Forest fire spatial pattern analysis in Galicia (NW Spain).
Fuentes-Santos, I; Marey-Pérez, M F; González-Manteiga, W
2013-10-15
Knowledge of fire behaviour is of key importance in forest management. In the present study, we analysed the spatial structure of forest fire with spatial point pattern analysis and inference techniques recently developed in the Spatstat package of R. Wildfires have been the primary threat to Galician forests in recent years. The district of Fonsagrada-Ancares is one of the most seriously affected by fire in the region and, therefore, the central focus of the study. Our main goal was to determine the spatial distribution of ignition points to model and predict fire occurrence. These data are of great value in establishing enhanced fire prevention and fire fighting plans. We found that the spatial distribution of wildfires is not random and that fire occurrence may depend on ownership conflicts. We also found positive interaction between small and large fires and spatial independence between wildfires in consecutive years. Copyright © 2013 Elsevier Ltd. All rights reserved.
Point pattern analysis applied to flood and landslide damage events in Switzerland (1972-2009)
NASA Astrophysics Data System (ADS)
Barbería, Laura; Schulte, Lothar; Carvalho, Filipe; Peña, Juan Carlos
2017-04-01
Damage caused by meteorological and hydrological extreme events depends on many factors, not only on hazard, but also on exposure and vulnerability. In order to reach a better understanding of the relation of these complex factors, their spatial pattern and underlying processes, the spatial dependency between values of damage recorded at sites of different distances can be investigated by point pattern analysis. For the Swiss flood and landslide damage database (1972-2009) first steps of point pattern analysis have been carried out. The most severe events have been selected (severe, very severe and catastrophic, according to GEES classification, a total number of 784 damage points) and Ripley's K-test and L-test have been performed, amongst others. For this purpose, R's library spatstat has been used. The results confirm that the damage points present a statistically significant clustered pattern, which could be connected to prevalence of damages near watercourses and also to rainfall distribution of each event, together with other factors. On the other hand, bivariate analysis shows there is no segregated pattern depending on process type: flood/debris flow vs landslide. This close relation points to a coupling between slope and fluvial processes, connectivity between small-size and middle-size catchments and the influence of spatial distribution of precipitation, temperature (snow melt and snow line) and other predisposing factors such as soil moisture, land-cover and environmental conditions. Therefore, further studies will investigate the relationship between the spatial pattern and one or more covariates, such as elevation, distance from watercourse or land use. The final goal will be to perform a regression model to the data, so that the adjusted model predicts the intensity of the point process as a function of the above mentioned covariates.
NASA Astrophysics Data System (ADS)
Hengl, Tomislav
2015-04-01
Efficiency of spatial sampling largely determines success of model building. This is especially important for geostatistical mapping where an initial sampling plan should provide a good representation or coverage of both geographical (defined by the study area mask map) and feature space (defined by the multi-dimensional covariates). Otherwise the model will need to extrapolate and, hence, the overall uncertainty of the predictions will be high. In many cases, geostatisticians use point data sets which are produced using unknown or inconsistent sampling algorithms. Many point data sets in environmental sciences suffer from spatial clustering and systematic omission of feature space. But how to quantify these 'representation' problems and how to incorporate this knowledge into model building? The author has developed a generic function called 'spsample.prob' (Global Soil Information Facilities package for R) and which simultaneously determines (effective) inclusion probabilities as an average between the kernel density estimation (geographical spreading of points; analysed using the spatstat package in R) and MaxEnt analysis (feature space spreading of points; analysed using the MaxEnt software used primarily for species distribution modelling). The output 'iprob' map indicates whether the sampling plan has systematically missed some important locations and/or features, and can also be used as an input for geostatistical modelling e.g. as a weight map for geostatistical model fitting. The spsample.prob function can also be used in combination with the accessibility analysis (cost of field survey are usually function of distance from the road network, slope and land cover) to allow for simultaneous maximization of average inclusion probabilities and minimization of total survey costs. The author postulates that, by estimating effective inclusion probabilities using combined geographical and feature space analysis, and by comparing survey costs to representation efficiency, an optimal initial sampling plan can be produced which satisfies both criteria: (a) good representation (i.e. within a tolerance threshold), and (b) minimized survey costs. This sampling analysis framework could become especially interesting for generating sampling plans in new areas e.g. for which no previous spatial prediction model exists. The presentation includes data processing demos with standard soil sampling data sets Ebergotzen (Germany) and Edgeroi (Australia), also available via the GSIF package.
Testing for clustering at many ranges inflates family-wise error rate (FWE).
Loop, Matthew Shane; McClure, Leslie A
2015-01-15
Testing for clustering at multiple ranges within a single dataset is a common practice in spatial epidemiology. It is not documented whether this approach has an impact on the type 1 error rate. We estimated the family-wise error rate (FWE) for the difference in Ripley's K functions test, when testing at an increasing number of ranges at an alpha-level of 0.05. Case and control locations were generated from a Cox process on a square area the size of the continental US (≈3,000,000 mi2). Two thousand Monte Carlo replicates were used to estimate the FWE with 95% confidence intervals when testing for clustering at one range, as well as 10, 50, and 100 equidistant ranges. The estimated FWE and 95% confidence intervals when testing 10, 50, and 100 ranges were 0.22 (0.20 - 0.24), 0.34 (0.31 - 0.36), and 0.36 (0.34 - 0.38), respectively. Testing for clustering at multiple ranges within a single dataset inflated the FWE above the nominal level of 0.05. Investigators should construct simultaneous critical envelopes (available in spatstat package in R), or use a test statistic that integrates the test statistics from each range, as suggested by the creators of the difference in Ripley's K functions test.
Tong, Jonathan; Mao, Oliver; Goldreich, Daniel
2013-01-01
Two-point discrimination is widely used to measure tactile spatial acuity. The validity of the two-point threshold as a spatial acuity measure rests on the assumption that two points can be distinguished from one only when the two points are sufficiently separated to evoke spatially distinguishable foci of neural activity. However, some previous research has challenged this view, suggesting instead that two-point task performance benefits from an unintended non-spatial cue, allowing spuriously good performance at small tip separations. We compared the traditional two-point task to an equally convenient alternative task in which participants attempt to discern the orientation (vertical or horizontal) of two points of contact. We used precision digital readout calipers to administer two-interval forced-choice versions of both tasks to 24 neurologically healthy adults, on the fingertip, finger base, palm, and forearm. We used Bayesian adaptive testing to estimate the participants’ psychometric functions on the two tasks. Traditional two-point performance remained significantly above chance levels even at zero point separation. In contrast, two-point orientation discrimination approached chance as point separation approached zero, as expected for a valid measure of tactile spatial acuity. Traditional two-point performance was so inflated at small point separations that 75%-correct thresholds could be determined on all tested sites for fewer than half of participants. The 95%-correct thresholds on the two tasks were similar, and correlated with receptive field spacing. In keeping with previous critiques, we conclude that the traditional two-point task provides an unintended non-spatial cue, resulting in spuriously good performance at small spatial separations. Unlike two-point discrimination, two-point orientation discrimination rigorously measures tactile spatial acuity. We recommend the use of two-point orientation discrimination for neurological assessment. PMID:24062677
Analysis of Spatial Point Patterns in Nuclear Biology
Weston, David J.; Adams, Niall M.; Russell, Richard A.; Stephens, David A.; Freemont, Paul S.
2012-01-01
There is considerable interest in cell biology in determining whether, and to what extent, the spatial arrangement of nuclear objects affects nuclear function. A common approach to address this issue involves analyzing a collection of images produced using some form of fluorescence microscopy. We assume that these images have been successfully pre-processed and a spatial point pattern representation of the objects of interest within the nuclear boundary is available. Typically in these scenarios, the number of objects per nucleus is low, which has consequences on the ability of standard analysis procedures to demonstrate the existence of spatial preference in the pattern. There are broadly two common approaches to look for structure in these spatial point patterns. First a spatial point pattern for each image is analyzed individually, or second a simple normalization is performed and the patterns are aggregated. In this paper we demonstrate using synthetic spatial point patterns drawn from predefined point processes how difficult it is to distinguish a pattern from complete spatial randomness using these techniques and hence how easy it is to miss interesting spatial preferences in the arrangement of nuclear objects. The impact of this problem is also illustrated on data related to the configuration of PML nuclear bodies in mammalian fibroblast cells. PMID:22615822
On the assessment of spatial resolution of PET systems with iterative image reconstruction
NASA Astrophysics Data System (ADS)
Gong, Kuang; Cherry, Simon R.; Qi, Jinyi
2016-03-01
Spatial resolution is an important metric for performance characterization in PET systems. Measuring spatial resolution is straightforward with a linear reconstruction algorithm, such as filtered backprojection, and can be performed by reconstructing a point source scan and calculating the full-width-at-half-maximum (FWHM) along the principal directions. With the widespread adoption of iterative reconstruction methods, it is desirable to quantify the spatial resolution using an iterative reconstruction algorithm. However, the task can be difficult because the reconstruction algorithms are nonlinear and the non-negativity constraint can artificially enhance the apparent spatial resolution if a point source image is reconstructed without any background. Thus, it was recommended that a background should be added to the point source data before reconstruction for resolution measurement. However, there has been no detailed study on the effect of the point source contrast on the measured spatial resolution. Here we use point source scans from a preclinical PET scanner to investigate the relationship between measured spatial resolution and the point source contrast. We also evaluate whether the reconstruction of an isolated point source is predictive of the ability of the system to resolve two adjacent point sources. Our results indicate that when the point source contrast is below a certain threshold, the measured FWHM remains stable. Once the contrast is above the threshold, the measured FWHM monotonically decreases with increasing point source contrast. In addition, the measured FWHM also monotonically decreases with iteration number for maximum likelihood estimate. Therefore, when measuring system resolution with an iterative reconstruction algorithm, we recommend using a low-contrast point source and a fixed number of iterations.
Point pattern analysis of FIA data
Chris Woodall
2002-01-01
Point pattern analysis is a branch of spatial statistics that quantifies the spatial distribution of points in two-dimensional space. Point pattern analysis was conducted on stand stem-maps from FIA fixed-radius plots to explore point pattern analysis techniques and to determine the ability of pattern descriptions to describe stand attributes. Results indicate that the...
[Spatial point patterns of Antarctic krill fishery in the northern Antarctic Peninsula].
Yang, Xiao Ming; Li, Yi Xin; Zhu, Guo Ping
2016-12-01
As a key species in the Antarctic ecosystem, the spatial distribution of Antarctic krill (thereafter krill) often tends to present aggregation characteristics, which therefore reflects the spatial patterns of krill fishing operation. Based on the fishing data collected from Chinese krill fishing vessels, of which vessel A was professional krill fishing vessel and Vessel B was a fishing vessel which shifted between Chilean jack mackerel (Trachurus murphyi) fishing ground and krill fishing ground. In order to explore the characteristics of spatial distribution pattern and their ecological effects of two obvious different fishing fleets under a high and low nominal catch per unit effort (CPUE), from the viewpoint of spatial point pattern, the present study analyzed the spatial distribution characteristics of krill fishery in the northern Antarctic Peninsula from three aspects: (1) the two vessels' point pattern characteristics of higher CPUEs and lower CPUEs at different scales; (2) correlation of the bivariate point patterns between these points of higher CPUE and lower CPUE; and (3) correlation patterns of CPUE. Under the analysis derived from the Ripley's L function and mark correlation function, the results showed that the point patterns of the higher/lo-wer catch available were similar, both showing an aggregation distribution in this study windows at all scale levels. The aggregation intensity of krill fishing was nearly maximum at 15 km spatial scale, and kept stably higher values at the scale of 15-50 km. The aggregation intensity of krill fishery point patterns could be described in order as higher CPUE of vessel A > lower CPUE of vessel B >higher CPUE of vessel B > higher CPUE of vessel B. The relationship of the higher and lo-wer CPUEs of vessel A showed positive correlation at the spatial scale of 0-75 km, and presented stochastic relationship after 75 km scale, whereas vessel B showed positive correlation at all spatial scales. The point events of higher and lower CPUEs were synchronized, showing significant correlations at most of spatial scales because of the dynamics nature and complex of krill aggregation patterns. The distribution of vessel A's CPUEs was positively correlated at scales of 0-44 km, but negatively correlated at the scales of 44-80 km. The distribution of vessel B's CPUEs was negatively correlated at the scales of 50-70 km, but no significant correlations were found at other scales. The CPUE mark point patterns showed a negative correlation, which indicated that intraspecific competition for space and prey was significant. There were significant differences in spatial point pattern distribution between vessel A with higher fishing capacity and vessel B with lower fishing capacity. The results showed that the professional krill fishing vessel is suitable to conduct the analysis of spatial point pattern and scientific fishery survey.
Modeling fixation locations using spatial point processes.
Barthelmé, Simon; Trukenbrod, Hans; Engbert, Ralf; Wichmann, Felix
2013-10-01
Whenever eye movements are measured, a central part of the analysis has to do with where subjects fixate and why they fixated where they fixated. To a first approximation, a set of fixations can be viewed as a set of points in space; this implies that fixations are spatial data and that the analysis of fixation locations can be beneficially thought of as a spatial statistics problem. We argue that thinking of fixation locations as arising from point processes is a very fruitful framework for eye-movement data, helping turn qualitative questions into quantitative ones. We provide a tutorial introduction to some of the main ideas of the field of spatial statistics, focusing especially on spatial Poisson processes. We show how point processes help relate image properties to fixation locations. In particular we show how point processes naturally express the idea that image features' predictability for fixations may vary from one image to another. We review other methods of analysis used in the literature, show how they relate to point process theory, and argue that thinking in terms of point processes substantially extends the range of analyses that can be performed and clarify their interpretation.
Midline Body Actions and Leftward Spatial “Aiming” in Patients with Spatial Neglect
Chaudhari, Amit; Pigott, Kara; Barrett, A. M.
2015-01-01
Spatial motor–intentional “Aiming” bias is a dysfunction in initiation/execution of motor–intentional behavior, resulting in hypokinetic and hypometric leftward movements. Aiming bias may contribute to posture, balance, and movement problems and uniquely account for disability in post-stroke spatial neglect. Body movement may modify and even worsen Aiming errors, but therapy techniques, such as visual scanning training, do not take this into account. Here, we evaluated (1) whether instructing neglect patients to move midline body parts improves their ability to explore left space and (2) whether this has a different impact on different patients. A 68-year-old woman with spatial neglect after a right basal ganglia infarct had difficulty orienting to and identifying left-sided objects. She was prompted with four instructions: “look to the left,” “point with your nose to the left,” “point with your [right] hand to the left,” and “stick out your tongue and point it to the left.” She oriented leftward dramatically better when pointing with the tongue/nose, than she did when pointing with the hand. We then tested nine more consecutive patients with spatial neglect using the same instructions. Only four of them made any orienting errors. Only one patient made >50% errors when pointing with the hand, and she did not benefit from pointing with the tongue/nose. We observed that pointing with the tongue could facilitate left-sided orientation in a stroke survivor with spatial neglect. If midline structures are represented more bilaterally, they may be less affected by Aiming bias. Alternatively, moving the body midline may be more permissive for leftward orienting than moving right body parts. We were not able to replicate this effect in another patient; we suspect that the magnitude of this effect may depend upon the degree to which patients have directional akinesia, spatial Where deficits, or cerebellar/frontal cortical lesions. Future research could examine these hypotheses. PMID:26217211
A line-scan hyperspectral Raman system for spatially offset Raman spectroscopy
USDA-ARS?s Scientific Manuscript database
Conventional methods of spatially offset Raman spectroscopy (SORS) typically use single-fiber optical measurement probes to slowly and incrementally collect a series of spatially offset point measurements moving away from the laser excitation point on the sample surface, or arrays of multiple fiber ...
Inventory of File WAFS_blended_2014102006f06.grib2
) [%] 004 700 mb CTP 6 hour fcst In-Cloud Turbulence [%] spatial ave,code table 4.15=3,#points=1 005 700 mb CTP 6 hour fcst In-Cloud Turbulence [%] spatial max,code table 4.15=3,#points=1 006 600 mb CTP 6 hour fcst In-Cloud Turbulence [%] spatial ave,code table 4.15=3,#points=1 007 600 mb CTP 6 hour fcst In
Spatial and spectral imaging of point-spread functions using a spatial light modulator
NASA Astrophysics Data System (ADS)
Munagavalasa, Sravan; Schroeder, Bryce; Hua, Xuanwen; Jia, Shu
2017-12-01
We develop a point-spread function (PSF) engineering approach to imaging the spatial and spectral information of molecular emissions using a spatial light modulator (SLM). We show that a dispersive grating pattern imposed upon the emission reveals spectral information. We also propose a deconvolution model that allows the decoupling of the spectral and 3D spatial information in engineered PSFs. The work is readily applicable to single-molecule measurements and fluorescent microscopy.
Sollmann, Nico; Hauck, Theresa; Tussis, Lorena; Ille, Sebastian; Maurer, Stefanie; Boeckh-Behrens, Tobias; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M
2016-10-24
The spatial resolution of repetitive navigated transcranial magnetic stimulation (rTMS) for language mapping is largely unknown. Thus, to determine a minimum spatial resolution of rTMS for language mapping, we evaluated the mapping sessions derived from 19 healthy volunteers for cortical hotspots of no-response errors. Then, the distances between hotspots (stimulation points with a high error rate) and adjacent mapping points (stimulation points with low error rates) were evaluated. Mean distance values of 13.8 ± 6.4 mm (from hotspots to ventral points, range 0.7-30.7 mm), 10.8 ± 4.8 mm (from hotspots to dorsal points, range 2.0-26.5 mm), 16.6 ± 4.8 mm (from hotspots to apical points, range 0.9-27.5 mm), and 13.8 ± 4.3 mm (from hotspots to caudal points, range 2.0-24.2 mm) were measured. According to the results, the minimum spatial resolution of rTMS should principally allow for the identification of a particular gyrus, and according to the literature, it is in good accordance with the spatial resolution of direct cortical stimulation (DCS). Since measurement was performed between hotspots and adjacent mapping points and not on a finer-grained basis, we only refer to a minimum spatial resolution. Furthermore, refinement of our results within the scope of a prospective study combining rTMS and DCS for resolution measurement during language mapping should be the next step.
Developing a bivariate spatial association measure: An integration of Pearson's r and Moran's I
NASA Astrophysics Data System (ADS)
Lee, Sang-Il
This research is concerned with developing a bivariate spatial association measure or spatial correlation coefficient, which is intended to capture spatial association among observations in terms of their point-to-point relationships across two spatial patterns. The need for parameterization of the bivariate spatial dependence is precipitated by the realization that aspatial bivariate association measures, such as Pearson's correlation coefficient, do not recognize spatial distributional aspects of data sets. This study devises an L statistic by integrating Pearson's r as an aspatial bivariate association measure and Moran's I as a univariate spatial association measure. The concept of a spatial smoothing scalar (SSS) plays a pivotal role in this task.
Tree species exhibit complex patterns of distribution in bottomland hardwood forests
Luben D Dimov; Jim L Chambers; Brian R. Lockhart
2013-01-01
& Context Understanding tree interactions requires an insight into their spatial distribution. & Aims We looked for presence and extent of tree intraspecific spatial point pattern (random, aggregated, or overdispersed) and interspecific spatial point pattern (independent, aggregated, or segregated). & Methods We established twelve 0.64-ha plots in natural...
NASA Astrophysics Data System (ADS)
Guo, Luo; Du, Shihong; Haining, Robert; Zhang, Lianjun
2013-04-01
The existing indicators related to spatial association, especially the K function, can measure only the same dimension of vector data, such as points, lines and polygons, respectively. We develop four new indicators that can analyze and model spatial association for the mixture of different dimensions of vector data, such as lines and points, points and polygons, lines and polygons. The four indicators can measure the spatial association between points and polygons from both global and local perspectives. We also apply the presented methods to investigate the association of temples and villages on land-use change at multiple distance scales in the Guoluo Tibetan Autonomous Prefecture in Qinghai Province, PR China. Global indicators show that temples are positively associated with land-use change at large spatial distances (e.g., >6000 m), while the association between villages and land-use change is insignificant at all distance scales. Thus temples, as religious and cultural centers, have a stronger association with land-use change than the places where people live. However, local indicators show that these associations vary significantly in different sub-areas of the study region. Furthermore, the association of temples with land-use change is also dependent on the specific type of land-use change. The case study demonstrates that the presented indicators are powerful tools for analyzing the spatial association between points and polygons.
Dalmaso, Mario; Galfano, Giovanni; Tarqui, Luana; Forti, Bruno; Castelli, Luigi
2013-09-01
The nature of possible impairments in orienting attention to social signals in schizophrenia is controversial. The present research was aimed at addressing this issue further by comparing gaze and arrow cues. Unlike previous studies, we also included pointing gestures as social cues, with the goal of addressing whether any eventual impairment in the attentional response was specific to gaze signals or reflected a more general deficit in dealing with social stimuli. Patients with schizophrenia or schizoaffective disorder and matched controls performed a spatial-cuing paradigm in which task-irrelevant centrally displayed gaze, pointing finger, and arrow cues oriented rightward or leftward, preceded a lateralized target requiring a simple detection response. Healthy controls responded faster to spatially congruent targets than to spatially incongruent targets, irrespective of cue type. In contrast, schizophrenic patients responded faster to spatially congruent targets than to spatially incongruent targets only for arrow and pointing finger cues. No cuing effect emerged for gaze cues. The results support the notion that gaze cuing is impaired in schizophrenia, and suggest that this deficit may not extend to all social cues.
Examination of Multiple Lithologies Within the Primitive Ordinary Chondrite NWA 5717
NASA Technical Reports Server (NTRS)
Cato, M. J.; Simon, J. I.; Ross, D. K.; Morris, R. V.
2017-01-01
Northwest Africa 5717 is a primitive (subtype 3.05) ungrouped ordinary chondrite which contains two apparently distinct lithologies. In large cut meteorite slabs, the darker of these, lithology A, looks to host the second, much lighter in color, lithology B (upper left, Fig. 1). The nature of the boundary between the two is uncertain, ranging from abrupt to gradational and not always following particle boundaries. The distinction between the lithologies, beyond the obvious color differences, has been supported by a discrepancy in oxygen isotopes and an incongruity in the magnesium contents of chondrule olivine. Here, quantitative textural analysis and mineralogical methods have been used to investigate the two apparent lithologies within NWA 5717. Olivine grains contained in a thin section from NWA 7402, thought to be paired to 5717, were also measured to re-examine the distinct compositional range among the light and dark areas. Procedure: Particles from a high-resolution mosaic image of a roughly 13x15cm slice of NWA 5717 were traced in Adobe Photoshop. Due to the large size of the sample, visually representative regions of each lithology were chosen to be analyzed. The resulting layers of digitized particles were imported into ImageJ, which was used to measure their area, along with the axes, the angle from horizontal, and the centroid coordinates of ellipses fitted to each particle following the approach. Resulting 2D pixel areas were converted to spherical diameters employing the unfolding algorithm, which outputs a 3D particle size distribution based on digitized 2D size frequency data. Spatstat was used to create kernel density plots of the centroid coordinates for each region. X-ray compositional maps, microprobe analyses, and Mossbauer spectroscopy was conducted on a thin section of NWA 7402, tentatively paired to NWA 5717.
NASA Astrophysics Data System (ADS)
Gaona Garcia, J.; Lewandowski, J.; Bellin, A.
2017-12-01
Groundwater-stream water interactions in rivers determine water balances, but also chemical and biological processes in the streambed at different spatial and temporal scales. Due to the difficult identification and quantification of gaining, neutral and losing conditions, it is necessary to combine techniques with complementary capabilities and scale ranges. We applied this concept to a study site at the River Schlaube, East Brandenburg-Germany, a sand bed stream with intense sediment heterogeneity and complex environmental conditions. In our approach, point techniques such as temperature profiles of the streambed together with vertical hydraulic gradients provide data for the estimation of fluxes between groundwater and surface water with the numerical model 1DTempPro. On behalf of distributed techniques, fiber optic distributed temperature sensing identifies the spatial patterns of neutral, down- and up-welling areas by analysis of the changes in the thermal patterns at the streambed interface under certain flow. The study finally links point and surface temperatures to provide a method for upscaling of fluxes. Point techniques provide point flux estimates with essential depth detail to infer streambed structures while the results hardly represent the spatial distribution of fluxes caused by the heterogeneity of streambed properties. Fiber optics proved capable of providing spatial thermal patterns with enough resolution to observe distinct hyporheic thermal footprints at multiple scales. The relation of thermal footprint patterns and temporal behavior with flux results from point techniques enabled the use of methods for spatial flux estimates. The lack of detailed information of the physical driver's spatial distribution restricts the spatial flux estimation to the application of the T-proxy method, whose highly uncertain results mainly provide coarse spatial flux estimates. The study concludes that the upscaling of groundwater-stream water interactions using thermal measurements with combined point and distributed techniques requires the integration of physical drivers because of the heterogeneity of the flux patterns. Combined experimental and modeling approaches may help to obtain more reliable understanding of groundwater-surface water interactions at multiple scales.
Dausman, Alyssa M.; Doherty, John; Langevin, Christian D.
2010-01-01
Pilot points for parameter estimation were creatively used to address heterogeneity at both the well field and regional scales in a variable-density groundwater flow and solute transport model designed to test multiple hypotheses for upward migration of fresh effluent injected into a highly transmissive saline carbonate aquifer. Two sets of pilot points were used within in multiple model layers, with one set of inner pilot points (totaling 158) having high spatial density to represent hydraulic conductivity at the site, while a second set of outer points (totaling 36) of lower spatial density was used to represent hydraulic conductivity further from the site. Use of a lower spatial density outside the site allowed (1) the total number of pilot points to be reduced while maintaining flexibility to accommodate heterogeneity at different scales, and (2) development of a model with greater areal extent in order to simulate proper boundary conditions that have a limited effect on the area of interest. The parameters associated with the inner pilot points were log transformed hydraulic conductivity multipliers of the conductivity field obtained by interpolation from outer pilot points. The use of this dual inner-outer scale parameterization (with inner parameters constituting multipliers for outer parameters) allowed smooth transition of hydraulic conductivity from the site scale, where greater spatial variability of hydraulic properties exists, to the regional scale where less spatial variability was necessary for model calibration. While the model is highly parameterized to accommodate potential aquifer heterogeneity, the total number of pilot points is kept at a minimum to enable reasonable calibration run times.
Designing efficient surveys: spatial arrangement of sample points for detection of invasive species
Ludek Berec; John M. Kean; Rebecca Epanchin-Niell; Andrew M. Liebhold; Robert G. Haight
2015-01-01
Effective surveillance is critical to managing biological invasions via early detection and eradication. The efficiency of surveillance systems may be affected by the spatial arrangement of sample locations. We investigate how the spatial arrangement of sample points, ranging from random to fixed grid arrangements, affects the probability of detecting a target...
A multiple-point spatially weighted k-NN method for object-based classification
NASA Astrophysics Data System (ADS)
Tang, Yunwei; Jing, Linhai; Li, Hui; Atkinson, Peter M.
2016-10-01
Object-based classification, commonly referred to as object-based image analysis (OBIA), is now commonly regarded as able to produce more appealing classification maps, often of greater accuracy, than pixel-based classification and its application is now widespread. Therefore, improvement of OBIA using spatial techniques is of great interest. In this paper, multiple-point statistics (MPS) is proposed for object-based classification enhancement in the form of a new multiple-point k-nearest neighbour (k-NN) classification method (MPk-NN). The proposed method first utilises a training image derived from a pre-classified map to characterise the spatial correlation between multiple points of land cover classes. The MPS borrows spatial structures from other parts of the training image, and then incorporates this spatial information, in the form of multiple-point probabilities, into the k-NN classifier. Two satellite sensor images with a fine spatial resolution were selected to evaluate the new method. One is an IKONOS image of the Beijing urban area and the other is a WorldView-2 image of the Wolong mountainous area, in China. The images were object-based classified using the MPk-NN method and several alternatives, including the k-NN, the geostatistically weighted k-NN, the Bayesian method, the decision tree classifier (DTC), and the support vector machine classifier (SVM). It was demonstrated that the new spatial weighting based on MPS can achieve greater classification accuracy relative to the alternatives and it is, thus, recommended as appropriate for object-based classification.
Vibration of a spatial elastica constrained inside a straight tube
NASA Astrophysics Data System (ADS)
Chen, Jen-San; Fang, Joyce
2014-04-01
In this paper we study the dynamic behavior of a clamped-clamped spatial elastica under edge thrust constrained inside a straight cylindrical tube. Attention is focused on the calculation of the natural frequencies and mode shapes of the planar and spatial one-point-contact deformations. The main issue in determining the natural frequencies of a constrained rod is the movement of the contact point during vibration. In order to capture the physical essence of the contact-point movement, an Eulerian description of the equations of motion based on director theory is formulated. After proper linearization of the equations of motion, boundary conditions, and contact conditions, the natural frequencies and mode shapes of the elastica can be obtained by solving a system of eighteen first-order differential equations with shooting method. It is concluded that the planar one-point-contact deformation becomes unstable and evolves to a spatial deformation at a bifurcation point in both displacement and force control procedures.
Privacy protection versus cluster detection in spatial epidemiology.
Olson, Karen L; Grannis, Shaun J; Mandl, Kenneth D
2006-11-01
Patient data that includes precise locations can reveal patients' identities, whereas data aggregated into administrative regions may preserve privacy and confidentiality. We investigated the effect of varying degrees of address precision (exact latitude and longitude vs the center points of zip code or census tracts) on detection of spatial clusters of cases. We simulated disease outbreaks by adding supplementary spatially clustered emergency department visits to authentic hospital emergency department syndromic surveillance data. We identified clusters with a spatial scan statistic and evaluated detection rate and accuracy. More clusters were identified, and clusters were more accurately detected, when exact locations were used. That is, these clusters contained at least half of the simulated points and involved few additional emergency department visits. These results were especially apparent when the synthetic clustered points crossed administrative boundaries and fell into multiple zip code or census tracts. The spatial cluster detection algorithm performed better when addresses were analyzed as exact locations than when they were analyzed as center points of zip code or census tracts, particularly when the clustered points crossed administrative boundaries. Use of precise addresses offers improved performance, but this practice must be weighed against privacy concerns in the establishment of public health data exchange policies.
Estimating Function Approaches for Spatial Point Processes
NASA Astrophysics Data System (ADS)
Deng, Chong
Spatial point pattern data consist of locations of events that are often of interest in biological and ecological studies. Such data are commonly viewed as a realization from a stochastic process called spatial point process. To fit a parametric spatial point process model to such data, likelihood-based methods have been widely studied. However, while maximum likelihood estimation is often too computationally intensive for Cox and cluster processes, pairwise likelihood methods such as composite likelihood, Palm likelihood usually suffer from the loss of information due to the ignorance of correlation among pairs. For many types of correlated data other than spatial point processes, when likelihood-based approaches are not desirable, estimating functions have been widely used for model fitting. In this dissertation, we explore the estimating function approaches for fitting spatial point process models. These approaches, which are based on the asymptotic optimal estimating function theories, can be used to incorporate the correlation among data and yield more efficient estimators. We conducted a series of studies to demonstrate that these estmating function approaches are good alternatives to balance the trade-off between computation complexity and estimating efficiency. First, we propose a new estimating procedure that improves the efficiency of pairwise composite likelihood method in estimating clustering parameters. Our approach combines estimating functions derived from pairwise composite likeli-hood estimation and estimating functions that account for correlations among the pairwise contributions. Our method can be used to fit a variety of parametric spatial point process models and can yield more efficient estimators for the clustering parameters than pairwise composite likelihood estimation. We demonstrate its efficacy through a simulation study and an application to the longleaf pine data. Second, we further explore the quasi-likelihood approach on fitting second-order intensity function of spatial point processes. However, the original second-order quasi-likelihood is barely feasible due to the intense computation and high memory requirement needed to solve a large linear system. Motivated by the existence of geometric regular patterns in the stationary point processes, we find a lower dimension representation of the optimal weight function and propose a reduced second-order quasi-likelihood approach. Through a simulation study, we show that the proposed method not only demonstrates superior performance in fitting the clustering parameter but also merits in the relaxation of the constraint of the tuning parameter, H. Third, we studied the quasi-likelihood type estimating funciton that is optimal in a certain class of first-order estimating functions for estimating the regression parameter in spatial point process models. Then, by using a novel spectral representation, we construct an implementation that is computationally much more efficient and can be applied to more general setup than the original quasi-likelihood method.
Modeling spatially-varying landscape change points in species occurrence thresholds
Wagner, Tyler; Midway, Stephen R.
2014-01-01
Predicting species distributions at scales of regions to continents is often necessary, as large-scale phenomena influence the distributions of spatially structured populations. Land use and land cover are important large-scale drivers of species distributions, and landscapes are known to create species occurrence thresholds, where small changes in a landscape characteristic results in abrupt changes in occurrence. The value of the landscape characteristic at which this change occurs is referred to as a change point. We present a hierarchical Bayesian threshold model (HBTM) that allows for estimating spatially varying parameters, including change points. Our model also allows for modeling estimated parameters in an effort to understand large-scale drivers of variability in land use and land cover on species occurrence thresholds. We use range-wide detection/nondetection data for the eastern brook trout (Salvelinus fontinalis), a stream-dwelling salmonid, to illustrate our HBTM for estimating and modeling spatially varying threshold parameters in species occurrence. We parameterized the model for investigating thresholds in landscape predictor variables that are measured as proportions, and which are therefore restricted to values between 0 and 1. Our HBTM estimated spatially varying thresholds in brook trout occurrence for both the proportion agricultural and urban land uses. There was relatively little spatial variation in change point estimates, although there was spatial variability in the overall shape of the threshold response and associated uncertainty. In addition, regional mean stream water temperature was correlated to the change point parameters for the proportion of urban land use, with the change point value increasing with increasing mean stream water temperature. We present a framework for quantify macrosystem variability in spatially varying threshold model parameters in relation to important large-scale drivers such as land use and land cover. Although the model presented is a logistic HBTM, it can easily be extended to accommodate other statistical distributions for modeling species richness or abundance.
NASA Astrophysics Data System (ADS)
Anchukaitis, Kevin J.; Wilson, Rob; Briffa, Keith R.; Büntgen, Ulf; Cook, Edward R.; D'Arrigo, Rosanne; Davi, Nicole; Esper, Jan; Frank, David; Gunnarson, Björn E.; Hegerl, Gabi; Helama, Samuli; Klesse, Stefan; Krusic, Paul J.; Linderholm, Hans W.; Myglan, Vladimir; Osborn, Timothy J.; Zhang, Peng; Rydval, Milos; Schneider, Lea; Schurer, Andrew; Wiles, Greg; Zorita, Eduardo
2017-05-01
Climate field reconstructions from networks of tree-ring proxy data can be used to characterize regional-scale climate changes, reveal spatial anomaly patterns associated with atmospheric circulation changes, radiative forcing, and large-scale modes of ocean-atmosphere variability, and provide spatiotemporal targets for climate model comparison and evaluation. Here we use a multiproxy network of tree-ring chronologies to reconstruct spatially resolved warm season (May-August) mean temperatures across the extratropical Northern Hemisphere (40-90°N) using Point-by-Point Regression (PPR). The resulting annual maps of temperature anomalies (750-1988 CE) reveal a consistent imprint of volcanism, with 96% of reconstructed grid points experiencing colder conditions following eruptions. Solar influences are detected at the bicentennial (de Vries) frequency, although at other time scales the influence of insolation variability is weak. Approximately 90% of reconstructed grid points show warmer temperatures during the Medieval Climate Anomaly when compared to the Little Ice Age, although the magnitude varies spatially across the hemisphere. Estimates of field reconstruction skill through time and over space can guide future temporal extension and spatial expansion of the proxy network.
Jian Yang; Peter J. Weisberg; Thomas E. Dilts; E. Louise Loudermilk; Robert M. Scheller; Alison Stanton; Carl Skinner
2015-01-01
Strategic fire and fuel management planning benefits from detailed understanding of how wildfire occurrences are distributed spatially under current climate, and from predictive models of future wildfire occurrence given climate change scenarios. In this study, we fitted historical wildfire occurrence data from 1986 to 2009 to a suite of spatial point process (SPP)...
Van Acker, Gustaf M.; Amundsen, Sommer L.; Messamore, William G.; Zhang, Hongyu Y.; Luchies, Carl W.; Kovac, Anthony
2013-01-01
High-frequency, long-duration intracortical microstimulation (HFLD-ICMS) applied to motor cortex is recognized as a useful and informative method for corticomotor mapping by evoking natural-appearing movements of the limb to consistent stable end-point positions. An important feature of these movements is that stimulation of a specific site in motor cortex evokes movement to the same spatial end point regardless of the starting position of the limb. The goal of this study was to delineate effective stimulus parameters for evoking forelimb movements to stable spatial end points from HFLD-ICMS applied to primary motor cortex (M1) in awake monkeys. We investigated stimulation of M1 as combinations of frequency (30–400 Hz), amplitude (30–200 μA), and duration (0.5–2 s) while concurrently recording electromyographic (EMG) activity from 24 forelimb muscles and movement kinematics with a motion capture system. Our results suggest a range of parameters (80–140 Hz, 80–140 μA, and 1,000-ms train duration) that are effective and safe for evoking forelimb translocation with subsequent stabilization at a spatial end point. The mean time for stimulation to elicit successful movement of the forelimb to a stable spatial end point was 475.8 ± 170.9 ms. Median successful frequency and amplitude were 110 Hz and 110 μA, respectively. Attenuated parameters resulted in inconsistent, truncated, or undetectable movements, while intensified parameters yielded no change to movement end points and increased potential for large-scale physiological spread and adverse focal motor effects. Establishing cortical stimulation parameters yielding consistent forelimb movements to stable spatial end points forms the basis for a systematic and comprehensive mapping of M1 in terms of evoked movements and associated muscle synergies. Additionally, the results increase our understanding of how the central nervous system may encode movement. PMID:23741044
Privacy Protection Versus Cluster Detection in Spatial Epidemiology
Olson, Karen L.; Grannis, Shaun J.; Mandl, Kenneth D.
2006-01-01
Objectives. Patient data that includes precise locations can reveal patients’ identities, whereas data aggregated into administrative regions may preserve privacy and confidentiality. We investigated the effect of varying degrees of address precision (exact latitude and longitude vs the center points of zip code or census tracts) on detection of spatial clusters of cases. Methods. We simulated disease outbreaks by adding supplementary spatially clustered emergency department visits to authentic hospital emergency department syndromic surveillance data. We identified clusters with a spatial scan statistic and evaluated detection rate and accuracy. Results. More clusters were identified, and clusters were more accurately detected, when exact locations were used. That is, these clusters contained at least half of the simulated points and involved few additional emergency department visits. These results were especially apparent when the synthetic clustered points crossed administrative boundaries and fell into multiple zip code or census tracts. Conclusions. The spatial cluster detection algorithm performed better when addresses were analyzed as exact locations than when they were analyzed as center points of zip code or census tracts, particularly when the clustered points crossed administrative boundaries. Use of precise addresses offers improved performance, but this practice must be weighed against privacy concerns in the establishment of public health data exchange policies. PMID:17018828
Spatial uncertainty analysis: Propagation of interpolation errors in spatially distributed models
Phillips, D.L.; Marks, D.G.
1996-01-01
In simulation modelling, it is desirable to quantify model uncertainties and provide not only point estimates for output variables but confidence intervals as well. Spatially distributed physical and ecological process models are becoming widely used, with runs being made over a grid of points that represent the landscape. This requires input values at each grid point, which often have to be interpolated from irregularly scattered measurement sites, e.g., weather stations. Interpolation introduces spatially varying errors which propagate through the model We extended established uncertainty analysis methods to a spatial domain for quantifying spatial patterns of input variable interpolation errors and how they propagate through a model to affect the uncertainty of the model output. We applied this to a model of potential evapotranspiration (PET) as a demonstration. We modelled PET for three time periods in 1990 as a function of temperature, humidity, and wind on a 10-km grid across the U.S. portion of the Columbia River Basin. Temperature, humidity, and wind speed were interpolated using kriging from 700- 1000 supporting data points. Kriging standard deviations (SD) were used to quantify the spatially varying interpolation uncertainties. For each of 5693 grid points, 100 Monte Carlo simulations were done, using the kriged values of temperature, humidity, and wind, plus random error terms determined by the kriging SDs and the correlations of interpolation errors among the three variables. For the spring season example, kriging SDs averaged 2.6??C for temperature, 8.7% for relative humidity, and 0.38 m s-1 for wind. The resultant PET estimates had coefficients of variation (CVs) ranging from 14% to 27% for the 10-km grid cells. Maps of PET means and CVs showed the spatial patterns of PET with a measure of its uncertainty due to interpolation of the input variables. This methodology should be applicable to a variety of spatially distributed models using interpolated inputs.
Updating visual memory across eye movements for ocular and arm motor control.
Thompson, Aidan A; Henriques, Denise Y P
2008-11-01
Remembered object locations are stored in an eye-fixed reference frame, so that every time the eyes move, spatial representations must be updated for the arm-motor system to reflect the target's new relative position. To date, studies have not investigated how the brain updates these spatial representations during other types of eye movements, such as smooth-pursuit. Further, it is unclear what information is used in spatial updating. To address these questions we investigated whether remembered locations of pointing targets are updated following smooth-pursuit eye movements, as they are following saccades, and also investigated the role of visual information in estimating eye-movement amplitude for updating spatial memory. Misestimates of eye-movement amplitude were induced when participants visually tracked stimuli presented with a background that moved in either the same or opposite direction of the eye before pointing or looking back to the remembered target location. We found that gaze-dependent pointing errors were similar following saccades and smooth-pursuit and that incongruent background motion did result in a misestimate of eye-movement amplitude. However, the background motion had no effect on spatial updating for pointing, but did when subjects made a return saccade, suggesting that the oculomotor and arm-motor systems may rely on different sources of information for spatial updating.
Managing distance and covariate information with point-based clustering.
Whigham, Peter A; de Graaf, Brandon; Srivastava, Rashmi; Glue, Paul
2016-09-01
Geographic perspectives of disease and the human condition often involve point-based observations and questions of clustering or dispersion within a spatial context. These problems involve a finite set of point observations and are constrained by a larger, but finite, set of locations where the observations could occur. Developing a rigorous method for pattern analysis in this context requires handling spatial covariates, a method for constrained finite spatial clustering, and addressing bias in geographic distance measures. An approach, based on Ripley's K and applied to the problem of clustering with deliberate self-harm (DSH), is presented. Point-based Monte-Carlo simulation of Ripley's K, accounting for socio-economic deprivation and sources of distance measurement bias, was developed to estimate clustering of DSH at a range of spatial scales. A rotated Minkowski L1 distance metric allowed variation in physical distance and clustering to be assessed. Self-harm data was derived from an audit of 2 years' emergency hospital presentations (n = 136) in a New Zealand town (population ~50,000). Study area was defined by residential (housing) land parcels representing a finite set of possible point addresses. Area-based deprivation was spatially correlated. Accounting for deprivation and distance bias showed evidence for clustering of DSH for spatial scales up to 500 m with a one-sided 95 % CI, suggesting that social contagion may be present for this urban cohort. Many problems involve finite locations in geographic space that require estimates of distance-based clustering at many scales. A Monte-Carlo approach to Ripley's K, incorporating covariates and models for distance bias, are crucial when assessing health-related clustering. The case study showed that social network structure defined at the neighbourhood level may account for aspects of neighbourhood clustering of DSH. Accounting for covariate measures that exhibit spatial clustering, such as deprivation, are crucial when assessing point-based clustering.
Development and evaluation of spatial point process models for epidermal nerve fibers.
Olsbo, Viktor; Myllymäki, Mari; Waller, Lance A; Särkkä, Aila
2013-06-01
We propose two spatial point process models for the spatial structure of epidermal nerve fibers (ENFs) across human skin. The models derive from two point processes, Φb and Φe, describing the locations of the base and end points of the fibers. Each point of Φe (the end point process) is connected to a unique point in Φb (the base point process). In the first model, both Φe and Φb are Poisson processes, yielding a null model of uniform coverage of the skin by end points and general baseline results and reference values for moments of key physiologic indicators. The second model provides a mechanistic model to generate end points for each base, and we model the branching structure more directly by defining Φe as a cluster process conditioned on the realization of Φb as its parent points. In both cases, we derive distributional properties for observable quantities of direct interest to neurologists such as the number of fibers per base, and the direction and range of fibers on the skin. We contrast both models by fitting them to data from skin blister biopsy images of ENFs and provide inference regarding physiological properties of ENFs. Copyright © 2013 Elsevier Inc. All rights reserved.
Liu, Mei-bing; Chen, Xing-wei; Chen, Ying
2015-07-01
Identification of the critical source areas of non-point source pollution is an important means to control the non-point source pollution within the watershed. In order to further reveal the impact of multiple time scales on the spatial differentiation characteristics of non-point source nitrogen loss, a SWAT model of Shanmei Reservoir watershed was developed. Based on the simulation of total nitrogen (TN) loss intensity of all 38 subbasins, spatial distribution characteristics of nitrogen loss and critical source areas were analyzed at three time scales of yearly average, monthly average and rainstorms flood process, respectively. Furthermore, multiple linear correlation analysis was conducted to analyze the contribution of natural environment and anthropogenic disturbance on nitrogen loss. The results showed that there were significant spatial differences of TN loss in Shanmei Reservoir watershed at different time scales, and the spatial differentiation degree of nitrogen loss was in the order of monthly average > yearly average > rainstorms flood process. TN loss load mainly came from upland Taoxi subbasin, which was identified as the critical source area. At different time scales, land use types (such as farmland and forest) were always the dominant factor affecting the spatial distribution of nitrogen loss, while the effect of precipitation and runoff on the nitrogen loss was only taken in no fertilization month and several processes of storm flood at no fertilization date. This was mainly due to the significant spatial variation of land use and fertilization, as well as the low spatial variability of precipitation and runoff.
Phu, Jack; Kalloniatis, Michael; Khuu, Sieu K.
2018-01-01
Purpose Current clinical perimetric test paradigms present stimuli randomly to various locations across the visual field (VF), inherently introducing spatial uncertainty, which reduces contrast sensitivity. In the present study, we determined the extent to which spatial uncertainty affects contrast sensitivity in glaucoma patients by minimizing spatial uncertainty through attentional cueing. Methods Six patients with open-angle glaucoma and six healthy subjects underwent laboratory-based psychophysical testing to measure contrast sensitivity at preselected locations at two eccentricities (9.5° and 17.5°) with two stimulus sizes (Goldmann sizes III and V) under different cueing conditions: 1, 2, 4, or 8 points verbally cued. Method of Constant Stimuli and a single-interval forced-choice procedure were used to generate frequency of seeing (FOS) curves at locations with and without VF defects. Results At locations with VF defects, cueing minimizes spatial uncertainty and improves sensitivity under all conditions. The effect of cueing was maximal when one point was cued, and rapidly diminished when more points were cued (no change to baseline with 8 points cued). The slope of the FOS curve steepened with reduced spatial uncertainty. Locations with normal sensitivity in glaucomatous eyes had similar performance to that of healthy subjects. There was a systematic increase in uncertainty with the depth of VF loss. Conclusions Sensitivity measurements across the VF are negatively affected by spatial uncertainty, which increases with greater VF loss. Minimizing uncertainty can improve sensitivity at locations of deficit. Translational Relevance Current perimetric techniques introduce spatial uncertainty and may therefore underestimate sensitivity in regions of VF loss. PMID:29600116
Spatial transformation abilities and their relation to later mathematics performance.
Frick, Andrea
2018-04-10
Using a longitudinal approach, this study investigated the relational structure of different spatial transformation skills at kindergarten age, and how these spatial skills relate to children's later mathematics performance. Children were tested at three time points, in kindergarten, first grade, and second grade (N = 119). Exploratory factor analyses revealed two subcomponents of spatial transformation skills: one representing egocentric transformations (mental rotation and spatial scaling), and one representing allocentric transformations (e.g., cross-sectioning, perspective taking). Structural equation modeling suggested that egocentric transformation skills showed their strongest relation to the part of the mathematics test tapping arithmetic operations, whereas allocentric transformations were strongly related to Numeric-Logical and Spatial Functions as well as geometry. The present findings point to a tight connection between early mental transformation skills, particularly the ones requiring a high level of spatial flexibility and a strong sense for spatial magnitudes, and children's mathematics performance at the beginning of their school career.
Curtis, Andrew J; Mills, Jacqueline W; Leitner, Michael
2006-10-10
Geographic Information Systems (GIS) can provide valuable insight into patterns of human activity. Online spatial display applications, such as Google Earth, can democratise this information by disseminating it to the general public. Although this is a generally positive advance for society, there is a legitimate concern involving the disclosure of confidential information through spatial display. Although guidelines exist for aggregated data, little has been written concerning the display of point level information. The concern is that a map containing points representing cases of cancer or an infectious disease, could be re-engineered back to identify an actual residence. This risk is investigated using point mortality locations from Hurricane Katrina re-engineered from a map published in the Baton Rouge Advocate newspaper, and a field team validating these residences using search and rescue building markings. We show that the residence of an individual, visualized as a generalized point covering approximately one and half city blocks on a map, can be re-engineered back to identify the actual house location, or at least a close neighbour, even if the map contains little spatial reference information. The degree of re-engineering success is also shown to depend on the urban characteristic of the neighborhood. The results in this paper suggest a need to re-evaluate current guidelines for the display of point (address level) data. Examples of other point maps displaying health data extracted from the academic literature are presented where a similar re-engineering approach might cause concern with respect to violating confidentiality. More research is also needed into the role urban structure plays in the accuracy of re-engineering. We suggest that health and spatial scientists should be proactive and suggest a series of point level spatial confidentiality guidelines before governmental decisions are made which may be reactionary toward the threat of revealing confidential information, thereby imposing draconian limits on research using a GIS.
Curtis, Andrew J; Mills, Jacqueline W; Leitner, Michael
2006-01-01
Background Geographic Information Systems (GIS) can provide valuable insight into patterns of human activity. Online spatial display applications, such as Google Earth, can democratise this information by disseminating it to the general public. Although this is a generally positive advance for society, there is a legitimate concern involving the disclosure of confidential information through spatial display. Although guidelines exist for aggregated data, little has been written concerning the display of point level information. The concern is that a map containing points representing cases of cancer or an infectious disease, could be re-engineered back to identify an actual residence. This risk is investigated using point mortality locations from Hurricane Katrina re-engineered from a map published in the Baton Rouge Advocate newspaper, and a field team validating these residences using search and rescue building markings. Results We show that the residence of an individual, visualized as a generalized point covering approximately one and half city blocks on a map, can be re-engineered back to identify the actual house location, or at least a close neighbour, even if the map contains little spatial reference information. The degree of re-engineering success is also shown to depend on the urban characteristic of the neighborhood. Conclusion The results in this paper suggest a need to re-evaluate current guidelines for the display of point (address level) data. Examples of other point maps displaying health data extracted from the academic literature are presented where a similar re-engineering approach might cause concern with respect to violating confidentiality. More research is also needed into the role urban structure plays in the accuracy of re-engineering. We suggest that health and spatial scientists should be proactive and suggest a series of point level spatial confidentiality guidelines before governmental decisions are made which may be reactionary toward the threat of revealing confidential information, thereby imposing draconian limits on research using a GIS. PMID:17032448
The Potential for Spatial Distribution Indices to Signal Thresholds in Marine Fish Biomass
Reuchlin-Hugenholtz, Emilie
2015-01-01
The frequently observed positive relationship between fish population abundance and spatial distribution suggests that changes in distribution can be indicative of trends in abundance. If contractions in spatial distribution precede declines in spawning stock biomass (SSB), spatial distribution reference points could complement the SSB reference points that are commonly used in marine conservation biology and fisheries management. When relevant spatial distribution information is integrated into fisheries management and recovery plans, risks and uncertainties associated with a plan based solely on the SSB criterion would be reduced. To assess the added value of spatial distribution data, we examine the relationship between SSB and four metrics of spatial distribution intended to reflect changes in population range, concentration, and density for 10 demersal populations (9 species) inhabiting the Scotian Shelf, Northwest Atlantic. Our primary purpose is to assess their potential to serve as indices of SSB, using fisheries independent survey data. We find that metrics of density offer the best correlate of spawner biomass. A decline in the frequency of encountering high density areas is associated with, and in a few cases preceded by, rapid declines in SSB in 6 of 10 populations. Density-based indices have considerable potential to serve both as an indicator of SSB and as spatially based reference points in fisheries management. PMID:25789624
Mismatch removal via coherent spatial relations
NASA Astrophysics Data System (ADS)
Chen, Jun; Ma, Jiayi; Yang, Changcai; Tian, Jinwen
2014-07-01
We propose a method for removing mismatches from the given putative point correspondences in image pairs based on "coherent spatial relations." Under the Bayesian framework, we formulate our approach as a maximum likelihood problem and solve a coherent spatial relation between the putative point correspondences using an expectation-maximization (EM) algorithm. Our approach associates each point correspondence with a latent variable indicating it as being either an inlier or an outlier, and alternatively estimates the inlier set and recovers the coherent spatial relation. It can handle not only the case of image pairs with rigid motions but also the case of image pairs with nonrigid motions. To parameterize the coherent spatial relation, we choose two-view geometry and thin-plate spline as models for rigid and nonrigid cases, respectively. The mismatches could be successfully removed via the coherent spatial relations after the EM algorithm converges. The quantitative results on various experimental data demonstrate that our method outperforms many state-of-the-art methods, it is not affected by low initial correct match percentages, and is robust to most geometric transformations including a large viewing angle, image rotation, and affine transformation.
Invariant Manifolds, the Spatial Three-Body Problem and Space Mission Design
NASA Technical Reports Server (NTRS)
Gomez, G.; Koon, W. S.; Lo, Martin W.; Marsden, J. E.; Masdemont, J.; Ross, S. D.
2001-01-01
The invariant manifold structures of the collinear libration points for the spatial restricted three-body problem provide the framework for understanding complex dynamical phenomena from a geometric point of view. In particular, the stable and unstable invariant manifold 'tubes' associated to libration point orbits are the phase space structures that provide a conduit for orbits between primary bodies for separate three-body systems. These invariant manifold tubes can be used to construct new spacecraft trajectories, such as 'Petit Grand Tour' of the moons of Jupiter. Previous work focused on the planar circular restricted three-body problem. The current work extends the results to the spatial case.
NASA Astrophysics Data System (ADS)
Tang, Yunwei; Atkinson, Peter M.; Zhang, Jingxiong
2015-03-01
A cross-scale data integration method was developed and tested based on the theory of geostatistics and multiple-point geostatistics (MPG). The goal was to downscale remotely sensed images while retaining spatial structure by integrating images at different spatial resolutions. During the process of downscaling, a rich spatial correlation model in the form of a training image was incorporated to facilitate reproduction of similar local patterns in the simulated images. Area-to-point cokriging (ATPCK) was used as locally varying mean (LVM) (i.e., soft data) to deal with the change of support problem (COSP) for cross-scale integration, which MPG cannot achieve alone. Several pairs of spectral bands of remotely sensed images were tested for integration within different cross-scale case studies. The experiment shows that MPG can restore the spatial structure of the image at a fine spatial resolution given the training image and conditioning data. The super-resolution image can be predicted using the proposed method, which cannot be realised using most data integration methods. The results show that ATPCK-MPG approach can achieve greater accuracy than methods which do not account for the change of support issue.
Slater, P B
1985-08-01
Two distinct approaches to assessing the effect of geographic scale on spatial interactions are modeled. In the first, the question of whether a distance deterrence function, which explains interactions for one system of zones, can also succeed on a more aggregate scale, is examined. Only the two-parameter function for which it is found that distances between macrozones are weighted averaged of distances between component zones is satisfactory in this regard. Estimation of continuous (point-to-point) functions--in the form of quadrivariate cubic polynomials--for US interstate migration streams, is then undertaken. Upon numerical integration, these higher order surfaces yield predictions of interzonal and intrazonal movements at any scale of interest. Test of spatial stationarity, isotropy, and symmetry of interstate migration are conducted in this framework.
Ouwehand, Kim; van Gog, Tamara; Paas, Fred
2016-10-01
Research showed that source memory functioning declines with ageing. Evidence suggests that encoding visual stimuli with manual pointing in addition to visual observation can have a positive effect on spatial memory compared with visual observation only. The present study investigated whether pointing at picture locations during encoding would lead to better spatial source memory than naming (Experiment 1) and visual observation only (Experiment 2) in young and older adults. Experiment 3 investigated whether response modality during the test phase would influence spatial source memory performance. Experiments 1 and 2 supported the hypothesis that pointing during encoding led to better source memory for picture locations than naming or observation only. Young adults outperformed older adults on the source memory but not the item memory task in both Experiments 1 and 2. In Experiments 1 and 2, participants manually responded in the test phase. Experiment 3 showed that if participants had to verbally respond in the test phase, the positive effect of pointing compared with naming during encoding disappeared. The results suggest that pointing at picture locations during encoding can enhance spatial source memory in both young and older adults, but only if the response modality is congruent in the test phase.
Classification of spatially unresolved objects
NASA Technical Reports Server (NTRS)
Nalepka, R. F.; Horwitz, H. M.; Hyde, P. D.; Morgenstern, J. P.
1972-01-01
A proportion estimation technique for classification of multispectral scanner images is reported that uses data point averaging to extract and compute estimated proportions for a single average data point to classify spatial unresolved areas. Example extraction calculations of spectral signatures for bare soil, weeds, alfalfa, and barley prove quite accurate.
On the spectrum of inhomogeneous turbulence
NASA Technical Reports Server (NTRS)
Trevino, G.
1979-01-01
Inhomogeneous turbulence is defined as turbulence whose statistics are functions of spatial position. The turbulence spectrum, and particularly how the shape of the spectrum varies, from point to point in space, as a consequence of well defined spatial variations in the turbulence intensity and/or integral scale is investigated.
A dynamical system approach to Bianchi III cosmology for Hu-Sawicki type f( R) gravity
NASA Astrophysics Data System (ADS)
Banik, Sebika Kangsha; Banik, Debika Kangsha; Bhuyan, Kalyan
2018-02-01
The cosmological dynamics of spatially homogeneous but anisotropic Bianchi type-III space-time is investigated in presence of a perfect fluid within the framework of Hu-Sawicki model. We use the dynamical system approach to perform a detailed analysis of the cosmological behaviour of this model for the model parameters n=1, c_1=1, determining all the fixed points, their stability and corresponding cosmological evolution. We have found stable fixed points with de Sitter solution along with unstable radiation like fixed points. We have identified a matter like point which act like an unstable spiral and when the initial conditions of a trajectory are very close to this point, it stabilizes at a stable accelerating point. Thus, in this model, the universe can naturally approach to a phase of accelerated expansion following a radiation or a matter dominated phase. It is also found that the isotropisation of this model is affected by the spatial curvature and that all the isotropic fixed points are found to be spatially flat.
Dettwiller, Luc
2006-04-17
Since 2001 the intrinsic birefringence of fluorine has been accessible to experiment. It is known that its intrinsic anisotropy is entirely due to spatial dispersion, and that the index surface of fluorine and crystals with the same symmetry has seven optical axes, four of them intersecting this surface at pairs of conical points. I point out the fact that there is no internal conical refraction, but only simple refraction (and without walkoff), with these conical points. I also explain why the rays are not a priori normal to the index surface in the case of fluorine because of its spatial dispersion; and I discuss two particular cases of spatial dispersion where the Poynting vector remains orthogonal to the index surface.
Comparable Rest-related Promotion of Spatial Memory Consolidation in Younger and Older Adults
Craig, Michael; Wolbers, Thomas; Harris, Mathew A.; Hauff, Patrick; Della Sala, Sergio; Dewar, Michaela
2017-01-01
Flexible spatial navigation depends on cognitive mapping, a function that declines with increasing age. In young adults, a brief period of post-navigation rest promotes the consolidation/integration of spatial memories into accurate cognitive maps. We examined (1) whether rest promotes spatial memory consolidation/integration in older adults and (2) whether the magnitude of the rest benefit changes with increasing age. Young and older adults learned a route through a virtual environment, followed by a 10min delay comprising either wakeful rest or a perceptual task, and a subsequent cognitive mapping task, requiring the pointing to landmarks from different locations. Pointing accuracy was lower in the older than younger adults. However, there was a comparable rest-related enhancement in pointing accuracy in the two age groups. Together our findings suggest that (i) the age-related decline in cognitive mapping cannot be explained by increased consolidation interference in older adults, and (ii) as we grow older rest continues to support the consolidation/integration of spatial memories. PMID:27689512
Ecotoxicology and spatial modeling in population dynamics: an illustration with brown trout.
Chaumot, Arnaud; Charles, Sandrine; Flammarion, Patrick; Auger, Pierre
2003-05-01
We developed a multiregion matrix population model to explore how the demography of a hypothetical brown trout population living in a river network varies in response to different spatial scenarios of cadmium contamination. Age structure, spatial distribution, and demographic and migration processes are taken into account in the model. Chronic or acute cadmium concentrations affect the demographic parameters at the scale of the river range. The outputs of the model constitute population-level end points (the asymptotic population growth rate, the stable age structure, and the asymptotic spatial distribution) that allow comparing the different spatial scenarios of contamination regarding the demographic response at the scale of the whole river network. An analysis of the sensitivity of these end points to lower order parameters enables us to link the local effects of cadmium to the global demographic behavior of the brown trout population. Such a link is of broad interest in the point of view of ecotoxicological management.
A distributed grid-based watershed mercury loading model has been developed to characterize spatial and temporal dynamics of mercury from both point and non-point sources. The model simulates flow, sediment transport, and mercury dynamics on a daily time step across a diverse lan...
NASA Technical Reports Server (NTRS)
Cornwell, Donald M., Jr.; Saif, Babak N.
1991-01-01
The spatial pointing angle and far field beamwidth of a high-power semiconductor laser are characterized as a function of CW power and also as a function of temperature. The time-averaged spatial pointing angle and spatial lobe width were measured under intensity-modulated conditions. The measured pointing deviations are determined to be well within the pointing requirements of the NASA Laser Communications Transceiver (LCT) program. A computer-controlled Mach-Zehnder phase-shifter interferometer is used to characterize the wavefront quality of the laser. The rms phase error over the entire pupil was measured as a function of CW output power. Time-averaged measurements of the wavefront quality are also made under intensity-modulated conditions. The measured rms phase errors are determined to be well within the wavefront quality requirements of the LCT program.
Research of GIS-services applicability for solution of spatial analysis tasks.
NASA Astrophysics Data System (ADS)
Terekhin, D. A.; Botygin, I. A.; Sherstneva, A. I.; Sherstnev, V. S.
2017-01-01
Experiments for working out the areas of applying various gis-services in the tasks of spatial analysis are discussed in this paper. Google Maps, Yandex Maps, Microsoft SQL Server are used as services of spatial analysis. All services have shown a comparable speed of analyzing the spatial data when carrying out elemental spatial requests (building up the buffer zone of a point object) as well as the preferences of Microsoft SQL Server in operating with more complicated spatial requests. When building up elemental spatial requests, internet-services show higher efficiency due to cliental data handling with JavaScript-subprograms. A weak point of public internet-services is an impossibility to handle data on a server side and a barren variety of spatial analysis functions. Microsoft SQL Server offers a large variety of functions needed for spatial analysis on the server side. The authors conclude that when solving practical problems, the capabilities of internet-services used in building up routes and completing other functions with spatial analysis with Microsoft SQL Server should be involved.
Analyses and assessments of span wise gust gradient data from NASA B-57B aircraft
NASA Technical Reports Server (NTRS)
Frost, Walter; Chang, Ho-Pen; Ringnes, Erik A.
1987-01-01
Analysis of turbulence measured across the airfoil of a Cambera B-57 aircraft is reported. The aircraft is instrumented with probes for measuring wind at both wing tips and at the nose. Statistical properties of the turbulence are reported. These consist of the standard deviations of turbulence measured by each individual probe, standard deviations and probability distribution of differences in turbulence measured between probes and auto- and two-point spatial correlations and spectra. Procedures associated with calculations of two-point spatial correlations and spectra utilizing data were addressed. Methods and correction procedures for assuring the accuracy of aircraft measured winds are also described. Results are found, in general, to agree with correlations existing in the literature. The velocity spatial differences fit a Gaussian/Bessel type probability distribution. The turbulence agrees with the von Karman turbulence correlation and with two-point spatial correlations developed from the von Karman correlation.
Brian R Miranda; Brian R Sturtevant; Susan I Stewart; Roger B. Hammer
2012-01-01
Most drivers underlying wildfire are dynamic, but at different spatial and temporal scales. We quantified temporal and spatial trends in wildfire patterns over two spatial extents in northern Wisconsin to identify drivers and their change through time. We used spatial point pattern analysis to quantify the spatial pattern of wildfire occurrences, and linear regression...
Robot Manipulations: A Synergy of Visualization, Computation and Action for Spatial Instruction
ERIC Educational Resources Information Center
Verner, Igor M.
2004-01-01
This article considers the use of a learning environment, RoboCell, where manipulations of objects are performed by robot operations specified through the learner's application of mathematical and spatial reasoning. A curriculum is proposed relating to robot kinematics and point-to-point motion, rotation of objects, and robotic assembly of spatial…
A Review of High-Order and Optimized Finite-Difference Methods for Simulating Linear Wave Phenomena
NASA Technical Reports Server (NTRS)
Zingg, David W.
1996-01-01
This paper presents a review of high-order and optimized finite-difference methods for numerically simulating the propagation and scattering of linear waves, such as electromagnetic, acoustic, or elastic waves. The spatial operators reviewed include compact schemes, non-compact schemes, schemes on staggered grids, and schemes which are optimized to produce specific characteristics. The time-marching methods discussed include Runge-Kutta methods, Adams-Bashforth methods, and the leapfrog method. In addition, the following fourth-order fully-discrete finite-difference methods are considered: a one-step implicit scheme with a three-point spatial stencil, a one-step explicit scheme with a five-point spatial stencil, and a two-step explicit scheme with a five-point spatial stencil. For each method studied, the number of grid points per wavelength required for accurate simulation of wave propagation over large distances is presented. Recommendations are made with respect to the suitability of the methods for specific problems and practical aspects of their use, such as appropriate Courant numbers and grid densities. Avenues for future research are suggested.
Hu, Junguo; Zhou, Jian; Zhou, Guomo; Luo, Yiqi; Xu, Xiaojun; Li, Pingheng; Liang, Junyi
2016-01-01
Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME) algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information) effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK) and Co-Kriging (Co-OK) methods. The results indicated that the root mean squared errors (RMSEs) and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193) were less than those for the OK method (1.146 and 1.539) when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points.
Hu, Junguo; Zhou, Jian; Zhou, Guomo; Luo, Yiqi; Xu, Xiaojun; Li, Pingheng; Liang, Junyi
2016-01-01
Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME) algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information) effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK) and Co-Kriging (Co-OK) methods. The results indicated that the root mean squared errors (RMSEs) and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193) were less than those for the OK method (1.146 and 1.539) when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points. PMID:26807579
NASA Astrophysics Data System (ADS)
Chen, Nan
2018-03-01
Conversion of points or lines from vector to grid format, or vice versa, is the first operation required for most spatial analysis. Conversion, however, usually causes the location of points or lines to change, which influences the reliability of the results of spatial analysis or even results in analysis errors. The purpose of this paper is to evaluate the change of the location of points and lines during conversion using the concepts of probability and entropy. This paper shows that when a vector point is converted to a grid point, the vector point may be outside or inside the grid point. This paper deduces a formula for computing the probability that the vector point is inside the grid point. It was found that the probability increased with the side length of the grid and with the variances of the coordinates of the vector point. In addition, the location entropy of points and lines are defined in this paper. Formulae for computing the change of the location entropy during conversion are deduced. The probability mentioned above and the change of location entropy may be used to evaluate the location reliability of points and lines in Geographic Information Systems and may be used to choose an appropriate range of the side length of grids before conversion. The results of this study may help scientists and users to avoid mistakes caused by the change of location during conversion as well as in spatial decision and analysis.
Advanced analysis of forest fire clustering
NASA Astrophysics Data System (ADS)
Kanevski, Mikhail; Pereira, Mario; Golay, Jean
2017-04-01
Analysis of point pattern clustering is an important topic in spatial statistics and for many applications: biodiversity, epidemiology, natural hazards, geomarketing, etc. There are several fundamental approaches used to quantify spatial data clustering using topological, statistical and fractal measures. In the present research, the recently introduced multi-point Morisita index (mMI) is applied to study the spatial clustering of forest fires in Portugal. The data set consists of more than 30000 fire events covering the time period from 1975 to 2013. The distribution of forest fires is very complex and highly variable in space. mMI is a multi-point extension of the classical two-point Morisita index. In essence, mMI is estimated by covering the region under study by a grid and by computing how many times more likely it is that m points selected at random will be from the same grid cell than it would be in the case of a complete random Poisson process. By changing the number of grid cells (size of the grid cells), mMI characterizes the scaling properties of spatial clustering. From mMI, the data intrinsic dimension (fractal dimension) of the point distribution can be estimated as well. In this study, the mMI of forest fires is compared with the mMI of random patterns (RPs) generated within the validity domain defined as the forest area of Portugal. It turns out that the forest fires are highly clustered inside the validity domain in comparison with the RPs. Moreover, they demonstrate different scaling properties at different spatial scales. The results obtained from the mMI analysis are also compared with those of fractal measures of clustering - box counting and sand box counting approaches. REFERENCES Golay J., Kanevski M., Vega Orozco C., Leuenberger M., 2014: The multipoint Morisita index for the analysis of spatial patterns. Physica A, 406, 191-202. Golay J., Kanevski M. 2015: A new estimator of intrinsic dimension based on the multipoint Morisita index. Pattern Recognition, 48, 4070-4081.
Spatially explicit models for inference about density in unmarked or partially marked populations
Chandler, Richard B.; Royle, J. Andrew
2013-01-01
Recently developed spatial capture–recapture (SCR) models represent a major advance over traditional capture–recapture (CR) models because they yield explicit estimates of animal density instead of population size within an unknown area. Furthermore, unlike nonspatial CR methods, SCR models account for heterogeneity in capture probability arising from the juxtaposition of animal activity centers and sample locations. Although the utility of SCR methods is gaining recognition, the requirement that all individuals can be uniquely identified excludes their use in many contexts. In this paper, we develop models for situations in which individual recognition is not possible, thereby allowing SCR concepts to be applied in studies of unmarked or partially marked populations. The data required for our model are spatially referenced counts made on one or more sample occasions at a collection of closely spaced sample units such that individuals can be encountered at multiple locations. Our approach includes a spatial point process for the animal activity centers and uses the spatial correlation in counts as information about the number and location of the activity centers. Camera-traps, hair snares, track plates, sound recordings, and even point counts can yield spatially correlated count data, and thus our model is widely applicable. A simulation study demonstrated that while the posterior mean exhibits frequentist bias on the order of 5–10% in small samples, the posterior mode is an accurate point estimator as long as adequate spatial correlation is present. Marking a subset of the population substantially increases posterior precision and is recommended whenever possible. We applied our model to avian point count data collected on an unmarked population of the northern parula (Parula americana) and obtained a density estimate (posterior mode) of 0.38 (95% CI: 0.19–1.64) birds/ha. Our paper challenges sampling and analytical conventions in ecology by demonstrating that neither spatial independence nor individual recognition is needed to estimate population density—rather, spatial dependence can be informative about individual distribution and density.
Spectrum of classes of point emitters of electromagnetic wave fields.
Castañeda, Román
2016-09-01
The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.
Visualizing Uncertainty of Point Phenomena by Redesigned Error Ellipses
NASA Astrophysics Data System (ADS)
Murphy, Christian E.
2018-05-01
Visualizing uncertainty remains one of the great challenges in modern cartography. There is no overarching strategy to display the nature of uncertainty, as an effective and efficient visualization depends, besides on the spatial data feature type, heavily on the type of uncertainty. This work presents a design strategy to visualize uncertainty con-nected to point features. The error ellipse, well-known from mathematical statistics, is adapted to display the uncer-tainty of point information originating from spatial generalization. Modified designs of the error ellipse show the po-tential of quantitative and qualitative symbolization and simultaneous point based uncertainty symbolization. The user can intuitively depict the centers of gravity, the major orientation of the point arrays as well as estimate the ex-tents and possible spatial distributions of multiple point phenomena. The error ellipse represents uncertainty in an intuitive way, particularly suitable for laymen. Furthermore it is shown how applicable an adapted design of the er-ror ellipse is to display the uncertainty of point features originating from incomplete data. The suitability of the error ellipse to display the uncertainty of point information is demonstrated within two showcases: (1) the analysis of formations of association football players, and (2) uncertain positioning of events on maps for the media.
Improved spatial resolution of luminescence images acquired with a silicon line scanning camera
NASA Astrophysics Data System (ADS)
Teal, Anthony; Mitchell, Bernhard; Juhl, Mattias K.
2018-04-01
Luminescence imaging is currently being used to provide spatially resolved defect in high volume silicon solar cell production. One option to obtain the high throughput required for on the fly detection is the use a silicon line scan cameras. However, when using a silicon based camera, the spatial resolution is reduced as a result of the weakly absorbed light scattering within the camera's chip. This paper address this issue by applying deconvolution from a measured point spread function. This paper extends the methods for determining the point spread function of a silicon area camera to a line scan camera with charge transfer. The improvement in resolution is quantified in the Fourier domain and in spatial domain on an image of a multicrystalline silicon brick. It is found that light spreading beyond the active sensor area is significant in line scan sensors, but can be corrected for through normalization of the point spread function. The application of this method improves the raw data, allowing effective detection of the spatial resolution of defects in manufacturing.
Mark Spencer; Kevin O' Hara
2006-01-01
Phytophthora ramorum is a major source of tanoak (Lithocarpus densiflorus) mortality in the tanoak/redwood (Sequoia sempervirens) forests of central California. This study presents a spatial analysis of the spread of the disease using second-order point pattern and GIS analyses. Our data set includes four plots...
Spatializing Critical Education: Progress and Cautions
ERIC Educational Resources Information Center
Ferrare, Joseph J.; Apple, Michael W.
2010-01-01
Recently critical scholars have shown a renewed interest in spatial relations in educational contexts. In this essay we use selections from Gulson and Symes's edited volume "Spatial theories of education" as a point of departure to examine what spatial analysis can contribute to the critical education traditions. We argue that, when done…
Reiter, Matthew E.; Andersen, David E.
2013-01-01
Quantifying spatial patterns of bird nests and nest fate provides insights into processes influencing a species’ distribution. At Cape Churchill, Manitoba, Canada, recent declines in breeding Eastern Prairie Population Canada geese (Branta canadensis interior) has coincided with increasing populations of nesting lesser snow geese (Chen caerulescens caerulescens) and Ross’s geese (Chen rossii). We conducted a spatial analysis of point patterns using Canada goose nest locations and nest fate, and lesser snow goose nest locations at two study areas in northern Manitoba with different densities and temporal durations of sympatric nesting Canada and lesser snow geese. Specifically, we assessed (1) whether Canada geese exhibited territoriality and at what scale and nest density; and (2) whether spatial patterns of Canada goose nest fate were associated with the density of nesting lesser snow geese as predicted by the protective-association hypothesis. Between 2001 and 2007, our data suggest that Canada geese were territorial at the scale of nearest neighbors, but were aggregated when considering overall density of conspecifics at slightly broader spatial scales. The spatial distribution of nest fates indicated that lesser snow goose nest proximity and density likely influence Canada goose nest fate. Our analyses of spatial point patterns suggested that continued changes in the distribution and abundance of breeding lesser snow geese on the Hudson Bay Lowlands may have impacts on the reproductive performance of Canada geese, and subsequently the spatial distribution of Canada goose nests.
Spatially-protected Topology and Group Cohomology in Band Insulators
NASA Astrophysics Data System (ADS)
Alexandradinata, A.
This thesis investigates band topologies which rely fundamentally on spatial symmetries. A basic geometric property that distinguishes spatial symmetry regards their transformation of the spatial origin. Point groups consist of spatial transformations that preserve the spatial origin, while un-split extensions of the point groups by spatial translations are referred to as nonsymmorphic space groups. The first part of the thesis addresses topological phases with discretely-robust surface properties: we introduce theories for the Cnv point groups, as well as certain nonsymmorphic groups that involve glide reflections. These band insulators admit a powerful characterization through the geometry of quasimomentum space; parallel transport in this space is represented by the Wilson loop. The non-symmorphic topology we study is naturally described by a further extension of the nonsymmorphic space group by quasimomentum translations (the Wilson loop), thus placing real and quasimomentum space on equal footing -- here, we introduce the language of group cohomology into the theory of band insulators. The second part of the thesis addresses topological phases without surface properties -- their only known physical consequences are discrete signatures in parallel transport. We provide two such case studies with spatial-inversion and discrete-rotational symmetries respectively. One lesson learned here regards the choice of parameter loops in which we carry out transport -- the loop must be chosen to exploit the symmetry that protects the topology. While straight loops are popular for their connection with the geometric theory of polarization, we show that bent loops also have utility in topological band theory.
NASA Astrophysics Data System (ADS)
Kawaguchi, Hiroshi; Hayashi, Toshiyuki; Kato, Toshinori; Okada, Eiji
2004-06-01
Near-infrared (NIR) topography can obtain a topographical distribution of the activated region in the brain cortex. Near-infrared light is strongly scattered in the head, and the volume of tissue sampled by a source-detector pair on the head surface is broadly distributed in the brain. This scattering effect results in poor resolution and contrast in the topographic image of the brain activity. In this study, a one-dimensional distribution of absorption change in a head model is calculated by mapping and reconstruction methods to evaluate the effect of the image reconstruction algorithm and the interval of measurement points for topographic imaging on the accuracy of the topographic image. The light propagation in the head model is predicted by Monte Carlo simulation to obtain the spatial sensitivity profile for a source-detector pair. The measurement points are one-dimensionally arranged on the surface of the model, and the distance between adjacent measurement points is varied from 4 mm to 28 mm. Small intervals of the measurement points improve the topographic image calculated by both the mapping and reconstruction methods. In the conventional mapping method, the limit of the spatial resolution depends upon the interval of the measurement points and spatial sensitivity profile for source-detector pairs. The reconstruction method has advantages over the mapping method which improve the results of one-dimensional analysis when the interval of measurement points is less than 12 mm. The effect of overlapping of spatial sensitivity profiles indicates that the reconstruction method may be effective to improve the spatial resolution of a two-dimensional reconstruction of topographic image obtained with larger interval of measurement points. Near-infrared topography with the reconstruction method potentially obtains an accurate distribution of absorption change in the brain even if the size of absorption change is less than 10 mm.
Research on presentation and query service of geo-spatial data based on ontology
NASA Astrophysics Data System (ADS)
Li, Hong-wei; Li, Qin-chao; Cai, Chang
2008-10-01
The paper analyzed the deficiency on presentation and query of geo-spatial data existed in current GIS, discussed the advantages that ontology possessed in formalization of geo-spatial data and the presentation of semantic granularity, taken land-use classification system as an example to construct domain ontology, and described it by OWL; realized the grade level and category presentation of land-use data benefited from the thoughts of vertical and horizontal navigation; and then discussed query mode of geo-spatial data based on ontology, including data query based on types and grade levels, instances and spatial relation, and synthetic query based on types and instances; these methods enriched query mode of current GIS, and is a useful attempt; point out that the key point of the presentation and query of spatial data based on ontology is to construct domain ontology that can correctly reflect geo-concept and its spatial relation and realize its fine formalization description.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keser, Saniye; Duzgun, Sebnem; Department of Geodetic and Geographic Information Technologies, Middle East Technical University, 06800 Ankara
Highlights: Black-Right-Pointing-Pointer Spatial autocorrelation exists in municipal solid waste generation rates for different provinces in Turkey. Black-Right-Pointing-Pointer Traditional non-spatial regression models may not provide sufficient information for better solid waste management. Black-Right-Pointing-Pointer Unemployment rate is a global variable that significantly impacts the waste generation rates in Turkey. Black-Right-Pointing-Pointer Significances of global parameters may diminish at local scale for some provinces. Black-Right-Pointing-Pointer GWR model can be used to create clusters of cities for solid waste management. - Abstract: In studies focusing on the factors that impact solid waste generation habits and rates, the potential spatial dependency in solid waste generation datamore » is not considered in relating the waste generation rates to its determinants. In this study, spatial dependency is taken into account in determination of the significant socio-economic and climatic factors that may be of importance for the municipal solid waste (MSW) generation rates in different provinces of Turkey. Simultaneous spatial autoregression (SAR) and geographically weighted regression (GWR) models are used for the spatial data analyses. Similar to ordinary least squares regression (OLSR), regression coefficients are global in SAR model. In other words, the effect of a given independent variable on a dependent variable is valid for the whole country. Unlike OLSR or SAR, GWR reveals the local impact of a given factor (or independent variable) on the waste generation rates of different provinces. Results show that provinces within closer neighborhoods have similar MSW generation rates. On the other hand, this spatial autocorrelation is not very high for the exploratory variables considered in the study. OLSR and SAR models have similar regression coefficients. GWR is useful to indicate the local determinants of MSW generation rates. GWR model can be utilized to plan waste management activities at local scale including waste minimization, collection, treatment, and disposal. At global scale, the MSW generation rates in Turkey are significantly related to unemployment rate and asphalt-paved roads ratio. Yet, significances of these variables may diminish at local scale for some provinces. At local scale, different factors may be important in affecting MSW generation rates.« less
Ortiz-Pelaez, Angel; Pfeiffer, Dirk U; Tempia, Stefano; Otieno, F Tom; Aden, Hussein H; Costagli, Riccardo
2010-04-28
In contrast to most pastoral systems, the Somali livestock production system is oriented towards domestic trade and export with seasonal movement patterns of herds/flocks in search of water and pasture and towards export points. Data from a rinderpest survey and other data sources have been integrated to explore the topology of a contact network of cattle herds based on a spatial proximity criterion and other attributes related to cattle herd dynamics. The objective of the study is to integrate spatial mobility and other attributes with GIS and network approaches in order to develop a predictive spatial model of presence of rinderpest. A spatial logistic regression model was fitted using data for 562 point locations. It includes three statistically significant continuous-scale variables that increase the risk of rinderpest: home range radius, herd density and clustering coefficient of the node of the network whose link was established if the sum of the home ranges of every pair of nodes was equal or greater than the shortest distance between the points. The sensitivity of the model is 85.1% and the specificity 84.6%, correctly classifying 84.7% of the observations. The spatial autocorrelation not accounted for by the model is negligible and visual assessment of a semivariogram of the residuals indicated that there was no undue amount of spatial autocorrelation. The predictive model was applied to a set of 6176 point locations covering the study area. Areas at high risk of having serological evidence of rinderpest are located mainly in the coastal districts of Lower and Middle Juba, the coastal area of Lower Shabele and in the regions of Middle Shabele and Bay. There are also isolated spots of high risk along the border with Kenya and the southern area of the border with Ethiopia. The identification of point locations and areas with high risk of presence of rinderpest and their spatial visualization as a risk map will be useful for informing the prioritization of disease surveillance and control activities for rinderpest in Somalia. The methodology applied here, involving spatial and network parameters, could also be applied to other diseases and/or species as part of a standardized approach for the design of risk-based surveillance activities in nomadic pastoral settings.
Spatially explicit spectral analysis of point clouds and geospatial data
Buscombe, Daniel D.
2015-01-01
The increasing use of spatially explicit analyses of high-resolution spatially distributed data (imagery and point clouds) for the purposes of characterising spatial heterogeneity in geophysical phenomena necessitates the development of custom analytical and computational tools. In recent years, such analyses have become the basis of, for example, automated texture characterisation and segmentation, roughness and grain size calculation, and feature detection and classification, from a variety of data types. In this work, much use has been made of statistical descriptors of localised spatial variations in amplitude variance (roughness), however the horizontal scale (wavelength) and spacing of roughness elements is rarely considered. This is despite the fact that the ratio of characteristic vertical to horizontal scales is not constant and can yield important information about physical scaling relationships. Spectral analysis is a hitherto under-utilised but powerful means to acquire statistical information about relevant amplitude and wavelength scales, simultaneously and with computational efficiency. Further, quantifying spatially distributed data in the frequency domain lends itself to the development of stochastic models for probing the underlying mechanisms which govern the spatial distribution of geological and geophysical phenomena. The software packagePySESA (Python program for Spatially Explicit Spectral Analysis) has been developed for generic analyses of spatially distributed data in both the spatial and frequency domains. Developed predominantly in Python, it accesses libraries written in Cython and C++ for efficiency. It is open source and modular, therefore readily incorporated into, and combined with, other data analysis tools and frameworks with particular utility for supporting research in the fields of geomorphology, geophysics, hydrography, photogrammetry and remote sensing. The analytical and computational structure of the toolbox is described, and its functionality illustrated with an example of a high-resolution bathymetric point cloud data collected with multibeam echosounder.
Strategies for satellite-based monitoring of CO2 from distributed area and point sources
NASA Astrophysics Data System (ADS)
Schwandner, Florian M.; Miller, Charles E.; Duren, Riley M.; Natraj, Vijay; Eldering, Annmarie; Gunson, Michael R.; Crisp, David
2014-05-01
Atmospheric CO2 budgets are controlled by the strengths, as well as the spatial and temporal variabilities of CO2 sources and sinks. Natural CO2 sources and sinks are dominated by the vast areas of the oceans and the terrestrial biosphere. In contrast, anthropogenic and geogenic CO2 sources are dominated by distributed area and point sources, which may constitute as much as 70% of anthropogenic (e.g., Duren & Miller, 2012), and over 80% of geogenic emissions (Burton et al., 2013). Comprehensive assessments of CO2 budgets necessitate robust and highly accurate satellite remote sensing strategies that address the competing and often conflicting requirements for sampling over disparate space and time scales. Spatial variability: The spatial distribution of anthropogenic sources is dominated by patterns of production, storage, transport and use. In contrast, geogenic variability is almost entirely controlled by endogenic geological processes, except where surface gas permeability is modulated by soil moisture. Satellite remote sensing solutions will thus have to vary greatly in spatial coverage and resolution to address distributed area sources and point sources alike. Temporal variability: While biogenic sources are dominated by diurnal and seasonal patterns, anthropogenic sources fluctuate over a greater variety of time scales from diurnal, weekly and seasonal cycles, driven by both economic and climatic factors. Geogenic sources typically vary in time scales of days to months (geogenic sources sensu stricto are not fossil fuels but volcanoes, hydrothermal and metamorphic sources). Current ground-based monitoring networks for anthropogenic and geogenic sources record data on minute- to weekly temporal scales. Satellite remote sensing solutions would have to capture temporal variability through revisit frequency or point-and-stare strategies. Space-based remote sensing offers the potential of global coverage by a single sensor. However, no single combination of orbit and sensor provides the full range of temporal sampling needed to characterize distributed area and point source emissions. For instance, point source emission patterns will vary with source strength, wind speed and direction. Because wind speed, direction and other environmental factors change rapidly, short term variabilities should be sampled. For detailed target selection and pointing verification, important lessons have already been learned and strategies devised during JAXA's GOSAT mission (Schwandner et al, 2013). The fact that competing spatial and temporal requirements drive satellite remote sensing sampling strategies dictates a systematic, multi-factor consideration of potential solutions. Factors to consider include vista, revisit frequency, integration times, spatial resolution, and spatial coverage. No single satellite-based remote sensing solution can address this problem for all scales. It is therefore of paramount importance for the international community to develop and maintain a constellation of atmospheric CO2 monitoring satellites that complement each other in their temporal and spatial observation capabilities: Polar sun-synchronous orbits (fixed local solar time, no diurnal information) with agile pointing allow global sampling of known distributed area and point sources like megacities, power plants and volcanoes with daily to weekly temporal revisits and moderate to high spatial resolution. Extensive targeting of distributed area and point sources comes at the expense of reduced mapping or spatial coverage, and the important contextual information that comes with large-scale contiguous spatial sampling. Polar sun-synchronous orbits with push-broom swath-mapping but limited pointing agility may allow mapping of individual source plumes and their spatial variability, but will depend on fortuitous environmental conditions during the observing period. These solutions typically have longer times between revisits, limiting their ability to resolve temporal variations. Geostationary and non-sun-synchronous low-Earth-orbits (precessing local solar time, diurnal information possible) with agile pointing have the potential to provide, comprehensive mapping of distributed area sources such as megacities with longer stare times and multiple revisits per day, at the expense of global access and spatial coverage. An ad hoc CO2 remote sensing constellation is emerging. NASA's OCO-2 satellite (launch July 2014) joins JAXA's GOSAT satellite in orbit. These will be followed by GOSAT-2 and NASA's OCO-3 on the International Space Station as early as 2017. Additional polar orbiting satellites (e.g., CarbonSat, under consideration at ESA) and geostationary platforms may also become available. However, the individual assets have been designed with independent science goals and requirements, and limited consideration of coordinated observing strategies. Every effort must be made to maximize the science return from this constellation. We discuss the opportunities to exploit the complementary spatial and temporal coverage provided by these assets as well as the crucial gaps in the capabilities of this constellation. References Burton, M.R., Sawyer, G.M., and Granieri, D. (2013). Deep carbon emissions from volcanoes. Rev. Mineral. Geochem. 75: 323-354. Duren, R.M., Miller, C.E. (2012). Measuring the carbon emissions of megacities. Nature Climate Change 2, 560-562. Schwandner, F.M., Oda, T., Duren, R., Carn, S.A., Maksyutov, S., Crisp, D., Miller, C.E. (2013). Scientific Opportunities from Target-Mode Capabilities of GOSAT-2. NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA, White Paper, 6p., March 2013.
Reduced vision selectively impairs spatial updating in fall-prone older adults.
Barrett, Maeve M; Doheny, Emer P; Setti, Annalisa; Maguinness, Corrina; Foran, Timothy G; Kenny, Rose Anne; Newell, Fiona N
2013-01-01
The current study examined the role of vision in spatial updating and its potential contribution to an increased risk of falls in older adults. Spatial updating was assessed using a path integration task in fall-prone and healthy older adults. Specifically, participants conducted a triangle completion task in which they were guided along two sides of a triangular route and were then required to return, unguided, to the starting point. During the task, participants could either clearly view their surroundings (full vision) or visuo-spatial information was reduced by means of translucent goggles (reduced vision). Path integration performance was measured by calculating the distance and angular deviation from the participant's return point relative to the starting point. Gait parameters for the unguided walk were also recorded. We found equivalent performance across groups on all measures in the full vision condition. In contrast, in the reduced vision condition, where participants had to rely on interoceptive cues to spatially update their position, fall-prone older adults made significantly larger distance errors relative to healthy older adults. However, there were no other performance differences between fall-prone and healthy older adults. These findings suggest that fall-prone older adults, compared to healthy older adults, have greater difficulty in reweighting other sensory cues for spatial updating when visual information is unreliable.
Generation of isolated asymmetric umbilics in light's polarization
NASA Astrophysics Data System (ADS)
Galvez, Enrique J.; Rojec, Brett L.; Kumar, Vijay; Viswanathan, Nirmal K.
2014-03-01
Polarization-singularity C points, a form of line singularities, are the vectorial counterparts of the optical vortices of spatial modes and fundamental optical features of polarization-spatial modes. Their generation in tailored beams has been limited to so-called "lemon" and "star" C points that contain symmetric dislocations in state-of-polarization patterns. In this Rapid Communication we present the theory and laboratory measurements of two complementary methods to generate isolated asymmetric C points in tailored beams, of which symmetric lemon and star patterns are limiting cases; and we report on the generation of so-called "monstar" patterns, an asymmetric C point with characteristics of both lemons and stars.
Meneghetti, Chiara; Muffato, Veronica; Varotto, Diego; De Beni, Rossana
2017-03-01
Previous studies found mental representations of route descriptions north-up oriented when egocentric experience (given by the protagonist's initial view) was congruent with the global reference system. This study examines: (a) the development and maintenance of representations derived from descriptions when the egocentric and global reference systems are congruent or incongruent; and (b) how spatial abilities modulate these representations. Sixty participants (in two groups of 30) heard route descriptions of a protagonist's moves starting from the bottom of a layout and headed mainly northwards (SN description) in one group, and headed south from the top (NS description, the egocentric view facing in the opposite direction to the canonical north) in the other. Description recall was tested with map drawing (after hearing the description a first and second time; i.e. Time 1 and 2) and South-North (SN) or North-South (NS) pointing tasks; and spatial objective tasks were administered. The results showed that: (a) the drawings were more rotated in NS than in SN descriptions, and performed better at Time 2 than at Time 1 for both types of description; SN pointing was more accurate than NS pointing for the SN description, while SN and NS pointing accuracy did not differ for the NS description; (b) spatial (rotation) abilities were related to recall accuracy for both types of description, but were more so for the NS ones. Overall, our results showed that the way in which spatial information is conveyed (with/without congruence between the egocentric and global reference systems) and spatial abilities influence the development and maintenance of mental representations.
Sun, Liping; Luo, Yonglong; Ding, Xintao; Zhang, Ji
2014-01-01
An important component of a spatial clustering algorithm is the distance measure between sample points in object space. In this paper, the traditional Euclidean distance measure is replaced with innovative obstacle distance measure for spatial clustering under obstacle constraints. Firstly, we present a path searching algorithm to approximate the obstacle distance between two points for dealing with obstacles and facilitators. Taking obstacle distance as similarity metric, we subsequently propose the artificial immune clustering with obstacle entity (AICOE) algorithm for clustering spatial point data in the presence of obstacles and facilitators. Finally, the paper presents a comparative analysis of AICOE algorithm and the classical clustering algorithms. Our clustering model based on artificial immune system is also applied to the case of public facility location problem in order to establish the practical applicability of our approach. By using the clone selection principle and updating the cluster centers based on the elite antibodies, the AICOE algorithm is able to achieve the global optimum and better clustering effect.
A spatial model to aggregate point-source and nonpoint-source water-quality data for large areas
White, D.A.; Smith, R.A.; Price, C.V.; Alexander, R.B.; Robinson, K.W.
1992-01-01
More objective and consistent methods are needed to assess water quality for large areas. A spatial model, one that capitalizes on the topologic relationships among spatial entities, to aggregate pollution sources from upstream drainage areas is described that can be implemented on land surfaces having heterogeneous water-pollution effects. An infrastructure of stream networks and drainage basins, derived from 1:250,000-scale digital-elevation models, define the hydrologic system in this spatial model. The spatial relationships between point- and nonpoint pollution sources and measurement locations are referenced to the hydrologic infrastructure with the aid of a geographic information system. A maximum-branching algorithm has been developed to simulate the effects of distance from a pollutant source to an arbitrary downstream location, a function traditionally employed in deterministic water quality models. ?? 1992.
Soil moisture optimal sampling strategy for Sentinel 1 validation super-sites in Poland
NASA Astrophysics Data System (ADS)
Usowicz, Boguslaw; Lukowski, Mateusz; Marczewski, Wojciech; Lipiec, Jerzy; Usowicz, Jerzy; Rojek, Edyta; Slominska, Ewa; Slominski, Jan
2014-05-01
Soil moisture (SM) exhibits a high temporal and spatial variability that is dependent not only on the rainfall distribution, but also on the topography of the area, physical properties of soil and vegetation characteristics. Large variability does not allow on certain estimation of SM in the surface layer based on ground point measurements, especially in large spatial scales. Remote sensing measurements allow estimating the spatial distribution of SM in the surface layer on the Earth, better than point measurements, however they require validation. This study attempts to characterize the SM distribution by determining its spatial variability in relation to the number and location of ground point measurements. The strategy takes into account the gravimetric and TDR measurements with different sampling steps, abundance and distribution of measuring points on scales of arable field, wetland and commune (areas: 0.01, 1 and 140 km2 respectively), taking into account the different status of SM. Mean values of SM were lowly sensitive on changes in the number and arrangement of sampling, however parameters describing the dispersion responded in a more significant manner. Spatial analysis showed autocorrelations of the SM, which lengths depended on the number and the distribution of points within the adopted grids. Directional analysis revealed a differentiated anisotropy of SM for different grids and numbers of measuring points. It can therefore be concluded that both the number of samples, as well as their layout on the experimental area, were reflected in the parameters characterizing the SM distribution. This suggests the need of using at least two variants of sampling, differing in the number and positioning of the measurement points, wherein the number of them must be at least 20. This is due to the value of the standard error and range of spatial variability, which show little change with the increase in the number of samples above this figure. Gravimetric method gives a more varied distribution of SM than those derived from TDR measurements. It should be noted that reducing the number of samples in the measuring grid leads to flattening the distribution of SM from both methods and increasing the estimation error at the same time. Grid of sensors for permanent measurement points should include points that have similar distributions of SM in the vicinity. Results of the analysis including number, the maximum correlation ranges and the acceptable estimation error should be taken into account when choosing of the measurement points. Adoption or possible adjustment of the distribution of the measurement points should be verified by performing additional measuring campaigns during the dry and wet periods. Presented approach seems to be appropriate for creation of regional-scale test (super) sites, to validate products of satellites equipped with SAR (Synthetic Aperture Radar), operating in C-band, with spatial resolution suited to single field scale, as for example: ERS-1, ERS-2, Radarsat and Sentinel-1, which is going to be launched in next few months. The work was partially funded by the Government of Poland through an ESA Contract under the PECS ELBARA_PD project No. 4000107897/13/NL/KML.
A scoping review of spatial cluster analysis techniques for point-event data.
Fritz, Charles E; Schuurman, Nadine; Robertson, Colin; Lear, Scott
2013-05-01
Spatial cluster analysis is a uniquely interdisciplinary endeavour, and so it is important to communicate and disseminate ideas, innovations, best practices and challenges across practitioners, applied epidemiology researchers and spatial statisticians. In this research we conducted a scoping review to systematically search peer-reviewed journal databases for research that has employed spatial cluster analysis methods on individual-level, address location, or x and y coordinate derived data. To illustrate the thematic issues raised by our results, methods were tested using a dataset where known clusters existed. Point pattern methods, spatial clustering and cluster detection tests, and a locally weighted spatial regression model were most commonly used for individual-level, address location data (n = 29). The spatial scan statistic was the most popular method for address location data (n = 19). Six themes were identified relating to the application of spatial cluster analysis methods and subsequent analyses, which we recommend researchers to consider; exploratory analysis, visualization, spatial resolution, aetiology, scale and spatial weights. It is our intention that researchers seeking direction for using spatial cluster analysis methods, consider the caveats and strengths of each approach, but also explore the numerous other methods available for this type of analysis. Applied spatial epidemiology researchers and practitioners should give special consideration to applying multiple tests to a dataset. Future research should focus on developing frameworks for selecting appropriate methods and the corresponding spatial weighting schemes.
spsann - optimization of sample patterns using spatial simulated annealing
NASA Astrophysics Data System (ADS)
Samuel-Rosa, Alessandro; Heuvelink, Gerard; Vasques, Gustavo; Anjos, Lúcia
2015-04-01
There are many algorithms and computer programs to optimize sample patterns, some private and others publicly available. A few have only been presented in scientific articles and text books. This dispersion and somewhat poor availability is holds back to their wider adoption and further development. We introduce spsann, a new R-package for the optimization of sample patterns using spatial simulated annealing. R is the most popular environment for data processing and analysis. Spatial simulated annealing is a well known method with widespread use to solve optimization problems in the soil and geo-sciences. This is mainly due to its robustness against local optima and easiness of implementation. spsann offers many optimizing criteria for sampling for variogram estimation (number of points or point-pairs per lag distance class - PPL), trend estimation (association/correlation and marginal distribution of the covariates - ACDC), and spatial interpolation (mean squared shortest distance - MSSD). spsann also includes the mean or maximum universal kriging variance (MUKV) as an optimizing criterion, which is used when the model of spatial variation is known. PPL, ACDC and MSSD were combined (PAN) for sampling when we are ignorant about the model of spatial variation. spsann solves this multi-objective optimization problem scaling the objective function values using their maximum absolute value or the mean value computed over 1000 random samples. Scaled values are aggregated using the weighted sum method. A graphical display allows to follow how the sample pattern is being perturbed during the optimization, as well as the evolution of its energy state. It is possible to start perturbing many points and exponentially reduce the number of perturbed points. The maximum perturbation distance reduces linearly with the number of iterations. The acceptance probability also reduces exponentially with the number of iterations. R is memory hungry and spatial simulated annealing is a computationally intensive method. As such, many strategies were used to reduce the computation time and memory usage: a) bottlenecks were implemented in C++, b) a finite set of candidate locations is used for perturbing the sample points, and c) data matrices are computed only once and then updated at each iteration instead of being recomputed. spsann is available at GitHub under a licence GLP Version 2.0 and will be further developed to: a) allow the use of a cost surface, b) implement other sensitive parts of the source code in C++, c) implement other optimizing criteria, d) allow to add or delete points to/from an existing point pattern.
NASA Technical Reports Server (NTRS)
Jefferies, S. M.; Duvall, T. L., Jr.
1991-01-01
A measurement of the intensity distribution in an image of the solar disk will be corrupted by a spatial redistribution of the light that is caused by the earth's atmosphere and the observing instrument. A simple correction method is introduced here that is applicable for solar p-mode intensity observations obtained over a period of time in which there is a significant change in the scattering component of the point spread function. The method circumvents the problems incurred with an accurate determination of the spatial point spread function and its subsequent deconvolution from the observations. The method only corrects the spherical harmonic coefficients that represent the spatial frequencies present in the image and does not correct the image itself.
Parallelization of PANDA discrete ordinates code using spatial decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humbert, P.
2006-07-01
We present the parallel method, based on spatial domain decomposition, implemented in the 2D and 3D versions of the discrete Ordinates code PANDA. The spatial mesh is orthogonal and the spatial domain decomposition is Cartesian. For 3D problems a 3D Cartesian domain topology is created and the parallel method is based on a domain diagonal plane ordered sweep algorithm. The parallel efficiency of the method is improved by directions and octants pipelining. The implementation of the algorithm is straightforward using MPI blocking point to point communications. The efficiency of the method is illustrated by an application to the 3D-Ext C5G7more » benchmark of the OECD/NEA. (authors)« less
Peyrat, Jean-Marc; Delingette, Hervé; Sermesant, Maxime; Xu, Chenyang; Ayache, Nicholas
2010-07-01
We propose a framework for the nonlinear spatiotemporal registration of 4D time-series of images based on the Diffeomorphic Demons (DD) algorithm. In this framework, the 4D spatiotemporal registration is decoupled into a 4D temporal registration, defined as mapping physiological states, and a 4D spatial registration, defined as mapping trajectories of physical points. Our contribution focuses more specifically on the 4D spatial registration that should be consistent over time as opposed to 3D registration that solely aims at mapping homologous points at a given time-point. First, we estimate in each sequence the motion displacement field, which is a dense representation of the point trajectories we want to register. Then, we perform simultaneously 3D registrations of corresponding time-points with the constraints to map the same physical points over time called the trajectory constraints. Under these constraints, we show that the 4D spatial registration can be formulated as a multichannel registration of 3D images. To solve it, we propose a novel version of the Diffeomorphic Demons (DD) algorithm extended to vector-valued 3D images, the Multichannel Diffeomorphic Demons (MDD). For evaluation, this framework is applied to the registration of 4D cardiac computed tomography (CT) sequences and compared to other standard methods with real patient data and synthetic data simulated from a physiologically realistic electromechanical cardiac model. Results show that the trajectory constraints act as a temporal regularization consistent with motion whereas the multichannel registration acts as a spatial regularization. Finally, using these trajectory constraints with multichannel registration yields the best compromise between registration accuracy, temporal and spatial smoothness, and computation times. A prospective example of application is also presented with the spatiotemporal registration of 4D cardiac CT sequences of the same patient before and after radiofrequency ablation (RFA) in case of atrial fibrillation (AF). The intersequence spatial transformations over a cardiac cycle allow to analyze and quantify the regression of left ventricular hypertrophy and its impact on the cardiac function.
Kotasidis, F A; Matthews, J C; Angelis, G I; Noonan, P J; Jackson, A; Price, P; Lionheart, W R; Reader, A J
2011-05-21
Incorporation of a resolution model during statistical image reconstruction often produces images of improved resolution and signal-to-noise ratio. A novel and practical methodology to rapidly and accurately determine the overall emission and detection blurring component of the system matrix using a printed point source array within a custom-made Perspex phantom is presented. The array was scanned at different positions and orientations within the field of view (FOV) to examine the feasibility of extrapolating the measured point source blurring to other locations in the FOV and the robustness of measurements from a single point source array scan. We measured the spatially-variant image-based blurring on two PET/CT scanners, the B-Hi-Rez and the TruePoint TrueV. These measured spatially-variant kernels and the spatially-invariant kernel at the FOV centre were then incorporated within an ordinary Poisson ordered subset expectation maximization (OP-OSEM) algorithm and compared to the manufacturer's implementation using projection space resolution modelling (RM). Comparisons were based on a point source array, the NEMA IEC image quality phantom, the Cologne resolution phantom and two clinical studies (carbon-11 labelled anti-sense oligonucleotide [(11)C]-ASO and fluorine-18 labelled fluoro-l-thymidine [(18)F]-FLT). Robust and accurate measurements of spatially-variant image blurring were successfully obtained from a single scan. Spatially-variant resolution modelling resulted in notable resolution improvements away from the centre of the FOV. Comparison between spatially-variant image-space methods and the projection-space approach (the first such report, using a range of studies) demonstrated very similar performance with our image-based implementation producing slightly better contrast recovery (CR) for the same level of image roughness (IR). These results demonstrate that image-based resolution modelling within reconstruction is a valid alternative to projection-based modelling, and that, when using the proposed practical methodology, the necessary resolution measurements can be obtained from a single scan. This approach avoids the relatively time-consuming and involved procedures previously proposed in the literature.
NASA Astrophysics Data System (ADS)
Kosnikov, Yu N.; Kuzmin, A. V.; Ho, Hoang Thai
2018-05-01
The article is devoted to visualization of spatial objects’ morphing described by the set of unordered reference points. A two-stage model construction is proposed to change object’s form in real time. The first (preliminary) stage is interpolation of the object’s surface by radial basis functions. Initial reference points are replaced by new spatially ordered ones. Reference points’ coordinates change patterns during the process of morphing are assigned. The second (real time) stage is surface reconstruction by blending functions of orthogonal basis. Finite differences formulas are applied to increase the productivity of calculations.
NASA Astrophysics Data System (ADS)
Zhang, Dan; Chen, Anmin; Wang, Xiaowei; Wang, Ying; Sui, Laizhi; Ke, Da; Li, Suyu; Jiang, Yuanfei; Jin, Mingxing
2018-05-01
Expansion dynamics of a laser-induced plasma plume, with spatial confinement, for various distances between the target surface and focal point were studied by the fast photography technique. A silicon wafer was ablated to induce the plasma with a Nd:YAG laser in an atmospheric environment. The expansion dynamics of the plasma plume depended on the distance between the target surface and focal point. In addition, spatially confined time-resolved images showed the different structures of the plasma plumes at different distances between the target surface and focal point. By analyzing the plume images, the optimal distance for emission enhancement was found to be approximately 6 mm away from the geometrical focus using a 10 cm focal length lens. This optimized distance resulted in the strongest compression ratio of the plasma plume by the reflected shock wave. Furthermore, the duration of the interaction between the reflected shock wave and the plasma plume was also prolonged.
Mundo, Ignacio A; Wiegand, Thorsten; Kanagaraj, Rajapandian; Kitzberger, Thomas
2013-07-15
Fire management requires an understanding of the spatial characteristics of fire ignition patterns and how anthropogenic and natural factors influence ignition patterns across space. In this study we take advantage of a recent fire ignition database (855 points) to conduct a comprehensive analysis of the spatial pattern of fire ignitions in the western area of Neuquén province (57,649 km(2)), Argentina, for the 1992-2008 period. The objectives of our study were to better understand the spatial pattern and the environmental drivers of the fire ignitions, with the ultimate aim of supporting fire management. We conducted our analyses on three different levels: statistical "habitat" modelling of fire ignition (natural, anthropogenic, and all causes) based on an information theoretic approach to test several competing hypotheses on environmental drivers (i.e. topographic, climatic, anthropogenic, land cover, and their combinations); spatial point pattern analysis to quantify additional spatial autocorrelation in the ignition patterns; and quantification of potential spatial associations between fires of different causes relative to towns using a novel implementation of the independence null model. Anthropogenic fire ignitions were best predicted by the most complex habitat model including all groups of variables, whereas natural ignitions were best predicted by topographic, climatic and land-cover variables. The spatial pattern of all ignitions showed considerable clustering at intermediate distances (<40 km) not captured by the probability of fire ignitions predicted by the habitat model. There was a strong (linear) and highly significant increase in the density of fire ignitions with decreasing distance to towns (<5 km), but fire ignitions of natural and anthropogenic causes were statistically independent. A two-dimensional habitat model that quantifies differences between ignition probabilities of natural and anthropogenic causes allows fire managers to delineate target areas for consideration of major preventive treatments, strategic placement of fuel treatments, and forecasting of fire ignition. The techniques presented here can be widely applied to situations where a spatial point pattern is jointly influenced by extrinsic environmental factors and intrinsic point interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Incorporating Human Movement Behavior into the Analysis of Spatially Distributed Infrastructure.
Wu, Lihua; Leung, Henry; Jiang, Hao; Zheng, Hong; Ma, Li
2016-01-01
For the first time in human history, the majority of the world's population resides in urban areas. Therefore, city managers are faced with new challenges related to the efficiency, equity and quality of the supply of resources, such as water, food and energy. Infrastructure in a city can be viewed as service points providing resources. These service points function together as a spatially collaborative system to serve an increasing population. To study the spatial collaboration among service points, we propose a shared network according to human's collective movement and resource usage based on data usage detail records (UDRs) from the cellular network in a city in western China. This network is shown to be not scale-free, but exhibits an interesting triangular property governed by two types of nodes with very different link patterns. Surprisingly, this feature is consistent with the urban-rural dualistic context of the city. Another feature of the shared network is that it consists of several spatially separated communities that characterize local people's active zones but do not completely overlap with administrative areas. According to these features, we propose the incorporation of human movement into infrastructure classification. The presence of well-defined spatially separated clusters confirms the effectiveness of this approach. In this paper, our findings reveal the spatial structure inside a city, and the proposed approach provides a new perspective on integrating human movement into the study of a spatially distributed system.
Lambrey, Simon; Berthoz, Alain
2007-09-01
Numerous data in the literature provide evidence for gender differences in spatial orientation. In particular, it has been suggested that spatial representations of large-scale environments are more accurate in terms of metric information in men than in women but are richer in landmark information in women than in men. One explanatory hypothesis is that men and women differ in terms of navigational processes they used in daily life. The present study investigated this hypothesis by distinguishing two navigational processes: spatial updating by self-motion and landmark-based orientation. Subjects were asked to perform a pointing task in three experimental conditions, which differed in terms of reliability of the external landmarks that could be used. Two groups of subjects were distinguished, a mobile group and an immobile group, in which spatial updating of environmental locations did not have the same degree of importance for the correct performance of the pointing task. We found that men readily relied on an internal egocentric representation of where landmarks were expected to be in order to perform the pointing task, a representation that could be updated during self-motion (spatial updating). In contrast, women seemed to take their bearings more readily on the basis of the stable landmarks of the external world. We suggest that this gender difference in spatial orientation is not due to differences in information processing abilities but rather due to the differences in higher level strategies.
Bergmann, Helmar; Minear, Gregory; Raith, Maria; Schaffarich, Peter M
2008-12-09
The accuracy of multiple window spatial resolution characterises the performance of a gamma camera for dual isotope imaging. In the present study we investigate an alternative method to the standard NEMA procedure for measuring this performance parameter. A long-lived 133Ba point source with gamma energies close to 67Ga and a single bore lead collimator were used to measure the multiple window spatial registration error. Calculation of the positions of the point source in the images used the NEMA algorithm. The results were validated against the values obtained by the standard NEMA procedure which uses a liquid 67Ga source with collimation. Of the source-collimator configurations under investigation an optimum collimator geometry, consisting of a 5 mm thick lead disk with a diameter of 46 mm and a 5 mm central bore, was selected. The multiple window spatial registration errors obtained by the 133Ba method showed excellent reproducibility (standard deviation < 0.07 mm). The values were compared with the results from the NEMA procedure obtained at the same locations and showed small differences with a correlation coefficient of 0.51 (p < 0.05). In addition, the 133Ba point source method proved to be much easier to use. A Bland-Altman analysis showed that the 133Ba and the 67Ga Method can be used interchangeably. The 133Ba point source method measures the multiple window spatial registration error with essentially the same accuracy as the NEMA-recommended procedure, but is easier and safer to use and has the potential to replace the current standard procedure.
Entropy of Movement Outcome in Space-Time.
Lai, Shih-Chiung; Hsieh, Tsung-Yu; Newell, Karl M
2015-07-01
Information entropy of the joint spatial and temporal (space-time) probability of discrete movement outcome was investigated in two experiments as a function of different movement strategies (space-time, space, and time instructional emphases), task goals (point-aiming and target-aiming) and movement speed-accuracy constraints. The variance of the movement spatial and temporal errors was reduced by instructional emphasis on the respective spatial or temporal dimension, but increased on the other dimension. The space-time entropy was lower in targetaiming task than the point aiming task but did not differ between instructional emphases. However, the joint probabilistic measure of spatial and temporal entropy showed that spatial error is traded for timing error in tasks with space-time criteria and that the pattern of movement error depends on the dimension of the measurement process. The unified entropy measure of movement outcome in space-time reveals a new relation for the speed-accuracy.
A Note on Spatial Averaging and Shear Stresses Within Urban Canopies
NASA Astrophysics Data System (ADS)
Xie, Zheng-Tong; Fuka, Vladimir
2018-04-01
One-dimensional urban models embedded in mesoscale numerical models may place several grid points within the urban canopy. This requires an accurate parametrization for shear stresses (i.e. vertical momentum fluxes) including the dispersive stress and momentum sinks at these points. We used a case study with a packing density of 33% and checked rigorously the vertical variation of spatially-averaged total shear stress, which can be used in a one-dimensional column urban model. We found that the intrinsic spatial average, in which the volume or area of the solid parts are not included in the average process, yield greater time-spatial average of total stress within the canopy and a more evident abrupt change at the top of the buildings than the comprehensive spatial average, in which the volume or area of the solid parts are included in the average.
Spatial adaptation procedures on tetrahedral meshes for unsteady aerodynamic flow calculations
NASA Technical Reports Server (NTRS)
Rausch, Russ D.; Batina, John T.; Yang, Henry T. Y.
1993-01-01
Spatial adaptation procedures for the accurate and efficient solution of steady and unsteady inviscid flow problems are described. The adaptation procedures were developed and implemented within a three-dimensional, unstructured-grid, upwind-type Euler code. These procedures involve mesh enrichment and mesh coarsening to either add points in high gradient regions of the flow or remove points where they are not needed, respectively, to produce solutions of high spatial accuracy at minimal computational cost. A detailed description of the enrichment and coarsening procedures are presented and comparisons with experimental data for an ONERA M6 wing and an exact solution for a shock-tube problem are presented to provide an assessment of the accuracy and efficiency of the capability. Steady and unsteady results, obtained using spatial adaptation procedures, are shown to be of high spatial accuracy, primarily in that discontinuities such as shock waves are captured very sharply.
Spatial adaptation procedures on tetrahedral meshes for unsteady aerodynamic flow calculations
NASA Technical Reports Server (NTRS)
Rausch, Russ D.; Batina, John T.; Yang, Henry T. Y.
1993-01-01
Spatial adaptation procedures for the accurate and efficient solution of steady and unsteady inviscid flow problems are described. The adaptation procedures were developed and implemented within a three-dimensional, unstructured-grid, upwind-type Euler code. These procedures involve mesh enrichment and mesh coarsening to either add points in high gradient regions of the flow or remove points where they are not needed, respectively, to produce solutions of high spatial accuracy at minimal computational cost. The paper gives a detailed description of the enrichment and coarsening procedures and presents comparisons with experimental data for an ONERA M6 wing and an exact solution for a shock-tube problem to provide an assessment of the accuracy and efficiency of the capability. Steady and unsteady results, obtained using spatial adaptation procedures, are shown to be of high spatial accuracy, primarily in that discontinuities such as shock waves are captured very sharply.
Miller, Stephan W.
1981-01-01
A second set of related problems deals with how this format and other representations of spatial entities, such as vector formats for point and line features, can be interrelated for manipulation, retrieval, and analysis by a spatial database management subsystem. Methods have been developed for interrelating areal data sets in the raster format with point and line data in a vector format and these are described.
ERIC Educational Resources Information Center
Giudice, Nicholas A.; Betty, Maryann R.; Loomis, Jack M.
2011-01-01
This research examined whether visual and haptic map learning yield functionally equivalent spatial images in working memory, as evidenced by similar encoding bias and updating performance. In 3 experiments, participants learned 4-point routes either by seeing or feeling the maps. At test, blindfolded participants made spatial judgments about the…
Charles B. Halpern; Joseph A. Antos; Janine M. Rice; Ryan D. Haugo; Nicole L. Lang
2010-01-01
We combined spatial point pattern analysis, population age structures, and a time-series of stem maps to quantify spatial and temporal patterns of conifer invasion over a 200-yr period in three plots totaling 4 ha. In combination, spatial and temporal patterns of establishment suggest an invasion process shaped by biotic interactions, with facilitation promoting...
NASA Astrophysics Data System (ADS)
Xie, Hongbo; Mao, Chensheng; Ren, Yongjie; Zhu, Jigui; Wang, Chao; Yang, Lei
2017-10-01
In high precision and large-scale coordinate measurement, one commonly used approach to determine the coordinate of a target point is utilizing the spatial trigonometric relationships between multiple laser transmitter stations and the target point. A light receiving device at the target point is the key element in large-scale coordinate measurement systems. To ensure high-resolution and highly sensitive spatial coordinate measurement, a high-performance and miniaturized omnidirectional single-point photodetector (OSPD) is greatly desired. We report one design of OSPD using an aspheric lens, which achieves an enhanced reception angle of -5 deg to 45 deg in vertical and 360 deg in horizontal. As the heart of our OSPD, the aspheric lens is designed in a geometric model and optimized by LightTools Software, which enables the reflection of a wide-angle incident light beam into the single-point photodiode. The performance of home-made OSPD is characterized with working distances from 1 to 13 m and further analyzed utilizing developed a geometric model. The experimental and analytic results verify that our device is highly suitable for large-scale coordinate metrology. The developed device also holds great potential in various applications such as omnidirectional vision sensor, indoor global positioning system, and optical wireless communication systems.
Subdiffraction incoherent optical imaging via spatial-mode demultiplexing: Semiclassical treatment
NASA Astrophysics Data System (ADS)
Tsang, Mankei
2018-02-01
I present a semiclassical analysis of a spatial-mode demultiplexing (SPADE) measurement scheme for far-field incoherent optical imaging under the effects of diffraction and photon shot noise. Building on previous results that assume two point sources or the Gaussian point-spread function, I generalize SPADE for a larger class of point-spread functions and evaluate its errors in estimating the moments of an arbitrary subdiffraction object. Compared with the limits to direct imaging set by the Cramér-Rao bounds, the results show that SPADE can offer far superior accuracy in estimating second- and higher-order moments.
Spatial judgments in the horizontal and vertical planes from different vantage points.
Prytz, Erik; Scerbo, Mark W
2012-01-01
Todorović (2008 Perception 37 106-125) reported that there are systematic errors in the perception of 3-D space when viewing 2-D linear perspective drawings depending on the observer's vantage point. Because these findings were restricted to the horizontal plane, the current study was designed to determine the nature of these errors in the vertical plane. Participants viewed an image containing multiple colonnades aligned on parallel converging lines receding to a vanishing point. They were asked to judge where, in the physical room, the next column should be placed. The results support Todorović in that systematic deviations in the spatial judgments depended on vantage point for both the horizontal and vertical planes. However, there are also marked differences between the two planes. While judgments in both planes failed to compensate adequately for the vantage-point shift, the vertical plane induced greater distortions of the stimulus image itself within each vantage point.
Model for Semantically Rich Point Cloud Data
NASA Astrophysics Data System (ADS)
Poux, F.; Neuville, R.; Hallot, P.; Billen, R.
2017-10-01
This paper proposes an interoperable model for managing high dimensional point clouds while integrating semantics. Point clouds from sensors are a direct source of information physically describing a 3D state of the recorded environment. As such, they are an exhaustive representation of the real world at every scale: 3D reality-based spatial data. Their generation is increasingly fast but processing routines and data models lack of knowledge to reason from information extraction rather than interpretation. The enhanced smart point cloud developed model allows to bring intelligence to point clouds via 3 connected meta-models while linking available knowledge and classification procedures that permits semantic injection. Interoperability drives the model adaptation to potentially many applications through specialized domain ontologies. A first prototype is implemented in Python and PostgreSQL database and allows to combine semantic and spatial concepts for basic hybrid queries on different point clouds.
Mainhagu, Jon; Morrison, C.; Truex, Michael J.; ...
2014-08-05
A method termed vapor-phase tomography has recently been proposed to characterize the distribution of volatile organic contaminant mass in vadose-zone source areas, and to measure associated three-dimensional distributions of local contaminant mass discharge. The method is based on measuring the spatial variability of vapor flux, and thus inherent to its effectiveness is the premise that the magnitudes and temporal variability of vapor concentrations measured at different monitoring points within the interrogated area will be a function of the geospatial positions of the points relative to the source location. A series of flow-cell experiments was conducted to evaluate this premise. Amore » well-defined source zone was created by injection and extraction of a non-reactive gas (SF6). Spatial and temporal concentration distributions obtained from the tests were compared to simulations produced with a mathematical model describing advective and diffusive transport. Tests were conducted to characterize both areal and vertical components of the application. Decreases in concentration over time were observed for monitoring points located on the opposite side of the source zone from the local–extraction point, whereas increases were observed for monitoring points located between the local–extraction point and the source zone. We found that the results illustrate that comparison of temporal concentration profiles obtained at various monitoring points gives a general indication of the source location with respect to the extraction and monitoring points.« less
NASA Astrophysics Data System (ADS)
Wan, L. G.; Lin, Q.; Bian, D. J.; Ren, Q. K.; Xiao, Y. B.; Lu, W. X.
2018-02-01
In order to reveal the spatial difference of the bacterial community structure in the Micro-pressure Air-lift Loop Reactor, the activated sludge bacterial at five different representative sites in the reactor were studied by denaturing gradient gel electrophoresis (DGGE). The results of DGGE showed that the difference of environmental conditions (such as substrate concentration, dissolved oxygen and PH, etc.) resulted in different diversity and similarity of microbial flora in different spatial locations. The Shannon-Wiener diversity index of the total bacterial samples from five sludge samples varied from 0.92 to 1.28, the biodiversity index was the smallest at point 5, and the biodiversity index was the highest at point 2. The similarity of the flora between the point 2, 3 and 4 was 80% or more, respectively. The similarity of the flora between the point 5 and the other samples was below 70%, and the similarity of point 2 was only 59.2%. Due to the different contribution of different strains to the removal of pollutants, it can give full play to the synergistic effect of bacterial degradation of pollutants, and further improve the efficiency of sewage treatment.
Statistical characterization of spatial patterns of rainfall cells in extratropical cyclones
NASA Astrophysics Data System (ADS)
Bacchi, Baldassare; Ranzi, Roberto; Borga, Marco
1996-11-01
The assumption of a particular type of distribution of rainfall cells in space is needed for the formulation of several space-time rainfall models. In this study, weather radar-derived rain rate maps are employed to evaluate different types of spatial organization of rainfall cells in storms through the use of distance functions and second-moment measures. In particular the spatial point patterns of the local maxima of rainfall intensity are compared to a completely spatially random (CSR) point process by applying an objective distance measure. For all the analyzed radar maps the CSR assumption is rejected, indicating that at the resolution of the observation considered, rainfall cells are clustered. Therefore a theoretical framework for evaluating and fitting alternative models to the CSR is needed. This paper shows how the "reduced second-moment measure" of the point pattern can be employed to estimate the parameters of a Neyman-Scott model and to evaluate the degree of adequacy to the experimental data. Some limitations of this theoretical framework, and also its effectiveness, in comparison to the use of scaling functions, are discussed.
Ibsen, Stuart D; Nachtigall, Paul E; Krause-Nehring, Jacqueline; Kloepper, Laura; Breese, Marlee; Li, Songhai; Vlachos, Stephanie
2012-08-01
A two-dimensional array of 16 hydrophones was created to map the spatial distribution of different frequencies within the echolocation beam of a Tursiops truncatus and a Pseudorca crassidens. It was previously shown that both the Tursiops and Pseudorca only paid attention to frequencies between 29 and 42 kHz while echolocating. Both individuals tightly focused the 30 kHz frequency and the spatial location of the focus was consistently pointed toward the target. At 50 kHz the beam was less focused and less precisely pointed at the target. At 100 kHz the focus was often completely lost and was not pointed at the target. This indicates that these individuals actively focused the beam toward the target only in the frequency range they paid attention to. Frequencies outside this range were left unfocused and undirected. This focusing was probably achieved through sensorimotor control of the melon morphology and nasal air sacs. This indicates that both morphologically different species can control the spatial distribution of different frequency ranges within the echolocation beam to create consistent ensonation of desired targets.
Connecting Spatial Memories of Two Nested Spaces
ERIC Educational Resources Information Center
Zhang, Hui; Mou, Weimin; McNamara, Timothy P.; Wang, Lin
2014-01-01
Four experiments investigated the manner in which people use spatial reference directions to organize spatial memories of 2 conceptually nested layouts. Participants learned directions of 8 remote cities centered to Beijing or Edmonton, where the experiments occurred, using a map or using direct pointing. The map and the environment were aligned,…
NASA Astrophysics Data System (ADS)
Myint, S. W.; Zheng, B.; Fan, C.; Kaplan, S.; Brazel, A.; Middel, A.; Smith, M.
2014-12-01
While the relationship between fractional cover of anthropogenic and vegetation features and the urban heat island has been well studied, the effect of spatial arrangements (e.g., clustered, dispersed) of these features on urban warming or cooling are not well understood. The goal of this study is to examine if and how spatial configuration of land cover features influence land surface temperatures (LST) in urban areas. This study focuses on Phoenix, AZ and Las Vegas, NV that have undergone dramatic urban expansion. The data used to classify detailed urban land cover types include Geoeye-1 (Las Vegas) and QuickBird (Phoenix). The Geoeye-1 image (3 m resolution) was acquired on October 12, 2011 and the QuickBird image (2.4 m resolution) was taken on May 29, 2007. Classification was performed using object based image analysis (OBIA). We employed a spatial autocorrelation approach (i.e., Moran's I) that measures the spatial dependence of a point to its neighboring points and describes how clustered or dispersed points are arranged in space. We used Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data acquired over Phoenix (daytime on June 10, 2011 and nighttime on October 17, 2011) and Las Vegas (daytime on July 6, 2005 and nighttime on August 27, 2005) to examine daytime and nighttime LST with regards to the spatial arrangement of anthropogenic and vegetation features. We spatially correlate Moran's I values of each land cover per surface temperature, and develop regression models. The spatial configuration of grass and trees shows strong negative correlations with LST, implying that clustered vegetation lowers surface temperatures more effectively. In contrast, a clustered spatial arrangement of anthropogenic land-cover features, especially impervious surfaces, significantly elevates surface temperatures. Results from this study suggest that the spatial configuration of anthropogenic and vegetation features influence urban warming and cooling.
An Innovative Metric to Evaluate Satellite Precipitation's Spatial Distribution
NASA Astrophysics Data System (ADS)
Liu, H.; Chu, W.; Gao, X.; Sorooshian, S.
2011-12-01
Thanks to its capability to cover the mountains, where ground measurement instruments cannot reach, satellites provide a good means of estimating precipitation over mountainous regions. In regions with complex terrains, accurate information on high-resolution spatial distribution of precipitation is critical for many important issues, such as flood/landslide warning, reservoir operation, water system planning, etc. Therefore, in order to be useful in many practical applications, satellite precipitation products should possess high quality in characterizing spatial distribution. However, most existing validation metrics, which are based on point/grid comparison using simple statistics, cannot effectively measure satellite's skill of capturing the spatial patterns of precipitation fields. This deficiency results from the fact that point/grid-wised comparison does not take into account of the spatial coherence of precipitation fields. Furth more, another weakness of many metrics is that they can barely provide information on why satellite products perform well or poor. Motivated by our recent findings of the consistent spatial patterns of the precipitation field over the western U.S., we developed a new metric utilizing EOF analysis and Shannon entropy. The metric can be derived through two steps: 1) capture the dominant spatial patterns of precipitation fields from both satellite products and reference data through EOF analysis, and 2) compute the similarities between the corresponding dominant patterns using mutual information measurement defined with Shannon entropy. Instead of individual point/grid, the new metric treat the entire precipitation field simultaneously, naturally taking advantage of spatial dependence. Since the dominant spatial patterns are shaped by physical processes, the new metric can shed light on why satellite product can or cannot capture the spatial patterns. For demonstration, a experiment was carried out to evaluate a satellite precipitation product, CMORPH, against the U.S. daily precipitation analysis of Climate Prediction Center (CPC) at a daily and .25o scale over the Western U.S.
NASA Astrophysics Data System (ADS)
Garen, D. C.; Kahl, A.; Marks, D. G.; Winstral, A. H.
2012-12-01
In mountainous catchments, it is well known that meteorological inputs, such as precipitation, air temperature, humidity, etc. vary greatly with elevation, spatial location, and time. Understanding and monitoring catchment inputs is necessary in characterizing and predicting hydrologic response to these inputs. This is true all of the time, but it is the most dramatically critical during large storms, when the input to the stream system due to rain and snowmelt creates the potential for flooding. Besides such crisis events, however, proper estimation of catchment inputs and their spatial distribution is also needed in more prosaic but no less important water and related resource management activities. The first objective of this study is to apply a geostatistical spatial interpolation technique (elevationally detrended kriging) to precipitation and dew point temperature on an hourly basis and explore its characteristics, accuracy, and other issues. The second objective is to use these spatial fields to determine precipitation phase (rain or snow) during a large, dynamic winter storm. The catchment studied is the data-rich Reynolds Creek Experimental Watershed near Boise, Idaho. As part of this analysis, precipitation-elevation lapse rates are examined for spatial and temporal consistency. A clear dependence of lapse rate on precipitation amount exists. Certain stations, however, are outliers from these relationships, showing that significant local effects can be present and raising the question of whether such stations should be used for spatial interpolation. Experiments with selecting subsets of stations demonstrate the importance of elevation range and spatial placement on the interpolated fields. Hourly spatial fields of precipitation and dew point temperature are used to distinguish precipitation phase during a large rain-on-snow storm in December 2005. This application demonstrates the feasibility of producing hourly spatial fields and the importance of doing so to support an accurate determination of precipitation phase for assessing catchment hydrologic response to the storm.
Nguyen, Hai M.; Matsumoto, Jumpei; Tran, Anh H.; Ono, Taketoshi; Nishijo, Hisao
2014-01-01
Previous studies have reported that multiple brain regions are activated during spatial navigation. However, it is unclear whether these activated brain regions are specifically associated with spatial updating or whether some regions are recruited for parallel cognitive processes. The present study aimed to localize current sources of event related potentials (ERPs) associated with spatial updating specifically. In the control phase of the experiment, electroencephalograms (EEGs) were recorded while subjects sequentially traced 10 blue checkpoints on the streets of a virtual town, which were sequentially connected by a green line, by manipulating a joystick. In the test phase of the experiment, the checkpoints and green line were not indicated. Instead, a tone was presented when the subjects entered the reference points where they were then required to trace the 10 invisible spatial reference points corresponding to the checkpoints. The vertex-positive ERPs with latencies of approximately 340 ms from the moment when the subjects entered the unmarked reference points were significantly larger in the test than in the control phases. Current source density analysis of the ERPs by standardized low-resolution brain electromagnetic tomography (sLORETA) indicated activation of brain regions in the test phase that are associated with place and landmark recognition (entorhinal cortex/hippocampus, parahippocampal and retrosplenial cortices, fusiform, and lingual gyri), detecting self-motion (posterior cingulate and posterior insular cortices), motor planning (superior frontal gyrus, including the medial frontal cortex), and regions that process spatial attention (inferior parietal lobule). The present results provide the first identification of the current sources of ERPs associated with spatial updating, and suggest that multiple systems are active in parallel during spatial updating. PMID:24624067
Ceyte, Hadrien; Beis, Jean-Marie; Simon, Mathilde; Rémy, Ariane; Anxionnat, René; Paysant, Jean; Caudron, Sébastien
2018-01-22
Beyond promising experimental results of sensory passive stimulations in spatial cognition disorders, some questions still remain regarding interests of these stimulations during the daily activities in neglect. The aim of this case-study was to evaluate the effects of a protocol combining left neck-muscle vibration with daily simple movements, like arm pointing movements, on perceptivo-locomotor deficits in a left spatial neglect patient. Two neuropsychological tests, one subjective straight-ahead pointing (SSA) test and one wheelchair navigation test were carried out before the combination protocol, immediately after, 1 h later, and 24 h later. The results showed a reduction of neglect spatial bias following the protocol lasted at least 24 h in all the tests (except for the SSA test due to the unavailability of the pointing device). The range of improvements in the symptoms of spatial neglect suggests that this therapeutic intervention based on the combining neck-muscle vibration to voluntary arm movements could be a useful treatment for this condition. One of future investigation axes should be the development of a vibratory tool in order to facilitate the combining this proprioceptive stimulation to daily activities. Implications for rehabilitation Spatial neglect is a perplexing neuropsychological syndrome, affecting different domains of spatial cognition and impacting also the functional domain. The treatments based on neck-muscle vibration are simple to use, non-invasive and requires none active participation of patient. A therapeutic intervention based on the combining left neck-muscle vibration and voluntary arm movements in a left-spatial-neglect show a lasting reduction of symptoms especially in daily activities. The combination of treatments based on the Bottom-Up approach opens innovative perspectives in rehabilitation.
NASA Astrophysics Data System (ADS)
Pappenberger, F.; Beven, K. J.; Frodsham, K.; Matgen, P.
2005-12-01
Flood inundation models play an increasingly important role in assessing flood risk. The growth of 2D inundation models that are intimately related to raster maps of floodplains is occurring at the same time as an increase in the availability of 2D remote data (e.g. SAR images and aerial photographs), against which model performancee can be evaluated. This requires new techniques to be explored in order to evaluate model performance in two dimensional space. In this paper we present a fuzzified pattern matching algorithm which compares favorably to a set of traditional measures. However, we further argue that model calibration has to go beyond the comparison of physical properties and should demonstrate how a weighting towards consequences, such as loss of property, can enhance model focus and prediction. Indeed, it will be necessary to abandon a fully spatial comparison in many scenarios to concentrate the model calibration exercise on specific points such as hospitals, police stations or emergency response centers. It can be shown that such point evaluations lead to significantly different flood hazard maps due to the averaging effect of a spatial performance measure. A strategy to balance the different needs (accuracy at certain spatial points and acceptable spatial performance) has to be based in a public and political decision making process.
Spatial attention is attracted in a sustained fashion toward singular points in the optic flow.
Wang, Shuo; Fukuchi, Masaki; Koch, Christof; Tsuchiya, Naotsugu
2012-01-01
While a single approaching object is known to attract spatial attention, it is unknown how attention is directed when the background looms towards the observer as s/he moves forward in a quasi-stationary environment. In Experiment 1, we used a cued speeded discrimination task to quantify where and how spatial attention is directed towards the target superimposed onto a cloud of moving dots. We found that when the motion was expansive, attention was attracted towards the singular point of the optic flow (the focus of expansion, FOE) in a sustained fashion. The effects were less pronounced when the motion was contractive. The more ecologically valid the motion features became (e.g., temporal expansion of each dot, spatial depth structure implied by distribution of the size of the dots), the stronger the attentional effects. Further, the attentional effects were sustained over 1000 ms. Experiment 2 quantified these attentional effects using a change detection paradigm by zooming into or out of photographs of natural scenes. Spatial attention was attracted in a sustained manner such that change detection was facilitated or delayed depending on the location of the FOE only when the motion was expansive. Our results suggest that focal attention is strongly attracted towards singular points that signal the direction of forward ego-motion.
Spatial Attention Is Attracted in a Sustained Fashion toward Singular Points in the Optic Flow
Wang, Shuo; Fukuchi, Masaki; Koch, Christof; Tsuchiya, Naotsugu
2012-01-01
While a single approaching object is known to attract spatial attention, it is unknown how attention is directed when the background looms towards the observer as s/he moves forward in a quasi-stationary environment. In Experiment 1, we used a cued speeded discrimination task to quantify where and how spatial attention is directed towards the target superimposed onto a cloud of moving dots. We found that when the motion was expansive, attention was attracted towards the singular point of the optic flow (the focus of expansion, FOE) in a sustained fashion. The effects were less pronounced when the motion was contractive. The more ecologically valid the motion features became (e.g., temporal expansion of each dot, spatial depth structure implied by distribution of the size of the dots), the stronger the attentional effects. Further, the attentional effects were sustained over 1000 ms. Experiment 2 quantified these attentional effects using a change detection paradigm by zooming into or out of photographs of natural scenes. Spatial attention was attracted in a sustained manner such that change detection was facilitated or delayed depending on the location of the FOE only when the motion was expansive. Our results suggest that focal attention is strongly attracted towards singular points that signal the direction of forward ego-motion. PMID:22905096
NASA Astrophysics Data System (ADS)
Guo, Siyang; Lin, Jiarui; Yang, Linghui; Ren, Yongjie; Guo, Yin
2017-07-01
The workshop Measurement Position System (wMPS) is a distributed measurement system which is suitable for the large-scale metrology. However, there are some inevitable measurement problems in the shipbuilding industry, such as the restriction by obstacles and limited measurement range. To deal with these factors, this paper presents a method of reconstructing the spatial measurement network by mobile transmitter. A high-precision coordinate control network with more than six target points is established. The mobile measuring transmitter can be added into the measurement network using this coordinate control network with the spatial resection method. This method reconstructs the measurement network and broadens the measurement scope efficiently. To verify this method, two comparison experiments are designed with the laser tracker as the reference. The results demonstrate that the accuracy of point-to-point length is better than 0.4mm and the accuracy of coordinate measurement is better than 0.6mm.
NASA Astrophysics Data System (ADS)
Li, Weiyao; Huang, Guanhua; Xiong, Yunwu
2016-04-01
The complexity of the spatial structure of porous media, randomness of groundwater recharge and discharge (rainfall, runoff, etc.) has led to groundwater movement complexity, physical and chemical interaction between groundwater and porous media cause solute transport in the medium more complicated. An appropriate method to describe the complexity of features is essential when study on solute transport and conversion in porous media. Information entropy could measure uncertainty and disorder, therefore we attempted to investigate complexity, explore the contact between the information entropy and complexity of solute transport in heterogeneous porous media using information entropy theory. Based on Markov theory, two-dimensional stochastic field of hydraulic conductivity (K) was generated by transition probability. Flow and solute transport model were established under four conditions (instantaneous point source, continuous point source, instantaneous line source and continuous line source). The spatial and temporal complexity of solute transport process was characterized and evaluated using spatial moment and information entropy. Results indicated that the entropy increased as the increase of complexity of solute transport process. For the point source, the one-dimensional entropy of solute concentration increased at first and then decreased along X and Y directions. As time increased, entropy peak value basically unchanged, peak position migrated along the flow direction (X direction) and approximately coincided with the centroid position. With the increase of time, spatial variability and complexity of solute concentration increase, which result in the increases of the second-order spatial moment and the two-dimensional entropy. Information entropy of line source was higher than point source. Solute entropy obtained from continuous input was higher than instantaneous input. Due to the increase of average length of lithoface, media continuity increased, flow and solute transport complexity weakened, and the corresponding information entropy also decreased. Longitudinal macro dispersivity declined slightly at early time then rose. Solute spatial and temporal distribution had significant impacts on the information entropy. Information entropy could reflect the change of solute distribution. Information entropy appears a tool to characterize the spatial and temporal complexity of solute migration and provides a reference for future research.
Lando, Asiyanthi Tabran; Nakayama, Hirofumi; Shimaoka, Takayuki
2017-01-01
Methane from landfills contributes to global warming and can pose an explosion hazard. To minimize these effects emissions must be monitored. This study proposed application of portable gas detector (PGD) in point and scanning measurements to estimate spatial distribution of methane emissions in landfills. The aims of this study were to discover the advantages and disadvantages of point and scanning methods in measuring methane concentrations, discover spatial distribution of methane emissions, cognize the correlation between ambient methane concentration and methane flux, and estimate methane flux and emissions in landfills. This study was carried out in Tamangapa landfill, Makassar city-Indonesia. Measurement areas were divided into basic and expanded area. In the point method, PGD was held one meter above the landfill surface, whereas scanning method used a PGD with a data logger mounted on a wire drawn between two poles. Point method was efficient in time, only needed one person and eight minutes in measuring 400m 2 areas, whereas scanning method could capture a lot of hot spots location and needed 20min. The results from basic area showed that ambient methane concentration and flux had a significant (p<0.01) positive correlation with R 2 =0.7109 and y=0.1544 x. This correlation equation was used to describe spatial distribution of methane emissions in the expanded area by using Kriging method. The average of estimated flux from scanning method was 71.2gm -2 d -1 higher than 38.3gm -2 d -1 from point method. Further, scanning method could capture the lower and higher value, which could be useful to evaluate and estimate the possible effects of the uncontrolled emissions in landfill. Copyright © 2016 Elsevier Ltd. All rights reserved.
Integration of imagery and cartographic data through a common map base
NASA Technical Reports Server (NTRS)
Clark, J.
1983-01-01
Several disparate data types are integrated by using control points as the basis for spatially registering the data to a map base. The data are reprojected to match the coordinates of the reference UTM (Universal Transverse Mercator) map projection, as expressed in lines and samples. Control point selection is the most critical aspect of integrating the Thematic Mapper Simulator MSS imagery with the cartographic data. It is noted that control points chosen from the imagery are subject to error from mislocated points, either points that did not correlate well to the reference map or minor pixel offsets because of interactive cursorring errors. Errors are also introduced in map control points when points are improperly located and digitized, leading to inaccurate latitude and longitude coordinates. Nonsystematic aircraft platform variations, such as yawl, pitch, and roll, affect the spatial fidelity of the imagery in comparison with the quadrangles. Features in adjacent flight paths do not always correspond properly owing to the systematic panorama effect and alteration of flightline direction, as well as platform variations.
Identifying residential neighbourhood types from settlement points in a machine learning approach.
Jochem, Warren C; Bird, Tomas J; Tatem, Andrew J
2018-05-01
Remote sensing techniques are now commonly applied to map and monitor urban land uses to measure growth and to assist with development and planning. Recent work in this area has highlighted the use of textures and other spatial features that can be measured in very high spatial resolution imagery. Far less attention has been given to using geospatial vector data (i.e. points, lines, polygons) to map land uses. This paper presents an approach to distinguish residential settlement types (regular vs. irregular) using an existing database of settlement points locating structures. Nine data features describing the density, distance, angles, and spacing of the settlement points are calculated at multiple spatial scales. These data are analysed alone and with five common remote sensing measures on elevation, slope, vegetation, and nighttime lights in a supervised machine learning approach to classify land use areas. The method was tested in seven provinces of Afghanistan (Balkh, Helmand, Herat, Kabul, Kandahar, Kunduz, Nangarhar). Overall accuracy ranged from 78% in Kandahar to 90% in Nangarhar. This research demonstrates the potential to accurately map land uses from even the simplest representation of structures.
Shapes on a plane: Evaluating the impact of projection distortion on spatial binning
Battersby, Sarah E.; Strebe, Daniel “daan”; Finn, Michael P.
2017-01-01
One method for working with large, dense sets of spatial point data is to aggregate the measure of the data into polygonal containers, such as political boundaries, or into regular spatial bins such as triangles, squares, or hexagons. When mapping these aggregations, the map projection must inevitably distort relationships. This distortion can impact the reader’s ability to compare count and density measures across the map. Spatial binning, particularly via hexagons, is becoming a popular technique for displaying aggregate measures of point data sets. Increasingly, we see questionable use of the technique without attendant discussion of its hazards. In this work, we discuss when and why spatial binning works and how mapmakers can better understand the limitations caused by distortion from projecting to the plane. We introduce equations for evaluating distortion’s impact on one common projection (Web Mercator) and discuss how the methods used generalize to other projections. While we focus on hexagonal binning, these same considerations affect spatial bins of any shape, and more generally, any analysis of geographic data performed in planar space.
Correlation of Spatially Filtered Dynamic Speckles in Distance Measurement Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semenov, Dmitry V.; Nippolainen, Ervin; Kamshilin, Alexei A.
2008-04-15
In this paper statistical properties of spatially filtered dynamic speckles are considered. This phenomenon was not sufficiently studied yet while spatial filtering is an important instrument for speckles velocity measurements. In case of spatial filtering speckle velocity information is derived from the modulation frequency of filtered light power which is measured by photodetector. Typical photodetector output is represented by a narrow-band random noise signal which includes non-informative intervals. Therefore more or less precious frequency measurement requires averaging. In its turn averaging implies uncorrelated samples. However, conducting research we found that correlation is typical property not only of dynamic speckle patternsmore » but also of spatially filtered speckles. Using spatial filtering the correlation is observed as a response of measurements provided to the same part of the object surface or in case of simultaneously using several adjacent photodetectors. Found correlations can not be explained using just properties of unfiltered dynamic speckles. As we demonstrate the subject of this paper is important not only from pure theoretical point but also from the point of applied speckle metrology. E.g. using single spatial filter and an array of photodetector can greatly improve accuracy of speckle velocity measurements.« less
Statistical analysis of atmospheric turbulence about a simulated block building
NASA Technical Reports Server (NTRS)
Steely, S. L., Jr.
1981-01-01
An array of towers instrumented to measure the three components of wind speed was used to study atmospheric flow about a simulated block building. Two-point spacetime correlations of the longitudinal velocity component were computed along with two-point spatial correlations. These correlations are in good agreement with fundamental concepts of fluid mechanics. The two-point spatial correlations computed directly were compared with correlations predicted by Taylor's hypothesis and excellent agreement was obtained at the higher levels which were out of the building influence. The correlations fall off significantly in the building wake but recover beyond the wake to essentially the same values in the undisturbed, higher regions.
Structural frequency functions for an impulsive, distributed forcing function
NASA Technical Reports Server (NTRS)
Bateman, Vesta I.
1987-01-01
The response of a penetrator structure to a spatially distributed mechanical impulse with a magnitude approaching field test force levels (1-2 Mlb) were measured. The frequency response function calculated from the response to this unique forcing function is compared to frequency response functions calculated from response to point forces of about 2000 pounds. The results show that the strain gages installed on the penetrator case respond similiarly to a point, axial force and to a spatially distributed, axial force. This result suggests that the distributed axial force generated in a penetration event may be reconstructed as a point axial force when the penetrator behaves in linear manner.
On parts and holes: the spatial structure of the human body.
Donnelly, Maureen
2004-01-01
Spatial representation and reasoning is a central component of medical informatics. The spatial concepts most often used in medicine are not the quantitative, point-based concepts of classical geometry, but rather qualitative relations among extended objects such as body parts. A mereotopology is a formal theory of qualitative spatial relations, such as parthood and connection. This paper considers how an extension of mereotopology which includes also location relations can be used to represent and reason about the spatial structure of the human body.
Spatial bedrock erosion distribution in a natural gorge
NASA Astrophysics Data System (ADS)
Beer, A. R.; Turowski, J. M.; Kirchner, J. W.
2015-12-01
Quantitative analysis of morphological evolution both in terrestrial and planetary landscapes is of increasing interest in the geosciences. In mountainous regions, bedrock channel formation as a consequence of the interaction of uplift and erosion processes is fundamental for the entire surface evolution. Hence, the accurate description of bedrock channel development is important for landscape modelling. To verify existing concepts developed in the lab and to analyse how in situ channel erosion rates depend on the interrelations of discharge, sediment transport and topography, there is a need of highly resolved topographic field data. We analyse bedrock erosion over two years in a bedrock gorge downstream of the Gorner glacier above the town of Zermatt, Switzerland. At the study site, the Gornera stream cuts through a roche moutonnée in serpentine rock of 25m length, 5m width and 8m depth. We surveyed bedrock erosion rates using repeat terrestrial laser scanning (TLS) with an average point spacing of 5mm. Bedrock erosion rates in direction of the individual surface normals were studied directly on the scanned point clouds applying the M3C2 algorithm (Lague et al., 2013, ISPRS). The surveyed erosion patterns were compared to a simple stream erosivity visualisation obtained from painted bedrock sections at the study location. Spatially distributed erosion rates on bedrock surfaces based on millions of scan points allow deduction of millimeter-scale mean annual values of lateral erosion, incision and downstream erosion on protruding streambed surfaces. The erosion rate on a specific surface point is shown to depend on the position of this surface point in the channel's cross section, its height above the streambed and its spatial orientation to the streamflow. Abrasion by impacting bedload was likely the spatially dominant erosion process, as confirmed by the observed patterns along the painted bedrock sections. However, a single plucking event accounted for the half of the total eroded material. Our results demonstrate the practicability of TLS for highly resolved spatio-temporal erosion monitoring in the field and quantitatively confirm concepts of spatially varying erosion rates based current thinking. Furthermore, we introduce an easy-to-apply method for qualitative spatial erosion detection by paint.
Zhang, Xue-Lei; Feng, Wan-Wan; Zhong, Guo-Min
2011-01-01
A GIS-based 500 m x 500 m soil sampling point arrangement was set on 248 points at Wenshu Town of Yuzhou County in central Henan Province, where the typical Ustic Cambosols locates. By using soil digital data, the spatial database was established, from which, all the needed latitude and longitude data of the sampling points were produced for the field GPS guide. Soil samples (0-20 cm) were collected from 202 points, of which, bulk density measurement were conducted for randomly selected 34 points, and the ten soil property items used as the factors for soil quality assessment, including organic matter, available K, available P, pH, total N, total P, soil texture, cation exchange capacity (CEC), slowly available K, and bulk density, were analyzed for the other points. The soil property items were checked by statistic tools, and then, classified with standard criteria at home and abroad. The factor weight was given by analytic hierarchy process (AHP) method, and the spatial variation of the major 10 soil properties as well as the soil quality classes and their occupied areas were worked out by Kriging interpolation maps. The results showed that the arable Ustic Cambosols in study area was of good quality soil, over 95% of which ranked in good and medium classes and only less than 5% were in poor class.
NASA Technical Reports Server (NTRS)
Rausch, Russ D.; Batina, John T.; Yang, Henry T. Y.
1991-01-01
Spatial adaption procedures for the accurate and efficient solution of steady and unsteady inviscid flow problems are described. The adaption procedures were developed and implemented within a two-dimensional unstructured-grid upwind-type Euler code. These procedures involve mesh enrichment and mesh coarsening to either add points in a high gradient region or the flow or remove points where they are not needed, respectively, to produce solutions of high spatial accuracy at minimal computational costs. A detailed description is given of the enrichment and coarsening procedures and comparisons with alternative results and experimental data are presented to provide an assessment of the accuracy and efficiency of the capability. Steady and unsteady transonic results, obtained using spatial adaption for the NACA 0012 airfoil, are shown to be of high spatial accuracy, primarily in that the shock waves are very sharply captured. The results were obtained with a computational savings of a factor of approximately fifty-three for a steady case and as much as twenty-five for the unsteady cases.
The cluster-cluster correlation function. [of galaxies
NASA Technical Reports Server (NTRS)
Postman, M.; Geller, M. J.; Huchra, J. P.
1986-01-01
The clustering properties of the Abell and Zwicky cluster catalogs are studied using the two-point angular and spatial correlation functions. The catalogs are divided into eight subsamples to determine the dependence of the correlation function on distance, richness, and the method of cluster identification. It is found that the Corona Borealis supercluster contributes significant power to the spatial correlation function to the Abell cluster sample with distance class of four or less. The distance-limited catalog of 152 Abell clusters, which is not greatly affected by a single system, has a spatial correlation function consistent with the power law Xi(r) = 300r exp -1.8. In both the distance class four or less and distance-limited samples the signal in the spatial correlation function is a power law detectable out to 60/h Mpc. The amplitude of Xi(r) for clusters of richness class two is about three times that for richness class one clusters. The two-point spatial correlation function is sensitive to the use of estimated redshifts.
Spatial statistical analysis of tree deaths using airborne digital imagery
NASA Astrophysics Data System (ADS)
Chang, Ya-Mei; Baddeley, Adrian; Wallace, Jeremy; Canci, Michael
2013-04-01
High resolution digital airborne imagery offers unprecedented opportunities for observation and monitoring of vegetation, providing the potential to identify, locate and track individual vegetation objects over time. Analytical tools are required to quantify relevant information. In this paper, locations of trees over a large area of native woodland vegetation were identified using morphological image analysis techniques. Methods of spatial point process statistics were then applied to estimate the spatially-varying tree death risk, and to show that it is significantly non-uniform. [Tree deaths over the area were detected in our previous work (Wallace et al., 2008).] The study area is a major source of ground water for the city of Perth, and the work was motivated by the need to understand and quantify vegetation changes in the context of water extraction and drying climate. The influence of hydrological variables on tree death risk was investigated using spatial statistics (graphical exploratory methods, spatial point pattern modelling and diagnostics).
NASA Technical Reports Server (NTRS)
Rausch, Russ D.; Yang, Henry T. Y.; Batina, John T.
1991-01-01
Spatial adaption procedures for the accurate and efficient solution of steady and unsteady inviscid flow problems are described. The adaption procedures were developed and implemented within a two-dimensional unstructured-grid upwind-type Euler code. These procedures involve mesh enrichment and mesh coarsening to either add points in high gradient regions of the flow or remove points where they are not needed, respectively, to produce solutions of high spatial accuracy at minimal computational cost. The paper gives a detailed description of the enrichment and coarsening procedures and presents comparisons with alternative results and experimental data to provide an assessment of the accuracy and efficiency of the capability. Steady and unsteady transonic results, obtained using spatial adaption for the NACA 0012 airfoil, are shown to be of high spatial accuracy, primarily in that the shock waves are very sharply captured. The results were obtained with a computational savings of a factor of approximately fifty-three for a steady case and as much as twenty-five for the unsteady cases.
Gramann, Klaus; Hoepner, Paul; Karrer-Gauss, Katja
2017-01-01
Spatial cognitive skills deteriorate with the increasing use of automated GPS navigation and a general decrease in the ability to orient in space might have further impact on independence, autonomy, and quality of life. In the present study we investigate whether modified navigation instructions support incidental spatial knowledge acquisition. A virtual driving environment was used to examine the impact of modified navigation instructions on spatial learning while using a GPS navigation assistance system. Participants navigated through a simulated urban and suburban environment, using navigation support to reach their destination. Driving performance as well as spatial learning was thereby assessed. Three navigation instruction conditions were tested: (i) a control group that was provided with classical navigation instructions at decision points, and two other groups that received navigation instructions at decision points including either (ii) additional irrelevant information about landmarks or (iii) additional personally relevant information (i.e., individual preferences regarding food, hobbies, etc.), associated with landmarks. Driving performance revealed no differences between navigation instructions. Significant improvements were observed in both modified navigation instruction conditions on three different measures of spatial learning and memory: subsequent navigation of the initial route without navigation assistance, landmark recognition, and sketch map drawing. Future navigation assistance systems could incorporate modified instructions to promote incidental spatial learning and to foster more general spatial cognitive abilities. Such systems might extend mobility across the lifespan. PMID:28243219
Spatiotemporal attention operator using isotropic contrast and regional homogeneity
NASA Astrophysics Data System (ADS)
Palenichka, Roman; Lakhssassi, Ahmed; Zaremba, Marek
2011-04-01
A multiscale operator for spatiotemporal isotropic attention is proposed to reliably extract attention points during image sequence analysis. Its consecutive local maxima indicate attention points as the centers of image fragments of variable size with high intensity contrast, region homogeneity, regional shape saliency, and temporal change presence. The scale-adaptive estimation of temporal change (motion) and its aggregation with the regional shape saliency contribute to the accurate determination of attention points in image sequences. Multilocation descriptors of an image sequence are extracted at the attention points in the form of a set of multidimensional descriptor vectors. A fast recursive implementation is also proposed to make the operator's computational complexity independent from the spatial scale size, which is the window size in the spatial averaging filter. Experiments on the accuracy of attention-point detection have proved the operator consistency and its high potential for multiscale feature extraction from image sequences.
Matsuda, F; Lan, W C; Tanimura, R
1999-02-01
In Matsuda's 1996 study, 4- to 11-yr.-old children (N = 133) watched two cars running on two parallel tracks on a CRT display and judged whether their durations and distances were equal and, if not, which was larger. In the present paper, the relative contributions of the four critical stimulus attributes (whether temporal starting points, temporal stopping points, spatial starting points, and spatial stopping points were the same or different between two cars) to the production of errors were quantitatively estimated based on the data for rates of errors obtained by Matsuda. The present analyses made it possible not only to understand numerically the findings about qualitative characteristics of the critical attributes described by Matsuda, but also to add more detailed findings about them.
Environmental assessment of spatial plan policies through land use scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geneletti, Davide, E-mail: davide.geneletti@ing.unitn.it
2012-01-15
This paper presents a method based on scenario analysis to compare the environmental effects of different spatial plan policies in a range of possible futures. The study aimed at contributing to overcome two limitations encountered in Strategic Environmental Assessment (SEA) for spatial planning: poor exploration of how the future might unfold, and poor consideration of alternative plan policies. Scenarios were developed through what-if functions and spatial modeling in a Geographical Information System (GIS), and consisted in maps that represent future land uses under different assumptions on key driving forces. The use of land use scenarios provided a representation of howmore » the different policies will look like on the ground. This allowed gaining a better understanding of the policies' implications on the environment, which could be measured through a set of indicators. The research undertook a case-study approach by developing and assessing land use scenarios for the future growth of Caia, a strategically-located and fast-developing town in rural Mozambique. The effects of alternative spatial plan policies were assessed against a set of environmental performance indicators, including deforestation, loss of agricultural land, encroachment of flood-prone areas and wetlands and access to water sources. In this way, critical environmental effects related to the implementation of each policy were identified and discussed, suggesting possible strategies to address them. - Graphical abstract: Display Omitted Research Highlights: Black-Right-Pointing-Pointer The method contributes to two critical issues in SEA: exploration of the future and consideration of alternatives. Black-Right-Pointing-Pointer Future scenarios are used to test the environmental performance of different spatial plan policies in uncertainty conditions. Black-Right-Pointing-Pointer Spatially-explicit land use scenarios provide a representation of how different policies will look like on the ground.« less
NASA Astrophysics Data System (ADS)
Rohmer, J.; Dewez, D.
2014-09-01
Over the last decade, many cliff erosion studies have focused on frequency-size statistics using inventories of sea cliff retreat sizes. By comparison, only a few paid attention to quantifying the spatial and temporal organisation of erosion scars over a cliff face. Yet, this spatial organisation carries essential information about the external processes and the environmental conditions that promote or initiate sea-cliff instabilities. In this article, we use summary statistics of spatial point process theory as a tool to examine the spatial and temporal pattern of a rockfall inventory recorded with repeated terrestrial laser scanning surveys at the chalk coastal cliff site of Mesnil-Val (Normandy, France). Results show that: (1) the spatial density of erosion scars is specifically conditioned alongshore by the distance to an engineered concrete groin, with an exponential-like decreasing trend, and vertically focused both at wave breaker height and on strong lithological contrasts; (2) small erosion scars (10-3-10-2 m3) aggregate in clusters within a radius of 5 to 10 m, which suggests some sort of attraction or focused causative process, and disperse above this critical distance; (3) on the contrary, larger erosion scars (10-2-101 m3) tend to disperse above a radius of 1 to 5 m, possibly due to the spreading of successive failures across the cliff face; (4) large scars significantly occur albeit moderately, where previous large rockfalls have occurred during preceeding winter; (5) this temporal trend is not apparent for small events. In conclusion, this study shows, with a worked example, how spatial point process summary statistics are a tool to test and quantify the significance of geomorphological observation organisation.
NASA Astrophysics Data System (ADS)
Rohmer, J.; Dewez, T.
2015-02-01
Over the last decade, many cliff erosion studies have focused on frequency-size statistics using inventories of sea cliff retreat sizes. By comparison, only a few paid attention to quantifying the spatial and temporal organisation of erosion scars over a cliff face. Yet, this spatial organisation carries essential information about the external processes and the environmental conditions that promote or initiate sea-cliff instabilities. In this article, we use summary statistics of spatial point process theory as a tool to examine the spatial and temporal pattern of a rockfall inventory recorded with repeated terrestrial laser scanning surveys at the chalk coastal cliff site of Mesnil-Val (Normandy, France). Results show that: (1) the spatial density of erosion scars is specifically conditioned alongshore by the distance to an engineered concrete groyne, with an exponential-like decreasing trend, and vertically focused both at wave breaker height and on strong lithological contrasts; (2) small erosion scars (10-3 to 10-2 m3) aggregate in clusters within a radius of 5 to 10 m, which suggests some sort of attraction or focused causative process, and disperse above this critical distance; (3) on the contrary, larger erosion scars (10-2 to 101 m3) tend to disperse above a radius of 1 to 5 m, possibly due to the spreading of successive failures across the cliff face; (4) large scars significantly occur albeit moderately, where previous large rockfalls have occurred during preceding winter; (5) this temporal trend is not apparent for small events. In conclusion, this study shows, with a worked example, how spatial point process summary statistics are a tool to test and quantify the significance of geomorphological observation organisation.
Rectangular Array Model Supporting Students' Spatial Structuring in Learning Multiplication
ERIC Educational Resources Information Center
Shanty, Nenden Octavarulia; Wijaya, Surya
2012-01-01
We examine how rectangular array model can support students' spatial structuring in learning multiplication. To begin, we define what we mean by spatial structuring as the mental operation of constructing an organization or form for an object or set of objects. For that reason, the eggs problem was chosen as the starting point in which the…
USDA-ARS?s Scientific Manuscript database
Thirty one years of spatially distributed air temperature, relative humidity, dew point temperature, precipitation amount, and precipitation phase data are presented for the Reynolds Creek Experimental Watershed. The data are spatially distributed over a 10m Lidar-derived digital elevation model at ...
ERIC Educational Resources Information Center
Liben, Lynn S.; Kastens, Kim A.; Christensen, Adam E.
2011-01-01
To study the role of spatial concepts in science learning, 125 college students with high, medium, or low scores on a horizontality (water-level) spatial task were given information about geological strike and dip using existing educational materials. Participants mapped an outcrop's strike and dip, a rod's orientation, pointed to a distant…
Prism adaptation in alternately exposed hands.
Redding, Gordon M; Wallace, Benjamin
2013-08-01
We assessed intermanual transfer of the proprioceptive realignment aftereffects of prism adaptation in right-handers by examining alternate target pointing with the two hands for 40 successive trials, 20 with each hand. Adaptation for the right hand was not different as a function of exposure sequence order or postexposure test order, in contrast with adaptation for the left hand. Adaptation was greater for the left hand when the right hand started the alternate pointing than when the sequence of target-pointing movements started with the left hand. Also, the largest left-hand adaptation appeared when that hand was tested first after exposure. Terminal error during exposure varied in cycles for the two hands, converging on zero when the right hand led, but no difference appeared between the two hands when the left hand led. These results suggest that transfer of proprioceptive realignment occurs from the right to the left hand during both exposure and postexposure testing. Such transfer reflects the process of maintaining spatial alignment between the two hands. Normally, the left hand appears to be calibrated with the right-hand spatial map, and when the two hands are misaligned, the left-hand spatial map is realigned with the right-hand spatial map.
Application of spatial time domain reflectometry measurements in heterogeneous, rocky substrates
NASA Astrophysics Data System (ADS)
Gonzales, C.; Scheuermann, A.; Arnold, S.; Baumgartl, T.
2016-10-01
Measurement of soil moisture across depths using sensors is currently limited to point measurements or remote sensing technologies. Point measurements have limitations on spatial resolution, while the latter, although covering large areas may not represent real-time hydrologic processes, especially near the surface. The objective of the study was to determine the efficacy of elongated soil moisture probes—spatial time domain reflectometry (STDR)—and to describe transient soil moisture dynamics of unconsolidated mine waste rock materials. The probes were calibrated under controlled conditions in the glasshouse. Transient soil moisture content was measured using the gravimetric method and STDR. Volumetric soil moisture content derived from weighing was compared with values generated from a numerical model simulating the drying process. A calibration function was generated and applied to STDR field data sets. The use of elongated probes effectively assists in the real-time determination of the spatial distribution of soil moisture. It also allows hydrologic processes to be uncovered in the unsaturated zone, especially for water balance calculations that are commonly based on point measurements. The elongated soil moisture probes can potentially describe transient substrate processes and delineate heterogeneity in terms of the pore size distribution in a seasonally wet but otherwise arid environment.
A spline-based approach for computing spatial impulse responses.
Ellis, Michael A; Guenther, Drake; Walker, William F
2007-05-01
Computer simulations are an essential tool for the design of phased-array ultrasonic imaging systems. FIELD II, which determines the two-way temporal response of a transducer at a point in space, is the current de facto standard for ultrasound simulation tools. However, the need often arises to obtain two-way spatial responses at a single point in time, a set of dimensions for which FIELD II is not well optimized. This paper describes an analytical approach for computing the two-way, far-field, spatial impulse response from rectangular transducer elements under arbitrary excitation. The described approach determines the response as the sum of polynomial functions, making computational implementation quite straightforward. The proposed algorithm, named DELFI, was implemented as a C routine under Matlab and results were compared to those obtained under similar conditions from the well-established FIELD II program. Under the specific conditions tested here, the proposed algorithm was approximately 142 times faster than FIELD II for computing spatial sensitivity functions with similar amounts of error. For temporal sensitivity functions with similar amounts of error, the proposed algorithm was about 1.7 times slower than FIELD II using rectangular elements and 19.2 times faster than FIELD II using triangular elements. DELFI is shown to be an attractive complement to FIELD II, especially when spatial responses are needed at a specific point in time.
Yenilmez, Firdes; Düzgün, Sebnem; Aksoy, Aysegül
2015-01-01
In this study, kernel density estimation (KDE) was coupled with ordinary two-dimensional kriging (OK) to reduce the number of sampling locations in measurement and kriging of dissolved oxygen (DO) concentrations in Porsuk Dam Reservoir (PDR). Conservation of the spatial correlation structure in the DO distribution was a target. KDE was used as a tool to aid in identification of the sampling locations that would be removed from the sampling network in order to decrease the total number of samples. Accordingly, several networks were generated in which sampling locations were reduced from 65 to 10 in increments of 4 or 5 points at a time based on kernel density maps. DO variograms were constructed, and DO values in PDR were kriged. Performance of the networks in DO estimations were evaluated through various error metrics, standard error maps (SEM), and whether the spatial correlation structure was conserved or not. Results indicated that smaller number of sampling points resulted in loss of information in regard to spatial correlation structure in DO. The minimum representative sampling points for PDR was 35. Efficacy of the sampling location selection method was tested against the networks generated by experts. It was shown that the evaluation approach proposed in this study provided a better sampling network design in which the spatial correlation structure of DO was sustained for kriging.
Semantics of directly manipulating spatializations.
Hu, Xinran; Bradel, Lauren; Maiti, Dipayan; House, Leanna; North, Chris; Leman, Scotland
2013-12-01
When high-dimensional data is visualized in a 2D plane by using parametric projection algorithms, users may wish to manipulate the layout of the data points to better reflect their domain knowledge or to explore alternative structures. However, few users are well-versed in the algorithms behind the visualizations, making parameter tweaking more of a guessing game than a series of decisive interactions. Translating user interactions into algorithmic input is a key component of Visual to Parametric Interaction (V2PI) [13]. Instead of adjusting parameters, users directly move data points on the screen, which then updates the underlying statistical model. However, we have found that some data points that are not moved by the user are just as important in the interactions as the data points that are moved. Users frequently move some data points with respect to some other 'unmoved' data points that they consider as spatially contextual. However, in current V2PI interactions, these points are not explicitly identified when directly manipulating the moved points. We design a richer set of interactions that makes this context more explicit, and a new algorithm and sophisticated weighting scheme that incorporates the importance of these unmoved data points into V2PI.
Wang, Ce; Bi, Jun; Zhang, Xu-Xiang; Fang, Qiang; Qi, Yi
2018-05-25
Influent river carrying cumulative watershed load plays a significant role in promoting nuisance algal bloom in river-fed lake. It is most relevant to discern in-stream water quality exceedance and evaluate the spatial relationship between risk location and potential pollution sources. However, no comprehensive studies of source tracking in watershed based on management grid have been conducted for refined water quality management, particularly for plain terrain with complex river network. In this study, field investigations were implemented during 2014 in Taige Canal watershed of Taihu Lake Basin. A Geographical Information System (GIS)-based spatial relationship model was established to characterize the spatial relationships of "point (point-source location and monitoring site)-line (river segment)-plane (catchment)." As a practical exemplification, in-time source tracking was triggered on April 15, 2015 at Huangnianqiao station, where TN and TP concentration violated the water quality standard (TN 4.0 mg/L, TP 0.15 mg/L). Of the target grid cells, 53 and 46 were identified as crucial areas having high pollution intensity for TN and TP pollution, respectively. The estimated non-point source load in each grid cell could be apportioned into different source types based on spatial pollution-related entity objects. We found that the non-point source load derived from rural sewage and livestock and poultry breeding accounted for more than 80% of total TN or TP load than another source type of crop farming. The approach in this study would be of great benefit to local authorities for identifying the serious polluted regions and efficiently making environmental policies to reduce watershed load.
Accelerated high-resolution photoacoustic tomography via compressed sensing
NASA Astrophysics Data System (ADS)
Arridge, Simon; Beard, Paul; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward
2016-12-01
Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several minutes to sequentially map the incident photoacoustic field on the 2D sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining model-based, variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: first, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP interferometer and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction techniques that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation (TV) regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of photoacoustic scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.
Focal Points, Endogenous Processes, and Exogenous Shocks in the Autism Epidemic
Liu, Kayuet; Bearman, Peter S.
2014-01-01
Autism prevalence has increased rapidly in the United States during the past two decades. We have previously shown that the diffusion of information about autism through spatially proximate social relations has contributed significantly to the epidemic. This study expands on this finding by identifying the focal points for interaction that drive the proximity effect on subsequent diagnoses. We then consider how diffusion dynamics through interaction at critical focal points, in tandem with exogenous shocks, could have shaped the spatial dynamics of autism in California. We achieve these goals through an empirically calibrated simulation model of the whole population of 3- to 9-year-olds in California. We show that in the absence of interaction at these foci—principally malls and schools—we would not observe an autism epidemic. We also explore the idea that epigenetic changes affecting one generation in the distal past could shape the precise spatial patterns we observe among the next generation. PMID:26166907
elevatr: Access Elevation Data from Various APIs | Science ...
Several web services are available that provide access to elevation data. This package provides access to several of those services and returns elevation data either as a SpatialPointsDataFrame from point elevation services or as a raster object from raster elevation services. Currently, the package supports access to the Mapzen Elevation Service, Mapzen Terrain Service, and the USGS Elevation Point Query Service. The R language for statistical computing is increasingly used for spatial data analysis . This R package, elevatr, is in response to this and provides access to elevation data from various sources directly in R. The impact of `elevatr` is that it will 1) facilitate spatial analysis in R by providing access to foundational dataset for many types of analyses (e.g. hydrology, limnology) 2) open up a new set of users and uses for APIs widely used outside of R, and 3) provide an excellent example federal open source development as promoted by the Federal Source Code Policy (https://sourcecode.cio.gov/).
Extracting spatial information from large aperture exposures of diffuse sources
NASA Technical Reports Server (NTRS)
Clarke, J. T.; Moos, H. W.
1981-01-01
The spatial properties of large aperture exposures of diffuse emission can be used both to investigate spatial variations in the emission and to filter out camera noise in exposures of weak emission sources. Spatial imaging can be accomplished both parallel and perpendicular to dispersion with a resolution of 5-6 arc sec, and a narrow median filter running perpendicular to dispersion across a diffuse image selectively filters out point source features, such as reseaux marks and fast particle hits. Spatial information derived from observations of solar system objects is presented.
Mapping the bycatch seascape: multispecies and multi-scale spatial patterns of fisheries bycatch.
Lewison, Rebecca L; Soykan, Candan U; Franklin, Janet
2009-06-01
Fisheries bycatch is a worldwide conservation issue. Despite a growing awareness of bycatch problems in particular ocean regions, there have been few efforts to identify spatial patterns in bycatch events. Furthermore, many studies of fisheries bycatch have been myopic, focusing on a single species or a single region. Using a range of analytical approaches to identify spatial patterns in bycatch data, we demonstrate the utility and applications of area and point pattern analyses to single and multispecies bycatch seascapes of pelagic longline fisheries in the Atlantic and Pacific Oceans. We find clear evidence of spatial clustering within bycatch species in both ocean basins, both in terms of the underlying pattern of the locations of bycatch events relative to fishing locations and for areas of high bycatch rates. Furthermore, we find significant spatial overlap in the pattern of bycatch across species relative to the spatial distribution in fishing effort and target catch. These results point to the importance of considering spatial patterns of both single and multispecies bycatch to meet the ultimate goal of reducing bycatch encounters. These analyses also highlight the importance of considering bycatch relative to target catch as a way of identifying areas where fishing effort reduction may help to reduce multispecies bycatch with minimal impact on target catch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, Glenn Edward; Song, Xuehang; Ye, Ming
A new approach is developed to delineate the spatial distribution of discrete facies (geological units that have unique distributions of hydraulic, physical, and/or chemical properties) conditioned not only on direct data (measurements directly related to facies properties, e.g., grain size distribution obtained from borehole samples) but also on indirect data (observations indirectly related to facies distribution, e.g., hydraulic head and tracer concentration). Our method integrates for the first time ensemble data assimilation with traditional transition probability-based geostatistics. The concept of level set is introduced to build shape parameterization that allows transformation between discrete facies indicators and continuous random variables. Themore » spatial structure of different facies is simulated by indicator models using conditioning points selected adaptively during the iterative process of data assimilation. To evaluate the new method, a two-dimensional semi-synthetic example is designed to estimate the spatial distribution and permeability of two distinct facies from transient head data induced by pumping tests. The example demonstrates that our new method adequately captures the spatial pattern of facies distribution by imposing spatial continuity through conditioning points. The new method also reproduces the overall response in hydraulic head field with better accuracy compared to data assimilation with no constraints on spatial continuity on facies.« less
Chen, Fengxiang; Zhang, Yong; Gfroerer, T. H.; ...
2015-06-02
Traditionally, spatially-resolved photoluminescence (PL) has been performed using a point-by-point scan mode with both excitation and detection occurring at the same spatial location. But with the availability of high quality detector arrays like CCDs, an imaging mode has become popular for performing spatially-resolved PL. By illuminating the entire area of interest and collecting the data simultaneously from all spatial locations, the measurement efficiency can be greatly improved. However, this new approach has proceeded under the implicit assumption of comparable spatial resolution. We show here that when carrier diffusion is present, the spatial resolution can actually differ substantially between the twomore » modes, with the less efficient scan mode being far superior. We apply both techniques in investigation of defects in a GaAs epilayer – where isolated singlet and doublet dislocations can be identified. A superposition principle is developed for solving the diffusion equation to extract the intrinsic carrier diffusion length, which can be applied to a system with arbitrarily distributed defects. The understanding derived from this work is significant for a broad range of problems in physics and beyond (for instance biology) – whenever the dynamics of generation, diffusion, and annihilation of species can be probed with either measurement mode.« less
Biomechanics of the incudo-malleolar-joint - Experimental investigations for quasi-static loads.
Ihrle, S; Gerig, R; Dobrev, I; Röösli, C; Sim, J H; Huber, A M; Eiber, A
2016-10-01
Under large quasi-static loads, the incudo-malleolar joint (IMJ), connecting the malleus and the incus, is highly mobile. It can be classified as a mechanical filter decoupling large quasi-static motions while transferring small dynamic excitations. This is presumed to be due to the complex geometry of the joint inducing a spatial decoupling between the malleus and incus under large quasi-static loads. Spatial Laser Doppler Vibrometer (LDV) displacement measurements on isolated malleus-incus-complexes (MICs) were performed. With the malleus firmly attached to a probe holder, the incus was excited by applying quasi-static forces at different points. For each force application point the resulting displacement was measured subsequently at different points on the incus. The location of the force application point and the LDV measurement points were calculated in a post-processing step combining the position of the LDV points with geometric data of the MIC. The rigid body motion of the incus was then calculated from the multiple displacement measurements for each force application point. The contact regions of the articular surfaces for different load configurations were calculated by applying the reconstructed motion to the geometry model of the MIC and calculate the minimal distance of the articular surfaces. The reconstructed motion has a complex spatial characteristic and varies for different force application points. The motion changed with increasing load caused by the kinematic guidance of the articular surfaces of the joint. The IMJ permits a relative large rotation around the anterior-posterior axis through the joint when a force is applied at the lenticularis in lateral direction before impeding the motion. This is part of the decoupling of the malleus motion from the incus motion in case of large quasi-static loads. Copyright © 2015 Elsevier B.V. All rights reserved.
Muko, Soyoka; Shimatani, Ichiro K; Nozawa, Yoko
2014-07-01
Spatial distributions of individuals are conventionally analysed by representing objects as dimensionless points, in which spatial statistics are based on centre-to-centre distances. However, if organisms expand without overlapping and show size variations, such as is the case for encrusting corals, interobject spacing is crucial for spatial associations where interactions occur. We introduced new pairwise statistics using minimum distances between objects and demonstrated their utility when examining encrusting coral community data. We also calculated the conventional point process statistics and the grid-based statistics to clarify the advantages and limitations of each spatial statistical method. For simplicity, coral colonies were approximated by disks in these demonstrations. Focusing on short-distance effects, the use of minimum distances revealed that almost all coral genera were aggregated at a scale of 1-25 cm. However, when fragmented colonies (ramets) were treated as a genet, a genet-level analysis indicated weak or no aggregation, suggesting that most corals were randomly distributed and that fragmentation was the primary cause of colony aggregations. In contrast, point process statistics showed larger aggregation scales, presumably because centre-to-centre distances included both intercolony spacing and colony sizes (radius). The grid-based statistics were able to quantify the patch (aggregation) scale of colonies, but the scale was strongly affected by the colony size. Our approach quantitatively showed repulsive effects between an aggressive genus and a competitively weak genus, while the grid-based statistics (covariance function) also showed repulsion although the spatial scale indicated from the statistics was not directly interpretable in terms of ecological meaning. The use of minimum distances together with previously proposed spatial statistics helped us to extend our understanding of the spatial patterns of nonoverlapping objects that vary in size and the associated specific scales. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
ERIC Educational Resources Information Center
Savin-Baden, Maggi
2013-01-01
This paper will present a study that explored the perceived impact of spatial practice in "Second Life" (SL) on teaching and learning from the point of view of participants in higher education (lecturers, developers and researchers). Narrative inquiry was used to access stories and experiences of space and spatial practice from staff…
Spatial patterns of modern period human-caused fire occurrence in the Missouri Ozark Highlands
Jian Yang; Hong S. Healy; Stephen R. Shifley; Eric J. Gustafson
2007-01-01
The spatial pattern of forest fire locations is important in the study of the dynamics of fire disturbance. In this article we used a spatial point process modeling approach to quantitatively study the effects of land cover, topography, roads, municipalities, ownership, and population density on fire occurrence reported between 1970 and 2002 in the Missouri Ozark...
Spatial sampling considerations of the CERES (Clouds and Earth Radiant Energy System) instrument
NASA Astrophysics Data System (ADS)
Smith, G. L.; Manalo-Smith, Natividdad; Priestley, Kory
2014-10-01
The CERES (Clouds and Earth Radiant Energy System) instrument is a scanning radiometer with three channels for measuring Earth radiation budget. At present CERES models are operating aboard the Terra, Aqua and Suomi/NPP spacecraft and flights of CERES instruments are planned for the JPSS-1 spacecraft and its successors. CERES scans from one limb of the Earth to the other and back. The footprint size grows with distance from nadir simply due to geometry so that the size of the smallest features which can be resolved from the data increases and spatial sampling errors increase with nadir angle. This paper presents an analysis of the effect of nadir angle on spatial sampling errors of the CERES instrument. The analysis performed in the Fourier domain. Spatial sampling errors are created by smoothing of features which are the size of the footprint and smaller, or blurring, and inadequate sampling, that causes aliasing errors. These spatial sampling errors are computed in terms of the system transfer function, which is the Fourier transform of the point response function, the spacing of data points and the spatial spectrum of the radiance field.
Bagny Beilhe, Leïla; Piou, Cyril; Tadu, Zéphirin; Babin, Régis
2018-06-06
The use of ants for biological control of insect pests was the first reported case of conservation biological control. Direct and indirect community interactions between ants and pests lead to differential spatial pattern. We investigated spatial interactions between mirids, the major cocoa pest in West Africa and numerically dominant ant species, using bivariate point pattern analysis to identify potential biological control agents. We assume that potential biological control agents should display negative spatial interactions with mirids considering their niche overlap. The mirid/ant data were collected in complex cacao-based agroforestry systems sampled in three agroecological areas over a forest-savannah gradient in Cameroon. Three species, Crematogaster striatula Emery (Hymenoptera: Formicidae), Crematogaster clariventris Mayr (Hymenoptera: Formicidae), and Oecophylla longinoda Latreille (Hymenoptera: Formicidae) with high predator and aggressive behaviors were identified as dominant and showed negative spatial relationships with mirids. The weaver ant, O. longinoda was identified as the only potential biological control agent, considering its ubiquity in the plots, the similarity in niche requirements, and the spatial segregation with mirids resulting probably from exclusion mechanisms. Combining bivariate point pattern analysis to good knowledge of insect ecology was an effective method to identify a potentially good biological control agent.
Stream Kriging: Incremental and recursive ordinary Kriging over spatiotemporal data streams
NASA Astrophysics Data System (ADS)
Zhong, Xu; Kealy, Allison; Duckham, Matt
2016-05-01
Ordinary Kriging is widely used for geospatial interpolation and estimation. Due to the O (n3) time complexity of solving the system of linear equations, ordinary Kriging for a large set of source points is computationally intensive. Conducting real-time Kriging interpolation over continuously varying spatiotemporal data streams can therefore be especially challenging. This paper develops and tests two new strategies for improving the performance of an ordinary Kriging interpolator adapted to a stream-processing environment. These strategies rely on the expectation that, over time, source data points will frequently refer to the same spatial locations (for example, where static sensor nodes are generating repeated observations of a dynamic field). First, an incremental strategy improves efficiency in cases where a relatively small proportion of previously processed spatial locations are absent from the source points at any given iteration. Second, a recursive strategy improves efficiency in cases where there is substantial set overlap between the sets of spatial locations of source points at the current and previous iterations. These two strategies are evaluated in terms of their computational efficiency in comparison to ordinary Kriging algorithm. The results show that these two strategies can reduce the time taken to perform the interpolation by up to 90%, and approach average-case time complexity of O (n2) when most but not all source points refer to the same locations over time. By combining the approaches developed in this paper with existing heuristic ordinary Kriging algorithms, the conclusions indicate how further efficiency gains could potentially be accrued. The work ultimately contributes to the development of online ordinary Kriging interpolation algorithms, capable of real-time spatial interpolation with large streaming data sets.
Spatial pattern analysis of Cu, Zn and Ni and their interpretation in the Campania region (Italy)
NASA Astrophysics Data System (ADS)
Petrik, Attila; Albanese, Stefano; Jordan, Gyozo; Rolandi, Roberto; De Vivo, Benedetto
2017-04-01
The uniquely abundant Campanian topsoil dataset enabled us to perform a spatial pattern analysis on 3 potentially toxic elements of Cu, Zn and Ni. This study is focusing on revealing the spatial texture and distribution of these elements by spatial point pattern and image processing analysis such as lineament density and spatial variability index calculation. The application of these methods on geochemical data provides a new and efficient tool to understand the spatial variation of concentrations and their background/baseline values. The determination and quantification of spatial variability is crucial to understand how fast the change in concentration is in a certain area and what processes might govern the variation. The spatial variability index calculation and image processing analysis including lineament density enables us to delineate homogenous areas and analyse them with respect to lithology and land use. Identification of spatial outliers and their patterns were also investigated by local spatial autocorrelation and image processing analysis including the determination of local minima and maxima points and singularity index analysis. The spatial variability of Cu and Zn reveals the highest zone (Cu: 0.5 MAD, Zn: 0.8-0.9 MAD, Median Deviation Index) along the coast between Campi Flegrei and the Sorrento Peninsula with the vast majority of statistically identified outliers and high-high spatial clustered points. The background/baseline maps of Cu and Zn reveals a moderate to high variability (Cu: 0.3 MAD, Zn: 0.4-0.5 MAD) NW-SE oriented zone including disrupted patches from Bisaccia to Mignano following the alluvial plains of Appenine's rivers. This zone has high abundance of anomaly concentrations identified using singularity analysis and it also has a high density of lineaments. The spatial variability of Ni shows the highest variability zone (0.6-0.7 MAD) around Campi Flegrei where the majority of low outliers are concentrated. The variability of background/baseline map of Ni reveals a shift to the east in case of highest variability zones coinciding with limestone outcrops. The high segmented area between Mignano and Bisaccia partially follows the alluvial plains of Appenine's rivers which seem to be playing a crucial role in the distribution and redistribution pattern of Cu, Zn and Ni in Campania. The high spatial variability zones of the later elements are located in topsoils on volcanoclastic rocks and are mostly related to cultivation and urbanised areas.
Clusters in irregular areas and lattices.
Wieczorek, William F; Delmerico, Alan M; Rogerson, Peter A; Wong, David W S
2012-01-01
Geographic areas of different sizes and shapes of polygons that represent counts or rate data are often encountered in social, economic, health, and other information. Often political or census boundaries are used to define these areas because the information is available only for those geographies. Therefore, these types of boundaries are frequently used to define neighborhoods in spatial analyses using geographic information systems and related approaches such as multilevel models. When point data can be geocoded, it is possible to examine the impact of polygon shape on spatial statistical properties, such as clustering. We utilized point data (alcohol outlets) to examine the issue of polygon shape and size on visualization and statistical properties. The point data were allocated to regular lattices (hexagons and squares) and census areas for zip-code tabulation areas and tracts. The number of units in the lattices was set to be similar to the number of tract and zip-code areas. A spatial clustering statistic and visualization were used to assess the impact of polygon shape for zip- and tract-sized units. Results showed substantial similarities and notable differences across shape and size. The specific circumstances of a spatial analysis that aggregates points to polygons will determine the size and shape of the areal units to be used. The irregular polygons of census units may reflect underlying characteristics that could be missed by large regular lattices. Future research to examine the potential for using a combination of irregular polygons and regular lattices would be useful.
Zou, Cheng; Sun, Zhenguo; Cai, Dong; Muhammad, Salman; Zhang, Wenzeng; Chen, Qiang
2016-01-01
A method is developed to accurately determine the spatial impulse response at the specifically discretized observation points in the radiated field of 1-D linear ultrasonic phased array transducers with great efficiency. In contrast, the previously adopted solutions only optimize the calculation procedure for a single rectangular transducer and required approximation considerations or nonlinear calculation. In this research, an algorithm that follows an alternative approach to expedite the calculation of the spatial impulse response of a rectangular linear array is presented. The key assumption for this algorithm is that the transducer apertures are identical and linearly distributed on an infinite rigid plane baffled with the same pitch. Two points in the observation field, which have the same position relative to two transducer apertures, share the same spatial impulse response that contributed from corresponding transducer, respectively. The observation field is discretized specifically to meet the relationship of equality. The analytical expressions of the proposed algorithm, based on the specific selection of the observation points, are derived to remove redundant calculations. In order to measure the proposed methodology, the simulation results obtained from the proposed method and the classical summation method are compared. The outcomes demonstrate that the proposed strategy can speed up the calculation procedure since it accelerates the speed-up ratio which relies upon the number of discrete points and the number of the array transducers. This development will be valuable in the development of advanced and faster linear ultrasonic phased array systems. PMID:27834799
An Adaptation-Induced Repulsion Illusion in Tactile Spatial Perception
Li, Lux; Chan, Arielle; Iqbal, Shah M.; Goldreich, Daniel
2017-01-01
Following focal sensory adaptation, the perceived separation between visual stimuli that straddle the adapted region is often exaggerated. For instance, in the tilt aftereffect illusion, adaptation to tilted lines causes subsequently viewed lines with nearby orientations to be perceptually repelled from the adapted orientation. Repulsion illusions in the nonvisual senses have been less studied. Here, we investigated whether adaptation induces a repulsion illusion in tactile spatial perception. In a two-interval forced-choice task, participants compared the perceived separation between two point-stimuli applied on the forearms successively. Separation distance was constant on one arm (the reference) and varied on the other arm (the comparison). In Experiment 1, we took three consecutive baseline measurements, verifying that in the absence of manipulation, participants’ distance perception was unbiased across arms and stable across experimental blocks. In Experiment 2, we vibrated a region of skin on the reference arm, verifying that this focally reduced tactile sensitivity, as indicated by elevated monofilament detection thresholds. In Experiment 3, we applied vibration between the two reference points in our distance perception protocol and discovered that this caused an illusory increase in the separation between the points. We conclude that focal adaptation induces a repulsion aftereffect illusion in tactile spatial perception. The illusion provides clues as to how the tactile system represents spatial information. The analogous repulsion aftereffects caused by adaptation in different stimulus domains and sensory systems may point to fundamentally similar strategies for dynamic sensory coding. PMID:28701936
Non-Mechanical Beam Steering in Free-Space Optical Communication Transceivers
NASA Astrophysics Data System (ADS)
Shortt, Kevin
Free-space optical communications systems are a rapidly growing field as they carry many of the advantages of traditional fibre-based communications systems without the added investment of installing complex infrastructure. Moreover, these systems are finding key niches in mobile platforms in order to take advantage of the increased bandwidth over traditional RF systems. Of course, the inevitable problem of tracking arises when dealing with mobile stations. To compound the problem in the case of communications to low Earth or geosynchronous orbits, FSOC systems typically operate with tightly confined beams over great distances often requiring pointing accuracies on the order of micro-radians or smaller. Mechanisms such as gimbal mounts and fine-steering mirrors are the usual candidates for platform stabilization, however, these clearly have substantial power requirements and inflate the mass of the system. Spatial light modulators (also known as optical phased arrays), on the other hand, offer a suitable alternative for beam-pointing stabilization. Some of the advantages of spatial light modulators over fine-steering mirrors include programmable multiple simultaneous beams, dynamic focus/defocus and moderate to excellent optical power handling capability. This thesis serves as an investigation into the implementation of spatial light modulators as a replacement for traditional fine-steering mirrors in the fine-pointing subsystem. In particular, pointing accuracy and scanning ability will be highlighted as performance metrics in the context of a variety of communication scenarios. Keywords: Free-space optical communications, beam steering, fine-steering mirror, spatial light modulator, optical phased array.
Wang, Junxiao; Wang, Xiaorui; Zhou, Shenglu; Wu, Shaohua; Zhu, Yan; Lu, Chunfeng
2016-01-01
With China’s rapid economic development, the reduction in arable land has emerged as one of the most prominent problems in the nation. The long-term dynamic monitoring of arable land quality is important for protecting arable land resources. An efficient practice is to select optimal sample points while obtaining accurate predictions. To this end, the selection of effective points from a dense set of soil sample points is an urgent problem. In this study, data were collected from Donghai County, Jiangsu Province, China. The number and layout of soil sample points are optimized by considering the spatial variations in soil properties and by using an improved simulated annealing (SA) algorithm. The conclusions are as follows: (1) Optimization results in the retention of more sample points in the moderate- and high-variation partitions of the study area; (2) The number of optimal sample points obtained with the improved SA algorithm is markedly reduced, while the accuracy of the predicted soil properties is improved by approximately 5% compared with the raw data; (3) With regard to the monitoring of arable land quality, a dense distribution of sample points is needed to monitor the granularity. PMID:27706051
RipleyGUI: software for analyzing spatial patterns in 3D cell distributions
Hansson, Kristin; Jafari-Mamaghani, Mehrdad; Krieger, Patrik
2013-01-01
The true revolution in the age of digital neuroanatomy is the ability to extensively quantify anatomical structures and thus investigate structure-function relationships in great detail. To facilitate the quantification of neuronal cell patterns we have developed RipleyGUI, a MATLAB-based software that can be used to detect patterns in the 3D distribution of cells. RipleyGUI uses Ripley's K-function to analyze spatial distributions. In addition the software contains statistical tools to determine quantitative statistical differences, and tools for spatial transformations that are useful for analyzing non-stationary point patterns. The software has a graphical user interface making it easy to use without programming experience, and an extensive user manual explaining the basic concepts underlying the different statistical tools used to analyze spatial point patterns. The described analysis tool can be used for determining the spatial organization of neurons that is important for a detailed study of structure-function relationships. For example, neocortex that can be subdivided into six layers based on cell density and cell types can also be analyzed in terms of organizational principles distinguishing the layers. PMID:23658544
High level language-based robotic control system
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Inventor); Kruetz, Kenneth K. (Inventor); Jain, Abhinandan (Inventor)
1994-01-01
This invention is a robot control system based on a high level language implementing a spatial operator algebra. There are two high level languages included within the system. At the highest level, applications programs can be written in a robot-oriented applications language including broad operators such as MOVE and GRASP. The robot-oriented applications language statements are translated into statements in the spatial operator algebra language. Programming can also take place using the spatial operator algebra language. The statements in the spatial operator algebra language from either source are then translated into machine language statements for execution by a digital control computer. The system also includes the capability of executing the control code sequences in a simulation mode before actual execution to assure proper action at execution time. The robot's environment is checked as part of the process and dynamic reconfiguration is also possible. The languages and system allow the programming and control of multiple arms and the use of inward/outward spatial recursions in which every computational step can be related to a transformation from one point in the mechanical robot to another point to name two major advantages.
High level language-based robotic control system
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Inventor); Kreutz, Kenneth K. (Inventor); Jain, Abhinandan (Inventor)
1996-01-01
This invention is a robot control system based on a high level language implementing a spatial operator algebra. There are two high level languages included within the system. At the highest level, applications programs can be written in a robot-oriented applications language including broad operators such as MOVE and GRASP. The robot-oriented applications language statements are translated into statements in the spatial operator algebra language. Programming can also take place using the spatial operator algebra language. The statements in the spatial operator algebra language from either source are then translated into machine language statements for execution by a digital control computer. The system also includes the capability of executing the control code sequences in a simulation mode before actual execution to assure proper action at execution time. The robot's environment is checked as part of the process and dynamic reconfiguration is also possible. The languages and system allow the programming and control of multiple arms and the use of inward/outward spatial recursions in which every computational step can be related to a transformation from one point in the mechanical robot to another point to name two major advantages.
NASA Technical Reports Server (NTRS)
Moustafa, Samiah E.; Rennermalm, Asa K.; Roman, Miguel O.; Wang, Zhuosen; Schaaf, Crystal B.; Smith, Laurence C.; Koenig, Lora S.; Erb, Angela
2017-01-01
MODerate resolution Imaging Spectroradiometer (MODIS) albedo products have been validated over spatially uniform, snow-covered areas of the Greenland ice sheet (GrIS) using the so-called single 'point-to-pixel' method. This study expands on this methodology by applying a 'multiple-point-to-pixel' method and examination of spatial autocorrelation (here using semivariogram analysis) by using in situ observations, high-resolution World- View-2 (WV-2) surface reflectances, and MODIS Collection V006 daily blue-sky albedo over a spatially heterogeneous surfaces in the lower ablation zone in southwest Greenland. Our results using 232 ground-based samples within two MODIS pixels, one being more spatial heterogeneous than the other, show little difference in accuracy among narrow and broad band albedos (except for Band 2). Within the more homogenous pixel area, in situ and MODIS albedos were very close (error varied from -4% to +7%) and within the range of ASD standard errors. The semivariogram analysis revealed that the minimum observational footprint needed for a spatially representative sample is 30 m. In contrast, over the more spatially heterogeneous surface pixel, a minimum footprint size was not quantifiable due to spatial autocorrelation, and far exceeds the effective resolution of the MODIS retrievals. Over the high spatial heterogeneity surface pixel, MODIS is lower than ground measurements by 4-7%, partly due to a known in situ undersampling of darker surfaces that often are impassable by foot (e.g., meltwater features and shadowing effects over crevasses). Despite the sampling issue, our analysis errors are very close to the stated general accuracy of the MODIS product of 5%. Thus, our study suggests that the MODIS albedo product performs well in a very heterogeneous, low-albedo, area of the ice sheet ablation zone. Furthermore, we demonstrate that single 'point-to-pixel' methods alone are insufficient in characterizing and validating the variation of surface albedo displayed in the lower ablation area. This is true because the distribution of in situ data deviations from MODIS albedo show a substantial range, with the average values for the 10th and 90th percentiles being -0.30 and 0.43 across all bands. Thus, if only single point is taken for ground validation, and is randomly selected from either distribution tails, the error would appear to be considerable. Given the need for multiple in-situ points, concurrent albedo measurements derived from existing AWSs, (low-flying vehicles (airborne or unmanned) and high-resolution imagery (WV-2)) are needed to resolve high sub-pixel variability in the ablation zone, and thus, further improve our characterization of Greenland's surface albedo.
NASA Technical Reports Server (NTRS)
Tom, C.; Miller, L. D.; Christenson, J. W.
1978-01-01
A landscape model was constructed with 34 land-use, physiographic, socioeconomic, and transportation maps. A simple Markov land-use trend model was constructed from observed rates of change and nonchange from photointerpreted 1963 and 1970 airphotos. Seven multivariate land-use projection models predicting 1970 spatial land-use changes achieved accuracies from 42 to 57 percent. A final modeling strategy was designed, which combines both Markov trend and multivariate spatial projection processes. Landsat-1 image preprocessing included geometric rectification/resampling, spectral-band, and band/insolation ratioing operations. A new, systematic grid-sampled point training-set approach proved to be useful when tested on the four orginal MSS bands, ten image bands and ratios, and all 48 image and map variables (less land use). Ten variable accuracy was raised over 15 percentage points from 38.4 to 53.9 percent, with the use of the 31 ancillary variables. A land-use classification map was produced with an optimal ten-channel subset of four image bands and six ancillary map variables. Point-by-point verification of 331,776 points against a 1972/1973 U.S. Geological Survey (UGSG) land-use map prepared with airphotos and the same classification scheme showed average first-, second-, and third-order accuracies of 76.3, 58.4, and 33.0 percent, respectively.
NASA Astrophysics Data System (ADS)
Hamalainen, Sampsa; Geng, Xiaoyuan; He, Juanxia
2017-04-01
Latin Hypercube Sampling (LHS) at variable resolutions for enhanced watershed scale Soil Sampling and Digital Soil Mapping. Sampsa Hamalainen, Xiaoyuan Geng, and Juanxia, He. AAFC - Agriculture and Agr-Food Canada, Ottawa, Canada. The Latin Hypercube Sampling (LHS) approach to assist with Digital Soil Mapping has been developed for some time now, however the purpose of this work was to complement LHS with use of multiple spatial resolutions of covariate datasets and variability in the range of sampling points produced. This allowed for specific sets of LHS points to be produced to fulfil the needs of various partners from multiple projects working in the Ontario and Prince Edward Island provinces of Canada. Secondary soil and environmental attributes are critical inputs that are required in the development of sampling points by LHS. These include a required Digital Elevation Model (DEM) and subsequent covariate datasets produced as a result of a Digital Terrain Analysis performed on the DEM. These additional covariates often include but are not limited to Topographic Wetness Index (TWI), Length-Slope (LS) Factor, and Slope which are continuous data. The range of specific points created in LHS included 50 - 200 depending on the size of the watershed and more importantly the number of soil types found within. The spatial resolution of covariates included within the work ranged from 5 - 30 m. The iterations within the LHS sampling were run at an optimal level so the LHS model provided a good spatial representation of the environmental attributes within the watershed. Also, additional covariates were included in the Latin Hypercube Sampling approach which is categorical in nature such as external Surficial Geology data. Some initial results of the work include using a 1000 iteration variable within the LHS model. 1000 iterations was consistently a reasonable value used to produce sampling points that provided a good spatial representation of the environmental attributes. When working within the same spatial resolution for covariates, however only modifying the desired number of sampling points produced, the change of point location portrayed a strong geospatial relationship when using continuous data. Access to agricultural fields and adjacent land uses is often "pinned" as the greatest deterrent to performing soil sampling for both soil survey and soil attribute validation work. The lack of access can be a result of poor road access and/or difficult geographical conditions to navigate for field work individuals. This seems a simple yet continuous issue to overcome for the scientific community and in particular, soils professionals. The ability to assist with the ease of access to sampling points will be in the future a contribution to the Latin Hypercube Sampling (LHS) approach. By removing all locations in the initial instance from the DEM, the LHS model can be restricted to locations only with access from the adjacent road or trail. To further the approach, a road network geospatial dataset can be included within spatial Geographic Information Systems (GIS) applications to access already produced points using a shortest-distance network method.
A quantitative method for determining spatial discriminative capacity.
Zhang, Zheng; Tannan, Vinay; Holden, Jameson K; Dennis, Robert G; Tommerdahl, Mark
2008-03-10
The traditional two-point discrimination (TPD) test, a widely used tactile spatial acuity measure, has been criticized as being imprecise because it is based on subjective criteria and involves a number of non-spatial cues. The results of a recent study showed that as two stimuli were delivered simultaneously, vibrotactile amplitude discrimination became worse when the two stimuli were positioned relatively close together and was significantly degraded when the probes were within a subject's two-point limen. The impairment of amplitude discrimination with decreasing inter-probe distance suggested that the metric of amplitude discrimination could possibly provide a means of objective and quantitative measurement of spatial discrimination capacity. A two alternative forced-choice (2AFC) tracking procedure was used to assess a subject's ability to discriminate the amplitude difference between two stimuli positioned at near-adjacent skin sites. Two 25 Hz flutter stimuli, identical except for a constant difference in amplitude, were delivered simultaneously to the hand dorsum. The stimuli were initially spaced 30 mm apart, and the inter-stimulus distance was modified on a trial-by-trial basis based on the subject's performance of discriminating the stimulus with higher intensity. The experiment was repeated via sequential, rather than simultaneous, delivery of the same vibrotactile stimuli. Results obtained from this study showed that the performance of the amplitude discrimination task was significantly degraded when the stimuli were delivered simultaneously and were near a subject's two-point limen. In contrast, subjects were able to correctly discriminate between the amplitudes of the two stimuli when they were sequentially delivered at all inter-probe distances (including those within the two-point limen), and improved when an adapting stimulus was delivered prior to simultaneously delivered stimuli. Subjects' capacity to discriminate the amplitude difference between two vibrotactile stimulations was degraded as the inter-stimulus distance approached the limit of their two-point spatial discriminative capacity. This degradation of spatial discriminative capacity lessened when an adapting stimulus was used. Performance of the task, as well as improvement on the task with adaptation, would most likely be impaired if the cortical information processing capacity of a subject or subject population were systemically altered, and thus, the methods described could be effective measures for use in clinical or clinical research applications.
Young, Robin L; Weinberg, Janice; Vieira, Verónica; Ozonoff, Al; Webster, Thomas F
2010-07-19
A common, important problem in spatial epidemiology is measuring and identifying variation in disease risk across a study region. In application of statistical methods, the problem has two parts. First, spatial variation in risk must be detected across the study region and, second, areas of increased or decreased risk must be correctly identified. The location of such areas may give clues to environmental sources of exposure and disease etiology. One statistical method applicable in spatial epidemiologic settings is a generalized additive model (GAM) which can be applied with a bivariate LOESS smoother to account for geographic location as a possible predictor of disease status. A natural hypothesis when applying this method is whether residential location of subjects is associated with the outcome, i.e. is the smoothing term necessary? Permutation tests are a reasonable hypothesis testing method and provide adequate power under a simple alternative hypothesis. These tests have yet to be compared to other spatial statistics. This research uses simulated point data generated under three alternative hypotheses to evaluate the properties of the permutation methods and compare them to the popular spatial scan statistic in a case-control setting. Case 1 was a single circular cluster centered in a circular study region. The spatial scan statistic had the highest power though the GAM method estimates did not fall far behind. Case 2 was a single point source located at the center of a circular cluster and Case 3 was a line source at the center of the horizontal axis of a square study region. Each had linearly decreasing logodds with distance from the point. The GAM methods outperformed the scan statistic in Cases 2 and 3. Comparing sensitivity, measured as the proportion of the exposure source correctly identified as high or low risk, the GAM methods outperformed the scan statistic in all three Cases. The GAM permutation testing methods provide a regression-based alternative to the spatial scan statistic. Across all hypotheses examined in this research, the GAM methods had competing or greater power estimates and sensitivities exceeding that of the spatial scan statistic.
2010-01-01
Background A common, important problem in spatial epidemiology is measuring and identifying variation in disease risk across a study region. In application of statistical methods, the problem has two parts. First, spatial variation in risk must be detected across the study region and, second, areas of increased or decreased risk must be correctly identified. The location of such areas may give clues to environmental sources of exposure and disease etiology. One statistical method applicable in spatial epidemiologic settings is a generalized additive model (GAM) which can be applied with a bivariate LOESS smoother to account for geographic location as a possible predictor of disease status. A natural hypothesis when applying this method is whether residential location of subjects is associated with the outcome, i.e. is the smoothing term necessary? Permutation tests are a reasonable hypothesis testing method and provide adequate power under a simple alternative hypothesis. These tests have yet to be compared to other spatial statistics. Results This research uses simulated point data generated under three alternative hypotheses to evaluate the properties of the permutation methods and compare them to the popular spatial scan statistic in a case-control setting. Case 1 was a single circular cluster centered in a circular study region. The spatial scan statistic had the highest power though the GAM method estimates did not fall far behind. Case 2 was a single point source located at the center of a circular cluster and Case 3 was a line source at the center of the horizontal axis of a square study region. Each had linearly decreasing logodds with distance from the point. The GAM methods outperformed the scan statistic in Cases 2 and 3. Comparing sensitivity, measured as the proportion of the exposure source correctly identified as high or low risk, the GAM methods outperformed the scan statistic in all three Cases. Conclusions The GAM permutation testing methods provide a regression-based alternative to the spatial scan statistic. Across all hypotheses examined in this research, the GAM methods had competing or greater power estimates and sensitivities exceeding that of the spatial scan statistic. PMID:20642827
High-Dimensional Bayesian Geostatistics
Banerjee, Sudipto
2017-01-01
With the growing capabilities of Geographic Information Systems (GIS) and user-friendly software, statisticians today routinely encounter geographically referenced data containing observations from a large number of spatial locations and time points. Over the last decade, hierarchical spatiotemporal process models have become widely deployed statistical tools for researchers to better understand the complex nature of spatial and temporal variability. However, fitting hierarchical spatiotemporal models often involves expensive matrix computations with complexity increasing in cubic order for the number of spatial locations and temporal points. This renders such models unfeasible for large data sets. This article offers a focused review of two methods for constructing well-defined highly scalable spatiotemporal stochastic processes. Both these processes can be used as “priors” for spatiotemporal random fields. The first approach constructs a low-rank process operating on a lower-dimensional subspace. The second approach constructs a Nearest-Neighbor Gaussian Process (NNGP) that ensures sparse precision matrices for its finite realizations. Both processes can be exploited as a scalable prior embedded within a rich hierarchical modeling framework to deliver full Bayesian inference. These approaches can be described as model-based solutions for big spatiotemporal datasets. The models ensure that the algorithmic complexity has ~ n floating point operations (flops), where n the number of spatial locations (per iteration). We compare these methods and provide some insight into their methodological underpinnings. PMID:29391920
The automaticity of vantage point shifts within a synaesthetes' spatial calendar.
Jarick, Michelle; Jensen, Candice; Dixon, Michael J; Smilek, Daniel
2011-09-01
Time-space synaesthetes report that time units (e.g., months, days, hours) occupy idiosyncratic spatial locations. For the synaesthete (L), the months of the year are projected out in external space in the shape of a 'scoreboard 7', where January to July extend across the top from left to right and August to December make up the vertical segment from top to bottom. Interestingly, L can change the mental vantage point (MVP) from where she views her month-space depending on whether she sees or hears the month name. We used a spatial cueing task to demonstrate that L's attention could be directed to locations within her time-space and change vantage points automatically - from trial to trial. We also sought to eliminate any influence of strategy on L's performance by shortening the interval between the cue and target onset to only 150 ms, and have the targets fall in synaesthetically cued locations on only 15% of trials. If L's performance was attributable to intentionally using the cue to predict target location, these manipulations should eliminate any cueing effects. In two separate experiments, we found that L still showed an attentional bias consistent with her synaesthesia. Thus, we attribute L's rapid and resilient cueing effects to the automaticity of her spatial forms. ©2011 The British Psychological Society.
High-Dimensional Bayesian Geostatistics.
Banerjee, Sudipto
2017-06-01
With the growing capabilities of Geographic Information Systems (GIS) and user-friendly software, statisticians today routinely encounter geographically referenced data containing observations from a large number of spatial locations and time points. Over the last decade, hierarchical spatiotemporal process models have become widely deployed statistical tools for researchers to better understand the complex nature of spatial and temporal variability. However, fitting hierarchical spatiotemporal models often involves expensive matrix computations with complexity increasing in cubic order for the number of spatial locations and temporal points. This renders such models unfeasible for large data sets. This article offers a focused review of two methods for constructing well-defined highly scalable spatiotemporal stochastic processes. Both these processes can be used as "priors" for spatiotemporal random fields. The first approach constructs a low-rank process operating on a lower-dimensional subspace. The second approach constructs a Nearest-Neighbor Gaussian Process (NNGP) that ensures sparse precision matrices for its finite realizations. Both processes can be exploited as a scalable prior embedded within a rich hierarchical modeling framework to deliver full Bayesian inference. These approaches can be described as model-based solutions for big spatiotemporal datasets. The models ensure that the algorithmic complexity has ~ n floating point operations (flops), where n the number of spatial locations (per iteration). We compare these methods and provide some insight into their methodological underpinnings.
Geospatial Thinking of Information Professionals
ERIC Educational Resources Information Center
Bishop, Bradley Wade; Johnston, Melissa P.
2013-01-01
Geospatial thinking skills inform a host of library decisions including planning and managing facilities, analyzing service area populations, facility site location, library outlet and service point closures, as well as assisting users with their own geospatial needs. Geospatial thinking includes spatial cognition, spatial reasoning, and knowledge…
Spatial Modeling for Resources Framework (SMRF)
USDA-ARS?s Scientific Manuscript database
Spatial Modeling for Resources Framework (SMRF) was developed by Dr. Scott Havens at the USDA Agricultural Research Service (ARS) in Boise, ID. SMRF was designed to increase the flexibility of taking measured weather data and distributing the point measurements across a watershed. SMRF was developed...
Delineating resource sheds in aquatic ecosystems (presentation)
Analysis of spatially-explicit ecological phenomena in aquatic ecosystems is impeded by a lack of knowledge of, and tools to delimit, spatial patterns of material supply to point locations. Here we apply the concept of "resource sheds" to coasts and watersheds. Resource sheds ar...
Multi-point laser coherent detection system and its application on vibration measurement
NASA Astrophysics Data System (ADS)
Fu, Y.; Yang, C.; Xu, Y. J.; Liu, H.; Yan, K.; Guo, M.
2015-05-01
Laser Doppler vibrometry (LDV) is a well-known interferometric technique to measure the motions, vibrations and mode shapes of machine components and structures. The drawback of commercial LDV is that it can only offer a pointwise measurement. In order to build up a vibrometric image, a scanning device is normally adopted to scan the laser point in two spatial axes. These scanning laser Doppler vibrometers (SLDV) assume that the measurement conditions remain invariant while multiple and identical, sequential measurements are performed. This assumption makes SLDVs impractical to do measurement on transient events. In this paper, we introduce a new multiple-point laser coherent detection system based on spatial-encoding technology and fiber configuration. A simultaneous vibration measurement on multiple points is realized using a single photodetector. A prototype16-point laser coherent detection system is built and it is applied to measure the vibration of various objects, such as body of a car or a motorcycle when engine is on and under shock tests. The results show the prospect of multi-point laser coherent detection system in the area of nondestructive test and precise dynamic measurement.
Bonetti, Marco; Pagano, Marcello
2005-03-15
The topic of this paper is the distribution of the distance between two points distributed independently in space. We illustrate the use of this interpoint distance distribution to describe the characteristics of a set of points within some fixed region. The properties of its sample version, and thus the inference about this function, are discussed both in the discrete and in the continuous setting. We illustrate its use in the detection of spatial clustering by application to a well-known leukaemia data set, and report on the results of a simulation experiment designed to study the power characteristics of the methods within that study region and in an artificial homogenous setting. Copyright (c) 2004 John Wiley & Sons, Ltd.
Adiabatic Edge Channel Transport in a Nanowire Quantum Point Contact Register.
Heedt, S; Manolescu, A; Nemnes, G A; Prost, W; Schubert, J; Grützmacher, D; Schäpers, Th
2016-07-13
We report on a prototype device geometry where a number of quantum point contacts are connected in series in a single quasi-ballistic InAs nanowire. At finite magnetic field the backscattering length is increased up to the micron-scale and the quantum point contacts are connected adiabatically. Hence, several input gates can control the outcome of a ballistic logic operation. The absence of backscattering is explained in terms of selective population of spatially separated edge channels. Evidence is provided by regular Aharonov-Bohm-type conductance oscillations in transverse magnetic fields, in agreement with magnetoconductance calculations. The observation of the Shubnikov-de Haas effect at large magnetic fields corroborates the existence of spatially separated edge channels and provides a new means for nanowire characterization.
NASA Astrophysics Data System (ADS)
Cruden, A. R.; Vollgger, S.
2016-12-01
The emerging capability of UAV photogrammetry combines a simple and cost-effective method to acquire digital aerial images with advanced computer vision algorithms that compute spatial datasets from a sequence of overlapping digital photographs from various viewpoints. Depending on flight altitude and camera setup, sub-centimeter spatial resolution orthophotographs and textured dense point clouds can be achieved. Orientation data can be collected for detailed structural analysis by digitally mapping such high-resolution spatial datasets in a fraction of time and with higher fidelity compared to traditional mapping techniques. Here we describe a photogrammetric workflow applied to a structural study of folds and fractures within alternating layers of sandstone and mudstone at a coastal outcrop in SE Australia. We surveyed this location using a downward looking digital camera mounted on commercially available multi-rotor UAV that autonomously followed waypoints at a set altitude and speed to ensure sufficient image overlap, minimum motion blur and an appropriate resolution. The use of surveyed ground control points allowed us to produce a geo-referenced 3D point cloud and an orthophotograph from hundreds of digital images at a spatial resolution < 10 mm per pixel, and cm-scale location accuracy. Orientation data of brittle and ductile structures were semi-automatically extracted from these high-resolution datasets using open-source software. This resulted in an extensive and statistically relevant orientation dataset that was used to 1) interpret the progressive development of folds and faults in the region, and 2) to generate a 3D structural model that underlines the complex internal structure of the outcrop and quantifies spatial variations in fold geometries. Overall, our work highlights how UAV photogrammetry can contribute to new insights in structural analysis.
Huang, Chenxi; Huang, Hongxin; Toyoda, Haruyoshi; Inoue, Takashi; Liu, Huafeng
2012-11-19
We propose a new method for realizing high-spatial-resolution detection of singularity points in optical vortex beams. The method uses a Shack-Hartmann wavefront sensor (SHWS) to record a Hartmanngram. A map of evaluation values related to phase slope is then calculated from the Hartmanngram. The position of an optical vortex is determined by comparing the map with reference maps that are calculated from numerically created spiral phases having various positions. Optical experiments were carried out to verify the method. We displayed various spiral phase distribution patterns on a phase-only spatial light modulator and measured the resulting singularity point using the proposed method. The results showed good linearity in detecting the position of singularity points. The RMS error of the measured position of the singularity point was approximately 0.056, in units normalized to the lens size of the lenslet array used in the SHWS.
A generalized force-modified potential energy surface (G-FMPES) for mechanochemical simulations
Subramanian, Gopinath; Mathew, Nithin; Leiding, Jeffery A.
2015-10-05
We describe the modifications that a spatially varying external load produces on a Born-Oppenheimer potential energy surface (PES) by calculating static quantities of interest. The effects of the external loads are exemplified using electronic structure calculations (at the HF/6-31G** level) of two different molecules: ethane and hexahydro-1,3,5-trinitro-s-triazine (RDX). The calculated transition states and The Hessian matrices of stationary points show that spatially varying external loads shift the stationary points and modify the curvature of the PES, thereby affecting the harmonic transition rates by altering both the energy barrier as well as the prefactor. The harmonic spectra of both molecules aremore » blue-shifted with increasing compressive “pressure.” Some stationary points on the RDX-PES disappear under application of the external load, indicating the merging of an energy minimum with a saddle point.« less
Marked point process for modelling seismic activity (case study in Sumatra and Java)
NASA Astrophysics Data System (ADS)
Pratiwi, Hasih; Sulistya Rini, Lia; Wayan Mangku, I.
2018-05-01
Earthquake is a natural phenomenon that is random, irregular in space and time. Until now the forecast of earthquake occurrence at a location is still difficult to be estimated so that the development of earthquake forecast methodology is still carried out both from seismology aspect and stochastic aspect. To explain the random nature phenomena, both in space and time, a point process approach can be used. There are two types of point processes: temporal point process and spatial point process. The temporal point process relates to events observed over time as a sequence of time, whereas the spatial point process describes the location of objects in two or three dimensional spaces. The points on the point process can be labelled with additional information called marks. A marked point process can be considered as a pair (x, m) where x is the point of location and m is the mark attached to the point of that location. This study aims to model marked point process indexed by time on earthquake data in Sumatra Island and Java Island. This model can be used to analyse seismic activity through its intensity function by considering the history process up to time before t. Based on data obtained from U.S. Geological Survey from 1973 to 2017 with magnitude threshold 5, we obtained maximum likelihood estimate for parameters of the intensity function. The estimation of model parameters shows that the seismic activity in Sumatra Island is greater than Java Island.
Habitat classification modeling with incomplete data: Pushing the habitat envelope
Zarnetske, P.L.; Edwards, T.C.; Moisen, Gretchen G.
2007-01-01
Habitat classification models (HCMs) are invaluable tools for species conservation, land-use planning, reserve design, and metapopulation assessments, particularly at broad spatial scales. However, species occurrence data are often lacking and typically limited to presence points at broad scales. This lack of absence data precludes the use of many statistical techniques for HCMs. One option is to generate pseudo-absence points so that the many available statistical modeling tools can be used. Traditional techniques generate pseudoabsence points at random across broadly defined species ranges, often failing to include biological knowledge concerning the species-habitat relationship. We incorporated biological knowledge of the species-habitat relationship into pseudo-absence points by creating habitat envelopes that constrain the region from which points were randomly selected. We define a habitat envelope as an ecological representation of a species, or species feature's (e.g., nest) observed distribution (i.e., realized niche) based on a single attribute, or the spatial intersection of multiple attributes. We created HCMs for Northern Goshawk (Accipiter gentilis atricapillus) nest habitat during the breeding season across Utah forests with extant nest presence points and ecologically based pseudo-absence points using logistic regression. Predictor variables were derived from 30-m USDA Landfire and 250-m Forest Inventory and Analysis (FIA) map products. These habitat-envelope-based models were then compared to null envelope models which use traditional practices for generating pseudo-absences. Models were assessed for fit and predictive capability using metrics such as kappa, thresholdindependent receiver operating characteristic (ROC) plots, adjusted deviance (Dadj2), and cross-validation, and were also assessed for ecological relevance. For all cases, habitat envelope-based models outperformed null envelope models and were more ecologically relevant, suggesting that incorporating biological knowledge into pseudo-absence point generation is a powerful tool for species habitat assessments. Furthermore, given some a priori knowledge of the species-habitat relationship, ecologically based pseudo-absence points can be applied to any species, ecosystem, data resolution, and spatial extent. ?? 2007 by the Ecological Society of America.
Environmental boundaries as a mechanism for correcting and anchoring spatial maps
2016-01-01
Abstract Ubiquitous throughout the animal kingdom, path integration‐based navigation allows an animal to take a circuitous route out from a home base and using only self‐motion cues, calculate a direct vector back. Despite variation in an animal's running speed and direction, medial entorhinal grid cells fire in repeating place‐specific locations, pointing to the medial entorhinal circuit as a potential neural substrate for path integration‐based spatial navigation. Supporting this idea, grid cells appear to provide an environment‐independent metric representation of the animal's location in space and preserve their periodic firing structure even in complete darkness. However, a series of recent experiments indicate that spatially responsive medial entorhinal neurons depend on environmental cues in a more complex manner than previously proposed. While multiple types of landmarks may influence entorhinal spatial codes, environmental boundaries have emerged as salient landmarks that both correct error in entorhinal grid cells and bind internal spatial representations to the geometry of the external spatial world. The influence of boundaries on error correction and grid symmetry points to medial entorhinal border cells, which fire at a high rate only near environmental boundaries, as a potential neural substrate for landmark‐driven control of spatial codes. The influence of border cells on other entorhinal cell populations, such as grid cells, could depend on plasticity, raising the possibility that experience plays a critical role in determining how external cues influence internal spatial representations. PMID:26563618
Modeling Yeast Cell Polarization Induced by Pheromone Gradients
NASA Astrophysics Data System (ADS)
Yi, Tau-Mu; Chen, Shanqin; Chou, Ching-Shan; Nie, Qing
2007-07-01
Yeast cells respond to spatial gradients of mating pheromones by polarizing and projecting up the gradient toward the source. It is thought that they employ a spatial sensing mechanism in which the cell compares the concentration of pheromone at different points on the cell surface and determines the maximum point, where the projection forms. Here we constructed the first spatial mathematical model of the yeast pheromone response that describes the dynamics of the heterotrimeric and Cdc42p G-protein cycles, which are linked in a cascade. Two key performance objectives of this system are (1) amplification—converting a shallow external gradient of ligand to a steep internal gradient of protein components and (2) tracking—following changes in gradient direction. We used simulations to investigate amplification mechanisms that allow tracking. We identified specific strategies for regulating the spatial dynamics of the protein components (i.e. their changing location in the cell) that would enable the cell to achieve both objectives.
Discrete distributed strain sensing of intelligent structures
NASA Technical Reports Server (NTRS)
Anderson, Mark S.; Crawley, Edward F.
1992-01-01
Techniques are developed for the design of discrete highly distributed sensor systems for use in intelligent structures. First the functional requirements for such a system are presented. Discrete spatially averaging strain sensors are then identified as satisfying the functional requirements. A variety of spatial weightings for spatially averaging sensors are examined, and their wave number characteristics are determined. Preferable spatial weightings are identified. Several numerical integration rules used to integrate such sensors in order to determine the global deflection of the structure are discussed. A numerical simulation is conducted using point and rectangular sensors mounted on a cantilevered beam under static loading. Gage factor and sensor position uncertainties are incorporated to assess the absolute error and standard deviation of the error in the estimated tip displacement found by numerically integrating the sensor outputs. An experiment is carried out using a statically loaded cantilevered beam with five point sensors. It is found that in most cases the actual experimental error is within one standard deviation of the absolute error as found in the numerical simulation.
Performance analysis of a dual-tree algorithm for computing spatial distance histograms
Chen, Shaoping; Tu, Yi-Cheng; Xia, Yuni
2011-01-01
Many scientific and engineering fields produce large volume of spatiotemporal data. The storage, retrieval, and analysis of such data impose great challenges to database systems design. Analysis of scientific spatiotemporal data often involves computing functions of all point-to-point interactions. One such analytics, the Spatial Distance Histogram (SDH), is of vital importance to scientific discovery. Recently, algorithms for efficient SDH processing in large-scale scientific databases have been proposed. These algorithms adopt a recursive tree-traversing strategy to process point-to-point distances in the visited tree nodes in batches, thus require less time when compared to the brute-force approach where all pairwise distances have to be computed. Despite the promising experimental results, the complexity of such algorithms has not been thoroughly studied. In this paper, we present an analysis of such algorithms based on a geometric modeling approach. The main technique is to transform the analysis of point counts into a problem of quantifying the area of regions where pairwise distances can be processed in batches by the algorithm. From the analysis, we conclude that the number of pairwise distances that are left to be processed decreases exponentially with more levels of the tree visited. This leads to the proof of a time complexity lower than the quadratic time needed for a brute-force algorithm and builds the foundation for a constant-time approximate algorithm. Our model is also general in that it works for a wide range of point spatial distributions, histogram types, and space-partitioning options in building the tree. PMID:21804753
NASA Astrophysics Data System (ADS)
Du, Jia-Wei; Wang, Xuan-Yin; Zhu, Shi-Qiang
2017-10-01
Based on the process by which the spatial depth clue is obtained by a single eye, a monocular stereo vision to measure the depth information of spatial objects was proposed in this paper and a humanoid monocular stereo measuring system with two degrees of freedom was demonstrated. The proposed system can effectively obtain the three-dimensional (3-D) structure of spatial objects of different distances without changing the position of the system and has the advantages of being exquisite, smart, and flexible. The bionic optical imaging system we proposed in a previous paper, named ZJU SY-I, was employed and its vision characteristic was just like the resolution decay of the eye's vision from center to periphery. We simplified the eye's rotation in the eye socket and the coordinated rotation of other organs of the body into two rotations in the orthogonal direction and employed a rotating platform with two rotation degrees of freedom to drive ZJU SY-I. The structure of the proposed system was described in detail. The depth of a single feature point on the spatial object was deduced, as well as its spatial coordination. With the focal length adjustment of ZJU SY-I and the rotation control of the rotation platform, the spatial coordinates of all feature points on the spatial object could be obtained and then the 3-D structure of the spatial object could be reconstructed. The 3-D structure measurement experiments of two spatial objects with different distances and sizes were conducted. Some main factors affecting the measurement accuracy of the proposed system were analyzed and discussed.
Spatial controls of occurrence and spread of wildfires in the Missouri Ozark Highlands.
Yang, Jian; He, Hong S; Shifley, Stephen R
2008-07-01
Understanding spatial controls on wildfires is important when designing adaptive fire management plans and optimizing fuel treatment locations on a forest landscape. Previous research about this topic focused primarily on spatial controls for fire origin locations alone. Fire spread and behavior were largely overlooked. This paper contrasts the relative importance of biotic, abiotic, and anthropogenic constraints on the spatial pattern of fire occurrence with that on burn probability (i.e., the probability that fire will spread to a particular location). Spatial point pattern analysis and landscape succession fire model (LANDIS) were used to create maps to show the contrast. We quantified spatial controls on both fire occurrence and fire spread in the Midwest Ozark Highlands region, USA. This area exhibits a typical anthropogenic surface fire regime. We found that (1) human accessibility and land ownership were primary limiting factors in shaping clustered fire origin locations; (2) vegetation and topography had a negligible influence on fire occurrence in this anthropogenic regime; (3) burn probability was higher in grassland and open woodland than in closed-canopy forest, even though fire occurrence density was less in these vegetation types; and (4) biotic and abiotic factors were secondary descriptive ingredients for determining the spatial patterns of burn probability. This study demonstrates how fire occurrence and spread interact with landscape patterns to affect the spatial distribution of wildfire risk. The application of spatial point pattern data analysis would also be valuable to researchers working on landscape forest fire models to integrate historical ignition location patterns in fire simulation.
Experimental investigation of leak detection using mobile distributed monitoring system
NASA Astrophysics Data System (ADS)
Chen, Jiang; Zheng, Junli; Xiong, Feng; Ge, Qi; Yan, Qixiang; Cheng, Fei
2018-01-01
The leak detection of rockfill dams is currently hindered by spatial and temporal randomness and wide monitoring range. The spatial resolution of fiber Bragg grating (FBG) temperature sensing technology is related to the distance between measuring points. As a result, the number of measuring points should be increased to ensure that the precise location of the leak is detected. However, this leads to a higher monitoring cost. Consequently, it is difficult to promote and apply this technology to effectively monitor rockfill dam leakage. In this paper, a practical mobile distributed monitoring system with dual-tubes is used by combining the FBG sensing system and hydrothermal cycling system. This dual-tube structure is composed of an outer polyethylene of raised temperature resistance heating pipe, an inner polytetrafluoroethylene tube, and a FBG sensor string, among which, the FBG sensor string can be dragged freely in the internal tube to change the position of the measuring points and improve the spatial resolution. In order to test the effectiveness of the system, the large-scale model test of concentrated leakage in 13 working conditions is carried out by identifying the location, quantity, and leakage rate of leakage passage. Based on Newton’s law of cooling, the leakage state is identified using the seepage identification index ζ v that was confirmed according to the cooling curve. Results suggested that the monitoring system shows high sensitivity and can improve the spatial resolution with limited measuring points, and thus better locate the leakage area. In addition, the seepage identification index ζ v correlated well with the leakage rate qualitatively.
Zhang, Zhonghao; Xiao, Rui; Shortridge, Ashton; Wu, Jiaping
2014-03-10
Understanding the spatial point pattern of human settlements and their geographical associations are important for understanding the drivers of land use and land cover change and the relationship between environmental and ecological processes on one hand and cultures and lifestyles on the other. In this study, a Geographic Information System (GIS) approach, Ripley's K function and Monte Carlo simulation were used to investigate human settlement point patterns. Remotely sensed tools and regression models were employed to identify the effects of geographical determinants on settlement locations in the Wen-Tai region of eastern coastal China. Results indicated that human settlements displayed regular-random-cluster patterns from small to big scale. Most settlements located on the coastal plain presented either regular or random patterns, while those in hilly areas exhibited a clustered pattern. Moreover, clustered settlements were preferentially located at higher elevations with steeper slopes and south facing aspects than random or regular settlements. Regression showed that influences of topographic factors (elevation, slope and aspect) on settlement locations were stronger across hilly regions. This study demonstrated a new approach to analyzing the spatial patterns of human settlements from a wide geographical prospective. We argue that the spatial point patterns of settlements, in addition to the characteristics of human settlements, such as area, density and shape, should be taken into consideration in the future, and land planners and decision makers should pay more attention to city planning and management. Conceptual and methodological bridges linking settlement patterns to regional and site-specific geographical characteristics will be a key to human settlement studies and planning.
Student Moon Observations and Spatial-Scientific Reasoning
NASA Astrophysics Data System (ADS)
Cole, Merryn; Wilhelm, Jennifer; Yang, Hongwei
2015-07-01
Relationships between sixth grade students' moon journaling and students' spatial-scientific reasoning after implementation of an Earth/Space unit were examined. Teachers used the project-based Realistic Explorations in Astronomical Learning curriculum. We used a regression model to analyze the relationship between the students' Lunar Phases Concept Inventory (LPCI) post-test score variables and several predictors, including moon journal score, number of moon journal entries, student gender, teacher experience, and pre-test score. The model shows that students who performed better on moon journals, both in terms of overall score and number of entries, tended to score higher on the LPCI. For every 1 point increase in the overall moon journal score, participants scored 0.18 points (out of 20) or nearly 1% point higher on the LPCI post-test when holding constant the effects of the other two predictors. Similarly, students who increased their scores by 1 point in the overall moon journal score scored approximately 1% higher in the Periodic Patterns (PP) and Geometric Spatial Visualization (GSV) domains of the LPCI. Also, student gender and teacher experience were shown to be significant predictors of post-GSV scores on the LPCI in addition to the pre-test scores, overall moon journal score, and number of entries that were also significant predictors on the LPCI overall score and the PP domain. This study is unique in the purposeful link created between student moon observations and spatial skills. The use of moon journals distinguishes this study further by fostering scientific observation along with skills from across science, technology, engineering, and mathematics disciplines.
Lewison, R.L.; Carter, J.
2004-01-01
Herbivore foraging theories have been developed for and tested on herbivores across a range of sizes. Due to logistical constraints, however, little research has focused on foraging behavior of megaherbivores. Here we present a research approach that explores megaherbivore foraging behavior, and assesses the applicability of foraging theories developed on smaller herbivores to megafauna. With simulation models as reference points for the analysis of empirical data, we investigate foraging strategies of the common hippopotamus (Hippopotamus amphibius). Using a spatially explicit individual based foraging model, we apply traditional herbivore foraging strategies to a model hippopotamus, compare model output, and then relate these results to field data from wild hippopotami. Hippopotami appear to employ foraging strategies that respond to vegetation characteristics, such as vegetation quality, as well as spatial reference information, namely distance to a water source. Model predictions, field observations, and comparisons of the two support that hippopotami generally conform to the central place foraging construct. These analyses point to the applicability of general herbivore foraging concepts to megaherbivores, but also point to important differences between hippopotami and other herbivores. Our synergistic approach of models as reference points for empirical data highlights a useful method of behavioral analysis for hard-to-study megafauna. ?? 2003 Elsevier B.V. All rights reserved.
Li, Guo Chun; Song, Hua Dong; Li, Qi; Bu, Shu Hai
2017-11-01
In Abies fargesii forests of the giant panda's habitats in Mt. Taibai, the spatial distribution patterns and interspecific associations of main tree species and their spatial associations with the understory flowering Fargesia qinlingensis were analyzed at multiple scales by univariate and bivaria-te O-ring function in point pattern analysis. The results showed that in the A. fargesii forest, the number of A. fargesii was largest but its population structure was in decline. The population of Betula platyphylla was relatively young, with a stable population structure, while the population of B. albo-sinensis declined. The three populations showed aggregated distributions at small scales and gradually showed random distributions with increasing spatial scales. Spatial associations among tree species were mainly showed at small scales and gradually became not spatially associated with increasing scale. A. fargesii and B. platyphylla were positively associated with flowering F. qinlingensis at large and medium scales, whereas B. albo-sinensis showed negatively associated with flowering F. qinlingensis at large and medium scales. The interaction between trees and F. qinlingensis in the habitats of giant panda promoted the dynamic succession and development of forests, which changed the environment of giant panda's habitats in Qinling.
NASA Astrophysics Data System (ADS)
Jo, A.; Ryu, J.; Chung, H.; Choi, Y.; Jeon, S.
2018-04-01
The purpose of this study is to create a new dataset of spatially interpolated monthly climate data for South Korea at high spatial resolution (approximately 30m) by performing various spatio-statistical interpolation and comparing with forecast LDAPS gridded climate data provided from Korea Meterological Administration (KMA). Automatic Weather System (AWS) and Automated Synoptic Observing System (ASOS) data in 2017 obtained from KMA were included for the spatial mapping of temperature and rainfall; instantaneous temperature and 1-hour accumulated precipitation at 09:00 am on 31th March, 21th June, 23th September, and 24th December. Among observation data, 80 percent of the total point (478) and remaining 120 points were used for interpolations and for quantification, respectively. With the training data and digital elevation model (DEM) with 30 m resolution, inverse distance weighting (IDW), co-kriging, and kriging were performed by using ArcGIS10.3.1 software and Python 3.6.4. Bias and root mean square were computed to compare prediction performance quantitatively. When statistical analysis was performed for each cluster using 20 % validation data, co kriging was more suitable for spatialization of instantaneous temperature than other interpolation method. On the other hand, IDW technique was appropriate for spatialization of precipitation.
Estimation of Traffic Variables Using Point Processing Techniques
DOT National Transportation Integrated Search
1978-05-01
An alternative approach to estimating aggregate traffic variables on freeways--spatial mean velocity and density--is presented. Vehicle arrival times at a given location on a roadway, typically a presence detector, are regarded as a point or counting...
Spine-fan reconnection. The influence of temporal and spatial variation in the driver
NASA Astrophysics Data System (ADS)
Wyper, P. F.; Jain, R.; Pontin, D. I.
2012-09-01
Context. From observations, the atmosphere of the Sun has been shown to be highly dynamic with perturbations of the magnetic field often lacking temporal or spatial symmetry. Despite this, studies of the spine-fan reconnection mode at 3D nulls have so far focused on the very idealised case with symmetric driving of a fixed spatial extent. Aims: We investigate the spine-fan reconnection process for less idealised cases, focusing on asymmetric driving and drivers with different length scales. We look at the initial current sheet formation and whether the scalings developed in the idealised models are robust in more realistic situations. Methods: The investigation was carried out by numerically solving the resistive compressible 3D magnetohydrodynamic equations in a Cartesian box containing a linear null point. The spine-fan collapse was driven at the null through tangential boundary driving of the spine foot points. Results: We find significant differences in the initial current sheet formation with asymmetric driving. Notable is the displacement of the null point position as a function of driving velocity and resistivity (η). However, the scaling relations developed in the idealised case are found to be robust (albeit at reduced amplitudes) despite this extra complexity. Lastly, the spatial variation is also shown to play an important role in the initial current sheet formation through controlling the displacement of the spine foot points. Conclusions: We conclude that during the early stages of spine-fan reconnection both the temporal and spatial nature of the driving play important roles, with the idealised symmetrically driven case giving a "best case" for the rate of current development and connectivity change. As the most interesting eruptive events occur in relatively short time frames this work clearly shows the need for high temporal and spatial knowledge of the flows for accurate interpretation of the reconnection scenario. Lastly, since the scalings developed in the idealised case remain robust with more complex driving we can be more confident of their use in interpreting reconnection in complex magnetic field structures.
Moderate point: Balanced entropy and enthalpy contributions in soft matter
NASA Astrophysics Data System (ADS)
He, Baoji; Wang, Yanting
2017-03-01
Various soft materials share some common features, such as significant entropic effect, large fluctuations, sensitivity to thermodynamic conditions, and mesoscopic characteristic spatial and temporal scales. However, no quantitative definitions have yet been provided for soft matter, and the intrinsic mechanisms leading to their common features are unclear. In this work, from the viewpoint of statistical mechanics, we show that soft matter works in the vicinity of a specific thermodynamic state named moderate point, at which entropy and enthalpy contributions among substates along a certain order parameter are well balanced or have a minimal difference. Around the moderate point, the order parameter fluctuation, the associated response function, and the spatial correlation length maximize, which explains the large fluctuation, the sensitivity to thermodynamic conditions, and mesoscopic spatial and temporal scales of soft matter, respectively. Possible applications to switching chemical bonds or allosteric biomachines determining their best working temperatures are also briefly discussed. Project supported by the National Basic Research Program of China (Grant No. 2013CB932804) and the National Natural Science Foundation of China (Grant Nos. 11274319 and 11421063).
Left-Deviating Prism Adaptation in Left Neglect Patient: Reflexions on a Negative Result
Luauté, Jacques; Jacquin-Courtois, Sophie; O'Shea, Jacinta; Christophe, Laure; Rode, Gilles; Boisson, Dominique; Rossetti, Yves
2012-01-01
Adaptation to right-deviating prisms is a promising intervention for the rehabilitation of patients with left spatial neglect. In order to test the lateral specificity of prism adaptation on left neglect, the present study evaluated the effect of left-deviating prism on straight-ahead pointing movements and on several classical neuropsychological tests in a group of five right brain-damaged patients with left spatial neglect. A group of healthy subjects was also included for comparison purposes. After a single session of exposing simple manual pointing to left-deviating prisms, contrary to healthy controls, none of the patients showed a reliable change of the straight-ahead pointing movement in the dark. No significant modification of attentional paper-and-pencil tasks was either observed immediately or 2 hours after prism adaptation. These results suggest that the therapeutic effect of prism adaptation on left spatial neglect relies on a specific lateralized mechanism. Evidence for a directional effect for prism adaptation both in terms of the side of the visuomanual adaptation and therefore possibly in terms of the side of brain affected by the stimulation is discussed. PMID:23050168
Development and validation of a short-lag spatial coherence theory for photoacoustic imaging
NASA Astrophysics Data System (ADS)
Graham, Michelle T.; Lediju Bell, Muyinatu A.
2018-02-01
We previously derived spatial coherence theory to be implemented for studying theoretical properties of ShortLag Spatial Coherence (SLSC) beamforming applied to photoacoustic images. In this paper, our newly derived theoretical equation is evaluated to generate SLSC images of a point target and a 1.2 mm diameter target and corresponding lateral profiles. We compared SLSC images simulated solely based on our theory to SLSC images created after beamforming acoustic channel data from k-Wave simulations of 1.2 mm-diameter disc target. This process was repeated for a point target and the full width at half the maximum signal amplitudes were measured to estimate the resolution of each imaging system. Resolution as a function of lag was comparable for the first 10% of the receive aperture (i.e., the short-lag region), after which resolution measurements diverged by a maximum of 1 mm between the two types of simulated images. These results indicate the potential for both simulation methods to be utilized as independent resources to study coherence-based photoacoustic beamformers when imaging point-like targets.
Monitoring urban subsidence based on SAR lnterferometric point target analysis
Zhang, Y.; Zhang, Jiahua; Gong, W.; Lu, Z.
2009-01-01
lnterferometric point target analysis (IPTA) is one of the latest developments in radar interferometric processing. It is achieved by analysis of the interferometric phases of some individual point targets, which are discrete and present temporarily stable backscattering characteristics, in long temporal series of interferometric SAR images. This paper analyzes the interferometric phase model of point targets, and then addresses two key issues within IPTA process. Firstly, a spatial searching method is proposed to unwrap the interferometric phase difference between two neighboring point targets. The height residual error and linear deformation rate of each point target can then be calculated, when a global reference point with known height correction and deformation history is chosen. Secondly, a spatial-temporal filtering scheme is proposed to further separate the atmosphere phase and nonlinear deformation phase from the residual interferometric phase. Finally, an experiment of the developed IPTA methodology is conducted over Suzhou urban area. Totally 38 ERS-1/2 SAR scenes are analyzed, and the deformation information over 3 546 point targets in the time span of 1992-2002 are generated. The IPTA-derived deformation shows very good agreement with the published result, which demonstrates that the IPTA technique can be developed into an operational tool to map the ground subsidence over urban area.
A technique for conducting point pattern analysis of cluster plot stem-maps
C.W. Woodall; J.M. Graham
2004-01-01
Point pattern analysis of forest inventory stem-maps may aid interpretation and inventory estimation of forest attributes. To evaluate the techniques and benefits of conducting point pattern analysis of forest inventory stem-maps, Ripley`s K(t) was calculated for simulated tree spatial distributions and for over 600 USDA Forest Service Forest...
Squeezing, Striking, and Vocalizing: Is Number Representation Fundamentally Spatial?
ERIC Educational Resources Information Center
Nunez, Rafael; Doan, D.; Nikoulina, Anastasia
2011-01-01
Numbers are fundamental entities in mathematics, but their cognitive bases are unclear. Abundant research points to linear space as a natural grounding for number representation. But, is number representation fundamentally spatial? We disentangle number representation from standard number-to-line reporting methods, and compare numerical…
Comparison of roadway roughness derived from LIDAR and SFM 3D point clouds.
DOT National Transportation Integrated Search
2015-10-01
This report describes a short-term study undertaken to investigate the potential for using dense three-dimensional (3D) point : clouds generated from light detection and ranging (LIDAR) and photogrammetry to assess roadway roughness. Spatially : cont...
NASA Astrophysics Data System (ADS)
Salançon, Evelyne; Degiovanni, Alain; Lapena, Laurent; Morin, Roger
2018-04-01
An event-counting method using a two-microchannel plate stack in a low-energy electron point projection microscope is implemented. 15 μm detector spatial resolution, i.e., the distance between first-neighbor microchannels, is demonstrated. This leads to a 7 times better microscope resolution. Compared to previous work with neutrons [Tremsin et al., Nucl. Instrum. Methods Phys. Res., Sect. A 592, 374 (2008)], the large number of detection events achieved with electrons shows that the local response of the detector is mainly governed by the angle between the hexagonal structures of the two microchannel plates. Using this method in point projection microscopy offers the prospect of working with a greater source-object distance (350 nm instead of 50 nm), advancing toward atomic resolution.
NASA Astrophysics Data System (ADS)
Park, Byeongjin; Sohn, Hoon
2018-04-01
The practicality of laser ultrasonic scanning is limited because scanning at a high spatial resolution demands a prohibitively long scanning time. Inspired by binary search, an accelerated defect visualization technique is developed to visualize defect with a reduced scanning time. The pitch-catch distance between the excitation point and the sensing point is also fixed during scanning to maintain a high signal-to-noise ratio of measured ultrasonic responses. The approximate defect boundary is identified by examining the interactions between ultrasonic waves and defect observed at the scanning points that are sparsely selected by a binary search algorithm. Here, a time-domain laser ultrasonic response is transformed into a spatial ultrasonic domain response using a basis pursuit approach so that the interactions between ultrasonic waves and defect can be better identified in the spatial ultrasonic domain. Then, the area inside the identified defect boundary is visualized as defect. The performance of the proposed defect visualization technique is validated through an experiment on a semiconductor chip. The proposed defect visualization technique accelerates the defect visualization process in three aspects: (1) The number of measurements that is necessary for defect visualization is dramatically reduced by a binary search algorithm; (2) The number of averaging that is necessary to achieve a high signal-to-noise ratio is reduced by maintaining the wave propagation distance short; and (3) With the proposed technique, defect can be identified with a lower spatial resolution than the spatial resolution required by full-field wave propagation imaging.
Fuhrman, Orly; Boroditsky, Lera
2010-11-01
Across cultures people construct spatial representations of time. However, the particular spatial layouts created to represent time may differ across cultures. This paper examines whether people automatically access and use culturally specific spatial representations when reasoning about time. In Experiment 1, we asked Hebrew and English speakers to arrange pictures depicting temporal sequences of natural events, and to point to the hypothesized location of events relative to a reference point. In both tasks, English speakers (who read left to right) arranged temporal sequences to progress from left to right, whereas Hebrew speakers (who read right to left) arranged them from right to left, replicating previous work. In Experiments 2 and 3, we asked the participants to make rapid temporal order judgments about pairs of pictures presented one after the other (i.e., to decide whether the second picture showed a conceptually earlier or later time-point of an event than the first picture). Participants made responses using two adjacent keyboard keys. English speakers were faster to make "earlier" judgments when the "earlier" response needed to be made with the left response key than with the right response key. Hebrew speakers showed exactly the reverse pattern. Asking participants to use a space-time mapping inconsistent with the one suggested by writing direction in their language created interference, suggesting that participants were automatically creating writing-direction consistent spatial representations in the course of their normal temporal reasoning. It appears that people automatically access culturally specific spatial representations when making temporal judgments even in nonlinguistic tasks. Copyright © 2010 Cognitive Science Society, Inc.
Generation of multifocal irradiance patterns by using complex Fresnel holograms.
Mendoza-Yero, Omel; Carbonell-Leal, Miguel; Mínguez-Vega, Gladys; Lancis, Jesús
2018-03-01
We experimentally demonstrate Fresnel holograms able to produce multifocal irradiance patterns with micrometric spatial resolution. These holograms are assessed from the coherent sum of multiple Fresnel lenses. The utilized encoded technique guarantees full control over the reconstructed irradiance patterns due to an optimal codification of the amplitude and phase information of the resulting complex field. From a practical point of view, a phase-only spatial light modulator is used in a couple of experiments addressed to obtain two- and three-dimensional distributions of focal points to excite both linear and non-linear optical phenomena.
Decorrelation distance of snow in the Colorado River Basin
NASA Technical Reports Server (NTRS)
Chang, A. T. C.; Chiu, L. S.
1989-01-01
The problem of estimating areal averages from point measurement has been extensively studied by mining engineers and hydrologists. Its application to satellite measurements has recently been introduced. The semivariaogram has been used in many geostatistical applications to estimate spatial structures of observed properties, such as mineral distributions. An examination is made of snow variations in Colorado from daily snow data collected in 11 SNOTEL stations. The associated semivariogram is estimated. The objective is to estimate the spatial structure of the snow field so that the point data can be used for comparison with, and validation for, satellite measurements.
Thomson scattering at general fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, W. C., E-mail: william.young@generalfusion.com; Parfeniuk, D.
2016-11-15
This paper provides an overview of the Thomson scattering diagnostic in use at General Fusion, including recent upgrades and upcoming plans. The plasma experiment under examination produces temperatures in the 50-500 eV range with density on the order of 10{sup 20} m{sup −3}. A four spatial point collection optics scheme has been implemented, with plans to expand to six spatial points. Recent changes to the optics of the laser beamline have reduced stray light. The system employs a frequency doubled Nd:YAG laser (532 nm), a grating spectrometer, and a photomultiplier array based detector.
A semiparametric spatio-temporal model for solar irradiance data
Patrick, Joshua D.; Harvill, Jane L.; Hansen, Clifford W.
2016-03-01
Here, we evaluate semiparametric spatio-temporal models for global horizontal irradiance at high spatial and temporal resolution. These models represent the spatial domain as a lattice and are capable of predicting irradiance at lattice points, given data measured at other lattice points. Using data from a 1.2 MW PV plant located in Lanai, Hawaii, we show that a semiparametric model can be more accurate than simple interpolation between sensor locations. We investigate spatio-temporal models with separable and nonseparable covariance structures and find no evidence to support assuming a separable covariance structure. These results indicate a promising approach for modeling irradiance atmore » high spatial resolution consistent with available ground-based measurements. Moreover, this kind of modeling may find application in design, valuation, and operation of fleets of utility-scale photovoltaic power systems.« less
Huard, Edouard; Derelle, Sophie; Jaeck, Julien; Nghiem, Jean; Haïdar, Riad; Primot, Jérôme
2018-03-05
A challenging point in the prediction of the image quality of infrared imaging systems is the evaluation of the detector modulation transfer function (MTF). In this paper, we present a linear method to get a 2D continuous MTF from sparse spectral data. Within the method, an object with a predictable sparse spatial spectrum is imaged by the focal plane array. The sparse data is then treated to return the 2D continuous MTF with the hypothesis that all the pixels have an identical spatial response. The linearity of the treatment is a key point to estimate directly the error bars of the resulting detector MTF. The test bench will be presented along with measurement tests on a 25 μm pitch InGaAs detector.
Ring-based ultrasonic virtual point detector with applications to photoacoustic tomography
NASA Astrophysics Data System (ADS)
Yang, Xinmai; Li, Meng-Lin; Wang, Lihong V.
2007-06-01
An ultrasonic virtual point detector is constructed using the center of a ring transducer. The virtual point detector provides ideal omnidirectional detection free of any aperture effect. Compared with a real point detector, the virtual one has lower thermal noise and can be scanned with its center inside a physically inaccessible medium. When applied to photoacoustic tomography, the virtual point detector provides both high spatial resolution and high signal-to-noise ratio. It can also be potentially applied to other ultrasound-related technologies.
Spatially explicit identification of changes in ecological conditions over large areas is key to targeting and prioritizing areas for environmental protection and restoration by managers at watershed, basin, and regional scales. A critical limitation to this point has been the d...
Spatial perspectives in state-and-transition models: A missing link to land management?
USDA-ARS?s Scientific Manuscript database
Conceptual models of alternative states and thresholds are based largely on observations of ecosystem processes at a few points in space. Because the distribution of alternative states in spatially-structured ecosystems is the result of variations in pattern-process interactions at different scales,...
Marcel, Anthony; Dobel, Christian
2005-01-01
Perceptual input imposes and maintains an egocentric frame of reference, which enables orientation. When blindfolded, people tended to mistake the assumed intrinsic axes of symmetry of their immediate environment (a room) for their own egocentric relation to features of the room. When asked to point to the door and window, known to be at mid-points of facing (or adjacent) walls, they pointed with their arms at 180 degrees (or 90 degrees) angles, irrespective of where they thought they were in the room. People did the same when requested to imagine the situation. They justified their responses (inappropriately) by logical necessity or a structural description of the room rather than (appropriately) by relative location of themselves and the reference points. In eight experiments, we explored the effect on this in perception and imagery of: perceptual input (without perceptibility of the target reference points); imaging oneself versus another person; aids to explicit spatial self-consciousness; order of questions about self-location; and the relation of targets to the axes of symmetry of the room. The results indicate that, if one is deprived of structured perceptual input, as well as losing one's bearings, (a) one is likely to lose one's egocentric frame of reference itself, and (b) instead of pointing to reference points, one demonstrates their structural relation by adopting the intrinsic axes of the environment as one's own. This is prevented by providing noninformative perceptual input or by inducing subjects to imagine themselves from the outside, which makes explicit the fact of their being located relative to the world. The role of perceptual contact with a structured world is discussed in relation to sensory deprivation and imagery, appeal is made to Gibson's theory of joint egoreception and exteroception, and the data are related to recent theories of spatial memory and navigation.
Analysis of data from NASA B-57B gust gradient program
NASA Technical Reports Server (NTRS)
Frost, W.; Lin, M. C.; Chang, H. P.; Ringnes, E.
1985-01-01
Statistical analysis of the turbulence measured in flight 6 of the NASA B-57B over Denver, Colorado, from July 7 to July 23, 1982 included the calculations of average turbulence parameters, integral length scales, probability density functions, single point autocorrelation coefficients, two point autocorrelation coefficients, normalized autospectra, normalized two point autospectra, and two point cross sectra for gust velocities. The single point autocorrelation coefficients were compared with the theoretical model developed by von Karman. Theoretical analyses were developed which address the effects spanwise gust distributions, using two point spatial turbulence correlations.
Spatial language facilitates spatial cognition: Evidence from children who lack language input
Gentner, Dedre; Özyürek, Asli; Gürcanli, Özge; Goldin-Meadow, Susan
2013-01-01
Does spatial language influence how people think about space? To address this question, we observed children who did not know a conventional language, and tested their performance on nonlinguistic spatial tasks. We studied deaf children living in Istanbul whose hearing losses prevented them from acquiring speech and whose hearing parents had not exposed them to sign. Lacking a conventional language, the children used gestures, called homesigns, to communicate. In Study 1, we asked whether homesigners used gesture to convey spatial relations, and found that they did not. In Study 2, we tested a new group of homesigners on a spatial mapping task, and found that they performed significantly worse than hearing Turkish children who were matched to the deaf children on another cognitive task. The absence of spatial language thus went hand-in-hand with poor performance on the nonlinguistic spatial task, pointing to the importance of spatial language in thinking about space. PMID:23542409
The effects of spatial sampling choices on MR temperature measurements.
Todd, Nick; Vyas, Urvi; de Bever, Josh; Payne, Allison; Parker, Dennis L
2011-02-01
The purpose of this article is to quantify the effects that spatial sampling parameters have on the accuracy of magnetic resonance temperature measurements during high intensity focused ultrasound treatments. Spatial resolution and position of the sampling grid were considered using experimental and simulated data for two different types of high intensity focused ultrasound heating trajectories (a single point and a 4-mm circle) with maximum measured temperature and thermal dose volume as the metrics. It is demonstrated that measurement accuracy is related to the curvature of the temperature distribution, where regions with larger spatial second derivatives require higher resolution. The location of the sampling grid relative temperature distribution has a significant effect on the measured values. When imaging at 1.0 × 1.0 × 3.0 mm(3) resolution, the measured values for maximum temperature and volume dosed to 240 cumulative equivalent minutes (CEM) or greater varied by 17% and 33%, respectively, for the single-point heating case, and by 5% and 18%, respectively, for the 4-mm circle heating case. Accurate measurement of the maximum temperature required imaging at 1.0 × 1.0 × 3.0 mm(3) resolution for the single-point heating case and 2.0 × 2.0 × 5.0 mm(3) resolution for the 4-mm circle heating case. Copyright © 2010 Wiley-Liss, Inc.
Spatially Enabling the Health Sector
Weeramanthri, Tarun Stephen; Woodgate, Peter
2016-01-01
Spatial information describes the physical location of either people or objects, and the measured relationships between them. In this article, we offer the view that greater utilization of spatial information and its related technology, as part of a broader redesign of the architecture of health information at local and national levels, could assist and speed up the process of health reform, which is taking place across the globe in richer and poorer countries alike. In making this point, we describe the impetus for health sector reform, recent developments in spatial information and analytics, and current Australasian spatial health research. We highlight examples of uptake of spatial information by the health sector, as well as missed opportunities. Our recommendations to spatially enable the health sector are applicable to high- and low-resource settings. PMID:27867933
Spatially Enabling the Health Sector.
Weeramanthri, Tarun Stephen; Woodgate, Peter
2016-01-01
Spatial information describes the physical location of either people or objects, and the measured relationships between them. In this article, we offer the view that greater utilization of spatial information and its related technology, as part of a broader redesign of the architecture of health information at local and national levels, could assist and speed up the process of health reform, which is taking place across the globe in richer and poorer countries alike. In making this point, we describe the impetus for health sector reform, recent developments in spatial information and analytics, and current Australasian spatial health research. We highlight examples of uptake of spatial information by the health sector, as well as missed opportunities. Our recommendations to spatially enable the health sector are applicable to high- and low-resource settings.
NASA Astrophysics Data System (ADS)
Wang, Jingmei; Gong, Adu; Li, Jing; Chen, Yanling
2017-04-01
Typhoon is a kind of strong weather system formed in tropical or subtropical oceans. China, located on the west side of the Pacific Ocean, is the country affected by the typhoon most frequently and seriously. To provide theoretical support for effectively reducing the damage caused by typhoon, the variation law of typhoon frequency is explored by analyzing the distribution of typhoon path and landing sites, sphere of influence, and the statistical characteristics of typhoon for every 5 years. In this study, the typhoon point data set was formed using the Best Path Data Set (0.1 ° × 0.1 °) compiled by China Meteorological Administration from 1950 to 2014. By using the tool of Point to Line in software ArgGIS, the typhoon paths are produced from the point data set. The influence sphere of typhoon is calculated from Euclidean distance of typhoon, whose threshold is set to 1°.The typhoon landing site was extracted by using the Chinese vector layer provided by the research group. By counting the frequency of typhoons, the landing sites, and the sphere of influence, some conclusions can be drawn as follows. In recent years, the number of typhoons generated has been reduced, typhoon intensity is relatively stable, but the impact of typhoon area has increased. Specific performance can be seen from the typhoon statistical and spatial distribution characteristics in China. In terms of frequency of typhoon landing, the number of typhoons landing in China has increased while the total number of typhoons is reduced. In terms of distribution of landing sites, the range of typhoon landing fluctuates. However, during the process of fluctuation, the range is gradually expanding. For example, in south of China, Hainan Island is affected by typhoon more frequently meanwhile China's northeast region is also gradually affected, which is extremely unusual before. Key words: spatial point model, distribution of typhoon, frequency of typhoon
Area Source Emission Measurements Using EPA OTM 10
Measurement of air pollutant emissions from area and non-point sources is an emerging environmental concern. Due to the spatial extent and non-homogenous nature of these sources, assessment of fugitive emissions using point sampling techniques can be difficult. To help address th...
elevatr: Access Elevation Data from Various APIs
Several web services are available that provide access to elevation data. This package provides access to several of those services and returns elevation data either as a SpatialPointsDataFrame from point elevation services or as a raster object from raster elevation services. ...
Nonrigid mammogram registration using mutual information
NASA Astrophysics Data System (ADS)
Wirth, Michael A.; Narhan, Jay; Gray, Derek W. S.
2002-05-01
Of the papers dealing with the task of mammogram registration, the majority deal with the task by matching corresponding control-points derived from anatomical landmark points. One of the caveats encountered when using pure point-matching techniques is their reliance on accurately extracted anatomical features-points. This paper proposes an innovative approach to matching mammograms which combines the use of a similarity-measure and a point-based spatial transformation. Mutual information is a cost-function used to determine the degree of similarity between the two mammograms. An initial rigid registration is performed to remove global differences and bring the mammograms into approximate alignment. The mammograms are then subdivided into smaller regions and each of the corresponding subimages is matched independently using mutual information. The centroids of each of the matched subimages are then used as corresponding control-point pairs in association with the Thin-Plate Spline radial basis function. The resulting spatial transformation generates a nonrigid match of the mammograms. The technique is illustrated by matching mammograms from the MIAS mammogram database. An experimental comparison is made between mutual information incorporating purely rigid behavior, and that incorporating a more nonrigid behavior. The effectiveness of the registration process is evaluated using image differences.
NASA Astrophysics Data System (ADS)
Dai, Yan-Wei; Hu, Bing-Quan; Zhao, Jian-Hui; Zhou, Huan-Qiang
2010-09-01
The ground-state fidelity per lattice site is computed for the quantum three-state Potts model in a transverse magnetic field on an infinite-size lattice in one spatial dimension in terms of the infinite matrix product state algorithm. It is found that, on the one hand, a pinch point is identified on the fidelity surface around the critical point, and on the other hand, the ground-state fidelity per lattice site exhibits bifurcations at pseudo critical points for different values of the truncation dimension, which in turn approach the critical point as the truncation dimension becomes large. This implies that the ground-state fidelity per lattice site enables us to capture spontaneous symmetry breaking when the control parameter crosses the critical value. In addition, a finite-entanglement scaling of the von Neumann entropy is performed with respect to the truncation dimension, resulting in a precise determination of the central charge at the critical point. Finally, we compute the transverse magnetization, from which the critical exponent β is extracted from the numerical data.
NASA Astrophysics Data System (ADS)
Sefton-Nash, E.; Williams, J.-P.; Greenhagen, B. T.; Aye, K.-M.; Paige, D. A.
2017-12-01
An approach is presented to efficiently produce high quality gridded data records from the large, global point-based dataset returned by the Diviner Lunar Radiometer Experiment aboard NASA's Lunar Reconnaissance Orbiter. The need to minimize data volume and processing time in production of science-ready map products is increasingly important with the growth in data volume of planetary datasets. Diviner makes on average >1400 observations per second of radiance that is reflected and emitted from the lunar surface, using 189 detectors divided into 9 spectral channels. Data management and processing bottlenecks are amplified by modeling every observation as a probability distribution function over the field of view, which can increase the required processing time by 2-3 orders of magnitude. Geometric corrections, such as projection of data points onto a digital elevation model, are numerically intensive and therefore it is desirable to perform them only once. Our approach reduces bottlenecks through parallel binning and efficient storage of a pre-processed database of observations. Database construction is via subdivision of a geodesic icosahedral grid, with a spatial resolution that can be tailored to suit the field of view of the observing instrument. Global geodesic grids with high spatial resolution are normally impractically memory intensive. We therefore demonstrate a minimum storage and highly parallel method to bin very large numbers of data points onto such a grid. A database of the pre-processed and binned points is then used for production of mapped data products that is significantly faster than if unprocessed points were used. We explore quality controls in the production of gridded data records by conditional interpolation, allowed only where data density is sufficient. The resultant effects on the spatial continuity and uncertainty in maps of lunar brightness temperatures is illustrated. We identify four binning regimes based on trades between the spatial resolution of the grid, the size of the FOV and the on-target spacing of observations. Our approach may be applicable and beneficial for many existing and future point-based planetary datasets.
Determination of geostatistically representative sampling locations in Porsuk Dam Reservoir (Turkey)
NASA Astrophysics Data System (ADS)
Aksoy, A.; Yenilmez, F.; Duzgun, S.
2013-12-01
Several factors such as wind action, bathymetry and shape of a lake/reservoir, inflows, outflows, point and diffuse pollution sources result in spatial and temporal variations in water quality of lakes and reservoirs. The guides by the United Nations Environment Programme and the World Health Organization to design and implement water quality monitoring programs suggest that even a single monitoring station near the center or at the deepest part of a lake will be sufficient to observe long-term trends if there is good horizontal mixing. In stratified water bodies, several samples can be required. According to the guide of sampling and analysis under the Turkish Water Pollution Control Regulation, a minimum of five sampling locations should be employed to characterize the water quality in a reservoir or a lake. The European Union Water Framework Directive (2000/60/EC) states to select a sufficient number of monitoring sites to assess the magnitude and impact of point and diffuse sources and hydromorphological pressures in designing a monitoring program. Although existing regulations and guidelines include frameworks for the determination of sampling locations in surface waters, most of them do not specify a procedure in establishment of monitoring aims with representative sampling locations in lakes and reservoirs. In this study, geostatistical tools are used to determine the representative sampling locations in the Porsuk Dam Reservoir (PDR). Kernel density estimation and kriging were used in combination to select the representative sampling locations. Dissolved oxygen and specific conductivity were measured at 81 points. Sixteen of them were used for validation. In selection of the representative sampling locations, care was given to keep similar spatial structure in distributions of measured parameters. A procedure was proposed for that purpose. Results indicated that spatial structure was lost under 30 sampling points. This was as a result of varying water quality in the reservoir due to inflows, point and diffuse inputs, and reservoir hydromorphology. Moreover, hot spots were determined based on kriging and standard error maps. Locations of minimum number of sampling points that represent the actual spatial structure of DO distribution in the Porsuk Dam Reservoir
Zhou, Liang; Xu, Jian-Gang; Sun, Dong-Qi; Ni, Tian-Hua
2013-02-01
Agricultural non-point source pollution is of importance in river deterioration. Thus identifying and concentrated controlling the key source-areas are the most effective approaches for non-point source pollution control. This study adopts inventory method to analysis four kinds of pollution sources and their emissions intensity of the chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in 173 counties (cities, districts) in Huaihe River Basin. The four pollution sources include livestock breeding, rural life, farmland cultivation, aquacultures. The paper mainly addresses identification of non-point polluted sensitivity areas, key pollution sources and its spatial distribution characteristics through cluster, sensitivity evaluation and spatial analysis. A geographic information system (GIS) and SPSS were used to carry out this study. The results show that: the COD, TN and TP emissions of agricultural non-point sources were 206.74 x 10(4) t, 66.49 x 10(4) t, 8.74 x 10(4) t separately in Huaihe River Basin in 2009; the emission intensity were 7.69, 2.47, 0.32 t.hm-2; the proportions of COD, TN, TP emissions were 73%, 24%, 3%. The paper achieves that: the major pollution source of COD, TN and TP was livestock breeding and rural life; the sensitivity areas and priority pollution control areas among the river basin of non-point source pollution are some sub-basins of the upper branches in Huaihe River, such as Shahe River, Yinghe River, Beiru River, Jialu River and Qingyi River; livestock breeding is the key pollution source in the priority pollution control areas. Finally, the paper concludes that pollution type of rural life has the highest pollution contribution rate, while comprehensive pollution is one type which is hard to control.
Chang, A.T.C.; Kelly, R.E.J.; Josberger, E.G.; Armstrong, R.L.; Foster, J.L.; Mognard, N.M.
2005-01-01
Accurate estimation of snow mass is important for the characterization of the hydrological cycle at different space and time scales. For effective water resources management, accurate estimation of snow storage is needed. Conventionally, snow depth is measured at a point, and in order to monitor snow depth in a temporally and spatially comprehensive manner, optimum interpolation of the points is undertaken. Yet the spatial representation of point measurements at a basin or on a larger distance scale is uncertain. Spaceborne scanning sensors, which cover a wide swath and can provide rapid repeat global coverage, are ideally suited to augment the global snow information. Satellite-borne passive microwave sensors have been used to derive snow depth (SD) with some success. The uncertainties in point SD and areal SD of natural snowpacks need to be understood if comparisons are to be made between a point SD measurement and satellite SD. In this paper three issues are addressed relating satellite derivation of SD and ground measurements of SD in the northern Great Plains of the United States from 1988 to 1997. First, it is shown that in comparing samples of ground-measured point SD data with satellite-derived 25 ?? 25 km2 pixels of SD from the Defense Meteorological Satellite Program Special Sensor Microwave Imager, there are significant differences in yearly SD values even though the accumulated datasets showed similarities. Second, from variogram analysis, the spatial variability of SD from each dataset was comparable. Third, for a sampling grid cell domain of 1?? ?? 1?? in the study terrain, 10 distributed snow depth measurements per cell are required to produce a sampling error of 5 cm or better. This study has important implications for validating SD derivations from satellite microwave observations. ?? 2005 American Meteorological Society.
Development of spatial scaling technique of forest health sample point information
NASA Astrophysics Data System (ADS)
Lee, J.; Ryu, J.; Choi, Y. Y.; Chung, H. I.; Kim, S. H.; Jeon, S. W.
2017-12-01
Most forest health assessments are limited to monitoring sampling sites. The monitoring of forest health in Britain in Britain was carried out mainly on five species (Norway spruce, Sitka spruce, Scots pine, Oak, Beech) Database construction using Oracle database program with density The Forest Health Assessment in GreatBay in the United States was conducted to identify the characteristics of the ecosystem populations of each area based on the evaluation of forest health by tree species, diameter at breast height, water pipe and density in summer and fall of 200. In the case of Korea, in the first evaluation report on forest health vitality, 1000 sample points were placed in the forests using a systematic method of arranging forests at 4Km × 4Km at regular intervals based on an sample point, and 29 items in four categories such as tree health, vegetation, soil, and atmosphere. As mentioned above, existing researches have been done through the monitoring of the survey sample points, and it is difficult to collect information to support customized policies for the regional survey sites. In the case of special forests such as urban forests and major forests, policy and management appropriate to the forest characteristics are needed. Therefore, it is necessary to expand the survey headquarters for diagnosis and evaluation of customized forest health. For this reason, we have constructed a method of spatial scale through the spatial interpolation according to the characteristics of each index of the main sample point table of 29 index in the four points of diagnosis and evaluation report of the first forest health vitality report, PCA statistical analysis and correlative analysis are conducted to construct the indicators with significance, and then weights are selected for each index, and evaluation of forest health is conducted through statistical grading.
Lopiano, Kenneth K; Young, Linda J; Gotway, Carol A
2014-09-01
Spatially referenced datasets arising from multiple sources are routinely combined to assess relationships among various outcomes and covariates. The geographical units associated with the data, such as the geographical coordinates or areal-level administrative units, are often spatially misaligned, that is, observed at different locations or aggregated over different geographical units. As a result, the covariate is often predicted at the locations where the response is observed. The method used to align disparate datasets must be accounted for when subsequently modeling the aligned data. Here we consider the case where kriging is used to align datasets in point-to-point and point-to-areal misalignment problems when the response variable is non-normally distributed. If the relationship is modeled using generalized linear models, the additional uncertainty induced from using the kriging mean as a covariate introduces a Berkson error structure. In this article, we develop a pseudo-penalized quasi-likelihood algorithm to account for the additional uncertainty when estimating regression parameters and associated measures of uncertainty. The method is applied to a point-to-point example assessing the relationship between low-birth weights and PM2.5 levels after the onset of the largest wildfire in Florida history, the Bugaboo scrub fire. A point-to-areal misalignment problem is presented where the relationship between asthma events in Florida's counties and PM2.5 levels after the onset of the fire is assessed. Finally, the method is evaluated using a simulation study. Our results indicate the method performs well in terms of coverage for 95% confidence intervals and naive methods that ignore the additional uncertainty tend to underestimate the variability associated with parameter estimates. The underestimation is most profound in Poisson regression models. © 2014, The International Biometric Society.
Rainfall Observed Over Bangladesh 2000-2008: A Comparison of Spatial Interpolation Methods
NASA Astrophysics Data System (ADS)
Pervez, M.; Henebry, G. M.
2010-12-01
In preparation for a hydrometeorological study of freshwater resources in the greater Ganges-Brahmaputra region, we compared the results of four methods of spatial interpolation applied to point measurements of daily rainfall over Bangladesh during a seven year period (2000-2008). Two univariate (inverse distance weighted and spline-regularized and tension) and two multivariate geostatistical (ordinary kriging and kriging with external drift) methods were used to interpolate daily observations from a network of 221 rain gauges across Bangladesh spanning an area of 143,000 sq km. Elevation and topographic index were used as the covariates in the geostatistical methods. The validity of the interpolated maps was analyzed through cross-validation. The quality of the methods was assessed through the Pearson and Spearman correlations and root mean square error measurements of accuracy in cross-validation. Preliminary results indicated that the univariate methods performed better than the geostatistical methods at daily scales, likely due to the relatively dense sampled point measurements and a weak correlation between the rainfall and covariates at daily scales in this region. Inverse distance weighted produced the better results than the spline. For the days with extreme or high rainfall—spatially and quantitatively—the correlation between observed and interpolated estimates appeared to be high (r2 ~ 0.6 RMSE ~ 10mm), although for low rainfall days the correlations were poor (r2 ~ 0.1 RMSE ~ 3mm). The performance quality of these methods was influenced by the density of the sample point measurements, the quantity of the observed rainfall along with spatial extent, and an appropriate search radius defining the neighboring points. Results indicated that interpolated rainfall estimates at daily scales may introduce uncertainties in the successive hydrometeorological analysis. Interpolations at 5-day, 10-day, 15-day, and monthly time scales are currently under investigation.
Zhang, Zhonghao; Xiao, Rui; Shortridge, Ashton; Wu, Jiaping
2014-01-01
Understanding the spatial point pattern of human settlements and their geographical associations are important for understanding the drivers of land use and land cover change and the relationship between environmental and ecological processes on one hand and cultures and lifestyles on the other. In this study, a Geographic Information System (GIS) approach, Ripley’s K function and Monte Carlo simulation were used to investigate human settlement point patterns. Remotely sensed tools and regression models were employed to identify the effects of geographical determinants on settlement locations in the Wen-Tai region of eastern coastal China. Results indicated that human settlements displayed regular-random-cluster patterns from small to big scale. Most settlements located on the coastal plain presented either regular or random patterns, while those in hilly areas exhibited a clustered pattern. Moreover, clustered settlements were preferentially located at higher elevations with steeper slopes and south facing aspects than random or regular settlements. Regression showed that influences of topographic factors (elevation, slope and aspect) on settlement locations were stronger across hilly regions. This study demonstrated a new approach to analyzing the spatial patterns of human settlements from a wide geographical prospective. We argue that the spatial point patterns of settlements, in addition to the characteristics of human settlements, such as area, density and shape, should be taken into consideration in the future, and land planners and decision makers should pay more attention to city planning and management. Conceptual and methodological bridges linking settlement patterns to regional and site-specific geographical characteristics will be a key to human settlement studies and planning. PMID:24619117
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmichael, Laurence, E-mail: Laurence.carmichael@uwe.ac.uk; Barton, Hugh; Gray, Selena
This article presents the results of a review of literature examining the barriers and facilitators in integrating health in spatial planning at the local, mainly urban level, through appraisals. Our literature review covered the UK and non UK experiences of appraisals used to consider health issues in the planning process. We were able to identify four main categories of obstacles and facilitators including first the different knowledge and conceptual understanding of health by different actors/stakeholders, second the types of governance arrangements, in particular partnerships, in place and the political context, third the way institutions work, the responsibilities they have andmore » their capacity and resources and fourth the timeliness, comprehensiveness and inclusiveness of the appraisal process. The findings allowed us to draw some lessons on the governance and policy framework regarding the integration of health impact into spatial planning, in particular considering the pros and cons of integrating health impact assessment (HIA) into other forms of impact assessment of spatial planning decisions such as environmental impact assessment (EIA) and strategic environment assessment (SEA). In addition, the research uncovered a gap in the literature that tends to focus on the mainly voluntary HIA to assess health outcomes of planning decisions and neglect the analysis of regulatory mechanisms such as EIA and SEA. - Highlights: Black-Right-Pointing-Pointer Governance and policy barriers and facilitators to the integration of health into urban planning. Black-Right-Pointing-Pointer Review of literature on impact assessment methods used across the world. Black-Right-Pointing-Pointer Knowledge, partnerships, management/resources and processes can impede integration. Black-Right-Pointing-Pointer HIA evaluations prevail uncovering research opportunities for evaluating other techniques.« less
NASA Technical Reports Server (NTRS)
Bautista, Abigail B.
1994-01-01
Twenty-four observers looked through a pair of 20 diopter wedge prisms and pointed to an image of a target which was displaced vertically from eye level by 6 cm at a distance of 30 cm. Observers pointed 40 times, using only their right hand, and received error-corrective feedback upon termination of each pointing response (terminal visual feedback). At three testing distances, 20, 30, and 40 cm, ten pre-exposure and ten post-exposure pointing responses were recorded for each hand as observers reached to a mirror-viewed target located at eye level. The difference between pre- and post-exposure pointing response (adaptive shift) was compared for both Exposed and Unexposed hands across all three testing distances. The data were assessed according to the results predicted by two alternative models for processing spatial-information: one using angular displacement information and another using linear displacement information. The angular model of spatial mapping best predicted the observer's pointing response for the Exposed hand. Although the angular adaptive shift did not change significantly as a function of distance (F(2,44) = 1.12, n.s.), the linear adaptive shift increased significantly over the three testing distances 02 44) = 4.90 p less than 0.01).
Power-law spatial dispersion from fractional Liouville equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarasov, Vasily E.
2013-10-15
A microscopic model in the framework of fractional kinetics to describe spatial dispersion of power-law type is suggested. The Liouville equation with the Caputo fractional derivatives is used to obtain the power-law dependence of the absolute permittivity on the wave vector. The fractional differential equations for electrostatic potential in the media with power-law spatial dispersion are derived. The particular solutions of these equations for the electric potential of point charge in this media are considered.
Retrieving Enduring Spatial Representations after Disorientation
Li, Xiaoou; Mou, Weimin; McNamara, Timothy P.
2012-01-01
Four experiments tested whether there are enduring spatial representations of objects’ locations in memory. Previous studies have shown that under certain conditions the internal consistency of pointing to objects using memory is disrupted by disorientation. This disorientation effect has been attributed to an absence of or to imprecise enduring spatial representations of objects’ locations. Experiment 1 replicated the standard disorientation effect. Participants learned locations of objects in an irregular layout and then pointed to objects after physically turning to face an object and after disorientation. The expected disorientation was observed. In Experiment 2, after disorientation, participants were asked to imagine they were facing the original learning direction and then physically turned to adopt the test orientation. In Experiment 3, after disorientation, participants turned to adopt the test orientation and then were informed of the original viewing direction by the experimenter. A disorientation effect was not observed in Experiment 2 or 3. In Experiment 4, after disorientation, participants turned to face the test orientation but were not told the original learning orientation. As in Experiment 1, a disorientation effect was observed. These results suggest that there are enduring spatial representations of objects’ locations specified in terms of a spatial reference direction parallel to the learning view, and that the disorientation effect is caused by uncertainty in recovering the spatial reference direction relative to the testing orientation following disorientation. PMID:22682765
Boussinesq Modeling for Inlets, Harbors, and Structures (Bouss-2D)
2015-10-30
a wide variety of coastal and ocean engineering and naval architecture problems, including: transformation of waves over small to medium spatial...and outputs, and GIS data used in modeling. Recent applications include: Pillar Point Harbor, Oyster Point Marina, CA; Mouth of Columbia River
A class of renormalised meshless Laplacians for boundary value problems
NASA Astrophysics Data System (ADS)
Basic, Josip; Degiuli, Nastia; Ban, Dario
2018-02-01
A meshless approach to approximating spatial derivatives on scattered point arrangements is presented in this paper. Three various derivations of approximate discrete Laplace operator formulations are produced using the Taylor series expansion and renormalised least-squares correction of the first spatial derivatives. Numerical analyses are performed for the introduced Laplacian formulations, and their convergence rate and computational efficiency are examined. The tests are conducted on regular and highly irregular scattered point arrangements. The results are compared to those obtained by the smoothed particle hydrodynamics method and the finite differences method on a regular grid. Finally, the strong form of various Poisson and diffusion equations with Dirichlet or Robin boundary conditions are solved in two and three dimensions by making use of the introduced operators in order to examine their stability and accuracy for boundary value problems. The introduced Laplacian operators perform well for highly irregular point distribution and offer adequate accuracy for mesh and mesh-free numerical methods that require frequent movement of the grid or point cloud.
NASA Technical Reports Server (NTRS)
Miles, J. H.; Wasserbauer, C. A.; Krejsa, E. A.
1983-01-01
Pressure temperature cross spectra are necessary in predicting noise propagation in regions of velocity gradients downstream of combustors if the effect of convective entropy disturbances is included. Pressure temperature cross spectra and coherences were measured at spatially separated points in a combustion rig fueled with hydrogen. Temperature-temperature and pressure-pressure cross spectra and coherences between the spatially separated points as well as temperature and pressure autospectra were measured. These test results were compared with previous results obtained in the same combustion rig using Jet A fuel in order to investigate their dependence on the type of combustion process. The phase relationships are not consistent with a simple source model that assumes that pressure and temperature are in phase at a point in the combustor and at all other points downstream are related to one another by only a time delay due to convection of temperature disturbances. Thus these test results indicate that a more complex model of the source is required.
Parents' Spatial Language Mediates a Sex Difference in Preschoolers' Spatial-Language Use.
Pruden, Shannon M; Levine, Susan C
2017-11-01
Do boys produce more terms than girls to describe the spatial world-that is, dimensional adjectives (e.g., big, little, tall, short), shape terms (e.g., circle, square), and words describing spatial features and properties (e.g., bent, curvy, edge)? If a sex difference in children's spatial-language use exists, is it related to the spatial language that parents use when interacting with children? We longitudinally tracked the development of spatial-language production in children between the ages of 14 and 46 months in a diverse sample of 58 parent-child dyads interacting in their homes. Boys produced and heard more of these three categories of spatial words, which we call "what" spatial types (i.e., unique "what" spatial words), but not more of all other word types, than girls. Mediation analysis revealed that sex differences in children's spatial talk at 34 to 46 months of age were fully mediated by parents' earlier spatial-language use, when children were 14 to 26 months old, time points at which there was no sex difference in children's spatial-language use.
E. Garcia; C.L. Tague; J. Choate
2013-01-01
Most spatially explicit hydrologic models require estimates of air temperature patterns. For these models, empirical relationships between elevation and air temperature are frequently used to upscale point measurements or downscale regional and global climate model estimates of air temperature. Mountainous environments are particularly sensitive to air temperature...
USDA-ARS?s Scientific Manuscript database
The Greater Sage-grouse (Centrocercus urophasianus; hereafter Sage-grouse), a candidate species for listing under the Endangered Species Act, has experienced population declines across its range in the sagebrush (Artemisia spp.) steppe ecosystems of western North America. One factor contributing to...
USDA-ARS?s Scientific Manuscript database
The greater sage-grouse (Centrocercus urophasianus; hereafter, sage-grouse), a candidate species for listing under the Endangered Species Act, has experienced population declines across its range in the sagebrush (Artemisia spp.) steppe ecosystems of western North America. One factor contributing to...
Evaluating spatially explicit burn probabilities for strategic fire management planning
C. Miller; M.-A. Parisien; A. A. Ager; M. A. Finney
2008-01-01
Spatially explicit information on the probability of burning is necessary for virtually all strategic fire and fuels management planning activities, including conducting wildland fire risk assessments, optimizing fuel treatments, and prevention planning. Predictive models providing a reliable estimate of the annual likelihood of fire at each point on the landscape have...
USDA-ARS?s Scientific Manuscript database
We conduct a novel comprehensive investigation that seeks to prove the connection between spatial and time scales in surface soil moisture (SM) within the satellite footprint (~50 km). Modeled and measured point series at Yanco and Little Washita in situ networks are first decomposed into anomalies ...
Grell, Kathrine; Diggle, Peter J; Frederiksen, Kirsten; Schüz, Joachim; Cardis, Elisabeth; Andersen, Per K
2015-10-15
We study methods for how to include the spatial distribution of tumours when investigating the relation between brain tumours and the exposure from radio frequency electromagnetic fields caused by mobile phone use. Our suggested point process model is adapted from studies investigating spatial aggregation of a disease around a source of potential hazard in environmental epidemiology, where now the source is the preferred ear of each phone user. In this context, the spatial distribution is a distribution over a sample of patients rather than over multiple disease cases within one geographical area. We show how the distance relation between tumour and phone can be modelled nonparametrically and, with various parametric functions, how covariates can be included in the model and how to test for the effect of distance. To illustrate the models, we apply them to a subset of the data from the Interphone Study, a large multinational case-control study on the association between brain tumours and mobile phone use. Copyright © 2015 John Wiley & Sons, Ltd.
Area-to-point regression kriging for pan-sharpening
NASA Astrophysics Data System (ADS)
Wang, Qunming; Shi, Wenzhong; Atkinson, Peter M.
2016-04-01
Pan-sharpening is a technique to combine the fine spatial resolution panchromatic (PAN) band with the coarse spatial resolution multispectral bands of the same satellite to create a fine spatial resolution multispectral image. In this paper, area-to-point regression kriging (ATPRK) is proposed for pan-sharpening. ATPRK considers the PAN band as the covariate. Moreover, ATPRK is extended with a local approach, called adaptive ATPRK (AATPRK), which fits a regression model using a local, non-stationary scheme such that the regression coefficients change across the image. The two geostatistical approaches, ATPRK and AATPRK, were compared to the 13 state-of-the-art pan-sharpening approaches summarized in Vivone et al. (2015) in experiments on three separate datasets. ATPRK and AATPRK produced more accurate pan-sharpened images than the 13 benchmark algorithms in all three experiments. Unlike the benchmark algorithms, the two geostatistical solutions precisely preserved the spectral properties of the original coarse data. Furthermore, ATPRK can be enhanced by a local scheme in AATRPK, in cases where the residuals from a global regression model are such that their spatial character varies locally.
Chandra ACIS Sub-pixel Resolution
NASA Astrophysics Data System (ADS)
Kim, Dong-Woo; Anderson, C. S.; Mossman, A. E.; Allen, G. E.; Fabbiano, G.; Glotfelty, K. J.; Karovska, M.; Kashyap, V. L.; McDowell, J. C.
2011-05-01
We investigate how to achieve the best possible ACIS spatial resolution by binning in ACIS sub-pixel and applying an event repositioning algorithm after removing pixel-randomization from the pipeline data. We quantitatively assess the improvement in spatial resolution by (1) measuring point source sizes and (2) detecting faint point sources. The size of a bright (but no pile-up), on-axis point source can be reduced by about 20-30%. With the improve resolution, we detect 20% more faint sources when embedded on the extended, diffuse emission in a crowded field. We further discuss the false source rate of about 10% among the newly detected sources, using a few ultra-deep observations. We also find that the new algorithm does not introduce a grid structure by an aliasing effect for dithered observations and does not worsen the positional accuracy
Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology.
Renner, Ian W; Warton, David I
2013-03-01
Modeling the spatial distribution of a species is a fundamental problem in ecology. A number of modeling methods have been developed, an extremely popular one being MAXENT, a maximum entropy modeling approach. In this article, we show that MAXENT is equivalent to a Poisson regression model and hence is related to a Poisson point process model, differing only in the intercept term, which is scale-dependent in MAXENT. We illustrate a number of improvements to MAXENT that follow from these relations. In particular, a point process model approach facilitates methods for choosing the appropriate spatial resolution, assessing model adequacy, and choosing the LASSO penalty parameter, all currently unavailable to MAXENT. The equivalence result represents a significant step in the unification of the species distribution modeling literature. Copyright © 2013, The International Biometric Society.
Removing the Impact of Correlated PSF Uncertainties in Weak Lensing
NASA Astrophysics Data System (ADS)
Lu, Tianhuan; Zhang, Jun; Dong, Fuyu; Li, Yingke; Liu, Dezi; Fu, Liping; Li, Guoliang; Fan, Zuhui
2018-05-01
Accurate reconstruction of the spatial distributions of the point-spread function (PSF) is crucial for high precision cosmic shear measurements. Nevertheless, current methods are not good at recovering the PSF fluctuations of high spatial frequencies. In general, the residual PSF fluctuations are spatially correlated, and therefore can significantly contaminate the correlation functions of the weak lensing signals. We propose a method to correct for this contamination statistically, without any assumptions on the PSF and galaxy morphologies or their spatial distribution. We demonstrate our idea with the data from the W2 field of CFHTLenS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotasidis, Fotis A., E-mail: Fotis.Kotasidis@unige.ch; Zaidi, Habib; Geneva Neuroscience Centre, Geneva University, CH-1205 Geneva
2014-06-15
Purpose: The Ingenuity time-of-flight (TF) PET/MR is a recently developed hybrid scanner combining the molecular imaging capabilities of PET with the excellent soft tissue contrast of MRI. It is becoming common practice to characterize the system's point spread function (PSF) and understand its variation under spatial transformations to guide clinical studies and potentially use it within resolution recovery image reconstruction algorithms. Furthermore, due to the system's utilization of overlapping and spherical symmetric Kaiser-Bessel basis functions during image reconstruction, its image space PSF and reconstructed spatial resolution could be affected by the selection of the basis function parameters. Hence, a detailedmore » investigation into the multidimensional basis function parameter space is needed to evaluate the impact of these parameters on spatial resolution. Methods: Using an array of 12 × 7 printed point sources, along with a custom made phantom, and with the MR magnet on, the system's spatially variant image-based PSF was characterized in detail. Moreover, basis function parameters were systematically varied during reconstruction (list-mode TF OSEM) to evaluate their impact on the reconstructed resolution and the image space PSF. Following the spatial resolution optimization, phantom, and clinical studies were subsequently reconstructed using representative basis function parameters. Results: Based on the analysis and under standard basis function parameters, the axial and tangential components of the PSF were found to be almost invariant under spatial transformations (∼4 mm) while the radial component varied modestly from 4 to 6.7 mm. Using a systematic investigation into the basis function parameter space, the spatial resolution was found to degrade for basis functions with a large radius and small shape parameter. However, it was found that optimizing the spatial resolution in the reconstructed PET images, while having a good basis function superposition and keeping the image representation error to a minimum, is feasible, with the parameter combination range depending upon the scanner's intrinsic resolution characteristics. Conclusions: Using the printed point source array as a MR compatible methodology for experimentally measuring the scanner's PSF, the system's spatially variant resolution properties were successfully evaluated in image space. Overall the PET subsystem exhibits excellent resolution characteristics mainly due to the fact that the raw data are not under-sampled/rebinned, enabling the spatial resolution to be dictated by the scanner's intrinsic resolution and the image reconstruction parameters. Due to the impact of these parameters on the resolution properties of the reconstructed images, the image space PSF varies both under spatial transformations and due to basis function parameter selection. Nonetheless, for a range of basis function parameters, the image space PSF remains unaffected, with the range depending on the scanner's intrinsic resolution properties.« less
Dual-channel near-field control by polarizations using isotropic and inhomogeneous metasurface.
Wan, Xiang; Cai, Ben Geng; Li, Yun Bo; Cui, Tie Jun
2015-11-03
We propose a method for dual-channel near-field manipulations by designing isotropic but inhomogeneous metasurfaces. As example, we present a dual-channel near-field focusing metasurface device. When the device is driven by surface waves from different channels on the metasurface, the near fields will be focused at the same spatial point with different polarizations. Conversely, if a linearly polarized source is radiated at the spatial focal point, different channels will be evoked on the metasurface controlled by polarization. We fabricated and measured the metasurface device in the microwave frequency. Well agreements between the simulation and measurement results are observed. The proposed method exhibits great flexibility in controlling the surface waves and spatial waves simultaneously. It is expected that the proposed method and dual-channel device will facilitate the manipulation of near electromagnetic or optical waves in different frequency regimes.
NASA Astrophysics Data System (ADS)
Wang, Zhenghua; Tian, Zhihui
2018-01-01
In recent years, the problem of air pollution becomes more and more serious. Based on the geographic and seasonal climatic characteristics of Xuchang City, this paper studies the temporal and spatial distribution characteristics of air quality index. The results show that: from the time point of view, air quality index shows seasonal difference. Air quality index is highest in winter and is lowest in summer. From the space point of view, there are differences between the north and the south to a certain extent. Changge City, Yuzhou city and central Xuchang county is higher than the southeast of Xiangcheng county and Yanling county. The spatial and temporal variation characteristics of air quality index in Xuchang are influenced by natural factors and human activities, and the economic development and population are the important factors affecting the urban air quality.
NASA Astrophysics Data System (ADS)
Upadhyay, Ranjit Kumar; Tiwari, S. K.; Roy, Parimita
2015-06-01
In this paper, an attempt has been made to study the spatial and temporal dynamical interactions among the species of wetland ecosystem through a mathematical model. The model represents the population dynamics of phytoplankton, zooplankton and fish species found in Chilika lake, Odisha, India. Nonlinear stability analysis of both the temporal and spatial models has been carried out. Maximum sustainable yield and optimal harvesting policy have been studied for a nonspatial model system. Numerical simulation has been performed to figure out the parameters responsible for the complex dynamics of the wetland system. Significant outcomes of our numerical findings and their interpretations from an ecological point of view are provided in this paper. Numerical simulation of spatial model exhibits some interesting and beautiful patterns. We have also pointed out the parameters that are responsible for the good health of wetland ecosystem.
Spatial separation and entanglement of identical particles
NASA Astrophysics Data System (ADS)
Cunden, Fabio Deelan; di Martino, Sara; Facchi, Paolo; Florio, Giuseppe
2014-04-01
We reconsider the effect of indistinguishability on the reduced density operator of the internal degrees of freedom (tracing out the spatial degrees of freedom) for a quantum system composed of identical particles located in different spatial regions. We explicitly show that if the spin measurements are performed in disjoint spatial regions then there are no constraints on the structure of the reduced state of the system. This implies that the statistics of identical particles has no role from the point of view of separability and entanglement when the measurements are spatially separated. We extend the treatment to the case of n particles and show the connection with some recent criteria for separability based on subalgebras of observables.
The limits of boundaries: unpacking localization and cognitive mapping relative to a boundary.
Zhou, Ruojing; Mou, Weimin
2018-05-01
Previous research (Zhou, Mou, Journal of Experimental Psychology: Learning, Memory and Cognition 42(8):1316-1323, 2016) showed that learning individual locations relative to a single landmark, compared to learning relative to a boundary, led to more accurate inferences of inter-object spatial relations (cognitive mapping of multiple locations). Following our past findings, the current study investigated whether the larger number of reference points provided by a homogeneous circular boundary, as well as less accessible knowledge of direct spatial relations among the multiple reference points, would lead to less effective cognitive mapping relative to the boundary. Accordingly, we manipulated (a) the number of primary reference points (one segment drawn from a circular boundary, four such segments, vs. the complete boundary) available when participants were localizing four objects sequentially (Experiment 1) and (b) the extendedness of each of the four segments (Experiment 2). The results showed that cognitive mapping was the least accurate in the whole boundary condition. However, expanding each of the four segments did not affect the accuracy of cognitive mapping until the four were connected to form a continuous boundary. These findings indicate that when encoding locations relative to a homogeneous boundary, participants segmented the boundary into differentiated pieces and subsequently chose the most informative local part (i.e., the segment closest in distance to one location) as the primary reference point for a particular location. During this process, direct spatial relations among the reference points were likely not attended to. These findings suggest that people might encode and represent bounded space in a fragmented fashion when localizing within a homogeneous boundary.
Cross-Sectional Transport Imaging in a Multijunction Solar Cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haegel, Nancy M.; Ke, Chi-Wen; Taha, Hesham
2015-06-14
Combining highly localized electron-beam excitation at a point with the spatial resolution capability of optical near-field imaging, we have imaged carrier transport in a cross-sectioned multijunction (GaInP/GaInAs/Ge) solar cell. We image energy transport associated with carrier diffusion throughout the full width of the middle (GaInAs) cell and luminescent coupling from point excitation in the top cell GaInP to the middle cell. Supporting cathodoluminescence and near-field photoluminescence measurements demonstrate excitation-dependent Fermi level splitting effects that influence cross-sectioned spectroscopy results as well as transport limitations on the spatial resolution of cross-sectional measurements.
An algorithm for spatial heirarchy clustering
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Velasco, F. R. D.
1981-01-01
A method for utilizing both spectral and spatial redundancy in compacting and preclassifying images is presented. In multispectral satellite images, a high correlation exists between neighboring image points which tend to occupy dense and restricted regions of the feature space. The image is divided into windows of the same size where the clustering is made. The classes obtained in several neighboring windows are clustered, and then again successively clustered until only one region corresponding to the whole image is obtained. By employing this algorithm only a few points are considered in each clustering, thus reducing computational effort. The method is illustrated as applied to LANDSAT images.
Measurement of gamma quantum interaction point in plastic scintillator with WLS strips
NASA Astrophysics Data System (ADS)
Smyrski, J.; Alfs, D.; Bednarski, T.; Białas, P.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gupta-Sharma, N.; Gorgol, M.; Jasińska, B.; Kajetanowicz, M.; Kamińska, D.; Korcyl, G.; Kowalski, P.; Krzemień, W.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz.; Pawlik-Niedźwiecka, M.; Raczyński, L.; Rudy, Z.; Salabura, P.; Silarski, M.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Wojnarska, J.; Zgardzińska, B.; Zieliński, M.; Moskal, P.
2017-04-01
The feasibility of measuring the aśxial coordinate of a gamma quantum interaction point in a plastic scintillator bar via the detection of scintillation photons escaping from the scintillator with an array of wavelength-shifting (WLS) strips is demonstrated. Using a test set-up comprising a BC-420 scintillator bar and an array of sixteen BC-482A WLS strips we achieved a spatial resolution of 5 mm (σ) for annihilation photons from a 22Na isotope. The studied method can be used to improve the spatial resolution of a plastic-scintillator-based PET scanner which is being developed by the J-PET collaboration.
Environmental monitoring of Galway Bay: fusing data from remote and in-situ sources
NASA Astrophysics Data System (ADS)
O'Connor, Edel; Hayes, Jer; Smeaton, Alan F.; O'Connor, Noel E.; Diamond, Dermot
2009-09-01
Changes in sea surface temperature can be used as an indicator of water quality. In-situ sensors are being used for continuous autonomous monitoring. However these sensors have limited spatial resolution as they are in effect single point sensors. Satellite remote sensing can be used to provide better spatial coverage at good temporal scales. However in-situ sensors have a richer temporal scale for a particular point of interest. Work carried out in Galway Bay has combined data from multiple satellite sources and in-situ sensors and investigated the benefits and drawbacks of using multiple sensing modalities for monitoring a marine location.
Implementing system simulation of C3 systems using autonomous objects
NASA Technical Reports Server (NTRS)
Rogers, Ralph V.
1987-01-01
The basis of all conflict recognition in simulation is a common frame of reference. Synchronous discrete-event simulation relies on the fixed points in time as the basic frame of reference. Asynchronous discrete-event simulation relies on fixed-points in the model space as the basic frame of reference. Neither approach provides sufficient support for autonomous objects. The use of a spatial template as a frame of reference is proposed to address these insufficiencies. The concept of a spatial template is defined and an implementation approach offered. Discussed are the uses of this approach to analyze the integration of sensor data associated with Command, Control, and Communication systems.
Assessing the mental frame syncing in the elderly: a virtual reality protocol.
Serino, Silvia; Cipresso, Pietro; Gaggioli, Andrea; Riva, Giuseppe
2014-01-01
Decline in spatial memory in the elderly is often underestimated, and it is crucial to fully investigate the cognitive underpinnings of early spatial impairment. A virtual reality-based procedure was developed to assess deficit in the "mental frame syncing", namely the cognitive ability that allows an effective orientation by synchronizing the allocentric view-point independent representation with the allocentric view-point dependent representation. A pilot study was carried out to evaluate abilities in the mental frame syncing in a sample of 16 elderly participants. Preliminary results indicated that the general cognitive functioning was associated with the ability in the synchronization between these two allocentric references frames.
A soft-computing methodology for noninvasive time-spatial temperature estimation.
Teixeira, César A; Ruano, Maria Graça; Ruano, António E; Pereira, Wagner C A
2008-02-01
The safe and effective application of thermal therapies is restricted due to lack of reliable noninvasive temperature estimators. In this paper, the temporal echo-shifts of backscattered ultrasound signals, collected from a gel-based phantom, were tracked and assigned with the past temperature values as radial basis functions neural networks input information. The phantom was heated using a piston-like therapeutic ultrasound transducer. The neural models were assigned to estimate the temperature at different intensities and points arranged across the therapeutic transducer radial line (60 mm apart from the transducer face). Model inputs, as well as the number of neurons were selected using the multiobjective genetic algorithm (MOGA). The best attained models present, in average, a maximum absolute error less than 0.5 degrees C, which is pointed as the borderline between a reliable and an unreliable estimator in hyperthermia/diathermia. In order to test the spatial generalization capacity, the best models were tested using spatial points not yet assessed, and some of them presented a maximum absolute error inferior to 0.5 degrees C, being "elected" as the best models. It should be also stressed that these best models present implementational low-complexity, as desired for real-time applications.
Dan, Haruka; Azuma, Teruaki; Hayakawa, Fumiyo; Kohyama, Kaoru
2005-05-01
This study was designed to examine human subjects' ability to discriminate between spatially different bite pressures. We measured actual bite pressure distribution when subjects simultaneously bit two silicone rubber samples with different hardnesses using their right and left incisors. They were instructed to compare the hardness of these two rubber samples and indicate which was harder (right or left). The correct-answer rates were statistically significant at P < 0.05 for all pairs of different right and left silicone rubber hardnesses. Simultaneous bite measurements using a multiple-point sheet sensor demonstrated that the bite force, active pressure and maximum pressure point were greater for the harder silicone rubber sample. The difference between the left and right was statistically significant (P < 0.05) for all pairs with different silicone rubber hardnesses. We demonstrated for the first time that subjects could perceive and discriminate between spatially different bite pressures during a single bite with incisors. Differences of the bite force, pressure and the maximum pressure point between the right and left silicone samples should be sensory cues for spatial hardness discrimination.
Research on early-warning index of the spatial temperature field in concrete dams.
Yang, Guang; Gu, Chongshi; Bao, Tengfei; Cui, Zhenming; Kan, Kan
2016-01-01
Warning indicators of the dam body's temperature are required for the real-time monitoring of the service conditions of concrete dams to ensure safety and normal operations. Warnings theories are traditionally targeted at a single point which have limitations, and the scientific warning theories on global behavior of the temperature field are non-existent. In this paper, first, in 3D space, the behavior of temperature field has regional dissimilarity. Through the Ward spatial clustering method, the temperature field was divided into regions. Second, the degree of order and degree of disorder of the temperature monitoring points were defined by the probability method. Third, the weight values of monitoring points of each regions were explored via projection pursuit. Forth, a temperature entropy expression that can describe degree of order of the spatial temperature field in concrete dams was established. Fifth, the early-warning index of temperature entropy was set up according to the calculated sequential value of temperature entropy. Finally, project cases verified the feasibility of the proposed theories. The early-warning index of temperature entropy is conducive to the improvement of early-warning ability and safety management levels during the operation of high concrete dams.
A fast point-cloud computing method based on spatial symmetry of Fresnel field
NASA Astrophysics Data System (ADS)
Wang, Xiangxiang; Zhang, Kai; Shen, Chuan; Zhu, Wenliang; Wei, Sui
2017-10-01
Aiming at the great challenge for Computer Generated Hologram (CGH) duo to the production of high spatial-bandwidth product (SBP) is required in the real-time holographic video display systems. The paper is based on point-cloud method and it takes advantage of the propagating reversibility of Fresnel diffraction in the propagating direction and the fringe pattern of a point source, known as Gabor zone plate has spatial symmetry, so it can be used as a basis for fast calculation of diffraction field in CGH. A fast Fresnel CGH method based on the novel look-up table (N-LUT) method is proposed, the principle fringe patterns (PFPs) at the virtual plane is pre-calculated by the acceleration algorithm and be stored. Secondly, the Fresnel diffraction fringe pattern at dummy plane can be obtained. Finally, the Fresnel propagation from dummy plan to hologram plane. The simulation experiments and optical experiments based on Liquid Crystal On Silicon (LCOS) is setup to demonstrate the validity of the proposed method under the premise of ensuring the quality of 3D reconstruction the method proposed in the paper can be applied to shorten the computational time and improve computational efficiency.
Three-dimensional distribution of cortical synapses: a replicated point pattern-based analysis
Anton-Sanchez, Laura; Bielza, Concha; Merchán-Pérez, Angel; Rodríguez, José-Rodrigo; DeFelipe, Javier; Larrañaga, Pedro
2014-01-01
The biggest problem when analyzing the brain is that its synaptic connections are extremely complex. Generally, the billions of neurons making up the brain exchange information through two types of highly specialized structures: chemical synapses (the vast majority) and so-called gap junctions (a substrate of one class of electrical synapse). Here we are interested in exploring the three-dimensional spatial distribution of chemical synapses in the cerebral cortex. Recent research has showed that the three-dimensional spatial distribution of synapses in layer III of the neocortex can be modeled by a random sequential adsorption (RSA) point process, i.e., synapses are distributed in space almost randomly, with the only constraint that they cannot overlap. In this study we hypothesize that RSA processes can also explain the distribution of synapses in all cortical layers. We also investigate whether there are differences in both the synaptic density and spatial distribution of synapses between layers. Using combined focused ion beam milling and scanning electron microscopy (FIB/SEM), we obtained three-dimensional samples from the six layers of the rat somatosensory cortex and identified and reconstructed the synaptic junctions. A total volume of tissue of approximately 4500μm3 and around 4000 synapses from three different animals were analyzed. Different samples, layers and/or animals were aggregated and compared using RSA replicated spatial point processes. The results showed no significant differences in the synaptic distribution across the different rats used in the study. We found that RSA processes described the spatial distribution of synapses in all samples of each layer. We also found that the synaptic distribution in layers II to VI conforms to a common underlying RSA process with different densities per layer. Interestingly, the results showed that synapses in layer I had a slightly different spatial distribution from the other layers. PMID:25206325
NASA Astrophysics Data System (ADS)
Park, Byeongjin; Sohn, Hoon
2017-07-01
Laser ultrasonic scanning, especially full-field wave propagation imaging, is attractive for damage visualization thanks to its noncontact nature, sensitivity to local damage, and high spatial resolution. However, its practicality is limited because scanning at a high spatial resolution demands a prohibitively long scanning time. Inspired by binary search, an accelerated damage visualization technique is developed to visualize damage with a reduced scanning time. The pitch-catch distance between the excitation point and the sensing point is also fixed during scanning to maintain a high signal-to-noise ratio (SNR) of measured ultrasonic responses. The approximate damage boundary is identified by examining the interactions between ultrasonic waves and damage observed at the scanning points that are sparsely selected by a binary search algorithm. Here, a time-domain laser ultrasonic response is transformed into a spatial ultrasonic domain response using a basis pursuit approach so that the interactions between ultrasonic waves and damage, such as reflections and transmissions, can be better identified in the spatial ultrasonic domain. Then, the area inside the identified damage boundary is visualized as damage. The performance of the proposed damage visualization technique is validated excusing a numerical simulation performed on an aluminum plate with a notch and experiments performed on an aluminum plate with a crack and a wind turbine blade with delamination. The proposed damage visualization technique accelerates the damage visualization process in three aspects: (1) the number of measurements that is necessary for damage visualization is dramatically reduced by a binary search algorithm; (2) the number of averaging that is necessary to achieve a high SNR is reduced by maintaining the wave propagation distance short; and (3) with the proposed technique, the same damage can be identified with a lower spatial resolution than the spatial resolution required by full-field wave propagation imaging.
Three-dimensional distribution of cortical synapses: a replicated point pattern-based analysis.
Anton-Sanchez, Laura; Bielza, Concha; Merchán-Pérez, Angel; Rodríguez, José-Rodrigo; DeFelipe, Javier; Larrañaga, Pedro
2014-01-01
The biggest problem when analyzing the brain is that its synaptic connections are extremely complex. Generally, the billions of neurons making up the brain exchange information through two types of highly specialized structures: chemical synapses (the vast majority) and so-called gap junctions (a substrate of one class of electrical synapse). Here we are interested in exploring the three-dimensional spatial distribution of chemical synapses in the cerebral cortex. Recent research has showed that the three-dimensional spatial distribution of synapses in layer III of the neocortex can be modeled by a random sequential adsorption (RSA) point process, i.e., synapses are distributed in space almost randomly, with the only constraint that they cannot overlap. In this study we hypothesize that RSA processes can also explain the distribution of synapses in all cortical layers. We also investigate whether there are differences in both the synaptic density and spatial distribution of synapses between layers. Using combined focused ion beam milling and scanning electron microscopy (FIB/SEM), we obtained three-dimensional samples from the six layers of the rat somatosensory cortex and identified and reconstructed the synaptic junctions. A total volume of tissue of approximately 4500μm(3) and around 4000 synapses from three different animals were analyzed. Different samples, layers and/or animals were aggregated and compared using RSA replicated spatial point processes. The results showed no significant differences in the synaptic distribution across the different rats used in the study. We found that RSA processes described the spatial distribution of synapses in all samples of each layer. We also found that the synaptic distribution in layers II to VI conforms to a common underlying RSA process with different densities per layer. Interestingly, the results showed that synapses in layer I had a slightly different spatial distribution from the other layers.
Line and word bisection in right-brain-damaged patients with left spatial neglect.
Veronelli, Laura; Vallar, Giuseppe; Marinelli, Chiara V; Primativo, Silvia; Arduino, Lisa S
2014-01-01
Right-brain-damaged patients with left unilateral spatial neglect typically set the mid-point of horizontal lines to the right of the objective center. By contrast, healthy participants exhibit a reversed bias (pseudoneglect). The same effect has been described also when bisecting orthographic strings. In particular, for this latter kind of stimulus, some recent studies have shown that visuo-perceptual characteristics, like stimulus length, may contribute to both the magnitude and the direction bias of the bisection performance (Arduino et al. in Neuropsychologia 48:2140-2146, 2010). Furthermore, word stress was shown to modulate reading performances in both healthy participants, and patients with left spatial neglect and neglect dyslexia (Cubelli and Beschin in Brain Lang 95:319-326, 2005; Rusconi et al. in Neuropsychology 18:135-140, 2004). In Experiment I, 22 right-brain-damaged patients (11 with left visuo-spatial neglect) and 11 matched neurologically unimpaired control participants were asked to set the subjective mid-point of word letter strings, and of lines of comparable length. Most patients exhibited an overall disproportionate rightward bias, sensitive to stimulus length, and similar for words and lines. Importantly, in individual patients, biases differed according to stimulus type (words vs. lines), indicating that at least partly different mechanisms may be involved. In Experiment II, the putative effects on the bisection bias of ortho-phonological information (i.e., word stress endings), arising from the non-neglected right hand side of the stimulus were investigated. The orthographic cue induced a rightward shift of the perceived mid-point in both patients and controls, with short words stressed on the antepenultimate final sequence inducing a smaller rightward deviation with respect to short words stressed on the penultimate final sequence. In conclusion, partly different mechanisms, including both visuo-spatial and lexical factors, may support line and word bisection performance of right-brain-damaged patients with left spatial neglect, and healthy participants.
Anomalous dispersion in correlated porous media: a coupled continuous time random walk approach
NASA Astrophysics Data System (ADS)
Comolli, Alessandro; Dentz, Marco
2017-09-01
We study the causes of anomalous dispersion in Darcy-scale porous media characterized by spatially heterogeneous hydraulic properties. Spatial variability in hydraulic conductivity leads to spatial variability in the flow properties through Darcy's law and thus impacts on solute and particle transport. We consider purely advective transport in heterogeneity scenarios characterized by broad distributions of heterogeneity length scales and point values. Particle transport is characterized in terms of the stochastic properties of equidistantly sampled Lagrangian velocities, which are determined by the flow and conductivity statistics. The persistence length scales of flow and transport velocities are imprinted in the spatial disorder and reflect the distribution of heterogeneity length scales. Particle transitions over the velocity length scales are kinematically coupled with the transition time through velocity. We show that the average particle motion follows a coupled continuous time random walk (CTRW), which is fully parameterized by the distribution of flow velocities and the medium geometry in terms of the heterogeneity length scales. The coupled CTRW provides a systematic framework for the investigation of the origins of anomalous dispersion in terms of heterogeneity correlation and the distribution of conductivity point values. We derive analytical expressions for the asymptotic scaling of the moments of the spatial particle distribution and first arrival time distribution (FATD), and perform numerical particle tracking simulations of the coupled CTRW to capture the full average transport behavior. Broad distributions of heterogeneity point values and lengths scales may lead to very similar dispersion behaviors in terms of the spatial variance. Their mechanisms, however are very different, which manifests in the distributions of particle positions and arrival times, which plays a central role for the prediction of the fate of dissolved substances in heterogeneous natural and engineered porous materials. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.
Can satellite-based monitoring techniques be used to quantify volcanic CO2 emissions?
NASA Astrophysics Data System (ADS)
Schwandner, Florian M.; Carn, Simon A.; Kuze, Akihiko; Kataoka, Fumie; Shiomi, Kei; Goto, Naoki; Popp, Christoph; Ajiro, Masataka; Suto, Hiroshi; Takeda, Toru; Kanekon, Sayaka; Sealing, Christine; Flower, Verity
2014-05-01
Since 2010, we investigate and improve possible methods to regularly target volcanic centers from space in order to detect volcanic carbon dioxide (CO2) point source anomalies, using the Japanese Greenhouse gas Observing SATellite (GOSAT). Our long-term goals are: (a) better spatial and temporal coverage of volcano monitoring techniques; (b) improvement of the currently highly uncertain global CO2 emission inventory for volcanoes, and (c) use of volcanic CO2 emissions for high altitude, strong point source emission and dispersion studies in atmospheric science. The difficulties posed by strong relief, orogenic clouds, and aerosols are minimized by a small field of view, enhanced spectral resolving power, by employing repeat target mode observation strategies, and by comparison to continuous ground based sensor network validation data. GOSAT is a single-instrument Earth observing greenhouse gas mission aboard JAXA's IBUKI satellite in sun-synchronous polar orbit. GOSAT's Fourier-Transform Spectrometer (TANSO-FTS) has been producing total column XCO2 data since January 2009, at a repeat cycle of 3 days, offering great opportunities for temporal monitoring of point sources. GOSAT's 10 km field of view can spatially integrate entire volcanic edifices within one 'shot' in precise target mode. While it doesn't have any spatial scanning or mapping capability, it does have strong spectral resolving power and agile pointing capability to focus on several targets of interest per orbit. Sufficient uncertainty reduction is achieved through comprehensive in-flight vicarious calibration, in close collaboration between NASA and JAXA. Challenges with the on-board pointing mirror system have been compensated for employing custom observation planning strategies, including repeat sacrificial upstream reference points to control pointing mirror motion, empirical individualized target offset compensation, observation pattern simulations to minimize view angle azimuth. Since summer 2010 we have conducted repeated target mode observations of now almost 40 persistently active global volcanoes and other point sources, including Etna (Italy), Mayon (Philippines), Hawaii (USA), Popocatepetl (Mexico), and Ambrym (Vanuatu), using GOSAT FTS SWIR data. In this presentation we will summarize results from over three years of measurements and progress toward understanding detectability with this method. In emerging collaboration with the Deep Carbon Observatory's DECADE program, the World Organization of Volcano Observatories (WOVO) global database of volcanic unrest (WOVOdat), and country specific observatories and agencies we see a growing potential for ground based validation synergies. Complementing the ongoing GOSAT mission, NASA is on schedule to launch its OCO-2 satellite in July 2014, which will provide higher spatial but lower temporal resolution. Further orbiting and geostationary satellite sensors are in planning at JAXA, NASA, and ESA.
Polansky, Leo; Kilian, Werner; Wittemyer, George
2015-01-01
Spatial memory facilitates resource acquisition where resources are patchy, but how it influences movement behaviour of wide-ranging species remains to be resolved. We examined African elephant spatial memory reflected in movement decisions regarding access to perennial waterholes. State–space models of movement data revealed a rapid, highly directional movement behaviour almost exclusively associated with visiting perennial water. Behavioural change point (BCP) analyses demonstrated that these goal-oriented movements were initiated on average 4.59 km, and up to 49.97 km, from the visited waterhole, with the closest waterhole accessed 90% of the time. Distances of decision points increased when switching to different waterholes, during the dry season, or for female groups relative to males, while selection of the closest waterhole decreased when switching. Overall, our analyses indicated detailed spatial knowledge over large scales, enabling elephants to minimize travel distance through highly directional movement when accessing water. We discuss the likely cognitive and socioecological mechanisms driving these spatially precise movements that are most consistent with our findings. By applying modern analytic techniques to high-resolution movement data, this study illustrates emerging approaches for studying how cognition structures animal movement behaviour in different ecological and social contexts. PMID:25808888
Fan, Zhencheng; Weng, Yitong; Chen, Guowen; Liao, Hongen
2017-07-01
Three-dimensional (3D) visualization of preoperative and intraoperative medical information becomes more and more important in minimally invasive surgery. We develop a 3D interactive surgical visualization system using mobile spatial information acquisition and autostereoscopic display for surgeons to observe surgical target intuitively. The spatial information of regions of interest (ROIs) is captured by the mobile device and transferred to a server for further image processing. Triangular patches of intraoperative data with texture are calculated with a dimension-reduced triangulation algorithm and a projection-weighted mapping algorithm. A point cloud selection-based warm-start iterative closest point (ICP) algorithm is also developed for fusion of the reconstructed 3D intraoperative image and the preoperative image. The fusion images are rendered for 3D autostereoscopic display using integral videography (IV) technology. Moreover, 3D visualization of medical image corresponding to observer's viewing direction is updated automatically using mutual information registration method. Experimental results show that the spatial position error between the IV-based 3D autostereoscopic fusion image and the actual object was 0.38±0.92mm (n=5). The system can be utilized in telemedicine, operating education, surgical planning, navigation, etc. to acquire spatial information conveniently and display surgical information intuitively. Copyright © 2017 Elsevier Inc. All rights reserved.
Audio Spatial Representation Around the Body
Aggius-Vella, Elena; Campus, Claudio; Finocchietti, Sara; Gori, Monica
2017-01-01
Studies have found that portions of space around our body are differently coded by our brain. Numerous works have investigated visual and auditory spatial representation, focusing mostly on the spatial representation of stimuli presented at head level, especially in the frontal space. Only few studies have investigated spatial representation around the entire body and its relationship with motor activity. Moreover, it is still not clear whether the space surrounding us is represented as a unitary dimension or whether it is split up into different portions, differently shaped by our senses and motor activity. To clarify these points, we investigated audio localization of dynamic and static sounds at different body levels. In order to understand the role of a motor action in auditory space representation, we asked subjects to localize sounds by pointing with the hand or the foot, or by giving a verbal answer. We found that the audio sound localization was different depending on the body part considered. Moreover, a different pattern of response was observed when subjects were asked to make actions with respect to the verbal responses. These results suggest that the audio space around our body is split in various spatial portions, which are perceived differently: front, back, around chest, and around foot, suggesting that these four areas could be differently modulated by our senses and our actions. PMID:29249999
Generalized estimators of avian abundance from count survey data
Royle, J. Andrew
2004-01-01
I consider modeling avian abundance from spatially referenced bird count data collected according to common protocols such as capture?recapture, multiple observer, removal sampling and simple point counts. Small sample sizes and large numbers of parameters have motivated many analyses that disregard the spatial indexing of the data, and thus do not provide an adequate treatment of spatial structure. I describe a general framework for modeling spatially replicated data that regards local abundance as a random process, motivated by the view that the set of spatially referenced local populations (at the sample locations) constitute a metapopulation. Under this view, attention can be focused on developing a model for the variation in local abundance independent of the sampling protocol being considered. The metapopulation model structure, when combined with the data generating model, define a simple hierarchical model that can be analyzed using conventional methods. The proposed modeling framework is completely general in the sense that broad classes of metapopulation models may be considered, site level covariates on detection and abundance may be considered, and estimates of abundance and related quantities may be obtained for sample locations, groups of locations, unsampled locations. Two brief examples are given, the first involving simple point counts, and the second based on temporary removal counts. Extension of these models to open systems is briefly discussed.
NASA Astrophysics Data System (ADS)
Lakshmi Madhavan, Bomidi; Deneke, Hartwig; Witthuhn, Jonas; Macke, Andreas
2017-03-01
The time series of global radiation observed by a dense network of 99 autonomous pyranometers during the HOPE campaign around Jülich, Germany, are investigated with a multiresolution analysis based on the maximum overlap discrete wavelet transform and the Haar wavelet. For different sky conditions, typical wavelet power spectra are calculated to quantify the timescale dependence of variability in global transmittance. Distinctly higher variability is observed at all frequencies in the power spectra of global transmittance under broken-cloud conditions compared to clear, cirrus, or overcast skies. The spatial autocorrelation function including its frequency dependence is determined to quantify the degree of similarity of two time series measurements as a function of their spatial separation. Distances ranging from 100 m to 10 km are considered, and a rapid decrease of the autocorrelation function is found with increasing frequency and distance. For frequencies above 1/3 min-1 and points separated by more than 1 km, variations in transmittance become completely uncorrelated. A method is introduced to estimate the deviation between a point measurement and a spatially averaged value for a surrounding domain, which takes into account domain size and averaging period, and is used to explore the representativeness of a single pyranometer observation for its surrounding region. Two distinct mechanisms are identified, which limit the representativeness; on the one hand, spatial averaging reduces variability and thus modifies the shape of the power spectrum. On the other hand, the correlation of variations of the spatially averaged field and a point measurement decreases rapidly with increasing temporal frequency. For a grid box of 10 km × 10 km and averaging periods of 1.5-3 h, the deviation of global transmittance between a point measurement and an area-averaged value depends on the prevailing sky conditions: 2.8 (clear), 1.8 (cirrus), 1.5 (overcast), and 4.2 % (broken clouds). The solar global radiation observed at a single station is found to deviate from the spatial average by as much as 14-23 (clear), 8-26 (cirrus), 4-23 (overcast), and 31-79 W m-2 (broken clouds) from domain averages ranging from 1 km × 1 km to 10 km × 10 km in area.
Kounina, Anna; Margni, Manuele; Shaked, Shanna; Bulle, Cécile; Jolliet, Olivier
2014-08-01
This paper develops continent-specific factors for the USEtox model and analyses the accuracy of different model architectures, spatial scales and archetypes in evaluating toxic impacts, with a focus on freshwater pathways. Inter-continental variation is analysed by comparing chemical fate and intake fractions between sub-continental zones of two life cycle impact assessment models: (1) the nested USEtox model parameterized with sub-continental zones and (2) the spatially differentiated IMPACTWorld model with 17 interconnected sub-continental regions. Substance residence time in water varies by up to two orders of magnitude among the 17 zones assessed with IMPACTWorld and USEtox, and intake fraction varies by up to three orders of magnitude. Despite this variation, the nested USEtox model succeeds in mimicking the results of the spatially differentiated model, with the exception of very persistent volatile pollutants that can be transported to polar regions. Intra-continental variation is analysed by comparing fate and intake fractions modelled with the a-spatial (one box) IMPACT Europe continental model vs. the spatially differentiated version of the same model. Results show that the one box model might overestimate chemical fate and characterisation factors for freshwater eco-toxicity of persistent pollutants by up to three orders of magnitude for point source emissions. Subdividing Europe into three archetypes, based on freshwater residence time (how long it takes water to reach the sea), improves the prediction of fate and intake fractions for point source emissions, bringing them within a factor five compared to the spatial model. We demonstrated that a sub-continental nested model such as USEtox, with continent-specific parameterization complemented with freshwater archetypes, can thus represent inter- and intra-continental spatial variations, whilst minimizing model complexity. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cai, Jingya; Pang, Zhiguo; Fu, Jun'e.
2018-04-01
To quantitatively analyze the spatial features of a cosmic-ray sensor (CRS) (i.e., the measurement support volume of the CRS and the weight of the in situ point-scale soil water content (SWC) in terms of the regionally averaged SWC derived from the CRS) in measuring the SWC, cooperative observations based on CRS, oven drying and frequency domain reflectometry (FDR) methods are performed at the point and regional scales in a desert steppe area of the Inner Mongolia Autonomous Region. This region is flat with sparse vegetation cover consisting of only grass, thereby minimizing the effects of terrain and vegetation. Considering the two possibilities of the measurement support volume of the CRS, the results of four weighting methods are compared with the SWC monitored by FDR within an appropriate measurement support volume. The weighted average calculated using the neutron intensity-based weighting method (Ni weighting method) best fits the regionally averaged SWC measured by the CRS. Therefore, we conclude that the gyroscopic support volume and the weights determined by the Ni weighting method are the closest to the actual spatial features of the CRS when measuring the SWC. Based on these findings, a scale transformation model of the SWC from the point scale to the scale of the CRS measurement support volume is established. In addition, the spatial features simulated using the Ni weighting method are visualized by developing a software system.
Robertazzi, Thomas G.; Skiena, Steven; Wang, Kai
2017-08-08
Provided are an apparatus and method for load-balancing of a three-phase electric power distribution system having a multi-phase feeder, including obtaining topology information of the feeder identifying supply points for customer loads and feeder sections between the supply points, obtaining customer information that includes peak customer load at each of the points between each of the feeder sections, performing a phase balancing analysis, and recommending phase assignment at the customer load supply points.
Frames of Reference in Mobile Augmented Reality Displays
ERIC Educational Resources Information Center
Mou, Weimin; Biocca, Frank; Owen, Charles B.; Tang, Arthur; Xiao, Fan; Lim, Lynette
2004-01-01
In 3 experiments, the authors investigated spatial updating in augmented reality environments. Participants learned locations of virtual objects on the physical floor. They were turned to appropriate facing directions while blindfolded before making pointing judgments (e.g., "Imagine you are facing X. Point to Y"). Experiments manipulated the…
Carrer, Francesco
2017-01-01
This paper deals with the ethnoarchaeological analysis of the spatial pattern of artefacts and ecofacts within two traditional pastoral huts (a dwelling and a seasonal dairy) in the uplands of Val Maudagna (Cuneo province, Italian western Alps). The composition of the ethnoarchaeological assemblages of the two huts was studied and compared; point pattern analysis was applied to identify spatial processes mirrored in the interactions between objects; Moran's I correlogram and empirical variogram were used to investigate the effects of trampling on the displacement of objects on the floor. The results were compared with information provided by the herder who still used the huts. The quantitative and ethnographical data enabled inferences to be made that can help in the interpretation of archaeological seasonal sites. The function of a seasonal site can be recognized, as can the impact of delayed curation on the composition of the assemblage and the importance of the intensity of occupation compared with the frequency of occupation. The spatial organization of activities is reflected in the spatial patterns of objects, with clearer identification of activity areas in intensively occupied sites, and there is evidence for the behaviour behind the spatial segregation of activities. Trampling is a crucial post-depositional factor in the displacement of artefacts and ecofacts, especially in non-intensively exploited sites. From a methodological point of view, this research is another example that highlights the importance of integrating quantitative methods (especially spatial analysis and geostatistical methods) and ethnoarchaeological data in order to improve the interpretation of archaeological sites and assemblages.
Use of Self-to-Object and Object-to-Object Spatial Relations in Locomotion
ERIC Educational Resources Information Center
Xiao, Chengli; Mou, Weimin; McNamara, Timothy P.
2009-01-01
In 8 experiments, the authors examined the use of representations of self-to-object or object-to-object spatial relations during locomotion. Participants learned geometrically regular or irregular layouts of objects while standing at the edge or in the middle and then pointed to objects while blindfolded in 3 conditions: before turning (baseline),…
Socio-Spatial Practices in a Finnish Daycare Group for One- to Three-Year-Olds
ERIC Educational Resources Information Center
Rutanen, Niina
2012-01-01
This qualitative case study approaches early childhood education and care practices from a socio-spatial point of view. One Finnish daycare group for one- to three-year-olds participated in the study. The ethnographic observations from the practices are analyzed together with the ECE practitioners' audio-recorded team meetings and video-elicited…
Multi-Sensor Triangulation of Multi-Source Spatial Data
NASA Technical Reports Server (NTRS)
Habib, Ayman; Kim, Chang-Jae; Bang, Ki-In
2007-01-01
The introduced methodologies are successful in: a) Ising LIDAR features for photogrammetric geo-refererncing; b) Delivering a geo-referenced imagery of the same quality as point-based geo-referencing procedures; c) Taking advantage of the synergistic characteristics of spatial data acquisition systems. The triangulation output can be used for the generation of 3-D perspective views.
Abstention in dynamical models of spatial voting
NASA Astrophysics Data System (ADS)
Stadler, B. M. R.
2000-12-01
We consider a model of platform adaptation in spatial voting focussing on the effect of abstention on the stability of the mean voter equilibrium. Two distinct approaches for modeling abstention are explored: (1) voters abstain if party platforms are very much similar to each other and (2) voters abstain if both party platforms are far away from their ideal points.
Remote Medical Diagnosis System (RMDS) Utilization Study.
1981-08-18
information between naval ships and designated naval medical centers. It will have the capability for point -to- point exchange of televi- sion images...are necessary to show anatomical spatial relationships and other features. Appendix A shows the number of X-ray views routinely taken to examine various...session. However, it was pointed out that color only made diagnosis easier and faster, but not necessarily more accurate than black-and-white
NASA Astrophysics Data System (ADS)
Zeng, Zhenxiang; Zheng, Huadong; Yu, Yingjie; Asundi, Anand K.
2017-06-01
A method for calculating off-axis phase-only holograms of three-dimensional (3D) object using accelerated point-based Fresnel diffraction algorithm (PB-FDA) is proposed. The complex amplitude of the object points on the z-axis in hologram plane is calculated using Fresnel diffraction formula, called principal complex amplitudes (PCAs). The complex amplitudes of those off-axis object points of the same depth can be obtained by 2D shifting of PCAs. In order to improve the calculating speed of the PB-FDA, the convolution operation based on fast Fourier transform (FFT) is used to calculate the holograms rather than using the point-by-point spatial 2D shifting of the PCAs. The shortest recording distance of the PB-FDA is analyzed in order to remove the influence of multiple-order images in reconstructed images. The optimal recording distance of the PB-FDA is also analyzed to improve the quality of reconstructed images. Numerical reconstructions and optical reconstructions with a phase-only spatial light modulator (SLM) show that holographic 3D display is feasible with the proposed algorithm. The proposed PB-FDA can also avoid the influence of the zero-order image introduced by SLM in optical reconstructed images.
Unleashing spatially distributed ecohydrology modeling using Big Data tools
NASA Astrophysics Data System (ADS)
Miles, B.; Idaszak, R.
2015-12-01
Physically based spatially distributed ecohydrology models are useful for answering science and management questions related to the hydrology and biogeochemistry of prairie, savanna, forested, as well as urbanized ecosystems. However, these models can produce hundreds of gigabytes of spatial output for a single model run over decadal time scales when run at regional spatial scales and moderate spatial resolutions (~100-km2+ at 30-m spatial resolution) or when run for small watersheds at high spatial resolutions (~1-km2 at 3-m spatial resolution). Numerical data formats such as HDF5 can store arbitrarily large datasets. However even in HPC environments, there are practical limits on the size of single files that can be stored and reliably backed up. Even when such large datasets can be stored, querying and analyzing these data can suffer from poor performance due to memory limitations and I/O bottlenecks, for example on single workstations where memory and bandwidth are limited, or in HPC environments where data are stored separately from computational nodes. The difficulty of storing and analyzing spatial data from ecohydrology models limits our ability to harness these powerful tools. Big Data tools such as distributed databases have the potential to surmount the data storage and analysis challenges inherent to large spatial datasets. Distributed databases solve these problems by storing data close to computational nodes while enabling horizontal scalability and fault tolerance. Here we present the architecture of and preliminary results from PatchDB, a distributed datastore for managing spatial output from the Regional Hydro-Ecological Simulation System (RHESSys). The initial version of PatchDB uses message queueing to asynchronously write RHESSys model output to an Apache Cassandra cluster. Once stored in the cluster, these data can be efficiently queried to quickly produce both spatial visualizations for a particular variable (e.g. maps and animations), as well as point time series of arbitrary variables at arbitrary points in space within a watershed or river basin. By treating ecohydrology modeling as a Big Data problem, we hope to provide a platform for answering transformative science and management questions related to water quantity and quality in a world of non-stationary climate.
Annual crop type classification of the U.S. Great Plains for 2000 to 2011
Howard, Daniel M.; Wylie, Bruce K.
2014-01-01
The purpose of this study was to increase the spatial and temporal availability of crop classification data. In this study, nearly 16.2 million crop observation points were used in the training of the US Great Plains classification tree crop type model (CTM). Each observation point was further defined by weekly Normalized Difference Vegetation Index, annual climate, and a number of other biogeophysical environmental characteristics. This study accounted for the most prevalent crop types in the region, including, corn, soybeans, winter wheat, spring wheat, cotton, sorghum, and alfalfa. Annual CTM crop maps of the US Great Plains were created for 2000 to 2011 at a spatial resolution of 250 meters. The CTM achieved an 87 percent classification success rate on 1.8 million observation points that were withheld from model training. Product validation was performed on greater than 15,000 county records with a coefficient of determination of R2 = 0.76.
Spatial Point Pattern Analysis of Neurons Using Ripley's K-Function in 3D
Jafari-Mamaghani, Mehrdad; Andersson, Mikael; Krieger, Patrik
2010-01-01
The aim of this paper is to apply a non-parametric statistical tool, Ripley's K-function, to analyze the 3-dimensional distribution of pyramidal neurons. Ripley's K-function is a widely used tool in spatial point pattern analysis. There are several approaches in 2D domains in which this function is executed and analyzed. Drawing consistent inferences on the underlying 3D point pattern distributions in various applications is of great importance as the acquisition of 3D biological data now poses lesser of a challenge due to technological progress. As of now, most of the applications of Ripley's K-function in 3D domains do not focus on the phenomenon of edge correction, which is discussed thoroughly in this paper. The main goal is to extend the theoretical and practical utilization of Ripley's K-function and corresponding tests based on bootstrap resampling from 2D to 3D domains. PMID:20577588
Sampling scales define occupancy and underlying occupancy-abundance relationships in animals.
Steenweg, Robin; Hebblewhite, Mark; Whittington, Jesse; Lukacs, Paul; McKelvey, Kevin
2018-01-01
Occupancy-abundance (OA) relationships are a foundational ecological phenomenon and field of study, and occupancy models are increasingly used to track population trends and understand ecological interactions. However, these two fields of ecological inquiry remain largely isolated, despite growing appreciation of the importance of integration. For example, using occupancy models to infer trends in abundance is predicated on positive OA relationships. Many occupancy studies collect data that violate geographical closure assumptions due to the choice of sampling scales and application to mobile organisms, which may change how occupancy and abundance are related. Little research, however, has explored how different occupancy sampling designs affect OA relationships. We develop a conceptual framework for understanding how sampling scales affect the definition of occupancy for mobile organisms, which drives OA relationships. We explore how spatial and temporal sampling scales, and the choice of sampling unit (areal vs. point sampling), affect OA relationships. We develop predictions using simulations, and test them using empirical occupancy data from remote cameras on 11 medium-large mammals. Surprisingly, our simulations demonstrate that when using point sampling, OA relationships are unaffected by spatial sampling grain (i.e., cell size). In contrast, when using areal sampling (e.g., species atlas data), OA relationships are affected by spatial grain. Furthermore, OA relationships are also affected by temporal sampling scales, where the curvature of the OA relationship increases with temporal sampling duration. Our empirical results support these predictions, showing that at any given abundance, the spatial grain of point sampling does not affect occupancy estimates, but longer surveys do increase occupancy estimates. For rare species (low occupancy), estimates of occupancy will quickly increase with longer surveys, even while abundance remains constant. Our results also clearly demonstrate that occupancy for mobile species without geographical closure is not true occupancy. The independence of occupancy estimates from spatial sampling grain depends on the sampling unit. Point-sampling surveys can, however, provide unbiased estimates of occupancy for multiple species simultaneously, irrespective of home-range size. The use of occupancy for trend monitoring needs to explicitly articulate how the chosen sampling scales define occupancy and affect the occupancy-abundance relationship. © 2017 by the Ecological Society of America.
D Reconstruction from Uav-Based Hyperspectral Images
NASA Astrophysics Data System (ADS)
Liu, L.; Xu, L.; Peng, J.
2018-04-01
Reconstructing the 3D profile from a set of UAV-based images can obtain hyperspectral information, as well as the 3D coordinate of any point on the profile. Our images are captured from the Cubert UHD185 (UHD) hyperspectral camera, which is a new type of high-speed onboard imaging spectrometer. And it can get both hyperspectral image and panchromatic image simultaneously. The panchromatic image have a higher spatial resolution than hyperspectral image, but each hyperspectral image provides considerable information on the spatial spectral distribution of the object. Thus there is an opportunity to derive a high quality 3D point cloud from panchromatic image and considerable spectral information from hyperspectral image. The purpose of this paper is to introduce our processing chain that derives a database which can provide hyperspectral information and 3D position of each point. First, We adopt a free and open-source software, Visual SFM which is based on structure from motion (SFM) algorithm, to recover 3D point cloud from panchromatic image. And then get spectral information of each point from hyperspectral image by a self-developed program written in MATLAB. The production can be used to support further research and applications.
Perception of biological motion from size-invariant body representations.
Lappe, Markus; Wittinghofer, Karin; de Lussanet, Marc H E
2015-01-01
The visual recognition of action is one of the socially most important and computationally demanding capacities of the human visual system. It combines visual shape recognition with complex non-rigid motion perception. Action presented as a point-light animation is a striking visual experience for anyone who sees it for the first time. Information about the shape and posture of the human body is sparse in point-light animations, but it is essential for action recognition. In the posturo-temporal filter model of biological motion perception posture information is picked up by visual neurons tuned to the form of the human body before body motion is calculated. We tested whether point-light stimuli are processed through posture recognition of the human body form by using a typical feature of form recognition, namely size invariance. We constructed a point-light stimulus that can only be perceived through a size-invariant mechanism. This stimulus changes rapidly in size from one image to the next. It thus disrupts continuity of early visuo-spatial properties but maintains continuity of the body posture representation. Despite this massive manipulation at the visuo-spatial level, size-changing point-light figures are spontaneously recognized by naive observers, and support discrimination of human body motion.
Figure/ground segregation from temporal delay is best at high spatial frequencies.
Kojima, H
1998-12-01
Two experiments investigated the role of spatial frequency in performance of a figure/ground segregation task based on temporal cues. Figure orientation was much easier to judge when figure and ground portions of the target were defined exclusively by random texture composed entirely of high spatial frequencies. When target components were defined by low spatial frequencies only, the task was nearly impossible except with long temporal delay between figure and ground. These results are inconsistent with the hypothesis that M-cell activity is primarily responsible for figure/ground segregation from temporal delay. Instead, these results point to a distinction between temporal integration and temporal differentiation. Additionally, the present results can be related to recent work on the binding of spatial features over time.
I believe I'm good at orienting myself… But is that true?
Nori, Raffaella; Piccardi, Laura
2015-08-01
The present study aimed to analyse beliefs that men and women have with respect to their sense of direction (SOD) and whether they correlate with spatial environmental task performance. Eighty-four students filled in the short version of the Familiarity and Spatial Cognitive Style Scale to evaluate beliefs on their SOD, knowledge of the city (TK), spatial ability (SA) and wayfinding (WA) and performed three spatial environmental tasks. Results showed that gender did not predict the performance on the spatial environmental tasks, whereas it can be predicted by participants' beliefs related to their SOD and TK. The findings point out the need to identify specific training aimed at improving women's metacognitive skills in order to delete or reduce gender differences in SA.
Liere, Heidi; Jackson, Doug; Vandermeer, John
2012-01-01
Background Spatial heterogeneity is essential for the persistence of many inherently unstable systems such as predator-prey and parasitoid-host interactions. Since biological interactions themselves can create heterogeneity in space, the heterogeneity necessary for the persistence of an unstable system could be the result of local interactions involving elements of the unstable system itself. Methodology/Principal Findings Here we report on a predatory ladybird beetle whose natural history suggests that the beetle requires the patchy distribution of the mutualism between its prey, the green coffee scale, and the arboreal ant, Azteca instabilis. Based on known ecological interactions and the natural history of the system, we constructed a spatially-explicit model and showed that the clustered spatial pattern of ant nests facilitates the persistence of the beetle populations. Furthermore, we show that the dynamics of the beetle consuming the scale insects can cause the clustered distribution of the mutualistic ants in the first place. Conclusions/Significance From a theoretical point of view, our model represents a novel situation in which a predator indirectly causes a spatial pattern of an organism other than its prey, and in doing so facilitates its own persistence. From a practical point of view, it is noteworthy that one of the elements in the system is a persistent pest of coffee, an important world commodity. This pest, we argue, is kept within limits of control through a complex web of ecological interactions that involves the emergent spatial pattern. PMID:23029061
Some practicable applications of quadtree data structures/representation in astronomy
NASA Technical Reports Server (NTRS)
Pasztor, L.
1992-01-01
Development of quadtree as hierarchical data structuring technique for representing spatial data (like points, regions, surfaces, lines, curves, volumes, etc.) has been motivated to a large extent by storage requirements of images, maps, and other multidimensional (spatially structured) data. For many spatial algorithms, time-efficiency of quadtrees in terms of execution may be as important as their space-efficiency concerning storage conditions. Briefly, the quadtree is a class of hierarchical data structures which is based on the recursive partition of a square region into quadrants and sub-quadrants until a predefined limit. Beyond the wide applicability of quadtrees in image processing, spatial information analysis, and building digital databases (processes becoming ordinary for the astronomical community), there may be numerous further applications in astronomy. Some of these practicable applications based on quadtree representation of astronomical data are presented and suggested for further considerations. Examples are shown for use of point as well as region quadtrees. Statistics of different leaf and non-leaf nodes (homogeneous and heterogeneous sub-quadrants respectively) at different levels may provide useful information on spatial structure of astronomical data in question. By altering the principle guiding the decomposition process, different types of spatial data may be focused on. Finally, a sampling method based on quadtree representation of an image is proposed which may prove to be efficient in the elaboration of sampling strategy in a region where observations were carried out previously either with different resolution or/and in different bands.
Patient identification using a near-infrared laser scanner
NASA Astrophysics Data System (ADS)
Manit, Jirapong; Bremer, Christina; Schweikard, Achim; Ernst, Floris
2017-03-01
We propose a new biometric approach where the tissue thickness of a person's forehead is used as a biometric feature. Given that the spatial registration of two 3D laser scans of the same human face usually produces a low error value, the principle of point cloud registration and its error metric can be applied to human classification techniques. However, by only considering the spatial error, it is not possible to reliably verify a person's identity. We propose to use a novel near-infrared laser-based head tracking system to determine an additional feature, the tissue thickness, and include this in the error metric. Using MRI as a ground truth, data from the foreheads of 30 subjects was collected from which a 4D reference point cloud was created for each subject. The measurements from the near-infrared system were registered with all reference point clouds using the ICP algorithm. Afterwards, the spatial and tissue thickness errors were extracted, forming a 2D feature space. For all subjects, the lowest feature distance resulted from the registration of a measurement and the reference point cloud of the same person. The combined registration error features yielded two clusters in the feature space, one from the same subject and another from the other subjects. When only the tissue thickness error was considered, these clusters were less distinct but still present. These findings could help to raise safety standards for head and neck cancer patients and lays the foundation for a future human identification technique.
Redding, David W; Lucas, Tim C D; Blackburn, Tim M; Jones, Kate E
2017-01-01
Statistical approaches for inferring the spatial distribution of taxa (Species Distribution Models, SDMs) commonly rely on available occurrence data, which is often clumped and geographically restricted. Although available SDM methods address some of these factors, they could be more directly and accurately modelled using a spatially-explicit approach. Software to fit models with spatial autocorrelation parameters in SDMs are now widely available, but whether such approaches for inferring SDMs aid predictions compared to other methodologies is unknown. Here, within a simulated environment using 1000 generated species' ranges, we compared the performance of two commonly used non-spatial SDM methods (Maximum Entropy Modelling, MAXENT and boosted regression trees, BRT), to a spatial Bayesian SDM method (fitted using R-INLA), when the underlying data exhibit varying combinations of clumping and geographic restriction. Finally, we tested how any recommended methodological settings designed to account for spatially non-random patterns in the data impact inference. Spatial Bayesian SDM method was the most consistently accurate method, being in the top 2 most accurate methods in 7 out of 8 data sampling scenarios. Within high-coverage sample datasets, all methods performed fairly similarly. When sampling points were randomly spread, BRT had a 1-3% greater accuracy over the other methods and when samples were clumped, the spatial Bayesian SDM method had a 4%-8% better AUC score. Alternatively, when sampling points were restricted to a small section of the true range all methods were on average 10-12% less accurate, with greater variation among the methods. Model inference under the recommended settings to account for autocorrelation was not impacted by clumping or restriction of data, except for the complexity of the spatial regression term in the spatial Bayesian model. Methods, such as those made available by R-INLA, can be successfully used to account for spatial autocorrelation in an SDM context and, by taking account of random effects, produce outputs that can better elucidate the role of covariates in predicting species occurrence. Given that it is often unclear what the drivers are behind data clumping in an empirical occurrence dataset, or indeed how geographically restricted these data are, spatially-explicit Bayesian SDMs may be the better choice when modelling the spatial distribution of target species.
Fractal analysis of multiscale spatial autocorrelation among point data
De Cola, L.
1991-01-01
The analysis of spatial autocorrelation among point-data quadrats is a well-developed technique that has made limited but intriguing use of the multiscale aspects of pattern. In this paper are presented theoretical and algorithmic approaches to the analysis of aggregations of quadrats at or above a given density, in which these sets are treated as multifractal regions whose fractal dimension, D, may vary with phenomenon intensity, scale, and location. The technique is illustrated with Matui's quadrat house-count data, which yield measurements consistent with a nonautocorrelated simulated Poisson process but not with an orthogonal unit-step random walk. The paper concludes with a discussion of the implications of such analysis for multiscale geographic analysis systems. -Author
The Ciliate Paramecium Shows Higher Motility in Non-Uniform Chemical Landscapes
Giuffre, Carl; Hinow, Peter; Vogel, Ryan; Ahmed, Tanvir; Stocker, Roman; Consi, Thomas R.; Strickler, J. Rudi
2011-01-01
We study the motility behavior of the unicellular protozoan Paramecium tetraurelia in a microfluidic device that can be prepared with a landscape of attracting or repelling chemicals. We investigate the spatial distribution of the positions of the individuals at different time points with methods from spatial statistics and Poisson random point fields. This makes quantitative the informal notion of “uniform distribution” (or lack thereof). Our device is characterized by the absence of large systematic biases due to gravitation and fluid flow. It has the potential to be applied to the study of other aquatic chemosensitive organisms as well. This may result in better diagnostic devices for environmental pollutants. PMID:21494596
Space-variant polarization patterns of non-collinear Poincaré superpositions
NASA Astrophysics Data System (ADS)
Galvez, E. J.; Beach, K.; Zeosky, J. J.; Khajavi, B.
2015-03-01
We present analysis and measurements of the polarization patterns produced by non-collinear superpositions of Laguerre-Gauss spatial modes in orthogonal polarization states, which are known as Poincaré modes. Our findings agree with predictions (I. Freund Opt. Lett. 35, 148-150 (2010)), that superpositions containing a C-point lead to a rotation of the polarization ellipse in 3-dimensions. Here we do imaging polarimetry of superpositions of first- and zero-order spatial modes at relative beam angles of 0-4 arcmin. We find Poincaré-type polarization patterns showing fringes in polarization orientation, but which preserve the polarization-singularity index for all three cases of C-points: lemons, stars and monstars.
Time-Domain Filtering for Spatial Large-Eddy Simulation
NASA Technical Reports Server (NTRS)
Pruett, C. David
1997-01-01
An approach to large-eddy simulation (LES) is developed whose subgrid-scale model incorporates filtering in the time domain, in contrast to conventional approaches, which exploit spatial filtering. The method is demonstrated in the simulation of a heated, compressible, axisymmetric jet, and results are compared with those obtained from fully resolved direct numerical simulation. The present approach was, in fact, motivated by the jet-flow problem and the desire to manipulate the flow by localized (point) sources for the purposes of noise suppression. Time-domain filtering appears to be more consistent with the modeling of point sources; moreover, time-domain filtering may resolve some fundamental inconsistencies associated with conventional space-filtered LES approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abere, Michael J.; Yalisove, Steven M.; Torralva, Ben
2016-04-11
The formation of high spatial frequency laser induced periodic surface structures (HSFL) with period <0.3 λ in GaAs after irradiation with femtosecond laser pulses in air is studied. We have identified a point defect generation mechanism that operates in a specific range of fluences in semiconductors between the band-gap closure and ultrafast-melt thresholds that produces vacancy/interstitial pairs. Stress relaxation, via diffusing defects, forms the 350–400 nm tall and ∼90 nm wide structures through a bifurcation process of lower spatial frequency surface structures. The resulting HSFL are predominately epitaxial single crystals and retain the original GaAs stoichiometry.
Lasercom system architecture with reduced complexity
NASA Technical Reports Server (NTRS)
Lesh, James R. (Inventor); Chen, Chien-Chung (Inventor); Ansari, Homayoon (Inventor)
1994-01-01
Spatial acquisition and precision beam pointing functions are critical to spaceborne laser communication systems. In the present invention, a single high bandwidth CCD detector is used to perform both spatial acquisition and tracking functions. Compared to previous lasercom hardware design, the array tracking concept offers reduced system complexity by reducing the number of optical elements in the design. Specifically, the design requires only one detector and one beam steering mechanism. It also provides the means to optically close the point-ahead control loop. The technology required for high bandwidth array tracking was examined and shown to be consistent with current state of the art. The single detector design can lead to a significantly reduced system complexity and a lower system cost.
LaserCom System Architecture With Reduced Complexity
NASA Technical Reports Server (NTRS)
Lesh, James R. (Inventor); Chen, Chien-Chung (Inventor); Ansari, Homa-Yoon (Inventor)
1996-01-01
Spatial acquisition and precision beam pointing functions are critical to spaceborne laser communication systems. In the present invention a single high bandwidth CCD detector is used to perform both spatial acquisition and tracking functions. Compared to previous lasercom hardware design, the array tracking concept offers reduced system complexity by reducing the number of optical elements in the design. Specifically, the design requires only one detector and one beam steering mechanism. It also provides means to optically close the point-ahead control loop. The technology required for high bandwidth array tracking was examined and shown to be consistent with current state of the art. The single detector design can lead to a significantly reduced system complexity and a lower system cost.
Directional antenna array (DAA) for communications, control, and data link protection
NASA Astrophysics Data System (ADS)
Molchanov, Pavlo A.; Contarino, Vincent M.
2013-06-01
A next generation of Smart antennas with point-to-point communication and jam, spoof protection capability by verification of spatial position is offered. A directional antenna array (DAA) with narrow irradiation beam provides counter terrorism protection for communications, data link, control and GPS. Communications are "invisible" to guided missiles because of 20 dB smaller irradiation outside the beam and spatial separation. This solution can be implemented with current technology. Directional antennas have higher gain and can be multi-frequency or have wide frequency band in contrast to phase antenna arrays. This multi-directional antenna array provides a multi-functional communication network and simultaneously can be used for command control, data link and GPS.
Rodrigues, Valdemir; Estrany, Joan; Ranzini, Mauricio; de Cicco, Valdir; Martín-Benito, José Mª Tarjuelo; Hedo, Javier; Lucas-Borja, Manuel E
2018-05-01
Stream water quality is controlled by the interaction of natural and anthropogenic factors over a range of temporal and spatial scales. Among these anthropogenic factors, land cover changes at catchment scale can affect stream water quality. This work aims to evaluate the influence of land use and seasonality on stream water quality in a representative tropical headwater catchment named as Córrego Água Limpa (Sao Paulo, Brasil), which is highly influenced by intensive agricultural activities and urban areas. Two systematic sampling approach campaigns were implemented with six sampling points along the stream of the headwater catchment to evaluate water quality during the rainy and dry seasons. Three replicates were collected at each sampling point in 2011. Electrical conductivity, nitrates, nitrites, sodium superoxide, Chemical Oxygen Demand (DQO), colour, turbidity, suspended solids, soluble solids and total solids were measured. Water quality parameters differed among sampling points, being lower at the headwater sampling point (0m above sea level), and then progressively higher until the last downstream sampling point (2500m above sea level). For the dry season, the mean discharge was 39.5ls -1 (from April to September) whereas 113.0ls -1 were averaged during the rainy season (from October to March). In addition, significant temporal and spatial differences were observed (P<0.05) for the fourteen parameters during the rainy and dry period. The study enhance significant relationships among land use and water quality and its temporal effect, showing seasonal differences between the land use and water quality connection, highlighting the importance of multiple spatial and temporal scales for understanding the impacts of human activities on catchment ecosystem services. Copyright © 2017 Elsevier B.V. All rights reserved.
The Impact of Soil Sampling Errors on Variable Rate Fertilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. L. Hoskinson; R C. Rope; L G. Blackwood
2004-07-01
Variable rate fertilization of an agricultural field is done taking into account spatial variability in the soil’s characteristics. Most often, spatial variability in the soil’s fertility is the primary characteristic used to determine the differences in fertilizers applied from one point to the next. For several years the Idaho National Engineering and Environmental Laboratory (INEEL) has been developing a Decision Support System for Agriculture (DSS4Ag) to determine the economically optimum recipe of various fertilizers to apply at each site in a field, based on existing soil fertility at the site, predicted yield of the crop that would result (and amore » predicted harvest-time market price), and the current costs and compositions of the fertilizers to be applied. Typically, soil is sampled at selected points within a field, the soil samples are analyzed in a lab, and the lab-measured soil fertility of the point samples is used for spatial interpolation, in some statistical manner, to determine the soil fertility at all other points in the field. Then a decision tool determines the fertilizers to apply at each point. Our research was conducted to measure the impact on the variable rate fertilization recipe caused by variability in the measurement of the soil’s fertility at the sampling points. The variability could be laboratory analytical errors or errors from variation in the sample collection method. The results show that for many of the fertility parameters, laboratory measurement error variance exceeds the estimated variability of the fertility measure across grid locations. These errors resulted in DSS4Ag fertilizer recipe recommended application rates that differed by up to 138 pounds of urea per acre, with half the field differing by more than 57 pounds of urea per acre. For potash the difference in application rate was up to 895 pounds per acre and over half the field differed by more than 242 pounds of potash per acre. Urea and potash differences accounted for almost 87% of the cost difference. The sum of these differences could result in a $34 per acre cost difference for the fertilization. Because of these differences, better analysis or better sampling methods may need to be done, or more samples collected, to ensure that the soil measurements are truly representative of the field’s spatial variability.« less
Direct statistical modeling and its implications for predictive mapping in mining exploration
NASA Astrophysics Data System (ADS)
Sterligov, Boris; Gumiaux, Charles; Barbanson, Luc; Chen, Yan; Cassard, Daniel; Cherkasov, Sergey; Zolotaya, Ludmila
2010-05-01
Recent advances in geosciences make more and more multidisciplinary data available for mining exploration. This allowed developing methodologies for computing forecast ore maps from the statistical combination of such different input parameters, all based on an inverse problem theory. Numerous statistical methods (e.g. algebraic method, weight of evidence, Siris method, etc) with varying degrees of complexity in their development and implementation, have been proposed and/or adapted for ore geology purposes. In literature, such approaches are often presented through applications on natural examples and the results obtained can present specificities due to local characteristics. Moreover, though crucial for statistical computations, "minimum requirements" needed for input parameters (number of minimum data points, spatial distribution of objects, etc) are often only poorly expressed. From these, problems often arise when one has to choose between one and the other method for her/his specific question. In this study, a direct statistical modeling approach is developed in order to i) evaluate the constraints on the input parameters and ii) test the validity of different existing inversion methods. The approach particularly focused on the analysis of spatial relationships between location of points and various objects (e.g. polygons and /or polylines) which is particularly well adapted to constrain the influence of intrusive bodies - such as a granite - and faults or ductile shear-zones on spatial location of ore deposits (point objects). The method is designed in a way to insure a-dimensionality with respect to scale. In this approach, both spatial distribution and topology of objects (polygons and polylines) can be parametrized by the user (e.g. density of objects, length, surface, orientation, clustering). Then, the distance of points with respect to a given type of objects (polygons or polylines) is given using a probability distribution. The location of points is computed assuming either independency or different grades of dependency between the two probability distributions. The results show that i)polygons surface mean value, polylines length mean value, the number of objects and their clustering are critical and ii) the validity of the different tested inversion methods strongly depends on the relative importance and on the dependency between the parameters used. In addition, this combined approach of direct and inverse modeling offers an opportunity to test the robustness of the inferred distribution point laws with respect to the quality of the input data set.
Goovaerts, Pierre
2006-01-01
Background Geostatistical techniques that account for spatially varying population sizes and spatial patterns in the filtering of choropleth maps of cancer mortality were recently developed. Their implementation was facilitated by the initial assumption that all geographical units are the same size and shape, which allowed the use of geographic centroids in semivariogram estimation and kriging. Another implicit assumption was that the population at risk is uniformly distributed within each unit. This paper presents a generalization of Poisson kriging whereby the size and shape of administrative units, as well as the population density, is incorporated into the filtering of noisy mortality rates and the creation of isopleth risk maps. An innovative procedure to infer the point-support semivariogram of the risk from aggregated rates (i.e. areal data) is also proposed. Results The novel methodology is applied to age-adjusted lung and cervix cancer mortality rates recorded for white females in two contrasted county geographies: 1) state of Indiana that consists of 92 counties of fairly similar size and shape, and 2) four states in the Western US (Arizona, California, Nevada and Utah) forming a set of 118 counties that are vastly different geographical units. Area-to-point (ATP) Poisson kriging produces risk surfaces that are less smooth than the maps created by a naïve point kriging of empirical Bayesian smoothed rates. The coherence constraint of ATP kriging also ensures that the population-weighted average of risk estimates within each geographical unit equals the areal data for this unit. Simulation studies showed that the new approach yields more accurate predictions and confidence intervals than point kriging of areal data where all counties are simply collapsed into their respective polygon centroids. Its benefit over point kriging increases as the county geography becomes more heterogeneous. Conclusion A major limitation of choropleth maps is the common biased visual perception that larger rural and sparsely populated areas are of greater importance. The approach presented in this paper allows the continuous mapping of mortality risk, while accounting locally for population density and areal data through the coherence constraint. This form of Poisson kriging will facilitate the analysis of relationships between health data and putative covariates that are typically measured over different spatial supports. PMID:17137504
Xu, Hongwei; Logan, John R.; Short, Susan E.
2014-01-01
Research on neighborhoods and health increasingly acknowledges the need to conceptualize, measure, and model spatial features of social and physical environments. In ignoring underlying spatial dynamics, we run the risk of biased statistical inference and misleading results. In this paper, we propose an integrated multilevel-spatial approach for Poisson models of discrete responses. In an empirical example of child mortality in 1880 Newark, New Jersey, we compare this multilevel-spatial approach with the more typical aspatial multilevel approach. Results indicate that spatially-defined egocentric neighborhoods, or distance-based measures, outperform administrative areal units, such as census units. In addition, although results did not vary by specific definitions of egocentric neighborhoods, they were sensitive to geographic scale and modeling strategy. Overall, our findings confirm that adopting a spatial-multilevel approach enhances our ability to disentangle the effect of space from that of place, and point to the need for more careful spatial thinking in population research on neighborhoods and health. PMID:24763980
Relationship among Environmental Pointing Accuracy, Mental Rotation, Sex, and Hormones
ERIC Educational Resources Information Center
Bell, Scott; Saucier, Deborah
2004-01-01
Humans rely on internal representations to solve a variety of spatial problems including navigation. Navigation employs specific information to compose a representation of space that is distinct from that obtained through static bird's-eye or horizontal perspectives. The ability to point to on-route locations, off-route locations, and the route…
Focal Points, Endogenous Processes, and Exogenous Shocks in the Autism Epidemic
ERIC Educational Resources Information Center
Liu, Kayuet; Bearman, Peter S.
2015-01-01
Autism prevalence has increased rapidly in the United States during the past two decades. We have previously shown that the diffusion of information about autism through spatially proximate social relations has contributed significantly to the epidemic. This study expands on this finding by identifying the focal points for interaction that drive…
USDA-ARS?s Scientific Manuscript database
Accurate and timely spatial predictions of vegetation cover from remote imagery are an important data source for natural resource management. High-quality in situ data are needed to develop and validate these products. Point-intercept sampling techniques are a common method for obtaining quantitativ...
Effect of land use on the spatial variability of organic matter and nutrient status in an Oxisol
NASA Astrophysics Data System (ADS)
Paz-Ferreiro, Jorge; Alves, Marlene Cristina; Vidal Vázquez, Eva
2013-04-01
Heterogeneity is now considered as an inherent soil property. Spatial variability of soil attributes in natural landscapes results mainly from soil formation factors. In cultivated soils much heterogeneity can additionally occur as a result of land use, agricultural systems and management practices. Organic matter content (OMC) and nutrients associated to soil exchange complex are key attribute in the maintenance of a high quality soil. Neglecting spatial heterogeneity in soil OMC and nutrient status at the field scale might result in reduced yield and in environmental damage. We analyzed the impact of land use on the pattern of spatial variability of OMC and soil macronutrients at the stand scale. The study was conducted in São Paulo state, Brazil. Land uses were pasture, mango orchard and corn field. Soil samples were taken at 0-10 cm and 10-20 cm depth in 84 points, within 100 m x 100 m plots. Texture, pH, OMC, cation exchange capacity (CEC), exchangeable cations (Ca, Mg, K, H, Al) and resin extractable phosphorus were analyzed.. Statistical variability was found to be higher in parameters defining the soil nutrient status (resin extractable P, K, Ca and Mg) than in general soil properties (OMC, CEC, base saturation and pH). Geostatistical analysis showed contrasting patterns of spatial dependence for the different soil uses, sampling depths and studied properties. Most of the studied data sets collected at two different depths exhibited spatial dependence at the sampled scale and their semivariograms were modeled by a nugget effect plus a structure. The pattern of soil spatial variability was found to be different between the three study soil uses and at the two sampling depths, as far as model type, nugget effect or ranges of spatial dependence were concerned. Both statistical and geostatistical results pointed out the importance of OMC as a driver responsible for the spatial variability of soil nutrient status.
Fajnerová, Iveta; Rodriguez, Mabel; Levčík, David; Konrádová, Lucie; Mikoláš, Pavol; Brom, Cyril; Stuchlík, Aleš; Vlček, Kamil; Horáček, Jiří
2014-01-01
Objectives: Cognitive deficit is considered to be a characteristic feature of schizophrenia disorder. A similar cognitive dysfunction was demonstrated in animal models of schizophrenia. However, the poor comparability of methods used to assess cognition in animals and humans could be responsible for low predictive validity of current animal models. In order to assess spatial abilities in schizophrenia and compare our results with the data obtained in animal models, we designed a virtual analog of the Morris water maze (MWM), the virtual Four Goals Navigation (vFGN) task. Methods: Twenty-nine patients after the first psychotic episode with schizophrenia symptoms and a matched group of healthy volunteers performed the vFGN task. They were required to find and remember four hidden goal positions in an enclosed virtual arena. The task consisted of two parts. The Reference memory (RM) session with a stable goal position was designed to test spatial learning. The Delayed-matching-to-place (DMP) session presented a modified working memory protocol designed to test the ability to remember a sequence of three hidden goal positions. Results: Data obtained in the RM session show impaired spatial learning in schizophrenia patients compared to the healthy controls in pointing and navigation accuracy. The DMP session showed impaired spatial memory in schizophrenia during the recall of spatial sequence and a similar deficit in spatial bias in the probe trials. The pointing accuracy and the quadrant preference showed higher sensitivity toward the cognitive deficit than the navigation accuracy. Direct navigation to the goal was affected by sex and age of the tested subjects. The age affected spatial performance only in healthy controls. Conclusions: Despite some limitations of the study, our results correspond well with the previous studies in animal models of schizophrenia and support the decline of spatial cognition in schizophrenia, indicating the usefulness of the vFGN task in comparative research. PMID:24904329
Fractional charge and inter-Landau-level states at points of singular curvature.
Biswas, Rudro R; Son, Dam Thanh
2016-08-02
The quest for universal properties of topological phases is fundamentally important because these signatures are robust to variations in system-specific details. Aspects of the response of quantum Hall states to smooth spatial curvature are well-studied, but challenging to observe experimentally. Here we go beyond this prevailing paradigm and obtain general results for the response of quantum Hall states to points of singular curvature in real space; such points may be readily experimentally actualized. We find, using continuum analytical methods, that the point of curvature binds an excess fractional charge and sequences of quantum states split away, energetically, from the degenerate bulk Landau levels. Importantly, these inter-Landau-level states are bound to the topological singularity and have energies that are universal functions of bulk parameters and the curvature. Our exact diagonalization of lattice tight-binding models on closed manifolds demonstrates that these results continue to hold even when lattice effects are significant. An important technological implication of these results is that these inter-Landau-level states, being both energetically and spatially isolated quantum states, are promising candidates for constructing qubits for quantum computation.
Research on Horizontal Accuracy Method of High Spatial Resolution Remotely Sensed Orthophoto Image
NASA Astrophysics Data System (ADS)
Xu, Y. M.; Zhang, J. X.; Yu, F.; Dong, S.
2018-04-01
At present, in the inspection and acceptance of high spatial resolution remotly sensed orthophoto image, the horizontal accuracy detection is testing and evaluating the accuracy of images, which mostly based on a set of testing points with the same accuracy and reliability. However, it is difficult to get a set of testing points with the same accuracy and reliability in the areas where the field measurement is difficult and the reference data with high accuracy is not enough. So it is difficult to test and evaluate the horizontal accuracy of the orthophoto image. The uncertainty of the horizontal accuracy has become a bottleneck for the application of satellite borne high-resolution remote sensing image and the scope of service expansion. Therefore, this paper proposes a new method to test the horizontal accuracy of orthophoto image. This method using the testing points with different accuracy and reliability. These points' source is high accuracy reference data and field measurement. The new method solves the horizontal accuracy detection of the orthophoto image in the difficult areas and provides the basis for providing reliable orthophoto images to the users.
Heterogeneous Data Fusion Method to Estimate Travel Time Distributions in Congested Road Networks
Lam, William H. K.; Li, Qingquan
2017-01-01
Travel times in congested urban road networks are highly stochastic. Provision of travel time distribution information, including both mean and variance, can be very useful for travelers to make reliable path choice decisions to ensure higher probability of on-time arrival. To this end, a heterogeneous data fusion method is proposed to estimate travel time distributions by fusing heterogeneous data from point and interval detectors. In the proposed method, link travel time distributions are first estimated from point detector observations. The travel time distributions of links without point detectors are imputed based on their spatial correlations with links that have point detectors. The estimated link travel time distributions are then fused with path travel time distributions obtained from the interval detectors using Dempster-Shafer evidence theory. Based on fused path travel time distribution, an optimization technique is further introduced to update link travel time distributions and their spatial correlations. A case study was performed using real-world data from Hong Kong and showed that the proposed method obtained accurate and robust estimations of link and path travel time distributions in congested road networks. PMID:29210978
Heterogeneous Data Fusion Method to Estimate Travel Time Distributions in Congested Road Networks.
Shi, Chaoyang; Chen, Bi Yu; Lam, William H K; Li, Qingquan
2017-12-06
Travel times in congested urban road networks are highly stochastic. Provision of travel time distribution information, including both mean and variance, can be very useful for travelers to make reliable path choice decisions to ensure higher probability of on-time arrival. To this end, a heterogeneous data fusion method is proposed to estimate travel time distributions by fusing heterogeneous data from point and interval detectors. In the proposed method, link travel time distributions are first estimated from point detector observations. The travel time distributions of links without point detectors are imputed based on their spatial correlations with links that have point detectors. The estimated link travel time distributions are then fused with path travel time distributions obtained from the interval detectors using Dempster-Shafer evidence theory. Based on fused path travel time distribution, an optimization technique is further introduced to update link travel time distributions and their spatial correlations. A case study was performed using real-world data from Hong Kong and showed that the proposed method obtained accurate and robust estimations of link and path travel time distributions in congested road networks.
Hochmair, Hartwig H; Scheffrahn, Rudolf H
2010-08-01
Marine vessels have been implicated in the anthropogenic dispersal of invasive termites for the past 500 yr. It has long been suspected that two invasive termites, the Formosan subterranean termite, Coptotermes formosanus Shiraki, and Coptotermes gestroi (Wasmann) (Isoptera: Rhinotermitidae), were introduced to and dispersed throughout South Florida by sailboats and yachts. We compared the distances between 190 terrestrial point records for Formosan subterranean termite, 177 records for C. gestroi, and random locations with the nearest marine dockage by using spatial analysis. Results show that the median distance to nearest docks associated with C. gestroi is significantly smaller than for the random points. Results also reveal that the median distance to nearest docks associated with Formosan subterranean termite is significantly smaller than for the random points. These results support the hypothesis that C. gestroi and Formosan subterranean termite are significantly closer to potential infested boat locations, i.e., marine docks, than random points in these urban areas. The results of our study suggest yet another source of aggregation in the context of exotic species, namely, hubs for pleasure boating.
NASA Astrophysics Data System (ADS)
Niwase, Hiroaki; Takada, Naoki; Araki, Hiromitsu; Maeda, Yuki; Fujiwara, Masato; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi
2016-09-01
Parallel calculations of large-pixel-count computer-generated holograms (CGHs) are suitable for multiple-graphics processing unit (multi-GPU) cluster systems. However, it is not easy for a multi-GPU cluster system to accomplish fast CGH calculations when CGH transfers between PCs are required. In these cases, the CGH transfer between the PCs becomes a bottleneck. Usually, this problem occurs only in multi-GPU cluster systems with a single spatial light modulator. To overcome this problem, we propose a simple method using the InfiniBand network. The computational speed of the proposed method using 13 GPUs (NVIDIA GeForce GTX TITAN X) was more than 3000 times faster than that of a CPU (Intel Core i7 4770) when the number of three-dimensional (3-D) object points exceeded 20,480. In practice, we achieved ˜40 tera floating point operations per second (TFLOPS) when the number of 3-D object points exceeded 40,960. Our proposed method was able to reconstruct a real-time movie of a 3-D object comprising 95,949 points.
Spatial Charge Inhomogeneity and Defect States in Topological Dirac Semimetal Thin Films
NASA Astrophysics Data System (ADS)
Edmonds, Mark; Collins, James; Hellerstedt, Jack; Yudhistira, Indra; Rodrigues, Joao Nuno Barbosa; Gomes, Lidia Carvalho; Adam, Shaffique; Fuhrer, Michael
Dirac materials are characterized by a charge neutrality point, where the system breaks into electron/hole puddles. In graphene, substrate disorder drives fluctuations in EF, necessitating ultra-clean substrates to observe Dirac point physics. Three-dimensional topological Dirac semimetals (TDS) obviate the substrate, and should show reduced EF fluctuations due to better metallic screening and higher dielectric constants. Yet, the local response of the charge carriers in a TDS to various perturbations has yet to be explored. Here we map the potential fluctuations in TDS 20nm Na3Bi films grown via MBE using scanning tunneling microscopy/spectroscopy. The potential fluctuations are significantly smaller than room temperature (ΔEF 5 meV = 60 K) and comparable to the highest quality graphene on h-BN; far smaller than graphene on SiO2,or the Dirac surface state of a topological insulator. This observation bodes well for exploration of Dirac point physics in TDS materials. Furthermore, surface Na vacancies show a bound resonance state close to the Dirac point with large spatial extent, a possible analogue to resonant impurities in graphene.
Implementing direct, spatially isolated problems on transputer networks
NASA Technical Reports Server (NTRS)
Ellis, Graham K.
1988-01-01
Parametric studies were performed on transputer networks of up to 40 processors to determine how to implement and maximize the performance of the solution of problems where no processor-to-processor data transfer is required for the problem solution (spatially isolated). Two types of problems are investigated a computationally intensive problem where the solution required the transmission of 160 bytes of data through the parallel network, and a communication intensive example that required the transmission of 3 Mbytes of data through the network. This data consists of solutions being sent back to the host processor and not intermediate results for another processor to work on. Studies were performed on both integer and floating-point transputers. The latter features an on-chip floating-point math unit and offers approximately an order of magnitude performance increase over the integer transputer on real valued computations. The results indicate that a minimum amount of work is required on each node per communication to achieve high network speedups (efficiencies). The floating-point processor requires approximately an order of magnitude more work per communication than the integer processor because of the floating-point unit's increased computing capacity.
Two Spatial Memories Are Not Better than One: Evidence of Exclusivity in Memory for Object Location
ERIC Educational Resources Information Center
Baguley, Thom; Lansdale, Mark W.; Lines, Lorna K.; Parkin, Jennifer K.
2006-01-01
This paper studies the dynamics of attempting to access two spatial memories simultaneously and its implications for the accuracy of recall. Experiment 1 demonstrates in a range of conditions that two cues pointing to different experiences of the same object location produce little or no higher recall than that observed with a single cue.…
2007-09-19
extended object relations such as boundary, interior, open, closed , within, connected, and overlaps, which are invariant under elastic deformation...is required in a geo-spatial semantic web is challenging because the defining properties of geographic entities are very closely related to space. In...Objects under Primitive will be open (i.e., they will not contain their boundary points) and the objects under Complex will be closed . In addition to
NASA Astrophysics Data System (ADS)
Harrison, T. W.; Polagye, B. L.
2016-02-01
Coastal ecosystems are characterized by spatially and temporally varying hydrodynamics. In marine renewable energy applications, these variations strongly influence project economics and in oceanographic studies, they impact accuracy of biological transport and pollutant dispersion models. While stationary point or profile measurements are relatively straight forward, spatial representativeness of point measurements can be poor due to strong gradients. Moving platforms, such as AUVs or surface vessels, offer better coverage, but suffer from energetic constraints (AUVs) and resolvable scales (vessels). A system of sub-surface, drifting sensor packages is being developed to provide spatially distributed, synoptic data sets of coastal hydrodynamics with meter-scale resolution over a regional extent of a kilometer. Computational investigation has informed system parameters such as drifter size and shape, necessary position accuracy, number of drifters, and deployment methods. A hydrodynamic domain with complex flow features was created using a computational fluid dynamics code. A simple model of drifter dynamics propagate the drifters through the domain in post-processing. System parameters are evaluated relative to their ability to accurately recreate domain hydrodynamics. Implications of these results for an inexpensive, depth-controlled Lagrangian drifter system is presented.
The Use of Geostatistics in the Study of Floral Phenology of Vulpia geniculata (L.) Link
León Ruiz, Eduardo J.; García Mozo, Herminia; Domínguez Vilches, Eugenio; Galán, Carmen
2012-01-01
Traditionally phenology studies have been focused on changes through time, but there exist many instances in ecological research where it is necessary to interpolate among spatially stratified samples. The combined use of Geographical Information Systems (GIS) and Geostatistics can be an essential tool for spatial analysis in phenological studies. Geostatistics are a family of statistics that describe correlations through space/time and they can be used for both quantifying spatial correlation and interpolating unsampled points. In the present work, estimations based upon Geostatistics and GIS mapping have enabled the construction of spatial models that reflect phenological evolution of Vulpia geniculata (L.) Link throughout the study area during sampling season. Ten sampling points, scattered troughout the city and low mountains in the “Sierra de Córdoba” were chosen to carry out the weekly phenological monitoring during flowering season. The phenological data were interpolated by applying the traditional geostatitical method of Kriging, which was used to ellaborate weekly estimations of V. geniculata phenology in unsampled areas. Finally, the application of Geostatistics and GIS to create phenological maps could be an essential complement in pollen aerobiological studies, given the increased interest in obtaining automatic aerobiological forecasting maps. PMID:22629169
The use of geostatistics in the study of floral phenology of Vulpia geniculata (L.) link.
León Ruiz, Eduardo J; García Mozo, Herminia; Domínguez Vilches, Eugenio; Galán, Carmen
2012-01-01
Traditionally phenology studies have been focused on changes through time, but there exist many instances in ecological research where it is necessary to interpolate among spatially stratified samples. The combined use of Geographical Information Systems (GIS) and Geostatistics can be an essential tool for spatial analysis in phenological studies. Geostatistics are a family of statistics that describe correlations through space/time and they can be used for both quantifying spatial correlation and interpolating unsampled points. In the present work, estimations based upon Geostatistics and GIS mapping have enabled the construction of spatial models that reflect phenological evolution of Vulpia geniculata (L.) Link throughout the study area during sampling season. Ten sampling points, scattered throughout the city and low mountains in the "Sierra de Córdoba" were chosen to carry out the weekly phenological monitoring during flowering season. The phenological data were interpolated by applying the traditional geostatitical method of Kriging, which was used to elaborate weekly estimations of V. geniculata phenology in unsampled areas. Finally, the application of Geostatistics and GIS to create phenological maps could be an essential complement in pollen aerobiological studies, given the increased interest in obtaining automatic aerobiological forecasting maps.
Sun, Huaying; Mao, Yu; Wang, Jianhong; Ma, Yuanye
2011-07-08
The beta-adrenergic system has been suggested to be involved in novelty detection and memory modulation. The present study aimed to investigate the role of beta-adrenergic receptors on novelty-based spatial recognition memory and exploratory behavior in mice using Y-maze test and open-field respectively. Mice were injected with three doses of beta-adrenergic receptor antagonist, propranolol (2, 10 and 20 mg/kg) or saline at three different time points (15 min prior to training, immediately after training and 15 min before test). The results showed that higher doses of propranolol (10 and 20 mg/kg) given before the training trial impaired spatial recognition memory while those injected at other two time points did not. A detailed analysis of exploratory behavior in open-field showed that lower dose (2 mg/kg) of propranolol reduced exploratory behavior of mice. Our findings indicate that higher dose of propranolol can impair acquisition of spatial information in the Y-maze without altering locomotion, suggesting that the beta-adrenergic system may be involved in modulating memory processes at the time of learning. Copyright © 2011. Published by Elsevier Ireland Ltd.
NASA Astrophysics Data System (ADS)
Hodam, Sanayanbi; Sarkar, Sajal; Marak, Areor G. R.; Bandyopadhyay, A.; Bhadra, A.
2017-12-01
In the present study, to understand the spatial distribution characteristics of the ETo over India, spatial interpolation was performed on the means of 32 years (1971-2002) monthly data of 131 India Meteorological Department stations uniformly distributed over the country by two methods, namely, inverse distance weighted (IDW) interpolation and kriging. Kriging was found to be better while developing the monthly surfaces during cross-validation. However, in station-wise validation, IDW performed better than kriging in almost all the cases, hence is recommended for spatial interpolation of ETo and its governing meteorological parameters. This study also checked if direct kriging of FAO-56 Penman-Monteith (PM) (Allen et al. in Crop evapotranspiration—guidelines for computing crop water requirements, Irrigation and drainage paper 56, Food and Agriculture Organization of the United Nations (FAO), Rome, 1998) point ETo produced comparable results against ETo estimated with individually kriged weather parameters (indirect kriging). Indirect kriging performed marginally well compared to direct kriging. Point ETo values were extended to areal ETo values by IDW and FAO-56 PM mean ETo maps for India were developed to obtain sufficiently accurate ETo estimates at unknown locations.
Bootstrap percolation on spatial networks
NASA Astrophysics Data System (ADS)
Gao, Jian; Zhou, Tao; Hu, Yanqing
2015-10-01
Bootstrap percolation is a general representation of some networked activation process, which has found applications in explaining many important social phenomena, such as the propagation of information. Inspired by some recent findings on spatial structure of online social networks, here we study bootstrap percolation on undirected spatial networks, with the probability density function of long-range links’ lengths being a power law with tunable exponent. Setting the size of the giant active component as the order parameter, we find a parameter-dependent critical value for the power-law exponent, above which there is a double phase transition, mixed of a second-order phase transition and a hybrid phase transition with two varying critical points, otherwise there is only a second-order phase transition. We further find a parameter-independent critical value around -1, about which the two critical points for the double phase transition are almost constant. To our surprise, this critical value -1 is just equal or very close to the values of many real online social networks, including LiveJournal, HP Labs email network, Belgian mobile phone network, etc. This work helps us in better understanding the self-organization of spatial structure of online social networks, in terms of the effective function for information spreading.
Sodium Atoms in the Lunar Exotail: Observed Velocity and Spatial Distributions
NASA Technical Reports Server (NTRS)
Line, Michael R.; Mierkiewicz, E. J.; Oliversen, R. J.; Wilson, J. K.; Haffner, L. M.; Roesler, F. L.
2011-01-01
The lunar sodium tail extends long distances due to radiation pressure on sodium atoms in the lunar exosphere. Our earlier observations determined the average radial velocity of sodium atoms moving down the lunar tail beyond Earth along the Sun-Moon-Earth line (i.e., the anti-lunar point) to be 12.4 km/s. Here we use the Wisconsin H-alpha Mapper to obtain the first kinematically resolved maps of the intensity and velocity distribution of this emission over a 15 x times 15 deg region on the sky near the anti-lunar point. We present both spatially and spectrally resolved observations obtained over four nights around new moon in October 2007. The spatial distribution of the sodium atoms is elongated along the ecliptic with the location of the peak intensity drifting 3 degrees east along the ecliptic per night. Preliminary modeling results suggest that the spatial and velocity distributions in the sodium exotail are sensitive to the near surface lunar sodium velocity distribution and that observations of this sort along with detailed modeling offer new opportunities to describe the time history of lunar surface sputtering over several days.
NASA Astrophysics Data System (ADS)
Irving, D. H.; Rasheed, M.; O'Doherty, N.
2010-12-01
The efficient storage, retrieval and interactive use of subsurface data present great challenges in geodata management. Data volumes are typically massive, complex and poorly indexed with inadequate metadata. Derived geomodels and interpretations are often tightly bound in application-centric and proprietary formats; open standards for long-term stewardship are poorly developed. Consequently current data storage is a combination of: complex Logical Data Models (LDMs) based on file storage formats; 2D GIS tree-based indexing of spatial data; and translations of serialised memory-based storage techniques into disk-based storage. Whilst adequate for working at the mesoscale over a short timeframes, these approaches all possess technical and operational shortcomings: data model complexity; anisotropy of access; scalability to large and complex datasets; and weak implementation and integration of metadata. High performance hardware such as parallelised storage and Relational Database Management System (RDBMS) have long been exploited in many solutions but the underlying data structure must provide commensurate efficiencies to allow multi-user, multi-application and near-realtime data interaction. We present an open Spatially-Registered Data Structure (SRDS) built on Massively Parallel Processing (MPP) database architecture implemented by a ANSI SQL 2008 compliant RDBMS. We propose a LDM comprising a 3D Earth model that is decomposed such that each increasing Level of Detail (LoD) is achieved by recursively halving the bin size until it is less than the error in each spatial dimension for that data point. The value of an attribute at that point is stored as a property of that point and at that LoD. It is key to the numerical efficiency of the SRDS that it is under-pinned by a power-of-two relationship thus precluding the need for computationally intensive floating point arithmetic. Our approach employed a tightly clustered MPP array with small clusters of storage, processors and memory communicating over a high-speed network inter-connect. This is a shared-nothing architecture where resources are managed within each cluster unlike most other RDBMSs. Data are accessed on this architecture by their primary index values which utilises the hashing algorithm for point-to-point access. The hashing algorithm’s main role is the efficient distribution of data across the clusters based on the primary index. In this study we used 3D seismic volumes, 2D seismic profiles and borehole logs to demonstrate application in both (x,y,TWT) and (x,y,z)-space. In the SRDS the primary index is a composite column index of (x,y) to avoid invoking time-consuming full table scans as is the case in tree-based systems. This means that data access is isotropic. A query for data in a specified spatial range permits retrieval recursively by point-to-point queries within each nested LoD yielding true linear performance up to the Petabyte scale with hardware scaling presenting the primary limiting factor. Our architecture and LDM promotes: realtime interaction with massive data volumes; streaming of result sets and server-rendered 2D/3D imagery; rigorous workflow control and auditing; and in-database algorithms run directly against data as a HPC cloud service.
Omisore, Olatunji Mumini; Han, Shipeng; Ren, Lingxue; Zhang, Nannan; Ivanov, Kamen; Elazab, Ahmed; Wang, Lei
2017-08-01
Snake-like robot is an emerging form of serial-link manipulator with the morphologic design of biological snakes. The redundant robot can be used to assist medical experts in accessing internal organs with minimal or no invasion. Several snake-like robotic designs have been proposed for minimal invasive surgery, however, the few that were developed are yet to be fully explored for clinical procedures. This is due to lack of capability for full-fledged spatial navigation. In rare cases where such snake-like designs are spatially flexible, there exists no inverse kinematics (IK) solution with both precise control and fast response. In this study, we proposed a non-iterative geometric method for solving IK of lead-module of a snake-like robot designed for therapy or ablation of abdominal tumors. The proposed method is aimed at providing accurate and fast IK solution for given target points in the robot's workspace. n-1 virtual points (VPs) were geometrically computed and set as coordinates of intermediary joints in an n-link module. Suitable joint angles that can place the end-effector at given target points were then computed by vectorizing coordinates of the VPs, in addition to coordinates of the base point, target point, and tip of the first link in its default pose. The proposed method is applied to solve IK of two-link and redundant four-link modules. Both two-link and four-link modules were simulated with Robotics Toolbox in Matlab 8.3 (R2014a). Implementation result shows that the proposed method can solve IK of the spatially flexible robot with minimal error values. Furthermore, analyses of results from both modules show that the geometric method can reach 99.21 and 88.61% of points in their workspaces, respectively, with an error threshold of 1 mm. The proposed method is non-iterative and has a maximum execution time of 0.009 s. This paper focuses on solving IK problem of a spatially flexible robot which is part of a developmental project for abdominal surgery through minimal invasion or natural orifices. The study showed that the proposed geometric method can resolve IK of the snake-like robot with negligible error offset. Evaluation against well-known methods shows that the proposed method can reach several points in the robot's workspace with high accuracy and shorter computational time, simultaneously.
Multidimensional extended spatial evolutionary games.
Krześlak, Michał; Świerniak, Andrzej
2016-02-01
The goal of this paper is to study the classical hawk-dove model using mixed spatial evolutionary games (MSEG). In these games, played on a lattice, an additional spatial layer is introduced for dependence on more complex parameters and simulation of changes in the environment. Furthermore, diverse polymorphic equilibrium points dependent on cell reproduction, model parameters, and their simulation are discussed. Our analysis demonstrates the sensitivity properties of MSEGs and possibilities for further development. We discuss applications of MSEGs, particularly algorithms for modelling cell interactions during the development of tumours. Copyright © 2015 Elsevier Ltd. All rights reserved.
Reconstructed Image Spatial Resolution of Multiple Coincidences Compton Imager
NASA Astrophysics Data System (ADS)
Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna
2010-02-01
We study the multiple coincidences Compton imager (MCCI) which is based on a simultaneous acquisition of several photons emitted in cascade from a single nuclear decay. Theoretically, this technique should provide a major improvement in localization of a single radioactive source as compared to a standard Compton camera. In this work, we investigated the performance and limitations of MCCI using Monte Carlo computer simulations. Spatial resolutions of the reconstructed point source have been studied as a function of the MCCI parameters, including geometrical dimensions and detector characteristics such as materials, energy and spatial resolutions.
Spatial Updating Strategy Affects the Reference Frame in Path Integration.
He, Qiliang; McNamara, Timothy P
2018-06-01
This study investigated how spatial updating strategies affected the selection of reference frames in path integration. Participants walked an outbound path consisting of three successive waypoints in a featureless environment and then pointed to the first waypoint. We manipulated the alignment of participants' final heading at the end of the outbound path with their initial heading to examine the adopted reference frame. We assumed that the initial heading defined the principal reference direction in an allocentric reference frame. In Experiment 1, participants were instructed to use a configural updating strategy and to monitor the shape of the outbound path while they walked it. Pointing performance was best when the final heading was aligned with the initial heading, indicating the use of an allocentric reference frame. In Experiment 2, participants were instructed to use a continuous updating strategy and to keep track of the location of the first waypoint while walking the outbound path. Pointing performance was equivalent regardless of the alignment between the final and the initial headings, indicating the use of an egocentric reference frame. These results confirmed that people could employ different spatial updating strategies in path integration (Wiener, Berthoz, & Wolbers Experimental Brain Research 208(1) 61-71, 2011), and suggested that these strategies could affect the selection of the reference frame for path integration.
NASA Astrophysics Data System (ADS)
Hamlin, Q. F.; Kendall, A. D.; Martin, S. L.; Whitenack, H. D.; Roush, J. A.; Hannah, B. A.; Hyndman, D. W.
2017-12-01
Excessive loading of nitrogen and phosphorous to the landscape has caused biologically and economically damaging eutrophication and harmful algal blooms in the Great Lakes Basin (GLB) and across the world. We mapped source-specific loads of nitrogen and phosphorous to the landscape using broadly available data across the GLB. SENSMap (Spatially Explicit Nutrient Source Map) is a 30m resolution snapshot of nutrient loads ca. 2010. We use these maps to study variable nutrient loading and provide this information to watershed managers through NOAA's GLB Tipping Points Planner. SENSMap individually maps nutrient point sources and six non-point sources: 1) atmospheric deposition, 2) septic tanks, 3) non-agricultural chemical fertilizer, 4) agricultural chemical fertilizer, 5) manure, and 6) nitrogen fixation from legumes. To model source-specific loads at high resolution, SENSMap synthesizes a wide range of remotely sensed, surveyed, and tabular data. Using these spatially explicit nutrient loading maps, we can better calibrate local land use-based water quality models and provide insight to watershed managers on how to focus nutrient reduction strategies. Here we examine differences in dominant nutrient sources across the GLB, and how those sources vary by land use. SENSMap's high resolution, source-specific approach offers a different lens to understand nutrient loading than traditional semi-distributed or land use based models.
Gomez-Cardona, Daniel; Hayes, John W; Zhang, Ran; Li, Ke; Cruz-Bastida, Juan Pablo; Chen, Guang-Hong
2018-05-01
Different low-signal correction (LSC) methods have been shown to efficiently reduce noise streaks and noise level in CT to provide acceptable images at low-radiation dose levels. These methods usually result in CT images with highly shift-variant and anisotropic spatial resolution and noise, which makes the parameter optimization process highly nontrivial. The purpose of this work was to develop a local task-based parameter optimization framework for LSC methods. Two well-known LSC methods, the adaptive trimmed mean (ATM) filter and the anisotropic diffusion (AD) filter, were used as examples to demonstrate how to use the task-based framework to optimize filter parameter selection. Two parameters, denoted by the set P, for each LSC method were included in the optimization problem. For the ATM filter, these parameters are the low- and high-signal threshold levels p l and p h ; for the AD filter, the parameters are the exponents δ and γ in the brightness gradient function. The detectability index d' under the non-prewhitening (NPW) mathematical observer model was selected as the metric for parameter optimization. The optimization problem was formulated as an unconstrained optimization problem that consisted of maximizing an objective function d'(P), where i and j correspond to the i-th imaging task and j-th spatial location, respectively. Since there is no explicit mathematical function to describe the dependence of d' on the set of parameters P for each LSC method, the optimization problem was solved via an experimentally measured d' map over a densely sampled parameter space. In this work, three high-contrast-high-frequency discrimination imaging tasks were defined to explore the parameter space of each of the LSC methods: a vertical bar pattern (task I), a horizontal bar pattern (task II), and a multidirectional feature (task III). Two spatial locations were considered for the analysis, a posterior region-of-interest (ROI) located within the noise streaks region and an anterior ROI, located further from the noise streaks region. Optimal results derived from the task-based detectability index metric were compared to other operating points in the parameter space with different noise and spatial resolution trade-offs. The optimal operating points determined through the d' metric depended on the interplay between the major spatial frequency components of each imaging task and the highly shift-variant and anisotropic noise and spatial resolution properties associated with each operating point in the LSC parameter space. This interplay influenced imaging performance the most when the major spatial frequency component of a given imaging task coincided with the direction of spatial resolution loss or with the dominant noise spatial frequency component; this was the case of imaging task II. The performance of imaging tasks I and III was influenced by this interplay in a smaller scale than imaging task II, since the major frequency component of task I was perpendicular to imaging task II, and because imaging task III did not have strong directional dependence. For both LSC methods, there was a strong dependence of the overall d' magnitude and shape of the contours on the spatial location within the phantom, particularly for imaging tasks II and III. The d' value obtained at the optimal operating point for each spatial location and imaging task was similar when comparing the LSC methods studied in this work. A local task-based detectability framework to optimize the selection of parameters for LSC methods was developed. The framework takes into account the potential shift-variant and anisotropic spatial resolution and noise properties to maximize the imaging performance of the CT system. Optimal parameters for a given LSC method depend strongly on the spatial location within the image object. © 2018 American Association of Physicists in Medicine.
Congenital blindness limits allocentric to egocentric switching ability.
Ruggiero, Gennaro; Ruotolo, Francesco; Iachini, Tina
2018-03-01
Many everyday spatial activities require the cooperation or switching between egocentric (subject-to-object) and allocentric (object-to-object) spatial representations. The literature on blind people has reported that the lack of vision (congenital blindness) may limit the capacity to represent allocentric spatial information. However, research has mainly focused on the selective involvement of egocentric or allocentric representations, not the switching between them. Here we investigated the effect of visual deprivation on the ability to switch between spatial frames of reference. To this aim, congenitally blind (long-term visual deprivation), blindfolded sighted (temporary visual deprivation) and sighted (full visual availability) participants were compared on the Ego-Allo switching task. This task assessed the capacity to verbally judge the relative distances between memorized stimuli in switching (from egocentric-to-allocentric: Ego-Allo; from allocentric-to-egocentric: Allo-Ego) and non-switching (only-egocentric: Ego-Ego; only-allocentric: Allo-Allo) conditions. Results showed a difficulty in congenitally blind participants when switching from allocentric to egocentric representations, not when the first anchor point was egocentric. In line with previous results, a deficit in processing allocentric representations in non-switching conditions also emerged. These findings suggest that the allocentric deficit in congenital blindness may determine a difficulty in simultaneously maintaining and combining different spatial representations. This deficit alters the capacity to switch between reference frames specifically when the first anchor point is external and not body-centered.
Xun-Ping, W; An, Z
2017-07-27
Objective To optimize and simplify the survey method of Oncomelania hupensis snails in marshland endemic regions of schistosomiasis, so as to improve the precision, efficiency and economy of the snail survey. Methods A snail sampling strategy (Spatial Sampling Scenario of Oncomelania based on Plant Abundance, SOPA) which took the plant abundance as auxiliary variable was explored and an experimental study in a 50 m×50 m plot in a marshland in the Poyang Lake region was performed. Firstly, the push broom surveyed data was stratified into 5 layers by the plant abundance data; then, the required numbers of optimal sampling points of each layer through Hammond McCullagh equation were calculated; thirdly, every sample point in the line with the Multiple Directional Interpolation (MDI) placement scheme was pinpointed; and finally, the comparison study among the outcomes of the spatial random sampling strategy, the traditional systematic sampling method, the spatial stratified sampling method, Sandwich spatial sampling and inference and SOPA was performed. Results The method (SOPA) proposed in this study had the minimal absolute error of 0.213 8; and the traditional systematic sampling method had the largest estimate, and the absolute error was 0.924 4. Conclusion The snail sampling strategy (SOPA) proposed in this study obtains the higher estimation accuracy than the other four methods.
A spatial and seasonal assessment of river water chemistry across North West England.
Rothwell, J J; Dise, N B; Taylor, K G; Allott, T E H; Scholefield, P; Davies, H; Neal, C
2010-01-15
This paper presents information on the spatial and seasonal patterns of river water chemistry at approximately 800 sites in North West England based on data from the Environment Agency regional monitoring programme. Within a GIS framework, the linkages between average water chemistry (pH, sulphate, base cations, nutrients and metals) catchment characteristics (topography, land cover, soil hydrology, base flow index and geology), rainfall, deposition chemistry and geo-spatial information on discharge consents (point sources) are examined. Water quality maps reveal that there is a clear distinction between the uplands and lowlands. Upland waters are acidic and have low concentrations of base cations, explained by background geological sources and land cover. Localised high concentrations of metals occur in areas of the Cumbrian Fells which are subjected to mining effluent inputs. Nutrient concentrations are low in the uplands with the exception sites receiving effluent inputs from rural point sources. In the lowlands, both past and present human activities have a major impact on river water chemistry, especially in the urban and industrial heartlands of Greater Manchester, south Lancashire and Merseyside. Over 40% of the sites have average orthophosphate concentrations >0.1mg-Pl(-1). Results suggest that the dominant control on orthophosphate concentrations is point source contributions from sewage effluent inputs. Diffuse agricultural sources are also important, although this influence is masked by the impact of point sources. Average nitrate concentrations are linked to the coverage of arable land, although sewage effluent inputs have a significant effect on nitrate concentrations. Metal concentrations in the lowlands are linked to diffuse and point sources. The study demonstrates that point sources, as well as diffuse sources, need to be considered when targeting measures for the effective reduction in river nutrient concentrations. This issue is clearly important with regards to the European Union Water Framework Directive, eutrophication and river water quality. Copyright 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mahmoudabadi, H.; Briggs, G.
2016-12-01
Gridded data sets, such as geoid models or datum shift grids, are commonly used in coordinate transformation algorithms. Grid files typically contain known or measured values at regular fixed intervals. The process of computing a value at an unknown location from the values in the grid data set is called "interpolation". Generally, interpolation methods predict a value at a given point by computing a weighted average of the known values in the neighborhood of the point. Geostatistical Kriging is a widely used interpolation method for irregular networks. Kriging interpolation first analyzes the spatial structure of the input data, then generates a general model to describe spatial dependencies. This model is used to calculate values at unsampled locations by finding direction, shape, size, and weight of neighborhood points. Because it is based on a linear formulation for the best estimation, Kriging it the optimal interpolation method in statistical terms. The Kriging interpolation algorithm produces an unbiased prediction, as well as the ability to calculate the spatial distribution of uncertainty, allowing you to estimate the errors in an interpolation for any particular point. Kriging is not widely used in geospatial applications today, especially applications that run on low power devices or deal with large data files. This is due to the computational power and memory requirements of standard Kriging techniques. In this paper, improvements are introduced in directional kriging implementation by taking advantage of the structure of the grid files. The regular spacing of points simplifies finding the neighborhood points and computing their pairwise distances, reducing the the complexity and improving the execution time of the Kriging algorithm. Also, the proposed method iteratively loads small portion of interest areas in different directions to reduce the amount of required memory. This makes the technique feasible on almost any computer processor. Comparison between kriging and other standard interpolation methods demonstrated more accurate estimations in less denser data files.
Cross-sectional transport imaging in a multijunction solar cell
Haegel, Nancy M.; Ke, Chi -Wen; Taha, Hesham; ...
2016-12-01
Here, we combine a highly localized electron-beam point source excitation to generate excess free carriers with the spatial resolution of optical near-field imaging to map recombination in a cross-sectioned multijunction (Ga 0.5In 0.5P/GaIn 0.01As/Ge) solar cell. By mapping the spatial variations in emission of light for fixed generation (as opposed to traditional cathodoluminescence (CL), which maps integrated emission as a function of position of generation), it is possible to directly monitor the motion of carriers and photons. We observe carrier diffusion throughout the full width of the middle (GaInAs) cell, as well as luminescent coupling from point source excitation inmore » the top cell GaInP to the middle cell. Supporting CL and near-field photoluminescence (PL) measurements demonstrate the excitation-dependent Fermi level splitting effects that influence cross-sectioned spectroscopy results, as well as transport limitations on the spatial resolution of conventional cross-sectional far-field measurements.« less
Schlossberg, David J.; Bodner, Grant M.; Bongard, Michael W.; ...
2016-09-16
Here, a novel, cost-effective, multi-point Thomson scattering system has been designed, implemented, and operated on the Pegasus Toroidal Experiment. Leveraging advances in Nd:YAG lasers, high-efficiency volume phase holographic transmission gratings, and increased quantum-efficiency Generation 3 image-intensified charge coupled device (ICCD) cameras, the system provides Thomson spectra at eight spatial locations for a single grating/camera pair. The on-board digitization of the ICCD camera enables easy modular expansion, evidenced by recent extension from 4 to 12 plasma/background spatial location pairs. Stray light is rejected using time-of-flight methods suited to gated ICCDs, and background light is blocked during detector readout by a fastmore » shutter. This –10 3 reduction in background light enables further expansion to up to 24 spatial locations. The implementation now provides single-shot T e(R) for n e > 5 × 10 18 m –3.« less
NASA Astrophysics Data System (ADS)
Wang, Shuping; Shibahara, Nanae; Kuramashi, Daishi; Okawa, Shinpei; Kakuta, Naoto; Okada, Eiji; Maki, Atsushi; Yamada, Yukio
2010-07-01
In order to investigate the effects of anatomical variation in human heads on the optical mapping of brain activity, we perform simulations of optical mapping by solving the photon diffusion equation for layered-models simulating human heads using the finite element method (FEM). Particularly, the effects of the spatial variations in the thicknesses of the skull and cerebrospinal fluid (CSF) layers on mapping images are investigated. Mapping images of single active regions in the gray matter layer are affected by the spatial variations in the skull and CSF layer thicknesses, although the effects are smaller than those of the positions of the active region relative to the data points. The increase in the skull thickness decreases the sensitivity of the images to active regions, while the increase in the CSF layer thickness increases the sensitivity in general. The images of multiple active regions are also influenced by their positions relative to the data points and by their depths from the skin surface.
Eta Carinae: Viewed from Multiple Vantage Points
NASA Technical Reports Server (NTRS)
Gull, Theodore
2007-01-01
The central source of Eta Carinae and its ejecta is a massive binary system buried within a massive interacting wind structure which envelops the two stars. However the hot, less massive companion blows a small cavity in the very massive primary wind, plus ionizes a portion of the massive wind just beyond the wind-wind boundary. We gain insight on this complex structure by examining the spatially-resolved Space Telescope Imaging Spectrograph (STIS) spectra of the central source (0.1") with the wind structure which extends out to nearly an arcsecond (2300AU) and the wind-blown boundaries, plus the ejecta of the Little Homunculus. Moreover, the spatially resolved Very Large Telescope/UltraViolet Echelle Spectrograph (VLT/UVES) stellar spectrum (one arcsecond) and spatially sampled spectra across the foreground lobe of the Homunculus provide us vantage points from different angles relative to line of sight. Examples of wind line profiles of Fe II, and the.highly excited [Fe III], [Ne III], [Ar III] and [S III)], plus other lines will be presented.
One-loop gravitational wave spectrum in de Sitter spacetime
NASA Astrophysics Data System (ADS)
Fröb, Markus B.; Roura, Albert; Verdaguer, Enric
2012-08-01
The two-point function for tensor metric perturbations around de Sitter spacetime including one-loop corrections from massless conformally coupled scalar fields is calculated exactly. We work in the Poincaré patch (with spatially flat sections) and employ dimensional regularization for the renormalization process. Unlike previous studies we obtain the result for arbitrary time separations rather than just equal times. Moreover, in contrast to existing results for tensor perturbations, ours is manifestly invariant with respect to the subgroup of de Sitter isometries corresponding to a simultaneous time translation and rescaling of the spatial coordinates. Having selected the right initial state for the interacting theory via an appropriate iepsilon prescription is crucial for that. Finally, we show that although the two-point function is a well-defined spacetime distribution, the equal-time limit of its spatial Fourier transform is divergent. Therefore, contrary to the well-defined distribution for arbitrary time separations, the power spectrum is strictly speaking ill-defined when loop corrections are included.
Similarity-based cooperation and spatial segregation
NASA Astrophysics Data System (ADS)
Traulsen, Arne; Claussen, Jens Christian
2004-10-01
We analyze a cooperative game, where the cooperative act is not based on the previous behavior of the coplayer, but on the similarity between the players. This system has been studied in a mean-field description recently [A. Traulsen and H. G. Schuster, Phys. Rev. E 68, 046129 (2003)]. Here, the spatial extension to a two-dimensional lattice is studied, where each player interacts with eight players in a Moore neighborhood. The system shows a strong segregation independent of parameters. The introduction of a local conversion mechanism towards tolerance allows for four-state cycles and the emergence of spiral waves in the spatial game. In the case of asymmetric costs of cooperation a rich variety of complex behavior is observed depending on both cooperation costs. Finally, we study the stabilization of a cooperative fixed point of a forecast rule in the symmetric game, which corresponds to cooperation across segregation borders. This fixed point becomes unstable for high cooperation costs, but can be stabilized by a linear feedback mechanism.
Keeping one's distance: the influence of spatial distance cues on affect and evaluation.
Williams, Lawrence E; Bargh, John A
2008-03-01
Current conceptualizations of psychological distance (e.g., construal-level theory) refer to the degree of overlap between the self and some other person, place, or point in time. We propose a complementary view in which perceptual and motor representations of physical distance influence people's thoughts and feelings without reference to the self, extending research and theory on the effects of distance into domains where construal-level theory is silent. Across four experiments, participants were primed with either spatial closeness or spatial distance by plotting an assigned set of points on a Cartesian coordinate plane. Compared with the closeness prime, the distance prime produced greater enjoyment of media depicting embarrassment (Study 1), less emotional distress from violent media (Study 2), lower estimates of the number of calories in unhealthy food (Study 3), and weaker reports of emotional attachments to family members and hometowns (Study 4). These results support a broader conceptualization of distance-mediated effects on judgment and affect.
Full-frame, programmable hyperspectral imager
DOE Office of Scientific and Technical Information (OSTI.GOV)
Love, Steven P.; Graff, David L.
A programmable, many-band spectral imager based on addressable spatial light modulators (ASLMs), such as micro-mirror-, micro-shutter- or liquid-crystal arrays, is described. Capable of collecting at once, without scanning, a complete two-dimensional spatial image with ASLM spectral processing applied simultaneously to the entire image, the invention employs optical assemblies wherein light from all image points is forced to impinge at the same angle onto the dispersing element, eliminating interplay between spatial position and wavelength. This is achieved, as examples, using telecentric optics to image light at the required constant angle, or with micro-optical array structures, such as micro-lens- or capillary arrays,more » that aim the light on a pixel-by-pixel basis. Light of a given wavelength then emerges from the disperser at the same angle for all image points, is collected at a unique location for simultaneous manipulation by the ASLM, then recombined with other wavelengths to form a final spectrally-processed image.« less
Wang, Yujue; Liu, Dongyan; Dong, Zhijun; Di, Baoping; Shen, Xuhong
2012-12-01
The temporal and spatial distributions of dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON), soluble reactive phosphorus (SRP) and dissolved reactive silica (DRSi) together with chlorophyll-a, temperature and salinity were analyzed monthly from December 2008 to March 2010 at four zones in Sishili Bay located in the northern Yellow Sea. The nutrient distribution was impacted by seasonal factors (biotic factors, temperature and wet deposition), physical factors (water exchange) and anthropogenic loadings. The seasonal variations of nutrients were mainly determined by the seasonal factors and the spatial distribution of nutrients was mainly related to water exchange. Anthropogenic loadings for DIN, SRP and DRSi were mainly from point sources, but for DON, non-point sources were also important. Nutrient limitation has changed from DIN in 1997 to SRP and DRSi in 2010, and this has resulted in changes in the dominant red tide species from diatom to dinoflagellates. Copyright © 2012 Elsevier Ltd. All rights reserved.
Near-Infrared Spatially Resolved Spectroscopy for Tablet Quality Determination.
Igne, Benoît; Talwar, Sameer; Feng, Hanzhou; Drennen, James K; Anderson, Carl A
2015-12-01
Near-infrared (NIR) spectroscopy has become a well-established tool for the characterization of solid oral dosage forms manufacturing processes and finished products. In this work, the utility of a traditional single-point NIR measurement was compared with that of a spatially resolved spectroscopic (SRS) measurement for the determination of tablet assay. Experimental designs were used to create samples that allowed for calibration models to be developed and tested on both instruments. Samples possessing a poor distribution of ingredients (highly heterogeneous) were prepared by under-blending constituents prior to compaction to compare the analytical capabilities of the two NIR methods. The results indicate that SRS can provide spatial information that is usually obtainable only through imaging experiments for the determination of local heterogeneity and detection of abnormal tablets that would not be detected with single-point spectroscopy, thus complementing traditional NIR measurement systems for in-line, and in real-time tablet analysis. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Training site statistics from Landsat and Seasat satellite imagery registered to a common map base
NASA Technical Reports Server (NTRS)
Clark, J.
1981-01-01
Landsat and Seasat satellite imagery and training site boundary coordinates were registered to a common Universal Transverse Mercator map base in the Newport Beach area of Orange County, California. The purpose was to establish a spatially-registered, multi-sensor data base which would test the use of Seasat synthetic aperture radar imagery to improve spectral separability of channels used for land use classification of an urban area. Digital image processing techniques originally developed for the digital mosaics of the California Desert and the State of Arizona were adapted to spatially register multispectral and radar data. Techniques included control point selection from imagery and USGS topographic quadrangle maps, control point cataloguing with the Image Based Information System, and spatial and spectral rectifications of the imagery. The radar imagery was pre-processed to reduce its tendency toward uniform data distributions, so that training site statistics for selected Landsat and pre-processed Seasat imagery indicated good spectral separation between channels.
Fundamental procedures of geographic information analysis
NASA Technical Reports Server (NTRS)
Berry, J. K.; Tomlin, C. D.
1981-01-01
Analytical procedures common to most computer-oriented geographic information systems are composed of fundamental map processing operations. A conceptual framework for such procedures is developed and basic operations common to a broad range of applications are described. Among the major classes of primitive operations identified are those associated with: reclassifying map categories as a function of the initial classification, the shape, the position, or the size of the spatial configuration associated with each category; overlaying maps on a point-by-point, a category-wide, or a map-wide basis; measuring distance; establishing visual or optimal path connectivity; and characterizing cartographic neighborhoods based on the thematic or spatial attributes of the data values within each neighborhood. By organizing such operations in a coherent manner, the basis for a generalized cartographic modeling structure can be developed which accommodates a variety of needs in a common, flexible and intuitive manner. The use of each is limited only by the general thematic and spatial nature of the data to which it is applied.
Two spatial memories are not better than one: evidence of exclusivity in memory for object location.
Baguley, Thom; Lansdale, Mark W; Lines, Lorna K; Parkin, Jennifer K
2006-05-01
This paper studies the dynamics of attempting to access two spatial memories simultaneously and its implications for the accuracy of recall. Experiment 1 demonstrates in a range of conditions that two cues pointing to different experiences of the same object location produce little or no higher recall than that observed with a single cue. Experiment 2 confirms this finding in a within-subject design where both cues have previously elicited recall. Experiment 3 shows that these findings are only consistent with a model in which two representations of the same object location are mutually exclusive at both encoding and retrieval, and inconsistent with models that assume information from both representations is available. We propose that these representations quantify directionally specific judgments of location relative to specific anchor points in the stimulus; a format that precludes the parallel processing of like representations. Finally, we consider the apparent paradox of how such representations might contribute to the acquisition of spatial knowledge from multiple experiences of the same stimuli.
Multi-Point Measurements to Characterize Radiation Belt Electron Precipitation Loss
NASA Astrophysics Data System (ADS)
Blum, L. W.
2017-12-01
Multipoint measurements in the inner magnetosphere allow the spatial and temporal evolution of various particle populations and wave modes to be disentangled. To better characterize and quantify radiation belt precipitation loss, we utilize multi-point measurements both to study precipitating electrons directly as well as the potential drivers of this loss process. Magnetically conjugate CubeSat and balloon measurements are combined to estimate of the temporal and spatial characteristics of dusk-side precipitation features and quantify loss due to these events. To then understand the drivers of precipitation events, and what determines their spatial structure, we utilize measurements from the dual Van Allen Probes to estimate spatial and temporal scales of various wave modes in the inner magnetosphere, and compare these to precipitation characteristics. The structure, timing, and spatial extent of waves are compared to those of MeV electron precipitation during a few individual events to determine when and where EMIC waves cause radiation belt electron precipitation. Magnetically conjugate measurements provide observational support of the theoretical picture of duskside interaction of EMIC waves and MeV electrons leading to radiation belt loss. Finally, understanding the drivers controlling the spatial scales of wave activity in the inner magnetosphere is critical for uncovering the underlying physics behind the wave generation as well as for better predicting where and when waves will be present. Again using multipoint measurements from the Van Allen Probes, we estimate the spatial and temporal extents and evolution of plasma structures and their gradients in the inner magnetosphere, to better understand the drivers of magnetospheric wave characteristic scales. In particular, we focus on EMIC waves and the plasma parameters important for their growth, namely cold plasma density and cool and warm ion density, anisotropy, and composition.
Spatial patterns in vegetation fires in the Indian region.
Vadrevu, Krishna Prasad; Badarinath, K V S; Anuradha, Eaturu
2008-12-01
In this study, we used fire count datasets derived from Along Track Scanning Radiometer (ATSR) satellite to characterize spatial patterns in fire occurrences across highly diverse geographical, vegetation and topographic gradients in the Indian region. For characterizing the spatial patterns of fire occurrences, observed fire point patterns were tested against the hypothesis of a complete spatial random (CSR) pattern using three different techniques, the quadrat analysis, nearest neighbor analysis and Ripley's K function. Hierarchical nearest neighboring technique was used to depict the 'hotspots' of fire incidents. Of the different states, highest fire counts were recorded in Madhya Pradesh (14.77%) followed by Gujarat (10.86%), Maharastra (9.92%), Mizoram (7.66%), Jharkhand (6.41%), etc. With respect to the vegetation categories, highest number of fires were recorded in agricultural regions (40.26%) followed by tropical moist deciduous vegetation (12.72), dry deciduous vegetation (11.40%), abandoned slash and burn secondary forests (9.04%), tropical montane forests (8.07%) followed by others. Analysis of fire counts based on elevation and slope range suggested that maximum number of fires occurred in low and medium elevation types and in very low to low-slope categories. Results from three different spatial techniques for spatial pattern suggested clustered pattern in fire events compared to CSR. Most importantly, results from Ripley's K statistic suggested that fire events are highly clustered at a lag-distance of 125 miles. Hierarchical nearest neighboring clustering technique identified significant clusters of fire 'hotspots' in different states in northeast and central India. The implications of these results in fire management and mitigation were discussed. Also, this study highlights the potential of spatial point pattern statistics in environmental monitoring and assessment studies with special reference to fire events in the Indian region.
A Spatial Analysis of the Potato Cyst Nematode Globodera pallida in Idaho.
Dandurand, Louise-Marie; Contina, Jean Bertrand; Knudsen, Guy R
2018-03-13
The potato cyst nematode (PCN), Globodera pallida, is a globally regulated and quarantine potato pest. It was detected for the first time in the U.S. in the state of Idaho in 2006. A spatial analysis was performed to: (i) understand the spatial arrangement of PCN infested fields in southern Idaho using spatial point pattern analysis; and (ii) evaluate the potential threat of PCN for entry to new areas using spatial interpolation techniques. Data point locations, cyst numbers and egg viability values for each infested field were collected by USDA-APHIS during 2006-2014. Results showed the presence of spatially clustered PCN infested fields (P = 0.003). We determined that the spread of PCN grew in diameter from the original center of infestation toward the southwest as an ellipsoidal-shaped cluster. Based on the aggregated spatial pattern of distribution and the low extent level of PCN infested fields in southern Idaho, we determined that PCN spread followed a contagion effect scenario, where nearby infested fields contributed to the infestation of new fields, probably through soil contaminated agricultural equipment or tubers. We determined that the recent PCN presence in southern Idaho is unlikely to be associated with new PCN entry from outside the state of Idaho. The relative aggregation of PCN infested fields, the low number of cysts recovered, and the low values in egg viability facilitate quarantine activities and confine this pest to a small area, which, in 2017, is estimated to be 1,233 hectares. The tools and methods provided in this study should facilitate comprehensive approaches to improve PCN control and eradication programs as well as to raise public awareness about this economically important potato pest.
NASA Astrophysics Data System (ADS)
Zarnetske, J. P.; Abbott, B. W.; Bowden, W. B.; Iannucci, F.; Griffin, N.; Parker, S.; Pinay, G.; Aanderud, Z.
2017-12-01
Dissolved organic carbon (DOC), nutrients, and other solute concentrations are increasing in rivers across the Arctic. Two hypotheses have been proposed to explain these trends: 1. distributed, top-down permafrost degradation, and 2. discrete, point-source delivery of DOC and nutrients from permafrost collapse features (thermokarst). While long-term monitoring at a single station cannot discriminate between these mechanisms, synoptic sampling of multiple points in the stream network could reveal the spatial structure of solute sources. In this context, we sampled carbon and nutrient chemistry three times over two years in 119 subcatchments of three distinct Arctic catchments (North Slope, Alaska). Subcatchments ranged from 0.1 to 80 km2, and included three distinct types of Arctic landscapes - mountainous, tundra, and glacial-lake catchments. We quantified the stability of spatial patterns in synoptic water chemistry and analyzed high-frequency time series from the catchment outlets across the thaw season to identify source areas for DOC, nutrients, and major ions. We found that variance in solute concentrations between subcatchments collapsed at spatial scales between 1 to 20 km2, indicating a continuum of diffuse- and point-source dynamics, depending on solute and catchment characteristics (e.g. reactivity, topography, vegetation, surficial geology). Spatially-distributed mass balance revealed conservative transport of DOC and nitrogen, and indicates there may be strong in-stream retention of phosphorus, providing a network-scale confirmation of previous reach-scale studies in these Arctic catchments. Overall, we present new approaches to analyzing synoptic data for change detection and quantification of ecohydrological mechanisms in ecosystems in the Arctic and beyond.
Lessons Learned from OMI Observations of Point Source SO2 Pollution
NASA Technical Reports Server (NTRS)
Krotkov, N.; Fioletov, V.; McLinden, Chris
2011-01-01
The Ozone Monitoring Instrument (OMI) on NASA Aura satellite makes global daily measurements of the total column of sulfur dioxide (SO2), a short-lived trace gas produced by fossil fuel combustion, smelting, and volcanoes. Although anthropogenic SO2 signals may not be detectable in a single OMI pixel, it is possible to see the source and determine its exact location by averaging a large number of individual measurements. We describe new techniques for spatial and temporal averaging that have been applied to the OMI SO2 data to determine the spatial distributions or "fingerprints" of SO2 burdens from top 100 pollution sources in North America. The technique requires averaging of several years of OMI daily measurements to observe SO2 pollution from typical anthropogenic sources. We found that the largest point sources of SO2 in the U.S. produce elevated SO2 values over a relatively small area - within 20-30 km radius. Therefore, one needs higher than OMI spatial resolution to monitor typical SO2 sources. TROPOMI instrument on the ESA Sentinel 5 precursor mission will have improved ground resolution (approximately 7 km at nadir), but is limited to once a day measurement. A pointable geostationary UVB spectrometer with variable spatial resolution and flexible sampling frequency could potentially achieve the goal of daily monitoring of SO2 point sources and resolve downwind plumes. This concept of taking the measurements at high frequency to enhance weak signals needs to be demonstrated with a GEOCAPE precursor mission before 2020, which will help formulating GEOCAPE measurement requirements.
NASA Astrophysics Data System (ADS)
Lindley, S. J.; Walsh, T.
There are many modelling methods dedicated to the estimation of spatial patterns in pollutant concentrations, each with their distinctive advantages and disadvantages. The derivation of a surface of air quality values from monitoring data alone requires the conversion of point-based data from a limited number of monitoring stations to a continuous surface using interpolation. Since interpolation techniques involve the estimation of data at un-sampled points based on calculated relationships between data measured at a number of known sample points, they are subject to some uncertainty, both in terms of the values estimated and their spatial distribution. These uncertainties, which are incorporated into many empirical and semi-empirical mapping methodologies, could be recognised in any further usage of the data and also in the assessment of the extent of an exceedence of an air quality standard and the degree of exposure this may represent. There is a wide range of available interpolation techniques and the differences in the characteristics of these result in variations in the output surfaces estimated from the same set of input points. The work presented in this paper provides an examination of uncertainties through the application of a number of interpolation techniques available in standard GIS packages to a case study nitrogen dioxide data set for the Greater Manchester conurbation in northern England. The implications of the use of different techniques are discussed through application to hourly concentrations during an air quality episode and annual average concentrations in 2001. Patterns of concentrations demonstrate considerable differences in the estimated spatial pattern of maxima as the combined effects of chemical processes, topography and meteorology. In the case of air quality episodes, the considerable spatial variability of concentrations results in large uncertainties in the surfaces produced but these uncertainties vary widely from area to area. In view of the uncertainties with classical techniques research is ongoing to develop alternative methods which should in time help improve the suite of tools available to air quality managers.
A new PET detector concept for compact preclinical high-resolution hybrid MR-PET
NASA Astrophysics Data System (ADS)
Berneking, Arne; Gola, Alberto; Ferri, Alessandro; Finster, Felix; Rucatti, Daniele; Paternoster, Giovanni; Jon Shah, N.; Piemonte, Claudio; Lerche, Christoph
2018-04-01
This work presents a new PET detector concept for compact preclinical hybrid MR-PET. The detector concept is based on Linearly-Graded SiPM produced with current FBK RGB-HD technology. One 7.75 mm x 7.75 mm large sensor chip is coupled with optical grease to a black coated 8 mm x 8 mm large and 3 mm thick monolithic LYSO crystal. The readout is obtained from four readout channels with the linear encoding based on integrated resistors and the Center of Gravity approach. To characterize the new detector concept, the spatial and energy resolutions were measured. Therefore, the measurement setup was prepared to radiate a collimated beam to 25 different points perpendicular to the monolithic scintillator crystal. Starting in the center point of the crystal at 0 mm / 0 mm and sampling a grid with a pitch of 1.75 mm, all significant points of the detector were covered by the collimator beam. The measured intrinsic spatial resolution (FWHM) was 0.74 +/- 0.01 mm in x- and 0.69 +/- 0.01 mm in the y-direction at the center of the detector. At the same point, the measured energy resolution (FWHM) was 13.01 +/- 0.05 %. The mean intrinsic spatial resolution (FWHM) over the whole detector was 0.80 +/- 0.28 mm in x- and 0.72 +/- 0.19 mm in y-direction. The energy resolution (FWHM) of the detector was between 13 and 17.3 % with an average energy resolution of 15.7 +/- 1.0 %. Due to the reduced thickness, the sensitivity of this gamma detector is low but still higher than pixelated designs with the same thickness due to the monolithic crystals. Combining compact design, high spatial resolution, and high sensitivity, the detector concept is particularly suitable for applications where the scanner bore size is limited and high resolution is required - as is the case in small animal hybrid MR-PET.
Chien, Huei-Ting; Zach, Peter W; Friedel, Bettina
2017-08-23
In this study, we focus on the induced degradation and spatial inhomogeneity of organic photovoltaic devices under different environmental conditions, uncoupled from the influence of any auxiliary hole-transport (HT) layer. During testing of the corresponding devices comprising the standard photoactive layer of poly(3-hexylthiophene) as donor, blended with phenyl-C 61 -butyric acid methyl ester as acceptor, a comparison was made between the nonencapsulated devices upon exposure to argon in the dark, dry air in the dark, dry air with illumination, and humid air in the dark. The impact on the active layer's photophysics is discussed, along with the device physics in terms of integral solar cell performance and spatially resolved photocurrent distribution with point-to-point analysis of the diode characteristics to determine the origin of the observed integrated organic photovoltaic device behavior. The results show that even without the widely used hygroscopic HT layer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), humidity is still a major factor in the short-term environmental degradation of organic solar cells with this architecture, and not only oxygen or light, as is often reported. Different from previous reports where water-induced device degradation was spatially homogeneous and formation of Al 2 O 3 islands was only seen for oxygen permeation through pinholes in aluminum, we observed insulating islands merely after humidity exposure in the present study. Further, we demonstrated with laser beam induced current mapping and point-to-point diode analysis that the water-induced performance losses are a result of the exposed device area comprising regions with entirely unaltered high output and intact diode behavior and those with severe degradation showing detrimentally lowered output and voltage-independent charge blocking, which is essentially insulating behavior. It is suggested that this is caused by transport of water through pinholes to the organic/metal interface, where they form insulating oxide or hydroxide islands, while the organic active layer stays unharmed.
Determining the Number of Clusters in a Data Set Without Graphical Interpretation
NASA Technical Reports Server (NTRS)
Aguirre, Nathan S.; Davies, Misty D.
2011-01-01
Cluster analysis is a data mining technique that is meant ot simplify the process of classifying data points. The basic clustering process requires an input of data points and the number of clusters wanted. The clustering algorithm will then pick starting C points for the clusters, which can be either random spatial points or random data points. It then assigns each data point to the nearest C point where "nearest usually means Euclidean distance, but some algorithms use another criterion. The next step is determining whether the clustering arrangement this found is within a certain tolerance. If it falls within this tolerance, the process ends. Otherwise the C points are adjusted based on how many data points are in each cluster, and the steps repeat until the algorithm converges,
Einstein-Podolsky-Rosen entanglement and steering in two-well Bose-Einstein-condensate ground states
NASA Astrophysics Data System (ADS)
He, Q. Y.; Drummond, P. D.; Olsen, M. K.; Reid, M. D.
2012-08-01
We consider how to generate and detect Einstein-Podolsky-Rosen (EPR) entanglement and the steering paradox between groups of atoms in two separated potential wells in a Bose-Einstein condensate. We present experimental criteria for this form of entanglement and propose experimental strategies for detecting entanglement using two- or four-mode ground states. These approaches use spatial and/or internal modes. We also present higher-order criteria that act as signatures to detect the multiparticle entanglement present in this system. We point out the difference between spatial entanglement using separated detectors and other types of entanglement that do not require spatial separation. The four-mode approach with two spatial and two internal modes results in an entanglement signature with spatially separated detectors, conceptually similar to the original EPR paradox.
False Discovery Control in Large-Scale Spatial Multiple Testing
Sun, Wenguang; Reich, Brian J.; Cai, T. Tony; Guindani, Michele; Schwartzman, Armin
2014-01-01
Summary This article develops a unified theoretical and computational framework for false discovery control in multiple testing of spatial signals. We consider both point-wise and cluster-wise spatial analyses, and derive oracle procedures which optimally control the false discovery rate, false discovery exceedance and false cluster rate, respectively. A data-driven finite approximation strategy is developed to mimic the oracle procedures on a continuous spatial domain. Our multiple testing procedures are asymptotically valid and can be effectively implemented using Bayesian computational algorithms for analysis of large spatial data sets. Numerical results show that the proposed procedures lead to more accurate error control and better power performance than conventional methods. We demonstrate our methods for analyzing the time trends in tropospheric ozone in eastern US. PMID:25642138
Estimating Long Term Surface Soil Moisture in the GCIP Area From Satellite Microwave Observations
NASA Technical Reports Server (NTRS)
Owe, Manfred; deJeu, Vrije; VandeGriend, Adriaan A.
2000-01-01
Soil moisture is an important component of the water and energy balances of the Earth's surface. Furthermore, it has been identified as a parameter of significant potential for improving the accuracy of large-scale land surface-atmosphere interaction models. However, accurate estimates of surface soil moisture are often difficult to make, especially at large spatial scales. Soil moisture is a highly variable land surface parameter, and while point measurements are usually accurate, they are representative only of the immediate site which was sampled. Simple averaging of point values to obtain spatial means often leads to substantial errors. Since remotely sensed observations are already a spatially averaged or areally integrated value, they are ideally suited for measuring land surface parameters, and as such, are a logical input to regional or larger scale land process models. A nine-year database of surface soil moisture is being developed for the Central United States from satellite microwave observations. This region forms much of the GCIP study area, and contains most of the Mississippi, Rio Grande, and Red River drainages. Daytime and nighttime microwave brightness temperatures were observed at a frequency of 6.6 GHz, by the Scanning Multichannel Microwave Radiometer (SMMR), onboard the Nimbus 7 satellite. The life of the SMMR instrument spanned from Nov. 1978 to Aug. 1987. At 6.6 GHz, the instrument provided a spatial resolution of approximately 150 km, and an orbital frequency over any pixel-sized area of about 2 daytime and 2 nighttime passes per week. Ground measurements of surface soil moisture from various locations throughout the study area are used to calibrate the microwave observations. Because ground measurements are usually only single point values, and since the time of satellite coverage does not always coincide with the ground measurements, the soil moisture data were used to calibrate a regional water balance for the top 1, 5, and 10 cm surface layers in order to interpolate daily surface moisture values. Such a climate-based approach is often more appropriate for estimating large-area spatially averaged soil moisture because meteorological data are generally more spatially representative than isolated point measurements of soil moisture. Vegetation radiative transfer characteristics, such as the canopy transmissivity, were estimated from vegetation indices such as the Normalized Difference Vegetation Index (NDVI) and the 37 GHz Microwave Polarization Difference Index (MPDI). Passive microwave remote sensing presents the greatest potential for providing regular spatially representative estimates of surface soil moisture at global scales. Real time estimates should improve weather and climate modelling efforts, while the development of historical data sets will provide necessary information for simulation and validation of long-term climate and global change studies.
NASA Astrophysics Data System (ADS)
Langhammer, Jakub; Lendzioch, Theodora; Mirijovsky, Jakub
2016-04-01
Granulometric analysis represents a traditional, important and for the description of sedimentary material substantial method with various applications in sedimentology, hydrology and geomorphology. However, the conventional granulometric field survey methods are time consuming, laborious, costly and are invasive to the surface being sampled, which can be limiting factor for their applicability in protected areas.. The optical granulometry has recently emerged as an image analysis technique, enabling non-invasive survey, employing semi-automated identification of clasts from calibrated digital imagery, taken on site by conventional high resolution digital camera and calibrated frame. The image processing allows detection and measurement of mixed size natural grains, their sorting and quantitative analysis using standard granulometric approaches. Despite known limitations, the technique today presents reliable tool, significantly easing and speeding the field survey in fluvial geomorphology. However, the nature of such survey has still limitations in spatial coverage of the sites and applicability in research at multitemporal scale. In our study, we are presenting novel approach, based on fusion of two image analysis techniques - optical granulometry and UAV-based photogrammetry, allowing to bridge the gap between the needs of high resolution structural information for granulometric analysis and spatially accurate and data coverage. We have developed and tested a workflow that, using UAV imaging platform enabling to deliver seamless, high resolution and spatially accurate imagery of the study site from which can be derived the granulometric properties of the sedimentary material. We have set up a workflow modeling chain, providing (i) the optimum flight parameters for UAV imagery to balance the two key divergent requirements - imagery resolution and seamless spatial coverage, (ii) the workflow for the processing of UAV acquired imagery by means of the optical granulometry and (iii) the workflow for analysis of spatial distribution and temporal changes of granulometric properties across the point bar. The proposed technique was tested on a case study of an active point bar of mid-latitude mountain stream at Sumava mountains, Czech Republic, exposed to repeated flooding. The UAV photogrammetry was used to acquire very high resolution imagery to build high-precision digital terrain models and orthoimage. The orthoimage was then analyzed using the digital optical granulometric tool BaseGrain. This approach allowed us (i) to analyze the spatial distribution of the grain size in a seamless transects over an active point bar and (ii) to assess the multitemporal changes of granulometric properties of the point bar material resulting from flooding. The tested framework prove the applicability of the proposed method for granulometric analysis with accuracy comparable with field optical granulometry. The seamless nature of the data enables to study spatial distribution of granulometric properties across the study sites as well as the analysis of multitemporal changes, resulting from repeated imaging.
The organisation of spatial and temporal relations in memory.
Rondina, Renante; Curtiss, Kaitlin; Meltzer, Jed A; Barense, Morgan D; Ryan, Jennifer D
2017-04-01
Episodic memories are comprised of details of "where" and "when"; spatial and temporal relations, respectively. However, evidence from behavioural, neuropsychological, and neuroimaging studies has provided mixed interpretations about how memories for spatial and temporal relations are organised-they may be hierarchical, fully interactive, or independent. In the current study, we examined the interaction of memory for spatial and temporal relations. Using explicit reports and eye-tracking, we assessed younger and older adults' memory for spatial and temporal relations of objects that were presented singly across time in unique spatial locations. Explicit change detection of spatial relations was affected by a change in temporal relations, but explicit change detection of temporal relations was not affected by a change in spatial relations. Younger and older adults showed eye movement evidence of incidental memory for temporal relations, but only younger adults showed eye movement evidence of incidental memory for spatial relations. Together, these findings point towards a hierarchical organisation of relational memory. The implications of these findings are discussed in the context of the neural mechanisms that may support such a hierarchical organisation of memory.
Texture-adaptive hyperspectral video acquisition system with a spatial light modulator
NASA Astrophysics Data System (ADS)
Fang, Xiaojing; Feng, Jiao; Wang, Yongjin
2014-10-01
We present a new hybrid camera system based on spatial light modulator (SLM) to capture texture-adaptive high-resolution hyperspectral video. The hybrid camera system records a hyperspectral video with low spatial resolution using a gray camera and a high-spatial resolution video using a RGB camera. The hyperspectral video is subsampled by the SLM. The subsampled points can be adaptively selected according to the texture characteristic of the scene by combining with digital imaging analysis and computational processing. In this paper, we propose an adaptive sampling method utilizing texture segmentation and wavelet transform (WT). We also demonstrate the effectiveness of the sampled pattern on the SLM with the proposed method.
A spatially collocated sound thrusts a flash into awareness
Aller, Máté; Giani, Anette; Conrad, Verena; Watanabe, Masataka; Noppeney, Uta
2015-01-01
To interact effectively with the environment the brain integrates signals from multiple senses. It is currently unclear to what extent spatial information can be integrated across different senses in the absence of awareness. Combining dynamic continuous flash suppression (CFS) and spatial audiovisual stimulation, the current study investigated whether a sound facilitates a concurrent visual flash to elude flash suppression and enter perceptual awareness depending on audiovisual spatial congruency. Our results demonstrate that a concurrent sound boosts unaware visual signals into perceptual awareness. Critically, this process depended on the spatial congruency of the auditory and visual signals pointing towards low level mechanisms of audiovisual integration. Moreover, the concurrent sound biased the reported location of the flash as a function of flash visibility. The spatial bias of sounds on reported flash location was strongest for flashes that were judged invisible. Our results suggest that multisensory integration is a critical mechanism that enables signals to enter conscious perception. PMID:25774126
Cardiovascular Fitness and Cognitive Spatial Learning in Rodents and in Humans.
Barak, Boaz; Feldman, Noa; Okun, Eitan
2015-09-01
The association between cardiovascular fitness and cognitive functions in both animals and humans is intensely studied. Research in rodents shows that a higher cardiovascular fitness has beneficial effects on hippocampus-dependent spatial abilities, and the underlying mechanisms were largely teased out. Research into the impact of cardiovascular fitness on spatial learning in humans, however, is more limited, and involves mostly behavioral and imaging studies. Herein, we point out the state of the art in the field of spatial learning and cardiovascular fitness. The differences between the methodologies utilized to study spatial learning in humans and rodents are emphasized along with the neuronal basis of these tasks. Critical gaps in the study of spatial learning in the context of cardiovascular fitness between the two species are discussed. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America.
Le Pichon, Céline; Tales, Évelyne; Belliard, Jérôme; Torgersen, Christian E.
2017-01-01
Spatially intensive sampling by electrofishing is proposed as a method for quantifying spatial variation in fish assemblages at multiple scales along extensive stream sections in headwater catchments. We used this method to sample fish species at 10-m2 points spaced every 20 m throughout 5 km of a headwater stream in France. The spatially intensive sampling design provided information at a spatial resolution and extent that enabled exploration of spatial heterogeneity in fish assemblage structure and aquatic habitat at multiple scales with empirical variograms and wavelet analysis. These analyses were effective for detecting scales of periodicity, trends, and discontinuities in the distribution of species in relation to tributary junctions and obstacles to fish movement. This approach to sampling riverine fishes may be useful in fisheries research and management for evaluating stream fish responses to natural and altered habitats and for identifying sites for potential restoration.
Coronal bright points at 6cm wavelength
NASA Technical Reports Server (NTRS)
Fu, Qijun; Kundu, M. R.; Schmahl, E. J.
1988-01-01
Results are presented from observations of bright points at a wavelength of 6-cm using the VLA with a spatial resolution of 1.2 arcsec. During two hours of observations, 44 sources were detected with brightness temperatures between 2000 and 30,000 K. Of these sources, 27 are associated with weak dark He 10830 A features at distances less than 40 arcsecs. Consideration is given to variations in the source parameters and the relationship between ephemeral regions and bright points.
2012-10-12
21/2012 Abstract: In order to assess the impacts of structural and point defects on the local carrier (exciton) recombination dynamics in...quantitatively understood as functions of structural / point defect and impurity concentrations (crystal imperfections). However, only few papers [5...NOTES 14. ABSTRACT In order to assess the impacts of structural and point defects on the local carrier (exciton) recombination dynamics in wide bandgap
Extracting cross sections and water levels of vegetated ditches from LiDAR point clouds
NASA Astrophysics Data System (ADS)
Roelens, Jennifer; Dondeyne, Stefaan; Van Orshoven, Jos; Diels, Jan
2016-12-01
The hydrologic response of a catchment is sensitive to the morphology of the drainage network. Dimensions of bigger channels are usually well known, however, geometrical data for man-made ditches is often missing as there are many and small. Aerial LiDAR data offers the possibility to extract these small geometrical features. Analysing the three-dimensional point clouds directly will maintain the highest degree of information. A longitudinal and cross-sectional buffer were used to extract the cross-sectional profile points from the LiDAR point cloud. The profile was represented by spline functions fitted through the minimum envelop of the extracted points. The cross-sectional ditch profiles were classified for the presence of water and vegetation based on the normalized difference water index and the spatial characteristics of the points along the profile. The normalized difference water index was created using the RGB and intensity data coupled to the LiDAR points. The mean vertical deviation of 0.14 m found between the extracted and reference cross sections could mainly be attributed to the occurrence of water and partly to vegetation on the banks. In contrast to the cross-sectional area, the extracted width was not influenced by the environment (coefficient of determination R2 = 0.87). Water and vegetation influenced the extracted ditch characteristics, but the proposed method is still robust and therefore facilitates input data acquisition and improves accuracy of spatially explicit hydrological models.
Calvin A. Farris; Christopher H. Baisan; Donald A. Falk; Stephen R. Yool; Thomas W. Swetnam
2010-01-01
Fire scars are used widely to reconstruct historical fire regime parameters in forests around the world. Because fire scars provide incomplete records of past fire occurrence at discrete points in space, inferences must be made to reconstruct fire frequency and extent across landscapes using spatial networks of fire-scar samples. Assessing the relative accuracy of fire...
ERIC Educational Resources Information Center
Solan, Harold A.
1987-01-01
This study involving 38 normally achieving fourth and fifth grade children confirmed previous studies indicating that both spatial-simultaneous (in which perceived stimuli are totally available at one point in time) and verbal-successive (information is presented in serial order) cognitive processing are important in normal learning. (DB)
ERIC Educational Resources Information Center
Rule, Audrey C.; Webb, Angela Naomi
2015-01-01
The cause of day and night is a difficult concept to master without concrete foundational skills of understanding shadows, rotation, changing point of view, and relative positions of objects in the sky. This pretest-posttest experimental-control group study examined student learning in a science-literacy-spatial skills integrated unit with…
Coding/decoding two-dimensional images with orbital angular momentum of light.
Chu, Jiaqi; Li, Xuefeng; Smithwick, Quinn; Chu, Daping
2016-04-01
We investigate encoding and decoding of two-dimensional information using the orbital angular momentum (OAM) of light. Spiral phase plates and phase-only spatial light modulators are used in encoding and decoding of OAM states, respectively. We show that off-axis points and spatial variables encoded with a given OAM state can be recovered through decoding with the corresponding complimentary OAM state.
Spatial point analysis based on dengue surveys at household level in central Brazil
Siqueira-Junior, João B; Maciel, Ivan J; Barcellos, Christovam; Souza, Wayner V; Carvalho, Marilia S; Nascimento, Nazareth E; Oliveira, Renato M; Morais-Neto, Otaliba; Martelli, Celina MT
2008-01-01
Background Dengue virus (DENV) affects nonimunne human populations in tropical and subtropical regions. In the Americas, dengue has drastically increased in the last two decades and Brazil is considered one of the most affected countries. The high frequency of asymptomatic infection makes difficult to estimate prevalence of infection using registered cases and to locate high risk intra-urban area at population level. The goal of this spatial point analysis was to identify potential high-risk intra-urban areas of dengue, using data collected at household level from surveys. Methods Two household surveys took place in the city of Goiania (~1.1 million population), Central Brazil in the year 2001 and 2002. First survey screened 1,586 asymptomatic individuals older than 5 years of age. Second survey 2,906 asymptomatic volunteers, same age-groups, were selected by multistage sampling (census tracts; blocks; households) using available digital maps. Sera from participants were tested by dengue virus-specific IgM/IgG by EIA. A Generalized Additive Model (GAM) was used to detect the spatial varying risk over the region. Initially without any fixed covariates, to depict the overall risk map, followed by a model including the main covariates and the year, where the resulting maps show the risk associated with living place, controlled for the individual risk factors. This method has the advantage to generate smoothed risk factors maps, adjusted by socio-demographic covariates. Results The prevalence of antibody against dengue infection was 37.3% (95%CI [35.5–39.1]) in the year 2002; 7.8% increase in one-year interval. The spatial variation in risk of dengue infection significantly changed when comparing 2001 with 2002, (ORadjusted = 1.35; p < 0.001), while controlling for potential confounders using GAM model. Also increasing age and low education levels were associated with dengue infection. Conclusion This study showed spatial heterogeneity in the risk areas of dengue when using a spatial multivariate approach in a short time interval. Data from household surveys pointed out that low prevalence areas in 2001 surveys shifted to high-risk area in consecutive year. This mapping of dengue risks should give insights for control interventions in urban areas. PMID:18937868
Follow your nose: Implicit spatial processing within the chemosensory systems.
Wudarczyk, Olga A; Habel, Ute; Turetsky, Bruce I; Gur, Raquel E; Kellermann, Thilo; Schneider, Frank; Moessnang, Carolin
2016-11-01
Although most studies agree that humans cannot smell in stereo, it was recently suggested that olfactory localization is possible when assessed implicitly. In a spatial cueing paradigm, lateralized olfactory cues impaired the detection of congruently presented visual targets, an effect contrary to the typical facilitation observed in other sensory domains. Here, we examined the specificity and the robustness of this finding by studying implicit localization abilities in another chemosensory system and by accounting for possible confounds in a modified paradigm. Sixty participants completed a spatial cueing task along with an explicit localization task, using trigeminal (Experiment 1) and olfactory (Experiment 2) stimuli. A control task was implemented to control for residual somatosensory stimulation (Experiment 3). In the trigeminal experiment, stimuli were localized with high accuracy on the explicit level, while the cueing effect in form of facilitation was limited to response accuracy. In the olfactory experiment, responses were slowed by congruent cues on the implicit level, while no explicit localization was observed. Our results point to the robustness of the olfactory interference effect, corroborating the implicit-explicit dissociation of olfactory localization, and challenging the view that humans lost the ability to extract spatial information from smell. The absence of a similar interference for trigeminal cues suggests distinct implicit spatial processing mechanisms within the chemosensory systems. Moreover, the lack of a typical facilitation effect in the trigeminal domain points to important differences from spatial information processing in other, nonchemosensory domains. The possible mechanisms driving the effects are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Erfanifard, Y.; Rezayan, F.
2014-10-01
Vegetation heterogeneity biases second-order summary statistics, e.g., Ripley's K-function, applied for spatial pattern analysis in ecology. Second-order investigation based on Ripley's K-function and related statistics (i.e., L- and pair correlation function g) is widely used in ecology to develop hypothesis on underlying processes by characterizing spatial patterns of vegetation. The aim of this study was to demonstrate effects of underlying heterogeneity of wild pistachio (Pistacia atlantica Desf.) trees on the second-order summary statistics of point pattern analysis in a part of Zagros woodlands, Iran. The spatial distribution of 431 wild pistachio trees was accurately mapped in a 40 ha stand in the Wild Pistachio & Almond Research Site, Fars province, Iran. Three commonly used second-order summary statistics (i.e., K-, L-, and g-functions) were applied to analyse their spatial pattern. The two-sample Kolmogorov-Smirnov goodness-of-fit test showed that the observed pattern significantly followed an inhomogeneous Poisson process null model in the study region. The results also showed that heterogeneous pattern of wild pistachio trees biased the homogeneous form of K-, L-, and g-functions, demonstrating a stronger aggregation of the trees at the scales of 0-50 m than actually existed and an aggregation at scales of 150-200 m, while regularly distributed. Consequently, we showed that heterogeneity of point patterns may bias the results of homogeneous second-order summary statistics and we also suggested applying inhomogeneous summary statistics with related null models for spatial pattern analysis of heterogeneous vegetations.
Beyond the SCS-CN method: A theoretical framework for spatially lumped rainfall-runoff response
NASA Astrophysics Data System (ADS)
Bartlett, M. S.; Parolari, A. J.; McDonnell, J. J.; Porporato, A.
2016-06-01
Since its introduction in 1954, the Soil Conservation Service curve number (SCS-CN) method has become the standard tool, in practice, for estimating an event-based rainfall-runoff response. However, because of its empirical origins, the SCS-CN method is restricted to certain geographic regions and land use types. Moreover, it does not describe the spatial variability of runoff. To move beyond these limitations, we present a new theoretical framework for spatially lumped, event-based rainfall-runoff modeling. In this framework, we describe the spatially lumped runoff model as a point description of runoff that is upscaled to a watershed area based on probability distributions that are representative of watershed heterogeneities. The framework accommodates different runoff concepts and distributions of heterogeneities, and in doing so, it provides an implicit spatial description of runoff variability. Heterogeneity in storage capacity and soil moisture are the basis for upscaling a point runoff response and linking ecohydrological processes to runoff modeling. For the framework, we consider two different runoff responses for fractions of the watershed area: "prethreshold" and "threshold-excess" runoff. These occur before and after infiltration exceeds a storage capacity threshold. Our application of the framework results in a new model (called SCS-CNx) that extends the SCS-CN method with the prethreshold and threshold-excess runoff mechanisms and an implicit spatial description of runoff. We show proof of concept in four forested watersheds and further that the resulting model may better represent geographic regions and site types that previously have been beyond the scope of the traditional SCS-CN method.
Assessing accuracy of point fire intervals across landscapes with simulation modelling
Russell A. Parsons; Emily K. Heyerdahl; Robert E. Keane; Brigitte Dorner; Joseph Fall
2007-01-01
We assessed accuracy in point fire intervals using a simulation model that sampled four spatially explicit simulated fire histories. These histories varied in fire frequency and size and were simulated on a flat landscape with two forest types (dry versus mesic). We used three sampling designs (random, systematic grids, and stratified). We assessed the sensitivity of...
Modelling dendritic ecological networks in space: An integrated network perspective
Erin E. Peterson; Jay M. Ver Hoef; Dan J. Isaak; Jeffrey A. Falke; Marie-Josee Fortin; Chris E. Jordan; Kristina McNyset; Pascal Monestiez; Aaron S. Ruesch; Aritra Sengupta; Nicholas Som; E. Ashley Steel; David M. Theobald; Christian E. Torgersen; Seth J. Wenger
2013-01-01
Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial representation; as points within the network and as points in geographical space. Consequently, some analytical methods used to quantify relationships in other types of...
ERIC Educational Resources Information Center
Monteiro, Martin; Stari, Cecilia; Cabeza, Cecilia; Marti, Arturo C.
2017-01-01
The spatial dependence of magnetic fields in simple configurations is a common topic in introductory electromagnetism lessons, both in high school and in university courses. In typical experiments, magnetic fields and distances are obtained taking point-by-point values using a Hall sensor and a ruler, respectively. Here, we show how to take…
North Fork Clear Creek (NFCC) receives acid-mine drainage (AMD) from multiple abandoned mines in the Clear Creek Watershed. Point sources of AMD originate In the Black Hawk/Central City region of the stream. Water chemistry also is influenced by several non-point sources of AMD,...
Multi-Resolution Imaging of Electron Dynamics in Nanostructure Interfaces
2010-07-27
metallic carbon nanotubes from semiconducting ones. In pentacene transistors, we used scanning photocurrent microscopy to study spatially resolved...photoelectric response of pentacene thin films, which showed that point contacts formed near the hole injection points limit the overall performance of the...photothermal current microscopy, carbon nanotube transistor, pentacene transistor, contact resistance, hole injection 16. SECURITY CLASSIFICATION OF
The spatial extent of polycyclic aromatic hydrocarbons emission in the Herbig star HD 179218
NASA Astrophysics Data System (ADS)
Taha, A. S.; Labadie, L.; Pantin, E.; Matter, A.; Alvarez, C.; Esquej, P.; Grellmann, R.; Rebolo, R.; Telesco, C.; Wolf, S.
2018-04-01
Aim. We investigate, in the mid-infrared, the spatial properties of the polycyclic aromatic hydrocarbons (PAHs) emission in the disk of HD 179218, an intermediate-mass Herbig star at 300 pc. Methods: We obtained mid-infrared images in the PAH-1, PAH-2 and Si-6 filters centered at 8.6, 11.3, and 12.5 μm, and N-band low-resolution spectra using CanariCam on the 10-m Gran Telescopio Canarias (GTC). We compared the point spread function (PSF) profiles measured in the PAH filters to the profile derived in the Si-6 filter, where the thermal continuum emission dominates. We performed radiative transfer modeling of the spectral energy distribution (SED) and produced synthetic images in the three filters to investigate different spatial scenarios. Results: Our data show that the disk emission is spatially resolved in the PAH-1 and PAH-2 filters, while unresolved in the Si-6 filter. Thanks to very good observing conditions, an average full width at half maximum (FWHM) of 0.232'', 0.280'' and 0.293'' is measured in the three filters, respectively. Gaussian disk fitting and quadratic subtraction of the science and calibrator PSFs suggests a lower-limit characteristic angular diameter of the emission of 100 mas, or 30 au. The photometric and spectroscopic results are compatible with previous findings. Our radiative transfer (RT) modeling of the continuum suggests that the resolved emission should result from PAH molecules on the disk atmosphere being UV-excited by the central star. Simple geometrical models of the PAH component compared to the underlying continuum point to a PAH emission uniformly extended out to the physical limits of the disk model. Furthermore, our RT best model of the continuum requires a negative exponent of the surface density power-law, in contrast with earlier modeling pointing to a positive exponent. Conclusions: We have spatially resolved - for the first time to our knowledge - the PAHs emission in the disk of HD 179218 and set constraints on its spatial extent. Based on spatial and spectroscopic considerations as well as on qualitative comparison with IRS 48 and HD 97048, we favor a scenario in which PAHs extend out to large radii across the flared disk surface and are at the same time predominantly in an ionized charge state due to the strong UV radiation field of the 180 L⊙ central star.
Gradients estimation from random points with volumetric tensor in turbulence
NASA Astrophysics Data System (ADS)
Watanabe, Tomoaki; Nagata, Koji
2017-12-01
We present an estimation method of fully-resolved/coarse-grained gradients from randomly distributed points in turbulence. The method is based on a linear approximation of spatial gradients expressed with the volumetric tensor, which is a 3 × 3 matrix determined by a geometric distribution of the points. The coarse grained gradient can be considered as a low pass filtered gradient, whose cutoff is estimated with the eigenvalues of the volumetric tensor. The present method, the volumetric tensor approximation, is tested for velocity and passive scalar gradients in incompressible planar jet and mixing layer. Comparison with a finite difference approximation on a Cartesian grid shows that the volumetric tensor approximation computes the coarse grained gradients fairly well at a moderate computational cost under various conditions of spatial distributions of points. We also show that imposing the solenoidal condition improves the accuracy of the present method for solenoidal vectors, such as a velocity vector in incompressible flows, especially when the number of the points is not large. The volumetric tensor approximation with 4 points poorly estimates the gradient because of anisotropic distribution of the points. Increasing the number of points from 4 significantly improves the accuracy. Although the coarse grained gradient changes with the cutoff length, the volumetric tensor approximation yields the coarse grained gradient whose magnitude is close to the one obtained by the finite difference. We also show that the velocity gradient estimated with the present method well captures the turbulence characteristics such as local flow topology, amplification of enstrophy and strain, and energy transfer across scales.
Slow updating of the achromatic point after a change in illumination
Lee, R. J.; Dawson, K. A.; Smithson, H. E.
2015-01-01
For a colour constant observer, the colour appearance of a surface is independent of the spectral composition of the light illuminating it. We ask how rapidly colour appearance judgements are updated following a change in illumination. We obtained repeated binary colour classifications for a set of stimuli defined by their reflectance functions and rendered under either sunlight or skylight. We used these classifications to derive boundaries in colour space that identify the observer’s achromatic point. In steady-state conditions of illumination, the achromatic point lay close to the illuminant chromaticity. In our experiment the illuminant changed abruptly every 21 seconds (at the onset of every 10th trial), allowing us to track changes in the achromatic point that were caused by the cycle of illuminant changes. In one condition, the test reflectance was embedded in a spatial pattern of reflectance samples under consistent illumination. The achromatic point migrated across colour space between the chromaticities of the steady-state achromatic points. This update took several trials rather than being immediate. To identify the factors that governed perceptual updating of appearance judgements we used two further conditions, one in which the test reflectance was presented in isolation and one in which the surrounding reflectances were rendered under an inconsistent and unchanging illumination. Achromatic settings were not well predicted by the information available from scenes at a single time-point. Instead the achromatic points showed a strong dependence on the history of chromatic samples. The strength of this dependence differed between observers and was modulated by the spatial context. PMID:22275468
NASA Astrophysics Data System (ADS)
Fu, Shihang; Zhang, Li; Hu, Yao; Ding, Xiang
2018-01-01
Confocal Raman Microscopy (CRM) has matured to become one of the most powerful instruments in analytical science because of its molecular sensitivity and high spatial resolution. Compared with conventional Raman Microscopy, CRM can perform three dimensions mapping of tiny samples and has the advantage of high spatial resolution thanking to the unique pinhole. With the wide application of the instrument, there is a growing requirement for the evaluation of the imaging performance of the system. Point-spread function (PSF) is an important approach to the evaluation of imaging capability of an optical instrument. Among a variety of measurement methods of PSF, the point source method has been widely used because it is easy to operate and the measurement results are approximate to the true PSF. In the point source method, the point source size has a significant impact on the final measurement accuracy. In this paper, the influence of the point source sizes on the measurement accuracy of PSF is analyzed and verified experimentally. A theoretical model of the lateral PSF for CRM is established and the effect of point source size on full-width at half maximum of lateral PSF is simulated. For long-term preservation and measurement convenience, PSF measurement phantom using polydimethylsiloxane resin, doped with different sizes of polystyrene microspheres is designed. The PSF of CRM with different sizes of microspheres are measured and the results are compared with the simulation results. The results provide a guide for measuring the PSF of the CRM.
Dark gap solitons in exciton-polariton condensates in a periodic potential.
Cheng, Szu-Cheng; Chen, Ting-Wei
2018-03-01
We show that dark spatial gap solitons can occur inside the band gap of an exciton-polariton condensate (EPC) in a one-dimensional periodic potential. The energy dispersions of an EPC loaded into a periodic potential show a band-gap structure. Using the effective-mass model of the complex Gross-Pitaevskii equation with pump and dissipation in an EPC in a periodic potential, dark gap solitons are demonstrated near the minimum energy points of the band center and band edge of the first and second bands, respectively. The excitation energies of dark gap solitons are below these minimum points and fall into the band gap. The spatial width of a dark gap soliton becomes smaller as the pump power is increased.
Dark gap solitons in exciton-polariton condensates in a periodic potential
NASA Astrophysics Data System (ADS)
Cheng, Szu-Cheng; Chen, Ting-Wei
2018-03-01
We show that dark spatial gap solitons can occur inside the band gap of an exciton-polariton condensate (EPC) in a one-dimensional periodic potential. The energy dispersions of an EPC loaded into a periodic potential show a band-gap structure. Using the effective-mass model of the complex Gross-Pitaevskii equation with pump and dissipation in an EPC in a periodic potential, dark gap solitons are demonstrated near the minimum energy points of the band center and band edge of the first and second bands, respectively. The excitation energies of dark gap solitons are below these minimum points and fall into the band gap. The spatial width of a dark gap soliton becomes smaller as the pump power is increased.
Spectral analysis and filtering techniques in digital spatial data processing
Pan, Jeng-Jong
1989-01-01
A filter toolbox has been developed at the EROS Data Center, US Geological Survey, for retrieving or removing specified frequency information from two-dimensional digital spatial data. This filter toolbox provides capabilities to compute the power spectrum of a given data and to design various filters in the frequency domain. Three types of filters are available in the toolbox: point filter, line filter, and area filter. Both the point and line filters employ Gaussian-type notch filters, and the area filter includes the capabilities to perform high-pass, band-pass, low-pass, and wedge filtering techniques. These filters are applied for analyzing satellite multispectral scanner data, airborne visible and infrared imaging spectrometer (AVIRIS) data, gravity data, and the digital elevation models (DEM) data. -from Author
NASA Astrophysics Data System (ADS)
Zhang, Zaixuan; Wang, Kequan; Kim, Insoo S.; Wang, Jianfeng; Feng, Haiqi; Guo, Ning; Yu, Xiangdong; Zhou, Bangquan; Wu, Xiaobiao; Kim, Yohee
2000-05-01
The DOFTS system that has applied to temperature automatically alarm system of coal mine and tunnel has been researched. It is a real-time, on line and multi-point measurement system. The wavelength of LD is 1550 nm, on the 6 km optical fiber, 3000 points temperature signal is sampled and the spatial position is certain. Temperature measured region: -50 degree(s)C--100 degree(s)C; measured uncertain value: +/- 3 degree(s)C; temperature resolution: 0.1 degree(s)C; spatial resolution: <5 cm (optical fiber sensor probe); <8 m (spread optical fiber); measured time: <70 s. In the paper, the operated principles, underground test, test content and practical test results have been discussed.
Electro-Optic Effects in Colloidal Dispersion of Metal Nano-Rods in Dielectric Fluid
Golovin, Andrii B.; Xiang, Jie; Park, Heung-Shik; Tortora, Luana; Nastishin, Yuriy A.; Shiyanovskii, Sergij V.; Lavrentovich, Oleg D.
2011-01-01
In modern transformation optics, one explores metamaterials with properties that vary from point to point in space and time, suitable for application in devices such as an “optical invisibility cloak” and an “optical black hole”. We propose an approach to construct spatially varying and switchable metamaterials that are based on colloidal dispersions of metal nano-rods (NRs) in dielectric fluids, in which dielectrophoretic forces, originating in the electric field gradients, create spatially varying configurations of aligned NRs. The electric field controls orientation and concentration of NRs and thus modulates the optical properties of the medium. Using gold (Au) NRs dispersed in toluene, we demonstrate electrically induced change in refractive index on the order of 0.1. PMID:28879997
Fast dynamos with finite resistivity in steady flows with stagnation points
NASA Technical Reports Server (NTRS)
Lau, Yun-Tung; Finn, John M.
1993-01-01
Results are presented of a kinematic fast dynamo problem for two classes of steady incompressible flows: the ABC flow and the spatially aperiodic flow of Lau and Finn (1992). The numerical method used to find the solutions is described, together with convergence studies with respect to the time step and the number of points N of the spatial grid. It is shown that the growth rate and frequency can be extrapolated to N = infinity. Results are presented indicating that fast kinematic dynamos can exist in both these flows and that chaotic flow is a necessary condition. It was found that, for the ABC flow with A = B = C, there are two dynamo modes: an oscillating mode and a purely growing mode.
Optical ranked-order filtering using threshold decomposition
Allebach, Jan P.; Ochoa, Ellen; Sweeney, Donald W.
1990-01-01
A hybrid optical/electronic system performs median filtering and related ranked-order operations using threshold decomposition to encode the image. Threshold decomposition transforms the nonlinear neighborhood ranking operation into a linear space-invariant filtering step followed by a point-to-point threshold comparison step. Spatial multiplexing allows parallel processing of all the threshold components as well as recombination by a second linear, space-invariant filtering step. An incoherent optical correlation system performs the linear filtering, using a magneto-optic spatial light modulator as the input device and a computer-generated hologram in the filter plane. Thresholding is done electronically. By adjusting the value of the threshold, the same architecture is used to perform median, minimum, and maximum filtering of images. A totally optical system is also disclosed.
Detecting determinism from point processes.
Andrzejak, Ralph G; Mormann, Florian; Kreuz, Thomas
2014-12-01
The detection of a nonrandom structure from experimental data can be crucial for the classification, understanding, and interpretation of the generating process. We here introduce a rank-based nonlinear predictability score to detect determinism from point process data. Thanks to its modular nature, this approach can be adapted to whatever signature in the data one considers indicative of deterministic structure. After validating our approach using point process signals from deterministic and stochastic model dynamics, we show an application to neuronal spike trains recorded in the brain of an epilepsy patient. While we illustrate our approach in the context of temporal point processes, it can be readily applied to spatial point processes as well.
Haley, Danielle F.; Matthews, Stephen A.; Cooper, Hannah LF; Haardörfer, Regine; Adimora, Adaora A.; Wingood, Gina M.; Kramer, Michael R.
2016-01-01
Understanding whether and how the places where people live, work, and play are associated with health behaviors and health is essential to understanding the social determinants of health. However, social-spatial data which link a person and their attributes to a geographic location (e.g., home address) create potential confidentiality risks. Despite the growing body of literature describing approaches to protect individual confidentiality when utilizing social-spatial data, peer-reviewed manuscripts displaying identifiable individual point data or quasi-identifiers (attributes associated with the individual or disease that narrow identification) in maps persist, suggesting that knowledge has not been effectively translated into public health research practices. Using sexual and reproductive health as a case study, we explore the extent to which maps appearing in recent peer-reviewed publications risk participant confidentiality. Our scoping review of sexual and reproductive health literature published and indexed in PubMed between January 1, 2013 and September 1, 2015 identified 45 manuscripts displaying participant data in maps as points or small-population geographic units, spanning 26 journals and representing studies conducted in 20 countries. Notably, 56% (13/23) of publications presenting point data on maps either did not describe approaches used to mask data or masked data inadequately. Furthermore, 18% (4/22) of publications displaying data using small-population geographic units included at least two quasi-identifiers. These findings highlight the need for heightened education for researchers, reviewers, and editorial teams. We aim to provide readers with a primer on key confidentiality considerations when utilizing linked social-spatial data for visualizing results. Given the widespread availability of place-based data and the ease of creating maps, it is critically important to raise awareness on when social-spatial data constitute protected health information, best practices for masking geographic identifiers, and methods of balancing disclosure risk and scientific utility. We conclude with recommendations to support the preservation of confidentiality when disseminating results. PMID:27542102
NASA Astrophysics Data System (ADS)
Baram, S.; Ronen, Z.; Kurtzman, D.; Peeters, A.; Dahan, O.
2013-12-01
Land cultivation and dairy waste lagoons are considered to be nonpoint and point sources of groundwater contamination by chloride (Cl-) and nitrate (NO3-). The objective of this work is to introduce a methodology to assess the past and future impacts of such agricultural activities on regional groundwater quality. The method is based on mass balances and on spatial statistical analysis of Cl- and NO3-concentration distributions in the saturated and unsaturated zones. The method enables quantitative analysis of the relation between the locations of pollution point sources and the spatial variability in Cl- and NO3- concentrations in groundwater. The method was applied to the Beer-Tuvia region, Israel, where intensive dairy farming along with land cultivation has been practiced for over 50 years above the local phreatic aquifer. Mass balance calculations accounted for the various groundwater recharge and abstraction sources and sinks in the entire region. The mass balances showed that leachates from lagoons and the cultivated land have contributed 6.0 and 89.4 % of the total mass of Cl- added to the aquifer and 12.6 and 77.4 % of the total mass of NO3-. The chemical composition of the aquifer and vadose zone water suggested that irrigated agricultural activity in the region is the main contributor of Cl- and NO3- to the groundwater. A low spatial correlation between the Cl- and NO3- concentrations in the groundwater and the on-land location of the dairy farms strengthened this assumption, despite the dairy waste lagoon being a point source for groundwater contamination by Cl- and NO3-. Results demonstrate that analyzing vadose zone and groundwater data by spatial statistical analysis methods can significantly contribute to the understanding of the relations between groundwater contaminating sources, and to assessing appropriate remediation steps.
NASA Astrophysics Data System (ADS)
Žukovič, Milan; Hristopulos, Dionissios T.
2009-02-01
A current problem of practical significance is how to analyze large, spatially distributed, environmental data sets. The problem is more challenging for variables that follow non-Gaussian distributions. We show by means of numerical simulations that the spatial correlations between variables can be captured by interactions between 'spins'. The spins represent multilevel discretizations of environmental variables with respect to a number of pre-defined thresholds. The spatial dependence between the 'spins' is imposed by means of short-range interactions. We present two approaches, inspired by the Ising and Potts models, that generate conditional simulations of spatially distributed variables from samples with missing data. Currently, the sampling and simulation points are assumed to be at the nodes of a regular grid. The conditional simulations of the 'spin system' are forced to respect locally the sample values and the system statistics globally. The second constraint is enforced by minimizing a cost function representing the deviation between normalized correlation energies of the simulated and the sample distributions. In the approach based on the Nc-state Potts model, each point is assigned to one of Nc classes. The interactions involve all the points simultaneously. In the Ising model approach, a sequential simulation scheme is used: the discretization at each simulation level is binomial (i.e., ± 1). Information propagates from lower to higher levels as the simulation proceeds. We compare the two approaches in terms of their ability to reproduce the target statistics (e.g., the histogram and the variogram of the sample distribution), to predict data at unsampled locations, as well as in terms of their computational complexity. The comparison is based on a non-Gaussian data set (derived from a digital elevation model of the Walker Lake area, Nevada, USA). We discuss the impact of relevant simulation parameters, such as the domain size, the number of discretization levels, and the initial conditions.
Haley, Danielle F; Matthews, Stephen A; Cooper, Hannah L F; Haardörfer, Regine; Adimora, Adaora A; Wingood, Gina M; Kramer, Michael R
2016-10-01
Understanding whether and how the places where people live, work, and play are associated with health behaviors and health is essential to understanding the social determinants of health. However, social-spatial data which link a person and their attributes to a geographic location (e.g., home address) create potential confidentiality risks. Despite the growing body of literature describing approaches to protect individual confidentiality when utilizing social-spatial data, peer-reviewed manuscripts displaying identifiable individual point data or quasi-identifiers (attributes associated with the individual or disease that narrow identification) in maps persist, suggesting that knowledge has not been effectively translated into public health research practices. Using sexual and reproductive health as a case study, we explore the extent to which maps appearing in recent peer-reviewed publications risk participant confidentiality. Our scoping review of sexual and reproductive health literature published and indexed in PubMed between January 1, 2013 and September 1, 2015 identified 45 manuscripts displaying participant data in maps as points or small-population geographic units, spanning 26 journals and representing studies conducted in 20 countries. Notably, 56% (13/23) of publications presenting point data on maps either did not describe approaches used to mask data or masked data inadequately. Furthermore, 18% (4/22) of publications displaying data using small-population geographic units included at least two quasi-identifiers. These findings highlight the need for heightened education for researchers, reviewers, and editorial teams. We aim to provide readers with a primer on key confidentiality considerations when utilizing linked social-spatial data for visualizing results. Given the widespread availability of place-based data and the ease of creating maps, it is critically important to raise awareness on when social-spatial data constitute protected health information, best practices for masking geographic identifiers, and methods of balancing disclosure risk and scientific utility. We conclude with recommendations to support the preservation of confidentiality when disseminating results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Esposito, Fabrizio; Formisano, Elia; Seifritz, Erich; Goebel, Rainer; Morrone, Renato; Tedeschi, Gioacchino; Di Salle, Francesco
2002-07-01
Independent component analysis (ICA) has been successfully employed to decompose functional MRI (fMRI) time-series into sets of activation maps and associated time-courses. Several ICA algorithms have been proposed in the neural network literature. Applied to fMRI, these algorithms might lead to different spatial or temporal readouts of brain activation. We compared the two ICA algorithms that have been used so far for spatial ICA (sICA) of fMRI time-series: the Infomax (Bell and Sejnowski [1995]: Neural Comput 7:1004-1034) and the Fixed-Point (Hyvärinen [1999]: Adv Neural Inf Proc Syst 10:273-279) algorithms. We evaluated the Infomax- and Fixed Point-based sICA decompositions of simulated motor, and real motor and visual activation fMRI time-series using an ensemble of measures. Log-likelihood (McKeown et al. [1998]: Hum Brain Mapp 6:160-188) was used as a measure of how significantly the estimated independent sources fit the statistical structure of the data; receiver operating characteristics (ROC) and linear correlation analyses were used to evaluate the algorithms' accuracy of estimating the spatial layout and the temporal dynamics of simulated and real activations; cluster sizing calculations and an estimation of a residual gaussian noise term within the components were used to examine the anatomic structure of ICA components and for the assessment of noise reduction capabilities. Whereas both algorithms produced highly accurate results, the Fixed-Point outperformed the Infomax in terms of spatial and temporal accuracy as long as inferential statistics were employed as benchmarks. Conversely, the Infomax sICA was superior in terms of global estimation of the ICA model and noise reduction capabilities. Because of its adaptive nature, the Infomax approach appears to be better suited to investigate activation phenomena that are not predictable or adequately modelled by inferential techniques. Copyright 2002 Wiley-Liss, Inc.
Spatial and temporal variations of aridity indices in Iraq
NASA Astrophysics Data System (ADS)
Şarlak, Nermin; Mahmood Agha, Omar M. A.
2017-06-01
This study investigates the spatial and temporal variations of the aridity indices to reveal the desertification vulnerability of Iraq region. Relying on temperature and precipitation data taken from 28 meteorological stations for 31 years, the study aims to determine (1) dry land types and their delineating boundaries and (2) temporal change in aridity conditions in Iraq. Lang's aridity (Im), De Martonne's aridity (Am), United Nations Environmental Program (UNEP) aridity (AIu), and Erinç aridity (IE) indices were selected in this study because of the scarcity of the observed data. The analysis of the spatial variation of aridity indices exhibited that the arid and semi-arid regions cover about 97% of the country's areas. As for temporal variations, it was observed that the aridity indices tend to decrease (statistically significant or not) for all stations. The cumulative sum charts (CUSUMs) were applied to detect the year on which the climate pattern of aridity indices had changed from one pattern to another. The abrupt change point was detected around year 1997 for the majority of the stations. Thus, the spatial and temporal aridity characteristics in Iraq were examined for the two periods 1980-1997 and 1998-2011 (before and after the change-point year) to observe the influence of abrupt change point on aridity phenomena. The spatial variation after 1997 was observed from semi-arid (dry sub humid) to arid (semi-arid) especially at the stations located in northern Iraq, while hyper-arid and arid climatic conditions were still dominant over southern and central Iraq. Besides, the negative temporal variations of the two periods 1980-1997 and 1998-2011 were obtained for almost every station. As a result, it was emphasized that Iraq region, like other Middle East regions, has become drier after 1997. The observed reduction in precipitation and increase in temperature for this region seem to make the situation worse in future.
An implicit spatial and high-order temporal finite difference scheme for 2D acoustic modelling
NASA Astrophysics Data System (ADS)
Wang, Enjiang; Liu, Yang
2018-01-01
The finite difference (FD) method exhibits great superiority over other numerical methods due to its easy implementation and small computational requirement. We propose an effective FD method, characterised by implicit spatial and high-order temporal schemes, to reduce both the temporal and spatial dispersions simultaneously. For the temporal derivative, apart from the conventional second-order FD approximation, a special rhombus FD scheme is included to reach high-order accuracy in time. Compared with the Lax-Wendroff FD scheme, this scheme can achieve nearly the same temporal accuracy but requires less floating-point operation times and thus less computational cost when the same operator length is adopted. For the spatial derivatives, we adopt the implicit FD scheme to improve the spatial accuracy. Apart from the existing Taylor series expansion-based FD coefficients, we derive the least square optimisation based implicit spatial FD coefficients. Dispersion analysis and modelling examples demonstrate that, our proposed method can effectively decrease both the temporal and spatial dispersions, thus can provide more accurate wavefields.
Sensory prediction on a whiskered robot: a tactile analogy to “optical flow”
Schroeder, Christopher L.; Hartmann, Mitra J. Z.
2012-01-01
When an animal moves an array of sensors (e.g., the hand, the eye) through the environment, spatial and temporal gradients of sensory data are related by the velocity of the moving sensory array. In vision, the relationship between spatial and temporal brightness gradients is quantified in the “optical flow” equation. In the present work, we suggest an analog to optical flow for the rodent vibrissal (whisker) array, in which the perceptual intensity that “flows” over the array is bending moment. Changes in bending moment are directly related to radial object distance, defined as the distance between the base of a whisker and the point of contact with the object. Using both simulations and a 1×5 array (row) of artificial whiskers, we demonstrate that local object curvature can be estimated based on differences in radial distance across the array. We then develop two algorithms, both based on tactile flow, to predict the future contact points that will be obtained as the whisker array translates along the object. The translation of the robotic whisker array represents the rat's head velocity. The first algorithm uses a calculation of the local object slope, while the second uses a calculation of the local object curvature. Both algorithms successfully predict future contact points for simple surfaces. The algorithm based on curvature was found to more accurately predict future contact points as surfaces became more irregular. We quantify the inter-related effects of whisker spacing and the object's spatial frequencies, and examine the issues that arise in the presence of real-world noise, friction, and slip. PMID:23097641
Sensory prediction on a whiskered robot: a tactile analogy to "optical flow".
Schroeder, Christopher L; Hartmann, Mitra J Z
2012-01-01
When an animal moves an array of sensors (e.g., the hand, the eye) through the environment, spatial and temporal gradients of sensory data are related by the velocity of the moving sensory array. In vision, the relationship between spatial and temporal brightness gradients is quantified in the "optical flow" equation. In the present work, we suggest an analog to optical flow for the rodent vibrissal (whisker) array, in which the perceptual intensity that "flows" over the array is bending moment. Changes in bending moment are directly related to radial object distance, defined as the distance between the base of a whisker and the point of contact with the object. Using both simulations and a 1×5 array (row) of artificial whiskers, we demonstrate that local object curvature can be estimated based on differences in radial distance across the array. We then develop two algorithms, both based on tactile flow, to predict the future contact points that will be obtained as the whisker array translates along the object. The translation of the robotic whisker array represents the rat's head velocity. The first algorithm uses a calculation of the local object slope, while the second uses a calculation of the local object curvature. Both algorithms successfully predict future contact points for simple surfaces. The algorithm based on curvature was found to more accurately predict future contact points as surfaces became more irregular. We quantify the inter-related effects of whisker spacing and the object's spatial frequencies, and examine the issues that arise in the presence of real-world noise, friction, and slip.
Prieur, J-M; Bourdin, C; Sarès, F; Vercher, J-L
2006-01-01
A major issue in motor control studies is to determine whether and how we use spatial frames of reference to organize our spatially oriented behaviors. In previous experiments we showed that simulated body tilt during off-axis rotation affected the performance in verbal localization and manual pointing tasks. It was hypothesized that the observed alterations were at least partly due to a change in the orientation of the egocentric frame of reference, which was indeed centered on the body but aligned with the gravitational vector. The present experiments were designed to test this hypothesis in a situation where no inertial constraints (except the usual gravitational one) exist and where the orientation of the body longitudinal z-axis was not aligned with the direction of the gravity. Eleven subjects were exposed to real static body tilt and were required to verbally localize (experiment 1) and to point as accurately as possible towards (experiment 2) memorized visual targets, in two conditions, Head-Free and Head-Fixed conditions. Results show that the performance was only affected by real body tilt in the localization task performed when the subject's head was tilted relative to the body. Thus, dissociation between gravity and body longitudinal z-axis alone is not responsible for localization nor for pointing errors. Therefore, the egocentric frame of reference seems independent from the orientation of the gravity with regard to body z-axis as expected from our previous studies. Moreover, the use of spatial referentials appears to be less mandatory than expected for pointing movements (motor task) than for localization task (cognitive task).
Tactile Acuity Charts: A Reliable Measure of Spatial Acuity
Bruns, Patrick; Camargo, Carlos J.; Campanella, Humberto; Esteve, Jaume; Dinse, Hubert R.; Röder, Brigitte
2014-01-01
For assessing tactile spatial resolution it has recently been recommended to use tactile acuity charts which follow the design principles of the Snellen letter charts for visual acuity and involve active touch. However, it is currently unknown whether acuity thresholds obtained with this newly developed psychophysical procedure are in accordance with established measures of tactile acuity that involve passive contact with fixed duration and control of contact force. Here we directly compared tactile acuity thresholds obtained with the acuity charts to traditional two-point and grating orientation thresholds in a group of young healthy adults. For this purpose, two types of charts, using either Braille-like dot patterns or embossed Landolt rings with different orientations, were adapted from previous studies. Measurements with the two types of charts were equivalent, but generally more reliable with the dot pattern chart. A comparison with the two-point and grating orientation task data showed that the test-retest reliability of the acuity chart measurements after one week was superior to that of the passive methods. Individual thresholds obtained with the acuity charts agreed reasonably with the grating orientation threshold, but less so with the two-point threshold that yielded relatively distinct acuity estimates compared to the other methods. This potentially considerable amount of mismatch between different measures of tactile acuity suggests that tactile spatial resolution is a complex entity that should ideally be measured with different methods in parallel. The simple test procedure and high reliability of the acuity charts makes them a promising complement and alternative to the traditional two-point and grating orientation thresholds. PMID:24504346
Spatial Thinking in Atmospheric Science Education
NASA Astrophysics Data System (ADS)
McNeal, P. M.; Petcovic, H. L.; Ellis, T. D.
2016-12-01
Atmospheric science is a STEM discipline that involves the visualization of three-dimensional processes from two-dimensional maps, interpretation of computer-generated graphics and hand plotting of isopleths. Thus, atmospheric science draws heavily upon spatial thinking. Research has shown that spatial thinking ability can be a predictor of early success in STEM disciplines and substantial evidence demonstrates that spatial thinking ability is improved through various interventions. Therefore, identification of the spatial thinking skills and cognitive processes used in atmospheric science is the first step toward development of instructional strategies that target these skills and scaffold the learning of students in atmospheric science courses. A pilot study of expert and novice meteorologists identified mental animation and disembedding as key spatial skills used in the interpretation of multiple weather charts and images. Using this as a starting point, we investigated how these spatial skills, together with expertise, domain specific knowledge, and working memory capacity affect the ability to produce an accurate forecast. Participants completed a meteorology concept inventory, experience questionnaire and psychometric tests of spatial thinking ability and working memory capacity prior to completing a forecasting task. A quantitative analysis of the collected data investigated the effect of the predictor variables on the outcome task. A think-aloud protocol with individual participants provided a qualitative look at processes such as task decomposition, rule-based reasoning and the formation of mental models in an attempt to understand how individuals process this complex data and describe outcomes of particular meteorological scenarios. With our preliminary results we aim to inform atmospheric science education from a cognitive science perspective. The results point to a need to collaborate with the atmospheric science community broadly, such that multiple educational pipelines are affected including university meteorology courses for majors and non-majors, military weather forecaster preparation and professional training for operational meteorologists, thus improving student learning and the continued development of the current and future workforce.
Spatial ecology of refuge selection by an herbivore under risk of predation
Wilson, Tammy L.; Rayburn, Andrew P.; Edwards, Thomas C.
2012-01-01
Prey species use structures such as burrows to minimize predation risk. The spatial arrangement of these resources can have important implications for individual and population fitness. For example, there is evidence that clustered resources can benefit individuals by reducing predation risk and increasing foraging opportunity concurrently, which leads to higher population density. However, the scale of clustering that is important in these processes has been ignored during theoretical and empirical development of resource models. Ecological understanding of refuge exploitation by prey can be improved by spatial analysis of refuge use and availability that incorporates the effect of scale. We measured the spatial distribution of pygmy rabbit (Brachylagus idahoensis) refugia (burrows) through censuses in four 6-ha sites. Point pattern analyses were used to evaluate burrow selection by comparing the spatial distribution of used and available burrows. The presence of food resources and additional overstory cover resources was further examined using logistic regression. Burrows were spatially clustered at scales up to approximately 25 m, and then regularly spaced at distances beyond ~40 m. Pygmy rabbit exploitation of burrows did not match availability. Burrows used by pygmy rabbits were likely to be located in areas with high overall burrow density (resource clusters) and high overstory cover, which together minimized predation risk. However, in some cases we observed an interaction between either overstory cover (safety) or understory cover (forage) and burrow density. The interactions show that pygmy rabbits will use burrows in areas with low relative burrow density (high relative predation risk) if understory food resources are high. This points to a potential trade-off whereby rabbits must sacrifice some safety afforded by additional nearby burrows to obtain ample forage resources. Observed patterns of clustered burrows and non-random burrow use improve understanding of the importance of spatial distribution of refugia for burrowing herbivores. The analyses used allowed for the estimation of the spatial scale where subtle trade-offs between predation avoidance and foraging opportunity are likely to occur in a natural system.
Campos, Jennifer L.; Siegle, Joshua H.; Mohler, Betty J.; Bülthoff, Heinrich H.; Loomis, Jack M.
2009-01-01
Background The extent to which actual movements and imagined movements maintain a shared internal representation has been a matter of much scientific debate. Of the studies examining such questions, few have directly compared actual full-body movements to imagined movements through space. Here we used a novel continuous pointing method to a) provide a more detailed characterization of self-motion perception during actual walking and b) compare the pattern of responding during actual walking to that which occurs during imagined walking. Methodology/Principal Findings This continuous pointing method requires participants to view a target and continuously point towards it as they walk, or imagine walking past it along a straight, forward trajectory. By measuring changes in the pointing direction of the arm, we were able to determine participants' perceived/imagined location at each moment during the trajectory and, hence, perceived/imagined self-velocity during the entire movement. The specific pattern of pointing behaviour that was revealed during sighted walking was also observed during blind walking. Specifically, a peak in arm azimuth velocity was observed upon target passage and a strong correlation was observed between arm azimuth velocity and pointing elevation. Importantly, this characteristic pattern of pointing was not consistently observed during imagined self-motion. Conclusions/Significance Overall, the spatial updating processes that occur during actual self-motion were not evidenced during imagined movement. Because of the rich description of self-motion perception afforded by continuous pointing, this method is expected to have significant implications for several research areas, including those related to motor imagery and spatial cognition and to applied fields for which mental practice techniques are common (e.g. rehabilitation and athletics). PMID:19907655
Atmospheric Science Data Center
2015-11-25
... Hot-Wire Hygrometer RMS Pressure Var Platinum Resistance Pyranometer Radiometer Reverse Flow Spatial ... Parameters: Condensation Nuclei Dew/Frost Point Temperature Droplet Concentration Humidity Irradiance Liquid Water ...
NASA Technical Reports Server (NTRS)
Panda, J.; Roozeboom, N. H.; Ross, J. C.
2016-01-01
The recent advancement in fast-response Pressure-Sensitive Paint (PSP) allows time-resolved measurements of unsteady pressure fluctuations from a dense grid of spatial points on a wind tunnel model. This capability allows for direct calculations of the wavenumber-frequency (k-?) spectrum of pressure fluctuations. Such data, useful for the vibro-acoustics analysis of aerospace vehicles, are difficult to obtain otherwise. For the present work, time histories of pressure fluctuations on a flat plate subjected to vortex shedding from a rectangular bluff-body were measured using PSP. The light intensity levels in the photographic images were then converted to instantaneous pressure histories by applying calibration constants, which were calculated from a few dynamic pressure sensors placed at selective points on the plate. Fourier transform of the time-histories from a large number of spatial points provided k-? spectra for pressure fluctuations. The data provides first glimpse into the possibility of creating detailed forcing functions for vibro-acoustics analysis of aerospace vehicles, albeit for a limited frequency range.
Film characteristics pertinent to coherent optical data processing systems.
Thomas, C E
1972-08-01
Photographic film is studied quantitatively as the input mechanism for coherent optical data recording and processing systems. The two important film characteristics are the amplitude transmission vs exposure (T(A) - E) curve and the film noise power spectral density. Both functions are measured as a function of the type of film, the type of developer, developer time and temperature, and the exposing and readout light wavelengths. A detailed analysis of a coherent optical spatial frequency analyzer reveals that the optimum do bias point for 649-F film is an amplitude transmission of about 70%. This operating point yields minimum harmonic and intermodulation distortion, whereas the 50% amplitude transmission bias point recommended by holographers yields maximum diffraction efficiency. It is also shown that the effective ac gain or contrast of the film is nearly independent of the development conditions for a given film. Finally, the linear dynamic range of one particular coherent optical spatial frequency analyzer is shown to be about 40-50 dB.
Automated Approach to Very High-Order Aeroacoustic Computations. Revision
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.; Goodrich, John W.
2001-01-01
Computational aeroacoustics requires efficient, high-resolution simulation tools. For smooth problems, this is best accomplished with very high-order in space and time methods on small stencils. However, the complexity of highly accurate numerical methods can inhibit their practical application, especially in irregular geometries. This complexity is reduced by using a special form of Hermite divided-difference spatial interpolation on Cartesian grids, and a Cauchy-Kowalewski recursion procedure for time advancement. In addition, a stencil constraint tree reduces the complexity of interpolating grid points that am located near wall boundaries. These procedures are used to develop automatically and to implement very high-order methods (> 15) for solving the linearized Euler equations that can achieve less than one grid point per wavelength resolution away from boundaries by including spatial derivatives of the primitive variables at each grid point. The accuracy of stable surface treatments is currently limited to 11th order for grid aligned boundaries and to 2nd order for irregular boundaries.
Line segment confidence region-based string matching method for map conflation
NASA Astrophysics Data System (ADS)
Huh, Yong; Yang, Sungchul; Ga, Chillo; Yu, Kiyun; Shi, Wenzhong
2013-04-01
In this paper, a method to detect corresponding point pairs between polygon object pairs with a string matching method based on a confidence region model of a line segment is proposed. The optimal point edit sequence to convert the contour of a target object into that of a reference object was found by the string matching method which minimizes its total error cost, and the corresponding point pairs were derived from the edit sequence. Because a significant amount of apparent positional discrepancies between corresponding objects are caused by spatial uncertainty and their confidence region models of line segments are therefore used in the above matching process, the proposed method obtained a high F-measure for finding matching pairs. We applied this method for built-up area polygon objects in a cadastral map and a topographical map. Regardless of their different mapping and representation rules and spatial uncertainties, the proposed method with a confidence level at 0.95 showed a matching result with an F-measure of 0.894.
An Automated Approach to Very High Order Aeroacoustic Computations in Complex Geometries
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.; Goodrich, John W.
2000-01-01
Computational aeroacoustics requires efficient, high-resolution simulation tools. And for smooth problems, this is best accomplished with very high order in space and time methods on small stencils. But the complexity of highly accurate numerical methods can inhibit their practical application, especially in irregular geometries. This complexity is reduced by using a special form of Hermite divided-difference spatial interpolation on Cartesian grids, and a Cauchy-Kowalewslci recursion procedure for time advancement. In addition, a stencil constraint tree reduces the complexity of interpolating grid points that are located near wall boundaries. These procedures are used to automatically develop and implement very high order methods (>15) for solving the linearized Euler equations that can achieve less than one grid point per wavelength resolution away from boundaries by including spatial derivatives of the primitive variables at each grid point. The accuracy of stable surface treatments is currently limited to 11th order for grid aligned boundaries and to 2nd order for irregular boundaries.
NASA Technical Reports Server (NTRS)
Chen, Chien-Chung; Gardner, Chester S.
1989-01-01
Given the rms transmitter pointing error and the desired probability of bit error (PBE), it can be shown that an optimal transmitter antenna gain exists which minimizes the required transmitter power. Given the rms local oscillator tracking error, an optimum receiver antenna gain can be found which optimizes the receiver performance. The impact of pointing and tracking errors on the design of direct-detection pulse-position modulation (PPM) and heterodyne noncoherent frequency-shift keying (NCFSK) systems are then analyzed in terms of constraints on the antenna size and the power penalty incurred. It is shown that in the limit of large spatial tracking errors, the advantage in receiver sensitivity for the heterodyne system is quickly offset by the smaller antenna gain and the higher power penalty due to tracking errors. In contrast, for systems with small spatial tracking errors, the heterodyne system is superior because of the higher receiver sensitivity.
Users as essential contributors to spatial cyberinfrastructures
Poore, Barbara S.
2011-01-01
Current accounts of spatial cyberinfrastructure development tend to overemphasize technologies to the neglect of critical social and cultural issues on which adoption depends. Spatial cyberinfrastructures will have a higher chance of success if users of many types, including nonprofessionals, are made central to the development process. Recent studies in the history of infrastructures reveal key turning points and issues that should be considered in the development of spatial cyberinfrastructure projects. These studies highlight the importance of adopting qualitative research methods to learn how users work with data and digital tools, and how user communities form. The author's empirical research on data sharing networks in the Pacific Northwest salmon crisis at the turn of the 21st century demonstrates that ordinary citizens can contribute critical local knowledge to global databases and should be considered in the design and construction of spatial cyberinfrastructures. PMID:21444825
Users as essential contributors to spatial cyberinfrastructures.
Poore, Barbara S
2011-04-05
Current accounts of spatial cyberinfrastructure development tend to overemphasize technologies to the neglect of critical social and cultural issues on which adoption depends. Spatial cyberinfrastructures will have a higher chance of success if users of many types, including nonprofessionals, are made central to the development process. Recent studies in the history of infrastructures reveal key turning points and issues that should be considered in the development of spatial cyberinfrastructure projects. These studies highlight the importance of adopting qualitative research methods to learn how users work with data and digital tools, and how user communities form. The author's empirical research on data sharing networks in the Pacific Northwest salmon crisis at the turn of the 21st century demonstrates that ordinary citizens can contribute critical local knowledge to global databases and should be considered in the design and construction of spatial cyberinfrastructures.
Users as essential contributors to spatial cyberinfrastructures
Poore, B.S.
2011-01-01
Current accounts of spatial cyberinfrastructure development tend to overemphasize technologies to the neglect of critical social and cultural issues on which adoption depends. Spatial cyberinfrastructures will have a higher chance of success if users of many types, including nonprofessionals, are made central to the development process. Recent studies in the history of infrastructures reveal key turning points and issues that should be considered in the development of spatial cyberinfrastructure projects. These studies highlight the importance of adopting qualitative research methods to learn how users work with data and digital tools, and how user communities form. The author's empirical research on data sharing networks in the Pacific Northwest salmon crisis at the turn of the 21st century demonstrates that ordinary citizens can contribute critical local knowledge to global databases and should be considered in the design and construction of spatial cyberinfrastructures.
Blind deconvolution post-processing of images corrected by adaptive optics
NASA Astrophysics Data System (ADS)
Christou, Julian C.
1995-08-01
Experience with the adaptive optics system at the Starfire Optical Range has shown that the point spread function is non-uniform and varies both spatially and temporally as well as being object dependent. Because of this, the application of a standard linear and non-linear deconvolution algorithms make it difficult to deconvolve out the point spread function. In this paper we demonstrate the application of a blind deconvolution algorithm to adaptive optics compensated data where a separate point spread function is not needed.
Critical Point in Self-Organized Tissue Growth
NASA Astrophysics Data System (ADS)
Aguilar-Hidalgo, Daniel; Werner, Steffen; Wartlick, Ortrud; González-Gaitán, Marcos; Friedrich, Benjamin M.; Jülicher, Frank
2018-05-01
We present a theory of pattern formation in growing domains inspired by biological examples of tissue development. Gradients of signaling molecules regulate growth, while growth changes these graded chemical patterns by dilution and advection. We identify a critical point of this feedback dynamics, which is characterized by spatially homogeneous growth and proportional scaling of patterns with tissue length. We apply this theory to the biological model system of the developing wing of the fruit fly Drosophila melanogaster and quantitatively identify signatures of the critical point.
Tactile Recognition and Localization Using Object Models: The Case of Polyhedra on a Plane.
1983-03-01
poor force resolution, but high spatial resolution. We feel that the viability of this recognition approach has important implications on the design of...of the touched object: 1. Surface point - On the basis of sensor readings, some points on the sensor can be identified as being in contact with...the sensor’s shape and location in space are known, one can determine the position of some point on the touched object, to within some uncertainty
Geometrical superresolved imaging using nonperiodic spatial masking.
Borkowski, Amikam; Zalevsky, Zeev; Javidi, Bahram
2009-03-01
The resolution of every imaging system is limited either by the F-number of its optics or by the geometry of its detection array. The geometrical limitation is caused by lack of spatial sampling points as well as by the shape of every sampling pixel that generates spectral low-pass filtering. We present a novel approach to overcome the low-pass filtering that is due to the shape of the sampling pixels. The approach combines special algorithms together with spatial masking placed in the intermediate image plane and eventually allows geometrical superresolved imaging without relation to the actual shape of the pixels.
Ipsilesional 'where' with contralesional 'what' neglect.
Kwon, Jay Cheol; Ahn, Sunyoung; Kim, Sunghee; Heilman, Kenneth M
2012-01-01
Whereas contralesional spatial neglect is usually caused by right temporo-parietal lesions, ipsilesional spatial neglect is induced primarily by right frontal lesions. This report describes a 73-year-old woman with a right inferior parietal lesion who on 'where' tasks (line bisection and midline pointing) demonstrated ipsilesional neglect, but on 'what' tests (gap vs. no-gap detection cancellation and clothing tape removal) demonstrated contralesional neglect. This 'what' and 'where' directional dissociation provides evidence for independent 'what' and 'where' attentional networks; however, the reason this parietal lesion causes this contralesional vs. ipsilesional spatial attentional 'what' and 'where' dichotomy remains to be determined.
A Comparison of Weights Matrices on Computation of Dengue Spatial Autocorrelation
NASA Astrophysics Data System (ADS)
Suryowati, K.; Bekti, R. D.; Faradila, A.
2018-04-01
Spatial autocorrelation is one of spatial analysis to identify patterns of relationship or correlation between locations. This method is very important to get information on the dispersal patterns characteristic of a region and linkages between locations. In this study, it applied on the incidence of Dengue Hemorrhagic Fever (DHF) in 17 sub districts in Sleman, Daerah Istimewa Yogyakarta Province. The link among location indicated by a spatial weight matrix. It describe the structure of neighbouring and reflects the spatial influence. According to the spatial data, type of weighting matrix can be divided into two types: point type (distance) and the neighbourhood area (contiguity). Selection weighting function is one determinant of the results of the spatial analysis. This study use queen contiguity based on first order neighbour weights, queen contiguity based on second order neighbour weights, and inverse distance weights. Queen contiguity first order and inverse distance weights shows that there is the significance spatial autocorrelation in DHF, but not by queen contiguity second order. Queen contiguity first and second order compute 68 and 86 neighbour list
ERIC Educational Resources Information Center
Lleras, Alejandro; Enns, James T.
2006-01-01
The authors make 3 points in response to F. Schlaghecken and M. Eimer's (see record 2006-09007-009) proposal of self-inhibition as an explanatory factor in the negative compatibility effect: (a) The self-inhibition hypothesis lacks empirical support for its main tenets; (b) considering the roles of geometric, spatial, and temporal similarity of…
Patrick C. Tobin; Laura M. Blackburn; Rebecca H. Gray; Christopher T. Lettau; Andrew M. Liebhold; Kenneth F. Raffa
2013-01-01
The ability to ascertain abundance and spatial extent of a nascent population of a non-native species can inform management decisions. Following initial detection, delimiting surveys, which involve the use of a finer network of samples around the focal point of a newly detected colony, are often used to quantify colony size, spatial extent, and the location of the...
Crime Pattern Analysis: A Spatial Frequent Pattern Mining Approach
2012-05-10
econometrics. A companion to theoretical econometrics, pages 310-330, 1988. [5] L. Anselin, J. Cohen, D. Cook, W. Gorr, and G. Tita . Spatial analyses...52] G. Mohler, M. Short, P. Brantingham, F. Schoenberg, and G. Tita . Self-exciting point process modeling of crime. Journal of the American...Systems, 9:462, 2010. [69] M. Short, P. Brantingham, A. Bertozzi, and G. Tita . Dissipation and displacement of hotspots in reaction-diffusion models
A mesh partitioning algorithm for preserving spatial locality in arbitrary geometries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nivarti, Girish V., E-mail: g.nivarti@alumni.ubc.ca; Salehi, M. Mahdi; Bushe, W. Kendal
2015-01-15
Highlights: •An algorithm for partitioning computational meshes is proposed. •The Morton order space-filling curve is modified to achieve improved locality. •A spatial locality metric is defined to compare results with existing approaches. •Results indicate improved performance of the algorithm in complex geometries. -- Abstract: A space-filling curve (SFC) is a proximity preserving linear mapping of any multi-dimensional space and is widely used as a clustering tool. Equi-sized partitioning of an SFC ignores the loss in clustering quality that occurs due to inaccuracies in the mapping. Often, this results in poor locality within partitions, especially for the conceptually simple, Morton ordermore » curves. We present a heuristic that improves partition locality in arbitrary geometries by slicing a Morton order curve at points where spatial locality is sacrificed. In addition, we develop algorithms that evenly distribute points to the extent possible while maintaining spatial locality. A metric is defined to estimate relative inter-partition contact as an indicator of communication in parallel computing architectures. Domain partitioning tests have been conducted on geometries relevant to turbulent reactive flow simulations. The results obtained highlight the performance of our method as an unsupervised and computationally inexpensive domain partitioning tool.« less
Roseboom, Warrick; Kawabe, Takahiro; Nishida, Shin'ya
2013-01-01
It has now been well established that the point of subjective synchrony for audio and visual events can be shifted following exposure to asynchronous audio-visual presentations, an effect often referred to as temporal recalibration. Recently it was further demonstrated that it is possible to concurrently maintain two such recalibrated estimates of audio-visual temporal synchrony. However, it remains unclear precisely what defines a given audio-visual pair such that it is possible to maintain a temporal relationship distinct from other pairs. It has been suggested that spatial separation of the different audio-visual pairs is necessary to achieve multiple distinct audio-visual synchrony estimates. Here we investigated if this is necessarily true. Specifically, we examined whether it is possible to obtain two distinct temporal recalibrations for stimuli that differed only in featural content. Using both complex (audio visual speech; see Experiment 1) and simple stimuli (high and low pitch audio matched with either vertically or horizontally oriented Gabors; see Experiment 2) we found concurrent, and opposite, recalibrations despite there being no spatial difference in presentation location at any point throughout the experiment. This result supports the notion that the content of an audio-visual pair alone can be used to constrain distinct audio-visual synchrony estimates regardless of spatial overlap.
Audio-Visual Temporal Recalibration Can be Constrained by Content Cues Regardless of Spatial Overlap
Roseboom, Warrick; Kawabe, Takahiro; Nishida, Shin’Ya
2013-01-01
It has now been well established that the point of subjective synchrony for audio and visual events can be shifted following exposure to asynchronous audio-visual presentations, an effect often referred to as temporal recalibration. Recently it was further demonstrated that it is possible to concurrently maintain two such recalibrated estimates of audio-visual temporal synchrony. However, it remains unclear precisely what defines a given audio-visual pair such that it is possible to maintain a temporal relationship distinct from other pairs. It has been suggested that spatial separation of the different audio-visual pairs is necessary to achieve multiple distinct audio-visual synchrony estimates. Here we investigated if this is necessarily true. Specifically, we examined whether it is possible to obtain two distinct temporal recalibrations for stimuli that differed only in featural content. Using both complex (audio visual speech; see Experiment 1) and simple stimuli (high and low pitch audio matched with either vertically or horizontally oriented Gabors; see Experiment 2) we found concurrent, and opposite, recalibrations despite there being no spatial difference in presentation location at any point throughout the experiment. This result supports the notion that the content of an audio-visual pair alone can be used to constrain distinct audio-visual synchrony estimates regardless of spatial overlap. PMID:23658549
Triatomine Infestation in Guatemala: Spatial Assessment after Two Rounds of Vector Control
Manne, Jennifer; Nakagawa, Jun; Yamagata, Yoichi; Goehler, Alexander; Brownstein, John S.; Castro, Marcia C.
2012-01-01
In 2000, the Guatemalan Ministry of Health initiated a Chagas disease program to control Rhodnius prolixus and Triatoma dimidiata by periodic house spraying with pyrethroid insecticides to characterize infestation patterns and analyze the contribution of programmatic practices to these patterns. Spatial infestation patterns at three time points were identified using the Getis-Ord Gi*(d) test. Logistic regression was used to assess predictors of reinfestation after pyrethroid insecticide administration. Spatial analysis showed high and low clusters of infestation at three time points. After two rounds of spray, 178 communities persistently fell in high infestation clusters. A time lapse between rounds of vector control greater than 6 months was associated with 1.54 (95% confidence interval = 1.07–2.23) times increased odds of reinfestation after first spray, whereas a time lapse of greater than 1 year was associated with 2.66 (95% confidence interval = 1.85–3.83) times increased odds of reinfestation after first spray compared with localities where the time lapse was less than 180 days. The time lapse between rounds of vector control should remain under 1 year. Spatial analysis can guide targeted vector control efforts by enabling tracking of reinfestation hotspots and improved targeting of resources. PMID:22403315
Spatial and Spin Symmetry Breaking in Semidefinite-Programming-Based Hartree-Fock Theory.
Nascimento, Daniel R; DePrince, A Eugene
2018-05-08
The Hartree-Fock problem was recently recast as a semidefinite optimization over the space of rank-constrained two-body reduced-density matrices (RDMs) [ Phys. Rev. A 2014 , 89 , 010502(R) ]. This formulation of the problem transfers the nonconvexity of the Hartree-Fock energy functional to the rank constraint on the two-body RDM. We consider an equivalent optimization over the space of positive semidefinite one-electron RDMs (1-RDMs) that retains the nonconvexity of the Hartree-Fock energy expression. The optimized 1-RDM satisfies ensemble N-representability conditions, and ensemble spin-state conditions may be imposed as well. The spin-state conditions place additional linear and nonlinear constraints on the 1-RDM. We apply this RDM-based approach to several molecular systems and explore its spatial (point group) and spin ( Ŝ 2 and Ŝ 3 ) symmetry breaking properties. When imposing Ŝ 2 and Ŝ 3 symmetry but relaxing point group symmetry, the procedure often locates spatial-symmetry-broken solutions that are difficult to identify using standard algorithms. For example, the RDM-based approach yields a smooth, spatial-symmetry-broken potential energy curve for the well-known Be-H 2 insertion pathway. We also demonstrate numerically that, upon relaxation of Ŝ 2 and Ŝ 3 symmetry constraints, the RDM-based approach is equivalent to real-valued generalized Hartree-Fock theory.
Spatial interferences in the electron transport of heavy-fermion materials
NASA Astrophysics Data System (ADS)
Zhang, Shu-feng; Liu, Yu; Song, Hai-Feng; Yang, Yi-feng
2016-08-01
The scanning tunneling microscopy/spectroscopy and the point contact spectroscopy represent major progress in recent heavy-fermion research. Both have revealed important information on the composite nature of the emergent heavy-electron quasiparticles. However, a detailed and thorough microscopic understanding of the similarities and differences in the underlying physical processes of these techniques is still lacking. Here we study the electron transport in the normal state of the periodic Anderson lattice by using the Keldysh nonequilibrium Green's function technique. In addition to the well-known Fano interference between the conduction and f -electron channels, our results further reveal the effect of spatial interference between different spatial paths at the interface on the differential conductance and their interesting interplay with the band features such as the hybridization gap and the Van Hove singularity. We find that the spatial interference leads to a weighted average in the momentum space for the electron transport and could cause suppression of the electronic band features under certain circumstances. In particular, it reduces the capability of probing the f -electron spectral weight near the edges of the hybridization gap for large interface depending on the Fermi surface of the lead. Our results indicate an intrinsic inefficiency of the point contact spectroscopy in probing the f electrons.
Poor Hand-Pointing to Sounds in Right Brain-Damaged Patients: Not Just a Problem of Spatial-Hearing
ERIC Educational Resources Information Center
Pavani, Francesco; Farne, Alessandro; Ladavas, Elisabetta
2005-01-01
We asked 22 right brain-damaged (RBD) patients and 11 elderly healthy controls to perform hand-pointing movements to free-field unseen sounds, while modulating two non-auditory variables: the initial position of the responding hand (left, centre or right) and the presence or absence of task-irrelevant ambient vision. RBD patients suffering from…
NASA Astrophysics Data System (ADS)
Dąbski, Maciej; Zmarz, Anna; Pabjanek, Piotr; Korczak-Abshire, Małgorzata; Karsznia, Izabela; Chwedorzewska, Katarzyna J.
2017-08-01
High-resolution aerial images allow detailed analyses of periglacial landforms, which is of particular importance in light of climate change and resulting changes in active layer thickness. The aim of this study is to show possibilities of using UAV-based photography to perform spatial analysis of periglacial landforms on the Demay Point peninsula, King George Island, and hence to supplement previous geomorphological studies of the South Shetland Islands. Photogrammetric flights were performed using a PW-ZOOM fixed-winged unmanned aircraft vehicle. Digital elevation models (DEM) and maps of slope and contour lines were prepared in ESRI ArcGIS 10.3 with the Spatial Analyst extension, and three-dimensional visualizations in ESRI ArcScene 10.3 software. Careful interpretation of orthophoto and DEM, allowed us to vectorize polygons of landforms, such as (i) solifluction landforms (solifluction sheets, tongues, and lobes); (ii) scarps, taluses, and a protalus rampart; (iii) patterned ground (hummocks, sorted circles, stripes, nets and labyrinths, and nonsorted nets and stripes); (iv) coastal landforms (cliffs and beaches); (v) landslides and mud flows; and (vi) stone fields and bedrock outcrops. We conclude that geomorphological studies based on commonly accessible aerial and satellite images can underestimate the spatial extent of periglacial landforms and result in incomplete inventories. The PW-ZOOM UAV is well suited to gather detailed geomorphological data and can be used in spatial analysis of periglacial landforms in the Western Antarctic Peninsula region.
Geostatistics and spatial analysis in biological anthropology.
Relethford, John H
2008-05-01
A variety of methods have been used to make evolutionary inferences based on the spatial distribution of biological data, including reconstructing population history and detection of the geographic pattern of natural selection. This article provides an examination of geostatistical analysis, a method used widely in geology but which has not often been applied in biological anthropology. Geostatistical analysis begins with the examination of a variogram, a plot showing the relationship between a biological distance measure and the geographic distance between data points and which provides information on the extent and pattern of spatial correlation. The results of variogram analysis are used for interpolating values of unknown data points in order to construct a contour map, a process known as kriging. The methods of geostatistical analysis and discussion of potential problems are applied to a large data set of anthropometric measures for 197 populations in Ireland. The geostatistical analysis reveals two major sources of spatial variation. One pattern, seen for overall body and craniofacial size, shows an east-west cline most likely reflecting the combined effects of past population dispersal and settlement. The second pattern is seen for craniofacial height and shows an isolation by distance pattern reflecting rapid spatial changes in the midlands region of Ireland, perhaps attributable to the genetic impact of the Vikings. The correspondence of these results with other analyses of these data and the additional insights generated from variogram analysis and kriging illustrate the potential utility of geostatistical analysis in biological anthropology. (c) 2008 Wiley-Liss, Inc.
A New Era in Geodesy and Cartography: Implications for Landing Site Operations
NASA Technical Reports Server (NTRS)
Duxbury, T. C.
2001-01-01
The Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) global dataset has ushered in a new era for Mars local and global geodesy and cartography. These data include the global digital terrain model (Digital Terrain Model (DTM) radii), the global digital elevation model (Digital Elevation Model (DEM) elevation with respect to the geoid), and the higher spatial resolution individual MOLA ground tracks. Currently there are about 500,000,000 MOLA points and this number continues to grow as MOLA continues successful operations in orbit about Mars, the combined processing of radiometric X-band Doppler and ranging tracking of MGS together with millions of MOLA orbital crossover points has produced global geodetic and cartographic control having a spatial (latitude/longitude) accuracy of a few meters and a topographic accuracy of less than 1 meter. This means that the position of an individual MOLA point with respect to the center-of-mass of Mars is know to an absolute accuracy of a few meters. The positional accuracy of this point in inertial space over time is controlled by the spin rate uncertainty of Mars which is less than 1 km over 10 years that will be improved significantly with the next landed mission.
A High-Resolution Capability for Large-Eddy Simulation of Jet Flows
NASA Technical Reports Server (NTRS)
DeBonis, James R.
2011-01-01
A large-eddy simulation (LES) code that utilizes high-resolution numerical schemes is described and applied to a compressible jet flow. The code is written in a general manner such that the accuracy/resolution of the simulation can be selected by the user. Time discretization is performed using a family of low-dispersion Runge-Kutta schemes, selectable from first- to fourth-order. Spatial discretization is performed using central differencing schemes. Both standard schemes, second- to twelfth-order (3 to 13 point stencils) and Dispersion Relation Preserving schemes from 7 to 13 point stencils are available. The code is written in Fortran 90 and uses hybrid MPI/OpenMP parallelization. The code is applied to the simulation of a Mach 0.9 jet flow. Four-stage third-order Runge-Kutta time stepping and the 13 point DRP spatial discretization scheme of Bogey and Bailly are used. The high resolution numerics used allows for the use of relatively sparse grids. Three levels of grid resolution are examined, 3.5, 6.5, and 9.2 million points. Mean flow, first-order turbulent statistics and turbulent spectra are reported. Good agreement with experimental data for mean flow and first-order turbulent statistics is shown.
NASA Astrophysics Data System (ADS)
Hübner, R.; Heller, K.; Günther, T.; Kleber, A.
2015-01-01
Besides floodplains, hillslopes are basic units that mainly control water movement and flow pathways within catchments of subdued mountain ranges. The structure of their shallow subsurface affects water balance, e.g. infiltration, retention, and runoff. Nevertheless, there is still a gap in the knowledge of the hydrological dynamics on hillslopes, notably due to the lack of generalization and transferability. This study presents a robust multi-method framework of electrical resistivity tomography (ERT) in addition to hydrometric point measurements, transferring hydrometric data into higher spatial scales to obtain additional patterns of distribution and dynamics of soil moisture on a hillslope. A geoelectrical monitoring in a small catchment in the eastern Ore Mountains was carried out at weekly intervals from May to December 2008 to image seasonal moisture dynamics on the hillslope scale. To link water content and electrical resistivity, the parameters of Archie's law were determined using different core samples. To optimize inversion parameters and methods, the derived spatial and temporal water content distribution was compared to tensiometer data. The results from ERT measurements show a strong correlation with the hydrometric data. The response is congruent to the soil tension data. Water content calculated from the ERT profile shows similar variations as that of water content from soil moisture sensors. Consequently, soil moisture dynamics on the hillslope scale may be determined not only by expensive invasive punctual hydrometric measurements, but also by minimally invasive time-lapse ERT, provided that pedo-/petrophysical relationships are known. Since ERT integrates larger spatial scales, a combination with hydrometric point measurements improves the understanding of the ongoing hydrological processes and better suits identification of heterogeneities.
NASA Astrophysics Data System (ADS)
Wang, C.; Rubin, Y.
2014-12-01
Spatial distribution of important geotechnical parameter named compression modulus Es contributes considerably to the understanding of the underlying geological processes and the adequate assessment of the Es mechanics effects for differential settlement of large continuous structure foundation. These analyses should be derived using an assimilating approach that combines in-situ static cone penetration test (CPT) with borehole experiments. To achieve such a task, the Es distribution of stratum of silty clay in region A of China Expo Center (Shanghai) is studied using the Bayesian-maximum entropy method. This method integrates rigorously and efficiently multi-precision of different geotechnical investigations and sources of uncertainty. Single CPT samplings were modeled as a rational probability density curve by maximum entropy theory. Spatial prior multivariate probability density function (PDF) and likelihood PDF of the CPT positions were built by borehole experiments and the potential value of the prediction point, then, preceding numerical integration on the CPT probability density curves, the posterior probability density curve of the prediction point would be calculated by the Bayesian reverse interpolation framework. The results were compared between Gaussian Sequential Stochastic Simulation and Bayesian methods. The differences were also discussed between single CPT samplings of normal distribution and simulated probability density curve based on maximum entropy theory. It is shown that the study of Es spatial distributions can be improved by properly incorporating CPT sampling variation into interpolation process, whereas more informative estimations are generated by considering CPT Uncertainty for the estimation points. Calculation illustrates the significance of stochastic Es characterization in a stratum, and identifies limitations associated with inadequate geostatistical interpolation techniques. This characterization results will provide a multi-precision information assimilation method of other geotechnical parameters.
Effect of Spatial Resolution for Characterizing Soil Properties from Imaging Spectrometer Data
NASA Astrophysics Data System (ADS)
Dutta, D.; Kumar, P.; Greenberg, J. A.
2015-12-01
The feasibility of quantifying soil constituents over large areas using airborne hyperspectral data [0.35 - 2.5 μm] in an ensemble bootstrapping lasso algorithmic framework has been demonstrated previously [1]. However the effects of coarsening the spatial resolution of hyperspectral data on the quantification of soil constituents are unknown. We use Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data collected at 7.6m resolution over Birds Point New Madrid (BPNM) floodway for up-scaling and generating multiple coarser resolution datasets including the 60m Hyperspectral Infrared Imager (HyspIRI) like data. HyspIRI is a proposed visible shortwave/thermal infrared mission, which will provide global data over a spectral range of 0.35 - 2.5μm at a spatial resolution of 60m. Our results show that the lasso method, which is based on point scale observational data, is scalable. We found consistent good model performance (R2) values (0.79 < R2 < 0.82) and correct classifications as per USDA soil texture classes at multiple spatial resolutions. The results further demonstrate that the attributes of the pdf for different soil constituents across the landscape and the within-pixel variance are well preserved across scales. Our analysis provides a methodological framework with a sufficient set of metrics for assessing the performance of scaling up analysis from point scale observational data and may be relevant for other similar remote sensing studies. [1] Dutta, D.; Goodwell, A.E.; Kumar, P.; Garvey, J.E.; Darmody, R.G.; Berretta, D.P.; Greenberg, J.A., "On the Feasibility of Characterizing Soil Properties From AVIRIS Data," Geoscience and Remote Sensing, IEEE Transactions on, vol.53, no.9, pp.5133,5147, Sept. 2015. doi: 10.1109/TGRS.2015.2417547.
A scrutiny of heterogeneity at the TCE Source Area BioREmediation (SABRE) test site
NASA Astrophysics Data System (ADS)
Rivett, M.; Wealthall, G. P.; Mcmillan, L. A.; Zeeb, P.
2015-12-01
A scrutiny of heterogeneity at the UK's Source Area BioREmediation (SABRE) test site is presented to better understand how spatial heterogeneity in subsurface properties and process occurrence may constrain performance of enhanced in-situ bioremediation (EISB). The industrial site contained a 25 to 45 year old trichloroethene (TCE) dense non-aqueous phase liquid (DNAPL) that was exceptionally well monitored via a network of multilevel samplers and high resolution core sampling. Moreover, monitoring was conducted within a 3-sided sheet-pile cell that allowed a controlled streamtube of flow to be drawn through the source zone by an extraction well. We primarily focus on the longitudinal transect of monitoring along the length of the cell that provides a 200 groundwater point sample slice along the streamtube of flow through the DNAPL source zone. TCE dechlorination is shown to be significant throughout the cell domain, but spatially heterogeneous in occurrence and progress of dechlorination to lesser chlorinated ethenes - it is this heterogeneity in dechlorination that we primarily scrutinise. We illustrate the diagnostic use of the relative occurrence of TCE parent and daughter compounds to confirm: dechlorination in close proximity to DNAPL and enhanced during the bioremediation; persistent layers of DNAPL into which gradients of dechlorination products are evident; fast flowpaths through the source zone where dechlorination is less evident; and, the importance of underpinning flow regime understanding on EISB performance. Still, even with such spatial detail, there remains uncertainty over the dataset interpretation. These includes poor closure of mass balance along the cell length for the multilevel sampler based monitoring and points to needs to still understand lateral flows (even in the constrained cell), even greater spatial resolution of point monitoring and potentially, not easily proven, ethene degradation loss.
Spatial Variations of DOM Compositions in the River with Multi-functional Weir
NASA Astrophysics Data System (ADS)
Yoon, S. M.; Choi, J. H.
2017-12-01
With the global trend to construct artificial impoundments over the last decades, there was a Large River Restoration Project conducted in South Korea from 2010 to 2011. The project included enlargement of river channel capacity and construction of multi-functional weirs, which can alter the hydrological flow of the river and cause spatial variations of water quality indicators, especially DOM (Dissolved Organic Matter) compositions. In order to analyze the spatial variations of organic matter, water samples were collected longitudinally (5 points upstream from the weir), horizontally (left, center, right at each point) and vertically (1m interval at each point). The specific UV-visible absorbance (SUVA) and fluorescence excitation-emission matrices (EEMs) have been used as rapid and non-destructive analytical methods for DOM compositions. In addition, parallel factor analysis (PARAFAC) has adopted for extracting a set of representative fluorescence components from EEMs. It was assumed that autochthonous DOM would be dominant near the weir due to the stagnation of hydrological flow. However, the results showed that the values of fluorescence index (FI) were 1.29-1.47, less than 2, indicating DOM of allochthonous origin dominated in the water near the weir. PARAFAC analysis also showed the peak at 450 nm of emission and < 250 nm of excitation which represented the humic substances group with terrestrial origins. There was no significant difference in the values of Biological index (BIX), however, values of humification index (HIX) spatially increased toward the weir. From the results of the water sample analysis, the river with multi-functional weir is influenced by the allochthonous DOM instead of autochthonous DOM and seems to accumulate humic substances near the weir.
Denoising, deconvolving, and decomposing photon observations. Derivation of the D3PO algorithm
NASA Astrophysics Data System (ADS)
Selig, Marco; Enßlin, Torsten A.
2015-02-01
The analysis of astronomical images is a non-trivial task. The D3PO algorithm addresses the inference problem of denoising, deconvolving, and decomposing photon observations. Its primary goal is the simultaneous but individual reconstruction of the diffuse and point-like photon flux given a single photon count image, where the fluxes are superimposed. In order to discriminate between these morphologically different signal components, a probabilistic algorithm is derived in the language of information field theory based on a hierarchical Bayesian parameter model. The signal inference exploits prior information on the spatial correlation structure of the diffuse component and the brightness distribution of the spatially uncorrelated point-like sources. A maximum a posteriori solution and a solution minimizing the Gibbs free energy of the inference problem using variational Bayesian methods are discussed. Since the derivation of the solution is not dependent on the underlying position space, the implementation of the D3PO algorithm uses the nifty package to ensure applicability to various spatial grids and at any resolution. The fidelity of the algorithm is validated by the analysis of simulated data, including a realistic high energy photon count image showing a 32 × 32 arcmin2 observation with a spatial resolution of 0.1 arcmin. In all tests the D3PO algorithm successfully denoised, deconvolved, and decomposed the data into a diffuse and a point-like signal estimate for the respective photon flux components. A copy of the code is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/574/A74
NASA Technical Reports Server (NTRS)
Fennessey, N. M.; Eagleson, P. S.; Qinliang, W.; Rodrigues-Iturbe, I.
1986-01-01
Eight years of summer raingage observations are analyzed for a dense, 93 gage, network operated by the U. S. Department of Agriculture, Agricultural Research Service, in their 150 sq km Walnut Gulch catchment near Tucson, Arizona. Storms are defined by the total depths collected at each raingage during the noon to noon period for which there was depth recorded at any of the gages. For each of the resulting 428 storms, the 93 gage depths are interpolated onto a dense grid and the resulting random field is anlyzed. Presented are: storm depth isohyets at 2 mm contour intervals, first three moments of point storm depth, spatial correlation function, spatial variance function, and the spatial distribution of total rainstorm depth.
Prototypes and particulars: geometric and experience-dependent spatial categories.
Spencer, John P; Hund, Alycia M
2002-03-01
People use geometric cues to form spatial categories. This study investigated whether people also use the spatial distribution of exemplars. Adults pointed to remembered locations on a tabletop. In Experiment 1, a target was placed in each geometric category, and the location of targets was varied. Adults' responses were biased away from a midline category boundary toward geometric prototypes located at the centers of left and right categories. Experiment 2 showed that prototype effects were not influenced by cross-category interactions. In Experiment 3, subsets of targets were positioned at different locations within each category. When prototype effects were removed, there was a bias toward the center of the exemplar distribution, suggesting that common categorization processes operate across spatial and object domains.
From Resource-Adaptive Navigation Assistance to Augmented Cognition
NASA Astrophysics Data System (ADS)
Zimmer, Hubert D.; Münzer, Stefan; Baus, Jörg
In an assistance scenario, a computer provides purposive information supporting a human user in an everyday situation. Wayfinding with navigation assistance is a prototypical assistance scenario. The present chapter analyzes the interplay of the resources of the assistance system and the resources of the user. The navigation assistance system provides geographic knowledge, positioning information, route planning, spatial overview information, and route commands at decision points. The user's resources encompass spatial knowledge, spatial abilities and visuo-spatial working memory, orientation strategies, and cultural habit. Flexible adaptations of the assistance system to available resources of the user are described, taking different wayfinding goals, situational constraints, and individual differences into account. Throughout the chapter, the idea is pursued that the available resources of the user should be kept active.
Spatially-resolved probing of biological phantoms by point-radiance spectroscopy
NASA Astrophysics Data System (ADS)
Grabtchak, Serge; Palmer, Tyler J.; Whelan, William M.
2011-03-01
Interstitial fiber-optic based strategies for therapy monitoring and assessment rely on detecting treatment-induced changes in the light distribution in biological tissues. We present an optical technique to identify spectrally and spatially specific tissue chromophores in highly scattering turbid media. Typical optical sensors measure non-directional light intensity (i.e. fluence) and require fiber translation (i.e. 3-5 positions), which is difficult to implement clinically. Point radiance spectroscopy is based on directional light collection (i.e. radiance) at a single point with a side-firing fiber that can be rotated up to 360°. A side firing fiber accepts light within a well-defined solid angle thus potentially providing an improved spatial resolution. Experimental measurements were performed using an 800-μm diameter isotropic spherical diffuser coupled to a halogen light source and a 600 μm, ~43° cleaved fiber (i.e. radiance detector). The background liquid-based scattering phantom was fabricated using 1% Intralipid (i.e. scattering medium). Light was collected at 1-5° increments through 360°-segment. Gold nanoparticles, placed into a 3.5 mm diameter capillary tube were used as localized scatterers and absorbers introduced into the liquid phantom both on- and off-axis between source and detector. The localized optical inhomogeneity was detectable as an angular-resolved variation in the radiance polar plots. This technique is being investigated as a non-invasive optical modality for prostate cancer monitoring.
Hirota, Mitsuru; Zhang, Pengcheng; Gu, Song; Shen, Haihua; Kuriyama, Takeo; Li, Yingnian; Tang, Yanhong
2010-07-01
Characterizing the spatial variation in the CO2 flux at both large and small scales is essential for precise estimation of an ecosystem's CO2 sink strength. However, little is known about small-scale CO2 flux variations in an ecosystem. We explored these variations in a Kobresia meadow ecosystem on the Qinghai-Tibetan plateau in relation to spatial variability in species composition and biomass. We established 14 points and measured net ecosystem production (NEP), gross primary production (GPP), and ecosystem respiration (Re) in relation to vegetation biomass, species richness, and environmental variables at each point, using an automated chamber system during the 2005 growing season. Mean light-saturated NEP and GPP were 30.3 and 40.5 micromol CO2 m(-2) s(-1) [coefficient of variation (CV), 42.7 and 29.4], respectively. Mean Re at 20 degrees C soil temperature, Re(20), was -10.9 micromol CO2 m(-2) s(-1) (CV, 27.3). Re(20) was positively correlated with vegetation biomass. GPP(max) was positively correlated with species richness, but 2 of the 14 points were outliers. Vegetation biomass was the main determinant of spatial variation of Re, whereas species richness mainly affected that of GPP, probably reflecting the complexity of canopy structure and light partitioning in this small grassland patch.
Uher, Vojtěch; Gajdoš, Petr; Radecký, Michal; Snášel, Václav
2016-01-01
The Differential Evolution (DE) is a widely used bioinspired optimization algorithm developed by Storn and Price. It is popular for its simplicity and robustness. This algorithm was primarily designed for real-valued problems and continuous functions, but several modified versions optimizing both integer and discrete-valued problems have been developed. The discrete-coded DE has been mostly used for combinatorial problems in a set of enumerative variants. However, the DE has a great potential in the spatial data analysis and pattern recognition. This paper formulates the problem as a search of a combination of distinct vertices which meet the specified conditions. It proposes a novel approach called the Multidimensional Discrete Differential Evolution (MDDE) applying the principle of the discrete-coded DE in discrete point clouds (PCs). The paper examines the local searching abilities of the MDDE and its convergence to the global optimum in the PCs. The multidimensional discrete vertices cannot be simply ordered to get a convenient course of the discrete data, which is crucial for good convergence of a population. A novel mutation operator utilizing linear ordering of spatial data based on the space filling curves is introduced. The algorithm is tested on several spatial datasets and optimization problems. The experiments show that the MDDE is an efficient and fast method for discrete optimizations in the multidimensional point clouds.
Utilization of the Discrete Differential Evolution for Optimization in Multidimensional Point Clouds
Radecký, Michal; Snášel, Václav
2016-01-01
The Differential Evolution (DE) is a widely used bioinspired optimization algorithm developed by Storn and Price. It is popular for its simplicity and robustness. This algorithm was primarily designed for real-valued problems and continuous functions, but several modified versions optimizing both integer and discrete-valued problems have been developed. The discrete-coded DE has been mostly used for combinatorial problems in a set of enumerative variants. However, the DE has a great potential in the spatial data analysis and pattern recognition. This paper formulates the problem as a search of a combination of distinct vertices which meet the specified conditions. It proposes a novel approach called the Multidimensional Discrete Differential Evolution (MDDE) applying the principle of the discrete-coded DE in discrete point clouds (PCs). The paper examines the local searching abilities of the MDDE and its convergence to the global optimum in the PCs. The multidimensional discrete vertices cannot be simply ordered to get a convenient course of the discrete data, which is crucial for good convergence of a population. A novel mutation operator utilizing linear ordering of spatial data based on the space filling curves is introduced. The algorithm is tested on several spatial datasets and optimization problems. The experiments show that the MDDE is an efficient and fast method for discrete optimizations in the multidimensional point clouds. PMID:27974884
Kandala, Sridhar; Nolan, Dan; Laumann, Timothy O.; Power, Jonathan D.; Adeyemo, Babatunde; Harms, Michael P.; Petersen, Steven E.; Barch, Deanna M.
2016-01-01
Abstract Like all resting-state functional connectivity data, the data from the Human Connectome Project (HCP) are adversely affected by structured noise artifacts arising from head motion and physiological processes. Functional connectivity estimates (Pearson's correlation coefficients) were inflated for high-motion time points and for high-motion participants. This inflation occurred across the brain, suggesting the presence of globally distributed artifacts. The degree of inflation was further increased for connections between nearby regions compared with distant regions, suggesting the presence of distance-dependent spatially specific artifacts. We evaluated several denoising methods: censoring high-motion time points, motion regression, the FMRIB independent component analysis-based X-noiseifier (FIX), and mean grayordinate time series regression (MGTR; as a proxy for global signal regression). The results suggest that FIX denoising reduced both types of artifacts, but left substantial global artifacts behind. MGTR significantly reduced global artifacts, but left substantial spatially specific artifacts behind. Censoring high-motion time points resulted in a small reduction of distance-dependent and global artifacts, eliminating neither type. All denoising strategies left differences between high- and low-motion participants, but only MGTR substantially reduced those differences. Ultimately, functional connectivity estimates from HCP data showed spatially specific and globally distributed artifacts, and the most effective approach to address both types of motion-correlated artifacts was a combination of FIX and MGTR. PMID:27571276
NPP VIIRS Geometric Performance Status
NASA Technical Reports Server (NTRS)
Lin, Guoqing; Wolfe, Robert E.; Nishihama, Masahiro
2011-01-01
Visible Infrared Imager Radiometer Suite (VIIRS) instrument on-board the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) satellite is scheduled for launch in October, 2011. It is to provide satellite measured radiance/reflectance data for both weather and climate applications. Along with radiometric calibration, geometric characterization and calibration of Sensor Data Records (SDRs) are crucial to the VIIRS Environmental Data Record (EDR) algorithms and products which are used in numerical weather prediction (NWP). The instrument geometric performance includes: 1) sensor (detector) spatial response, parameterized by the dynamic field of view (DFOV) in the scan direction and instantaneous FOV (IFOV) in the track direction, modulation transfer function (MTF) for the 17 moderate resolution bands (M-bands), and horizontal spatial resolution (HSR) for the five imagery bands (I-bands); 2) matrices of band-to-band co-registration (BBR) from the corresponding detectors in all band pairs; and 3) pointing knowledge and stability characteristics that includes scan plane tilt, scan rate and scan start position variations, and thermally induced variations in pointing with respect to orbital position. They have been calibrated and characterized through ground testing under ambient and thermal vacuum conditions, numerical modeling and analysis. This paper summarizes the results, which are in general compliance with specifications, along with anomaly investigations, and describes paths forward for characterizing on-orbit BBR and spatial response, and for improving instrument on-orbit performance in pointing and geolocation.
Considering the spatial-scale factor when modelling sustainable land management.
NASA Astrophysics Data System (ADS)
Bouma, Johan
2015-04-01
Considering the spatial-scale factor when modelling sustainable land management. J.Bouma Em.prof. soil science, Wageningen University, Netherlands. Modelling soil-plant processes is a necessity when exploring future effects of climate change and innovative soil management on agricultural productivity. Soil data are needed to run models and traditional soil maps and the associated databases (based on various soil Taxonomies ), have widely been applied to provide such data obtained at "representative" points in the field. Pedotransferfunctions (PTF)are used to feed simulation models, statistically relating soil survey data ( obtained at a given point in the landscape) to physical parameters for simulation, thus providing a link with soil functionality. Soil science has a basic problem: their object of study is invisible. Only point data are obtained by augering or in pits. Only occasionally roadcuts provide a better view. Extrapolating point to area data is essential for all applications and presents a basic problem for soil science, because mapping units on soil maps, named for a given soil type,may also contain other soil types and quantitative information about the composition of soil map units is usually not available. For detailed work at farm level ( 1:5000-1:10000), an alternative procedure is proposed. Based on a geostatistical analysis, onsite soil observations are made in a grid pattern with spacings based on a geostatistical analysis. Multi-year simulations are made for each point of the functional properties that are relevant for the case being studied, such as the moisture supply capacity, nitrate leaching etc. under standardized boundary conditions to allow comparisons. Functional spatial units are derived next by aggregating functional point data. These units, which have successfully functioned as the basis for precision agriculture, do not necessarily correspond with Taxonomic units but when they do the Taxonomic names should be noted . At lower landscape and watershed scale ( 1:25.000 -1:50000) digital soil mapping can provide soil data for small grids that can be used for modeling, again through pedotransferfunctions. There is a risk, however, that digital mapping results in an isolated series of projects that don't increase the knowledge base on soil functionality, e.g.linking Taxonomic names ( such as soil series) to functionality, allowing predictions of soil behavior at new sites where certain soil series occur. We therefore suggest that aside from collecting 13 soil characteristics for each grid, as occurs in digital soil mapping, also the Taxonomic name of the representative soil in the grid is recorded. At spatial scales of 1:50000 and smaller, use of Taxonomic names becomes ever more attractive because at such small scales relations between soil types and landscape features become more pronounced. But in all cases, selection of procedures should not be science-based but based on the type of questions being asked including their level of generalization. These questions are quite different at the different spatial-scale levels and so should be the procedures.
Teacher spatial skills are linked to differences in geometry instruction.
Otumfuor, Beryl Ann; Carr, Martha
2017-12-01
Spatial skills have been linked to better performance in mathematics. The purpose of this study was to examine the relationship between teacher spatial skills and their instruction, including teacher content and pedagogical knowledge, use of pictorial representations, and use of gestures during geometry instruction. Fifty-six middle school teachers participated in the study. The teachers were administered spatial measures of mental rotations and spatial visualization. Next, a single geometry class was videotaped. Correlational analyses revealed that spatial skills significantly correlate with teacher's use of representational gestures and content and pedagogical knowledge during instruction of geometry. Spatial skills did not independently correlate with the use of pointing gestures or the use of pictorial representations. However, an interaction term between spatial skills and content and pedagogical knowledge did correlate significantly with the use of pictorial representations. Teacher experience as measured by the number of years of teaching and highest degree did not appear to affect the relationships among the variables with the exception of the relationship between spatial skills and teacher content and pedagogical knowledge. Teachers with better spatial skills are also likely to use representational gestures and to show better content and pedagogical knowledge during instruction. Spatial skills predict pictorial representation use only as a function of content and pedagogical knowledge. © 2017 The British Psychological Society.
Atmospheric Science Data Center
2015-11-25
... Flow Angle Sensors Hot-Wire Icing Rate Detector Pressure Transducer Reverse Flow Temperature Probes Spatial ... Condensation Nuclei Dew/Frost Point Temperature Liquid Water Content Nitrogen Dioxide Ozone Pressure Supercooled ...
NASA Astrophysics Data System (ADS)
Burkholder, E. F.
2016-12-01
One way to address challenges of replacing NAD 83, NGVD 88 and IGLD 85 is to exploit the characteristics of 3-D digital spatial data. This presentation describes the 3-D global spatial data model (GSDM) which accommodates rigorous scientific endeavors while simultaneously supporting a local flat-earth view of the world. The GSDM is based upon the assumption of a single origin for 3-D spatial data and uses rules of solid geometry for manipulating spatial data components. This approach exploits the characteristics of 3-D digital spatial data and preserves the quality of geodetic measurements while providing spatial data users the option of working with rectangular flat-earth components and computational procedures for local applications. This flexibility is provided by using a bidirectional rotation matrix that allows any 3-D vector to be used in a geodetic reference frame for high-end applications and/or the local frame for flat-earth users. The GSDM is viewed as compatible with the datum products being developed by NGS and provides for unambiguous exchange of 3-D spatial data between disciplines and users worldwide. Three geometrical models will be summarized - geodetic, map projection, and 3-D. Geodetic computations are performed on an ellipsoid and are without equal in providing rigorous coordinate values for latitude, longitude, and ellipsoid height. Members of the user community have, for generations, sought ways to "flatten the world" to accommodate a flat-earth view and to avoid the complexity of working on an ellipsoid. Map projections have been defined for a wide variety of applications and remain very useful for visualizing spatial data. But, the GSDM supports computations based on 3-D components that have not been distorted in a 2-D map projection. The GSDM does not invalidate either geodesy or cartographic computational processes but provides a geometrically correct view of any point cloud from any point selected by the user. As a bonus, the GSDM also defines spatial data accuracy and includes procedures for establishing, tracking and using spatial data accuracy - increasingly important in many applications but especially relevant given development of procedures for tracking drones (primarily absolute) and intelligent vehicles (primarily relative).
Andéol, Guillaume; Suied, Clara; Scannella, Sébastien; Dehais, Frédéric
2017-06-01
In a multi-talker situation, spatial separation between talkers reduces cognitive processing load: this is the "spatial release of cognitive load". The present study investigated the role played by the relative levels of the talkers on this spatial release of cognitive load. During the experiment, participants had to report the speech emitted by a target talker in the presence of a concurrent masker talker. The spatial separation (0° and 120° angular distance in azimuth) and the relative levels of the talkers (adverse, intermediate, and favorable target-to-masker ratio) were manipulated. The cognitive load was assessed with a prefrontal functional near-infrared spectroscopy. Data from 14 young normal-hearing listeners revealed that the target-to-masker ratio had a direct impact on the spatial release of cognitive load. Spatial separation significantly reduced the prefrontal activity only for the intermediate target-to-masker ratio and had no effect on prefrontal activity for the favorable and the adverse target-to-masker ratios. Therefore, the relative levels of the talkers might be a key point to determine the spatial release of cognitive load and more specifically the prefrontal activity induced by spatial cues in multi-talker situations.
NASA Astrophysics Data System (ADS)
Westgard, Kerri S. W.
Success in today's globalized, multi-dimensional, and connected world requires individuals to have a variety of skill sets -- i.e. oracy, numeracy, literacy, as well as the ability to think spatially. Student's spatial literacy, based on various national and international assessment results, indicates that even though there have been gains in U.S. scores over the past decade, overall performance, including those specific to spatial skills, are still below proficiency. Existing studies focused on the potential of virtual learning environment technology to reach students in a variety of academic areas, but a need still exists to study specifically the phenomenon of using Google Earth as a potentially more useful pedagogical tool to develop spatial literacy than the currently employed methods. The purpose of this study was to determine the extent to which graphicacy achievement scores of students who were immersed in a Google Earth environment were different from students who were provided with only two-dimensional instruction for developing spatial skills. Situated learning theory and the work of Piaget and Inhelder's Child's Conception of Space provided the theoretical grounding from which this study evolved. The National Research Council's call to develop spatial literacy, as seen in Learning to Think Spatially , provided the impetus to begin research. The target population (N = 84) for this study consisted of eighth grade geography students at an upper Midwest Jr. High School during the 2009-2010 academic year. Students were assigned to the control or experimental group based on when they had geography class. Control group students ( n = 44) used two-dimensional PowerPoint images to complete activities, while experimental group students (n = 40) were immersed in the three-dimensional Google Earth world for activity completion. Research data was then compiled and statistically analyzed to answer five research questions developed for this study. One-way ANOVAs were run on data collected and no statistically significant difference was found between the control and experimental group. However, two of the five research questions yielded practically significant data that indicates students who used Google Earth outperformed their counterparts who used PowerPoint on pattern prediction and spatial relationship understanding.
Development of Spatiotemporal Bias-Correction Techniques for Downscaling GCM Predictions
NASA Astrophysics Data System (ADS)
Hwang, S.; Graham, W. D.; Geurink, J.; Adams, A.; Martinez, C. J.
2010-12-01
Accurately representing the spatial variability of precipitation is an important factor for predicting watershed response to climatic forcing, particularly in small, low-relief watersheds affected by convective storm systems. Although Global Circulation Models (GCMs) generally preserve spatial relationships between large-scale and local-scale mean precipitation trends, most GCM downscaling techniques focus on preserving only observed temporal variability on point by point basis, not spatial patterns of events. Downscaled GCM results (e.g., CMIP3 ensembles) have been widely used to predict hydrologic implications of climate variability and climate change in large snow-dominated river basins in the western United States (Diffenbaugh et al., 2008; Adam et al., 2009). However fewer applications to smaller rain-driven river basins in the southeastern US (where preserving spatial variability of rainfall patterns may be more important) have been reported. In this study a new method was developed to bias-correct GCMs to preserve both the long term temporal mean and variance of the precipitation data, and the spatial structure of daily precipitation fields. Forty-year retrospective simulations (1960-1999) from 16 GCMs were collected (IPCC, 2007; WCRP CMIP3 multi-model database: https://esg.llnl.gov:8443/), and the daily precipitation data at coarse resolution (i.e., 280km) were interpolated to 12km spatial resolution and bias corrected using gridded observations over the state of Florida (Maurer et al., 2002; Wood et al, 2002; Wood et al, 2004). In this method spatial random fields which preserved the observed spatial correlation structure of the historic gridded observations and the spatial mean corresponding to the coarse scale GCM daily rainfall were generated. The spatiotemporal variability of the spatio-temporally bias-corrected GCMs were evaluated against gridded observations, and compared to the original temporally bias-corrected and downscaled CMIP3 data for the central Florida. The hydrologic response of two southwest Florida watersheds to the gridded observation data, the original bias corrected CMIP3 data, and the new spatiotemporally corrected CMIP3 predictions was compared using an integrated surface-subsurface hydrologic model developed by Tampa Bay Water.
Snow depth spatial structure from hillslope to basin scale
NASA Astrophysics Data System (ADS)
Deems, J. S.
2017-12-01
Knowledge of spatial patterns of snow accumulation is required for understanding the hydrology, climatology, and ecology of mountain regions. Spatial structure in snow accumulation patterns changes with the scale of observation, a feature that has been characterized using fractal dimensions calculated from lidar-derived snow depth maps: fractal scaling structure at short length scales, with a `scale break' transition to more stochastic patterns at longer separation distances. Previous work has shown that this fractal structure of snow depth distributions differs between sites with different vegetation and terrain characteristics. Forested areas showed a transition to a nearly random spatial distribution at a much shorter lag distance than do unforested sites, enabling a statistical characterization. Alpine areas, however, showed strong spatial structure for a much wider scale range, and were the source of the dominant spatial pattern observable over a wider area. These spatial structure characteristics suggest that the choice of measurement or model resolution (satellite sensor, DEM, field survey point spacing, etc.) will strongly affect the estimates of snow volume or mass, as well as the magnitude of spatial variability. These prior efforts used data sets that were high resolution ( 1 m laser point spacing) but of limited extent ( 1 km2), constraining detection of scale features such as fractal dimension or scale breaks to areas of relatively similar characteristics and to lag distances of under 500 m. New datasets available from the NASA JPL Airborne Snow Observatory (ASO) provide similar resolution but over large areas, enabling assessment of snow spatial structure across an entire watershed, or in similar vegetation or physiography but in different parts of the basin. Additionally, the multi-year ASO time series allows an investigation into the temporal stability of these scale characteristics, within a single snow season and between seasons of strongly varying accumulation totals and patterns. This presentation will explore initial results from this study, using data from the Tuolumne River Basin in California, USA. Fractal scaling characteristics derived from ASO lidar snow depth measurements are examined at the basin scale, as well as in varying topographic and forest cover environments.
Drive by Soil Moisture Measurement: A Citizen Science Project
NASA Astrophysics Data System (ADS)
Senanayake, I. P.; Willgoose, G. R.; Yeo, I. Y.; Hancock, G. R.
2017-12-01
Two of the common attributes of soil moisture are that at any given time it varies quite markedly from point to point, and that there is a significant deterministic pattern that underlies this spatial variation and which is typically 50% of the spatial variability. The spatial variation makes it difficult to determine the time varying catchment average soil moisture using field measurements because any individual measurement is unlikely to be equal to the average for the catchment. The traditional solution to this is to make many measurements (e.g. with soil moisture probes) spread over the catchment, which is very costly and manpower intensive, particularly if we need a time series of soil moisture variation across a catchment. An alternative approach, explored in this poster is to use the deterministic spatial pattern of soil moisture to calibrate one site (e.g. a permanent soil moisture probe at a weather station) to the spatial pattern of soil moisture over the study area. The challenge is then to determine the spatial pattern of soil moisture. This poster will present results from a proof of concept project, where data was collected by a number of undergraduate engineering students, to estimate the spatial pattern. The approach was to drive along a series of roads in a catchment and collect soil moisture measurements at the roadside using field portable soil moisture probes. This drive was repeated a number of times over the semester, and the time variation and spatial persistence of the soil moisture pattern were examined. Provided that the students could return to exactly the same location on each collection day there was a strong persistent pattern in the soil moisture, even while the average soil moisture varied temporally as a result of preceding rainfall. The poster will present results and analysis of the student data, and compare these results with several field sites where we have spatially distributed permanently installed soil moisture probes. The poster will also outline an experimental design, based on our experience, that will underpin a proposed citizen science project involving community environment and farming groups, and high school students.
NASA Astrophysics Data System (ADS)
Luo, L.; Fan, M.; Shen, M. Z.
2007-07-01
Atmospheric turbulence greatly limits the spatial resolution of astronomical images acquired by the large ground-based telescope. The record image obtained from telescope was thought as a convolution result of the object function and the point spread function. The statistic relationship of the images measured data, the estimated object and point spread function was in accord with the Bayes conditional probability distribution, and the maximum-likelihood formulation was found. A blind deconvolution approach based on the maximum-likelihood estimation technique with real optical band limitation constraint is presented for removing the effect of atmospheric turbulence on this class images through the minimization of the convolution error function by use of the conjugation gradient optimization algorithm. As a result, the object function and the point spread function could be estimated from a few record images at the same time by the blind deconvolution algorithm. According to the principle of Fourier optics, the relationship between the telescope optical system parameters and the image band constraint in the frequency domain was formulated during the image processing transformation between the spatial domain and the frequency domain. The convergence of the algorithm was increased by use of having the estimated function variable (also is the object function and the point spread function) nonnegative and the point-spread function band limited. Avoiding Fourier transform frequency components beyond the cut off frequency lost during the image processing transformation when the size of the sampled image data, image spatial domain and frequency domain were the same respectively, the detector element (e.g. a pixels in the CCD) should be less than the quarter of the diffraction speckle diameter of the telescope for acquiring the images on the focal plane. The proposed method can easily be applied to the case of wide field-view turbulent-degraded images restoration because of no using the object support constraint in the algorithm. The performance validity of the method is examined by the computer simulation and the restoration of the real Alpha Psc astronomical image data. The results suggest that the blind deconvolution with the real optical band constraint can remove the effect of the atmospheric turbulence on the observed images and the spatial resolution of the object image can arrive at or exceed the diffraction-limited level.
Processing and statistical analysis of soil-root images
NASA Astrophysics Data System (ADS)
Razavi, Bahar S.; Hoang, Duyen; Kuzyakov, Yakov
2016-04-01
Importance of the hotspots such as rhizosphere, the small soil volume that surrounds and is influenced by plant roots, calls for spatially explicit methods to visualize distribution of microbial activities in this active site (Kuzyakov and Blagodatskaya, 2015). Zymography technique has previously been adapted to visualize the spatial dynamics of enzyme activities in rhizosphere (Spohn and Kuzyakov, 2014). Following further developing of soil zymography -to obtain a higher resolution of enzyme activities - we aimed to 1) quantify the images, 2) determine whether the pattern (e.g. distribution of hotspots in space) is clumped (aggregated) or regular (dispersed). To this end, we incubated soil-filled rhizoboxes with maize Zea mays L. and without maize (control box) for two weeks. In situ soil zymography was applied to visualize enzymatic activity of β-glucosidase and phosphatase at soil-root interface. Spatial resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. Furthermore, we applied "spatial point pattern analysis" to determine whether the pattern (e.g. distribution of hotspots in space) is clumped (aggregated) or regular (dispersed). Our results demonstrated that distribution of hotspots at rhizosphere is clumped (aggregated) compare to control box without plant which showed regular (dispersed) pattern. These patterns were similar in all three replicates and for both enzymes. We conclude that improved zymography is promising in situ technique to identify, analyze, visualize and quantify spatial distribution of enzyme activities in the rhizosphere. Moreover, such different patterns should be considered in assessments and modeling of rhizosphere extension and the corresponding effects on soil properties and functions. Key words: rhizosphere, spatial point pattern, enzyme activity, zymography, maize.
Soil Moisture fusion across scales using a multiscale nonstationary Spatial Hierarchical Model
NASA Astrophysics Data System (ADS)
Kathuria, D.; Mohanty, B.; Katzfuss, M.
2017-12-01
Soil moisture (SM) datasets from remote sensing (RS) platforms (such as SMOS and SMAP) and reanalysis products from land surface models are typically available on a coarse spatial granularity of several square km. Ground based sensors, on the other hand, provide observations on a finer spatial scale (meter scale or less) but are sparsely available. SM is affected by high variability due to complex interactions between geologic, topographic, vegetation and atmospheric variables and these interactions change dynamically with footprint scales. Past literature has largely focused on the scale specific effect of these covariates on soil moisture. The present study proposes a robust Multiscale-Nonstationary Spatial Hierarchical Model (MN-SHM) which can assimilate SM from point to RS footprints. The spatial structure of SM across footprints is modeled by a class of scalable covariance functions whose nonstationary depends on atmospheric forcings (such as precipitation) and surface physical controls (such as topography, soil-texture and vegetation). The proposed model is applied to fuse point and airborne ( 1.5 km) SM data obtained during the SMAPVEX12 campaign in the Red River watershed in Southern Manitoba, Canada with SMOS ( 30km) data. It is observed that precipitation, soil-texture and vegetation are the dominant factors which affect the SM distribution across various footprint scales (750 m, 1.5 km, 3 km, 9 km,15 km and 30 km). We conclude that MN-SHM handles the change of support problems easily while retaining reasonable predictive accuracy across multiple spatial resolutions in the presence of surface heterogeneity. The MN-SHM can be considered as a complex non-stationary extension of traditional geostatistical prediction methods (such as Kriging) for fusing multi-platform multi-scale datasets.
Coherence properties of the radiation from FLASH
NASA Astrophysics Data System (ADS)
Schneidmiller, E. A.; Yurkov, M. V.
2016-02-01
Free electron LASer in Hamburg is the first free electron laser user facility operating in the vacuum ultraviolet and soft X-ray wavelength range. Many user experiments require knowledge of the spatial and temporal coherence properties of the radiation. In this paper, we present a theoretical analysis of the coherence properties of the radiation for the fundamental and for the higher odd frequency harmonics. We show that temporal and spatial coherence reach their maxima close to the free electron laser (FEL) saturation but may degrade significantly in the post-saturation regime. We also find that the pointing stability of short FEL pulses is limited due to the fact that nonazimuthal FEL eigenmodes are not sufficiently suppressed. We discuss possible ways for improving the degree of transverse coherence and the pointing stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofschen, S.; Wolff, I.
1996-08-01
Time-domain simulation results of two-dimensional (2-D) planar waveguide finite-difference time-domain (FDTD) analysis are normally analyzed using Fourier transform. The introduced method of time series analysis to extract propagation and attenuation constants reduces the desired computation time drastically. Additionally, a nonequidistant discretization together with an adequate excitation technique is used to reduce the number of spatial grid points. Therefore, it is possible to reduce the number of spatial grid points. Therefore, it is possible to simulate normal- and superconducting planar waveguide structures with very thin conductors and small dimensions, as they are used in MMIC technology. The simulation results are comparedmore » with measurements and show good agreement.« less
Unsteady three-dimensional marginal separation, including breakdown
NASA Technical Reports Server (NTRS)
Duck, Peter W.
1990-01-01
A situation involving a three-dimensional marginal separation is considered, where a (steady) boundary layer flow is on the verge of separating at a point (located along a line of symmetry/centerline). At this point, a triple-deck is included, thereby permitting a small amount of interaction to occur. Unsteadiness is included within this interaction region through some external means. It is shown that the problem reduces to the solution of a nonlinear, unsteady, partial-integro system, which is solved numerically by means of time-marching together with a pseudo-spectral method spatially. A number of solutions to this system are presented which strongly suggest a breakdown of this system may occur, at a finite spatial position, at a finite time. The structure and details of this breakdown are then described.
JUBA (Joint UAS-Balloon Activities) Final Campaign Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dexheimer, Darielle; Apple, Monty; Callow, Diane Schafer
Using internal investment funds within Sandia National Laboratories’ (SNL) Division 6000, JUBA was a collaborative exercise between SNL Orgs. 6533 & 6913 (later 8863) to demonstrate simultaneous flights of tethered balloons and UAS on the North Slope of Alaska. JUBA UAS and tethered balloon flights were conducted within the Restricted Airspace associated with the ARM AMF3 site at Oliktok Point, Alaska. The Restricted Airspace occupies a 2 nautical mile radius around Oliktok Point. JUBA was conducted at the Sandia Arctic Site, which is approximately 2 km east-southeast of the AMF3. JUBA activities occurred from 08/08/17 – 08/10/17. Atmospheric measurements frommore » tethered balloons can occur for a long duration, but offer limited spatial variation. Measurements from UAS could offer increased spatial variability.« less
NASA Astrophysics Data System (ADS)
Simonin, Olivier; Zaichik, Leonid I.; Alipchenkov, Vladimir M.; Février, Pierre
2006-12-01
The objective of the paper is to elucidate a connection between two approaches that have been separately proposed for modelling the statistical spatial properties of inertial particles in turbulent fluid flows. One of the approaches proposed recently by Février, Simonin, and Squires [J. Fluid Mech. 533, 1 (2005)] is based on the partitioning of particle turbulent velocity field into spatially correlated (mesoscopic Eulerian) and random-uncorrelated (quasi-Brownian) components. The other approach stems from a kinetic equation for the two-point probability density function of the velocity distributions of two particles [Zaichik and Alipchenkov, Phys. Fluids 15, 1776 (2003)]. Comparisons between these approaches are performed for isotropic homogeneous turbulence and demonstrate encouraging agreement.
Optical ranked-order filtering using threshold decomposition
Allebach, J.P.; Ochoa, E.; Sweeney, D.W.
1987-10-09
A hybrid optical/electronic system performs median filtering and related ranked-order operations using threshold decomposition to encode the image. Threshold decomposition transforms the nonlinear neighborhood ranking operation into a linear space-invariant filtering step followed by a point-to-point threshold comparison step. Spatial multiplexing allows parallel processing of all the threshold components as well as recombination by a second linear, space-invariant filtering step. An incoherent optical correlation system performs the linear filtering, using a magneto-optic spatial light modulator as the input device and a computer-generated hologram in the filter plane. Thresholding is done electronically. By adjusting the value of the threshold, the same architecture is used to perform median, minimum, and maximum filtering of images. A totally optical system is also disclosed. 3 figs.
NASA Astrophysics Data System (ADS)
Zhang, Tianhe C.; Grill, Warren M.
2010-12-01
Deep brain stimulation (DBS) has emerged as an effective treatment for movement disorders; however, the fundamental mechanisms by which DBS works are not well understood. Computational models of DBS can provide insights into these fundamental mechanisms and typically require two steps: calculation of the electrical potentials generated by DBS and, subsequently, determination of the effects of the extracellular potentials on neurons. The objective of this study was to assess the validity of using a point source electrode to approximate the DBS electrode when calculating the thresholds and spatial distribution of activation of a surrounding population of model neurons in response to monopolar DBS. Extracellular potentials in a homogenous isotropic volume conductor were calculated using either a point current source or a geometrically accurate finite element model of the Medtronic DBS 3389 lead. These extracellular potentials were coupled to populations of model axons, and thresholds and spatial distributions were determined for different electrode geometries and axon orientations. Median threshold differences between DBS and point source electrodes for individual axons varied between -20.5% and 9.5% across all orientations, monopolar polarities and electrode geometries utilizing the DBS 3389 electrode. Differences in the percentage of axons activated at a given amplitude by the point source electrode and the DBS electrode were between -9.0% and 12.6% across all monopolar configurations tested. The differences in activation between the DBS and point source electrodes occurred primarily in regions close to conductor-insulator interfaces and around the insulating tip of the DBS electrode. The robustness of the point source approximation in modeling several special cases—tissue anisotropy, a long active electrode and bipolar stimulation—was also examined. Under the conditions considered, the point source was shown to be a valid approximation for predicting excitation of populations of neurons in response to DBS.
NASA Astrophysics Data System (ADS)
Park, Sang-Gon; Jeong, Dong-Seok
2000-12-01
In this paper, we propose a fast adaptive diamond search algorithm (FADS) for block matching motion estimation. Many fast motion estimation algorithms reduce the computational complexity by the UESA (Unimodal Error Surface Assumption) where the matching error monotonically increases as the search moves away from the global minimum point. Recently, many fast BMAs (Block Matching Algorithms) make use of the fact that global minimum points in real world video sequences are centered at the position of zero motion. But these BMAs, especially in large motion, are easily trapped into the local minima and result in poor matching accuracy. So, we propose a new motion estimation algorithm using the spatial correlation among the neighboring blocks. We move the search origin according to the motion vectors of the spatially neighboring blocks and their MAEs (Mean Absolute Errors). The computer simulation shows that the proposed algorithm has almost the same computational complexity with DS (Diamond Search), but enhances PSNR. Moreover, the proposed algorithm gives almost the same PSNR as that of FS (Full Search), even for the large motion with half the computational load.
Analyzing linear spatial features in ecology.
Buettel, Jessie C; Cole, Andrew; Dickey, John M; Brook, Barry W
2018-06-01
The spatial analysis of dimensionless points (e.g., tree locations on a plot map) is common in ecology, for instance using point-process statistics to detect and compare patterns. However, the treatment of one-dimensional linear features (fiber processes) is rarely attempted. Here we appropriate the methods of vector sums and dot products, used regularly in fields like astrophysics, to analyze a data set of mapped linear features (logs) measured in 12 × 1-ha forest plots. For this demonstrative case study, we ask two deceptively simple questions: do trees tend to fall downhill, and if so, does slope gradient matter? Despite noisy data and many potential confounders, we show clearly that topography (slope direction and steepness) of forest plots does matter to treefall. More generally, these results underscore the value of mathematical methods of physics to problems in the spatial analysis of linear features, and the opportunities that interdisciplinary collaboration provides. This work provides scope for a variety of future ecological analyzes of fiber processes in space. © 2018 by the Ecological Society of America.
Hartmann, Matthias
2017-02-01
The spatial representation of ordinal sequences (numbers, time, tones) seems to be a fundamental cognitive property. While an automatic association between horizontal space and pitch height (left-low pitch, right-high pitch) is constantly reported in musicians, the evidence for such an association in non-musicians is mixed. In this study, 20 non-musicians performed a line bisection task while listening to irrelevant high- and low-pitched tones and white noise (control condition). While pitch height had no influence on the final bisection point, participants' movement trajectories showed systematic biases: When approaching the line and touching the line for the first time (initial bisection point), the mouse cursor was directed more rightward for high-pitched tones compared to low-pitched tones and noise. These results show that non-musicians also have a subtle but nevertheless automatic association between pitch height and the horizontal space. This suggests that spatial-musical associations do not necessarily depend on constant sensorimotor experiences (as it is the case for musicians) but rather reflect the seemingly inescapable tendency to represent ordinal information on a horizontal line.
NASA Astrophysics Data System (ADS)
Zhang, Linna; Sun, Meixiu; Wang, Zhennan; Li, Hongxiao; Li, Yingxin; Li, Gang; Lin, Ling
2017-09-01
The inspection and identification of whole blood are crucially significant for import-export ports and inspection and quarantine departments. In our previous research, we proved Near-Infrared diffuse transmitted spectroscopy method was potential for noninvasively identifying three blood species, including macaque, human and mouse, with samples measured in the cuvettes. However, in open sampling cases, inspectors may be endangered by virulence factors in blood samples. In this paper, we explored the noncontact measurement for classification, with blood samples measured in the vacuum blood vessels. Spatially resolved near-infrared spectroscopy was used to improve the prediction accuracy. Results showed that the prediction accuracy of the model built with nine detection points was more than 90% in identification between all five species, including chicken, goat, macaque, pig and rat, far better than the performance of the model built with single-point spectra. The results fully supported the idea that spatially resolved near-infrared spectroscopy method can improve the prediction ability, and demonstrated the feasibility of this method for noncontact blood species identification in practical applications.