farmscapes revealed that C. hilaris colonized cotton field edges near these two noncrop hosts. Altogether, these findings suggest that black cherry and elderberry were sources of C. hilaris into cotton. Factors affecting the spatiotemporal dynamics of C. hilaris in peanut-cotton farmscapes are discussed. PMID:26175464

  13. Temporal Stability of Rotors and Atrial Activation Patterns in Persistent Human Atrial Fibrillation: A High-Density Epicardial Mapping Study of Prolonged Recordings.

    PubMed

    Walters, Tomos E; Lee, Geoffrey; Morris, Gwilym; Spence, Steven; Larobina, Marco; Atkinson, Victoria; Antippa, Phillip; Goldblatt, John; Royse, Alistair; O'Keefe, Michael; Sanders, Prashanthan; Morton, Joseph B; Kistler, Peter M; Kalman, Jonathan M

    This study aimed to determine the spatiotemporal stability of rotors and other atrial activation patterns over 10 min in longstanding, persistent AF, along with the relationship of rotors to short cycle-length (CL) activity. The prevalence, stability, and mechanistic importance of rotors in human atrial fibrillation (AF) remain unclear. Epicardial mapping was performed in 10 patients undergoing cardiac surgery, with bipolar electrograms recorded over 10 min using a triangular plaque (area: 6.75 cm 2 ; 117 bipoles; spacing: 2.5 mm) applied to the left atrial posterior wall (n = 9) and the right atrial free wall (n = 4). Activations were identified throughout 6 discrete 10-s segments of AF spanning 10 min, and dynamic activation mapping was performed. The distributions of 4,557 generated activation patterns within each mapped region were compared between the 6 segments. The dominant activation pattern was the simultaneous presence of multiple narrow wave fronts (26%). Twelve percent of activations represented transient rotors, seen in 85% of mapped regions with a median duration of 3 rotations. A total of 87% were centered on an area of short CL activity (<100 ms), although such activity had a positive predictive value for rotors of only 0.12. The distribution of activation patterns and wave-front directionality were highly stable over time, with a single dominant pattern within a 10-s AF segment recurring across all 6 segments in 62% of mapped regions. In patients with longstanding, persistent AF, activation patterns are spatiotemporally stable over 10 min. Transient rotors can be demonstrated in the majority of mapped regions, are spatiotemporally associated with short CL activity, and, when recurrent, demonstrate anatomical determinism. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  14. Spatiotemporal Dynamics of Whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) in Commercial Watermelon Crops.

    PubMed

    Lima, Carlos H O; Sarmento, Renato A; Galdino, Tarcísio V S; Pereira, Poliana S; Silva, Joedna; Souza, Danival J; Dos Santos, Gil R; Costa, Thiago L; Picanço, Marcelo C

    2018-04-16

    Spatiotemporal dynamics studies of crop pests enable the determination of the colonization pattern and dispersion of these insects in the landscape. Geostatistics is an efficient tool for these studies: to determine the spatial distribution pattern of the pest in the crops and to make maps that represent this situation. Analysis of these maps across the development of plants can be used as a tool in precision agriculture programs. Watermelon, Citrullus lanatus (Thunb.) Matsum. and Nakai (Cucurbitales: Cucurbitaceae), is the second most consumed fruit in the world, and the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is one of the most important pests of this crop. Thus, the objective of this work was to determine the spatiotemporal distribution of B. tabaci in commercial watermelon crops using geostatistics. For 2 yr, we monitored adult whitefly densities in eight watermelon crops in a tropical climate region. The location of the samples and other crops in the landscape was georeferenced. Experimental data were submitted to geostatistical analysis. The colonization of B. tabaci had two patterns. In the first, the colonization started at the outermost parts of the crop. In the second, the insects occupied the whole area of the crop since the beginning of cultivation. The maximum distance between sites of watermelon crops in which spatial dependence of B. tabaci densities was observed was 19.69 m. The adult B. tabaci densities in the eight watermelon fields were positively correlated with rainfall and relative humidity, whereas wind speed negatively affected whiteflies population.

  15. Simulation and spatiotemporal pattern of air temperature and precipitation in Eastern Central Asia using RegCM.

    PubMed

    Meng, Xianyong; Long, Aihua; Wu, Yiping; Yin, Gang; Wang, Hao; Ji, Xiaonan

    2018-02-26

    Central Asia is a region that has a large land mass, yet meteorological stations in this area are relatively scarce. To address this data issues, in this study, we selected two reanalysis datasets (the ERA40 and NCEP/NCAR) and downscaled them to 40 × 40 km using RegCM. Then three gridded datasets (the CRU, APHRO, and WM) that were extrapolated from the observations of Central Asian meteorological stations to evaluate the performance of RegCM and analyze the spatiotemporal distribution of precipitation and air temperature. We found that since the 1960s, the air temperature in Xinjiang shows an increasing trend and the distribution of precipitation in the Tianshan area is quite complex. The precipitation is increasing in the south of the Tianshan Mountains (Southern Xinjiang, SX) and decreasing in the mountainous areas. The CRU and WM data indicate that precipitation in the north of the Tianshan Mountains (Northern Xinjiang, NX) is increasing, while the APHRO data show an opposite trend. The downscaled results from RegCM are generally consistent with the extrapolated gridded datasets in terms of the spatiotemporal patterns. We believe that our results can provide useful information in developing a regional climate model in Central Asia where meteorological stations are scarce.

  16. Spontaneous switching among multiple spatio-temporal patterns in three-oscillator systems constructed with oscillatory cells of true slime mold

    NASA Astrophysics Data System (ADS)

    Takamatsu, Atsuko

    2006-11-01

    Three-oscillator systems with plasmodia of true slime mold, Physarum polycephalum, which is an oscillatory amoeba-like unicellular organism, were experimentally constructed and their spatio-temporal patterns were investigated. Three typical spatio-temporal patterns were found: rotation ( R), partial in-phase ( PI), and partial anti-phase with double frequency ( PA). In pattern R, phase differences between adjacent oscillators were almost 120 ∘. In pattern PI, two oscillators were in-phase and the third oscillator showed anti-phase against the two oscillators. In pattern PA, two oscillators showed anti-phase and the third oscillator showed frequency doubling oscillation with small amplitude. Actually each pattern is not perfectly stable but quasi-stable. Interestingly, the system shows spontaneous switching among the multiple quasi-stable patterns. Statistical analyses revealed a characteristic in the residence time of each pattern: the histograms seem to have Gamma-like distribution form but with a sharp peak and a tail on the side of long period. That suggests the attractor of this system has complex structure composed of at least three types of sub-attractors: a “Gamma attractor”-involved with several Poisson processes, a “deterministic attractor”-the residence time is deterministic, and a “stable attractor”-each pattern is stable. When the coupling strength was small, only the Gamma attractor was observed and switching behavior among patterns R, PI, and PA almost always via an asynchronous pattern named O. A conjecture is as follows: Internal/external noise exposes each pattern of R, PI, and PA coexisting around bifurcation points: That is observed as the Gamma attractor. As coupling strength increases, the deterministic attractor appears then followed by the stable attractor, always accompanied with the Gamma attractor. Switching behavior could be caused by regular existence of the Gamma attractor.

  17. Spatio-temporal patterns of bacteria caused by collective motion

    NASA Astrophysics Data System (ADS)

    Kitsunezaki, So

    2006-04-01

    In incubation experiments on bacterial colonies of Proteus mirabilis, collective motion of bacteria is found to generate macroscopic turbulent patterns on the surface of agar media. We propose a mathematical model to describe the time evolution of the positional and directional distributions of motile bacteria in such systems, and investigate this model both numerically and analytically. It is shown that as the average density of bacteria increases, nonuniform swarming patterns emerge from a uniform stationary state. For a sufficient large density, we find that spiral patterns are caused by interactions between the local bacteria densities and the rotational mode of the collective motion. Unidirectional spiral patterns similar to those observed in experiments appear in the case in which the equilibrium directional distribution is asymmetric.

  18. Understanding human activity patterns based on space-time-semantics

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Li, Songnian

    2016-11-01

    Understanding human activity patterns plays a key role in various applications in an urban environment, such as transportation planning and traffic forecasting, urban planning, public health and safety, and emergency response. Most existing studies in modeling human activity patterns mainly focus on spatiotemporal dimensions, which lacks consideration of underlying semantic context. In fact, what people do and discuss at some places, inferring what is happening at the places, cannot be simple neglected because it is the root of human mobility patterns. We believe that the geo-tagged semantic context, representing what individuals do and discuss at a place and a specific time, drives a formation of specific human activity pattern. In this paper, we aim to model human activity patterns not only based on space and time but also with consideration of associated semantics, and attempt to prove a hypothesis that similar mobility patterns may have different motivations. We develop a spatiotemporal-semantic model to quantitatively express human activity patterns based on topic models, leading to an analysis of space, time and semantics. A case study is conducted using Twitter data in Toronto based on our model. Through computing the similarities between users in terms of spatiotemporal pattern, semantic pattern and spatiotemporal-semantic pattern, we find that only a small number of users (2.72%) have very similar activity patterns, while the majority (87.14%) show different activity patterns (i.e., similar spatiotemporal patterns and different semantic patterns, similar semantic patterns and different spatiotemporal patterns, or different in both). The population of users that has very similar activity patterns is decreased by 56.41% after incorporating semantic information in the corresponding spatiotemporal patterns, which can quantitatively prove the hypothesis.

  19. Spatio-temporal pattern of viral meningitis in Michigan, 1993-2001

    NASA Astrophysics Data System (ADS)

    Greene, Sharon K.; Schmidt, Mark A.; Stobierski, Mary Grace; Wilson, Mark L.

    2005-05-01

    To characterize Michigan's high viral meningitis incidence rates, 8,803 cases from 1993-2001 were analyzed for standard epidemiological indices, geographic distribution, and spatio-temporal clusters. Blacks and infants were found to be high-risk groups. Annual seasonality and interannual variability in epidemic magnitude were apparent. Cases were concentrated in southern Michigan, and cumulative incidence was correlated with population density at the county level (r=0.45, p<0.001). Kulldorff's Scan test identified the occurrence of spatio-temporal clusters in Lower Michigan during July-October 1998 and 2001 (p=0.01). More extensive data on cases, laboratory isolates, sociodemographics, and environmental exposures should improve detection and enhance the effectiveness of a Space-Time Information System aimed at prevention.

  20. Determination of network origin-destination matrices using partial link traffic counts and virtual sensor information in an integrated corridor management framework.

    DOT National Transportation Integrated Search

    2014-04-01

    Trip origin-destination (O-D) demand matrices are critical components in transportation network : modeling, and provide essential information on trip distributions and corresponding spatiotemporal : traffic patterns in traffic zones in vehicular netw...

  1. Methods, caveats and the future of large-scale microelectrode recordings in the non-human primate

    PubMed Central

    Dotson, Nicholas M.; Goodell, Baldwin; Salazar, Rodrigo F.; Hoffman, Steven J.; Gray, Charles M.

    2015-01-01

    Cognitive processes play out on massive brain-wide networks, which produce widely distributed patterns of activity. Capturing these activity patterns requires tools that are able to simultaneously measure activity from many distributed sites with high spatiotemporal resolution. Unfortunately, current techniques with adequate coverage do not provide the requisite spatiotemporal resolution. Large-scale microelectrode recording devices, with dozens to hundreds of microelectrodes capable of simultaneously recording from nearly as many cortical and subcortical areas, provide a potential way to minimize these tradeoffs. However, placing hundreds of microelectrodes into a behaving animal is a highly risky and technically challenging endeavor that has only been pursued by a few groups. Recording activity from multiple electrodes simultaneously also introduces several statistical and conceptual dilemmas, such as the multiple comparisons problem and the uncontrolled stimulus response problem. In this perspective article, we discuss some of the techniques that we, and others, have developed for collecting and analyzing large-scale data sets, and address the future of this emerging field. PMID:26578906

  2. Assessing spatiotemporal patterns of multidrug-resistant and drug-sensitive tuberculosis in a South American setting

    PubMed Central

    Lin, H.; Shin, S.; Blaya, J. A.; Zhang, Z.; Cegielski, P.; Contreras, C.; Asencios, L.; Bonilla, C.; Bayona, J.; Paciorek, C. J.; Cohen, T.

    2011-01-01

    Summary We examined the spatiotemporal distribution of laboratory-confirmed multidrug-resistant tuberculosis (MDR TB) cases and that of other TB cases in Lima, Peru with the aim of identifying mechanisms responsible for the rise of MDR TB in an urban setting. All incident cases of TB in two districts of Lima, Peru during 2005–2007 were included. The spatiotemporal distributions of MDR cases and other TB cases were compared with Ripley's K statistic. Of 11 711 notified cases, 1187 received drug susceptibility testing and 376 were found to be MDR. Spatial aggregation of patients with confirmed MDR disease appeared similar to that of other patients in 2005 and 2006; however, in 2007, cases with confirmed MDR disease were found to be more tightly grouped. Subgroup analysis suggests the appearance of resistance may be driven by increased transmission. Interventions should aim to reduce the infectious duration for those with drug-resistant disease and improve infection control. PMID:21205434

  3. Spatiotemporal earthquake clusters along the North Anatolian fault zone offshore Istanbul

    USGS Publications Warehouse

    Bulut, Fatih; Ellsworth, William L.; Bohnhoff, Marco; Aktar, Mustafa; Dresen, Georg

    2011-01-01

    We investigate earthquakes with similar waveforms in order to characterize spatiotemporal microseismicity clusters within the North Anatolian fault zone (NAFZ) in northwest Turkey along the transition between the 1999 ??zmit rupture zone and the Marmara Sea seismic gap. Earthquakes within distinct activity clusters are relocated with cross-correlation derived relative travel times using the double difference method. The spatiotemporal distribution of micro earthquakes within individual clusters is resolved with relative location accuracy comparable to or better than the source size. High-precision relative hypocenters define the geometry of individual fault patches, permitting a better understanding of fault kinematics and their role in local-scale seismotectonics along the region of interest. Temporal seismic sequences observed in the eastern Sea of Marmara region suggest progressive failure of mostly nonoverlapping areas on adjacent fault patches and systematic migration of microearthquakes within clusters during the progressive failure of neighboring fault patches. The temporal distributions of magnitudes as well as the number of events follow swarmlike behavior rather than a mainshock/aftershock pattern.

  4. Visual representation of spatiotemporal structure

    NASA Astrophysics Data System (ADS)

    Schill, Kerstin; Zetzsche, Christoph; Brauer, Wilfried; Eisenkolb, A.; Musto, A.

    1998-07-01

    The processing and representation of motion information is addressed from an integrated perspective comprising low- level signal processing properties as well as higher-level cognitive aspects. For the low-level processing of motion information we argue that a fundamental requirement is the existence of a spatio-temporal memory. Its key feature, the provision of an orthogonal relation between external time and its internal representation, is achieved by a mapping of temporal structure into a locally distributed activity distribution accessible in parallel by higher-level processing stages. This leads to a reinterpretation of the classical concept of `iconic memory' and resolves inconsistencies on ultra-short-time processing and visual masking. The spatial-temporal memory is further investigated by experiments on the perception of spatio-temporal patterns. Results on the direction discrimination of motion paths provide evidence that information about direction and location are not processed and represented independent of each other. This suggests a unified representation on an early level, in the sense that motion information is internally available in form of a spatio-temporal compound. For the higher-level representation we have developed a formal framework for the qualitative description of courses of motion that may occur with moving objects.

  5. Instabilities and spatiotemporal patterns behind predator invasions with nonlocal prey competition.

    PubMed

    Merchant, Sandra M; Nagata, Wayne

    2011-12-01

    We study the influence of nonlocal intraspecies prey competition on the spatiotemporal patterns arising behind predator invasions in two oscillatory reaction-diffusion integro-differential models. We use three common types of integral kernels as well as develop a caricature system, to describe the influence of the standard deviation and kurtosis of the kernel function on the patterns observed. We find that nonlocal competition can destabilize the spatially homogeneous state behind the invasion and lead to the formation of complex spatiotemporal patterns, including stationary spatially periodic patterns, wave trains and irregular spatiotemporal oscillations. In addition, the caricature system illustrates how large standard deviation and low kurtosis facilitate the formation of these spatiotemporal patterns. This suggests that nonlocal competition may be an important mechanism underlying spatial pattern formation, particularly in systems where the competition between individuals varies over space in a platykurtic manner. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Spatio-temporal patterns of Barmah Forest virus disease in Queensland, Australia.

    PubMed

    Naish, Suchithra; Hu, Wenbiao; Mengersen, Kerrie; Tong, Shilu

    2011-01-01

    Barmah Forest virus (BFV) disease is a common and wide-spread mosquito-borne disease in Australia. This study investigated the spatio-temporal patterns of BFV disease in Queensland, Australia using geographical information system (GIS) tools and geostatistical analysis. We calculated the incidence rates and standardised incidence rates of BFV disease. Moran's I statistic was used to assess the spatial autocorrelation of BFV incidences. Spatial dynamics of BFV disease was examined using semi-variogram analysis. Interpolation techniques were applied to visualise and display the spatial distribution of BFV disease in statistical local areas (SLAs) throughout Queensland. Mapping of BFV disease by SLAs reveals the presence of substantial spatio-temporal variation over time. Statistically significant differences in BFV incidence rates were identified among age groups (χ(2) = 7587, df = 7327,p<0.01). There was a significant positive spatial autocorrelation of BFV incidence for all four periods, with the Moran's I statistic ranging from 0.1506 to 0.2901 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. This is the first study to examine spatial and temporal variation in the incidence rates of BFV disease across Queensland using GIS and geostatistics. The BFV transmission varied with age and gender, which may be due to exposure rates or behavioural risk factors. There are differences in the spatio-temporal patterns of BFV disease which may be related to local socio-ecological and environmental factors. These research findings may have implications in the BFV disease control and prevention programs in Queensland.

  7. Rich do not rise early: spatio-temporal patterns in the mobility networks of different socio-economic classes

    PubMed Central

    Hurtado, Rafael G.; Floría, Luis Mario

    2016-01-01

    We analyse the urban mobility in the cities of Medellín and Manizales (Colombia). Each city is represented by six mobility networks, each one encoding the origin-destination trips performed by a subset of the population corresponding to a particular socio-economic status. The nodes of each network are the different urban locations whereas links account for the existence of a trip between two different areas of the city. We study the main structural properties of these mobility networks by focusing on their spatio-temporal patterns. Our goal is to relate these patterns with the partition into six socio-economic compartments of these two societies. Our results show that spatial and temporal patterns vary across these socio-economic groups. In particular, the two datasets show that as wealth increases the early-morning activity is delayed, the midday peak becomes smoother and the spatial distribution of trips becomes more localized. PMID:27853531

  8. High-resolution optical control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror device.

    PubMed

    Zhu, Peixin; Fajardo, Otto; Shum, Jennifer; Zhang Schärer, Yan-Ping; Friedrich, Rainer W

    2012-06-28

    Optogenetic approaches allow the manipulation of neuronal activity patterns in space and time by light, particularly in small animals such as zebrafish. However, most techniques cannot control neuronal activity independently at different locations. Here we describe equipment and provide a protocol for single-photon patterned optical stimulation of neurons using a digital micromirror device (DMD). This method can create arbitrary spatiotemporal light patterns with spatial and temporal resolutions in the micrometer and submillisecond range, respectively. Different options to integrate a DMD into a multiphoton microscope are presented and compared. We also describe an ex vivo preparation of the adult zebrafish head that greatly facilitates optogenetic and other experiments. After assembly, the initial alignment takes about one day and the zebrafish preparation takes <30 min. The method has previously been used to activate channelrhodopsin-2 and manipulate oscillatory synchrony among spatially distributed neurons in the zebrafish olfactory bulb. It can be adapted easily to a wide range of other species, optogenetic probes and scientific applications.

  9. Spatio-Temporal Data Comparisons for Global Highly Pathogenic Avian Influenza (HPAI) H5N1 Outbreaks

    PubMed Central

    Chen, Dongmei; Chen, Yue; Wang, Lei; Zhao, Fei; Yao, Baodong

    2010-01-01

    Highly pathogenic avian influenza subtype H5N1 is a zoonotic disease and control of the disease is one of the highest priority in global health. Disease surveillance systems are valuable data sources for various researches and management projects, but the data quality has not been paid much attention in previous studies. Based on data from two commonly used databases (Office International des Epizooties (OIE) and Food and Agriculture Organization of the United Nations (FAO)) of global HPAI H5N1 outbreaks during the period of 2003–2009, we examined and compared their patterns of temporal, spatial and spatio-temporal distributions for the first time. OIE and FAO data showed similar trends in temporal and spatial distributions if they were considered separately. However, more advanced approaches detected a significant difference in joint spatio-temporal distribution. Because of incompleteness for both OIE and FAO data, an integrated dataset would provide a more complete picture of global HPAI H5N1 outbreaks. We also displayed a mismatching profile of global HPAI H5N1 outbreaks and found that the degree of mismatching was related to the epidemic severity. The ideas and approaches used here to assess spatio-temporal data on the same disease from different sources are useful for other similar studies. PMID:21187964

  10. Towards a theoretical determination of the geographical probability distribution of meteoroid impacts on Earth

    NASA Astrophysics Data System (ADS)

    Zuluaga, Jorge I.; Sucerquia, Mario

    2018-06-01

    Tunguska and Chelyabinsk impact events occurred inside a geographical area of only 3.4 per cent of the Earth's surface. Although two events hardly constitute a statistically significant demonstration of a geographical pattern of impacts, their spatial coincidence is at least tantalizing. To understand if this concurrence reflects an underlying geographical and/or temporal pattern, we must aim at predicting the spatio-temporal distribution of meteoroid impacts on Earth. For this purpose we designed, implemented, and tested a novel numerical technique, the `Gravitational Ray Tracing' (GRT) designed to compute the relative impact probability (RIP) on the surface of any planet. GRT is inspired by the so-called ray-casting techniques used to render realistic images of complex 3D scenes. In this paper we describe the method and the results of testing it at the time of large impact events. Our findings suggest a non-trivial pattern of impact probabilities at any given time on the Earth. Locations at 60-90° from the apex are more prone to impacts, especially at midnight. Counterintuitively, sites close to apex direction have the lowest RIP, while in the antapex RIP are slightly larger than average. We present here preliminary maps of RIP at the time of Tunguska and Chelyabinsk events and found no evidence of a spatial or temporal pattern, suggesting that their coincidence was fortuitous. We apply the GRT method to compute theoretical RIP at the location and time of 394 large fireballs. Although the predicted spatio-temporal impact distribution matches marginally the observed events, we successfully predict their impact speed distribution.

  11. Trends in spatio-temporal dynamics of visceral leishmaniasis cases in a highly-endemic focus of Bihar, India: an investigation based on GIS tools.

    PubMed

    Mandal, Rakesh; Kesari, Shreekant; Kumar, Vijay; Das, Pradeep

    2018-04-02

    Visceral leishmaniasis (VL) in Bihar State (India) continues to be endemic, despite the existence of effective treatment and a vector control program to control disease morbidity. A clear understanding of spatio-temporal distribution of VL may improve surveillance and control implementation. This study explored the trends in spatio-temporal dynamics of VL endemicity at a meso-scale level in Vaishali District, based on geographical information systems (GIS) tools and spatial statistical analysis. A GIS database was used to integrate the VL case data from the study area between 2009 and 2014. All cases were spatially linked at a meso-scale level. Geospatial techniques, such as GIS-layer overlaying and mapping, were employed to visualize and detect the spatio-temporal patterns of a VL endemic outbreak across the district. The spatial statistic Moran's I Index (Moran's I) was used to simultaneously evaluate spatial-correlation between endemic villages and the spatial distribution patterns based on both the village location and the case incidence rate (CIR). Descriptive statistics such as mean, standard error, confidence intervals and percentages were used to summarize the VL case data. There were 624 endemic villages with 2719 (average 906 cases/year) VL cases during 2012-2014. The Moran's I revealed a cluster pattern (P < 0.05) of CIR distribution at the meso-scale level. On average, 68 villages were newly-endemic each year. Of which 93.1% of villages' endemicity were found to have occurred on the peripheries of the previous year endemic villages. The mean CIR of the endemic villages that were peripheral to the following year newly-endemic villages, compared to all endemic villages of the same year, was higher (P < 0.05). The results show that the VL endemicity of new villages tends to occur on the periphery of villages endemic in the previous year. High-CIR plays a major role in the spatial dispersion of the VL cases between non-endemic and endemic villages. This information can help achieve VL elimination throughout the Indian subcontinent by improving vector control design and implementation in highly-endemic district.

  12. Understanding the spatiotemporal pattern of grazing cattle movement

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Jurdak, Raja

    2016-08-01

    Understanding the drivers of animal movement is significant for ecology and biology. Yet researchers have so far been unable to fully understand these drivers, largely due to low data resolution. In this study, we analyse a high-frequency movement dataset for a group of grazing cattle and investigate their spatiotemporal patterns using a simple two-state ‘stop-and-move’ mobility model. We find that the dispersal kernel in the moving state is best described by a mixture exponential distribution, indicating the hierarchical nature of the movement. On the other hand, the waiting time appears to be scale-invariant below a certain cut-off and is best described by a truncated power-law distribution, suggesting that the non-moving state is governed by time-varying dynamics. We explore possible explanations for the observed phenomena, covering factors that can play a role in the generation of mobility patterns, such as the context of grazing environment, the intrinsic decision-making mechanism or the energy status of different activities. In particular, we propose a new hypothesis that the underlying movement pattern can be attributed to the most probable observable energy status under the maximum entropy configuration. These results are not only valuable for modelling cattle movement but also provide new insights for understanding the underlying biological basis of grazing behaviour.

  13. Understanding the Spatio-Temporal Pattern of Fire Disturbance in the Eastern Mongolia Using Modis Product

    NASA Astrophysics Data System (ADS)

    Wurihan; Zhang, H.; Zhang, Z.; Guo, X.; Zhao, J.; Duwala; Shan, Y.; Hongying

    2018-04-01

    Fire disturbance plays an important role in maintaining ecological balance, biodiversity and self-renewal. In this paper, the spatio-temporal pattern of fire disturbances in eastern Mongolia are studied by using the ArcGIS spatial analysis method, using the MCD45A1 data of MODIS fire products with long time series. It provides scientific basis and reference for the regional ecological environment security construction and international ecological security. Research indicates: (1) The fire disturbance in eastern Mongolia has obvious high and low peak interleaving phenomenon in the year, and the seasonal change is obvious. (2) The distribution pattern of fire disturbance in eastern Mongolia is aggregated, which indicates that the fire disturbance is not random and it is caused by certain influence. (3) Fire disturbance is mainly distributed in the eastern province of Mongolia, the border between China and Mongolia and the northern forest area of Sukhbaatar province. (4) The fire disturbance in the eastern part of the study area is strong and the southwest is weaker. The spreading regularity of fire disturbances in eastern Mongolia is closer to the natural level of ecosystem.

  14. Capacity for patterns and sequences in Kanerva's SDM as compared to other associative memory models. [Sparse, Distributed Memory

    NASA Technical Reports Server (NTRS)

    Keeler, James D.

    1988-01-01

    The information capacity of Kanerva's Sparse Distributed Memory (SDM) and Hopfield-type neural networks is investigated. Under the approximations used here, it is shown that the total information stored in these systems is proportional to the number connections in the network. The proportionality constant is the same for the SDM and Hopfield-type models independent of the particular model, or the order of the model. The approximations are checked numerically. This same analysis can be used to show that the SDM can store sequences of spatiotemporal patterns, and the addition of time-delayed connections allows the retrieval of context dependent temporal patterns. A minor modification of the SDM can be used to store correlated patterns.

  15. Estimating repetitive spatiotemporal patterns from resting-state brain activity data.

    PubMed

    Takeda, Yusuke; Hiroe, Nobuo; Yamashita, Okito; Sato, Masa-Aki

    2016-06-01

    Repetitive spatiotemporal patterns in spontaneous brain activities have been widely examined in non-human studies. These studies have reported that such patterns reflect past experiences embedded in neural circuits. In human magnetoencephalography (MEG) and electroencephalography (EEG) studies, however, spatiotemporal patterns in resting-state brain activities have not been extensively examined. This is because estimating spatiotemporal patterns from resting-state MEG/EEG data is difficult due to their unknown onsets. Here, we propose a method to estimate repetitive spatiotemporal patterns from resting-state brain activity data, including MEG/EEG. Without the information of onsets, the proposed method can estimate several spatiotemporal patterns, even if they are overlapping. We verified the performance of the method by detailed simulation tests. Furthermore, we examined whether the proposed method could estimate the visual evoked magnetic fields (VEFs) without using stimulus onset information. The proposed method successfully detected the stimulus onsets and estimated the VEFs, implying the applicability of this method to real MEG data. The proposed method was applied to resting-state functional magnetic resonance imaging (fMRI) data and MEG data. The results revealed informative spatiotemporal patterns representing consecutive brain activities that dynamically change with time. Using this method, it is possible to reveal discrete events spontaneously occurring in our brains, such as memory retrieval. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Small-Scale Spatio-Temporal Distribution of Bactrocera minax (Enderlein) (Diptera: Tephritidae) Using Probability Kriging.

    PubMed

    Wang, S Q; Zhang, H Y; Li, Z L

    2016-10-01

    Understanding spatio-temporal distribution of pest in orchards can provide important information that could be used to design monitoring schemes and establish better means for pest control. In this study, the spatial and temporal distribution of Bactrocera minax (Enderlein) (Diptera: Tephritidae) was assessed, and activity trends were evaluated by using probability kriging. Adults of B. minax were captured in two successive occurrences in a small-scale citrus orchard by using food bait traps, which were placed both inside and outside the orchard. The weekly spatial distribution of B. minax within the orchard and adjacent woods was examined using semivariogram parameters. The edge concentration was discovered during the most weeks in adult occurrence, and the population of the adults aggregated with high probability within a less-than-100-m-wide band on both of the sides of the orchard and the woods. The sequential probability kriged maps showed that the adults were estimated in the marginal zone with higher probability, especially in the early and peak stages. The feeding, ovipositing, and mating behaviors of B. minax are possible explanations for these spatio-temporal patterns. Therefore, spatial arrangement and distance to the forest edge of traps or spraying spot should be considered to enhance pest control on B. minax in small-scale orchards.

  17. Comparative Epidemiology of Highly Pathogenic Avian Influenza Virus H5N1 and H5N6 in Vietnamese Live Bird Markets: Spatiotemporal Patterns of Distribution and Risk Factors.

    PubMed

    Mellor, Kate C; Meyer, Anne; Elkholly, Doaa A; Fournié, Guillaume; Long, Pham T; Inui, Ken; Padungtod, Pawin; Gilbert, Marius; Newman, Scott H; Vergne, Timothée; Pfeiffer, Dirk U; Stevens, Kim B

    2018-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus has been circulating in Vietnam since 2003, whilst outbreaks of HPAI H5N6 virus are more recent, having only been reported since 2014. Although the spatial distribution of H5N1 outbreaks and risk factors for virus occurrence has been extensively studied, there have been no comparative studies for H5N6. Data collected through active surveillance of Vietnamese live bird markets (LBMs) between 2011 and 2015 were used to explore and compare the spatiotemporal distributions of H5N1- and H5N6-positive LBMs. Conditional autoregressive models were developed to quantify spatiotemporal associations between agroecological factors and the two HPAI strains using the same set of predictor variables. Unlike H5N1, which exhibited a strong north-south divide, with repeated occurrence in the extreme south of a cluster of high-risk provinces, H5N6 was homogeneously distributed throughout Vietnam. Similarly, different agroecological factors were associated with each strain. Sample collection in the months of January and February and higher average maximum temperature were associated with higher likelihood of H5N1-positive market-day status. The likelihood of market days being positive for H5N6 increased with decreased river density, and with successive Rounds of data collection. This study highlights marked differences in spatial patterns and risk factors for H5N1 and H5N6 in Vietnam, suggesting the need for tailored surveillance and control approaches.

  18. Comparative Epidemiology of Highly Pathogenic Avian Influenza Virus H5N1 and H5N6 in Vietnamese Live Bird Markets: Spatiotemporal Patterns of Distribution and Risk Factors

    PubMed Central

    Mellor, Kate C.; Meyer, Anne; Elkholly, Doaa A.; Fournié, Guillaume; Long, Pham T.; Inui, Ken; Padungtod, Pawin; Gilbert, Marius; Newman, Scott H.; Vergne, Timothée; Pfeiffer, Dirk U.; Stevens, Kim B.

    2018-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus has been circulating in Vietnam since 2003, whilst outbreaks of HPAI H5N6 virus are more recent, having only been reported since 2014. Although the spatial distribution of H5N1 outbreaks and risk factors for virus occurrence has been extensively studied, there have been no comparative studies for H5N6. Data collected through active surveillance of Vietnamese live bird markets (LBMs) between 2011 and 2015 were used to explore and compare the spatiotemporal distributions of H5N1- and H5N6-positive LBMs. Conditional autoregressive models were developed to quantify spatiotemporal associations between agroecological factors and the two HPAI strains using the same set of predictor variables. Unlike H5N1, which exhibited a strong north–south divide, with repeated occurrence in the extreme south of a cluster of high-risk provinces, H5N6 was homogeneously distributed throughout Vietnam. Similarly, different agroecological factors were associated with each strain. Sample collection in the months of January and February and higher average maximum temperature were associated with higher likelihood of H5N1-positive market-day status. The likelihood of market days being positive for H5N6 increased with decreased river density, and with successive Rounds of data collection. This study highlights marked differences in spatial patterns and risk factors for H5N1 and H5N6 in Vietnam, suggesting the need for tailored surveillance and control approaches. PMID:29675418

  19. Spatiotemporal Aeration and Lung Injury Patterns Are Influenced by the First Inflation Strategy at Birth.

    PubMed

    Tingay, David G; Rajapaksa, Anushi; Zonneveld, C Elroy; Black, Don; Perkins, Elizabeth J; Adler, Andy; Grychtol, Bartłomiej; Lavizzari, Anna; Frerichs, Inéz; Zahra, Valerie A; Davis, Peter G

    2016-02-01

    Ineffective aeration during the first inflations at birth creates regional aeration and ventilation defects, initiating injurious pathways. This study aimed to compare a sustained first inflation at birth or dynamic end-expiratory supported recruitment during tidal inflations against ventilation without intentional recruitment on gas exchange, lung mechanics, spatiotemporal regional aeration and tidal ventilation, and regional lung injury in preterm lambs. Lambs (127 ± 2 d gestation), instrumented at birth, were ventilated for 60 minutes from birth with either lung-protective positive pressure ventilation (control) or as per control after either an initial 30 seconds of 40 cm H2O sustained inflation (SI) or an initial stepwise end-expiratory pressure recruitment maneuver during tidal inflations (duration 180 s; open lung ventilation [OLV]). At study completion, molecular markers of lung injury were analyzed. The initial use of an OLV maneuver, but not SI, at birth resulted in improved lung compliance, oxygenation, end-expiratory lung volume, and reduced ventilatory needs compared with control, persisting throughout the study. These changes were due to more uniform inter- and intrasubject gravity-dependent spatiotemporal patterns of aeration (measured using electrical impedance tomography). Spatial distribution of tidal ventilation was more stable after either recruitment maneuver. All strategies caused regional lung injury patterns that mirrored associated regional volume states. Irrespective of strategy, spatiotemporal volume loss was consistently associated with up-regulation of early growth response-1 expression. Our results show that mechanical and molecular consequences of lung aeration at birth are not simply related to rapidity of fluid clearance; they are also related to spatiotemporal pressure-volume interactions within the lung during inflation and deflation.

  20. Self-organized mechano-chemical dynamics in amoeboid locomotion of Physarum fragments

    NASA Astrophysics Data System (ADS)

    Zhang, Shun; Guy, Robert D.; Lasheras, Juan C.; del Álamo, Juan C.

    2017-05-01

    The aim of this work is to quantify the spatio-temporal dynamics of flow-driven amoeboid locomotion in small (∼100 μm) fragments of the true slime mold Physarum polycephalum. In this model organism, cellular contraction drives intracellular flows, and these flows transport the chemical signals that regulate contraction in the first place. As a consequence of these non-linear interactions, a diversity of migratory behaviors can be observed in migrating Physarum fragments. To study these dynamics, we measure the spatio-temporal distributions of the velocities of the endoplasm and ectoplasm of each migrating fragment, the traction stresses it generates on the substratum, and the concentration of free intracellular calcium. Using these unprecedented experimental data, we classify migrating Physarum fragments according to their dynamics, finding that they often exhibit spontaneously coordinated waves of flow, contractility and chemical signaling. We show that Physarum fragments exhibiting symmetric spatio-temporal patterns of endoplasmic flow migrate significantly slower than fragments with asymmetric patterns. In addition, our joint measurements of ectoplasm velocity and traction stress at the substratum suggest that forward motion of the ectoplasm is enabled by a succession of stick-slip transitions, which we conjecture are also organized in the form of waves. Combining our experiments with a simplified convection-diffusion model, we show that the convective transport of calcium ions may be key for establishing and maintaining the spatio-temporal patterns of calcium concentration that regulate the generation of contractile forces.

  1. Analysis of the Mediterranean fruit fly [Ceratitis capitata (Wiedemann)] spatio-temporal distribution in relation to sex and female mating status for precision IPM.

    PubMed

    Sciarretta, Andrea; Tabilio, Maria Rosaria; Lampazzi, Elena; Ceccaroli, Claudio; Colacci, Marco; Trematerra, Pasquale

    2018-01-01

    The Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann), is a key pest of fruit crops in many tropical, subtropical and mild temperate areas worldwide. The economic importance of this fruit fly is increasing due to its invasion of new geographical areas. Efficient control and eradication efforts require adequate information regarding C. capitata adults in relation to environmental and physiological cues. This would allow effective characterisation of the population spatio-temporal dynamic of the C. capitata population at both the orchard level and the area-wide landscape. The aim of this study was to analyse population patterns of adult medflies caught using two trapping systems in a peach orchard located in central Italy. They were differentiated by adult sex (males or females) and mating status of females (unmated or mated females) to determine the spatio-temporal dynamic and evaluate the effect of cultivar and chemical treatments on trap catches. Female mating status was assessed by spermathecal dissection and a blind test was carried out to evaluate the reliability of the technique. Geostatistical methods, variogram and kriging, were used to produce distributional maps. Results showed a strong correlation between the distribution of males and unmated females, whereas males versus mated females and unmated females versus mated females showed a lower correlation. Both cultivar and chemical treatments had significant effects on trap catches, showing associations with sex and female mating status. Medfly adults showed aggregated distributions in the experimental field, but hot spots locations varied. The spatial pattern of unmated females reflected that of males, whereas mated females were largely distributed around ripening or ripe fruit. The results give relevant insights into pest management. Mated females may be distributed differently to unmated females and the identification of male hot spots through monitoring would allow localisation of virgin female populations. Based on our results, a more precise IPM strategy, coupled with effective sanitation practices, could represent a more effective approach to medfly control.

  2. Dynamical Properties of Transient Spatio-Temporal Patterns in Bacterial Colony of Proteus mirabilis

    NASA Astrophysics Data System (ADS)

    Watanabe, Kazuhiko; Wakita, Jun-ichi; Itoh, Hiroto; Shimada, Hirotoshi; Kurosu, Sayuri; Ikeda, Takemasa; Yamazaki, Yoshihiro; Matsuyama, Tohey; Matsushita, Mitsugu

    2002-02-01

    Spatio-temporal patterns emerged inside a colony of bacterial species Proteus mirabilis on the surface of nutrient-rich semisolid agar medium have been investigated. We observed various patterns composed of the following basic types: propagating stripe, propagating stripe with fixed dislocation, expanding and shrinking target, and rotating spiral. The remarkable point is that the pattern changes immediately when we alter the position for observation, but it returns to the original if we restore the observing position within a few minutes. We further investigated mesoscopic and microscopic properties of the spatio-temporal patterns. It turned out that whenever the spatio-temporal patterns are observed in a colony, the areas are composed of two superimposed monolayers of elongated bacterial cells. In each area they are aligned almost parallel with each other like a two-dimensional nematic liquid crystal, and move collectively and independently of another layer. It has been found that the observed spatio-temporal patterns are explained as the moiré effect.

  3. Spatiotemporal chaos and two-dimensional dissipative rogue waves in Lugiato-Lefever model

    NASA Astrophysics Data System (ADS)

    Panajotov, Krassimir; Clerc, Marcel G.; Tlidi, Mustapha

    2017-06-01

    Driven nonlinear optical cavities can exhibit complex spatiotemporal dynamics. We consider the paradigmatic Lugiato-Lefever model describing driven nonlinear optical resonator. This model is one of the most-studied nonlinear equations in optics. It describes a large spectrum of nonlinear phenomena from bistability, to periodic patterns, localized structures, self-pulsating localized structures and to a complex spatiotemporal behavior. The model is considered also as prototype model to describe several optical nonlinear devices such as Kerr media, liquid crystals, left handed materials, nonlinear fiber cavity, and frequency comb generation. We focus our analysis on a spatiotemporal chaotic dynamics in one-dimension. We identify a route to spatiotemporal chaos through an extended quasiperiodicity. We have estimated the Kaplan-Yorke dimension that provides a measure of the strange attractor complexity. Likewise, we show that the Lugiato-Leferver equation supports rogues waves in two-dimensional settings. We characterize rogue-wave formation by computing the probability distribution of the pulse height. Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

  4. Exploring Spatiotemporal Trends in Commercial Fishing Effort of an Abalone Fishing Zone: A GIS-Based Hotspot Model

    PubMed Central

    Jalali, M. Ali; Ierodiaconou, Daniel; Gorfine, Harry; Monk, Jacquomo; Rattray, Alex

    2015-01-01

    Assessing patterns of fisheries activity at a scale related to resource exploitation has received particular attention in recent times. However, acquiring data about the distribution and spatiotemporal allocation of catch and fishing effort in small scale benthic fisheries remains challenging. Here, we used GIS-based spatio-statistical models to investigate the footprint of commercial diving events on blacklip abalone (Haliotis rubra) stocks along the south-west coast of Victoria, Australia from 2008 to 2011. Using abalone catch data matched with GPS location we found catch per unit of fishing effort (CPUE) was not uniformly spatially and temporally distributed across the study area. Spatial autocorrelation and hotspot analysis revealed significant spatiotemporal clusters of CPUE (with distance thresholds of 100’s of meters) among years, indicating the presence of CPUE hotspots focused on specific reefs. Cumulative hotspot maps indicated that certain reef complexes were consistently targeted across years but with varying intensity, however often a relatively small proportion of the full reef extent was targeted. Integrating CPUE with remotely-sensed light detection and ranging (LiDAR) derived bathymetry data using generalized additive mixed model corroborated that fishing pressure primarily coincided with shallow, rugose and complex components of reef structures. This study demonstrates that a geospatial approach is efficient in detecting patterns and trends in commercial fishing effort and its association with seafloor characteristics. PMID:25992800

  5. Spatiotemporal Patterns Produced by Bacteria

    NASA Astrophysics Data System (ADS)

    Shimada, Yuji; Nakahara, Akio; Matsushita, Mitsugu; Matsuyama, Tohey

    1995-06-01

    Spatiotemporal patterns formed by a bacterial colony of Proteus mirabilis on an agar plate were observed. About half or one hour after the colony spread over the entire surface of the agar medium in a petridish, various patterns including target and spiral patterns appeared. They are very similar to those seen in other dissipative systems, such as chemical oscillations and electrohydrodynamic convective systems. Microscopic observations revealed that the collective motion of bacterial cells is responsible for the formation of these spatiotemporal patterns.

  6. [Spatio-temporal analysis of the biophysical and ecological conditions of Triatoma dimidiata (Hemiptera: Reduviidae: Triatominae) in the northeast region of Colombia].

    PubMed

    Badel-Mogollón, Jaime; Rodríguez-Figueroa, Laura; Parra-Henao, Gabriel

    2017-03-29

    Due to the lack of information regarding biophysical and spatio-temporal conditions (hydrometheorologic and vegetal coverage density) in areas with Triatoma dimidiata in the Colombian departments of Santander and Boyacá, there is a need to elucidate the association patterns of these variables to determine the distribution and control of this species. To make a spatio-temporal analysis of biophysical variables related to the distribution of T. dimidiate observed in the northeast region of Colombia. We used the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) data bases registering vector presence and hydrometheorologic data. We studied the variables of environmental temperature, relative humidity, rainfall and vegetal coverage density at regional and local levels, and we conducted spatial geostatistic, descriptive statistical and Fourier temporal series analyses. Temperatures two meters above the ground and on covered surface ranged from 14,5°C to 18,8°C in the areas with the higher density of T. dimidiata. The environmental temperature fluctuated between 30 and 32°C. Vegetal coverage density and rainfall showed patterns of annual and biannual peaks. Relative humidity values fluctuated from 66,8 to 85,1%. Surface temperature and soil coverage were the variables that better explained the life cycle of T. dimidiata in the area. High relative humidity promoted the seek of shelters and an increase of the geographic distribution in the annual and biannual peaks of regional rainfall. The ecologic and anthropic conditions suggest that T. dimidiata is a highly resilient species.

  7. Spatio-Temporal Patterns of Barmah Forest Virus Disease in Queensland, Australia

    PubMed Central

    Naish, Suchithra; Hu, Wenbiao; Mengersen, Kerrie; Tong, Shilu

    2011-01-01

    Background Barmah Forest virus (BFV) disease is a common and wide-spread mosquito-borne disease in Australia. This study investigated the spatio-temporal patterns of BFV disease in Queensland, Australia using geographical information system (GIS) tools and geostatistical analysis. Methods/Principal Findings We calculated the incidence rates and standardised incidence rates of BFV disease. Moran's I statistic was used to assess the spatial autocorrelation of BFV incidences. Spatial dynamics of BFV disease was examined using semi-variogram analysis. Interpolation techniques were applied to visualise and display the spatial distribution of BFV disease in statistical local areas (SLAs) throughout Queensland. Mapping of BFV disease by SLAs reveals the presence of substantial spatio-temporal variation over time. Statistically significant differences in BFV incidence rates were identified among age groups (χ2 = 7587, df = 7327,p<0.01). There was a significant positive spatial autocorrelation of BFV incidence for all four periods, with the Moran's I statistic ranging from 0.1506 to 0.2901 (p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. Conclusions/Significance This is the first study to examine spatial and temporal variation in the incidence rates of BFV disease across Queensland using GIS and geostatistics. The BFV transmission varied with age and gender, which may be due to exposure rates or behavioural risk factors. There are differences in the spatio-temporal patterns of BFV disease which may be related to local socio-ecological and environmental factors. These research findings may have implications in the BFV disease control and prevention programs in Queensland. PMID:22022430

  8. Spatiotemporal patterns, annual baseline and movement-related incidence of Streptococcus agalactiae infection in Danish dairy herds: 2000-2009.

    PubMed

    Mweu, Marshal M; Nielsen, Søren S; Halasa, Tariq; Toft, Nils

    2014-02-01

    Several decades after the inception of the five-point plan for the control of contagious mastitis pathogens, Streptococcus agalactiae (S. agalactiae) persists as a fundamental threat to the dairy industry in many countries. A better understanding of the relative importance of within- and between-herd sources of new herd infections coupled with the spatiotemporal distribution of the infection, may aid in effective targeting of control efforts. Thus, the objectives of this study were: (1) to describe the spatiotemporal patterns of infection with S. agalactiae in the population of Danish dairy herds from 2000 to 2009 and (2) to estimate the annual herd-level baseline and movement-related incidence risks of S. agalactiae infection over the 10-year period. The analysis involved registry data on bacteriological culture of all bulk tank milk samples collected as part of the mandatory Danish S. agalactiae surveillance scheme as well as live cattle movements into dairy herds during the specified 10-year period. The results indicated that the predicted risk of a herd becoming infected with S. agalactiae varied spatiotemporally; the risk being more homogeneous and higher in the period after 2005. Additionally, the annual baseline risks yielded significant yet distinctive patterns before and after 2005 - the risk of infection being higher in the latter phase. On the contrary, the annual movement-related risks revealed a non-significant pattern over the 10-year period. There was neither evidence for spatial clustering of cases relative to the population of herds at risk nor spatial dependency between herds. Nevertheless, the results signal a need to beef up within-herd biosecurity in order to reduce the risk of new herd infections. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Spatiotemporal resource distribution and foraging strategies of ants (Hymenoptera: Formicidae)

    PubMed Central

    Lanan, Michele

    2014-01-01

    The distribution of food resources in space and time is likely to be an important factor governing the type of foraging strategy used by ants. However, no previous systematic attempt has been made to determine whether spatiotemporal resource distribution is in fact correlated with foraging strategy across the ants. In this analysis, I present data compiled from the literature on the foraging strategy and food resource use of 402 species of ants from across the phylogenetic tree. By categorizing the distribution of resources reported in these studies in terms of size relative to colony size, spatial distribution relative to colony foraging range, frequency of occurrence in time relative to worker life span, and depletability (i.e., whether the colony can cause a change in resource frequency), I demonstrate that different foraging strategies are indeed associated with specific spatiotemporal resource attributes. The general patterns I describe here can therefore be used as a framework to inform predictions in future studies of ant foraging behavior. No differences were found between resources collected via short-term recruitment strategies (group recruitment, short-term trails, and volatile recruitment), whereas different resource distributions were associated with solitary foraging, trunk trails, long-term trail networks, group raiding, and raiding. In many cases, ant species use a combination of different foraging strategies to collect diverse resources. It is useful to consider these foraging strategies not as separate options but as modular parts of the total foraging effort of a colony. PMID:25525497

  10. Dynamical mechanisms for skeletal pattern formation in the vertebrate limb.

    PubMed Central

    Hentschel, H. G. E.; Glimm, Tilmann; Glazier, James A.; Newman, Stuart A.

    2004-01-01

    We describe a 'reactor-diffusion' mechanism for precartilage condensation based on recent experiments on chondrogenesis in the early vertebrate limb and additional hypotheses. Cellular differentiation of mesenchymal cells into subtypes with different fibroblast growth factor (FGF) receptors occurs in the presence of spatio-temporal variations of FGFs and transforming growth factor-betas (TGF-betas). One class of differentiated cells produces elevated quantities of the extracellular matrix protein fibronectin, which initiates adhesion-mediated preskeletal mesenchymal condensation. The same class of cells also produces an FGF-dependent laterally acting inhibitor that keeps condensations from expanding beyond a critical size. We show that this 'reactor-diffusion' mechanism leads naturally to patterning consistent with skeletal form, and describe simulations of spatio-temporal distribution of these differentiated cell types and the TGF-beta and inhibitor concentrations in the developing limb bud. PMID:15306292

  11. Patterns of local and nonlocal water resource use across the western U.S. determined via stable isotope intercomparisons

    USDA-ARS?s Scientific Manuscript database

    In this paper we develop an isotope-based statistical framework to evaluate the dynamics of the relationship between water supplies used for human consumption and several hydrological factors, including the spatiotemporal distribution of precipitation and snowmelt as well as the timing and rates of ...

  12. Historic changes in fish assemblage structure in midwestern nonwadeable rivers

    USGS Publications Warehouse

    Parks, Timothy P.; Quist, Michael C.; Pierce, Clay L.

    2014-01-01

    Historical change in fish assemblage structure was evaluated in the mainstems of the Des Moines, Iowa, Cedar, Wapsipinicon, and Maquoketa rivers, in Iowa. Fish occurrence data were compared in each river between historical and recent time periods to characterize temporal changes among 126 species distributions and assess spatiotemporal patterns in faunal similarity. A resampling procedure was used to estimate species occurrences in rivers during each assessment period and changes in species occurrence were summarized. Spatiotemporal shifts in species composition were analyzed at the river and river section scale using cluster analysis, pairwise Jaccard's dissimilarities, and analysis of multivariate beta dispersion. The majority of species exhibited either increases or declines in distribution in all rivers with the exception of several “unknown” or inconclusive trends exhibited by species in the Maquoketa River. Cluster analysis identified temporal patterns of similarity among fish assemblages in the Des Moines, Cedar, and Iowa rivers within the historical and recent assessment period indicating a significant change in species composition. Prominent declines of backwater species with phytophilic spawning strategies contributed to assemblage changes occurring across river systems.

  13. Composite catalyst surfaces: Effect of inert and active heterogeneities on pattern formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, M.; Bangia, A.K.; Kevrekidis, I.G.

    1996-12-05

    Spatiotemporal dynamics in reaction-diffusion systems can be altered through the properties (reactivity, diffusivity) of the medium in which they occur. We construct active heterogeneous media (composite catalytic surfaces with inert as well as active illusions) using microelectronics fabrication techniques and study the spatiotemporal dynamics of heterogeneous catalytic reactions on these catalysts. In parallel, we perform simulations as well as numerical stability and bifurcation analysis of these patterns using mechanistic models. At the limit of large heterogeneity `grain size` (compared to the wavelength of spontaneously arising structures) the interaction patterns with inert or active boundaries dominates (e.g., pinning, transmission, and boundarymore » breakup of spirals, interaction of pulses with corners, `pacemaker` effects). At the opposite limit of very small or very finely distributed heterogeneity, effective behavior is observed (slight modulation of pulses, nearly uniform oscillations, effective spirals). Some representative studies of transitions between the two limits are presented. 48 refs., 11 figs.« less

  14. Distribution Patterns of Microbial Community Structure Along a 7000-Mile Latitudinal Transect from the Mediterranean Sea Across the Atlantic Ocean to the Brazilian Coastal Sea.

    PubMed

    Zhou, Jin; Song, Xiao; Zhang, Chun-Yun; Chen, Guo-Fu; Lao, Yong-Min; Jin, Hui; Cai, Zhong-Hua

    2018-02-14

    A central goal in marine microecology is to understand the ecological factors shaping spatiotemporal microbial patterns and the underlying processes. We hypothesized that abiotic and/or biotic interactions are probably more important for explaining the distribution patterns of marine bacterioplankton than environmental filtering. In this study, surface seawater samples were collected about 7000 miles from the Mediterranean Sea, transecting the North Atlantic Ocean, to the Brazilian marginal sea. In bacterial biosphere, SAR11, SAR86, Rhodobacteraceae, and Rhodospiriaceae were predominant in the Mediterranean Sea; Prochlorococcus was more frequent in Atlantic Ocean; whereas in the Brazilian coastal sea, the main bacterial members were Synechococcus and SAR11. With respect to archaea, Euryarchaeota were predominant in the Atlantic Ocean and Thaumarchaeota in the Mediterranean Sea. With respect to the eukaryotes, Syndiniales, Spumellaria, Cryomonadida, and Chlorodendrales were predominant in the open ocean, while diatoms and microzooplankton were dominant in the coastal sea. Distinct clusters of prokaryotes and eukaryotes displayed clear spatial heterogeneity. Among the environmental parameters measured, temperature and salinity were key factors controlling bacterial and archaeal community structure, respectively, whereas N/P/Si contributed to eukaryotic variation. The relative contribution of environmental parameters to the microbial distribution pattern was 45.2%. Interaction analysis showed that Gammaproteobacteria, Alphaproteobacteria, and Flavobacteriia were the keystone taxa within the positive-correlation network, while Thermoplasmata was the main contributor in the negative-correlation network. Our study demonstrated that microbial communities are co-governed by environmental filtering and biotic interactions, which are the main deterministic driving factors modulating the spatiotemporal patterns of marine plankton synergistically at the regional or global levels.

  15. Spatial patterns of air pollutants and social groups: a distributive environmental justice study in the phoenix metropolitan region of USA

    NASA Astrophysics Data System (ADS)

    Pope, Ronald; Wu, Jianguo; Boone, Christopher

    2016-11-01

    Quantifying spatial distribution patterns of air pollutants is imperative to understand environmental justice issues. Here we present a landscape-based hierarchical approach in which air pollution variables are regressed against population demographics on multiple spatiotemporal scales. Using this approach, we investigated the potential problem of distributive environmental justice in the Phoenix metropolitan region, focusing on ambient ozone and particulate matter. Pollution surfaces (maps) are evaluated against the demographics of class, age, race (African American, Native American), and ethnicity (Hispanic). A hierarchical multiple regression method is used to detect distributive environmental justice relationships. Our results show that significant relationships exist between the dependent and independent variables, signifying possible environmental inequity. Although changing spatiotemporal scales only altered the overall direction of these relationships in a few instances, it did cause the relationship to become nonsignificant in many cases. Several consistent patterns emerged: people aged 17 and under were significant predictors for ambient ozone and particulate matter, but people 65 and older were only predictors for ambient particulate matter. African Americans were strong predictors for ambient particulate matter, while Native Americans were strong predictors for ambient ozone. Hispanics had a strong negative correlation with ambient ozone, but a less consistent positive relationship with ambient particulate matter. Given the legacy conditions endured by minority racial and ethnic groups, and the relative lack of mobility of all the groups, our findings suggest the existence of environmental inequities in the Phoenix metropolitan region. The methodology developed in this study is generalizable with other pollutants to provide a multi-scaled perspective of environmental justice issues.

  16. Spatiotemporal Co-existence of Female Thyroid and Breast Cancers in Hangzhou, China

    NASA Astrophysics Data System (ADS)

    Fei, Xufeng; Christakos, George; Lou, Zhaohan; Ren, Yanjun; Liu, Qingmin; Wu, Jiaping

    2016-06-01

    Thyroid and breast cancers (TC, BC) are common female malignant tumors worldwide. Studies suggest that TC patients have a higher BC risk, and vice versa. However, it has not been investigated quantitatively if there is an association between the space-time TC and BC incidence distributions at the population level. This work aims to answer this question. 5358 TC and 8784 BC (female) cases were diagnosed in Hangzhou (China, 2008-2012). Pearson and Spearman rank correlation coefficients of the TC and BC incidences were high, and their patterns were geographically similar. The spatiotemporal co-existence of TC and BC distributions was investigated using the integrative disease predictability (IDP) criterion: if TC-BC association is part of the disease mapping knowledge bases, it should yield improved space-time incidence predictions. Improved TC (BC) incidence predictions were generated when integrating both TC and BC data than when using only TC (BC) data. IDP consistently demonstrated the spatiotemporal co-existence of TC and BC distributions throughout Hangzhou (2008-2012), which means that when the population experiences high incidences of one kind of cancer attention should be paid to the other kind of cancer too. The strength of TC-BC association was measured by the IDP coefficients and incidence prediction accuracy.

  17. Spatiotemporal Co-existence of Female Thyroid and Breast Cancers in Hangzhou, China

    PubMed Central

    Fei, Xufeng; Christakos, George; Lou, Zhaohan; Ren, Yanjun; Liu, Qingmin; Wu, Jiaping

    2016-01-01

    Thyroid and breast cancers (TC, BC) are common female malignant tumors worldwide. Studies suggest that TC patients have a higher BC risk, and vice versa. However, it has not been investigated quantitatively if there is an association between the space-time TC and BC incidence distributions at the population level. This work aims to answer this question. 5358 TC and 8784 BC (female) cases were diagnosed in Hangzhou (China, 2008–2012). Pearson and Spearman rank correlation coefficients of the TC and BC incidences were high, and their patterns were geographically similar. The spatiotemporal co-existence of TC and BC distributions was investigated using the integrative disease predictability (IDP) criterion: if TC-BC association is part of the disease mapping knowledge bases, it should yield improved space-time incidence predictions. Improved TC (BC) incidence predictions were generated when integrating both TC and BC data than when using only TC (BC) data. IDP consistently demonstrated the spatiotemporal co-existence of TC and BC distributions throughout Hangzhou (2008–2012), which means that when the population experiences high incidences of one kind of cancer attention should be paid to the other kind of cancer too. The strength of TC-BC association was measured by the IDP coefficients and incidence prediction accuracy. PMID:27341638

  18. The acquired immunodeficiency syndrome in the State of Rio de Janeiro, Brazil: a spatio-temporal analysis of cases reported in the period 2001-2010.

    PubMed

    Alves, André T J; Nobre, Flávio F

    2014-05-01

    Despite increased funding for research on the human immunodeficiency virus (HIV) and the acquired immunodeficiency syndrome (AIDS), neither vaccine nor cure is yet in sight. Surveillance and prevention are essential for disease intervention, and it is recognised that spatio-temporal analysis of AIDS cases can assist the decision-making process for control of the disease. This study investigated the dynamic, spatial distribution of notified AIDS cases in the State of Rio de Janeiro, Brazil, between 2001 and 2010, based on the annual incidence in each municipality. Sequential choropleth maps were developed and used to analyse the incidence distribution and Moran's I spatial autocorrelation statistics was applied for characterisation of the spatio-temporal distribution pattern. A significant, positive spatial autocorrelation of AIDS incidence was observed indicating that municipalities with high incidence are likely to be close to other municipalities with similarly high incidence and, conversely, municipalities with low incidence are likely to be surrounded by municipalities with low incidence. Two clusters were identified; one hotspot related to the State Capital and the other with low to intermediate AIDS incidence comprising municipalities in the north-eastern region of the State of Rio de Janeiro.

  19. Spatial and temporal statistical analysis of bycatch data: Patterns of sea turtle bycatch in the North Atlantic

    USGS Publications Warehouse

    Gardner, B.; Sullivan, P.J.; Morreale, S.J.; Epperly, S.P.

    2008-01-01

    Loggerhead (Caretta caretta) and leatherback (Dermochelys coriacea) sea turtle distributions and movements in offshore waters of the western North Atlantic are not well understood despite continued efforts to monitor, survey, and observe them. Loggerhead and leatherback sea turtles are listed as endangered by the World Conservation Union, and thus anthropogenic mortality of these species, including fishing, is of elevated interest. This study quantifies spatial and temporal patterns of sea turtle bycatch distributions to identify potential processes influencing their locations. A Ripley's K function analysis was employed on the NOAA Fisheries Atlantic Pelagic Longline Observer Program data to determine spatial, temporal, and spatio-temporal patterns of sea turtle bycatch distributions within the pattern of the pelagic fishery distribution. Results indicate that loggerhead and leatherback sea turtle catch distributions change seasonally, with patterns of spatial clustering appearing from July through October. The results from the space-time analysis indicate that sea turtle catch distributions are related on a relatively fine scale (30-200 km and 1-5 days). The use of spatial and temporal point pattern analysis, particularly K function analysis, is a novel way to examine bycatch data and can be used to inform fishing practices such that fishing could still occur while minimizing sea turtle bycatch. ?? 2008 NRC.

  20. Spatiotemporal Patterns of the Use of Urban Green Spaces and External Factors Contributing to Their Use in Central Beijing

    PubMed Central

    Li, Fangzheng; Zhang, Fen; Li, Xiong; Wang, Peng; Liang, Junhui; Mei, Yuting; Cheng, Wenwen; Qian, Yun

    2017-01-01

    Urban green spaces encourage outdoor activity and social communication that contribute to the health of local residents. Examining the relationship between the use of urban green spaces and factors influencing their utilization can provide essential references for green space site selection in urban planning. In contrast to previous studies that focused on internal factors, this study highlights the external factors (traffic convenience, population density and commercial facilities) contributing to the use of urban green spaces. We conducted a spatiotemporal analysis of the distribution of visitors in 208 selected green spaces in central Beijing. We examined the relationship between the spatial pattern of visitor distribution within urban green spaces and external factors, using the Gini coefficient, kernel density estimation, and geographical detectors. The results of the study were as follows. The spatial distribution of visitors within central Beijing’s green spaces was concentrated, forming different agglomerations. The three examined external factors are all associated with the use of green spaces. Among them, commercial facilities are the important external factor associated with the use of green spaces. For the selection of sites for urban green spaces, we recommend consideration of external factors in order to balance urban green space utilization. PMID:28264451

  1. Spatiotemporal Patterns of the Use of Urban Green Spaces and External Factors Contributing to Their Use in Central Beijing.

    PubMed

    Li, Fangzheng; Zhang, Fen; Li, Xiong; Wang, Peng; Liang, Junhui; Mei, Yuting; Cheng, Wenwen; Qian, Yun

    2017-02-27

    Urban green spaces encourage outdoor activity and social communication that contribute to the health of local residents. Examining the relationship between the use of urban green spaces and factors influencing their utilization can provide essential references for green space site selection in urban planning. In contrast to previous studies that focused on internal factors, this study highlights the external factors (traffic convenience, population density and commercial facilities) contributing to the use of urban green spaces. We conducted a spatiotemporal analysis of the distribution of visitors in 208 selected green spaces in central Beijing. We examined the relationship between the spatial pattern of visitor distribution within urban green spaces and external factors, using the Gini coefficient, kernel density estimation, and geographical detectors. The results of the study were as follows. The spatial distribution of visitors within central Beijing's green spaces was concentrated, forming different agglomerations. The three examined external factors are all associated with the use of green spaces. Among them, commercial facilities are the important external factor associated with the use of green spaces. For the selection of sites for urban green spaces, we recommend consideration of external factors in order to balance urban green space utilization.

  2. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks.

    PubMed

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-11-22

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.

  3. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks

    PubMed Central

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-01-01

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability. PMID:27874024

  4. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks

    NASA Astrophysics Data System (ADS)

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-11-01

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.

  5. A review and guidance for pattern selection in spatiotemporal system

    NASA Astrophysics Data System (ADS)

    Wang, Chunni; Ma, Jun

    2018-03-01

    Pattern estimation and selection in media can give important clues to understand the collective response to external stimulus by detecting the observable variables. Both reaction-diffusion systems (RDs) and neuronal networks can be treated as multi-agent systems from molecular level, intrinsic cooperation, competition. An external stimulus or attack can cause collapse of spatial order and distribution, while appropriate noise can enhance the consensus in the spatiotemporal systems. Pattern formation and synchronization stability can bridge isolated oscillators and the network by coupling these nodes with appropriate connection types. As a result, the dynamical behaviors can be detected and discussed by developing different spatial patterns and realizing network synchronization. Indeed, the collective response of network and multi-agent system depends on the local kinetics of nodes and cells. It is better to know the standard bifurcation analysis and stability control schemes before dealing with network problems. In this review, dynamics discussion and synchronization control on low-dimensional systems, pattern formation and synchronization stability on network, wave stability in RDs and neuronal network are summarized. Finally, possible guidance is presented when some physical effects such as polarization field and electromagnetic induction are considered.

  6. Understanding spatio-temporal strategies of adult zebrafish exploration in the open field test.

    PubMed

    Stewart, Adam Michael; Gaikwad, Siddharth; Kyzar, Evan; Kalueff, Allan V

    2012-04-27

    Zebrafish (Danio rerio) are emerging as a useful model organism for neuroscience research. Mounting evidence suggests that various traditional rodent paradigms may be adapted for testing zebrafish behavior. The open field test is a popular rodent test of novelty exploration, recently applied to zebrafish research. To better understand fish novelty behavior, we exposed adult zebrafish to two different open field arenas for 30 min, assessing the amount and temporal patterning of their exploration. While (similar to rodents) zebrafish scale their locomotory activity depending on the size of the tank, the temporal patterning of their activity was independent of arena size. These observations strikingly parallel similar rodent behaviors, suggesting that spatio-temporal strategies of animal exploration may be evolutionarily conserved across vertebrate species. In addition, we found interesting oscillations in zebrafish exploration, with the per-minute distribution of their horizontal activity demonstrating sinusoidal-like patterns. While such patterning is not reported for rodents and other higher vertebrates, a nonlinear regression analysis confirmed the oscillation patterning of all assessed zebrafish behavioral endpoints in both open field arenas, revealing a potentially important aspect of novelty exploration in lower vertebrates. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Spatiotemporal patterns of unburned areas within fire perimeters in the northwestern United States from 1984 to 2014

    Treesearch

    Arjan J. H. Meddens; Crystal A. Kolden; James A. Lutz; John T. Abatzoglou; Andrew T. Hudak

    2018-01-01

    A warming climate, fire exclusion, and land cover changes are altering the conditions that produced historical fire regimes and facilitating increased recent wildfire activity in the northwestern United States. Understanding the impacts of changing fire regimes on forest recruitment and succession, species distributions, carbon cycling, and ecosystem services is...

  8. Spatiotemporal model of barley and cereal yellow dwarf virus transmission dynamics with seasonality and plant competition

    Treesearch

    S.M. Moore; C.A. Manore; V.A. Bokil; E.T. Borer; P.R. Hosseini

    2011-01-01

    Many generalist pathogens are influenced by the spatial distributions and relative abundances of susceptible host species. The spatial structure of host populations can influence patterns of infection incidence (or disease outbreaks), and the effects of a generalist pathogen on host community dynamics in a spatially heterogeneous community may differ from predictions...

  9. Novel Reporter for Faithful Monitoring of ERK2 Dynamics in Living Cells and Model Organisms

    PubMed Central

    Sipieter, François; Cappe, Benjamin; Gonzalez Pisfil, Mariano; Spriet, Corentin; Bodart, Jean-François; Cailliau-Maggio, Katia; Vandenabeele, Peter; Héliot, Laurent; Riquet, Franck B.

    2015-01-01

    Uncoupling of ERK1/2 phosphorylation from subcellular localization is essential towards the understanding of molecular mechanisms that control ERK1/2-mediated cell-fate decision. ERK1/2 non-catalytic functions and discoveries of new specific anchors responsible of the subcellular compartmentalization of ERK1/2 signaling pathway have been proposed as regulation mechanisms for which dynamic monitoring of ERK1/2 localization is necessary. However, studying the spatiotemporal features of ERK2, for instance, in different cellular processes in living cells and tissues requires a tool that can faithfully report on its subcellular distribution. We developed a novel molecular tool, ERK2-LOC, based on the T2A-mediated coexpression of strictly equimolar levels of eGFP-ERK2 and MEK1, to faithfully visualize ERK2 localization patterns. MEK1 and eGFP-ERK2 were expressed reliably and functionally both in vitro and in single living cells. We then assessed the subcellular distribution and mobility of ERK2-LOC using fluorescence microscopy in non-stimulated conditions and after activation/inhibition of the MAPK/ERK1/2 signaling pathway. Finally, we used our coexpression system in Xenopus laevis embryos during the early stages of development. This is the first report on MEK1/ERK2 T2A-mediated coexpression in living embryos, and we show that there is a strong correlation between the spatiotemporal subcellular distribution of ERK2-LOC and the phosphorylation patterns of ERK1/2. Our approach can be used to study the spatiotemporal localization of ERK2 and its dynamics in a variety of processes in living cells and embryonic tissues. PMID:26517832

  10. Propagating wave and irregular dynamics: Spatiotemporal patterns of cholinergic theta oscillations in neocortex, in vitro

    PubMed Central

    Bao, Weili; Wu, Jian-young

    2010-01-01

    Neocortical “theta” oscillation (5- 12 Hz) has been observed in animals and human subjects but little is known about how the oscillation is organized in the cortical intrinsic networks. Here we use voltage-sensitive dye and optical imaging to study a carbachol/bicuculline induced theta (~8 Hz) oscillation in rat neocortical slices. The imaging has large signal-to-noise ratio, allowing us to map the phase distribution over the neocortical tissue during the oscillation. The oscillation was organized as spontaneous epochs and each epoch was composed of a “first spike”, a “regular” period (with relatively stable frequency and amplitude) and an “irregular” period (with variable frequency and amplitude) of oscillations. During each cycle of the regular oscillation one wave of activation propagated horizontally (parallel to the cortical lamina) across the cortical section at a velocity of ~50 mm/sec. Vertically the activity was synchronized through all cortical layers. This pattern of one propagating wave associated with one oscillation cycle was seen during all the regular cycles. The oscillation frequency varied noticeably at two neighboring horizontal locations (330 μm apart), suggesting that the oscillation is locally organized and each local oscillator is about equal or less than 300 μm wide horizontally. During irregular oscillations the spatiotemporal patterns were complex and sometimes the vertical synchronization decomposed, suggesting a de-coupling among local oscillators. Our data suggested that neocortical theta oscillation is sustained by multiple local oscillators. The coupling regime among the oscillators may determine the spatiotemporal pattern and switching between propagating waves and irregular patterns. PMID:12612003

  11. Spatiotemporal patterns of population distribution as crucial element for risk management

    NASA Astrophysics Data System (ADS)

    Gokesch, Karin; Promper, Catrin; van Westen, Cees J.; Glade, Thomas

    2014-05-01

    The spatiotemporal distribution and presence of the population in a certain area is a crucial element within natural hazard risk management, especially in the case of rapid onset hazard events and emergency management. When fast onset hazards such as earthquakes, flash floods or industrial accidents occur, people may not have adequate time for evacuation and the emergency management requires a fast response and reaction. Therefore, information on detailed distribution of people affected by a certain hazard is important for a fast assessment of the situation including the number and the type of people (distinguishing between elderly or handicapped people, children, working population etc.) affected. This study thus aims at analyzing population distribution on an hourly basis for different days e.g. workday or holiday. The applied method combines the basic assessment of population distribution in a given area with specific location-related patterns of distribution-changes over time. The calculations are based on detailed information regarding the expected presence of certain groups of people, e.g. school children, working or elderly people, which all show different patterns of movement over certain time periods. The study area is the city of Waidhofen /Ybbs located in the Alpine foreland in the Southwest of Lower Austria. This city serves as a regional center providing basic infrastructure, shops and schools for the surrounding countryside. Therefore a lot of small and medium businesses are located in this area showing a rather high variation of population present at different times of the day. The available building footprint information was classified with respect to building type and occupancy type, which was used to estimate the expected residents within the buildings, based on the floorspace of the buildings and the average floorspace per person. Additional information on the distribution and the average duration of stay of the people in these buildings was assessed using general population statistics and specific information about selected buildings, such as schools, hospitals or homes for the elderly, to calculate the distribution patterns for each group of people over time.

  12. A neuronal model of a global workspace in effortful cognitive tasks.

    PubMed

    Dehaene, S; Kerszberg, M; Changeux, J P

    1998-11-24

    A minimal hypothesis is proposed concerning the brain processes underlying effortful tasks. It distinguishes two main computational spaces: a unique global workspace composed of distributed and heavily interconnected neurons with long-range axons, and a set of specialized and modular perceptual, motor, memory, evaluative, and attentional processors. Workspace neurons are mobilized in effortful tasks for which the specialized processors do not suffice. They selectively mobilize or suppress, through descending connections, the contribution of specific processor neurons. In the course of task performance, workspace neurons become spontaneously coactivated, forming discrete though variable spatio-temporal patterns subject to modulation by vigilance signals and to selection by reward signals. A computer simulation of the Stroop task shows workspace activation to increase during acquisition of a novel task, effortful execution, and after errors. We outline predictions for spatio-temporal activation patterns during brain imaging, particularly about the contribution of dorsolateral prefrontal cortex and anterior cingulate to the workspace.

  13. Spatiotemporal Dynamics of Oligofructan Metabolism and Suggested Functions in Developing Cereal Grains

    PubMed Central

    Peukert, Manuela; Thiel, Johannes; Mock, Hans-Peter; Marko, Doris; Weschke, Winfriede; Matros, Andrea

    2016-01-01

    Oligofructans represent one of the most important groups of sucrose-derived water–soluble carbohydrates in the plant kingdom. In cereals, oligofructans accumulate in above ground parts of the plants (stems, leaves, seeds) and their biosynthesis leads to the formation of both types of glycosidic linkages [β(2,1); β(2,6)-fructans] or mixed patterns. In recent studies, tissue- and development- specific distribution patterns of the various oligofructan types in cereal grains have been shown, which are possibly related to the different phases of grain development, such as cellular differentiation of grain tissues and storage product accumulation. Here, we summarize the current knowledge about oligofructan biosynthesis and accumulation kinetics in cereal grains. We focus on the spatiotemporal dynamics and regulation of oligofructan biosynthesis and accumulation in developing barley grains (deduced from a combination of metabolite, transcript and proteome analyses). Finally, putative physiological functions of oligofructans in developing grains are discussed. PMID:26834760

  14. Growing magma chambers control the distribution of small-scale flood basalts.

    PubMed

    Yu, Xun; Chen, Li-Hui; Zeng, Gang

    2015-11-19

    Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar-Ar and K-Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 > 47.5 wt.%) from Xinchang-Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4-3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40-0.66; TiO2/MgO = 0.23-0.35) during about 6 Myr (9.4-3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3-3.0 Ma) through a broad range of compositions ((Na2O + K2O)/MgO = 0.60-1.28; TiO2/MgO = 0.30-0.57). The distribution and two-stage compositional evolution of the migrating flood basalts record continuous magma replenishment that buffered against magmatic evolution and induced magma chamber growth. Our results demonstrate that the magma replenishment-magma chamber growth model explains the spatio-temporal distribution of small-scale flood basalts.

  15. Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior.

    PubMed

    Portugues, Ruben; Feierstein, Claudia E; Engert, Florian; Orger, Michael B

    2014-03-19

    Most behaviors, even simple innate reflexes, are mediated by circuits of neurons spanning areas throughout the brain. However, in most cases, the distribution and dynamics of firing patterns of these neurons during behavior are not known. We imaged activity, with cellular resolution, throughout the whole brains of zebrafish performing the optokinetic response. We found a sparse, broadly distributed network that has an elaborate but ordered pattern, with a bilaterally symmetrical organization. Activity patterns fell into distinct clusters reflecting sensory and motor processing. By correlating neuronal responses with an array of sensory and motor variables, we find that the network can be clearly divided into distinct functional modules. Comparing aligned data from multiple fish, we find that the spatiotemporal activity dynamics and functional organization are highly stereotyped across individuals. These experiments systematically reveal the functional architecture of neural circuits underlying a sensorimotor behavior in a vertebrate brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior

    PubMed Central

    Portugues, Ruben; Feierstein, Claudia E.; Engert, Florian; Orger, Michael B.

    2014-01-01

    Summary Most behaviors, even simple innate reflexes, are mediated by circuits of neurons spanning areas throughout the brain. However, in most cases, the distribution and dynamics of firing patterns of these neurons during behavior are not known. We imaged activity, with cellular resolution, throughout the whole brains of zebrafish performing the optokinetic response. We found a sparse, broadly distributed network that has an elaborate, but ordered, pattern, with a bilaterally symmetrical organization. Activity patterns fell into distinct clusters reflecting sensory and motor processing. By correlating neuronal responses with an array of sensory and motor variables, we find that the network can be clearly divided into distinct functional modules. Comparing aligned data from multiple fish, we find that the spatiotemporal activity dynamics and functional organization are highly stereotyped across individuals. These experiments reveal, for the first time in a vertebrate, the comprehensive functional architecture of the neural circuits underlying a sensorimotor behavior. PMID:24656252

  17. Spatiotemporal variation characteristics and related affecting factors of dissolved carbohydrates in the East China Sea

    NASA Astrophysics Data System (ADS)

    He, Zhen; Wang, Qi; Yang, Gui-Peng; Gao, Xian-Chi; Wu, Guan-Wei

    2015-10-01

    Carbohydrates are the largest identified fraction of dissolved organic carbon and play an important role in biogeochemical cycling in the ocean. Seawater samples were collected from the East China Sea (ECS) during June and October 2012 to study the spatiotemporal distributions of total dissolved carbohydrates (TCHOs) constituents, including dissolved monosaccharides (MCHOs) and polysaccharides (PCHOs). The concentrations of TCHOs, MCHOs and PCHOs showed significant differences between summer and autumn 2012, and exhibited an evident diurnal variation, with high values occurring in the daytime. Phytoplankton biomass was identified as the primary factor responsible for seasonal and diurnal variations of dissolved carbohydrates in the ECS. The TCHOs, MCHOs and PCHOs distributions in the study area displayed similar distribution patterns, with high concentrations appearing in the coastal water. The influences of chlorophyll-a, salinity and nutrients on the distributions of these carbohydrates were examined. A carbohydrate enrichment in the near-bottom water was found at some stations, implying that there might be an important source of carbohydrate in the deep water or bottom sediment.

  18. Bayesian inference for the spatio-temporal invasion of alien species.

    PubMed

    Cook, Alex; Marion, Glenn; Butler, Adam; Gibson, Gavin

    2007-08-01

    In this paper we develop a Bayesian approach to parameter estimation in a stochastic spatio-temporal model of the spread of invasive species across a landscape. To date, statistical techniques, such as logistic and autologistic regression, have outstripped stochastic spatio-temporal models in their ability to handle large numbers of covariates. Here we seek to address this problem by making use of a range of covariates describing the bio-geographical features of the landscape. Relative to regression techniques, stochastic spatio-temporal models are more transparent in their representation of biological processes. They also explicitly model temporal change, and therefore do not require the assumption that the species' distribution (or other spatial pattern) has already reached equilibrium as is often the case with standard statistical approaches. In order to illustrate the use of such techniques we apply them to the analysis of data detailing the spread of an invasive plant, Heracleum mantegazzianum, across Britain in the 20th Century using geo-referenced covariate information describing local temperature, elevation and habitat type. The use of Markov chain Monte Carlo sampling within a Bayesian framework facilitates statistical assessments of differences in the suitability of different habitat classes for H. mantegazzianum, and enables predictions of future spread to account for parametric uncertainty and system variability. Our results show that ignoring such covariate information may lead to biased estimates of key processes and implausible predictions of future distributions.

  19. Considering spatial heterogeneity in the distributed lag non-linear model when analyzing spatiotemporal data.

    PubMed

    Chien, Lung-Chang; Guo, Yuming; Li, Xiao; Yu, Hwa-Lung

    2018-01-01

    The distributed lag non-linear (DLNM) model has been frequently used in time series environmental health research. However, its functionality for assessing spatial heterogeneity is still restricted, especially in analyzing spatiotemporal data. This study proposed a solution to take a spatial function into account in the DLNM, and compared the influence with and without considering spatial heterogeneity in a case study. This research applied the DLNM to investigate non-linear lag effect up to 7 days in a case study about the spatiotemporal impact of fine particulate matter (PM 2.5 ) on preschool children's acute respiratory infection in 41 districts of northern Taiwan during 2005 to 2007. We applied two spatiotemporal methods to impute missing air pollutant data, and included the Markov random fields to analyze district boundary data in the DLNM. When analyzing the original data without a spatial function, the overall PM 2.5 effect accumulated from all lag-specific effects had a slight variation at smaller PM 2.5 measurements, but eventually decreased to relative risk significantly <1 when PM 2.5 increased. While analyzing spatiotemporal imputed data without a spatial function, the overall PM 2.5 effect did not decrease but increased in monotone as PM 2.5 increased over 20 μg/m 3 . After adding a spatial function in the DLNM, spatiotemporal imputed data conducted similar results compared with the overall effect from the original data. Moreover, the spatial function showed a clear and uneven pattern in Taipei, revealing that preschool children living in 31 districts of Taipei were vulnerable to acute respiratory infection. Our findings suggest the necessity of including a spatial function in the DLNM to make a spatiotemporal analysis available and to conduct more reliable and explainable research. This study also revealed the analytical impact if spatial heterogeneity is ignored.

  20. Measuring Memory and Attention to Preview in Motion.

    PubMed

    Jagacinski, Richard J; Hammond, Gordon M; Rizzi, Emanuele

    2017-08-01

    Objective Use perceptual-motor responses to perturbations to reveal the spatio-temporal detail of memory for the recent past and attention to preview when participants track a winding roadway. Background Memory of the recently passed roadway can be inferred from feedback control models of the participants' manual movement patterns. Similarly, attention to preview of the upcoming roadway can be inferred from feedforward control models of manual movement patterns. Method Perturbation techniques were used to measure these memory and attention functions. Results In a laboratory tracking task, the bandwidth of lateral roadway deviations was found to primarily influence memory for the past roadway rather than attention to preview. A secondary auditory/verbal/vocal memory task resulted in higher velocity error and acceleration error in the tracking task but did not affect attention to preview. Attention to preview was affected by the frequency pattern of sinusoidal perturbations of the roadway. Conclusion Perturbation techniques permit measurement of the spatio-temporal span of memory and attention to preview that affect tracking a winding roadway. They also provide new ways to explore goal-directed forgetting and spatially distributed attention in the context of movement. More generally, these techniques provide sensitive measures of individual differences in cognitive aspects of action. Application Models of driving behavior and assessment of driving skill may benefit from more detailed spatio-temporal measurement of attention to preview.

  1. Analysis of the Mediterranean fruit fly [Ceratitis capitata (Wiedemann)] spatio-temporal distribution in relation to sex and female mating status for precision IPM

    PubMed Central

    Tabilio, Maria Rosaria; Lampazzi, Elena; Ceccaroli, Claudio; Colacci, Marco; Trematerra, Pasquale

    2018-01-01

    The Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann), is a key pest of fruit crops in many tropical, subtropical and mild temperate areas worldwide. The economic importance of this fruit fly is increasing due to its invasion of new geographical areas. Efficient control and eradication efforts require adequate information regarding C. capitata adults in relation to environmental and physiological cues. This would allow effective characterisation of the population spatio-temporal dynamic of the C. capitata population at both the orchard level and the area-wide landscape. The aim of this study was to analyse population patterns of adult medflies caught using two trapping systems in a peach orchard located in central Italy. They were differentiated by adult sex (males or females) and mating status of females (unmated or mated females) to determine the spatio-temporal dynamic and evaluate the effect of cultivar and chemical treatments on trap catches. Female mating status was assessed by spermathecal dissection and a blind test was carried out to evaluate the reliability of the technique. Geostatistical methods, variogram and kriging, were used to produce distributional maps. Results showed a strong correlation between the distribution of males and unmated females, whereas males versus mated females and unmated females versus mated females showed a lower correlation. Both cultivar and chemical treatments had significant effects on trap catches, showing associations with sex and female mating status. Medfly adults showed aggregated distributions in the experimental field, but hot spots locations varied. The spatial pattern of unmated females reflected that of males, whereas mated females were largely distributed around ripening or ripe fruit. The results give relevant insights into pest management. Mated females may be distributed differently to unmated females and the identification of male hot spots through monitoring would allow localisation of virgin female populations. Based on our results, a more precise IPM strategy, coupled with effective sanitation practices, could represent a more effective approach to medfly control. PMID:29617420

  2. Modelling spatiotemporal distribution patterns of earthworms in order to indicate hydrological soil processes

    NASA Astrophysics Data System (ADS)

    Palm, Juliane; Klaus, Julian; van Schaik, Loes; Zehe, Erwin; Schröder, Boris

    2010-05-01

    Soils provide central ecosystem functions in recycling nutrients, detoxifying harmful chemicals as well as regulating microclimate and local hydrological processes. The internal regulation of these functions and therefore the development of healthy and fertile soils mainly depend on the functional diversity of plants and animals. Soil organisms drive essential processes such as litter decomposition, nutrient cycling, water dynamics, and soil structure formation. Disturbances by different soil management practices (e.g., soil tillage, fertilization, pesticide application) affect the distribution and abundance of soil organisms and hence influence regulating processes. The strong relationship between environmental conditions and soil organisms gives us the opportunity to link spatiotemporal distribution patterns of indicator species with the potential provision of essential soil processes on different scales. Earthworms are key organisms for soil function and affect, among other things, water dynamics and solute transport in soils. Through their burrowing activity, earthworms increase the number of macropores by building semi-permanent burrow systems. In the unsaturated zone, earthworm burrows act as preferential flow pathways and affect water infiltration, surface-, subsurface- and matrix flow as well as the transport of water and solutes into deeper soil layers. Thereby different ecological earthworm types have different importance. Deep burrowing anecic earthworm species (e.g., Lumbricus terrestris) affect the vertical flow and thus increase the risk of potential contamination of ground water with agrochemicals. In contrast, horizontal burrowing endogeic (e.g., Aporrectodea caliginosa) and epigeic species (e.g., Lumbricus rubellus) increase water conductivity and the diffuse distribution of water and solutes in the upper soil layers. The question which processes are more relevant is pivotal for soil management and risk assessment. Thus, finding relevant environmental predictors which explain the distribution and dynamics of different ecological earthworm types can help us to understand where or when these processes are relevant in the landscape. Therefore, we develop species distribution models which are a useful tool to predict spatiotemporal distributions of earthworm occurrence and abundance under changing environmental conditions. On field scale, geostatistical distribution maps have shown that the spatial distribution of earthworms depends on soil parameters such as food supply, soil moisture, bulk density but with different patterns for earthworm stages (adult, juvenile) and ecological types (anecic, endogeic, epigeic). On landscape scales, earthworm distribution seems to be strongly controlled by management/disturbance-related factors. Our study shows different modelling approaches for predicting distribution patterns of earthworms in the Weiherbach area, an agricultural site in Kraichtal (Baden-Württemberg, Germany). We carried out field studies on arable fields differing in soil management practices (conventional, conservational), soil properties (organic matter content, texture, soil moisture), and topography (slope, elevation) in order to identify predictors for earthworm occurrence, abundance and biomass. Our earthworm distribution models consider all ecological groups as well as different life stages, accounting for the fact that the activity of juveniles is sometimes different from those of adults. Within our BIOPORE-project it is our final goal to couple our distribution models with population dynamic models and a preferential flow model to an integrated ecohydrological model to analyse feedbacks between earthworm engineering and transport characteristics affecting the functioning of (agro-) ecosystems.

  3. Climate-driven changes to the spatio-temporal distribution of the parasitic nematode, Haemonchus contortus, in sheep in Europe.

    PubMed

    Rose, Hannah; Caminade, Cyril; Bolajoko, Muhammad Bashir; Phelan, Paul; van Dijk, Jan; Baylis, Matthew; Williams, Diana; Morgan, Eric R

    2016-03-01

    Recent climate change has resulted in changes to the phenology and distribution of invertebrates worldwide. Where invertebrates are associated with disease, climate variability and changes in climate may also affect the spatio-temporal dynamics of disease. Due to its significant impact on sheep production and welfare, the recent increase in diagnoses of ovine haemonchosis caused by the nematode Haemonchus contortus in some temperate regions is particularly concerning. This study is the first to evaluate the impact of climate change on H. contortus at a continental scale. A model of the basic reproductive quotient of macroparasites, Q0 , adapted to H. contortus and extended to incorporate environmental stochasticity and parasite behaviour, was used to simulate Pan-European spatio-temporal changes in H. contortus infection pressure under scenarios of climate change. Baseline Q0 simulations, using historic climate observations, reflected the current distribution of H. contortus in Europe. In northern Europe, the distribution of H. contortus is currently limited by temperatures falling below the development threshold during the winter months and within-host arrested development is necessary for population persistence over winter. In southern Europe, H. contortus infection pressure is limited during the summer months by increased temperature and decreased moisture. Compared with this baseline, Q0 simulations driven by a climate model ensemble predicted an increase in H. contortus infection pressure by the 2080s. In northern Europe, a temporal range expansion was predicted as the mean period of transmission increased by 2-3 months. A bimodal seasonal pattern of infection pressure, similar to that currently observed in southern Europe, emerges in northern Europe due to increasing summer temperatures and decreasing moisture. The predicted patterns of change could alter the epidemiology of H. contortus in Europe, affect the future sustainability of contemporary control strategies, and potentially drive local adaptation to climate change in parasite populations. © 2015 John Wiley & Sons Ltd.

  4. Flexible kinematic earthquake rupture inversion of tele-seismic waveforms: Application to the 2013 Balochistan, Pakistan earthquake

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Yagi, Y.; Okuwaki, R.; Kasahara, A.

    2017-12-01

    The kinematic earthquake rupture models are useful to derive statistics and scaling properties of the large and great earthquakes. However, the kinematic rupture models for the same earthquake are often different from one another. Such sensitivity of the modeling prevents us to understand the statistics and scaling properties of the earthquakes. Yagi and Fukahata (2011) introduces the uncertainty of Green's function into the tele-seismic waveform inversion, and shows that the stable spatiotemporal distribution of slip-rate can be obtained by using an empirical Bayesian scheme. One of the unsolved problems in the inversion rises from the modeling error originated from an uncertainty of a fault-model setting. Green's function near the nodal plane of focal mechanism is known to be sensitive to the slight change of the assumed fault geometry, and thus the spatiotemporal distribution of slip-rate should be distorted by the modeling error originated from the uncertainty of the fault model. We propose a new method accounting for the complexity in the fault geometry by additionally solving the focal mechanism on each space knot. Since a solution of finite source inversion gets unstable with an increasing of flexibility of the model, we try to estimate a stable spatiotemporal distribution of focal mechanism in the framework of Yagi and Fukahata (2011). We applied the proposed method to the 52 tele-seismic P-waveforms of the 2013 Balochistan, Pakistan earthquake. The inverted-potency distribution shows unilateral rupture propagation toward southwest of the epicenter, and the spatial variation of the focal mechanisms shares the same pattern as the fault-curvature along the tectonic fabric. On the other hand, the broad pattern of rupture process, including the direction of rupture propagation, cannot be reproduced by an inversion analysis under the assumption that the faulting occurred on a single flat plane. These results show that the modeling error caused by simplifying the fault model is non-negligible in the tele-seismic waveform inversion of the 2013 Balochistan, Pakistan earthquake.

  5. Why Does Rhinopithecus bieti Prefer the Highest Elevation Range in Winter? A Test of the Sunshine Hypothesis

    PubMed Central

    Behm, Jocelyn E.; Wang, Lin; Huang, Yong; Long, Yongcheng; Zhu, Jianguo

    2011-01-01

    Environmental factors that affect spatiotemporal distribution patterns of animals usually include resource availability, temperature, and the risk of predation. However, they do not explain the counterintuitive preference of high elevation range in winter by the black-and-white snub-nosed monkey (Rhinopithecus bieti). We asked whether variation of sunshine along with elevations is the key driving force. To test this hypothesis, we conducted field surveys to demonstrate that there was a statistically significant pattern of high elevation use during winter. We then asked whether this pattern can be explained by certain environmental factors, namely temperature, sunshine duration and solar radiation. Finally, we concluded with a possible ecological mechanism for this pattern. In this study, we employed GIS technology to quantify solar radiation and sunshine duration across the monkey's range. Our results showed that: 1) R. bieti used the high altitude range between 4100–4400 m in winter although the yearly home range spanned from 3500–4500 m; 2) both solar radiation and sunshine duration increased with elevation while temperature decreased with elevation; 3) within the winter range, the use of range was significantly correlated with solar radiation and sunshine duration; 4) monkeys moved to the areas with high solar radiation and duration following a snowfall, where the snow melts faster and food is exposed earlier. We concluded that sunshine was the main factor that influences selection of high elevation habitat for R. bieti in winter. Since some other endotherms in the area exhibit similar winter distributional patterns, we developed a sunshine hypothesis to explain this phenomenon. In addition, our work also represented a new method of integrating GIS models into traditional field ecology research to study spatiotemporal distribution pattern of wildlife. We suggest that further theoretical and empirical studies are necessary for better understanding of sunshine influence on wildlife range use. PMID:21915329

  6. Spatiotemporal Pattern Analysis of Scarlet Fever Incidence in Beijing, China, 2005–2014

    PubMed Central

    Mahara, Gehendra; Wang, Chao; Huo, Da; Xu, Qin; Huang, Fangfang; Tao, Lixin; Guo, Jin; Cao, Kai; Long, Liu; Chhetri, Jagadish K.; Gao, Qi; Wang, Wei; Wang, Quanyi; Guo, Xiuhua

    2016-01-01

    Objective: To probe the spatiotemporal patterns of the incidence of scarlet fever in Beijing, China, from 2005 to 2014. Methods: A spatiotemporal analysis was conducted at the district/county level in the Beijing region based on the reported cases of scarlet fever during the study period. Moran’s autocorrelation coefficient was used to examine the spatial autocorrelation of scarlet fever, whereas the Getis-Ord Gi* statistic was used to determine the hotspot incidence of scarlet fever. Likewise, the space-time scan statistic was used to detect the space-time clusters, including the relative risk of scarlet fever incidence across all settings. Results: A total of 26,860 scarlet fever cases were reported in Beijing during the study period (2005–2014). The average annual incidence of scarlet fever was 14.25 per 100,000 population (range, 6.76 to 32.03 per 100,000). The incidence among males was higher than that among females, and more than two-thirds of scarlet fever cases (83.8%) were among children 3–8 years old. The seasonal incidence peaks occurred from March to July. A higher relative risk area was mainly in the city and urban districts of Beijing. The most likely space-time clusters and secondary clusters were detected to be diversely distributed in every study year. Conclusions: The spatiotemporal patterns of scarlet fever were relatively unsteady in Beijing from 2005 to 2014. The at-risk population was mainly scattered in urban settings and dense districts with high population, indicating a positive relationship between population density and increased risk of scarlet fever exposure. Children under 15 years of age were the most susceptible to scarlet fever. PMID:26784213

  7. Spatiotemporal Pattern Analysis of Scarlet Fever Incidence in Beijing, China, 2005-2014.

    PubMed

    Mahara, Gehendra; Wang, Chao; Huo, Da; Xu, Qin; Huang, Fangfang; Tao, Lixin; Guo, Jin; Cao, Kai; Long, Liu; Chhetri, Jagadish K; Gao, Qi; Wang, Wei; Wang, Quanyi; Guo, Xiuhua

    2016-01-15

    To probe the spatiotemporal patterns of the incidence of scarlet fever in Beijing, China, from 2005 to 2014. A spatiotemporal analysis was conducted at the district/county level in the Beijing region based on the reported cases of scarlet fever during the study period. Moran's autocorrelation coefficient was used to examine the spatial autocorrelation of scarlet fever, whereas the Getis-Ord Gi* statistic was used to determine the hotspot incidence of scarlet fever. Likewise, the space-time scan statistic was used to detect the space-time clusters, including the relative risk of scarlet fever incidence across all settings. A total of 26,860 scarlet fever cases were reported in Beijing during the study period (2005-2014). The average annual incidence of scarlet fever was 14.25 per 100,000 population (range, 6.76 to 32.03 per 100,000). The incidence among males was higher than that among females, and more than two-thirds of scarlet fever cases (83.8%) were among children 3-8 years old. The seasonal incidence peaks occurred from March to July. A higher relative risk area was mainly in the city and urban districts of Beijing. The most likely space-time clusters and secondary clusters were detected to be diversely distributed in every study year. The spatiotemporal patterns of scarlet fever were relatively unsteady in Beijing from 2005 to 2014. The at-risk population was mainly scattered in urban settings and dense districts with high population, indicating a positive relationship between population density and increased risk of scarlet fever exposure. Children under 15 years of age were the most susceptible to scarlet fever.

  8. Thermal habitat restricts patterns of occurrence in multiple life-stages of a headwater fish

    Treesearch

    Mischa P. Turschwell; Stephen R. Balcombe; E. Ashley Steel; Fran Sheldon; Erin E. Peterson

    2017-01-01

    Our lack of knowledge on the spatiotemporal drivers of the distribution of many freshwater fishes, particularly as they differ among life-history stages, is a challenge to conservation of these species. We used 2-stage hurdle models to investigate drivers of occurrence and abundance of locally threatened adult and juvenile Northern River Blackfish in the upper...

  9. Multi-Spatiotemporal Patterns of Residential Burglary Crimes in Chicago: 2006-2016

    NASA Astrophysics Data System (ADS)

    Luo, J.

    2017-10-01

    This research attempts to explore the patterns of burglary crimes at multi-spatiotemporal scales in Chicago between 2006 and 2016. Two spatial scales are investigated that are census block and police beat area. At each spatial scale, three temporal scales are integrated to make spatiotemporal slices: hourly scale with two-hour time step from 12:00am to the end of the day; daily scale with one-day step from Sunday to Saturday within a week; monthly scale with one-month step from January to December. A total of six types of spatiotemporal slices will be created as the base for the analysis. Burglary crimes are spatiotemporally aggregated to spatiotemporal slices based on where and when they occurred. For each type of spatiotemporal slices with burglary occurrences integrated, spatiotemporal neighborhood will be defined and managed in a spatiotemporal matrix. Hot-spot analysis will identify spatiotemporal clusters of each type of spatiotemporal slices. Spatiotemporal trend analysis is conducted to indicate how the clusters shift in space and time. The analysis results will provide helpful information for better target policing and crime prevention policy such as police patrol scheduling regarding times and places covered.

  10. Giant panda foraging and movement patterns in response to bamboo shoot growth.

    PubMed

    Zhang, Mingchun; Zhang, Zhizhong; Li, Zhong; Hong, Mingsheng; Zhou, Xiaoping; Zhou, Shiqiang; Zhang, Jindong; Hull, Vanessa; Huang, Jinyan; Zhang, Hemin

    2018-03-01

    Diet plays a pivotal role in dictating behavioral patterns of herbivorous animals, particularly specialist species. The giant panda (Ailuropoda melanoleuca) is well-known as a bamboo specialist. In the present study, the response of giant pandas to spatiotemporal variation of bamboo shoots was explored using field surveys and GPS collar tracking. Results show the dynamics in panda-bamboo space-time relationships that have not been previously articulated. For instance, we found a higher bamboo stump height of foraged bamboo with increasing elevation, places where pandas foraged later in spring when bamboo shoots become more fibrous and woody. The time required for shoots to reach optimum height for foraging was significantly delayed as elevation increased, a pattern which corresponded with panda elevational migration patterns beginning from the lower elevational end of Fargesia robusta distribution and gradually shifting upward until the end of the shooting season. These results indicate that giant pandas can respond to spatiotemporal variation of bamboo resources, such as available shoots. Anthropogenic interference of low-elevation F. robusta habitat should be mitigated, and conservation attention and increased monitoring should be given to F. robusta areas at the low- and mid-elevation ranges, particularly in the spring shooting season.

  11. An evaluation of space time cube representation of spatiotemporal patterns.

    PubMed

    Kristensson, Per Ola; Dahlbäck, Nils; Anundi, Daniel; Björnstad, Marius; Gillberg, Hanna; Haraldsson, Jonas; Mårtensson, Ingrid; Nordvall, Mathias; Ståhl, Josefine

    2009-01-01

    Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a data set to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap, we report on a between-subjects experiment comparing novice users' error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions, the error rates were lower when using the baseline representation. For complex questions where the participants needed an overall understanding of the spatiotemporal structure of the data set, the space time cube representation resulted in on average twice as fast response times with no difference in error rates compared to the baseline. These results provide an empirical foundation for the hypothesis that space time cube representation benefits users analyzing complex spatiotemporal patterns.

  12. Unravelling a biogeographical knot: origin of the 'leapfrog' distribution pattern of Australo-Papuan sooty owls (Strigiformes) and logrunners (Passeriformes).

    PubMed

    Norman, J A; Christidis, L; Joseph, L; Slikas, B; Alpers, D

    2002-10-22

    Molecular analysis of two Australo-Papuan rainforest birds exhibiting correlated 'leapfrog' patterns were used to elucidate the evolutionary origin of this unusual pattern of geographical differentiation. In both sooty owls (Tyto) and logrunners (Orthonyx), phenotypically similar populations occupy widely disjunct areas (central-eastern Australia and upland New Guinea) with a third, highly distinctive population, occurring between them in northeastern Queensland. Two mechanisms have been proposed to explain the origin of leapfrog patterns in avian distributions: recent shared ancestry of terminal populations and unequal rates or phenotypic change among populations. As the former should generate correlated patterns of phenotypic and genetic differentiation, we tested for a sister relationship between populations from New Guinea and central-eastern Australia using nuclear and mitochondrial DNA sequences. The resulting phylogenies not only refute recent ancestry as an explanation for the leapfrog pattern, but provide evidence of vastly different spatio-temporal histories for sooty owls and logrunners within the Australo-Papuan rainforests. This incongruence indicates that the evolutionary processes responsible for generating leapfrog patterns in these co-distributed taxa are complex, possibly involving a combination of selection and drift in sooty owls and convergence or retention of ancestral characteristics in logrunners.

  13. Spatio-temporal evolution of female lung cancer mortality in a region of Spain, is it worth taking migration into account?

    PubMed

    Zurriaga, Oscar; Vanaclocha, Hermelinda; Martinez-Beneito, Miguel A; Botella-Rocamora, Paloma

    2008-01-31

    The Comunitat Valenciana (CV) is a tourist region on the Mediterranean coast of Spain with a high rate of retirement migration. Lung cancer in women is the cancer mortality cause that has increased most in the CV during the period 1991 to 2000. Moreover, the geographical distribution of risk from this cause in the CV has been previously described and a non-homogenous pattern was determined. The present paper studies the spatio-temporal distribution of lung cancer mortality for women in the CV during the period 1987-2004, in order to gain some insight into the factors, such as migration, that have had an influence on these changes. A novel methodology, consisting of a Bayesian hierarchical model, is used in this paper. Such a model allows the handling of data with a very high disaggregation, while at the same time taking advantage of its spatial and temporal structure. The spatio-temporal pattern which was found points to geographical differences in the time trends of risk. In fact, the southern coastal side of the CV has had a higher increase in risk, coinciding with the settlement of a large foreign community in that area, mainly comprised of elderly people from the European Union. Migration has frequently been ignored as a risk factor in the description of the geographical risk of lung cancer and it is suggested that this factor should be considered, especially in tourist regions. The temporal component in disease mapping provides a more accurate depiction of risk factors acting on the population.

  14. The range of the mange: Spatiotemporal patterns of sarcoptic mange in red foxes (Vulpes vulpes) as revealed by camera trapping

    PubMed Central

    Odden, Morten; Linnell, John D. C.; Odden, John

    2017-01-01

    Sarcoptic mange is a widely distributed disease that affects numerous mammalian species. We used camera traps to investigate the apparent prevalence and spatiotemporal dynamics of sarcoptic mange in a red fox population in southeastern Norway. We monitored red foxes for five years using 305 camera traps distributed across an 18000 km2 area. A total of 6581 fox events were examined to visually identify mange compatible lesions. We investigated factors associated with the occurrence of mange by using logistic models within a Bayesian framework, whereas the spatiotemporal dynamics of the disease were analysed with space-time scan statistics. The apparent prevalence of the disease fluctuated over the study period with a mean of 3.15% and credible interval [1.25, 6.37], and our best logistic model explaining the presence of red foxes with mange-compatible lesions included time since the beginning of the study and the interaction between distance to settlement and season as explanatory variables. The scan analyses detected several potential clusters of the disease that varied in persistence and size, and the locations in the cluster with the highest probability were closer to human settlements than the other survey locations. Our results indicate that red foxes in an advanced stage of the disease are most likely found closer to human settlements during periods of low wild prey availability (winter). We discuss different potential causes. Furthermore, the disease appears to follow a pattern of small localized outbreaks rather than sporadic isolated events. PMID:28423011

  15. Growing magma chambers control the distribution of small-scale flood basalts

    PubMed Central

    Yu, Xun; Chen, Li-Hui; Zeng, Gang

    2015-01-01

    Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar–Ar and K–Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 > 47.5 wt.%) from Xinchang–Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4–3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40–0.66; TiO2/MgO = 0.23–0.35) during about 6 Myr (9.4–3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3–3.0 Ma) through a broad range of compositions ((Na2O + K2O)/MgO = 0.60–1.28; TiO2/MgO = 0.30–0.57). The distribution and two-stage compositional evolution of the migrating flood basalts record continuous magma replenishment that buffered against magmatic evolution and induced magma chamber growth. Our results demonstrate that the magma replenishment–magma chamber growth model explains the spatio-temporal distribution of small-scale flood basalts. PMID:26581905

  16. Wildlife in the Matrix: Spatio-Temporal Patterns of Herbivore Occurrence in Karnataka, India.

    PubMed

    Karanth, Krithi K

    2016-01-01

    Wildlife reserves are becoming increasingly isolated from the surrounding human-dominated landscapes particularly in Asia. It is imperative to understand how species are distributed spatially and temporally in and outside reserves, and what factors influence their occurrence. This study surveyed 7500 km(2) landscape surrounding five reserves in the Western Ghats to examine patterns of occurrence of five herbivores: elephant, gaur, sambar, chital, and pig. Species distributions are modeled spatio-temporally using an occupancy approach. Trained field teams conducted 3860 interview-based occupancy surveys in a 10-km buffer surrounding these five reserves in 2012. I found gaur and wild pig to be the least and most wide-ranging species, respectively. Elephant and chital exhibit seasonal differences in spatial distribution unlike the other three species. As predicted, distance to reserve, the reserve itself, and forest cover were associated with higher occupancy of all species, and higher densities of people negatively influenced occurrence of all species. Park management, species protection, and conflict mitigation efforts in this landscape need to incorporate temporal and spatial understanding of species distributions. All species are known crop raiders and conflict prone locations with resources (such as water and forage) have to be monitored and managed carefully. Wildlife reserves and adjacent areas are critical for long-term persistence and habitat use for all five herbivores and must be monitored to ensure wildlife can move freely. Such a large-scale approach to map and monitor species distributions can be adapted to other landscapes to identify and monitor critical habitats shared by people and wildlife.

  17. Wildlife in the Matrix: Spatio-Temporal Patterns of Herbivore Occurrence in Karnataka, India

    NASA Astrophysics Data System (ADS)

    Karanth, Krithi K.

    2016-01-01

    Wildlife reserves are becoming increasingly isolated from the surrounding human-dominated landscapes particularly in Asia. It is imperative to understand how species are distributed spatially and temporally in and outside reserves, and what factors influence their occurrence. This study surveyed 7500 km2 landscape surrounding five reserves in the Western Ghats to examine patterns of occurrence of five herbivores: elephant, gaur, sambar, chital, and pig. Species distributions are modeled spatio-temporally using an occupancy approach. Trained field teams conducted 3860 interview-based occupancy surveys in a 10-km buffer surrounding these five reserves in 2012. I found gaur and wild pig to be the least and most wide-ranging species, respectively. Elephant and chital exhibit seasonal differences in spatial distribution unlike the other three species. As predicted, distance to reserve, the reserve itself, and forest cover were associated with higher occupancy of all species, and higher densities of people negatively influenced occurrence of all species. Park management, species protection, and conflict mitigation efforts in this landscape need to incorporate temporal and spatial understanding of species distributions. All species are known crop raiders and conflict prone locations with resources (such as water and forage) have to be monitored and managed carefully. Wildlife reserves and adjacent areas are critical for long-term persistence and habitat use for all five herbivores and must be monitored to ensure wildlife can move freely. Such a large-scale approach to map and monitor species distributions can be adapted to other landscapes to identify and monitor critical habitats shared by people and wildlife.

  18. Dynamic Assessment on the Landscape Patterns and Spatio-temporal Change in the mainstream of Tarim River

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Xue, Lianqing; Yang, Changbing; Chen, Xinfang; Zhang, Luochen; Wei, Guanghui

    2018-01-01

    The Tarim River (TR), as the longest inland river at an arid area in China, is a typical regions of vegetation variation research and plays a crucial role in the sustainable development of regional ecological environment. In this paper, the newest dataset of MODND1M NDVI, at a resolution of 500m, were applied to calculate vegetation index in growing season during the period 2000-2015. Using a vegetation coverage index, a trend line analysis, and the local spatial autocorrelation analysis, this paper investigated the landscape patterns and spatio-temporal variation of vegetation coverage at regional and pixel scales over mainstream of the Tarim River, Xinjiang. The results showed that (1) The bare land area on both sides of Tarim River appeared to have a fluctuated downward trend and there were two obvious valley values in 2005 and 2012. (2) Spatially, the vegetation coverage improved areas is mostly distributed in upstream and the degraded areas is mainly distributed in the left bank of midstream and the end of Tarim River during 2000-2005. (3) The local spatial auto-correlation analysis revealed that vegetation coverage was spatially positive autocorrelated and spatial concentrated. The high-high self-related areas are mainly distributed in upstream, where vegetation cover are relatively good, and the low-low self-related areas are mostly with lower vegetation cover in the lower reaches of Tarim River.

  19. Spatiotemporal dynamics of a digital phase-locked loop based coupled map lattice system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Tanmoy, E-mail: tbanerjee@phys.buruniv.ac.in; Paul, Bishwajit; Sarkar, B. C.

    2014-03-15

    We explore the spatiotemporal dynamics of a coupled map lattice (CML) system, which is realized with a one dimensional array of locally coupled digital phase-locked loops (DPLLs). DPLL is a nonlinear feedback-controlled system widely used as an important building block of electronic communication systems. We derive the phase-error equation of the spatially extended system of coupled DPLLs, which resembles a form of the equation of a CML system. We carry out stability analysis for the synchronized homogeneous solutions using the circulant matrix formalism. It is shown through extensive numerical simulations that with the variation of nonlinearity parameter and coupling strengthmore » the system shows transitions among several generic features of spatiotemporal dynamics, viz., synchronized fixed point solution, frozen random pattern, pattern selection, spatiotemporal intermittency, and fully developed spatiotemporal chaos. We quantify the spatiotemporal dynamics using quantitative measures like average quadratic deviation and spatial correlation function. We emphasize that instead of using an idealized model of CML, which is usually employed to observe the spatiotemporal behaviors, we consider a real world physical system and establish the existence of spatiotemporal chaos and other patterns in this system. We also discuss the importance of the present study in engineering application like removal of clock-skew in parallel processors.« less

  20. Spatiotemporal dynamics of a digital phase-locked loop based coupled map lattice system.

    PubMed

    Banerjee, Tanmoy; Paul, Bishwajit; Sarkar, B C

    2014-03-01

    We explore the spatiotemporal dynamics of a coupled map lattice (CML) system, which is realized with a one dimensional array of locally coupled digital phase-locked loops (DPLLs). DPLL is a nonlinear feedback-controlled system widely used as an important building block of electronic communication systems. We derive the phase-error equation of the spatially extended system of coupled DPLLs, which resembles a form of the equation of a CML system. We carry out stability analysis for the synchronized homogeneous solutions using the circulant matrix formalism. It is shown through extensive numerical simulations that with the variation of nonlinearity parameter and coupling strength the system shows transitions among several generic features of spatiotemporal dynamics, viz., synchronized fixed point solution, frozen random pattern, pattern selection, spatiotemporal intermittency, and fully developed spatiotemporal chaos. We quantify the spatiotemporal dynamics using quantitative measures like average quadratic deviation and spatial correlation function. We emphasize that instead of using an idealized model of CML, which is usually employed to observe the spatiotemporal behaviors, we consider a real world physical system and establish the existence of spatiotemporal chaos and other patterns in this system. We also discuss the importance of the present study in engineering application like removal of clock-skew in parallel processors.

  1. Spatiotemporal dynamics of a digital phase-locked loop based coupled map lattice system

    NASA Astrophysics Data System (ADS)

    Banerjee, Tanmoy; Paul, Bishwajit; Sarkar, B. C.

    2014-03-01

    We explore the spatiotemporal dynamics of a coupled map lattice (CML) system, which is realized with a one dimensional array of locally coupled digital phase-locked loops (DPLLs). DPLL is a nonlinear feedback-controlled system widely used as an important building block of electronic communication systems. We derive the phase-error equation of the spatially extended system of coupled DPLLs, which resembles a form of the equation of a CML system. We carry out stability analysis for the synchronized homogeneous solutions using the circulant matrix formalism. It is shown through extensive numerical simulations that with the variation of nonlinearity parameter and coupling strength the system shows transitions among several generic features of spatiotemporal dynamics, viz., synchronized fixed point solution, frozen random pattern, pattern selection, spatiotemporal intermittency, and fully developed spatiotemporal chaos. We quantify the spatiotemporal dynamics using quantitative measures like average quadratic deviation and spatial correlation function. We emphasize that instead of using an idealized model of CML, which is usually employed to observe the spatiotemporal behaviors, we consider a real world physical system and establish the existence of spatiotemporal chaos and other patterns in this system. We also discuss the importance of the present study in engineering application like removal of clock-skew in parallel processors.

  2. Altruism: A natural strategy for enhancing survival

    NASA Astrophysics Data System (ADS)

    Rozenfeld, Alejandro F.; Luis Gruver, José; Albano, Ezequiel V.; Havlin, Shlomo

    2006-09-01

    We study the influence of altruistic behavior in a prey-predator model permitting the preys to commit suicide by confronting the predators instead of escaping. Surprising, altruistic behavior at microscopic (local) scale, leads to the emergence of new complex macroscopic (global) phenomena characterized by dramatic changes in the dynamic topology of the prey-predator spatiotemporal distribution, yielding spiral patterns. We show that such dynamics enhances the prey's survivability.

  3. Gait functional assessment: Spatio-temporal analysis and classification of barefoot plantar pressure in a group of 11-12-year-old children.

    PubMed

    Latour, Ewa; Latour, Marek; Arlet, Jarosław; Adach, Zdzisław; Bohatyrewicz, Andrzej

    2011-07-01

    Analysis of pedobarographical data requires geometric identification of specific anatomical areas extracted from recorded plantar pressures. This approach has led to ambiguity in measurements that may underlie the inconsistency of conclusions reported in pedobarographical studies. The goal of this study was to design a new analysis method less susceptible to the projection accuracy of anthropometric points and distance estimation, based on rarely used spatio-temporal indices. Six pedobarographic records per person (three per foot) from a group of 60 children aged 11-12 years were obtained and analyzed. The basis of the analysis was a mutual relationship between two spatio-temporal indices created by excursion of the peak pressure point and the center-of-pressure point on the dynamic pedobarogram. Classification of weight-shift patterns was elaborated and performed, and their frequencies of occurrence were assessed. This new method allows an assessment of body weight shift through the plantar pressure surface based on distribution analysis of spatio-temporal indices not affected by the shape of this surface. Analysis of the distribution of the created index confirmed the existence of typical ways of weight shifting through the plantar surface of the foot during gait, as well as large variability of the intrasubject occurrence. This method may serve as the basis for interpretation of foot functional features and may extend the clinical usefulness of pedobarography. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Harbour porpoise distribution can vary at small spatiotemporal scales in energetic habitats

    NASA Astrophysics Data System (ADS)

    Benjamins, Steven; van Geel, Nienke; Hastie, Gordon; Elliott, Jim; Wilson, Ben

    2017-07-01

    Marine habitat heterogeneity underpins species distribution and can be generated through interactions between physical and biological drivers at multiple spatiotemporal scales. Passive acoustic monitoring (PAM) is used worldwide to study potential impacts of marine industrial activities on cetaceans, but understanding of animals' site use at small spatiotemporal scales (<1 km, <1 day) remains limited. Small-scale variability in vocalising harbour porpoise (Phocoena phocoena) distribution within two Scottish marine renewable energy development (MRED) sites was investigated by deploying dense arrays of C-POD passive acoustic detectors at a wave energy test site (the European Marine Energy Centre [Billia Croo, Orkney]) and by a minor tidal-stream site (Scarba [Inner Hebrides]). Respective arrays consisted of 7 and 11 moorings containing two C-PODs each and were deployed for up to 55 days. Minimum inter-mooring distances varied between 300-600 m. All C-POD data were analysed at a temporal resolution of whole minutes, with each minute classified as 1 or 0 on the basis of presence/absence of porpoise click trains (Porpoise-Positive Minutes/PPMs). Porpoise detection rates were analysed using Generalised Additive Models (GAMs) with Generalised Estimation Equations (GEEs). Although there were many porpoise detections (wave test site: N=3,432; tidal-stream site: N=17,366), daily detection rates varied significantly within both arrays. Within the wave site array (<1 km diameter), average daily detection rates varied from 4.3 to 14.8 PPMs/day. Within the tidal-stream array (<2 km diameter), average daily detection rates varied from 10.3 to 49.7 PPMs/day. GAM-GEE model results for individual moorings within both arrays indicated linkages between porpoise presence and small-scale heterogeneity among different environmental covariates (e.g., tidal phase, time of day). Porpoise detection rates varied considerably but with coherent patterns between moorings only several hundred metres apart and within hours. These patterns presumably have ecological relevance. These results indicate that, in energetically active and heterogeneous areas, porpoises can display significant spatiotemporal variability in site use at scales of hundreds of metres and hours. Such variability will not be identified when using solitary moored PAM detectors (a common practice for site-based cetacean monitoring), but may be highly relevant for site-based impact assessments of MRED and other coastal developments. PAM arrays encompassing several detectors spread across a site therefore appear to be a more appropriate tool to study site-specific cetacean use of spatiotemporally heterogeneous habitat and assess the potential impacts of coastal and nearshore developments at small scales.

  5. Early-warning signals for catastrophic soil degradation

    NASA Astrophysics Data System (ADS)

    Karssenberg, Derek

    2010-05-01

    Many earth systems have critical thresholds at which the system shifts abruptly from one state to another. Such critical transitions have been described, among others, for climate, vegetation, animal populations, and geomorphology. Predicting the timing of critical transitions before they are reached is of importance because of the large impact on nature and society associated with the transition. However, it is notably difficult to predict the timing of a transition. This is because the state variables of the system show little change before the threshold is reached. As a result, the precision of field observations is often too low to provide predictions of the timing of a transition. A possible solution is the use of spatio-temporal patterns in state variables as leading indicators of a transition. It is becoming clear that the critically slowing down of a system causes spatio-temporal autocorrelation and variance to increase before the transition. Thus, spatio-temporal patterns are important candidates for early-warning signals. In this research we will show that these early-warning signals also exist in geomorphological systems. We consider a modelled vegetation-soil system under a gradually increasing grazing pressure causing an abrupt shift towards extensive soil degradation. It is shown that changes in spatio-temporal patterns occur well ahead of this catastrophic transition. A distributed model describing the coupled processes of vegetation growth and geomorphological denudation is adapted. The model uses well-studied simple process representations for vegetation and geomorphology. A logistic growth model calculates vegetation cover as a function of grazing pressure and vegetation growth rate. Evolution of the soil thickness is modelled by soil creep and wash processes, as a function of net rain reaching the surface. The vegetation and soil system are coupled by 1) decreasing vegetation growth with decreasing soil thickness and 2) increasing soil wash with decreasing vegetation cover. The model describes a critical, catastrophic transition of an underexploited system with low grazing pressure towards an overexploited system. The underexploited state has high vegetation cover and well developed soils, while the overexploited state has low vegetation cover and largely degraded soils. We first show why spatio-temporal patterns in vegetation cover, morphology, erosion rate, and sediment load should be expected to change well before the critical transition towards the overexploited state. Subsequently, spatio-temporal patterns are quantified by calculating statistics, in particular first order statistics and autocorrelation in space and time. It is shown that these statistics gradually change before the transition is reached. This indicates that the statistics may serve as early-warning signals in real-world applications. We also discuss the potential use of remote sensing to predict the critical transition in real-world landscapes.

  6. Spatiotemporal Patterns in a Predator-Prey Model with Cross-Diffusion Effect

    NASA Astrophysics Data System (ADS)

    Sambath, M.; Balachandran, K.; Guin, L. N.

    The present research deals with the emergence of spatiotemporal patterns of a two-dimensional (2D) continuous predator-prey system with cross-diffusion effect. First, we work out the critical lines of Hopf and Turing bifurcations of the current model system in a 2D spatial domain by means of bifurcation theory. More specifically, the exact Turing region is specified in a two-parameter space. In effect, by choosing the cross-diffusion coefficient as one of the momentous parameter, we demonstrate that the model system undergoes a sequence of spatiotemporal patterns in a homogeneous environment through diffusion-driven instability. Our results via numerical simulation authenticate that cross-diffusion be able to create stationary patterns which enrich the findings of pattern formation in an ecosystem.

  7. Modelling and formation of spatiotemporal patterns of fractional predation system in subdiffusion and superdiffusion scenarios

    NASA Astrophysics Data System (ADS)

    Owolabi, Kolade M.; Atangana, Abdon

    2018-02-01

    This paper primarily focused on the question of how population diffusion can affect the formation of the spatial patterns in the spatial fraction predator-prey system by Turing mechanisms. Our numerical findings assert that modeling by fractional reaction-diffusion equations should be considered as an appropriate tool for studying the fundamental mechanisms of complex spatiotemporal dynamics. We observe that pure Hopf instability gives rise to the formation of spiral patterns in 2D and pure Turing instability destroys the spiral pattern and results to the formation of chaotic or spatiotemporal spatial patterns. Existence and permanence of the species is also guaranteed with the 3D simulations at some instances of time for subdiffusive and superdiffusive scenarios.

  8. Method for detecting the signature of noise-induced structures in spatiotemporal data sets: an application to excitable media

    NASA Astrophysics Data System (ADS)

    Huett, Marc-Thorsten

    2003-05-01

    We formulate mathematical tools for analyzing spatiotemporal data sets. The tools are based on nearest-neighbor considerations similar to cellular automata. One of the analysis tools allows for reconstructing the noise intensity in a data set and is an appropriate method for detecting a variety of noise-induced phenomena in spatiotemporal data. The functioning of these methods is illustrated on sample data generated with the forest fire model and with networks of nonlinear oscillators. It is seen that these methods allow the characterization of spatiotemporal stochastic resonance (STSR) in experimental data. Application of these tools to biological spatiotemporal patterns is discussed. For one specific example, the slime mold Dictyostelium discoideum, it is seen, how transitions between different patterns are clearly marked by changes in the spatiotemporal observables.

  9. Exploring Instructive Physiological Signaling with the Bioelectric Tissue Simulation Engine

    PubMed Central

    Pietak, Alexis; Levin, Michael

    2016-01-01

    Bioelectric cell properties have been revealed as powerful targets for modulating stem cell function, regenerative response, developmental patterning, and tumor reprograming. Spatio-temporal distributions of endogenous resting potential, ion flows, and electric fields are influenced not only by the genome and external signals but also by their own intrinsic dynamics. Ion channels and electrical synapses (gap junctions) both determine, and are themselves gated by, cellular resting potential. Thus, the origin and progression of bioelectric patterns in multicellular tissues is complex, which hampers the rational control of voltage distributions for biomedical interventions. To improve understanding of these dynamics and facilitate the development of bioelectric pattern control strategies, we developed the BioElectric Tissue Simulation Engine (BETSE), a finite volume method multiphysics simulator, which predicts bioelectric patterns and their spatio-temporal dynamics by modeling ion channel and gap junction activity and tracking changes to the fundamental property of ion concentration. We validate performance of the simulator by matching experimentally obtained data on membrane permeability, ion concentration and resting potential to simulated values, and by demonstrating the expected outcomes for a range of well-known cases, such as predicting the correct transmembrane voltage changes for perturbation of single cell membrane states and environmental ion concentrations, in addition to the development of realistic transepithelial potentials and bioelectric wounding signals. In silico experiments reveal factors influencing transmembrane potential are significantly different in gap junction-networked cell clusters with tight junctions, and identify non-linear feedback mechanisms capable of generating strong, emergent, cluster-wide resting potential gradients. The BETSE platform will enable a deep understanding of local and long-range bioelectrical dynamics in tissues, and assist the development of specific interventions to achieve greater control of pattern during morphogenesis and remodeling. PMID:27458581

  10. Spatiotemporal pattern of vegetation remote sensing phenology and its response to climatic factors on the Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    An, S.; Chen, X.

    2015-12-01

    Based on the MODIS MCD12Q2 remote sensing phenology product, we analyzed spatiotemporal variations of vegetation green-up, maturity, senescence and brown-off dates, and their relation to spatiotemporal patterns of air temperature and precipitation on the Qinghai-Tibet Plateau (QTP). From 2001 to 2012, phenological time series at about 11.7%~15.1% pixels indicate significant linear trends (P<0.1) with strong spatial consistency. Namely, pixels with significant phenological advancement and growing season lengthening are mainly distributed in the middle and eastern parts of the QTP, while pixels with significant phenological delay and growing season shortening are mainly distributed in the western and southern parts as well as the eastern edge of the QTP. Similar spatial patterns for positive and negative linear trends of the minimum and maximum EVI, and the time-integrated EVI during the growing season were detected in the above two regions, respectively. With regard to climatic factors, mean annual temperature shows an increased trend over the QTP except for the eastern edge, whereas annual precipitation displays an increased trend in the middle and eastern parts but a decreased trend in the western and southern parts as well as the eastern edge of the QTP. These findings suggest that phenological advancement, growing season lengthening, and vegetation activity enhancement in the middle and eastern parts might be attributed to coincident temperature and precipitation increase. By contrast, phenological delay, growing season shortening, and vegetation activity reduction in the western and southern parts as well as the eastern edge might be caused by opposite changes of temperature and precipitation, and strong evaporation induced water shortage. Furthermore, a partial correlation analysis indicates that green-up, maturity, and brown-off dates were influenced by preceding temperature and precipitation, while senescence date was affected by preceding precipitation.

  11. Altered Gastrointestinal Function in the Neuroligin-3 Mouse Model of Autism

    DTIC Science & Technology

    2013-10-01

    GABA neurotransmission in the brain. This work aims to examine the spatiotemporal distribution patterns of NL3 and related proteins and mRNA in gut ...implicated in ASD are upregulated during gut development presynaptic localization of the neuroligin-3 protein 16. SECURITY CLASSIFICATION OF: U...related proteins and mRNA in gut tissue from these mice. This project aims to determine biological mechanisms contributing to gastrointestinal dysfunction

  12. Mining moving object trajectories in location-based services for spatio-temporal database update

    NASA Astrophysics Data System (ADS)

    Guo, Danhuai; Cui, Weihong

    2008-10-01

    Advances in wireless transmission and mobile technology applied to LBS (Location-based Services) flood us with amounts of moving objects data. Vast amounts of gathered data from position sensors of mobile phones, PDAs, or vehicles hide interesting and valuable knowledge and describe the behavior of moving objects. The correlation between temporal moving patterns of moving objects and geo-feature spatio-temporal attribute was ignored, and the value of spatio-temporal trajectory data was not fully exploited too. Urban expanding or frequent town plan change bring about a large amount of outdated or imprecise data in spatial database of LBS, and they cannot be updated timely and efficiently by manual processing. In this paper we introduce a data mining approach to movement pattern extraction of moving objects, build a model to describe the relationship between movement patterns of LBS mobile objects and their environment, and put up with a spatio-temporal database update strategy in LBS database based on trajectories spatiotemporal mining. Experimental evaluation reveals excellent performance of the proposed model and strategy. Our original contribution include formulation of model of interaction between trajectory and its environment, design of spatio-temporal database update strategy based on moving objects data mining, and the experimental application of spatio-temporal database update by mining moving objects trajectories.

  13. Bridge damage detection using spatiotemporal patterns extracted from dense sensor network

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Gong, Yongqiang; Laflamme, Simon; Phares, Brent; Sarkar, Soumik

    2017-01-01

    The alarmingly degrading state of transportation infrastructures combined with their key societal and economic importance calls for automatic condition assessment methods to facilitate smart management of maintenance and repairs. With the advent of ubiquitous sensing and communication capabilities, scalable data-driven approaches is of great interest, as it can utilize large volume of streaming data without requiring detailed physical models that can be inaccurate and computationally expensive to run. Properly designed, a data-driven methodology could enable fast and automatic evaluation of infrastructures, discovery of causal dependencies among various sub-system dynamic responses, and decision making with uncertainties and lack of labeled data. In this work, a spatiotemporal pattern network (STPN) strategy built on symbolic dynamic filtering (SDF) is proposed to explore spatiotemporal behaviors in a bridge network. Data from strain gauges installed on two bridges are generated using finite element simulation for three types of sensor networks from a density perspective (dense, nominal, sparse). Causal relationships among spatially distributed strain data streams are extracted and analyzed for vehicle identification and detection, and for localization of structural degradation in bridges. Multiple case studies show significant capabilities of the proposed approach in: (i) capturing spatiotemporal features to discover causality between bridges (geographically close), (ii) robustness to noise in data for feature extraction, (iii) detecting and localizing damage via comparison of bridge responses to similar vehicle loads, and (iv) implementing real-time health monitoring and decision making work flow for bridge networks. Also, the results demonstrate increased sensitivity in detecting damages and higher reliability in quantifying the damage level with increase in sensor network density.

  14. A model for optimizing file access patterns using spatio-temporal parallelism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boonthanome, Nouanesengsy; Patchett, John; Geveci, Berk

    2013-01-01

    For many years now, I/O read time has been recognized as the primary bottleneck for parallel visualization and analysis of large-scale data. In this paper, we introduce a model that can estimate the read time for a file stored in a parallel filesystem when given the file access pattern. Read times ultimately depend on how the file is stored and the access pattern used to read the file. The file access pattern will be dictated by the type of parallel decomposition used. We employ spatio-temporal parallelism, which combines both spatial and temporal parallelism, to provide greater flexibility to possible filemore » access patterns. Using our model, we were able to configure the spatio-temporal parallelism to design optimized read access patterns that resulted in a speedup factor of approximately 400 over traditional file access patterns.« less

  15. Spatial and spatiotemporal pattern analysis of coconut lethal yellowing in Mozambique.

    PubMed

    Bonnot, F; de Franqueville, H; Lourenço, E

    2010-04-01

    Coconut lethal yellowing (LY) is caused by a phytoplasma and is a major threat for coconut production throughout its growing area. Incidence of LY was monitored visually on every coconut tree in six fields in Mozambique for 34 months. Disease progress curves were plotted and average monthly disease incidence was estimated. Spatial patterns of disease incidence were analyzed at six assessment times. Aggregation was tested by the coefficient of spatial autocorrelation of the beta-binomial distribution of diseased trees in quadrats. The binary power law was used as an assessment of overdispersion across the six fields. Spatial autocorrelation between symptomatic trees was measured by the BB join count statistic based on the number of pairs of diseased trees separated by a specific distance and orientation, and tested using permutation methods. Aggregation of symptomatic trees was detected in every field in both cumulative and new cases. Spatiotemporal patterns were analyzed with two methods. The proximity of symptomatic trees at two assessment times was investigated using the spatiotemporal BB join count statistic based on the number of pairs of trees separated by a specific distance and orientation and exhibiting the first symptoms of LY at the two times. The semivariogram of times of appearance of LY was calculated to characterize how the lag between times of appearance of LY was related to the distance between symptomatic trees. Both statistics were tested using permutation methods. A tendency for new cases to appear in the proximity of previously diseased trees and a spatially structured pattern of times of appearance of LY within clusters of diseased trees were detected, suggesting secondary spread of the disease.

  16. Declines in moose population density at Isle Royle National Park, MI, USA and accompanied changes in landscape patterns

    USGS Publications Warehouse

    De Jager, N. R.; Pastor, J.

    2009-01-01

    Ungulate herbivores create patterns of forage availability, plant species composition, and soil fertility as they range across large landscapes and consume large quantities of plant material. Over time, herbivore populations fluctuate, producing great potential for spatio-temporal landscape dynamics. In this study, we extend the spatial and temporal extent of a long-term investigation of the relationship of landscape patterns to moose foraging behavior at Isle Royale National Park, MI. We examined how patterns of browse availability and consumption, plant basal area, and soil fertility changed during a recent decline in the moose population. We used geostatistics to examine changes in the nature of spatial patterns in two valleys over 18 years and across short-range and long-range distance scales. Landscape patterns of available and consumed browse changed from either repeated patches or randomly distributed patches in 1988-1992 to random point distributions by 2007 after a recent record high peak followed by a rapid decline in the moose population. Patterns of available and consumed browse became decoupled during the moose population low, which is in contrast to coupled patterns during the earlier high moose population. Distributions of plant basal area and soil nitrogen availability also switched from repeated patches to randomly distributed patches in one valley and to random point distributions in the other valley. Rapid declines in moose population density may release vegetation and soil fertility from browsing pressure and in turn create random landscape patterns. ?? Springer Science+Business Media B.V. 2009.

  17. Capacity for patterns and sequences in Kanerva's SDM as compared to other associative memory models

    NASA Technical Reports Server (NTRS)

    Keeler, James D.

    1987-01-01

    The information capacity of Kanerva's Sparse Distributed Memory (SDM) and Hopfield-type neural networks is investigated. Under the approximations used, it is shown that the total information stored in these systems is proportional to the number connections in the network. The proportionality constant is the same for the SDM and Hopfield-type models independent of the particular model, or the order of the model. The approximations are checked numerically. This same analysis can be used to show that the SDM can store sequences of spatiotemporal patterns, and the addition of time-delayed connections allows the retrieval of context dependent temporal patterns. A minor modification of the SDM can be used to store correlated patterns.

  18. Unravelling a biogeographical knot: origin of the 'leapfrog' distribution pattern of Australo-Papuan sooty owls (Strigiformes) and logrunners (Passeriformes).

    PubMed Central

    Norman, J A; Christidis, L; Joseph, L; Slikas, B; Alpers, D

    2002-01-01

    Molecular analysis of two Australo-Papuan rainforest birds exhibiting correlated 'leapfrog' patterns were used to elucidate the evolutionary origin of this unusual pattern of geographical differentiation. In both sooty owls (Tyto) and logrunners (Orthonyx), phenotypically similar populations occupy widely disjunct areas (central-eastern Australia and upland New Guinea) with a third, highly distinctive population, occurring between them in northeastern Queensland. Two mechanisms have been proposed to explain the origin of leapfrog patterns in avian distributions: recent shared ancestry of terminal populations and unequal rates or phenotypic change among populations. As the former should generate correlated patterns of phenotypic and genetic differentiation, we tested for a sister relationship between populations from New Guinea and central-eastern Australia using nuclear and mitochondrial DNA sequences. The resulting phylogenies not only refute recent ancestry as an explanation for the leapfrog pattern, but provide evidence of vastly different spatio-temporal histories for sooty owls and logrunners within the Australo-Papuan rainforests. This incongruence indicates that the evolutionary processes responsible for generating leapfrog patterns in these co-distributed taxa are complex, possibly involving a combination of selection and drift in sooty owls and convergence or retention of ancestral characteristics in logrunners. PMID:12396487

  19. Spatiotemporal Coding of Individual Chemicals by the Gustatory System

    PubMed Central

    Reiter, Sam; Campillo Rodriguez, Chelsey; Sun, Kui

    2015-01-01

    Four of the five major sensory systems (vision, olfaction, somatosensation, and audition) are thought to use different but partially overlapping sets of neurons to form unique representations of vast numbers of stimuli. The only exception is gustation, which is thought to represent only small numbers of basic taste categories. However, using new methods for delivering tastant chemicals and making electrophysiological recordings from the tractable gustatory system of the moth Manduca sexta, we found chemical-specific information is as follows: (1) initially encoded in the population of gustatory receptor neurons as broadly distributed spatiotemporal patterns of activity; (2) dramatically integrated and temporally transformed as it propagates to monosynaptically connected second-order neurons; and (3) observed in tastant-specific behavior. Our results are consistent with an emerging view of the gustatory system: rather than constructing basic taste categories, it uses a spatiotemporal population code to generate unique neural representations of individual tastant chemicals. SIGNIFICANCE STATEMENT Our results provide a new view of taste processing. Using a new, relatively simple model system and a new set of techniques to deliver taste stimuli and to examine gustatory receptor neurons and their immediate followers, we found no evidence for labeled line connectivity, or basic taste categories such as sweet, salty, bitter, and sour. Rather, individual tastant chemicals are represented as patterns of spiking activity distributed across populations of receptor neurons. These representations are transformed substantially as multiple types of receptor neurons converge upon follower neurons, leading to a combinatorial coding format that uniquely, rapidly, and efficiently represents individual taste chemicals. Finally, we found that the information content of these neurons can drive tastant-specific behavior. PMID:26338341

  20. Spatiotemporal Coding of Individual Chemicals by the Gustatory System.

    PubMed

    Reiter, Sam; Campillo Rodriguez, Chelsey; Sun, Kui; Stopfer, Mark

    2015-09-02

    Four of the five major sensory systems (vision, olfaction, somatosensation, and audition) are thought to use different but partially overlapping sets of neurons to form unique representations of vast numbers of stimuli. The only exception is gustation, which is thought to represent only small numbers of basic taste categories. However, using new methods for delivering tastant chemicals and making electrophysiological recordings from the tractable gustatory system of the moth Manduca sexta, we found chemical-specific information is as follows: (1) initially encoded in the population of gustatory receptor neurons as broadly distributed spatiotemporal patterns of activity; (2) dramatically integrated and temporally transformed as it propagates to monosynaptically connected second-order neurons; and (3) observed in tastant-specific behavior. Our results are consistent with an emerging view of the gustatory system: rather than constructing basic taste categories, it uses a spatiotemporal population code to generate unique neural representations of individual tastant chemicals. Our results provide a new view of taste processing. Using a new, relatively simple model system and a new set of techniques to deliver taste stimuli and to examine gustatory receptor neurons and their immediate followers, we found no evidence for labeled line connectivity, or basic taste categories such as sweet, salty, bitter, and sour. Rather, individual tastant chemicals are represented as patterns of spiking activity distributed across populations of receptor neurons. These representations are transformed substantially as multiple types of receptor neurons converge upon follower neurons, leading to a combinatorial coding format that uniquely, rapidly, and efficiently represents individual taste chemicals. Finally, we found that the information content of these neurons can drive tastant-specific behavior. Copyright © 2015 the authors 0270-6474/15/3512309-13$15.00/0.

  1. Predictability of spatio-temporal patterns in a lattice of coupled FitzHugh–Nagumo oscillators

    PubMed Central

    Grace, Miriam; Hütt, Marc-Thorsten

    2013-01-01

    In many biological systems, variability of the components can be expected to outrank statistical fluctuations in the shaping of self-organized patterns. In pioneering work in the late 1990s, it was hypothesized that a drift of cellular parameters (along a ‘developmental path’), together with differences in cell properties (‘desynchronization’ of cells on the developmental path) can establish self-organized spatio-temporal patterns (in their example, spiral waves of cAMP in a colony of Dictyostelium discoideum cells) starting from a homogeneous state. Here, we embed a generic model of an excitable medium, a lattice of diffusively coupled FitzHugh–Nagumo oscillators, into a developmental-path framework. In this minimal model of spiral wave generation, we can now study the predictability of spatio-temporal patterns from cell properties as a function of desynchronization (or ‘spread’) of cells along the developmental path and the drift speed of cell properties on the path. As a function of drift speed and desynchronization, we observe systematically different routes towards fully established patterns, as well as strikingly different correlations between cell properties and pattern features. We show that the predictability of spatio-temporal patterns from cell properties contains important information on the pattern formation process as well as on the underlying dynamical system. PMID:23349439

  2. Spatiotemporal patterns of the fish assemblages downstream of the Gezhouba Dam on the Yangtze River.

    PubMed

    Tao, Jiangping; Gong, Yutian; Tan, Xichang; Yang, Zhi; Chang, Jianbo

    2012-07-01

    An explicit demonstration of the changes in fish assemblages is required to reveal the influence of damming on fish species. However, information from which to draw general conclusions regarding changes in fish assemblages is insufficient because of the limitations of available approaches. We used a combination of acoustic surveys, gillnet sampling, and geostatistical simulations to document the spatiotemporal variations in the fish assemblages downstream of the Gezhouba Dam, before and after the third impoundment of Three Gorges Reservoir (TGR). To conduct a hydroacoustic identification of individual species, we matched the size distributions of the fishes captured by gillnet with those of the acoustic surveys. An optimum threshold of target strength of -50 dB re 1 m(2) was defined, and acoustic surveys were purposefully extended to the selected fish assemblages (i.e., endemic Coreius species) that was acquired by the size and species selectivity of the gillnet sampling. The relative proportion of fish species in acoustic surveys was allocated based on the composition (%) of the harvest in the gillnet surveys. Geostatistical simulations were likewise used to generate spatial patterns of fish distribution, and to determine the absolute abundance of the selected fish assemblages. We observed both the species composition and the spatial distribution of the selected fish assemblages changed significantly after implementation of new flow regulation in the TGR, wherein an immediate sharp population decline in the Coreius occurred. Our results strongly suggested that the new flow regulation in the TGR impoundment adversely affected downstream fish species, particularly the endemic Coreius species. To determine the factors responsible for the decline, we associated the variation in the fish assemblage patterns with changes in the environment and determined that substrate erosion resulting from trapping practices in the TGR likely played a key role.

  3. The Effects of Weather Patterns on the Spatio-Temporal Distribution of SO2 over East Asia as Seen from Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Dunlap, L.; Li, C.; Dickerson, R. R.; Krotkov, N. A.

    2015-12-01

    Weather systems, particularly mid-latitude wave cyclones, have been known to play an important role in the short-term variation of near-surface air pollution. Ground measurements and model simulations have demonstrated that stagnant air and minimal precipitation associated with high pressure systems are conducive to pollutant accumulation. With the passage of a cold front, built up pollution is transported downwind of the emission sources or washed out by precipitation. This concept is important to note when studying long-term changes in spatio-temporal pollution distribution, but has not been studied in detail from space. In this study, we focus on East Asia (especially the industrialized eastern China), where numerous large power plants and other point sources as well as area sources emit large amounts of SO2, an important gaseous pollutant and a precursor of aerosols. Using data from the Aura Ozone Monitoring Instrument (OMI) we show that such weather driven distribution can indeed be discerned from satellite data by utilizing probability distribution functions (PDFs) of SO2 column content. These PDFs are multimodal and give insight into the background pollution level at a given location and contribution from local and upwind emission sources. From these PDFs it is possible to determine the frequency for a given region to have SO2 loading that exceeds the background amount. By comparing OMI-observed long-term change in the frequency with meteorological data, we can gain insights into the effects of climate change (e.g., the weakening of Asian monsoon) on regional air quality. Such insight allows for better interpretation of satellite measurements as well as better prediction of future pollution distribution as a changing climate gives way to changing weather patterns.

  4. Decadal period external magnetic field variations determined via eigenanalysis

    NASA Astrophysics Data System (ADS)

    Shore, R. M.; Whaler, K. A.; Macmillan, S.; Beggan, C.; Velímský, J.; Olsen, N.

    2016-06-01

    We perform a reanalysis of hourly mean magnetic data from ground-based observatories spanning 1997-2009 inclusive, in order to isolate (after removal of core and crustal field estimates) the spatiotemporal morphology of the external fields important to mantle induction, on (long) periods of months to a full solar cycle. Our analysis focuses on geomagnetically quiet days and middle to low latitudes. We use the climatological eigenanalysis technique called empirical orthogonal functions (EOFs), which allows us to identify discrete spatiotemporal patterns with no a priori specification of their geometry -- the form of the decomposition is controlled by the data. We apply a spherical harmonic analysis to the EOF outputs in a joint inversion for internal and external coefficients. The results justify our assumption that the EOF procedure responds primarily to the long-period external inducing field contributions. Though we cannot determine uniquely the contributory source regions of these inducing fields, we find that they have distinct temporal characteristics which enable some inference of sources. An identified annual-period pattern appears to stem from a north-south seasonal motion of the background mean external field distribution. Separate patterns of semiannual and solar-cycle-length periods appear to stem from the amplitude modulations of spatially fixed background fields.

  5. Growth pattern research on the modern deposition of Ganjiang delta in Poyang lake basin by spatio-temporal remote sensing images

    NASA Astrophysics Data System (ADS)

    Zhou, Hongying; Yuan, Xuanjun; Zhang, Youyan; Dong, Wentong; Liu, Song

    2016-11-01

    It is of great importance for petroleum exploration to study the sedimentary features and the growth pattern of shoal water deltas in lake basins. Taking spatio-temporal remote sensing images as the principal data source, combined with field sedimentation survey, a quantitative research on the modern deposition of Ganjiang delta in the Poyang Lake Basin is described in this paper. Using 76 multi-temporal and multi-type remote sensing images acquired from 1973 to 2015, combined with field sedimentation survey, remote sensing interpretation analysis was conducted on the sedimentary facies of the Ganjiang delta. It is found that that the current Poyang Lake mainly consists of three types of sand body deposits including deltaic deposit, overflow channel deposit, and aeolian deposit, and the distribution of sand bodies was affected by the above three types of depositions jointly. The mid-branch channels of the Ganjiang delta increased on an exponential growth rhythm. The main growth pattern of the Ganjiang delta is dendritic and reticular, and the distributary channel mostly arborizes at lake inlet and was reworked to be reticulatus at late stage.

  6. Abnormal early dynamic individual patterns of functional networks in low gamma band for depression recognition.

    PubMed

    Bi, Kun; Chattun, Mahammad Ridwan; Liu, Xiaoxue; Wang, Qiang; Tian, Shui; Zhang, Siqi; Lu, Qing; Yao, Zhijian

    2018-06-13

    The functional networks are associated with emotional processing in depression. The mapping of dynamic spatio-temporal brain networks is used to explore individual performance during early negative emotional processing. However, the dysfunctions of functional networks in low gamma band and their discriminative potentialities during early period of emotional face processing remain to be explored. Functional brain networks were constructed from the MEG recordings of 54 depressed patients and 54 controls in low gamma band (30-48 Hz). Dynamic connectivity regression (DCR) algorithm analyzed the individual change points of time series in response to emotional stimuli and constructed individualized spatio-temporal patterns. The nodal characteristics of patterns were calculated and fed into support vector machine (SVM). Performance of the classification algorithm in low gamma band was validated by dynamic topological characteristics of individual patterns in comparison to alpha and beta band. The best discrimination accuracy of individual spatio-temporal patterns was 91.01% in low gamma band. Individual temporal patterns had better results compared to group-averaged temporal patterns in all bands. The most important discriminative networks included affective network (AN) and fronto-parietal network (FPN) in low gamma band. The sample size is relatively small. High gamma band was not considered. The abnormal dynamic functional networks in low gamma band during early emotion processing enabled depression recognition. The individual information processing is crucial in the discovery of abnormal spatio-temporal patterns in depression during early negative emotional processing. Individual spatio-temporal patterns may reflect the real dynamic function of subjects while group-averaged data may neglect some individual information. Copyright © 2018. Published by Elsevier B.V.

  7. Spatio-temporal analysis of irregular vocal fold oscillations: Biphonation due to desynchronization of spatial modes

    NASA Astrophysics Data System (ADS)

    Neubauer, Jürgen; Mergell, Patrick; Eysholdt, Ulrich; Herzel, Hanspeter

    2001-12-01

    This report is on direct observation and modal analysis of irregular spatio-temporal vibration patterns of vocal fold pathologies in vivo. The observed oscillation patterns are described quantitatively with multiline kymograms, spectral analysis, and spatio-temporal plots. The complex spatio-temporal vibration patterns are decomposed by empirical orthogonal functions into independent vibratory modes. It is shown quantitatively that biphonation can be induced either by left-right asymmetry or by desynchronized anterior-posterior vibratory modes, and the term ``AP (anterior-posterior) biphonation'' is introduced. The presented phonation examples show that for normal phonation the first two modes sufficiently explain the glottal dynamics. The spatio-temporal oscillation pattern associated with biphonation due to left-right asymmetry can be explained by the first three modes. Higher-order modes are required to describe the pattern for biphonation induced by anterior-posterior vibrations. Spatial irregularity is quantified by an entropy measure, which is significantly higher for irregular phonation than for normal phonation. Two asymmetry measures are introduced: the left-right asymmetry and the anterior-posterior asymmetry, as the ratios of the fundamental frequencies of left and right vocal fold and of anterior-posterior modes, respectively. These quantities clearly differentiate between left-right biphonation and anterior-posterior biphonation. This paper proposes methods to analyze quantitatively irregular vocal fold contour patterns in vivo and complements previous findings of desynchronization of vibration modes in computer modes and in in vitro experiments.

  8. Spatiotemporal Patterns and Predictability of Cyberattacks

    PubMed Central

    Chen, Yu-Zhong; Huang, Zi-Gang; Xu, Shouhuai; Lai, Ying-Cheng

    2015-01-01

    A relatively unexplored issue in cybersecurity science and engineering is whether there exist intrinsic patterns of cyberattacks. Conventional wisdom favors absence of such patterns due to the overwhelming complexity of the modern cyberspace. Surprisingly, through a detailed analysis of an extensive data set that records the time-dependent frequencies of attacks over a relatively wide range of consecutive IP addresses, we successfully uncover intrinsic spatiotemporal patterns underlying cyberattacks, where the term “spatio” refers to the IP address space. In particular, we focus on analyzing macroscopic properties of the attack traffic flows and identify two main patterns with distinct spatiotemporal characteristics: deterministic and stochastic. Strikingly, there are very few sets of major attackers committing almost all the attacks, since their attack “fingerprints” and target selection scheme can be unequivocally identified according to the very limited number of unique spatiotemporal characteristics, each of which only exists on a consecutive IP region and differs significantly from the others. We utilize a number of quantitative measures, including the flux-fluctuation law, the Markov state transition probability matrix, and predictability measures, to characterize the attack patterns in a comprehensive manner. A general finding is that the attack patterns possess high degrees of predictability, potentially paving the way to anticipating and, consequently, mitigating or even preventing large-scale cyberattacks using macroscopic approaches. PMID:25992837

  9. Spatiotemporal patterns and predictability of cyberattacks.

    PubMed

    Chen, Yu-Zhong; Huang, Zi-Gang; Xu, Shouhuai; Lai, Ying-Cheng

    2015-01-01

    A relatively unexplored issue in cybersecurity science and engineering is whether there exist intrinsic patterns of cyberattacks. Conventional wisdom favors absence of such patterns due to the overwhelming complexity of the modern cyberspace. Surprisingly, through a detailed analysis of an extensive data set that records the time-dependent frequencies of attacks over a relatively wide range of consecutive IP addresses, we successfully uncover intrinsic spatiotemporal patterns underlying cyberattacks, where the term "spatio" refers to the IP address space. In particular, we focus on analyzing macroscopic properties of the attack traffic flows and identify two main patterns with distinct spatiotemporal characteristics: deterministic and stochastic. Strikingly, there are very few sets of major attackers committing almost all the attacks, since their attack "fingerprints" and target selection scheme can be unequivocally identified according to the very limited number of unique spatiotemporal characteristics, each of which only exists on a consecutive IP region and differs significantly from the others. We utilize a number of quantitative measures, including the flux-fluctuation law, the Markov state transition probability matrix, and predictability measures, to characterize the attack patterns in a comprehensive manner. A general finding is that the attack patterns possess high degrees of predictability, potentially paving the way to anticipating and, consequently, mitigating or even preventing large-scale cyberattacks using macroscopic approaches.

  10. Evaluation of urban sprawl and urban landscape pattern in a rapidly developing region.

    PubMed

    Lv, Zhi-Qiang; Dai, Fu-Qiang; Sun, Cheng

    2012-10-01

    Urban sprawl is a worldwide phenomenon happening particularly in rapidly developing regions. A study on the spatiotemporal characteristics of urban sprawl and urban pattern is useful for the sustainable management of land management and urban land planning. The present research explores the spatiotemporal dynamics of urban sprawl in the context of a rapid urbanization process in a booming economic region of southern China from 1979 to 2005. Three urban sprawl types are distinguished by analyzing overlaid urban area maps of two adjacent study years which originated from the interpretation of remote sensed images and vector land use maps. Landscape metrics are used to analyze the spatiotemporal pattern of urban sprawl for each study period. Study results show that urban areas have expanded dramatically, and the spatiotemporal landscape pattern configured by the three sprawl types changed obviously. The different sprawl type patterns in five study periods have transformed significantly, with their proportions altered both in terms of quantity and of location. The present research proves that urban sprawl quantification and pattern analysis can provide a clear perspective of the urbanization process during a long time period. Particularly, the present study on urban sprawl and sprawl patterns can be used by land use and urban planners.

  11. Empirical synchronized flow in oversaturated city traffic.

    PubMed

    Kerner, Boris S; Hemmerle, Peter; Koller, Micha; Hermanns, Gerhard; Klenov, Sergey L; Rehborn, Hubert; Schreckenberg, Michael

    2014-09-01

    Based on a study of anonymized GPS probe vehicle traces measured by personal navigation devices in vehicles randomly distributed in city traffic, empirical synchronized flow in oversaturated city traffic has been revealed. It turns out that real oversaturated city traffic resulting from speed breakdown in a city in most cases can be considered random spatiotemporal alternations between sequences of moving queues and synchronized flow patterns in which the moving queues do not occur.

  12. A climate-based spatiotemporal prediction for dengue fever epidemics: a case study in southern Taiwan

    NASA Astrophysics Data System (ADS)

    Yu, H.-L.; Yang, S.-J.; Lin, Y.-C.

    2012-04-01

    Dengue Fever (DF) has been identified by the World Health organization (WHO) as one of the most serious vector-borne infectious diseases in tropical and sub-tropical areas. DF has been one of the most important epidemics in Taiwan which occur annually especially in southern Taiwan during summer and autumn. Most DF studies have focused mainly on temporal DF patterns and its close association with climatic covariates, whereas few studies have investigated the spatial DF patterns (spatial dependence and clustering) and composite space-time effects of the DF epidemics. The present study proposes a spatio-temporal DF prediction approach based on stochastic Bayesian Maximum Entropy (BME) analysis. Core and site-specific knowledge bases are considered, including climate and health datasets under conditions of uncertainty, space-time dependence functions, and a Poisson regression model of climatic variables contributing to DF occurrences in southern Taiwan during 2007, when the highest number of DF cases was recorded in the history of Taiwan epidemics (over 2000). The obtained results show that the DF outbreaks in the study area are highly influenced by climatic conditions. Furthermore, the analysis can provide the required "one-week-ahead" outbreak warnings based on spatio-temporal predictions of DF distributions. Therefore, the proposed analysis can provide the Taiwan Disease Control Agency with a valuable tool to timely identify, control, and even efficiently prevent DF spreading across space-time.

  13. Spatio-temporal distributions of piscivorous birds in a subarctic sound during the nonbreeding season

    NASA Astrophysics Data System (ADS)

    Stocking, Jessica; Bishop, Mary Anne; Arab, Ali

    2018-01-01

    Understanding bird distributions outside of the breeding season may help to identify important criteria for winter refuge. We surveyed marine birds in Prince William Sound, Alaska, USA over nine winters from 2007 to 2016. Our objectives were twofold: to examine the seasonal patterns of piscivorous species overwintering in Prince William Sound, and to explore the relationships between spatial covariates and bird distributions, accounting for inherent spatial structure. We used hurdle models to examine nine species groups of piscivorous seabirds: loons, grebes, cormorants, mergansers, large gulls, small gulls, kittiwakes, Brachyramphus murrelets, and murres. Seven groups showed pronounced seasonal patterns. The models with the most support identified water depth and distance to shore as key environmental covariates, while habitat type, wave exposure, sea surface temperature and seafloor slope had less support. Environmental associations are consistent with the available knowledge of forage fish distribution during this time, but studies that address habitat associations of prey fish in winter could strengthen our understanding of processes in Prince William Sound.

  14. Neuromusculoskeletal models based on the muscle synergy hypothesis for the investigation of adaptive motor control in locomotion via sensory-motor coordination.

    PubMed

    Aoi, Shinya; Funato, Tetsuro

    2016-03-01

    Humans and animals walk adaptively in diverse situations by skillfully manipulating their complicated and redundant musculoskeletal systems. From an analysis of measured electromyographic (EMG) data, it appears that despite complicated spatiotemporal properties, muscle activation patterns can be explained by a low dimensional spatiotemporal structure. More specifically, they can be accounted for by the combination of a small number of basic activation patterns. The basic patterns and distribution weights indicate temporal and spatial structures, respectively, and the weights show the muscle sets that are activated synchronously. In addition, various locomotor behaviors have similar low dimensional structures and major differences appear in the basic patterns. These analysis results suggest that neural systems use muscle group combinations to solve motor control redundancy problems (muscle synergy hypothesis) and manipulate those basic patterns to create various locomotor functions. However, it remains unclear how the neural system controls such muscle groups and basic patterns through neuromechanical interactions in order to achieve adaptive locomotor behavior. This paper reviews simulation studies that explored adaptive motor control in locomotion via sensory-motor coordination using neuromusculoskeletal models based on the muscle synergy hypothesis. Herein, the neural mechanism in motor control related to the muscle synergy for adaptive locomotion and a potential muscle synergy analysis method including neuromusculoskeletal modeling for motor impairments and rehabilitation are discussed. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  15. Regulation of Spatiotemporal Patterns by Biological Variability: General Principles and Applications to Dictyostelium discoideum

    PubMed Central

    Grace, Miriam; Hütt, Marc-Thorsten

    2015-01-01

    Spatiotemporal patterns often emerge from local interactions in a self-organizing fashion. In biology, the resulting patterns are also subject to the influence of the systematic differences between the system’s constituents (biological variability). This regulation of spatiotemporal patterns by biological variability is the topic of our review. We discuss several examples of correlations between cell properties and the self-organized spatiotemporal patterns, together with their relevance for biology. Our guiding, illustrative example will be spiral waves of cAMP in a colony of Dictyostelium discoideum cells. Analogous processes take place in diverse situations (such as cardiac tissue, where spiral waves occur in potentially fatal ventricular fibrillation) so a deeper understanding of this additional layer of self-organized pattern formation would be beneficial to a wide range of applications. One of the most striking differences between pattern-forming systems in physics or chemistry and those in biology is the potential importance of variability. In the former, system components are essentially identical with random fluctuations determining the details of the self-organization process and the resulting patterns. In biology, due to variability, the properties of potentially very few cells can have a driving influence on the resulting asymptotic collective state of the colony. Variability is one means of implementing a few-element control on the collective mode. Regulatory architectures, parameters of signaling cascades, and properties of structure formation processes can be "reverse-engineered" from observed spatiotemporal patterns, as different types of regulation and forms of interactions between the constituents can lead to markedly different correlations. The power of this biology-inspired view of pattern formation lies in building a bridge between two scales: the patterns as a collective state of a very large number of cells on the one hand, and the internal parameters of the single cells on the other. PMID:26562406

  16. Finding Spatio-Temporal Patterns in Large Sensor Datasets

    ERIC Educational Resources Information Center

    McGuire, Michael Patrick

    2010-01-01

    Spatial or temporal data mining tasks are performed in the context of the relevant space, defined by a spatial neighborhood, and the relevant time period, defined by a specific time interval. Furthermore, when mining large spatio-temporal datasets, interesting patterns typically emerge where the dataset is most dynamic. This dissertation is…

  17. Fire, native species, and soil resource interactions influence the spatio-temporal invasion pattern of Bromus tectorum

    Treesearch

    Michael J. Gundale; Steve Sutherland; Thomas H. DeLuca; others

    2008-01-01

    Bromus tectorum (cheatgrass) is an invasive annual that occupies perennial grass and shrub communities throughout the western United States. Bromus tectorum exhibits an intriguing spatio-temporal pattern of invasion in low elevation ponderosa pine Pinus ponderosa/bunchgrass communities in western Montana where it...

  18. Patterns of spatio-temporal distribution of winter chronic photoinhibition in leaves of three evergreen Mediterranean species with contrasting acclimation responses.

    PubMed

    Silva-Cancino, María Carolina; Esteban, Raquel; Artetxe, Unai; Plazaola, José Ignacio García

    2012-03-01

    High irradiance and relatively low temperature, which characterize Mediterranean winters, cause chilling stress in plants. Downregulation of photosynthetic efficiency is a mechanism that allows plants to survive these conditions. This study aims to address whether this process shows a regular spatial pattern across leaf surface or not. Three species (Buxus sempervirens, Cistus albidus and Arctostaphylos uva-ursi) with contrasting responses to winter stress were studied. During 7 days, macro and micro Fv/Fm spatial patterns were monitored by the use of chlorophyll fluorescence imaging techniques. In the field, the strongest photoinhibition was found in B. sempervirens, while there was almost no chronic photoinhibition in C. albidus. In leaves of the first species, Fv/Fm decreased from base to tip while in C. albidus it was uniform over the leaf lamina. An intermediate behavior is shown by A. uva-ursi leaves. Spatial heterogeneity distribution of Fv/Fm was found inside the leaves, resulting in greater Fv/Fm values in the inner layers than in the outer ones. Neither xanthophyll-linked downregulation of Fv/Fm nor protein remobilization were the reasons for such spatial patterns since pigment composition and nitrogen content did not reveal tip-base differences. During recovery from winter, photoinhibition changes occurred in Fv/Fm, pigments and chloroplast ultrastructure. This work shows for the first time that irrespective of physiological mechanisms responsible for development of winter photoinhibition, there is an acclimation response with strong spatio-temporal variability at leaf level in some species. This observation should be taken into account when modeling or scaling up photosynthetic responses. Copyright © Physiologia Plantarum 2011.

  19. First Directly Retrieved Global Distribution of Tropospheric Column Ozone from GOME: Comparison with the GEOS-CHEM Model

    NASA Technical Reports Server (NTRS)

    Liu, Xiong; Chance, Kelly; Sioris, Christopher E.; Kurosu, Thomas P.; Spurr, Robert J. D.; Martin, Randall V.; Fu, Tzung-May; Logan, Jennifer A.; Jacob, Daniel J.; Palmer, Paul I.; hide

    2006-01-01

    We present the first directly retrieved global distribution of tropospheric column ozone from Global Ozone Monitoring Experiment (GOME) ultraviolet measurements during December 1996 to November 1997. The retrievals clearly show signals due to convection, biomass burning, stratospheric influence, pollution, and transport. They are capable of capturing the spatiotemporal evolution of tropospheric column ozone in response to regional or short time-scale events such as the 1997-1998 El Nino event and a 10-20 DU change within a few days. The global distribution of tropospheric column ozone displays the well-known wave-1 pattern in the tropics, nearly zonal bands of enhanced tropospheric column ozone of 36-48 DU at 20degS-30degS during the austral spring and at 25degN-45degN during the boreal spring and summer, low tropospheric column ozone of <30 DU uniformly distributed south of 35 S during all seasons, and relatively high tropospheric column ozone of >33 DU at some northern high-latitudes during the spring. Simulation from a chemical transport model corroborates most of the above structures, with small biases of <+/-5 DU and consistent seasonal cycles in most regions, especially in the southern hemisphere. However, significant positive biases of 5-20 DU occur in some northern tropical and subtropical regions such as the Middle East during summer. Comparison of GOME with monthly-averaged Measurement of Ozone and Water Vapor by Airbus in-service Aircraft (MOZAIC) tropospheric column ozone for these regions usually shows good consistency within 1 a standard deviations and retrieval uncertainties. Some biases can be accounted for by inadequate sensitivity to lower tropospheric ozone, the different spatiotemporal sampling and the spatiotemporal variations in tropospheric column ozone.

  20. Spatio-temporal distribution of Oklahoma earthquakes: Exploring relationships using a nearest-neighbor approach: Nearest-neighbor analysis of Oklahoma

    DOE PAGES

    Vasylkivska, Veronika S.; Huerta, Nicolas J.

    2017-06-24

    Determining the spatiotemporal characteristics of natural and induced seismic events holds the opportunity to gain new insights into why these events occur. Linking the seismicity characteristics with other geologic, geographic, natural, or anthropogenic factors could help to identify the causes and suggest mitigation strategies that reduce the risk associated with such events. The nearest-neighbor approach utilized in this work represents a practical first step toward identifying statistically correlated clusters of recorded earthquake events. Detailed study of the Oklahoma earthquake catalog’s inherent errors, empirical model parameters, and model assumptions is presented. We found that the cluster analysis results are stable withmore » respect to empirical parameters (e.g., fractal dimension) but were sensitive to epicenter location errors and seismicity rates. Most critically, we show that the patterns in the distribution of earthquake clusters in Oklahoma are primarily defined by spatial relationships between events. This observation is a stark contrast to California (also known for induced seismicity) where a comparable cluster distribution is defined by both spatial and temporal interactions between events. These results highlight the difficulty in understanding the mechanisms and behavior of induced seismicity but provide insights for future work.« less

  1. Sandpile-based model for capturing magnitude distributions and spatiotemporal clustering and separation in regional earthquakes

    NASA Astrophysics Data System (ADS)

    Batac, Rene C.; Paguirigan, Antonino A., Jr.; Tarun, Anjali B.; Longjas, Anthony G.

    2017-04-01

    We propose a cellular automata model for earthquake occurrences patterned after the sandpile model of self-organized criticality (SOC). By incorporating a single parameter describing the probability to target the most susceptible site, the model successfully reproduces the statistical signatures of seismicity. The energy distributions closely follow power-law probability density functions (PDFs) with a scaling exponent of around -1. 6, consistent with the expectations of the Gutenberg-Richter (GR) law, for a wide range of the targeted triggering probability values. Additionally, for targeted triggering probabilities within the range 0.004-0.007, we observe spatiotemporal distributions that show bimodal behavior, which is not observed previously for the original sandpile. For this critical range of values for the probability, model statistics show remarkable comparison with long-period empirical data from earthquakes from different seismogenic regions. The proposed model has key advantages, the foremost of which is the fact that it simultaneously captures the energy, space, and time statistics of earthquakes by just introducing a single parameter, while introducing minimal parameters in the simple rules of the sandpile. We believe that the critical targeting probability parameterizes the memory that is inherently present in earthquake-generating regions.

  2. Spatiotemporal distribution of Oklahoma earthquakes: Exploring relationships using a nearest-neighbor approach

    NASA Astrophysics Data System (ADS)

    Vasylkivska, Veronika S.; Huerta, Nicolas J.

    2017-07-01

    Determining the spatiotemporal characteristics of natural and induced seismic events holds the opportunity to gain new insights into why these events occur. Linking the seismicity characteristics with other geologic, geographic, natural, or anthropogenic factors could help to identify the causes and suggest mitigation strategies that reduce the risk associated with such events. The nearest-neighbor approach utilized in this work represents a practical first step toward identifying statistically correlated clusters of recorded earthquake events. Detailed study of the Oklahoma earthquake catalog's inherent errors, empirical model parameters, and model assumptions is presented. We found that the cluster analysis results are stable with respect to empirical parameters (e.g., fractal dimension) but were sensitive to epicenter location errors and seismicity rates. Most critically, we show that the patterns in the distribution of earthquake clusters in Oklahoma are primarily defined by spatial relationships between events. This observation is a stark contrast to California (also known for induced seismicity) where a comparable cluster distribution is defined by both spatial and temporal interactions between events. These results highlight the difficulty in understanding the mechanisms and behavior of induced seismicity but provide insights for future work.

  3. Spatio-temporal distribution of Oklahoma earthquakes: Exploring relationships using a nearest-neighbor approach: Nearest-neighbor analysis of Oklahoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasylkivska, Veronika S.; Huerta, Nicolas J.

    Determining the spatiotemporal characteristics of natural and induced seismic events holds the opportunity to gain new insights into why these events occur. Linking the seismicity characteristics with other geologic, geographic, natural, or anthropogenic factors could help to identify the causes and suggest mitigation strategies that reduce the risk associated with such events. The nearest-neighbor approach utilized in this work represents a practical first step toward identifying statistically correlated clusters of recorded earthquake events. Detailed study of the Oklahoma earthquake catalog’s inherent errors, empirical model parameters, and model assumptions is presented. We found that the cluster analysis results are stable withmore » respect to empirical parameters (e.g., fractal dimension) but were sensitive to epicenter location errors and seismicity rates. Most critically, we show that the patterns in the distribution of earthquake clusters in Oklahoma are primarily defined by spatial relationships between events. This observation is a stark contrast to California (also known for induced seismicity) where a comparable cluster distribution is defined by both spatial and temporal interactions between events. These results highlight the difficulty in understanding the mechanisms and behavior of induced seismicity but provide insights for future work.« less

  4. Distinct patterns of seasonal Greenland glacier velocity

    PubMed Central

    Moon, Twila; Joughin, Ian; Smith, Ben; van den Broeke, Michiel R; van de Berg, Willem Jan; Noël, Brice; Usher, Mika

    2014-01-01

    Predicting Greenland Ice Sheet mass loss due to ice dynamics requires a complete understanding of spatiotemporal velocity fluctuations and related control mechanisms. We present a 5 year record of seasonal velocity measurements for 55 marine-terminating glaciers distributed around the ice sheet margin, along with ice-front position and runoff data sets for each glacier. Among glaciers with substantial speed variations, we find three distinct seasonal velocity patterns. One pattern indicates relatively high glacier sensitivity to ice-front position. The other two patterns are more prevalent and appear to be meltwater controlled. These patterns reveal differences in which some subglacial systems likely transition seasonally from inefficient, distributed hydrologic networks to efficient, channelized drainage, while others do not. The difference may be determined by meltwater availability, which in some regions may be influenced by perennial firn aquifers. Our results highlight the need to understand subglacial meltwater availability on an ice sheet-wide scale to predict future dynamic changes. Key Points First multi-region seasonal velocity measurements show regional differences Seasonal velocity fluctuations on most glaciers appear meltwater controlled Seasonal development of efficient subglacial drainage geographically divided PMID:25821275

  5. A Spatiotemporal Clustering Approach to Maritime Domain Awareness

    DTIC Science & Technology

    2013-09-01

    1997. [25] M. E. Celebi, “Effective initialization of k-means for color quantization,” 16th IEEE International Conference on Image Processing (ICIP...release; distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Spatiotemporal clustering is the process of grouping...Department of Electrical and Computer Engineering iv THIS PAGE INTENTIONALLY LEFT BLANK v ABSTRACT Spatiotemporal clustering is the process of

  6. Spatiotemporal patterns of childhood asthma hospitalization and utilization in Memphis Metropolitan Area from 2005 to 2015.

    PubMed

    Oyana, Tonny J; Podila, Pradeep; Wesley, Jagila Minso; Lomnicki, Slawo; Cormier, Stephania

    2017-10-01

    To identify the key risk factors and explain the spatiotemporal patterns of childhood asthma in the Memphis metropolitan area (MMA) over an 11-year period (2005-2015). We hypothesize that in the MMA region this burden is more prevalent among urban children living south, downtown, and north of Memphis than in other areas. We used a large-scale longitudinal electronic health record database from an integrated healthcare system, Geographic information systems (GIS), and statistical and space-time models to study the spatiotemporal distributions of childhood asthma at census tract level. We found statistically significant spatiotemporal clusters of childhood asthma in the south, west, and north of Memphis city after adjusting for key covariates. The results further show a significant increase in temporal gradient in frequency of emergency department (ED) visits and inpatient hospitalizations from 2009 to 2013, and an upward trajectory from 4 per 1,000 children in 2005 to 16 per 1,000 children in 2015. The multivariate logistic regression identified age, race, insurance, admit source, encounter type, and frequency of visits as significant risk factors for childhood asthma (p < 0.05). We observed a greater asthma burden and healthcare utilization for African American (AA) patients living in a high-risk area than those living in a low-risk area in comparison to the white patients: AA vs. white [odds ratio (OR) = 3.03, 95% confidence interval (CI): 2.75-3.34]; and Hispanic vs. white (OR = 1.62, 95% CI: 1.21-2.17). These findings provide a strong basis for developing geographically tailored population health strategies at the neighborhood level for young children with chronic respiratory conditions.

  7. Climate network analysis of regional precipitation extremes: The true story told by event synchronization

    NASA Astrophysics Data System (ADS)

    Odenweller, Adrian; Donner, Reik V.

    2017-04-01

    Over the last decade, complex network methods have been frequently used for characterizing spatio-temporal patterns of climate variability from a complex systems perspective, yielding new insights into time-dependent teleconnectivity patterns and couplings between different components of the Earth climate. Among the foremost results reported, network analyses of the synchronicity of extreme events as captured by the so-called event synchronization have been proposed to be powerful tools for disentangling the spatio-temporal organization of particularly extreme rainfall events and anticipating the timing of monsoon onsets or extreme floodings. Rooted in the analysis of spike train synchrony analysis in the neurosciences, event synchronization has the great advantage of automatically classifying pairs of events arising at two distinct spatial locations as temporally close (and, thus, possibly statistically - or even dynamically - interrelated) or not without the necessity of selecting an additional parameter in terms of a maximally tolerable delay between these events. This consideration is conceptually justified in case of the original application to spike trains in electroencephalogram (EEG) recordings, where the inter-spike intervals show relatively narrow distributions at high temporal sampling rates. However, in case of climate studies, precipitation extremes defined by daily precipitation sums exceeding a certain empirical percentile of their local distribution exhibit a distinctively different type of distribution of waiting times between subsequent events. This raises conceptual concerns if event synchronization is still appropriate for detecting interlinkages between spatially distributed precipitation extremes. In order to study this problem in more detail, we employ event synchronization together with an alternative similarity measure for event sequences, event coincidence rates, which requires a manual setting of the tolerable maximum delay between two events to be considered potentially related. Both measures are then used to generate climate networks from parts of the satellite-based TRMM precipitation data set at daily resolution covering the Indian and East Asian monsoon domains, respectively, thereby reanalysing previously published results. The obtained spatial patterns of degree densities and local clustering coefficients exhibit marked differences between both similarity measures. Specifically, we demonstrate that there exists a strong relationship between the fraction of extremes occurring at subsequent days and the degree density in the event synchronization based networks, suggesting that the spatial patterns obtained using this approach are strongly affected by the presence of serial dependencies between events. Given that a manual selection of the maximally tolerable delay between two events can be guided by a priori climatological knowledge and even used for systematic testing of different hypotheses on climatic processes underlying the emergence of spatio-temporal patterns of extreme precipitation, our results provide evidence that event coincidence rates are a more appropriate statistical characteristic for similarity assessment and network construction for climate extremes, while results based on event synchronization need to be interpreted with great caution.

  8. Oscillations and patterns in a model of simultaneous CO and C2H2 oxidation and NO(x) reduction in a cross-flow reactor.

    PubMed

    Hadač, Otto; Kohout, Martin; Havlica, Jaromír; Schreiber, Igor

    2015-03-07

    A model describing simultaneous catalytic oxidation of CO and C2H2 and reduction of NOx in a cross-flow tubular reactor is explored with the aim of relating spatiotemporal patterns to specific pathways in the mechanism. For that purpose, a detailed mechanism proposed for three-way catalytic converters is split into two subsystems, (i) simultaneous oxidation of CO and C2H2, and (ii) oxidation of CO combined with NOx reduction. The ability of these two subsystems to display mechanism-specific dynamical effects is studied initially by neglecting transport phenomena and applying stoichiometric network and bifurcation analyses. We obtain inlet temperature - inlet oxygen concentration bifurcation diagrams, where each region possessing specific dynamics - oscillatory, bistable and excitable - is associated with a dominant reaction pathway. Next, the spatiotemporal behaviour due to reaction kinetics combined with transport processes is studied. The observed spatiotemporal patterns include phase waves, travelling fronts, pulse waves and spatiotemporal chaos. Although these types of pattern occur generally when the kinetic scheme possesses autocatalysis, we find that some of their properties depend on the underlying dominant reaction pathway. The relation of patterns to specific reaction pathways is discussed.

  9. Globally Increased Crop Growth and Cropping Intensity from the Long-Term Satellite-Based Observations

    NASA Astrophysics Data System (ADS)

    Chen, Bin

    2018-04-01

    Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI) and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p < 0.001), and as for climatic drivers, the gradual temperature and precipitation changes have had a measurable impact on the crop growth trend.

  10. Next Place Prediction Based on Spatiotemporal Pattern Mining of Mobile Device Logs.

    PubMed

    Lee, Sungjun; Lim, Junseok; Park, Jonghun; Kim, Kwanho

    2016-01-23

    Due to the recent explosive growth of location-aware services based on mobile devices, predicting the next places of a user is of increasing importance to enable proactive information services. In this paper, we introduce a data-driven framework that aims to predict the user's next places using his/her past visiting patterns analyzed from mobile device logs. Specifically, the notion of the spatiotemporal-periodic (STP) pattern is proposed to capture the visits with spatiotemporal periodicity by focusing on a detail level of location for each individual. Subsequently, we present algorithms that extract the STP patterns from a user's past visiting behaviors and predict the next places based on the patterns. The experiment results obtained by using a real-world dataset show that the proposed methods are more effective in predicting the user's next places than the previous approaches considered in most cases.

  11. Spatiotemporal Patterns of Noise-Driven Confined Actin Waves in Living Cells.

    PubMed

    Bernitt, Erik; Döbereiner, Hans-Günther

    2017-01-27

    Cells utilize waves of polymerizing actin to reshape their morphologies, which is central to physiological and pathological processes alike. Here, we force dorsal actin waves to propagate on one-dimensional domains with periodic boundary conditions, which results in striking spatiotemporal patterns with a clear signature of noise-driven dynamics. We show that these patterns can be very closely reproduced with a noise-driven active medium at coherence resonance.

  12. Chimera states in networks of logistic maps with hierarchical connectivities

    NASA Astrophysics Data System (ADS)

    zur Bonsen, Alexander; Omelchenko, Iryna; Zakharova, Anna; Schöll, Eckehard

    2018-04-01

    Chimera states are complex spatiotemporal patterns consisting of coexisting domains of coherence and incoherence. We study networks of nonlocally coupled logistic maps and analyze systematically how the dilution of the network links influences the appearance of chimera patterns. The network connectivities are constructed using an iterative Cantor algorithm to generate fractal (hierarchical) connectivities. Increasing the hierarchical level of iteration, we compare the resulting spatiotemporal patterns. We demonstrate that a high clustering coefficient and symmetry of the base pattern promotes chimera states, and asymmetric connectivities result in complex nested chimera patterns.

  13. Multiscale recurrence analysis of spatio-temporal data

    NASA Astrophysics Data System (ADS)

    Riedl, M.; Marwan, N.; Kurths, J.

    2015-12-01

    The description and analysis of spatio-temporal dynamics is a crucial task in many scientific disciplines. In this work, we propose a method which uses the mapogram as a similarity measure between spatially distributed data instances at different time points. The resulting similarity values of the pairwise comparison are used to construct a recurrence plot in order to benefit from established tools of recurrence quantification analysis and recurrence network analysis. In contrast to other recurrence tools for this purpose, the mapogram approach allows the specific focus on different spatial scales that can be used in a multi-scale analysis of spatio-temporal dynamics. We illustrate this approach by application on mixed dynamics, such as traveling parallel wave fronts with additive noise, as well as more complicate examples, pseudo-random numbers and coupled map lattices with a semi-logistic mapping rule. Especially the complicate examples show the usefulness of the multi-scale consideration in order to take spatial pattern of different scales and with different rhythms into account. So, this mapogram approach promises new insights in problems of climatology, ecology, or medicine.

  14. Multiscale recurrence analysis of spatio-temporal data.

    PubMed

    Riedl, M; Marwan, N; Kurths, J

    2015-12-01

    The description and analysis of spatio-temporal dynamics is a crucial task in many scientific disciplines. In this work, we propose a method which uses the mapogram as a similarity measure between spatially distributed data instances at different time points. The resulting similarity values of the pairwise comparison are used to construct a recurrence plot in order to benefit from established tools of recurrence quantification analysis and recurrence network analysis. In contrast to other recurrence tools for this purpose, the mapogram approach allows the specific focus on different spatial scales that can be used in a multi-scale analysis of spatio-temporal dynamics. We illustrate this approach by application on mixed dynamics, such as traveling parallel wave fronts with additive noise, as well as more complicate examples, pseudo-random numbers and coupled map lattices with a semi-logistic mapping rule. Especially the complicate examples show the usefulness of the multi-scale consideration in order to take spatial pattern of different scales and with different rhythms into account. So, this mapogram approach promises new insights in problems of climatology, ecology, or medicine.

  15. Spatiotemporal classification of environmental monitoring data in the Yeongsan River basin, Korea, using self-organizing maps.

    PubMed

    Jin, Y-H; Kawamura, A; Park, S-C; Nakagawa, N; Amaguchi, H; Olsson, J

    2011-10-01

    Environmental monitoring data for planning, implementing and evaluating the Total Maximum Daily Loads (TMDL) management system have been measured at about 8-day intervals in a number of rivers in Korea since 2004. In the present study, water quality parameters such as Suspended Solids (SS), Biochemical Oxygen Demand (BOD), Dissolved Oxygen (DO), Total Nitrogen (TN), and Total Phosphorus (TP) and the corresponding runoff were collected from six stations in the Yeongsan River basin for six years and transformed into monthly mean values. With the primary objective to understand spatiotemporal characteristics of the data, a methodologically systematic application of a Self-Organizing Map (SOM) was made. The SOM application classified the environmental monitoring data into nine clusters showing exclusively distinguishable patterns. Data frequency at each station on a monthly basis identified the spatiotemporal distribution for the first time in the study area. Consequently, the SOM application provided useful information that the sub-basin containing a metropolitan city is associated with deteriorating water quality and should be monitored and managed carefully during spring and summer for water quality improvement in the river basin.

  16. Temporally diverse firing patterns in olfactory receptor neurons underlie spatiotemporal neural codes for odors

    PubMed Central

    Raman, Baranidharan; Joseph, Joby; Tang, Jeff; Stopfer, Mark

    2010-01-01

    Odorants are represented as spatiotemporal patterns of spikes in neurons of the antennal lobe (AL, insects) and olfactory bulb (OB, vertebrates). These response patterns have been thought to arise primarily from interactions within the AL/OB, an idea supported, in part, by the assumption that olfactory receptor neurons (ORNs) respond to odorants with simple firing patterns. However, activating the AL directly with simple pulses of current evoked responses in AL neurons that were much less diverse, complex, and enduring than responses elicited by odorants. Similarly, models of the AL driven by simplistic inputs generated relatively simple output. How then are dynamic neural codes for odors generated? Consistent with recent results from several other species, our recordings from locust ORNs showed a great diversity of temporal structure. Further, we found that, viewed as a population, many response features of ORNs were remarkably similar to those observed within the AL. Using a set of computational models constrained by our electrophysiological recordings, we found that the temporal heterogeneity of responses of ORNs critically underlies the generation of spatiotemporal odor codes in the AL. A test then performed in vivo confirmed that, given temporally homogeneous input, the AL cannot create diverse spatiotemporal patterns on its own; however, given temporally heterogeneous input, the AL generated realistic firing patterns. Finally, given the temporally structured input provided by ORNs, we clarified several separate, additional contributions of the AL to olfactory information processing. Thus, our results demonstrate the origin and subsequent reformatting of spatiotemporal neural codes for odors. PMID:20147528

  17. Group-level spatio-temporal pattern recovery in MEG decoding using multi-task joint feature learning.

    PubMed

    Kia, Seyed Mostafa; Pedregosa, Fabian; Blumenthal, Anna; Passerini, Andrea

    2017-06-15

    The use of machine learning models to discriminate between patterns of neural activity has become in recent years a standard analysis approach in neuroimaging studies. Whenever these models are linear, the estimated parameters can be visualized in the form of brain maps which can aid in understanding how brain activity in space and time underlies a cognitive function. However, the recovered brain maps often suffer from lack of interpretability, especially in group analysis of multi-subject data. To facilitate the application of brain decoding in group-level analysis, we present an application of multi-task joint feature learning for group-level multivariate pattern recovery in single-trial magnetoencephalography (MEG) decoding. The proposed method allows for recovering sparse yet consistent patterns across different subjects, and therefore enhances the interpretability of the decoding model. Our experimental results demonstrate that the mutli-task joint feature learning framework is capable of recovering more meaningful patterns of varying spatio-temporally distributed brain activity across individuals while still maintaining excellent generalization performance. We compare the performance of the multi-task joint feature learning in terms of generalization, reproducibility, and quality of pattern recovery against traditional single-subject and pooling approaches on both simulated and real MEG datasets. These results can facilitate the usage of brain decoding for the characterization of fine-level distinctive patterns in group-level inference. Considering the importance of group-level analysis, the proposed approach can provide a methodological shift towards more interpretable brain decoding models. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Discrete simulations of spatio-temporal dynamics of small water bodies under varied stream flow discharges

    NASA Astrophysics Data System (ADS)

    Daya Sagar, B. S.

    2005-01-01

    Spatio-temporal patterns of small water bodies (SWBs) under the influence of temporally varied stream flow discharge are simulated in discrete space by employing geomorphologically realistic expansion and contraction transformations. Cascades of expansion-contraction are systematically performed by synchronizing them with stream flow discharge simulated via the logistic map. Templates with definite characteristic information are defined from stream flow discharge pattern as the basis to model the spatio-temporal organization of randomly situated surface water bodies of various sizes and shapes. These spatio-temporal patterns under varied parameters (λs) controlling stream flow discharge patterns are characterized by estimating their fractal dimensions. At various λs, nonlinear control parameters, we show the union of boundaries of water bodies that traverse the water body and non-water body spaces as geomorphic attractors. The computed fractal dimensions of these attractors are 1.58, 1.53, 1.78, 1.76, 1.84, and 1.90, respectively, at λs of 1, 2, 3, 3.46, 3.57, and 3.99. These values are in line with general visual observations.

  19. Spatiotemporal Patterns of Tumor Occurrence in Children with Intraocular Retinoblastoma.

    PubMed

    King, Benjamin A; Parra, Carlos; Li, Yimei; Helton, Kathleen J; Qaddoumi, Ibrahim; Wilson, Matthew W; Ogg, Robert J

    2015-01-01

    To accurately map the retinal area covered by tumor in a prospectively enrolled cohort of children diagnosed with retinoblastoma. Orbital MRI in 106 consecutive retinoblastoma patients (44 bilateral) was analyzed. For MRI-visible tumors, the polar angle and angle of eccentricity of points defining tumor perimeter on the retina were determined by triangulation from images in three orthogonal planes. The centroid of the mapped area was calculated to approximate tumor origin, and the location and cumulative tumor burden were analyzed in relation to mutation type (germline vs. somatic), tumor area, and patient age at diagnosis. Location of small tumors undetected by MRI was approximated with fundoscopic images. Mapping was successful for 129 tumors in 91 eyes from 67 patients (39 bilateral, 43 germline mutation). Cumulative tumor burden was highest within the macula and posterior pole and was asymmetrically higher within the inferonasal periphery. Tumor incidence was lowest in the superotemporal periphery. Tumor location varied with age at diagnosis in a complex pattern. Tumor location was concentrated in the macula and superonasal periphery in patients <5.6 months, in the inferotemporal quadrant of the posterior pole in patients 5.6-8.8 months, in the inferonasal quadrant in patients 8.8-13.2 months, and in the nasal and superotemporal periphery in patients >13.2 months. The distribution of MRI-invisible tumors was consistent with the asymmetry of mapped tumors. MRI-based mapping revealed a previously unrecognized pattern of retinoblastoma localization that evolves with age at diagnosis. The structured spatiotemporal distribution of tumors may provide valuable clues about cellular or molecular events associated with tumorigenesis in the developing retina.

  20. Land use pattern, socio-economic development, and assessment of their impacts on ecosystem service value: study on natural wetlands distribution area (NWDA) in Fuzhou city, southeastern China.

    PubMed

    Cai, Yuan-Bin; Zhang, Hao; Pan, Wen-Bin; Chen, Yan-Hong; Wang, Xiang-Rong

    2013-06-01

    This paper quantifies the allocation of ecosystem services value (ESV) associated with land use pattern and qualitatively examined impacts of land use changes and socio-economic factors on spatiotemporal variation of ESV in the Natural Wetland Distribution Area (NWDA), Fuzhou city, China. The results showed that total ESV of the study area decreased from 4,332.16 × 10(6) RMB Yuan in 1989 to 3,697.42 × 10(6) RMB Yuan in 2009, mainly due to the remarkable decreases in cropland (decreased by 55.3 %) and wetland (decreased by 74.2 %). Forest, water, and wetland played major roles in providing ecosystem services, accounting for over 90 % of the total ESV. Based on time series Landsat TM/ETM+ imagery, geographic information system, and historical data, analysis of the spatiotemporal variation of ESV from 1989 to 2009 was performed. It indicated that rapid expansion of urban areas along the Minjiang River resulted in significant changes in land use types, leading to a dramatic decline in ecosystem services. Meanwhile, because of land scarcity and unique ecosystem functions, the emergency of wetland and cropland protection in built-up area has become an urgent task of local authorities to the local government. Furthermore, there was still a significant negative correlation between ESV of cropland and wetland and the GDP. The results suggest that future planning of land use pattern should control encroachment of urban areas into cropland and wetland in addition to scientific and rational policies towards minimizing the adverse effects of urbanization.

  1. Spatiotemporal Data Mining, Analysis, and Visualization of Human Activity Data

    ERIC Educational Resources Information Center

    Li, Xun

    2012-01-01

    This dissertation addresses the research challenge of developing efficient new methods for discovering useful patterns and knowledge in large volumes of electronically collected spatiotemporal activity data. I propose to analyze three types of such spatiotemporal activity data in a methodological framework that integrates spatial analysis, data…

  2. Spatiotemporal chaos involving wave instability.

    PubMed

    Berenstein, Igal; Carballido-Landeira, Jorge

    2017-01-01

    In this paper, we investigate pattern formation in a model of a reaction confined in a microemulsion, in a regime where both Turing and wave instability occur. In one-dimensional systems, the pattern corresponds to spatiotemporal intermittency where the behavior of the systems alternates in both time and space between stationary Turing patterns and traveling waves. In two-dimensional systems, the behavior initially may correspond to Turing patterns, which then turn into wave patterns. The resulting pattern also corresponds to a chaotic state, where the system alternates in both space and time between standing wave patterns and traveling waves, and the local dynamics may show vanishing amplitude of the variables.

  3. Spatiotemporal chaos involving wave instability

    NASA Astrophysics Data System (ADS)

    Berenstein, Igal; Carballido-Landeira, Jorge

    2017-01-01

    In this paper, we investigate pattern formation in a model of a reaction confined in a microemulsion, in a regime where both Turing and wave instability occur. In one-dimensional systems, the pattern corresponds to spatiotemporal intermittency where the behavior of the systems alternates in both time and space between stationary Turing patterns and traveling waves. In two-dimensional systems, the behavior initially may correspond to Turing patterns, which then turn into wave patterns. The resulting pattern also corresponds to a chaotic state, where the system alternates in both space and time between standing wave patterns and traveling waves, and the local dynamics may show vanishing amplitude of the variables.

  4. Sponge budding is a spatiotemporal morphological patterning process: Insights from synchrotron radiation-based x-ray microtomography into the asexual reproduction of Tethya wilhelma.

    PubMed

    Hammel, Jörg U; Herzen, Julia; Beckmann, Felix; Nickel, Michael

    2009-09-08

    Primary agametic-asexual reproduction mechanisms such as budding and fission are present in all non-bilaterian and many bilaterian animal taxa and are likely to be metazoan ground pattern characters. Cnidarians display highly organized and regulated budding processes. In contrast, budding in poriferans was thought to be less specific and related to the general ability of this group to reorganize their tissues. Here we test the hypothesis of morphological pattern formation during sponge budding. We investigated the budding process in Tethya wilhelma (Demospongiae) by applying 3D morphometrics to high resolution synchrotron radiation-based x-ray microtomography (SR-muCT) image data. We followed the morphogenesis of characteristic body structures and identified distinct morphological states which indeed reveal characteristic spatiotemporal morphological patterns in sponge bud development. We discovered the distribution of skeletal elements, canal system and sponge tissue to be based on a sequential series of distinct morphological states. Based on morphometric data we defined four typical bud stages. Once they have reached the final stage buds are released as fully functional juvenile sponges which are morphologically and functionally equivalent to adult specimens. Our results demonstrate that budding in demosponges is considerably more highly organized and regulated than previously assumed. Morphological pattern formation in asexual reproduction with underlying genetic regulation seems to have evolved early in metazoans and was likely part of the developmental program of the last common ancestor of all Metazoa (LCAM).

  5. Sponge budding is a spatiotemporal morphological patterning process: Insights from synchrotron radiation-based x-ray microtomography into the asexual reproduction of Tethya wilhelma

    PubMed Central

    Hammel, Jörg U; Herzen, Julia; Beckmann, Felix; Nickel, Michael

    2009-01-01

    Background Primary agametic-asexual reproduction mechanisms such as budding and fission are present in all non-bilaterian and many bilaterian animal taxa and are likely to be metazoan ground pattern characters. Cnidarians display highly organized and regulated budding processes. In contrast, budding in poriferans was thought to be less specific and related to the general ability of this group to reorganize their tissues. Here we test the hypothesis of morphological pattern formation during sponge budding. Results We investigated the budding process in Tethya wilhelma (Demospongiae) by applying 3D morphometrics to high resolution synchrotron radiation-based x-ray microtomography (SR-μCT) image data. We followed the morphogenesis of characteristic body structures and identified distinct morphological states which indeed reveal characteristic spatiotemporal morphological patterns in sponge bud development. We discovered the distribution of skeletal elements, canal system and sponge tissue to be based on a sequential series of distinct morphological states. Based on morphometric data we defined four typical bud stages. Once they have reached the final stage buds are released as fully functional juvenile sponges which are morphologically and functionally equivalent to adult specimens. Conclusion Our results demonstrate that budding in demosponges is considerably more highly organized and regulated than previously assumed. Morphological pattern formation in asexual reproduction with underlying genetic regulation seems to have evolved early in metazoans and was likely part of the developmental program of the last common ancestor of all Metazoa (LCAM). PMID:19737392

  6. On wildfire complexity, simple models and environmental templates for fire size distributions

    NASA Astrophysics Data System (ADS)

    Boer, M. M.; Bradstock, R.; Gill, M.; Sadler, R.

    2012-12-01

    Vegetation fires affect some 370 Mha annually. At global and continental scales, fire activity follows predictable spatiotemporal patterns driven by gradients and seasonal fluctuations of primary productivity and evaporative demand that set constraints for fuel accumulation rates and fuel dryness, two key ingredients of fire. At regional scales, fires are also known to affect some landscapes more than others and within landscapes to occur preferentially in some sectors (e.g. wind-swept ridges) and rarely in others (e.g. wet gullies). Another common observation is that small fires occur relatively frequent yet collectively burn far less country than relatively infrequent large fires. These patterns of fire activity are well known to management agencies and consistent with their (informal) models of how the basic drivers and constraints of fire (i.e. fuels, ignitions, weather) vary in time and space across the landscape. The statistical behaviour of these landscape fire patterns has excited the (academic) research community by showing some consistency with that of complex dynamical systems poised at a phase transition. The common finding that the frequency-size distributions of actual fires follow power laws that resemble those produced by simple cellular models from statistical mechanics has been interpreted as evidence that flammable landscapes operate as self-organising systems with scale invariant fire size distributions emerging 'spontaneously' from simple rules of contagious fire spread and a strong feedback between fires and fuel patterns. In this paper we argue that the resemblance of simulated and actual fire size distributions is an example of equifinality, that is fires in model landscapes and actual landscapes may show similar statistical behaviour but this is reached by qualitatively different pathways or controlling mechanisms. We support this claim with two key findings regarding simulated fire spread mechanisms and fire-fuel feedbacks. Firstly, we demonstrate that the power law behaviour of fire size distributions in the widely used Drossel and Schwabl (1992) Forest Fire Model (FFM) is strictly conditional on simulating fire spread as a cell-to-cell contagion over a fixed distance; the invariant scaling of fire sizes breaks down under the slightest variation in that distance, suggesting that pattern formation in the FFM is irreconcilable with the reality of disparate rates and modes of fire spread observed in the field. Secondly, we review field evidence showing that fuel age effects on the probability of fire spread, a key assumption in simulation models like the FFM, do not generally apply across flammable environments. Finally, we explore alternative explanations for the formation of scale invariant fire sizes in real landscapes. Using observations from southern Australian forest regions we demonstrate that the spatiotemporal patterns of fuel dryness and magnitudes of fire driving weather events set strong environmental templates for regional fire size distributions.

  7. Examining spatiotemporal distribution and CPUE-environment relationships for the jumbo flying squid Dosidicus gigas offshore Peru based on spatial autoregressive model

    NASA Astrophysics Data System (ADS)

    Feng, Yongjiu; Chen, Xinjun; Liu, Yang

    2017-09-01

    The spatiotemporal distribution and relationship between nominal catch-per-unit-effort (CPUE) and environment for the jumbo flying squid (Dosidicus gigas) were examined in offshore Peruvian waters during 2009-2013. Three typical oceanographic factors affecting the squid habitat were investigated in this research, including sea surface temperature (SST), sea surface salinity (SSS) and sea surface height (SSH). We studied the CPUE-environment relationships for D. gigas using a spatially-lagged version of spatial autoregressive (SAR) model and a generalized additive model (GAM), with the latter for auxiliary and comparative purposes. The annual fishery centroids were distributed broadly in an area bounded by 79.5°-82.7°W and 11.9°-17.1°S, while the monthly fishery centroids were spatially close and lay in a smaller area bounded by 81.0°-81.2°W and 14.3°-15.4°S. Our results show that the preferred environmental ranges for D. gigas offshore Peru were 20.9°-21.9°C for SST, 35.16-35.32 for SSS and 27.2-31.5 cm for SSH in the areas bounded by 78°-80°W/82-84°W and 15°-18°S. Monthly spatial distributions during October to December were predicted using the calibrated GAM and SAR models and general similarities were found between the observed and predicted patterns for the nominal CPUE of D. gigas. The overall accuracies for the hotspots generated by the SAR model were much higher than those produced by the GAM model for all three months. Our results contribute to a better understanding of the spatiotemporal distributions of D. gigas offshore Peru, and offer a new SAR modeling method for advancing fishery science.

  8. Distribution and foraging patterns of common loons on Lake Michigan with implications for exposure to type E avian botulism

    USGS Publications Warehouse

    Kenow, Kevin P.; Houdek, Steven C.; Fara, Luke; Gray, Brian R.; Lubinski, Brian R.; Heard, Darryl J.; Meyer, Michael W.; Fox, Timothy J.; Kratt, Robert

    2018-01-01

    Common loons (Gavia immer) staging on the Great Lakes during fall migration are at risk to episodic outbreaks of type E botulism. Information on distribution, foraging patterns, and exposure routes of loons are needed for understanding the physical and ecological factors that contribute to avian botulism outbreaks. Aerial surveys were conducted to document the spatiotemporal distribution of common loons on Lake Michigan during falls 2011–2013. In addition, satellite telemetry and archival geolocator tags were used to determine the distribution and foraging patterns of individual common loons while using Lake Michigan during fall migration. Common loon distribution observed during aerial surveys and movements of individual radiomarked and/or geotagged loons suggest a seasonal pattern of use, with early fall use of Green Bay and northern Lake Michigan followed by a shift in distribution to southern Lake Michigan before moving on to wintering areas. Common loons tended to occupy offshore areas of Lake Michigan and, on average, spent the majority of daylight hours foraging. Dive depths were as deep as 60 m and dive characteristics suggested that loons were primarily foraging on benthic prey. A recent study concluded that round gobies (Neogobius melanostomus) are an important prey item of common loons and may be involved in transmission of botulinum neurotoxin type E. Loon distribution coincides with the distribution of dreissenid mussel biomass, an important food resource for round gobies. Our observations support speculation that energy transfer to higher trophic levels via gobies may occur in deep-water habitats, along with transfer of botulinum neurotoxin.

  9. Modeling how shark and dolphin skin patterns control transitional wall-turbulence vorticity patterns using spatiotemporal phase reset mechanisms

    PubMed Central

    Bandyopadhyay, Promode R.; Hellum, Aren M.

    2014-01-01

    Many slow-moving biological systems like seashells and zebrafish that do not contend with wall turbulence have somewhat organized pigmentation patterns flush with their outer surfaces that are formed by underlying autonomous reaction-diffusion (RD) mechanisms. In contrast, sharks and dolphins contend with wall turbulence, are fast swimmers, and have more organized skin patterns that are proud and sometimes vibrate. A nonlinear spatiotemporal analytical model is not available that explains the mechanism underlying control of flow with such proud patterns, despite the fact that shark and dolphin skins are major targets of reverse engineering mechanisms of drag and noise reduction. Comparable to RD, a minimal self-regulation model is given for wall turbulence regeneration in the transitional regime—laterally coupled, diffusively—which, although restricted to pre-breakdown durations and to a plane close and parallel to the wall, correctly reproduces many experimentally observed spatiotemporal organizations of vorticity in both laminar-to-turbulence transitioning and very low Reynolds number but turbulent regions. We further show that the onset of vorticity disorganization is delayed if the skin organization is treated as a spatiotemporal template of olivo-cerebellar phase reset mechanism. The model shows that the adaptation mechanisms of sharks and dolphins to their fluid environment have much in common. PMID:25338940

  10. Modeling how shark and dolphin skin patterns control transitional wall-turbulence vorticity patterns using spatiotemporal phase reset mechanisms.

    PubMed

    Bandyopadhyay, Promode R; Hellum, Aren M

    2014-10-23

    Many slow-moving biological systems like seashells and zebrafish that do not contend with wall turbulence have somewhat organized pigmentation patterns flush with their outer surfaces that are formed by underlying autonomous reaction-diffusion (RD) mechanisms. In contrast, sharks and dolphins contend with wall turbulence, are fast swimmers, and have more organized skin patterns that are proud and sometimes vibrate. A nonlinear spatiotemporal analytical model is not available that explains the mechanism underlying control of flow with such proud patterns, despite the fact that shark and dolphin skins are major targets of reverse engineering mechanisms of drag and noise reduction. Comparable to RD, a minimal self-regulation model is given for wall turbulence regeneration in the transitional regime--laterally coupled, diffusively--which, although restricted to pre-breakdown durations and to a plane close and parallel to the wall, correctly reproduces many experimentally observed spatiotemporal organizations of vorticity in both laminar-to-turbulence transitioning and very low Reynolds number but turbulent regions. We further show that the onset of vorticity disorganization is delayed if the skin organization is treated as a spatiotemporal template of olivo-cerebellar phase reset mechanism. The model shows that the adaptation mechanisms of sharks and dolphins to their fluid environment have much in common.

  11. Spatio-temporal patterns of soil erosion and suspended sediment dynamics in the Mekong River Basin.

    PubMed

    Suif, Zuliziana; Fleifle, Amr; Yoshimura, Chihiro; Saavedra, Oliver

    2016-10-15

    Understanding of the distribution patterns of sediment erosion, concentration and transport in river basins is critically important as sediment plays a major role in river basin hydrophysical and ecological processes. In this study, we proposed an integrated framework for the assessment of sediment dynamics, including soil erosion (SE), suspended sediment load (SSL) and suspended sediment concentration (SSC), and applied this framework to the Mekong River Basin. The Revised Universal Soil Loss Equation (RUSLE) model was adopted with a geographic information system to assess SE and was coupled with a sediment accumulation and a routing scheme to simulate SSL. This framework also analyzed Landsat imagery captured between 1987 and 2000 together with ground observations to interpolate spatio-temporal patterns of SSC. The simulated SSL results from 1987 to 2000 showed the relative root mean square error of 41% and coefficient of determination (R(2)) of 0.89. The polynomial relationship of the near infrared exoatmospheric reflectance and the band 4 wavelength (760-900nm) to the observed SSC at 9 sites demonstrated the good agreement (overall relative RMSE=5.2%, R(2)=0.87). The result found that the severe SE occurs in the upper (China and Lao PDR) and lower (western part of Vietnam) regions. The SSC in the rainy season (June-November) showed increasing and decreasing trends longitudinally in the upper (China and Lao PDR) and lower regions (Cambodia), respectively, while the longitudinal profile of SSL showed a fluctuating trend along the river in the early rainy season. Overall, the results described the unique spatio-temporal patterns of SE, SSL and SSC in the Mekong River Basin. Thus, the proposed integrated framework is useful for elucidating complex process of sediment generation and transport in the land and river systems of large river basins. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Spatiotemporal pattern formation in a prey-predator model under environmental driving forces

    NASA Astrophysics Data System (ADS)

    Sirohi, Anuj Kumar; Banerjee, Malay; Chakraborti, Anirban

    2015-09-01

    Many existing studies on pattern formation in the reaction-diffusion systems rely on deterministic models. However, environmental noise is often a major factor which leads to significant changes in the spatiotemporal dynamics. In this paper, we focus on the spatiotemporal patterns produced by the predator-prey model with ratio-dependent functional response and density dependent death rate of predator. We get the reaction-diffusion equations incorporating the self-diffusion terms, corresponding to random movement of the individuals within two dimensional habitats, into the growth equations for the prey and predator population. In order to have the noise added model, small amplitude heterogeneous perturbations to the linear intrinsic growth rates are introduced using uncorrelated Gaussian white noise terms. For the noise added system, we then observe spatial patterns for the parameter values lying outside the Turing instability region. With thorough numerical simulations we characterize the patterns corresponding to Turing and Turing-Hopf domain and study their dependence on different system parameters like noise-intensity, etc.

  13. Spatiotemporal Patterns of Schistosomiasis-Related Deaths, Brazil, 2000–2011

    PubMed Central

    Martins-Melo, Francisco Rogerlândio; Pinheiro, Marta Cristhiany Cunha; Ramos, Alberto Novaes; Alencar, Carlos Henrique; Bezerra, Fernando Schemelzer de Moraes

    2015-01-01

    We analyzed spatiotemporal patterns of 8,756 schistosomiasis-related deaths in Brazil during 2000–2011 and identified high-risk clusters of deaths, mainly in highly schistosomiasis-endemic areas along the coast of Brazil’s Northeast Region. Schistosomiasis remains a neglected public health problem with a high number of deaths in disease-endemic and emerging focal areas. PMID:26401716

  14. Artificial spatiotemporal touch inputs reveal complementary decoding in neocortical neurons.

    PubMed

    Oddo, Calogero M; Mazzoni, Alberto; Spanne, Anton; Enander, Jonas M D; Mogensen, Hannes; Bengtsson, Fredrik; Camboni, Domenico; Micera, Silvestro; Jörntell, Henrik

    2017-04-04

    Investigations of the mechanisms of touch perception and decoding has been hampered by difficulties in achieving invariant patterns of skin sensor activation. To obtain reproducible spatiotemporal patterns of activation of sensory afferents, we used an artificial fingertip equipped with an array of neuromorphic sensors. The artificial fingertip was used to transduce real-world haptic stimuli into spatiotemporal patterns of spikes. These spike patterns were delivered to the skin afferents of the second digit of rats via an array of stimulation electrodes. Combined with low-noise intra- and extracellular recordings from neocortical neurons in vivo, this approach provided a previously inaccessible high resolution analysis of the representation of tactile information in the neocortical neuronal circuitry. The results indicate high information content in individual neurons and reveal multiple novel neuronal tactile coding features such as heterogeneous and complementary spatiotemporal input selectivity also between neighboring neurons. Such neuronal heterogeneity and complementariness can potentially support a very high decoding capacity in a limited population of neurons. Our results also indicate a potential neuroprosthetic approach to communicate with the brain at a very high resolution and provide a potential novel solution for evaluating the degree or state of neurological disease in animal models.

  15. Artificial spatiotemporal touch inputs reveal complementary decoding in neocortical neurons

    PubMed Central

    Oddo, Calogero M.; Mazzoni, Alberto; Spanne, Anton; Enander, Jonas M. D.; Mogensen, Hannes; Bengtsson, Fredrik; Camboni, Domenico; Micera, Silvestro; Jörntell, Henrik

    2017-01-01

    Investigations of the mechanisms of touch perception and decoding has been hampered by difficulties in achieving invariant patterns of skin sensor activation. To obtain reproducible spatiotemporal patterns of activation of sensory afferents, we used an artificial fingertip equipped with an array of neuromorphic sensors. The artificial fingertip was used to transduce real-world haptic stimuli into spatiotemporal patterns of spikes. These spike patterns were delivered to the skin afferents of the second digit of rats via an array of stimulation electrodes. Combined with low-noise intra- and extracellular recordings from neocortical neurons in vivo, this approach provided a previously inaccessible high resolution analysis of the representation of tactile information in the neocortical neuronal circuitry. The results indicate high information content in individual neurons and reveal multiple novel neuronal tactile coding features such as heterogeneous and complementary spatiotemporal input selectivity also between neighboring neurons. Such neuronal heterogeneity and complementariness can potentially support a very high decoding capacity in a limited population of neurons. Our results also indicate a potential neuroprosthetic approach to communicate with the brain at a very high resolution and provide a potential novel solution for evaluating the degree or state of neurological disease in animal models. PMID:28374841

  16. Combination of PCA and LORETA for sources analysis of ERP data: an emotional processing study

    NASA Astrophysics Data System (ADS)

    Hu, Jin; Tian, Jie; Yang, Lei; Pan, Xiaohong; Liu, Jiangang

    2006-03-01

    The purpose of this paper is to study spatiotemporal patterns of neuronal activity in emotional processing by analysis of ERP data. 108 pictures (categorized as positive, negative and neutral) were presented to 24 healthy, right-handed subjects while 128-channel EEG data were recorded. An analysis of two steps was applied to the ERP data. First, principal component analysis was performed to obtain significant ERP components. Then LORETA was applied to each component to localize their brain sources. The first six principal components were extracted, each of which showed different spatiotemporal patterns of neuronal activity. The results agree with other emotional study by fMRI or PET. The combination of PCA and LORETA can be used to analyze spatiotemporal patterns of ERP data in emotional processing.

  17. Characterizing and reducing equifinality by constraining a distributed catchment model with regional signatures, local observations, and process understanding

    NASA Astrophysics Data System (ADS)

    Kelleher, Christa; McGlynn, Brian; Wagener, Thorsten

    2017-07-01

    Distributed catchment models are widely used tools for predicting hydrologic behavior. While distributed models require many parameters to describe a system, they are expected to simulate behavior that is more consistent with observed processes. However, obtaining a single set of acceptable parameters can be problematic, as parameter equifinality often results in several behavioral sets that fit observations (typically streamflow). In this study, we investigate the extent to which equifinality impacts a typical distributed modeling application. We outline a hierarchical approach to reduce the number of behavioral sets based on regional, observation-driven, and expert-knowledge-based constraints. For our application, we explore how each of these constraint classes reduced the number of behavioral parameter sets and altered distributions of spatiotemporal simulations, simulating a well-studied headwater catchment, Stringer Creek, Montana, using the distributed hydrology-soil-vegetation model (DHSVM). As a demonstrative exercise, we investigated model performance across 10 000 parameter sets. Constraints on regional signatures, the hydrograph, and two internal measurements of snow water equivalent time series reduced the number of behavioral parameter sets but still left a small number with similar goodness of fit. This subset was ultimately further reduced by incorporating pattern expectations of groundwater table depth across the catchment. Our results suggest that utilizing a hierarchical approach based on regional datasets, observations, and expert knowledge to identify behavioral parameter sets can reduce equifinality and bolster more careful application and simulation of spatiotemporal processes via distributed modeling at the catchment scale.

  18. Transition from propagating localized states to spatiotemporal chaos in phase dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brand, H.R.; Deissler, R.J.; Brand, H.R.

    1998-10-01

    We study the nonlinear phase equation for propagating patterns. We investigate the transition from a propagating localized pattern to a space-filling spatiotemporally disordered pattern and discuss in detail to what extent there are propagating localized states that breathe in time periodically, quasiperiodically, and chaotically. Differences and similarities to the phenomena occurring for the quintic complex Ginzburg-Landau equation are elucidated. We also discuss for which experimentally accessible systems one could observe the phenomena described. {copyright} {ital 1998} {ital The American Physical Society}

  19. Modeling of the Nano- and Picoseismicity Rate Changes Resulting from Static Stress Triggering due to Small (MW2.2) Event Recorded at Mponeng Deep Gold Mine, South Africa

    NASA Astrophysics Data System (ADS)

    Kozlowska, M.; Orlecka-Sikora, B.; Kwiatek, G.; Boettcher, M. S.; Dresen, G. H.

    2014-12-01

    Static stress changes following large earthquakes are known to affect the rate and spatio-temporal distribution of the aftershocks. Here we utilize a unique dataset of M ≥ -3.4 earthquakes following a MW 2.2 earthquake in Mponeng gold mine, South Africa, to investigate this process for nano- and pico- scale seismicity at centimeter length scales in shallow, mining conditions. The aftershock sequence was recorded during a quiet interval in the mine and thus enabled us to perform the analysis using Dietrich's (1994) rate and state dependent friction law. The formulation for earthquake productivity requires estimation of Coulomb stress changes due to the mainshock, the reference seismicity rate, frictional resistance parameter, and the duration of aftershock relaxation time. We divided the area into six depth intervals and for each we estimated the parameters and modeled the spatio-temporal patterns of seismicity rates after the stress perturbation. Comparing the modeled patterns of seismicity with the observed distribution we found that while the spatial patterns match well, the rate of modeled aftershocks is lower than the observed rate. To test our model, we used four metrics of the goodness-of-fit evaluation. Testing procedure allowed rejecting the null hypothesis of no significant difference between seismicity rates only for one depth interval containing the mainshock, for the other, no significant differences have been found. Results show that mining-induced earthquakes may be followed by a stress relaxation expressed through aftershocks located on the rupture plane and in regions of positive Coulomb stress change. Furthermore, we demonstrate that the main features of the temporal and spatial distribution of very small, mining-induced earthquakes at shallow depths can be successfully determined using rate- and state-based stress modeling.

  20. Spatio-temporal patterns of Campylobacter colonization in Danish broilers.

    PubMed

    Chowdhury, S; Themudo, G E; Sandberg, M; Ersbøll, A K

    2013-05-01

    Despite a number of risk-factor studies in different countries, the epidemiology of Campylobacter colonization in broilers, particularly spatial dependencies, is still not well understood. A series of analyses (visualization and exploratory) were therefore conducted in order to obtain a better understanding of the spatial and temporal distribution of Campylobacter in the Danish broiler population. In this study, we observed a non-random temporal occurrence of Campylobacter, with high prevalence during summer and low during winter. Significant spatio-temporal clusters were identified in the same areas in the summer months from 2007 to 2009. Range of influence between broiler farms were estimated at distances of 9.6 km and 13.5 km in different years. Identification of areas and time with greater risk indicates variable presence of risk factors with space and time. Implementation of safety measures on farms within high-risk clusters during summer could have an impact in reducing prevalence.

  1. Epidemic Distribution and Variation of Plasmodium falciparum and Plasmodium vivax Malaria in Hainan, China during 1995–2008

    PubMed Central

    Xiao, Dan; Long, Yong; Wang, Shanqing; Wu, Kejian; Xu, Dezhong; Li, Haitao; Wang, Guangze; Yan, Yongping

    2012-01-01

    Hainan Province is the main area threatened by malaria in China. However, the epidemiologic patterns of malaria in this region are not yet defined. In this study, we determined the spatio-temporal distribution and variation of Plasmodium falciparum and Plasmodium vivax malaria in Hainan during 1995–2008 by using wavelet and cluster quantitative approaches. The results indicated a decreasing secular trend and obvious seasonal fluctuation of malaria in Hainan. In addition, the characteristic annual peak of malaria could not be detected after 2005. The southcentral region of Hainan has remained an area of relatively high malaria risk, but the incidence of P. falciparum malaria increased significantly in the southeast and southwest regions during 2002–2008. These findings identify epidemic patterns of malaria in Hainan, and are applicable for designing an effective and dynamic public health campaign to combat malaria in this region. PMID:22869636

  2. Differentiating the Spatiotemporal Distribution of Natural and Anthropogenic Processes on River Water-Quality Variation Using a Self-Organizing Map With Factor Analysis.

    PubMed

    Wang, Yeuh-Bin; Liu, Chen-Wuing; Lee, Jin-Jing

    2015-08-01

    To elucidate the historical improvement and advanced measure of river water quality in the Taipei metropolitan area, this study applied the self-organizing map (SOM) technique with factor analysis (FA) to differentiate the spatiotemporal distribution of natural and anthropogenic processes on river water-quality variation spanning two decades. The SOM clustered river water quality into five groups: very low pollution, low pollution, moderate pollution, high pollution, and very high pollution. FA was then used to extract four latent factors that dominated water quality from 1991 to 2011 including three anthropogenic process factors (organic, industrial, and copper pollution) and one natural process factor [suspended solids (SS) pollution]. The SOM revealed that the water quality improved substantially over time. However, the downstream river water quality was still classified as high pollution because of an increase in anthropogenic activity. FA showed the spatiotemporal pattern of each factor score decreasing over time, but the organic pollution factor downstream of the Tamsui River, as well as the SS factor scores in the upstream major tributary (the Dahan Stream), remained within the high pollution level. Therefore, we suggest that public sewage-treatment plants should be upgraded from their current secondary biological processing to advanced treatment processing. The conservation of water and soil must also be reinforced to decrease the SS loading of the Dahan Stream from natural erosion processes in the future.

  3. Spatial and Temporal Variation of Japanese encephalitis Disease and Detection of Disease Hotspots: a Case Study of Gorakhpur District, Uttar Pradesh, India

    NASA Astrophysics Data System (ADS)

    Verma, S.; Gupta, R. D.

    2014-11-01

    In recent times, Japanese Encephalitis (JE) has emerged as a serious public health problem. In India, JE outbreaks were recently reported in Uttar Pradesh, Gorakhpur. The present study presents an approach to use GIS for analyzing the reported cases of JE in the Gorakhpur district based on spatial analysis to bring out the spatial and temporal dynamics of the JE epidemic. The study investigates spatiotemporal pattern of the occurrence of disease and detection of the JE hotspot. Spatial patterns of the JE disease can provide an understanding of geographical changes. Geospatial distribution of the JE disease outbreak is being investigated since 2005 in this study. The JE incidence data for the years 2005 to 2010 is used. The data is then geo-coded at block level. Spatial analysis is used to evaluate autocorrelation in JE distribution and to test the cases that are clustered or dispersed in space. The Inverse Distance Weighting interpolation technique is used to predict the pattern of JE incidence distribution prevalent across the study area. Moran's I Index (Moran's I) statistics is used to evaluate autocorrelation in spatial distribution. The Getis-Ord Gi*(d) is used to identify the disease areas. The results represent spatial disease patterns from 2005 to 2010, depicting spatially clustered patterns with significant differences between the blocks. It is observed that the blocks on the built up areas reported higher incidences.

  4. Demographic and spatiotemporal patterns of avian influenza infection at the continental scale, and in relation to annual life cycle of a migratory host

    USGS Publications Warehouse

    Nallar, Rodolfo; Papp, Zsuzsanna; Epp, Tasha; Leighton, Frederick A.; Swafford, Seth R.; DeLiberto, Thomas J.; Dusek, Robert J.; Ip, Hon S.; Hall, Jeffrey S.; Berhane, Yohannes; Gibbs, Samantha E.J.; Soos, Catherine

    2015-01-01

    Since the spread of highly pathogenic avian influenza (HPAI) H5N1 in the eastern hemisphere, numerous surveillance programs and studies have been undertaken to detect the occurrence, distribution, or spread of avian influenza viruses (AIV) in wild bird populations worldwide. To identify demographic determinants and spatiotemporal patterns of AIV infection in long distance migratory waterfowl in North America, we fitted generalized linear models with binominal distribution to analyze results from 13,574 blue-winged teal (Anas discors, BWTE) sampled in 2007 to 2010 year round during AIV surveillance programs in Canada and the United States. Our analyses revealed that during late summer staging (July-August) and fall migration (September-October), hatch year (HY) birds were more likely to be infected than after hatch year (AHY) birds, however there was no difference between age categories for the remainder of the year (winter, spring migration, and breeding period), likely due to maturing immune systems and newly acquired immunity of HY birds. Probability of infection increased non-linearly with latitude, and was highest in late summer prior to fall migration when densities of birds and the proportion of susceptible HY birds in the population are highest. Birds in the Central and Mississippi flyways were more likely to be infected compared to those in the Atlantic flyway. Seasonal cycles and spatial variation of AIV infection were largely driven by the dynamics of AIV infection in HY birds, which had more prominent cycles and spatial variation in infection compared to AHY birds. Our results demonstrate demographic as well as seasonal, latitudinal and flyway trends across Canada and the US, while illustrating the importance of migratory host life cycle and age in driving cyclical patterns of prevalence.

  5. Emergence and transitions of dynamic patterns of thickness oscillation of the plasmodium of the true slime mold Physarum polycephalum

    NASA Astrophysics Data System (ADS)

    Takagi, Seiji; Ueda, Tetsuo

    2008-03-01

    The emergence and transitions of various spatiotemporal patterns of thickness oscillation were studied in the freshly isolated protoplasm of the Physarum plasmodium. New patterns, such as standing waves, and chaotic and rotating spirals, developed successively before the well-documented synchronous pattern appeared. There was also a spontaneous opposite transition from synchrony to chaotic and rotating spirals. Rotating spiral waves were observed in the large migrating plasmodium, where the vein structures were being destroyed. Thus, the Physarum plasmodium exhibits versatile patterns, which are generally expected in coupled oscillator systems. This paper discusses the physiological roles of spatiotemporal patterns, comparing them with other biological systems.

  6. Spatio-temporal scaling effects on longshore sediment transport pattern along the nearshore zone

    NASA Astrophysics Data System (ADS)

    Khorram, Saeed; Ergil, Mustafa

    2018-03-01

    A measure of uncertainties, entropy has been employed in such different applications as coastal engineering probability inferences. Entropy sediment transport integration theories present novel visions in coastal analyses/modeling the application and development of which are still far-reaching. Effort has been made in the present paper to propose a method that needs an entropy-power index for spatio-temporal patterns analyses. Results have shown that the index is suitable for marine/hydrological ecosystem components analyses based on a beach area case study. The method makes use of six Makran Coastal monthly data (1970-2015) and studies variables such as spatio-temporal patterns, LSTR (long-shore sediment transport rate), wind speed, and wave height all of which are time-dependent and play considerable roles in terrestrial coastal investigations; the mentioned variables show meaningful spatio-temporal variability most of the time, but explanation of their combined performance is not easy. Accordingly, the use of an entropy-power index can show considerable signals that facilitate the evaluation of water resources and will provide an insight regarding hydrological parameters' interactions at scales as large as beach areas. Results have revealed that an STDDPI (entropy based spatio-temporal disorder dynamics power index) can simulate wave, long-shore sediment transport rate, and wind when granulometry, concentration, and flow conditions vary.

  7. Hierarchical Bayesian modeling of spatio-temporal patterns of lung cancer incidence risk in Georgia, USA: 2000-2007

    NASA Astrophysics Data System (ADS)

    Yin, Ping; Mu, Lan; Madden, Marguerite; Vena, John E.

    2014-10-01

    Lung cancer is the second most commonly diagnosed cancer in both men and women in Georgia, USA. However, the spatio-temporal patterns of lung cancer risk in Georgia have not been fully studied. Hierarchical Bayesian models are used here to explore the spatio-temporal patterns of lung cancer incidence risk by race and gender in Georgia for the period of 2000-2007. With the census tract level as the spatial scale and the 2-year period aggregation as the temporal scale, we compare a total of seven Bayesian spatio-temporal models including two under a separate modeling framework and five under a joint modeling framework. One joint model outperforms others based on the deviance information criterion. Results show that the northwest region of Georgia has consistently high lung cancer incidence risk for all population groups during the study period. In addition, there are inverse relationships between the socioeconomic status and the lung cancer incidence risk among all Georgian population groups, and the relationships in males are stronger than those in females. By mapping more reliable variations in lung cancer incidence risk at a relatively fine spatio-temporal scale for different Georgian population groups, our study aims to better support healthcare performance assessment, etiological hypothesis generation, and health policy making.

  8. Mathematical Modeling the Geometric Regularity in Proteus Mirabilis Colonies

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Jiang, Yi; Minsu Kim Collaboration

    Proteus Mirabilis colony exhibits striking spatiotemporal regularity, with concentric ring patterns with alternative high and low bacteria density in space, and periodicity for repetition process of growth and swarm in time. We present a simple mathematical model to explain the spatiotemporal regularity of P. Mirabilis colonies. We study a one-dimensional system. Using a reaction-diffusion model with thresholds in cell density and nutrient concentration, we recreated periodic growth and spread patterns, suggesting that the nutrient constraint and cell density regulation might be sufficient to explain the spatiotemporal periodicity in P. Mirabilis colonies. We further verify this result using a cell based model.

  9. Spatio-temporal Change Patterns of Tropical Forests from 2000 to 2014 Using MOD09A1 Dataset

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Xiao, X.; Dong, J.

    2016-12-01

    Large-scale deforestation and forest degradation in the tropical region have resulted in extensive carbon emissions and biodiversity loss. However, restricted by the availability of good-quality observations, large uncertainty exists in mapping the spatial distribution of forests and their spatio-temporal changes. In this study, we proposed a pixel- and phenology-based algorithm to identify and map annual tropical forests from 2000 to 2014, using the 8-day, 500-m MOD09A1 (v005) product, under the support of Google cloud computing (Google Earth Engine). A temporal filter was applied to reduce the random noises and to identify the spatio-temporal changes of forests. We then built up a confusion matrix and assessed the accuracy of the annual forest maps based on the ground reference interpreted from high spatial resolution images in Google Earth. The resultant forest maps showed the consistent forest/non-forest, forest loss, and forest gain in the pan-tropical zone during 2000 - 2014. The proposed algorithm showed the potential for tropical forest mapping and the resultant forest maps are important for the estimation of carbon emission and biodiversity loss.

  10. Spatio-temporal models of mental processes from fMRI.

    PubMed

    Janoos, Firdaus; Machiraju, Raghu; Singh, Shantanu; Morocz, Istvan Ákos

    2011-07-15

    Understanding the highly complex, spatially distributed and temporally organized phenomena entailed by mental processes using functional MRI is an important research problem in cognitive and clinical neuroscience. Conventional analysis methods focus on the spatial dimension of the data discarding the information about brain function contained in the temporal dimension. This paper presents a fully spatio-temporal multivariate analysis method using a state-space model (SSM) for brain function that yields not only spatial maps of activity but also its temporal structure along with spatially varying estimates of the hemodynamic response. Efficient algorithms for estimating the parameters along with quantitative validations are given. A novel low-dimensional feature-space for representing the data, based on a formal definition of functional similarity, is derived. Quantitative validation of the model and the estimation algorithms is provided with a simulation study. Using a real fMRI study for mental arithmetic, the ability of this neurophysiologically inspired model to represent the spatio-temporal information corresponding to mental processes is demonstrated. Moreover, by comparing the models across multiple subjects, natural patterns in mental processes organized according to different mental abilities are revealed. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Between giant oscillations and uniform distribution of droplets: The role of varying lumen of channels in microfluidic networks.

    PubMed

    Cybulski, Olgierd; Jakiela, Slawomir; Garstecki, Piotr

    2015-12-01

    The simplest microfluidic network (a loop) comprises two parallel channels with a common inlet and a common outlet. Recent studies that assumed a constant cross section of the channels along their length have shown that the sequence of droplets entering the left (L) or right (R) arm of the loop can present either a uniform distribution of choices (e.g., RLRLRL...) or long sequences of repeated choices (RRR...LLL), with all the intermediate permutations being dynamically equivalent and virtually equally probable to be observed. We use experiments and computer simulations to show that even small variation of the cross section along channels completely shifts the dynamics either into the strong preference for highly grouped patterns (RRR...LLL) that generate system-size oscillations in flow or just the opposite-to patterns that distribute the droplets homogeneously between the arms of the loop. We also show the importance of noise in the process of self-organization of the spatiotemporal patterns of droplets. Our results provide guidelines for rational design of systems that reproducibly produce either grouped or homogeneous sequences of droplets flowing in microfluidic networks.

  12. Combined ICA-LORETA analysis of mismatch negativity.

    PubMed

    Marco-Pallarés, J; Grau, C; Ruffini, G

    2005-04-01

    A major challenge for neuroscience is to map accurately the spatiotemporal patterns of activity of the large neuronal populations that are believed to underlie computing in the human brain. To study a specific example, we selected the mismatch negativity (MMN) brain wave (an event-related potential, ERP) because it gives an electrophysiological index of a "primitive intelligence" capable of detecting changes, even abstract ones, in a regular auditory pattern. ERPs have a temporal resolution of milliseconds but appear to result from mixed neuronal contributions whose spatial location is not fully understood. Thus, it is important to separate these sources in space and time. To tackle this problem, a two-step approach was designed combining the independent component analysis (ICA) and low-resolution tomography (LORETA) algorithms. Here we implement this approach to analyze the subsecond spatiotemporal dynamics of MMN cerebral sources using trial-by-trial experimental data. We show evidence that a cerebral computation mechanism underlies MMN. This mechanism is mediated by the orchestrated activity of several spatially distributed brain sources located in the temporal, frontal, and parietal areas, which activate at distinct time intervals and are grouped in six main statistically independent components.

  13. Cortical Entropy, Mutual Information and Scale-Free Dynamics in Waking Mice.

    PubMed

    Fagerholm, Erik D; Scott, Gregory; Shew, Woodrow L; Song, Chenchen; Leech, Robert; Knöpfel, Thomas; Sharp, David J

    2016-10-01

    Some neural circuits operate with simple dynamics characterized by one or a few well-defined spatiotemporal scales (e.g. central pattern generators). In contrast, cortical neuronal networks often exhibit richer activity patterns in which all spatiotemporal scales are represented. Such "scale-free" cortical dynamics manifest as cascades of activity with cascade sizes that are distributed according to a power-law. Theory and in vitro experiments suggest that information transmission among cortical circuits is optimized by scale-free dynamics. In vivo tests of this hypothesis have been limited by experimental techniques with insufficient spatial coverage and resolution, i.e., restricted access to a wide range of scales. We overcame these limitations by using genetically encoded voltage imaging to track neural activity in layer 2/3 pyramidal cells across the cortex in mice. As mice recovered from anesthesia, we observed three changes: (a) cortical information capacity increased, (b) information transmission among cortical regions increased and (c) neural activity became scale-free. Our results demonstrate that both information capacity and information transmission are maximized in the awake state in cortical regions with scale-free network dynamics. © The Author 2016. Published by Oxford University Press.

  14. Indoor Location Sensing with Invariant Wi-Fi Received Signal Strength Fingerprinting

    PubMed Central

    Husen, Mohd Nizam; Lee, Sukhan

    2016-01-01

    A method of location fingerprinting based on the Wi-Fi received signal strength (RSS) in an indoor environment is presented. The method aims to overcome the RSS instability due to varying channel disturbances in time by introducing the concept of invariant RSS statistics. The invariant RSS statistics represent here the RSS distributions collected at individual calibration locations under minimal random spatiotemporal disturbances in time. The invariant RSS statistics thus collected serve as the reference pattern classes for fingerprinting. Fingerprinting is carried out at an unknown location by identifying the reference pattern class that maximally supports the spontaneous RSS sensed from individual Wi-Fi sources. A design guideline is also presented as a rule of thumb for estimating the number of Wi-Fi signal sources required to be available for any given number of calibration locations under a certain level of random spatiotemporal disturbances. Experimental results show that the proposed method not only provides 17% higher success rate than conventional ones but also removes the need for recalibration. Furthermore, the resolution is shown finer by 40% with the execution time more than an order of magnitude faster than the conventional methods. These results are also backed up by theoretical analysis. PMID:27845711

  15. Indoor Location Sensing with Invariant Wi-Fi Received Signal Strength Fingerprinting.

    PubMed

    Husen, Mohd Nizam; Lee, Sukhan

    2016-11-11

    A method of location fingerprinting based on the Wi-Fi received signal strength (RSS) in an indoor environment is presented. The method aims to overcome the RSS instability due to varying channel disturbances in time by introducing the concept of invariant RSS statistics. The invariant RSS statistics represent here the RSS distributions collected at individual calibration locations under minimal random spatiotemporal disturbances in time. The invariant RSS statistics thus collected serve as the reference pattern classes for fingerprinting. Fingerprinting is carried out at an unknown location by identifying the reference pattern class that maximally supports the spontaneous RSS sensed from individual Wi-Fi sources. A design guideline is also presented as a rule of thumb for estimating the number of Wi-Fi signal sources required to be available for any given number of calibration locations under a certain level of random spatiotemporal disturbances. Experimental results show that the proposed method not only provides 17% higher success rate than conventional ones but also removes the need for recalibration. Furthermore, the resolution is shown finer by 40% with the execution time more than an order of magnitude faster than the conventional methods. These results are also backed up by theoretical analysis.

  16. Remote Sensing-Based Detection and Spatial Pattern Analysis for Geo-Ecological Niche Modeling of Tillandsia SPP. In the Atacama, Chile

    NASA Astrophysics Data System (ADS)

    Wolf, N.; Siegmund, A.; del Río, C.; Osses, P.; García, J. L.

    2016-06-01

    In the coastal Atacama Desert in Northern Chile plant growth is constrained to so-called `fog oases' dominated by monospecific stands of the genus Tillandsia. Adapted to the hyperarid environmental conditions, these plants specialize on the foliar uptake of fog as main water and nutrient source. It is this characteristic that leads to distinctive macro- and micro-scale distribution patterns, reflecting complex geo-ecological gradients, mainly affected by the spatiotemporal occurrence of coastal fog respectively the South Pacific Stratocumulus clouds reaching inlands. The current work employs remote sensing, machine learning and spatial pattern/GIS analysis techniques to acquire detailed information on the presence and state of Tillandsia spp. in the Tarapacá region as a base to better understand the bioclimatic and topographic constraints determining the distribution patterns of Tillandsia spp. Spatial and spectral predictors extracted from WorldView-3 satellite data are used to map present Tillandsia vegetation in the Tarapaca region. Regression models on Vegetation Cover Fraction (VCF) are generated combining satellite-based as well as topographic variables and using aggregated high spatial resolution information on vegetation cover derived from UAV flight campaigns as a reference. The results are a first step towards mapping and modelling the topographic as well as bioclimatic factors explaining the spatial distribution patterns of Tillandsia fog oases in the Atacama, Chile.

  17. Spatiotemporal Dynamics of a Network of Coupled Time-Delay Digital Tanlock Loops

    NASA Astrophysics Data System (ADS)

    Paul, Bishwajit; Banerjee, Tanmoy; Sarkar, B. C.

    The time-delay digital tanlock loop (TDTLs) is an important class of phase-locked loop that is widely used in electronic communication systems. Although nonlinear dynamics of an isolated TDTL has been studied in the past but the collective behavior of TDTLs in a network is an important topic of research and deserves special attention as in practical communication systems separate entities are rarely isolated. In this paper, we carry out the detailed analysis and numerical simulations to explore the spatiotemporal dynamics of a network of a one-dimensional ring of coupled TDTLs with nearest neighbor coupling. The equation representing the network is derived and we carry out analytical calculations using the circulant matrix formalism to obtain the stability criteria. An extensive numerical simulation reveals that with the variation of gain parameter and coupling strength the network shows a variety of spatiotemporal dynamics such as frozen random pattern, pattern selection, spatiotemporal intermittency and fully developed spatiotemporal chaos. We map the distinct dynamical regions of the system in two-parameter space. Finally, we quantify the spatiotemporal dynamics by using quantitative measures like Lyapunov exponent and the average quadratic deviation of the full network.

  18. Mining local climate data to assess spatiotemporal dengue fever epidemic patterns in French Guiana

    PubMed Central

    Flamand, Claude; Fabregue, Mickael; Bringay, Sandra; Ardillon, Vanessa; Quénel, Philippe; Desenclos, Jean-Claude; Teisseire, Maguelonne

    2014-01-01

    Objective To identify local meteorological drivers of dengue fever in French Guiana, we applied an original data mining method to the available epidemiological and climatic data. Through this work, we also assessed the contribution of the data mining method to the understanding of factors associated with the dissemination of infectious diseases and their spatiotemporal spread. Methods We applied contextual sequential pattern extraction techniques to epidemiological and meteorological data to identify the most significant climatic factors for dengue fever, and we investigated the relevance of the extracted patterns for the early warning of dengue outbreaks in French Guiana. Results The maximum temperature, minimum relative humidity, global brilliance, and cumulative rainfall were identified as determinants of dengue outbreaks, and the precise intervals of their values and variations were quantified according to the epidemiologic context. The strongest significant correlations were observed between dengue incidence and meteorological drivers after a 4–6-week lag. Discussion We demonstrated the use of contextual sequential patterns to better understand the determinants of the spatiotemporal spread of dengue fever in French Guiana. Future work should integrate additional variables and explore the notion of neighborhood for extracting sequential patterns. Conclusions Dengue fever remains a major public health issue in French Guiana. The development of new methods to identify such specific characteristics becomes crucial in order to better understand and control spatiotemporal transmission. PMID:24549761

  19. Climate change risks, extinction debt, and conservation implications for a threatened freshwater fish: Carmine shiner (Notropis percobromus).

    PubMed

    Pandit, Shubha N; Maitland, Bryan M; Pandit, Laxmi K; Poesch, Mark S; Enders, Eva C

    2017-11-15

    Climate change is affecting many freshwater species, particularly fishes. Predictions of future climate change suggest large and deleterious effects on species with narrow dispersal abilities due to limited hydrological connectivity. In turn, this creates the potential for population isolation in thermally unsuitable habitats, leading to physiological stress, species declines or possible extirpation. The current extent of many freshwater fish species' spatio-temporal distribution patterns and their sensitivity to thermal impacts from climate change - critical information for conservation planning - are often unknown. Carmine shiner (Notropis percobromus) is an ecologically important species listed as threatened or imperilled nationally (Canada) and regionally (South Dakota, United States) due to its restricted range and sensitivity to water quality and temperature. This research aimed to determine the current distribution and spatio-temporal variability in projected suitable habitat for Carmine shiner using niche-based modeling approaches (MaxEnt, BIOCLIM, and DOMAIN models). Statistically downscaled, bias-corrected Global Circulation Models (GCMs) data was used to model the distribution of Carmine shiner in central North America for the period of 2041-2060 (2050s). Maximum mean July temperature and temperature variability were the main factors in determining Carmine shiner distribution. Patterns of projected habitat change by the 2050s suggest the spatial extent of the current distribution of Carmine shiner would shift north, with >50% of the current distribution changing with future projections based on two Representative Concentrations Pathways for CO 2 emissions. Whereas the southern extent of the distribution would become unsuitable for Carmine shiner, suitable habitats are predicted to become available further north, if accessible. Importantly, the majority of habitat gains for Carmine shiner would be in areas currently inaccessible due to dispersal limitations, suggesting current populations may face an extinction debt within the next half century. These results provide evidence that Carmine shiner may be highly vulnerable to a warming climate and suggest that management actions - such as assisted migration - may be needed to mitigate impacts from climate change and ensure the long-term persistence of the species. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. [Spatio-temporal variations of origin, distribution and diffusion of Oncomelania hupensis in Yangtze River Basin].

    PubMed

    Deng, Chen; Li-Yong, Wen

    2017-10-24

    As the only intermediate host of Schistosoma japonicum, Oncomelania hupensis in China is mainly distributed in the Yangtze River Basin. The origin of the O. hupensis and the spatio-temporal variations of its distribution and diffusion in the Yangtze River Basin and the influencing factors, as well as significances in schistosomiasis elimination in China are reviewed in this paper.

  1. Temporal variations in supraglacial debris distribution on Baltoro Glacier, Karakoram between 2001 and 2012

    NASA Astrophysics Data System (ADS)

    Gibson, Morgan J.; Glasser, Neil F.; Quincey, Duncan J.; Mayer, Christoph; Rowan, Ann V.; Irvine-Fynn, Tristram D. L.

    2017-10-01

    Distribution of supraglacial debris in a glacier system varies spatially and temporally due to differing rates of debris input, transport and deposition. Supraglacial debris distribution governs the thickness of a supraglacial debris layer, an important control on the amount of ablation that occurs under such a debris layer. Characterising supraglacial debris layer thickness on a glacier is therefore key to calculating ablation across a glacier surface. The spatial pattern of debris thickness on Baltoro Glacier has previously been calculated for one discrete point in time (2004) using satellite thermal data and an empirically based relationship between supraglacial debris layer thickness and debris surface temperature identified in the field. Here, the same empirically based relationship was applied to two further datasets (2001, 2012) to calculate debris layer thickness across Baltoro Glacier for three discrete points over an 11-year period (2001, 2004, 2012). Surface velocity and sediment flux were also calculated, as well as debris thickness change between periods. Using these outputs, alongside geomorphological maps of Baltoro Glacier produced for 2001, 2004 and 2012, spatiotemporal changes in debris distribution for a sub-decadal timescale were investigated. Sediment flux remained constant throughout the 11-year period. The greatest changes in debris thickness occurred along medial moraines, the locations of mass movement deposition and areas of interaction between tributary glaciers and the main glacier tongue. The study confirms the occurrence of spatiotemporal changes in supraglacial debris layer thickness on sub-decadal timescales, independent of variation in surface velocity. Instead, variation in rates of debris distribution are primarily attributed to frequency and magnitude of mass movement events over decadal timescales, with climate, regional uplift and erosion rates expected to control debris inputs over centurial to millennial timescales. Inclusion of such spatiotemporal variations in debris thickness in distributed surface energy balance models would increase the accuracy of calculated ablation, leading to a more accurate simulation of glacier mass balance through time, and greater precision in quantification of the response of debris-covered glaciers to climatic change.

  2. How can knowledge discovery methods uncover spatio-temporal patterns in environmental data?

    NASA Astrophysics Data System (ADS)

    Wachowicz, Monica

    2000-04-01

    This paper proposes the integration of KDD, GVis and STDB as a long-term strategy, which will allow users to apply knowledge discovery methods for uncovering spatio-temporal patterns in environmental data. The main goal is to combine innovative techniques and associated tools for exploring very large environmental data sets in order to arrive at valid, novel, potentially useful, and ultimately understandable spatio-temporal patterns. The GeoInsight approach is described using the principles and key developments in the research domains of KDD, GVis, and STDB. The GeoInsight approach aims at the integration of these research domains in order to provide tools for performing information retrieval, exploration, analysis, and visualization. The result is a knowledge-based design, which involves visual thinking (perceptual-cognitive process) and automated information processing (computer-analytical process).

  3. A Biologically Constrained, Mathematical Model of Cortical Wave Propagation Preceding Seizure Termination

    PubMed Central

    González-Ramírez, Laura R.; Ahmed, Omar J.; Cash, Sydney S.; Wayne, C. Eugene; Kramer, Mark A.

    2015-01-01

    Epilepsy—the condition of recurrent, unprovoked seizures—manifests in brain voltage activity with characteristic spatiotemporal patterns. These patterns include stereotyped semi-rhythmic activity produced by aggregate neuronal populations, and organized spatiotemporal phenomena, including waves. To assess these spatiotemporal patterns, we develop a mathematical model consistent with the observed neuronal population activity and determine analytically the parameter configurations that support traveling wave solutions. We then utilize high-density local field potential data recorded in vivo from human cortex preceding seizure termination from three patients to constrain the model parameters, and propose basic mechanisms that contribute to the observed traveling waves. We conclude that a relatively simple and abstract mathematical model consisting of localized interactions between excitatory cells with slow adaptation captures the quantitative features of wave propagation observed in the human local field potential preceding seizure termination. PMID:25689136

  4. Spatiotemporal radiotherapy planning using a global optimization approach

    NASA Astrophysics Data System (ADS)

    Adibi, Ali; Salari, Ehsan

    2018-02-01

    This paper aims at quantifying the extent of potential therapeutic gain, measured using biologically effective dose (BED), that can be achieved by altering the radiation dose distribution over treatment sessions in fractionated radiotherapy. To that end, a spatiotemporally integrated planning approach is developed, where the spatial and temporal dose modulations are optimized simultaneously. The concept of equivalent uniform BED (EUBED) is used to quantify and compare the clinical quality of spatiotemporally heterogeneous dose distributions in target and critical structures. This gives rise to a large-scale non-convex treatment-plan optimization problem, which is solved using global optimization techniques. The proposed spatiotemporal planning approach is tested on two stylized cancer cases resembling two different tumor sites and sensitivity analysis is performed for radio-biological and EUBED parameters. Numerical results validate that spatiotemporal plans are capable of delivering a larger BED to the target volume without increasing the BED in critical structures compared to conventional time-invariant plans. In particular, this additional gain is attributed to the irradiation of different regions of the target volume at different treatment sessions. Additionally, the trade-off between the potential therapeutic gain and the number of distinct dose distributions is quantified, which suggests a diminishing marginal gain as the number of dose distributions increases.

  5. Control of complex dynamics and chaos in distributed parameter systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarti, S.; Marek, M.; Ray, W.H.

    This paper discusses a methodology for controlling complex dynamics and chaos in distributed parameter systems. The reaction-diffusion system with Brusselator kinetics, where the torus-doubling or quasi-periodic (two characteristic incommensurate frequencies) route to chaos exists in a defined range of parameter values, is used as an example. Poincare maps are used for characterization of quasi-periodic and chaotic attractors. The dominant modes or topos, which are inherent properties of the system, are identified by means of the Singular Value Decomposition. Tested modal feedback control schemas based on identified dominant spatial modes confirm the possibility of stabilization of simple quasi-periodic trajectories in themore » complex quasi-periodic or chaotic spatiotemporal patterns.« less

  6. Spatial dynamics of a nutrient-phytoplankton system with toxic effect on phytoplankton.

    PubMed

    Chakraborty, Subhendu; Tiwari, P K; Misra, A K; Chattopadhyay, J

    2015-06-01

    The production of toxins by some species of phytoplankton is known to have several economic, ecological, and human health impacts. However, the role of toxins on the spatial distribution of phytoplankton is not well understood. In the present study, the spatial dynamics of a nutrient-phytoplankton system with toxic effect on phytoplankton is investigated. We analyze the linear stability of the system and obtain the condition for Turing instability. In the presence of toxic effect, we find that the distribution of nutrient and phytoplankton becomes inhomogeneous in space and results in different patterns, like stripes, spots, and the mixture of them depending on the toxicity level. We also observe that the distribution of nutrient and phytoplankton shows spatiotemporal oscillation for certain toxicity level. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Spatio-temporal pattern clustering for skill assessment of the Korea Operational Oceanographic System

    NASA Astrophysics Data System (ADS)

    Kim, J.; Park, K.

    2016-12-01

    In order to evaluate the performance of operational forecast models in the Korea operational oceanographic system (KOOS) which has been developed by Korea Institute of Ocean Science and Technology (KIOST), a skill assessment (SA) tool has developed and provided multiple skill metrics including not only correlation and error skills by comparing predictions and observation but also pattern clustering with numerical models, satellite, and observation. The KOOS has produced 72 hours forecast information on atmospheric and hydrodynamic forecast variables of wind, pressure, current, tide, wave, temperature, and salinity at every 12 hours per day produced by operating numerical models such as WRF, ROMS, MOM5, WW-III, and SWAN and the SA has conducted to evaluate the forecasts. We have been operationally operated several kinds of numerical models such as WRF, ROMS, MOM5, MOHID, WW-III. Quantitative assessment of operational ocean forecast model is very important to provide accurate ocean forecast information not only to general public but also to support ocean-related problems. In this work, we propose a method of pattern clustering using machine learning method and GIS-based spatial analytics to evaluate spatial distribution of numerical models and spatial observation data such as satellite and HF radar. For the clustering, we use 10 or 15 years-long reanalysis data which was computed by the KOOS, ECMWF, and HYCOM to make best matching clusters which are classified physical meaning with time variation and then we compare it with forecast data. Moreover, for evaluating current, we develop extraction method of dominant flow and apply it to hydrodynamic models and HF radar's sea surface current data. By applying pattern clustering method, it allows more accurate and effective assessment of ocean forecast models' performance by comparing not only specific observation positions which are determined by observation stations but also spatio-temporal distribution of whole model areas. We believe that our proposed method will be very useful to examine and evaluate large amount of numerical modeling data as well as satellite data.

  8. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006

    USGS Publications Warehouse

    Xia, Jiangzhou; Liu, Shuguang; Liang, Shunlin; Chen, Yang; Xu, Wenfang; Yuan, Wenping

    2014-01-01

    Grassland ecosystems play an important role in subsistence agriculture and the global carbon cycle. However, the global spatio-temporal patterns and environmental controls of grassland biomass are not well quantified and understood. The goal of this study was to estimate the spatial and temporal patterns of the global grassland biomass and analyze their driving forces using field measurements, Normalized Difference Vegetation Index (NDVI) time series from satellite data, climate reanalysis data, and a satellite-based statistical model. Results showed that the NDVI-based biomass carbon model developed from this study explained 60% of the variance across 38 sites globally. The global carbon stock in grassland aboveground live biomass was 1.05 Pg·C, averaged from 1982 to 2006, and increased at a rate of 2.43 Tg·C·y−1 during this period. Temporal change of the global biomass was significantly and positively correlated with temperature and precipitation. The distribution of biomass carbon density followed the precipitation gradient. The dynamics of regional grassland biomass showed various trends largely determined by regional climate variability, disturbances, and management practices (such as grazing for meat production). The methods and results from this study can be used to monitor the dynamics of grassland aboveground biomass and evaluate grassland susceptibility to climate variability and change, disturbances, and management.

  9. Reference Canopy Stomatal Conductance Explains Spatiotemporal Patterns of Tree Transpiration

    NASA Astrophysics Data System (ADS)

    Loranty, M. M.; Mackay, D. S.; Ewers, B. E.; Kruger, E. L.; Traver, E.

    2007-12-01

    Increased heterogeneity in patterns of whole tree transpiration (EC) with increasing atmospheric vapor pressure deficit (D) suggests a dynamic response of sap flow velocity (JS) to environmental drivers. We hypothesized that differences in reference stomatal conductance (GSref), stomatal conductance at D = 1kPa, would explain the spatiotemporal dynamics of JS. Using a coupled model of plant hydraulic and biochemical processes we tested this hypothesis with sap flux data for 106 aspen ( Populus tremuloides) and 108 sugar maple ( Acer saccharum) trees collected from plots using in 2-D cyclic sampling scheme during the summer of 2005 in northern Wisconsin. Inverse modeling is used to estimate GSref for each tree. For each species, trees from across the ranges of JS and diameter distributions are compared. GSref explained temporal variability in spatial patterns of EC We explore several possible mechanistic explanations for differences in GSref among trees. Topoedaphic factors are considered to determine if location within a stand has an effect. We also consider competition with neighboring individuals as a possible explanation. Variations in GSref in aspen were explained in part by competition for light between neighboring individuals, while competition for light was not a significant factor for sugar maple. Based on simulation analysis we identify possible biochemical feedbacks as drivers of the variability in plant hydraulics. Other factors examined included micro-topography within both sites.

  10. Replication Strategy for Spatiotemporal Data Based on Distributed Caching System

    PubMed Central

    Xiong, Lian; Tao, Yang; Xu, Juan; Zhao, Lun

    2018-01-01

    The replica strategy in distributed cache can effectively reduce user access delay and improve system performance. However, developing a replica strategy suitable for varied application scenarios is still quite challenging, owing to differences in user access behavior and preferences. In this paper, a replication strategy for spatiotemporal data (RSSD) based on a distributed caching system is proposed. By taking advantage of the spatiotemporal locality and correlation of user access, RSSD mines high popularity and associated files from historical user access information, and then generates replicas and selects appropriate cache node for placement. Experimental results show that the RSSD algorithm is simple and efficient, and succeeds in significantly reducing user access delay. PMID:29342897

  11. Spatiotemporal throughfall patterns beneath an urban tree row

    NASA Astrophysics Data System (ADS)

    Bogeholz, P.; Van Stan, J. T., II; Hildebrandt, A.; Friesen, J.; Dibble, M.; Norman, Z.

    2016-12-01

    Much recent research has focused on throughfall patterns in natural forests as they can influence the heterogeneity of surface ecohydrological and biogeochemical processes. However, to the knowledge of the authors, no work has assessed how urban forest structures affect the spatiotemporal variability of throughfall water flux. Urbanization greatly alters not only a significant portion of the land surface, but canopy structure, with the most typical urban forest configuration being landscaped tree rows along streets, swales, parking lot medians, etc. This study examines throughfall spatiotemporal patterns for a landscaped tree row of Pinus elliottii (Engelm., slash pine) on Georgia Southern University's campus (southeastern, USA) using 150 individual observations per storm. Throughfall correlation lengths beneath this tree row were similar to, but appeared to be more stable across storm size than, observations in past studies on natural forests. Individual tree overlap and the planting interval also may more strongly drive throughfall patterns in tree rows. Meteorological influences beyond storm magnitude (intensity, intermittency, wind conditions, and atmospheric moisture demand) are also examined.

  12. A Modified Consumer Inkjet for Spatiotemporal Control of Gene Expression

    PubMed Central

    Cohen, Daniel J.; Morfino, Roberto C.; Maharbiz, Michel M.

    2009-01-01

    This paper presents a low-cost inkjet dosing system capable of continuous, two-dimensional spatiotemporal regulation of gene expression via delivery of diffusible regulators to a custom-mounted gel culture of E. coli. A consumer-grade, inkjet printer was adapted for chemical printing; E. coli cultures were grown on 750 µm thick agar embedded in micro-wells machined into commercial compact discs. Spatio-temporal regulation of the lac operon was demonstrated via the printing of patterns of lactose and glucose directly into the cultures; X-Gal blue patterns were used for visual feedback. We demonstrate how the bistable nature of the lac operon's feedback, when perturbed by patterning lactose (inducer) and glucose (inhibitor), can lead to coordination of cell expression patterns across a field in ways that mimic motifs seen in developmental biology. Examples of this include sharp boundaries and the generation of traveling waves of mRNA expression. To our knowledge, this is the first demonstration of reaction-diffusion effects in the well-studied lac operon. A finite element reaction-diffusion model of the lac operon is also presented which predicts pattern formation with good fidelity. PMID:19763256

  13. Spatio-temporal precipitation climatology over complex terrain using a censored additive regression model.

    PubMed

    Stauffer, Reto; Mayr, Georg J; Messner, Jakob W; Umlauf, Nikolaus; Zeileis, Achim

    2017-06-15

    Flexible spatio-temporal models are widely used to create reliable and accurate estimates for precipitation climatologies. Most models are based on square root transformed monthly or annual means, where a normal distribution seems to be appropriate. This assumption becomes invalid on a daily time scale as the observations involve large fractions of zero observations and are limited to non-negative values. We develop a novel spatio-temporal model to estimate the full climatological distribution of precipitation on a daily time scale over complex terrain using a left-censored normal distribution. The results demonstrate that the new method is able to account for the non-normal distribution and the large fraction of zero observations. The new climatology provides the full climatological distribution on a very high spatial and temporal resolution, and is competitive with, or even outperforms existing methods, even for arbitrary locations.

  14. Spatiotemporal Dynamics of Bumblebees Foraging under Predation Risk

    NASA Astrophysics Data System (ADS)

    Lenz, Friedrich; Ings, Thomas C.; Chittka, Lars; Chechkin, Aleksei V.; Klages, Rainer

    2012-03-01

    We analyze 3D flight paths of bumblebees searching for nectar in a laboratory experiment with and without predation risk from artificial spiders. For the flight velocities we find mixed probability distributions reflecting the access to the food sources while the threat posed by the spiders shows up only in the velocity correlations. The bumblebees thus adjust their flight patterns spatially to the environment and temporally to predation risk. Key information on response to environmental changes is contained in temporal correlation functions, as we explain by a simple emergent model.

  15. Spatiotemporal variability of rainfall extremes in monsoonal climates - examples from the South American Monsoon and the Indian Monsoon Systems (Invited)

    NASA Astrophysics Data System (ADS)

    Bookhagen, B.; Boers, N.; Marwan, N.; Malik, N.; Kurths, J.

    2013-12-01

    Monsoonal rainfall is the crucial component for more than half of the world's population. Runoff associated with monsoon systems provide water resources for agriculture, hydropower, drinking-water generation, recreation, and social well-being and are thus a fundamental part of human society. However, monsoon systems are highly stochastic and show large variability on various timescales. Here, we use various rainfall datasets to characterize spatiotemporal rainfall patterns using traditional as well as new approaches emphasizing nonlinear spatial correlations from a complex networks perspective. Our analyses focus on the South American (SAMS) and Indian (ISM) Monsoon Systems on the basis of Tropical Rainfall Measurement Mission (TRMM) using precipitation radar and passive-microwave products with horizontal spatial resolutions of ~5x5 km^2 (products 2A25, 2B31) and 25x25 km^2 (3B42) and interpolated rainfall-gauge data for the ISM (APHRODITE, 25x25 km^2). The eastern slopes of the Andes of South America and the southern front of the Himalaya are characterized by significant orographic barriers that intersect with the moisture-bearing, monsoonal wind systems. We demonstrate that topography exerts a first-order control on peak rainfall amounts on annual timescales in both mountain belts. Flooding in the downstream regions is dominantly caused by heavy rainfall storms that propagate deep into the mountain range and reach regions that are arid and without vegetation cover promoting rapid runoff. These storms exert a significantly different spatial distribution than average-rainfall conditions and assessing their recurrence intervals and prediction is key in understanding flooding for these regions. An analysis of extreme-value distributions of our high-spatial resolution data reveal that semi-arid areas are characterized by low-frequency/high-magnitude events (i.e., are characterized by a ';heavy tail' distribution), whereas regions with high mean annual rainfall have a less skewed distribution. In a second step, an analysis of the spatial characteristics of extreme rainfall synchronicity by means of complex networks reveals patterns of the propagation of extreme rainfall events. These patterns differ substantially from those obtained from the mean annual rainfall distribution. In addition, we have developed a scheme to predict rainfall extreme events in the eastern Central Andes based on event synchronization and spatial patterns of complex networks. The presented methods and result will allow to critically evaluate data and models in space and time.

  16. Improving the Non-Hydrostatic Numerical Dust Model by Integrating Soil Moisture and Greenness Vegetation Fraction Data with Different Spatiotemporal Resolutions.

    PubMed

    Yu, Manzhu; Yang, Chaowei

    2016-01-01

    Dust storms are devastating natural disasters that cost billions of dollars and many human lives every year. Using the Non-Hydrostatic Mesoscale Dust Model (NMM-dust), this research studies how different spatiotemporal resolutions of two input parameters (soil moisture and greenness vegetation fraction) impact the sensitivity and accuracy of a dust model. Experiments are conducted by simulating dust concentration during July 1-7, 2014, for the target area covering part of Arizona and California (31, 37, -118, -112), with a resolution of ~ 3 km. Using ground-based and satellite observations, this research validates the temporal evolution and spatial distribution of dust storm output from the NMM-dust, and quantifies model error using measurements of four evaluation metrics (mean bias error, root mean square error, correlation coefficient and fractional gross error). Results showed that the default configuration of NMM-dust (with a low spatiotemporal resolution of both input parameters) generates an overestimation of Aerosol Optical Depth (AOD). Although it is able to qualitatively reproduce the temporal trend of the dust event, the default configuration of NMM-dust cannot fully capture its actual spatial distribution. Adjusting the spatiotemporal resolution of soil moisture and vegetation cover datasets showed that the model is sensitive to both parameters. Increasing the spatiotemporal resolution of soil moisture effectively reduces model's overestimation of AOD, while increasing the spatiotemporal resolution of vegetation cover changes the spatial distribution of reproduced dust storm. The adjustment of both parameters enables NMM-dust to capture the spatial distribution of dust storms, as well as reproducing more accurate dust concentration.

  17. Similarities and differences among half-marathon runners according to their performance level

    PubMed Central

    Morante, Juan Carlos; Gómez-Molina, Josué; García-López, Juan

    2018-01-01

    This study aimed to identify the similarities and differences among half-marathon runners in relation to their performance level. Forty-eight male runners were classified into 4 groups according to their performance level in a half-marathon (min): Group 1 (n = 11, < 70 min), Group 2 (n = 13, < 80 min), Group 3 (n = 13, < 90 min), Group 4 (n = 11, < 105 min). In two separate sessions, training-related, anthropometric, physiological, foot strike pattern and spatio-temporal variables were recorded. Significant differences (p<0.05) between groups (ES = 0.55–3.16) and correlations with performance were obtained (r = 0.34–0.92) in training-related (experience and running distance per week), anthropometric (mass, body mass index and sum of 6 skinfolds), physiological (VO2max, RCT and running economy), foot strike pattern and spatio-temporal variables (contact time, step rate and length). At standardized submaximal speeds (11, 13 and 15 km·h-1), no significant differences between groups were observed in step rate and length, neither in contact time when foot strike pattern was taken into account. In conclusion, apart from training-related, anthropometric and physiological variables, foot strike pattern and step length were the only biomechanical variables sensitive to half-marathon performance, which are essential to achieve high running speeds. However, when foot strike pattern and running speeds were controlled (submaximal test), the spatio-temporal variables were similar. This indicates that foot strike pattern and running speed are responsible for spatio-temporal differences among runners of different performance level. PMID:29364940

  18. Mining local climate data to assess spatiotemporal dengue fever epidemic patterns in French Guiana.

    PubMed

    Flamand, Claude; Fabregue, Mickael; Bringay, Sandra; Ardillon, Vanessa; Quénel, Philippe; Desenclos, Jean-Claude; Teisseire, Maguelonne

    2014-10-01

    To identify local meteorological drivers of dengue fever in French Guiana, we applied an original data mining method to the available epidemiological and climatic data. Through this work, we also assessed the contribution of the data mining method to the understanding of factors associated with the dissemination of infectious diseases and their spatiotemporal spread. We applied contextual sequential pattern extraction techniques to epidemiological and meteorological data to identify the most significant climatic factors for dengue fever, and we investigated the relevance of the extracted patterns for the early warning of dengue outbreaks in French Guiana. The maximum temperature, minimum relative humidity, global brilliance, and cumulative rainfall were identified as determinants of dengue outbreaks, and the precise intervals of their values and variations were quantified according to the epidemiologic context. The strongest significant correlations were observed between dengue incidence and meteorological drivers after a 4-6-week lag. We demonstrated the use of contextual sequential patterns to better understand the determinants of the spatiotemporal spread of dengue fever in French Guiana. Future work should integrate additional variables and explore the notion of neighborhood for extracting sequential patterns. Dengue fever remains a major public health issue in French Guiana. The development of new methods to identify such specific characteristics becomes crucial in order to better understand and control spatiotemporal transmission. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Recruitment of local inhibitory networks by horizontal connections in layer 2/3 of ferret visual cortex.

    PubMed

    Tucker, Thomas R; Katz, Lawrence C

    2003-01-01

    To investigate how neurons in cortical layer 2/3 integrate horizontal inputs arising from widely distributed sites, we combined intracellular recording and voltage-sensitive dye imaging to visualize the spatiotemporal dynamics of neuronal activity evoked by electrical stimulation of multiple sites in visual cortex. Individual stimuli evoked characteristic patterns of optical activity, while delivering stimuli at multiple sites generated interacting patterns in the regions of overlap. We observed that neurons in overlapping regions received convergent horizontal activation that generated nonlinear responses due to the emergence of large inhibitory potentials. The results indicate that co-activation of multiple sets of horizontal connections recruit strong inhibition from local inhibitory networks, causing marked deviations from simple linear integration.

  20. High-resolution spatiotemporal strain mapping reveals non-uniform deformation in micropatterned elastomers

    NASA Astrophysics Data System (ADS)

    Aksoy, B.; Rehman, A.; Bayraktar, H.; Alaca, B. E.

    2017-04-01

    Micropatterns are generated on a vast selection of polymeric substrates for various applications ranging from stretchable electronics to cellular mechanobiological systems. When these patterned substrates are exposed to external loading, strain field is primarily affected by the presence of microfabricated structures and similarly by fabrication-related defects. The capturing of such nonhomogeneous strain fields is of utmost importance in cases where study of the mechanical behavior with a high spatial resolution is necessary. Image-based non-contact strain measurement techniques are favorable and have recently been extended to scanning tunneling microscope and scanning electron microscope images for the characterization of mechanical properties of metallic materials, e.g. steel and aluminum, at the microscale. A similar real-time analysis of strain heterogeneity in elastomers is yet to be achieved during the entire loading sequence. The available measurement methods for polymeric materials mostly depend on cross-head displacement or precalibrated strain values. Thus, they suffer either from the lack of any real-time analysis, spatiotemporal distribution or high resolution in addition to a combination of these factors. In this work, these challenges are addressed by integrating a tensile stretcher with an inverted optical microscope and developing a subpixel particle tracking algorithm. As a proof of concept, the patterns with a critical dimension of 200 µm are generated on polydimethylsiloxane substrates and strain distribution in the vicinity of the patterns is captured with a high spatiotemporal resolution. In the field of strain measurement, there is always a tradeoff between minimum measurable strain value and spatial resolution. Current noncontact techniques on elastomers can deliver a strain resolution of 0.001% over a minimum length of 5 cm. More importantly, inhomogeneities within this quite large region cannot be captured. The proposed technique can overcome this challenge and provides a displacement measurement resolution of 116 nm and a strain resolution of 0.04% over a gage length of 300 µm. Similarly, the ability to capture inhomogeneities is demonstrated by mapping strain around a thru-hole. The robustness of the technique is also evaluated, where no appreciable change in strain measurement is observed despite the significant variations imposed on the measurement mesh. The proposed approach introduces critical improvements for the determination of displacement and strain gradients in elastomers regarding the real-time nature of strain mapping with a microscale spatial resolution.

  1. Synchronization stability and pattern selection in a memristive neuronal network.

    PubMed

    Wang, Chunni; Lv, Mi; Alsaedi, Ahmed; Ma, Jun

    2017-11-01

    Spatial pattern formation and selection depend on the intrinsic self-organization and cooperation between nodes in spatiotemporal systems. Based on a memory neuron model, a regular network with electromagnetic induction is proposed to investigate the synchronization and pattern selection. In our model, the memristor is used to bridge the coupling between the magnetic flux and the membrane potential, and the induction current results from the time-varying electromagnetic field contributed by the exchange of ion currents and the distribution of charged ions. The statistical factor of synchronization predicts the transition of synchronization and pattern stability. The bifurcation analysis of the sampled time series for the membrane potential reveals the mode transition in electrical activity and pattern selection. A formation mechanism is outlined to account for the emergence of target waves. Although an external stimulus is imposed on each neuron uniformly, the diversity in the magnetic flux and the induction current leads to emergence of target waves in the studied network.

  2. Rotating waves during human sleep spindles organize global patterns of activity that repeat precisely through the night

    PubMed Central

    Muller, Lyle; Piantoni, Giovanni; Koller, Dominik; Cash, Sydney S; Halgren, Eric; Sejnowski, Terrence J

    2016-01-01

    During sleep, the thalamus generates a characteristic pattern of transient, 11-15 Hz sleep spindle oscillations, which synchronize the cortex through large-scale thalamocortical loops. Spindles have been increasingly demonstrated to be critical for sleep-dependent consolidation of memory, but the specific neural mechanism for this process remains unclear. We show here that cortical spindles are spatiotemporally organized into circular wave-like patterns, organizing neuronal activity over tens of milliseconds, within the timescale for storing memories in large-scale networks across the cortex via spike-time dependent plasticity. These circular patterns repeat over hours of sleep with millisecond temporal precision, allowing reinforcement of the activity patterns through hundreds of reverberations. These results provide a novel mechanistic account for how global sleep oscillations and synaptic plasticity could strengthen networks distributed across the cortex to store coherent and integrated memories. DOI: http://dx.doi.org/10.7554/eLife.17267.001 PMID:27855061

  3. Synchronization stability and pattern selection in a memristive neuronal network

    NASA Astrophysics Data System (ADS)

    Wang, Chunni; Lv, Mi; Alsaedi, Ahmed; Ma, Jun

    2017-11-01

    Spatial pattern formation and selection depend on the intrinsic self-organization and cooperation between nodes in spatiotemporal systems. Based on a memory neuron model, a regular network with electromagnetic induction is proposed to investigate the synchronization and pattern selection. In our model, the memristor is used to bridge the coupling between the magnetic flux and the membrane potential, and the induction current results from the time-varying electromagnetic field contributed by the exchange of ion currents and the distribution of charged ions. The statistical factor of synchronization predicts the transition of synchronization and pattern stability. The bifurcation analysis of the sampled time series for the membrane potential reveals the mode transition in electrical activity and pattern selection. A formation mechanism is outlined to account for the emergence of target waves. Although an external stimulus is imposed on each neuron uniformly, the diversity in the magnetic flux and the induction current leads to emergence of target waves in the studied network.

  4. Spatiotemporal Analysis of the Ebola Hemorrhagic Fever in West Africa in 2014

    NASA Astrophysics Data System (ADS)

    Xu, M.; Cao, C. X.; Guo, H. F.

    2017-09-01

    Ebola hemorrhagic fever (EHF) is an acute hemorrhagic diseases caused by the Ebola virus, which is highly contagious. This paper aimed to explore the possible gathering area of EHF cases in West Africa in 2014, and identify endemic areas and their tendency by means of time-space analysis. We mapped distribution of EHF incidences and explored statistically significant space, time and space-time disease clusters. We utilized hotspot analysis to find the spatial clustering pattern on the basis of the actual outbreak cases. spatial-temporal cluster analysis is used to analyze the spatial or temporal distribution of agglomeration disease, examine whether its distribution is statistically significant. Local clusters were investigated using Kulldorff's scan statistic approach. The result reveals that the epidemic mainly gathered in the western part of Africa near north Atlantic with obvious regional distribution. For the current epidemic, we have found areas in high incidence of EVD by means of spatial cluster analysis.

  5. The Spatiotemporal pattern and driving forces of the paddy in the Northeastern China

    NASA Astrophysics Data System (ADS)

    Du, G.; Li, Q.; Chun, X.

    2017-12-01

    The cropland is the production place that protects the regional food security, and the paddy is the main part of the cropland. Since the 21st century, the China's socio-economy has been grown, the structure of the cropland has significantly changed. The Northeast region has gradually become one of the major commodity grain production bases. Meanwhile, the paddy also has gradually increased year by year. Therefore, it is necessary that analyze the tempo-spatial characteristics and the influencing factors of the northeast in China, and the results provide the basis that reveals the change of cropland structure and its causes.In this study, we use the spatial models of GIS and mathematical statistics methods to analyze the tempo-spatial characteristics and the influencing facts of the paddy in the Northeastern China with the spatial data from 2000 to 2015. In order to fully characterize the spatiotemporal characteristics of the paddy, we choose single land use type dynamic degree and land use extension index to quantitatively describe the change degree and the speed of the regional paddy, and the characteristics are visualized with "3S" means. Meanwhile, the relative change rate and the center of gravity model are chosen to explore the region differences and the distribution of the distribution center of paddy field change in Northeast China. In addition, in order to further reveal the cause of the paddy change, we use the OLS, SAM or SEM models to analyze the main influencing factors of spatiotemporal variation of the paddy field.

  6. Propagation and spatiotemporal coupling characteristics of ultra-short Gaussian vortex pulse

    NASA Astrophysics Data System (ADS)

    Nie, Jianye; Liu, Guodong; Zhang, Rongzhu

    2018-05-01

    Based on Collins diffraction integral formula, the propagation equation of ultra-short Gaussian vortex pulse beam has been derived. Using the equation, the intensity distribution variations of vortex pulse in the propagation process are calculated. Specially, the spatiotemporal coupling characteristics of ultra-short vortex beams are discussed in detail. The results show that some key parameters, such as transverse distance, transmission distance, pulse width and topological charge number will influence the spatiotemporal coupling characteristics significantly. With the increasing of transverse distance, the waveforms of the pulses distort obviously. And when transmission distance is far than 50 mm, the distribution curve of transverse intensity gradually changes into a Gaussian type. In addition, initial pulse width will affect the distribution of light field, however, when initial pulse width is larger than 3 fs, the spatiotemporal coupling effect will be insignificant. Topological charge number does not affect the time delay characteristics, since with the increasing of topological charge number, the waveform of the pulse distorts gradually but the time delay does not occur.

  7. Analysis of the spatio-temporal distribution of Eurygaster integriceps (Hemiptera: Scutelleridae) by using spatial analysis by distance indices and geostatistics.

    PubMed

    Karimzadeh, R; Hejazi, M J; Helali, H; Iranipour, S; Mohammadi, S A

    2011-10-01

    Eurygaster integriceps Puton (Hemiptera: Scutelleridae) is the most serious insect pest of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) in Iran. In this study, spatio-temporal distribution of this pest was determined in wheat by using spatial analysis by distance indices (SADIE) and geostatistics. Global positioning and geographic information systems were used for spatial sampling and mapping the distribution of this insect. The study was conducted for three growing seasons in Gharamalek, an agricultural region to the west of Tabriz, Iran. Weekly sampling began when E. integriceps adults migrated to wheat fields from overwintering sites and ended when the new generation adults appeared at the end of season. The adults were sampled using 1- by 1-m quadrat and distance-walk methods. A sweep net was used for sampling the nymphs, and five 180° sweeps were considered as the sampling unit. The results of spatial analyses by using geostatistics and SADIE indicated that E. integriceps adults were clumped after migration to fields and had significant spatial dependency. The second- and third-instar nymphs showed aggregated spatial structure in the middle of growing season. At the end of the season, population distribution changed toward random or regular patterns; and fourth and fifth instars had weaker spatial structure compared with younger nymphs. In Iran, management measures for E. integriceps in wheat fields are mainly applied against overwintering adults, as well as second and third instars. Because of the aggregated distribution of these life stages, site-specific spraying of chemicals is feasible in managing E. integriceps.

  8. Decoding-Accuracy-Based Sequential Dimensionality Reduction of Spatio-Temporal Neural Activities

    NASA Astrophysics Data System (ADS)

    Funamizu, Akihiro; Kanzaki, Ryohei; Takahashi, Hirokazu

    Performance of a brain machine interface (BMI) critically depends on selection of input data because information embedded in the neural activities is highly redundant. In addition, properly selected input data with a reduced dimension leads to improvement of decoding generalization ability and decrease of computational efforts, both of which are significant advantages for the clinical applications. In the present paper, we propose an algorithm of sequential dimensionality reduction (SDR) that effectively extracts motor/sensory related spatio-temporal neural activities. The algorithm gradually reduces input data dimension by dropping neural data spatio-temporally so as not to undermine the decoding accuracy as far as possible. Support vector machine (SVM) was used as the decoder, and tone-induced neural activities in rat auditory cortices were decoded into the test tone frequencies. SDR reduced the input data dimension to a quarter and significantly improved the accuracy of decoding of novel data. Moreover, spatio-temporal neural activity patterns selected by SDR resulted in significantly higher accuracy than high spike rate patterns or conventionally used spatial patterns. These results suggest that the proposed algorithm can improve the generalization ability and decrease the computational effort of decoding.

  9. Spatio-temporal dynamics induced by competing instabilities in two asymmetrically coupled nonlinear evolution equations.

    PubMed

    Schüler, D; Alonso, S; Torcini, A; Bär, M

    2014-12-01

    Pattern formation often occurs in spatially extended physical, biological, and chemical systems due to an instability of the homogeneous steady state. The type of the instability usually prescribes the resulting spatio-temporal patterns and their characteristic length scales. However, patterns resulting from the simultaneous occurrence of instabilities cannot be expected to be simple superposition of the patterns associated with the considered instabilities. To address this issue, we design two simple models composed by two asymmetrically coupled equations of non-conserved (Swift-Hohenberg equations) or conserved (Cahn-Hilliard equations) order parameters with different characteristic wave lengths. The patterns arising in these systems range from coexisting static patterns of different wavelengths to traveling waves. A linear stability analysis allows to derive a two parameter phase diagram for the studied models, in particular, revealing for the Swift-Hohenberg equations, a co-dimension two bifurcation point of Turing and wave instability and a region of coexistence of stationary and traveling patterns. The nonlinear dynamics of the coupled evolution equations is investigated by performing accurate numerical simulations. These reveal more complex patterns, ranging from traveling waves with embedded Turing patterns domains to spatio-temporal chaos, and a wide hysteretic region, where waves or Turing patterns coexist. For the coupled Cahn-Hilliard equations the presence of a weak coupling is sufficient to arrest the coarsening process and to lead to the emergence of purely periodic patterns. The final states are characterized by domains with a characteristic length, which diverges logarithmically with the coupling amplitude.

  10. Spatio-temporal Organization During Ventricular Fibrillation in the Human Heart.

    PubMed

    Robson, Jinny; Aram, Parham; Nash, Martyn P; Bradley, Chris P; Hayward, Martin; Paterson, David J; Taggart, Peter; Clayton, Richard H; Kadirkamanathan, Visakan

    2018-06-01

    In this paper, we present a novel approach to quantify the spatio-temporal organization of electrical activation during human ventricular fibrillation (VF). We propose three different methods based on correlation analysis, graph theoretical measures and hierarchical clustering. Using the proposed approach, we quantified the level of spatio-temporal organization during three episodes of VF in ten patients, recorded using multi-electrode epicardial recordings with 30 s coronary perfusion, 150 s global myocardial ischaemia and 30 s reflow. Our findings show a steady decline in spatio-temporal organization from the onset of VF with coronary perfusion. We observed transient increases in spatio-temporal organization during global myocardial ischaemia. However, the decline in spatio-temporal organization continued during reflow. Our results were consistent across all patients, and were consistent with the numbers of phase singularities. Our findings show that the complex spatio-temporal patterns can be studied using complex network analysis.

  11. Changing Patterns of Human Anthrax in Azerbaijan during the Post-Soviet and Preemptive Livestock Vaccination Eras

    PubMed Central

    Kracalik, Ian; Abdullayev, Rakif; Asadov, Kliment; Ismayilova, Rita; Baghirova, Mehriban; Ustun, Narmin; Shikhiyev, Mazahir; Talibzade, Aydin; Blackburn, Jason K.

    2014-01-01

    We assessed spatial and temporal changes in the occurrence of human anthrax in Azerbaijan during 1984 through 2010. Data on livestock outbreaks, vaccination efforts, and human anthrax incidence during Soviet governance, post-Soviet governance, preemptive livestock vaccination were analyzed. To evaluate changes in the spatio-temporal distribution of anthrax, we used a combination of spatial analysis, cluster detection, and weighted least squares segmented regression. Results indicated an annual percent change in incidence of +11.95% from 1984 to 1995 followed by declining rate of −35.24% after the initiation of livestock vaccination in 1996. Our findings also revealed geographic variation in the spatial distribution of reporting; cases were primarily concentrated in the west early in the study period and shifted eastward as time progressed. Over twenty years after the dissolution of the Soviet Union, the distribution of human anthrax in Azerbaijan has undergone marked changes. Despite decreases in the incidence of human anthrax, continued control measures in livestock are needed to mitigate its occurrence. The shifting patterns of human anthrax highlight the need for an integrated “One Health” approach that takes into account the changing geographic distribution of the disease. PMID:25032701

  12. Spatiotemporal distribution and population characteristicsof a nonnative lake trout population, with implications for suppression

    USGS Publications Warehouse

    Dux, A.M.; Guy, C.S.; Fredenberg, W.A.

    2011-01-01

    We evaluated the distribution and population characteristics of nonnative lake trout Salvelinus namaycush in Lake McDonald,Glacier National Park,Montana, to provide biological data in support of a potential suppression program. Using ultrasonic telemetry, we identified spatial and temporal distribution patterns by tracking 36 adult lake trout (1,137 relocations). Lake trout rarely occupied depths greater than 30 m and were commonly located in the upper hypolimnion directly below the metalimnion during thermal stratification. After breakdown of themetalimnion in the fall, lake trout primarily aggregated at two spawning sites. Lake trout population characteristics were similar to those of populations within the species' native range. However, lake trout in Lake McDonald exhibited lower total annual mortality (13.2%), latermaturity (age 12 formales, age 15 for females), lower body condition, and slower growth than are typically observed in the southern extent of their range. These results will be useful in determining where to target suppression activities (e.g., gillnetting, trap-netting, or electrofishing) and in evaluating responses to suppression efforts. Similar evaluations of lake trout distribution patterns and population characteristics are recommended to increase the likelihood that suppression programs will succeed. ?? American Fisheries Society 2011.

  13. A Geographic Information Science (GISc) Approach to Characterizing Spatiotemporal Patterns of Terrorist Incidents in Iraq, 2004-2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medina, Richard M; Siebeneck, Laura K.; Hepner, George F.

    2011-01-01

    As terrorism on all scales continues, it is necessary to improve understanding of terrorist and insurgent activities. This article takes a Geographic Information Systems (GIS) approach to advance the understanding of spatial, social, political, and cultural triggers that influence terrorism incidents. Spatial, temporal, and spatiotemporal patterns of terrorist attacks are examined to improve knowledge about terrorist systems of training, planning, and actions. The results of this study aim to provide a foundation for understanding attack patterns and tactics in emerging havens as well as inform the creation and implementation of various counterterrorism measures.

  14. Emergent Archetype Hydrological-Biogeochemical Response Patterns in Heterogeneous Catchments

    NASA Astrophysics Data System (ADS)

    Jawitz, J. W.; Gall, H. E.; Rao, P.

    2013-12-01

    What can spatiotemporally integrated patterns observed in stream hydrologic and biogeochemical signals generated in response to transient hydro-climatic and anthropogenic forcing tell us about the interactions between spatially heterogeneous soil-mediated hydrological and biogeochemical processes? We seek to understand how the spatial structure of solute sources coupled with hydrologic responses affect observed concentration-discharge (C-Q) patterns. These patterns are expressions of the spatiotemporal structure of solute loads exported from managed catchments, and their likely ecological consequences manifested in receiving water bodies (e.g., wetlands, rivers, lakes, and coastal waters). We investigated the following broad questions: (1) How does the correlation between flow-generating areas and biogeochemical source areas across a catchment evolve under stochastic hydro-climatic forcing? (2) What are the feasible hydrologic and biogeochemical responses that lead to the emergence of the observed archetype C-Q patterns? and; (3) What implications do these coupled dynamics have for catchment monitoring and implementation of management practices? We categorize the observed temporal signals into three archetypical C-Q patterns: dilution; accretion, and constant concentration. We introduce a parsimonious stochastic model of heterogeneous catchments, which act as hydrologic and biogeochemical filters, to examine the relationship between spatial heterogeneity and temporal history of solute export signals. The core concept of the modeling framework is considering the types and degree of spatial correlation between solute source zones and flow generating zones, and activation of different portions of the catchments during rainfall events. Our overarching hypothesis is that each of the archetype C-Q patterns can be generated by explicitly linking landscape-scale hydrologic responses and spatial distributions of solute source properties within a catchment. The model simulations reproduce the three major C-Q patterns observed in published data, offering valuable insight into coupled catchment processes. The findings have important implications for effective catchment management for water quality improvement, and stream monitoring strategies.

  15. Spatio-Temporal Neural Networks for Vision, Reasoning and Rapid Decision Making

    DTIC Science & Technology

    1994-08-31

    something that is obviously not pattern for long-term knowledge base (LTKB) facts. As a matter possiblc in common neural networks (as units in a...Conferences on Neural Davis, P. (19W0) Application of op~tical chaos to temporal pattern search in a Networks . Piscataway, NJ. [SC] nonlinear optical...Science Institute PROJECT TITLE: Spatio-temporal Neural Networks for Vision, Reasoning and Rapid Decision Making (N00014-93-1-1149) Number of ONR

  16. Spatiotemporal study of elderly suicide in Korea by age cohort.

    PubMed

    Joo, Y

    2017-01-01

    This study analyzed the spatiotemporal pattern and spatial diffusion of elderly suicide by age cohort, in Korea. The research investigated the elderly suicide rates of the 232 municipal units in South Korea between 2001 and 2011. The Gi* score, which is a spatially weighted indicator of area attributes, was used to identify hot spots and the spatiotemporal pattern of elderly suicide in the nation during the last 10 years. The spatial Markov matrix and spatial dynamic panel data model were employed to identify and estimate the diffusion effect. The suicide rate among elderly individuals 75 years and older was substantially higher than the rate for those between 65 and 74 years of age; however, the spatial patterns of the suicide clusters were similar between the two groups. From 2001 to 2011, the spatial distribution of elderly suicide hot spots differed each year. For both age cohorts, elderly suicide hot spots developed around the north area of South Korea in 2001 and moved to the mid-east area and the mid-western coastal area over 10 years. The spatial Markov matrix indicates that the change in the suicide rate of one area was affected by the suicide rates of neighbouring areas from the previous year, which suggests that suicide increase in one area inflates a neighbouring area's suicide rate over time. Using a spatial dynamic panel data model, elderly suicide diffusion effects were found to be statistically significant for both age cohorts even after economic and demographic indicators and a time variable are included. For individuals 75 years and older, the diffusion effect appeared to be larger. This study demonstrates that elderly suicide can spread spatially over time in both age cohorts. Thus, it is necessary to design a place-based and age-differentiated intervention policy that precisely considers the spatial diffusion of elderly suicide. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  17. Simulating Future Changes in Spatio-temporal Precipitation by Identifying and Characterizing Individual Rainstorm Events

    NASA Astrophysics Data System (ADS)

    Chang, W.; Stein, M.; Wang, J.; Kotamarthi, V. R.; Moyer, E. J.

    2015-12-01

    A growing body of literature suggests that human-induced climate change may cause significant changes in precipitation patterns, which could in turn influence future flood levels and frequencies and water supply and management practices. Although climate models produce full three-dimensional simulations of precipitation, analyses of model precipitation have focused either on time-averaged distributions or on individual timeseries with no spatial information. We describe here a new approach based on identifying and characterizing individual rainstorms in either data or model output. Our approach enables us to readily characterize important spatio-temporal aspects of rainstorms including initiation location, intensity (mean and patterns), spatial extent, duration, and trajectory. We apply this technique to high-resolution precipitation over the continental U.S. both from radar-based observations (NCEP Stage IV QPE product, 1-hourly, 4 km spatial resolution) and from model runs with dynamical downscaling (WRF regional climate model, 3-hourly, 12 km spatial resolution). In the model studies we investigate the changes in storm characteristics under a business-as-usual warming scenario to 2100 (RCP 8.5). We find that in these model runs, rainstorm intensity increases as expected with rising temperatures (approximately 7%/K, following increased atmospheric moisture content), while total precipitation increases by a lesser amount (3%/K), consistent with other studies. We identify for the first time the necessary compensating mechanism: in these model runs, individual precipitation events become smaller. Other aspects are approximately unchanged in the warmer climate. Because these spatio-temporal changes in rainfall patterns would impact regional hydrology, it is important that they be accurately incorporated into any impacts assessment. For this purpose we have developed a methodology for producing scenarios of future precipitation that combine observational data and model-projected changes. We statistically describe the future changes in rainstorm characteristics suggested by the WRF model and apply those changes to observational data. The resulting high spatial and temporal resolution scenarios have immediate applications for impacts assessment and adaptation studies.

  18. Precise-spike-driven synaptic plasticity: learning hetero-association of spatiotemporal spike patterns.

    PubMed

    Yu, Qiang; Tang, Huajin; Tan, Kay Chen; Li, Haizhou

    2013-01-01

    A new learning rule (Precise-Spike-Driven (PSD) Synaptic Plasticity) is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe.

  19. Precise-Spike-Driven Synaptic Plasticity: Learning Hetero-Association of Spatiotemporal Spike Patterns

    PubMed Central

    Yu, Qiang; Tang, Huajin; Tan, Kay Chen; Li, Haizhou

    2013-01-01

    A new learning rule (Precise-Spike-Driven (PSD) Synaptic Plasticity) is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe. PMID:24223789

  20. Meteor tracking via local pattern clustering in spatio-temporal domain

    NASA Astrophysics Data System (ADS)

    Kukal, Jaromír.; Klimt, Martin; Švihlík, Jan; Fliegel, Karel

    2016-09-01

    Reliable meteor detection is one of the crucial disciplines in astronomy. A variety of imaging systems is used for meteor path reconstruction. The traditional approach is based on analysis of 2D image sequences obtained from a double station video observation system. Precise localization of meteor path is difficult due to atmospheric turbulence and other factors causing spatio-temporal fluctuations of the image background. The proposed technique performs non-linear preprocessing of image intensity using Box-Cox transform as recommended in our previous work. Both symmetric and asymmetric spatio-temporal differences are designed to be robust in the statistical sense. Resulting local patterns are processed by data whitening technique and obtained vectors are classified via cluster analysis and Self-Organized Map (SOM).

  1. Generating Spatiotemporal Joint Torque Patterns from Dynamical Synchronization of Distributed Pattern Generators

    PubMed Central

    Pitti, Alexandre; Lungarella, Max; Kuniyoshi, Yasuo

    2009-01-01

    Pattern generators found in the spinal cord are no more seen as simple rhythmic oscillators for motion control. Indeed, they achieve flexible and dynamical coordination in interaction with the body and the environment dynamics giving to rise motor synergies. Discovering the mechanisms underlying the control of motor synergies constitutes an important research question not only for neuroscience but also for robotics: the motors coordination of high dimensional robotic systems is still a drawback and new control methods based on biological solutions may reduce their overall complexity. We propose to model the flexible combination of motor synergies in embodied systems via partial phase synchronization of distributed chaotic systems; for specific coupling strength, chaotic systems are able to phase synchronize their dynamics to the resonant frequencies of one external force. We take advantage of this property to explore and exploit the intrinsic dynamics of one specified embodied system. In two experiments with bipedal walkers, we show how motor synergies emerge when the controllers phase synchronize to the body's dynamics, entraining it to its intrinsic behavioral patterns. This stage is characterized by directed information flow from the sensors to the motors exhibiting the optimal situation when the body dynamics drive the controllers (mutual entrainment). Based on our results, we discuss the relevance of our findings for modeling the modular control of distributed pattern generators exhibited in the spinal cord, and for exploring the motor synergies in robots. PMID:20011216

  2. Changing and Differentiated Urban Landscape in China: Spatiotemporal Patterns and Driving Forces.

    PubMed

    Fang, Chuanglin; Li, Guangdong; Wang, Shaojian

    2016-03-01

    Urban landscape spatiotemporal change patterns and their driving mechanisms in China are poorly understood at the national level. Here we used remote sensing data, landscape metrics, and a spatial econometric model to characterize the spatiotemporal patterns of urban landscape change and investigate its driving forces in China between 1990 and 2005. The results showed that the urban landscape pattern has experienced drastic changes over the past 15 years. Total urban area has expanded approximately 1.61 times, with a 2.98% annual urban-growth rate. Compared to previous single-city studies, although urban areas are expanding rapidly, the overall fragmentation of the urban landscape is decreasing and is more irregular and complex at the national level. We also found a stair-stepping, urban-landscape changing pattern among eastern, central, and western counties. In addition, administrative level, urban size, and hierarchy have effects on the urban landscape pattern. We also found that a combination of landscape metrics can be used to supplement our understanding of the pattern of urbanization. The changes in these metrics are correlated with geographical indicators, socioeconomic factors, infrastructure variables, administrative level factors, policy factors, and historical factors. Our results indicate that the top priority should be strengthening the management of urban planning. A compact and congregate urban landscape may be a good choice of pattern for urban development in China.

  3. Spatiotemporal pattern of bacillary dysentery in China from 1990 to 2009: what is the driver behind?

    PubMed

    Xu, Zhiwei; Hu, Wenbiao; Zhang, Yewu; Wang, Xiaofeng; Tong, Shilu; Zhou, Maigeng

    2014-01-01

    Little is known about the spatiotemporal pattern of bacillary dysentery (BD) in China. This study assessed the geographic distribution and seasonality of BD in China over the past two decades. Data on monthly BD cases in 31 provinces of China from January 1990 to December 2009 obtained from Chinese Center for Disease Control and Prevention, and data on demographic and geographic factors, as well as climatic factors, were compiled. The spatial distributions of BD in the four periods across different provinces were mapped, and heat maps were created to present the seasonality of BD by geography. A cosinor function combined with Poisson regression was used to quantify the seasonal parameters of BD, and a regression analysis was conducted to identify the potential drivers of morbidity and seasonality of BD. Although most regions of China have experienced considerable declines in BD morbidity over the past two decades, Beijing and Ningxia still had high BD morbidity in 2009. BD morbidity decreased more slowly in North-west China than other regions. BD in China mainly peaked from July to September, with heterogeneity in peak time between regions. Relative humidity was associated with BD morbidity and peak time, and latitude was the major predictor of BD amplitude. The transmission of BD was heterogeneous in China. Improved sanitation and hygiene in North-west China, and better access to clean water and food in the big floating population in some metropolises could be the focus of future preventive interventions against BD. BD control efforts should put more emphasis on those dry areas in summer.

  4. Network-constrained spatio-temporal clustering analysis of traffic collisions in Jianghan District of Wuhan, China

    PubMed Central

    Fan, Yaxin; Zhu, Xinyan; Guo, Wei; Guo, Tao

    2018-01-01

    The analysis of traffic collisions is essential for urban safety and the sustainable development of the urban environment. Reducing the road traffic injuries and the financial losses caused by collisions is the most important goal of traffic management. In addition, traffic collisions are a major cause of traffic congestion, which is a serious issue that affects everyone in the society. Therefore, traffic collision analysis is essential for all parties, including drivers, pedestrians, and traffic officers, to understand the road risks at a finer spatio-temporal scale. However, traffic collisions in the urban context are dynamic and complex. Thus, it is important to detect how the collision hotspots evolve over time through spatio-temporal clustering analysis. In addition, traffic collisions are not isolated events in space. The characteristics of the traffic collisions and their surrounding locations also present an influence of the clusters. This work tries to explore the spatio-temporal clustering patterns of traffic collisions by combining a set of network-constrained methods. These methods were tested using the traffic collision data in Jianghan District of Wuhan, China. The results demonstrated that these methods offer different perspectives of the spatio-temporal clustering patterns. The weighted network kernel density estimation provides an intuitive way to incorporate attribute information. The network cross K-function shows that there are varying clustering tendencies between traffic collisions and different types of POIs. The proposed network differential Local Moran’s I and network local indicators of mobility association provide straightforward and quantitative measures of the hotspot changes. This case study shows that these methods could help researchers, practitioners, and policy-makers to better understand the spatio-temporal clustering patterns of traffic collisions. PMID:29672551

  5. Millimeter-scale epileptiform spike propagation patterns and their relationship to seizures

    PubMed Central

    Vanleer, Ann C; Blanco, Justin A; Wagenaar, Joost B; Viventi, Jonathan; Contreras, Diego; Litt, Brian

    2016-01-01

    Objective Current mapping of epileptic networks in patients prior to epilepsy surgery utilizes electrode arrays with sparse spatial sampling (∼1.0 cm inter-electrode spacing). Recent research demonstrates that sub-millimeter, cortical-column-scale domains have a role in seizure generation that may be clinically significant. We use high-resolution, active, flexible surface electrode arrays with 500 μm inter-electrode spacing to explore epileptiform local field potential spike propagation patterns in two dimensions recorded from subdural micro-electrocorticographic signals in vivo in cat. In this study, we aimed to develop methods to quantitatively characterize the spatiotemporal dynamics of epileptiform activity at high-resolution. Approach We topically administered a GABA-antagonist, picrotoxin, to induce acute neocortical epileptiform activity leading up to discrete electrographic seizures. We extracted features from local field potential spikes to characterize spatiotemporal patterns in these events. We then tested the hypothesis that two dimensional spike patterns during seizures were different from those between seizures. Main results We showed that spatially correlated events can be used to distinguish ictal versus interictal spikes. Significance We conclude that sub-millimeter-scale spatiotemporal spike patterns reveal network dynamics that are invisible to standard clinical recordings and contain information related to seizure-state. PMID:26859260

  6. Millimeter-scale epileptiform spike propagation patterns and their relationship to seizures

    NASA Astrophysics Data System (ADS)

    Vanleer, Ann C.; Blanco, Justin A.; Wagenaar, Joost B.; Viventi, Jonathan; Contreras, Diego; Litt, Brian

    2016-04-01

    Objective. Current mapping of epileptic networks in patients prior to epilepsy surgery utilizes electrode arrays with sparse spatial sampling (∼1.0 cm inter-electrode spacing). Recent research demonstrates that sub-millimeter, cortical-column-scale domains have a role in seizure generation that may be clinically significant. We use high-resolution, active, flexible surface electrode arrays with 500 μm inter-electrode spacing to explore epileptiform local field potential (LFP) spike propagation patterns in two dimensions recorded from subdural micro-electrocorticographic signals in vivo in cat. In this study, we aimed to develop methods to quantitatively characterize the spatiotemporal dynamics of epileptiform activity at high-resolution. Approach. We topically administered a GABA-antagonist, picrotoxin, to induce acute neocortical epileptiform activity leading up to discrete electrographic seizures. We extracted features from LFP spikes to characterize spatiotemporal patterns in these events. We then tested the hypothesis that two-dimensional spike patterns during seizures were different from those between seizures. Main results. We showed that spatially correlated events can be used to distinguish ictal versus interictal spikes. Significance. We conclude that sub-millimeter-scale spatiotemporal spike patterns reveal network dynamics that are invisible to standard clinical recordings and contain information related to seizure-state.

  7. Identification of spatiotemporal nutrient patterns in a coastal bay via an integrated k-means clustering and gravity model.

    PubMed

    Chang, Ni-Bin; Wimberly, Brent; Xuan, Zhemin

    2012-03-01

    This study presents an integrated k-means clustering and gravity model (IKCGM) for investigating the spatiotemporal patterns of nutrient and associated dissolved oxygen levels in Tampa Bay, Florida. By using a k-means clustering analysis to first partition the nutrient data into a user-specified number of subsets, it is possible to discover the spatiotemporal patterns of nutrient distribution in the bay and capture the inherent linkages of hydrodynamic and biogeochemical features. Such patterns may then be combined with a gravity model to link the nutrient source contribution from each coastal watershed to the generated clusters in the bay to aid in the source proportion analysis for environmental management. The clustering analysis was carried out based on 1 year (2008) water quality data composed of 55 sample stations throughout Tampa Bay collected by the Environmental Protection Commission of Hillsborough County. In addition, hydrological and river water quality data of the same year were acquired from the United States Geological Survey's National Water Information System to support the gravity modeling analysis. The results show that the k-means model with 8 clusters is the optimal choice, in which cluster 2 at Lower Tampa Bay had the minimum values of total nitrogen (TN) concentrations, chlorophyll a (Chl-a) concentrations, and ocean color values in every season as well as the minimum concentration of total phosphorus (TP) in three consecutive seasons in 2008. The datasets indicate that Lower Tampa Bay is an area with limited nutrient input throughout the year. Cluster 5, located in Middle Tampa Bay, displayed elevated TN concentrations, ocean color values, and Chl-a concentrations, suggesting that high values of colored dissolved organic matter are linked with some nutrient sources. The data presented by the gravity modeling analysis indicate that the Alafia River Basin is the major contributor of nutrients in terms of both TP and TN values in all seasons. With this new integration, improvements for environmental monitoring and assessment were achieved to advance our understanding of sea-land interactions and nutrient cycling in a critical coastal bay, the Gulf of Mexico. This journal is © The Royal Society of Chemistry 2012

  8. Dynamics and causalities of atmospheric and oceanic data identified by complex networks and Granger causality analysis

    NASA Astrophysics Data System (ADS)

    Charakopoulos, A. K.; Katsouli, G. A.; Karakasidis, T. E.

    2018-04-01

    Understanding the underlying processes and extracting detailed characteristics of spatiotemporal dynamics of ocean and atmosphere as well as their interaction is of significant interest and has not been well thoroughly established. The purpose of this study was to examine the performance of two main additional methodologies for the identification of spatiotemporal underlying dynamic characteristics and patterns among atmospheric and oceanic variables from Seawatch buoys from Aegean and Ionian Sea, provided by the Hellenic Center for Marine Research (HCMR). The first approach involves the estimation of cross correlation analysis in an attempt to investigate time-lagged relationships, and further in order to identify the direction of interactions between the variables we performed the Granger causality method. According to the second approach the time series are converted into complex networks and then the main topological network properties such as degree distribution, average path length, diameter, modularity and clustering coefficient are evaluated. Our results show that the proposed analysis of complex network analysis of time series can lead to the extraction of hidden spatiotemporal characteristics. Also our findings indicate high level of positive and negative correlations and causalities among variables, both from the same buoy and also between buoys from different stations, which cannot be determined from the use of simple statistical measures.

  9. DISCRN: A Distributed Storytelling Framework for Intelligence Analysis.

    PubMed

    Shukla, Manu; Dos Santos, Raimundo; Chen, Feng; Lu, Chang-Tien

    2017-09-01

    Storytelling connects entities (people, organizations) using their observed relationships to establish meaningful storylines. This can be extended to spatiotemporal storytelling that incorporates locations, time, and graph computations to enhance coherence and meaning. But when performed sequentially these computations become a bottleneck because the massive number of entities make space and time complexity untenable. This article presents DISCRN, or distributed spatiotemporal ConceptSearch-based storytelling, a distributed framework for performing spatiotemporal storytelling. The framework extracts entities from microblogs and event data, and links these entities using a novel ConceptSearch to derive storylines in a distributed fashion utilizing key-value pair paradigm. Performing these operations at scale allows deeper and broader analysis of storylines. The novel parallelization techniques speed up the generation and filtering of storylines on massive datasets. Experiments with microblog posts such as Twitter data and Global Database of Events, Language, and Tone events show the efficiency of the techniques in DISCRN.

  10. Spatiotemporal Distribution of β-Amyloid in Alzheimer Disease Is the Result of Heterogeneous Regional Carrying Capacities.

    PubMed

    Whittington, Alex; Sharp, David J; Gunn, Roger N

    2018-05-01

    β-amyloid (Aβ) accumulation in the brain is 1 of 2 pathologic hallmarks of Alzheimer disease (AD), and the spatial distribution of Aβ has been studied extensively ex vivo. Methods: We applied mathematical modeling to Aβ in vivo PET imaging data to investigate competing theories of Aβ spread in AD. Results: Our results provided evidence that Aβ accumulation starts in all brain regions simultaneously and that its spatiotemporal distribution is due to heterogeneous regional carrying capacities (regional maximum possible concentration of Aβ) for the aggregated protein rather than to longer-term spreading from seed regions. Conclusion: The in vivo spatiotemporal distribution of Aβ in AD can be mathematically modeled using a logistic growth model in which the Aβ carrying capacity is heterogeneous across the brain but the exponential growth rate and time of half maximal Aβ concentration are constant. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  11. Stability Switches, Hopf Bifurcations, and Spatio-temporal Patterns in a Delayed Neural Model with Bidirectional Coupling

    NASA Astrophysics Data System (ADS)

    Song, Yongli; Zhang, Tonghua; Tadé, Moses O.

    2009-12-01

    The dynamical behavior of a delayed neural network with bi-directional coupling is investigated by taking the delay as the bifurcating parameter. Some parameter regions are given for conditional/absolute stability and Hopf bifurcations by using the theory of functional differential equations. As the propagation time delay in the coupling varies, stability switches for the trivial solution are found. Conditions ensuring the stability and direction of the Hopf bifurcation are determined by applying the normal form theory and the center manifold theorem. We also discuss the spatio-temporal patterns of bifurcating periodic oscillations by using the symmetric bifurcation theory of delay differential equations combined with representation theory of Lie groups. In particular, we obtain that the spatio-temporal patterns of bifurcating periodic oscillations will alternate according to the change of the propagation time delay in the coupling, i.e., different ranges of delays correspond to different patterns of neural activities. Numerical simulations are given to illustrate the obtained results and show the existence of bursts in some interval of the time for large enough delay.

  12. Spatio-temporal distribution and natural variation of metabolites in citrus fruits.

    PubMed

    Wang, Shouchuang; Tu, Hong; Wan, Jian; Chen, Wei; Liu, Xianqing; Luo, Jie; Xu, Juan; Zhang, Hongyan

    2016-05-15

    To study the natural variation and spatio-temporal accumulation of citrus metabolites, liquid chromatography tandem mass spectrometry (LC-MS) based metabolome analysis was performed on four fruit tissues (flavedo, albedo, segment membrane and juice sacs) and different Citrus species (lemon, pummelo and grapefruit, sweet orange and mandarin). Using a non-targeted metabolomics approach, more than 2000 metabolite signals were detected, from which more than 54 metabolites, including amino acids, flavonoids and limonoids, were identified/annotated. Differential accumulation patterns of both primary metabolites and secondary metabolites in various tissues and species were revealed by our study. Further investigation indicated that flavedo accumulates more flavonoids while juice sacs contain more amino acids. Besides this, cluster analysis based on the levels of metabolites detected in 47 individual Citrus accessions clearly grouped them into four distinct clusters: pummelos and grapefruits, lemons, sweet oranges and mandarins, while the cluster of pummelos and grapefruits lay distinctly apart from the other three species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Investigation of spatiotemporal relationship between dengue fever and drought

    NASA Astrophysics Data System (ADS)

    Lee, Chieh-Han; Yu, Hwa-Lung

    2016-04-01

    Dengue Fever is a vector-borne disease that is transmitted between human and mosquitos in tropical and sub-tropical regions. Previous studies have found significant relationship between the epidemic of dengue cases and climate variables, especially temperature and precipitation. Besides, the natural phenomena (e.g., drought) are considered that significantly drop the number of dengue cases by killing vector's breeding environment. However, in Kaohsiung City, Taiwan, there are evidences that the temporal pattern of dengue is correlated to drought events. Kaohsiung City experienced two main dengue outbreaks in 2002 and 2014 that both years were confirmed with serious drought. Especially in 2014, Kaohsiung City was suffered from extremely dengue outbreak in 2014 that reported the highest number of dengue cases in the history. Otherwise, another nearby city, Tainan City, had reported the biggest outbreak in 2015. This study constructs the spatiotemporal model of dengue incidences and index of drought events (Standardized Precipitation Index, SPI) based on the distributed lag nonlinear model (DLNM). Other meteorological measures are also included in the analysis.

  14. Is drought helping or killing dengue? Investigation of spatiotemporal relationship between dengue fever and drought

    NASA Astrophysics Data System (ADS)

    Lee, Chieh-Han; Yu, Hwa-Lung

    2015-04-01

    Dengue Fever is a vector-borne disease that is transmitted between human and mosquitos in tropical and sub-tropical regions. Previous studies have found significant relationship between the epidemic of dengue cases and climate variables, especially temperature and precipitation. Besides, the natural phenomena (e.g., drought) are considered that significantly drop the number of dengue cases by killing vector's breeding environment. However, in Kaohsiung City, Taiwan, there are evidences that the temporal pattern of dengue is correlated to drought events. Kaohsiung City experienced two main dengue outbreaks in 2002 and 2014 that both years were confirmed with serious drought. Especially in 2014, Kaohsiung City was suffered from extremely dengue outbreak in 2014 that reported the highest number of dengue cases in the history. This study constructs the spatiotemporal model of dengue incidences and index of drought events (Standardized Precipitation Index, SPI) based on the distributed lag nonlinear model (DLNM). Other meteorological measures are also included in the analysis.

  15. Terahertz beam propagation measured through three-dimensional amplitude profile determination

    NASA Astrophysics Data System (ADS)

    Reiten, Matthew T.; Harmon, Stacee A.; Cheville, Richard Alan

    2003-10-01

    To determine the spatio-temporal field distribution of freely propagating terahertz bandwidth pulses, we measure the time-resolved electric field in two spatial dimensions with high resolution. The measured, phase-coherent electric-field distributions are compared with an analytic model in which the radiation from a dipole antenna near a dielectric interface is coupled to free space through a spherical lens. The field external to the lens is limited by reflection at the lens-air dielectric interface, which is minimized at Brewster's angle, leading to an annular field pattern. Field measurements compare favorably with theory. Propagation of terahertz beams is determined both by assuming a TEM0,0 Gaussian profile as well as expanding the beam into a superposition of Laguerre-Gauss modes. The Laguerre-Gauss model more accurately describes the beam profile for free-space propagation and after propagating through a simple optical system. The accuracy of both models for predicting far-field beam patterns depend upon accurately measuring complex field amplitudes of terahertz beams.

  16. Lead spatio-temporal pattern identification in urban microenvironments using moss bags and the Kohonen self-organizing maps

    NASA Astrophysics Data System (ADS)

    Deljanin, Isidora; Antanasijević, Davor; Vuković, Gordana; Urošević, Mira Aničić; Tomašević, Milica; Perić-Grujić, Aleksandra; Ristić, Mirjana

    2015-09-01

    The first investigation of the use of the Kohonen self-organizing map (SOM) which includes lead concentration and its isotopic composition in moss bags to assess the spatial and temporal patterns of lead in the urban microenvironments is presented in this paper. The moss bags experiment was carried out during 2011 in the city tunnel in Belgrade, as well as in street canyons at different heights (4, 8 and 16 m) and in public garages. The moss bags were exposed for 5 and 10 weeks. The results revealed that the 10 weeks period represents suitable exposure time in screening Pb isotopic composition in active biomonitoring analysis. The obtained results showed that the SOM analysis, by recognizing slight differences among moss samples regarding exposure time, horizontal and vertical spatial distribution, with both, contribution of stable lead isotopes and Pb concentration, could be recommended in biomonitoring analysis of lead distribution in urban microenvironments.

  17. Impact of Drainage Networks on Cholera Outbreaks in Lusaka, Zambia

    PubMed Central

    Suzuki, Hiroshi; Fujino, Yasuyuki; Kimura, Yoshinari; Cheelo, Meetwell

    2009-01-01

    Objectives. We investigated the association between precipitation patterns and cholera outbreaks and the preventative roles of drainage networks against outbreaks in Lusaka, Zambia. Methods. We collected data on 6542 registered cholera patients in the 2003–2004 outbreak season and on 6045 cholera patients in the 2005–2006 season. Correlations between monthly cholera incidences and amount of precipitation were examined. The distribution pattern of the disease was analyzed by a kriging spatial analysis method. We analyzed cholera case distribution and spatiotemporal cluster by using 2590 cholera cases traced with a global positioning system in the 2005–2006 season. The association between drainage networks and cholera cases was analyzed with regression analysis. Results. Increased precipitation was associated with the occurrence of cholera outbreaks, and insufficient drainage networks were statistically associated with cholera incidences. Conclusions. Insufficient coverage of drainage networks elevated the risk of cholera outbreaks. Integrated development is required to upgrade high-risk areas with sufficient infrastructure for a long-term cholera prevention strategy. PMID:19762668

  18. Spatiotemporal distribution modeling of PET tracer uptake in solid tumors.

    PubMed

    Soltani, Madjid; Sefidgar, Mostafa; Bazmara, Hossein; Casey, Michael E; Subramaniam, Rathan M; Wahl, Richard L; Rahmim, Arman

    2017-02-01

    Distribution of PET tracer uptake is elaborately modeled via a general equation used for solute transport modeling. This model can be used to incorporate various transport parameters of a solid tumor such as hydraulic conductivity of the microvessel wall, transvascular permeability as well as interstitial space parameters. This is especially significant because tracer delivery and drug delivery to solid tumors are determined by similar underlying tumor transport phenomena, and quantifying the former can enable enhanced prediction of the latter. We focused on the commonly utilized FDG PET tracer. First, based on a mathematical model of angiogenesis, the capillary network of a solid tumor and normal tissues around it were generated. The coupling mathematical method, which simultaneously solves for blood flow in the capillary network as well as fluid flow in the interstitium, is used to calculate pressure and velocity distributions. Subsequently, a comprehensive spatiotemporal distribution model (SDM) is applied to accurately model distribution of PET tracer uptake, specifically FDG in this work, within solid tumors. The different transport mechanisms, namely convention and diffusion from vessel to tissue and in tissue, are elaborately calculated across the domain of interest and effect of each parameter on tracer distribution is investigated. The results show the convection terms to have negligible effect on tracer transport and the SDM can be solved after eliminating these terms. The proposed framework of spatiotemporal modeling for PET tracers can be utilized to comprehensively assess the impact of various parameters on the spatiotemporal distribution of PET tracers.

  19. Geomagnetic imprinting predicts spatio-temporal variation in homing migration of pink and sockeye salmon

    PubMed Central

    Putman, Nathan F.; Jenkins, Erica S.; Michielsens, Catherine G. J.; Noakes, David L. G.

    2014-01-01

    Animals navigate using a variety of sensory cues, but how each is weighted during different phases of movement (e.g. dispersal, foraging, homing) is controversial. Here, we examine the geomagnetic and olfactory imprinting hypotheses of natal homing with datasets that recorded variation in the migratory routes of sockeye (Oncorhynchus nerka) and pink (Oncorhynchus gorbuscha) salmon returning from the Pacific Ocean to the Fraser River, British Columbia. Drift of the magnetic field (i.e. geomagnetic imprinting) uniquely accounted for 23.2% and 44.0% of the variation in migration routes for sockeye and pink salmon, respectively. Ocean circulation (i.e. olfactory imprinting) predicted 6.1% and 0.1% of the variation in sockeye and pink migration routes, respectively. Sea surface temperature (a variable influencing salmon distribution but not navigation, directly) accounted for 13.0% of the variation in sockeye migration but was unrelated to pink migration. These findings suggest that geomagnetic navigation plays an important role in long-distance homing in salmon and that consideration of navigation mechanisms can aid in the management of migratory fishes by better predicting movement patterns. Finally, given the diversity of animals that use the Earth's magnetic field for navigation, geomagnetic drift may provide a unifying explanation for spatio-temporal variation in the movement patterns of many species. PMID:25056214

  20. Spatio-temporal cerebral blood flow perfusion patterns in cortical spreading depression

    NASA Astrophysics Data System (ADS)

    Verisokin, Andrey Yu.; Verveyko, Darya V.; Postnov, Dmitry E.

    2017-04-01

    Cortical spreading depression (CSD) is an example of one of the most common abnormalities in biophysical brain functioning. Despite the fact that there are many mathematical models describing the cortical spreading depression (CSD), most of them do not take into consideration the role of redistribution of cerebral blood flow (CBF), that results in the formation of spatio-temporal patterns. The paper presents a mathematical model, which successfully explains the CBD role in the CSD process. Numerical study of this model has revealed the formation of stationary dissipative structures, visually analogous to Turing structures. However, the mechanism of their formation is not diffusion. We show these structures occur due to another type of spatial coupling, that is related to tissue perfusion rate. The proposed model predicts that at similar state of neurons the distribution of blood flow and oxygenation may by different. Currently, this effect is not taken into account when the Blood oxygen-level dependent (BOLD) contrast imaging used in functional magnetic resonance imaging (fMRI). Thus, the diagnosis on the BOLD signal can be ambiguous. We believe that our results can be used in the future for a more correct interpretation of the data obtained with fMRI, NIRS and other similar methods for research of the brain activity.

  1. Buffer kinetics shape the spatiotemporal patterns of IP3-evoked Ca2+ signals

    PubMed Central

    Dargan, Sheila L; Parker, Ian

    2003-01-01

    Ca2+ liberation through inositol 1,4,5-trisphosphate receptors (IP3Rs) plays a universal role in cell regulation, and specificity of cell signalling is achieved through the spatiotemporal patterning of Ca2+ signals. IP3Rs display Ca2+-induced Ca2+ release (CICR), but are grouped in clusters so that regenerative Ca2+ signals may remain localized to individual clusters, or propagate globally between clusters by successive cycles of Ca2+ diffusion and CICR. We used confocal microscopy and photoreleased IP3 in Xenopus oocytes to study how these properties are modulated by mobile cytosolic Ca2+ buffers. EGTA (a buffer with slow ‘on-rate’) speeded Ca2+ signals and ‘balkanized’ Ca2+ waves by dissociating them into local signals. In contrast, BAPTA (a fast buffer with similar affinity) slowed Ca2+ responses and promoted ‘globalization’ of spatially uniform Ca2+ signals. These actions are likely to arise through differential effects on Ca2+ feedback within and between IP3R clusters, because Ca2+ signals evoked by influx through voltage-gated channels were little affected. We propose that cell-specific expression of Ca2+-binding proteins with distinct kinetics may shape the time course and spatial distribution of IP3-evoked Ca2+ signals for specific physiological roles. PMID:14555715

  2. 4-dimensional functional profiling in the convulsant-treated larval zebrafish brain.

    PubMed

    Winter, Matthew J; Windell, Dylan; Metz, Jeremy; Matthews, Peter; Pinion, Joe; Brown, Jonathan T; Hetheridge, Malcolm J; Ball, Jonathan S; Owen, Stewart F; Redfern, Will S; Moger, Julian; Randall, Andrew D; Tyler, Charles R

    2017-07-26

    Functional neuroimaging, using genetically-encoded Ca 2+ sensors in larval zebrafish, offers a powerful combination of high spatiotemporal resolution and higher vertebrate relevance for quantitative neuropharmacological profiling. Here we use zebrafish larvae with pan-neuronal expression of GCaMP6s, combined with light sheet microscopy and a novel image processing pipeline, for the 4D profiling of chemoconvulsant action in multiple brain regions. In untreated larvae, regions associated with autonomic functionality, sensory processing and stress-responsiveness, consistently exhibited elevated spontaneous activity. The application of drugs targeting different convulsant mechanisms (4-Aminopyridine, Pentylenetetrazole, Pilocarpine and Strychnine) resulted in distinct spatiotemporal patterns of activity. These activity patterns showed some interesting parallels with what is known of the distribution of their respective molecular targets, but crucially also revealed system-wide neural circuit responses to stimulation or suppression. Drug concentration-response curves of neural activity were identified in a number of anatomically-defined zebrafish brain regions, and in vivo larval electrophysiology, also conducted in 4dpf larvae, provided additional measures of neural activity. Our quantification of network-wide chemoconvulsant drug activity in the whole zebrafish brain illustrates the power of this approach for neuropharmacological profiling in applications ranging from accelerating studies of drug safety and efficacy, to identifying pharmacologically-altered networks in zebrafish models of human neurological disorders.

  3. Adjustment of spatio-temporal precipitation patterns in a high Alpine environment

    NASA Astrophysics Data System (ADS)

    Herrnegger, Mathew; Senoner, Tobias; Nachtnebel, Hans-Peter

    2018-01-01

    This contribution presents a method for correcting the spatial and temporal distribution of precipitation fields in a mountainous environment. The approach is applied within a flood forecasting model in the Upper Enns catchment in the Central Austrian Alps. Precipitation exhibits a large spatio-temporal variability in Alpine areas. Additionally the density of the monitoring network is low and measurements are subjected to major errors. This can lead to significant deficits in water balance estimation and stream flow simulations, e.g. for flood forecasting models. Therefore precipitation correction factors are frequently applied. For the presented study a multiplicative, stepwise linear correction model is implemented in the rainfall-runoff model COSERO to adjust the precipitation pattern as a function of elevation. To account for the local meteorological conditions, the correction model is derived for two elevation zones: (1) Valley floors to 2000 m a.s.l. and (2) above 2000 m a.s.l. to mountain peaks. Measurement errors also depend on the precipitation type, with higher magnitudes in winter months during snow fall. Therefore, additionally, separate correction factors for winter and summer months are estimated. Significant improvements in the runoff simulations could be achieved, not only in the long-term water balance simulation and the overall model performance, but also in the simulation of flood peaks.

  4. A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque.

    PubMed

    Schroeder, C E; Mehta, A D; Givre, S J

    1998-01-01

    We investigated the spatiotemporal activation pattern, produced by one visual stimulus, across cerebral cortical regions in awake monkeys. Laminar profiles of postsynaptic potentials and action potentials were indexed with current source density (CSD) and multiunit activity profiles respectively. Locally, we found contrasting activation profiles in dorsal and ventral stream areas. The former, like V1 and V2, exhibit a 'feedforward' profile, with excitation beginning at the depth of Lamina 4, followed by activation of the extragranular laminae. The latter often displayed a multilaminar/columnar profile, with initial responses distributed across the laminae and reflecting modulation rather than excitation; CSD components were accompanied by either no changes or by suppression of action potentials. System-wide, response latencies indicated a large dorsal/ventral stream latency advantage, which generalizes across a wide range of methods. This predicts a specific temporal ordering of dorsal and ventral stream components of visual analysis, as well as specific patterns of dorsal-ventral stream interaction. Our findings support a hierarchical model of cortical organization that combines serial and parallel elements. Critical in such a model is the recognition that processing within a location typically entails multiple temporal components or 'waves' of activity, driven by input conveyed over heterogeneous pathways from the retina.

  5. [Land use pattern and its dynamic changes in Amur tiger distribution region].

    PubMed

    Li, Zhong-wen; Wu, Jian-guo; Kou, Xiao-jun; Tian, Yu; Wang, Tian-ming; Mu, Pu; Ge, Jian-ping

    2009-03-01

    Land use and land cover change has been the primary cause for the habitat loss and fragmentation in the distribution region of Amur tiger (Panthera tigris altaica). Based on the spatiotemporal changes of land use and land cover in the distribution region, as well as their effects on the population dynamics of Amur tiger, this paper analyzed the development process and its characteristics of the main land use types (agricultural land, forest land, and construction land) in this region, with the land use change history being divided chronically into three distinctive periods, i.e., ancient times (prior to 1860), modern times (1860-1949), and contemporary times (after 1949). The results showed that the sporadic land use in ancient times had no significant effects on the survival of Amur tiger, while the extensive and intensive land use after the 1860s was mainly responsible for the decrease of Amur tiger population and its living space. Since 1949, the Amur tiger distribution region has been divided into two parts, i.e., Northeast China and Russia Far East. The differences in land use pattern, policy, and intensity between these two parts led to different survival status of Amur tiger. The key driving forces for the land use change in Amur tiger distribution region were human population increase, policy change, and increased productivity.

  6. Epidemiologic Patterns of Ross River Virus Disease in Queensland, Australia, 2001–2011

    PubMed Central

    Yu, Weiwei; Mengersen, Kerrie; Dale, Pat; Mackenzie, John S.; Toloo, Ghasem (Sam); Wang, Xiaoyu; Tong, Shilu

    2014-01-01

    Ross River virus (RRV) infection is a debilitating disease that has a significant impact on population health, economic productivity, and tourism in Australia. This study examined epidemiologic patterns of RRV disease in Queensland, Australia, during January 2001–December 2011 at a statistical local area level. Spatio-temporal analyses were used to identify the patterns of the disease distribution over time stratified by age, sex, and space. The results show that the mean annual incidence was 54 per 100,000 persons, with a male:female ratio of 1:1.1. Two space-time clusters were identified: the areas adjacent to Townsville, on the eastern coast of Queensland, and the southeast areas. Thus, although public health intervention should be considered across all areas in which RRV occurs, it should specifically focus on high-risk regions, particularly during summer and autumn to reduce the social and economic impacts of RRV infection. PMID:24799374

  7. A hybrid spatiotemporal drought forecasting model for operational use

    NASA Astrophysics Data System (ADS)

    Vasiliades, L.; Loukas, A.

    2010-09-01

    Drought forecasting plays an important role in the planning and management of natural resources and water resource systems in a river basin. Early and timelines forecasting of a drought event can help to take proactive measures and set out drought mitigation strategies to alleviate the impacts of drought. Spatiotemporal data mining is the extraction of unknown and implicit knowledge, structures, spatiotemporal relationships, or patterns not explicitly stored in spatiotemporal databases. As one of data mining techniques, forecasting is widely used to predict the unknown future based upon the patterns hidden in the current and past data. This study develops a hybrid spatiotemporal scheme for integrated spatial and temporal forecasting. Temporal forecasting is achieved using feed-forward neural networks and the temporal forecasts are extended to the spatial dimension using a spatial recurrent neural network model. The methodology is demonstrated for an operational meteorological drought index the Standardized Precipitation Index (SPI) calculated at multiple timescales. 48 precipitation stations and 18 independent precipitation stations, located at Pinios river basin in Thessaly region, Greece, were used for the development and spatiotemporal validation of the hybrid spatiotemporal scheme. Several quantitative temporal and spatial statistical indices were considered for the performance evaluation of the models. Furthermore, qualitative statistical criteria based on contingency tables between observed and forecasted drought episodes were calculated. The results show that the lead time of forecasting for operational use depends on the SPI timescale. The hybrid spatiotemporal drought forecasting model could be operationally used for forecasting up to three months ahead for SPI short timescales (e.g. 3-6 months) up to six months ahead for large SPI timescales (e.g. 24 months). The above findings could be useful in developing a drought preparedness plan in the region.

  8. Spatiotemporal analysis of land use and land cover change in the Brazilian Amazon

    PubMed Central

    Li, Guiying; Moran, Emilio; Hetrick, Scott

    2013-01-01

    This paper provides a comparative analysis of land use and land cover (LULC) changes among three study areas with different biophysical environments in the Brazilian Amazon at multiple scales, from per-pixel, polygon, census sector, to study area. Landsat images acquired in the years of 1990/1991, 1999/2000, and 2008/2010 were used to examine LULC change trajectories with the post-classification comparison approach. A classification system composed of six classes – forest, savanna, other-vegetation (secondary succession and plantations), agro-pasture, impervious surface, and water, was designed for this study. A hierarchical-based classification method was used to classify Landsat images into thematic maps. This research shows different spatiotemporal change patterns, composition and rates among the three study areas and indicates the importance of analyzing LULC change at multiple scales. The LULC change analysis over time for entire study areas provides an overall picture of change trends, but detailed change trajectories and their spatial distributions can be better examined at a per-pixel scale. The LULC change at the polygon scale provides the information of the changes in patch sizes over time, while the LULC change at census sector scale gives new insights on how human-induced activities (e.g., urban expansion, roads, and land use history) affect LULC change patterns and rates. This research indicates the necessity to implement change detection at multiple scales for better understanding the mechanisms of LULC change patterns and rates. PMID:24127130

  9. Geographical distribution and spatio-temporal patterns of hospitalization due to dengue infection at a leading specialist hospital in Malaysia.

    PubMed

    Low, Gary K K; Papapreponis, Panayoti; Isa, Ridzuan M; Gan, Seng Chiew; Chee, Hui Yee; Te, Kian Keong; Hatta, Nadia M

    2018-05-07

    Increasing numbers of dengue infection worldwide have led to a rise in deaths due to complications caused by this disease. We present here a cross-sectional study of dengue patients who attended the Emergency and Trauma Department of Ampang Hospital, one of Malaysia's leading specialist hospitals. The objective was to search for potential clustering of severe dengue, in space and/or time, among the annual admissions with the secondary objective to describe the spatio-temporal pattern of all dengue cases admitted to this hospital. The dengue status of the patients was confirmed serologically with the geographic location of the patients determined by residency, but not more specific than the street level. A total of 1165 dengue patients were included in the analysis using SaTScan software. The mean age of these patients was 27.8 years, with a standard deviation of 14.2 years and an age range from 1 to 77 years, among whom 54 (4.6%) were cases of severe dengue. A cluster of general dengue cases was identified occurring from October to December in the study year of 2015 but the inclusion of severe dengue in that cluster was not statistically significant (P=0.862). The standardized incidence ratio was 1.51. General presence of dengue cases was, however, detected to be concentrated at the end of the year, which should be useful for hospital planning and management if this pattern holds.

  10. Farmland-atmosphere feedbacks amplify decreases in diffuse nitrogen pollution in a freeze-thaw agricultural area under climate warming conditions.

    PubMed

    Gao, Xiang; Ouyang, Wei; Hao, Zengchao; Shi, Yandan; Wei, Peng; Hao, Fanghua

    2017-02-01

    Although climate warming and agricultural land use changes are two of the primary instigators of increased diffuse pollution, they are usually considered separately or additively. This likely lead to poor decisions regarding climate adaptation. Climate warming and farmland responses have synergistic consequences for diffuse nitrogen pollution, which are hypothesized to present different spatio-temporal patterns. In this study, we propose a modeling framework to simulate the synergistic impacts of climate warming and warming-induced farmland shifts on diffuse pollution. Active accumulated temperature response for latitudinal and altitudinal directions was predicted based on a simple agro-climate model under different temperature increments (△T 0 is from 0.8°C to 1.4°C at an interval of 0.2°C). Spatial distributions of dryland shift to paddy land were determined by considering accumulated temperature. Different temperature increments and crop distributions were inserted into Soil and Water Assessment Tool model, which quantified the spatio-temporal changes of nitrogen. Warming led to a decrease of the annual total nitrogen loading (2.6%-14.2%) in the low latitudes compared with baseline, which was larger than the decrease (0.8%-6.2%) in the high latitudes. The synergistic impacts amplified the decrease of the loading in the low and high latitudes at the sub-basin scale. Warming led to a decrease of the loading at a rate of 0.35kg/ha/°C, which was lower than the synergistic impacts (3.67kg/ha/°C) at the watershed level. However, warming led to the slight increase of the annual averaged NO3 (LAT) (0.16kg/ha/°C), which was amplified by the synergistic impacts (0.22kg/ha/°C). Expansion of paddy fields led to a decrease in the monthly total nitrogen loading throughout the year, but amplified an increase in the loading in August and September. The decreased response in spatio-temporal nitrogen patterns is substantially amplified by farmland-atmosphere feedbacks associated with farmland shifts in response to warming. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Spatio-temporal dynamics induced by competing instabilities in two asymmetrically coupled nonlinear evolution equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schüler, D.; Alonso, S.; Bär, M.

    2014-12-15

    Pattern formation often occurs in spatially extended physical, biological, and chemical systems due to an instability of the homogeneous steady state. The type of the instability usually prescribes the resulting spatio-temporal patterns and their characteristic length scales. However, patterns resulting from the simultaneous occurrence of instabilities cannot be expected to be simple superposition of the patterns associated with the considered instabilities. To address this issue, we design two simple models composed by two asymmetrically coupled equations of non-conserved (Swift-Hohenberg equations) or conserved (Cahn-Hilliard equations) order parameters with different characteristic wave lengths. The patterns arising in these systems range from coexistingmore » static patterns of different wavelengths to traveling waves. A linear stability analysis allows to derive a two parameter phase diagram for the studied models, in particular, revealing for the Swift-Hohenberg equations, a co-dimension two bifurcation point of Turing and wave instability and a region of coexistence of stationary and traveling patterns. The nonlinear dynamics of the coupled evolution equations is investigated by performing accurate numerical simulations. These reveal more complex patterns, ranging from traveling waves with embedded Turing patterns domains to spatio-temporal chaos, and a wide hysteretic region, where waves or Turing patterns coexist. For the coupled Cahn-Hilliard equations the presence of a weak coupling is sufficient to arrest the coarsening process and to lead to the emergence of purely periodic patterns. The final states are characterized by domains with a characteristic length, which diverges logarithmically with the coupling amplitude.« less

  12. Learning-automaton-based online discovery and tracking of spatiotemporal event patterns.

    PubMed

    Yazidi, Anis; Granmo, Ole-Christoffer; Oommen, B John

    2013-06-01

    Discovering and tracking of spatiotemporal patterns in noisy sequences of events are difficult tasks that have become increasingly pertinent due to recent advances in ubiquitous computing, such as community-based social networking applications. The core activities for applications of this class include the sharing and notification of events, and the importance and usefulness of these functionalities increase as event sharing expands into larger areas of one's life. Ironically, instead of being helpful, an excessive number of event notifications can quickly render the functionality of event sharing to be obtrusive. Indeed, any notification of events that provides redundant information to the application/user can be seen to be an unnecessary distraction. In this paper, we introduce a new scheme for discovering and tracking noisy spatiotemporal event patterns, with the purpose of suppressing reoccurring patterns, while discerning novel events. Our scheme is based on maintaining a collection of hypotheses, each one conjecturing a specific spatiotemporal event pattern. A dedicated learning automaton (LA)--the spatiotemporal pattern LA (STPLA)--is associated with each hypothesis. By processing events as they unfold, we attempt to infer the correctness of each hypothesis through a real-time guided random walk. Consequently, the scheme that we present is computationally efficient, with a minimal memory footprint. Furthermore, it is ergodic, allowing adaptation. Empirical results involving extensive simulations demonstrate the superior convergence and adaptation speed of STPLA, as well as an ability to operate successfully with noise, including both the erroneous inclusion and omission of events. An empirical comparison study was performed and confirms the superiority of our scheme compared to a similar state-of-the-art approach. In particular, the robustness of the STPLA to inclusion as well as to omission noise constitutes a unique property compared to other related approaches. In addition, the results included, which involve the so-called " presence sharing" application, are both promising and, in our opinion, impressive. It is thus our opinion that the proposed STPLA scheme is, in general, ideal for improving the usefulness of event notification and sharing systems, since it is capable of significantly, robustly, and adaptively suppressing redundant information.

  13. Non-conscious processing of motion coherence can boost conscious access.

    PubMed

    Kaunitz, Lisandro; Fracasso, Alessio; Lingnau, Angelika; Melcher, David

    2013-01-01

    Research on the scope and limits of non-conscious vision can advance our understanding of the functional and neural underpinnings of visual awareness. Here we investigated whether distributed local features can be bound, outside of awareness, into coherent patterns. We used continuous flash suppression (CFS) to create interocular suppression, and thus lack of awareness, for a moving dot stimulus that varied in terms of coherence with an overall pattern (radial flow). Our results demonstrate that for radial motion, coherence favors the detection of patterns of moving dots even under interocular suppression. Coherence caused dots to break through the masks more often: this indicates that the visual system was able to integrate low-level motion signals into a coherent pattern outside of visual awareness. In contrast, in an experiment using meaningful or scrambled biological motion we did not observe any increase in the sensitivity of detection for meaningful patterns. Overall, our results are in agreement with previous studies on face processing and with the hypothesis that certain features are spatiotemporally bound into coherent patterns even outside of attention or awareness.

  14. Development of a Frost Risk Assessment Tool in Agriculture for a Mediterranean ecosystem Utilizing MODIS satellite observations Geomatics and Surface Data

    NASA Astrophysics Data System (ADS)

    Louka, Panagiota; Papanikolaou, Ioannis; Petropoulos, George; Migiros, George; Tsiros, Ioannis

    2014-05-01

    Frost risk in Mediterranean countries is a critical factor in agricultural planning and management. Nowadays, the rapid technological developments in Earth Observation (EO) technology have improved dramatically our ability to map the spatiotemporal distribution of frost conditions over a given area and evaluate its impacts on the environment and society. In this study, a frost risk model for agricultural crops cultivated in a Mediterranean environment has been developed, based primarily on Earth Observation (EO) data from MODIS sensor and ancillary spatial and point data. The ability of the model to predict frost conditions has been validated for selected days on which frost conditions had been observed for a region in Northwestern Greece according to ground observations obtained by the Agricultural Insurance Organization (ELGA). An extensive evaluation of the frost risk model predictions has been performed herein to evaluate objectively its ability to predict the spatio-temporal distribution of frost risk in the studied region, including comparisons against physiographical factors of the study area. The topographical characteristics that were taken under consideration were latitude, altitude, slope steepness, topographic convergence and the extend of the areas influenced by water bodies (such as lake and sea) existing in the study area. Additional data were also used concerning land use data and vegetation classification (type and density). Our results showed that the model was able to produce reasonably the spatio-temporal distribution of the frost conditions in our study area, following largely explainable patterns in respect to the study site and local weather conditions characteristics. All in all, the methodology implemented herein proved capable in obtaining rapidly and cost-effectively cartography of the frost risk in a Mediterranean environment, making it potentially a very useful tool for agricultural management and planning. The model presented here has also a potential to enhance conventional field-based surveying for monitoring frost changes over long timescales. KEYWORDS: Earth Observation, MODIS, frost, risk assessment, Greece

  15. Spatio-temporal patterns of key exploited marine species in the Northwestern Mediterranean Sea.

    PubMed

    Morfin, Marie; Fromentin, Jean-Marc; Jadaud, Angélique; Bez, Nicolas

    2012-01-01

    This study analyzes the temporal variability/stability of the spatial distributions of key exploited species in the Gulf of Lions (Northwestern Mediterranean Sea). To do so, we analyzed data from the MEDITS bottom-trawl scientific surveys from 1994 to 2010 at 66 fixed stations and selected 12 key exploited species. We proposed a geostatistical approach to handle zero-inflated and non-stationary distributions and to test for the temporal stability of the spatial structures. Empirical Orthogonal Functions and other descriptors were then applied to investigate the temporal persistence and the characteristics of the spatial patterns. The spatial structure of the distribution (i.e. the pattern of spatial autocorrelation) of the 12 key species studied remained highly stable over the time period sampled. The spatial distributions of all species obtained through kriging also appeared to be stable over time, while each species displayed a specific spatial distribution. Furthermore, adults were generally more densely concentrated than juveniles and occupied areas included in the distribution of juveniles. Despite the strong persistence of spatial distributions, we also observed that the area occupied by each species was correlated to its abundance: the more abundant the species, the larger the occupation area. Such a result tends to support MacCall's basin theory, according to which density-dependence responses would drive the expansion of those 12 key species in the Gulf of Lions. Further analyses showed that these species never saturated their habitats, suggesting that they are below their carrying capacity; an assumption in agreement with the overexploitation of several of these species. Finally, the stability of their spatial distributions over time and their potential ability to diffuse outside their main habitats give support to Marine Protected Areas as a potential pertinent management tool.

  16. Outbreak patterns of the novel avian influenza (H7N9)

    NASA Astrophysics Data System (ADS)

    Pan, Ya-Nan; Lou, Jing-Jing; Han, Xiao-Pu

    2014-05-01

    The attack of novel avian influenza (H7N9) in East China caused a serious health crisis and public panic. In this paper, we empirically analyze the onset patterns of human cases of the novel avian influenza and observe several spatial and temporal properties that are similar to other infectious diseases. More specifically, using the empirical analysis and modeling studies, we find that the spatio-temporal network that connects the cities with human cases along the order of outbreak timing emerges two-regime-power-law edge-length distribution, indicating the picture that several islands with higher and heterogeneous risk straggle in East China. The proposed method is applicable to the analysis of the spreading situation in the early stage of disease outbreak using quite limited dataset.

  17. Decoding Spontaneous Emotional States in the Human Brain

    PubMed Central

    Kragel, Philip A.; Knodt, Annchen R.; Hariri, Ahmad R.; LaBar, Kevin S.

    2016-01-01

    Pattern classification of human brain activity provides unique insight into the neural underpinnings of diverse mental states. These multivariate tools have recently been used within the field of affective neuroscience to classify distributed patterns of brain activation evoked during emotion induction procedures. Here we assess whether neural models developed to discriminate among distinct emotion categories exhibit predictive validity in the absence of exteroceptive emotional stimulation. In two experiments, we show that spontaneous fluctuations in human resting-state brain activity can be decoded into categories of experience delineating unique emotional states that exhibit spatiotemporal coherence, covary with individual differences in mood and personality traits, and predict on-line, self-reported feelings. These findings validate objective, brain-based models of emotion and show how emotional states dynamically emerge from the activity of separable neural systems. PMID:27627738

  18. Spatio-temporal distribution of net-collected phytoplankton community and its response to marine exploitation in Xiangshan Bay

    NASA Astrophysics Data System (ADS)

    Jiang, Zhibing; Zhu, Xuyu; Gao, Yu; Chen, Quanzhen; Zeng, Jiangning; Zhu, Genhai

    2013-07-01

    To explore the spatial-temporal distribution of the phytoplankton community and evaluate the combined effects of marine resource exploitation, net-collected phytoplankton and physical-chemical parameters were investigated in the Xiangshan Bay during the four seasons of 2010. A total of eight phyla, 97 genera, and 310 species were found, including 232 diatom species, 45 dinoflagellate species and 33 other taxa. The phytoplankton abundances presented a significant ( P<0.001) seasonal difference with the average of 60.66×104 cells/m3. Diatoms (mainly consisting of Coscinodiscus jonesianus, Cerataulina pelagica, Skeleto n ema costatum, and genus Chaetoceros) dominated the phytoplankton assemblage in all seasons. We found great spatio-temporal variation in community composition based on the multidimensional scaling and similarity analysis. Canonical correspondence analysis show that temperature, nutrition, illumination, and salinity were the main variables associated with microalgal assemblage. Compared with the previous studies, an increase in phytoplankton abundance and change in the dominant species coincided with increased exploitation activities in this bay (e.g. operation of coastal power plants, intensive mariculture, tidal flat reclamation, and industrial and agricultural development). The present findings suggest that the government should exercise caution when deciding upon developmental patterns in the sea-related economy.

  19. Spatio-temporal distribution and environmental drivers of Barley yellow dwarf virus and vector abundance in Kansas.

    PubMed

    Enders, Laramy; Hefley, Trevor; Girvin, John; Whitworth, Robert; Smith, Charles

    2018-05-11

    Several aphid species transmit barley yellow dwarf, a globally destructive disease caused by viruses that infect cereal grain crops. Data from >400 samples collected across Kansas wheat fields in 2014 and 2015 were used to develop spatio-temporal models predicting the extent to which landcover, temperature and precipitation affect spring aphid vector abundance and presence of individuals carrying Barley yellow dwarf virus (BYDV). The distribution of Rhopalosiphum padi abundance was not correlated with climate or landcover, but Sitobion avenae abundance was positively correlated to fall temperature and negatively correlated to spring temperature and precipitation. The abundance of Schizaphis graminum was negatively correlated with fall precipitation and winter temperature. The incidence of viruliferous (+BYDV) R. padi was positively correlated with fall precipitation but negatively correlated with winter precipitation. In contrast, the probability of +BYDV S. avenae was unaffected by precipitation but was positively correlated with average fall temperatures and distance to nearest forest or shrubland. R. padi and S. avenae were more prevalent at Eastern sample sites where ground cover is more grassland than cropland, suggesting that grassland may provide over-summering sites for vectors and pose a risk as potential BYDV reservoirs. Nevertheless, land cover patterns were not strongly associated with differences in abundance or probability that viruliferous aphids were present.

  20. Bayesian modeling to assess populated areas impacted by radiation from Fukushima

    NASA Astrophysics Data System (ADS)

    Hultquist, C.; Cervone, G.

    2017-12-01

    Citizen-led movements producing spatio-temporal big data are increasingly important sources of information about populations that are impacted by natural disasters. Citizen science can be used to fill gaps in disaster monitoring data, in addition to inferring human exposure and vulnerability to extreme environmental impacts. As a response to the 2011 release of radiation from Fukushima, Japan, the Safecast project began collecting open radiation data which grew to be a global dataset of over 70 million measurements to date. This dataset is spatially distributed primarily where humans are located and demonstrates abnormal patterns of population movements as a result of the disaster. Previous work has demonstrated that Safecast is highly correlated in comparison to government radiation observations. However, there is still a scientific need to understand the geostatistical variability of Safecast data and to assess how reliable the data are over space and time. The Bayesian hierarchical approach can be used to model the spatial distribution of datasets and flexibly integrate new flows of data without losing previous information. This enables an understanding of uncertainty in the spatio-temporal data to inform decision makers on areas of high levels of radiation where populations are located. Citizen science data can be scientifically evaluated and used as a critical source of information about populations that are impacted by a disaster.

  1. Modeling spatio-temporal wildfire ignition point patterns

    Treesearch

    Amanda S. Hering; Cynthia L. Bell; Marc G. Genton

    2009-01-01

    We analyze and model the structure of spatio-temporal wildfire ignitions in the St. Johns River Water Management District in northeastern Florida. Previous studies, based on the K-function and an assumption of homogeneity, have shown that wildfire events occur in clusters. We revisit this analysis based on an inhomogeneous K-...

  2. Spatiotemporal Coupling of the Tongue in Amyotrophic Lateral Sclerosis

    ERIC Educational Resources Information Center

    Kuruvilla, Mili S.; Green, Jordan R.; Yunusova, Yana; Hanford, Kathy

    2012-01-01

    Purpose: The primary aim of the investigation was to identify deficits in spatiotemporal coupling between tongue regions in amyotrophic lateral sclerosis (ALS). The relations between disease-related changes in tongue movement patterns and speech intelligibility were also determined. Methods: The authors recorded word productions from 11…

  3. Spatio-temporal Dynamics of Audiovisual Speech Processing

    PubMed Central

    Bernstein, Lynne E.; Auer, Edward T.; Wagner, Michael; Ponton, Curtis W.

    2007-01-01

    The cortical processing of auditory-alone, visual-alone, and audiovisual speech information is temporally and spatially distributed, and functional magnetic resonance imaging (fMRI) cannot adequately resolve its temporal dynamics. In order to investigate a hypothesized spatio-temporal organization for audiovisual speech processing circuits, event-related potentials (ERPs) were recorded using electroencephalography (EEG). Stimuli were congruent audiovisual /bα/, incongruent auditory /bα/ synchronized with visual /gα/, auditory-only /bα/, and visual-only /bα/ and /gα/. Current density reconstructions (CDRs) of the ERP data were computed across the latency interval of 50-250 milliseconds. The CDRs demonstrated complex spatio-temporal activation patterns that differed across stimulus conditions. The hypothesized circuit that was investigated here comprised initial integration of audiovisual speech by the middle superior temporal sulcus (STS), followed by recruitment of the intraparietal sulcus (IPS), followed by activation of Broca's area (Miller and d'Esposito, 2005). The importance of spatio-temporally sensitive measures in evaluating processing pathways was demonstrated. Results showed, strikingly, early (< 100 msec) and simultaneous activations in areas of the supramarginal and angular gyrus (SMG/AG), the IPS, the inferior frontal gyrus, and the dorsolateral prefrontal cortex. Also, emergent left hemisphere SMG/AG activation, not predicted based on the unisensory stimulus conditions was observed at approximately 160 to 220 msec. The STS was neither the earliest nor most prominent activation site, although it is frequently considered the sine qua non of audiovisual speech integration. As discussed here, the relatively late activity of the SMG/AG solely under audiovisual conditions is a possible candidate audiovisual speech integration response. PMID:17920933

  4. Spatiotemporal modeling of ozone levels in Quebec (Canada): a comparison of kriging, land-use regression (LUR), and combined Bayesian maximum entropy-LUR approaches.

    PubMed

    Adam-Poupart, Ariane; Brand, Allan; Fournier, Michel; Jerrett, Michael; Smargiassi, Audrey

    2014-09-01

    Ambient air ozone (O3) is a pulmonary irritant that has been associated with respiratory health effects including increased lung inflammation and permeability, airway hyperreactivity, respiratory symptoms, and decreased lung function. Estimation of O3 exposure is a complex task because the pollutant exhibits complex spatiotemporal patterns. To refine the quality of exposure estimation, various spatiotemporal methods have been developed worldwide. We sought to compare the accuracy of three spatiotemporal models to predict summer ground-level O3 in Quebec, Canada. We developed a land-use mixed-effects regression (LUR) model based on readily available data (air quality and meteorological monitoring data, road networks information, latitude), a Bayesian maximum entropy (BME) model incorporating both O3 monitoring station data and the land-use mixed model outputs (BME-LUR), and a kriging method model based only on available O3 monitoring station data (BME kriging). We performed leave-one-station-out cross-validation and visually assessed the predictive capability of each model by examining the mean temporal and spatial distributions of the average estimated errors. The BME-LUR was the best predictive model (R2 = 0.653) with the lowest root mean-square error (RMSE ;7.06 ppb), followed by the LUR model (R2 = 0.466, RMSE = 8.747) and the BME kriging model (R2 = 0.414, RMSE = 9.164). Our findings suggest that errors of estimation in the interpolation of O3 concentrations with BME can be greatly reduced by incorporating outputs from a LUR model developed with readily available data.

  5. Occurrence, spatiotemporal distribution, and ecological risks of steroids in a large shallow Chinese lake, Lake Taihu.

    PubMed

    Zhou, Li-Jun; Zhang, Bei-Bei; Zhao, Yong-Gang; Wu, Qinglong L

    2016-07-01

    Steroids have been frequently detected in surface waters, and might pose adverse effects on aquatic organisms. However, little information is available regarding the occurrence and spatiotemporal distribution of steroids in lake environments. In addition to pollution sources, the occurrence and spatiotemporal distribution of steroids in lake environments might be related to lake types (shallow or deep), lake hydrodynamics, and sorption-desorption processes in the water-sediment systems. In this study, the occurrence, spatiotemporal distribution, and ecological risks of 36 steroids in a large shallow lake were evaluated by investigating surface water and sediment samples at 32 sites in Lake Taihu over two seasons. Twelve and 15 analytes were detected in aqueous and sedimentary phases, respectively, with total concentrations ranging from 0.86 to 116ng/L (water) and from 0.82 to 16.2ng/g (sediment, dry weight). Temporal variations of steroid concentrations in the water and sediments were statistically significant, with higher concentrations in winter. High concentrations of steroids were found in the seriously polluted bays rather than in the pelagic zone of the lake. Strong lake currents might mix pelagic waters, resulting in similar concentrations of steroids in the pelagic zone. Mass balance analysis showed that sediments in shallow lakes are in general an important sink for steroids. Steroids in the surface water and sediments of Lake Taihu might pose potential risks to aquatic organisms. Overall, our study indicated that the concentrations and spatiotemporal distribution of steroids in the large shallow lake are influenced simultaneously by pollution sources and lake hydrodynamics. Steroids in the large shallow Lake Taihu showed clear temporal and spatial variations and lake sediments may be a potential sink of steroids. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Spatiotemporal patterns in reaction-diffusion system and in a vibrated granular bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swinney, H.L.; Lee, K.J.; McCormick, W.D.

    Experiments on a quasi-two-dimensional reaction-diffusion system reveal transitions from a uniform state to stationary hexagonal, striped, and rhombic spatial patterns. For other reactor conditions lamellae and self-replicating spot patterns are observed. These patterns form in continuously fed thin gel reactors that can be maintained indefinitely in well-defined nonequilibrium states. Reaction-diffusion models with two chemical species yield patterns similar to those observed in the experiments. Pattern formation is also being examined in vertically oscillated thin granular layers (typically 3-30 particle diameters deep). For small acceleration amplitudes, a granular layer is flat, but above a well-defined critical acceleration amplitude, spatial patterns spontaneouslymore » form. Disordered time-dependent granular patterns are observed as well as regular patterns of squares, stripes, and hexagons. A one-dimensional model consisting of a completely inelastic ball colliding with a sinusoidally oscillating platform provides a semi-quantitative description of most of the observed bifurcations between the different spatiotemporal regimes.« less

  7. Modelling Terrestrial and Marine Foraging Habitats in Breeding Audouin's Gulls Larus audouinii: Timing Matters

    PubMed Central

    Bécares, Juan; García-Tarrasón, Manuel; Villero, Dani; Bateman, Santiago; Jover, Lluís; García-Matarranz, Víctor; Sanpera, Carolina; Arcos, José Manuel

    2015-01-01

    Although the breeding ecology of Audouin’s gull has been widely studied, its spatial distribution patterns have received little attention. We assessed the foraging movements of 36 GPS-tracked adult Audouin’s gulls breeding at the Ebro Delta (NW Mediterranean), coinciding with the incubation period (May 2011). This also coincided with a trawling moratorium northwards from the colony. We modelled the distribution of the gulls by combining these tracking data with environmental variables (including fishing activities from Vessel Monitoring System, VMS), using Maxent. The modelling range included both marine and terrestrial areas. Models were produced separately for every 2h time interval across the day, and for 2 fishing activity scenarios (workdays vs. weekends), allowing to assess the spatio-temporal distribution patterns of the gulls and the degree of association with fisheries. During workdays, gull distribution at sea fully matched with fishing activities, both trawling (daylight) and purse-seining (nightime). Gulls tended to avoid the area under trawling moratorium, confirming the high influence of fisheries on the distribution patterns of this species. On weekends, gulls made lesser use of the sea and tended to increase the use of rice fields. Overall, Audouin’s gull activity was more intense during dailight hours, although birds also showed nocturnal activity, on both workdays and weekends. Nocturnal patterns at sea were more disperse during the latter, probably because these gulls are able to capture small pelagic fish at night in natural conditions, but tend to congregate around purse-seiners (which would enhance their foraging efficiency) in workdays. These results provide important insight for the management of this species. This is of particular relevance under the current scenario of European fisheries policies, since new regulations are aimed at eliminating discards, and this would likely influence Audouin’s gull populations. PMID:25875597

  8. DataFed: A Federated Data System for Visualization and Analysis of Spatio-Temporal Air Quality Data

    NASA Astrophysics Data System (ADS)

    Husar, R. B.; Hoijarvi, K.

    2017-12-01

    DataFed is a distributed web-services-based computing environment for accessing, processing, and visualizing atmospheric data in support of air quality science and management. The flexible, adaptive environment facilitates the access and flow of atmospheric data from provider to users by enabling the creation of user-driven data processing/visualization applications. DataFed `wrapper' components, non-intrusively wrap heterogeneous, distributed datasets for access by standards-based GIS web services. The mediator components (also web services) map the heterogeneous data into a spatio-temporal data model. Chained web services provide homogeneous data views (e.g., geospatial, time views) using a global multi-dimensional data model. In addition to data access and rendering, the data processing component services can be programmed for filtering, aggregation, and fusion of multidimensional data. A complete application software is written in a custom made data flow language. Currently, the federated data pool consists of over 50 datasets originating from globally distributed data providers delivering surface-based air quality measurements, satellite observations, emissions data as well as regional and global-scale air quality models. The web browser-based user interface allows point and click navigation and browsing the XYZT multi-dimensional data space. The key applications of DataFed are for exploring spatial pattern of pollutants, seasonal, weekly, diurnal cycles and frequency distributions for exploratory air quality research. Since 2008, DataFed has been used to support EPA in the implementation of the Exceptional Event Rule. The data system is also used at universities in the US, Europe and Asia.

  9. Techniques for spatio-temporal analysis of vegetation fires in the topical belt of Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brivio, P.A.; Ober, G.; Koffi, B.

    1995-12-31

    Biomass burning of forests and savannas is a phenomenon of continental or even global proportions, capable of causing large scale environmental changes. Satellite space observations, in particular from NOAA-AVHRR GAC data, are the only source of information allowing one to document burning patterns at regional and continental scale and over long periods of time. This paper presents some techniques, such as clustering and rose-diagram, useful in the spatial-temporal analysis of satellite derived fires maps to characterize the evolution of spatial patterns of vegetation fires at regional scale. An automatic clustering approach is presented which enables one to describe and parameterizemore » spatial distribution of fire patterns at different scales. The problem of geographical distribution of vegetation fires with respect to some location of interest, point or line, is also considered and presented. In particular rose-diagrams are used to relate fires patterns to some reference point, as experimental sites of tropospheric chemistry measurements. Different temporal data-sets in the tropical belt of Africa, covering both Northern and Southern Hemisphere dry seasons, using these techniques were analyzed and showed very promising results when compared with data from rain chemistry studies at different sampling sites in the equatorial forest.« less

  10. Role of social interactions in dynamic patterns of resource patches and forager aggregation.

    PubMed

    Tania, Nessy; Vanderlei, Ben; Heath, Joel P; Edelstein-Keshet, Leah

    2012-07-10

    The dynamics of resource patches and species that exploit such patches are of interest to ecologists, conservation biologists, modelers, and mathematicians. Here we consider how social interactions can create unique, evolving patterns in space and time. Whereas simple prey taxis (with consumable prey) promotes spatial uniform distributions, here we show that taxis in producer-scrounger groups can lead to pattern formation. We consider two types of foragers: those that search directly ("producers") and those that exploit other foragers to find food ("scroungers" or exploiters). We show that such groups can sustain fluctuating spatiotemporal patterns, akin to "waves of pursuit." Investigating the relative benefits to the individuals, we observed conditions under which either strategy leads to enhanced success, defined as net food consumption. Foragers that search for food directly have an advantage when food patches are localized. Those that seek aggregations of group mates do better when their ability to track group mates exceeds the foragers' food-sensing acuity. When behavioral switching or reproductive success of the strategies is included, the relative abundance of foragers and exploiters is dynamic over time, in contrast with classic models that predict stable frequencies. Our work shows the importance of considering two-way interaction--i.e., how food distribution both influences and is influenced by social foraging and aggregation of predators.

  11. A Million-Plus Neuron Model of the Hippocampal Dentate Gyrus: Critical Role for Topography in Determining Spatiotemporal Network Dynamics.

    PubMed

    Hendrickson, Phillip J; Yu, Gene J; Song, Dong; Berger, Theodore W

    2016-01-01

    This paper describes a million-plus granule cell compartmental model of the rat hippocampal dentate gyrus, including excitatory, perforant path input from the entorhinal cortex, and feedforward and feedback inhibitory input from dentate interneurons. The model includes experimentally determined morphological and biophysical properties of granule cells, together with glutamatergic AMPA-like EPSP and GABAergic GABAA-like IPSP synaptic excitatory and inhibitory inputs, respectively. Each granule cell was composed of approximately 200 compartments having passive and active conductances distributed throughout the somatic and dendritic regions. Modeling excitatory input from the entorhinal cortex was guided by axonal transport studies documenting the topographical organization of projections from subregions of the medial and lateral entorhinal cortex, plus other important details of the distribution of glutamatergic inputs to the dentate gyrus. Information contained within previously published maps of this major hippocampal afferent were systematically converted to scales that allowed the topographical distribution and relative synaptic densities of perforant path inputs to be quantitatively estimated for inclusion in the current model. Results showed that when medial and lateral entorhinal cortical neurons maintained Poisson random firing, dentate granule cells expressed, throughout the million-cell network, a robust nonrandom pattern of spiking best described as a spatiotemporal "clustering." To identify the network property or properties responsible for generating such firing "clusters," we progressively eliminated from the model key mechanisms, such as feedforward and feedback inhibition, intrinsic membrane properties underlying rhythmic burst firing, and/or topographical organization of entorhinal afferents. Findings conclusively identified topographical organization of inputs as the key element responsible for generating a spatiotemporal distribution of clustered firing. These results uncover a functional organization of perforant path afferents to the dentate gyrus not previously recognized: topography-dependent clusters of granule cell activity as "functional units" or "channels" that organize the processing of entorhinal signals. This modeling study also reveals for the first time how a global signal processing feature of a neural network can evolve from one of its underlying structural characteristics.

  12. A Million-Plus Neuron Model of the Hippocampal Dentate Gyrus: Critical Role for Topography in Determining Spatio-Temporal Network Dynamics

    PubMed Central

    Hendrickson, Phillip J.; Yu, Gene J.; Song, Dong; Berger, Theodore W.

    2016-01-01

    Goal This manuscript describes a million-plus granule cell compartmental model of the rat hippocampal dentate gyrus, including excitatory, perforant path input from the entorhinal cortex, and feedforward and feedback inhibitory input from dentate interneurons. Methods The model includes experimentally determined morphological and biophysical properties of granule cells, together with glutamatergic AMPA-like EPSP and GABAergic GABAA-like IPSP synaptic excitatory and inhibitory inputs, respectively. Each granule cell was composed of approximately 200 compartments having passive and active conductances distributed throughout the somatic and dendritic regions. Modeling excitatory input from the entorhinal cortex was guided by axonal transport studies documenting the topographical organization of projections from subregions of the medial and lateral entorhinal cortex, plus other important details of the distribution of glutamatergic inputs to the dentate gyrus. Information contained within previously published maps of this major hippocampal afferent were systematically converted to scales that allowed the topographical distribution and relative synaptic densities of perforant path inputs to be quantitatively estimated for inclusion in the current model. Results Results showed that when medial and lateral entorhinal cortical neurons maintained Poisson random firing, dentate granule cells expressed, throughout the million-cell network, a robust, non-random pattern of spiking best described as spatio-temporal “clustering”. To identify the network property or properties responsible for generating such firing “clusters”, we progressively eliminated from the model key mechanisms such as feedforward and feedback inhibition, intrinsic membrane properties underlying rhythmic burst firing, and/or topographical organization of entorhinal afferents. Conclusion Findings conclusively identified topographical organization of inputs as the key element responsible for generating a spatio-temporal distribution of clustered firing. These results uncover a functional organization of perforant path afferents to the dentate gyrus not previously recognized: topography-dependent clusters of granule cell activity as “functional units” or “channels” that organize the processing of entorhinal signals. This modeling study also reveals for the first time how a global signal processing feature of a neural network can evolve from one of its underlying structural characteristics. PMID:26087482

  13. Investigation of the 3D temperature distribution patterns above the Antarctic Peninsula using remote sensing data - A contribution for polar climate monitoring

    NASA Astrophysics Data System (ADS)

    Wachter, Paul; Höppner, Kathrin; Jacobeit, Jucundus; Diedrich, Erhard

    2015-04-01

    West Antarctica and the Antarctic Peninsula are in the focus of current studies on a changing environment and climate of the polar regions. A recently founded Junior Researchers Group at the German Aerospace Center (DLR) is studying changing processes in cryosphere and atmosphere above the Antarctic Peninsula. It is the aim of the group to make use of long-term remote sensing data sets of the land and ice surfaces and the atmosphere in order to characterize environmental changes in this highly sensitive region. One of the PhD projects focuses on the investigation of the 3D temperature distribution patterns above the Antarctic Peninsula. Temperature data sets ranging from MODIS land surface temperatures up to middle atmosphere data of AURA/MLS will be evaluated over the last approx. 12 years. This 3-dimensional view allows comprehensive investigations of the thermal structure and spatio-temporal characteristics of the southern polar atmosphere. Tropospheric data sets will be analyzed by multivariate statistical methods and will allow the identification of dominant atmospheric circulation patterns as well as their temporal variability. An overview of the data sets and first results will be presented.

  14. Holocene forest dynamics in central and western Mediterranean: periodicity, spatio-temporal patterns and climate influence.

    PubMed

    Di Rita, Federico; Fletcher, William J; Aranbarri, Josu; Margaritelli, Giulia; Lirer, Fabrizio; Magri, Donatella

    2018-06-12

    It is well-known that the Holocene exhibits a millennial-scale climate variability. However, its periodicity, spatio-temporal patterns and underlying processes are not fully deciphered yet. Here we focus on the central and western Mediterranean. We show that recurrent forest declines from the Gulf of Gaeta (central Tyrrhenian Sea) reveal a 1860-yr periodicity, consistent with a ca. 1800-yr climate fluctuation induced by large-scale changes in climate modes, linked to solar activity and/or AMOC intensity. We show that recurrent forest declines and dry events are also recorded in several pollen and palaeohydrological proxy-records in the south-central Mediterranean. We found coeval events also in several palaeohydrological records from the south-western Mediterranean, which however show generally wet climate conditions, indicating a spatio-temporal hydrological pattern opposite to the south-central Mediterranean and suggesting that different expressions of climate modes occurred in the two regions at the same time. We propose that these opposite hydroclimate regimes point to a complex interplay of the prevailing or predominant phases of NAO-like circulation, East Atlantic pattern, and extension and location of the North African anticyclone. At a larger geographical scale, displacements of the ITCZ, modulated by solar activity and/or AMOC intensity, may have also indirectly influenced the observed pattern.

  15. Super-resolution three-dimensional fluorescence and optical diffraction tomography of live cells using structured illumination generated by a digital micromirror device.

    PubMed

    Shin, Seungwoo; Kim, Doyeon; Kim, Kyoohyun; Park, YongKeun

    2018-06-15

    We present a multimodal approach for measuring the three-dimensional (3D) refractive index (RI) and fluorescence distributions of live cells by combining optical diffraction tomography (ODT) and 3D structured illumination microscopy (SIM). A digital micromirror device is utilized to generate structured illumination patterns for both ODT and SIM, which enables fast and stable measurements. To verify its feasibility and applicability, the proposed method is used to measure the 3D RI distribution and 3D fluorescence image of various samples, including a cluster of fluorescent beads, and the time-lapse 3D RI dynamics of fluorescent beads inside a HeLa cell, from which the trajectory of the beads in the HeLa cell is analyzed using spatiotemporal correlations.

  16. Change of strategy is required for malaria elimination: a case study in Purworejo District, Central Java Province, Indonesia.

    PubMed

    Murhandarwati, E Elsa Herdiana; Fuad, Anis; Sulistyawati; Wijayanti, Mahardika Agus; Bia, Michael Badi; Widartono, Barandi Sapta; Kuswantoro; Lobo, Neil F; Supargiyono; Hawley, William A

    2015-08-16

    Malaria has been targeted for elimination from Indonesia by 2030, with varying timelines for specific geographical areas based on disease endemicity. The regional deadline for malaria elimination for Java island, given the steady decrease of malaria cases, was the end of 2015. Purworejo District, a malaria-endemic area in Java with an annual parasite incidence (API) of 0.05 per 1,000 population in 2009, aims to enter this elimination stage. This study documents factors that affect incidence and spatial distribution of malaria in Purworejo, such as geomorphology, topography, health system issues, and identifies potential constraints and challenges to achieve the elimination stage, such as inter-districts coordination, decentralization policy and allocation of financial resources for the programme. Historical malaria data from 2007 to 2011 were collected through secondary data, in-depth interviews and focus group discussions during study year (2010-2011). Malaria cases were mapped using the village-centroid shape file to visualize its distribution with geomorphologic characteristics overlay and spatial distribution of malaria. API in each village in Purworejo and its surrounding districts from 2007 to 2011 was stratified into high, middle or low case incidence to show the spatiotemporal mapping pattern. The spatiotemporal pattern of malaria cases in Purworejo and the adjacent districts demonstrate repeated concentrated occurrences of malaria in specific areas from 2007 to 2011. District health system issues, i.e., suboptimal coordination between primary care and referral systems, suboptimal inter-district collaboration for malaria surveillance, decentralization policy and the lack of resources, especially district budget allocations for the malaria programme, were major constraints for programme sustainability. A new malaria elimination approach that fits the local disease transmission, intervention and political system is required. These changes include timely measurements of malaria transmission, revision of the decentralized government system and optimizing the use of the district capitation fund followed by an effective technical implementation of the intervention strategy.

  17. Quantitative and qualitative characterization of zigzag spatiotemporal chaos in a system of amplitude equations for nematic electroconvection.

    PubMed

    Oprea, Iuliana; Triandaf, Ioana; Dangelmayr, Gerhard; Schwartz, Ira B

    2007-06-01

    It has been suggested by experimentalists that a weakly nonlinear analysis of the recently introduced equations of motion for the nematic electroconvection by M. Treiber and L. Kramer [Phys. Rev. E 58, 1973 (1998)] has the potential to reproduce the dynamics of the zigzag-type extended spatiotemporal chaos and localized solutions observed near onset in experiments [M. Dennin, D. S. Cannell, and G. Ahlers, Phys. Rev. E 57, 638 (1998); J. T. Gleeson (private communication)]. In this paper, we study a complex spatiotemporal pattern, identified as spatiotemporal chaos, that bifurcates at the onset from a spatially uniform solution of a system of globally coupled complex Ginzburg-Landau equations governing the weakly nonlinear evolution of four traveling wave envelopes. The Ginzburg-Landau system can be derived directly from the weak electrolyte model for electroconvection in nematic liquid crystals when the primary instability is a Hopf bifurcation to oblique traveling rolls. The chaotic nature of the pattern and the resemblance to the observed experimental spatiotemporal chaos in the electroconvection of nematic liquid crystals are confirmed through a combination of techniques including the Karhunen-Loeve decomposition, time-series analysis of the amplitudes of the dominant modes, statistical descriptions, and normal form theory, showing good agreement between theory and experiments.

  18. Understanding Spatiotemporal Patterns of Biking Behavior by Analyzing Massive Bike Sharing Data in Chicago

    PubMed Central

    Zhou, Xiaolu

    2015-01-01

    The growing number of bike sharing systems (BSS) in many cities largely facilitates biking for transportation and recreation. Most recent bike sharing systems produce time and location specific data, which enables the study of travel behavior and mobility of each individual. However, despite a rapid growth of interest, studies on massive bike sharing data and the underneath travel pattern are still limited. Few studies have explored and visualized spatiotemporal patterns of bike sharing behavior using flow clustering, nor examined the station functional profiles based on over-demand patterns. This study investigated the spatiotemporal biking pattern in Chicago by analyzing massive BSS data from July to December in 2013 and 2014. The BSS in Chicago gained more popularity. About 15.9% more people subscribed to this service. Specifically, we constructed bike flow similarity graph and used fastgreedy algorithm to detect spatial communities of biking flows. By using the proposed methods, we discovered unique travel patterns on weekdays and weekends as well as different travel trends for customers and subscribers from the noisy massive amount data. In addition, we also examined the temporal demands for bikes and docks using hierarchical clustering method. Results demonstrated the modeled over-demand patterns in Chicago. This study contributes to offer better knowledge of biking flow patterns, which was difficult to obtain using traditional methods. Given the trend of increasing popularity of the BSS and data openness in different cities, methods used in this study can extend to examine the biking patterns and BSS functionality in different cities. PMID:26445357

  19. Understanding Spatiotemporal Patterns of Biking Behavior by Analyzing Massive Bike Sharing Data in Chicago.

    PubMed

    Zhou, Xiaolu

    2015-01-01

    The growing number of bike sharing systems (BSS) in many cities largely facilitates biking for transportation and recreation. Most recent bike sharing systems produce time and location specific data, which enables the study of travel behavior and mobility of each individual. However, despite a rapid growth of interest, studies on massive bike sharing data and the underneath travel pattern are still limited. Few studies have explored and visualized spatiotemporal patterns of bike sharing behavior using flow clustering, nor examined the station functional profiles based on over-demand patterns. This study investigated the spatiotemporal biking pattern in Chicago by analyzing massive BSS data from July to December in 2013 and 2014. The BSS in Chicago gained more popularity. About 15.9% more people subscribed to this service. Specifically, we constructed bike flow similarity graph and used fastgreedy algorithm to detect spatial communities of biking flows. By using the proposed methods, we discovered unique travel patterns on weekdays and weekends as well as different travel trends for customers and subscribers from the noisy massive amount data. In addition, we also examined the temporal demands for bikes and docks using hierarchical clustering method. Results demonstrated the modeled over-demand patterns in Chicago. This study contributes to offer better knowledge of biking flow patterns, which was difficult to obtain using traditional methods. Given the trend of increasing popularity of the BSS and data openness in different cities, methods used in this study can extend to examine the biking patterns and BSS functionality in different cities.

  20. Spatiotemporal database of US congressional elections, 1896–2014

    PubMed Central

    Wolf, Levi John

    2017-01-01

    High-quality historical data about US Congressional elections has long provided common ground for electoral studies. However, advances in geographic information science have recently made it efficient to compile, distribute, and analyze large spatio-temporal data sets on the structure of US Congressional districts. A single spatio-temporal data set that relates US Congressional election results to the spatial extent of the constituencies has not yet been developed. To address this, existing high-quality data sets of elections returns were combined with a spatiotemporal data set on Congressional district boundaries to generate a new spatio-temporal database of US Congressional election results that are explicitly linked to the geospatial data about the districts themselves. PMID:28809849

  1. An immunohistochemical study of APG-2 protein in the rat hippocampus after transient forebrain ischemia.

    PubMed

    Lee, Mun-Yong; Choi, Yun-Sik; Choi, Jeong-Sun; Min, Do Sik; Chun, Myung-Hoon; Kim, Ok Nyu; Lee, Sang Bok; Kim, Seong Yun

    2002-01-11

    The cellular localization and spatiotemporal expression pattern of APG-2 protein, a member of the heat shock protein 110 family, were investigated in the rat hippocampus after transient forebrain ischemia. The spatiotemporal patterns of immunoreactivity of both APG-2 and glial fibrillary acidic protein were very similar, indicating that reactive astrocytes express APG-2, which was confirmed by double immunofluorescence histochemistry. Colocalization of APG-2 and a neuronal marker NeuN in the neurons of the CA2 and CA3 subfields was also confirmed.

  2. DynaPop-X: A population dynamics model applied to spatio-temporal exposure assessment - Implementation aspects from the CRISMA project

    NASA Astrophysics Data System (ADS)

    Aubrecht, Christoph; Steinnocher, Klaus; Humer, Heinrich; Huber, Hermann

    2014-05-01

    In the context of proactive disaster risk as well as immediate situational crisis management knowledge of locational social aspects in terms of spatio-temporal population distribution dynamics is considered among the most important factors for disaster impact minimization (Aubrecht et al., 2013a). This applies to both the pre-event stage for designing appropriate preparedness measures and to acute crisis situations when an event chain actually unfolds for efficient situation-aware response. The presented DynaPop population dynamics model is developed at the interface of those interlinked crisis stages and aims at providing basic input for social impact evaluation and decision support in crisis management. The model provides the starting point for assessing population exposure dynamics - thus here labeled as DynaPop-X - which can either be applied in a sense of illustrating the changing locations and numbers of affected people at different stages during an event or as ex-ante estimations of probable and maximum expected clusters of affected population (Aubrecht et al., 2013b; Freire & Aubrecht, 2012). DynaPop is implemented via a gridded spatial disaggregation approach and integrates previous efforts on spatio-temporal modeling that account for various aspects of population dynamics such as human mobility and activity patterns that are particularly relevant in picturing the highly dynamic daytime situation (Ahola et al., 2007; Bhaduri, 2008; Cockings et al., 2010). We will present ongoing developments particularly focusing on the implementation logic of the model using the emikat software tool, a data management system initially designed for inventorying and analysis of spatially resolved regional air pollutant emission scenarios. This study was performed in the framework of the EU CRISMA project. CRISMA is funded from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement no. 284552. REFERENCES Ahola, T., Virrantaus, K., Krisp, J.K., Hunter, G.J. (2007) A spatio-temporal population model to support risk assessment and damage analysis for decision-making. International Journal of Geographical Information Science, 21(8), 935-953. Aubrecht, C., Fuchs, S., Neuhold, C. (2013a) Spatio-temporal aspects and dimensions in integrated disaster risk management. Natural Hazards, 68(3), 1205-1216. Aubrecht, C., Özceylan, D., Steinnocher, K., Freire, S. (2013b) Multi-level geospatial modeling of human exposure patterns and vulnerability indicators. Natural Hazards, 68(1), 147-163. Bhaduri, B. (2008) Population distribution during the day. In S. Shekhar & X. Hui, eds., Encyclopedia of GIS. Springer US, 880-885. Cockings, S., Martin, D. & Leung, S. (2010) Population 24/7: building space-time specific population surface models. In M. Haklay, J. Morley, & H. Rahemtulla, eds., Proceedings of the GIS Research UK 18th Annual conference. GISRUK 2010. London, UK, 41-47. Freire, S., Aubrecht, C. (2012) Integrating population dynamics into mapping human exposure to seismic hazard. Natural Hazards and Earth System Sciences, 12(11), 3533-3543.

  3. High Resolution Spatiotemporal Climate Reconstruction and Variability in East Asia during Little Ice Age

    NASA Astrophysics Data System (ADS)

    Lin, K. H. E.; Wang, P. K.; Lee, S. Y.; Liao, Y. C.; Fan, I. C.; Liao, H. M.

    2017-12-01

    The Little ice Age (LIA) is one of the most prominent epochs in paleoclimate reconstruction of the Common Era. While the signals of LIA were generally discovered across hemispheres, wide arrays of regional variability were found, and the reconstructed anomalies were sometimes inconsistent across studies by using various proxy data or historical records. This inconsistency is mainly attributed to limited data coverage at fine resolution that can assist high-resolution climate reconstruction in the continuous spatiotemporal trends. Qing dynasty (1644-1911 CE) of China existed in the coldest period of LIA. Owing to a long-standing tradition that acquired local officials to record odds and social or meteorological events, thousands of local chronicles were left. Zhang eds. (2004) took two decades to compile all these meteorological records in a compendium, for which we then digitized and coded all records into our REACHS database system for reconstructing climate. There were in total 1,435 points (sites) in our database for over 80,000 events in the period of time. After implementing two-rounds coding check for data quality control (accuracy rate 87.2%), multiple indexes were retrieved for reconstructing annually and seasonally resolved temperature and precipitation series for North, Central, and South China. The reconstruction methods include frequency count and grading, with usage of multiple regression models to test sensitivity and to calculate correlations among several reconstructed series. Validation was also conducted through comparison with instrumental data and with other reconstructed series in previous studies. Major research results reveal interannual (3-5 years), decadal (8-12 years), and interdecadal (≈30 years) variabilities with strong regional expressions across East China. Cooling effect was not homogenously distributed in space and time. Flood and drought conditions frequently repeated but the spatiotemporal pattern was variant, indicating likely different climate regimes that can be linked to the dynamism of large atmospheric circulation and East Asian monsoon. Spatiotemporal analysis of extreme events such as typhoons and extreme droughts also indicated similar patterns. More detailed analysis are undertaken to explain the physical mechanisms that can drive these changes.

  4. Spatio-Temporal Patterning in Primary Motor Cortex at Movement Onset.

    PubMed

    Best, Matthew D; Suminski, Aaron J; Takahashi, Kazutaka; Brown, Kevin A; Hatsopoulos, Nicholas G

    2017-02-01

    Voluntary movement initiation involves the engagement of large populations of motor cortical neurons around movement onset. Despite knowledge of the temporal dynamics that lead to movement, the spatial structure of these dynamics across the cortical surface remains unknown. In data from 4 rhesus macaques, we show that the timing of attenuation of beta frequency local field potential oscillations, a correlate of locally activated cortex, forms a spatial gradient across primary motor cortex (MI). We show that these spatio-temporal dynamics are recapitulated in the engagement order of ensembles of MI neurons. We demonstrate that these patterns are unique to movement onset and suggest that movement initiation requires a precise spatio-temporal sequential activation of neurons in MI. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Spatiotemporal electrochemical measurements across an electric double layer capacitor electrode with application to aqueous sodium hybrid batteries

    NASA Astrophysics Data System (ADS)

    Tully, Katherine C.; Whitacre, Jay F.; Litster, Shawn

    2014-02-01

    This paper presents in-situ spatiotemporal measurements of the electrolyte phase potential within an electric double layer capacitor (EDLC) negative electrode as envisaged for use in an aqueous hybrid battery for grid-scale energy storage. The ultra-thick electrodes used in these batteries to reduce non-functional material costs require sufficiently fast through-plane mass and charge transport to attain suitable charging and discharging rates. To better evaluate the through-plane transport, we have developed an electrode scaffold (ES) for making in situ electrolyte potential distribution measurements at discrete known distances across the thickness of an uninterrupted EDLC negative electrode. Using finite difference methods, we calculate local current, volumetric charging current and charge storage distributions from the spatiotemporal electrolyte potential measurements. These potential distributions provide insight into complex phenomena that cannot be directly observed using other existing methods. Herein, we use the distributions to identify areas of the electrode that are underutilized, assess the effects of various parameters on the cumulative charge storage distribution, and evaluate an effectiveness factor for charge storage in EDLC electrodes.

  6. Phytoplankton community in lake Ebony, Pantai Indah Kapuk, North Jakarta

    NASA Astrophysics Data System (ADS)

    Pratiwi, NTM; Ayu, IP; Hariyadi, S.; Mulyawati, D.; Iswantari, A.

    2018-05-01

    Lake Ebony is an ornamental lake in coastal area of North Jakarta, located at 6°6’18”S- 6°6’35”S and 106°44’39’Έ-106°44’56’Έ. Phytoplankton community in Lake Ebony lives in high organic materials received from domestic waste. A spatio-temporal observation at five sites was carried out to understand the spatial distribution of phytoplankton at each group of time of observation and the succession of phytoplankton. Spatial analysis was carried out to map the distribution pattern of plankton,using ArcGIS 10.1 with IDW (Inverse Distance Weighted) interpolation method. Spatial clustering was determined by Canberra Index. The succession of phytoplankton was shown by graph of Frontier succession models, SDI (rate of succession), and SIMI. There were two clustered groups of site. Based on graph of Frontier succession, phytoplankton in Lake Ebony was at Stage 2 and 3 with the rate of succession ranged from 0.008 to 0.003, and value of SIMI ranged from 0.68 to 0.97. There was different spatial distribution pattern of phytoplankton in three groups of observation time, with low rate of succession.

  7. "Core Knowledges": A Dissociation between Spatiotemporal Knowledge and Contact-Mechanics in a Non-Human Primate?

    ERIC Educational Resources Information Center

    Santos, Laurie R.

    2004-01-01

    Human toddlers demonstrate striking failures when searching for hidden objects that interact with other objects, yet successfully locate hidden objects that do not undergo mechanical interactions. This pattern hints at a developmental dissociation between contact-mechanical and spatiotemporal knowledge. Recent studies suggest that adult non-human…

  8. Eco-virological approach for assessing the role of wild birds in the spread of avian influenza H5N1 along the Central Asian Flyway.

    PubMed

    Newman, Scott H; Hill, Nichola J; Spragens, Kyle A; Janies, Daniel; Voronkin, Igor O; Prosser, Diann J; Yan, Baoping; Lei, Fumin; Batbayar, Nyambayar; Natsagdorj, Tseveenmyadag; Bishop, Charles M; Butler, Patrick J; Wikelski, Martin; Balachandran, Sivananinthaperumal; Mundkur, Taej; Douglas, David C; Takekawa, John Y

    2012-01-01

    A unique pattern of highly pathogenic avian influenza (HPAI) H5N1 outbreaks has emerged along the Central Asia Flyway, where infection of wild birds has been reported with steady frequency since 2005. We assessed the potential for two hosts of HPAI H5N1, the bar-headed goose (Anser indicus) and ruddy shelduck (Tadorna tadorna), to act as agents for virus dispersal along this 'thoroughfare'. We used an eco-virological approach to compare the migration of 141 birds marked with GPS satellite transmitters during 2005-2010 with: 1) the spatio-temporal patterns of poultry and wild bird outbreaks of HPAI H5N1, and 2) the trajectory of the virus in the outbreak region based on phylogeographic mapping. We found that biweekly utilization distributions (UDs) for 19.2% of bar-headed geese and 46.2% of ruddy shelduck were significantly associated with outbreaks. Ruddy shelduck showed highest correlation with poultry outbreaks owing to their wintering distribution in South Asia, where there is considerable opportunity for HPAI H5N1 spillover from poultry. Both species showed correlation with wild bird outbreaks during the spring migration, suggesting they may be involved in the northward movement of the virus. However, phylogeographic mapping of HPAI H5N1 clades 2.2 and 2.3 did not support dissemination of the virus in a northern direction along the migration corridor. In particular, two subclades (2.2.1 and 2.3.2) moved in a strictly southern direction in contrast to our spatio-temporal analysis of bird migration. Our attempt to reconcile the disciplines of wild bird ecology and HPAI H5N1 virology highlights prospects offered by both approaches as well as their limitations.

  9. Spatiotemporal Pattern of Bacillary Dysentery in China from 1990 to 2009: What Is the Driver Behind?

    PubMed Central

    Wang, Xiaofeng; Tong, Shilu; Zhou, Maigeng

    2014-01-01

    Background Little is known about the spatiotemporal pattern of bacillary dysentery (BD) in China. This study assessed the geographic distribution and seasonality of BD in China over the past two decades. Methods Data on monthly BD cases in 31 provinces of China from January 1990 to December 2009 obtained from Chinese Center for Disease Control and Prevention, and data on demographic and geographic factors, as well as climatic factors, were compiled. The spatial distributions of BD in the four periods across different provinces were mapped, and heat maps were created to present the seasonality of BD by geography. A cosinor function combined with Poisson regression was used to quantify the seasonal parameters of BD, and a regression analysis was conducted to identify the potential drivers of morbidity and seasonality of BD. Results Although most regions of China have experienced considerable declines in BD morbidity over the past two decades, Beijing and Ningxia still had high BD morbidity in 2009. BD morbidity decreased more slowly in North-west China than other regions. BD in China mainly peaked from July to September, with heterogeneity in peak time between regions. Relative humidity was associated with BD morbidity and peak time, and latitude was the major predictor of BD amplitude. Conclusions The transmission of BD was heterogeneous in China. Improved sanitation and hygiene in North-west China, and better access to clean water and food in the big floating population in some metropolises could be the focus of future preventive interventions against BD. BD control efforts should put more emphasis on those dry areas in summer. PMID:25093593

  10. Spatial comparability of drought characteristics and related return periods in mainland China over 1961-2013

    NASA Astrophysics Data System (ADS)

    Ayantobo, Olusola O.; Li, Yi; Song, Songbai; Yao, Ning

    2017-07-01

    The proper understanding of the spatiotemporal characteristics of multi-year droughts and return periods is important for drought risk assessment. This study evaluated and compared the spatiotemporal variations of drought characteristics and return periods within mainland China between 1961 and 2013. Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI) and Composite Index (CI) were calculated at multiple timescales, the run theory was used for objective identification and characterization of drought events while Kendall's τ method was used to analyze their dependencies. Within the univariate framework, marginal distributions of duration, severity, and peak were derived by fitting Exponential, Weibull and GDP distributions respectively and the drought return periods was investigated and mapped. Comparison of drought indices showed that SPEI and CI performed better than SPI in delineating spatial patterns of drought characteristics. This might be attributed to the temperature effect on evapotranspiration and therefore on drought index. Considering the increasing trend in reference evapotranspiration in the 21st century, the importance of utilizing temperature-based drought index is imperative. Severe and extreme droughts occurred in the late 1990s in many places in China while persistent multi-year severe droughts occurred more frequently over North China, Northeast China, Northwest China and Southwest China. The spatial patterns showed that regions characterized by higher drought severity were associated with higher drought duration. The North China, Northwest China, and Southwest China had much longer drought durations during the 1990s and 2000s. As droughts normally cover large areas, regional drought return periods has been showed to be more effective in providing support for drought management than station based drought return periods. Studies on the spatial comparability of drought return periods across mainland China have therefore been undertaken for drought mitigation and effective utilization of water resources.

  11. Spatiotemporal changes in precipitation extremes over Yangtze River basin, China, considering the rainfall shift in the late 1970s

    NASA Astrophysics Data System (ADS)

    Gao, Tao; Xie, Lian

    2016-12-01

    Precipitation extremes are the dominated causes for the formation of severe flood disasters at regional and local scales under the background of global climate change. In the present study, five annual extreme precipitation events, including 1, 7 and 30 day annual maximum rainfall and 95th and 97.5th percentile threshold levels, are analyzed relating to the reference period 1960-2011 from 140 meteorological stations over Yangtze River basin (YRB). A generalized extreme value (GEV) distribution is applied to fit annual and percentile extreme precipitation events at each station with return periods up to 200 years. The entire time period is divided into preclimatic (preceding climatic) period 1960-1980 and aftclimatic (after climatic) period 1981-2011 by considering distinctly abrupt shift of precipitation regime in the late 1970s across YRB. And the Mann-Kendall trend test is adopted to conduct trend analysis during pre- and aftclimatic periods, respectively, for the purpose of exploring possible increasing/decreasing patterns in precipitation extremes. The results indicate that the increasing trends for return values during aftclimatic period change significantly in time and space in terms of different magnitudes of extreme precipitation, while the stations with significantly positive trends are mainly distributed in the vicinity of the mainstream and major tributaries as well as large lakes, this would result in more tremendous flood disasters in the mid-lower reaches of YRB, especially in southeast coastal regions. The increasing/decreasing linear trends based on annual maximum precipitation are also investigated in pre- and aftclimatic periods, respectively, whereas those changes are not significantly similar to the variations of return values during both subperiods. Moreover, spatiotemporal patterns of precipitation extremes become more uneven and unstable in the second half period over YRB.

  12. Multiple remote sensing data sources to assess spatio-temporal patterns of fire incidence over Campos Amazônicos Savanna Vegetation Enclave (Brazilian Amazon).

    PubMed

    Alves, Daniel Borini; Pérez-Cabello, Fernando

    2017-12-01

    Fire activity plays an important role in the past, present and future of Earth system behavior. Monitoring and assessing spatial and temporal fire dynamics have a fundamental relevance in the understanding of ecological processes and the human impacts on different landscapes and multiple spatial scales. This work analyzes the spatio-temporal distribution of burned areas in one of the biggest savanna vegetation enclaves in the southern Brazilian Amazon, from 2000 to 2016, deriving information from multiple remote sensing data sources (Landsat and MODIS surface reflectance, TRMM pluviometry and Vegetation Continuous Field tree cover layers). A fire scars database with 30 m spatial resolution was generated using a Landsat time series. MODIS daily surface reflectance was used for accurate dating of the fire scars. TRMM pluviometry data were analyzed to dynamically establish time limits of the yearly dry season and burning periods. Burned area extent, frequency and recurrence were quantified comparing the results annually/seasonally. Additionally, Vegetation Continuous Field tree cover layers were used to analyze fire incidence over different types of tree cover domains. In the last seventeen years, 1.03millionha were burned within the study area, distributed across 1432 fire occurrences, highlighting 2005, 2010 and 2014 as the most affected years. Middle dry season fires represent 86.21% of the total burned areas and 32.05% of fire occurrences, affecting larger amount of higher density tree surfaces than other burning periods. The results provide new insights into the analysis of burned areas of the neotropical savannas, spatially and statistically reinforcing important aspects linked to the seasonality patterns of fire incidence in this landscape. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Spatiotemporal evolution of the chlorophyll a trend in the North Atlantic Ocean.

    PubMed

    Zhang, Min; Zhang, Yuanling; Shu, Qi; Zhao, Chang; Wang, Gang; Wu, Zhaohua; Qiao, Fangli

    2018-01-15

    Analyses of the chlorophyll a concentration (chla) from satellite ocean color products have suggested the decadal-scale variability of chla linked to the climate change. The decadal-scale variability in chla is both spatially and temporally non-uniform. We need to understand the spatiotemporal evolution of chla in decadal or multi-decadal timescales to better evaluate its linkage to climate variability. Here, the spatiotemporal evolution of the chla trend in the North Atlantic Ocean for the period 1997-2016 is analyzed using the multidimensional ensemble empirical mode decomposition method. We find that this variable trend signal of chla shows a dipole pattern between the subpolar gyre and along the Gulf Stream path, and propagation along the opposite direction of the North Atlantic Current. This propagation signal has an overlapping variability of approximately twenty years. Our findings suggest that the spatiotemporal evolution of chla during the two most recent decades is part of the multidecadal variations and possibly regulated by the changes of Atlantic Meridional Overturning Circulation, whereas the mechanisms of such evolution patterns still need to be explored. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Mining patterns in persistent surveillance systems with smart query and visual analytics

    NASA Astrophysics Data System (ADS)

    Habibi, Mohammad S.; Shirkhodaie, Amir

    2013-05-01

    In Persistent Surveillance Systems (PSS) the ability to detect and characterize events geospatially help take pre-emptive steps to counter adversary's actions. Interactive Visual Analytic (VA) model offers this platform for pattern investigation and reasoning to comprehend and/or predict such occurrences. The need for identifying and offsetting these threats requires collecting information from diverse sources, which brings with it increasingly abstract data. These abstract semantic data have a degree of inherent uncertainty and imprecision, and require a method for their filtration before being processed further. In this paper, we have introduced an approach based on Vector Space Modeling (VSM) technique for classification of spatiotemporal sequential patterns of group activities. The feature vectors consist of an array of attributes extracted from generated sensors semantic annotated messages. To facilitate proper similarity matching and detection of time-varying spatiotemporal patterns, a Temporal-Dynamic Time Warping (DTW) method with Gaussian Mixture Model (GMM) for Expectation Maximization (EM) is introduced. DTW is intended for detection of event patterns from neighborhood-proximity semantic frames derived from established ontology. GMM with EM, on the other hand, is employed as a Bayesian probabilistic model to estimated probability of events associated with a detected spatiotemporal pattern. In this paper, we present a new visual analytic tool for testing and evaluation group activities detected under this control scheme. Experimental results demonstrate the effectiveness of proposed approach for discovery and matching of subsequences within sequentially generated patterns space of our experiments.

  15. Distributed Modeling Reveals the Ecohydrological Dynamics Linked with Woody Plant Encroachment in the Sonoran Desert

    NASA Astrophysics Data System (ADS)

    Pierini, N. A.; Vivoni, E. R.; Anderson, C.; Saripalli, S.; Robles-Morua, A.

    2012-12-01

    Woody plant encroachment is an important issue facing semiarid ecosystems in the southwestern United States that is associated with grazing pressures, fire suppression, and the invasion of shrub species into historical grasslands. In this study, we present observational and distributed modeling activities conducted in two small rangeland watersheds of the Santa Rita Experimental Range, Arizona. This Sonoran Desert landscape is representative of the vegetation shift from grasslands to a woody savanna due to the encroachment of velvet mesquite (Prosopis velutina). The paired basins are similar in size and in close proximity, leading to equivalent meteorological and soil conditions. Nevertheless, they vary substantially in mesquite cover, with one basin having undergone a removal treatment several decades ago, while the other watershed represents the regional encroachment process. This distinction presents an excellent case study for analyzing the effects of mesquite encroachment on dryland ecohydrological dynamics. Observational datasets are obtained from a high-resolution environmental sensor network consisting of six rain gauges, twenty-one soil moisture and temperature profiles, five channel runoff flumes and an eddy covariance tower with a complete set of radiation, energy, carbon and water fluxes. In addition, high-resolution digital terrain models and image orthomosaics were obtained from a piloted aircraft with Light Detection and Ranging (LiDAR) measurements and an Unmanned Aerial Vehicle (UAV) with a digital camera. These two remote sensing platforms allowed characterizing the topography, stream network and plant species distributions at a high resolution (<1 m) in both basins. Using the sensor network, we present comparative analyses of watershed rainfall-runoff transformation in the paired basins, illustrating the role that mesquite trees have in runoff generation at the two outlet flumes. We further explore the impact of mesquite trees on the soil moisture and temperature distributions through comparisons of canopy and intercanopy sites. The field and remote sensing observations are then used in simulations using the TIN-based Real-time Integrated Basin Simulator (tRIBS) at high spatiotemporal resolutions over the two study years (2011-2012). Numerical experiments are designed to reveal the influence of the mesquite encroachment patterns on the watershed dynamics. Through the spatiotemporal analysis of model outputs, we identify how and when mesquite trees affect the spatial patterns of energy and water fluxes and their linkage to runoff production. As a result, the distributed model application provides a more complete understanding of the impact of woody encroachment on watershed-scale hydrologic patterns.

  16. Spatio-temporal pattern analysis for evaluation of the spread of human infections with avian influenza A(H7N9) virus in China, 2013-2014.

    PubMed

    Dong, Wen; Yang, Kun; Xu, Quanli; Liu, Lin; Chen, Juan

    2017-10-24

    A large number (n = 460) of A(H7N9) human infections have been reported in China from March 2013 through December 2014, and H7N9 outbreaks in humans became an emerging issue for China health, which have caused numerous disease outbreaks in domestic poultry and wild bird populations, and threatened human health severely. The aims of this study were to investigate the directional trend of the epidemic and to identify the significant presence of spatial-temporal clustering of influenza A(H7N9) human cases between March 2013 and December 2014. Three distinct epidemic phases of A(H7N9) human infections were identified in this study. In each phase, standard deviational ellipse analysis was conducted to examine the directional trend of disease spreading, and retrospective space-time permutation scan statistic was then used to identify the spatio-temporal cluster patterns of H7N9 outbreaks in humans. The ever-changing location and the increasing size of the three identified standard deviational ellipses showed that the epidemic moved from east to southeast coast, and hence to some central regions, with a future epidemiological trend of continue dispersing to more central regions of China, and a few new human cases might also appear in parts of the western China. Furthermore, A(H7N9) human infections were clustering in space and time in the first two phases with five significant spatio-temporal clusters (p < 0.05), but there was no significant cluster identified in phase III. There was a new epidemiologic pattern that the decrease in significant spatio-temporal cluster of A(H7N9) human infections was accompanied with an obvious spatial expansion of the outbreaks during the study period, and identification of the spatio-temporal patterns of the epidemic can provide valuable insights for better understanding the spreading dynamics of the disease in China.

  17. Annotating spatio-temporal datasets for meaningful analysis in the Web

    NASA Astrophysics Data System (ADS)

    Stasch, Christoph; Pebesma, Edzer; Scheider, Simon

    2014-05-01

    More and more environmental datasets that vary in space and time are available in the Web. This comes along with an advantage of using the data for other purposes than originally foreseen, but also with the danger that users may apply inappropriate analysis procedures due to lack of important assumptions made during the data collection process. In order to guide towards a meaningful (statistical) analysis of spatio-temporal datasets available in the Web, we have developed a Higher-Order-Logic formalism that captures some relevant assumptions in our previous work [1]. It allows to proof on meaningful spatial prediction and aggregation in a semi-automated fashion. In this poster presentation, we will present a concept for annotating spatio-temporal datasets available in the Web with concepts defined in our formalism. Therefore, we have defined a subset of the formalism as a Web Ontology Language (OWL) pattern. It allows capturing the distinction between the different spatio-temporal variable types, i.e. point patterns, fields, lattices and trajectories, that in turn determine whether a particular dataset can be interpolated or aggregated in a meaningful way using a certain procedure. The actual annotations that link spatio-temporal datasets with the concepts in the ontology pattern are provided as Linked Data. In order to allow data producers to add the annotations to their datasets, we have implemented a Web portal that uses a triple store at the backend to store the annotations and to make them available in the Linked Data cloud. Furthermore, we have implemented functions in the statistical environment R to retrieve the RDF annotations and, based on these annotations, to support a stronger typing of spatio-temporal datatypes guiding towards a meaningful analysis in R. [1] Stasch, C., Scheider, S., Pebesma, E., Kuhn, W. (2014): "Meaningful spatial prediction and aggregation", Environmental Modelling & Software, 51, 149-165.

  18. Identifying food deserts and swamps based on relative healthy food access: a spatio-temporal Bayesian approach.

    PubMed

    Luan, Hui; Law, Jane; Quick, Matthew

    2015-12-30

    Obesity and other adverse health outcomes are influenced by individual- and neighbourhood-scale risk factors, including the food environment. At the small-area scale, past research has analysed spatial patterns of food environments for one time period, overlooking how food environments change over time. Further, past research has infrequently analysed relative healthy food access (RHFA), a measure that is more representative of food purchasing and consumption behaviours than absolute outlet density. This research applies a Bayesian hierarchical model to analyse the spatio-temporal patterns of RHFA in the Region of Waterloo, Canada, from 2011 to 2014 at the small-area level. RHFA is calculated as the proportion of healthy food outlets (healthy outlets/healthy + unhealthy outlets) within 4-km from each small-area. This model measures spatial autocorrelation of RHFA, temporal trend of RHFA for the study region, and spatio-temporal trends of RHFA for small-areas. For the study region, a significant decreasing trend in RHFA is observed (-0.024), suggesting that food swamps have become more prevalent during the study period. For small-areas, significant decreasing temporal trends in RHFA were observed for all small-areas. Specific small-areas located in south Waterloo, north Kitchener, and southeast Cambridge exhibited the steepest decreasing spatio-temporal trends and are classified as spatio-temporal food swamps. This research demonstrates a Bayesian spatio-temporal modelling approach to analyse RHFA at the small-area scale. Results suggest that food swamps are more prevalent than food deserts in the Region of Waterloo. Analysing spatio-temporal trends of RHFA improves understanding of local food environment, highlighting specific small-areas where policies should be targeted to increase RHFA and reduce risk factors of adverse health outcomes such as obesity.

  19. Power coupling mode transitions induced by tailored voltage waveforms in capacitive oxygen discharges

    NASA Astrophysics Data System (ADS)

    Derzsi, Aranka; Bruneau, Bastien; Gibson, Andrew Robert; Johnson, Erik; O'Connell, Deborah; Gans, Timo; Booth, Jean-Paul; Donkó, Zoltán

    2017-03-01

    Low-pressure capacitively coupled radio frequency discharges operated in O2 and driven by tailored voltage waveforms are investigated experimentally and by means of kinetic simulations. Pulse-type (peaks/valleys) and sawtooth-type voltage waveforms that consist of up to four consecutive harmonics of the fundamental frequency are used to study the amplitude asymmetry effect as well as the slope asymmetry effect at different fundamental frequencies (5, 10, and 15 MHz) and at different pressures (50-700 mTorr). Values of the DC self-bias determined experimentally and spatio-temporal excitation rates derived from phase resolved optical emission spectroscopy measurements are compared with particle-in-cell/Monte Carlo collisions simulations. The spatio-temporal distributions of the excitation rate obtained from experiments are well reproduced by the simulations. Transitions of the discharge electron heating mode from the drift-ambipolar mode to the α-mode are induced by changing the number of consecutive harmonics included in the driving voltage waveform or by changing the gas pressure. Changing the number of harmonics in the waveform has a strong effect on the electronegativity of the discharge, on the generation of the DC self-bias and on the control of ion properties at the electrodes, both for pulse-type, as well as sawtooth-type driving voltage waveforms The effect of the surface quenching rate of oxygen singlet delta metastable molecules on the spatio-temporal excitation patterns is also investigated.

  20. Recent assembly of the global herbaceous flora: evidence from the paper daisies (Asteraceae: Gnaphalieae).

    PubMed

    Nie, Ze-Long; Funk, Vicki A; Meng, Ying; Deng, Tao; Sun, Hang; Wen, Jun

    2016-03-01

    The global flora is thought to contain a large proportion of herbs, and understanding the general spatiotemporal processes that shaped the global distribution of these communities is one of the most difficult issues in biogeography. We explored patterns of world-wide biogeography in a species-rich herbaceous group, the paper daisy tribe Gnaphalieae (Asteraceae), based on the hitherto largest taxon sampling, a total of 835 terminal accessions representing 80% of the genera, and encompassing the global geographic range of the tribe, with nuclear internal transcribed spacer (ITS) and external transcribed spacer (ETS) sequences. Biogeographic analyses indicate that Gnaphalieae originated in southern Africa during the Oligocene, followed by repeated migrations into the rest of Africa and the Mediterranean region, with subsequent entries into other continents during various periods starting in the Miocene. Expansions in the late Miocene to Pliocene appear to have been the driving force that shaped the global distribution of the tribe as forests were progressively broken up by the mid-continent aridification and savannas and grasslands expanded into the interior of the major continents. This pattern of recent colonizations may explain the world-wide distribution of many other organisms in open ecosystems and it is highlighted here as an emerging pattern in the evolution of the global flora. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  1. Spatiotemporal Modeling of Ozone Levels in Quebec (Canada): A Comparison of Kriging, Land-Use Regression (LUR), and Combined Bayesian Maximum Entropy–LUR Approaches

    PubMed Central

    Adam-Poupart, Ariane; Brand, Allan; Fournier, Michel; Jerrett, Michael

    2014-01-01

    Background: Ambient air ozone (O3) is a pulmonary irritant that has been associated with respiratory health effects including increased lung inflammation and permeability, airway hyperreactivity, respiratory symptoms, and decreased lung function. Estimation of O3 exposure is a complex task because the pollutant exhibits complex spatiotemporal patterns. To refine the quality of exposure estimation, various spatiotemporal methods have been developed worldwide. Objectives: We sought to compare the accuracy of three spatiotemporal models to predict summer ground-level O3 in Quebec, Canada. Methods: We developed a land-use mixed-effects regression (LUR) model based on readily available data (air quality and meteorological monitoring data, road networks information, latitude), a Bayesian maximum entropy (BME) model incorporating both O3 monitoring station data and the land-use mixed model outputs (BME-LUR), and a kriging method model based only on available O3 monitoring station data (BME kriging). We performed leave-one-station-out cross-validation and visually assessed the predictive capability of each model by examining the mean temporal and spatial distributions of the average estimated errors. Results: The BME-LUR was the best predictive model (R2 = 0.653) with the lowest root mean-square error (RMSE ;7.06 ppb), followed by the LUR model (R2 = 0.466, RMSE = 8.747) and the BME kriging model (R2 = 0.414, RMSE = 9.164). Conclusions: Our findings suggest that errors of estimation in the interpolation of O3 concentrations with BME can be greatly reduced by incorporating outputs from a LUR model developed with readily available data. Citation: Adam-Poupart A, Brand A, Fournier M, Jerrett M, Smargiassi A. 2014. Spatiotemporal modeling of ozone levels in Quebec (Canada): a comparison of kriging, land-use regression (LUR), and combined Bayesian maximum entropy–LUR approaches. Environ Health Perspect 122:970–976; http://dx.doi.org/10.1289/ehp.1306566 PMID:24879650

  2. Routes to spatiotemporal chaos in Kerr optical frequency combs.

    PubMed

    Coillet, Aurélien; Chembo, Yanne K

    2014-03-01

    We investigate the various routes to spatiotemporal chaos in Kerr optical frequency combs, obtained through pumping an ultra-high Q-factor whispering-gallery mode resonator with a continuous-wave laser. The Lugiato-Lefever model is used to build bifurcation diagrams with regards to the parameters that are externally controllable, namely, the frequency and the power of the pumping laser. We show that the spatiotemporal chaos emerging from Turing patterns and solitons display distinctive dynamical features. Experimental spectra of chaotic Kerr combs are also presented for both cases, in excellent agreement with theoretical spectra.

  3. Two-dimensional wave patterns of spreading depolarization: Retracting, re-entrant, and stationary waves

    NASA Astrophysics Data System (ADS)

    Dahlem, Markus A.; Graf, Rudolf; Strong, Anthony J.; Dreier, Jens P.; Dahlem, Yuliya A.; Sieber, Michaela; Hanke, Wolfgang; Podoll, Klaus; Schöll, Eckehard

    2010-06-01

    We present spatio-temporal characteristics of spreading depolarizations (SD) in two experimental systems: retracting SD wave segments observed with intrinsic optical signals in chicken retina, and spontaneously occurring re-entrant SD waves that repeatedly spread across gyrencephalic feline cortex observed by laser speckle flowmetry. A mathematical framework of reaction-diffusion systems with augmented transmission capabilities is developed to explain the emergence and transitions between these patterns. Our prediction is that the observed patterns are reaction-diffusion patterns controlled and modulated by weak nonlocal coupling such as long-range, time-delayed, and global coupling. The described spatio-temporal characteristics of SD are of important clinical relevance under conditions of migraine and stroke. In stroke, the emergence of re-entrant SD waves is believed to worsen outcome. In migraine, retracting SD wave segments cause neurological symptoms and transitions to stationary SD wave patterns may cause persistent symptoms without evidence from noninvasive imaging of infarction.

  4. Spatiotemporal patterns of paddy rice croplands in China and India from 2000 to 2015.

    PubMed

    Zhang, Geli; Xiao, Xiangming; Biradar, Chandrashekhar M; Dong, Jinwei; Qin, Yuanwei; Menarguez, Michael A; Zhou, Yuting; Zhang, Yao; Jin, Cui; Wang, Jie; Doughty, Russell B; Ding, Mingjun; Moore, Berrien

    2017-02-01

    Due to rapid population growth and urbanization, paddy rice agriculture is experiencing substantial changes in the spatiotemporal pattern of planting areas in the two most populous countries-China and India-where food security is always the primary concern. However, there is no spatially explicit and continuous rice-planting information in either country. This knowledge gap clearly hinders our ability to understand the effects of spatial paddy rice area dynamics on the environment, such as food and water security, climate change, and zoonotic infectious disease transmission. To resolve this problem, we first generated annual maps of paddy rice planting areas for both countries from 2000 to 2015, which are derived from time series Moderate Resolution Imaging Spectroradiometer (MODIS) data and the phenology- and pixel-based rice mapping platform (RICE-MODIS), and analyzed the spatiotemporal pattern of paddy rice dynamics in the two countries. We found that China experienced a general decrease in paddy rice planting area with a rate of 0.72 million (m) ha/yr from 2000 to 2015, while a significant increase at a rate of 0.27mha/yr for the same time period happened in India. The spatial pattern of paddy rice agriculture in China shifted northeastward significantly, due to simultaneous expansions in paddy rice planting areas in northeastern China and contractions in southern China. India showed an expansion of paddy rice areas across the entire country, particularly in the northwestern region of the Indo-Gangetic Plain located in north India and the central and south plateau of India. In general, there has been a northwesterly shift in the spatial pattern of paddy rice agriculture in India. These changes in the spatiotemporal patterns of paddy rice planting area have raised new concerns on how the shift may affect national food security and environmental issues relevant to water, climate, and biodiversity. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Spatio-temporal patterns in land use and management affecting surface runoff response of agricultural catchments - a review

    NASA Astrophysics Data System (ADS)

    Fiener, P.; Auerswald, K.; van Oost, K.

    2009-04-01

    In many landscapes, land use creates a complex pattern in addition to the patterns resulting from soil, topography and rain. Despite the static layout of fields, a spatio-temporally highly variable situation regarding the surface runoff and erosion processes results from the asynchronous seasonal variation associated with different land uses. While the behaviour of individual land-uses and their seasonal variation is analyzed in many studies, the spatio-temporal interaction related to this pattern is rarely studied despite its crucial influence on hydrological and geomorphic response of catchments. The difficulty in studying such interactions mainly results from the fact that it is impossible to set up a replicated experiment on the landscape scale. The purpose of this review is to present the advances made thus far in quantifying the effects of patchiness of land use and management on surface runoff response in agricultural catchments. We will focus on the effects of spatio-temporal patterns in land use patches on hydraulic connectivity between patches and within catchments. This will include the temporal patterns in land management affecting infiltration, surface roughness and hence runoff concentration within single fields or land use patches insofar as these effects must be known to evaluate the combined effect of patch behaviour in space and time on catchment connectivity and surface runoff. Surface runoff effects of patchiness and connectivity between patches or within a catchment, can either be addressed by modelling studies or by comprehensive catchment field measurements, e.g. paired-watershed experiments or landscape scale studies on different scales. This limits our review to studies at the scale of small catchments < 10 km², where the time constant of the network (i.e. travel time through it) is smaller than the infiltration phase. Despite this limitation, these small catchments are important as they constitute 2/3 of the total surface of large water drainage networks.

  6. Geomagnetic imprinting predicts spatio-temporal variation in homing migration of pink and sockeye salmon.

    PubMed

    Putman, Nathan F; Jenkins, Erica S; Michielsens, Catherine G J; Noakes, David L G

    2014-10-06

    Animals navigate using a variety of sensory cues, but how each is weighted during different phases of movement (e.g. dispersal, foraging, homing) is controversial. Here, we examine the geomagnetic and olfactory imprinting hypotheses of natal homing with datasets that recorded variation in the migratory routes of sockeye (Oncorhynchus nerka) and pink (Oncorhynchus gorbuscha) salmon returning from the Pacific Ocean to the Fraser River, British Columbia. Drift of the magnetic field (i.e. geomagnetic imprinting) uniquely accounted for 23.2% and 44.0% of the variation in migration routes for sockeye and pink salmon, respectively. Ocean circulation (i.e. olfactory imprinting) predicted 6.1% and 0.1% of the variation in sockeye and pink migration routes, respectively. Sea surface temperature (a variable influencing salmon distribution but not navigation, directly) accounted for 13.0% of the variation in sockeye migration but was unrelated to pink migration. These findings suggest that geomagnetic navigation plays an important role in long-distance homing in salmon and that consideration of navigation mechanisms can aid in the management of migratory fishes by better predicting movement patterns. Finally, given the diversity of animals that use the Earth's magnetic field for navigation, geomagnetic drift may provide a unifying explanation for spatio-temporal variation in the movement patterns of many species. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. The spatiotemporal expansion of human rabies and its probable explanation in mainland China, 2004-2013.

    PubMed

    Yao, Hong-Wu; Yang, Yang; Liu, Kun; Li, Xin-Lou; Zuo, Shu-Qing; Sun, Ruo-Xi; Fang, Li-Qun; Cao, Wu-Chun

    2015-02-01

    Human rabies is a significant public health concern in mainland China. However, the neglect of rabies expansion and scarce analyses of the dynamics have made the spatiotemporal spread pattern of human rabies and its determinants being poorly understood. We collected geographic locations and timeline of reported human rabies cases, rabies sequences and socioeconomic variables for the years 2004-2013, and integrated multidisciplinary approaches, including epidemiological characterization, hotspots identification, risk factors analysis and phylogeographic inference, to explore the spread pattern of human rabies in mainland China during the last decade. The results show that human rabies distribution and hotspots were expanding from southeastern regions to north or west regions, which could be associated with the evolution of the virus, especially the clade I-G. A Panel Poisson Regression analysis reveals that human rabies incidences had significant correlation with the education level, GDP per capita, temperature at one-month lag and canine rabies outbreak at two-month lag. The reduction in the overall human rabies incidence was accompanied by a westward and northward expansion of the circulating region in mainland China. Higher risk of human rabies was associated with lower level of education and economic status. New clades of rabies, especial Clade I-G, played an important role in recent spread. Our findings provide valuable information for rabies control and prevention in the future.

  8. The Spatiotemporal Expansion of Human Rabies and Its Probable Explanation in Mainland China, 2004-2013

    PubMed Central

    Yao, Hong-Wu; Yang, Yang; Liu, Kun; Li, Xin-Lou; Zuo, Shu-Qing; Sun, Ruo-Xi; Fang, Li-Qun; Cao, Wu-Chun

    2015-01-01

    Background Human rabies is a significant public health concern in mainland China. However, the neglect of rabies expansion and scarce analyses of the dynamics have made the spatiotemporal spread pattern of human rabies and its determinants being poorly understood. Methods We collected geographic locations and timeline of reported human rabies cases, rabies sequences and socioeconomic variables for the years 2004-2013, and integrated multidisciplinary approaches, including epidemiological characterization, hotspots identification, risk factors analysis and phylogeographic inference, to explore the spread pattern of human rabies in mainland China during the last decade. Results The results show that human rabies distribution and hotspots were expanding from southeastern regions to north or west regions, which could be associated with the evolution of the virus, especially the clade I-G. A Panel Poisson Regression analysis reveals that human rabies incidences had significant correlation with the education level, GDP per capita, temperature at one-month lag and canine rabies outbreak at two-month lag. Conclusions The reduction in the overall human rabies incidence was accompanied by a westward and northward expansion of the circulating region in mainland China. Higher risk of human rabies was associated with lower level of education and economic status. New clades of rabies, especial Clade I-G, played an important role in recent spread. Our findings provide valuable information for rabies control and prevention in the future. PMID:25692883

  9. Spatiotemporal Patterns of Evapotranspiration in Response to Multiple Environmental Factors Simulated by the Community Land Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xiaoying; Mao, Jiafu; Thornton, P.

    Spatiotemporal patterns of evapotranspiration (ET) over the period from 1982 to 2008 are investigated and attributed to multiple environmental factors using the Community Land Model version 4 (CLM4). Our results show that CLM4 captures the spatial distribution and interannual variability of ET well when compared to observation-based estimates. We find that climate dominates the predicted variability in ET. Elevated atmospheric CO2 concentration also plays an important role in modulating the trend of predicted ET over most land areas, and replaces climate to function as the dominant factor controlling ET changes over the North America, South America and Asia regions. Comparedmore » to the effect of climate and CO2 concentration, the roles of other factors such as nitrogen deposition, land use change and aerosol deposition are less pronounced and regionally dependent. The aerosol deposition contribution is the third most important factor for trends of ET over Europe, while it has the smallest impact over other regions. As ET is a dominant component of the terrestrial water cycle, our results suggest that environmental factors like elevated CO2, nitrogen and aerosol depositions, and land use change, in addition to climate, could have significant impact on future projections of water resources and water cycle dynamics at global and regional scales.« less

  10. Geovisualization of Local and Regional Migration Using Web-mined Demographics

    NASA Astrophysics Data System (ADS)

    Schuermann, R. T.; Chow, T. E.

    2014-11-01

    The intent of this research was to augment and facilitate analyses, which gauges the feasibility of web-mined demographics to study spatio-temporal dynamics of migration. As a case study, we explored the spatio-temporal dynamics of Vietnamese Americans (VA) in Texas through geovisualization of mined demographic microdata from the World Wide Web. Based on string matching across all demographic attributes, including full name, address, date of birth, age and phone number, multiple records of the same entity (i.e. person) over time were resolved and reconciled into a database. Migration trajectories were geovisualized through animated sprites by connecting the different addresses associated with the same person and segmenting the trajectory into small fragments. Intra-metropolitan migration patterns appeared at the local scale within many metropolitan areas. At the scale of metropolitan area, varying degrees of immigration and emigration manifest different types of migration clusters. This paper presents a methodology incorporating GIS methods and cartographic design to produce geovisualization animation, enabling the cognitive identification of migration patterns at multiple scales. Identification of spatio-temporal patterns often stimulates further research to better understand the phenomenon and enhance subsequent modeling.

  11. Hierarchical Spatio-temporal Visual Analysis of Cluster Evolution in Electrocorticography Data

    DOE PAGES

    Murugesan, Sugeerth; Bouchard, Kristofer; Chang, Edward; ...

    2016-10-02

    Here, we present ECoG ClusterFlow, a novel interactive visual analysis tool for the exploration of high-resolution Electrocorticography (ECoG) data. Our system detects and visualizes dynamic high-level structures, such as communities, using the time-varying spatial connectivity network derived from the high-resolution ECoG data. ECoG ClusterFlow provides a multi-scale visualization of the spatio-temporal patterns underlying the time-varying communities using two views: 1) an overview summarizing the evolution of clusters over time and 2) a hierarchical glyph-based technique that uses data aggregation and small multiples techniques to visualize the propagation of clusters in their spatial domain. ECoG ClusterFlow makes it possible 1) tomore » compare the spatio-temporal evolution patterns across various time intervals, 2) to compare the temporal information at varying levels of granularity, and 3) to investigate the evolution of spatial patterns without occluding the spatial context information. Lastly, we present case studies done in collaboration with neuroscientists on our team for both simulated and real epileptic seizure data aimed at evaluating the effectiveness of our approach.« less

  12. Upper-hybrid wave-driven Alfvenic turbulence in magnetized dusty plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misra, A. P.; Banerjee, S.

    The nonlinear dynamics of coupled electrostatic upper-hybrid (UH) and Alfven waves (AWs) is revisited in a magnetized electron-ion plasma with charged dust impurities. A pair of nonlinear equations that describe the interaction of UH wave envelopes (including the relativistic electron mass increase) and the density as well as the compressional magnetic field perturbations associated with the AWs are solved numerically to show that many coherent solitary patterns can be excited and saturated due to modulational instability of unstable UH waves. The evolution of these solitary patterns is also shown to appear in the states of spatiotemporal coherence, temporal as wellmore » as spatiotemporal chaos, due to collision and fusion among the patterns in stochastic motion. Furthermore, these spatiotemporal features are demonstrated by the analysis of wavelet power spectra. It is found that a redistribution of wave energy takes place to higher harmonic modes with small wavelengths, which, in turn, results in the onset of Alfvenic turbulence in dusty magnetoplasmas. Such a scenario can occur in the vicinity of Saturn's magnetosphere as many electrostatic solitary structures have been observed there by the Cassini spacecraft.« less

  13. Spatio-temporal cluster detection of chickenpox in Valencia, Spain in the period 2008-2012.

    PubMed

    Iftimi, Adina; Martínez-Ruiz, Francisco; Míguez Santiyán, Ana; Montes, Francisco

    2015-05-18

    Chickenpox is a highly contagious airborne disease caused by Varicella zoster, which affects nearly all non-immune children worldwide with an annual incidence estimated at 80-90 million cases. To analyze the spatiotemporal pattern of the chickenpox incidence in the city of Valencia, Spain two complementary statistical approaches were used. First, we evaluated the existence of clusters and spatio-temporal interaction; secondly, we used this information to find the locations of the spatio-temporal clusters via the space-time permutation model. The first method used detects any aggregation in our data but does not provide the spatial and temporal information. The second method gives the locations, areas and time-frame for the spatio-temporal clusters. An overall decreasing time trend, a pronounced 12-monthly periodicity and two complementary periods were observed. Several areas with high incidence, surrounding the center of the city were identified. The existence of aggregation in time and space was observed, and a number of spatio-temporal clusters were located.

  14. Comparison of Spatiotemporal Mapping Techniques for Enormous Etl and Exploitation Patterns

    NASA Astrophysics Data System (ADS)

    Deiotte, R.; La Valley, R.

    2017-10-01

    The need to extract, transform, and exploit enormous volumes of spatiotemporal data has exploded with the rise of social media, advanced military sensors, wearables, automotive tracking, etc. However, current methods of spatiotemporal encoding and exploitation simultaneously limit the use of that information and increase computing complexity. Current spatiotemporal encoding methods from Niemeyer and Usher rely on a Z-order space filling curve, a relative of Peano's 1890 space filling curve, for spatial hashing and interleaving temporal hashes to generate a spatiotemporal encoding. However, there exist other space-filling curves, and that provide different manifold coverings that could promote better hashing techniques for spatial data and have the potential to map spatiotemporal data without interleaving. The concatenation of Niemeyer's and Usher's techniques provide a highly efficient space-time index. However, other methods have advantages and disadvantages regarding computational cost, efficiency, and utility. This paper explores the several methods using a range of sizes of data sets from 1K to 10M observations and provides a comparison of the methods.

  15. GISpark: A Geospatial Distributed Computing Platform for Spatiotemporal Big Data

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhong, E.; Wang, E.; Zhong, Y.; Cai, W.; Li, S.; Gao, S.

    2016-12-01

    Geospatial data are growing exponentially because of the proliferation of cost effective and ubiquitous positioning technologies such as global remote-sensing satellites and location-based devices. Analyzing large amounts of geospatial data can provide great value for both industrial and scientific applications. Data- and compute- intensive characteristics inherent in geospatial big data increasingly pose great challenges to technologies of data storing, computing and analyzing. Such challenges require a scalable and efficient architecture that can store, query, analyze, and visualize large-scale spatiotemporal data. Therefore, we developed GISpark - a geospatial distributed computing platform for processing large-scale vector, raster and stream data. GISpark is constructed based on the latest virtualized computing infrastructures and distributed computing architecture. OpenStack and Docker are used to build multi-user hosting cloud computing infrastructure for GISpark. The virtual storage systems such as HDFS, Ceph, MongoDB are combined and adopted for spatiotemporal data storage management. Spark-based algorithm framework is developed for efficient parallel computing. Within this framework, SuperMap GIScript and various open-source GIS libraries can be integrated into GISpark. GISpark can also integrated with scientific computing environment (e.g., Anaconda), interactive computing web applications (e.g., Jupyter notebook), and machine learning tools (e.g., TensorFlow/Orange). The associated geospatial facilities of GISpark in conjunction with the scientific computing environment, exploratory spatial data analysis tools, temporal data management and analysis systems make up a powerful geospatial computing tool. GISpark not only provides spatiotemporal big data processing capacity in the geospatial field, but also provides spatiotemporal computational model and advanced geospatial visualization tools that deals with other domains related with spatial property. We tested the performance of the platform based on taxi trajectory analysis. Results suggested that GISpark achieves excellent run time performance in spatiotemporal big data applications.

  16. Decomposition of the complex system into nonlinear spatio-temporal modes: algorithm and application to climate data mining

    NASA Astrophysics Data System (ADS)

    Feigin, Alexander; Gavrilov, Andrey; Loskutov, Evgeny; Mukhin, Dmitry

    2015-04-01

    Proper decomposition of the complex system into well separated "modes" is a way to reveal and understand the mechanisms governing the system behaviour as well as discover essential feedbacks and nonlinearities. The decomposition is also natural procedure that provides to construct adequate and concurrently simplest models of both corresponding sub-systems, and of the system in whole. In recent works two new methods of decomposition of the Earth's climate system into well separated modes were discussed. The first method [1-3] is based on the MSSA (Multichannel Singular Spectral Analysis) [4] for linear expanding vector (space-distributed) time series and makes allowance delayed correlations of the processes recorded in spatially separated points. The second one [5-7] allows to construct nonlinear dynamic modes, but neglects delay of correlations. It was demonstrated [1-3] that first method provides effective separation of different time scales, but prevent from correct reduction of data dimension: slope of variance spectrum of spatio-temporal empirical orthogonal functions that are "structural material" for linear spatio-temporal modes, is too flat. The second method overcomes this problem: variance spectrum of nonlinear modes falls essentially sharply [5-7]. However neglecting time-lag correlations brings error of mode selection that is uncontrolled and increases with growth of mode time scale. In the report we combine these two methods in such a way that the developed algorithm allows constructing nonlinear spatio-temporal modes. The algorithm is applied for decomposition of (i) multi hundreds years globally distributed data generated by the INM RAS Coupled Climate Model [8], and (ii) 156 years time series of SST anomalies distributed over the globe [9]. We compare efficiency of different methods of decomposition and discuss the abilities of nonlinear spatio-temporal modes for construction of adequate and concurrently simplest ("optimal") models of climate systems. 1. Feigin A.M., Mukhin D., Gavrilov A., Volodin E.M., and Loskutov E.M. (2013) "Separation of spatial-temporal patterns ("climatic modes") by combined analysis of really measured and generated numerically vector time series", AGU 2013 Fall Meeting, Abstract NG33A-1574. 2. Alexander Feigin, Dmitry Mukhin, Andrey Gavrilov, Evgeny Volodin, and Evgeny Loskutov (2014) "Approach to analysis of multiscale space-distributed time series: separation of spatio-temporal modes with essentially different time scales", Geophysical Research Abstracts, Vol. 16, EGU2014-6877. 3. Dmitry Mukhin, Dmitri Kondrashov, Evgeny Loskutov, Andrey Gavrilov, Alexander Feigin, and Michael Ghil (2014) "Predicting critical transitions in ENSO models, Part II: Spatially dependent models", Journal of Climate (accepted, doi: 10.1175/JCLI-D-14-00240.1). 4. Ghil, M., R. M. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, et al. (2002) "Advanced spectral methods for climatic time series", Rev. Geophys. 40(1), 3.1-3.41. 5. Dmitry Mukhin, Andrey Gavrilov, Evgeny M Loskutov and Alexander M Feigin (2014) "Nonlinear Decomposition of Climate Data: a New Method for Reconstruction of Dynamical Modes", AGU 2014 Fall Meeting, Abstract NG43A-3752. 6. Andrey Gavrilov, Dmitry Mukhin, Evgeny Loskutov, and Alexander Feigin (2015) "Empirical decomposition of climate data into nonlinear dynamic modes", Geophysical Research Abstracts, Vol. 17, EGU2015-627. 7. Dmitry Mukhin, Andrey Gavrilov, Evgeny Loskutov, Alexander Feigin, and Juergen Kurths (2015) "Reconstruction of principal dynamical modes from climatic variability: nonlinear approach", Geophysical Research Abstracts, Vol. 17, EGU2015-5729. 8. http://83.149.207.89/GCM_DATA_PLOTTING/GCM_INM_DATA_XY_en.htm. 9. http://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/.EXTENDED/.v2/.ssta/.

  17. Use of Numerical Groundwater Model and Analytical Empirical Orthogonal Function for Calibrating Spatiotemporal pattern of Pumpage, Recharge and Parameter

    NASA Astrophysics Data System (ADS)

    Huang, C. L.; Hsu, N. S.; Hsu, F. C.; Liu, H. J.

    2016-12-01

    This study develops a novel methodology for the spatiotemporal groundwater calibration of mega-quantitative recharge and parameters by coupling a specialized numerical model and analytical empirical orthogonal function (EOF). The actual spatiotemporal patterns of groundwater pumpage are estimated by an originally developed back propagation neural network-based response matrix with the electrical consumption analysis. The spatiotemporal patterns of the recharge from surface water and hydrogeological parameters (i.e. horizontal hydraulic conductivity and vertical leakance) are calibrated by EOF with the simulated error hydrograph of groundwater storage, in order to qualify the multiple error sources and quantify the revised volume. The objective function of the optimization model is minimizing the root mean square error of the simulated storage error percentage across multiple aquifers, meanwhile subject to mass balance of groundwater budget and the governing equation in transient state. The established method was applied on the groundwater system of Chou-Shui River Alluvial Fan. The simulated period is from January 2012 to December 2014. The total numbers of hydraulic conductivity, vertical leakance and recharge from surface water among four aquifers are 126, 96 and 1080, respectively. Results showed that the RMSE during the calibration process was decreased dramatically and can quickly converse within 6th iteration, because of efficient filtration of the transmission induced by the estimated error and recharge across the boundary. Moreover, the average simulated error percentage according to groundwater level corresponding to the calibrated budget variables and parameters of aquifer one is as small as 0.11%. It represent that the developed methodology not only can effectively detect the flow tendency and error source in all aquifers to achieve accurately spatiotemporal calibration, but also can capture the peak and fluctuation of groundwater level in shallow aquifer.

  18. a Three-Step Spatial-Temporal Clustering Method for Human Activity Pattern Analysis

    NASA Astrophysics Data System (ADS)

    Huang, W.; Li, S.; Xu, S.

    2016-06-01

    How people move in cities and what they do in various locations at different times form human activity patterns. Human activity pattern plays a key role in in urban planning, traffic forecasting, public health and safety, emergency response, friend recommendation, and so on. Therefore, scholars from different fields, such as social science, geography, transportation, physics and computer science, have made great efforts in modelling and analysing human activity patterns or human mobility patterns. One of the essential tasks in such studies is to find the locations or places where individuals stay to perform some kind of activities before further activity pattern analysis. In the era of Big Data, the emerging of social media along with wearable devices enables human activity data to be collected more easily and efficiently. Furthermore, the dimension of the accessible human activity data has been extended from two to three (space or space-time) to four dimensions (space, time and semantics). More specifically, not only a location and time that people stay and spend are collected, but also what people "say" for in a location at a time can be obtained. The characteristics of these datasets shed new light on the analysis of human mobility, where some of new methodologies should be accordingly developed to handle them. Traditional methods such as neural networks, statistics and clustering have been applied to study human activity patterns using geosocial media data. Among them, clustering methods have been widely used to analyse spatiotemporal patterns. However, to our best knowledge, few of clustering algorithms are specifically developed for handling the datasets that contain spatial, temporal and semantic aspects all together. In this work, we propose a three-step human activity clustering method based on space, time and semantics to fill this gap. One-year Twitter data, posted in Toronto, Canada, is used to test the clustering-based method. The results show that the approximate 55% spatiotemporal clusters distributed in different locations can be eventually grouped as the same type of clusters with consideration of semantic aspect.

  19. Requirement of spatiotemporal resolution for imaging intracellular temperature distribution

    NASA Astrophysics Data System (ADS)

    Hiroi, Noriko; Tanimoto, Ryuichi; , Kaito, Ii; Ozeki, Mitsunori; Mashimo, Kota; Funahashi, Akira

    2017-04-01

    Intracellular temperature distribution is an emerging target in biology nowadays. Because thermal diffusion is rapid dynamics in comparison with molecular diffusion, we need a spatiotemporally high-resolution imaging technology to catch this phenomenon. We demonstrate that time-lapse imaging which consists of single-shot 3D volume images acquired at high-speed camera rate is desired for the imaging of intracellular thermal diffusion based on the simulation results of thermal diffusion from a nucleus to cytosol.

  20. Quantitative Immunofluorescence Analysis of Nucleolus-Associated Chromatin.

    PubMed

    Dillinger, Stefan; Németh, Attila

    2016-01-01

    The nuclear distribution of eu- and heterochromatin is nonrandom, heterogeneous, and dynamic, which is mirrored by specific spatiotemporal arrangements of histone posttranslational modifications (PTMs). Here we describe a semiautomated method for the analysis of histone PTM localization patterns within the mammalian nucleus using confocal laser scanning microscope images of fixed, immunofluorescence stained cells as data source. The ImageJ-based process includes the segmentation of the nucleus, furthermore measurements of total fluorescence intensities, the heterogeneity of the staining, and the frequency of the brightest pixels in the region of interest (ROI). In the presented image analysis pipeline, the perinucleolar chromatin is selected as primary ROI, and the nuclear periphery as secondary ROI.

  1. Analysis on the threats and spatiotemporal distribution pattern of security in World Natural Heritage Sites.

    PubMed

    Wang, Zhaoguo; Yang, Zhaoping; Du, Xishihui

    2015-01-01

    World Natural Heritage Sites (WNHS) are treasures that need human protection and invite appreciation, which makes conservation of WNHS an urgent task. This paper assesses where in the world threats are most pressing and which WNHS require emergency assistance. Using an analysis of "hot spots" and inverse distance weighting, it finds that Africa is the region where WNHS are least secure. Reports of the state of the conservation of WNHS describe the many threats that exist. Of these, management activities and institutional factors are the primary threats. The paper suggests relevant measures to improve the WNHS security.

  2. Effects of land cover and regional climate variations on long-term spatiotemporal changes in sagebrush ecosystems

    USGS Publications Warehouse

    Xian, George Z.; Homer, Collin G.; Aldridge, Cameron L.

    2012-01-01

    This research investigated the effects of climate and land cover change on variation in sagebrush ecosystems. We combined information of multi-year sagebrush distribution derived from multitemporal remote sensing imagery and climate data to study the variation patterns of sagebrush ecosystems under different potential disturbances. We found that less than 40% of sagebrush ecosystem changes involved abrupt changes directly caused by landscape transformations and over 60% of the variations involved gradual changes directly related to climatic perturbations. The primary increases in bare ground and declines in sagebrush vegetation abundance were significantly correlated with the 1996-2006 decreasing trend in annual precipitation.

  3. Spatiotemporal monitoring of soil water content profiles in an irrigated field using probabilistic inversion of time-lapse EMI data

    NASA Astrophysics Data System (ADS)

    Moghadas, Davood; Jadoon, Khan Zaib; McCabe, Matthew F.

    2017-12-01

    Monitoring spatiotemporal variations of soil water content (θ) is important across a range of research fields, including agricultural engineering, hydrology, meteorology and climatology. Low frequency electromagnetic induction (EMI) systems have proven to be useful tools in mapping soil apparent electrical conductivity (σa) and soil moisture. However, obtaining depth profile water content is an area that has not been fully explored using EMI. To examine this, we performed time-lapse EMI measurements using a CMD mini-Explorer sensor along a 10 m transect of a maize field over a 6 day period. Reference data were measured at the end of the profile via an excavated pit using 5TE capacitance sensors. In order to derive a time-lapse, depth-specific subsurface image of electrical conductivity (σ), we applied a probabilistic sampling approach, DREAM(ZS) , on the measured EMI data. The inversely estimated σ values were subsequently converted to θ using the Rhoades et al. (1976) petrophysical relationship. The uncertainties in measured σa, as well as inaccuracies in the inverted data, introduced some discrepancies between estimated σ and reference values in time and space. Moreover, the disparity between the measurement footprints of the 5TE and CMD Mini-Explorer sensors also led to differences. The obtained θ permitted an accurate monitoring of the spatiotemporal distribution and variation of soil water content due to root water uptake and evaporation. The proposed EMI measurement and modeling technique also allowed for detecting temporal root zone soil moisture variations. The time-lapse θ monitoring approach developed using DREAM(ZS) thus appears to be a useful technique to understand spatiotemporal patterns of soil water content and provide insights into linked soil moisture vegetation processes and the dynamics of soil moisture/infiltration processes.

  4. Mapping the spatio-temporal structure of motor cortical LFP and spiking activities during reach-to-grasp movements

    PubMed Central

    Riehle, Alexa; Wirtssohn, Sarah; Grün, Sonja; Brochier, Thomas

    2013-01-01

    Grasping an object involves shaping the hand and fingers in relation to the object’s physical properties. Following object contact, it also requires a fine adjustment of grasp forces for secure manipulation. Earlier studies suggest that the control of hand shaping and grasp force involve partially segregated motor cortical networks. However, it is still unclear how information originating from these networks is processed and integrated. We addressed this issue by analyzing massively parallel signals from population measures (local field potentials, LFPs) and single neuron spiking activities recorded simultaneously during a delayed reach-to-grasp task, by using a 100-electrode array chronically implanted in monkey motor cortex. Motor cortical LFPs exhibit a large multi-component movement-related potential (MRP) around movement onset. Here, we show that the peak amplitude of each MRP component and its latency with respect to movement onset vary along the cortical surface covered by the array. Using a comparative mapping approach, we suggest that the spatio-temporal structure of the MRP reflects the complex physical properties of the reach-to-grasp movement. In addition, we explored how the spatio-temporal structure of the MRP relates to two other measures of neuronal activity: the temporal profile of single neuron spiking activity at each electrode site and the somatosensory receptive field properties of single neuron activities. We observe that the spatial representations of LFP and spiking activities overlap extensively and relate to the spatial distribution of proximal and distal representations of the upper limb. Altogether, these data show that, in motor cortex, a precise spatio-temporal pattern of activation is involved for the control of reach-to-grasp movements and provide some new insight about the functional organization of motor cortex during reaching and object manipulation. PMID:23543888

  5. Spatio-temporal phase retrieval in speckle interferometry with Hilbert transform and two-dimensional phase unwrapping

    NASA Astrophysics Data System (ADS)

    Li, Xiangyu; Huang, Zhanhua; Zhu, Meng; He, Jin; Zhang, Hao

    2014-12-01

    Hilbert transform (HT) is widely used in temporal speckle pattern interferometry, but errors from low modulations might propagate and corrupt the calculated phase. A spatio-temporal method for phase retrieval using temporal HT and spatial phase unwrapping is presented. In time domain, the wrapped phase difference between the initial and current states is directly determined by using HT. To avoid the influence of the low modulation intensity, the phase information between the two states is ignored. As a result, the phase unwrapping is shifted from time domain to space domain. A phase unwrapping algorithm based on discrete cosine transform is adopted by taking advantage of the information in adjacent pixels. An experiment is carried out with a Michelson-type interferometer to study the out-of-plane deformation field. High quality whole-field phase distribution maps with different fringe densities are obtained. Under the experimental conditions, the maximum number of fringes resolvable in a 416×416 frame is 30, which indicates a 15λ deformation along the direction of loading.

  6. Seabird aggregative patterns: a new tool for offshore wind energy risk assessment.

    PubMed

    Christel, Isadora; Certain, Grégoire; Cama, Albert; Vieites, David R; Ferrer, Xavier

    2013-01-15

    The emerging development of offshore wind energy has raised public concern over its impact on seabird communities. There is a need for an adequate methodology to determine its potential impacts on seabirds. Environmental Impact Assessments (EIAs) are mostly relying on a succession of plain density maps without integrated interpretation of seabird spatio-temporal variability. Using Taylor's power law coupled with mixed effect models, the spatio-temporal variability of species' distributions can be synthesized in a measure of the aggregation levels of individuals over time and space. Applying the method to a seabird aerial survey in the Ebro Delta, NW Mediterranean Sea, we were able to make an explicit distinction between transitional and feeding areas to define and map the potential impacts of an offshore wind farm project. We use the Ebro Delta study case to discuss the advantages of potential impacts maps over density maps, as well as to illustrate how these potential impact maps can be applied to inform on concern levels, optimal EIA design and monitoring in the assessment of local offshore wind energy projects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. [Spatiotemporal variation of soil pH in Guangdong Province of China in past 30 years].

    PubMed

    Guo, Zhi-Xing; Wang, Jing; Chai, Min; Chen, Ze-Peng; Zhan, Zhen-Shou; Zheng, Wu-Ping; Wei, Xiu-Guo

    2011-02-01

    Based on the 1980s' soil inventory data and the 2002-2007 soil pH data of Guangdong Province, the spatiotemporal variation of soil pH in the Province in past 30 years was studied. In the study period, the spatial distribution pattern of soil pH in the Province had less change (mainly acidic), except that in Pearl River Delta and parts of Qingyuan and Shaoguan (weak alkaline). The overall variation of soil pH was represented as acidification, with the average pH value changed from 5.70 to 5.44. Among the soil types in the Province, alluvial soil had an increased pH, lateritic red soil, paddy soil, and red soil had a large decrement of pH value, and lime soil was most obvious in the decrease of pH value and its area percentage. The soil acidification was mainly induced by soil characteristics, some natural factors such as acid rain, and human factors such as unreasonable fertilization and urbanization. In addition, industrialization and mining increased the soil pH in some areas.

  8. The Formation and Spatiotemporal Progress of the pH Wave Induced by the Temperature Gradient in the Thin-Layer H2O2-Na2S2O3-H2SO4-CuSO4 Dynamical System.

    PubMed

    Jędrusiak, Mikołaj; Orlik, Marek

    2016-03-31

    The H2O2-S2O3(2-)-H(+)-Cu(2+) dynamical system exhibits sustained oscillations under flow conditions but reveals only a single initial peak of the indicator electrode potential and pH variation under batch isothermal conditions. Thus, in the latter case, there is no possibility of the coupling of the oscillations and diffusion which could lead to formation of sustained spatiotemporal patterns in this process. However, in the inhomogeneous temperature field, due to dependence of the local reaction kinetics on temperature, spatial inhomogeneities of pH distribution can develop which, in the presence of an appropriate indicator, thymol blue, manifest themselves as the color front traveling along the quasi-one-dimensional reactor. In this work, we describe the experimental conditions under which the above-mentioned phenomena can be observed and present their numerical model based on thermokinetic coupling and spatial coordinate introduced to earlier isothermal homogeneous kinetic mechanism.

  9. Mining Spatiotemporal Patterns of the Elder's Daily Movement

    NASA Astrophysics Data System (ADS)

    Chen, C. R.; Chen, C. F.; Liu, M. E.; Tsai, S. J.; Son, N. T.; Kinh, L. V.

    2016-06-01

    With rapid developments in wearable device technology, a vast amount of spatiotemporal data, such as people's movement and physical activities, are generated. Information derived from the data reveals important knowledge that can contribute a long-term care and psychological assessment of the elders' living condition especially in long-term care institutions. This study aims to develop a method to investigate the spatial-temporal movement patterns of the elders with their outdoor trajectory information. To achieve the goal, GPS based location data of the elderly subjects from long-term care institutions are collected and analysed with geographic information system (GIS). A GIS statistical model is developed to mine the elderly subjects' spatiotemporal patterns with the location data and represent their daily movement pattern at particular time. The proposed method first finds the meaningful trajectory and extracts the frequent patterns from the time-stamp location data. Then, a density-based clustering method is used to identify the major moving range and the gather/stay hotspot in both spatial and temporal dimensions. The preliminary results indicate that the major moving area of the elderly people encompasses their dorm and has a short moving distance who often stay in the same site. Subjects' outdoor appearance are corresponded to their life routine. The results can be useful for understanding elders' social network construction, risky area identification and medical care monitoring.

  10. The EEG Split Alpha Peak: Phenomenological Origins and Methodological Aspects of Detection and Evaluation.

    PubMed

    Olejarczyk, Elzbieta; Bogucki, Piotr; Sobieszek, Aleksander

    2017-01-01

    Electroencephalographic (EEG) patterns were analyzed in a group of ambulatory patients who ranged in age and sex using spectral analysis as well as Directed Transfer Function, a method used to evaluate functional brain connectivity. We tested the impact of window size and choice of reference electrode on the identification of two or more peaks with close frequencies in the spectral power distribution, so called "split alpha." Together with the connectivity analysis, examination of spatiotemporal maps showing the distribution of amplitudes of EEG patterns allowed for better explanation of the mechanisms underlying the generation of split alpha peaks. It was demonstrated that the split alpha spectrum can be generated by two or more independent and interconnected alpha wave generators located in different regions of the cerebral cortex, but not necessarily in the occipital cortex. We also demonstrated the importance of appropriate reference electrode choice during signal recording. In addition, results obtained using the original data were compared with results obtained using re-referenced data, using average reference electrode and reference electrode standardization techniques.

  11. HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recognition.

    PubMed

    Lagorce, Xavier; Orchard, Garrick; Galluppi, Francesco; Shi, Bertram E; Benosman, Ryad B

    2017-07-01

    This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.

  12. Three-dimensional chimera patterns in networks of spiking neuron oscillators

    NASA Astrophysics Data System (ADS)

    Kasimatis, T.; Hizanidis, J.; Provata, A.

    2018-05-01

    We study the stable spatiotemporal patterns that arise in a three-dimensional (3D) network of neuron oscillators, whose dynamics is described by the leaky integrate-and-fire (LIF) model. More specifically, we investigate the form of the chimera states induced by a 3D coupling matrix with nonlocal topology. The observed patterns are in many cases direct generalizations of the corresponding two-dimensional (2D) patterns, e.g., spheres, layers, and cylinder grids. We also find cylindrical and "cross-layered" chimeras that do not have an equivalent in 2D systems. Quantitative measures are calculated, such as the ratio of synchronized and unsynchronized neurons as a function of the coupling range, the mean phase velocities, and the distribution of neurons in mean phase velocities. Based on these measures, the chimeras are categorized in two families. The first family of patterns is observed for weaker coupling and exhibits higher mean phase velocities for the unsynchronized areas of the network. The opposite holds for the second family, where the unsynchronized areas have lower mean phase velocities. The various measures demonstrate discontinuities, indicating criticality as the parameters cross from the first family of patterns to the second.

  13. Spatiotemporal Characterization of Ambient PM2.5 Concentrations in Shandong Province (China).

    PubMed

    Yang, Yong; Christakos, George

    2015-11-17

    China experiences severe particulate matter (PM) pollution problems closely linked to its rapid economic growth. Advancing the understanding and characterization of spatiotemporal air pollution distribution is an area where improved quantitative methods are of great benefit to risk assessment and environmental policy. This work uses the Bayesian maximum entropy (BME) method to assess the space-time variability of PM2.5 concentrations and predict their distribution in the Shandong province, China. Daily PM2.5 concentrations obtained at air quality monitoring sites during 2014 were used. On the basis of the space-time PM2.5 distributions generated by BME, we performed three kinds of querying analysis to reveal the main distribution features. The results showed that the entire region of interest is seriously polluted (BME maps identified heavy pollution clusters during 2014). Quantitative characterization of pollution severity included both pollution level and duration. The number of days during which regional PM2.5 exceeded 75, 115, 150, and 250 μg m(-3) varied: 43-253, 13-128, 4-66, and 0-15 days, respectively. The PM2.5 pattern exhibited an increasing trend from east to west, with the western part of Shandong being a heavily polluted area (PM2.5 exceeded 150 μg m(-3) during long time periods). Pollution was much more serious during winter than during other seasons. Site indicators of PM2.5 pollution intensity and space-time variation were used to assess regional uncertainties and risks with their interpretation depending on the pollutant threshold. The observed PM2.5 concentrations exceeding a specified threshold increased almost linearly with increasing threshold value, whereas the relative probability of excess pollution decreased sharply with increasing threshold.

  14. Spatiotemporal canards in neural field equations

    NASA Astrophysics Data System (ADS)

    Avitabile, D.; Desroches, M.; Knobloch, E.

    2017-04-01

    Canards are special solutions to ordinary differential equations that follow invariant repelling slow manifolds for long time intervals. In realistic biophysical single-cell models, canards are responsible for several complex neural rhythms observed experimentally, but their existence and role in spatially extended systems is largely unexplored. We identify and describe a type of coherent structure in which a spatial pattern displays temporal canard behavior. Using interfacial dynamics and geometric singular perturbation theory, we classify spatiotemporal canards and give conditions for the existence of folded-saddle and folded-node canards. We find that spatiotemporal canards are robust to changes in the synaptic connectivity and firing rate. The theory correctly predicts the existence of spatiotemporal canards with octahedral symmetry in a neural field model posed on the unit sphere.

  15. Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    NASA Astrophysics Data System (ADS)

    Romanczuk, P.; Bär, M.; Ebeling, W.; Lindner, B.; Schimansky-Geier, L.

    2012-03-01

    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.

  16. Epidemiologic patterns of Ross River virus disease in Queensland, Australia, 2001-2011.

    PubMed

    Yu, Weiwei; Mengersen, Kerrie; Dale, Pat; Mackenzie, John S; Toloo, Ghasem Sam; Wang, Xiaoyu; Tong, Shilu

    2014-07-01

    Ross River virus (RRV) infection is a debilitating disease that has a significant impact on population health, economic productivity, and tourism in Australia. This study examined epidemiologic patterns of RRV disease in Queensland, Australia, during January 2001-December 2011 at a statistical local area level. Spatio-temporal analyses were used to identify the patterns of the disease distribution over time stratified by age, sex, and space. The results show that the mean annual incidence was 54 per 100,000 persons, with a male:female ratio of 1:1.1. Two space-time clusters were identified: the areas adjacent to Townsville, on the eastern coast of Queensland, and the southeast areas. Thus, although public health intervention should be considered across all areas in which RRV occurs, it should specifically focus on high-risk regions, particularly during summer and autumn to reduce the social and economic impacts of RRV infection. © The American Society of Tropical Medicine and Hygiene.

  17. Hysteresis, neural avalanches, and critical behavior near a first-order transition of a spiking neural network

    NASA Astrophysics Data System (ADS)

    Scarpetta, Silvia; Apicella, Ilenia; Minati, Ludovico; de Candia, Antonio

    2018-06-01

    Many experimental results, both in vivo and in vitro, support the idea that the brain cortex operates near a critical point and at the same time works as a reservoir of precise spatiotemporal patterns. However, the mechanism at the basis of these observations is still not clear. In this paper we introduce a model which combines both these features, showing that scale-free avalanches are the signature of a system posed near the spinodal line of a first-order transition, with many spatiotemporal patterns stored as dynamical metastable attractors. Specifically, we studied a network of leaky integrate-and-fire neurons whose connections are the result of the learning of multiple spatiotemporal dynamical patterns, each with a randomly chosen ordering of the neurons. We found that the network shows a first-order transition between a low-spiking-rate disordered state (down), and a high-rate state characterized by the emergence of collective activity and the replay of one of the stored patterns (up). The transition is characterized by hysteresis, or alternation of up and down states, depending on the lifetime of the metastable states. In both cases, critical features and neural avalanches are observed. Notably, critical phenomena occur at the edge of a discontinuous phase transition, as recently observed in a network of glow lamps.

  18. Performance of near real-time Global Satellite Mapping of Precipitation estimates during heavy precipitation events over northern China

    NASA Astrophysics Data System (ADS)

    Chen, Sheng; Hu, Junjun; Zhang, Asi; Min, Chao; Huang, Chaoying; Liang, Zhenqing

    2018-02-01

    This study assesses the performance of near real-time Global Satellite Mapping of Precipitation (GSMaP_NRT) estimates over northern China, including Beijing and its adjacent regions, during three heavy precipitation events from 21 July 2012 to 2 August 2012. Two additional near real-time satellite-based products, the Climate Prediction Center morphing method (CMORPH) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS), were used for parallel comparison with GSMaP_NRT. Gridded gauge observations were used as reference for a performance evaluation with respect to spatiotemporal variability, probability distribution of precipitation rate and volume, and contingency scores. Overall, GSMaP_NRT generally captures the spatiotemporal variability of precipitation and shows promising potential in near real-time mapping applications. GSMaP_NRT misplaced storm centers in all three storms. GSMaP_NRT demonstrated higher skill scores in the first high-impact storm event on 21 July 2015. GSMaP_NRT passive microwave only precipitation can generally capture the pattern of heavy precipitation distributions over flat areas but failed to capture the intensive rain belt over complicated mountainous terrain. The results of this study can be useful to both algorithm developers and the scientific end users, providing a better understanding of strengths and weaknesses to hydrologists using satellite precipitation products.

  19. Monitoring and identification of spatiotemporal landscape changes in multiple remote sensing images by using a stratified conditional Latin hypercube sampling approach and geostatistical simulation.

    PubMed

    Lin, Yu-Pin; Chu, Hone-Jay; Huang, Yu-Long; Tang, Chia-Hsi; Rouhani, Shahrokh

    2011-06-01

    This study develops a stratified conditional Latin hypercube sampling (scLHS) approach for multiple, remotely sensed, normalized difference vegetation index (NDVI) images. The objective is to sample, monitor, and delineate spatiotemporal landscape changes, including spatial heterogeneity and variability, in a given area. The scLHS approach, which is based on the variance quadtree technique (VQT) and the conditional Latin hypercube sampling (cLHS) method, selects samples in order to delineate landscape changes from multiple NDVI images. The images are then mapped for calibration and validation by using sequential Gaussian simulation (SGS) with the scLHS selected samples. Spatial statistical results indicate that in terms of their statistical distribution, spatial distribution, and spatial variation, the statistics and variograms of the scLHS samples resemble those of multiple NDVI images more closely than those of cLHS and VQT samples. Moreover, the accuracy of simulated NDVI images based on SGS with scLHS samples is significantly better than that of simulated NDVI images based on SGS with cLHS samples and VQT samples, respectively. However, the proposed approach efficiently monitors the spatial characteristics of landscape changes, including the statistics, spatial variability, and heterogeneity of NDVI images. In addition, SGS with the scLHS samples effectively reproduces spatial patterns and landscape changes in multiple NDVI images.

  20. An integrated data model to estimate spatiotemporal occupancy, abundance, and colonization dynamics

    USGS Publications Warehouse

    Williams, Perry J.; Hooten, Mevin B.; Womble, Jamie N.; Esslinger, George G.; Bower, Michael R.; Hefley, Trevor J.

    2017-01-01

    Ecological invasions and colonizations occur dynamically through space and time. Estimating the distribution and abundance of colonizing species is critical for efficient management or conservation. We describe a statistical framework for simultaneously estimating spatiotemporal occupancy and abundance dynamics of a colonizing species. Our method accounts for several issues that are common when modeling spatiotemporal ecological data including multiple levels of detection probability, multiple data sources, and computational limitations that occur when making fine-scale inference over a large spatiotemporal domain. We apply the model to estimate the colonization dynamics of sea otters (Enhydra lutris) in Glacier Bay, in southeastern Alaska.

  1. Spatio-temporal scan statistics for the detection of outbreaks involving common molecular subtypes: using human cases of Escherichia coli O157:H7 provincial PFGE pattern 8 (National Designation ECXAI.0001) in Alberta as an example.

    PubMed

    So, H C; Pearl, D L; von Königslöw, T; Louie, M; Chui, L; Svenson, L W

    2013-08-01

    Molecular typing methods have become a common part of the surveillance of foodborne pathogens. In particular, pulsed-field gel electrophoresis (PFGE) has been used successfully to identify outbreaks of Escherichia coli O157:H7 in humans from a variety of food and environmental sources. However, some PFGE patterns appear commonly in surveillance systems, making it more difficult to distinguish between outbreak and sporadic cases based on molecular data alone. In addition, it is unknown whether these common patterns might have unique epidemiological characteristics reflected in their spatial and temporal distributions. Using E. coli O157:H7 surveillance data from Alberta, collected from 2000 to 2002, we investigated whether E. coli O157:H7 with provincial PFGE pattern 8 (national designation ECXAI.0001) clustered in space, time and space-time relative to other PFGE patterns using the spatial scan statistic. Based on our purely spatial and temporal scans using a Bernoulli model, there did not appear to be strong evidence that isolates of E. coli O157:H7 with provincial PFGE pattern 8 are distributed differently from other PFGE patterns. However, we did identify space-time clusters of isolates with PFGE pattern 8, using a Bernoulli model and a space-time permutation model, which included known outbreaks and potentially unrecognized outbreaks or additional outbreak cases. There were differences between the two models in the space-time clusters identified, which suggests that the use of both models could increase the sensitivity of a quantitative surveillance system for identifying outbreaks involving isolates sharing a common PFGE pattern. © 2012 Blackwell Verlag GmbH.

  2. Role of social interactions in dynamic patterns of resource patches and forager aggregation

    PubMed Central

    Tania, Nessy; Vanderlei, Ben; Heath, Joel P.; Edelstein-Keshet, Leah

    2012-01-01

    The dynamics of resource patches and species that exploit such patches are of interest to ecologists, conservation biologists, modelers, and mathematicians. Here we consider how social interactions can create unique, evolving patterns in space and time. Whereas simple prey taxis (with consumable prey) promotes spatial uniform distributions, here we show that taxis in producer–scrounger groups can lead to pattern formation. We consider two types of foragers: those that search directly (“producers”) and those that exploit other foragers to find food (“scroungers” or exploiters). We show that such groups can sustain fluctuating spatiotemporal patterns, akin to “waves of pursuit.” Investigating the relative benefits to the individuals, we observed conditions under which either strategy leads to enhanced success, defined as net food consumption. Foragers that search for food directly have an advantage when food patches are localized. Those that seek aggregations of group mates do better when their ability to track group mates exceeds the foragers’ food-sensing acuity. When behavioral switching or reproductive success of the strategies is included, the relative abundance of foragers and exploiters is dynamic over time, in contrast with classic models that predict stable frequencies. Our work shows the importance of considering two-way interaction—i.e., how food distribution both influences and is influenced by social foraging and aggregation of predators. PMID:22745167

  3. Spatiotemporal patterns of ring-width variability in the northern interior west

    Treesearch

    R. Justin DeRose; John D. Shaw; James N. Long

    2015-01-01

    A fundamental goal of forest biogeography is to understand the factors that drive spatiotemporal variability in forest growth across large areas (e.g., states or regions). The ancillary collection of increment cores as part of the IW FIA Program represents an important non-traditional role for the development of unprecedented data sets. Individual-tree growth data from...

  4. Formation mechanism of dot-line square superlattice pattern in dielectric barrier discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Weibo; Dong, Lifang, E-mail: donglfhbu@163.com, E-mail: pyy1616@163.com; Wang, Yongjie

    We investigate the formation mechanism of the dot-line square superlattice pattern (DLSSP) in dielectric barrier discharge. The spatio-temporal structure studied by using the intensified-charge coupled device camera shows that the DLSSP is an interleaving of three different subpatterns in one half voltage cycle. The dot square lattice discharges first and, then, the two kinds of line square lattices, which form square grid structures discharge twice. When the gas pressure is varied, DLSSP can transform from square superlattice pattern (SSP). The spectral line profile method is used to compare the electron densities, which represent the amounts of surface charges qualitatively. Itmore » is found that the amount of surface charges accumulated by the first discharge of DLSSP is less than that of SSP, leading to a bigger discharge area of the following discharge (lines of DLSSP instead of halos of SSP). The spatial distribution of the electric field of the surface charges is simulated to explain the formation of DLSSP. This paper may provide a deeper understanding for the formation mechanism of complex superlattice patterns in DBD.« less

  5. DNA-Demethylase Regulated Genes Show Methylation-Independent Spatiotemporal Expression Patterns

    PubMed Central

    Schumann, Ulrike; Lee, Joanne; Kazan, Kemal; Ayliffe, Michael; Wang, Ming-Bo

    2017-01-01

    Recent research has indicated that a subset of defense-related genes is downregulated in the Arabidopsis DNA demethylase triple mutant rdd (ros1 dml2 dml3) resulting in increased susceptibility to the fungal pathogen Fusarium oxysporum. In rdd plants these downregulated genes contain hypermethylated transposable element sequences (TE) in their promoters, suggesting that this methylation represses gene expression in the mutant and that these sequences are actively demethylated in wild-type plants to maintain gene expression. In this study, the tissue-specific and pathogen-inducible expression patterns of rdd-downregulated genes were investigated and the individual role of ROS1, DML2, and DML3 demethylases in these spatiotemporal regulation patterns was determined. Large differences in defense gene expression were observed between pathogen-infected and uninfected tissues and between root and shoot tissues in both WT and rdd plants, however, only subtle changes in promoter TE methylation patterns occurred. Therefore, while TE hypermethylation caused decreased gene expression in rdd plants it did not dramatically effect spatiotemporal gene regulation, suggesting that this latter regulation is largely methylation independent. Analysis of ros1-3, dml2-1, and dml3-1 single gene mutant lines showed that promoter TE hypermethylation and defense-related gene repression was predominantly, but not exclusively, due to loss of ROS1 activity. These data demonstrate that DNA demethylation of TE sequences, largely by ROS1, promotes defense-related gene expression but does not control spatiotemporal expression in Arabidopsis. Summary: Ros1-mediated DNA demethylation of promoter transposable elements is essential for activation of defense-related gene expression in response to fungal infection in Arabidopsis thaliana. PMID:28894455

  6. Wireless Distributed Environmental Sensor Networks for Air Pollution Measurement-The Promise and the Current Reality.

    PubMed

    Broday, David M

    2017-10-02

    The evaluation of the effects of air pollution on public health and human-wellbeing requires reliable data. Standard air quality monitoring stations provide accurate measurements of airborne pollutant levels, but, due to their sparse distribution, they cannot capture accurately the spatial variability of air pollutant concentrations within cities. Dedicated in-depth field campaigns have dense spatial coverage of the measurements but are held for relatively short time periods. Hence, their representativeness is limited. Moreover, the oftentimes integrated measurements represent time-averaged records. Recent advances in communication and sensor technologies enable the deployment of dense grids of Wireless Distributed Environmental Sensor Networks for air quality monitoring, yet their capability to capture urban-scale spatiotemporal pollutant patterns has not been thoroughly examined to date. Here, we summarize our studies on the practicalities of using data streams from sensor nodes for air quality measurement and the required methods to tune the results to different stakeholders and applications. We summarize the results from eight cities across Europe, five sensor technologies-three stationary (with one tested also while moving) and two personal sensor platforms, and eight ambient pollutants. Overall, few sensors showed an exceptional and consistent performance, which can shed light on the fine spatiotemporal urban variability of pollutant concentrations. Stationary sensor nodes were more reliable than personal nodes. In general, the sensor measurements tend to suffer from the interference of various environmental factors and require frequent calibrations. This calls for the development of suitable field calibration procedures, and several such in situ field calibrations are presented.

  7. Wireless Distributed Environmental Sensor Networks for Air Pollution Measurement—The Promise and the Current Reality

    PubMed Central

    2017-01-01

    The evaluation of the effects of air pollution on public health and human-wellbeing requires reliable data. Standard air quality monitoring stations provide accurate measurements of airborne pollutant levels, but, due to their sparse distribution, they cannot capture accurately the spatial variability of air pollutant concentrations within cities. Dedicated in-depth field campaigns have dense spatial coverage of the measurements but are held for relatively short time periods. Hence, their representativeness is limited. Moreover, the oftentimes integrated measurements represent time-averaged records. Recent advances in communication and sensor technologies enable the deployment of dense grids of Wireless Distributed Environmental Sensor Networks for air quality monitoring, yet their capability to capture urban-scale spatiotemporal pollutant patterns has not been thoroughly examined to date. Here, we summarize our studies on the practicalities of using data streams from sensor nodes for air quality measurement and the required methods to tune the results to different stakeholders and applications. We summarize the results from eight cities across Europe, five sensor technologies-three stationary (with one tested also while moving) and two personal sensor platforms, and eight ambient pollutants. Overall, few sensors showed an exceptional and consistent performance, which can shed light on the fine spatiotemporal urban variability of pollutant concentrations. Stationary sensor nodes were more reliable than personal nodes. In general, the sensor measurements tend to suffer from the interference of various environmental factors and require frequent calibrations. This calls for the development of suitable field calibration procedures, and several such in situ field calibrations are presented. PMID:28974042

  8. Spatiotemporal Patterns and Socioeconomic Dimensions of Shared Accommodations: the Case of Airbnb in LOS Angeles, California

    NASA Astrophysics Data System (ADS)

    Sarkar, A.; Koohikamali, M.; Pick, J. B.

    2017-10-01

    In recent years, disruptive innovation by peer-to-peer platforms in a variety of industries, notably transportation and hospitality have altered the way individuals consume everyday essential services. With growth in sharing economy platforms such as Uber for ridesharing and Airbnb for short-term accommodations, interest in examining spatiotemporal patterns of participation in the sharing economy by suppliers and consumers is increasing. This research is motivated by key questions: who are the sharing economy workers, where are they located, and does their location influence their participation in the sharing economy? This paper is the first systematic effort to analyze spatiotemporal patterns of participation by hosts in the shared accommodation-based economy. Using three different kinds of shared accommodations listed in a 3-year period in the popular short-term accommodation platform, Airbnb, we examine spatiotemporal dimensions of host participation in a major U.S. market, Los Angeles CA. The paper also develops a conceptual model by positing associations of demographic, socioeconomic, occupational, and social capital attributes of hosts, along with their attitudes toward trust and greener consumption with hosts' participation in a shared accommodation market. Results confirm host participation to be influenced by young dependency ratio, the potential of supplemental income, as well as the sustainability potential of collaborative consumption, along with finance, insurance, and real estate occupation, but not so much by trust for our overall study area. These results add new insights to limited prior knowledge about the sharing economy worker and have policy implications.

  9. Use of prospective hospital surveillance data to define spatiotemporal heterogeneity of malaria risk in coastal Kenya.

    PubMed

    Bisanzio, Donal; Mutuku, Francis; LaBeaud, Angelle D; Mungai, Peter L; Muinde, Jackson; Busaidy, Hajara; Mukoko, Dunstan; King, Charles H; Kitron, Uriel

    2015-12-01

    Malaria in coastal Kenya shows spatial heterogeneity and seasonality, which are important factors to account for when planning an effective control system. Routinely collected data at health facilities can be used as a cost-effective method to acquire information on malaria risk for large areas. Here, data collected at one specific hospital in coastal Kenya were used to assess the ability of such passive surveillance to capture spatiotemporal heterogeneity of malaria and effectiveness of an augmented control system. Fever cases were tested for malaria at Msambweni sub-County Referral Hospital, Kwale County, Kenya, from October 2012 to March 2015. Remote sensing data were used to classify the development level of each monitored community and to identify the presence of rice fields nearby. An entomological study was performed to acquire data on the seasonality of malaria vectors in the study area. Rainfall data were obtained from a weather station located in proximity of the study area. Spatial analysis was applied to investigate spatial patterns of malarial and non-malarial fever cases. A space-time Bayesian model was performed to evaluate risk factors and identify locations at high malaria risk. Vector seasonality was analysed using a generalized additive mixed model (GAMM). Among the 25,779 tested febrile cases, 28.7 % were positive for Plasmodium infection. Malarial and non-malarial fever cases showed a marked spatial heterogeneity. High risk of malaria was linked to patient age, community development level and presence of rice fields. The peak of malaria prevalence was recorded close to rainy seasons, which correspond to periods of high vector abundance. Results from the Bayesian model identified areas with significantly high malaria risk. The model also showed that the low prevalence of malaria recorded during late 2012 and early 2013 was associated with a large-scale bed net distribution initiative in the study area during mid-2012. The results indicate that the use of passive surveillance was an effective method to detect spatiotemporal patterns of malaria risk in coastal Kenya. Furthermore, it was possible to estimate the impact of extensive bed net distribution on malaria prevalence among local fever cases over time. Passive surveillance based on georeferenced malaria testing is an important tool that control agencies can use to improve the effectiveness of interventions targeting malaria (and other causes of fever) in such high-risk locations.

  10. New type of chimera and mutual synchronization of spatiotemporal structures in two coupled ensembles of nonlocally interacting chaotic maps

    NASA Astrophysics Data System (ADS)

    Bukh, Andrei; Rybalova, Elena; Semenova, Nadezhda; Strelkova, Galina; Anishchenko, Vadim

    2017-11-01

    We study numerically the dynamics of a network made of two coupled one-dimensional ensembles of discrete-time systems. The first ensemble is represented by a ring of nonlocally coupled Henon maps and the second one by a ring of nonlocally coupled Lozi maps. We find that the network of coupled ensembles can realize all the spatio-temporal structures which are observed both in the Henon map ensemble and in the Lozi map ensemble while uncoupled. Moreover, we reveal a new type of spatiotemporal structure, a solitary state chimera, in the considered network. We also establish and describe the effect of mutual synchronization of various complex spatiotemporal patterns in the system of two coupled ensembles of Henon and Lozi maps.

  11. Spatial and Temporal Emergence Pattern of Lyme Disease in Virginia

    PubMed Central

    Li, Jie; Kolivras, Korine N.; Hong, Yili; Duan, Yuanyuan; Seukep, Sara E.; Prisley, Stephen P.; Campbell, James B.; Gaines, David N.

    2014-01-01

    The emergence of infectious diseases over the past several decades has highlighted the need to better understand epidemics and prepare for the spread of diseases into new areas. As these diseases expand their geographic range, cases are recorded at different geographic locations over time, making the analysis and prediction of this expansion complicated. In this study, we analyze spatial patterns of the disease using a statistical smoothing analysis based on areal (census tract level) count data of Lyme disease cases in Virginia from 1998 to 2011. We also use space and space–time scan statistics to reveal the presence of clusters in the spatial and spatiotemporal distribution of Lyme disease. Our results confirm and quantify the continued emergence of Lyme disease to the south and west in states along the eastern coast of the United States. The results also highlight areas where education and surveillance needs are highest. PMID:25331806

  12. Mangrove expansion and contraction at a poleward range limit: Climate extremes and land-ocean temperature gradients

    USGS Publications Warehouse

    Osland, Michael J.; Day, Richard H.; Hall, Courtney T.; Brumfield, Marisa D; Dugas, Jason; Jones, William R.

    2017-01-01

    Within the context of climate change, there is a pressing need to better understand the ecological implications of changes in the frequency and intensity of climate extremes. Along subtropical coasts, less frequent and warmer freeze events are expected to permit freeze-sensitive mangrove forests to expand poleward and displace freeze-tolerant salt marshes. Here, our aim was to better understand the drivers of poleward mangrove migration by quantifying spatiotemporal patterns in mangrove range expansion and contraction across land-ocean temperature gradients. Our work was conducted in a freeze-sensitive mangrove-marsh transition zone that spans a land-ocean temperature gradient in one of the world's most wetland-rich regions (Mississippi River Deltaic Plain; Louisiana, USA). We used historical air temperature data (1893-2014), alternative future climate scenarios, and coastal wetland coverage data (1978-2011) to investigate spatiotemporal fluctuations and climate-wetland linkages. Our analyses indicate that changes in mangrove coverage have been controlled primarily by extreme freeze events (i.e., air temperatures below a threshold zone of -6.3 to -7.6 °C). We expect that in the past 121 years, mangrove range expansion and contraction has occurred across land-ocean temperature gradients. Mangrove resistance, resilience, and dominance were all highest in areas closer to the ocean where temperature extremes were buffered by large expanses of water and saturated soil. Under climate change, these areas will likely serve as local hotspots for mangrove dispersal, growth, range expansion, and displacement of salt marsh. Collectively, our results show that the frequency and intensity of freeze events across land-ocean temperature gradients greatly influences spatiotemporal patterns of range expansion and contraction of freeze-sensitive mangroves. We expect that, along subtropical coasts, similar processes govern the distribution and abundance of other freeze-sensitive organisms. In broad terms, our findings can be used to better understand and anticipate the ecological effects of changing winter climate extremes, especially within the transition zone between tropical and temperate climates.

  13. Outlier Detection in Urban Air Quality Sensor Networks.

    PubMed

    van Zoest, V M; Stein, A; Hoek, G

    2018-01-01

    Low-cost urban air quality sensor networks are increasingly used to study the spatio-temporal variability in air pollutant concentrations. Recently installed low-cost urban sensors, however, are more prone to result in erroneous data than conventional monitors, e.g., leading to outliers. Commonly applied outlier detection methods are unsuitable for air pollutant measurements that have large spatial and temporal variations as occur in urban areas. We present a novel outlier detection method based upon a spatio-temporal classification, focusing on hourly NO 2 concentrations. We divide a full year's observations into 16 spatio-temporal classes, reflecting urban background vs. urban traffic stations, weekdays vs. weekends, and four periods per day. For each spatio-temporal class, we detect outliers using the mean and standard deviation of the normal distribution underlying the truncated normal distribution of the NO 2 observations. Applying this method to a low-cost air quality sensor network in the city of Eindhoven, the Netherlands, we found 0.1-0.5% of outliers. Outliers could reflect measurement errors or unusual high air pollution events. Additional evaluation using expert knowledge is needed to decide on treatment of the identified outliers. We conclude that our method is able to detect outliers while maintaining the spatio-temporal variability of air pollutant concentrations in urban areas.

  14. Using Twitter to Better Understand the Spatiotemporal Patterns of Public Sentiment: A Case Study in Massachusetts, USA.

    PubMed

    Cao, Xiaodong; MacNaughton, Piers; Deng, Zhengyi; Yin, Jie; Zhang, Xi; Allen, Joseph G

    2018-02-02

    Twitter provides a rich database of spatiotemporal information about users who broadcast their real-time opinions, sentiment, and activities. In this paper, we sought to investigate the holistic influence of land use and time period on public sentiment. A total of 880,937 tweets posted by 26,060 active users were collected across Massachusetts (MA), USA, through 31 November 2012 to 3 June 2013. The IBM Watson Alchemy API (application program interface) was employed to quantify the sentiment scores conveyed by tweets on a large scale. Then we statistically analyzed the sentiment scores across different spaces and times. A multivariate linear mixed-effects model was used to quantify the fixed effects of land use and the time period on the variations in sentiment scores, considering the clustering effect of users. The results exposed clear spatiotemporal patterns of users' sentiment. Higher sentiment scores were mainly observed in the commercial and public areas, during the noon/evening and on weekends. Our findings suggest that social media outputs can be used to better understand the spatial and temporal patterns of public happiness and well-being in cities and regions.

  15. Using Twitter to Better Understand the Spatiotemporal Patterns of Public Sentiment: A Case Study in Massachusetts, USA

    PubMed Central

    MacNaughton, Piers; Deng, Zhengyi; Yin, Jie; Zhang, Xi; Allen, Joseph G.

    2018-01-01

    Twitter provides a rich database of spatiotemporal information about users who broadcast their real-time opinions, sentiment, and activities. In this paper, we sought to investigate the holistic influence of land use and time period on public sentiment. A total of 880,937 tweets posted by 26,060 active users were collected across Massachusetts (MA), USA, through 31 November 2012 to 3 June 2013. The IBM Watson Alchemy API (application program interface) was employed to quantify the sentiment scores conveyed by tweets on a large scale. Then we statistically analyzed the sentiment scores across different spaces and times. A multivariate linear mixed-effects model was used to quantify the fixed effects of land use and the time period on the variations in sentiment scores, considering the clustering effect of users. The results exposed clear spatiotemporal patterns of users’ sentiment. Higher sentiment scores were mainly observed in the commercial and public areas, during the noon/evening and on weekends. Our findings suggest that social media outputs can be used to better understand the spatial and temporal patterns of public happiness and well-being in cities and regions. PMID:29393869

  16. Cellular automata rule characterization and classification using texture descriptors

    NASA Astrophysics Data System (ADS)

    Machicao, Jeaneth; Ribas, Lucas C.; Scabini, Leonardo F. S.; Bruno, Odermir M.

    2018-05-01

    The cellular automata (CA) spatio-temporal patterns have attracted the attention from many researchers since it can provide emergent behavior resulting from the dynamics of each individual cell. In this manuscript, we propose an approach of texture image analysis to characterize and classify CA rules. The proposed method converts the CA spatio-temporal patterns into a gray-scale image. The gray-scale is obtained by creating a binary number based on the 8-connected neighborhood of each dot of the CA spatio-temporal pattern. We demonstrate that this technique enhances the CA rule characterization and allow to use different texture image analysis algorithms. Thus, various texture descriptors were evaluated in a supervised training approach aiming to characterize the CA's global evolution. Our results show the efficiency of the proposed method for the classification of the elementary CA (ECAs), reaching a maximum of 99.57% of accuracy rate according to the Li-Packard scheme (6 classes) and 94.36% for the classification of the 88 rules scheme. Moreover, within the image analysis context, we found a better performance of the method by means of a transformation of the binary states to a gray-scale.

  17. Impact of ballistic body armour and load carriage on walking patterns and perceived comfort.

    PubMed

    Park, Huiju; Branson, Donna; Petrova, Adriana; Peksoz, Semra; Jacobson, Bert; Warren, Aric; Goad, Carla; Kamenidis, Panagiotis

    2013-01-01

    This study investigated the impact of weight magnitude and distribution of body armour and carrying loads on military personnel's walking patterns and comfort perceptions. Spatio-temporal parameters of walking, plantar pressure and contact area were measured while seven healthy male right-handed military students wore seven different garments of varying weight (0.06, 9, 18 and 27 kg) and load distribution (balanced and unbalanced, on the front and back torso). Higher weight increased the foot contact time with the floor. In particular, weight placement on the non-dominant side of the front torso resulted in the greatest stance phase and double support. Increased plantar pressure and contact area observed during heavier loads entail increased impact forces, which can cause overuse injuries and foot blisters. Participants reported increasingly disagreeable pressure and strain in the shoulder, neck and lower back during heavier weight conditions and unnatural walking while wearing unbalanced weight distributed loads. This study shows the potentially synergistic impact of wearing body armour vest with differential loads on body movement and comfort perception. This study found that soldiers should balance loads, avoiding load placement on the non-dominant side front torso, thus minimising mobility restriction and potential injury risk. Implications for armour vest design modifications can also be found in the results.

  18. Establishment of quantitative hydrological indexes for studies of hydro-biogeochemical interactions at the subsurface.

    NASA Astrophysics Data System (ADS)

    Alves Meira Neto, A.; Sengupta, A.; Wang, Y.; Volkmann, T.; Chorover, J.; Troch, P. A. A.

    2017-12-01

    Advances in the understanding of processes in the critical zone (CZ) are dependent on studies coupling the fields of hydrology, microbiology, geochemistry and soil development. At the same time, better insights are needed to integrate hydrologic information into biogeochemical analysis of subsurface environments. This study investigated potential hydrological indexes that help explaining spatiotemporal biogeochemical patterns. The miniLEO is a 2 m3, 10 degree sloping lysimeter located at Biosphere 2 - University of Arizona. The lysimeter was initially filled with pristine basaltic soil and subject to intermittent rainfall applications throughout the period of 18 months followed by its excavation, resulting in a grid-based sample collection at 324 locations. As a result, spatially distributed microbiological and geochemical patterns as well as soil physical properties were obtained. A hydrologic model was then developed in order to simulate the history of the system until the excavation. After being calibrated against sensor data to match its observed input-state-output behavior, the resulting distributed fields of flow velocities and moisture states were retrieved. These results were translated into several hydrological indexes to be used in with distributed microbiological and geochemical signatures. Our study attempts at conciliating sound hydrological modelling with an investigation of the subsurface biological signatures, thus providing a unique opportunity for understanding of fine-scale hydro-biological interactions.

  19. Virtual active touch using randomly patterned intracortical microstimulation.

    PubMed

    O'Doherty, Joseph E; Lebedev, Mikhail A; Li, Zheng; Nicolelis, Miguel A L

    2012-01-01

    Intracortical microstimulation (ICMS) has promise as a means for delivering somatosensory feedback in neuroprosthetic systems. Various tactile sensations could be encoded by temporal, spatial, or spatiotemporal patterns of ICMS. However, the applicability of temporal patterns of ICMS to artificial tactile sensation during active exploration is unknown, as is the minimum discriminable difference between temporally modulated ICMS patterns. We trained rhesus monkeys in an active exploration task in which they discriminated periodic pulse-trains of ICMS (200 Hz bursts at a 10 Hz secondary frequency) from pulse trains with the same average pulse rate, but distorted periodicity (200 Hz bursts at a variable instantaneous secondary frequency). The statistics of the aperiodic pulse trains were drawn from a gamma distribution with mean inter-burst intervals equal to those of the periodic pulse trains. The monkeys distinguished periodic pulse trains from aperiodic pulse trains with coefficients of variation 0.25 or greater. Reconstruction of movement kinematics, extracted from the activity of neuronal populations recorded in the sensorimotor cortex concurrent with the delivery of ICMS feedback, improved when the recording intervals affected by ICMS artifacts were removed from analysis. These results add to the growing evidence that temporally patterned ICMS can be used to simulate a tactile sense for neuroprosthetic devices.

  20. Spatio-temporal patterns of tree establishment are indicative of biotic interactions during early invasion of a montane meadow

    Treesearch

    J.M. Rice; C.B. Halpern; J.A. Antos; J.A. Jones

    2012-01-01

    Tree invasions of grasslands are occurring globally, with profound consequences for ecosystem structure and function. We explore the spatio-temporal dynamics of tree invasion of a montane meadow in the Cascade Mountains of Oregon, where meadow loss is a conservation concern. We examine the early stages of invasion, where extrinsic and intrinsic processes can be clearly...

  1. An integrated data model to estimate spatiotemporal occupancy, abundance, and colonization dynamics.

    PubMed

    Williams, Perry J; Hooten, Mevin B; Womble, Jamie N; Esslinger, George G; Bower, Michael R; Hefley, Trevor J

    2017-02-01

    Ecological invasions and colonizations occur dynamically through space and time. Estimating the distribution and abundance of colonizing species is critical for efficient management or conservation. We describe a statistical framework for simultaneously estimating spatiotemporal occupancy and abundance dynamics of a colonizing species. Our method accounts for several issues that are common when modeling spatiotemporal ecological data including multiple levels of detection probability, multiple data sources, and computational limitations that occur when making fine-scale inference over a large spatiotemporal domain. We apply the model to estimate the colonization dynamics of sea otters (Enhydra lutris) in Glacier Bay, in southeastern Alaska. © 2016 by the Ecological Society of America.

  2. Introduction to the Focus Issue: Chemo-Hydrodynamic Patterns and Instabilities

    NASA Astrophysics Data System (ADS)

    De Wit, A.; Eckert, K.; Kalliadasis, S.

    2012-09-01

    Pattern forming instabilities are often encountered in a wide variety of natural phenomena and technological applications, from self-organization in biological and chemical systems to oceanic or atmospheric circulation and heat and mass transport processes in engineering systems. Spatio-temporal structures are ubiquitous in hydrodynamics where numerous different convective instabilities generate pattern formation and complex spatiotemporal dynamics, which have been much studied both theoretically and experimentally. In parallel, reaction-diffusion processes provide another large family of pattern forming instabilities and spatio-temporal structures which have been analyzed for several decades. At the intersection of these two fields, "chemo-hydrodynamic patterns and instabilities" resulting from the coupling of hydrodynamic and reaction-diffusion processes have been less studied. The exploration of the new instability and symmetry-breaking scenarios emerging from the interplay between chemical reactions, diffusion and convective motions is a burgeoning field in which numerous exciting problems have emerged during the last few years. These problems range from fingering instabilities of chemical fronts and reactive fluid-fluid interfaces to the dynamics of reaction-diffusion systems in the presence of chaotic mixing. The questions to be addressed are at the interface of hydrodynamics, chemistry, engineering or environmental sciences to name a few and, as a consequence, they have started to draw the attention of several communities including both the nonlinear chemical dynamics and hydrodynamics communities. The collection of papers gathered in this Focus Issue sheds new light on a wide range of phenomena in the general area of chemo-hydrodynamic patterns and instabilities. It also serves as an overview of the current research and state-of-the-art in the field.

  3. The phylogeography and spatiotemporal spread of south-central skunk rabies virus.

    PubMed

    Kuzmina, Natalia A; Lemey, Philippe; Kuzmin, Ivan V; Mayes, Bonny C; Ellison, James A; Orciari, Lillian A; Hightower, Dillon; Taylor, Steven T; Rupprecht, Charles E

    2013-01-01

    The south-central skunk rabies virus (SCSK) is the most broadly distributed terrestrial viral lineage in North America. Skunk rabies has not been efficiently targeted by oral vaccination campaigns and represents a natural system of pathogen invasion, yielding insights to rabies emergence. In the present study we reconstructed spatiotemporal spread of SCSK in the whole territory of its circulation using a combination of Bayesian methods. The analysis based on 241 glycoprotein gene sequences demonstrated that SCSK is much more divergent phylogenetically than was appreciated previously. According to our analyses the SCSK originated in the territory of Texas ~170 years ago, and spread geographically during the following decades. The wavefront velocity in the northward direction was significantly greater than in the eastward and westward directions. Rivers (except the Mississippi River and Rio Grande River) did not constitute significant barriers for epizootic spread, in contrast to deserts and mountains. The mean dispersal rate of skunk rabies was lower than that of the raccoon and fox rabies. Viral lineages circulate in their areas with limited evidence of geographic spread during decades. However, spatiotemporal reconstruction shows that after a long period of stability the dispersal rate and wavefront velocity of SCSK are increasing. Our results indicate that there is a need to develop control measures for SCSK, and suggest how such measure can be implemented most efficiently. Our approach can be extrapolated to other rabies reservoirs and used as a tool for investigation of epizootic patterns and planning interventions towards disease elimination.

  4. The Phylogeography and Spatiotemporal Spread of South-Central Skunk Rabies Virus

    PubMed Central

    Kuzmina, Natalia A.; Lemey, Philippe; Kuzmin, Ivan V.; Mayes, Bonny C.; Ellison, James A.; Orciari, Lillian A.; Hightower, Dillon; Taylor, Steven T.; Rupprecht, Charles E.

    2013-01-01

    The south-central skunk rabies virus (SCSK) is the most broadly distributed terrestrial viral lineage in North America. Skunk rabies has not been efficiently targeted by oral vaccination campaigns and represents a natural system of pathogen invasion, yielding insights to rabies emergence. In the present study we reconstructed spatiotemporal spread of SCSK in the whole territory of its circulation using a combination of Bayesian methods. The analysis based on 241 glycoprotein gene sequences demonstrated that SCSK is much more divergent phylogenetically than was appreciated previously. According to our analyses the SCSK originated in the territory of Texas ~170 years ago, and spread geographically during the following decades. The wavefront velocity in the northward direction was significantly greater than in the eastward and westward directions. Rivers (except the Mississippi River and Rio Grande River) did not constitute significant barriers for epizootic spread, in contrast to deserts and mountains. The mean dispersal rate of skunk rabies was lower than that of the raccoon and fox rabies. Viral lineages circulate in their areas with limited evidence of geographic spread during decades. However, spatiotemporal reconstruction shows that after a long period of stability the dispersal rate and wavefront velocity of SCSK are increasing. Our results indicate that there is a need to develop control measures for SCSK, and suggest how such measure can be implemented most efficiently. Our approach can be extrapolated to other rabies reservoirs and used as a tool for investigation of epizootic patterns and planning interventions towards disease elimination. PMID:24312657

  5. Uncertainties in data-model comparisons: Spatio-temporal scales for past climates

    NASA Astrophysics Data System (ADS)

    Lohmann, G.

    2016-12-01

    Data-model comparisons are hindered by uncertainties like varying reservoir ages or potential seasonality bias of the recorder systems, but also due to the models' difficulty to represent the spatio-temporal variability patterns. For the Holocene we detect a sensitivity to horizontal resolution in the atmosphere, the representation of atmospheric dynamics, as well as the dynamics of the western boundary currents in the ocean. These features can create strong spatial heterogeneity in the North Atlantic and Pacific Oceans over long timescales (unlike a diffusive spatio-temporal scale separation). Futhermore, it is shown that such non-linear mechanisms could create a non-trivial response to seasonal insolation forcing via an atmospheric bridge inducing non-uniform temperature anomalies over the northern continents on multi-millennial time scales. Through the fluctuation-dissipation-theorem, climate variability and sensitivity are ultimately coupled. It is argued that some obvious biases between models and data may be linked to the missing key persistent component of the atmospheric dynamics, the North Atlantic blocking activity. It is shown that blocking is also linked to Atlantic multidecadal ocean variability and to extreme events. Interestingly, several proxies provide a measure of the frequency of extreme events, and a proper representation is a true challenge for climate models. Finally, case studies from deep paleo are presented in which changes in land-sea distribution or subscale parameterizations can cause relatively large effects on surface temperature. Such experiments can explore the phase space of solutions, but show the limitation of past climates to constrain climate sensitivity.

  6. Resolving the Detailed Spatiotemporal Slip Evolution of Deep Tremor in Western Japan

    NASA Astrophysics Data System (ADS)

    Ohta, Kazuaki; Ide, Satoshi

    2017-12-01

    We study the detailed spatiotemporal behavior of deep tremor in western Japan through the development and application of a new slip inversion method. Although many studies now recognize tremor as shear slip along the plate interface manifested in low-frequency earthquake (LFE) swarms, a conventional slip inversion analysis is not available for tremor due to insufficient knowledge of source locations and Green's functions. Here we introduce synthetic template waveforms, which are typical tremor waveforms obtained by stacking LFE seismograms at arranged points along the plate interface. Using these synthetic template waveforms as substitutes for Green's functions, we invert the continuous tremor waveforms using an iterative deconvolution approach with Bayesian constraints. We apply this method to two tremor burst episodes in western and central Shikoku, Japan. The estimated slip distribution from a 12 day tremor burst episode in western Shikoku is heterogeneous, with several patchy areas of slip along the plate interface where rapid moment releases with durations of <100 s regularly occur. We attribute these heterogeneous spatiotemporal slip patterns to heterogeneous material properties along the plate interface. For central Shikoku, where we focus on a tremor burst episode that occurred coincidentally with a very low frequency earthquake (VLF), we observe that the source size of the VLF is much larger than that estimated from tremor activity in western Shikoku. These differences in the size of the slip region may dictate the visibility of VLF signals in observed seismograms, which has implications for the mechanics of slow earthquakes and subduction zone processes.

  7. Acute differences in foot strike and spatiotemporal variables for shod, barefoot or minimalist male runners.

    PubMed

    McCallion, Ciara; Donne, Bernard; Fleming, Neil; Blanksby, Brian

    2014-05-01

    This study compared stride length, stride frequency, contact time, flight time and foot-strike patterns (FSP) when running barefoot, and in minimalist and conventional running shoes. Habitually shod male athletes (n = 14; age 25 ± 6 yr; competitive running experience 8 ± 3 yr) completed a randomised order of 6 by 4-min treadmill runs at velocities (V1 and V2) equivalent to 70 and 85% of best 5-km race time, in the three conditions. Synchronous recording of 3-D joint kinematics and ground reaction force data examined spatiotemporal variables and FSP. Most participants adopted a mid-foot strike pattern, regardless of condition. Heel-toe latency was less at V2 than V1 (-6 ± 20 vs. -1 ± 13 ms, p < 0.05), which indicated a velocity related shift towards a more FFS pattern. Stride duration and flight time, when shod and in minimalist footwear, were greater than barefoot (713 ± 48 and 701 ± 49 vs. 679 ± 56 ms, p < 0.001; and 502 ± 45 and 503 ± 41 vs. 488 ±4 9 ms, p < 0.05, respectively). Contact time was significantly longer when running shod than barefoot or in minimalist footwear (211±30 vs. 191 ± 29 ms and 198 ± 33 ms, p < 0.001). When running barefoot, stride frequency was significantly higher (p < 0.001) than in conventional and minimalist footwear (89 ± 7 vs. 85 ± 6 and 86 ± 6 strides·min(-1)). In conclusion, differences in spatiotemporal variables occurred within a single running session, irrespective of barefoot running experience, and, without a detectable change in FSP. Key pointsDifferences in spatiotemporal variables occurred within a single running session, without a change in foot strike pattern.Stride duration and flight time were greater when shod and in minimalist footwear than when barefoot.Stride frequency when barefoot was higher than when shod or in minimalist footwear.Contact time when shod was longer than when barefoot or in minimalist footwear.Spatiotemporal variables when running in minimalist footwear more closely resemble shod than barefoot running.

  8. Acute Differences in Foot Strike and Spatiotemporal Variables for Shod, Barefoot or Minimalist Male Runners

    PubMed Central

    McCallion, Ciara; Donne, Bernard; Fleming, Neil; Blanksby, Brian

    2014-01-01

    This study compared stride length, stride frequency, contact time, flight time and foot-strike patterns (FSP) when running barefoot, and in minimalist and conventional running shoes. Habitually shod male athletes (n = 14; age 25 ± 6 yr; competitive running experience 8 ± 3 yr) completed a randomised order of 6 by 4-min treadmill runs at velocities (V1 and V2) equivalent to 70 and 85% of best 5-km race time, in the three conditions. Synchronous recording of 3-D joint kinematics and ground reaction force data examined spatiotemporal variables and FSP. Most participants adopted a mid-foot strike pattern, regardless of condition. Heel-toe latency was less at V2 than V1 (-6 ± 20 vs. -1 ± 13 ms, p < 0.05), which indicated a velocity related shift towards a more FFS pattern. Stride duration and flight time, when shod and in minimalist footwear, were greater than barefoot (713 ± 48 and 701 ± 49 vs. 679 ± 56 ms, p < 0.001; and 502 ± 45 and 503 ± 41 vs. 488 ±4 9 ms, p < 0.05, respectively). Contact time was significantly longer when running shod than barefoot or in minimalist footwear (211±30 vs. 191 ± 29 ms and 198 ± 33 ms, p < 0.001). When running barefoot, stride frequency was significantly higher (p < 0.001) than in conventional and minimalist footwear (89 ± 7 vs. 85 ± 6 and 86 ± 6 strides·min-1). In conclusion, differences in spatiotemporal variables occurred within a single running session, irrespective of barefoot running experience, and, without a detectable change in FSP. Key points Differences in spatiotemporal variables occurred within a single running session, without a change in foot strike pattern. Stride duration and flight time were greater when shod and in minimalist footwear than when barefoot. Stride frequency when barefoot was higher than when shod or in minimalist footwear. Contact time when shod was longer than when barefoot or in minimalist footwear. Spatiotemporal variables when running in minimalist footwear more closely resemble shod than barefoot running. PMID:24790480

  9. The statistics of local motion signals in naturalistic movies

    PubMed Central

    Nitzany, Eyal I.; Victor, Jonathan D.

    2014-01-01

    Extraction of motion from visual input plays an important role in many visual tasks, such as separation of figure from ground and navigation through space. Several kinds of local motion signals have been distinguished based on mathematical and computational considerations (e.g., motion based on spatiotemporal correlation of luminance, and motion based on spatiotemporal correlation of flicker), but little is known about the prevalence of these different kinds of signals in the real world. To address this question, we first note that different kinds of local motion signals (e.g., Fourier, non-Fourier, and glider) are characterized by second- and higher-order correlations in slanted spatiotemporal regions. The prevalence of local motion signals in natural scenes can thus be estimated by measuring the extent to which each of these correlations are present in space-time patches and whether they are coherent across spatiotemporal scales. We apply this technique to several popular movies. The results show that all three kinds of local motion signals are present in natural movies. While the balance of the different kinds of motion signals varies from segment to segment during the course of each movie, the overall pattern of prevalence of the different kinds of motion and their subtypes, and the correlations between them, is strikingly similar across movies (but is absent from white noise movies). In sum, naturalistic movies contain a diversity of local motion signals that occur with a consistent prevalence and pattern of covariation, indicating a substantial regularity of their high-order spatiotemporal image statistics. PMID:24732243

  10. [Mortality from Suicide in the Municipalities of Mainland Portugal: Spatio-Temporal Evolution between 1980 and 2015].

    PubMed

    Loureiro, Adriana; Almendra, Ricardo; Costa, Cláudia; Santana, Paula

    2018-01-31

    Suicide is considered a public health priority. It is a complex phenomenon resulting from the interaction of several factors, which do not depend solely on individual conditions. This study analyzes the spatio-temporal evolution of suicide mortality between 1980 and 2015, identifying areas of high risk, and their variation, in the 278 municipalities of Continental Portugal. Based on the number of self-inflicted injuries and deaths from suicide and the resident population, the spatio-temporal evolution of the suicide mortality rate was assessed via: i) a Poisson joinpoint regression model, and ii) spatio-temporal clustering methods. The suicide mortality rate evolution showed statistically significant increases over three periods (1980 - 1984; 1999 - 2002 and 2006 - 2015) and two statistically significant periods of decrease (1984 - 1995 and 1995 - 1999). The spatio-temporal analysis identified five clusters of high suicide risk (relative risk >1) and four clusters of low suicide risk (relative risk < 1). The periods when suicide mortality increases seem to overlap with times of economic and financial instability. The geographical pattern of suicide risk has changed: presently, the suicide rates from the municipalities in the Center and North are showing more similarity with those seen in the South, thus increasing the ruralization of the phenomenon of suicide. Between 1980 and 2015 the spacio-temporal pattern of mortality from suicide has been changing and is a phenomenon that is currently experiencing a growing trend (since 2006) and is of higher risk in rural areas.

  11. The statistics of local motion signals in naturalistic movies.

    PubMed

    Nitzany, Eyal I; Victor, Jonathan D

    2014-04-14

    Extraction of motion from visual input plays an important role in many visual tasks, such as separation of figure from ground and navigation through space. Several kinds of local motion signals have been distinguished based on mathematical and computational considerations (e.g., motion based on spatiotemporal correlation of luminance, and motion based on spatiotemporal correlation of flicker), but little is known about the prevalence of these different kinds of signals in the real world. To address this question, we first note that different kinds of local motion signals (e.g., Fourier, non-Fourier, and glider) are characterized by second- and higher-order correlations in slanted spatiotemporal regions. The prevalence of local motion signals in natural scenes can thus be estimated by measuring the extent to which each of these correlations are present in space-time patches and whether they are coherent across spatiotemporal scales. We apply this technique to several popular movies. The results show that all three kinds of local motion signals are present in natural movies. While the balance of the different kinds of motion signals varies from segment to segment during the course of each movie, the overall pattern of prevalence of the different kinds of motion and their subtypes, and the correlations between them, is strikingly similar across movies (but is absent from white noise movies). In sum, naturalistic movies contain a diversity of local motion signals that occur with a consistent prevalence and pattern of covariation, indicating a substantial regularity of their high-order spatiotemporal image statistics.

  12. An Efficient Method of Sharing Mass Spatio-Temporal Trajectory Data Based on Cloudera Impala for Traffic Distribution Mapping in an Urban City.

    PubMed

    Zhou, Lianjie; Chen, Nengcheng; Yuan, Sai; Chen, Zeqiang

    2016-10-29

    The efficient sharing of spatio-temporal trajectory data is important to understand traffic congestion in mass data. However, the data volumes of bus networks in urban cities are growing rapidly, reaching daily volumes of one hundred million datapoints. Accessing and retrieving mass spatio-temporal trajectory data in any field is hard and inefficient due to limited computational capabilities and incomplete data organization mechanisms. Therefore, we propose an optimized and efficient spatio-temporal trajectory data retrieval method based on the Cloudera Impala query engine, called ESTRI, to enhance the efficiency of mass data sharing. As an excellent query tool for mass data, Impala can be applied for mass spatio-temporal trajectory data sharing. In ESTRI we extend the spatio-temporal trajectory data retrieval function of Impala and design a suitable data partitioning method. In our experiments, the Taiyuan BeiDou (BD) bus network is selected, containing 2300 buses with BD positioning sensors, producing 20 million records every day, resulting in two difficulties as described in the Introduction section. In addition, ESTRI and MongoDB are applied in experiments. The experiments show that ESTRI achieves the most efficient data retrieval compared to retrieval using MongoDB for data volumes of fifty million, one hundred million, one hundred and fifty million, and two hundred million. The performance of ESTRI is approximately seven times higher than that of MongoDB. The experiments show that ESTRI is an effective method for retrieving mass spatio-temporal trajectory data. Finally, bus distribution mapping in Taiyuan city is achieved, describing the buses density in different regions at different times throughout the day, which can be applied in future studies of transport, such as traffic scheduling, traffic planning and traffic behavior management in intelligent public transportation systems.

  13. Simulations of Western North American Hydroclimate during the Little Ice Age and Medieval Climate Anomaly

    NASA Astrophysics Data System (ADS)

    Simon, S. M.; Mann, M. E.; Steinman, B. A.; Feng, S.; Zhang, Y.; Miller, S. K.

    2013-12-01

    Despite the immense impact that large, modern North American droughts, such as those of the 1930s and 1950s, have had on economic, social, aquacultural, and agricultural systems, they are smaller in duration and magnitude than the multidecadal megadroughts that affected North America, in particular the western United States, during the Medieval Climate Anomaly (MCA, ~ 900-1300 AD) and the Little Age (LIA, ~1450-1850 AD). Although various proxy records have been used to reconstruct the timing of these MCA and LIA megadroughts in the western United States, there still exists great uncertainty in the magnitude and spatial coherence of such droughts in the Pacific Northwest region, especially on decadal to centennial timescales. This uncertainty motivates the following study to establish a causal link between the climate forcing that induced these megadroughts and the spatiotemporal response of regional North American hydroclimates to this forcing. This study seeks to establish a better understanding of the influence of tropical Pacific and North Atlantic SSTs on North American drought during the MCA and LIA. We force NCAR's Community Atmospheric Model version 5.1.1 (CAM 5) with prescribed proxy-reconstructed tropical Pacific and North Atlantic SST anomalies from the MCA and LIA, in order to investigate the influence that these SST anomalies had on the spatiotemporal patterns of drought in North America. To isolate the effects of individual ocean basin SSTs on the North American climate system, the model experiments use a variety of SST permutations in the tropical Pacific and North Atlantic basin as external forcing. In order to quantify the spatiotemporal response of the North American climate system to these SST forcing permutations, temperature and precipitation data derived from the MCA and LIA model experiments are compared to lake sediment isotope and tree ring-based hydroclimate reconstructions from the Pacific Northwest. The spatiotemporal temperature and precipitation patterns from the model experiments indicate that in the Pacific Northwest, the MCA and LIA were anomalously wet and dry periods, respectively, a finding that is largely supported by the lake sediment records. This pattern contrasts with the dry MCA/wet LIA pattern diagnosed in model experiments for the U.S Southwest and indicated by tree ring-based proxy data. Thus, the CAM 5 model experiments confirm the wet/dry dipole pattern suggested by proxy data for the western U.S. during the MCA and LIA and highlights the role that the natural variability of tropical Pacific and North Atlantic SSTs played in driving this spatiotemporal climate pattern and its related teleconnections.

  14. Functional exploratory data analysis for high-resolution measurements of urban particulate matter.

    PubMed

    Ranalli, M Giovanna; Rocco, Giorgia; Jona Lasinio, Giovanna; Moroni, Beatrice; Castellini, Silvia; Crocchianti, Stefano; Cappelletti, David

    2016-09-01

    In this work we propose the use of functional data analysis (FDA) to deal with a very large dataset of atmospheric aerosol size distribution resolved in both space and time. Data come from a mobile measurement platform in the town of Perugia (Central Italy). An OPC (Optical Particle Counter) is integrated on a cabin of the Minimetrò, an urban transportation system, that moves along a monorail on a line transect of the town. The OPC takes a sample of air every six seconds and counts the number of particles of urban aerosols with a diameter between 0.28 μm and 10 μm and classifies such particles into 21 size bins according to their diameter. Here, we adopt a 2D functional data representation for each of the 21 spatiotemporal series. In fact, space is unidimensional since it is measured as the distance on the monorail from the base station of the Minimetrò. FDA allows for a reduction of the dimensionality of each dataset and accounts for the high space-time resolution of the data. Functional cluster analysis is then performed to search for similarities among the 21 size channels in terms of their spatiotemporal pattern. Results provide a good classification of the 21 size bins into a relatively small number of groups (between three and four) according to the season of the year. Groups including coarser particles have more similar patterns, while those including finer particles show a more different behavior according to the period of the year. Such features are consistent with the physics of atmospheric aerosol and the highlighted patterns provide a very useful ground for prospective model-based studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Predominance and geo-mapping of avian influenza H5N1 in poultry sectors in Egypt.

    PubMed

    Arafa, Abdelsatar; El-Masry, Ihab; Khoulosy, Shereen; Hassan, Mohammed K; Soliman, Moussa; Fasanmi, Olubunmi G; Fasina, Folorunso O; Dauphin, Gwenaelle; Lubroth, Juan; Jobre, Yilma M

    2016-11-28

    Highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype has been enzootic in the Egyptian poultry with significant human infections since 2008. This work evaluates the epidemiological and virological information from February 2006 to May 2015 in spatial and temporal terms. Only data with confirmed HPAI H5N1 sub-type were collected, and matched with the epidemiological data from various spatially and temporally-dispersed surveillances implemented between 2006 and 2015. Spatio-temporal analysis was conducted on a total of 3338 confirmed H5N1 HPAI poultry disease outbreaks and outputs described based on transmission patterns, poultry species, production types affected, trade, geographic and temporal distributions in Egypt. The H5N1 virus persists in the Egyptian poultry displaying a seasonal pattern with peak prevalence between January and March. There was no specific geographic pattern, but chickens and ducks were more affected. However, relatively higher disease incidences were recorded in the Nile Delta. Phylogenetic studies of the haemagglutinin gene sequences of H5N1 viruses indicated that multiple clusters circulated between 2006 and 2015, with significant deviations in circulation. Epidemiological dynamics of HPAI has changed with the origins of majority of outbreaks shifted to household poultry. The persistence of HPAI H5N1 in poultry with recurrent and sporadic infections in humans can influence virus evolution spatio-temporally. Household poultry plays significant roles in the H5N1 virus transmission to poultry and humans, but the role of commercial poultry needs further clarifications. While poultry trading supports the persistence and transmission of H5N1, the role of individual species may warrant further investigation. Surveillance activities, applying a multi-sectoral approach, are recommended.

  16. Community-wide spatial and temporal discordances of seed-seedling shadows in a tropical rainforest.

    PubMed

    Rother, Débora Cristina; Pizo, Marco Aurélio; Siqueira, Tadeu; Rodrigues, Ricardo Ribeiro; Jordano, Pedro

    2015-01-01

    Several factors decrease plant survival throughout their lifecycles. Among them, seed dispersal limitation may play a major role by resulting in highly aggregated (contagious) seed and seedling distributions entailing increased mortality. The arrival of seeds, furthermore, may not match suitable environments for seed survival and, consequently, for seedling establishment. In this study, we investigated spatio-temporal patterns of seed and seedling distribution in contrasting microhabitats (bamboo and non-bamboo stands) from the Brazilian Atlantic Forest. Spatial distribution patterns, spatial concordance between seed rain and seedling recruitment between subsequent years in two fruiting seasons (2004-2005 and 2007-2009), and the relation between seeds and seedlings with environmental factors were examined within a spatially-explicit framework. Density and species richness of both seeds and seedlings were randomly distributed in non-bamboo stands, but showed significant clustering in bamboo stands. Seed and seedling distributions showed across-year inconsistency, suggesting a marked spatial decoupling of the seed and seedling stages. Generalized linear mixed effects models indicated that only seed density and seed species richness differed between stand types while accounting for variation in soil characteristics. Our analyses provide evidence of marked recruitment limitation as a result of the interplay between biotic and abiotic factors. Because bamboo stands promote heterogeneity in the forest, they are important components of the landscape. However, at high densities, bamboos may limit recruitment for the plant community by imposing marked discordances of seed arrival and early seedling recruitment.

  17. Uncertainty assessment of PM2.5 contamination mapping using spatiotemporal sequential indicator simulations and multi-temporal monitoring data.

    PubMed

    Yang, Yong; Christakos, George; Huang, Wei; Lin, Chengda; Fu, Peihong; Mei, Yang

    2016-04-12

    Because of the rapid economic growth in China, many regions are subjected to severe particulate matter pollution. Thus, improving the methods of determining the spatiotemporal distribution and uncertainty of air pollution can provide considerable benefits when developing risk assessments and environmental policies. The uncertainty assessment methods currently in use include the sequential indicator simulation (SIS) and indicator kriging techniques. However, these methods cannot be employed to assess multi-temporal data. In this work, a spatiotemporal sequential indicator simulation (STSIS) based on a non-separable spatiotemporal semivariogram model was used to assimilate multi-temporal data in the mapping and uncertainty assessment of PM2.5 distributions in a contaminated atmosphere. PM2.5 concentrations recorded throughout 2014 in Shandong Province, China were used as the experimental dataset. Based on the number of STSIS procedures, we assessed various types of mapping uncertainties, including single-location uncertainties over one day and multiple days and multi-location uncertainties over one day and multiple days. A comparison of the STSIS technique with the SIS technique indicate that a better performance was obtained with the STSIS method.

  18. Uncertainty assessment of PM2.5 contamination mapping using spatiotemporal sequential indicator simulations and multi-temporal monitoring data

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Christakos, George; Huang, Wei; Lin, Chengda; Fu, Peihong; Mei, Yang

    2016-04-01

    Because of the rapid economic growth in China, many regions are subjected to severe particulate matter pollution. Thus, improving the methods of determining the spatiotemporal distribution and uncertainty of air pollution can provide considerable benefits when developing risk assessments and environmental policies. The uncertainty assessment methods currently in use include the sequential indicator simulation (SIS) and indicator kriging techniques. However, these methods cannot be employed to assess multi-temporal data. In this work, a spatiotemporal sequential indicator simulation (STSIS) based on a non-separable spatiotemporal semivariogram model was used to assimilate multi-temporal data in the mapping and uncertainty assessment of PM2.5 distributions in a contaminated atmosphere. PM2.5 concentrations recorded throughout 2014 in Shandong Province, China were used as the experimental dataset. Based on the number of STSIS procedures, we assessed various types of mapping uncertainties, including single-location uncertainties over one day and multiple days and multi-location uncertainties over one day and multiple days. A comparison of the STSIS technique with the SIS technique indicate that a better performance was obtained with the STSIS method.

  19. Statistical study of spatio-temporal distribution of precursor solar flares associated with major flares

    NASA Astrophysics Data System (ADS)

    Gyenge, N.; Ballai, I.; Baranyi, T.

    2016-07-01

    The aim of the present investigation is to study the spatio-temporal distribution of precursor flares during the 24 h interval preceding M- and X-class major flares and the evolution of follower flares. Information on associated (precursor and follower) flares is provided by Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Flare list, while the major flares are observed by the Geostationary Operational Environmental Satellite (GOES) system satellites between 2002 and 2014. There are distinct evolutionary differences between the spatio-temporal distributions of associated flares in about one-day period depending on the type of the main flare. The spatial distribution was characterized by the normalized frequency distribution of the quantity δ (the distance between the major flare and its precursor flare normalized by the sunspot group diameter) in four 6 h time intervals before the major event. The precursors of X-class flares have a double-peaked spatial distribution for more than half a day prior to the major flare, but it changes to a lognormal-like distribution roughly 6 h prior to the event. The precursors of M-class flares show lognormal-like distribution in each 6 h subinterval. The most frequent sites of the precursors in the active region are within a distance of about 0.1 diameter of sunspot group from the site of the major flare in each case. Our investigation shows that the build-up of energy is more effective than the release of energy because of precursors.

  20. Spatial and temporal patterns of chronic wasting disease: Fine-scale mapping of a wildlife epidemic in Wisconsin

    USGS Publications Warehouse

    Osnas, E.E.; Heisey, D.M.; Rolley, R.E.; Samuel, M.D.

    2009-01-01

    Emerging infectious diseases threaten wildlife populations and human health. Understanding the spatial distributions of these new diseases is important for disease management and policy makers; however, the data are complicated by heterogeneities across host classes, sampling variance, sampling biases, and the space-time epidemic process. Ignoring these issues can lead to false conclusions or obscure important patterns in the data, such as spatial variation in disease prevalence. Here, we applied hierarchical Bayesian disease mapping methods to account for risk factors and to estimate spatial and temporal patterns of infection by chronic wasting disease (CWD) in white-tailed deer (Odocoileus virginianus) of Wisconsin, USA. We found significant heterogeneities for infection due to age, sex, and spatial location. Infection probability increased with age for all young deer, increased with age faster for young males, and then declined for some older animals, as expected from disease-associated mortality and age-related changes in infection risk. We found that disease prevalence was clustered in a central location, as expected under a simple spatial epidemic process where disease prevalence should increase with time and expand spatially. However, we could not detect any consistent temporal or spatiotemporal trends in CWD prevalence. Estimates of the temporal trend indicated that prevalence may have decreased or increased with nearly equal posterior probability, and the model without temporal or spatiotemporal effects was nearly equivalent to models with these effects based on deviance information criteria. For maximum interpretability of the role of location as a disease risk factor, we used the technique of direct standardization for prevalence mapping, which we develop and describe. These mapping results allow disease management actions to be employed with reference to the estimated spatial distribution of the disease and to those host classes most at risk. Future wildlife epidemiology studies should employ hierarchical Bayesian methods to smooth estimated quantities across space and time, account for heterogeneities, and then report disease rates based on an appropriate standardization. ?? 2009 by the Ecological Society of America.

  1. Spatiotemporal Patterns and its Instability of Land Use Change in Five Chinese Node Cities of the Belt and Road

    NASA Astrophysics Data System (ADS)

    Quan, B.; Guo, T.; Liu, P. L.; Ren, H. G.

    2017-09-01

    It has long recognized that there exists three different terrain belt in China, i.e. east, central, and west can have very different impacts on the land use changes. It is therefore better understand how spatiotemporal patterns linked with processes and instability of land use change are evolving in China across different regions. This paper compares trends of the similarities and differences to understand the spatiotemporal characteristics and the linked processes i.e. states, incidents and instability of land use change of 5 Chinese cities which are located in the nodes of The Silk Road in China. The results show that on the whole, the more land transfer times and the more land categories involved changes happens in Quanzhou City, one of eastern China than those in central and western China. Basically, cities in central and western China such as Changsha, Kunming and Urumuqi City become instable while eastern city like Quanzhou City turns to be stable over time.

  2. Electric organ discharges and near-field spatiotemporal patterns of the electromotive force in a sympatric assemblage of Neotropical electric knifefish.

    PubMed

    Waddell, Joseph C; Rodríguez-Cattáneo, Alejo; Caputi, Angel A; Crampton, William G R

    2016-10-01

    Descriptions of the head-to-tail electric organ discharge (ht-EOD) waveform - typically recorded with electrodes at a distance of approximately 1-2 body lengths from the center of the subject - have traditionally been used to characterize species diversity in gymnotiform electric fish. However, even taxa with relatively simple ht-EODs show spatiotemporally complex fields near the body surface that are determined by site-specific electrogenic properties of the electric organ and electric filtering properties of adjacent tissues and skin. In Brachyhypopomus, a pulse-discharging genus in the family Hypopomidae, the regional characteristics of the electric organ and the role that the complex 'near field' plays in communication and/or electrolocation are not well known. Here we describe, compare, and discuss the functional significance of diversity in the ht-EOD waveforms and near-field spatiotemporal patterns of the electromotive force (emf-EODs) among a species-rich sympatric community of Brachyhypopomus from the upper Amazon. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Chimera states in spatiotemporal systems: Theory and Applications

    NASA Astrophysics Data System (ADS)

    Yao, Nan; Zheng, Zhigang

    2016-03-01

    In this paper, we propose a retrospective and summary on recent studies of chimera states. Chimera states demonstrate striking inhomogeneous spatiotemporal patterns emerging in homogeneous systems through unexpected spontaneous symmetry breaking, where the consequent spatiotemporal patterns are composed of both coherence and incoherence domains, respectively characterized by the synchronized and desynchronized motions of oscillators. Since the discovery of chimera states by Kuramoto and others, this striking collective behavior has attracted a great deal of research interest in the community of physics and related interdisciplinary fields from both theoretical and experimental viewpoints. In recent works exploring chimera states, rich phenomena such as the spiral wave chimera, multiple cluster chimera, amplitude chimera were observed from various types of model systems. Theoretical framework by means of self-consistency approach and Ott-Antonsen approach were proposed for further understanding to this symmetry-breaking-induced behavior. The stability and robustness of chimera states were also discussed. More importantly, experiments ranging from optical, chemical to mechanical designs successfully approve the existence of chimera states.

  4. Discovering Coherent Structures Using Local Causal States

    NASA Astrophysics Data System (ADS)

    Rupe, Adam; Crutchfield, James P.; Kashinath, Karthik; Prabhat, Mr.

    2017-11-01

    Coherent structures were introduced in the study of fluid dynamics and were initially defined as regions characterized by high levels of coherent vorticity, i.e. regions where instantaneously space and phase correlated vorticity are high. In a more general spatiotemporal setting, coherent structures can be seen as localized broken symmetries which persist in time. Building off the computational mechanics framework, which integrates tools from computation and information theory to capture pattern and structure in nonlinear dynamical systems, we introduce a theory of coherent structures, in the more general sense. Central to computational mechanics is the causal equivalence relation, and a local spatiotemporal generalization of it is used to construct the local causal states, which are utilized to uncover a system's spatiotemporal symmetries. Coherent structures are then identified as persistent, localized deviations from these symmetries. We illustrate how novel patterns and structures can be discovered in cellular automata and outline the path from them to laminar, transitional and turbulent flows. Funded by Intel through the Big Data Center at LBNL and the IPCC at UC Davis.

  5. Energy prediction using spatiotemporal pattern networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Zhanhong; Liu, Chao; Akintayo, Adedotun

    This paper presents a novel data-driven technique based on the spatiotemporal pattern network (STPN) for energy/power prediction for complex dynamical systems. Built on symbolic dynamical filtering, the STPN framework is used to capture not only the individual system characteristics but also the pair-wise causal dependencies among different sub-systems. To quantify causal dependencies, a mutual information based metric is presented and an energy prediction approach is subsequently proposed based on the STPN framework. To validate the proposed scheme, two case studies are presented, one involving wind turbine power prediction (supply side energy) using the Western Wind Integration data set generated bymore » the National Renewable Energy Laboratory (NREL) for identifying spatiotemporal characteristics, and the other, residential electric energy disaggregation (demand side energy) using the Building America 2010 data set from NREL for exploring temporal features. In the energy disaggregation context, convex programming techniques beyond the STPN framework are developed and applied to achieve improved disaggregation performance.« less

  6. Violence in the prehistoric period of Japan: the spatio-temporal pattern of skeletal evidence for violence in the Jomon period.

    PubMed

    Nakao, Hisashi; Tamura, Kohei; Arimatsu, Yui; Nakagawa, Tomomi; Matsumoto, Naoko; Matsugi, Takehiko

    2016-03-01

    Whether man is predisposed to lethal violence, ranging from homicide to warfare, and how that may have impacted human evolution, are among the most controversial topics of debate on human evolution. Although recent studies on the evolution of warfare have been based on various archaeological and ethnographic data, they have reported mixed results: it is unclear whether or not warfare among prehistoric hunter-gatherers was common enough to be a component of human nature and a selective pressure for the evolution of human behaviour. This paper reports the mortality attributable to violence, and the spatio-temporal pattern of violence thus shown among ancient hunter-gatherers using skeletal evidence in prehistoric Japan (the Jomon period: 13 000 cal BC-800 cal BC). Our results suggest that the mortality due to violence was low and spatio-temporally highly restricted in the Jomon period, which implies that violence including warfare in prehistoric Japan was not common. © 2016 The Author(s).

  7. Violence in the prehistoric period of Japan: the spatio-temporal pattern of skeletal evidence for violence in the Jomon period

    PubMed Central

    Nakao, Hisashi; Tamura, Kohei; Arimatsu, Yui; Nakagawa, Tomomi; Matsumoto, Naoko; Matsugi, Takehiko

    2016-01-01

    Whether man is predisposed to lethal violence, ranging from homicide to warfare, and how that may have impacted human evolution, are among the most controversial topics of debate on human evolution. Although recent studies on the evolution of warfare have been based on various archaeological and ethnographic data, they have reported mixed results: it is unclear whether or not warfare among prehistoric hunter–gatherers was common enough to be a component of human nature and a selective pressure for the evolution of human behaviour. This paper reports the mortality attributable to violence, and the spatio-temporal pattern of violence thus shown among ancient hunter–gatherers using skeletal evidence in prehistoric Japan (the Jomon period: 13 000 cal BC–800 cal BC). Our results suggest that the mortality due to violence was low and spatio-temporally highly restricted in the Jomon period, which implies that violence including warfare in prehistoric Japan was not common. PMID:27029838

  8. Dynamics of oxygen and carbon dioxide in rhizospheres of Lobelia dortmanna - a planar optode study of belowground gas exchange between plants and sediment.

    PubMed

    Lenzewski, Nikola; Mueller, Peter; Meier, Robert Johannes; Liebsch, Gregor; Jensen, Kai; Koop-Jakobsen, Ketil

    2018-04-01

    Root-mediated CO 2 uptake, O 2 release and their effects on O 2 and CO 2 dynamics in the rhizosphere of Lobelia dortmanna were investigated. Novel planar optode technology, imaging CO 2 and O 2 distribution around single roots, provided insights into the spatiotemporal patterns of gas exchange between roots, sediment and microbial community. In light, O 2 release and CO 2 uptake were pronounced, resulting in a distinct oxygenated zone (radius: c. 3 mm) and a CO 2 -depleted zone (radius: c. 2 mm) around roots. Simultaneously, however, microbial CO 2 production was stimulated within a larger zone around the roots (radius: c. 10 mm). This gave rise to a distinct pattern with a CO 2 minimum at the root surface and a CO 2 maximum c. 2 mm away from the root. In darkness, CO 2 uptake ceased, and the CO 2 -depleted zone disappeared within 2 h. By contrast, the oxygenated root zone remained even after 8 h, but diminished markedly over time. A tight coupling between photosynthetic processes and the spatiotemporal dynamics of O 2 and CO 2 in the rhizosphere of Lobelia was demonstrated, and we suggest that O 2 -induced stimulation of the microbial community in the sediment increases the supply of inorganic carbon for photosynthesis by building up a CO 2 reservoir in the rhizosphere. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  9. Variability in spatio-temporal pattern of trapezius activity and coordination of hand-arm muscles during a sustained repetitive dynamic task.

    PubMed

    Samani, Afshin; Srinivasan, Divya; Mathiassen, Svend Erik; Madeleine, Pascal

    2017-02-01

    The spatio-temporal distribution of muscle activity has been suggested to be a determinant of fatigue development. Pursuing this hypothesis, we investigated the pattern of muscular activity in the shoulder and arm during a repetitive dynamic task performed until participants' rating of perceived exertion reached 8 on Borg's CR-10 scale. We collected high-density surface electromyogram (HD-EMG) over the upper trapezius, as well as bipolar EMG from biceps brachii, triceps brachii, deltoideus anterior, serratus anterior, upper and lower trapezius from 21 healthy women. Root-mean-square (RMS) and mean power frequency (MNF) were calculated for all EMG signals. The barycenter of RMS values over the HD-EMG grid was also determined, as well as normalized mutual information (NMI) for each pair of muscles. Cycle-to-cycle variability of these metrics was also assessed. With time, EMG RMS increased for most of the muscles, and MNF decreased. Trapezius activity became higher on the lateral side than on the medial side of the HD-EMG grid and the barycenter moved in a lateral direction. NMI between muscle pairs increased with time while its variability decreased. The variability of the metrics during the initial 10 % of task performance was not associated with the time to task termination. Our results suggest that the considerable variability in force and posture contained in the dynamic task per se masks any possible effects of differences between subjects in initial motor variability on the rate of fatigue development.

  10. The geographical co-distribution and socio-ecological drivers of childhood pneumonia and diarrhoea in Queensland, Australia.

    PubMed

    Xu, Z; Hu, W; Tong, S

    2015-04-01

    SUMMARY This study aimed to explore the spatio-temporal patterns, geographical co-distribution, and socio-ecological drivers of childhood pneumonia and diarrhoea in Queensland. A Bayesian conditional autoregressive model was used to quantify the impacts of socio-ecological factors on both childhood pneumonia and diarrhoea at a postal area level. A distinct seasonality of childhood pneumonia and diarrhoea was found. Childhood pneumonia and diarrhoea were mainly distributed in the northwest of Queensland. Mount Isa city was the high-risk cluster where childhood pneumonia and diarrhoea co-distributed. Emergency department visits (EDVs) for pneumonia increased by 3% per 10-mm increase in monthly average rainfall in wet seasons. By comparison, a 10-mm increase in monthly average rainfall may cause an increase of 4% in EDVs for diarrhoea. Monthly average temperature was negatively associated with EDVs for childhood diarrhoea in wet seasons. Low socioeconomic index for areas (SEIFA) was associated with high EDVs for childhood pneumonia. Future pneumonia and diarrhoea prevention and control measures in Queensland should focus more on Mount Isa.

  11. Disturbance Impacts on Thermal Hot Spots and Hot Moments at the Peatland-Atmosphere Interface

    NASA Astrophysics Data System (ADS)

    Leonard, R. M.; Kettridge, N.; Devito, K. J.; Petrone, R. M.; Mendoza, C. A.; Waddington, J. M.; Krause, S.

    2018-01-01

    Soil-surface temperature acts as a master variable driving nonlinear terrestrial ecohydrological, biogeochemical, and micrometeorological processes, inducing short-lived or spatially isolated extremes across heterogeneous landscape surfaces. However, subcanopy soil-surface temperatures have been, to date, characterized through isolated, spatially discrete measurements. Using spatially complex forested northern peatlands as an exemplar ecosystem, we explore the high-resolution spatiotemporal thermal behavior of this critical interface and its response to disturbances by using Fiber-Optic Distributed Temperature Sensing. Soil-surface thermal patterning was identified from 1.9 million temperature measurements under undisturbed, trees removed and vascular subcanopy removed conditions. Removing layers of the structurally diverse vegetation canopy not only increased mean temperatures but it shifted the spatial and temporal distribution, range, and longevity of thermal hot spots and hot moments. We argue that linking hot spots and/or hot moments with spatially variable ecosystem processes and feedbacks is key for predicting ecosystem function and resilience.

  12. Socio-economic and Climate Factors Associated with Dengue Fever Spatial Heterogeneity: A Worked Example in New Caledonia.

    PubMed

    Teurlai, Magali; Menkès, Christophe Eugène; Cavarero, Virgil; Degallier, Nicolas; Descloux, Elodie; Grangeon, Jean-Paul; Guillaumot, Laurent; Libourel, Thérèse; Lucio, Paulo Sergio; Mathieu-Daudé, Françoise; Mangeas, Morgan

    2015-12-01

    Understanding the factors underlying the spatio-temporal distribution of infectious diseases provides useful information regarding their prevention and control. Dengue fever spatio-temporal patterns result from complex interactions between the virus, the host, and the vector. These interactions can be influenced by environmental conditions. Our objectives were to analyse dengue fever spatial distribution over New Caledonia during epidemic years, to identify some of the main underlying factors, and to predict the spatial evolution of dengue fever under changing climatic conditions, at the 2100 horizon. We used principal component analysis and support vector machines to analyse and model the influence of climate and socio-economic variables on the mean spatial distribution of 24,272 dengue cases reported from 1995 to 2012 in thirty-three communes of New Caledonia. We then modelled and estimated the future evolution of dengue incidence rates using a regional downscaling of future climate projections. The spatial distribution of dengue fever cases is highly heterogeneous. The variables most associated with this observed heterogeneity are the mean temperature, the mean number of people per premise, and the mean percentage of unemployed people, a variable highly correlated with people's way of life. Rainfall does not seem to play an important role in the spatial distribution of dengue cases during epidemics. By the end of the 21st century, if temperature increases by approximately 3 °C, mean incidence rates during epidemics could double. In New Caledonia, a subtropical insular environment, both temperature and socio-economic conditions are influencing the spatial spread of dengue fever. Extension of this study to other countries worldwide should improve the knowledge about climate influence on dengue burden and about the complex interplay between different factors. This study presents a methodology that can be used as a step by step guide to model dengue spatial heterogeneity in other countries.

  13. Socio-economic and Climate Factors Associated with Dengue Fever Spatial Heterogeneity: A Worked Example in New Caledonia

    PubMed Central

    Teurlai, Magali; Menkès, Christophe Eugène; Cavarero, Virgil; Degallier, Nicolas; Descloux, Elodie; Grangeon, Jean-Paul; Guillaumot, Laurent; Libourel, Thérèse; Lucio, Paulo Sergio; Mathieu-Daudé, Françoise; Mangeas, Morgan

    2015-01-01

    Background/Objectives Understanding the factors underlying the spatio-temporal distribution of infectious diseases provides useful information regarding their prevention and control. Dengue fever spatio-temporal patterns result from complex interactions between the virus, the host, and the vector. These interactions can be influenced by environmental conditions. Our objectives were to analyse dengue fever spatial distribution over New Caledonia during epidemic years, to identify some of the main underlying factors, and to predict the spatial evolution of dengue fever under changing climatic conditions, at the 2100 horizon. Methods We used principal component analysis and support vector machines to analyse and model the influence of climate and socio-economic variables on the mean spatial distribution of 24,272 dengue cases reported from 1995 to 2012 in thirty-three communes of New Caledonia. We then modelled and estimated the future evolution of dengue incidence rates using a regional downscaling of future climate projections. Results The spatial distribution of dengue fever cases is highly heterogeneous. The variables most associated with this observed heterogeneity are the mean temperature, the mean number of people per premise, and the mean percentage of unemployed people, a variable highly correlated with people's way of life. Rainfall does not seem to play an important role in the spatial distribution of dengue cases during epidemics. By the end of the 21st century, if temperature increases by approximately 3°C, mean incidence rates during epidemics could double. Conclusion In New Caledonia, a subtropical insular environment, both temperature and socio-economic conditions are influencing the spatial spread of dengue fever. Extension of this study to other countries worldwide should improve the knowledge about climate influence on dengue burden and about the complex interplay between different factors. This study presents a methodology that can be used as a step by step guide to model dengue spatial heterogeneity in other countries. PMID:26624008

  14. Leaders and followers: quantifying consistency in spatio-temporal propagation patterns

    NASA Astrophysics Data System (ADS)

    Kreuz, Thomas; Satuvuori, Eero; Pofahl, Martin; Mulansky, Mario

    2017-04-01

    Repetitive spatio-temporal propagation patterns are encountered in fields as wide-ranging as climatology, social communication and network science. In neuroscience, perfectly consistent repetitions of the same global propagation pattern are called a synfire pattern. For any recording of sequences of discrete events (in neuroscience terminology: sets of spike trains) the questions arise how closely it resembles such a synfire pattern and which are the spike trains that lead/follow. Here we address these questions and introduce an algorithm built on two new indicators, termed SPIKE-order and spike train order, that define the synfire indicator value, which allows to sort multiple spike trains from leader to follower and to quantify the consistency of the temporal leader-follower relationships for both the original and the optimized sorting. We demonstrate our new approach using artificially generated datasets before we apply it to analyze the consistency of propagation patterns in two real datasets from neuroscience (giant depolarized potentials in mice slices) and climatology (El Niño sea surface temperature recordings). The new algorithm is distinguished by conceptual and practical simplicity, low computational cost, as well as flexibility and universality.

  15. Land surface phenological responses to land use and climate variation in a changing Central Asia

    NASA Astrophysics Data System (ADS)

    Kariyeva, Jahan

    During the last few decades Central Asia has experienced widespread changes in land cover and land use following the socio-economic and institutional transformations of the region catalyzed by the USSR collapse in 1991. The decade-long drought events and steadily increasing temperature regimes in the region came on top of these institutional transformations, affecting the long term and landscape scale vegetation responses. This research is based on the need to better understand the potential ecological and policy implications of climate variation and land use practices in the contexts of landscape-scale changes dynamics and variability patterns of land surface phenology responses in Central Asia. The land surface phenology responses -- the spatio-temporal dynamics of terrestrial vegetation derived from the remotely sensed data -- provide measurements linked to the timing of vegetation growth cycles (e.g., start of growing season) and total vegetation productivity over the growing season, which are used as a proxy for the assessment of effects of variations in environmental settings. Local and regional scale assessment of the before and after the USSR collapse vegetation response patterns in the natural and agricultural systems of the Central Asian drylands was conducted to characterize newly emerging links (since 1991) between coupled human and natural systems, e.g., socio-economic and policy drivers of altered land and water use and distribution patterns. Spatio-temporal patterns of bioclimatic responses were examined to determine how phenology is associated with temperature and precipitation in different land use types, including rainfed and irrigated agricultural types. Phenological models were developed to examine relationship between environmental drivers and effect of their altitudinal and latitudinal gradients on the broad-scale vegetation response patterns in non-cropland ecosystems of the desert, steppe, and mountainous regional landscapes of Central Asia. The study results demonstrated that the satellite derived measurements of temporal cycles of vegetation greenness and productivity data was a valuable bioclimatic integrator of climatic and land use variation in Central Asia. The synthesis of broad-scale phenological changes in Central Asia showed that linkages of natural and human systems vary across space and time comprising complex and tightly integrated patterns and processes that are not evident when studied separately.

  16. Spatiotemporal Dynamics and Reliable Computations in Recurrent Spiking Neural Networks

    NASA Astrophysics Data System (ADS)

    Pyle, Ryan; Rosenbaum, Robert

    2017-01-01

    Randomly connected networks of excitatory and inhibitory spiking neurons provide a parsimonious model of neural variability, but are notoriously unreliable for performing computations. We show that this difficulty is overcome by incorporating the well-documented dependence of connection probability on distance. Spatially extended spiking networks exhibit symmetry-breaking bifurcations and generate spatiotemporal patterns that can be trained to perform dynamical computations under a reservoir computing framework.

  17. An Online Atlas for Exploring Spatio-Temporal Patterns of Cancer Mortality (1972–2011) and Incidence (1995–2008) in Taiwan

    PubMed Central

    Ku, Wen-Yuan; Liaw, Yung-Po; Huang, Jing-Yang; Nfor, Oswald Ndi; Hsu, Shu-Yi; Ko, Pei-Chieh; Lee, Wen-Chung; Chen, Chien-Jen

    2016-01-01

    Abstract Public health mapping and Geographical Information Systems (GIS) are already being used to locate the geographical spread of diseases. This study describes the construction of an easy-to-use online atlas of cancer mortality (1972–2011) and incidence (1995–2008) in Taiwan. Two sets of color maps were made based on “age-adjusted mortality by rate” and “age-adjusted mortality by rank.” AJAX (Asynchronous JavaScript and XML), JSON (JavaScript Object Notation), and SVG (Scaling Vector Graphic) were used to create the online atlas. Spatio-temporal patterns of cancer mortality and incidence in Taiwan over the period from 1972 to 2011 and from 1995 to 2008. The constructed online atlas contains information on cancer mortality and incidence (http://taiwancancermap.csmu-liawyp.tw/). The common GIS functions include zoom and pan and identity tools. Users can easily customize the maps to explore the spatio-temporal trends of cancer mortality and incidence using different devices (such as personal computers, mobile phone, or pad). This study suggests an easy- to-use, low-cost, and independent platform for exploring cancer incidence and mortality. It is expected to serve as a reference tool for cancer prevention and risk assessment. This online atlas is a cheap and fast tool that integrates various cancer maps. Therefore, it can serve as a powerful tool that allows users to examine and compare spatio-temporal patterns of various maps. Furthermore, it is an-easy-to use tool for updating data and assessing risk factors of cancer in Taiwan. PMID:27227915

  18. An Online Atlas for Exploring Spatio-Temporal Patterns of Cancer Mortality (1972-2011) and Incidence (1995-2008) in Taiwan.

    PubMed

    Ku, Wen-Yuan; Liaw, Yung-Po; Huang, Jing-Yang; Nfor, Oswald Ndi; Hsu, Shu-Yi; Ko, Pei-Chieh; Lee, Wen-Chung; Chen, Chien-Jen

    2016-05-01

    Public health mapping and Geographical Information Systems (GIS) are already being used to locate the geographical spread of diseases. This study describes the construction of an easy-to-use online atlas of cancer mortality (1972-2011) and incidence (1995-2008) in Taiwan.Two sets of color maps were made based on "age-adjusted mortality by rate" and "age-adjusted mortality by rank." AJAX (Asynchronous JavaScript and XML), JSON (JavaScript Object Notation), and SVG (Scaling Vector Graphic) were used to create the online atlas. Spatio-temporal patterns of cancer mortality and incidence in Taiwan over the period from 1972 to 2011 and from 1995 to 2008.The constructed online atlas contains information on cancer mortality and incidence (http://taiwancancermap.csmu-liawyp.tw/). The common GIS functions include zoom and pan and identity tools. Users can easily customize the maps to explore the spatio-temporal trends of cancer mortality and incidence using different devices (such as personal computers, mobile phone, or pad). This study suggests an easy- to-use, low-cost, and independent platform for exploring cancer incidence and mortality. It is expected to serve as a reference tool for cancer prevention and risk assessment.This online atlas is a cheap and fast tool that integrates various cancer maps. Therefore, it can serve as a powerful tool that allows users to examine and compare spatio-temporal patterns of various maps. Furthermore, it is an-easy-to use tool for updating data and assessing risk factors of cancer in Taiwan.

  19. Understanding spatial and temporal patterning of astrocyte calcium transients via interactions between network transport and extracellular diffusion

    NASA Astrophysics Data System (ADS)

    Shtrahman, E.; Maruyama, D.; Olariu, E.; Fink, C. G.; Zochowski, M.

    2017-02-01

    Astrocytes form interconnected networks in the brain and communicate via calcium signaling. We investigate how modes of coupling between astrocytes influence the spatio-temporal patterns of calcium signaling within astrocyte networks and specifically how these network interactions promote coordination within this group of cells. To investigate these complex phenomena, we study reduced cultured networks of astrocytes and neurons. We image the spatial temporal patterns of astrocyte calcium activity and quantify how perturbing the coupling between astrocytes influences astrocyte activity patterns. To gain insight into the pattern formation observed in these cultured networks, we compare the experimentally observed calcium activity patterns to the patterns produced by a reduced computational model, where we represent astrocytes as simple units that integrate input through two mechanisms: gap junction coupling (network transport) and chemical release (extracellular diffusion). We examine the activity patterns in the simulated astrocyte network and their dependence upon these two coupling mechanisms. We find that gap junctions and extracellular chemical release interact in astrocyte networks to modulate the spatiotemporal patterns of their calcium dynamics. We show agreement between the computational and experimental findings, which suggests that the complex global patterns can be understood as a result of simple local coupling mechanisms.

  20. Forest canopy structural controls over throughfall affect soil microbial community structure in an epiphyte-laden maritime oak stand

    NASA Astrophysics Data System (ADS)

    Van Stan, J. T., II; Rosier, C. L.; Schrom, J. O.; Wu, T.; Reichard, J. S.; Kan, J.

    2014-12-01

    Identifying spatiotemporal influences on soil microbial community (SMC) structure is critical to understanding of patterns in nutrient cycling and related ecological services. Since forest canopy structure alters the spatiotemporal patterning of precipitation water and solute supplies to soils (via the "throughfall" mechanism), is it possible changes in SMC structure variability could arise from modifications in canopy elements? Our study investigates this question by monitoring throughfall water and dissolved ion supply to soils beneath a continuum of canopy structure: from a large gap (0% cover) to heavy Tillandsia usneoides L. (Spanish moss) canopy (>90% cover). Throughfall water supply diminished with increasing canopy cover, yet increased washoff/leaching of Na+, Cl-, PO43-, and SO42- from the canopy to the soils (p < 0.01). Presence of T. usneoides diminished throughfall NO3-, but enhanced NH4+, concentrations supplied to subcanopy soils. The mineral soil horizon (0-10 cm) from canopy gaps, bare canopy, and T. usneoides-laden canopy significantly differed (p < 0.05) in soil chemistry parameters (pH, Ca2+, Mg2+, CEC). PCR-DGGE banding patterns beneath similar canopy covers (experiencing similar throughfall dynamics) also produced high similarities per ANalyses Of SIMilarity (ANO-SIM), and clustered together when analyzed by Nonmetric Multidimensional Scaling (NMDS). Correlation analysis of DGGE banding patterns, throughfall dynamics, and soil chemistry yielded significant correlations (p < 0.05) between fungal communities and soil chemical properties significantly differing between canopy cover types (pH: r2 = 0.50; H+ %-base saturation: r2 = 0.48; Ca2+ %-base saturation: r2 = 0.43). Bacterial community structure correlated with throughfall NO3-, NH4+, and Ca2+ concentrations (r2 = 0.37, p = 0.16). These results suggest that modifications of forest canopy structures are capable of affecting mineral-soil horizon SMC structure via the throughfall mechanism when canopies' biomass distribution is highly heterogeneous.

  1. Spatiotemporal Clustering Analysis of Malaria Infection in Pakistan.

    PubMed

    Umer, Muhammad Farooq; Zofeen, Shumaila; Majeed, Abdul; Hu, Wenbiao; Qi, Xin; Zhuang, Guihua

    2018-06-07

    Despite tremendous progress, malaria remains a serious public health problem in Pakistan. Very few studies have been done on spatiotemporal evaluation of malaria infection in Pakistan. The study aimed to detect the spatiotemporal pattern of malaria infection at the district level in Pakistan, and to identify the clusters of high-risk disease areas in the country. Annual data on malaria for two dominant species ( Plasmodium falciparum , Plasmodium vivax ) and mixed infections from 2011 to 2016 were obtained from the Directorate of Malaria Control Program, Pakistan. Population data were collected from the Pakistan Bureau of Statistics. A geographical information system was used to display the spatial distribution of malaria at the district level throughout Pakistan. Purely spatiotemporal clustering analysis was performed to identify the high-risk areas of malaria infection in Pakistan. A total of 1,593,409 positive cases were included in this study over a period of 6 years (2011⁻2016). The maximum number of P . vivax cases (474,478) were reported in Khyber Pakhtunkhwa (KPK). The highest burden of P . falciparum (145,445) was in Balochistan, while the highest counts of mixed Plasmodium cases were reported in Sindh (22,421) and Balochistan (22,229), respectively. In Balochistan, incidence of all three types of malaria was very high. Cluster analysis showed that primary clusters of P . vivax malaria were in the same districts in 2014, 2015 and 2016 (total 24 districts, 12 in Federally Administered Tribal Areas (FATA), 9 in KPK, 2 in Punjab and 1 in Balochistan); those of P . falciparum malaria were unchanged in 2012 and 2013 (total 18 districts, all in Balochistan), and mixed infections remained the same in 2014 and 2015 (total 7 districts, 6 in Balochistan and 1 in FATA). This study indicated that the transmission cycles of malaria infection vary in different spatiotemporal settings in Pakistan. Efforts in controlling P . vivax malaria in particular need to be enhanced in high-risk areas. Based on these findings, further research is needed to investigate the impact of risk factors on transmission of malaria in Pakistan.

  2. Heat exposure in cities: combining the dynamics of temperature and population

    NASA Astrophysics Data System (ADS)

    Hu, L.; Wilhelmi, O.; Uejio, C. K.

    2017-12-01

    Assessment of human exposure to extreme heat requires the distributions of temperature and population. However, both variables are dynamic, thus presenting many challenges in capturing temperature and population patterns spatially and over time in an urban context. This study aims to improve the understanding of spatiotemporal patterns of urban population exposure to heat, taking Chicago, USA as an example. We estimate the hourly, geographically variable, population distribution considering commute of workers and students in a regular weekday and analyze the diurnal air temperature patterns during different meteorological conditions from satellite observations. The results show a relatively larger temperature increase in less urbanized areas during extreme heat events (EHEs), resulting in a spatially homogeneous temperature distribution over Chicago Metropolitan area. A lake cooling effect is weaker during EHEs. Population dynamics due to daily commute determine higher population density in more urbanized areas during daytime. The city-wide analysis reveals that the exposure is more sensitive to the nighttime temperature increases, and EHEs enhance this sensitivity. The high exposure hotspots are identified at the northwest Chicago, Cicero and Oak Park areas, where the influence from Lake Michigan is weakened, while the spatial extent of high outdoor exposure areas varies diurnally. This study's findings have potential to better inform general heat mitigation strategies during hot summer months and facilitate emergency response during EHEs. Availability of remotely-sensed temperature observations as well as the workers and students commute-adjusted population data allows for the adoption of this study's methodology in other major metropolitan areas. A better understanding of space-time patterns of urban population's exposure to heat will further enable local decision makers to mitigate extreme heat health risks and develop more targeted heat preparedness and response strategies.

  3. Spatiotemporal Determinants of Urban Leptospirosis Transmission: Four-Year Prospective Cohort Study of Slum Residents in Brazil.

    PubMed

    Hagan, José E; Moraga, Paula; Costa, Federico; Capian, Nicolas; Ribeiro, Guilherme S; Wunder, Elsio A; Felzemburgh, Ridalva D M; Reis, Renato B; Nery, Nivison; Santana, Francisco S; Fraga, Deborah; Dos Santos, Balbino L; Santos, Andréia C; Queiroz, Adriano; Tassinari, Wagner; Carvalho, Marilia S; Reis, Mitermayer G; Diggle, Peter J; Ko, Albert I

    2016-01-01

    Rat-borne leptospirosis is an emerging zoonotic disease in urban slum settlements for which there are no adequate control measures. The challenge in elucidating risk factors and informing approaches for prevention is the complex and heterogeneous environment within slums, which vary at fine spatial scales and influence transmission of the bacterial agent. We performed a prospective study of 2,003 slum residents in the city of Salvador, Brazil during a four-year period (2003-2007) and used a spatiotemporal modelling approach to delineate the dynamics of leptospiral transmission. Household interviews and Geographical Information System surveys were performed annually to evaluate risk exposures and environmental transmission sources. We completed annual serosurveys to ascertain leptospiral infection based on serological evidence. Among the 1,730 (86%) individuals who completed at least one year of follow-up, the infection rate was 35.4 (95% CI, 30.7-40.6) per 1,000 annual follow-up events. Male gender, illiteracy, and age were independently associated with infection risk. Environmental risk factors included rat infestation (OR 1.46, 95% CI, 1.00-2.16), contact with mud (OR 1.57, 95% CI 1.17-2.17) and lower household elevation (OR 0.92 per 10m increase in elevation, 95% CI 0.82-1.04). The spatial distribution of infection risk was highly heterogeneous and varied across small scales. Fixed effects in the spatiotemporal model accounted for the majority of the spatial variation in risk, but there was a significant residual component that was best explained by the spatial random effect. Although infection risk varied between years, the spatial distribution of risk associated with fixed and random effects did not vary temporally. Specific "hot-spots" consistently had higher transmission risk during study years. The risk for leptospiral infection in urban slums is determined in large part by structural features, both social and environmental. Our findings indicate that topographic factors such as household elevation and inadequate drainage increase risk by promoting contact with mud and suggest that the soil-water interface serves as the environmental reservoir for spillover transmission. The use of a spatiotemporal approach allowed the identification of geographic outliers with unexplained risk patterns. This approach, in addition to guiding targeted community-based interventions and identifying new hypotheses, may have general applicability towards addressing environmentally-transmitted diseases that have emerged in complex urban slum settings.

  4. Spatiotemporal Filtering Using Principal Component Analysis and Karhunen-Loeve Expansion Approaches for Regional GPS Network Analysis

    NASA Technical Reports Server (NTRS)

    Dong, D.; Fang, P.; Bock, F.; Webb, F.; Prawirondirdjo, L.; Kedar, S.; Jamason, P.

    2006-01-01

    Spatial filtering is an effective way to improve the precision of coordinate time series for regional GPS networks by reducing so-called common mode errors, thereby providing better resolution for detecting weak or transient deformation signals. The commonly used approach to regional filtering assumes that the common mode error is spatially uniform, which is a good approximation for networks of hundreds of kilometers extent, but breaks down as the spatial extent increases. A more rigorous approach should remove the assumption of spatially uniform distribution and let the data themselves reveal the spatial distribution of the common mode error. The principal component analysis (PCA) and the Karhunen-Loeve expansion (KLE) both decompose network time series into a set of temporally varying modes and their spatial responses. Therefore they provide a mathematical framework to perform spatiotemporal filtering.We apply the combination of PCA and KLE to daily station coordinate time series of the Southern California Integrated GPS Network (SCIGN) for the period 2000 to 2004. We demonstrate that spatially and temporally correlated common mode errors are the dominant error source in daily GPS solutions. The spatial characteristics of the common mode errors are close to uniform for all east, north, and vertical components, which implies a very long wavelength source for the common mode errors, compared to the spatial extent of the GPS network in southern California. Furthermore, the common mode errors exhibit temporally nonrandom patterns.

  5. Model-driven development of covariances for spatiotemporal environmental health assessment.

    PubMed

    Kolovos, Alexander; Angulo, José Miguel; Modis, Konstantinos; Papantonopoulos, George; Wang, Jin-Feng; Christakos, George

    2013-01-01

    Known conceptual and technical limitations of mainstream environmental health data analysis have directed research to new avenues. The goal is to deal more efficiently with the inherent uncertainty and composite space-time heterogeneity of key attributes, account for multi-sourced knowledge bases (health models, survey data, empirical relationships etc.), and generate more accurate predictions across space-time. Based on a versatile, knowledge synthesis methodological framework, we introduce new space-time covariance functions built by integrating epidemic propagation models and we apply them in the analysis of existing flu datasets. Within the knowledge synthesis framework, the Bayesian maximum entropy theory is our method of choice for the spatiotemporal prediction of the ratio of new infectives (RNI) for a case study of flu in France. The space-time analysis is based on observations during a period of 15 weeks in 1998-1999. We present general features of the proposed covariance functions, and use these functions to explore the composite space-time RNI dependency. We then implement the findings to generate sufficiently detailed and informative maps of the RNI patterns across space and time. The predicted distributions of RNI suggest substantive relationships in accordance with the typical physiographic and climatologic features of the country.

  6. α7 nicotinic ACh receptors as a ligand-gated source of Ca(2+) ions: the search for a Ca(2+) optimum.

    PubMed

    Uteshev, Victor V

    2012-01-01

    The spatiotemporal distribution of cytosolic Ca(2+) ions is a key determinant of neuronal behavior and survival. Distinct sources of Ca(2+) ions including ligand- and voltage-gated Ca(2+) channels contribute to intracellular Ca(2+) homeostasis. Many normal physiological and therapeutic neuronal functions are Ca(2+)-dependent, however an excess of cytosolic Ca(2+) or a lack of the appropriate balance between Ca(2+) entry and clearance may destroy cellular integrity and cause cellular death. Therefore, the existence of optimal spatiotemporal patterns of cytosolic Ca(2+) elevations and thus, optimal activation of ligand- and voltage-gated Ca(2+) ion channels are postulated to benefit neuronal function and survival. Alpha7 nicotinic -acetylcholine receptors (nAChRs) are highly permeable to Ca(2+) ions and play an important role in modulation of neurotransmitter release, gene expression and neuroprotection in a variety of neuronal and non-neuronal cells. In this review, the focus is placed on α7 nAChR-mediated currents and Ca(2+) influx and how this source of Ca(2+) entry compares to NMDA receptors in supporting cytosolic Ca(2+) homeostasis, neuronal function and survival.

  7. Spatio-temporal variation in microclimate, the surface energy balance and ablation over a cirque glacier

    NASA Astrophysics Data System (ADS)

    Hannah, David M.; Gurnell, Angela M.; McGregor, Glenn R.

    2000-06-01

    Climatic processes, operating at a range of scales, drive energy fluxes at the glacier surface which control meltwater generation and ultimately runoff. Nevertheless, to date, most glacier microclimate research has been both temporally (short-term) and spatially (single station) restricted. This paper addresses this knowledge gap by reporting on a detailed, empirical study which characterizes spatio-temporal variations in and linkages between glacier microclimate, surface energy and mass exchanges within a small glacierized cirque (Taillon Glacier, French Pyrénées) over two melt seasons. Data collected at five automatic weather stations (AWSs) and over ablation stake networks suggest that topoclimates, altitude and transient snowline position primarily determine the distribution of glacier energy receipt and, in turn, snow- and ice-melt patterns. Generally net radiation is the dominant energy source, followed by sensible heat, while latent heat is an energy sink. However, the magnitude and partitioning of energy balance terms, and consequently ablation, vary across the glacier both seasonally and with prevailing weather conditions. Importantly, this paper demonstrates that such monitoring programmes are required to truly represent and provide a sound basis for modelling glacier energy and mass-balances in both space and time.

  8. Neural basis for hand muscle synergies in the primate spinal cord.

    PubMed

    Takei, Tomohiko; Confais, Joachim; Tomatsu, Saeka; Oya, Tomomichi; Seki, Kazuhiko

    2017-08-08

    Grasping is a highly complex movement that requires the coordination of multiple hand joints and muscles. Muscle synergies have been proposed to be the functional building blocks that coordinate such complex motor behaviors, but little is known about how they are implemented in the central nervous system. Here we demonstrate that premotor interneurons (PreM-INs) in the primate cervical spinal cord underlie the spatiotemporal patterns of hand muscle synergies during a voluntary grasping task. Using spike-triggered averaging of hand muscle activity, we found that the muscle fields of PreM-INs were not uniformly distributed across hand muscles but rather distributed as clusters corresponding to muscle synergies. Moreover, although individual PreM-INs have divergent activation patterns, the population activity of PreM-INs reflects the temporal activation of muscle synergies. These findings demonstrate that spinal PreM-INs underlie the muscle coordination required for voluntary hand movements in primates. Given the evolution of neural control of primate hand functions, we suggest that spinal premotor circuits provide the fundamental coordination of multiple joints and muscles upon which more fractionated control is achieved by superimposed, phylogenetically newer, pathways.

  9. Updating source term and atmospheric dispersion simulations for the dose reconstruction in Fukushima Daiichi Nuclear Power Station Accident

    NASA Astrophysics Data System (ADS)

    Nagai, Haruyasu; Terada, Hiroaki; Tsuduki, Katsunori; Katata, Genki; Ota, Masakazu; Furuno, Akiko; Akari, Shusaku

    2017-09-01

    In order to assess the radiological dose to the public resulting from the Fukushima Daiichi Nuclear Power Station (FDNPS) accident in Japan, especially for the early phase of the accident when no measured data are available for that purpose, the spatial and temporal distribution of radioactive materials in the environment are reconstructed by computer simulations. In this study, by refining the source term of radioactive materials discharged into the atmosphere and modifying the atmospheric transport, dispersion and deposition model (ATDM), the atmospheric dispersion simulation of radioactive materials is improved. Then, a database of spatiotemporal distribution of radioactive materials in the air and on the ground surface is developed from the output of the simulation. This database is used in other studies for the dose assessment by coupling with the behavioral pattern of evacuees from the FDNPS accident. By the improvement of the ATDM simulation to use a new meteorological model and sophisticated deposition scheme, the ATDM simulations reproduced well the 137Cs and 131I deposition patterns. For the better reproducibility of dispersion processes, further refinement of the source term was carried out by optimizing it to the improved ATDM simulation by using new monitoring data.

  10. Evaluation of spatial and spatiotemporal estimation methods in simulation of precipitation variability patterns

    NASA Astrophysics Data System (ADS)

    Bayat, Bardia; Zahraie, Banafsheh; Taghavi, Farahnaz; Nasseri, Mohsen

    2013-08-01

    Identification of spatial and spatiotemporal precipitation variations plays an important role in different hydrological applications such as missing data estimation. In this paper, the results of Bayesian maximum entropy (BME) and ordinary kriging (OK) are compared for modeling spatial and spatiotemporal variations of annual precipitation with and without incorporating elevation variations. The study area of this research is Namak Lake watershed located in the central part of Iran with an area of approximately 90,000 km2. The BME and OK methods have been used to model the spatial and spatiotemporal variations of precipitation in this watershed, and their performances have been evaluated using cross-validation statistics. The results of the case study have shown the superiority of BME over OK in both spatial and spatiotemporal modes. The results have shown that BME estimates are less biased and more accurate than OK. The improvements in the BME estimates are mostly related to incorporating hard and soft data in the estimation process, which resulted in more detailed and reliable results. Estimation error variance for BME results is less than OK estimations in the study area in both spatial and spatiotemporal modes.

  11. Spatiotemporal dataset on Chinese population distribution and its driving factors from 1949 to 2013.

    PubMed

    Wang, Lizhe; Chen, Lajiao

    2016-07-05

    Spatio-temporal data on human population and its driving factors is critical to understanding and responding to population problems. Unfortunately, such spatio-temporal data on a large scale and over the long term are often difficult to obtain. Here, we present a dataset on Chinese population distribution and its driving factors over a remarkably long period, from 1949 to 2013. Driving factors of population distribution were selected according to the push-pull migration laws, which were summarized into four categories: natural environment, natural resources, economic factors and social factors. Natural environment and natural resources indicators were calculated using Geographic Information System (GIS) and Remote Sensing (RS) techniques, whereas economic and social factors from 1949 to 2013 were collected from the China Statistical Yearbook and China Compendium of Statistics from 1949 to 2008. All of the data were quality controlled and unified into an identical dataset with the same spatial scope and time period. The dataset is expected to be useful for understanding how population responds to and impacts environmental change.

  12. Spatiotemporal dataset on Chinese population distribution and its driving factors from 1949 to 2013

    NASA Astrophysics Data System (ADS)

    Wang, Lizhe; Chen, Lajiao

    2016-07-01

    Spatio-temporal data on human population and its driving factors is critical to understanding and responding to population problems. Unfortunately, such spatio-temporal data on a large scale and over the long term are often difficult to obtain. Here, we present a dataset on Chinese population distribution and its driving factors over a remarkably long period, from 1949 to 2013. Driving factors of population distribution were selected according to the push-pull migration laws, which were summarized into four categories: natural environment, natural resources, economic factors and social factors. Natural environment and natural resources indicators were calculated using Geographic Information System (GIS) and Remote Sensing (RS) techniques, whereas economic and social factors from 1949 to 2013 were collected from the China Statistical Yearbook and China Compendium of Statistics from 1949 to 2008. All of the data were quality controlled and unified into an identical dataset with the same spatial scope and time period. The dataset is expected to be useful for understanding how population responds to and impacts environmental change.

  13. Dynamic design of ecological monitoring networks for non-Gaussian spatio-temporal data

    USGS Publications Warehouse

    Wikle, C.K.; Royle, J. Andrew

    2005-01-01

    Many ecological processes exhibit spatial structure that changes over time in a coherent, dynamical fashion. This dynamical component is often ignored in the design of spatial monitoring networks. Furthermore, ecological variables related to processes such as habitat are often non-Gaussian (e.g. Poisson or log-normal). We demonstrate that a simulation-based design approach can be used in settings where the data distribution is from a spatio-temporal exponential family. The key random component in the conditional mean function from this distribution is then a spatio-temporal dynamic process. Given the computational burden of estimating the expected utility of various designs in this setting, we utilize an extended Kalman filter approximation to facilitate implementation. The approach is motivated by, and demonstrated on, the problem of selecting sampling locations to estimate July brood counts in the prairie pothole region of the U.S.

  14. Detection and Evaluation of Spatio-Temporal Spike Patterns in Massively Parallel Spike Train Data with SPADE.

    PubMed

    Quaglio, Pietro; Yegenoglu, Alper; Torre, Emiliano; Endres, Dominik M; Grün, Sonja

    2017-01-01

    Repeated, precise sequences of spikes are largely considered a signature of activation of cell assemblies. These repeated sequences are commonly known under the name of spatio-temporal patterns (STPs). STPs are hypothesized to play a role in the communication of information in the computational process operated by the cerebral cortex. A variety of statistical methods for the detection of STPs have been developed and applied to electrophysiological recordings, but such methods scale poorly with the current size of available parallel spike train recordings (more than 100 neurons). In this work, we introduce a novel method capable of overcoming the computational and statistical limits of existing analysis techniques in detecting repeating STPs within massively parallel spike trains (MPST). We employ advanced data mining techniques to efficiently extract repeating sequences of spikes from the data. Then, we introduce and compare two alternative approaches to distinguish statistically significant patterns from chance sequences. The first approach uses a measure known as conceptual stability, of which we investigate a computationally cheap approximation for applications to such large data sets. The second approach is based on the evaluation of pattern statistical significance. In particular, we provide an extension to STPs of a method we recently introduced for the evaluation of statistical significance of synchronous spike patterns. The performance of the two approaches is evaluated in terms of computational load and statistical power on a variety of artificial data sets that replicate specific features of experimental data. Both methods provide an effective and robust procedure for detection of STPs in MPST data. The method based on significance evaluation shows the best overall performance, although at a higher computational cost. We name the novel procedure the spatio-temporal Spike PAttern Detection and Evaluation (SPADE) analysis.

  15. Spatio-temporal patterns of the effects of precipitation variability and land use/cover changes on long-term changes in sediment yield in the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Gao, Guangyao; Zhang, Jianjun; Liu, Yu; Ning, Zheng; Fu, Bojie; Sivapalan, Murugesu

    2017-09-01

    Within China's Loess Plateau there have been concerted revegetation efforts and engineering measures since the 1950s aimed at reducing soil erosion and land degradation. As a result, annual streamflow, sediment yield, and sediment concentration have all decreased considerably. Human-induced land use/cover change (LUCC) was the dominant factor, contributing over 70 % of the sediment load reduction, whereas the contribution of precipitation was less than 30 %. In this study, we use 50-year time series data (1961-2011), showing decreasing trends in the annual sediment loads of 15 catchments, to generate spatio-temporal patterns in the effects of LUCC and precipitation variability on sediment yield. The space-time variability of sediment yield was expressed notionally as a product of two factors representing (i) the effect of precipitation and (ii) the fraction of treated land surface area. Under minimal LUCC, the square root of annual sediment yield varied linearly with precipitation, with the precipitation-sediment load relationship showing coherent spatial patterns amongst the catchments. As the LUCC increased and took effect, the changes in sediment yield pattern depended more on engineering measures and vegetation restoration campaign, and the within-year rainfall patterns (especially storm events) also played an important role. The effect of LUCC is expressed in terms of a sediment coefficient, i.e., the ratio of annual sediment yield to annual precipitation. Sediment coefficients showed a steady decrease over the study period, following a linear decreasing function of the fraction of treated land surface area. In this way, the study has brought out the separate roles of precipitation variability and LUCC in controlling spatio-temporal patterns of sediment yield at catchment scale.

  16. Do we really use rainfall observations consistent with reality in hydrological modelling?

    NASA Astrophysics Data System (ADS)

    Ciampalini, Rossano; Follain, Stéphane; Raclot, Damien; Crabit, Armand; Pastor, Amandine; Moussa, Roger; Le Bissonnais, Yves

    2017-04-01

    Spatial and temporal patterns in rainfall control how water reaches soil surface and interacts with soil properties (i.e., soil wetting, infiltration, saturation). Once a hydrological event is defined by a rainfall with its spatiotemporal variability and by some environmental parameters such as soil properties (including land use, topographic and anthropic features), the evidence shows that each parameter variation produces different, specific outputs (e.g., runoff, flooding etc.). In this study, we focus on the effect of rainfall patterns because, due to the difficulty to dispose of detailed data, their influence in modelling is frequently underestimated or neglected. A rainfall event affects a catchment non uniformly, it is spatially localized and its pattern moves in space and time. The way and the time how the water reaches the soil and saturates it respect to the geometry of the catchment deeply influences soil saturation, runoff, and then sediment delivery. This research, approaching a hypothetical, simple case, aims to stimulate the debate on the reliability of the rainfall quality used in hydrological / soil erosion modelling. We test on a small catchment of the south of France (Roujan, Languedoc Roussillon) the influence of rainfall variability with the use of a HD hybrid hydrological - soil erosion model, combining a cinematic wave with the St. Venant equation and a simplified "bucket" conceptual model for ground water, able to quantify the effect of different spatiotemporal patterns of a very-high-definition synthetic rainfall. Results indicate that rainfall spatiotemporal patterns are crucial simulating an erosive event: differences between spatially uniform rainfalls, as frequently adopted in simulations, and some hypothetical rainfall patterns here applied, reveal that the outcome of a simulated event can be highly underestimated.

  17. Detection and Evaluation of Spatio-Temporal Spike Patterns in Massively Parallel Spike Train Data with SPADE

    PubMed Central

    Quaglio, Pietro; Yegenoglu, Alper; Torre, Emiliano; Endres, Dominik M.; Grün, Sonja

    2017-01-01

    Repeated, precise sequences of spikes are largely considered a signature of activation of cell assemblies. These repeated sequences are commonly known under the name of spatio-temporal patterns (STPs). STPs are hypothesized to play a role in the communication of information in the computational process operated by the cerebral cortex. A variety of statistical methods for the detection of STPs have been developed and applied to electrophysiological recordings, but such methods scale poorly with the current size of available parallel spike train recordings (more than 100 neurons). In this work, we introduce a novel method capable of overcoming the computational and statistical limits of existing analysis techniques in detecting repeating STPs within massively parallel spike trains (MPST). We employ advanced data mining techniques to efficiently extract repeating sequences of spikes from the data. Then, we introduce and compare two alternative approaches to distinguish statistically significant patterns from chance sequences. The first approach uses a measure known as conceptual stability, of which we investigate a computationally cheap approximation for applications to such large data sets. The second approach is based on the evaluation of pattern statistical significance. In particular, we provide an extension to STPs of a method we recently introduced for the evaluation of statistical significance of synchronous spike patterns. The performance of the two approaches is evaluated in terms of computational load and statistical power on a variety of artificial data sets that replicate specific features of experimental data. Both methods provide an effective and robust procedure for detection of STPs in MPST data. The method based on significance evaluation shows the best overall performance, although at a higher computational cost. We name the novel procedure the spatio-temporal Spike PAttern Detection and Evaluation (SPADE) analysis. PMID:28596729

  18. Development and Sensitivity Analysis of a Frost Risk model based primarily on freely distributed Earth Observation data

    NASA Astrophysics Data System (ADS)

    Louka, Panagiota; Petropoulos, George; Papanikolaou, Ioannis

    2015-04-01

    The ability to map the spatiotemporal distribution of extreme climatic conditions, such as frost, is a significant tool in successful agricultural management and decision making. Nowadays, with the development of Earth Observation (EO) technology, it is possible to obtain accurately, timely and in a cost-effective way information on the spatiotemporal distribution of frost conditions, particularly over large and otherwise inaccessible areas. The present study aimed at developing and evaluating a frost risk prediction model, exploiting primarily EO data from MODIS and ASTER sensors and ancillary ground observation data. For the evaluation of our model, a region in north-western Greece was selected as test site and a detailed sensitivity analysis was implemented. The agreement between the model predictions and the observed (remotely sensed) frost frequency obtained by MODIS sensor was evaluated thoroughly. Also, detailed comparisons of the model predictions were performed against reference frost ground observations acquired from the Greek Agricultural Insurance Organization (ELGA) over a period of 10-years (2000-2010). Overall, results evidenced the ability of the model to produce reasonably well the frost conditions, following largely explainable patterns in respect to the study site and local weather conditions characteristics. Implementation of our proposed frost risk model is based primarily on satellite imagery analysis provided nowadays globally at no cost. It is also straightforward and computationally inexpensive, requiring much less effort in comparison for example to field surveying. Finally, the method is adjustable to be potentially integrated with other high resolution data available from both commercial and non-commercial vendors. Keywords: Sensitivity analysis, frost risk mapping, GIS, remote sensing, MODIS, Greece

  19. Eco-virological approach for assessing the role of wild birds in the spread of avian influenza H5N1 along the central Asian flyway

    USGS Publications Warehouse

    Newman, Scott H.; Hill, Nichola J.; Spragens, Kyle A.; Janies, Daniel; Voronkin, Igor O.; Prosser, Diann J.; Yan, Baoping; Lei, Fumin; Batbayar, Nyambayar; Natsagdorj, Tseveenmyadag; Bishop, Charles M.; Butler, Patrick J.; Wikelski, Martin; Balachandran, Sivananinthaperumal; Mundkur, Taej; Douglas, David C.; Takekawa, John Y.

    2012-01-01

    A unique pattern of highly pathogenic avian influenza (HPAI) H5N1 outbreaks has emerged along the Central Asia Flyway, where infection of wild birds has been reported with steady frequency since 2005. We assessed the potential for two hosts of HPAI H5N1, the bar-headed goose (Anser indicus) and ruddy shelduck (Tadorna tadorna), to act as agents for virus dispersal along this ‘thoroughfare’. We used an eco-virological approach to compare the migration of 141 birds marked with GPS satellite transmitters during 2005–2010 with: 1) the spatio-temporal patterns of poultry and wild bird outbreaks of HPAI H5N1, and 2) the trajectory of the virus in the outbreak region based on phylogeographic mapping. We found that biweekly utilization distributions (UDs) for 19.2% of bar-headed geese and 46.2% of ruddy shelduck were significantly associated with outbreaks. Ruddy shelduck showed highest correlation with poultry outbreaks owing to their wintering distribution in South Asia, where there is considerable opportunity for HPAI H5N1 spillover from poultry. Both species showed correlation with wild bird outbreaks during the spring migration, suggesting they may be involved in the northward movement of the virus. However, phylogeographic mapping of HPAI H5N1 clades 2.2 and 2.3 did not support dissemination of the virus in a northern direction along the migration corridor. In particular, two subclades (2.2.1 and 2.3.2) moved in a strictly southern direction in contrast to our spatio-temporal analysis of bird migration. Our attempt to reconcile the disciplines of wild bird ecology and HPAI H5N1 virology highlights prospects offered by both approaches as well as their limitations.

  20. Sequential sampling of visual objects during sustained attention.

    PubMed

    Jia, Jianrong; Liu, Ling; Fang, Fang; Luo, Huan

    2017-06-01

    In a crowded visual scene, attention must be distributed efficiently and flexibly over time and space to accommodate different contexts. It is well established that selective attention enhances the corresponding neural responses, presumably implying that attention would persistently dwell on the task-relevant item. Meanwhile, recent studies, mostly in divided attentional contexts, suggest that attention does not remain stationary but samples objects alternately over time, suggesting a rhythmic view of attention. However, it remains unknown whether the dynamic mechanism essentially mediates attentional processes at a general level. Importantly, there is also a complete lack of direct neural evidence reflecting whether and how the brain rhythmically samples multiple visual objects during stimulus processing. To address these issues, in this study, we employed electroencephalography (EEG) and a temporal response function (TRF) approach, which can dissociate responses that exclusively represent a single object from the overall neuronal activity, to examine the spatiotemporal characteristics of attention in various attentional contexts. First, attention, which is characterized by inhibitory alpha-band (approximately 10 Hz) activity in TRFs, switches between attended and unattended objects every approximately 200 ms, suggesting a sequential sampling even when attention is required to mostly stay on the attended object. Second, the attentional spatiotemporal pattern is modulated by the task context, such that alpha-mediated switching becomes increasingly prominent as the task requires a more uniform distribution of attention. Finally, the switching pattern correlates with attentional behavioral performance. Our work provides direct neural evidence supporting a generally central role of temporal organization mechanism in attention, such that multiple objects are sequentially sorted according to their priority in attentional contexts. The results suggest that selective attention, in addition to the classically posited attentional "focus," involves a dynamic mechanism for monitoring all objects outside of the focus. Our findings also suggest that attention implements a space (object)-to-time transformation by acting as a series of concatenating attentional chunks that operate on 1 object at a time.

  1. The influence of the interactions between anthropogenic activities and multiple ecological factors on land surface temperatures of urban forests

    NASA Astrophysics Data System (ADS)

    Ren, Y.

    2017-12-01

    Context Land surface temperatures (LSTs) spatio-temporal distribution pattern of urban forests are influenced by many ecological factors; the identification of interaction between these factors can improve simulations and predictions of spatial patterns of urban cold islands. This quantitative research requires an integrated method that combines multiple sources data with spatial statistical analysis. Objectives The purpose of this study was to clarify urban forest LST influence interaction between anthropogenic activities and multiple ecological factors using cluster analysis of hot and cold spots and Geogdetector model. We introduced the hypothesis that anthropogenic activity interacts with certain ecological factors, and their combination influences urban forests LST. We also assumed that spatio-temporal distributions of urban forest LST should be similar to those of ecological factors and can be represented quantitatively. Methods We used Jinjiang as a representative city in China as a case study. Population density was employed to represent anthropogenic activity. We built up a multi-source data (forest inventory, digital elevation models (DEM), population, and remote sensing imagery) on a unified urban scale to support urban forest LST influence interaction research. Through a combination of spatial statistical analysis results, multi-source spatial data, and Geogdetector model, the interaction mechanisms of urban forest LST were revealed. Results Although different ecological factors have different influences on forest LST, in two periods with different hot spots and cold spots, the patch area and dominant tree species were the main factors contributing to LST clustering in urban forests. The interaction between anthropogenic activity and multiple ecological factors increased LST in urban forest stands, linearly and nonlinearly. Strong interactions between elevation and dominant species were generally observed and were prevalent in either hot or cold spots areas in different years. Conclusions In conclusion, a combination of spatial statistics and GeogDetector models should be effective for quantitatively evaluating interactive relationships among ecological factors, anthropogenic activity and LST.

  2. Cloudy-sky Longwave Downward Radiation Estimation by Combining MODIS and AIRS/AMSU Measurements

    NASA Astrophysics Data System (ADS)

    Wang, T.; Shi, J.

    2017-12-01

    Longwave downward radiation (LWDR) is another main energy source received by the earth's surface except solar radiation. Its importance in regulating air temperature and balancing surface energy is enlarged especially under cloudy-sky. Unfortunately, to date, a large number of efforts have been made to derive LWDR from space under only clear-sky conditions leading to difficulty in utilizing space-based LWDR in most models due to its spatio-temporal discontinuity. Currently, only few studies focused on LWDR estimation under cloudy-sky conditions, while their global application is still questionable. In this paper, an alternative strategy is proposed aiming to derive high resolution(1km) cloudy-sky LWDR by fusing collocated satellite multi-sensor measurements. The results show that the newly developed method can work well and can derive LWDR at better accuracy with RMSE<27 W/m2 and bias < 10 W/m2 even under cloudy skies and at 1km scales. By comparing to CALIPSO-CloudSat-CERES-MODIS (CCCM) and SSF products of CERES, MERRA, ERA-interim and NCEP-CSFR products, the new approach demonstrates its superiority in terms of accuracy, temporal variation and spatial distribution pattern of LWDR. The comprehensive comparison analyses also reveal that, except for the proposed product, other four products (CERES, MERRA, ERA-interim and NCEP-CSFR) also show a big difference from each other in the LWDR spatio-temporal distribution pattern and magnitude. The difference between these products can still up to 60W/m2 even at the monthly scale, implying large uncertainties in current LWDR estimations. Besides the higher accuracy of the proposed method, more importantly, it provides unprecedented possibilities for jointly generating high resolution global LWDR datasets by connecting the NASA's Earth Observing System-(EOS) mission (MODIS-AIRS/AMSU) and the Suomi National Polar-orbiting Partnership-(NPP) mission (VIIRS-CrIS/ATMS). Meanwhile, the scheme proposed in this study also gives some clues for multiple data fusing in the remote sensing community.

  3. Sequential sampling of visual objects during sustained attention

    PubMed Central

    Jia, Jianrong; Liu, Ling; Fang, Fang

    2017-01-01

    In a crowded visual scene, attention must be distributed efficiently and flexibly over time and space to accommodate different contexts. It is well established that selective attention enhances the corresponding neural responses, presumably implying that attention would persistently dwell on the task-relevant item. Meanwhile, recent studies, mostly in divided attentional contexts, suggest that attention does not remain stationary but samples objects alternately over time, suggesting a rhythmic view of attention. However, it remains unknown whether the dynamic mechanism essentially mediates attentional processes at a general level. Importantly, there is also a complete lack of direct neural evidence reflecting whether and how the brain rhythmically samples multiple visual objects during stimulus processing. To address these issues, in this study, we employed electroencephalography (EEG) and a temporal response function (TRF) approach, which can dissociate responses that exclusively represent a single object from the overall neuronal activity, to examine the spatiotemporal characteristics of attention in various attentional contexts. First, attention, which is characterized by inhibitory alpha-band (approximately 10 Hz) activity in TRFs, switches between attended and unattended objects every approximately 200 ms, suggesting a sequential sampling even when attention is required to mostly stay on the attended object. Second, the attentional spatiotemporal pattern is modulated by the task context, such that alpha-mediated switching becomes increasingly prominent as the task requires a more uniform distribution of attention. Finally, the switching pattern correlates with attentional behavioral performance. Our work provides direct neural evidence supporting a generally central role of temporal organization mechanism in attention, such that multiple objects are sequentially sorted according to their priority in attentional contexts. The results suggest that selective attention, in addition to the classically posited attentional “focus,” involves a dynamic mechanism for monitoring all objects outside of the focus. Our findings also suggest that attention implements a space (object)-to-time transformation by acting as a series of concatenating attentional chunks that operate on 1 object at a time. PMID:28658261

  4. Beyond precipitation: physiographic gradients dictate the relative importance of environmental drivers on Savanna vegetation.

    PubMed

    Campo-Bescós, Miguel A; Muñoz-Carpena, Rafael; Kaplan, David A; Southworth, Jane; Zhu, Likai; Waylen, Peter R

    2013-01-01

    Understanding the drivers of large-scale vegetation change is critical to managing landscapes and key to predicting how projected climate and land use changes will affect regional vegetation patterns. This study aimed to improve our understanding of the role, magnitude and spatial distribution of the key environmental factors driving vegetation change in southern African savanna, and how they vary across physiographic gradients. We applied Dynamic Factor Analysis (DFA), a multivariate times series dimension reduction technique to ten years of monthly remote sensing data (MODIS-derived normalized difference vegetation index, NDVI) and a suite of environmental covariates: precipitation, mean and maximum temperature, soil moisture, relative humidity, fire and potential evapotranspiration. Monthly NDVI was described by cyclic seasonal variation with distinct spatiotemporal patterns in different physiographic regions. Results support existing work emphasizing the importance of precipitation, soil moisture and fire on NDVI, but also reveal overlooked effects of temperature and evapotranspiration, particularly in regions with higher mean annual precipitation. Critically, spatial distributions of the weights of environmental covariates point to a transition in the importance of precipitation and soil moisture (strongest in grass-dominated regions with precipitation<750 mm) to fire, potential evapotranspiration, and temperature (strongest in tree-dominated regions with precipitation>950 mm). We quantified the combined spatiotemporal effects of an available suite of environmental drivers on NDVI across a large and diverse savanna region. The analysis supports known drivers of savanna vegetation but also uncovers important roles of temperature and evapotranspiration. Results highlight the utility of applying the DFA approach to remote sensing products for regional analyses of landscape change in the context of global environmental change. With the dramatic increase in global change research, this methodology augurs well for further development and application of spatially explicit time series modeling to studies at the intersection of ecology and remote sensing.

  5. Eco-Virological Approach for Assessing the Role of Wild Birds in the Spread of Avian Influenza H5N1 along the Central Asian Flyway

    PubMed Central

    Newman, Scott H.; Hill, Nichola J.; Spragens, Kyle A.; Janies, Daniel; Voronkin, Igor O.; Prosser, Diann J.; Yan, Baoping; Lei, Fumin; Batbayar, Nyambayar; Natsagdorj, Tseveenmyadag; Bishop, Charles M.; Butler, Patrick J.; Wikelski, Martin; Balachandran, Sivananinthaperumal; Mundkur, Taej; Douglas, David C.; Takekawa, John Y.

    2012-01-01

    A unique pattern of highly pathogenic avian influenza (HPAI) H5N1 outbreaks has emerged along the Central Asia Flyway, where infection of wild birds has been reported with steady frequency since 2005. We assessed the potential for two hosts of HPAI H5N1, the bar-headed goose (Anser indicus) and ruddy shelduck (Tadorna tadorna), to act as agents for virus dispersal along this ‘thoroughfare’. We used an eco-virological approach to compare the migration of 141 birds marked with GPS satellite transmitters during 2005–2010 with: 1) the spatio-temporal patterns of poultry and wild bird outbreaks of HPAI H5N1, and 2) the trajectory of the virus in the outbreak region based on phylogeographic mapping. We found that biweekly utilization distributions (UDs) for 19.2% of bar-headed geese and 46.2% of ruddy shelduck were significantly associated with outbreaks. Ruddy shelduck showed highest correlation with poultry outbreaks owing to their wintering distribution in South Asia, where there is considerable opportunity for HPAI H5N1 spillover from poultry. Both species showed correlation with wild bird outbreaks during the spring migration, suggesting they may be involved in the northward movement of the virus. However, phylogeographic mapping of HPAI H5N1 clades 2.2 and 2.3 did not support dissemination of the virus in a northern direction along the migration corridor. In particular, two subclades (2.2.1 and 2.3.2) moved in a strictly southern direction in contrast to our spatio-temporal analysis of bird migration. Our attempt to reconcile the disciplines of wild bird ecology and HPAI H5N1 virology highlights prospects offered by both approaches as well as their limitations. PMID:22347393

  6. Beyond Precipitation: Physiographic Gradients Dictate the Relative Importance of Environmental Drivers on Savanna Vegetation

    PubMed Central

    Campo-Bescós, Miguel A.; Muñoz-Carpena, Rafael; Kaplan, David A.; Southworth, Jane; Zhu, Likai; Waylen, Peter R.

    2013-01-01

    Background Understanding the drivers of large-scale vegetation change is critical to managing landscapes and key to predicting how projected climate and land use changes will affect regional vegetation patterns. This study aimed to improve our understanding of the role, magnitude and spatial distribution of the key environmental factors driving vegetation change in southern African savanna, and how they vary across physiographic gradients. Methodology/Principal Findings We applied Dynamic Factor Analysis (DFA), a multivariate times series dimension reduction technique to ten years of monthly remote sensing data (MODIS-derived normalized difference vegetation index, NDVI) and a suite of environmental covariates: precipitation, mean and maximum temperature, soil moisture, relative humidity, fire and potential evapotranspiration. Monthly NDVI was described by cyclic seasonal variation with distinct spatiotemporal patterns in different physiographic regions. Results support existing work emphasizing the importance of precipitation, soil moisture and fire on NDVI, but also reveal overlooked effects of temperature and evapotranspiration, particularly in regions with higher mean annual precipitation. Critically, spatial distributions of the weights of environmental covariates point to a transition in the importance of precipitation and soil moisture (strongest in grass-dominated regions with precipitation<750 mm) to fire, potential evapotranspiration, and temperature (strongest in tree-dominated regions with precipitation>950 mm). Conclusions/Significance We quantified the combined spatiotemporal effects of an available suite of environmental drivers on NDVI across a large and diverse savanna region. The analysis supports known drivers of savanna vegetation but also uncovers important roles of temperature and evapotranspiration. Results highlight the utility of applying the DFA approach to remote sensing products for regional analyses of landscape change in the context of global environmental change. With the dramatic increase in global change research, this methodology augurs well for further development and application of spatially explicit time series modeling to studies at the intersection of ecology and remote sensing. PMID:24023616

  7. Spatiotemporal causal modeling for the management of Dengue Fever

    NASA Astrophysics Data System (ADS)

    Yu, Hwa-Lung; Huang, Tailin; Lee, Chieh-Han

    2015-04-01

    Increasing climatic extremes have caused growing concerns about the health effects and disease outbreaks. The association between climate variation and the occurrence of epidemic diseases play an important role on a country's public health systems. Part of the impacts are direct casualties associated with the increasing frequency and intensity of typhoons, the proliferation of disease vectors and the short-term increase of clinic visits on gastro-intestinal discomforts, diarrhea, dermatosis, or psychological trauma. Other impacts come indirectly from the influence of disasters on the ecological and socio-economic systems, including the changes of air/water quality, living environment and employment condition. Previous risk assessment studies on dengue fever focus mostly on climatic and non-climatic factors and their association with vectors' reproducing pattern. The public-health implication may appear simple. Considering the seasonal changes and regional differences, however, the causality of the impacts is full of uncertainties. Without further investigation, the underlying dengue fever risk dynamics may not be assessed accurately. The objective of this study is to develop an epistemic framework for assessing dynamic dengue fever risk across space and time. The proposed framework integrates cross-departmental data, including public-health databases, precipitation data over time and various socio-economic data. We explore public-health issues induced by typhoon through literature review and spatiotemporal analytic techniques on public health databases. From those data, we identify relevant variables and possible causal relationships, and their spatiotemporal patterns derived from our proposed spatiotemporal techniques. Eventually, we create a spatiotemporal causal network and a framework for modeling dynamic dengue fever risk.

  8. Optogenetically induced spatiotemporal gamma oscillations and neuronal spiking activity in primate motor cortex.

    PubMed

    Lu, Yao; Truccolo, Wilson; Wagner, Fabien B; Vargas-Irwin, Carlos E; Ozden, Ilker; Zimmermann, Jonas B; May, Travis; Agha, Naubahar S; Wang, Jing; Nurmikko, Arto V

    2015-06-01

    Transient gamma-band (40-80 Hz) spatiotemporal patterns are hypothesized to play important roles in cortical function. Here we report the direct observation of gamma oscillations as spatiotemporal waves induced by targeted optogenetic stimulation, recorded by intracortical multichannel extracellular techniques in macaque monkeys during their awake resting states. Microelectrode arrays integrating an optical fiber at their center were chronically implanted in primary motor (M1) and ventral premotor (PMv) cortices of two subjects. Targeted brain tissue was transduced with the red-shifted opsin C1V1(T/T). Constant (1-s square pulses) and ramp stimulation induced narrowband gamma oscillations during awake resting states. Recordings across 95 microelectrodes (4 × 4-mm array) enabled us to track the transient gamma spatiotemporal patterns manifested, e.g., as concentric expanding and spiral waves. Gamma oscillations were induced well beyond the light stimulation volume, via network interactions at distal electrode sites, depending on optical power. Despite stimulation-related modulation in spiking rates, neuronal spiking remained highly asynchronous during induced gamma oscillations. In one subject we examined stimulation effects during preparation and execution of a motor task and observed that movement execution largely attenuated optically induced gamma oscillations. Our findings demonstrate that, beyond previously reported induced gamma activity under periodic drive, a prolonged constant stimulus above a certain threshold may carry primate motor cortex network dynamics into gamma oscillations, likely via a Hopf bifurcation. More broadly, the experimental capability in combining microelectrode array recordings and optogenetic stimulation provides an important approach for probing spatiotemporal dynamics in primate cortical networks during various physiological and behavioral conditions.

  9. Optogenetically induced spatiotemporal gamma oscillations and neuronal spiking activity in primate motor cortex

    PubMed Central

    Lu, Yao; Truccolo, Wilson; Wagner, Fabien B.; Vargas-Irwin, Carlos E.; Ozden, Ilker; Zimmermann, Jonas B.; May, Travis; Agha, Naubahar S.; Wang, Jing

    2015-01-01

    Transient gamma-band (40–80 Hz) spatiotemporal patterns are hypothesized to play important roles in cortical function. Here we report the direct observation of gamma oscillations as spatiotemporal waves induced by targeted optogenetic stimulation, recorded by intracortical multichannel extracellular techniques in macaque monkeys during their awake resting states. Microelectrode arrays integrating an optical fiber at their center were chronically implanted in primary motor (M1) and ventral premotor (PMv) cortices of two subjects. Targeted brain tissue was transduced with the red-shifted opsin C1V1(T/T). Constant (1-s square pulses) and ramp stimulation induced narrowband gamma oscillations during awake resting states. Recordings across 95 microelectrodes (4 × 4-mm array) enabled us to track the transient gamma spatiotemporal patterns manifested, e.g., as concentric expanding and spiral waves. Gamma oscillations were induced well beyond the light stimulation volume, via network interactions at distal electrode sites, depending on optical power. Despite stimulation-related modulation in spiking rates, neuronal spiking remained highly asynchronous during induced gamma oscillations. In one subject we examined stimulation effects during preparation and execution of a motor task and observed that movement execution largely attenuated optically induced gamma oscillations. Our findings demonstrate that, beyond previously reported induced gamma activity under periodic drive, a prolonged constant stimulus above a certain threshold may carry primate motor cortex network dynamics into gamma oscillations, likely via a Hopf bifurcation. More broadly, the experimental capability in combining microelectrode array recordings and optogenetic stimulation provides an important approach for probing spatiotemporal dynamics in primate cortical networks during various physiological and behavioral conditions. PMID:25761956

  10. Mushroom biomass and diversity are driven by different spatio-temporal scales along Mediterranean elevation gradients

    NASA Astrophysics Data System (ADS)

    Alday, Josu G.; Martínez de Aragón, Juan; de-Miguel, Sergio; Bonet, José Antonio

    2017-04-01

    Mushrooms are important non-wood-forest-products in many Mediterranean ecosystems, being highly vulnerable to climate change. However, the ecological scales of variation of mushroom productivity and diversity, and climate dependence has been usually overlooked due to a lack of available data. We determined the spatio-temporal variability of epigeous sporocarps and the climatic factors driving their fruiting to plan future sustainable management of wild mushrooms production. We collected fruiting bodies in Pinus sylvestris stands along an elevation gradient for 8 consecutive years. Overall, sporocarp biomass was mainly dependent on inter-annual variations, whereas richness was more spatial-scale dependent. Elevation was not significant, but there were clear elevational differences in biomass and richness patterns between ectomycorrhizal and saprotrophic guilds. The main driver of variation was late-summer-early-autumn precipitation. Thus, different scale processes (inter-annual vs. spatial-scale) drive sporocarp biomass and diversity patterns; temporal effects for biomass and ectomycorrhizal fungi vs. spatial scale for diversity and saprotrophic fungi. The significant role of precipitation across fungal guilds and spatio-temporal scales indicates that it is a limiting resource controlling sporocarp production and diversity in Mediterranean regions. The high spatial and temporal variability of mushrooms emphasize the need for long-term datasets of multiple spatial points to effectively characterize fungal fruiting patterns.

  11. Analyzing seasonal patterns of wildfire exposure factors in Sardinia, Italy.

    PubMed

    Salis, Michele; Ager, Alan A; Alcasena, Fermin J; Arca, Bachisio; Finney, Mark A; Pellizzaro, Grazia; Spano, Donatella

    2015-01-01

    In this paper, we applied landscape scale wildfire simulation modeling to explore the spatiotemporal patterns of wildfire likelihood and intensity in the island of Sardinia (Italy). We also performed wildfire exposure analysis for selected highly valued resources on the island to identify areas characterized by high risk. We observed substantial variation in burn probability, fire size, and flame length among time periods within the fire season, which starts in early June and ends in late September. Peak burn probability and flame length were observed in late July. We found that patterns of wildfire likelihood and intensity were mainly related to spatiotemporal variation in ignition locations, fuel moisture, and wind vectors. Our modeling approach allowed consideration of historical patterns of winds, ignition locations, and live and dead fuel moisture on fire exposure factors. The methodology proposed can be useful for analyzing potential wildfire risk and effects at landscape scale, evaluating historical changes and future trends in wildfire exposure, as well as for addressing and informing fuel management and risk mitigation issues.

  12. Travelling waves and spatial hierarchies in measles epidemics

    NASA Astrophysics Data System (ADS)

    Grenfell, B. T.; Bjørnstad, O. N.; Kappey, J.

    2001-12-01

    Spatio-temporal travelling waves are striking manifestations of predator-prey and host-parasite dynamics. However, few systems are well enough documented both to detect repeated waves and to explain their interaction with spatio-temporal variations in population structure and demography. Here, we demonstrate recurrent epidemic travelling waves in an exhaustive spatio-temporal data set for measles in England and Wales. We use wavelet phase analysis, which allows for dynamical non-stationarity-a complication in interpreting spatio-temporal patterns in these and many other ecological time series. In the pre-vaccination era, conspicuous hierarchical waves of infection moved regionally from large cities to small towns; the introduction of measles vaccination restricted but did not eliminate this hierarchical contagion. A mechanistic stochastic model suggests a dynamical explanation for the waves-spread via infective `sparks' from large `core' cities to smaller `satellite' towns. Thus, the spatial hierarchy of host population structure is a prerequisite for these infection waves.

  13. Ultrafast spatiotemporal relaxation dynamics of excited electrons in a metal nanostructure detected by femtosecond-SNOM.

    PubMed

    Li, Zhi; Yue, Song; Chen, Jianjun; Gong, Qihuang

    2010-06-21

    Ultrahigh spatiotemporal resolved pump-probe signal near a gold nano-slit is detected by femtosecond-SNOM. By employing two-color pump-probe configuration and probing at the interband transition wavelength of the gold, signal contributed by surface plasmon polariton is avoided and spatiotemporal evolvement of excited electrons is successfully observed. From the contrast decaying of the periodical distribution of the pump-probe signal, ultrafast diffusion of excited electrons with a time scale of a few hundred femtoseconds is clearly identified. For comparison, such phenomenon cannot be observed by the one-color pump-probe configuration.

  14. Holocene extinction dynamics of Equus hydruntinus, a late-surviving European megafaunal mammal

    NASA Astrophysics Data System (ADS)

    Crees, Jennifer J.; Turvey, Samuel T.

    2014-05-01

    The European wild ass (Equus hydruntinus) is a globally extinct Eurasian equid. This species was widespread in Europe and southwest Asia during the Late Pleistocene, but its distribution became restricted to southern Europe and adjacent geographic regions in the Holocene. Previous research on E. hydruntinus has focused predominantly on its taxonomy and Late Pleistocene distribution. However, its Holocene distribution and extinction remain poorly understood, despite the fact that the European wild ass represents one of Europe's very few globally extinct Holocene megafaunal mammal species. We summarise all available Holocene zooarchaeological spatio-temporal occurrence data for the species, and analyse patterns of its distribution and extinction using point pattern analysis (kernel density estimation and Clark Evans index) and optimal linear estimation. We demonstrate that the geographic range of E. hydruntinus became highly fragmented into discrete subpopulations during the Holocene, which were associated with separate regions of open habitat and which became progressively extinct between the Neolithic and Iron Age. These data challenge previous suggestions of the late survival of E. hydruntinus into the medieval period in Spain, and instead suggest that postglacial climate-driven vegetational changes were a primary factor responsible for extinction of the species, driving isolation of small remnant subpopulations that may have been increasingly vulnerable to human exploitation. This study contributes to a more nuanced understanding of Late Quaternary species extinctions in Eurasia, suggesting that they were temporally staggered and distinct in their respective extinction trajectories.

  15. Event Networks and the Identification of Crime Pattern Motifs

    PubMed Central

    2015-01-01

    In this paper we demonstrate the use of network analysis to characterise patterns of clustering in spatio-temporal events. Such clustering is of both theoretical and practical importance in the study of crime, and forms the basis for a number of preventative strategies. However, existing analytical methods show only that clustering is present in data, while offering little insight into the nature of the patterns present. Here, we show how the classification of pairs of events as close in space and time can be used to define a network, thereby generalising previous approaches. The application of graph-theoretic techniques to these networks can then offer significantly deeper insight into the structure of the data than previously possible. In particular, we focus on the identification of network motifs, which have clear interpretation in terms of spatio-temporal behaviour. Statistical analysis is complicated by the nature of the underlying data, and we provide a method by which appropriate randomised graphs can be generated. Two datasets are used as case studies: maritime piracy at the global scale, and residential burglary in an urban area. In both cases, the same significant 3-vertex motif is found; this result suggests that incidents tend to occur not just in pairs, but in fact in larger groups within a restricted spatio-temporal domain. In the 4-vertex case, different motifs are found to be significant in each case, suggesting that this technique is capable of discriminating between clustering patterns at a finer granularity than previously possible. PMID:26605544

  16. Gait Analysis Methods for Rodent Models of Arthritic Disorders: Reviews and Recommendations

    PubMed Central

    Lakes, Emily H.; Allen, Kyle D.

    2016-01-01

    Gait analysis is a useful tool to understand behavioral changes in preclinical arthritis models. While observational scoring and spatiotemporal gait parameters are the most widely performed gait analyses in rodents, commercially available systems can now provide quantitative assessments of spatiotemporal patterns. However, inconsistencies remain between testing platforms, and laboratories often select different gait pattern descriptors to report in the literature. Rodent gait can also be described through kinetic and kinematic analyses, but systems to analyze rodent kinetics and kinematics are typically custom made and often require sensitive, custom equipment. While the use of rodent gait analysis rapidly expands, it is important to remember that, while rodent gait analysis is a relatively modern behavioral assay, the study of quadrupedal gait is not new. Nearly all gait parameters are correlated, and a collection of gait parameters is needed to understand a compensatory gait pattern used by the animal. As such, a change in a single gait parameter is unlikely to tell the full biomechanical story; and to effectively use gait analysis, one must consider how multiple different parameters contribute to an altered gait pattern. The goal of this article is to review rodent gait analysis techniques and provide recommendations on how to use these technologies in rodent arthritis models, including discussions on the strengths and limitations of observational scoring, spatiotemporal, kinetic, and kinematic measures. Recognizing rodent gait analysis is an evolving tool, we also provide technical recommendations we hope will improve the utility of these analyses in the future. PMID:26995111

  17. Adaptive changes in spatiotemporal gait characteristics in women during pregnancy.

    PubMed

    Błaszczyk, Janusz W; Opala-Berdzik, Agnieszka; Plewa, Michał

    2016-01-01

    Spatiotemporal gait cycle characteristics were assessed at early (P1), and late (P2) pregnancy, as well as at 2 months (PP1) and 6 months (PP2) postpartum. A substantial decrease in walking speed was observed throughout the pregnancy, with the slowest speed (1±0.2m/s) being during the third trimester. Walking at slower velocity resulted in complex adaptive adjustments to their spatiotemporal gait pattern, including a shorter step length and an increased duration of both their stance and double-support phases. Duration of the swing phase remained the least susceptible to changes. Habitual walking velocity (1.13±0.2m/s) and the optimal gait pattern were fully recovered 6 months after childbirth. Documented here adaptive changes in the preferred gait pattern seem to result mainly from the altered body anthropometry leading to temporary balance impairments. All the observed changes within stride cycle aimed to improve gait safety by focusing on its dynamic stability. The pregnant women preferred to walk at a slower velocity which allowed them to spend more time in double-support compared with their habitual pattern. Such changes provided pregnant women with a safer and more tentative ambulation that reduced the single-support period and, hence, the possibility of instability. As pregnancy progressed a significant increase in stance width and a decrease in step length was observed. Both factors allow also for gait stability improvement. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Dynamical topology and statistical properties of spatiotemporal chaos.

    PubMed

    Zhuang, Quntao; Gao, Xun; Ouyang, Qi; Wang, Hongli

    2012-12-01

    For spatiotemporal chaos described by partial differential equations, there are generally locations where the dynamical variable achieves its local extremum or where the time partial derivative of the variable vanishes instantaneously. To a large extent, the location and movement of these topologically special points determine the qualitative structure of the disordered states. We analyze numerically statistical properties of the topologically special points in one-dimensional spatiotemporal chaos. The probability distribution functions for the number of point, the lifespan, and the distance covered during their lifetime are obtained from numerical simulations. Mathematically, we establish a probabilistic model to describe the dynamics of these topologically special points. In spite of the different definitions in different spatiotemporal chaos, the dynamics of these special points can be described in a uniform approach.

  19. Frequency analysis and its spatiotemporal characteristics of precipitation extreme events in China during 1951-2010

    NASA Astrophysics Data System (ADS)

    Shao, Yuehong; Wu, Junmei; Ye, Jinyin; Liu, Yonghe

    2015-08-01

    This study investigates frequency analysis and its spatiotemporal characteristics of precipitation extremes based on annual maximum of daily precipitation (AMP) data of 753 observation stations in China during the period 1951-2010. Several statistical methods including L-moments, Mann-Kendall test (MK test), Student's t test ( t test) and analysis of variance ( F-test) are used to study different statistical properties related to frequency and spatiotemporal characteristics of precipitation extremes. The results indicate that the AMP series of most sites have no linear trends at 90 % confidence level, but there is a distinctive decrease trend in Beijing-Tianjin-Tangshan region. The analysis of abrupt changes shows that there are no significant changes in most sites, and no distinctive regional patterns within the mutation sites either. An important innovation different from the previous studies is the shift in the mean and the variance which are also studied in this paper in order to further analyze the changes of strong and weak precipitation extreme events. The shift analysis shows that we should pay more attention to the drought in North China and to the flood control and drought in South China, especially to those regions that have no clear trend and have a significant shift in the variance. More important, this study conducts the comprehensive analysis of a complete set of quantile estimates and its spatiotemporal characteristic in China. Spatial distribution of quantile estimation based on the AMP series demonstrated that the values gradually increased from the Northwest to the Southeast with the increment of duration and return period, while the increasing rate of estimation is smooth in the arid and semiarid region and is rapid in humid region. Frequency estimates of 50-year return period are in agreement with the maximum observations of AMP series in the most stations, which can provide more quantitative and scientific basis for decision making.

  20. Pattern formation in diffusive excitable systems under magnetic flow effects

    NASA Astrophysics Data System (ADS)

    Mvogo, Alain; Takembo, Clovis N.; Ekobena Fouda, H. P.; Kofané, Timoléon C.

    2017-07-01

    We study the spatiotemporal formation of patterns in a diffusive FitzHugh-Nagumo network where the effect of electromagnetic induction has been introduced in the standard mathematical model by using magnetic flux, and the modulation of magnetic flux on membrane potential is realized by using memristor coupling. We use the multi-scale expansion to show that the system equations can be reduced to a single differential-difference nonlinear equation. The linear stability analysis is performed and discussed with emphasis on the impact of magnetic flux. It is observed that the effect of memristor coupling importantly modifies the features of modulational instability. Our analytical results are supported by the numerical experiments, which reveal that the improved model can lead to nonlinear quasi-periodic spatiotemporal patterns with some features of synchronization. It is observed also the generation of pulses and rhythmics behaviors like breathing or swimming which are important in brain researches.

Top