NASA Astrophysics Data System (ADS)
Parada, Carolina; Colas, Francois; Soto-Mendoza, Samuel; Castro, Leonardo
2012-01-01
An individual-based model (IBM) of anchoveta ( Engraulis ringens) larvae was coupled to a climatological hydrodynamic (Regional Oceanic Modeling System, ROMS) model for central-southern Chile to answer the question as to whether or not across- and alongshore transport off central-southern Chile enhances retention in the spawning areas during the winter and summer reproductive periods, using model-based pre-recruitment indices (simulated transport success to nursery areas). The hydrodynamic model validation showed that ROMS captures the mean Seas Surface Temperature and Eddie Kinetic Energy observed in satellite-based data over the entire region. The IBM was used to simulate the transport of eggs and larvae from spawning zones in central Chile (Constitución, Dichato, Gulf of Arauco and Lebu-Corral) to historical nursery areas (HRZ, region between 35°S and 37°S). Model results corroborated HRZ as the most successful pre-recruitment zone (particles originated in the Dichato and Gulf of Arauco spawning areas), as well as identifying Lebu-Corral as a zone of high retention with a high associated pre-recruitment index (particles originated in the Lebu-Corral spawning zone). The highest pre-recruitment values were mainly found in winter. The Constitución and Dichato spawning zones displayed a typical summer upwelling velocity pattern, while the Gulf of Arauco in summertime showed strong offshore and alongshore velocity components. The Lebu-Corral region in winter presented important near-surface cross-shore transport towards the coast (associated with downwelling events), this might be one of the major mechanisms leading to high retention levels and a high pre-recruitment index for Lebu-Corral spawning zone. The limitations of the modeling approach are discussed and put into perspective for future work.
Sex that moves mountains: The influence of spawning fish on river profiles over geologic timescales
NASA Astrophysics Data System (ADS)
Fremier, Alexander K.; Yanites, Brian J.; Yager, Elowyn M.
2018-03-01
A key component of resilience is to understand feedbacks among components of biophysical systems, such as physical drivers, ecological responses and the subsequent feedbacks onto physical process. While physically based explanations of biological speciation are common (e.g., mountains separating a species can lead to speciation), less common is the inverse process examined: can a speciation event have significant influence on physical processes and patterns in a landscape? When such processes are considered, such as with 'ecosystem engineers', many studies have focused on the short-term physical and biological effects rather than the long-term impacts. Here, we formalized the physical influence of salmon spawning on stream beds into a model of channel profile evolution by altering the critical shear stress required to move stream bed particles. We then asked if spawning and an adaptive radiation event (similar to the one that occurred in Pacific salmon species) could have an effect on channel erosion processes and stream profiles over geological timescales. We found that spawning can profoundly influence the longitudinal profiles of stream beds and thereby the evolution of entire watersheds. The radiation of five Pacific salmon from a common ancestor, additionally, could also cause significant geomorphic change by altering a wider section of the profile for a given distribution of grain sizes. This modeling study suggests that biological evolution can impact landscape evolution by increasing the sediment transport and erosion efficiency of mountain streams. Moreover, the physical effects of a species on its environment might be a complementary explanation for rapid radiation events in species through the creation of new habitat types. This example provides an illustrative case for thinking about the long- and short-term coupling of biotic and abiotic systems.
Johnson, Nicholas S.; Tix, John A.; Hlina, Benjamin L.; Wagner, C. Michael; Siefkes, Michael J.; Wang, Huiyong; Li, Weiming
2015-01-01
Spermiating male sea lamprey (Petromyzon marinus) release a sex pheromone, of which a component, 7α, 12α, 24-trihydoxy-3-one-5α-cholan-24-sulfate (3kPZS), has been identified and shown to induce long distance preference responses in ovulated females. However, other pheromone components exist, and when 3kPZS alone was used to control invasive sea lamprey populations in the Laurentian Great Lakes, trap catch increase was significant, but gains were generally marginal. We hypothesized that free-ranging sea lamprey populations discriminate between a partial and complete pheromone while migrating to spawning grounds and searching for mates at spawning grounds. As a means to test our hypothesis, and to test two possible uses of sex pheromones for sea lamprey control, we asked whether the full sex pheromone mixture released by males (spermiating male washings; SMW) is more effective than 3kPZS in capturing animals in traditional traps (1) en route to spawning grounds and (2) at spawning grounds. At locations where traps target sea lampreys en route to spawning grounds, SMW-baited traps captured significantly more sea lampreys than paired 3kPZS-baited traps (~10 % increase). At spawning grounds, no difference in trap catch was observed between 3kPZS and SMW-baited traps. The lack of an observed difference at spawning grounds may be attributed to increased pheromone competition and possible involvement of other sensory modalities to locate mates. Because fishes often rely on multiple and sometimes redundant sensory modalities for critical life history events, the addition of sex pheromones to traditionally used traps is not likely to work in all circumstances. In the case of the sea lamprey, sex pheromone application may increase catch when applied to specifically designed traps deployed in streams with low adult density and limited spawning habitat.
NASA Astrophysics Data System (ADS)
Hufnagl, Marc; Peck, Myron A.; Nash, Richard D. M.; Dickey-Collas, Mark
2015-11-01
Unraveling the key processes affecting marine fish recruitment will ultimately require a combination of field, laboratory and modelling studies. We combined analyzes of long-term (30-year) field data on larval fish abundance, distribution and length, and biophysical model simulations of different levels of complexity to identify processes impacting the survival and growth of autumn- and winter-spawned Atlantic herring (Clupea harengus) larvae. Field survey data revealed interannual changes in intensity of utilization of the five major spawning grounds (Orkney/Shetland, Buchan, Banks north, Banks south, and Downs) as well as spatio-temporal variability in the length and abundance of overwintered larvae. The mean length of larvae captured in post-winter surveys was negatively correlated to the proportion of larvae from the southern-most (Downs) winter-spawning component. Furthermore, the mean length of larvae originating from all spawning components has decreased since 1990 suggesting ecosystem-wide changes impacting larval growth potential, most likely due to changes in prey fields. A simple biophysical model assuming temperature-dependent growth and constant mortality underestimated larval growth rates suggesting that larval mortality rates steeply declined with increasing size and/or age during winter as no match with field data could be obtained. In contrast better agreement was found between observed and modelled post-winter abundance for larvae originating from four spawning components when a more complex, physiological-based foraging and growth model was employed using a suite of potential prey field and size-based mortality scenarios. Nonetheless, agreement between field and model-derived estimates was poor for larvae originating from the winter-spawned Downs component. In North Sea herring, the dominant processes impacting larval growth and survival appear to have shifted in time and space highlighting how environmental forcing, ecosystem state and other factors can form a Gordian knot of marine fish recruitment processes. We highlight gaps in process knowledge and recommend specific field, laboratory and modelling studies which, in our opinion, are most likely to unravel the dominant processes and advance predictive capacity of the environmental regulation of recruitment in autumn and winter-spawned fishes in temperate areas such as herring in the North Sea.
Brigden, K E; Marshall, C T; Scott, B E; Young, E F; Brickle, P
2017-07-01
Commercial fisheries data, collected as part of an observer programme and covering the period 1997-2014, were utilized in order to define key reproductive traits and spawning dynamics of the Patagonian toothfish Dissostichus eleginoides at South Georgia. Multi-year spawning site fidelity of D. eleginoides was revealed through the identification of previously unknown spawning hotspots. Timing of female spawning was shown to have shifted later, leading to a shorter spawning duration. A decrease in length and mass of female and male spawning fish and a reduced number of large spawning fish was found, evidence of a change in size structure of spawning D. eleginoides. During the study period fewer later maturity stage females (including spawning stage) were observed in conjunction with increased proportions of early stage female D. eleginoides. The findings are discussed in the context of reproductive success, with consideration of the possible effects such spawning characteristics and behaviours may have on egg and larval survival. This work presents the first long-term assessment of D. eleginoides spawning dynamics at South Georgia and provides valuable knowledge for both the ecology of the species and for future fisheries management of this commercially important species. © 2017 The Fisheries Society of the British Isles.
Richardson, David E; Marancik, Katrin E; Guyon, Jeffrey R; Lutcavage, Molly E; Galuardi, Benjamin; Lam, Chi Hin; Walsh, Harvey J; Wildes, Sharon; Yates, Douglas A; Hare, Jonathan A
2016-03-22
Atlantic bluefin tuna are a symbol of both the conflict between preservationist and utilitarian views of top ocean predators, and the struggle to reach international consensus on the management of migratory species. Currently, Atlantic bluefin tuna are managed as an early-maturing eastern stock, which spawns in the Mediterranean Sea, and a late-maturing western stock, which spawns in the Gulf of Mexico. However, electronic tagging studies show that many bluefin tuna, assumed to be of a mature size, do not visit either spawning ground during the spawning season. Whether these fish are spawning in an alternate location, skip-spawning, or not spawning until an older age affects how vulnerable this species is to anthropogenic stressors including exploitation. We use larval collections to demonstrate a bluefin tuna spawning ground in the Slope Sea, between the Gulf Stream and northeast United States continental shelf. We contend that western Atlantic bluefin tuna have a differential spawning migration, with larger individuals spawning in the Gulf of Mexico, and smaller individuals spawning in the Slope Sea. The current life history model, which assumes only Gulf of Mexico spawning, overestimates age at maturity for the western stock. Furthermore, individual tuna occupy both the Slope Sea and Mediterranean Sea in separate years, contrary to the prevailing view that individuals exhibit complete spawning-site fidelity. Overall, this complexity of spawning migrations questions whether there is complete independence in the dynamics of eastern and western Atlantic bluefin tuna and leads to lower estimates of the vulnerability of this species to exploitation and other anthropogenic stressors.
Richardson, David E.; Marancik, Katrin E.; Guyon, Jeffrey R.; Lutcavage, Molly E.; Galuardi, Benjamin; Lam, Chi Hin; Walsh, Harvey J.; Wildes, Sharon; Yates, Douglas A.; Hare, Jonathan A.
2016-01-01
Atlantic bluefin tuna are a symbol of both the conflict between preservationist and utilitarian views of top ocean predators, and the struggle to reach international consensus on the management of migratory species. Currently, Atlantic bluefin tuna are managed as an early-maturing eastern stock, which spawns in the Mediterranean Sea, and a late-maturing western stock, which spawns in the Gulf of Mexico. However, electronic tagging studies show that many bluefin tuna, assumed to be of a mature size, do not visit either spawning ground during the spawning season. Whether these fish are spawning in an alternate location, skip-spawning, or not spawning until an older age affects how vulnerable this species is to anthropogenic stressors including exploitation. We use larval collections to demonstrate a bluefin tuna spawning ground in the Slope Sea, between the Gulf Stream and northeast United States continental shelf. We contend that western Atlantic bluefin tuna have a differential spawning migration, with larger individuals spawning in the Gulf of Mexico, and smaller individuals spawning in the Slope Sea. The current life history model, which assumes only Gulf of Mexico spawning, overestimates age at maturity for the western stock. Furthermore, individual tuna occupy both the Slope Sea and Mediterranean Sea in separate years, contrary to the prevailing view that individuals exhibit complete spawning-site fidelity. Overall, this complexity of spawning migrations questions whether there is complete independence in the dynamics of eastern and western Atlantic bluefin tuna and leads to lower estimates of the vulnerability of this species to exploitation and other anthropogenic stressors. PMID:26951668
Burger, C.V.; Finn, J.E.; Holland-Bartels, L.
1995-01-01
Alaskan sockeye salmon typically spawn in lake tributaries during summer (early run) and along clear-water lake shorelines and outlet rivers during fall (late run). Production at the glacially turbid Tustumena Lake and its outlet, the Kasilof River (south-central Alaska), was thought to be limited to a single run of sockeye salmon that spawned in the lake's clear-water tributaries. However, up to 40% of the returning sockeye salmon enumerated by sonar as they entered the lake could not be accounted for during lake tributary surveys, which suggested either substantial counting errors or that a large number of fish spawned in the lake itself. Lake shoreline spawning had not been documented in a glacially turbid system. We determined the distribution and pattern of sockeye salmon spawning in the Tustumena Lake system from 1989 to 1991 based on fish collected and radiotagged in the Kasilof River. Spawning areas and time were determined for 324 of 413 sockeye salmon tracked upstream into the lake after release. Of these, 224 fish spawned in tributaries by mid-August and 100 spawned along shoreline areas of the lake during late August. In an additional effort, a distinct late run was discovered that spawned in the Kasilof River at the end of September. Between tributary and shoreline spawners, run and spawning time distributions were significantly different. The number of shoreline spawners was relatively stable and independent of annual escapement levels during the study, which suggests that the shoreline spawning component is distinct and not surplus production from an undifferentiated run. Since Tustumena Lake has been fully deglaciated for only about 2,000 years and is still significantly influenced by glacier meltwater, this diversification of spawning populations is probably a relatively recent and ongoing event.
Craven, S.W.; Peterson, J.T.; Freeman, Mary C.; Kwak, T.J.; Irwin, E.
2010-01-01
Modifications to stream hydrologic regimes can have a profound influence on the dynamics of their fish populations. Using hierarchical linear models, we examined the relations between flow regime and young-of-year fish density using fish sampling and discharge data from three different warmwater streams in Illinois, Alabama, and Georgia. We used an information theoretic approach to evaluate the relative support for models describing hypothesized influences of five flow regime components representing: short-term high and low flows; short-term flow stability; and long-term mean flows and flow stability on fish reproductive success during fish spawning and rearing periods. We also evaluated the influence of ten fish species traits on fish reproductive success. Species traits included spawning duration, reproductive strategy, egg incubation rate, swimming locomotion morphology, general habitat preference, and food habits. Model selection results indicated that young-of-year fish density was positively related to short-term high flows during the spawning period and negatively related to flow variability during the rearing period. However, the effect of the flow regime components varied substantially among species, but was related to species traits. The effect of short-term high flows on the reproductive success was lower for species that broadcast their eggs during spawning. Species with cruiser swimming locomotion morphologies (e.g., Micropterus) also were more vulnerable to variable flows during the rearing period. Our models provide insight into the conditions and timing of flows that influence the reproductive success of warmwater stream fishes and may guide decisions related to stream regulation and management. ?? 2010 US Government.
Effect of a fish stock's demographic structure on offspring survival and sensitivity to climate.
Stige, Leif Christian; Yaragina, Natalia A; Langangen, Øystein; Bogstad, Bjarte; Stenseth, Nils Chr; Ottersen, Geir
2017-02-07
Commercial fishing generally removes large and old individuals from fish stocks, reducing mean age and age diversity among spawners. It is feared that these demographic changes lead to lower and more variable recruitment to the stocks. A key proposed pathway is that juvenation and reduced size distribution causes reduced ranges in spawning period, spawning location, and egg buoyancy; this is proposed to lead to reduced spatial distribution of fish eggs and larvae, more homogeneous ambient environmental conditions within each year-class, and reduced buffering against negative environmental influences. However, few, if any, studies have confirmed a causal link from spawning stock demographic structure through egg and larval distribution to year class strength at recruitment. We here show that high mean age and size in the spawning stock of Barents Sea cod (Gadus morhua) is positively associated with high abundance and wide spatiotemporal distribution of cod eggs. We find, however, no support for the hypothesis that a wide egg distribution leads to higher recruitment or a weaker recruitment-temperature correlation. These results are based on statistical analyses of a spatially resolved data set on cod eggs covering a period (1959-1993) with large changes in biomass and demographic structure of spawners. The analyses also account for significant effects of spawning stock biomass and a liver condition index on egg abundance and distribution. Our results suggest that the buffering effect of a geographically wide distribution of eggs and larvae on fish recruitment may be insignificant compared with other impacts.
1989-01-01
species prey of other fishes and is a of Cynoscion. For specimens at least seasonally important component of 6 mm SL, spot have more anal fin estuarine and...spawning occurs over the outer 17.5-25.0 *C. Warlen and Chester shelf throughout most of the spawning (1985) collected young larvae (< 16 season but...over the mid-shelf early days old) only at water temperatures and late in the spawning season higher than 19.3 *C. Fahay (1975) (Warlen and Chester
Effect of a fish stock's demographic structure on offspring survival and sensitivity to climate
Stige, Leif Christian; Yaragina, Natalia A.; Langangen, Øystein; Bogstad, Bjarte; Stenseth, Nils Chr.; Ottersen, Geir
2017-01-01
Commercial fishing generally removes large and old individuals from fish stocks, reducing mean age and age diversity among spawners. It is feared that these demographic changes lead to lower and more variable recruitment to the stocks. A key proposed pathway is that juvenation and reduced size distribution causes reduced ranges in spawning period, spawning location, and egg buoyancy; this is proposed to lead to reduced spatial distribution of fish eggs and larvae, more homogeneous ambient environmental conditions within each year-class, and reduced buffering against negative environmental influences. However, few, if any, studies have confirmed a causal link from spawning stock demographic structure through egg and larval distribution to year class strength at recruitment. We here show that high mean age and size in the spawning stock of Barents Sea cod (Gadus morhua) is positively associated with high abundance and wide spatiotemporal distribution of cod eggs. We find, however, no support for the hypothesis that a wide egg distribution leads to higher recruitment or a weaker recruitment–temperature correlation. These results are based on statistical analyses of a spatially resolved data set on cod eggs covering a period (1959−1993) with large changes in biomass and demographic structure of spawners. The analyses also account for significant effects of spawning stock biomass and a liver condition index on egg abundance and distribution. Our results suggest that the buffering effect of a geographically wide distribution of eggs and larvae on fish recruitment may be insignificant compared with other impacts. PMID:28115694
Arimitsu, Mayumi L.; Piatt, John F.; Litzow, Michael A.; Abookire, Alisa A.; Romano, Marc D.; Robards, Martin D.
2008-01-01
Pacific capelin (Mallotus villosus) populations declined dramatically in the Northeastern Pacific following ocean warming after the regime shift of 1977, but little is known about the cause of the decline or the functional relationships between capelin and their environment. We assessed the distribution and abundance of spawning, non-spawning adult and larval capelin in Glacier Bay, an estuarine fjord system in southeastern Alaska. We used principal components analysis to analyze midwater trawl and beach seine data collected between 1999 and 2004 with respect to oceanographic data and other measures of physical habitat including proximity to tidewater glaciers and potential spawning habitat. Both spawning and non-spawning adult Pacific capelin were more likely to occur in areas closest to tidewater glaciers, and those areas were distinguished by lower temperature, higher turbidity, higher dissolved oxygen and lower chlorophyll a levels when compared with other areas of the bay. The distribution of larval Pacific capelin was not sensitive to glacial influence. Pre-spawning females collected farther from tidewater glaciers were at a lower maturity state than those sampled closer to tidewater glaciers, and the geographic variation in the onset of spawning is likely the result of differences in the marine habitat among sub-areas of Glacier Bay. Proximity to cold water in Glacier Bay may have provided a refuge for capelin during the recent warm years in the Gulf of Alaska.
Binder, Thomas; Marsden, J. Ellen; Riley, Stephen; Johnson, James E.; Johnson, Nicholas; He, Ji; Ebener, Mark P.; Holbrook, Christopher; Bergstedt, Roger A.; Bronte, Charles R.; Hayden, Todd A.; Krueger, Charles C.
2017-01-01
Movement ecology is an important component of life history and population dynamics, and consequently its understanding can inform successful fishery management decision-making. While lake trout populations in Lake Huron have shown signs of recovery from near extinction in recent years, knowledge of their movement behavior remains incomplete. We used acoustic telemetry to describe and compare movement patterns of two Lake Huron lake trout populations: Drummond Island and Thunder Bay. Both populations showed high spawning site fidelity, with no evidence of co-mingling during non-spawning season. Detections between spawning periods were mainly limited to receivers within 100 km of spawning locations, and suggested that the two populations likely remained segregated throughout the year. Drummond Island fish, which spawn inside the Drummond Island Refuge, primarily dispersed east into Canadian waters of Lake Huron, with 79–92% of fish being detected annually on receivers outside the refuge. In contrast, Thunder Bay fish tended to disperse south towards Saginaw Bay. Large proportions (i.e., > 80%) of both populations were available to fisheries outside the management zone containing their spawning location. Thunder Bay fish moved relatively quickly to overwinter habitat after spawning, and tended to repeat the same post-spawning movement behavior each year. The consistent, predictable movement of both populations across management zones highlights the importance of understanding population dynamics to effective management of Lake Huron lake trout.
Introduction to clinical and laboratory (small-animal) image registration and fusion.
Zanzonico, Pat B; Nehmeh, Sadek A
2006-01-01
Imaging has long been a vital component of clinical medicine and, increasingly, of biomedical research in small-animals. Clinical and laboratory imaging modalities can be divided into two general categories, structural (or anatomical) and functional (or physiological). The latter, in particular, has spawned what has come to be known as "molecular imaging". Image registration and fusion have rapidly emerged as invaluable components of both clinical and small-animal imaging and has lead to the development and marketing of a variety of multi-modality, e.g. PET-CT, devices which provide registered and fused three-dimensional image sets. This paper briefly reviews the basics of image registration and fusion and available clinical and small-animal multi-modality instrumentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamazaki, T.S.; Nagahama, Y.; Iuchi, I.
1989-05-01
A glycoprotein from the liver, which shares epitopes with chorion (egg envelope or zona pellucida) glycoproteins, is present only in the spawning female fish, Oryzias latipes, under natural conditions. This spawning female-specific (SF) substance is distinct from vitellogenin but closely resembles a major glycoprotein component, ZI-3, of the inner layer (zona radiata interna) of the ovarian egg envelope with respect to some biochemical and immunochemical characteristics. Here we report that the (/sup 125/I)SF substance, injected into the abdominal cavity of the spawning female fish, was rapidly transported by the blood circulation into the ovary and incorporated into the inner layermore » of egg envelope of the growing oocytes. The result strongly suggests that the SF substance from the liver is a precursor substance of the major component, ZI-3, of the inner layer of egg envelope in the fish.« less
Papoulias, D.M.; DeLonay, A.J.; Annis, M.L.; Wildhaber, M.L.; Tillitt, D.E.
2011-01-01
We presume that the shovelnose sturgeon (Scaphirhynchus platorynchus) has evolved to spawn in the springtime when environmental conditions are at some optimum, but this state has not yet been defined. In this study physiological readiness to spawn in shovelnose sturgeon was examined to define more closely when spawning could occur and thus identify and evaluate prevailing environmental conditions that could cue spawning during that period. Reproductive assessments of Lower Missouri River shovelnose during 4 years (2005-2008) and at two locations (Gavins Point Dam, South Dakota and Boonville, Missouri) were used to identify shovelnose sturgeon spawning periods. Initiation of the spawning period, as defined by the presence of reproductively ready fish, was a highly predictable yearly event and extended over several weeks at each reach. The spawning period occurred earlier in the lower reach than in the upper reach and environmental conditions during the periods varied between locations and among years. Shovelnose sturgeon collected during the presumed spawning periods were at varying degrees of readiness to spawn as indicated by oocyte polarization index and blood reproductive hormones. Evaluation of the influence of environmental factors on readiness to spawn using stepwise multiple regression analysis indicated photoperiod followed by temperature were the best candidate variables overall to explain the trend. However, within geographically distinct populations gravid females are not all reproductively synchronized. Assuming that this apparent asynchrony in readiness is normal and not an artifact of the disturbed Missouri River system, we infer that individual sturgeon can persist in a reproductively ready state until conditions appropriate for spawning occur. Taken together, our results lead us to hypothesize that gravid females early in the reproductive cycle (post-vitellogenesis) respond to day length, a reliable annual cue, become increasingly more ready to spawn in response to temperature, and that another set of cues, short-term and specific for localized environmental conditions or events, serve to signal ovulation and release of gametes.
Burger, C.V.; Wilmot, R.L.; Wangaard, D.B.
1985-01-01
From 1979 to 1982,188 chinook salmon (Oncorhynchus tshawytscha) were tagged with radio transmitters to locate spawning areas in the glacial Kenai River, southcentral Alaska. Results confirmed that an early run entered the river in May and June and spawned in tributaries, and a late run entered the river from late June through August and spawned in the main stem. Spawning peaked during August in tributaries influenced by lakes, but during July in other tributaries. Lakes may have increased fall and winter temperatures of downstream waters, enabling successful reproduction for later spawning fish within these tributaries. This hypothesis assumes that hatching and emergence can be completed in a shorter time in lake-influenced waters. The time of upstream migration and spawning (mid- to late August) of the late run is unique among chinook stocks in Cook Inlet. This behavior may have developed only because two large lakes (Kenai and Skilak) directly influence the main-stem Kenai River. If run timing is genetically controlled, and if the various components of the two runs are isolated stocks that have adapted to predictable stream temperatures, there are implications for stock transplantation programs and for any activities of man that alter stream temperatures.
Castro-Santos, Theodore; Letcher, Benjamin H.
2010-01-01
We present a simulation model in which individual adult migrant American shad (Alosa sapidissima) ascend the Connecticut River and spawn, and survivors return to the marine environment. Our approach synthesizes bioenergetics, reproductive biology, and behavior to estimate the effects of migratory distance and delays incurred at dams on spawning success and survival. We quantified both the magnitude of effects and the consequences of uncertainty in the estimates of input variables. Behavior, physiology, and energetics strongly affected both the distribution of spawning effort and survival to the marine environment. Delays to both upstream and downstream movements had dramatic effects on spawning success, determining total fecundity and spatial extent of spawning. Delays, combined with cues for migratory reversal, also determined the likelihood of survival. Spawning was concentrated in the immediate vicinity of dams and increased with greater migratory distance and delays to downstream migration. More research is needed on reproductive biology, behavior, energetics, and barrier effects to adequately understand the interplay of the various components of this model; it does provide a framework, however, that suggests that provision of upstream passage at dams in the absence of expeditious downstream passage may increase spawning success — but at the expense of reduced iteroparity.
Yackulic, Charles B.; Yard, Michael D.; Korman, Josh; Van Haverbeke, David R.
2014-01-01
While the ecology and evolution of partial migratory systems (defined broadly to include skip spawning) have been well studied, we are only beginning to understand how partial migratory populations are responding to ongoing environmental change. Environmental change can lead to differences in the fitness of residents and migrants, which could eventually lead to changes in the frequency of the strategies in the overall population. Here, we address questions concerning the life history of the endangered Gila cypha (humpback chub) in the regulated Colorado River and the unregulated tributary and primary spawning area, the Little Colorado River. We develop eight multistate models for the population based on three movement hypotheses, in which states are defined in terms of fish size classes and river locations. We fit these models to mark–recapture data collected in 2009–2012. We compare survival and growth estimates between the Colorado River and Little Colorado River and calculate abundances for all size classes. The best model supports the hypotheses that larger adults spawn more frequently than smaller adults, that there are residents in the spawning grounds, and that juveniles move out of the Little Colorado River in large numbers during the monsoon season (July–September). Monthly survival rates for G. cypha in the Colorado River are higher than in the Little Colorado River in all size classes; however, growth is slower. While the hypothetical life histories of life-long residents in the Little Colorado River and partial migrants spending most of its time in the Colorado River are very different, they lead to roughly similar fitness expectations when we used expected number of spawns as a proxy. However, more research is needed because our study period covers a period of years when conditions in the Colorado River for G. cypha are likely to have been better than has been typical over the last few decades.
Flint, Mark; Than, John T
2016-01-01
The enhanced ability to direct sexual reproduction may lead to improved restoration outcomes for Acropora cervicornis. Gravid fragments of A. cervicornis were maintained in a laboratory for two sequential trials in the seven days prior to natural spawning in the Florida Keys. Ten replicates of five chemicals known to affect spawning in various invertebrate taxa were tested. Hydrogen peroxide at 2 mM (70%) and L-5-hydroxytryptophan (5-HTP) at 5 (40%) and 20 µM (30%) induced spawning within 15.4 h, 38.8 h and 26.9 h of dosing at or above the rate of release of the control (30%) within 14.6 h. Serotonin acetate monohydrate at 1 µM (20%) and 10 µM (20%), naloxone hydrochloride dihydrate at 0.01 µM (10%) and potassium phosphate monobasic at 0.25 µM (0%) induced spawning at rates less than the control. Although the greatest number of fragments spawned using hydrogen peroxide, it was with 100% mortality. There was a significantly higher induction rate closer to natural spawn (Trial 2) compared with Trial 1 and no genotype effect. Mechanisms of action causing gamete release were not elucidated. In Caribbean staghorn corals, 5-HTP shows promise as a spawning induction agent if administered within 72 h of natural spawn and it will not result in excessive mortality. Phosphate chemicals may inhibit spawning. This is the first study of its kind on Caribbean acroporid corals and may offer an important conservation tool for biologists currently charged with restoring the imperiled Acropora reefs of the Florida Keys.
A walk through the approximations of ab initio multiple spawning
NASA Astrophysics Data System (ADS)
Mignolet, Benoit; Curchod, Basile F. E.
2018-04-01
Full multiple spawning offers an in principle exact framework for excited-state dynamics, where nuclear wavefunctions in different electronic states are represented by a set of coupled trajectory basis functions that follow classical trajectories. The couplings between trajectory basis functions can be approximated to treat molecular systems, leading to the ab initio multiple spawning method which has been successfully employed to study the photochemistry and photophysics of several molecules. However, a detailed investigation of its approximations and their consequences is currently missing in the literature. In this work, we simulate the explicit photoexcitation and subsequent excited-state dynamics of a simple system, LiH, and we analyze (i) the effect of the ab initio multiple spawning approximations on different observables and (ii) the convergence of the ab initio multiple spawning results towards numerically exact quantum dynamics upon a progressive relaxation of these approximations. We show that, despite the crude character of the approximations underlying ab initio multiple spawning for this low-dimensional system, the qualitative excited-state dynamics is adequately captured, and affordable corrections can further be applied to ameliorate the coupling between trajectory basis functions.
A walk through the approximations of ab initio multiple spawning.
Mignolet, Benoit; Curchod, Basile F E
2018-04-07
Full multiple spawning offers an in principle exact framework for excited-state dynamics, where nuclear wavefunctions in different electronic states are represented by a set of coupled trajectory basis functions that follow classical trajectories. The couplings between trajectory basis functions can be approximated to treat molecular systems, leading to the ab initio multiple spawning method which has been successfully employed to study the photochemistry and photophysics of several molecules. However, a detailed investigation of its approximations and their consequences is currently missing in the literature. In this work, we simulate the explicit photoexcitation and subsequent excited-state dynamics of a simple system, LiH, and we analyze (i) the effect of the ab initio multiple spawning approximations on different observables and (ii) the convergence of the ab initio multiple spawning results towards numerically exact quantum dynamics upon a progressive relaxation of these approximations. We show that, despite the crude character of the approximations underlying ab initio multiple spawning for this low-dimensional system, the qualitative excited-state dynamics is adequately captured, and affordable corrections can further be applied to ameliorate the coupling between trajectory basis functions.
Ito, S; Iwao, H; Sakata, J; Inoue, M; Omori, K; Yanagisawa, Y
2016-09-01
A laboratory experiment was conducted by varying the undersurface area of nesting substratum and the number of females in an experimental tank to elucidate the determinants of the mating pattern in the stream goby, Rhinogobius sp. cross-band type. Males with larger nests tended to attract two or more females to their nest in a tank. Moreover, males spawned simultaneously with multiple females and entire brood cannibalism by males was rarely observed under a female-biased sex ratio. When males spawned with a single female with low fecundity, however, entire brood cannibalism occurred at a high frequency, suggesting that a male guarding a nest with fewer eggs consumes the brood. Therefore, spawning behaviour of females that leads to a large egg mass would decrease the risk of entire brood cannibalism. In this species, simultaneous spawning by multiple females in a nest serves as a female counter-measure against entire brood cannibalism. These results suggest that a conflict of interest between the sexes through brood cannibalism is a major determinant of simultaneous spawning. © 2016 The Fisheries Society of the British Isles.
A Sperm Spawn-Inducing Pheromone in the Silver Lip Pearl Oyster (Pinctada maxima).
Taylor, A; Mills, D; Wang, T; Ntalamagka, N; Cummins, S F; Elizur, A
2018-04-28
Pheromones are considered to play an important role in broadcast spawning in aquatic animals, facilitating synchronous release of gametes. In oysters, the sperm has been implicated as a carrier for the spawn-inducing pheromone (SIP). In hatchery conditions, male pearl oysters (Pinctata maxima) can be stimulated to spawn through a variety of approaches (e.g. rapid temperature change), while females can only be induced to spawn through exposure to conspecific sperm, thus limiting development of targeted pairing, required for genetic research and management. The capacity for commercial production and improvement of genetic lines of pearl oysters could be greatly improved with access to a SIP. In this study, we prepared and sequenced crude and semi-purified P. maxima sperm extracts that were used in bioassays to localise the female SIP. We report that the P. maxima SIP is proteinaceous and extrinsically associated with the sperm membrane. Bioactivity from pooled RP-HPLC fractions, but not individual fractions, suggests that the SIP is multi-component. We conclude that crude sperm preparations, as described in this study, can be used as a sperm-free inducer of female P. maxima spawning, which enables for a more efficient approach to genetic breeding.
The year-class phenomenon and the storage effect in marine fishes
NASA Astrophysics Data System (ADS)
Secor, David H.
2007-02-01
Factors contributing to population growth through strong year-class formation have driven a century of directed research in fisheries science. A central discovery of Hjort's paradigm was that multiple generations overlap and longevity is matched with frequency of strong recruitments. Here, I elaborate on this tenet by examining how intra-population modalities in spawning and early habitat use favour population resiliency. A modern theory that has application is the storage effect [Warner, R.R., Chesson, P.L., 1985. Coexistence mediated by recruitment fluctuations - a field guide to the storage effect. Am. Nat. 125, 769-787], whereby spawning stock biomass accumulates each year so that when early survival conditions are favourable, stored egg production can result in explosive population growth. I review two early life history behaviours that contribute to the storage effect: split cohorts (i.e., seasonal pulses of eggs and larvae) and contingent behaviour (i.e., dispersive and retentive patterns in early dispersal). Episodic and pulsed production of larvae is a common feature for marine fishes, well documented through otolith microstructure and hatch-date analyses. In temperate and boreal fishes, early and late spawned cohorts of larvae and juveniles may have differing fates dependent upon seasonal and inter-annual fluctuations in weather and climate. Often, a coastal fish may spawn for a protracted period, yet only a few days' egg production will result in successful recruitment. In these and other instances, it is clear that diversity in spawning behaviour can confer resilience against temporal variations in early survival conditions. Although many factors contribute to intra-population spawning modalities, size and age structure of adults play an important role. Contingent structure, an idea dating to Hjort (herring contingents) and Gilbert (salmon contingents), has been resurrected to describe the diversity of intra-population modalities observed through otolith microchemical and electronic tagging approaches. Retentive and dispersive behaviours confer resiliency against early survival conditions that vary spatially. Examples of contingent structure are increasingly numerous for diadromous fishes. Here, a nursery habitat associated with a contingent behaviour may make a small contribution in a given year, but over a decade contribute significantly to spawning stock biomass. For flatfish and other marine fishes, contingent structure is probable but not well documented. Proximate factors leading to contingent structure are poorly known, but for diadromous fishes, time of spawning and early life history energetic thresholds is hypothesized to lead to alternative life cycles. Here again time of spawning may lead to the storage effect by hedging against spatial variance in early vital rates. Managing for the storage effect will be promoted by conservation of adult age structure and early habitats upon which both strong and weak year-classes rely.
NASA Astrophysics Data System (ADS)
Gao, Xin; Lin, Pengcheng; Li, Mingzheng; Duan, Zhonghua; Liu, Huanzhang
2016-09-01
Chinese sturgeon ( Acipenser sinensis) is the flagship species of the Changjiang River. The migration route of this species is blocked by the first dam, the Gezhou Dam, and its reproduction is affected by the Three Gorges Dam (TGD), one of the largest dams in the world. We studied the impact of the impoundment of the Three Gorges Reservoir (TGR) since 2003 on the spawning stock and the natural reproduction of the Chinese sturgeon by using our monitoring data from 1997 to 2013. Results indicate that TGR impoundment has delayed the first spawning dates of the fish from middle-late October to late November, decreased the amount of spawning activities from twice to only once each year, and significantly reduced egg production. In particular, the fish did not demonstrate any spawning activities in 2013. Therefore, TGR impoundment significantly affects the natural reproduction of the fish downstream of the TGD. The spawning stock size of the fish is also predicted to further decrease in the future, which will lead to a risk of population extinction. Ecological regulations must be imposed on decreasing the water temperature to 20°C before mid-October and increasing water discharge downstream of the TGD in October to induce spawning of the Chinese sturgeon.
Favrot, Scott D.; Kwak, Thomas J.
2018-01-01
Many nongame fishes are poorly understood but are essential to maintaining healthy aquatic ecosystems globally. The undescribed Sicklefin Redhorse Moxostoma sp. is a rare, imperiled, nongame fish endemic to two southern Appalachian Mountain river basins. Little is known of its behavior and ecology, but this information is urgently needed for conservation planning. We assessed the spatial and temporal bounds of spawning migration, quantified seasonal weekly movement patterns, and characterized seasonal and spawning behavior using radiotelemetry and weir sampling in the Hiwassee River basin, North Carolina–Georgia, during 2006 and 2007. Hiwassee River tributaries were occupied predominantly during the fish's spawning season, lower reaches of the tributaries and the Hiwassee River were primarily occupied during the postspawning season (i.e., summer and fall), and lower lotic reaches of Hiwassee River (upstream from Hiwassee Lake) were occupied during winter. Adults occupied Hiwassee Lake only as a movement corridor during spawning migrations. Both sexes conducted upstream spawning migrations simultaneously, but males occupied spawning tributaries longer than females. Sicklefin Redhorse exhibited interannual spawning‐area and tributary fidelity. Cold water temperatures associated with hypolimnetic releases from reservoirs and meteorological conditions influenced spawning migration distance and timing. During 2007, decreased discharges during the spawning season were associated with decreases in migration distance and spawning tributary occupancy duration. Foraging was the dominant behavior observed annually, followed by reproductive behaviors (courting and spawning) during the spawning season. No agonistic reproductive behavior was observed, but females exhibited a repetitious postspawning digging behavior that may be unique in the family Catostomidae. Our findings suggest that protection and restoration of river continuity, natural flow regimes, seasonally appropriate water temperatures, and geographic range expansion are critical components to include in Sicklefin Redhorse conservation planning. Fisheries and ecosystem managers can use our findings to justify sensitive management decisions that conserve and restore critical streams and rivers occupied by this imperiled species.
Wang, Tianfang; Nuurai, Parinyaporn; McDougall, Carmel; York, Patrick S; Bose, Utpal; Degnan, Bernard M; Cummins, Scott F
2016-07-01
Abalone (Haliotis) undergoes a period of reproductive maturation, followed by the synchronous release of gametes, called broadcast spawning. Field and laboratory studies have shown that the tropical species Haliotis asinina undergoes a two-week spawning cycle, thus providing an excellent opportunity to investigate the presence of endogenous spawning-associated peptides. In female H. asinina, we have isolated a peptide (5145 Da) whose relative abundance in hemolymph increases substantially just prior to spawning and is still detected using reverse-phase high-performance liquid chromatography chromatograms up to 1-day post-spawn. We have isolated this peptide from female hemolymph as well as samples prepared from the gravid female gonad, and demonstrated through comparative sequence analysis that it contains features characteristic of Kazal-type proteinase inhibitors (KPIs). Has-KPI is expressed specifically within the gonad of adult females. A recombinant Has-KPI was generated using a yeast expression system. The recombinant Has-KPI does not induce premature spawning of female H. asinina when administered intramuscularly. However it displays homomeric aggregations and interaction with at least one mollusc-type neuropeptide (LRDFVamide), suggesting a role for it in regulating neuropeptide endocrine communication. This research provides new understanding of a peptide that can regulate reproductive processes in female abalone, which has the potential to lead to the development of greater control over abalone spawning. The findings also highlight the need to further explore abalone reproduction to clearly define a role for novel spawning-associated peptide in sexual maturation and spawning. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Age and condition of juvenile catostomids in Clear Lake Reservoir, California
Burdick, Summer M.; Rasmussen, Josh
2013-01-01
Although infrequent recruitment of new individuals into the adult spawning populations of Lost River suckers (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) limits recovery of these species in Upper Klamath Lake, it is not clear that populations are recruitment limited in Clear Lake Reservoir (hereafter Clear Lake). Specifically, some evidence indicates that shortnose suckers may regularly recruit to the adult spawning population in Clear Lake. Therefore, a study of early life history patterns and recruitment dynamics in Clear Lake may lead to a better understanding of what is limiting recovery of suckers in both lakes. Adult suckers in Clear Lake migrate up Willow Creek and its tributaries to spawn in some years, but low flow in Willow Creek may inhibit spawning migrations in other years. It is unclear whether spawning is successful, larvae survive, or how frequently juveniles persist to adulthood. Environmental variables associated with successful spawning or young-of-year survival have not been identified, and early life history for these populations is poorly understood. The U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, initiated a study in 2011 to better understand juvenile sucker life history in Clear Lake, and to identify constraints in the early life history that may limit recruitment to the adult spawning populations. The relative weights of shortnose suckers from Clear Lake and Upper Klamath Lake were compared to examine differences in condition. However, it is unclear whether the disparity in relative weights between the populations reflects differences in condition, phenotype, or both. Approximately 80 percent of juvenile suckers in Clear Lake are shortnose suckers with some morphologic features similar to Klamath largescale suckers (Catostomus snyderi), whereas juvenile suckers in Upper Klamath Lake can be clearly classified as either shortnose or Lost River suckers. The presence of juvenile suckers age-3 and older indicate that production, larval survival, and juvenile survival are at least periodically sufficient to lead to recruitment into the adult population of shortnose suckers in Clear Lake.
Spawning habitat associations and selection by fishes in a flow-regulated prairie river
Brewer, S.K.; Papoulias, D.M.; Rabeni, C.F.
2006-01-01
We used histological features to identify the spawning chronologies of river-dwelling populations of slenderhead darter Percina phoxocephala, suckermouth minnow Phenacobius mirabilis, stonecat Noturus flavus, and red shiner Cyprinella lutrensis and to relate their reproductive status to microhabitat associations. We identified spawning and nonspawning differences in habitat associations resulting from I year of field data via logistic regression modeling and identified shifts in microhabitat selection via frequency-of-use and availability histograms. Each species demonstrated different habitat associations between spawning and nonspawning periods. The peak spawning period for slenderhead darters was April to May in high-velocity microhabitats containing cobble. Individuals were associated with similar microhabitats during the postspawn summer and began migrating to deeper habitats in the fall. Most suckermouth minnow spawned from late March through early May in shallow microhabitats. The probability of the presence of these fish in shallow habitats declined postspawn, as fish apparently shifted to deeper habitats. Stonecats conducted prespawn activities in nearshore microhabitats containing large substrates but probably moved to deeper habitats during summer to spawn. Microhabitats with shallow depths containing cobble were associated with the presence of spawning red shiners during the summer. Prespawn fish selected low-velocity microhabitats during the spring, whereas postspawn fish selected habitats similar to the spawning habitat but added a shallow depth component. Hydraulic variables had the most influence on microhabitat models for all of these species, emphasizing the importance of flow in habitat selection by river-dwelling fishes. Histological analyses allowed us to more precisely document the time periods when habitat use is critical to species success. Without evidence demonstrating the functional mechanisms behind habitat associations, protective flows implemented for habitat protection are unlikely to be effective. ?? Copyright by the American Fisheries Society 2006.
Novel species interactions: American black bears respond to Pacific herring spawn.
Fox, Caroline Hazel; Paquet, Paul Charles; Reimchen, Thomas Edward
2015-05-26
In addition to the decline and extinction of the world's species, the decline and eventual loss of species interactions is one of the major consequences of the biodiversity crisis. On the Pacific coast of North America, diminished runs of salmon (Oncorhynchus spp.) drive numerous marine-terrestrial interactions, many of which have been intensively studied, but marine-terrestrial interactions driven by other species remain relatively unknown. Bears (Ursus spp.) are major vectors of salmon into terrestrial ecosystems, but their participation in other cross-ecosystem interactions is similarly poorly described. Pacific herring (Clupea pallasii), a migratory forage fish in coastal marine ecosystems of the North Pacific Ocean and the dominant forage fish in British Columbia (BC), spawn in nearshore subtidal and intertidal zones. Spawn resources (eggs, milt, and spawning adults) at these events are available to coastal predators and scavengers, including terrestrial species. In this study, we investigated the interaction between American black bears (Ursus americanus) and Pacific herring at spawn events in Quatsino Sound, BC, Canada. Using remote cameras to monitor bear activity (1,467 camera days, 29 sites, years 2010-2012) in supratidal and intertidal zones and a machine learning approach, we determined that the quantity of Pacific herring eggs in supratidal and intertidal zones was a leading predictor of black bear activity, with bears positively responding to increasing herring egg masses. Other important predictors included day of the year and Talitrid amphipod (Traskorchestia spp.) mass. A complementary analysis of black bear scats indicated that Pacific herring egg mass was the highest ranked predictor of egg consumption by bears. Pacific herring eggs constituted a substantial yet variable component of the early springtime diet of black bears in Quatsino Sound (frequency of occurrence 0-34%; estimated dietary content 0-63%). Other major dietary items included graminoids (grasses and sedges), Phaeophyta (brown algae), Zosteraceae (seagrasses), and Talitrid amphipods. This research represents the first scientific evidence of a cross-ecosystem interaction between Pacific herring and American black bears. Our findings also expand knowledge of the ecological roles of both species. Combined, evidence of anthropogenic constraints on both black bears and Pacific herring suggests that bear-herring interactions were potentially stronger and more widespread in the past.
Bennion, David; Manny, Bruce A.
2014-01-01
In response to a need for objective scientific information that could be used to help remediate loss of fish spawning habitat in the St. Clair River and Detroit River International Areas of Concern, this paper summarizes a large-scale geographic mapping investigation. Our study integrates data on two variables that many riverine fishes respond to in selecting where to spawn in these waters (water flow velocity and water depth) with available maps of the St. Clair–Detroit River System (SC–DRS). Our objectives were to locate and map these two physical components of fish habitat in the St. Clair and Detroit rivers and Lake St. Clair using a geographic information system (GIS) and to identify where, theoretically, fish spawning habitat could be remediated in these rivers. The target fish species to which this model applies is lake sturgeon (Acipenser fulvescens), but spawning reefs constructed for lake sturgeon in this system have been used for spawning by 17 species of fish. Our analysis revealed areas in each river that possessed suitable water velocity and depth for fish spawning and therefore could theoretically be remediated by the addition of rock-rubble substrate like that used at two previously remediated sites in the Detroit River at Belle Isle and Fighting Island. Results of our analysis revealed that only 3% of the total area of the SC–DRS possesses the necessary combination of water depth and high flow velocity to be indicated by the model as potential spawning habitat for lake sturgeon.
Balazik, Matthew T.; Farrae, Daniel J.; Darden, Tanya L.; Garman, Greg C.
2017-01-01
Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus, Acipenseridae) populations are currently at severely depleted levels due to historic overfishing, habitat loss, and pollution. The importance of biologically correct stock structure for effective conservation and management efforts is well known. Recent improvements in our understanding of Atlantic sturgeon migrations, movement, and the occurrence of putative dual spawning groups leads to questions regarding the true stock structure of this endangered species. In the James River, VA specifically, captures of spawning Atlantic sturgeon and accompanying telemetry data suggest there are two discrete spawning groups of Atlantic sturgeon. The two putative spawning groups were genetically evaluated using a powerful microsatellite marker suite to determine if they are genetically distinct. Specifically, this study evaluates the genetic structure, characterizes the genetic diversity, estimates effective population size, and measures inbreeding of Atlantic sturgeon in the James River. The results indicate that fall and spring spawning James River Atlantic sturgeon groups are genetically distinct (overall FST = 0.048, F’ST = 0.181) with little admixture between the groups. The observed levels of genetic diversity and effective population sizes along with the lack of detected inbreeding all indicated that the James River has two genetically healthy populations of Atlantic sturgeon. The study also demonstrates that samples from adult Atlantic sturgeon, with proper sample selection criteria, can be informative when creating reference population databases. The presence of two genetically-distinct spawning groups of Atlantic sturgeon within the James River raises concerns about the current genetic assignment used by managers. Other nearby rivers may also have dual spawning groups that either are not accounted for or are pooled in reference databases. Our results represent the second documentation of genetically distinct dual spawning groups of Atlantic sturgeon in river systems along the U.S. Atlantic coast, suggesting that current reference population database should be updated to incorporate both new samples and our increased understanding of Atlantic sturgeon life history. PMID:28686610
H. M. Neville; D. J. Isaak; J. B. Dunham; R. F. Thurow; B. E. Rieman
2006-01-01
Natal homing is a hallmark of the life history of salmonid fishes, but the spatial scale of homing within local, naturally reproducing salmon populations is still poorly understood. Accurate homing (paired with restricted movement) should lead to the existence of finescale genetic structuring due to the spatial clustering of related individuals on spawning grounds....
Behavioral evidence for a role of chemoreception during reproduction in lake trout
Buchinger, Tyler J.; Li, Weiming; Johnson, Nicholas
2015-01-01
Chemoreception is hypothesized to influence spawning site selection, mate search, and synchronization of gamete release in chars (Salvelinus spp.), but behavioral evidence is generally lacking. Here, we provide a survey of the behavioral responses of reproductive male and female lake trout (Salvelinus namaycush) to natural conspecific chemosensory stimuli. A flow-through laboratory assay with side-by-side artificial spawning reefs was used to evaluate behavioral preferences of spawning-phase males and females for chemosensory stimuli from juveniles and from spawning-phase males and females. Males and females preferred male and juvenile stimuli over no stimuli, but only had weak preferences for female stimuli. Only females had a preference for male over juvenile stimuli when given a direct choice between the two. The unexpected observation of male attraction to male stimuli, even when offered female stimuli, indicates a fundamental difference from the existing models of chemical communication in fishes. We discuss our results from the perspectives of prespawning aggregation, mate evaluation, and spawning synchronization. Identification of specific components of the stimuli will allow confirmation of the function and may have management implications for native and invasive populations of lake trout that are ecologically and economically important.
NASA Astrophysics Data System (ADS)
Bi, Jinhong; Li, Qi; Zhang, Xinjun; Zhang, Zhixin; Tian, Jinling; Xu, Yushan; Liu, Wenguang
2016-04-01
Seasonal variation of biochemical components in clam ( Saxidomus purpuratus Sowerby 1852) was investigated from March 2012 to February 2013 in relation to environmental condition of Sanggou Bay and the reproductive cycle of clam. According to the histological analysis, the reproductive cycle of S. purpuratus includes two distinctive phases: a total spent and inactive stage from November to January, and a gametogenesis stage, including ripeness and spawning, during the rest of the year. Gametes were generated at a low temperature (2.1°C) in February. Spawning took place once a year from June to October. The massive spawning occurred in August when the highest water temperature and chlorophyll a level could be observed. The key biochemical components (glycogen, protein and lipid) in five tissues (gonad, foot, mantle, siphon and adductor muscle) were analyzed. The glycogen content was high before gametogenesis, and decreased significantly during the gonad development in the gonad, mantle and foot of both females and males, suggesting that glycogen was an important energy source for gonad development. The protein and lipid contents increased in the ovary during the gonad development, demonstrating that they are the major organic components of oocytes. The lipid and protein contents decreased in the testis, implying that they can provide energy and material for spermatogenesis. The results also showed that protein stored in the mantle and foot could support the reproduction after the glycogen was depleted.
Zgliczynski, Brian J.; Teer, Bradford Z.; Laughlin, Joseph L.
2014-01-01
The giant bumphead parrotfish (Bolbometopon muricatum) has experienced precipitous population declines throughout its range due to its importance as a highly-prized fishery target and cultural resource. Because of its diet, Bolbometopon may serve as a keystone species on Indo-Pacific coral reefs, yet comprehensive descriptions of its reproductive ecology do not exist. We used a variety of underwater visual census (UVC) methods to study an intact population of Bolbometopon at Wake Atoll, a remote and protected coral atoll in the west Pacific. Key observations include spawning activities in the morning around the full and last quarter moon, with possible spawning extending to the new moon. We observed peaks in aggregation size just prior to and following the full and last quarter moon, respectively, and observed a distinct break in spawning at the site that persisted for four days; individuals returned to the aggregation site one day prior to the last quarter moon and resumed spawning the following day. The mating system was lek-based, characterized by early male arrival at the spawning site followed by vigorous defense (including head-butting between large males) of small territories. These territories were apparently used to attract females that arrived later in large schools, causing substantial changes in the sex ratio on the aggregation site at any given time during the morning spawning period. Aggression between males and courtship of females led to pair spawning within the upper water column. Mating interference was not witnessed but we noted instances suggesting that sperm competition might occur. Densities of Bolbometopon on the aggregation site averaged 10.07(±3.24 SE) fish per hectare (ha) with maximum densities of 51.5 fish per ha. By comparing our observations to the results of biennial surveys conducted by the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Ecosystem Division (CRED), we confirmed spatial consistency of the aggregation across years as well as a temporal break in spawning activity and aggregation that occurred during the lunar phase. We estimated the area encompassed by the spawning aggregation to be 0.72 ha, suggesting that spawning site closures and temporal closures centered around the full to the new moon might form one component of a management and conservation plan for this species. Our study of the mating system and spawning aggregation behavior of Bolbometopon from the protected, relatively pristine population at Wake Atoll provides crucial baselines of population density, sex ratio composition, and productivity of a spawning aggregation site from an oceanic atoll. Such information is key for conservation efforts and provides a basic platform for the design of marine protected areas for this threatened iconic coral reef fish, as well as for species with similar ecological and life history characteristics. PMID:25469322
Cram, Jeremy M.; Torgersen, Christian E.; Klett, Ryan S.; Pess, George R.; May, Darran; Pearsons, Todd N.; Dittman, Andrew H.
2013-01-01
Spawning site selection by female salmon is based on complex and poorly understood tradeoffs between the homing instinct and the availability of appropriate habitat for successful reproduction. Previous studies have shown that hatchery-origin Chinook salmon (Oncorhynchus tshawytscha) released from different acclimation sites return with varying degrees of fidelity to these areas. To investigate the possibility that homing fidelity is associated with aquatic habitat conditions, we quantified physical habitat throughout 165 km in the upper Yakima River basin (Washington, USA) and mapped redd and carcass locations from 2004 to 2008. Principal components analysis identified differences in substrate, cover, stream width, and gradient among reaches surrounding acclimation sites, and canonical correspondence analysis revealed that these differences in habitat characteristics were associated with spatial patterns of spawning (p < 0.01). These analyses indicated that female salmon may forego spawning near their acclimation area if the surrounding habitat is unsuitable. Evaluating the spatial context of acclimation areas in relation to surrounding habitat may provide essential information for effectively managing supplementation programs and prioritizing restoration actions.
Clements, Jeff C; Hicks, Carla; Tremblay, Réjan; Comeau, Luc A
2018-01-01
Pre-spawning blue mussels ( Mytilus edulis ) appear sensitive to elevated temperature and robust to elevated p CO 2 ; however, the effects of these stressors soon after investing energy into spawning remain unknown. Furthermore, while studies suggest that elevated p CO 2 affects the byssal attachment strength of Mytilus trossulus from southern latitudes, p CO 2 and temperature impacts on the byssus strength of other species at higher latitudes remain undocumented. In a 90 day laboratory experiment, we exposed post-spawning adult blue mussels ( M. edulis ) from Atlantic Canada to three p CO 2 levels ( p CO 2 ~625, 1295 and 2440 μatm) at two different temperatures (16°C and 22°C) and assessed energetic reserves on Day 90, byssal attachment strength on Days 30 and 60, and condition index and mortality on Days 30, 60 and 90. Results indicated that glycogen content was negatively affected under elevated temperature, but protein, lipid, and overall energy content were unaffected. Reduced glycogen content under elevated temperature was associated with reduced condition index, reduced byssal thread attachment strength, and increased mortality; elevated p CO 2 had no effects. Overall, these results suggest that the glycogen reserves of post-spawning adult M. edulis are sensitive to elevated temperature, and can result in reduced health and byssal attachment strength, leading to increased mortality. These results are similar to those reported for pre-spawning mussels and suggest that post-spawning blue mussels are tolerant to elevated p CO 2 and sensitive to elevated temperature. In contrast to previous studies, however, elevated pCO 2 did not affect byssus strength, suggesting that negative effects of elevated p CO 2 on byssus strength are not universal.
A hurricane is a severe type of tropical storm. Hurricanes produce high winds, heavy rains and thunderstorms. ... exceed 155 miles per hour. Hurricanes and tropical storms can also spawn tornadoes and lead to flooding. ...
NASA Astrophysics Data System (ADS)
Tuapetel, Friesland; Nessa, Natsir; Alam Ali, Syamsu; Sudirman; Hutubessy, B. G.; Mosse, J. W.
2017-10-01
Flyingfish, Hirundichthys oxycephalus together with its congener species has become a major artisanal fishery resource from the Seram Sea, an area between Seram and Papua Island. However, biological information about this species has been poorly documented. Our current study focused on the growth and morphometric relationships of spawning cohorts during spawning season (June to October 2013). Flyingfish which were trapped in bale-bale, an egg aggregation device for flying fish, were collected offshore of the Southeastern Seram Sea. Total samples of 1693 with Fork Length (FL) ranged from 156.15mm to 245.52mm and total weight from 53.15gr to 115.45gr. Von Bertalanffy growth functions (L∞) for-pooled sexes were FL = 251mm [1-e (1.82 (t+0.060)], K=1.82 and t0 = 0.060. Morphometrically, significant differences were observed for all individuals between sexes (F=14.20, P=0.0002), sampling locations (F=88.48 P<0.0001) and sampling period (F=138.84, P<0.0001). Condition factor of the fish generally declined in July-August. During spawning season, this fish tended to form single spawning cohort. The results of this study provide a significant understanding of the life history of this valuable fish inhabiting this particular region that rarely receives scientific investigation. For management purposes, harvesting eggs including broodstocks will lead to critical population depletion.
Noise can affect acoustic communication and subsequent spawning success in fish.
de Jong, Karen; Amorim, M Clara P; Fonseca, Paulo J; Fox, Clive J; Heubel, Katja U
2018-06-01
There are substantial concerns that increasing levels of anthropogenic noise in the oceans may impact aquatic animals. Noise can affect animals physically, physiologically and behaviourally, but one of the most obvious effects is interference with acoustic communication. Acoustic communication often plays a crucial role in reproductive interactions and over 800 species of fish have been found to communicate acoustically. There is very little data on whether noise affects reproduction in aquatic animals, and none in relation to acoustic communication. In this study we tested the effect of continuous noise on courtship behaviour in two closely-related marine fishes: the two-spotted goby (Gobiusculus flavescens) and the painted goby (Pomatoschistus pictus) in aquarium experiments. Both species use visual and acoustic signals during courtship. In the two-spotted goby we used a repeated-measures design testing the same individuals in the noise and the control treatment, in alternating order. For the painted goby we allowed females to spawn, precluding a repeated-measures design, but permitting a test of the effect of noise on female spawning decisions. Males of both species reduced acoustic courtship, but only painted gobies also showed less visual courtship in the noise treatment compared to the control. Female painted gobies were less likely to spawn in the noise treatment. Thus, our results provide experimental evidence for negative effects of noise on acoustic communication and spawning success. Spawning is a crucial component of reproduction. Therefore, even though laboratory results should not be extrapolated directly to field populations, our results suggest that reproductive success may be sensitive to noise pollution, potentially reducing fitness. Copyright © 2017 Elsevier Ltd. All rights reserved.
Seitz, A.C.; Loher, Timothy; Norcross, Brenda L.; Nielsen, J.L.
2011-01-01
Currently, it is assumed that eastern Pacific halibut Hippoglossus stenolepis belong to a single, fully mixed population extending from California through the Bering Sea, in which adult halibut disperse randomly throughout their range during their lifetime. However, we hypothesize that hali but dispersal is more complex than currently assumed and is not spatially random. To test this hypo thesis, we studied the seasonal dispersal and behavior of Pacific halibut in the Bering Sea and Aleutian Islands (BSAI). Pop-up Archival Transmitting tags attached to halibut (82 to 154 cm fork length) during the summer provided no evidence that individuals moved out of the Bering Sea and Aleutian Islands region into the Gulf of Alaska during the mid-winter spawning season, supporting the concept that this region contains a separate spawning group of adult halibut. There was evidence for geographically localized groups of halibut along the Aleutian Island chain, as all of the individuals tagged there displayed residency, with their movements possibly impeded by tidal currents in the passes between islands. Mid-winter aggregation areas of halibut are assumed to be spawning grounds, of which 2 were previously unidentified and extend the species' presumed spawning range ~1000 km west and ~600 km north of the nearest documented spawning area. If there are indeed independent spawning groups of Pacific halibut in the BSAI, their dynamics may vary sufficiently from those of the Gulf of Alaska, so that specifically accounting for their relative segregation and unique dynamics within the larger population model will be necessary for correctly predicting how these components may respond to fishing pressure and changing environmental conditions.?? Inter-Research 2011.
Aprahamian, M W; Aprahamian, C D; Knights, A M
2010-11-01
A stock-recruitment model with a temperature component was used to estimate the effect of an increase in temperature predicted by climate change projections on population persistence and distribution of twaite shad Alosa fallax. An increase of 1 and 2° C above the current mean summer (June to August) water temperature of 17·8° C was estimated to result in a three and six-fold increase in the population, respectively. Climate change is also predicted to result in an earlier commencement to their spawning migration into fresh water. The model was expanded to investigate the effect of any additional mortality that might arise from a tidal power barrage across the Severn Estuary. Turbine mortality was separated into two components: (1) juvenile (pre-maturation) on their out migration during their first year and on their first return to the river to spawn and (2) post-maturation mortality on adults on the repeat spawning component of the population. Under current conditions, decreasing pre-maturation and post-maturation survival by 8% is estimated to result in the stock becoming extinct. It is estimated that an increase in mean summer water temperature of 1° C would mean that survival pre and post-maturation would need to be reduced by c. 10% before the stock becomes extinct. Therefore, climate change is likely to be beneficial to populations of A. fallax within U.K. rivers, increasing survival and thus, population persistence. © 2010 The Authors. Journal of Fish Biology © 2010 The Fisheries Society of the British Isles.
Fitzpatrick, John L; Simmons, Leigh W; Evans, Jonathan P
2012-08-01
Assessing how selection operates on several, potentially interacting, components of the ejaculate is a challenging endeavor. Ejaculates can be subject to natural and/or sexual selection, which can impose both linear (directional) and nonlinear (stabilizing, disruptive, and correlational) selection on different ejaculate components. Most previous studies have examined linear selection of ejaculate components and, consequently, we know very little about patterns of nonlinear selection on the ejaculate. Even less is known about how selection acts on the ejaculate as a functionally integrated unit, despite evidence of covariance among ejaculate components. Here, we assess how selection acts on multiple ejaculate components simultaneously in the broadcast spawning sessile invertebrate Mytilus galloprovincialis using the statistical tools of multivariate selection analyses. Our analyses of relative fertilization rates revealed complex patterns of selection on sperm velocity, motility, and morphology. Interestingly, the most successful ejaculates were made up of slower swimming sperm with relatively low percentages of motile cells, and sperm with smaller head volumes that swam in highly pronounced curved swimming trajectories. These results are consistent with an emerging body of literature on fertilization kinetics in broadcast spawners, and shed light on the fundamental nature of selection acting on the ejaculate as a functionally integrated unit. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Influence of sperm and phytoplankton on spawning in the echinoid Lytechinus variegatus.
Reuter, Kim E; Levitan, Don R
2010-12-01
The cues triggering large-scale broadcast-spawning events in marine invertebrates are not fully understood. Using the sea urchin Lytechinus variegatus, we tested the effectiveness of a variety of potential spawning cues in eliciting a spawning response. In the laboratory, during two consecutive spawning seasons, about 400 isolated sea urchins were exposed to phytoplankton, sperm, or eggs, singly or in combination. The likelihood of spawning, time to spawning, and spawning behavior were recorded for both sexes. Sperm was most successful at inducing spawning. No response to eggs was noted. Phytoplankton alone did not trigger spawning, but when a phytoplankton cue was followed by the addition of sperm, spawning behavior was induced, the time between addition of sperm and spawning was reduced, and the variance among individuals in the time of spawning initiation was reduced. Males spawned sooner in response to cues than females and rarely spawned spontaneously in phytoplankton or control treatments. A semilunar pattern in the sensitivity to spawning cues was noted. During time periods when sea urchins were less ripe, the ratio of spawning males to spawning females increased. Our results indicate that seasonal and lunar cycles, together with the presence of phytoplankton, increase the sensitivity of these sea urchins to spawning cues and the precision of their responses to conspecific sperm.
Coral reproduction in Western Australia
Speed, Conrad W.; Babcock, Russ
2016-01-01
Larval production and recruitment underpin the maintenance of coral populations, but these early life history stages are vulnerable to extreme variation in physical conditions. Environmental managers aim to minimise human impacts during significant periods of larval production and recruitment on reefs, but doing so requires knowledge of the modes and timing of coral reproduction. Most corals are hermaphroditic or gonochoric, with a brooding or broadcast spawning mode of reproduction. Brooding corals are a significant component of some reefs and produce larvae over consecutive months. Broadcast spawning corals are more common and display considerable variation in their patterns of spawning among reefs. Highly synchronous spawning can occur on reefs around Australia, particularly on the Great Barrier Reef. On Australia’s remote north-west coast there have been fewer studies of coral reproduction. The recent industrial expansion into these regions has facilitated research, but the associated data are often contained within confidential reports. Here we combine information in this grey-literature with that available publicly to update our knowledge of coral reproduction in WA, for tens of thousands of corals and hundreds of species from over a dozen reefs spanning 20° of latitude. We identified broad patterns in coral reproduction, but more detailed insights were hindered by biased sampling; most studies focused on species of Acropora sampled over a few months at several reefs. Within the existing data, there was a latitudinal gradient in spawning activity among seasons, with mass spawning during autumn occurring on all reefs (but the temperate south-west). Participation in a smaller, multi-specific spawning during spring decreased from approximately one quarter of corals on the Kimberley Oceanic reefs to little participation at Ningaloo. Within these seasons, spawning was concentrated in March and/or April, and October and/or November, depending on the timing of the full moon. The timing of the full moon determined whether spawning was split over two months, which was common on tropical reefs. There were few data available for non-Acropora corals, which may have different patterns of reproduction. For example, the massive Porites seemed to spawn through spring to autumn on Kimberley Oceanic reefs and during summer in the Pilbara region, where other common corals (e.g. Turbinaria & Pavona) also displayed different patterns of reproduction to the Acropora. The brooding corals (Isopora & Seriatopora) on Kimberley Oceanic reefs appeared to planulate during many months, possibly with peaks from spring to autumn; a similar pattern is likely on other WA reefs. Gaps in knowledge were also due to the difficulty in identifying species and issues with methodology. We briefly discuss some of these issues and suggest an approach to quantifying variation in reproductive output throughout a year. PMID:27231651
Avery, Luke A.; Korman, Josh; Persons, William R.
2015-01-01
Negative interactions of Rainbow Trout Oncorhynchus mykiss with endangered Humpback Chub Gila cypha pose challenges to the operation of Glen Canyon Dam (GCD) to manage for both species in the Colorado River. Operations to enhance the Rainbow Trout tailwater fishery may lead to an increase in downstream movement of the trout to areas where they are likely to interact with Humpback Chub. We evaluated the effects of dam operations on age-0 Rainbow Trout in the tailwater fishery to inform managers about how GCD operations could benefit a tailwater fishery for Rainbow Trout; although this could affect a Humpback Chub population farther downstream. A near year-long increase in discharge at GCD in 2011 enabled us to evaluate whether high and stable flows led to increased spawning and production of age-0 Rainbow Trout compared with other years. Rainbow Trout spawning was monitored by fitting a model to observed redd counts to estimate the number of redds created over a spawning season. Data collected during electrofishing trips in July–September and November were used to acquire age-0 trout population and mortality rate estimates. We found that high and stable flows in 2011 resulted in 3,062 redds (1.7 times the mean of all survey years) and a population estimate of 686,000 age-0 Rainbow Trout (second highest on record). Despite high initial abundance, mortality remained low through the year (0.0043%/d) resulting in significant recruitment with a record high November population estimate of 214,000 age-0 Rainbow Trout. Recent monitoring indicates this recruitment event was followed by an increase in downstream migration, which may lead to increased interactions with downstream populations of Humpback Chub. Consequently, while our results indicate that manipulating flow at GCD can be used to manage Rainbow Trout spawning and recruitment, fisheries managers should use flow manipulation in moderation to minimize downstream migration in order to reduce negative interactions with other species in the Colorado River.
Gröger, Joachim P; Hinrichsen, Hans-Harald; Polte, Patrick
2014-01-01
Climate forcing in complex ecosystems can have profound implications for ecosystem sustainability and may thus challenge a precautionary ecosystem management. Climatic influences documented to affect various ecological functions on a global scale, may themselves be observed on quantitative or qualitative scales including regime shifts in complex marine ecosystems. This study investigates the potential climatic impact on the reproduction success of spring-spawning herring (Clupea harengus) in the Western Baltic Sea (WBSS herring). To test for climate effects on reproduction success, the regionally determined and scientifically well-documented spawning grounds of WBSS herring represent an ideal model system. Climate effects on herring reproduction were investigated using two global indices of atmospheric variability and sea surface temperature, represented by the North Atlantic Oscillation (NAO) and the Atlantic Multi-decadal Oscillation (AMO), respectively, and the Baltic Sea Index (BSI) which is a regional-scale atmospheric index for the Baltic Sea. Moreover, we combined a traditional approach with modern time series analysis based on a recruitment model connecting parental population components with reproduction success. Generalized transfer functions (ARIMAX models) allowed evaluating the dynamic nature of exogenous climate processes interacting with the endogenous recruitment process. Using different model selection criteria our results reveal that in contrast to NAO and AMO, the BSI shows a significant positive but delayed signal on the annual dynamics of herring recruitment. The westward influence of the Siberian high is considered strongly suppressing the influence of the NAO in this area leading to a higher explanatory power of the BSI reflecting the atmospheric pressure regime on a North-South transect between Oslo, Norway and Szczecin, Poland. We suggest incorporating climate-induced effects into stock and risk assessments and management strategies as part of the EU ecosystem approach to support sustainable herring fisheries in the Western Baltic Sea.
Gröger, Joachim P.; Hinrichsen, Hans-Harald; Polte, Patrick
2014-01-01
Climate forcing in complex ecosystems can have profound implications for ecosystem sustainability and may thus challenge a precautionary ecosystem management. Climatic influences documented to affect various ecological functions on a global scale, may themselves be observed on quantitative or qualitative scales including regime shifts in complex marine ecosystems. This study investigates the potential climatic impact on the reproduction success of spring-spawning herring (Clupea harengus) in the Western Baltic Sea (WBSS herring). To test for climate effects on reproduction success, the regionally determined and scientifically well-documented spawning grounds of WBSS herring represent an ideal model system. Climate effects on herring reproduction were investigated using two global indices of atmospheric variability and sea surface temperature, represented by the North Atlantic Oscillation (NAO) and the Atlantic Multi-decadal Oscillation (AMO), respectively, and the Baltic Sea Index (BSI) which is a regional-scale atmospheric index for the Baltic Sea. Moreover, we combined a traditional approach with modern time series analysis based on a recruitment model connecting parental population components with reproduction success. Generalized transfer functions (ARIMAX models) allowed evaluating the dynamic nature of exogenous climate processes interacting with the endogenous recruitment process. Using different model selection criteria our results reveal that in contrast to NAO and AMO, the BSI shows a significant positive but delayed signal on the annual dynamics of herring recruitment. The westward influence of the Siberian high is considered strongly suppressing the influence of the NAO in this area leading to a higher explanatory power of the BSI reflecting the atmospheric pressure regime on a North-South transect between Oslo, Norway and Szczecin, Poland. We suggest incorporating climate-induced effects into stock and risk assessments and management strategies as part of the EU ecosystem approach to support sustainable herring fisheries in the Western Baltic Sea. PMID:24586279
Tropical Storm Toraji Spawns Tornadoes in Japan
2017-12-08
The outflow from Tropical Storm Toraji spawned tornadoes that caused injuries and property damage in Koshigaya, Saitama Prefecture, Japan, just northeast of Tokyo, on September 2, 2013. This image was taken by the Suomi NPP satellite's VIIRS instrument around 0425Z on September 2, 2013. Credit: NASA/NOAA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geist, David R.; Arntzen, Evan V.; Chien, Yi-Ju
2009-03-02
The Pacific Northwest National Laboratory conducted this study for the Bonneville Power Administration (BPA) with funding provided through the Northwest Power and Conservation Council(a) and the BPA Fish and Wildlife Program. The study was conducted in the Hanford Reach of the Columbia River. The goal of study was to determine the physical habitat factors necessary to define the redd capacity of fall Chinook salmon that spawn in large mainstem rivers like the Hanford Reach and Snake River. The study was originally commissioned in FY 1994 and then recommissioned in FY 2000 through the Fish and Wildlife Program rolling review ofmore » the Columbia River Basin projects. The work described in this report covers the period from 1994 through 2004; however, the majority of the information comes from the last four years of the study (2000 through 2004). Results from the work conducted from 1994 to 2000 were covered in an earlier report. More than any other stock of Pacific salmon, fall Chinook salmon (Oncorhynchus tshawytscha) have suffered severe impacts from the hydroelectric development in the Columbia River Basin. Fall Chinook salmon rely heavily on mainstem habitats for all phases of their life cycle, and mainstem hydroelectric dams have inundated or blocked areas that were historically used for spawning and rearing. The natural flow pattern that existed in the historic period has been altered by the dams, which in turn have affected the physical and biological template upon which fall Chinook salmon depend upon for successful reproduction. Operation of the dams to produce power to meet short-term needs in electricity (termed power peaking) produces unnatural fluctuations in flow over a 24-hour cycle. These flow fluctuations alter the physical habitat and disrupt the cues that salmon use to select spawning sites, as well as strand fish in near-shore habitat that becomes dewatered. The quality of spawning gravels has been affected by dam construction, flood protection, and agricultural and industrial development. In some cases, the riverbed is armored such that it is more difficult for spawners to move, while in other cases the intrusion of fine sediment into spawning gravels has reduced water flow to sensitive eggs and young fry. Recovery of fall Chinook salmon populations may involve habitat restoration through such actions as dam removal and reservoir drawdown. In addition, habitat protection will be accomplished through set-asides of existing high-quality habitat. A key component to evaluating these actions is quantifying the salmon spawning habitat potential of a given river reach so that realistic recovery goals for salmon abundance can be developed. Quantifying salmon spawning habitat potential requires an understanding of the spawning behavior of Chinook salmon, as well as an understanding of the physical habitat where these fish spawn. Increasingly, fish biologists are recognizing that assessing the physical habitat of riverine systems where salmon spawn goes beyond measuring microhabitat like water depth, velocity, and substrate size. Geomorphic features of the river measured over a range of spatial scales set up the physical template upon which the microhabitat develops, and successful assessments of spawning habitat potential incorporate these geomorphic features. We had three primary objectives for this study. The first objective was to determine the relationship between physical habitats at different spatial scales and fall Chinook salmon spawning locations. The second objective was to estimate the fall Chinook salmon redd capacity for the Reach. The third objective was to suggest a protocol for determining preferable spawning reaches of fall Chinook salmon. To ensure that we collected physical data within habitat that was representative of the full range of potential spawning habitat, the study area was stratified based on geomorphic features of the river using a two-dimensional river channel index that classified the river cross section into one of four shapes based on channel symmetry, depth, and width. We found that this river channel classification system was a good predictor at the scale of a river reach ({approx}1 km) of where fall Chinook salmon would spawn. Using this two-dimensional river channel index, we selected study areas that were representative of the geomorphic classes. A total of nine study sites distributed throughout the middle 27 km of the Reach (study area) were investigated. Four of the study sites were located between river kilometer 575 and 580 in a section of the river where fall Chinook salmon have not spawned since aerial surveys were initiated in the 1940s; four sites were located in the spawning reach (river kilometer [rkm] 590 to 603); and one site was located upstream of the spawning reach (rkm 605).« less
Skagseth, Øystein; Slotte, Aril; Stenevik, Erling Kåre; Nash, Richard D. M.
2015-01-01
Norwegian Spring Spawning herring (NSSH) Clupea harengus L. spawn on coastal banks along the west coast of Norway. The larvae are generally transported northward in the Norwegian Coastal Current (NCC) with many individuals utilizing nursery grounds in the Barents Sea. The recruitment to this stock is highly variable with a few years having exceptionally good recruitment. The principal causes of recruitment variability of this herring population have been elusive. Here we undertake an event analysis using data between 1948 and 2010 to gain insight into the physical conditions in the NCC that coincide with years of high recruitment. In contrast to a typical year when northerly upwelling winds are prominent during spring, the years with high recruitment coincide with predominantly southwesterly winds and weak upwelling in spring and summer, which lead to an enhanced northward coastal current during the larval drift period. Also in most peak recruitment years, low-salinity anomalies are observed to propagate northward during the spring and summer. It is suggested that consistent southwesterly (downwelling) winds and propagating low-salinity anomalies, both leading to an enhanced northward transport of larvae, are important factors for elevated recruitment. At the same time, these conditions stabilize the coastal waters, possibly leading to enhanced production and improved feeding potential along the drift route to Barents Sea. Further studies on the drivers of early life history mortality can now be undertaken with a better understanding of the physical conditions that prevail during years when elevated recruitment occurs in this herring stock. PMID:26636759
Farnet, Anne-Marie; Qasemian, Leila; Peter-Valence, Frédérique; Ruaudel, Florence; Savoie, Jean-Michel; Roussos, Sevastianos; Gaime-Perraud, Isabelle; Ziarelli, Fabio; Ferré, Élisée
2014-01-01
Storage conditions of the spawn of edible fungi are of major importance to facilitate the production of mushrooms. Here, standard storage conditions at 10°C or 15°C were used and the potential of colonization of standard European compost by the tropical species Agaricus subrufescens was assessed during the spawn running phase. Two lignocellulolytic activities, laccase and CMC-cellulase, were enhanced after storage compared to control as well as substrate transformation, as described by the aromaticity ratio and a humification ratio calculated from NMR data. This result indicates that mycelium growth probably occurred during storage at 10 or 15°C, leading to a larger amount of biomass in the inoculum. Moreover, the microbial functional diversity of the substrate was favored, showing that the electivity of the substrate was maintained. Thus, these findings indicate that recommendations for the mushroom producers can be established for A. subrufescens cultivation under European standard conditions. Copyright © 2014. Published by Elsevier SAS.
Neville, Helen; Isaak, Daniel; Dunham, J.B.; Thurow, Russel; Rieman, B.
2006-01-01
Natal homing is a hallmark of the life history of salmonid fishes, but the spatial scale of homing within local, naturally reproducing salmon populations is still poorly understood. Accurate homing (paired with restricted movement) should lead to the existence of fine-scale genetic structuring due to the spatial clustering of related individuals on spawning grounds. Thus, we explored the spatial resolution of natal homing using genetic associations among individual Chinook salmon (Oncorhynchus tshawytscha) in an interconnected stream network. We also investigated the relationship between genetic patterns and two factors hypothesized to influence natal homing and localized movements at finer scales in this species, localized patterns in the distribution of spawning gravels and sex. Spatial autocorrelation analyses showed that spawning locations in both sub-basins of our study site were spatially clumped, but the upper sub-basin generally had a larger spatial extent and continuity of redd locations than the lower sub-basin, where the distribution of redds and associated habitat conditions were more patchy. Male genotypes were not autocorrelated at any spatial scale in either sub-basin. Female genotypes showed significant spatial autocorrelation and genetic patterns for females varied in the direction predicted between the two sub-basins, with much stronger autocorrelation in the sub-basin with less continuity in spawning gravels. The patterns observed here support predictions about differential constraints and breeding tactics between the two sexes and the potential for fine-scale habitat structure to influence the precision of natal homing and localized movements of individual Chinook salmon on their breeding grounds.
Campbell, Emily Y; Merritt, Richard W; Cummins, Kenneth W; Benbow, M Eric
2012-01-01
Spawning salmon create patches of disturbance through redd digging which can reduce macroinvertebrate abundance and biomass in spawning habitat. We asked whether displaced invertebrates use non-spawning habitats as refugia in streams. Our study explored how the spatial and temporal distribution of macroinvertebrates changed during a pink salmon (Oncorhynchus gorbuscha) spawning run and compared macroinvertebrates in spawning (riffle) and non-spawning (refugia) habitats in an Alaskan stream. Potential refugia included: pools, stream margins and the hyporheic zone, and we also sampled invertebrate drift. We predicted that macroinvertebrates would decline in riffles and increase in drift and refugia habitats during salmon spawning. We observed a reduction in the density, biomass and taxonomic richness of macroinvertebrates in riffles during spawning. There was no change in pool and margin invertebrate communities, except insect biomass declined in pools during the spawning period. Macroinvertebrate density was greater in the hyporheic zone and macroinvertebrate density and richness increased in the drift during spawning. We observed significant invertebrate declines within spawning habitat; however in non-spawning habitat, there were less pronounced changes in invertebrate density and richness. The results observed may be due to spawning-related disturbances, insect phenology, or other variables. We propose that certain in-stream habitats could be important for the persistence of macroinvertebrates during salmon spawning in a Southeast Alaskan stream.
Campbell, Emily Y.; Merritt, Richard W.; Cummins, Kenneth W.; Benbow, M. Eric
2012-01-01
Spawning salmon create patches of disturbance through redd digging which can reduce macroinvertebrate abundance and biomass in spawning habitat. We asked whether displaced invertebrates use non-spawning habitats as refugia in streams. Our study explored how the spatial and temporal distribution of macroinvertebrates changed during a pink salmon (Oncorhynchus gorbuscha) spawning run and compared macroinvertebrates in spawning (riffle) and non-spawning (refugia) habitats in an Alaskan stream. Potential refugia included: pools, stream margins and the hyporheic zone, and we also sampled invertebrate drift. We predicted that macroinvertebrates would decline in riffles and increase in drift and refugia habitats during salmon spawning. We observed a reduction in the density, biomass and taxonomic richness of macroinvertebrates in riffles during spawning. There was no change in pool and margin invertebrate communities, except insect biomass declined in pools during the spawning period. Macroinvertebrate density was greater in the hyporheic zone and macroinvertebrate density and richness increased in the drift during spawning. We observed significant invertebrate declines within spawning habitat; however in non-spawning habitat, there were less pronounced changes in invertebrate density and richness. The results observed may be due to spawning-related disturbances, insect phenology, or other variables. We propose that certain in-stream habitats could be important for the persistence of macroinvertebrates during salmon spawning in a Southeast Alaskan stream. PMID:22745724
Godinho, Alexandre L.; Kynard, Boyd; Godinho, Hugo P.
2007-01-01
Surubim, Pseudoplatystoma corruscans, is the most valuable commercial and recreational fish in the São Francisco River, but little is known about adult migration and spawning. Movements of 24 females (9.5–29.0 kg), which were radio-tagged just downstream of Três Marias Dam (TMD) at river kilometer 2,109 and at Pirapora Rapids (PR) 129 km downstream of TMD, suggest the following conceptual model of adult female migration and spawning. The tagged surubims used only 274 km of the main stem downstream of TMD and two tributaries, the Velhas and Abaeté rivers. Migration style was dualistic with non-migratory (resident) and migratory fish. Pre-spawning females swam at ground speeds of up to 31 km day-1 in late September–December to pre-spawning staging sites located 0–11 km from the spawning ground. In the spawning season (November–March), pre-spawning females migrated back and forth from nearby pre-spawning staging sites to PR for short visits to spawn, mostly during floods. Multiple visits to the spawning site suggest surubim is a multiple spawner. Most post-spawning surubims left the spawning ground to forage elsewhere, but some stayed at the spawning site until the next spawning season. Post-spawning migrants swam up or downstream at ground speeds up to 29 km day-1 during January–March. Construction of proposed dams in the main stem and tributaries downstream of TMD will greatly reduce surubim abundance by blocking migrations and changing the river into reservoirs that eliminate riverine spawning and non-spawning habitats, and possibly, cause extirpation of populations.
Evaluation of methods for identifying spawning sites and habitat selection for alosines
Harris, Julianne E.; Hightower, Joseph E.
2010-01-01
Characterization of riverine spawning habitat is important for the management and restoration of anadromous alosines. We examined the relative effectiveness of oblique plankton tows and spawning pads for collecting the eggs of American shad Alosa sapidissima, hickory shad A. mediocris, and “river herring” (a collective term for alewife A. pseudoharengus and blueback herring A. aestivalis) in the Roanoke River, North Carolina. Relatively nonadhesive American shad eggs were only collected by plankton tows, whereas semiadhesive hickory shad and river herring eggs were collected by both methods. Compared with spawning pads, oblique plankton tows had higher probabilities of collecting eggs and led to the identification of longer spawning periods. In assumed spawning areas, twice-weekly plankton sampling for 15 min throughout the spawning season had a 95% or greater probability of collecting at least one egg for all alosines; however, the probabilities were lower in areas with more limited spawning. Comparisons of plankton tows, spawning pads, and two other methods of identifying spawning habitat (direct observation of spawning and examination of female histology) suggested differences in effectiveness and efficiency. Riverwide information on spawning sites and timing for all alosines is most efficiently obtained by plankton sampling. Spawning pads and direct observations of spawning are the best ways to determine microhabitat selectivity for appropriate species, especially when spawning sites have previously been identified. Histological examination can help determine primary spawning sites but is most useful when information on reproductive biology and spawning periodicity is also desired. The target species, riverine habitat conditions, and research goals should be considered when selecting methods with which to evaluate alosine spawning habitat.
Salmon Spawning Effects on Streambed Stability
NASA Astrophysics Data System (ADS)
Buxton, T. H.; Buffington, J. M.; Yager, E.; Fremier, A. K.; Hassan, M. A.
2014-12-01
Female salmon build nests ("redds") in streambeds to protect their eggs from predation and damage by bed scour. During spawning, streambed material is mixed, fine sediment is winnowed downstream, and sediment is moved into a tailspill mound resembling the shape of a dune. Redd surfaces are coarser and better sorted than unspawned beds, which is thought to increase redd stability because larger grains are heavier and harder to move and sorting leads to higher friction angles for grain mobility. However, spawning also loosens sediment and creates topography that accelerates flow, both of which may increase particle mobility. We address factors controlling the relative stability of redds and unspawned beds using simulated salmon redds and water worked ("unspawned") beds composed of mixed-grain surfaces in a laboratory flume. Results show that simulated spawning lowered packing resistance to particle mobility on redds by an average of 32-39% compared to unspawned beds. Reductions in packing were sufficient to counter the higher inherent stability of relatively coarse, well sorted grains on redds, overall reducing critical shear stress by 8-20% relative to unspawned beds. In addition, boundary shear stress was 13-41% higher on redds due to flow convergence over the tailspill structure. Finally, redd instability relative to unspawned beds was observed in visual measurements of grain mobility, where bed-averaged shear stress was 22% lower at incipient motion and 29% lower at the discharge that mobilized all grain sizes on redds. Results of these complementary observations, along with sediment mass transport rates being nearly five times higher on a redd than an unspawned bed, indicate that redds are unstable compared to unspawned beds. Given these findings, further research is needed to investigate linkages between spawning disturbance and streambed mobility that may affect salmon reproduction in streams, and to assess whether a certain level of bed disturbance from spawning is required to restore ecosystem functions in streams with threatened populations of salmon.
Olfactory sensitivity of Pacific Lampreys to lamprey bile acids
Robinson, T. Craig; Sorensen, Peter W.; Bayer, Jennifer M.; Seelye, James G.
2009-01-01
Pacific lampreys Lampetra tridentata are in decline throughout much of their historical range in the Columbia River basin. In support of restoration efforts, we tested whether larval and adult lamprey bile acids serve as migratory and spawning pheromones in adult Pacific lampreys, as they do in sea lampreys Petromyzon marinus. The olfactory sensitivity of adult Pacific lampreys to lamprey bile acids was measured by electro-olfactogram recording from the time of their capture in the spring until their spawning in June of the following year. As controls, we tested L-arginine and a non-lamprey bile acid, taurolithocholic acid 3-sulfate (TLS). Migrating adult Pacific lampreys were highly sensitive to petromyzonol sulfate (a component of the sea lamprey migratory pheromone) and 3-keto petromyzonol sulfate (a component of the sea lamprey sex pheromone) when first captured. This sensitivity persisted throughout their long migratory and overwinter holding period before declining to nearly unmeasurable levels by the time of spawning. The absolute magnitudes of adult Pacific lamprey responses to lamprey bile acids were smaller than those of the sea lamprey, and unlike the sea lamprey, the Pacific lamprey did not appear to detect TLS. No sexual dimorphism was noted in olfactory sensitivity. Thus, Pacific lampreys are broadly similar to sea lampreys in showing sensitivity to the major lamprey bile acids but apparently differ in having a longer period of sensitivity to those acids. The potential utility of bile acid-like pheromones in the restoration of Pacific lampreys warrants their further investigation in this species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
RH Visser
2000-03-16
The alteration of ecological systems has greatly reduced salmon populations in the Pacific Northwest. The Hanford Reach of the Columbia River, for example, is a component of the last ecosystem in eastern Washington State that supports a relatively healthy population of fall chinook salmon ([Oncorhynchus tshawytscha], Huntington et al. 1996). This population of fall chinook may function as a metapopulation for the Mid-Columbia region (ISG 1996). Metapopulations can seed or re-colonize unused habitat through the mechanism of straying (spawning in non-natal areas) and may be critical to the salmon recovery process if lost or degraded habitat is restored (i.e., themore » Snake, Upper Columbia, and Yakima rivers). For these reasons, the Hanford Reach fall chinook salmon population is extremely important for preservation of the species in the Columbia River Basin. Because this population is important to the region, non-intrusive techniques of analysis are essential for researching and monitoring population trends and spawning activities.« less
Artificial reproduction of two different spawn-forms of the chub.
Krejszeff, Sławomir; Targońska, Katarzyna; Zarski, Daniel; Kucharczyk, Dariusz
2010-03-01
The aim of this study was to compare, under controlled conditions, reproduction results of cultured and wild stock of the chub. Wild fish spawned only once a season whereas the cultured stock spawned at least two times. In the multiple-spawn stock, fewer fish spawned and the weight of produced oocytes was reduced compared to the single-spawn stock. Larvae obtained from the multi-spawn forms were smaller than those of the single-spawn stock. The occurrence of one species with two forms of spawning performance in the same area makes it difficult to develop an efficient method for controlling the reproduction.
NASA Astrophysics Data System (ADS)
Bentley, M. G.; Olive, P. J. W.; Last, K.
The evidence that the moon has a profound effect on the timing of reproductive activities of marine animals is compelling. Some moon phase related spawning events are revealed by the constant phase relationship between the timing of ``once per year'' spawning events and the lunar phase as in the highly synchronised breeding of the palolo worm Palola viridis and the Japanese crinoid Comanthus japonicus In other cases there is a repeated lunar cycle of reproductive activity and again the marine worms provide many good examples. The breeding of the palolo worm involves the highly synchronised release of what are in effect detached sexual satellites and the timing of this has annual (solar year), lunar, daily and tidal rhythm components. In a similar way, the onset of sexual maturation and participation in the nuptial dance of Platynereis dumerilli has strong lunar components. Sexual reproduction is the culmination of a process of sexual maturation that takes many months for completion and the mechanisms by which moon phase relationships are imposed on this process must have been selected for by mechanisms relating to reproductive success. The polychaetes provide excellent models for investigation of both the selective advantage and the physiological processes involved in reproductive synchrony. We have recently shown that the spawning of the lugworm Arenicola marina has lunar components and we conclude that an interaction between solar and lunar signals is widespread in the timing of reproduction in marine animals. Carl Hauenschild was the first to demonstrate the existence of a free-running circa-lunar rhythm in marine animals using captive populations of Platynereis dumerilli His experiments also provided clear evidence for the influence of moonlight (light at night) as the zeitgeber for this rhythm. This implies a high level of sensitivity to light, and the operation of appropriate endogenous biological rhythms. Using Nereis virens we have demonstrated a high level of sensitivity to low intensity solar light signals in relation to rhythmic processes with the properties similar to the circadian and photoperiodic mechanisms of terrestrial organisms. The spawning of N. virens is also believed to have lunar components reflecting the complex influences of the sun and the moon in the marine domain, where influences of the moon and sun are more equal. We suggest that evolution of biological rhythmicity that can be entrained to either lunar or solar systems arose in the marine domain. Recent advances in understanding the molecular components of the circadian clock system suggest that a search for a common molecular mechanism for both lunar and solar related biological rhythms in marine organisms might be very fruitful.
NASA Astrophysics Data System (ADS)
Óskarsson, G. J.; Kjesbu, O. S.; Slotte, A.
2002-08-01
Maturing Norwegian spring-spawning (NSS) herring, Clupea harengus, were collected for reproductive analyses along the Norwegian coast prior to the spawning seasons of 1997-2000. Over this time period there was a marked change in weight (W) at length (TL) with 1998 showing extremely low values and 2000 high values in a historical perspective. Potential fecundity, amounting to about 20 000-100 000 developing (vitellogenic) oocytes per fish and positively related to fish size, increased significantly with fish condition. Relative somatic potential fecundity (RF P, number of oocytes per g ovary-free body weight) in NSS herring was found to vary by 35-55% between years. Unexpectedly, females in 2000 showed low RF P-values, possibly due to negative feedback from previous reproductive investments at low condition. A clear threshold value for Fulton's condition factor, K (K=100×W/TL 3), of 0.65-0.70 existed below which there was considerable atresia (resorption of vitellogenic oocytes). Thus, these components of the spawning stock, amounting to 1-46% in the period 1980-1999, obviously contributed relatively little to the total egg production. This was confirmed by low ovary weights and examples of delayed oocyte development in these individuals. An up-to-date atresia model is presented. The established oocyte growth curve, and to a lesser degree the assumed atretic oocytic turnover rate, was critical for the estimation of realised fecundity (number of eggs spawned). Modelled realised fecundity was significantly below observed potential fecundity. Females that had migrated the shortest distance from the over-wintering area, Vestfjorden, northern Norway, were in the poorest condition, had the least developed oocytes and the lowest potential and realised fecundities. In agreement with previously published studies on temporal and spatial changes in gonad weights, those females reaching the main spawning grounds in the south-western part of the coast (Møre) were the most successful ones in terms of egg production. Likewise, present results on oocyte diameter confirmed that repeat spawners spawn first and recruit spawners second. Our histological analyses on oocyte microstructure provided further evidence that oocyte size is a precise and accurate maturation criterion in herring. The methodological examinations also showed that the level of atresia as well as potential fecundity from oocyte and ovarian size can be estimated by the binocular microscope. This study shows that there is a large range in size- and condition-specific egg production in NSS herring, which should be taken into account in further recruitment studies.
Summer spawning of Porites lutea from north-western Australia
NASA Astrophysics Data System (ADS)
Stoddart, C. W.; Stoddart, J. A.; Blakeway, D. R.
2012-09-01
Most coral species off Australia's west coast spawn in the austral autumn (March-April), with a few species also spawning in the southern spring or early summer (November-December). This is the reverse timing to spawning recorded off Australia's east coast. Porites lutea, a gonochoric broadcast spawner that is common on Australia's west coast, is shown here to spawn in the months of November or December, as it does on Australia's east coast. Spawning occurred between 2 and 5 nights after full moon, with the majority of spawning activity on night 3. Gametes developed over three to four months with rapid development in the last two weeks before spawning. Zooxanthellae were typically observed in mature oocytes, only a week before spawning so their presence may provide a useful indicator of imminent spawning.
Kelly, Barry C; Gray, Samantha L; Ikonomou, Michael G; Macdonald, J Steve; Bandiera, Stelvio M; Hrycay, Eugene G
2007-05-01
Pacific sockeye salmon (Oncorhynchus nerka) can travel several hundred kilometers to reach native spawning grounds and fulfill semelparous reproduction. The dramatic changes in lipid reserves during upstream migration can greatly affect internal toxicokinetics of persistent organic pollutants (POPs) such as PCBs, PCDDs, and PCDFs. We measured lipid content changes and contaminant concentrations in tissues (liver, muscle, roe/gonads) and biomarker responses (ethoxyresorufin O-deethylase or EROD activity and CYP1A levels) in two Pacific sockeye salmon stocks sampled at several locations along their spawning migration in the Fraser River, British Columbia. Muscle lipid contents declined significantly with increasing upstream migration distance and corresponded to elevated lipid normalized concentrations of PCBs and PCDD/Fs in spawning sockeye. Post-migration magnification factors (MFs) in spawning sockeye ranged between 3 and 12 and were comparable to model-predicted MFs. sigmaPCBs(150-500 ng x g(-1) lipid), sigmaPCDD/Fs (1-1000 pg x g(-1) lipid) and 2,3,7,8-TCDD toxic equivalent or TEQ levels (0.1-15 pg x g(-1) lipid) in spawning sockeye were relatively low and did not affect hepatic EROD activity/CYP1A induction. Despite a 3-fold magnification, TEQ levels in eggs of spawning Fraser River sockeye did not exceed 0.3 pg x g(-1) wet wt, a threshold level associated with 30% egg mortality in salmonids. PCBs in Fraser River sockeye are comparable to previous levels in Pacific sockeye. In contrast to Pacific sockeye from more remote coastal locations, PCDDs and PCDFs in Fraser River sockeye were generally minor components (<25%) of TEQ levels, compared to dioxin like PCB contributions (>75%). The data suggest that (i) the Fraser River is not a major contamination source of PCBs or PCDD/Fs and (ii) marine contaminant distribution, food-chain dynamics, and ocean-migration pathway are likely important factors controlling levels and patterns of POPs in returning Pacific sockeye. We estimate an annual chemical flux entering the Fraser River of up to 150 g for sigmaPCBs and 40 mg for sigmaPCDD/ Fs via returning sockeye. The results indicate that historical concentrations of PCBs and PCDD/Fs remain a potential threat to organism and ecosystem health on the west coast of Canada.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boe, Stephen J.; Crump, Carrie A.; Weldert, Rey L.
2009-04-10
This is the ninth annual report for a multi-year project designed to monitor and evaluate supplementation of endemic spring Chinook salmon in Catherine Creek and the upper Grande Ronde River. These two streams historically supported anadromous fish populations that provided significant tribal and non-tribal fisheries, but in recent years, have experienced severe declines in abundance. Conventional and captive broodstock supplementation methods are being used to restore these spring Chinook salmon populations. Spring Chinook salmon populations in Catherine Creek and the upper Grande Ronde River, and other streams in the Snake River Basin have experienced severe declines in abundance over themore » past two decades (Nehlsen et al. 1991). A supplementation program was initiated in Catherine Creek and the upper Grande Ronde River, incorporating the use of both captive and conventional broodstock methods, in order to prevent extinction in the short term and eventually rebuild populations. The captive broodstock component of the program (BPA Project 199801001) uses natural-origin parr collected by seining and reared to maturity at facilities near Seattle, Washington (Manchester Marine Laboratory) and Hood River, Oregon (Bonneville Hatchery). Spawning occurs at Bonneville Hatchery, and resulting progeny are reared in hatcheries. Shortly before outmigration in the spring, juveniles are transferred to acclimation facilities. After an acclimation period of about 2-4 weeks, volitional release begins. Any juveniles remaining after the volitional release period are forced out. The conventional broodstock component uses returning adults collected at traps near the spawning areas, transported to Lookingglass Hatchery near Elgin, Oregon, held, and later spawned. The resulting progeny are reared, acclimated, and released similar to the captive broodstock component. All progeny released receive one or more marks including a fin (adipose) clip, codedwire tag, PIT tag, or visual implant elastomer tag. The numbers of adults used for conventional broodstock are determined by an agreement among comanagers (Zimmerman and Patterson 2002). Activities for this project focus on two life stages of spring Chinook salmon: juveniles during the migration from freshwater to the ocean and adults during prespawning migration through the end of spawning. Life history, production, and genetics are monitored and used to evaluate program effectiveness.« less
Infilling of Cobble Substrate used by White Sturgeon on the Nechako River, at Vanderhoof BC
NASA Astrophysics Data System (ADS)
Zimmermann, A. E.; Argast, T.; Sary, Z.
2013-12-01
Nechako white sturgeon are experiencing a recruitment failure, which has been attributed to the failure of eggs and larvae to survive as a result of changes in the substrate at the locations where they are known to spawn. As part of the overall recovery effort initiative, cobble substrate was placed at two locations to provide clean spawning substrate. Subsequently, the condition of the substrate has been investigated using an underwater camera and freeze core sampling. These observations have shown that coarse sand and fine gravels (fine bedoad) have in-filled the coarse substrate where it was placed along the inside corner of the bends, while placed substrate located on the outside of the bends has remained free of this size fraction. This observation has lead to the quandary: Is placed cobble substrate on the outside corner of the bends not being filled in with fine bedload because fine bedload is not moving past these sites, or are post-regulation flood flows sufficient to ensure fines remain suspended and are not deposited in the interstitial spaces? To assess this question a number of field based techniques will be used in August of 2013 during high flows to examine the movement of fine bedload. The techniques employed will include an underwater camera, P61 suspended sediment sampler, a HellySmith and KAROLYI bedload sampler and an ADCP with RTK for bottom tracking. The intent is to examine the movement of fine bedload across the channel at a number of potential spawning sites. The poster will summarize the observations to date about the movement of fine bedload at the spawning sites, and discuss the implications for spawning substrate improvement efforts.
NASA Astrophysics Data System (ADS)
Lin, Che-Hung; Nozawa, Yoko
2017-12-01
Despite the global accumulation of coral spawning records over the past three decades, information on inter-annual variation in spawning time is still insufficient, resulting in difficulty in predicting coral spawning time. Here, we present new information on in situ spawning times of scleractinian corals at Lyudao, Taiwan, covering their inter-annual variations over a 7-yr period (2010-2016). Spawning of 42 species from 16 genera in eight families was recorded. The majority were hermaphroditic spawners (38 of 42 species), and their spawning occurred 2-4 h after sunset on 1-11 d after the full moon (AFM), mostly in April and May. There were two distinct patterns in the two dominant taxa, the genus Acropora (14 species) and the family Merulinidae (18 species in eight genera). The annual spawning of Acropora corals mostly occurred on a single night in May with high inter-annual variation of spawning (lunar) days between 1 and 11 d AFM. In contrast, the annual spawning of merulinid corals commonly occurred over 2-3 consecutive nights in two consecutive months, April and May, with the specific range of spawning days around the last quarter moon (between 5 and 8 d AFM). The distinct spawning patterns of these taxa were also documented at Okinawa and Kochi, Japan, where similar long-term monitoring of in situ coral spawning has been conducted. This variability in spawning days implies different regulatory mechanisms of synchronous spawning where Acropora corals might be more sensitive to exogenous environmental factors (hourglass mechanism), compared to merulinid corals, which may rely more on endogenous biological rhythms (oscillator mechanism).
Effects of lake surface elevation on shoreline-spawning Lost River Suckers
Burdick, Summer M.; Hewitt, David A.; Rasmussen, J.E.; Hayes, Brian; Janney, Eric; Harris, Alta C.
2015-01-01
We analyzed remote detection data from PIT-tagged Lost River Suckers Deltistes luxatus at four shoreline spawning areas in Upper Klamath Lake, Oregon, to determine whether spawning of this endangered species was affected by low water levels. Our investigation was motivated by the observation that the surface elevation of the lake during the 2010 spawning season was the lowest in 38 years. Irrigation withdrawals in 2009 that were not replenished by subsequent winter-spring inflows caused a reduction in available shoreline spawning habitat in 2010. We compared metrics of skipped spawning, movement among spawning areas, and spawning duration across 8 years (2006-2013) that had contrasting spring water levels. Some aspects of sucker spawning were similar in all years, including few individuals straying from the shoreline areas to spawning locations in lake tributaries and consistent effects of increasing water temperatures on the accumulation of fish at the spawning areas. During the extreme low water year of 2010, 14% fewer female and 8% fewer male suckers joined the shoreline spawning aggregation than in the other years. Both males and females visited fewer spawning areas within Upper Klamath Lake in 2010 than in other years, and the median duration at spawning areas in 2010 was at least 36% shorter for females and 20% shorter for males relative to other years. Given the imperiled status of the species and the declining abundance of the population in Upper Klamath Lake, any reduction in spawning success and egg production could negatively impact recovery efforts. Our results indicate that lake surface elevations above 1,262.3-1,262.5 m would be unlikely to limit the number of spawning fish and overall egg production.
AOP description: Androgen receptor agonism leading to reproductive dysfunction (in fish)
This adverse outcome pathway details the linkage between binding and activation of androgen receptor as a nuclear transcription factor in females and the adverse effect of reduced cumulative fecundity in repeat-spawning fish species. Cumulative fecundity is the most apical endpoi...
AOP description: ER antagonism leading to reproductive dysfunction (in fish)
This adverse outcome pathway details the linkage between antagonism of estrogen receptor in females and the adverse effect of reduced cumulative fecundity in repeat-spawning fish species. Cumulative fecundity is the most apical endpoint considered in the OECD 229 Fish Short Term ...
AOP description: Aromatase inhibition leading to reproductive dysfunction (in fish)
This adverse outcome pathway details the linkage between inhibition of gonadal aromatase activity in females and the adverse effect of reduced cumulative fecundity in repeat-spawning fish species. Cumulative fecundity is the most apical endpoint considered in the OECD 229 Fish Sh...
Grimm, Amanda G.; Brooks, Colin N.; Binder, Thomas R.; Riley, Stephen C.; Farha, Steve A.; Shuchman, Robert A.; Krueger, Charles C.
2016-01-01
The availability and quality of spawning habitat may limit lake trout recovery in the Great Lakes, but little is known about the location and characteristics of current spawning habitats. Current methods used to identify lake trout spawning locations are time- and labor-intensive and spatially limited. Due to the observation that some lake trout spawning sites are relatively clean of overlaying algae compared to areas not used for spawning, we suspected that spawning sites could be identified using satellite imagery. Satellite imagery collected just before and after the spawning season in 2013 was used to assess whether lake trout spawning habitat could be identified based on its spectral characteristics. Results indicated that Pléiades high-resolution multispectral satellite imagery can be successfully used to estimate algal coverage of substrates and temporal changes in algal coverage, and that models developed from processed imagery can be used to identify potential lake trout spawning sites based on comparison of sites where lake trout eggs were and were not observed after spawning. Satellite imagery is a potential new tool for identifying lake trout spawning habitat at large scales in shallow nearshore areas of the Great Lakes.
Sparks, Morgan M.; Falke, Jeffrey A.; Quinn, Thomas P.; Adkison, Milo D.; Schindler, Daniel E.; Bartz, Krista K.; Young, Daniel B.; Westley, Peter A. H.
2018-01-01
We applied an empirical model to predict hatching and emergence timing for 25 western Alaska sockeye salmon (Oncorhynchus nerka) populations in four lake-nursery systems to explore current patterns and potential responses of early life history phenology to warming water temperatures. Given experienced temperature regimes during development, we predicted hatching to occur in as few as 58 d to as many as 260 d depending on spawning timing and temperature. For a focal lake spawning population, our climate-lake temperature model predicted a water temperature increase of 0.7 to 1.4 °C from 2015 to 2099 during the incubation period, which translated to a 16 d to 30 d earlier hatching timing. The most extreme scenarios of warming advanced development by approximately a week earlier than historical minima and thus climatic warming may lead to only modest shifts in phenology during the early life history stage of this population. The marked variation in the predicted timing of hatching and emergence among populations in close proximity on the landscape may serve to buffer this metapopulation from climate change.
Tuttle-Lau, M.T.; Phillips, K.A.; Gaikowski, M.P.
2009-01-01
Viral hemorrhagic septicemia virus (VHSv) is a serious fish pathogen that has been responsible for large-scale fish kills in the Great Lakes since 2005. It causes high mortality and resulting outbreaks have severe economic consequences for aquaculture. Iodophor disinfection of salmonid eggs is a standard hatchery practice to reduce the risk of pathogen transfer during gamete collection ('spawning') operations and is thus a leading candidate for reducing VHSv transmission during and after spawning of nonsalmonid fishes. However, before it is incorporated by hatcheries during nonsalmonid fish spawning efforts, its safety and effectiveness needs to be evaluated. The USGS Fact Sheet 2009-3107, 'Evaluation of the Efficacy of Iodophor Disinfection of Walleye and Northern Pike Eggs to Eliminate Viral Hemorrhagic Septicemia Virus' presents the results of a study to assess the effectiveness of iodophor disinfection for eliminating VHSv (strain IVb) from fertilized eggs of walleye and northern pike intentionally challenged with VHSv following egg fertilization. Walleye and northern pike egg survival (hatch) following iodophor egg disinfection also was assessed.
Spawning Sites of the Japanese Eel in Relation to Oceanographic Structure and the West Mariana Ridge
Aoyama, Jun; Watanabe, Shun; Miller, Michael J.; Mochioka, Noritaka; Otake, Tsuguo; Yoshinaga, Tatsuki; Tsukamoto, Katsumi
2014-01-01
The Japanese eel, Anguilla japonica, spawns within the North Equatorial Current that bifurcates into both northward and southward flows in its westward region, so its spawning location and larval transport dynamics seem important for understanding fluctuations in its recruitment to East Asia. Intensive research efforts determined that Japanese eels spawn along the western side of the West Mariana Ridge during new moon periods, where all oceanic life history stages have been collected, including eggs and spawning adults. However, how the eels decide where to form spawning aggregations is unknown because spawning appears to have occurred at various latitudes. A salinity front formed from tropical rainfall was hypothesized to determine the latitude of its spawning locations, but an exact spawning site was only found once by collecting eggs in May 2009. This study reports on the collections of Japanese eel eggs and preleptocephali during three new moon periods in June 2011 and May and June 2012 at locations indicating that the distribution of lower salinity surface water or salinity fronts influence the latitude of spawning sites along the ridge. A distinct salinity front may concentrate spawning south of the front on the western side of the seamount ridge. It was also suggested that eels may spawn at various latitudes within low-salinity water when the salinity fronts appeared unclear. Eel eggs were distributed within the 150–180 m layer near the top of the thermocline, indicating shallow spawning depths. Using these landmarks for latitude (salinity front), longitude (seamount ridge), and depth (top of the thermocline) to guide the formation of spawning aggregations could facilitate finding mates and help synchronize their spawning. PMID:24551155
Multispecies spawning sites for fishes on a low-latitude coral reef: spatial and temporal patterns.
Claydon, J A B; McCormick, M I; Jones, G P
2014-04-01
Spawning sites used by one or more species were located by intensively searching nearshore coral reefs of Kimbe Bay (New Britain, Papua New Guinea). Once identified, the spawning sites were surveyed repeatedly within fixed 5 m radius circular areas, for > 2000 h of observations ranging from before dawn to after dusk spanning 190 days between July 2001 and May 2004. A total of 38 spawning sites were identified on the seven study reefs distributed at an average of one site every 60 m of reef edge. Pelagic spawning was observed in 41 fish species from six families. On three intensively studied reefs, all 17 spawning sites identified were used by at least three species, with a maximum of 30 different species observed spawning at a single site. Spawning was observed during every month of the study, on all days of the lunar month, at all states of the tide and at most hours of the day studied. Nevertheless, the majority of species were observed spawning on proportionately more days from December to April, on more days around the new moon and in association with higher tides. The strongest temporal association, however, was with species-specific diel spawning times spanning < 3 h for most species. While dawn spawning, afternoon spawning and dusk spawning species were differentiated, the time of spawning for the striated surgeonfish Ctenochaetus striatus also differed significantly among sites. The large number of species spawning at the same restricted locations during predictable times suggests that these sites are extremely important on this low-latitude coral reef. © 2014 The Fisheries Society of the British Isles.
Aoyama, Jun; Watanabe, Shun; Miller, Michael J; Mochioka, Noritaka; Otake, Tsuguo; Yoshinaga, Tatsuki; Tsukamoto, Katsumi
2014-01-01
The Japanese eel, Anguilla japonica, spawns within the North Equatorial Current that bifurcates into both northward and southward flows in its westward region, so its spawning location and larval transport dynamics seem important for understanding fluctuations in its recruitment to East Asia. Intensive research efforts determined that Japanese eels spawn along the western side of the West Mariana Ridge during new moon periods, where all oceanic life history stages have been collected, including eggs and spawning adults. However, how the eels decide where to form spawning aggregations is unknown because spawning appears to have occurred at various latitudes. A salinity front formed from tropical rainfall was hypothesized to determine the latitude of its spawning locations, but an exact spawning site was only found once by collecting eggs in May 2009. This study reports on the collections of Japanese eel eggs and preleptocephali during three new moon periods in June 2011 and May and June 2012 at locations indicating that the distribution of lower salinity surface water or salinity fronts influence the latitude of spawning sites along the ridge. A distinct salinity front may concentrate spawning south of the front on the western side of the seamount ridge. It was also suggested that eels may spawn at various latitudes within low-salinity water when the salinity fronts appeared unclear. Eel eggs were distributed within the 150-180 m layer near the top of the thermocline, indicating shallow spawning depths. Using these landmarks for latitude (salinity front), longitude (seamount ridge), and depth (top of the thermocline) to guide the formation of spawning aggregations could facilitate finding mates and help synchronize their spawning.
Nozawa, Yoko
2012-06-01
This study was conducted at a high-latitude location (32°N; Kochi, Japan), where annual seawater temperatures show large fluctuations due to the meandering of the Kuroshio Current, providing a unique opportunity to examine the influence of temperature on coral reproduction. Annual spawning of individual colonies of four reef coral species-two Acropora species (Acropora hyacinthus and A. japonica) and two faviid species (Favites pentagona and Platygyra contorta)-was monitored in situ for 4 years in 2006-2009. The spawning of the four species always occurred around the last quarter moon in the local summer, July or August, irrespective of high annual variations in seawater temperatures (from 23.7 to 29.5 °C) and weather during the spawning period. However, the exact timing of spawning during the spawning period varied among the years and was correlated with the cumulative seawater temperature during the late period of gametogenesis (0-3 months before spawning). When seawater temperatures were higher, spawning occurred in the earlier spawning month (July) and vice versa, except in A. hyacinthus, which always spawned in July. In the case of the two Acropora species, higher (lower) temperatures led to spawning earlier (later) in the lunar cycle. Seawater temperature may have an influence on gametogenesis, causing the shift in spawning timing.
Spawning site selection and contingent behavior in Common Snook, Centropomus undecimalis.
Lowerre-Barbieri, Susan; Villegas-Ríos, David; Walters, Sarah; Bickford, Joel; Cooper, Wade; Muller, Robert; Trotter, Alexis
2014-01-01
Reproductive behavior affects spatial population structure and our ability to manage for sustainability in marine and diadromous fishes. In this study, we used fishery independent capture-based sampling to evaluate where Common Snook occurred in Tampa Bay and if it changed with spawning season, and passive acoustic telemetry to assess fine scale behavior at an inlet spawning site (2007-2009). Snook concentrated in three areas during the spawning season only one of which fell within the expected spawning habitat. Although in lower numbers, they remained in these areas throughout the winter months. Acoustically-tagged snook (n = 31) showed two seasonal patterns at the spawning site: Most fish occurred during the spawning season but several fish displayed more extended residency, supporting the capture-based findings that Common Snook exhibit facultative catadromy. Spawning site selection for iteroparous, multiple-batch spawning fishes occurs at the lifetime, annual, or intra-annual temporal scales. In this study we show colonization of a new spawning site, indicating that lifetime spawning site fidelity of Common Snook is not fixed at this fine spatial scale. However, individuals did exhibit annual and intra-seasonal spawning site fidelity to this new site over the three years studied. The number of fish at the spawning site increased in June and July (peak spawning months) and on new and full lunar phases indicating within population variability in spawning and movement patterns. Intra-seasonal patterns of detection also differed significantly with sex. Common Snook exhibited divergent migration tactics and habitat use at the annual and estuarine scales, with contingents using different overwintering habitat. Migration tactics also varied at the spawning site at the intra-seasonal scale and with sex. These results have important implications for understanding how reproductive behavior affects spatio-temporal patterns of fish abundance and their resilience to disturbance events and fishing pressure.
Arafa, Soumaya; Chouaibi, Moncef; Sadok, Saloua; El Abed, Amor
2012-01-01
Seasonal variation in the gonad weight and biochemical composition of the sea urchin Paracentrotus lividus from the Golf of Tunis (Tunisia) were studied between September 2003 and August 2004. The highest gonad indices occurred in March (16.71%). The spawning period occurred between April and July and resulted in a fall in gonad indices to low level (7.12 ± 0.12%). Protein constituted the main component of the gonad, and lipid and carbohydrate were found at appreciable amounts. Consistent with the gonad cycle, sea urchin biochemical components showed clear seasonal variation with a significant decrease during the spawning period. The polyunsaturated fatty acid (PUFA) group was found at high level (40% of the total fatty acids). Of the PUFA group, eicosapentaenoic (C20:5 n - 3) and eicosatetraenoic (C20:4 n - 3) were the most abundant gonadal lipids. The level of PUFA was significantly affected by temperature variation showing an increase during the cold months and a decrease in the hot months.
Arafa, Soumaya; Chouaibi, Moncef; Sadok, Saloua; El Abed, Amor
2012-01-01
Seasonal variation in the gonad weight and biochemical composition of the sea urchin Paracentrotus lividus from the Golf of Tunis (Tunisia) were studied between September 2003 and August 2004. The highest gonad indices occurred in March (16.71%). The spawning period occurred between April and July and resulted in a fall in gonad indices to low level (7.12 ± 0.12%). Protein constituted the main component of the gonad, and lipid and carbohydrate were found at appreciable amounts. Consistent with the gonad cycle, sea urchin biochemical components showed clear seasonal variation with a significant decrease during the spawning period. The polyunsaturated fatty acid (PUFA) group was found at high level (40% of the total fatty acids). Of the PUFA group, eicosapentaenoic (C20:5 n − 3) and eicosatetraenoic (C20:4 n − 3) were the most abundant gonadal lipids. The level of PUFA was significantly affected by temperature variation showing an increase during the cold months and a decrease in the hot months. PMID:22629206
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Jr., Emmit E.
2004-03-01
This project is a critical component of currently on-going watershed restoration effort in the Lochsa River Drainage, including the Fishing (Squaw) Creek to Legendary Bear (Papoose) Creek Watersheds Analysis Area. In addition, funding for this project allowed expansion of the project into Pete King Creek and Cabin Creek. The goal of this project is working towards the re-establishment of healthy self-sustaining populations of key fisheries species (spring Chinook salmon, steelhead, bull trout, and westslope cutthroat trout) through returning historic habitat in all life stages (spawning, rearing, migration, and over-wintering). This was accomplished by replacing fish barrier road crossing culverts withmore » structures that pass fish and accommodate site conditions.« less
Coral mass spawning predicted by rapid seasonal rise in ocean temperature
Maynard, Jeffrey A.; Edwards, Alasdair J.; Guest, James R.; Rahbek, Carsten
2016-01-01
Coral spawning times have been linked to multiple environmental factors; however, to what extent these factors act as generalized cues across multiple species and large spatial scales is unknown. We used a unique dataset of coral spawning from 34 reefs in the Indian and Pacific Oceans to test if month of spawning and peak spawning month in assemblages of Acropora spp. can be predicted by sea surface temperature (SST), photosynthetically available radiation, wind speed, current speed, rainfall or sunset time. Contrary to the classic view that high mean SST initiates coral spawning, we found rapid increases in SST to be the best predictor in both cases (month of spawning: R2 = 0.73, peak: R2 = 0.62). Our findings suggest that a rapid increase in SST provides the dominant proximate cue for coral mass spawning over large geographical scales. We hypothesize that coral spawning is ultimately timed to ensure optimal fertilization success. PMID:27170709
Lok, E.K.; Esler, Daniel N.; Takekawa, John Y.; De La Cruz, S.W.; Boyd, W.S.; Nysewander, D.R.; Evenson, J.R.; Ward, D.H.
2012-01-01
Surf scoters Melanitta perspicillata are sea ducks that aggregate at spawning events of Pacific herring Clupea pallasi and forage on the eggs, which are deposited in abundance during spring at discrete sites. We evaluated whether migrating scoters followed a ‘silver wave’ of resource availability, analogous to the ‘green wave’ of high-quality foraging conditions that herbivorous waterfowl follow during spring migration. We confirmed that herring spawning activity began later in the year at higher latitudes, creating a northward-progressing wave of short-term localized food availability. Using satellite telemetry and aerial surveys, we documented the chronology of scoter spring migration and the use of stopover locations in relation to herring spawn timing and locations. We found that the migration chronology paralleled the northward progression of herring spawning events. Although there was considerable variability in the timing of both scoter migration and the initiation of herring spawning, the processes were related beyond a coincidental northward progression. During migration, 60% of the tracked scoters visited at least 1 spawn site, and those that used spawn sites were located on spawn sites for approximately one-third of their migration locations. Surf scoters showed close spatiotemporal associations with herring spawning events, confirming that the presence of herring spawn was a factor determining habitat use for many individuals. Surf scoters showed close spatiotemporal associations with herring spawning events, confirming that the presence of herring spawn was a factor determining habitat use for many individuals, a conclusion that is consistent with previous studies which used physiologically based metrics to evaluate the importance of herring spawn.
Oceanic migration and spawning of anguillid eels.
Tsukamoto, K
2009-06-01
Many aspects of the life histories of anguillid eels have been revealed in recent decades, but the spawning migrations of their silver eels in the open ocean still remains poorly understood. This paper overviews what is known about the migration and spawning of anguillid species in the ocean. The factors that determine exactly when anguillid eels will begin their migrations are not known, although environmental influences such as lunar cycle, rainfall and river discharge seem to affect their patterns of movement as they migrate towards the ocean. Once in the ocean on their way to the spawning area, silver eels probably migrate in the upper few hundred metres, while reproductive maturation continues. Although involvement of a magnetic sense or olfactory cues seems probable, how they navigate or what routes they take are still a matter of speculation. There are few landmarks in the open ocean to define their spawning areas, other than oceanographic or geological features such as oceanic fronts or seamounts in some cases. Spawning of silver eels in the ocean has never been observed, but artificially matured eels of several species have exhibited similar spawning behaviours in the laboratory. Recent collections of mature adults and newly spawned preleptocephali in the spawning area of the Japanese eel Anguilla japonica have shown that spawning occurs during new moon periods in the North Equatorial Current region near the West Mariana Ridge. These data, however, show that the latitude of the spawning events can change among months and years depending on oceanographic conditions. Changes in spawning location of this and other anguillid species may affect their larval transport and survival, and appear to have the potential to influence recruitment success. A greater understanding of the spawning migration and the choice of spawning locations by silver eels is needed to help conserve declining anguillid species.
Buchinger, Tyler J.; Marsden, J. Ellen; Binder, Thomas R.; Huertas, Mar; Bussy, Ugo; Li, Ke; Hanson, James E.; Krueger, Charles C.; Li, Weiming; Johnson, Nicholas
2017-01-01
Deciding where to reproduce is a major challenge for most animals. Many select habitats based upon cues of successful reproduction by conspecifics, such as the presence of offspring from past reproductive events. For example, some fishes select spawning habitat following odors released by juveniles whose rearing habitat overlaps with spawning habitat. However, juveniles may emigrate before adults begin to search for spawning habitat; hence, the efficacy of juvenile cues could be constrained by degradation or dissipation rates. In lake trout (Salvelinus namaycush), odors deposited by the previous year's offspring have been hypothesized to guide adults to spawning reefs. However, in most extant populations, lake trout fry emigrate from spawning reefs during the spring and adults spawn during the fall. Therefore, we postulated that the role of fry odors in guiding habitat selection might be constrained by the time between fry emigration and adult spawning. Time course chemical, physiological, and behavioral assays indicated that the odors deposited by fry likely degrade or dissipate before adults select spawning habitats. Furthermore, fry feces did not attract wild lake trout to constructed spawning reefs in Lake Huron. Taken together, our results indicate fry odors are unlikely to act as cues for lake trout searching for spawning reefs in populations whose juveniles emigrate before the spawning season, and underscore the importance of environmental constraints on social cues.
Environmental and biological cues for spawning in the crown-of-thorns starfish
Pratchett, Morgan S.
2017-01-01
Sporadic outbreaks of the coral-eating crown-of-thorns starfish are likely to be due, at least in part, to spatial and temporal variation in reproductive and settlement success. For gonochoric and broadcast spawning species such as crown-of-thorns starfish, spawning synchrony is fundamental for achieving high rates of fertilization. Highly synchronized gamete release within and among distinct populations is typically the result of the entrainment of neurohormonal endogenous rhythms by cues from the environment. In this study, we conducted multiple spawning assays to test the effects of temperature change, reduced salinity and nutrient enrichment of seawater, phytoplankton, gametes (sperm and eggs), and the combined effect of sperm and phytoplankton on the likelihood of spawning in male and female crown-of-thorns starfish. We also investigated sex-specific responses to each of these potential spawning cues. We found that (1) abrupt temperature change (an increase of 4°C) induced spawning in males, but less so in females; (2) males often spawned in response to the presence of phytoplankton, but none of the females spawned in response to these cues; (3) the presence of sperm in the water column induced males and females to spawn, although additive and synergistic effects of sperm and phytoplankton were not significant; and (4) males are more sensitive to the spawning cues tested and most likely spawn prior to females. We propose that environmental cues act as spawning ‘inducers’ by causing the release of hormones (gonad stimulating substance) in sensitive males, while biological cues (pheromones) from released sperm, in turn, act as spawning ‘synchronizers’ by triggering a hormonal cascade resulting in gamete shedding by conspecifics. Given the immediate temporal linkage between the timing of spawning and fertilization events, variability in the extent and synchronicity of gamete release will significantly influence reproductive success and may account for fluctuations in the abundance of crown-of-thorns starfish. PMID:28355236
NASA Astrophysics Data System (ADS)
Dhaneesh, Kottila Veettil; Ajith Kumar, Thipramalai Thankappan; Swagat, Ghosh; Balasubramanian, Thangavel
2012-07-01
Breeding and mass scale larval rearing of clownfish Amphiprion percula is very limited in brackishwater. We designed an indoor program of A. percula culture in brackishwater with a salinity of 24±1, during which the impacts of feed type, water temperature, and light intensity, on the efficiency of its reproduction, were revealed. The fish were accommodated along with sea anemones in fibre glass tanks to determine the influence of brooder diet on breeding efficiency. Higher reproductive efficiency [number of eggs laid (276 ± 22.3 eggs)] was observed when fish were fed live Acetes sp. rather than clam (204 ± 16.4 eggs), trash fish (155 ± 12 eggs) and formulated feed (110 ± 10 eggs). The spawning rate was increased during September and October (water temperature, 28.74 ± 0.55°C) on average of 2.4 spawning per month; and low spawning rate was in January (water temperature, 24.55 ± 0.45°C) on average of 1 spawning per month. Among three light intensities (100, 500, and 900 lx) set to evaluate larval survival rate, larvae showed the highest survival rate (65.5%) at 900 lx. The breeding method specifically in brackishwater developed in the present study is a new approach, will help the people from the regions of estuary and backwater to enhance their livelihood and it will lead to reduce the exploitation from the wild habitat.
DuFour, Mark R.; May, Cassandra J.; Roseman, Edward F.; Ludsin, Stuart A.; Vandergoot, Christopher S.; Pritt, Jeremy J.; Fraker, Michael E.; Davis, Jeremiah J.; Tyson, Jeffery T.; Miner, Jeffery G.; Marschall, Elizabeth A.; Mayer, Christine M.
2015-01-01
Habitat degradation and harvest have upset the natural buffering mechanism (i.e., portfolio effects) of many large-scale multi-stock fisheries by reducing spawning stock diversity that is vital for generating population stability and resilience. The application of portfolio theory offers a means to guide management activities by quantifying the importance of multi-stock dynamics and suggesting conservation and restoration strategies to improve naturally occurring portfolio effects. Our application of portfolio theory to Lake Erie Sander vitreus (walleye), a large population that is supported by riverine and open-lake reef spawning stocks, has shown that portfolio effects generated by annual inter-stock larval fish production are currently suboptimal when compared to potential buffering capacity. Reduced production from riverine stocks has resulted in a single open-lake reef stock dominating larval production, and in turn, high inter-annual recruitment variability during recent years. Our analyses have shown (1) a weak average correlation between annual river and reef larval production (ρ̄ = 0.24), suggesting that a natural buffering capacity exists in the population, and (2) expanded annual production of larvae (potential recruits) from riverine stocks could stabilize the fishery by dampening inter-annual recruitment variation. Ultimately, our results demonstrate how portfolio theory can be used to quantify the importance of spawning stock diversity and guide management on ecologically relevant scales (i.e., spawning stocks) leading to greater stability and resilience of multi-stock populations and fisheries.
Inter-annual variability of North Sea plaice spawning habitat
NASA Astrophysics Data System (ADS)
Loots, C.; Vaz, S.; Koubbi, P.; Planque, B.; Coppin, F.; Verin, Y.
2010-11-01
Potential spawning habitat is defined as the area where environmental conditions are suitable for spawning to occur. Spawning adult data from the first quarter (January-March) of the International Bottom Trawl Survey have been used to study the inter-annual variability of the potential spawning habitat of North Sea plaice from 1980 to 2007. Generalised additive models (GAM) were used to create a model that related five environmental variables (depth, bottom temperature and salinity, seabed stress and sediment type) to presence-absence and abundance of spawning adults. Then, the habitat model was applied each year from 1970 to 2007 to predict inter-annual variability of the potential spawning habitat. Predicted responses obtained by GAM for each year were mapped using kriging. A hierarchical classification associated with a correspondence analysis was performed to cluster spawning suitable areas and to determine how they evolved across years. The potential spawning habitat was consistent with historical spawning ground locations described in the literature from eggs surveys. It was also found that the potential spawning habitat varied across years. Suitable areas were located in the southern part of the North Sea and along the eastern coast of England and Scotland in the eighties; they expanded further north from the nineties. Annual survey distributions did not show such northward expansion and remained located in the southern North Sea. This suggests that this species' actual spatial distribution remains stable against changing environmental conditions, and that the potential spawning habitat is not fully occupied. Changes in environmental conditions appear to remain within plaice environmental ranges, meaning that other factors may control the spatial distribution of plaice spawning habitat.
Johnson, Nicholas S.; Higgs, Dennis; Binder, Thomas R.; Marsden, J. Ellen; Buchinger, Tyler John; Brege, Linnea; Bruning, Tyler; Farha, Steve A.; Krueger, Charles C.
2018-01-01
Two sounds associated with spawning lake trout (Salvelinus namaycush) in lakes Huron and Champlain were characterized by comparing sound recordings to behavioral data collected using acoustic telemetry and video. These sounds were named growls and snaps, and were heard on lake trout spawning reefs, but not on a non-spawning reef, and were more common at night than during the day. Growls also occurred more often during the spawning period than the pre-spawning period, while the trend for snaps was reversed. In a laboratory flume, sounds occurred when male lake trout were displaying spawning behaviors; growls when males were quivering and parallel swimming, and snaps when males moved their jaw. Combining our results with the observation of possible sound production by spawning splake (Salvelinus fontinalis × Salvelinus namaycush hybrid), provides rare evidence for spawning-related sound production by a salmonid, or any other fish in the superorder Protacanthopterygii. Further characterization of these sounds could be useful for lake trout assessment, restoration, and control.
Abe, Tsukasa; Kobayashi, Ichiro; Kon, Masahiro; Sakamoto, Tatsuya
2007-09-01
The kissing loach, an endangered species surviving only in a few Japanese rivers, spawns in the rice-field areas after migration from rivers in early June. To characterize the environmental conditions required for spawning of the kissing loach, spawning was assessed for two years both by direct observation of spawning behavior and by the appearance of eggs, larvae, and juveniles from June to October. All spawning of the kissing loach was limited to within a couple of days after the formation of temporary waters by remarkable rises in water level. Water temperature and daily rainfall fluctuated during the investigation periods, and no clear relationships with spawning were detected. Furthermore, all spawning was observed only in temporary waters with terrestrial grasses. Thus, spawning of the kissing loach is rigidly limited spatio-temporally to after the formation of temporary waters over terrestrial vegetation. Appropriate management of temporary waters will be crucial for the continued existence of this species.
Geist; Dauble
1998-09-01
/ Knowledge of the three-dimensional connectivity between rivers and groundwater within the hyporheic zone can be used to improve the definition of fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat. Information exists on the microhabitat characteristics that define suitable salmon spawning habitat. However, traditional spawning habitat models that use these characteristics to predict available spawning habitat are restricted because they can not account for the heterogeneous nature of rivers. We present a conceptual spawning habitat model for fall chinook salmon that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Two case studies based on empirical data from fall chinook salmon spawning areas in the Hanford Reach of the Columbia River are presented to illustrate important aspects of our conceptual model. We suggest that traditional habitat models and our conceptual model be combined to predict the limits of suitable fall chinook salmon spawning habitat. This approach can incorporate quantitative measures of river channel morphology, including general descriptors of geomorphic features at different spatial scales, in order to understand the processes influencing redd site selection and spawning habitat use. This information is needed in order to protect existing salmon spawning habitat in large rivers, as well as to recover habitat already lost.KEY WORDS: Hyporheic zone; Geomorphology; Spawning habitat; Large rivers; Fall chinook salmon; Habitat management
NASA Astrophysics Data System (ADS)
Dias, Daniela Faggiani; Pezzi, Luciano Ponzi; Gherardi, Douglas Francisco Marcolino; Camargo, Ricardo
2014-04-01
An Individual Based Model (IBM), coupled with a hydrodynamic model (ROMS), was used to investigate the spawning strategies and larval survival of the Brazilian Sardine in the South Brazil Bight (SBB). ROMS solutions were compared with satellite and field data to assess their representation of the physical environment. Two spawning experiments were performed for the summer along six years, coincident with ichthyoplankton survey cruises. In the first one, eggs were released in spawning habitats inferred from a spatial model. The second experiment simulated a random spawning to test the null hypothesis that there are no preferred spawning sites. Releasing eggs in the predefined spawning habitats increases larval survival, suggesting that the central-southern part of the SBB is more suitable for larvae development because of its thermodynamic characteristics. The Brazilian sardine is also capable of exploring suitable areas for spawning, according to the interannual variability of the SBB. The influence of water temperature, the presence of Cape Frio upwelling, and surface circulation on the spawning process was tested. The Cape Frio upwelling plays an important role in the modulation of Brazilian sardine spawning zones over SBB because of its lower than average water temperature. This has a direct influence on larval survival and on the interannual variability of the Brazilian sardine spawning process. The hydrodynamic condition is crucial in determining the central-southern part of SBB as the most suitable place for spawning because it enhances simulated coastal retention of larvae.
Use of behavioral and physiological indicators to evaluate Scaphirhynchus sturgeon spawning success
DeLonay, A.J.; Papoulias, D.M.; Wildhaber, M.L.; Annis, M.L.; Bryan, J.L.; Griffith, S.A.; Holan, S.H.; Tillitt, D.E.
2007-01-01
Thirty gravid, female shovelnose sturgeon (Scaphirhynchus platorynchus) were captured in the Lower Missouri River in March 2004 to evaluate the effectiveness of physiology, telemetry and remote sensor technology coupled with change point analysis in identifying when and where Scaphirhynchus sturgeon spawn. Captured sturgeons were instrumented with ultrasonic transmitters and with archival data storage tags (DST) that recorded temperature and pressure. Female sturgeon were tracked through the suspected spawning period. Thereafter, attempts were made to recapture fish to evaluate spawning success. At the time of transmitter implantation, blood and an ovarian biopsy were taken. Reproductive hormones and cortisol were measured in blood. Polarization indices and germinal vesicle breakdown were assessed on the biopsied oocytes to determine readiness to spawn. Behavioral data collected using telemetry and DST sensors were used to determine the direction and magnitude of possible spawning-related movements and to identify the timing of potential spawning events. Upon recapture observations of the ovaries and blood chemistry provided measures of spawning success and comparative indicators to explain differences in observed behavior. Behavioral and physiological indicators of spawning interpreted along with environmental measures may assist in the determination of variables that may cue sturgeon reproduction and the conditions under which sturgeon successfully spawn.
Rovani, A T; Cardoso, L G
2017-09-01
The life history of Dules auriga, a small hermaphrodite serranid species inhabiting deep waters and a frequent component of the discarded catch of bottom trawling in southern Brazil, was studied to assess the fishery effects on the stock through the estimation of the remaining spawning-potential ratio. Sampling was conducted throughout a year and included specimens to determine sex, maturity and age. Age was validated by the edge type and marginal-increment analysis. The oldest and the largest individuals were 9 years and 195 mm total length. Growth parameters fitted to the von Bertalanffy equation were L ∞ = 178·34 mm, k = 0·641 year -1 and t 0 = -0·341 years. Length and age at first maturity were 140·72 mm and 2 years, respectively. The reproductive season was throughout the austral spring and summer. The assessment of the effects of fishing showed that it may have resulted in a loss of 50% of the spawning potential. This loss may be higher when taking into account the uncertainty in the life-history parameters and could be considered of concern for the population. Fast growth, moderate longevity, long spawning season, small size and age at maturity make D. auriga relatively resilient to the removal of biomass by fishing. When considering the uncertainty, however, the losses of the spawning potential have been severely reducing the population resilience in the face of ecosystem changes. © 2017 The Fisheries Society of the British Isles.
Grabowski, T.B.; Isely, J.J.
2008-01-01
Little is known about the behavior of individual fish in a spawning aggregation, specifically how long an individual remains in an aggregation. We monitored Moxostoma robustum (Cope) (Robust Redhorse) in a Savannah River spawning aggregation during spring 2004 and 2005 to provide an estimate of the total number of adults and the number of males comprising the aggregation and to determine male residence time and movements within a spawning aggregation. Robust Redhorse were captured using prepostioned grid electrofishers, identified to sex, weighed, measured, and implanted with a passive integrated transponder. Spawning aggregation size was estimated using a multiple census mark-and-recapture procedure. The spawning aggregation seemed to consist of approximately the same number of individuals (82-85) and males (50-56) during both years of this study. Individual males were present for a mean of 3.6 ?? 0.24 days (?? SE) during the 12-day spawning period. The mean distance between successive recaptures of individual males was 15.9 ?? 1.29 m (?? SE). We conclude that males establish spawning territories on a daily basis and are present within the spawning aggregation for at least 3-4 days. The relatively short duration of the aggregation may be the result of an extremely small population of adults. However, the behavior of individuals has the potential to influence population estimates made while fish are aggregated for spawning.
NASA Astrophysics Data System (ADS)
Kim, Jaehee; Tao, Hongli; Martinez, Todd J.; Bucksbaum, Phil
2015-08-01
We extend the ab initio multiple spawning method to include both field-free and field-induced nonadiabatic transitions. We apply this method to describe ultrafast pump-probe experiments of the photoinduced ring-opening of gas phase 1,3-cyclohexadiene. In the absence of a control field, nonadiabatic transitions mediated by a conical intersection (CoIn) lead to rapid ground state recovery with both 1,3-cyclohexadiene and ring-opened hexatriene products. However, application of a control field within the first 200 fs after photoexcitation results in suppression of the hexatriene product. We demonstrate that this is a consequence of population dumping prior to reaching the CoIn and further interpret this in terms of light-induced CoIns created by the control field.
Spatial variability of Chinook salmon spawning distribution and habitat preferences
Cram, Jeremy M.; Torgersen, Christian E.; Klett, Ryan S.; Pess, George R.; May, Darran; Pearsons, Todd N.; Dittman, Andrew H.
2017-01-01
We investigated physical habitat conditions associated with the spawning sites of Chinook Salmon Oncorhynchus tshawytscha and the interannual consistency of spawning distribution across multiple spatial scales using a combination of spatially continuous and discrete sampling methods. We conducted a census of aquatic habitat in 76 km of the upper main-stem Yakima River in Washington and evaluated spawning site distribution using redd survey data from 2004 to 2008. Interannual reoccupation of spawning areas was high, ranging from an average Pearson’s correlation of 0.62 to 0.98 in channel subunits and 10-km reaches, respectively. Annual variance in the interannual correlation of spawning distribution was highest in channel units and subunits, but it was low at reach scales. In 13 of 15 models developed for individual years (2004–2008) and reach lengths (800 m, 3 km, 6 km), stream power and depth were the primary predictors of redd abundance. Multiple channels and overhead cover were patchy but were important secondary and tertiary predictors of reach-scale spawning site selection. Within channel units and subunits, pool tails and thermal variability, which may be associated with hyporheic exchange, were important predictors of spawning. We identified spawning habitat preferences within reaches and channel units that are relevant for salmonid habitat restoration planning. We also identified a threshold (i.e., 2-km reaches) beyond which interannual spawning distribution was markedly consistent, which may be informative for prioritizing habitat restoration or conservation. Management actions may be improved through enhanced understanding of spawning habitat preferences and the consistency with which Chinook Salmon reoccupy spawning areas at different spatial scales.
Randall, M.T.; Sulak, K.J.
2012-01-01
Evidence of autumn spawning of Gulf sturgeon Acipenser oxyrinchus desotoi in the Suwannee River, Florida, was compiled from multiple investigations between 1986 and 2008. Gulf sturgeon are known from egg collections to spawn in the springtime months following immigration into rivers. Evidence of autumn spawning includes multiple captures of sturgeon in September through early November that were ripe (late-development ova; motile sperm) or exhibited just-spawned characteristics, telemetry of fish that made >175 river kilometer upstream excursions to the spawning grounds in September–October, and the capture of a 9.3 cm TL age-0 Gulf sturgeon on 29 November 2000 (which would have been spawned in late September 2000). Analysis of age-at-length data indicates that ca. 20% of the Suwannee River Gulf sturgeon population may be attributable to autumn spawning. However, with the very low sampling effort expended, eggs or early life stages have not yet been captured in the autumn, which would be the conclusive proof of autumn spawning. More sampling, and sampling at previously unknown sites frequented by acoustic telemetry fish, would be required to find eggs.
Spawning patterns of Pacific Lamprey in tributaries to the Willamette River, Oregon
Mayfield, M.P.; Schultz, Luke; Wyss, Lance A.; Clemens, B. J.; Schreck, Carl B.
2014-01-01
Addressing the ongoing decline of Pacific Lamprey Entosphenus tridentatus across its range along the west coast of North America requires an understanding of all life history phases. Currently, spawning surveys (redd counts) are a common tool used to monitor returning adult salmonids, but the methods are in their infancy for Pacific Lamprey. To better understand the spawning phase, our objective was to assess temporal spawning trends, redd abundance, habitat use, and spatial patterns of spawning at multiple spatial scales for Pacific Lamprey in the Willamette River basin, Oregon. Although redd density varied considerably across surveyed reaches, the observed temporal patterns of spawning were related to physical habitat and hydrologic conditions. As has been documented in studies in other basins in the Pacific Northwest, we found that redds were often constructed in pool tailouts dominated by gravel, similar to habitat used by spawning salmonids. Across the entire Willamette Basin, Pacific Lampreys appeared to select reaches with alluvial geology, likely because this is where gravel suitable for spawning accumulated. At the tributary scale, spawning patterns were not as strong, and in reaches with nonalluvial geology redds were more spatially clumped than in reaches with alluvial geology. These results can be used to help identify and conserve Pacific Lamprey spawning habitat across the Pacific Northwest.
McDonald, Richard R.; Nelson, Jonathan M.; Vaughn Paragamian,; Barton, Gary J.
2017-01-01
The Kootenai River white sturgeon currently spawn (2005) in an 18-kilometer reach of the Kootenai River, Idaho. Since completion of Libby Dam upstream from the spawning reach, there has been only one successful year of recruitment of juvenile fish. Where successful in other rivers, white sturgeon spawn over clean coarse material of gravel size or larger. The channel substrate in the current spawning reach is composed primarily of sand and some buried gravel; within a few kilometers upstream there is clean gravel. We used a 2-dimensional flow and sediment-transport model and the measured locations of sturgeon spawning from 1994-2002 to gain insight into the paradox between the current spawning location and the absence of suitable substrate. Spatial correlations between spawning locations and the model simulations of velocity and depth indicate the white sturgeon tend to select regions of highest velocity and depth within any river cross-section to spawn. These regions of high velocity and depth are independent of pre- or post-dam flow conditions. A simple sediment-transport simulation suggests that high discharge and relatively long duration flow associated with pre-dam flow events might be sufficient to scour the sandy substrate and expose existing lenses of gravel and cobble as lag deposits in the current spawning reach.
Knapp, Jessica M.; Aranda, Guillermo; Medina, Antonio; Lutcavage, Molly
2014-01-01
Despite attention focused on the population status and rebuilding trajectory of Atlantic bluefin tuna (Thunnus thynnus), the reproduction and spawning biology remains poorly understood, especially in the NW Atlantic. At present, the eastern and western spawning populations are believed to exhibit different reproductive characteristics and, consequently, stock productivity. However, our study suggests that the two spawning populations, the Gulf of Mexico and the Mediterranean Sea, could show similar reproductive features and spawning strategies. Between 2007 and 2009, gonad samples from female Atlantic bluefin tuna were collected in the northern Gulf of Mexico (n = 147) and in the western Mediterranean Sea (n = 40). The histological and stereological analysis confirmed that sampled eastern and western bluefin tuna exhibit the same spawning duration (three months) but the spawning in the Gulf of Mexico begins one month earlier than in the Mediterranean Sea. Western bluefin tuna caught in the peak of the spawning season (May) showed a similar spawning frequency (60%) to the spawning peak observed in the Mediterranean Sea (June). Fecundity for the Gulf of Mexico fish () was lower but not significantly different than for fish sampled in the Mediterranean Sea (). Our study represents the first comparative histological analysis of the eastern and western spawning stocks whose findings, combined with new determinations of size/age at maturity and possible alternative spawning areas, might suggest basic life history attributes warrant further scientific and management attention. PMID:24911973
Binder, Thomas R.; Thompson, Henry T.; Muir, Andrew M.; Riley, Stephen C.; Marsden, J. Ellen; Bronte, Charles R.; Krueger, Charles C.
2015-01-01
Spawning behavior of lake trout, Salvelinus namaycush, is poorly understood, relative to stream-dwelling salmonines. Underwater video records of spawning in a recovering population from the Drummond Island Refuge (Lake Huron) represent the first reported direct observations of lake trout spawning in the Laurentian Great Lakes. These observations provide new insight into lake trout spawning behavior and expand the current conceptual model. Lake trout spawning consisted of at least four distinct behaviors: hovering, traveling, sinking, and gamete release. Hovering is a new courtship behavior that has not been previously described. The apparent concentration of hovering near the margin of the spawning grounds suggests that courtship and mate selection might be isolated from the spawning act (i.e., traveling, sinking, and gamete release). Moreover, we interpret jockeying for position displayed by males during traveling as a unique form of male-male competition that likely evolved in concert with the switch from redd-building to itinerant spawning in lake trout. Unlike previous models, which suggested that intra-sexual competition and mate selection do not occur in lake trout, our model includes both and is therefore consistent with evolutionary theory, given that the sex ratio on spawning grounds is skewed heavily towards males. The model presented in this paper is intended as a working hypothesis, and further revision may become necessary as we gain a more complete understanding of lake trout spawning behavior.
Knapp, Jessica M; Aranda, Guillermo; Medina, Antonio; Lutcavage, Molly
2014-01-01
Despite attention focused on the population status and rebuilding trajectory of Atlantic bluefin tuna (Thunnus thynnus), the reproduction and spawning biology remains poorly understood, especially in the NW Atlantic. At present, the eastern and western spawning populations are believed to exhibit different reproductive characteristics and, consequently, stock productivity. However, our study suggests that the two spawning populations, the Gulf of Mexico and the Mediterranean Sea, could show similar reproductive features and spawning strategies. Between 2007 and 2009, gonad samples from female Atlantic bluefin tuna were collected in the northern Gulf of Mexico (n = 147) and in the western Mediterranean Sea (n = 40). The histological and stereological analysis confirmed that sampled eastern and western bluefin tuna exhibit the same spawning duration (three months) but the spawning in the Gulf of Mexico begins one month earlier than in the Mediterranean Sea. Western bluefin tuna caught in the peak of the spawning season (May) showed a similar spawning frequency (60%) to the spawning peak observed in the Mediterranean Sea (June). Fecundity for the Gulf of Mexico fish (28.14 eggs · g(-1)) was lower but not significantly different than for fish sampled in the Mediterranean Sea (45.56 eggs · g(-1)). Our study represents the first comparative histological analysis of the eastern and western spawning stocks whose findings, combined with new determinations of size/age at maturity and possible alternative spawning areas, might suggest basic life history attributes warrant further scientific and management attention.
NASA Astrophysics Data System (ADS)
Aschan, Michaela; Ingvaldsen, Randi
2009-10-01
The shrimp spawn in autumn, and the females carry their eggs as out roe until spring when the larvae hatch. Within a period of 2 months the shrimp larvae settle to the bottom. It has been claimed that the year-class strength probably is determined during the larval phase. Today's assessment and forecast of the shrimp stock productivity and potential fishing yields are weak. This is partly due to poor knowledge on population dynamics from hatching until the shrimp are caught in the fishery at the age of 3 or 4 years. We, therefore, here identify the most important abiotic and biotic factors that affect recruitment in addition to spawning stock biomass. Since 1995, a net attached to the underbelly of the survey trawl used at the annual cruise in the Barents Sea has caught juvenile shrimp. The abundance of settled shrimp larvae varies in time and space. The recruitment to the fishery has been quite stable with the exception of the 1996 year-class, which was observed as 1-year-olds but has not been registered since. The temporal pattern of the three youngest year-classes is studied in relation to abiotic factors such as sea temperature, ice index and North Atlantic Oscillation, as well as biotic factors such as spawning stock biomass and presence of copepods, euphausiids and predating cod. Recruitment indices and factors identified by the Spearmann correlation to be significantly correlated with recruitment were used as input in a principal component analysis (PCA) and a generalized additive model (GAM) was applied. Abundance of 1-year-old shrimp is positively correlated to spawning stock biomass the previous year and to temperature of the previous winter, and negatively correlated with the number of 1-year-old cod. Two-year-old shrimp show significant correlation with temperature, whereas there is a strong negative correlation with euphausiids. Three-year-old shrimp are significantly correlated with the number of 2-year-old shrimp the previous year but negatively correlated to temperature at sampling time. This is probably due to less overlap with the main predator cod when cold. Ricker functions indicate an increased density-dependent mortality with age. When predicting the recruitment of shrimp to the fishery, the spawning stock biomass, the abundance of cod and euphausiids, as well as the temperature should be included.
Young, Daniel B.; Woody, C.A.
2007-01-01
The spawning distribution of sockeye salmon Oncorhynchus nerka was compared between clear and glacially turbid habitats in Lake Clark, Alaska, with the use of radiotelemetry. Tracking of 241 adult sockeye salmon to 27 spawning locations revealed both essential habitats and the relationship between spawn timing and seasonal turbidity cycles. Sixty-six percent of radio-tagged sockeye salmon spawned in turbid waters (???5 nephelometric turbidity units) where visual observation was difficult. Spawning in turbid habitats coincided with seasonal temperature declines and associated declines in turbidity and suspended sediment concentration. Because spawn timing is heritable and influenced by temperature, the observed behavior suggests an adaptive response to glacier-fed habitats, as it would reduce embryonic exposure to the adverse effects of fine sediments. ?? Copyright by the American Fisheries Society 2007.
Passive acoustic monitoring to detect spawning in large-bodied catostomids
Straight, Carrie A.; Freeman, Byron J.; Freeman, Mary C.
2014-01-01
Documenting timing, locations, and intensity of spawning can provide valuable information for conservation and management of imperiled fishes. However, deep, turbid or turbulent water, or occurrence of spawning at night, can severely limit direct observations. We have developed and tested the use of passive acoustics to detect distinctive acoustic signatures associated with spawning events of two large-bodied catostomid species (River Redhorse Moxostoma carinatum and Robust Redhorse Moxostoma robustum) in river systems in north Georgia. We deployed a hydrophone with a recording unit at four different locations on four different dates when we could both record and observe spawning activity. Recordings captured 494 spawning events that we acoustically characterized using dominant frequency, 95% frequency, relative power, and duration. We similarly characterized 46 randomly selected ambient river noises. Dominant frequency did not differ between redhorse species and ranged from 172.3 to 14,987.1 Hz. Duration of spawning events ranged from 0.65 to 11.07 s, River Redhorse having longer durations than Robust Redhorse. Observed spawning events had significantly higher dominant and 95% frequencies than ambient river noises. We additionally tested software designed to automate acoustic detection. The automated detection configurations correctly identified 80–82% of known spawning events, and falsely indentified spawns 6–7% of the time when none occurred. These rates were combined over all recordings; rates were more variable among individual recordings. Longer spawning events were more likely to be detected. Combined with sufficient visual observations to ascertain species identities and to estimate detection error rates, passive acoustic recording provides a useful tool to study spawning frequency of large-bodied fishes that displace gravel during egg deposition, including several species of imperiled catostomids.
Temporal patterns of migration and spawning of river herring in coastal Massachusetts
Rosset, Julianne; Roy, Allison; Gahagan, Benjamin I.; Whiteley, Andrew R.; Armstrong, Michael P.; Sheppard, John J.; Jordaan, Adrian
2017-01-01
Migrations of springtime Alewife Alosa pseudoharengus and Blueback Herring A. aestivalis, collectively referred to as river herring, are monitored in many rivers along the Atlantic coast to estimate population sizes. While these estimates give an indication of annual differences in the number of returning adults, links to the subsequent timing and duration of spawning and freshwater juvenile productivity remain equivocal. In this study, we captured juvenile river herring at night in 20 coastal Massachusetts lakes using a purse seine and extracted otoliths to derive daily fish ages and back-calculate spawn dates. Estimates of spawning dates were compared with fishway counts of migrating adults to assess differences in migration timing and the timing and duration of spawning. We observed a distinct delay between the beginning of the adult migration run and the start of spawning, ranging from 7 to 28 d across the 20 lakes. Spawning continued 13–48 d after adults stopped migrating into freshwater, further demonstrating a pronounced delay in spawning following migration. Across the study sites the duration of spawning (43–76 d) was longer but not related to the duration of migration (29–66 d). The extended spawning period is consistent with recent studies suggesting that Alewives are indeterminate spawners. The long duration in freshwater provides the opportunity for top-down (i.e., predation on zooplankton) and bottom-up (i.e., food for avian, fish, and other predators) effects, with implications for freshwater food webs and nutrient cycling. General patterns of spawn timing and duration can be incorporated into population models and used to estimate temporal changes in productivity associated with variable timing and density of spawning river herring in lakes.
Mendoza-Porras, Omar; Botwright, Natasha A; Reverter, Antonio; Cook, Mathew T; Harris, James O; Wijffels, Gene; Colgrave, Michelle L
2017-12-01
Inefficient control of temperate abalone spawning prevents pair-wise breeding and production of abalone with highly marketable traits. Traditionally, abalone farmers have used a combination of UV irradiation and application of temperature gradients to the tank water to artificially induce spawning. Proteins are known to regulate crucial processes such as respiration, muscle contraction, feeding, growth and reproduction. Spawning as a pre-requisite of abalone reproduction is likely to be regulated, in part, by endogenous proteins. A first step in elucidating the mechanisms that regulate spawning is to identify which proteins are directly involved during spawning. The present study examined protein expression following traditional spawning induction in the Haliotis laevigata female. Gonads were collected from abalone in the following physiological states: (1) spawning; (2) post-spawning; and (3) failed-to-spawn. Differential protein abundance was initially assessed using two-dimensional difference in-gel electrophoresis coupled with mass spectrometry for protein identification. A number of reproductive proteins such as vitellogenin, vitelline envelope zona pellucida domain 29 and prohibitin, and metabolic proteins such as thioredoxin peroxidase, superoxide dismutase and heat shock proteins were identified. Differences in protein abundance levels between physiological states were further assessed using scheduled multiple reaction monitoring mass spectrometry. Positive associations were observed between the abundance of specific proteins, such as heat shock cognate 70 and peroxiredoxin 6, and the propensity or failure to spawn in abalone. These findings have contributed to better understand both the effects of oxidative and heat stress over abalone physiology and their influence on abalone spawning. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Pathophysiology of Acute Kidney Injury
Basile, David P.; Anderson, Melissa D.; Sutton, Timothy A.
2014-01-01
Acute kidney injury (AKI) is the leading cause of nephrology consultation and is associated with high mortality rates. The primary causes of AKI include ischemia, hypoxia or nephrotoxicity. An underlying feature is a rapid decline in GFR usually associated with decreases in renal blood flow. Inflammation represents an important additional component of AKI leading to the extension phase of injury, which may be associated with insensitivity to vasodilator therapy. It is suggested that targeting the extension phase represents an area potential of treatment with the greatest possible impact. The underlying basis of renal injury appears to be impaired energetics of the highly metabolically active nephron segments (i.e., proximal tubules and thick ascending limb) in the renal outer medulla, which can trigger conversion from transient hypoxia to intrinsic renal failure. Injury to kidney cells can be lethal or sublethal. Sublethal injury represents an important component in AKI, as it may profoundly influence GFR and renal blood flow. The nature of the recovery response is mediated by the degree to which sublethal cells can restore normal function and promote regeneration. The successful recovery from AKI depends on the degree to which these repair processes ensue and these may be compromised in elderly or CKD patients. Recent data suggest that AKI represents a potential link to CKD in surviving patients. Finally, earlier diagnosis of AKI represents an important area in treating patients with AKI that has spawned increased awareness of the potential that biomarkers of AKI may play in the future. PMID:23798302
NASA Astrophysics Data System (ADS)
Asch, R. G.; Erisman, B.
2016-02-01
Spawning fishes often have a narrower window of thermal tolerance than other life history stages. As a result, spawning has been hypothesized to constrain how species will respond to climate change. We assess this hypothesis by combining a global database of fish spawning aggregations with earth system and ecological niche models to project shifts in the spawning distribution and phenology of reef fishes under the RCP 8.5 climate change scenario. Nassau grouper (Epinephelus striatus) was selected as the species for a proof-of-concept analysis since it is a top predator on Caribbean coral reefs and is listed by IUCN as endangered due to overfishing at its spawning grounds. The highest probability of encountering E. striatus aggregations occurred at sea surface temperatures (SSTs) of 24.5-26.5° C and seasonal SST gradients of 0 to -1° C. Based on a 1981-2000 climatology, our model projected that the highest probability of spawning would occur around Cuba, the Mesoamerican barrier reef, the Bahamas, and other areas of the Caribbean. This coincides with the observed distribution of E. striatus aggregations. By 2081-2100, a 50% decline is projected in the number of months and locations with adequate conditions for E. striatus spawning. Potential spawning habitat for E. striatus shifts northward and eastward, with slight increases in the probability of spawning around Aruba, Curacao, and Bonaire. At spawning sites, primary production is projected to increase by a mean of 14%. Higher planktonic production could benefit larval fish growth and survival by providing a greater availability of prey. The E. striatus spawning season is projected to contract and occur later in the year. Two-month delays in phenology are projected at 78% of the sites where E. striatus populations are managed through spawning season sales bans and time/area fishing closures. This implies that adaptive management in response to climate change will be needed for these measures to remain effective.
Bennett, Stephen; Al-Chokhachy, Robert K.; Roper, Brett B.; Budy, Phaedra
2014-01-01
Little is known about the variability in the spatial and temporal distribution of spawning potamodromous trout despite decades of research directed at salmonid spawning ecology and the increased awareness that conserving life history diversity should be a focus of management. We monitored a population of fluvial–resident Bonneville Cutthroat Trout Oncorhynchus clarkii utah in a tributary to the Logan River, Utah, from 2006 to 2012 to gain insight into the distribution and timing of spawning and what factors may influence these spawning activities. We monitored Bonneville Cutthroat Trout using redd surveys with multiple observers and georeferenced redd locations. We documented an extended spawning period that lasted from late April to mid-July. The onset, median, and end of spawning was best predicted by the mean maximum water temperature during the first 13 weeks of the year (F = 130. 4, df = 5, R2 = 0.96, P < 0.0001) with spawning beginning and ending earlier in years that had warmer water temperatures prior to spawning. The distribution of redds was clumped each year and the relative density of redds was greater in a reach dominated by dams constructed by beavers Castor canadensis. Both dam failure and construction appeared to be responsible for creating new spawning habitat that was quickly occupied, demonstrating rapid temporal response to local habitat changes. Bonneville Cutthroat Trout appeared to establish and defend a redd for up to 2 d, and spawning most often occurred between similar-sized individuals. Spawning surveys for potamodromous trout are an underutilized tool that could be used to better understand the distribution and timing of spawning as well as determine the size and trends of the reproducing portion of populations of management concern. Without efforts to document the diversity of this important aspect of potamodromous trout life history, prioritization of conservation will be problematic.
Bennett, Stephen; Al-Chokhachy, Robert; Roper, Brett B.; Budy, Phaedra
2014-01-01
Little is known about the variability in the spatial and temporal distribution of spawning potamodromous trout despite decades of research directed at salmonid spawning ecology and the increased awareness that conserving life history diversity should be a focus of management. We monitored a population of fluvial–resident Bonneville Cutthroat Trout Oncorhynchus clarkii utah in a tributary to the Logan River, Utah, from 2006 to 2012 to gain insight into the distribution and timing of spawning and what factors may influence these spawning activities. We monitored Bonneville Cutthroat Trout using redd surveys with multiple observers and georeferenced redd locations. We documented an extended spawning period that lasted from late April to mid-July. The onset, median, and end of spawning was best predicted by the mean maximum water temperature during the first 13 weeks of the year (F = 130. 4, df = 5, R2 = 0.96, P < 0.0001) with spawning beginning and ending earlier in years that had warmer water temperatures prior to spawning. The distribution of redds was clumped each year and the relative density of redds was greater in a reach dominated by dams constructed by beavers Castor canadensis. Both dam failure and construction appeared to be responsible for creating new spawning habitat that was quickly occupied, demonstrating rapid temporal response to local habitat changes. Bonneville Cutthroat Trout appeared to establish and defend a redd for up to 2 d, and spawning most often occurred between similar-sized individuals. Spawning surveys for potamodromous trout are an underutilized tool that could be used to better understand the distribution and timing of spawning as well as determine the size and trends of the reproducing portion of populations of management concern. Without efforts to document the diversity of this important aspect of potamodromous trout life history, prioritization of conservation will be problematic.
Baker, Matthew R; Schindler, Daniel E; Essington, Timothy E; Hilborn, Ray
2014-01-01
Few studies have considered the management implications of mortality to target fish stocks caused by non-retention in commercial harvest gear (escape mortality). We demonstrate the magnitude of this previously unquantified source of mortality and its implications for the population dynamics of exploited stocks, biological metrics, stock productivity, and optimal management. Non-retention in commercial gillnet fisheries for Pacific salmon (Oncorhynchus spp.) is common and often leads to delayed mortality in spawning populations. This represents losses, not only to fishery harvest, but also in future recruitment to exploited stocks. We estimated incidence of non-retention in Alaskan gillnet fisheries for sockeye salmon (O. nerka) and found disentanglement injuries to be extensive and highly variable between years. Injuries related to non-retention were noted in all spawning populations, and incidence of injury ranged from 6% to 44% of escaped salmon across nine river systems over five years. We also demonstrate that non-retention rates strongly correlate with fishing effort. We applied maximum likelihood and Bayesian approaches to stock-recruitment analyses, discounting estimates of spawning salmon to account for fishery-related mortality in escaped fish. Discounting spawning stock estimates as a function of annual fishing effort improved model fits to historical stock-recruitment data in most modeled systems. This suggests the productivity of exploited stocks has been systematically underestimated. It also suggests that indices of fishing effort may be used to predict escape mortality and correct for losses. Our results illustrate how explicitly accounting for collateral effects of fishery extraction may improve estimates of productivity and better inform management metrics derived from estimates of stock-recruitment analyses.
Pearson, Kristen Nicole; Kendall, William L.; Winkelman, Dana L.; Persons, William R.
2015-01-01
Our findings reveal evidence for skipped spawning in a potamodromous cyprinid, humpback chub (HBC; Gila cypha ). Using closed robust design mark-recapture models, we found, on average, spawning HBC transition to the skipped spawning state () with a probability of 0.45 (95% CRI (i.e. credible interval): 0.10, 0.80) and skipped spawners remain in the skipped spawning state () with a probability of 0.60 (95% CRI: 0.26, 0.83), yielding an average spawning cycle of every 2.12 years, conditional on survival. As a result, migratory skipped spawners are unavailable for detection during annual sampling events. If availability is unaccounted for, survival and detection probability estimates will be biased. Therefore, we estimated annual adult survival probability (S), while accounting for skipped spawning, and found S remained reasonably stable throughout the study period, with an average of 0.75 ((95% CRI: 0.66, 0.82), process varianceσ2 = 0.005), while skipped spawning probability was highly dynamic (σ2 = 0.306). By improving understanding of HBC spawning strategies, conservation decisions can be based on less biased estimates of survival and a more informed population model structure.
Fall spawning of Atlantic sturgeon in the Roanoke River, North Carolina
Smith, Joseph A.; Hightower, Joseph E.; Flowers, H. Jared
2015-01-01
In 2012, the National Oceanic and Atmospheric Administration (NOAA) declared Atlantic Sturgeon Acipenser oxyrinchus oxyrinchus to be threatened or endangered throughout its range in U.S. waters. Restoration of the subspecies will require much new information, particularly on the location and timing of spawning. We used a combination of acoustic telemetry and sampling with anchored artificial substrates (spawning pads) to detect fall (September–November) spawning in the Roanoke River in North Carolina. This population is included in the Carolina Distinct Population Segment, which was classified by NOAA as endangered. Sampling was done immediately below the first shoals encountered by anadromous fishes, near Weldon. Our collection of 38 eggs during the 21 d that spawning pads were deployed appears to be the first such collection (spring or fall) for wild-spawned Atlantic Sturgeon eggs. Based on egg development stages, estimated spawning dates were September 17–18 and 18–19 at water temperatures from 25.3°C to 24.3°C and river discharge from 55 to 297 m3/s. These observations about fall spawning and habitat use should aid in protecting critical habitats and planning research on Atlantic Sturgeon spawning in other rivers.
Summer spawning in the fourhorn sculpin, Myoxocephalus quadricornis, from Alaska
Goldberg, S.R.; Yasutake, W.T.; West, R.L.
1987-01-01
Histological ovarian analysis indicates summer spawning occurs in Myoxocephalus quadricornis (Fourhorn Sculpin) from Alaska. Previous studies have shown this species spawns during winter in the Baltic Sea; the data presented herein suggests that geographical variation may occur in the timing of spawning of this species.
Van Leeuwen, C H A; Dokk, T; Haugen, T O; Kiffney, P M; Museth, J
2017-06-01
Behaviour of early life stages of the salmonid European grayling Thymallus thymallus was investigated by assessing the timing of larval downstream movement from spawning areas, the depth at which larvae moved and the distribution of juvenile fish during summer in two large connected river systems in Norway. Trapping of larvae moving downstream and electrofishing surveys revealed that T. thymallus larvae emerging from the spawning gravel moved downstream predominantly during the night, despite light levels sufficient for orientation in the high-latitude study area. Larvae moved in the water mostly at the bottom layer close to the substratum, while drifting debris was caught in all layers of the water column. Few young-of-the-year still resided close to the spawning areas in autumn, suggesting large-scale movement (several km). Together, these observations show that there may be a deliberate, active component to downstream movement of T. thymallus during early life stages. This research signifies the importance of longitudinal connectivity for T. thymallus in Nordic large river systems. Human alterations of flow regimes and the construction of reservoirs for hydropower may not only affect the movement of adult fish, but may already interfere with active movement behaviour of fish during early life stages. © 2017 The Fisheries Society of the British Isles.
Albers, Janice; Wildhaber, Mark L.
2017-01-01
Macrhybopsis reproduction and propagule traits were studied in the laboratory using two temperature regimes and three hormone treatments to determine which methods produced the most spawns. Only sicklefin chub Macrhybopsis meeki spawned successfully although sturgeon chub Macrhybopsis gelida released unfertilized eggs. All temperature and hormone treatments produced M. meeki spawns, but two treatments had similar success rates at 44 and 43%, consisting of a constant daily temperature with no hormone added, or daily temperature fluctuations with hormone added to the water. Spawns consisted of multiple successful demersal circular swimming spawning embraces interspersed with circular swims without embraces. The most spawns observed for one female was four and on average, 327 eggs were collected after each spawn. The water-hardened eggs were semi-buoyant and non-adhesive, the first confirmation of this type of reproductive guild in the Missouri River Macrhybopsis sp. From spawn, larvae swam vertically until 123 accumulated degree days (° D) and 167° D for consumption of first food. Using average water speed and laboratory development time, the predicted drift distance for eggs and larvae could be 468–592 km in the lower Missouri River. Results from this study determined the reproductive biology and early life history of Macrhybopsis spp. and provided insight into their population dynamics in the Missouri River.
NASA Astrophysics Data System (ADS)
Darnell, M. Z.
2016-02-01
Female blue crabs undertake a critical spawning migration seaward, migrating from low-salinity mating habitat to high-salinity waters of the lower estuaries and coastal ocean, where larval survival is highest. This migration occurs primarily through ebb tide transport, driven by an endogenous circatidal rhythm in vertical swimming that is modulated by behavioral responses to environmental cues. Blue crabs are typically considered an estuarine species and fisheries are managed on a state-by-state basis. Yet recent evidence from state and regional fishery independent survey programs suggests that the spawning migration can take females substantial distances offshore (>150 km), and that offshore waters are important spawning grounds for female blue crabs in the Gulf of Mexico. This is especially true in areas where freshwater inflow is high, resulting in low estuarine and coastal salinities. In low-salinity, high-inflow areas (e.g., Louisiana), spawning occurs further offshore while in high-salinity, low-inflow areas (e.g., South Texas), spawning takes place primarily within the estuary. Regional patterns in spawning locations both inshore and offshore are driven by interactions between behavioral mechanisms and local oceanographic conditions during the spawning migration. These environmentally driven differences in spawning locations have implications for larval survival and population connectivity, and emphasize the need for interjurisdictional assessment and management of the blue crab spawning stock.
Spawning behavior in Atlantic cod: analysis by use of data storage tags
Grabowski, Timothy B.; Thorsteinsson, Vilhjalmur; Marteinsdóttir, Gudrún
2014-01-01
Electronic data storage tags (DSTs) were implanted into Atlantic cod captured in Icelandic waters from 2002 to 2007 and the depth profiles recovered from these tags (females: n = 31, males: n = 27) were used to identify patterns consistent with published descriptions of cod courtship and spawning behavior. The individual periods of time that males spent exhibiting behavior consistent with being present in a spawning aggregation—i.e. periods consisting of a clear tidal signature in the DST depth profile associated with an individual remaining on or near the substrate—were longer than those of females. Over the course of a spawning season, male cod spent approximately twice the amount of time in spawning aggregations than females, but female cod visited more aggregations per unit time. On average, males participated in approximately 57% more putative spawning events, i.e. vertical ascents potentially corresponding to gamete release, than did females. However, males <85 cm total length participated in the same number of putative spawning events as females of comparable size. In both sexes, larger individuals and/or individuals that spent a longer period of time within an aggregation participated in a larger number of putative spawning events. Although further validation and refinement is necessary, particularly in the identification of spawning events, the ability offered by DSTs to quantify cod spawning behavior may aid in the development of management and conservation plans.
Vollset, K W; Skoglund, H; Wiers, T; Barlaup, B T
2016-06-01
An in situ camera set-up was used to study the spawning activity of Atlantic salmon Salmo salar and brown trout Salmo trutta throughout two consecutive seasons in a spawning area affected by hydropower-related pulse flows due to hydropeaking. The purpose was to test whether the flow variation discouraged spawning in shallow areas or motivated spawning into areas with elevated risk of incubation mortality. There were more S. salar observed on the spawning ground during days with high discharge. The presence of S. salar in the spawning grounds was not affected by the hydropeaking cycles of the preceding night. Female S. salar were observed preparing nests within the first hour after water discharge had increased to levels suitable for spawning. In contrast, the number of S. trutta was not correlated with flow and nest preparation was also observed at a discharge corresponding to the lowest discharge levels during a hydropeaking cycle. Survival was generally high in nests excavated the following winter, with only 5·4% suffering mortality due to dewatering. The results suggest that S. salar may respond rapidly to variable-flow conditions and utilize short windows with suitable flows for spawning. Smaller S. trutta may utilize low-flow conditions to spawn in areas that are not habitable by larger S. salar during low flow. © 2016 The Fisheries Society of the British Isles.
Cibola High Levee Pond Annual Report 2003. Interim Report
Mueller, G.A.; Carpenter, J.; Marsh, P.C.; Minckley, C.O.
2003-01-01
Bonytail and razorback sucker have once again spawned and produced swim-up larvae in Cibola High Levee Pond (CHLP). CHLP continues to support annual recruitment of bonytail while recent razorback sucker recruitment remains elusive. Thus far, razorbacks have experienced intermittent years of spawning success. Both native species were observed spawning on, or near, the riprap on the river levee. Razorbacks spawned from late January until mid-March over gravel and large cobble along the levee toe (2-3 m depth) and bonytail spawned along the levee shoreline during mid-April. Razorback suckers rapidly fin during the reproductive act, which flushes fines from the substrate and leaves gravel relatively clean. Bonytail on the other hand, appear to spawn over or on substrate that has been disturbed by beaver activity. Substrate scour or disturbance appears to be an important factor in spawning site selectiona?|
Manny, Bruce A.; Roseman, Edward F.; Kennedy, Gregory W.; Boase, James C.; Craig, Jaquelyn; Bennion, David H.; Read, Jennifer; Vaccaro, Lynn; Chiotti, Justin A.; Drouin, Richard; Ellison, Roseanne
2015-01-01
Loss of functional habitat in riverine systems is a global fisheries issue. Few studies, however, describe the decision-making approach taken to abate loss of fish spawning habitat. Numerous habitat restoration efforts are underway and documentation of successful restoration techniques for spawning habitat of desirable fish species in large rivers connecting the Laurentian Great Lakes are reported here. In 2003, to compensate for the loss of fish spawning habitat in the St. Clair and Detroit Rivers that connect the Great Lakes Huron and Erie, an international partnership of state, federal, and academic scientists began restoring fish spawning habitat in both of these rivers. Using an adaptive management approach, we created 1,100 m2 of productive fish spawning habitat near Belle Isle in the Detroit River in 2004; 3,300 m2 of fish spawning habitat near Fighting Island in the Detroit River in 2008; and 4,000 m2 of fish spawning habitat in the Middle Channel of the St. Clair River in 2012. Here, we describe the adaptive-feedback management approach that we used to guide our decision making during all phases of spawning habitat restoration, including problem identification, team building, hypothesis development, strategy development, prioritization of physical and biological imperatives, project implementation, habitat construction, monitoring of fish use of the constructed spawning habitats, and communication of research results. Numerous scientific and economic lessons learned from 10 years of planning, building, and assessing fish use of these three fish spawning habitat restoration projects are summarized in this article.
Evaluation and refinement of Guadalupe Bass conservation strategies to support adaptive management
Grabowski, Timothy B.
2016-01-01
Burbot Lota lota is the sole freshwater representative of the cod-like fishes and supports subsistence, commercial, and recreational fisheries worldwide above approximately 40° N. It is a difficult species to manage effectively due to its preference for deep-water habitats and spawning activity under the ice in winter. Like other gadiform fishes, Burbot use acoustic signaling as part of their mating system, and while the acoustic repertoire of the species has been characterized under artificial conditions (i.e., net pen suspended under ice in a natural lake), there has been no work to determine whether the species is as vocal in natural spawning aggregations. Our objective was to assess the feasibility of collecting and using acoustic data to characterize the spawning activity and locations of Burbot under field conditions. We recorded audio and video of Burbot spawning aggregations through holes drilled into the ice at known spawning grounds at Moyie Lake in British Columbia, Canada. Acoustic recordings (call counts and audiograms) were analyzed using Raven Pro v 1. 4 software. Acoustic behavior was also related to video data to determine how acoustic activity correlated to any observed spawning behavior. In general, wild Burbot spawning in Moyie Lake did not vocalize as frequently as counterparts spawning under artificial conditions. Further, Burbot vocalizations were not recorded in conjunction with spawning activity. While it may be feasible to use passive acoustic monitoring to locate Burbot spawning grounds and identify periods of activity, it does not seem to hold much promise for locating and quantifying spawning activity in real time.
Hile, Ralph; Deason, Hilary J.
1947-01-01
The depth of water on known spawning grounds (all in southern Lake Michigan) was 57.5 to 84 fathoms. There is evidence that the kiyi may spawn in more than 90 fathoms. Spawning appears to be widespread throughout waters of suitable depth.
The ability to track the identity and abundance of larval fish, which are ubiquitous during spawning season, may lead to a greater understanding of fish species distributions in Great Lakes nearshore areas including early-detection of invasive fish species before they become esta...
Neo, Mei Lin; Erftemeijer, Paul L. A.; van Beek, Jan K. L.; van Maren, Dirk S.; Teo, Serena L-M.; Todd, Peter A.
2013-01-01
Recruitment constraints on Singapore's dwindling fluted giant clam, Tridacna squamosa, population were studied by modelling fertilisation, larval transport, and settlement using real-time hydrodynamic forcing combined with knowledge of spawning characteristics, larval development, behaviour, and settlement cues. Larval transport was simulated using a finite-volume advection-diffusion model coupled to a three-dimensional hydrodynamic model. Three recruitment constraint hypotheses were tested: 1) there is limited connectivity between Singapore's reefs and other reefs in the region, 2) there is limited exchange within Singapore's Southern Islands, and 3) there exist low-density constraints to fertilisation efficacy (component Allee effects). Results showed that connectivity among giant clam populations was primarily determined by residual hydrodynamic flows and spawning time, with greatest chances of successful settlement occurring when spawning and subsequent larval dispersal coincided with the period of lowest residual flow. Simulations suggested poor larval transport from reefs located along the Peninsular Malaysia to Singapore, probably due to strong surface currents between the Andaman Sea and South China Sea combined with a major land barrier disrupting larval movement among reefs. The model, however, predicted offshore coral reefs to the southeast of Singapore (Bintan and Batam) may represent a significant source of larvae. Larval exchange within Singapore's Southern Islands varied substantially depending on the locations of source and sink reefs as well as spawning time; but all simulations resulted in low settler densities (2.1–68.6 settled individuals per 10,000 m2). Poor fertilisation rates predicted by the model indicate that the low density and scattered distribution of the remaining T. squamosa in Singapore are likely to significantly inhibit any natural recovery of local stocks. PMID:23555597
Movement and feeding ecology of recently emerged steelhead in Lake Ontario tributaries
Johnson, James H.; McKenna, James E.; Douglass, Kevin A.
2012-01-01
Steelhead (Oncorhynchus mykiss) ascend several Lake Ontario tributaries to spawn and juveniles are often the most abundant salmonid where spawning is successful. Movement and diet of recently emerged subyearling steelhead were examined in three New York tributaries of Lake Ontario. Downstream movement occurred mainly at night and consisted of significantly smaller fry that were feeding at lower levels than resident fry. Fry fed at the highest rate during the day and chironomids and baetids were the main components of their diet. The diet composition of steelhead fry was closely associated with the composition of the benthos in Trout Brook but more similar to the composition of the drift in the other streams. Daily ration was similar among streams, ranging from 10.2 to 14.3%. These findings are consistent with previous findings on the ecology of steelhead fry, as well as fry of other salmonid species
Identifying sturgeon spawning locations through back-calculations of drift
Bulliner, Edward A.; Erwin, Susannah O.; Jacobson, Robert B.; Chojnacki, Kimberly A.; George, Amy E.; Delonay, Aaron J.
2016-01-01
Unfavorable spawning habitat conditions have been identified as a potential limiting factor for recovery of the endangered pallid sturgeon on the Missouri River and its tributaries. After successful spawning, incubation, and hatching, sturgeon free embryos passively drift downstream and are sometimes captured by sampling crews. While spawning habitat has been identified at time of spawning through field investigations, captured pallid and shovelnose (used as a surrogate species) sturgeon free embryos in the Missouri River often do not come from genetically-known telemetered fish and may be useful to identify additional areas of spawning habitat. We developed a routing model to identify potential spawning locations for captured free embryos of known age based on channel velocity estimates. To estimate velocity we compared use of at-a-station hydraulic geometry relations to empirical estimates of velocity form a 15-year archive of hydroacoustic measurements on the Missouri River.
Genomic signatures predict migration and spawning failure in wild Canadian salmon.
Miller, Kristina M; Li, Shaorong; Kaukinen, Karia H; Ginther, Norma; Hammill, Edd; Curtis, Janelle M R; Patterson, David A; Sierocinski, Thomas; Donnison, Louise; Pavlidis, Paul; Hinch, Scott G; Hruska, Kimberly A; Cooke, Steven J; English, Karl K; Farrell, Anthony P
2011-01-14
Long-term population viability of Fraser River sockeye salmon (Oncorhynchus nerka) is threatened by unusually high levels of mortality as they swim to their spawning areas before they spawn. Functional genomic studies on biopsied gill tissue from tagged wild adults that were tracked through ocean and river environments revealed physiological profiles predictive of successful migration and spawning. We identified a common genomic profile that was correlated with survival in each study. In ocean-tagged fish, a mortality-related genomic signature was associated with a 13.5-fold greater chance of dying en route. In river-tagged fish, the same genomic signature was associated with a 50% increase in mortality before reaching the spawning grounds in one of three stocks tested. At the spawning grounds, the same signature was associated with 3.7-fold greater odds of dying without spawning. Functional analysis raises the possibility that the mortality-related signature reflects a viral infection.
Whitlock, Steven L.; Campbell, Matthew R.; Quist, Michael C.; Dux, Andrew M.
2018-01-01
Genetic and phenotypic traits of spatially and temporally segregated kokanee Oncorhynchus nerka spawning groups in Lake Pend Oreille, Idaho, were compared to test for evidence of divergence on the basis of ecotype (stream spawners versus shoreline spawners) and spawn timing and to describe morphological, life history, and reproductive variation within and among groups. Early and late spawning runs were found to be reproductively isolated; however, there was no clear evidence of genetic differentiation between ecotypes. Spawning groups within the same ecotype differed in length, age distribution, mean length at age, fecundity, and egg size. Variation in reproductive attributes was due primarily to differences in length distributions. Larger‐bodied shore‐spawning kokanee were located in areas where egg survival is known to be enhanced by downwelling, suggesting that the distribution of shore‐spawning kokanee may be partly structured by competition for spawning habitats with groundwater influence. This study contributes to other research indicating that introduced kokanee populations are unlikely to undergo adaptive divergence if they have a history of population fluctuations and are supplemented regularly.
Is hyporheic flow an indicator for salmonid spawning site selection?
NASA Astrophysics Data System (ADS)
Benjankar, R. M.; Tonina, D.; Marzadri, A.; McKean, J. A.; Isaak, D.
2015-12-01
Several studies have investigated the role of hydraulic variables in the selection of spawning sites by salmonids. Some recent studies suggest that the intensity of the ambient hyporheic flow, that present without a salmon egg pocket, is a cue for spawning site selection, but others have argued against it. We tested this hypothesis by using a unique dataset of field surveyed spawning site locations and an unprecedented meter-scale resolution bathymetry of a 13.5 km long reach of Bear Valley Creek (Idaho, USA), an important Chinook salmon spawning stream. We used a two-dimensional surface water model to quantify stream hydraulics and a three-dimensional hyporheic model to quantify the hyporheic flows. Our results show that the intensity of ambient hyporheic flows is not a statistically significant variable for spawning site selection. Conversely, the intensity of the water surface curvature and the habitat quality, quantified as a function of stream hydraulics and morphology, are the most important variables for salmonid spawning site selection. KEY WORDS: Salmonid spawning habitat, pool-riffle system, habitat quality, surface water curvature, hyporheic flow
Location and timing of Asian carp spawning in the Lower Missouri River
Deters, Joseph E.; Chapman, Duane C.; McElroy, Brandon
2013-01-01
We sampled for eggs of Asian carps, (bighead carp Hypophthalmichthys nobilis, silver carp H. molitrix, and grass carp Ctenopharyngodon idella) in 12 sites on the Lower Missouri River and in six tributaries from the months of May through July 2005 and May through June 2006 to examine the spatial and temporal dynamics of spawning activity. We categorized eggs into thirty developmental stages, but usually they could not be identified to species. We estimated spawning times and locations based on developmental stage, temperature dependent rate of development and water velocity. Spawning rate was higher in the daytime between 05:00 and 21:00 h than at night. Spawning was not limited to a few sites, as has been reported for the Yangtze River, where these fishes are native, but more eggs were spawned in areas of high sinuosity. We employ a sediment transport model to estimate vertical egg concentration profiles and total egg fluxes during spawning periods on the Missouri River. We did not identify substantial spawning activity within tributaries or at tributary confluences examined in this study.
Spawning and hatching of endangered Gila Chub in captivity
Schultz, Andrew A.; Bonar, Scott A.
2016-01-01
Information on reproductive characteristics of the endangered Gila Chub Gila intermedia is largely limited and qualitative, and culture techniques and requirements are virtually unknown. Here we provide the first published data on spawning and selected reproductive and developmental characteristics of Gila Chub. Fish were brought to the laboratory in March 2003 from Sabino Creek, Arizona (12.3°C). Fish were then warmed slowly and spawned at 14.9°C, 10 d after collection. Following this initial spawning, Gila Chub spawned consistently in the laboratory without hormonal, chemical, photoperiod, temperature, or substrate manipulation during all times of the year. Spawns were noted at temperatures ranging from about 15°C to 26°C; however, we noted that Gila Chub spawned less frequently at temperatures above 24°C. Multiple spawning attempts per year per individual are probable. There was a strong, inverse relationship between time to hatch and incubation temperature. The hatch rate of eggs was high (mean = 99.43%), and larval Gila Chub accepted a variety of natural and formulated diets at first feeding. The future of Gila Chub may someday depend in part on hatchery propagation to provide specimens for restocking formerly occupied habitats and establishing refuge populations. Information from our study can aid future efforts to successfully spawn and rear Gila Chub and related species.
Muhlfeld, C.C.; McMahon, T.E.; Belcer, D.; Kershner, J.L.
2009-01-01
We used radiotelemetry to assess spatial and temporal spawning distributions of native westslope cutthroat trout (Oncorhynchus clarkii lewisi; WCT), introduced rainbow trout (Oncorhynchus mykiss; RBT), and their hybrids in the upper Flathead River system, Montana (USA) and British Columbia (Canada), from 2000 to 2007. Radio-tagged trout (N = 125) moved upriver towards spawning sites as flows increased during spring runoff and spawned in 29 tributaries. WCT migrated greater distances and spawned in headwater streams during peak flows and as flows declined, whereas RBT and RBT hybrids (backcrosses to RBT) spawned earlier during increasing flows and lower in the system. WCT hybrids (backcrosses to WCT) spawned intermediately in time and space to WCT and RBT and RBT hybrids. Both hybrid groups and RBT, however, spawned over time periods that produced temporal overlap with spawning WCT in most years. Our data indicate that hybridization is spreading via long-distance movements of individuals with high amounts of RBT admixture into WCT streams and stepping-stone invasion at small scales by later generation backcrosses. This study provides evidence that hybridization increases the likelihood of reproductive overlap in time and space, promoting extinction by introgression, and that the spread of hybridization is likely to continue if hybrid source populations are not reduced or eliminated.
Dynamic in-lake spawning migrations by female sockeye salmon
Young, Daniel B.; Woody, C.A.
2007-01-01
Precise homing by salmon to natal habitats is considered the primary mechanism in the evolution of population-specific traits, yet few studies have focused on this final phase of their spawning migration. We radio tagged 157 female sockeye salmon (Oncorhynchus nerka) as they entered Lake Clark, Alaska, and tracked them every 1-10 days to their spawning locations. Contrary to past research, no specific shoreline migration pattern was observed (e.g., clockwise) nor did fish enter a tributary unless they spawned in that tributary. Tributary spawning fish migrated faster (mean = 4.7 km??day-1, SD = 2.7, vs. 1.6 km??day-1, SD = 2.1) and more directly (mean linearity = 0.8, SD = 0.2, vs. 0.4, SD = 0.2) than Lake Clark beach spawning fish. Although radio-tagged salmon migrated to within 5 km of their final spawning location in an average of 21.2 days (SD = 13.2), some fish migrated five times the distance necessary and over 50 days to reach their spawning destination. These results demonstrate the dynamic nature of this final phase of migration and support studies indicating a higher degree of homing precision by tributary spawning fish. ?? Journal compilation 2007 Blackwell Munksgaard No claim to original US government works.
Burdick, S.M.; Hightower, J.E.
2006-01-01
In 1998, the Quaker Neck Dam was removed from the Neuse River near Goldsboro, North Carolina, restoring access to more than 120 km of potential main-stem spawning habitat and 1,488 km of potential tributary spawning habitat to anadromous fishes. We used plankton sampling and standardized electrofishing to examine the extent to which anadromous fishes utilized this restored spawning habitat in 2003 and 2004. Evidence of spawning activity was detected upstream of the former dam site for three anadromous species: American shad Alosa sapidissima, hickory shad A. mediocris, and striped bass Morone saxatilis. The percentages of eggs and larvae collected in the restored upstream habitat were greater in 2003, when spring flows were high, than in 2004. River reaches where spawning occurred were estimated from egg stage and water velocity data. Spawning of American shad and striped bass occurred primarily in main-stem river reaches that were further upstream during the year of higher spring flows. Hickory shad generally spawned in downstream reaches and in tributaries above and below the former dam site. These results demonstrate that anadromous fishes will take advantage of upper basin spawning habitat restored through dam removal as long as instream flows are adequate to facilitate upstream migration.
Lake trout in northern Lake Huron spawn on submerged drumlins
Riley, Stephen C.; Binder, Thomas; Wattrus, Nigel J.; Faust, Matthew D.; Janssen, John; Menzies, John; Marsden, J. Ellen; Ebener, Mark P.; Bronte, Charles R.; He, Ji X.; Tucker, Taaja R.; Hansen, Michael J.; Thompson, Henry T.; Muir, Andrew M.; Krueger, Charles C.
2014-01-01
Recent observations of spawning lake trout Salvelinus namaycush near Drummond Island in northern Lake Huron indicate that lake trout use drumlins, landforms created in subglacial environments by the action of ice sheets, as a primary spawning habitat. From these observations, we generated a hypothesis that may in part explain locations chosen by lake trout for spawning. Most salmonines spawn in streams where they rely on streamflows to sort and clean sediments to create good spawning habitat. Flows sufficient to sort larger sediment sizes are generally lacking in lakes, but some glacial bedforms contain large pockets of sorted sediments that can provide the interstitial spaces necessary for lake trout egg incubation, particularly if these bedforms are situated such that lake currents can penetrate these sediments. We hypothesize that sediment inclusions from glacial scavenging and sediment sorting that occurred during the creation of bedforms such as drumlins, end moraines, and eskers create suitable conditions for lake trout egg incubation, particularly where these bedforms interact with lake currents to remove fine sediments. Further, these bedforms may provide high-quality lake trout spawning habitat at many locations in the Great Lakes and may be especially important along the southern edge of the range of the species. A better understanding of the role of glacially-derived bedforms in the creation of lake trout spawning habitat may help develop powerful predictors of lake trout spawning locations, provide insight into the evolution of unique spawning behaviors by lake trout, and aid in lake trout restoration in the Great Lakes.
Binder, Thomas; Farha, Steve A.; Thompson, Henry T.; Holbrook, Christopher; Bergstedt, Roger A.; Riley, Stephen; Bronte, Charles R.; He, Ji; Krueger, Charles C.
2018-01-01
Previous studies of lake trout, Salvelinus namaycush, spawning habitat in the Laurentian Great Lakes have used time- and labour-intensive survey methods and have focused on areas with historic observations of spawning aggregations and on habitats prejudged by researchers to be suitable for spawning. As an alternative, we used fine-scale acoustic telemetry to locate, describe and compare lake trout spawning habitats. Adult lake trout were implanted with acoustic transmitters and tracked during five consecutive spawning seasons in a 19–27 km2 region of the Drummond Island Refuge, Lake Huron, using the VEMCO Positioning System. Acoustic telemetry revealed discrete areas of aggregation on at least five reefs in the study area, subsequently confirmed by divers to contain deposited eggs. Notably, several identified spawning sites would likely not have been discovered using traditional methods because either they were too small and obscure to stand out on a bathymetric map or because they did not conform to the conceptual model of spawning habitat held by many biologists. Our most unique observation was egg deposition in gravel and rubble substrates located at the base of and beneath overhanging edges of large boulders. Spawning sites typically comprised <10% of the reef area and were used consistently over the 5-year study. Evaluation of habitat selection from the perspective of fish behaviour through use of acoustic transmitters offers potential to expand current conceptual models of critical spawning habitat.
Life History Correlates and Extinction Risk of Capital-Breeding Fishes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jager, Yetta; Vila-Gispert, Dr Anna; Rose, Kenneth A.
2008-03-01
We consider a distinction for fishes, often made for birds and reptiles, between capital-breeding and income-breeding species. Species that follow a capital-breeding strategy tend to evolve longer intervals between reproductive events and tend to have characteristics that we associate with higher extinction risk. To examine whether these ideas are relevant for fishes, we assembled life-history data for fish species, including an index of extinction risk, the interval between spawning events, the degree of parental care, and whether or not the species migrates to spawn. These data were used to evaluate two hypotheses: 1) fish species with a major accessory activitymore » to spawning (migration or parental care) spawn less often and 2) fish species that spawn less often are at greater risk of extinction. We tested these hypotheses by applying two alternative statistical methods that account for phylogenetic correlation in cross-taxon comparisons. The two methods predicted average intervals between spawning events 0.13 to 0.20 years longer for fishes with a major accessory activity. Both accessories, above-average parental care and spawning migration, were individually associated with longer average spawning intervals. We conclude that the capital-breeding paradigm is relevant for fishes. We also confirmed the second hypothesis, that species in higher IUCN extinction risk categories had longer average spawning intervals. Further research is needed to understand the relationship between extinction risk and spawning interval, within the broader context of life history traits and aquatic habitats.« less
Warmed Winter Water Temperatures Alter Reproduction in Two Fish Species
NASA Astrophysics Data System (ADS)
Firkus, Tyler; Rahel, Frank J.; Bergman, Harold L.; Cherrington, Brian D.
2018-02-01
We examined the spawning success of Fathead Minnows ( Pimephales promelas) and Johnny Darters ( Etheostoma nigrum) exposed to elevated winter water temperatures typical of streams characterized by anthropogenic thermal inputs. When Fathead Minnows were exposed to temperature treatments of 12, 16, or 20 °C during the winter, spawning occurred at 16 and 20 °C but not 12 °C. Eggs were deposited over 9 weeks before winter spawning ceased. Fathead Minnows from the three winter temperature treatments were then exposed to a simulated spring transition. Spawning occurred at all three temperature treatments during the spring, but fish from the 16° and 20 °C treatment had delayed egg production indicating a latent effect of warm winter temperatures on spring spawning. mRNA analysis of the egg yolk protein vitellogenin showed elevated expression in female Fathead Minnows at 16 and 20 °C during winter spawning that decreased after winter spawning ceased, whereas Fathead Minnows at 12 °C maintained comparatively low expression during winter. Johnny Darters were exposed to 4 °C to represent winter temperatures in the absence of thermal inputs, and 12, 16, and 20 °C to represent varying degrees of winter thermal pollution. Johnny Darters spawned during winter at 12, 16, and 20 °C but not at 4 °C. Johnny Darters at 4 °C subsequently spawned following a simulated spring period while those at 12, 16, and 20 °C did not. Our results indicate elevated winter water temperatures common in effluent-dominated streams can promote out-of-season spawning and that vitellogenin expression is a useful indicator of spawning readiness for fish exposed to elevated winter temperatures.
Fischer, Jason L.; Pritt, Jeremy J.; Roseman, Edward; Prichard, Carson G.; Craig, Jaquelyn M.; Kennedy, Gregory W.; Manny, Bruce A.
2018-01-01
Egg deposition and use of restored spawning substrates by lithophilic fishes (e.g., Lake Sturgeon Acipenser fulvescens, Lake Whitefish Coregonus clupeaformis, and Walleye Sander vitreus) were assessed throughout the St. Clair–Detroit River system from 2005 to 2016. Bayesian models were used to quantify egg abundance and presence/absence relative to site-specific variables (e.g., depth, velocity, and artificial spawning reef presence) and temperature to evaluate fish use of restored artificial spawning reefs and assess patterns in egg deposition. Lake Whitefish and Walleye egg abundance, probability of detection, and probability of occupancy were assessed with detection-adjusted methods; Lake Sturgeon egg abundance and probability of occurrence were assessed using delta-lognormal methods. The models indicated that the probability of Walleye eggs occupying a site increased with water velocity and that the rate of increase decreased with depth, whereas Lake Whitefish egg occupancy was not correlated with any of the attributes considered. Egg deposition by Lake Whitefish and Walleyes was greater at sites with high water velocities and was lower over artificial spawning reefs. Lake Sturgeon eggs were collected least frequently but were more likely to be collected over artificial spawning reefs and in greater abundances than elsewhere. Detection-adjusted egg abundances were not greater over artificial spawning reefs, indicating that these projects may not directly benefit spawning Walleyes and Lake Whitefish. However, 98% of the Lake Sturgeon eggs observed were collected over artificial spawning reefs, supporting the hypothesis that the reefs provided spawning sites for Lake Sturgeon and could mitigate historic losses of Lake Sturgeon spawning habitat.
Tiffan, K.F.; Rondorf, D.W.
2005-01-01
The striking body coloration and morphology that Pacific salmon display during spawning coupled with elaborate courtship behaviors suggest that visual cues are important during their reproductive period. To date, virtually all existing information on chum salmon (Oncorhynchus keta) spawning behavior has been derived from studies conducted during the daytime, and has contributed to the assumption that salmon do not spawn at night. We tested this assumption using a new technology - a dual-frequency identification sonar (DIDSON) - to describe and measure nighttime spawning behavior of wild chum salmon in the Columbia River. The DIDSON produces detailed, video-like images using sound, which enabled us to collect behavioral information at night in complete darkness. The display of DIDSON images enabled fish movements and behaviors to be spatially quantified. We collected continuous observational data on 14 pairs of chum salmon in a natural spawning channel during the daytime and nighttime. Spawners of both genders were observed chasing intruders during nighttime and daytime as nests were constructed. Regardless of diel period, females were engaged in digging to both construct nests and cover eggs, and courting males exhibited the pre-spawning behavior of tail crossing. We observed a total of 13 spawning events, of which nine occurred at night and four occurred during the day. The behaviors we observed at night suggest the assumption that chum salmon do not spawn at night is false. Once chum salmon begin nest construction, visual cues are apparently not required for courtship, nest defense, and spawning. We speculate that non-visual cues (e.g. tactile and auditory) enable chum salmon to carry out most spawning behaviors at night. Our findings have implications for how nighttime flows from hydroelectric dams on the Columbia River are managed for power production and protection of imperiled salmon stocks.
Spawning habitat selection of hickory shad
Harris, Julianne E.; Hightower, J.E.
2011-01-01
We examined the spawning habitat selectivity of hickory shad Alosa mediocris, an anadromous species on the Atlantic coast of North America. Using plankton tows and artificial substrates (spawning pads), we collected hickory shad eggs in the Roanoke River, North Carolina, to identify spawning timing, temperature, and microhabitat use. Hickory shad eggs were collected by both sampling gears in March and April. The results from this and three other studies in North Carolina indicate that spawning peaks at water temperatures between 12.0??C and 14.9??C and that approximately 90% occurs between 11.0??C and 18.9??C. Hickory shad eggs were collected in run and riffle habitats. Water velocity and substrate were significantly different at spawning pads with eggs than at those without eggs, suggesting that these are important microhabitat factors for spawning. Hickory shad eggs were usually collected in velocities of at least 0.1 m/s and on all substrates except those dominated by silt. Eggs were most abundant on gravel, cobble, and boulder substrates. Hickory shad spawned further upstream in years when water discharge rates at Roanoke Rapids were approximately average during March and April (2005 and 2007), as compared with a severe drought year (2006), suggesting that water flows may affect not only spawning site selection but also the quantity and quality of spawning habitat available at a macrohabitat scale. Using our field data and a Bayesian approach to resource selection analysis, we developed a preliminary habitat suitability model for hickory shad. This Bayesian approach provides an objective framework for updating the model as future studies of hickory shad spawning habitat are conducted. ?? American Fisheries Society 2011.
Hatten, James R.; Tiffan, Kenneth F.; Anglin, Donald R.; Haeseker, Steven L.; Skalicky, Joseph J.; Schaller, Howard
2009-01-01
Priest Rapids Dam on the Columbia River produces large daily and hourly streamflow fluctuations throughout the Hanford Reach during the period when fall Chinook salmon Oncorhynchus tshawytscha are selecting spawning habitat, constructing redds, and actively engaged in spawning. Concern over the detrimental effects of these fluctuations prompted us to quantify the effects of variable flows on the amount and persistence of fall Chinook salmon spawning habitat in the Hanford Reach. Specifically, our goal was to develop a management tool capable of quantifying the effects of current and alternative hydrographs on predicted spawning habitat in a spatially explicit manner. Toward this goal, we modeled the water velocities and depths that fall Chinook salmon experienced during the 2004 spawning season, plus what they would probably have experienced under several alternative (i.e., synthetic) hydrographs, using both one- and two-dimensional hydrodynamic models. To estimate spawning habitat under existing or alternative hydrographs, we used cell-based modeling and logistic regression to construct and compare numerous spatial habitat models. We found that fall Chinook salmon were more likely to spawn at locations where velocities were persistently greater than 1 m/s and in areas where fluctuating water velocities were reduced. Simulations of alternative dam operations indicate that the quantity of spawning habitat is expected to increase as streamflow fluctuations are reduced during the spawning season. The spatial habitat models that we developed provide management agencies with a quantitative tool for predicting, in a spatially explicit manner, the effects of different flow regimes on fall Chinook salmon spawning habitat in the Hanford Reach. In addition to characterizing temporally varying habitat conditions, our research describes an analytical approach that could be applied in other highly variable aquatic systems.
Liu, Ming-Yang; Zhang, Ling-Lei; Li, Jia; Li, Yong; Li, Nan; Chen, Ming-Qian
2015-01-01
Schizothorax prenanti is an endemic fish in the mountain rivers of southwestern China with unique protection value. To further explore the vortex motion of hydraulic habitats, which is closely related to the fish breeding process, the cross-sectional vorticity was used to evaluate the hydraulic conditions of the natural spawning habitat of S. prenanti. A coupled level-set and volume-of-fluid (CLSVOF) three-dimensional (3D) model was applied to simulate the hydraulic habitat of the Weimen reach, a typical natural spawning ground for S. prenanti in the upper Yangtze River. The model was used in conjunction with the Wilcoxon rank sum test to distinguish the distributions of vertical vorticity in spawning and non-spawning reaches. Statistical analysis revealed that the cross-sectional vorticity in spawning reaches was significantly greater than in non-spawning reaches, with likely biological significance in the spawning process. The range of cross-sectional mean values of vorticity was 0.17 s-1–0.35 s-1 in areas with concentrated fish sperm and eggs; the minimum value was 0.17 s-1, and the majority of values were greater than 0.26 s-1. Based on this study, a vague-set similarity model was used to assess the effectiveness of ecological restoration by evaluating the similarity of the cross-sectional vorticity of the natural spawning reach and rehabilitated spawning reach after implementing ecological restoration measures. The outcome might provide a theoretical basis for the recovery of damaged S. prenanti spawning grounds and act as an important complement for the assessment of recovery effectiveness and as a useful reference for the coordination of ecological water use with the demands of hydraulic and hydropower engineering. PMID:26317847
Harris, Julianne E.; Hightower, Joseph E.
2011-01-01
We examined spawning site selection and habitat use by American shad Alosa sapidissima in the Pee Dee River, North Carolina and South Carolina, to inform future management in this flow-regulated river. American shad eggs were collected in plankton tows, and the origin (spawning site) of each egg was estimated; relocations of radio-tagged adults on spawning grounds illustrated habitat use and movement in relation to changes in water discharge rates. Most spawning was estimated to occur in the Piedmont physiographic region within a 25-river-kilometer (rkm) section just below the lowermost dam in the system; however, some spawning also occurred downstream in the Coastal Plain. The Piedmont region has a higher gradient and is predicted to have slightly higher current velocities and shallower depths, on average, than the Coastal Plain. The Piedmont region is dominated by large substrates (e.g., boulders and gravel), whereas the Coastal Plain is dominated by sand. Sampling at night (the primary spawning period) resulted in the collection of young eggs (≤1.5 h old) that more precisely identified the spawning sites. In the Piedmont region, most radio-tagged American shad remained in discrete areas (average linear range = 3.6 rkm) during the spawning season and generally occupied water velocities between 0.20 and 0.69 m/s, depths between 1.0 and 2.9 m, and substrates dominated by boulder or bedrock and gravel. Tagged adults made only small-scale movements with changes in water discharge rates. Our results demonstrate that the upstream extent of migration and an area of concentrated spawning occur just below the lowermost dam. If upstream areas have similar habitat, facilitating upstream access for American shad could increase the spawning habitat available and increase the population's size.
Brousseau, L.J.; Sclafani, M.; Smith, D.R.; Carter, Daniel B.
2004-01-01
This study used telemetry to determine spawning behavior and subtidal habitat use of horseshoe crabs Limulus polyphemus. We attached combined acoustic and radio transmitters to 12 gravid female horseshoe crabs at Ted Harvey Beach and 12 at North Bowers Beach (both on the western shore of Delaware Bay) over a 5-d period before peak spawning on the new moon. Horseshoe crabs were acoustically tracked and radio-tracked daily for 8 d during both high tides and during the incoming dominant (higher) high tide. All horseshoe crabs were relocated at least once, and 83% of females spawned from two to six times (x?? = 3.35, SE = 0.18). Of these females, 85% spawned on two to five consecutive nights (x?? = 3.31, SE = 0.59). Most (95%) females spawned on the beaches where they were initially tagged. Typically, the shoreline used by an individual for spawning ranged from 70 to 1,160 m (x?? = 351 m, SE = 38 m). Between spawning events, horseshoe crabs remained 50-715 m offshore (x?? = 299 m, SE = 57 m) from their established spawning beaches. Following the new moon, all but one (96%) moved out of range of our survey area, which extended approximately 1 km from the shoreline. Multistate mark-recapture models were used to estimate recapture probabilities and daily probabilities of spawning and departure from the vicinity of the spawning beaches. The probability of recapture by acoustic telemetry was high and estimated to be 0.95 (95% confidence interval, 0.73-0.99). Horseshoe crabs equipped with acoustic and radio transmitters have high rates of recapture, can be tracked continually, and can be relocated in both foreshore and inshore habitats.
Warmed Winter Water Temperatures Alter Reproduction in Two Fish Species.
Firkus, Tyler; Rahel, Frank J; Bergman, Harold L; Cherrington, Brian D
2018-02-01
We examined the spawning success of Fathead Minnows (Pimephales promelas) and Johnny Darters (Etheostoma nigrum) exposed to elevated winter water temperatures typical of streams characterized by anthropogenic thermal inputs. When Fathead Minnows were exposed to temperature treatments of 12, 16, or 20 °C during the winter, spawning occurred at 16 and 20 °C but not 12 °C. Eggs were deposited over 9 weeks before winter spawning ceased. Fathead Minnows from the three winter temperature treatments were then exposed to a simulated spring transition. Spawning occurred at all three temperature treatments during the spring, but fish from the 16° and 20 °C treatment had delayed egg production indicating a latent effect of warm winter temperatures on spring spawning. mRNA analysis of the egg yolk protein vitellogenin showed elevated expression in female Fathead Minnows at 16 and 20 °C during winter spawning that decreased after winter spawning ceased, whereas Fathead Minnows at 12 °C maintained comparatively low expression during winter. Johnny Darters were exposed to 4 °C to represent winter temperatures in the absence of thermal inputs, and 12, 16, and 20 °C to represent varying degrees of winter thermal pollution. Johnny Darters spawned during winter at 12, 16, and 20 °C but not at 4 °C. Johnny Darters at 4 °C subsequently spawned following a simulated spring period while those at 12, 16, and 20 °C did not. Our results indicate elevated winter water temperatures common in effluent-dominated streams can promote out-of-season spawning and that vitellogenin expression is a useful indicator of spawning readiness for fish exposed to elevated winter temperatures.
Lemay, Matthew A; Russello, Michael A
2014-11-04
Understanding the distribution and abundance of pathogens can provide insight into the evolution and ecology of their host species. Previous research in kokanee, the freshwater form of sockeye salmon (Oncorhynchus nerka), found evidence that populations spawning in streams may experience a greater pathogen load compared with populations that spawn on beaches. In this study we tested for differences in the abundance and diversity of the gram-negative bacteria, Flavobacterium spp., infecting tissues of kokanee in both of these spawning habitats (streams and beaches). Molecular assays were carried out using primers designed to amplify a ~200 nucleotide region of the gene encoding the ATP synthase alpha subunit (AtpA) within the genus Flavobacterium. Using a combination of DNA sequencing and quantitative PCR (qPCR) we compared the diversity and relative abundance of Flavobacterium AtpA amplicons present in DNA extracted from tissue samples of kokanee collected from each spawning habitat. We identified 10 Flavobacterium AtpA haplotypes among the tissues of stream-spawning kokanee and seven haplotypes among the tissues of beach-spawning kokanee, with only two haplotypes shared between spawning habitats. Haplotypes occurring in the same clade as F. psychrophilum were the most prevalent (92% of all reads, 60% of all haplotypes), and occurred in kokanee from both spawning habitats (streams and beaches). Subsequent qPCR assays did not find any significant difference in the relative abundance of Flavobacterium AtpA amplicons between samples from the different spawning habitats. We confirmed the presence of Flavobacterium spp. in both spawning habitats and found weak evidence for increased Flavobacterium diversity in kokanee sampled from stream-spawning sites. However, the quantity of Flavobacterium DNA did not differ between spawning habitats. We recommend further study aimed at quantifying pathogen diversity and abundance in population-level samples of kokanee combined with environmental sampling to better understand the ecology of pathogen infection in this species.
Raabe, Joshua K.; Bozek, Michael A.
2012-01-01
Spawning habitat, the cornerstone of self-sustaining, naturally reproducing walleyeSander vitreus populations, has received limited quantitative research. Our goal was to quantitatively describe the structure and quantity of natural walleye spawning habitat and evaluate potential selection of habitat in Big Crooked Lake, Wisconsin. In 2004 and 2005, we located and delineated walleye egg deposition polygons through visual snorkel and scuba surveys. We also delineated recently deposited, adhesive egg patches daily along one spawning reef in 2005. To determine habitat selection, we quantified and compared spawning and lakewide available habitat at different scales. In both years, walleyes used similar spawning habitat, including three geomorphic types: linear shorelines, a point bar, and an island. Walleyes used only 14% of the entire lake shoreline and 39% of the shoreline comprised of gravel (6.4–76.0 mm), cobble (76.1–149.9 mm), or coarser substrates for spawning in 2005, indicating selection of specific spawning habitat. Lakewide, walleyes spawned close to shore (outer egg deposition polygon boundary mean distance = 2.7 m), in shallow water (outer egg deposition polygon boundary mean depth = 0.3 m), and over gravel substrate (percent coverage mean = 64.3) having low embeddedness (mean = 1.30). Our best nearshore (0–13-m) resource selection function predicted an increase in the relative probability of egg deposition with the increasing abundance of gravel, cobble, and rubble (150.0–303.9-mm) substrates and a decrease with increasing distance from shore and water depth (89.9% overall correct classification). Adhesive egg patches confirmed that walleyes actively chose nearshore, shallow-water, and coarse-substrate spawning habitat. The quantitative habitat information and predictive models will assist biologists in developing walleye spawning reef protection strategies and potentially aid in designing and evaluating artificial spawning reefs.
McMaster, Mark E.; Servos, Mark R.; Martyniuk, Christopher J.; Munkittrick, Kelly R.
2016-01-01
Intersex is a condition that has been associated with exposure to sewage effluents in male rainbow darter (Etheostoma caeruleum). To better understand changes in the transcriptome that are associated with intersex, we characterized annual changes in the testis transcriptome in wild, unexposed fish. Rainbow darter males were collected from the Grand River (Ontario, Canada) in May (spawning), August (post-spawning), October (recrudescence), January (developing) and March (pre-spawning). Histology was used to determine the proportion of spermatogenic cell types that were present during each period of testicular maturation. Regression analysis determined that the proportion of spermatozoa versus spermatocytes in all stages of development (R2 ≥ 0.58) were inversely related; however this was not the case when males were in the post-spawning period. Gene networks that were specific to the transition from developing to pre-spawning stages included nitric oxide biosynthesis, response to wounding, sperm cell function, and stem cell maintenance. The pre-spawning to spawning transition included gene networks related to amino acid import, glycogenesis, Sertoli cell proliferation, sperm capacitation, and sperm motility. The spawning to post-spawning transition included unique gene networks associated with chromosome condensation, ribosome biogenesis and assembly, and mitotic spindle assembly. Lastly, the transition from post-spawning to recrudescence included gene networks associated with egg activation, epithelial to mesenchymal transition, membrane fluidity, and sperm cell adhesion. Noteworthy was that there were a significant number of gene networks related to immune system function that were differentially expressed throughout reproduction, suggesting that immune network signalling has a prominent role in the male testis. Transcripts in the testis of post-spawning individuals showed patterns of expression that were most different for the majority of transcripts investigated when compared to the other stages. Interestingly, many transcripts associated with female sex differentiation (i.e. esr1, sox9, cdca8 and survivin) were significantly higher in the testis during the post-spawning season compared to other testis stages. At post-spawning, there were higher levels of estrogen and androgen receptors (esr1, esr2, ar) in the testis, while there was a decrease in the levels of sperm associated antigen 1 (spag1) and spermatogenesis associated 4 (spata4) mRNA. Cyp17a was more abundant in the testis of fish in the pre-spawning, spawning, and post-spawning seasons compared to those individuals that were recrudescent while aromatase (cyp19a) did not vary in expression over the year. This study identifies cell process related to testis development in a seasonally spawning species and improves our understanding regarding the molecular signaling events that underlie testicular growth. This is significant because, while there are a number of studies characterizing molecular pathways in the ovary, there are comparatively less describing transcriptomic patterns in the testis in wild fish. PMID:27861489
Thomas E. Lisle; Jack Lewis
1992-01-01
A model is presented that simulates the effects of streamflow and sediment transport on survival of salmonid embryos incubating in spawning gravels in a natural channel. Components of the model include a 6-yr streamflow record, an empirical bed load-transport function, a relation between transport and infiltration of sandy bedload into a gravel bed, effects of fine-...
Frantzen, Sylvia; Maage, Amund; Duinker, Arne; Julshamn, Kaare; Iversen, Svein A
2015-05-01
The Norwegian spring spawning (NSS) herring is an ecologically and economically important fish population in the Norwegian Sea. It was the first of several Norwegian fish stocks subject to a baseline study designed to give a comprehensive account of the levels of contaminants in a fish species from most of its area of distribution and during different seasons. During 2006 and 2007, 800 individual herring were sampled in their feeding areas in the Norwegian Sea in spring and autumn and at their spawning grounds off the coast of Norway during late winter. Metals including Hg, Cd, As and Pb were determined in muscle samples of individual herring, and mean concentrations±sd (mg kg(-1) ww) were: Hg: 0.04±0.03, Cd: 0.010±0.006, As: 2.2±0.6 and Pb: <0.01-0.10. Apart from one sample, no individual herring exceeded the EU's maximum level for any of these elements, as has been seen also in previous monitoring. Hg and Cd concentration increased with increasing fish age and As concentration varied seasonally, possibly due to uptake during feeding (summer), elimination during starvation (winter) and up-concentration during spawning (spring). Copyright © 2015 Elsevier Ltd. All rights reserved.
Egg deposition by lithophilic-spawning fishes in the Detroit and Saint Clair Rivers, 2005–14
Prichard, Carson G.; Craig, Jaquelyn M.; Roseman, Edward F.; Fischer, Jason L.; Manny, Bruce A.; Kennedy, Gregory W.
2017-03-14
A long-term, multiseason, fish egg sampling program conducted annually on the Detroit (2005–14) and Saint Clair (2010–14) Rivers was summarized to identify where productive fish spawning habitat currently exists. Egg mats were placed on the river bottom during the spring and fall at historic spawning areas and candidate fish spawning habitat restoration sites throughout both rivers. Widespread evidence was found of lithophilic spawning by numerous native fish species, including walleye (Sander vitreus), lake whitefish (Coregonus clupeaformis), lake sturgeon (Acipenser fulvescens), suckers (Catostomidae spp.), and trout-perch (Percopsis omiscomaycus). Walleye, lake whitefish, and suckers spp. spawned in nearly every region of each river in all years on both reef and nonreef substrates. Lake sturgeon eggs were collected almost exclusively over constructed reefs. Catch-per-unit effort of walleye, lake whitefish, and sucker eggs was much greater in the Detroit River than in the Saint Clair River, while Saint Clair River sites supported the greatest collections of lake sturgeon eggs. Collections during this study of lake sturgeon eggs on man-made spawning reefs suggest that artificial reefs may be an effective tool for restoring fish populations in the Detroit and Saint Clair Rivers; however, the quick response of lake sturgeon to spawn on newly constructed reefs and the fact that walleye, lake whitefish, and sucker eggs were often collected over substrate with little interstitial space to protect eggs from siltation and predators suggests that lack of suitable spawning habitat may continue to limit reproduction of lithophilic-spawning fish species in the Saint Clair-Detroit River System.
NASA Astrophysics Data System (ADS)
del Favero, Jana M.; Katsuragawa, Mario; Zani-Teixeira, Maria de Lourdes; Turner, Jefferson T.
2017-04-01
Analysis of fish egg density and distribution is indispensable for the understanding of the adult stock variability, and is a powerful tool for fisheries management. Thus, the objective of the present study was to characterize the spatial-temporal spawning patterns of Engraulis anchoita in the Southeastern Brazilian Bight, in terms of geographic location and abiotic factors. We analyzed data of eggs sampled during ten years, from 1974 to 1993, to create maps of the mean and the standard deviation (sd) of the estimated probability of egg presence, through indicative kriging. Preferred, tolerated and avoided temperature, salinity, local depth and distance for spawning of E. anchoita were defined by the estimation of bootstrapped confidence intervals of the quotient values (Q). Despite not having identified any recurrent spawning sites, a few occasional and unfavorable spawning sites were identified, showing that the spawning habit of E. anchoita not only varied spatially, but also temporally. The largest occasional spawning site and with the highest probability of egg presence (0.6-0.7) was located around 27°S, close to Florianópolis (Santa Catarina state). On the other hand, a well-marked unfavorable spawning site was located off São Sebastião Island (São Paulo state), with the probability of egg presence between 0-0.1. Abiotic and biotic factors that could be related to the changes in the spawning areas of E. anchoita were discussed, with shelf width, mesoscale hydrodynamic features and biological interactions apparently playing important roles in defining spawning sites.
First record of multi-species synchronous coral spawning from Malaysia.
Chelliah, Alvin; Amar, Halimi Bin; Hyde, Julian; Yewdall, Katie; Steinberg, Peter D; Guest, James R
2015-01-01
Knowledge about the timing and synchrony of coral spawning has important implications for both the ecology and management of coral reef ecosystems. Data on the timing of spawning and extent of synchrony, however, are still lacking for many coral reefs, particularly from equatorial regions and from locations within the coral triangle. Here we present the first documentation of a multi-species coral spawning event from reefs around Pulau Tioman, Peninsular Malaysia, a popular diving and tourist destination located on the edge of the coral triangle. At least 8 coral species from 3 genera (Acropora, Montipora and Porites) participated in multi-species spawning over five nights in April 2014, between two nights before and two nights after the full moon. In addition, two Acropora species were witnessed spawning one night prior to the full moon in October 2014. While two of the Acropora species that reproduced in April (A. millepora and A. nasuta) exhibited highly synchronous spawning (100% of sampled colonies), two other common species (A. hyacinthus and A. digitifera) did not contain visible eggs in the majority of colonies sampled (i.e., <15% of colonies) in either April or October, suggesting that these species spawn at other times of the year. To the best of our knowledge, this is the first detailed documented observation of multi-species coral spawning from reefs in Malaysia. These data provide further support for the contention that this phenomenon is a feature of all speciose coral assemblages, including equatorial reefs. More research is needed, however, to determine the seasonal cycles and extent of spawning synchrony on these reefs and elsewhere in Malaysia.
First record of multi-species synchronous coral spawning from Malaysia
Chelliah, Alvin; Amar, Halimi Bin; Hyde, Julian; Yewdall, Katie; Steinberg, Peter D.
2015-01-01
Knowledge about the timing and synchrony of coral spawning has important implications for both the ecology and management of coral reef ecosystems. Data on the timing of spawning and extent of synchrony, however, are still lacking for many coral reefs, particularly from equatorial regions and from locations within the coral triangle. Here we present the first documentation of a multi-species coral spawning event from reefs around Pulau Tioman, Peninsular Malaysia, a popular diving and tourist destination located on the edge of the coral triangle. At least 8 coral species from 3 genera (Acropora, Montipora and Porites) participated in multi-species spawning over five nights in April 2014, between two nights before and two nights after the full moon. In addition, two Acropora species were witnessed spawning one night prior to the full moon in October 2014. While two of the Acropora species that reproduced in April (A. millepora and A. nasuta) exhibited highly synchronous spawning (100% of sampled colonies), two other common species (A. hyacinthus and A. digitifera) did not contain visible eggs in the majority of colonies sampled (i.e., <15% of colonies) in either April or October, suggesting that these species spawn at other times of the year. To the best of our knowledge, this is the first detailed documented observation of multi-species coral spawning from reefs in Malaysia. These data provide further support for the contention that this phenomenon is a feature of all speciose coral assemblages, including equatorial reefs. More research is needed, however, to determine the seasonal cycles and extent of spawning synchrony on these reefs and elsewhere in Malaysia. PMID:25737817
Christie, Mark R; McNickle, Gordon G; French, Rod A; Blouin, Michael S
2018-04-24
The maintenance of diverse life history strategies within and among species remains a fundamental question in ecology and evolutionary biology. By using a near-complete 16-year pedigree of 12,579 winter-run steelhead ( Oncorhynchus mykiss ) from the Hood River, Oregon, we examined the continued maintenance of two life history traits: the number of lifetime spawning events (semelparous vs. iteroparous) and age at first spawning (2-5 years). We found that repeat-spawning fish had more than 2.5 times the lifetime reproductive success of single-spawning fish. However, first-time repeat-spawning fish had significantly lower reproductive success than single-spawning fish of the same age, suggesting that repeat-spawning fish forego early reproduction to devote additional energy to continued survival. For single-spawning fish, we also found evidence for a fitness trade-off for age at spawning: older, larger males had higher reproductive success than younger, smaller males. For females, in contrast, we found that 3-year-old fish had the highest mean lifetime reproductive success despite the observation that 4- and 5-year-old fish were both longer and heavier. This phenomenon was explained by negative frequency-dependent selection: as 4- and 5-year-old fish decreased in frequency on the spawning grounds, their lifetime reproductive success became greater than that of the 3-year-old fish. Using a combination of mathematical and individual-based models parameterized with our empirical estimates, we demonstrate that both fitness trade-offs and negative frequency-dependent selection observed in the empirical data can theoretically maintain the diverse life history strategies found in this population.
Nemeth, Richard S.
2006-01-01
Many species of groupers form spawning aggregations, dramatic events where 100s to 1000s of individuals gather annually at specific locations for reproduction. Spawning aggregations are often targeted by local fishermen, making them extremely vulnerable to over fishing. The Red Hind Bank Marine Conservation District located in St. Thomas, United States Virgin Islands, was closed seasonally in 1990 and closed permanently in 1999 to protect an important red hind Epinephelus guttatus spawning site. This study provides some of the first information on the population response of a spawning aggregation located within a marine protected area. Tag-and-release fishing and fish transects were used to evaluate population characteristics and habitat utilization patterns of a red hind spawning aggregation between 1999 and 2004. Compared with studies conducted before the permanent closure, the average size of red hind increased mostly during the seasonal closure period (10 cm over 12 yr), but the maximum total length of male red hind increased by nearly 7 cm following permanent closure. Average density and biomass of spawning red hind increased by over 60% following permanent closure whereas maximum spawning density more than doubled. Information from tag returns indicated that red hind departed the protected area following spawning and migrated 6 to 33 km to a ca. 500 km2 area. Protection of the spawning aggregation site may have also contributed to an overall increase in the size of red hind caught in the commercial fishery, thus increasing the value of the grouper fishery for local fishermen. PMID:16612415
Timing and locations of reef fish spawning off the southeastern United States
Heyman, William D.; Karnauskas, Mandy; Kobara, Shinichi; Smart, Tracey I.; Ballenger, Joseph C.; Reichert, Marcel J. M.; Wyanski, David M.; Tishler, Michelle S.; Lindeman, Kenyon C.; Lowerre-Barbieri, Susan K.; Switzer, Theodore S.; Solomon, Justin J.; McCain, Kyle; Marhefka, Mark; Sedberry, George R.
2017-01-01
Managed reef fish in the Atlantic Ocean of the southeastern United States (SEUS) support a multi-billion dollar industry. There is a broad interest in locating and protecting spawning fish from harvest, to enhance productivity and reduce the potential for overfishing. We assessed spatiotemporal cues for spawning for six species from four reef fish families, using data on individual spawning condition collected by over three decades of regional fishery-independent reef fish surveys, combined with a series of predictors derived from bathymetric features. We quantified the size of spawning areas used by reef fish across many years and identified several multispecies spawning locations. We quantitatively identified cues for peak spawning and generated predictive maps for Gray Triggerfish (Balistes capriscus), White Grunt (Haemulon plumierii), Red Snapper (Lutjanus campechanus), Vermilion Snapper (Rhomboplites aurorubens), Black Sea Bass (Centropristis striata), and Scamp (Mycteroperca phenax). For example, Red Snapper peak spawning was predicted in 24.7–29.0°C water prior to the new moon at locations with high curvature in the 24–30 m depth range off northeast Florida during June and July. External validation using scientific and fishery-dependent data collections strongly supported the predictive utility of our models. We identified locations where reconfiguration or expansion of existing marine protected areas would protect spawning reef fish. We recommend increased sampling off southern Florida (south of 27° N), during winter months, and in high-relief, high current habitats to improve our understanding of timing and location of reef fish spawning off the southeastern United States. PMID:28264006
Modde, T.; Bowen, Z.H.; Kitcheyan, D.C.
2005-01-01
The population of endangered razorback suckers Xyrauchen texanus in the middle Green River (upper Colorado River basin) has declined during the last 40 years. The apparent cause for this decline is a lack of successful recruitment. This study used radiotelemetry to evaluate the ability of hatchery-reared razorback suckers to locate spawning areas where wild fish congregate during the ascending hydrographic limb of the snowmelt runoff. Hatchery-reared razorback suckers appeared to show similar reproductive behavior to wild fish. Both wild and hatchery-reared fish were found near the middle Green River spawning area between 1 and 25 May 2000. Hatchery fish occupied the same areas on the spawning site as wild fish, and remained on the spawning site during both nocturnal and diurnal hours. Males were more abundant on the spawning area than females, but the few females captured tended to stage away from the primary spawning area. The results from this study suggest hatchery-reared fish are capable of responding to natural cues that prompt spawning aggregations and are successful in locating existing spawning aggregations of wild fish. Given attention to stocking criteria, including genetic diversity and the size and time of stocking, the challenges of recovering razorback suckers will center on those factors that led to the population declines, particularly the survival of early life stages in off-channel habitats. ?? American Fisheries Society 2005.
Vuorinen, Pekka J; Kiviranta, Hannu; Koistinen, Jaana; Pöyhönen, Outi; Ikonen, Erkki; Keinänen, Marja
2014-01-15
Changes in the concentrations of polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in Baltic salmon muscle were studied during the spawning migration from the southern Baltic Sea to rivers flowing into the northern Gulf of Bothnia and during the spawning period. The aim was to obtain information to facilitate the arrangement of salmon fisheries such that the human dioxin intake is taken into account. The EC maximum allowable total toxic equivalent concentration (WHO-TEQPCDD/F+PCB) was exceeded in the muscle of the majority of the migrating salmon, except in the Baltic Proper. The fresh-weight-based concentrations of all toxicant groups in salmon tended to be the lowest in the Baltic Proper and the Northern Quark, and all toxicant concentrations, except PCDDs and PCDFs, were significantly higher in the spawning salmon than in the salmon caught during the spawning run. The fat content of the salmon muscle decreased by 60% during the spawning run, and the lipid-based total toxicant concentrations were consequently 4.2-6.2 times higher during the spawning period than during the spawning migration. However, the toxicants were concentrated just before spawning, and thus there is no essential difference related to whether the salmon are caught in the sea or the recreational river fishery. © 2013.
A new method to identify the fluvial regimes used by spawning salmonids
Hamish J. Moir; Christopher N. Gibbins; John M. Buffington; John H. Webb; Chris Soulsby; Mark J. Brewer
2009-01-01
Basin physiography and fluvial processes structure the availability of salmonid spawning habitat in river networks. However, methods that allow us to explicitly link hydrologic and geomorphic processes to spatial patterns of spawning at scales relevant to management are limited. Here we present a method that can be used to link the abundance of spawning salmonids to...
NASA Astrophysics Data System (ADS)
Hazen, Elliott L.; Carlisle, Aaron B.; Wilson, Steven G.; Ganong, James E.; Castleton, Michael R.; Schallert, Robert J.; Stokesbury, Michael J. W.; Bograd, Steven J.; Block, Barbara A.
2016-09-01
Atlantic bluefin tuna (Thunnus thynnus) are distributed throughout the North Atlantic and are both economically valuable and heavily exploited. The fishery is currently managed as two spawning populations, with the GOM population being severely depleted for over 20 years. In April-August of 2010, the Deepwater Horizon oil spill released approximately 4 million barrels of oil into the GOM, with severe ecosystem and economic impacts. Acute oil exposure results in mortality of bluefin eggs and larvae, while chronic effects on spawning adults are less well understood. Here we used 16 years of electronic tagging data for 66 bluefin tuna to identify spawning events, to quantify habitat preferences, and to predict habitat use and oil exposure within Gulf of Mexico spawning grounds. More than 54,000 km2 (5%) of predicted spawning habitat within the US EEZ was oiled during the week of peak oil dispersal, with potentially lethal effects on eggs and larvae. Although the oil spill overlapped with a relatively small portion of predicted spawning habitat, the cumulative impact from oil, ocean warming and bycatch mortality on GOM spawning grounds may result in significant effects for a population that shows little evidence of rebuilding.
Sahu, Dinesh Kumar; Panda, Soumya Prasad; Meher, Prem Kumar; Das, Paramananda; Routray, Padmanav; Sundaray, Jitendra Kumar; Jayasankar, Pallipuram; Nandi, Samiran
2015-01-01
Rohu is a leading candidate species for freshwater aquaculture in South-East Asia. Unlike common carp the monsoon breeding habit of rohu restricts its seed production beyond season indicating strong genetic control over spawning. Genetic information is limited in this regard. The problem is exacerbated by the lack of genomic-resources. We identified 182 reproduction-related genes previously by Sanger-sequencing which were less to address the issue of seasonal spawning behaviour of this important carp. Therefore, the present work was taken up to generate transcriptome profile by mRNAseq. 16GB, 72bp paired end (PE) data was generated from the pooled-RNA of twelve-tissues from pre-spawning rohu using IlluminaGA-II-platform. There were 64.97 million high-quality reads producing 62,283 contigs and 88,612 numbers of transcripts using velvet and oases programs, respectively. Gene ontology annotation identified 940 reproduction-related genes consisting of 184 mainly associated with reproduction, 223 related to hormone-activity and receptor-binding, 178 receptor-activity and 355 embryonic-development related-proteins. The important reproduction-relevant pathways found in KEGG analysis were GnRH-signaling, oocyte-meiosis, steroid-biosynthesis, steroid-hormone biosynthesis, progesterone-mediated oocyte-maturation, retinol-metabolism, neuroactive-ligand-receptor interaction, neurotrophin-signaling and photo-transduction. Twenty nine simple sequence repeat containing sequences were also found out of which 12 repeat loci were polymorphic with mean expected-&-observed heterozygosity of 0.471 and 0.983 respectively. Quantitative RT-PCR analyses of 13-known and 6-unknown transcripts revealed differences in expression level between preparatory and post-spawning phase. These transcriptomic sequences have significantly increased the genetic-&-genomic resources for reproduction-research in Labeo rohita. PMID:26148098
Hamel, M. J.; Rugg, M.L.; Pegg, M.A.; Patino, Reynaldo; Hammen, J.J.
2015-01-01
We assessed reproductive status, fecundity, egg size, and spawning dynamics of shovelnose sturgeon Scaphirhynchus platorynchus in the lower Platte River. Shovelnose sturgeon were captured throughout each year during 2011 and 2012 using a multi-gear approach designed to collect a variety of fish of varying sizes and ages. Fish were collected monthly for a laboratory assessment of reproductive condition. Female shovelnose sturgeon reached fork length at 50% maturity (FL50) at 547 mm and at a minimum length of 449 mm. The average female spawning cycle was 3–5 years. Mean egg count for adult females was 16 098 ± 1103 (SE), and mean egg size was 2.401 ± 0.051 (SE) mm. Total fecundity was positively correlated with length (r2 = 0.728; P < 0.001), mass (r2 = 0.896; P < 0.001), and age (r2 = 0.396; P = 0.029). However, fish size and age did not correlate to egg size (P > 0.05). Male shovelnose sturgeon reached FL50 at 579 mm and at a minimum length of 453 mm. The average male spawning cycle was 1–2 years. Reproductively viable male and female sturgeon occurred during the spring (March–May) and autumn (September–October) in both years, indicating spring and potential autumn spawning events. Shovelnose sturgeon in the lower Platte River are maturing at a shorter length and younger age compared to populations elsewhere. Although it is unknown if the change is plastic or evolutionary, unfavorable environmental conditions or over-harvest may lead to hastened declines compared to other systems.
NASA Astrophysics Data System (ADS)
Jiang, Sufei; Lin, Liyu
1986-03-01
In this paper, the morphological characters of eggs and larvae of Sardinella aurita (Cuvier & Valenciennes), its spawning ground, spawning seasons and spawning conditions have been studied. Sardinella aurita likes to breed in the upwelling area and selects the Waixie fishing ground as its main spawning ground. The months from February to September are its spawning seasons, reaching its peak in April. In the main spawning ground, the temperature of the surface layer was found to be 24.4 25.2°C, the salinity 33.87 34.07%. and the depth of water between 34 60m. The distribution of the larvae is closely related to the distribution of plankton, the path of migration of adult fish, and the current direction of the water system. In order to protect fishery resources, it is necessary to prohibit catching the spawning fish in the Waixie fishing ground in April, and the catching of immatures from March to June.
Sex effect on polychlorinated biphenyl concentrations in fish: a synthesis
Madenjian, C.P.
2011-01-01
Polychlorinated biphenyls (PCBs) accumulate in fish primarily via food intake, and therefore, PCBs serve as a chemical tracer for food consumption. Sex differences in PCB concentrations of fish have been attributed to the following three mechanisms: (i) females losing a substantial portion of their PCB body burden during spawning and consequently their PCB concentration is considerably reduced immediately after spawning; (ii) sex differences in habitat utilization leading to sex differences in the PCB concentrations of the prey; and (iii) sex differences in gross growth efficiency, which is defined as growth divided by the amount of food consumption needed to achieve that growth. Based on my analyses and synthesis, mechanisms (i) and (ii) operate in relatively few fish populations, but can lead to mature males having PCB concentrations two to three times higher than mature female PCB concentrations. In contrast, mechanism (iii) operates in all fish populations, but typically, mechanism (iii) results in relatively modest sex differences, with mature males only between 15 and 35% higher in PCB concentration than mature females. In summary, the study of sex differences in PCB concentrations of fish has led to insights into fish behaviour and fish physiology.
Carter, A B; Russ, G R; Tobin, A J; Williams, A J; Davies, C R; Mapstone, B D
2014-04-01
The effects of size and age on reproductive dynamics of common coral trout Plectropomus leopardus populations were compared between coral reefs open or closed (no-take marine reserves) to fishing and among four geographic regions of the Great Barrier Reef (GBR), Australia. The specific reproductive metrics investigated were the sex ratio, the proportion of vitellogenic females and the spawning fraction of local populations. Sex ratios became increasingly male biased with length and age, as expected for a protogyne, but were more male biased in southern regions of the GBR (Mackay and Storm Cay) than in northern regions (Lizard Island and Townsville) across all lengths and ages. The proportion of vitellogenic females also increased with length and age. Female P. leopardus were capable of daily spawning during the spawning season, but on average spawned every 4·3 days. Mature females spawned most frequently on Townsville reserve reefs (every 2·3 days) and Lizard Island fished reefs (every 3·2 days). Females on Mackay reefs open to fishing showed no evidence of spawning over 4 years of sampling, while females on reserve reefs spawned only once every 2-3 months. No effect of length on spawning frequency was detected. Spawning frequency increased with age on Lizard Island fished reefs, declined with age on Storm Cay fished reefs, and declined with age on reserve reefs in all regions. It is hypothesized that the variation in P. leopardus sex ratios and spawning frequency among GBR regions is primarily driven by water temperature, while no-take management zones influence spawning frequency depending on the region in which the reserve is located. Male bias and lack of spawning activity on southern GBR, where densities of adult P. leopardus are highest, suggest that recruits may be supplied from central or northern GBR. Significant regional variation in reproductive traits suggests that a regional approach to management of P. leopardus is appropriate and highlights the need for considering spatial variation in reproduction where reserves are used as fishery or conservation management tools. © 2014 The Fisheries Society of the British Isles.
Straight, Carrie A.; Jackson, C. Rhett; Freeman, Byron J.; Freeman, Mary C.
2015-01-01
The conservation of imperiled species depends upon understanding threats to the species at each stage of its life history. In the case of many imperiled migratory fishes, understanding how timing and environmental influences affect reproductive behavior could provide managers with information critical for species conservation. We used passive acoustic recorders to document spawning activities for two large-bodied catostomids (Robust Redhorse Moxostoma robustum in the Savannah and Broad rivers, Georgia, and River Redhorse M. carinatum in the Coosawattee River, Georgia) in relation to time of day, water temperature, discharge variation, moonlight, and weather. Robust Redhorse spawning activities in the Savannah and Broad rivers were more frequent at night or in the early morning (0100–0400 hours and 0800–1000 hours, respectively) and less frequent near midday (1300 hours). Spawning attempts in the Savannah and Broad rivers increased over a 3–4-d period and then declined. River Redhorse spawning activities in the Coosawattee River peaked on the first day of recording and declined over four subsequent days; diel patterns were less discernible, although moon illumination was positively associated with spawning rates, which was also observed for Robust Redhorses in the Savannah River. Spawning activity in the Savannah and Broad rivers was negatively associated with water temperature, and spawning activity increased in association with cloud cover in the Savannah River. A large variation in discharge was only measured in the flow-regulated Savannah River and was not associated with spawning attempts. To our knowledge, this is the first study to show diel and multiday patterns in spawning activities for anyMoxostoma species. These patterns and relationships between the environment and spawning activities could provide important information for the management of these species downstream of hydropower facilities.
Żarski, Daniel; Palińska-Żarska, Katarzyna; Łuczyńska, Joanna; Krejszeff, Sławomir
2017-05-01
The aim of the study was to verify the effect of various hormonal agents [human chorionic gonadotropin (hCG) and salmon gonadoliberine analogue (sGnRHa)] applied at different stages of maturity of the females [out-of-season (maturation stage I) and in-season spawning (maturation stages II and IV)] on the proximate composition (PC) and fatty acid (FA) profile of eggs of Eurasian perch, Perca fluviatilis. The egg samples (7 samples from each group) were also collected from spontaneous spawning (without hormonal treatment) fish representing each maturation stage (I, II and IV for groups C-I, C-II and C-IV, respectively). The results were also compared with the eggs collected in nature (seven randomly chosen egg samples from natural spawning; group NS). Embryonic survival rate was recorded and analysis of PC and FA profile were performed, for all the groups. Embryonic survival rate varied among the groups, and only differences (P<0.05) between group C-I and NS were recorded. In-season spawning operation did not affect PC and FA profiles. Application of hCG or spontaneous spawning (group C-I) were found to have the highest effect on the FA profile. It concerned mostly total n-3 polyunsaturated fatty acids, but also stearic (C18:0), oleic [C18:1(cis9)], linoleic [C18:2(n-6)], arachidonic [C20:4(n-6)] and docosahexaenoic[C22:6(n-3)] acids. The application of sGnRHa during out-of-season spawning had the lowest effect on the FA profile. The results presented indicate that controlled reproduction can affect the FA profile only during out-of-season spawning. This negative effect can be presumably compensated by the application of sGnRHa as a spawning agent. Copyright © 2016 Elsevier Inc. All rights reserved.
Bunnell, David B.; Hale, R. Scott; Vanni, Michael J.; Stein, Roy A.
2006-01-01
Stock-recruit models typically use only spawning stock size as a predictor of recruitment to a fishery. In this paper, however, we used spawning stock size as well as larval density and key environmental variables to predict recruitment of white crappies Pomoxis annularis and black crappies P. nigromaculatus, a genus notorious for variable recruitment. We sampled adults and recruits from 11 Ohio reservoirs and larvae from 9 reservoirs during 1998-2001. We sampled chlorophyll as an index of reservoir productivity and obtained daily estimates of water elevation to determine the impact of hydrology on recruitment. Akaike's information criterion (AIC) revealed that Ricker and Beverton-Holt stock-recruit models that included chlorophyll best explained the variation in larval density and age-2 recruits. Specifically, spawning stock catch per effort (CPE) and chlorophyll explained 63-64% of the variation in larval density. In turn, larval density and chlorophyll explained 43-49% of the variation in age-2 recruit CPE. Finally, spawning stock CPE and chlorophyll were the best predictors of recruit CPE (i.e., 74-86%). Although larval density and recruitment increased with chlorophyll, neither was related to seasonal water elevation. Also, the AIC generally did not distinguish between Ricker and Beverton-Holt models. From these relationships, we concluded that crappie recruitment can be limited by spawning stock CPE and larval production when spawning stock sizes are low (i.e., CPE , 5 crappies/net-night). At higher levels of spawning stock sizes, spawning stock CPE and recruitment were less clearly related. To predict recruitment in Ohio reservoirs, managers should assess spawning stock CPE with trap nets and estimate chlorophyll concentrations. To increase crappie recruitment in reservoirs where recruitment is consistently poor, managers should use regulations to increase spawning stock size, which, in turn, should increase larval production and recruits to the fishery.
Climate influence on Baltic cod, sprat, and herring stock-recruitment relationships
NASA Astrophysics Data System (ADS)
Margonski, Piotr; Hansson, Sture; Tomczak, Maciej T.; Grzebielec, Ryszard
2010-10-01
A wide range of possible recruitment drivers were tested for key exploited fish species in the Baltic Sea Regional Advisory Council (RAC) area: Eastern Baltic Cod, Central Baltic Herring, Gulf of Riga Herring, and sprat. For each of the stocks, two hypotheses were tested: (i) recruitment is significantly related to spawning stock biomass, climatic forcing, and feeding conditions and (ii) by acknowledging these drivers, management decisions can be improved. Climate impact expressed by climatic indices or changes in water temperature was included in all the final models. Recruitment of the herring stock appeared to be influenced by different factors: the spawning stock biomass, winter Baltic Sea Index prior to spawning, and potentially the November-December sea surface temperature during the winter after spawning were important to Gulf of Riga Herring, while the final models for Central Baltic Herring included spawning stock biomass and August sea surface temperature. Recruitment of sprat appeared to be influenced by July-August temperature, but was independent of the spawning biomass when SSB > 200,000 tons. Recruitment of Eastern Baltic Cod was significantly related to spawning stock biomass, the winter North Atlantic Oscillation index, and the reproductive volume in the Gotland Basin in May. All the models including extrinsic factors significantly improved prediction ability as compared to traditional models, which account for impacts of the spawning stock biomass alone. Based on the final models the minimum spawning stock biomass to derive the associated minimum recruitment under average environmental conditions was calculated for each stock. Using uncertainty analyses, the spawning stock biomass required to produce associated minimum recruitment was presented with different probabilities considering the influence of the extrinsic drivers. This tool allows for recruitment to be predicted with a required probability, that is, higher than the average 50% estimated from the models. Further, this approach considers unfavorable environmental conditions which mean that a higher spawning stock biomass is needed to maintain recruitment at a required level.
Sarkar, Uttam Kumar; Naskar, Malay; Roy, Koushik; Sudeeshan, Deepa; Srivastava, Pankaj; Gupta, Sandipan; Bose, Arun Kumar; Verma, Vinod Kumar; Sarkar, Soma Das; Karnatak, Gunjan; Nandy, Saurav Kumar
2017-09-07
The concept of threshold condition factor (Fulton), beyond which more than 50% of the female fish population may attain readiness for spawning coined as pre-spawning fitness (K spawn50 ), has been proposed in the present article and has been estimated by applying the non-parametric Kaplan-Meier method for fitting survival function. A binary coding strategy of gonadal maturity stages was used to classify whether a female fish is "ready to spawn" or not. The proposed K spawn50 has been generated for female Mystus tengara (1.13-1.21 units), M. cavasius (0.846-0.945 units), and Eutropiichthys vacha (0.716-0.799 units). Information on the range of egg parameters (fecundity, egg weight, egg diameter) expected at the pre-spawning stage was also generated. Additional information on species-specific thermal and precipitation window (climate preferendum) within which K spawn50 is attained was also generated through the LOESS smoothing technique. Water temperatures between 31 and 36 °C (M. tengara), 30 and 32 °C (M. cavasius), and 29.5 and 31 °C (E. vacha) and monthly rainfall between 200 and 325 mm (M. tengara), > 250 mm (M. cavasius), and around 50 mm and between 350 and 850 mm (E. vacha) were found to be optimum for attainment of K spawn50 . The importance of parameterization and benchmarking of K spawn50 in addition to other conventional reproductive biology parameters has been discussed in the present article. The purposes of the present study were fulfilled by generating baseline information and similar information may be generated for other species replicating the innovative methodology used in this study.
Yang, Sang Geun; Ji, Seung Cheol; Lim, Sang Gu; Hur, Sang Woo; Jeong, Minhwan; Lee, Chi Hoon; Kim, Bong Seok; Lee, Young-Don
2016-06-01
This study describes results on sexual maturation and characteristics of natural spawned eggs to develop a method for the production of stable, healthy fertilized eggs from captive-reared yellowtail kingfish, Seriola lalandi. A total of 59 yellowtail kingfish were captured off the coast of Jeju Island, after which the broodstock was cultured in indoor culture tank (100 m(3)) until they were 6.1-14.9 kg in body weight. As part of the rearing management for induced sex maturation, the intensity of illumination was maintained at 130 lux. The photoperiod (light/dark; L/D) was set to a 12 L/12 D from October 2013 to January 2014, and 15 L/9 D from February 2014 to June 2014. Feeds comprised mainly EP (Extruded Pellets), with squid cuttlefish added for improvement of egg quality, and was given from April to June 2014. The first spawning of yellowtail kingfish occurred in May 3, 2014, at a water temperature of 17.0°C. Spawning continued until June 12, 2014, with the water temperature set at 20.5°C. Time of spawning was 26 times at this period. The total number of eggs that spawned during the spawning period was 4,449×10(3). The buoyant rate of spawning eggs and fertilization rate of buoyant eggs during the spawned period were 76.1% and 100%, respectively. The diameters of the egg and oil globule were 1.388 ± 0.041 mm and 0.378 ± 0.029 mm, respectively, which was higher in early eggs than in those from late during the spawned period.
NASA Astrophysics Data System (ADS)
Macavoy, S. E.; Garman, G. C.
2006-12-01
Coastal freshwater streams are typically viewed as conduits for the transport of sediment and nutrients to the coasts. Some coastal streams however experience seasonal migrations of anadromous fish returning to the freshwater to spawn. The fish may be vectors for the delivery of marine nutrients to nutrient poor freshwater in the form of excreted waste and post-spawning carcasses. Nutrients derived from marine sources are 13C, 15N and 34S enriched relative to nutrients in freshwater. Here we examine sediment, particulate organic matter (POM), invertebrates and fish in two tidal freshwater tributaries of the James River USA. The d15N of POM became elevated (from 3.8 to 6.5%), coincident with the arrival of anadromous river herring (Alosa sp), indicating a pulse of marine nitrogen. However, the elevated 15N was not observed in sediment samples or among invertebrates, which did not experience a seasonal isotopic shift (there were significant differences however among the guilds of invertebrate). Anadromous Alosa aestivalis captured within the tidal freshwater were 13C and 34S enriched (-19.3 and 17.2%, respectively) relative to resident freshwater fishes (-26.4 and 3.6% respectively) captured within 2 weeks of the Alosa. Although it is likely that marine derived nitrogen was detected in the tidal freshwater, it was not in sufficient abundance to change the isotope signature of most ecosystem components.
NASA Astrophysics Data System (ADS)
Lee, Yong-Deuk; Choi, Jung Hwa; Moon, Seong Yong; Lee, Sun Kil; Gwak, Woo-Seok
2017-12-01
The purpose of this study is to research the characteristics of spawning grounds of Clupea pallasii found at 1 spawning ground located in the coast of Yeongun-ri, Tongyeong, Gyeongnam, and 3 stations in Jinhae Bay. Diving observation was performed from January to June, 2014 at the coast of Yeongun-ri, and from February to June, 2016 at Jinhae Bay after total 4 stations (A: Gusan-myeon, B: Haengamdong, C: Hacheong-myeon, D: Jam-do) were constituted. During observation period, 1 spawning ground was found in Tongyeong area in January. In Jinhae Bay spawning grounds were found at 3 stations (A, B, D) out of 4 stations in February. Regarding the surrounding environment of spawning ground found at Yeongunri, Tongyeong, various kinds of seaweeds were distributed up to 1-5 m depth, and many branch type red algae were distributed. In case of Jinhae Bay, seaweeds were widely distributed from shallow water to 5 m depth. In addition, the scope that eggs were attached was considerably wide compared to Tongyeong area, and they were found at all the 3 spots, so C. pallasii is thought to use Jinhae Bay for its spawning ground widely. Eggs were attached from the surface to 3-4 m, and like Tongyeong area, eggs were attached to mostly branch type of red algae. The results of this study suggest that the spawning season of the C. pallasii in coast waters off Gyeongnam is until mid-February.
Morphological evidence for discrete stocks of yellow perch in Lake Erie
Kocovsky, Patrick M.; Knight, Carey T.
2012-01-01
Identification and management of unique stocks of exploited fish species are high-priority management goals in the Laurentian Great Lakes. We analyzed whole-body morphometrics of 1430 yellow perch Perca flavescens captured during 2007–2009 from seven known spawning areas in Lake Erie to determine if morphometrics vary among sites and management units to assist in identification of spawning stocks of this heavily exploited species. Truss-based morphometrics (n = 21 measurements) were analyzed using principal component analysis followed by ANOVA of the first three principal components to determine whether yellow perch from the several sampling sites varied morphometrically. Duncan's multiple range test was used to determine which sites differed from one another to test whether morphometrics varied at scales finer than management unit. Morphometrics varied significantly among sites and annually, but differences among sites were much greater. Sites within the same management unit typically differed significantly from one another, indicating morphometric variation at a scale finer than management unit. These results are largely congruent with recently-published studies on genetic variation of yellow perch from many of the same sampling sites. Thus, our results provide additional evidence that there are discrete stocks of yellow perch in Lake Erie and that management units likely comprise multiple stocks.
NASA Astrophysics Data System (ADS)
Wu, Xian-Han; Zhang, Shi-Cui; Wang, Yong-Yuan; Zhang, Bao-Lu; Qu, Yan-Mei; Jiang, Xin-Ji
1994-12-01
Although amphioxus is widespread in temperate and tropical seas, its population is diminishing because of environmental pollution. To keep the population of this evolutionarily important animal from diminishing, study on its reproduction and development is necessary. The main findings in this study on the spawning and fecundity of the amphioxus reared in laboratory and its larval development are as follows. 1. Water temperature markedly affected the spawning. It spawned only when water temperature reached 21°C. 2. Spawning of the amphioxus in laboratory was markedly extended. Initially, the amphioxus spawned at about 7:00 PM, but spawning time was postponed as spawning days went on. 3. The number of eggs produced by a female ranged from 1400 to 12800, average of 5800. This also represents the fecundity of the amphioxus because it shedded all eggs within the ovary at a time. 4. During the first few months of life of the amphioxus, its growth rate changed seasonally. The growth rate in summer and fall was greater than that in winter. 5. The pelagic larva became a benthic adult after 50 days. 6. The amphioxus reared in laboratory from fertilized eggs could produce fertile eggs and sperms. These findings can be a foundation for measures to address the problem of diminishing amphioxus population.
Spawning by lake sturgeon (Acipenser fulvescens) in the Detroit River
Caswell, N.M.; Peterson, D.L.; Manny, B.A.; Kennedy, G.W.
2004-01-01
Overfishing and habitat destruction in the early 1900s devastated lake sturgeon (Acipenser fulvescens) populations in the Great Lakes. Although a comprehensive restoration strategy for this species was recently drafted by the Michigan Department of Natural Resources, a lack of current data on Great Lakes sturgeon stocks has hindered rehabilitation efforts. Historically, the Detroit River supported one of the largest lake sturgeon populations in the Great Lakes; however, little is known about the current population or its habitat use. The main objective of this study was to determine if lake sturgeon spawns in the Detroit River. As part of a larger study, baited setlines were used to capture lake sturgeon in the Detroit River in the spring and summer of 2000 and 2001. In each year of the study, ultrasonic transmitters were surgically implanted in 10 adult fish to track their movements, evaluate habitat use and identify possible spawning sites. Using telemetry and egg mats to verify spawning activity, one spawning site was located and verified in the Detroit River. Spawning was verified by recovering sturgeon eggs deposited on egg collection mats anchored at the site. Telemetry data suggested that several other possible spawning sites also may exist, however, spawning activity was not verified at these sites.
Boegehold, Anna G; Johnson, Nicholas; Ran, Jeffrey L; Kashian, Donna R
2018-01-01
exposure to cyanobacteria can inhibit quagga mussel spawning and fertilization. We assessed spawning in the presence of serotonin, a known spawning inducer, where adult quagga mussels placed in individual vials were exposed to 13 cyanobacteria cultures and purified algal toxin (microcystin-LR) with artificial lake water as the control. Fertilization success was evaluated by combining eggs with sperm in conjunction with cyanobacteria, and enumerating zygote formation marked by cellular cleavage. Several cyanobacterial strains reduced spawning and fertilization success, but microcystin-LR had no effect. Fertilization was more sensitive to cyanobacteria than gamete release. Only 1 culture, Aphanizomenon flos-aquae, inhibited spawning, whereas 6 cultures consisting of Anabaena flos-aquae, Dolichospermum lemmermanii, Gloeotrichia echinulata, Lyngbya wollei, and 2 Microcystis aeruginosa isolates reduced fertilization rates by up to 44%. The effects of cyanobacteria on reproduction in invasive freshwater mussels in the wild have not yet been identified. However, our laboratory studies show that concentrations of cyanobacteria that are possible during bloom conditions probably limit reproduction. Reproductive consequences on wild populations may become more prevalent as cyanobacteria blooms occur earlier in the year, making overlap between blooms and mussel spawning more common. Describing the mechanism by which cyanobacteria inhibit spawning and fertilization could reveal novel control methods to limit reproduction of this invasive species.
Migratory salmonid redd habitat characteristics in the Salmon River, New York
Johnson, James H.; Nack, Christopher C.; McKenna, James E.
2010-01-01
Non-native migratory salmonids ascend tributaries to spawn in all the Great Lakes. In Lake Ontario, these species include Chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), steelhead (O. mykiss), and brown trout (Salmo trutta). Although successful natural reproduction has been documented for many of these species, little research has been conducted on their spawning habitat. We examined the spawning habitat of these four species in the Salmon River, New York. Differences in fish size among the species were significantly correlated with spawning site selection. In the Salmon River, the larger species spawned in deeper areas with larger size substrate and made the largest redds. Discriminant function analysis correctly classified redds by species 64–100% of the time. The size of substrate materials below Lighthouse Hill Dam is within the preferred ranges for spawning for these four species indicating that river armoring has not negatively impacted salmonid production. Intra-specific and inter-specific competition for spawning sites may influence redd site selection for smaller salmonids and could be an impediment for Atlantic salmon (S. salar) restoration.
Genet-specific spawning patterns in Acropora palmata
NASA Astrophysics Data System (ADS)
Miller, M. W.; Williams, D. E.; Fisch, J.
2016-12-01
The broadcast spawning elkhorn coral, Acropora palmata, requires outcrossing among different genets for effective fertilization. Hence, a low density of genets in parts of its range emphasizes the need for precise synchrony among neighboring genets as sperm concentration dilutes rapidly in open-ocean conditions. We documented the genet-specific nightly occurrence of spawning of A. palmata over 8 yr in a depauperate population in the Florida Keys to better understand this potential reproductive hurdle. The observed population failed to spawn within the predicted monthly window (nights 2-6 after the full moon in August) in three of the 8 yr of observation; negligible spawning was observed in a fourth year. Moreover, genet-specific patterns are evident in that (1) certain genets have significantly greater odds of spawning overall and (2) certain genets predictably spawn on the earlier and others on the later lunar nights within the predicted window. Given the already low genet density in this population, this pattern implies a substantial degree of wasted reproductive effort and supports the hypothesis that depensatory factors are impairing recovery in this species.
Dual Annual Spawning Races in Atlantic Sturgeon
Balazik, Matthew T.; Musick, John A.
2015-01-01
Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus, Acipenseridae) populations in the United States were listed as either endangered or threatened under the Endangered Species Act in 2012. Because of the endangered/threatened status, a better understanding of Atlantic sturgeon life-history behavior and habitat use is important for effective management. It has been widely documented that Atlantic sturgeon reproduction occurs from late winter to early summer, varying clinally with latitude. However, recent data show Atlantic sturgeon also spawn later in the year. The group that spawns later in the year seems to be completely separate from the spring spawning run. Recognition of the later spawning season has drastically modified estimates of the population status of Atlantic sturgeon in Virginia. With the combination of new telemetry data and historical documentation we describe a dual spawning strategy that likely occurs in various degrees along most, if not all, of the Atlantic sturgeon's range. Using new data combined with historical sources, a new spawning strategy emerges which managers and researchers should note when determining the status of Atlantic sturgeon populations and implementing conservation measures. PMID:26020631
Documentation of a Gulf sturgeon spawning site on the Yellow River, Alabama, USA
Kreiser, Brian R.; Berg, J.; Randall, M.; Parauka, F.; Floyd, S.; Young, B.; Sulak, Kenneth J.
2008-01-01
Parauka and Giorgianni (2002) reported that potential Gulf sturgeon spawning habitat is present in the Yellow River; however, efforts to document spawning by the collection of eggs or larvae have been unsuccessful in the past. Herein, we report on the first successful collection of eggs from a potential spawning site on the Yellow River and the verification of their identity as Gulf sturgeon by using molecular methods.
Spawning behaviour of Allis shad Alosa alosa: new insights based on imaging sonar data.
Langkau, M C; Clavé, D; Schmidt, M B; Borcherding, J
2016-06-01
Spawning behaviour of Alosa alosa was observed by high resolution imaging sonar. Detected clouds of sexual products and micro bubbles served as a potential indicator of spawning activity. Peak spawning time was between 0130 and 0200 hours at night. Increasing detections over three consecutive nights were consistent with sounds of mating events (bulls) assessed in hearing surveys in parallel to the hydro acoustic detection. In 70% of the analysed mating events there were no additional A. alosa joining the event whilst 70% of the mating events showed one or two A. alosa leaving the cloud. In 31% of the analysed mating events, however, three or more A. alosa were leaving the clouds, indicating that matings are not restricted to a pair. Imaging sonar is suitable for monitoring spawning activity and behaviour of anadromous clupeids in their spawning habitats. © 2016 The Fisheries Society of the British Isles.
Sexual reproduction of Acropora reef corals at Moorea, French Polynesia
NASA Astrophysics Data System (ADS)
Carroll, A.; Harrison, P.; Adjeroud, M.
2006-03-01
Little information is available on reproductive processes among corals in isolated central Pacific reef regions, including French Polynesia. This study examined the timing and mode of sexual reproduction for Acropora reef corals at Moorea. Spawning was observed and/or inferred in 110 Acropora colonies, representing 12 species, following full moon periods in September through November 2002. Gamete release was observed and inferred in four species of Acropora between 9 and 13 nights after the full moon (nAFM) in September 2002. Twelve Acropora spp. spawned gametes between 5 and 10 nAFM in October 2002, with six species spawning 7 nAFM and four species spawning 9 nAFM. In November 2002, spawning of egg and sperm bundles was observed and inferred in 27 colonies of Acropora austera, 6 nAFM. These are the first detailed records of spawning by Acropora corals in French Polynesia.
Broadcast spawning patterns of Favia species on the inshore reefs of Thailand
NASA Astrophysics Data System (ADS)
Kongjandtre, N.; Ridgway, T.; Ward, S.; Hoegh-Guldberg, O.
2010-03-01
To obtain a global perspective of coral reproductive patterns, there is a clear need for more descriptive studies from under-represented regions (e.g., Thailand). As such, this study provides the first data on the timing of gamete maturation and spawning of seven species of Favia from Thailand. Corals in the inner and eastern Gulf of Thailand (GOT) spawned following the full moons of February/March, whereas spawning in the southwestern GOT and the Andaman Sea occurred 1 month later following the full moons of March/April. Aquarium observations of five Favia species confirmed spawning between five and six nights after the respective full moon, with the time of release of gametes overlapping among species. Further research on gametogenesis in additional coral species is required to document whether the spawning patterns exhibited by Favia are typical of all coral species in Thailand.
Nelson, Bryan Raveen; Satyanarayana, Behara; Moh, Julia Hwei Zhong; Ikhwanuddin, Mhd; Chatterji, Anil; Shaharom, Faizah
2016-01-01
Tanjung Selongor and Pantai Balok (State Pahang) are the only two places known for spawning activity of the Malaysian horseshoe crab - Tachypleus gigas (Müller, 1785) on the east coast of Peninsular Malaysia. While the former beach has been disturbed by several anthropogenic activities that ultimately brought an end to the spawning activity of T. gigas, the status of the latter remains uncertain. In the present study, the spawning behavior of T. gigas at Pantai Balok (Sites I-III) was observed over a period of thirty six months, in three phases, between 2009 and 2013. Every year, the crab's nesting activity was found to be high during Southwest monsoon (May-September) followed by Northeast (November-March) and Inter monsoon (April and October) periods. In the meantime, the number of female T. gigas in 2009-2010 (Phase-1) was higher (38 crabs) than in 2010-2011 (Phase-2: 7 crabs) and 2012-2013 (Phase-3: 9 crabs) for which both increased overexploitation (for edible and fishmeal preparations) as well as anthropogenic disturbances in the vicinity (sand mining since 2009, land reclamation for wave breaker/parking lot constructions in 2011 and fishing jetty construction in 2013) are responsible. In this context, the physical infrastructure developments have altered the sediment close to nesting sites to be dominated by fine sand (2.5Xφ ) with moderately-well sorted (0.6-0.7σφ), very-coarse skewed (-2.4SKφ), and extremely leptokurtic (12.6Kφ) properties. Also, increased concentrations of Cadmium (from 4.2 to 13.6 mg kg(-1)) and Selenium (from 11.5 to 23.3 mg kg(-1)) in the sediment, and Sulphide (from 21 to 28 µg l(-1)) in the water were observed. In relation to the monsoonal changes affecting sheltered beach topography and sediment flux, the spawning crabs have shown a seasonal nest shifting behaviour in-between Sites I-III during 2009-2011. However, in 2012-2013, the crabs were mostly restricted to the areas (i.e., Sites I and II) with high oxygen (5.5-8.0 mg l(-1)) and moisture depth (6.2-10.2 cm). In view of the sustained anthropogenic pressure on the coastal habitats on one hand and decreasing horseshoe crabs population on the other, it is crucial to implement both conservation and management measures for T. gigas at Pantai Balok. Failing that may lead to the loss of this final spawning ground on the east coast of P. Malaysia.
Hayden, Todd A.; Binder, Thomas; Holbrook, Christopher; Vandergoot, Christopher; Fielder, David G.; Cooke, Steven J.; Dettmers, John M.; Krueger, Charles C.
2018-01-01
Fidelity to spawning habitats can maximise reproductive success of fish by synchronising movements to sites of previous recruitment. To determine the role of reproductive fidelity in structuring walleye Sander vitreus populations in the Laurentian Great Lakes, we used acoustic telemetry combined with Cormack–Jolly–Seber capture–recapture models to estimate spawning site fidelity and apparent annual survival for the Tittabawassee River in Lake Huron and Maumee River in Lake Erie. Walleye in spawning condition were tagged from the Tittabawassee River in Lake Huron and Maumee River in Lake Erie in 2011–2012. Site fidelity and apparent annual survival were estimated from return of individuals to the stream where tagged. Site fidelity estimates were higher in the Tittabawassee River (95%) than the Maumee River (70%) and were not related to sex or fish length at tagging. Apparent annual survival of walleye tagged in the Tittabawassee did not differ among spawning seasons but was higher for female than male walleye and decreased linearly as fish length increased. Apparent annual survival of walleye tagged in the Maumee River did not differ among spawning seasons but was higher for female walleye than male walleye and increased linearly as fish length increased. Greater fidelity of walleye tagged in the Tittabawassee River than walleye tagged in the Maumee River may be related to the close proximity to the Maumee River of other spawning aggregations and multiple spawning sites in Lake Erie. As spawning site fidelity increases, management actions to conserve population structure require an increasing focus on individual stocks.
Gulf sturgeon spawning migration and habitat in the Choctawhatchee River system, Alabama-Florida
Fox, D.A.; Hightower, J.E.; Parauka, F.M.
2000-01-01
Information about spawning migration and spawning habitat is essential to maintain and ultimately restore populations of endangered and threatened species of anadromous fish. We used ultrasonic and radiotelemetry to monitor the movements of 35 adult Gulf sturgeon Acipenser oxyrinchus desotoi (a subspecies of the Atlantic sturgeon A. oxyrinchus) as they moved between Choctawhatchee Bay and the Choctawhatchee River system during the spring of 1996 and 1997. Histological analysis of gonadal biopsies was used to determine the sex and reproductive status of individuals. Telemetry results and egg sampling were used to identify Gulf sturgeon spawning sites and to examine the roles that sex and reproductive status play in migratory behavior. Fertilized Gulf sturgeon eggs were collected in six locations in both the upper Choctawhatchee and Pea rivers. Hard bottom substrate, steep banks, and relatively high flows characterized collection sites. Ripe Gulf sturgeon occupied these spawning areas from late March through early May, which included the interval when Gulf sturgeon eggs were collected. For both sexes, ripe fish entered the Choctawhatchee River significantly earlier and at a lower water temperature and migrated further upstream than did nonripe fish. Males entered the Choctawhatchee River at a lower water temperature than females. Results from histology and telemetry support the hypothesis that male Gulf sturgeon may spawn annually, whereas females require more than 1 year between spawning events. Upper river hard bottom areas appear important for the successful spawning of Gulf sturgeon, and care should be taken to protect against habitat loss or degradation of known spawning habitat.
Mass spawning of corals on a high latitude coral reef
NASA Astrophysics Data System (ADS)
Babcock, R. C.; Wills, B. L.; Simpson, C. J.
1994-07-01
Evidence is presented that at least 60% of the 184 species of scleractinian corals found on reefs surrounding the Houtman Abrolhos Islands (Western Australia) participate in a late summer mass spawning. These populations are thus reproductively active, despite most species being at the extreme southern limit of their latitudinal range (28° 29°S). In the present study, coral mass spawning occurred in the same month on both temperate (Houtman-Abrolhos) and tropical (Ningaloo) reefs of Western Australia, despite more than two months difference in the timing of seasonal temperture minima between the two regions. This concurrence in the month of spawning suggests that temperature does not operate as a simple direct proximate cue for seasonal spawning synchrony in these populations. Seasonal variation in photoperiod may provide a similar and more reliable signal in the two regions, and thus might be more likely to synchronize the seasonal reproductive rhythms of these corals. Also there is overlap in the nights of mass spawning on the Houtman Abrolhos and tropical reefs of Western Australia, despite significant differences in tidal phase and amplitude between the two regions. This indicates that tidal cycle does not synchronize with the night(s) of spawning on these reefs. Spawning is more likely to be synchronised by lunar cycles. The co-occurrence of the mass spawning with spring tides in Houtman Abrolhos coral populations may be evidence of a genetic legacy inherited from northern, tropical ancestors. Micro-tidal regimes in the Houtman Abrolhos region may have exerted insufficient selective pressure to counteract this legacy.
Etheostoma brevirostrum (Holiday Darter)
Burkhead, Noel M.
2015-01-01
The life history of the Holiday Darter is incompletely known. Only reproductive behavior (Johnston and Shute 1997; Anderson 2009), habitat use, and spawning seasons (Anderson 2009) have been studied. However, based on similarity of life history attributes among snubnose darters (Carney and Burr 1989; Johnston and Haag 1996; Khudamrongsawat et al. 2005), the Holiday darter probably lives 3+ years and matures in the first year. It is likely a benthic omnivore, feeding primarily on chironomid (midge) larvae and other common orders of aquatic insects and occasional microcrustaceans. Spawning occurs from late March to early June, with most activity occurring in April. Based on four females from the Amicalola Creek system, fecundity ranged from 50 to 150 mature eggs, egg sizes ranged from 1.2mm to 1.6mm diameter. The Holiday Darter is an “egg attacher” (sensu Page and Swofford 1984). A spawning female is courted by multiple males, but a dominant (alpha) male aggressively rebuts encroaching males and defends a “roving territory” of the receptive female. The alpha male is the principal spawning partner although satellite males often rush a spawning pair. The receptive female slowly swims along the stream bottom, frequently stopping, apparently to assess substrate attributes, and selects each spawning site where only one or two eggs are spawned. The process is repeated and often covers several meters of stream bottom until the courted female finishes spawning and is abandoned by the alpha male. Water temperatures during spawning in Amicalola Creek and the upper Etowah River ranged 10 to 17° C (Anderson 2009).
Kootenai River velocities, depth, and white sturgeon spawning site selection – A mystery unraveled?
Paragamian, V.L.; McDonald, R.; Nelson, G.J.; Barton, G.
2009-01-01
The Kootenai River white sturgeon Acipenser transmontanus population in Idaho, US and British Columbia (BC), Canada became recruitment limited shortly after Libby Dam became fully operational on the Kootenai River, Montana, USA in 1974. In the USA the species was listed under the Endangered Species Act in September of 1994. Kootenai River white sturgeon spawn within an 18-km reach in Idaho, river kilometer (rkm) 228.0–246.0. Each autumn and spring Kootenai River white sturgeon follow a ‘short two-step’ migration from the lower river and Kootenay Lake, BC, to staging reaches downstream of Bonners Ferry, Idaho. Initially, augmented spring flows for white sturgeon spawning were thought to be sufficient to recover the population. Spring discharge mitigation enhanced white sturgeon spawning but a series of research investigations determined that the white sturgeon were spawning over unsuitable incubation and rearing habitat (sand) and that survival of eggs and larvae was negligible. It was not known whether post-Libby Dam management had changed the habitat or if the white sturgeon were not returning to more suitable spawning substrates farther upstream. Fisheries and hydrology researchers made a team effort to determine if the spawning habitat had been changed by Libby Dam operations. Researchers modeled and compared velocities, sediment transport, and bathymetry with post-Libby Dam white sturgeon egg collection locations. Substrate coring studies confirmed cobbles and gravel substrates in most of the spawning locations but that they were buried under a meter or more of post-Libby Dam sediment. Analysis suggested that Kootenai River white sturgeon spawn in areas of highest available velocity and depths over a range of flows. Regardless of the discharge, the locations of accelerating velocities and maximum depth do not change and spawning locations remain consistent. Kootenai River white sturgeon are likely spawning in the same locations as pre-dam, but post-Libby Dam water management has reduced velocities and shear stress, thus sediment is now covering the cobbles and gravels. Although higher discharges will likely provide more suitable spawning and rearing conditions, this would be socially and politically unacceptable because it would bring the river elevation to or in excess of 537.66 m, which is flood stage. Thus, support should be given to habitat modifications incorporated into a management plan to restore suitable habitat and ensure better survival of eggs and larvae.
Fredricks, Kim T.; Seelye, James G.
1995-01-01
We describe a water-recirculating system for inducing spawning of sea lampreys (Petromyzon marinus) held under laboratory conditions. Water temperature in the system was gradually increased to and maintained at 18 ± 2°C, the optimal temperature for spawning. About 10% freshwater was added daily to prevent buildup of waste products. Sea lampreys were provided substrate (approximately 3–6 cm in diameter) to build nests, and a water velocity of 0.2–0.3 m!s was maintained with an electric trolling motor. Sea lampreys held in this system exhibited characteristic spawning behavior. Prolarvae produced from artificial fertilization of gametes developed according to the standard timeline.
Storey, C.M.; Porter, B.A.; Freeman, Mary C.; Freeman, B.J.
2006-01-01
Etheostoma scotti (Cherokee darter) is a member of the subgenus Ulocentra and a federally threatened endemic to the Etowah River system, GA. Field observations of spawning behavior of the Cherokee darter were made at five stream sites to identify spawning season and habitat over two field seasons. Cherokee darters primarily spawn in pool habitats between mid-March and early June, at temperatures between 11 and 18 ?C. Egg deposition was typically on large gravel substrate, but ranged from gravel to bedrock in size and included woody debris. Spawning occurred in a variety of depths (0.09-0.59 m) and velocities (0-0.68 m/s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Shannon C.
2001-10-29
BPA proposes to fund a project with the Washington State Department of Fish and Wildlife that will restore historic spawning areas for chum salmon in Duncan Creek. Duncan Creek, a Washington tributary of the Columbia River, was traditionally an important spawning area for chum salmon. The spring seeps areas that chum historically used for spawning are still present in Duncan Creek, however during the past 30 years they have been covered by sediment and debris and infested with reed canary grass. This project proposes to rehabilitate these spawning channels in order to provide chum salmon with a protected spawning andmore » incubation environment. The proposed habitat rehabilitation project will include removing existing gravel in the seeps of Duncan Creek that contain mud, sand, and organics and replacing them with gravels that will maximize egg-to-fry survival rates for chum salmon. A trackhoe or similar equipment will be used to excavate the spawning sites. Invasive vegetation will be removed. Spawning channels will then be reconstructed using sediment free spawning gravels and base rock. Upon completion of work, all disturbed spring channel banks will be protected from erosion with staked coir fabric and revegetated with native willows. Plantings will help to restore native plant communities, increase stream channel shading, and reduce re-infestation by reed canary grass.« less
NASA Astrophysics Data System (ADS)
Orio, Alessandro; Bergström, Ulf; Casini, Michele; Erlandsson, Mårten; Eschbaum, Redik; Hüssy, Karin; Lehmann, Andreas; Ložys, Linas; Ustups, Didzis; Florin, Ann-Britt
2017-08-01
Identification of essential fish habitats (EFH), such as spawning habitats, is important for nature conservation, sustainable fisheries management and marine spatial planning. Two sympatric flounder (Platichthys flesus) ecotypes are present in the Baltic Sea, pelagic and demersal spawning flounder, both displaying ecological and physiological adaptations to the low-salinity environment of this young inland sea. In this study we have addressed three main research questions: 1) What environmental conditions characterize the spatial distribution and abundance of adult flounder during the spawning season? 2) What are the main factors defining the habitats of the two flounder ecotypes during the spawning season? 3) Where are the potential spawning areas of flounder? We modelled catch per unit of effort (CPUE) of flounder from gillnet surveys conducted over the southern and central Baltic Sea in the spring of 2014 and 2015 using generalized additive models. A general model included all the stations fished during the survey while two other models, one for the demersal and one for the pelagic spawning flounder, included only the stations where each flounder ecotype should dominate. The general model captured distinct ecotype-specific signals as it identified dual salinity and water depth responses. The model for the demersal spawning flounder revealed a negative relation with the abundance of round goby (Neogobius melanostomus) and a positive relation with Secchi depth and cod abundance. Vegetation and substrate did not play an important role in the choice of habitat for the demersal ecotype. The model for the pelagic spawning flounder showed a negative relation with temperature and bottom current and a positive relation with salinity. Spatial predictions of potential spawning areas of flounder showed a decrease in habitat availability for the pelagic spawning flounder over the last 20 years in the central part of the Baltic Sea, which may explain part of the observed changes in populations' biomass. We conclude that spatiotemporal modelling of habitat availability can improve our understanding of fish stock dynamics and may provide necessary biological knowledge for the development of marine spatial plans.
On the reproductive success of early-generation hatchery fish in the wild
Christie, Mark R; Ford, Michael J; Blouin, Michael S
2014-01-01
Large numbers of hatchery salmon spawn in wild populations each year. Hatchery fish with multiple generations of hatchery ancestry often have heritably lower reproductive success than wild fish and may reduce the fitness of an entire population. Whether this reduced fitness also occurs for hatchery fish created with local- and predominantly wild-origin parents remains controversial. Here, we review recent studies on the reproductive success of such ‘early-generation’ hatchery fish that spawn in the wild. Combining 51 estimates from six studies on four salmon species, we found that (i) early-generation hatchery fish averaged only half the reproductive success of their wild-origin counterparts when spawning in the wild, (ii) the reduction in reproductive success was more severe for males than for females, and (iii) all species showed reduced fitness due to hatchery rearing. We review commonalities among studies that point to possible mechanisms (e.g., environmental versus genetic effects). Furthermore, we illustrate that sample sizes typical of these studies result in low statistical power to detect fitness differences unless the differences are substantial. This review demonstrates that reduced fitness of early-generation hatchery fish may be a general phenomenon. Future research should focus on determining the causes of those fitness reductions and whether they lead to long-term reductions in the fitness of wild populations. PMID:25469167
Fisk, J. M.; Kwak, Thomas J.; Heise, R. J.
2014-01-01
A critical component of a species reintroduction is assessment of contemporary habitat suitability. The robust redhorse, Moxostoma robustum (Cope), is an imperilled catostomid that occupies a restricted range in the south-eastern USA. A remnant population persists downstream of Blewett Falls Dam, the terminal dam in the Pee Dee River, North Carolina. Reintroduction upstream of Blewett Falls Dam may promote long-term survival of this population. Tillery Dam is the next hydroelectric facility upstream, which includes a 30 rkm lotic reach. Habitat suitability indices developed in the Pee Dee River were applied to model suitable habitat for proposed minimum flows downstream of Tillery Dam. Modelling results indicate that the Tillery reach provides suitable robust redhorse habitat, with spawning habitat more abundant than non-spawning habitat. Sensitivity analyses suggested that suitable water depth and substrate were limiting physical habitat variables. These results can inform decisions on flow regulation and guide planning for reintroduction of the robust redhorse and other species.
Wippelhauser, Gail S.; Zydlewski, Gayle B.; Kieffer, Micah; Sulikowski, James; Kinnison, Michael T.
2015-01-01
Evidence has become available in this century indicating that populations of the endangered Shortnose Sturgeon Acipenser brevirostrum migrate outside their natal river systems, but the full extent and functional basis of these migrations are not well understood. Between 2007 and 2013, 40 Shortnose Sturgeon captured and tagged in four Gulf of Maine river systems migrated long distances in coastal waters to reach the Kennebec System where their movements were logged by an acoustic receiver array. Twenty-one (20%) of 104 Shortnose Sturgeon tagged in the Penobscot River, two (50%) of four tagged in the Kennebec System, one (50%) of two tagged in the Saco River, and 16 (37%) of 43 tagged in the Merrimack River moved to a previously identified spawning site or historical spawning habitat in the Kennebec System in spring. Most (65%) moved in early spring from the tagging location directly to a spawning site in the Kennebec System, whereas the rest moved primarily in the fall from the tagging location to a wintering site in that system and moved to a spawning site the following spring. Spawning was inferred from the location, behavior, and sexual status of the fish and from season, water temperature, and discharge, and was confirmed by the capture of larvae in some years. Tagged fish went to a known spawning area in the upper Kennebec Estuary (16 events) or the Androscoggin Estuary (14 events), an historical spawning habitat in the restored Kennebec River (8 events), or two spawning areas in a single year (7 events). We have provided the first evidence indicating that Shortnose Sturgeon spawn in the restored Kennebec River in an historical habitat that became accessible in 1999 when Edwards Dam was removed, 162 years after it was constructed. These results highlight the importance of the Kennebec System to Shortnose Sturgeon throughout the Gulf of Maine.
NASA Astrophysics Data System (ADS)
Kammel, L.; Pasternack, G. B.; Wyrick, J. R.; Massa, D.; Bratovich, P.; Johnson, T.
2012-12-01
Currently accepted perception assumes Oncorhynchus mykiss prefer different ranges of similar physical habitat elements for spawning than Chinook salmon (Oncorhynchus tshawytscha), taking into account their difference in size. While there is increasing research interest regarding O. mykiss habitat use and migratory behavior, research conducted to date distinguishing the physical habitat conditions utilized for O. mykiss spawning has not provided quantified understanding of their spawning habitat preferences. The purpose of this study was to use electivity indices and other measures to assess the physical habitat characteristics preferred for O. mykiss spawning in terms of both 1-m scale microhabitat attributes, and landforms at different spatial scales from 0.1-100 times channel width. The testbed for this study was the 37.5-km regulated gravel-cobble Lower Yuba River (LYR). Using spatially distributed 2D hydrodynamic model results, substrate mapping, and a census of O. mykiss redds from two years of observation, micro- and meso-scale representations of physical habitat were tested for their ability to predict spawning habitat preference and avoidance. Overall there was strong stratification of O. mykiss redd occurrence for all representation types of physical habitat. A strong preference of hydraulic conditions was shown for mean water column velocities of 1.18-2.25 ft/s, and water depths of 1.25-2.76 ft. There was a marked preference for the two most upstream alluvial reaches of the LYR (out of 8 total reaches), accounting for 92% of all redds observed. The preferred morphological units (MUs) for O. mykiss spawning were more variable than for Chinook salmon and changed with increasing discharge, demonstrating that O. mykiss shift spawning to different MUs in order to utilize their preferred hydraulic conditions. The substrate range preferred for O. mykiss spawning was within 32-90 mm. Overall, O. mykiss spawning behavior was highly predictable and required a holistic blend of hydraulic and geomorphic representations to explain.
Migration patterns of post-spawning Pacific herring in a subarctic sound
NASA Astrophysics Data System (ADS)
Bishop, Mary Anne; Eiler, John H.
2018-01-01
Understanding the distribution of Pacific herring (Clupea pallasii) can be challenging because spawning, feeding and overwintering may take place in different areas separated by 1000s of kilometers. Along the northern Gulf of Alaska, Pacific herring movements after spring spawning are largely unknown. During the fall and spring, herring have been seen moving from the Gulf of Alaska into Prince William Sound, a large embayment, suggesting that fish spawning in the Sound migrate out into the Gulf of Alaska. We acoustic-tagged 69 adult herring on spawning grounds in Prince William Sound during April 2013 to determine seasonal migratory patterns. We monitored departures from the spawning grounds as well as herring arrivals and movements between the major entrances connecting Prince William Sound and the Gulf of Alaska. Departures of herring from the spawning grounds coincided with cessation of major spawning events in the immediate area. After spawning, 43 of 69 tagged herring (62%) moved to the entrances of Prince William Sound over a span of 104 d, although most fish arrived within 10 d of their departure from the spawning grounds. A large proportion remained in these areas until mid-June, most likely foraging on the seasonal bloom of large, Neocalanus copepods. Pulses of tagged herring detected during September and October at Montague Strait suggest that some herring returned from the Gulf of Alaska. Intermittent detections at Montague Strait and the Port Bainbridge passages from September through early January (when the transmitters expired) indicate that herring schools are highly mobile and are overwintering in this area. The pattern of detections at the entrances to Prince William Sound suggest that some herring remain in the Gulf of Alaska until late winter. The results of this study confirm the connectivity between local herring stocks in Prince William Sound and the Gulf of Alaska.
Roufidou, Chrysoula; Schmitz, Monika; Mayer, Ian; Sebire, Marion; Katsiadaki, Ioanna; Shao, Yi Ta; Borg, Bertil
2018-02-01
Female three-spined sticklebacks are batch spawners laying eggs in a nest built by the male. We sampled female sticklebacks at different time points, when they were ready to spawn and 6, 24, 48 and 72h post-spawning (hps) with a male. Following spawning, almost all females (15 out of 19) had ovulated eggs again at Day 3 post-spawning (72hps). At sampling, plasma, brain and pituitaries were collected, and the ovary and liver were weighed. Testosterone (T) and estradiol (E2) were measured by radioimmunoassay. Moreover, the mRNA levels of follicle-stimulating hormone (fsh-β) and luteinizing hormone (lh-β) in the pituitary, and of the gonadotropin-releasing hormones (GnRHs: gnrh2, gnrh3) and kisspeptin (kiss2) and its G protein-coupled receptor (gpr54) in the brain were measured by real-time qPCR. Ovarian weights peaked in "ready to spawn" females, dropped after spawning, before again progressively increasing from 6 to 72hps. Plasma T levels showed peaks at 24 and 48hps and decreased at 72hps, while E2 levels increased already at 6hps and remained at high levels up to 48hps. There was a strong positive correlation between T and E2 levels over the spawning cycle. Pituitary lh-β mRNA levels showed a peak at 48hps, while fsh-β did not change. The neuropeptides and gpr54 did not show any changes. The changes in T and E2 over the stickleback spawning cycle were largely consistent with those found in other multiple-spawning fishes whereas the marked correlation between T and E2 does not support T having other major roles over the cycle than being a precursor for E2. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Chemosterilization of the sea lamprey (Petromyzon marinus)
Hanson, Lee H.; Manion, Patrick J.
1978-01-01
The chemical, P,P-bis(1-aziridinyl)-N-methylphosphinothioic amide (bisazir), was found in laboratory studies to be an effective sterilant for both sexes of adult sea lampreys (Petromyzon marinus) when given intraperitoneally at a dosage of 100 mg per kilogram of body weight. A total of 300 normal spawning-run sea lampreys and 300 injected with bisazir were released into the Big Garlic River, Marquette County, Michigan, (a small stream divided into five sections by natural barriers), to determine the effect of bisazir on the nesting and spawning behavior of the adults and on the production of larvae. The lampreys constructed and spawned in 95 nests. Sterile adults showed no abnormal nest building or spawning behavior. Sterile males competed effectively with normal males for females. Egg samples taken from nests indicated that eggs in nests where sterile males spawned with sterile or normal females did not hatch, although some embryonic development occurred. Extensive surveys with electric shockers produced no larvae in stream sections where sterile males spawned, but yielded numerous larvae in sections where normal males spawned with normal females. These findings suggest that the release of sterile males may be an effective tool in an integrated approach to control of sea lampreys in the Great Lakes.
Smith, D.R.; Michels, S.F.
2006-01-01
As in John Godfrey Saxe's poem about six blind men and an elephant, conclusions drawn from a monitoring program depend critically on where and when observations are made. We examined results from the Delaware Bay horseshoe crab (Limulus polyphemus) spawning survey to evaluate the effect of spatial and temporal coverage on conclusions about spawning activity. Declines due to previously unregulated harvest triggered an increase in monitoring. Although we detected no apparent trend in bay-wide spawning activity for 1999-2005, conclusions would have differed depending on where and when observations were made. For example, spawning activity in May during the shorebird stopover was a poor predictor of spawning activity over the whole season. Observations made only during peak spawning incorrectly suggested that spawning activity increased during 2001-2005. Trends at one place in the bay were not indicative of trends for the whole bay. Many natural resource issues begin like the blind men and the elephant with dispute partially caused by an incomplete picture of the resource. As sufficient time and funds are directed to gathering necessary data using effective sampling designs, a more complete picture can emerge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rondorf, Dennis W.; Tiffan, Kenneth F.
1996-08-01
Spawning ground surveys were conducted in 1994 as part of a five year study of Snake River chinook salmon Oncorhynchus tshawyacha begun in 1991. Observations of fall chinook salmon spawning in the Snake River were limited to infrequent aerial red counts in the years prior to 1987. From 1987-1990, red counts were made on a limited basis by an interagency team and reported by the Washington Department of Fisheries. Starting in 1991, the U.S. Fish and Wildlife Service (USFWS), and other cooperating agencies and organizations, expanded the scope of spawning ground surveys to include: (1) additional aerial surveys to improvemore » red counts and provide data on the timing of spawning; (2) the validation (ground truthing) of red counts from aerial surveys to improve count accuracy; (3) underwater searches to locate reds in water too deep to allow detection from the air; and (4) bathymetric mapping of spawning sites for characterizing spawning habitat. This document is the 1994 annual progress report for selected studies of fall chinook salmon. The studies were undertaken because of the growing concern about the declining salmon population in the Snake River basin.« less
Spawning site fidelity of wild and hatchery lake trout (Salvelinus namaycush) in northern Lake Huron
Binder, Thomas; Riley, Stephen C.; Holbrook, Christopher; Hansen, Michael J.; Bergstedt, Roger A.; Bronte, Charles R.; He, Ji; Krueger, Charles C.
2016-01-01
Fidelity to high-quality spawning sites helps ensure that adults repeatedly spawn at sites that maximize reproductive success. Fidelity is also an important behavioural characteristic to consider when hatchery-reared individuals are stocked for species restoration, because artificial rearing environments may interfere with cues that guide appropriate spawning site selection. Acoustic telemetry was used in conjunction with Cormack–Jolly–Seber capture–recapture models to compare degree of spawning site fidelity of wild and hatchery-reared lake trout (Salvelinus namaycush) in northern Lake Huron. Annual survival was estimated to be between 77% and 81% and did not differ among wild and hatchery males and females. Site fidelity estimates were high in both wild and hatchery-reared lake trout (ranging from 0.78 to 0.94, depending on group and time filter), but were slightly lower in hatchery-reared fish than in wild fish. The ecological implication of the small difference in site fidelity between wild and hatchery-reared lake trout is unclear, but similarities in estimates suggest that many hatchery-reared fish use similar spawning sites to wild fish and that most return to those sites annually for spawning.
Boyer, Jan K.; Guy, Christopher S.; Webb, Molly A. H.; Horton, Travis B.; McMahon, Thomas E.
2017-01-01
Mountain Whitefish Prosopium williamsoni were historically common throughout much of the U.S. Intermountain West. However, within the last decade Mountain Whitefish have exhibited population-level declines in some rivers. In the Madison River, Montana, anecdotal evidence indicates Mountain Whitefish abundance has declined and the population is skewed toward larger individuals, which is typically symptomatic of recruitment problems. Describing reproductive development, spawning behavior, and juvenile distribution will form a foundation for investigating mechanisms influencing recruitment. We collected otoliths and gonadal samples from fish of all size-classes to characterize fecundity, age at maturity, and spawning periodicity. We implanted radio tags in mature Mountain Whitefish and relocated tagged fish in autumn 2012–2014. Timing of spawning was determined from spawning status of captured females and from density of eggs collected on egg mats. In spring 2014, we seined backwater and channel sites to describe age-0 whitefish distribution. Mountain Whitefish were highly fecund (18,454 eggs/kg body weight) annual spawners, and age at 50% maturity was 2.0 years for males and 2.6 years for females. In 2013 and 2014, spawning occurred between the third week of October and first week of November. During spawning, spawning adults and collected embryos were concentrated in the downstream 26 km of the study site, a reach characterized by a complex, braided channel. This reach had the highest CPUE of age-0 Mountain Whitefish, and the percentage of spawning adults in the 25 km upstream from a sampling site was positively associated with juvenile CPUE. Within this reach, age-0 Mountain Whitefish were associated with silt-laden backwater and eddy habitats. Future investigations on mechanisms influencing recruitment should be focused on the embryological phase and age-0 fish.
Boegehold, Anna G.; Johnson, Nicholas; Ran, Jeffrey L.; Kashian, Donna R.
2018-01-01
Quagga mussels (Dreissena rostriformis bugensis) are highly fecund broadcast spawners invasive to freshwaters of North America and western Europe. We hypothesized that environmental cues from phytoplankton can trigger gamete release in quagga mussels. Nutritious algae may stimulate dreissenid spawning, but less palatable food, such as bloom-forming cyanobacteria, could be a hindrance. The objective of our study was to test whether exposure to cyanobacteria can inhibit quagga mussel spawning and fertilization. We assessed spawning in the presence of serotonin, a known spawning inducer, where adult quagga mussels placed in individual vials were exposed to 13 cyanobacteria cultures and purified algal toxin (microcystin-LR) with artificial lake water as the control. Fertilization success was evaluated by combining eggs with sperm in conjunction with cyanobacteria, and enumerating zygote formation marked by cellular cleavage. Several cyanobacterial strains reduced spawning and fertilization success, but microcystin-LR had no effect. Fertilization was more sensitive to cyanobacteria than gamete release. Only 1 culture, Aphanizomenon flos-aquae, inhibited spawning, whereas 6 cultures consisting of Anabaena flos-aquae, Dolichospermum lemmermanii, Gloeotrichia echinulata, Lyngbya wollei, and 2 Microcystis aeruginosa isolates reduced fertilization rates by up to 44%. The effects of cyanobacteria on reproduction in invasive freshwater mussels in the wild have not yet been identified. However, our laboratory studies show that concentrations of cyanobacteria that are possible during bloom conditions probably limit reproduction. Reproductive consequences on wild populations may become more prevalent as cyanobacteria blooms occur earlier in the year, making overlap between blooms and mussel spawning more common. Describing the mechanism by which cyanobacteria inhibit spawning and fertilization could reveal novel control methods to limit reproduction of this invasive species.
Wakefield, C B
2010-10-01
Ichthyoplankton sampling and ovarian characteristics were used to elucidate whether the reproductive cycles of a spawning aggregation of snapper Pagrus auratus in a nearshore marine embayment were temporally and spatially specific and related with environmental conditions. The reproductive dynamics of this aggregation were studied over four consecutive years (2001-2004). Spawning occurred between September and January each year, when water temperatures ranged from 15·8 to 23·1° C. In all 4 years, the cumulative egg densities in Cockburn Sound were highest when water temperatures were between the narrow range of 19-20° C. The spawning fraction of females was monthly bimodal and peaked during new and the full moons at 96-100% and c. 75%, respectively. The backcalculated ages of P. auratus eggs collected from 16 ichthyoplankton surveys demonstrated that P. auratus in Cockburn Sound spawn at night during the 3 h following the high tide. The spatial distributions of P. auratus eggs in Cockburn Sound during the peak reproductive period in all 4 years were consistent, further implying spawning was temporally and spatially specific. High concentrations of recently spawned eggs (8-16 h old) demonstrated spawning also occurred within the adjacent marine embayments of Owen Anchorage and Warnbro Sound. Water circulation in Cockburn and Warnbro Sounds resembled an eddy that was most prominent during the period of highest egg densities, thereby facilitating the retention of eggs in these areas. The reproductive cycles of P. auratus described in this study have assisted managers with the appropriate temporal and spatial scale for a closed fishing season to protect these spawning aggregations. © 2010 The Author. Journal compilation © 2010 The Fisheries Society of the British Isles.
Goodman, B.J.; Guy, C.S.; Camp, S.L.; Gardner, W.M.; Kappenman, K.M.; Webb, M.A.H.
2013-01-01
Many lotic fish species use natural patterns of variation in discharge and temperature as spawning cues, and these natural patterns are often altered by river regulation. The effects of spring discharge and water temperature variation on the spawning of shovelnose sturgeon Scaphirhynchus platorynchus have not been well documented. From 2006 through 2009, we had the opportunity to study the effects of experimental discharge levels on shovelnose sturgeon spawning in the lower Marias River, a regulated tributary to the Missouri River in Montana. In 2006, shovelnose sturgeon spawned in the Marias River in conjunction with the ascending, peak (134 m3/s) and descending portions of the spring hydrograph and water temperatures from 16°C to 19°C. In 2008, shovelnose sturgeon spawned in conjunction with the peak (118 m3/s) and descending portions of the spring hydrograph and during a prolonged period of increased discharge (28–39 m3/s), coupled with water temperatures from 11°C to 23°C in the lower Marias River. No evidence of shovelnose sturgeon spawning was documented in the lower Marias River in 2007 or 2009 when discharge remained low (14 and 20 m3/s) despite water temperatures suitable and optimal (12°C-24°C) for shovelnose sturgeon embryo development. A similar relationship between shovelnose sturgeon spawning and discharge was observed in the Teton River. These data suggest that discharge must reach a threshold level (28 m3/s) and should be coupled with water temperatures suitable (12°C-24°C) or optimal (16°C-20°C) for shovelnose sturgeon embryo development to provide a spawning cue for shovelnose sturgeon in the lower Marias River.
Spawning by Rhinichthys osculus (Cyprinidae), in the San Francisco River, New Mexico
Mueller, Gordon A.
1984-01-01
The speckles dace Rhinichthys osculus [Girard] is the most widely distributed and ubiquitous fish in the western United States (Moyle, Inland Fishes of California, 1976). Although common, very little information is available concerning thje reproductive behavior of speckled dace or the environmental cues which trigger spawning activity. Several hundred speckled dace were observed spawning in the San Francisco River, 4.8 km upstream from Reserve, Catron County, New Mexico, on June 2-3, 1981. Spawning was in an area of disturbed substrate at a time when other reaches of the streambed were overgrown with diatoms, filamentous algae, and macrophytes. This note described the spawning site and reproductive behavior and proposes that physical disturbance is a major cue for reproductive activity in the species.
Mulcahy, D.; Jenes, C.K.; Pascho, R.J.
1984-01-01
The incidence and amount of infectious hematopoietic necrosis (IHN) virus was determined in 10 organs and body fluids from each of 100 female sockeye salmon(Oncorhynchus nerka) before, during, and after their spawning migration into freshwater. Virus was found in high concentrations only in fish sampled during and after spawning. Infection rates increased from nil to 100 percent within 2 weeks. In spawning fish, incidences of IHN virus were high in all organs and fluids except brain and serum, and the highest concentrations were in the pyloric caeca and lower gut. Immediately before spawning, IHN virus was found most frequently in the gills, less frequently in the pyloric caeca and spleen, and rarely in other organs.
Sisneros, Joseph A
2009-03-01
The plainfin midshipman fish (Porichthys notatus Girard, 1854) is a vocal species of batrachoidid fish that generates acoustic signals for intraspecific communication during social and reproductive activity and has become a good model for investigating the neural and endocrine mechanisms of vocal-acoustic communication. Reproductively active female plainfin midshipman fish use their auditory sense to detect and locate "singing" males, which produce a multiharmonic advertisement call to attract females for spawning. The seasonal onset of male advertisement calling in the midshipman fish coincides with an increase in the range of frequency sensitivity of the female's inner ear saccule, the main organ of hearing, thus leading to enhanced encoding of the dominant frequency components of male advertisement calls. Non-reproductive females treated with either testosterone or 17β-estradiol exhibit a dramatic increase in the inner ear's frequency sensitivity that mimics the reproductive female's auditory phenotype and leads to an increased detection of the male's advertisement call. This novel form of auditory plasticity provides an adaptable mechanism that enhances coupling between sender and receiver in vocal communication. This review focuses on recent evidence for seasonal reproductive-state and steroid-dependent plasticity of auditory frequency sensitivity in the peripheral auditory system of the midshipman fish. The potential steroid-dependent mechanism(s) that lead to this novel form of auditory and behavioral plasticity are also discussed. © 2009 ISZS, Blackwell Publishing and IOZ/CAS.
Chemical regulation of spawning in the zebra mussel (Dreissena polymorpha)
Ram, Jeffrey L.; Nichols, S. Jerrine; Nalepa, Thomas F.; Schloesser, Donald W.
1992-01-01
Previous literature suggests that spawning in bivalves is chemically regulated, both by environmental chemical cues and by internal chemical mediators. In a model proposed for zebra mussels, chemicals from phytoplankton initially trigger spawning, and chemicals associated with gametes provide further stimulus for spawning. The response to environmental chemicals is internally mediated by a pathway utilizing serotonin (5-hydroxytryptamine, a neurotransmitter), which acts directly on both male and female gonads. The role of serotonin and most other aspects of the model have been tested only on bivalves other than zebra mussels. The effect of serotonin on zebra mussel spawning was tested. Serotonin (10-5 and 10-3 M) injected into ripe males induced spawning, but injection of serotonin into females did not. Gametes were not released by 10-6 serotonin; in most cases, serotonin injection did not release gametes from immature recipients. Serotonin injection provides a reliable means for identifying ripe male zebra mussels and for obtaining zebra mussel sperm without the need for dissection.
Spatio-temporal dynamics of a fish spawning aggregation and its fishery in the Gulf of California
Erisman, Brad; Aburto-Oropeza, Octavio; Gonzalez-Abraham, Charlotte; Mascareñas-Osorio, Ismael; Moreno-Báez, Marcia; Hastings, Philip A.
2012-01-01
We engaged in cooperative research with fishers and stakeholders to characterize the fine-scale, spatio-temporal characteristics of spawning behavior in an aggregating marine fish (Cynoscion othonopterus: Sciaenidae) and coincident activities of its commercial fishery in the Upper Gulf of California. Approximately 1.5–1.8 million fish are harvested annually from spawning aggregations of C. othonopterus during 21–25 days of fishing and within an area of 1,149 km2 of a biosphere reserve. Spawning and fishing are synchronized on a semi-lunar cycle, with peaks in both occurring 5 to 2 days before the new and full moon, and fishing intensity and catch are highest at the spawning grounds within a no-take reserve. Results of this study demonstrate the benefits of combining GPS data loggers, fisheries data, biological surveys, and cooperative research with fishers to produce spatio-temporally explicit information relevant to the science and management of fish spawning aggregations and the spatial planning of marine reserves. PMID:22359736
Foote, C.J.; Brown, G.S.
1998-01-01
The interaction between two sculpin species, Cottus cognatus and Cottus aleuticus, and island beach spawning sockeye salmon (Oncorhynchus nerka) was examined in Iliamna Lake, Alaska. We conclude that sculpins actively move to specific spawning beaches and that the initiation of their movements precedes the start of spawning. Sculpin predation on sockeye eggs is positively dependent on sculpin size and on the state of the eggs (fresh versus water hardened), with the largest sculpins able to consume nearly 50 fresh eggs at a single feeding and 130 over a 7-day period. The number of sculpins in sockeye nests is greatest at the beginning of the spawning run, lowest in the middle, and high again at the end, with peak numbers of over 100 sculpins per nest (1 m2). We discuss the results in terms of energy flow of marine-derived nutrients into an oligotrophic system and in terms of the coevolution of sockeye spawning behavior and the predatory behavior of sculpins.
Riley, Stephen; Binder, Thomas R.; Tucker, Taaja R.; Menzies, John; Eyles, Nick; Janssen, John; Muir, Andrew M.; Esselman, Peter C.; Wattrus, Nigel J.; Krueger, Charles C.
2016-01-01
Lake trout Salvelinus namaycush, lake whitefish Coregonus clupeaformis and cisco Coregonus artedi are salmonid fishes native to the Laurentian Great Lakes that spawn on rocky substrates in the fall and early winter. After comparing the locations of spawning habitat for these species in the main basin of Lake Huron with surficial substrates and the hypothesized locations of fast-flowing Late Wisconsinan paleo-ice streams, we hypothesize that much of the spawning habitat for these species in Lake Huron is the result of deposition and erosion by paleo-ice streams. This hypothesis may represent a new framework for the identification and protection of spawning habitat for these native species, some of which are currently rare or extirpated in some of the Great Lakes. We further suggest that paleo-ice streams may have been responsible for the creation of native salmonid spawning habitat elsewhere in the Great Lakes and in other glaciated landscapes.
NASA Astrophysics Data System (ADS)
Schindler, Yael; Michel, Christian; Holm, Patricia; Alewell, Christine
2010-05-01
The hyporheic zone can be characterized by multiple abiotic parameters (e.g. bulk density, texture, temperature, oxygen, ammonium, nitrate) which are all influenced directly or indirectly by the exchange processes between surface water and groundwater. These processes can vary both in time and space and are mainly driven by river discharge, ground water level and flow patterns. The input of fine sediment particles can change water-riverbed interactions through river bed clogging potentially affecting the embryonal development and survival of gravel spawning fish, such as brown trout (Salmo trutta L.). With our investigations we aim to understand these complex interactions spatially and temporally on a relevant small scale, i.e. within individual artificial brown trout redds. We designed an experimental field setup to directly investigate i) the influence of the abiotic river and redd environment on brown trout embryo development and ii) the hydrological dynamics affecting the abiotic environment in artificial brown trout. Additionally, our setup allows investigating the temporal dynamics of i) fine-sediment infiltration into the artificial redds and ii) embryo survival to two distinct developmental stages (i.e. eyed stage and hatch) The experiment was conducted in three sites of a typical Swiss river (Enziwigger, Canton of Luzern) with a strongly modified morphology. Individual sites represented a high, medium and low fine-sediment load. In each site, six artificial redds (18 in total) were built and data were collected during the entire incubation phase. Redds were located in places where natural spawning of brown trout is present. We adapted multiple established methods to the smaller scale of our river to study the dynamics of the most relevant abiotic parameters potentially affecting embryo development: Oxygen content and temperature was monitored continuously in different depths, fine sediment (bedload, suspended sediment load and its input in the river bed) was measured weekly and water samples for DOC and nitrogen components analysis were collected regularly. In addition, all redds were equipped with mini piezometers to measure the hydraulic gradient through the redds. Finally, water stage and turbidity were monitored continuously. Results of the first spawning season will be presented. Dynamic of abiotic parameters and their influence on spawning of brown trout will be discussed.
Smith, D.R.; Jackson, N.L.; Nordstrom, K.F.; Weber, R.G.
2011-01-01
Disruption of food availability by unfavorable physical processes at energetically demanding times can limit recruitment of migratory species as predicted by the match-mismatch hypothesis. Identification and protection of disruption-resistant habitat could contribute to system resilience. For example, horseshoe crab Limulus polyphemus spawning and shorebird stopover must match temporally in Delaware Bay for eggs to be available to shorebirds. Onshore winds that generate waves can create a mismatch by delaying horseshoe crab spawning. We examined effects of beach characteristics and onshore winds on spawning activity at five beaches when water temperatures were otherwise consistent with early spawning activity. Onshore winds resulted in reduced spawning activity during the shorebird stopover, when spawning typically peaks in late May. During the period with high onshore wind, egg density was highest on the foreshore exposed to the lowest wave heights. Onshore wind was low in early June, and spawning and egg densities were high at all sites, but shorebirds had departed. Beaches that can serve as a refuge from wind and waves can be identified by physical characteristics and orientation to prevailing winds and should receive special conservation status, especially in light of predicted increases in climate change-induced storm frequency. These results point to a potential conservation strategy that includes coastal management for adapting to climate change-induced mismatch of migrations. ?? 2011 The Authors. Animal Conservation ?? 2011 The Zoological Society of London.
Delineating recurrent fish spawning habitats in the North Sea
NASA Astrophysics Data System (ADS)
Lelièvre, S.; Vaz, S.; Martin, C. S.; Loots, C.
2014-08-01
The functional value of spawning habitats makes them critically important for the completion of fish life cycles and spawning grounds are now considered to be “essential habitats”. Inter-annual fluctuations in spawning ground distributions of dab (Limanda Limanda), plaice (Pleuronectes platessa), cod (Gadus morhua) and whiting (Merlangius merlangus) were investigated in the southern North Sea and eastern English Channel, from 2006 to 2009. The preferential spawning habitats of these species were modelled using generalised linear models, with egg distribution being used as proxy of spawners' location. Egg spatial and temporal distributions were explored based on six environmental variables: sea surface temperature and salinity, chlorophyll a concentration, depth, bedstress and seabed sediment types. In most cases, egg density was found to be strongly related to these environmental variables. Egg densities were positively correlated with shallow to intermediate depths having low temperature and relatively high salinity. Habitat models were used to map annual, i.e. 2006 to 2009, winter spatial distributions of eggs, for each species separately. Then, annual maps were combined to explore the spatial variability of each species' spawning grounds, and define recurrent, occasional, rare and unfavourable spawning areas. The recurrent spawning grounds of all four species were located in the south-eastern part of the study area, mainly along the Dutch and German coasts. This study contributes knowledge necessary to the spatial management of fishery resources in the area, and may also be used to identify marine areas with particular habitat features that need to be preserved.
Response of ecosystem metabolism to low densities of spawning Chinook salmon
Benjamin, Joseph R.; Bellmore, J. Ryan; Watson, Grace A.
2016-01-01
Marine derived nutrients delivered by large runs of returning salmon are thought to subsidize the in situ food resources that support juvenile salmon. In the Pacific Northwest, USA, salmon have declined to <10% of their historical abundance, with subsequent declines of marine derived nutrients once provided by large salmon runs. We explored whether low densities (<0.001 spawners/m2) of naturally spawning Chinook Salmon (Oncorhynchus tshawytscha) can affect ecosystem metabolism. We measured gross primary production (GPP) and ecosystem respiration (ER) continuously before, during, and after salmon spawning. We compared downstream reaches with low densities of spawning salmon to upstream reaches with fewer or no spawners in 3 mid-sized (4th-order) rivers in northern Washington. In addition, we measured chemical, physical, and biological factors that may be important in controlling rates of GPP and ER. We observed that low densities of spawning salmon can increase GPP by 46% during spawning, but values quickly return to those observed before spawning. No difference in ER was observed between up- and downstream reaches. Based on our results, salmon density, temperature, and the proximity to salmon redds were the most important factors controlling rates of GPP, whereas temperature was most important for ER. These results suggest that even at low spawning densities, salmon can stimulate basal resources that may propagate up the food web. Understanding how recipient ecosystems respond to low levels of marine derived nutrients may inform nutrient augmentation studies aimed at enhancing fish populations.
Thermal growth potential of Atlantic cod by the end of the 21st century.
Butzin, Martin; Pörtner, Hans-Otto
2016-12-01
Ocean warming may lead to smaller body sizes of marine ectotherms, because metabolic rates increase exponentially with temperature while the capacity of the cardiorespiratory system to match enhanced oxygen demands is limited. Here, we explore the impact of rising sea water temperatures on Atlantic cod (Gadus morhua), an economically important fish species. We focus on changes in the temperature-dependent growth potential by a transfer function model combining growth observations with climate model ensemble temperatures. Growth potential is expressed in terms of asymptotic body weight and depends on water temperature. We consider changes between the periods 1985-2004 and 2081-2100, assuming that future sea water temperatures will evolve according to climate projections for IPCC AR5 scenario RCP8.5. Our model projects a response of Atlantic cod to future warming, differentiated according to ocean regions, leading to increases of asymptotic weight in the Barents Sea, while weights are projected to decline at the southern margin of the biogeographic range. Southern spawning areas will disappear due to thermal limitation of spawning stages. These projections match the currently observed biogeographic shifts and the temperature- and oxygen-dependent decline in routine aerobic scope at southern distribution limits. © 2016 John Wiley & Sons Ltd.
29 CFR 780.113 - Seeds, spawn, etc.
Code of Federal Regulations, 2013 CFR
2013-07-01
....” Thus, since mushrooms and beans are considered “agricultural or horticultural commodities,” the spawn of mushrooms and bean sprouts are also so considered and the production, cultivation, growing, and harvesting of mushroom spawn or bean sprouts is “agriculture” within the meaning of section 3(f). ...
29 CFR 780.113 - Seeds, spawn, etc.
Code of Federal Regulations, 2012 CFR
2012-07-01
....” Thus, since mushrooms and beans are considered “agricultural or horticultural commodities,” the spawn of mushrooms and bean sprouts are also so considered and the production, cultivation, growing, and harvesting of mushroom spawn or bean sprouts is “agriculture” within the meaning of section 3(f). ...
29 CFR 780.113 - Seeds, spawn, etc.
Code of Federal Regulations, 2011 CFR
2011-07-01
....” Thus, since mushrooms and beans are considered “agricultural or horticultural commodities,” the spawn of mushrooms and bean sprouts are also so considered and the production, cultivation, growing, and harvesting of mushroom spawn or bean sprouts is “agriculture” within the meaning of section 3(f). ...
29 CFR 780.113 - Seeds, spawn, etc.
Code of Federal Regulations, 2014 CFR
2014-07-01
....” Thus, since mushrooms and beans are considered “agricultural or horticultural commodities,” the spawn of mushrooms and bean sprouts are also so considered and the production, cultivation, growing, and harvesting of mushroom spawn or bean sprouts is “agriculture” within the meaning of section 3(f). ...
18 CFR 1304.411 - Fish attractor, spawning, and habitat structures.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Fish attractor, spawning... OTHER ALTERATIONS Miscellaneous § 1304.411 Fish attractor, spawning, and habitat structures. Fish attractors constitute potential obstructions and require TVA approval. (a) Fish attractors may be constructed...
29 CFR 780.113 - Seeds, spawn, etc.
Code of Federal Regulations, 2010 CFR
2010-07-01
....” Thus, since mushrooms and beans are considered “agricultural or horticultural commodities,” the spawn of mushrooms and bean sprouts are also so considered and the production, cultivation, growing, and harvesting of mushroom spawn or bean sprouts is “agriculture” within the meaning of section 3(f). ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paragamian, Vaughn L.; Kruse, Gretchen L.; Wakkinen, Virginia
2001-11-01
Sampling for adult Kootenai River white sturgeon Acipenser transmontanus began in March and continued through April 1999. Forty-six adult sturgeon were captured with 4,091 hours of angling and set-lining effort, while an additional three adult sturgeon were captured during gillnetting for juveniles. Flows for Kootenai River white sturgeon spawning were expected to be high because the snow pack in the basin was estimated at 130% of normal, but runoff came very slowly. Discharge from Libby Dam from mid-March through mid-June was maintained at 113 m{sup 3}/s (4,000 cfs). Flows in the Kootenai River at Bonners Ferry during early April, includingmore » local inflow, were 227-255 m{sup 3}/s (8,000-9,000 cfs) but increased gradually in late April to a peak of 657 m{sup 3}/s (23,200 cfs). Flows subsided in early May to about 340 m{sup 3}/s (12,000 cfs), but rose to 1,031 m{sup 3}/s (36,370 cfs) by Mary 26 because of local runoff, and white sturgeon began spawning. However, flows subsided again to 373 m{sup 3}/s (13,200 cfs) June 11, 1999 and some female white sturgeon with transmitters began leaving the spawning reach. Water temperature ranged from about 8 C to 10 C (45 F to 50 F) during these two weeks. On June 13 (two weeks after sturgeon began spawning), spawning and incubation flows from Libby Dam began. The flow was brought up to 1,136 m{sup 3}/s (40,100 cfs) and temperature rose to about 11 C (52 F). They sampled for 3,387 mat days (one mat day is a single 24 h set) with artificial substrate mats and captured 184 white sturgeon eggs. The Middle Shorty's Island reach (river kilometer [rkm] 229.6-231.5) produced the most eggs (144), with 388 mat days of effort; the Refuge section (rkm 234.8 to 237.5) with 616 mat days of effort produced 23 eggs; and the Lower Shorty's section produced 19 eggs with 548 days of mat effort. No eggs were collected above the Refuge section (> rkm 240.5) with 988 mat days of effort. They do not believe flows for sturgeon spawning in 1999 were very time for adequate spawning. Most spawning is thought to have occurred before the spawning flows, when 66% of the spawning events and 87% of the eggs were collected. Recommendations for the 2000 spawning season are given.« less
Contemporary divergence in early life history in grayling (Thymallus thymallus).
Thomassen, Gaute; Barson, Nicola J; Haugen, Thrond O; Vøllestad, L Asbjørn
2011-12-13
Following colonization of new habitats and subsequent selection, adaptation to environmental conditions might be expected to be rapid. In a mountain lake in Norway, Lesjaskogsvatnet, more than 20 distinct spawning demes of grayling have been established since the lake was colonized, some 20-25 generations ago. The demes spawn in tributaries consistently exhibiting either colder or warmer temperature conditions during spawning in spring and subsequent early development during early summer. In order to explore the degree of temperature-related divergence in early development, a multi-temperature common-garden experiment was performed on embryos from four different demes experiencing different spring temperatures. Early developmental characters were measured to test if individuals from the four demes respond differently to the treatment temperatures. There was clear evidence of among-deme differences (genotype - environment interactions) in larval growth and yolk-to-body-size conversion efficiency. Under the cold treatment regime, larval growth rates were highest for individuals belonging to cold streams. Individuals from warm streams had the highest yolk-consumption rate under cold conditions. As a consequence, yolk-to-body-mass conversion efficiency was highest for cold-deme individuals under cold conditions. As we observed response parallelism between individuals from demes belonging to similar thermal groups for these traits, some of the differentiation seems likely to result from local adaptation The observed differences in length at age during early larval development most likely have a genetic component, even though both directional and random processes are likely to have influenced evolutionary change in the demes under study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanrahan, Timothy P.; Richmond, Marshall C.; Arntzen, Evan V.
2007-11-13
This report describes research conducted by the Pacific Northwest National Laboratory for the Bonneville Power Administration (BPA) as part of the Fish and Wildlife Program directed by the Northwest Power and Conservation Council. The study evaluated the restoration potential of Snake River fall Chinook salmon spawning habitat within the impounded lower Snake River. The objective of the research was to determine if hydroelectric dam operations could be modified, within existing system constraints (e.g., minimum to normal pool levels; without partial removal of a dam structure), to increase the amount of available fall Chinook salmon spawning habitat in the lower Snakemore » River. Empirical and modeled physical habitat data were used to compare potential fall Chinook salmon spawning habitat in the Snake River, under current and modified dam operations, with the analogous physical characteristics of an existing fall Chinook salmon spawning area in the Columbia River. The two Snake River study areas included the Ice Harbor Dam tailrace downstream to the Highway 12 bridge and the Lower Granite Dam tailrace downstream approximately 12 river kilometers. These areas represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We used a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats was the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Fall Chinook salmon spawning habitat use data, including water depth, velocity, substrate size and channelbed slope, from the Wanapum reference area were used to define spawning habitat suitability based on these variables. Fall Chinook salmon spawning habitat suitability of the Snake River study areas was estimated by applying the Wanapum reference reach habitat suitability criteria to measured and modeled habitat data from the Snake River study areas. Channel morphology data from the Wanapum reference reach and the Snake River study areas were evaluated to identify geomorphically suitable fall Chinook salmon spawning habitat. The results of this study indicate that a majority of the Ice Harbor and Lower Granite study areas contain suitable fall Chinook salmon spawning habitat under existing hydrosystem operations. However, a large majority of the currently available fall Chinook salmon spawning habitat in the Ice Harbor and Lower Granite study areas is of low quality. The potential for increasing, through modifications to hydrosystem operations (i.e., minimum pool elevation of the next downstream dam), the quantity or quality of fall Chinook salmon spawning habitat appears to be limited. Estimates of the amount of potential fall Chinook salmon spawning habitat in the Ice Harbor study area decreased as the McNary Dam forebay elevation was lowered from normal to minimum pool elevation. Estimates of the amount of potential fall Chinook salmon spawning habitat in the Lower Granite study area increased as the Little Goose Dam forebay elevation was lowered from normal to minimum pool elevation; however, 97% of the available habitat was categorized within the range of lowest quality. In both the Ice Harbor and Lower Granite study areas, water velocity appears to be more of a limiting factor than water depth for fall Chinook salmon spawning habitat, with both study areas dominated by low-magnitude water velocity. The geomorphic suitability of both study areas appears to be compromised for fall Chinook salmon spawning habitat, with the Ice Harbor study area lacking significant bedforms along the longitudinal thalweg profile and the Lower Granite study area lacking cross-sectional topographic diversity. To increase the quantity of available fall Chinook salmon spawning habitat in the Ice Harbor and Lower Granite study area, modifications to hydroelectric dam operations beyond those evaluated in this study likely would be necessary. Modifications may include operational and structural changes, such as lowering downstream dam forebay elevations to less than minimum pool. There is a large amount of uncertainty as to whether or not such modifications could increase the quantity of available fall Chinook salmon spawning habitat in the Ice Harbor and Lower Granite study area. The results from this study provide some certainty that the quantity and quality of fall Chinook salmon spawning habitat within the lower Snake River are not likely to be increased within the existing hydroelectric dam operations.« less
Coral Settlement on a Highly Disturbed Equatorial Reef System
Bauman, Andrew G.; Guest, James R.; Dunshea, Glenn; Low, Jeffery; Todd, Peter A.; Steinberg, Peter D.
2015-01-01
Processes occurring early in the life stages of corals can greatly influence the demography of coral populations, and successful settlement of coral larvae that leads to recruitment is a critical life history stage for coral reef ecosystems. Although corals in Singapore persist in one the world’s most anthropogenically impacted reef systems, our understanding of the role of coral settlement in the persistence of coral communities in Singapore remains limited. Spatial and temporal patterns of coral settlement were examined at 7 sites in the southern islands of Singapore, using settlement tiles deployed and collected every 3 months from 2011 to 2013. Settlement occurred year round, but varied significantly across time and space. Annual coral settlement was low (~54.72 spat m-2 yr-1) relative to other equatorial regions, but there was evidence of temporal variation in settlement rates. Peak settlement occurred between March–May and September–November, coinciding with annual coral spawning periods (March–April and October), while the lowest settlement occurred from December–February during the northeast monsoon. A period of high settlement was also observed between June and August in the first year (2011/12), possibly due to some species spawning outside predicted spawning periods, larvae settling from other locations or extended larval settlement competency periods. Settlement rates varied significantly among sites, but spatial variation was relatively consistent between years, suggesting the strong effects of local coral assemblages or environmental conditions. Pocilloporidae were the most abundant coral spat (83.6%), while Poritidae comprised only 6% of the spat, and Acroporidae <1%. Other, unidentifiable families represented 10% of the coral spat. These results indicate that current settlement patterns are reinforcing the local adult assemblage structure (‘others’; i.e. sediment-tolerant coral taxa) in Singapore, but that the replenishment capacity of Singapore’s reefs appears relatively constrained, which could lead to less resilient reefs. PMID:25992562
Coral settlement on a highly disturbed equatorial reef system.
Bauman, Andrew G; Guest, James R; Dunshea, Glenn; Low, Jeffery; Todd, Peter A; Steinberg, Peter D
2015-01-01
Processes occurring early in the life stages of corals can greatly influence the demography of coral populations, and successful settlement of coral larvae that leads to recruitment is a critical life history stage for coral reef ecosystems. Although corals in Singapore persist in one the world's most anthropogenically impacted reef systems, our understanding of the role of coral settlement in the persistence of coral communities in Singapore remains limited. Spatial and temporal patterns of coral settlement were examined at 7 sites in the southern islands of Singapore, using settlement tiles deployed and collected every 3 months from 2011 to 2013. Settlement occurred year round, but varied significantly across time and space. Annual coral settlement was low (~54.72 spat m(-2) yr(-1)) relative to other equatorial regions, but there was evidence of temporal variation in settlement rates. Peak settlement occurred between March-May and September-November, coinciding with annual coral spawning periods (March-April and October), while the lowest settlement occurred from December-February during the northeast monsoon. A period of high settlement was also observed between June and August in the first year (2011/12), possibly due to some species spawning outside predicted spawning periods, larvae settling from other locations or extended larval settlement competency periods. Settlement rates varied significantly among sites, but spatial variation was relatively consistent between years, suggesting the strong effects of local coral assemblages or environmental conditions. Pocilloporidae were the most abundant coral spat (83.6%), while Poritidae comprised only 6% of the spat, and Acroporidae <1%. Other, unidentifiable families represented 10% of the coral spat. These results indicate that current settlement patterns are reinforcing the local adult assemblage structure ('others'; i.e. sediment-tolerant coral taxa) in Singapore, but that the replenishment capacity of Singapore's reefs appears relatively constrained, which could lead to less resilient reefs.
USDA-ARS?s Scientific Manuscript database
Channel catfish, Ictalurus punctatus.spawn annually during the spring and early summer (24 -30 °C). Environmental temperature is the main factor that controls the seasonal maturation of gonads and the timing of spawning. Temperature fluctuations can adversely affect spawning and broodfish conditio...
Methods to measure sedimentation of spawning gravels
Thomas E. Lisle; Rand E. Eads
1991-01-01
Sediment transport occurring after spawning can cause scour of incubating embryos and infiltration of fine sediment into spawning gravel, decreasing intergravel flow and preventing hatched fry from emerging from the gravel. Documentation of these effects requires measuring gravel conditions before and after high flow periods and combining methods to record scour and...
M. Ben-David; T.A. Hanley; D.M. Schell
1998-01-01
Spawning Pacific salmon (Onchorhynchus) transport marine-derived nutrients into streams and rivers. Subsequently, these marine-derived nutrients are incorporated into freshwater and terrestrial food webs through decomposition and predation. In this study, we investigated the influence of spawning Pacific salmon on terrestrial vegetation using...
Early life history research has been crucial for understanding and managing fisheries in the Laurentian Great Lakes and beyond. Much is known about spawning sites, temperatures at spawning, incubation periods, spawning substrates, and other factors surrounding reproduction for ma...
76 FR 61996 - Fishery Management Plan for the Scallop Fishery Off Alaska; Amendment 13
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-06
... also clarifies that, in the absence of a statewide estimate of spawning biomass for weathervane... MSY in the absence of a statewide estimate of spawning biomass for weathervane scallops; (3) specifies... rate. If an estimate of the statewide weathervane scallop spawning biomass becomes available, the...
Samarra, Filipa I P
2015-07-01
Killer whales produce herding calls to increase herring school density but previous studies suggested that these calls were made only when feeding upon spawning herring. Herring schools less densely when spawning compared to overwintering; therefore, producing herding calls may be advantageous only when feeding upon less dense spawning schools. To investigate if herding calls were produced across different prey behavioural contexts and whether structural variants occurred and correlated with prey behaviour, this study recorded killer whales when feeding upon spawning and overwintering herring. Herding calls were produced by whales feeding on both spawning and overwintering herring, however, calls recorded during overwintering had significantly different duration and peak frequency to those recorded during spawning. Calls recorded in herring overwintering grounds were more variable and sometimes included nonlinear phenomena. Thus, herding calls were not produced exclusively when feeding upon spawning herring, likely because the call increases feeding efficiency regardless of herring school density or behaviour. Variations in herding call structure were observed between prey behavioural contexts and did not appear to be adapted to prey characteristics. Herding call structural variants may be more likely a result of individual or group variation rather than a reflection of properties of the food source. Copyright © 2015. Published by Elsevier B.V.
Habitat selection and spawning success of walleye in a tributary to Owasco Lake, New York
Chalupnicki, Marc A.; Johnson, James H.; McKenna, James E.; Dittman, Dawn E.
2010-01-01
Walleyes Sander vitreus are stocked into Owasco Lake, New York, to provide a sport fishery, but the population must be sustained by annual hatchery supplementation despite the presence of appropriate habitat. Therefore, we evaluated walleye spawning success in Dutch Hollow Brook, a tributary of Owasco Lake, to determine whether early survival limited recruitment. Spawning success during spring 2006 and 2007 was evaluated by estimating egg densities from samples collected in the lower 725 m of the stream. Environmental variables were also recorded to characterize the selected spawning habitat. Drift nets were set downstream of the spawning section to assess egg survival and larval drift. We estimated that 162,596 larvae hatched in 2006. For 2007, we estimated that 360,026 eggs were deposited, with a hatch of 127,500 larvae and hatching success of 35.4%. Egg density was significantly correlated to percent cover, substrate type, and depth : velocity ratio. Two sections had significantly higher egg deposition than other areas. Adult spawning walleyes selected shallow, slow habitats with some cover and gravel substrate in the accessible reaches of Dutch Hollow Brook. Our results show that walleyes found suitable spawning habitat in Dutch Hollow Brook and that egg and larval development does not appear to limit natural reproduction.
Reproductive life history of the introduced peacock grouper Cephalopholis argus in Hawaii.
Schemmel, E M; Donovan, M K; Wiggins, C; Anzivino, M; Friedlander, A M
2016-08-01
This research investigated the reproductive biology (sex ratio, hermaphroditic pattern, size and age at maturity) of Cephalopholis argus, known locally in Hawaii by its Tahitian name roi. The results suggest that C. argus exhibits monandric protogyny (female gonad differentiation with female to male sex change) with females reaching sexual maturity at 1.2 years (95% c.i.: 0.6, 1.6) and 20.0 cm total length (LT ; 95% c.i.: 19.6, 21.2). The female to male sex ratio was 3.9:1. The average age and LT at sex change was 11.5 years (95% c.i.: 11.1, 12.9) and 39.9 cm (95% c.i.: 39.5, 41.2), respectively. Current information on spawning seasonality of this species is incomplete, but based on the occurrence of spawning capable and actively spawning females, spawning probably takes place from May to October. Evidence of lunar spawning periodicity was found, with an increased proportion of spawning capable and actively spawning females, and an increased female gonado-somatic index during first quarter and full-moon phases. This information fills a valuable information gap in Hawaii and across the species' native range. © 2016 The Fisheries Society of the British Isles.
Wyman, Megan T.; Thomas, Michael J.; McDonald, Richard R.; Hearn, Alexander R.; Battleson, Ryan D.; Chapman, Eric D.; Kinzel, Paul J.; Minear, J. Tobey; Mora, Ethan A.; Nelson, Jonathan M.; Pagel, Matthew D.; Klimley, A. Peter
2018-01-01
Vast sections of the Sacramento River have been listed as critical habitat by the National Marine Fisheries Service for green sturgeon spawning (Acipenser medirostris), yet spawning is known to occur at only a few specific locations. This study reveals the range of physical habitat variables selected by adult green sturgeon during their spawning period. We integrated fine-scale fish positions, physical habitat characteristics, discharge, bathymetry, and simulated velocity and depth using a 2-dimensional hydraulic model (FaSTMECH). The objective was to create habitat suitability curves for depth, velocity, and substrate type within three known spawning locations over two years. An overall cumulative habitat suitability score was calculated that averaged the depth, velocity, and substrate scores over all fish, sites, and years. A weighted usable area (WUA) index was calculated throughout the sampling periods for each of the three sites. Cumulative results indicate that the microhabitat characteristics most preferred by green sturgeon in these three spawning locations were velocities between 1.0-1.1 m/s, depths of 8-9 m, and gravel and sand substrate. This study provides guidance for those who may in the future want to increase spawning habitat for green sturgeon within the Sacramento River.
How coarse is too coarse for salmon spawning substrates?
NASA Astrophysics Data System (ADS)
Wooster, J. K.; Riebe, C. S.; Ligon, F. K.; Overstreet, B. T.
2009-12-01
Populations of Pacific salmon species have declined sharply in many rivers of the western US. Reversing these declines is a top priority and expense of many river restoration projects. To help restore salmon populations, managers often inject gravel into rivers, to supplement spawning habitat that has been depleted by gravel mining and the effects of dams—which block sediment and thus impair habitat downstream by coarsening the bed where salmon historically spawned. However, there is little quantitative understanding nor a methodology for determining when a river bed has become too coarse for salmon spawning. Hence there is little scientific basis for selecting sites that would optimize the restoration benefits of gravel injection (e.g., sites where flow velocities are suitable but bed materials are too coarse for spawning). To develop a quantitative understanding of what makes river beds too coarse for salmon spawning, we studied redds and spawning use in a series of California and Washington rivers where salmon spawning ability appears to be affected by coarse bed material. Our working hypothesis is that for a given flow condition, there is a maximum “threshold” particle size that a salmon of a given size is able to excavate and/or move as she builds her redd. A second, related hypothesis is that spawning use should decrease and eventually become impossible with increasing percent coverage by immovable particles. To test these hypotheses, we quantified the sizes and spatial distributions of immovably coarse particles in a series of salmon redds in each river during the peak of spawning. We also quantified spawning use and how it relates to percent coverage by immovable particles. Results from our studies of fall-run chinook salmon (Oncorhynchus tshawytsha) in the Feather River suggest that immovable particle size varies as a function of flow velocity over the redd, implying that faster water helps fish move bigger particles. Our Feather River study also suggests that the immovable particle size varies as a function of particle shape. Results from our study of fall run chinook salmon in the Sacramento River suggest that spawning is not possible when the bed is more than 40% covered by immovable particles, consistent with our second hypotheses. We will explore these relationships further in fall 2009, when we collect data on threshold particle sizes and spawning use for both pink salmon (O. gorbuscha) in the Puyallup River, and chinook salmon in the Trinity River. Because pink salmon are significantly smaller than chinook salmon, we expect that their redd building success is constrained by a lower average threshold particle size. We expect that there will be a range of threshold sizes for each run, depending on intra-run variability in fish size and variations in flow velocity. Taken together we expect that our results will demonstrate the feasibility of a new methodology for determining when a bed has become too coarse, thus contributing to more effective management of rivers where monitoring of spawning suitability of natural gravels is a priority.
NASA Astrophysics Data System (ADS)
Schieler, Brittany M.; Hale, Edward A.; Targett, Timothy E.
2014-12-01
Identifying factors that affect ingress of larval fishes from offshore spawning areas into estuarine nurseries is important to improve understanding of variability in recruitment of many coastal marine species. This study investigated the ingress of larval Atlantic croaker (Micropogonias undulatus), Atlantic menhaden (Brevoortia tyrannus), and summer flounder (Paralichthys dentatus) at Roosevelt Inlet, near the mouth of Delaware Bay, USA in relation to short-term wind events. Nightly abundances, from November 15 to December 15, 2010, were analyzed with alongshore and along-estuary wind components (direction and speed) using cross-correlation analysis to determine if winds affect larval ingress. Ingress of Atlantic croaker and summer flounder correlated with along-estuary winds, whereas Atlantic menhaden showed no significant correlations with either alongshore or along-estuary winds. Although along-estuary winds during this period were predominantly down-estuary, Atlantic croaker ingress was correlated with positive along-estuary winds (blowing up-estuary), with a three-day lag; and a particularly large ingress peak occurred following the largest up-estuary wind peak. Ingress of summer flounder was correlated with negative along-estuary winds (blowing down-estuary), with a two-day lag. These results suggest that species-specific vertical position in the water column influenced ingress into Delaware Bay. The lag results also suggest that ingressing Atlantic croaker and summer flounder may have a pooling stage outside the mouth of Delaware Bay.
NASA Astrophysics Data System (ADS)
Katayama, Satoshi; Yamamoto, Masayuki; Gorie, Shigeaki
2010-11-01
We developed an ageing methodology and examined age composition of three flatfish stocks inhabiting the Seto Inland Sea, Japan. Ages were difficult to determine for three-lined tongue sole ( Cynoglossus abbreviates) and ridged-eye flounder ( Pleuronichthys cornutus) because the first year annulus ring was often indistinct; therefore, we used directional change in otolith growth to distinguish it. Sectioning and etching methods were powerful tools for identifying annual checks for red tongue sole ( Cynoglossus joyneri). Using these ageing methods, we determined age-length relationships and growth curves. The age composition of the populations studied and of the landings showed that a large proportion of the latter consisted of individuals under the mean age of sexual maturity, thereby reducing the percent spawning potential ratio (%SPR) to ≈ 20% for all species. These findings suggest that fishing pressure on immature fish is leading to overfishing of these flatfish stocks.
Wei, Q.W.; Kynard, B.; Yang, D.G.; Chen, X.H.; Du, H.; Shen, L.; Zhang, H.
2009-01-01
A sampling system for capturing sturgeon eggs using a D-shaped bottom anchored drift net was used to capture early life stages (ELS) of Chinese sturgeon, Acipenser sinensis, and monitor annual spawning success at Yichang on the Yangtze River, 1996-2004, before and just after the Three Gorges Dam began operation. Captured were 96 875 ELS (early life stages: eggs, yolk-sac larvae = eleuthero embryos, and larvae); most were eggs and only 2477 were yolk-sac larvae. Most ELS were captured in the main river channel and inside the bend at the Yichang spawning reach. Yolk-sac larvae were captured for a maximum of 3 days after hatching began, indicating quick dispersal downstream. The back-calculated day of egg fertilization over the eight years indicated a maximum spawning window of 23 days (20 October-10 November). Spawning in all years was restricted temporally, occurred mostly at night and during one or two spawning periods, each lasting several days. The brief temporal spawning window may reduce egg predation by opportunistic predators by flooding the river bottom with millions of eggs. During 1996-2002, the percentage of fertilized eggs in an annual 20-egg sample was between 63.5 to 94.1%; however, in 2003 the percentage fertilized was only 23.8%. This sudden decline may be related to the altered environmental conditions at Yichang caused by operation of the Three Gorges Dam. Further studies are needed to monitor spawning and changes in egg fertilization in this threatened population. ?? 2009 Blackwell Verlag GmbH.
NASA Astrophysics Data System (ADS)
Lazzaro, G.; Soulsby, C.; Tetzlaff, D.; Botter, G.
2017-03-01
Atlantic salmon is an economically and ecologically important fish species, whose survival is dependent on successful spawning in headwater rivers. Streamflow dynamics often have a strong control on spawning because fish require sufficiently high discharges to move upriver and enter spawning streams. However, these streamflow effects are modulated by biological factors such as the number and the timing of returning fish in relation to the annual spawning window in the fall/winter. In this paper, we develop and apply a novel probabilistic approach to quantify these interactions using a parsimonious outflux-influx model linking the number of female salmon emigrating (i.e., outflux) and returning (i.e., influx) to a spawning stream in Scotland. The model explicitly accounts for the interannual variability of the hydrologic regime and the hydrological connectivity of spawning streams to main rivers. Model results are evaluated against a detailed long-term (40 years) hydroecological data set that includes annual fluxes of salmon, allowing us to explicitly assess the role of discharge variability. The satisfactory model results show quantitatively that hydrologic variability contributes to the observed dynamics of salmon returns, with a good correlation between the positive (negative) peaks in the immigration data set and the exceedance (nonexceedance) probability of a threshold flow (0.3 m3/s). Importantly, model performance deteriorates when the interannual variability of flow regime is disregarded. The analysis suggests that flow thresholds and hydrological connectivity for spawning return represent a quantifiable and predictable feature of salmon rivers, which may be helpful in decision making where flow regimes are altered by water abstractions.
1985-03-01
8 Salinity .................................................... 8 Brackish-Water shrimp...names ........ Palaemonetes Order ..................... Decapoda p!. ; P. vulgaris; P. intermedius; Family ................. Palaemonidae P.paludosus...Spawning may produce an additional brood, depending on the species or time of The spawning season of grass spawning (Broad and Hubschman 1963; shrimp
Whitlock, Steven L.; Quist, Michael C.; Dux, Andrew M.
2014-01-01
Changes to water-level regimes have been known to restructure fish assemblages and interfere with the population dynamics of both littoral and pelagic species. The effect of altered water-level regimes on shore-spawning kokanee Oncorhynchus nerka incubation success was evaluated using a comprehensive in situ study in Lake Pend Oreille, ID, USA. Survival was not related to substrate size composition or depth, indicating that shore-spawning kokanee do not currently receive a substrate-mediated survival benefit from higher winter water levels. Substrate composition also did not differ among isobaths in the nearshore area. On average, the odds of an egg surviving to the preemergent stage were more than three times greater for sites in downwelling areas than those lacking downwelling. This study revealed that shoreline spawning habitat is not as limited as previously thought. Downwelling areas appear to contribute substantially to shore-spawning kokanee recruitment. This research illustrates the value of rigorous in situ studies both for testing potential mechanisms underlying population trends and providing insight into spawning habitat selection.
Moh, Julia Hwei Zhong; Ikhwanuddin, Mhd; Chatterji, Anil; Shaharom, Faizah
2016-01-01
Tanjung Selongor and Pantai Balok (State Pahang) are the only two places known for spawning activity of the Malaysian horseshoe crab - Tachypleus gigas (Müller, 1785) on the east coast of Peninsular Malaysia. While the former beach has been disturbed by several anthropogenic activities that ultimately brought an end to the spawning activity of T. gigas, the status of the latter remains uncertain. In the present study, the spawning behavior of T. gigas at Pantai Balok (Sites I-III) was observed over a period of thirty six months, in three phases, between 2009 and 2013. Every year, the crab’s nesting activity was found to be high during Southwest monsoon (May–September) followed by Northeast (November–March) and Inter monsoon (April and October) periods. In the meantime, the number of female T. gigas in 2009–2010 (Phase-1) was higher (38 crabs) than in 2010–2011 (Phase-2: 7 crabs) and 2012–2013 (Phase-3: 9 crabs) for which both increased overexploitation (for edible and fishmeal preparations) as well as anthropogenic disturbances in the vicinity (sand mining since 2009, land reclamation for wave breaker/parking lot constructions in 2011 and fishing jetty construction in 2013) are responsible. In this context, the physical infrastructure developments have altered the sediment close to nesting sites to be dominated by fine sand (2.5Xφ ) with moderately-well sorted (0.6–0.7σφ), very-coarse skewed (−2.4SKφ), and extremely leptokurtic (12.6Kφ) properties. Also, increased concentrations of Cadmium (from 4.2 to 13.6 mg kg−1) and Selenium (from 11.5 to 23.3 mg kg−1) in the sediment, and Sulphide (from 21 to 28 µg l−1) in the water were observed. In relation to the monsoonal changes affecting sheltered beach topography and sediment flux, the spawning crabs have shown a seasonal nest shifting behaviour in-between Sites I-III during 2009–2011. However, in 2012–2013, the crabs were mostly restricted to the areas (i.e., Sites I and II) with high oxygen (5.5–8.0 mg l−1) and moisture depth (6.2–10.2 cm). In view of the sustained anthropogenic pressure on the coastal habitats on one hand and decreasing horseshoe crabs population on the other, it is crucial to implement both conservation and management measures for T. gigas at Pantai Balok. Failing that may lead to the loss of this final spawning ground on the east coast of P. Malaysia. PMID:27547542
Microphytoplankton variations during coral spawning at Los Roques, Southern Caribbean
Zubillaga, Ainhoa L.; Bastidas, Carolina
2016-01-01
Phytoplankton drives primary productivity in marine pelagic systems. This is also true for the oligotrophic waters in coral reefs, where natural and anthropogenic sources of nutrients can alter pelagic trophic webs. In this study, microphytoplankton assemblages were characterized for the first time in relation to expected coral spawning dates in the Caribbean. A hierarchical experimental design was used to examine these assemblages in Los Roques archipelago, Venezuela, at various temporal and spatial scales for spawning events in both 2007 and 2008. At four reefs, superficial water samples were taken daily for 9 days after the full moon of August, including days before, during and after the expected days of coral spawning. Microphytoplankton assemblages comprised 100 microalgae taxa at up to 50 cells per mL (mean ± 8 SD) and showed temporal and spatial variations related to the coral spawning only in 2007. However, chlorophyll a concentrations increased during and after the spawning events in both years, and this was better matched with analyses of higher taxonomical groups (diatoms, cyanophytes and dinoflagellates), that also varied in relation to spawning times in 2007 and 2008, but asynchronously among reefs. Heterotrophic and mixotrophic dinoflagellates increased in abundance, correlating with a decrease of the diatom Cerataulina pelagica and an increase of the diatom Rhizosolenia imbricata. These variations occurred during and after the coral spawning event for some reefs in 2007. For the first time, a fresh-water cyanobacteria species of Anabaena was ephemerally found (only 3 days) in the archipelago, at reefs closest to human settlements. Variability among reefs in relation to spawning times indicated that reef-specific processes such as water residence time, re-mineralization rates, and benthic-pelagic coupling can be relevant to the observed patterns. These results suggest an important role of microheterotrophic grazers in re-mineralization of organic matter in coral reef waters and highlight the importance of assessing compositional changes of larger size fractions of the phytoplankton when evaluating primary productivity and nutrient fluxes. PMID:27019774
Froude Number is the Single Most Important Hydraulic Parameter for Salmonid Spawning Habitat.
NASA Astrophysics Data System (ADS)
Gillies, E.; Moir, H. J.
2015-12-01
Many gravel-bed rivers exhibit historic straightening or embanking, reducing river complexity and the available habitat for key species such as salmon. A defensible method for predicting salmonid spawning habitat is an important tool for anyone engaged in assessing a river restoration. Most empirical methods to predict spawning habitat use lookup tables of depth, velocity and substrate. However, natural site selection is different: salmon must pick a location where they can successfully build a redd, and where eggs have a sufficient survival rate. Also, using dimensional variables, such as depth and velocity, is problematic: spawning occurs in rivers of differing size, depth and velocity range. Non-dimensional variables have proven useful in other branches of fluid dynamics, and instream habitat is no different. Empirical river data has a high correlation between observed salmon redds and Froude number, without insight into why. Here we present a physics based model of spawning and bedform evolution, which shows that Froude number is indeed a rational choice for characterizing the bedform, substrate, and flow necessary for spawning. It is familiar for Froude to characterize surface waves, but Froude also characterizes longitudinal bedform in a mobile bed river. We postulate that these bedforms and their hydraulics perform two roles in salmonid spawning: allowing transport of clasts during redd building, and oxygenating eggs. We present an example of this Froude number and substrate based habitat characterization on a Scottish river for which we have detailed topography at several stages during river restoration and subsequent evolution of natural processes. We show changes to the channel Froude regime as a result of natural process and validate habitat predictions against redds observed during 2014 and 2015 spawning seasons, also relating this data to the Froude regime in other, nearby, rivers. We discuss the use of the Froude spectrum in providing an indicator of salmonid spawning and the success of river restoration.
NASA Astrophysics Data System (ADS)
Hernandez, Olga; Lehodey, Patrick; Senina, Inna; Echevin, Vincent; Ayón, Patricia; Bertrand, Arnaud; Gaspar, Philippe
2014-04-01
The Spatial Ecosystem And Populations Dynamics Model "SEAPODYM", based on a system of Eulerian equations and initially developed for large pelagic fish (e.g., tuna), was modified to describe spawning habitat and eggs and larvae dynamics of small pelagic fish. The spawning habitat is critical since it controls the initial recruitment of larvae and the subsequent spatio-temporal variability of natural mortality during their drift with currents. A robust statistical approach based on Maximum Likelihood Estimation is presented to optimize the model parameters defining the spawning habitat and the eggs and larvae dynamics. To improve parameterization, eggs and larvae density observations are assimilated in the model. The model and its associated optimization approach allow investigating the significance of the mechanisms proposed to control fish spawning habitat and larval recruitment: temperature, prey abundance, trade-off between prey and predators, and retention and dispersion processes. An application to the Peruvian anchovy (Engraulis ringens) and sardine (Sardinops sagax) illustrates the ability of the model to simulate the main features of spatial dynamics of these two species in the Humboldt Current System. For both species, in climatological conditions, the main observed spatial patterns are well reproduced and are explained by the impact of prey and predator abundance and by physical retention with currents, while temperature has a lower impact. In agreement with observations, sardine larvae are mainly predicted in the northern part of the Peruvian shelf (5-10°S), while anchovy larvae extend further south. Deoxygenation, which can potentially limit the accessibility of adult fish to spawning areas, does not appear to have an impact in our model setting. Conversely, the observed seasonality in spawning activity, especially the spawning rest period in austral autumn, is not well simulated. It is proposed that this seasonal cycle is more likely driven by the spatio-temporal dynamics of adult fish constituting the spawning biomass and not yet included in the model.
NASA Astrophysics Data System (ADS)
Lokteff, R.; Wheaton, J. M.; Roper, B.; DeMeurichy, K.; Randall, J.
2011-12-01
The Logan River and its tributaries in northern Utah sustain a significant population of the imperiled Bonneville cutthroat trout (Oncorhynchus clarki Utah) as well as invasive brown trout (Salmo trutta). In general, the upper reaches of the system are populated by cutthroat trout and the lower reaches by brown trout. Spawn Creek is a unique tributary in that it supports both of these species throughout the year. The purpose of this study is to identify differences in fine-scale microhabitat that explain utilization patterns of each species of fish. Passive integrated transponder (PIT) tags have been placed in trout over the last 3 years throughout Spawn Creek. Repeat GPS observations of these fish in their habitat during both spawning and non-spawning periods have been acquired over the last 4 years. Non-spawning activity has been captured using mobile PIT tag antennae. GPS observations of cutthroat trout spawning locations have also been recorded. From these observations both spawning and non-spawning "hotspots" have emerged, which appear to be highly correlated with specific microhabitat characteristics. The entire 2.5 km study reach on lower Spawn Creek has been scanned using ground-based light detection and ranging (LiDAR) which covers all observed "hotspots." LiDAR data provides sub-centimeter resolution point clouds from which detailed geometric measurements and topographic analyses can be used to reveal specific aspects of trout habitat. Where bathymetric data is needed, total station bathymetric surveys have been completed at sub-meter resolution. The combination of these data types at known "hotspot" locations provides an opportunity to quantify aspects of the physical environment at a uniquely fine scale relevant to individual fish. New metrics, as well as old metrics resolved at finer scales, will be presented to explain species and life-stage specific habitat "hotspots" in mountain streams.
Measuring Customer Satisfaction: Practices of Leading Military and Commercial Service Organizations
1994-09-01
back. The consumers message was clear: "the quality of goods and services would no longer be taken for granted" (2:6). This change in customer ...behavior and quality awareress became known as consumerism , and it spawned consumer interest groups that strongly influence nearly all manufacturing and...on their next purchase opportunity (31: 35). This suggests that the classical thinking on customer satisfaction and consumer loyalty is incomplete and
NASA Astrophysics Data System (ADS)
Elliott, C. M.; Jacobson, R. B.; DeLonay, A. J.; Braaten, P. J.
2013-12-01
The pallid sturgeon (Scaphirynchus albus) inhabits sandy-bedded rivers in the Mississippi River basin including the Missouri and Lower Yellowstone Rivers and has experienced decline generally associated with the fragmentation and alteration of these river systems. Knowledge gaps in the life history of the pallid sturgeon include lack of an understanding of conditions needed for successful reproduction and recruitment. We employed hydroacoustic tools to investigate habitats utilized by spawning pallid sturgeon in the Missouri River in Missouri, Kansas, Iowa, and Nebraska, and the Yellowstone River in Montana and North Dakota USA from 2008-2013. Reproductive pallid sturgeon were tracked to suspected spawning locations by field crews using either acoustic or radio telemetry, a custom mobile mapping application, and differential global positioning systems (DGPS). Female pallid sturgeon were recaptured soon after spawning events to validate that eggs had been released. Habitats were mapped at presumed spawning and embryo incubation sites using a multibeam echosounder system (MBES), sidescan sonar, acoustic Doppler current profiler, an acoustic camera and either a real-time kinematic global positioning system (RTK GPS) or DGPS. High-resolution DEM's and velocimetric maps were gridded from at a variety of scales from 0.10 to 5 meters for characterization and visualization at spawning and presumed embryo incubation sites. Pallid sturgeon spawning sites on the Missouri River are deep (6-8 meters) and have high current velocities (>1.5 meters per second). These sites are also characterized by high turbidity and high rates of bedload sediment transport in the form of migrating sand dunes. Spawning on the channelized Lower Missouri River occurs on or adjacent to coarse angular bank revetment or bedrock. Collecting biophysical information in these environmental conditions is challenging, and there is a need to characterize the substrate and substrate condition at a scale relevant to spawning fish and developing embryos (< 1 meter). The Yellowstone River in Montana and North Dakota provides the closest analog to a reference condition for pallid sturgeon spawning habitat with a natural flow regime and relatively natural channel geomorphology. Recent documented suspected spawning on the Yellowstone River occurs in a a sand-bedded reach with patches of gravel deposits, in zones of higher velocity (1.0-1.5 meters per second) compared to the ranges of velocities available in an adjacent reach and over a range of depths (2-5 meters). Results from substrate assessments at pallid sturgeon spawning sites on the Missouri and Yellowstone Rivers may have implications for sediment and flow management as well as provide guidance for potential habitat manipulation in support of the recovery of the pallid sturgeon.
Comparing life history characteristics of Lake Michigan’s naturalized and stocked Chinook Salmon
Kerns, Janice A; Rogers, Mark W.; Bunnell, David B.; Claramunt, Randall M.; Collingsworth, Paris D.
2016-01-01
Lake Michigan supports popular fisheries for Chinook Salmon Oncorhynchus tshawytscha that have been sustained by stocking since the late 1960s. Natural recruitment of Chinook Salmon in Lake Michigan has increased in the past few decades and currently contributes more than 50% of Chinook Salmon recruits. We hypothesized that selective forces differ for naturalized populations born in the wild and hatchery populations, resulting in divergent life history characteristics with implications for Chinook Salmon population production and the Lake Michigan fishery. First, we conducted a historical analysis to determine if life history characteristics changed through time as the Chinook Salmon population became increasingly naturalized. Next, we conducted a 2-year field study of naturalized and hatchery stocked Chinook Salmon spawning populations to quantify differences in fecundity, egg size, timing of spawning, and size at maturity. In general, our results did not indicate significant life history divergence between naturalized and hatchery-stocked Chinook Salmon populations in Lake Michigan. Although historical changes in adult sex ratio were correlated with the proportion of naturalized individuals, changes in weight at maturity were better explained by density-dependent factors. The field study revealed no divergence in fecundity, timing of spawning, or size at maturity, and only small differences in egg size (hatchery > naturalized). For the near future, our results suggest that the limited life history differences observed between Chinook Salmon of naturalized and hatchery origin will not lead to large differences in characteristics important to the dynamics of the population or fishery.
Spawning and rearing behavior of bull trout in a headwaterlake ecosystem
Lora B. Tennant,; Gresswell, Bob; Guy, Christopher S.; Michael H. Meeuwig,
2015-01-01
Numerous life histories have been documented for bull trout Salvelinus confluentus. Lacustrine-adfluvial bull trout populations that occupy small, headwater lake ecosystems and migrate short distances to natal tributaries to spawn are likely common; however, much of the research on potamodromous bull trout has focused on describing the spawning and rearing characteristics of bull trout populations that occupy large rivers and lakes and make long distance spawning migrations to natal headwater streams. This study describes the spawning and rearing characteristics of lacustrine-adfluvial bull trout in the Quartz Lake drainage, Glacier National Park, USA, a small headwater lake ecosystem. Many spawning and rearing characteristics of bull trout in the Quartz Lake drainage are similar to potamodromous bull trout that migrate long distances. For example, subadult bull trout distribution was positively associated with slow-water habitat unit types and maximum wetted width, and negatively associated with increased stream gradient. Bull trout spawning also occurred when water temperatures were between 5 and 9 °C, and redds were generally located in stream segments with low stream gradient and abundant gravel and cobble substrates. However, this study also elucidated characteristics of bull trout biology that are not well documented in the literature, but may be relatively widespread and have important implications regarding general characteristics of bull trout ecology, use of available habitat by bull trout, and persistence of lacustrine-adfluvial bull trout in small headwater lake ecosystems.
Richter, Jacob T.; Sloss, Brian L.; Isermann, Daniel A.
2016-01-01
Previous research has generally ignored the potential effects of spawning habitat availability and quality on recruitment of Walleye Sander vitreus, largely because information on spawning habitat is lacking for many lakes. Furthermore, traditional transect-based methods used to describe habitat are time and labor intensive. Our objectives were to determine if side-scan sonar could be used to accurately classify Walleye spawning habitat in the nearshore littoral zone and provide lakewide estimates of spawning habitat availability similar to estimates obtained from a transect–quadrat-based method. Based on assessments completed on 16 northern Wisconsin lakes, interpretation of side-scan sonar images resulted in correct identification of substrate size-class for 93% (177 of 191) of selected locations and all incorrect classifications were within ± 1 class of the correct substrate size-class. Gravel, cobble, and rubble substrates were incorrectly identified from side-scan images in only two instances (1% misclassification), suggesting that side-scan sonar can be used to accurately identify preferred Walleye spawning substrates. Additionally, we detected no significant differences in estimates of lakewide littoral zone substrate compositions estimated using side-scan sonar and a traditional transect–quadrat-based method. Our results indicate that side-scan sonar offers a practical, accurate, and efficient technique for assessing substrate composition and quantifying potential Walleye spawning habitat in the nearshore littoral zone of north temperate lakes.
Location Isn’t Everything: Timing of Spawning Aggregations Optimizes Larval Replenishment
Donahue, Megan J.; Karnauskas, Mandy; Toews, Carl; Paris, Claire B.
2015-01-01
Many species of reef fishes form large spawning aggregations that are highly predictable in space and time. Prior research has suggested that aggregating fish derive fitness benefits not just from mating at high density but, also, from oceanographic features of the spatial locations where aggregations occur. Using a probabilistic biophysical model of larval dispersal coupled to a fine resolution hydrodynamic model of the Florida Straits, we develop a stochastic landscape of larval fitness. Tracking virtual larvae from release to settlement and incorporating changes in larval behavior through ontogeny, we found that larval success was sensitive to the timing of spawning. Indeed, propagules released during the observed spawning period had higher larval success rates than those released outside the observed spawning period. In contrast, larval success rates were relatively insensitive to the spatial position of the release site. In addition, minimum (rather than mean) larval survival was maximized during the observed spawning period, indicating a reproductive strategy that minimizes the probability of recruitment failure. Given this landscape of larval fitness, we take an inverse optimization approach to define a biological objective function that reflects a tradeoff between the mean and variance of larval success in a temporally variable environment. Using this objective function, we suggest that the length of the spawning period can provide insight into the tradeoff between reproductive risk and reward. PMID:26103162
Reproductive Biology of Albacore Tuna (Thunnus alalunga) in the Western Indian Ocean
Dhurmeea, Zahirah; Zudaire, Iker; Chassot, Emmanuel; Cedras, Maria; Nikolic, Natacha; Bourjea, Jérôme; West, Wendy; Appadoo, Chandani
2016-01-01
The reproductive biology of albacore tuna, Thunnus alalunga, in the western Indian Ocean was examined through analysis of the sex ratio, spawning season, length-at-maturity (L50), spawning frequency and fecundity. From 2013 to 2015, a total of 923 female and 867 male albacore were sampled. A bias in sex ratio was found in favor of females with fork length (LF) < 100 cm. Using histological analyses and gonadosomatic index, spawning was found to occur between 10°S and 30°S, mainly to the east of Madagascar from October to January. Large females contributed more to reproduction through their longer spawning period compared to small individuals. The L50 (mean ± standard error) of female albacore was estimated at 85.3 ± 0.7 cm LF. Albacore spawn on average every 2.2 days within the spawning region and spawning months, from November to January. Batch fecundity ranged between 0.26 and 2.09 million oocytes and the relative batch fecundity (mean ± standard deviation) was estimated at 53.4 ± 23.2 oocytes g-1 of somatic-gutted weight. The study provides new information on the reproductive development and classification of albacore in the western Indian Ocean. The reproductive parameters will reduce uncertainty in current stock assessment models which will eventually assist the fishery to be sustainable for future generations. PMID:28002431
Bowerman, T E; Pinson-Dumm, A; Peery, C A; Caudill, C C
2017-05-01
Energetic demands of a long freshwater migration, extended holding period, gamete development and spawning were evaluated for a population of stream-type Chinook salmon Oncorhynchus tshawytscha. Female and male somatic mass decreased by 24 and 21%, respectively, during migration and by an additional 18 and 12% during holding. Between freshwater entry and death after spawning, females allocated 14% of initial somatic energy towards gonad development and 78% for metabolism (46, 25 and 7% during migration, holding and spawning, respectively). Males used only 2% of initial somatic energy for gonad development and 80% on metabolic costs, as well as an increase in snout length (41, 28 and 11% during migration, holding and spawning, respectively). Individually marked O. tshawytscha took between 27 and 53 days to migrate 920 km. Those with slower travel times through the dammed section of the migration corridor arrived at spawning grounds with less muscle energy than faster migrants. Although energy depletion did not appear to be the proximate cause of death in most pre-spawn mortalities, average final post-spawning somatic energy densities were low at 3·6 kJ g -1 in females and 4·1 kJ g -1 in males, consistent with the concept of a minimum energy threshold required to sustain life in semelparous salmonids. © 2017 The Fisheries Society of the British Isles.
Hinrichsen, H.-H.; von Dewitz, B.; Dierking, J.; Haslob, H.; Makarchouk, A.; Petereit, C.; Voss, R.
2016-01-01
Environmental conditions may have previously underappreciated effects on the reproductive processes of commercially exploited fish populations, for example eastern Baltic cod, that are living at the physiological limits of their distribution. In the Baltic Sea, salinity affects neutral egg buoyancy, which is positively correlated with egg survival, as only water layers away from the oxygen consumption-dominated sea bottom contain sufficient oxygen. Egg buoyancy is positively correlated to female spawner age/size. From observations in the Baltic Sea, a field-based relationship between egg diameter and buoyancy (floating depth) could be established. Hence, based on the age structure of the spawning stock, we quantify the number of effective spawners, which are able to reproduce under ambient hydrographic conditions. For the time period 1993–2010, our results revealed large variations in the horizontal extent of spawning habitat (1000–20 000 km2) and oxygen-dependent egg survival (10–80%). The novel concept of an effective spawning stock biomass takes into account offspring that survive depending on the spawning stock age/size structure, if reproductive success is related to egg buoyancy and the extent of hypoxic areas. Effective spawning stock biomass reflected the role of environmental conditions for Baltic cod recruitment better than the spawning stock biomass alone, highlighting the importance of including environmental information in ecosystem-based management approaches. PMID:26909164
Roseman, Edward F.; Kennedy, Gregory W.; Manny, Bruce A.; Boase, James; McFee, James; Tallman, Ross F.; Howland, Kimberly L.; Rennie, Michael D.; Mills, Kenneth; Tallman, Ross F.; Howland, Kimberly L.; Rennie, Michael D.; Mills, Kenneth
2012-01-01
The Detroit River is part of a channel connecting Lakes Huron and Erie and was once a prolific spawning area for lake whitefish, Coregonus clupeaformis. Large numbers of lake whitefish migrated into the river to spawn where they were harvested by commercial fisheries and for fish culture operations. Prior to our study, the last lake whitefish was landed from the Detroit River in 1925. Loss of spawning habitat during shipping channel construction and over-fishing, likely reduced lake whitefish spawning runs. Because lake whitefish are recovering in Lake Erie, and spawning in the western basin, we suspected they may also be spawning in the Detroit River. We sampled in the Detroit River for lake whitefish adults and eggs in October–December 2005–07 and for larvae during March–May 2006–08. A total of 15 spawning-ready lake whitefish from 4 to 18 years old, were collected. Viable eggs were collected during mid-November 2006–07; highest egg densities were found mid-river. Sac-fry whitefish larvae were collected in the river and near the river mouth. No whitefish larvae were retained in the river. Because high numbers of larvae were collected from mid- and downstream river sites, reproduction of lake whitefish in the Detroit River could contribute substantially to the Lake Erie lake whitefish metapopulation.
Whiteman, E.A.; Jennings, C.A.; Nemeth, R.S.
2005-01-01
Ultrasonic imaging was used to determine the spawning population structure and develop a fecundity estimation model for a red hind Epinephelus guttatus spawning aggregation within the Red Hind Bank Marine Conservation District, St Thomas, U.S.V.I. The spawning population showed considerable within-month and between-month variation in population size- and sex-structure. In the spawning season studied, males appeared to arrive at the aggregation site first in December although females represented a large proportion of the catch early in the aggregation periods in January and February. Spawning occurred in January and February, and size frequency distributions suggested that an influx of small females occurred during the second spawning month. An overall sex ratio of 2.9:1 (female:male) was recorded for the whole reproductive season. The sex ratio, however, differed between months and days within months. More females per male were recorded in January than in February when the sex ratio was male biased. Fecundity estimates for this species predicted very high potential fecundities (2.4 ?? 105-2.4 ?? 106 oocytes). The ultrasound model also illustrated a rapid increase in potential female fecundity with total length. Ultrasonic imaging may prove a valuable tool in population assessment for many species and locations in which invasive fishing methods are clearly undesirable. ?? 2005 The Fisheries Society of the British Isles.
Coronary arteriosclerosis in Atlantic salmon. No regression of lesions after spawning.
Saunders, R L; Farrell, A P
1988-01-01
The incidence and severity of coronary arteriosclerosis were studied in 209 wild and cultured Atlantic salmon (Salmo salar L.) during various stages of recovery of bodily condition after spawning. All recently spawned fish had lesions of moderate to extreme severity. The incidence of lesions for each fish was high (73% to 94% of all arterial cross-sections examined). The incidence and severity of lesions did not decrease during 5 months in a group of wild salmon reconditioned in the laboratory. Wild salmon that were examined in the spring angling fishery in the Miramichi River, New Brunswick, about 5 months after spawning had a high incidence (89%) of severe lesions, not significantly different from recently spawned salmon from the same and another river. A population of cultured salmon sampled at intervals from a sea cage during 9 months after spawning showed no evidence of lesion regression, but rather a continued increase in both incidence and severity during recovery of bodily condition and growth. Thus, in contrast with previous studies with steelhead trout and Atlantic salmon where the possibility of lesion regression has been suggested, our observations on a large number of Atlantic salmon from various sources gave no evidence of lesion regression. Coronary arteriosclerosis in Salmo salar appears to be a progressive condition, which continues during recovery of bodily condition and growth after spawning.
Coulter, Alison A.; Keller, Doug; Amberg, Jon J.; Bailey, Elizabeth J.; Goforth, Reuben R.
2013-01-01
1. Bigheaded carp, including both silver (Hypophthalmichthys molitrix) and bighead (H. nobilis) carp, are successful invasive fishes that threaten global freshwater biodiversity. High phenotypic plasticity probably contributes to their success in novel ecosystems, although evidence of plasticity in several spawning traits has hitherto been largely anecdotal or speculative. 2. We collected drifting eggs from a Midwestern U.S.A. river from June to September 2011 and from April to June 2012 to investigate the spawning traits of bigheaded carp in novel ecosystems. 3. Unlike reports from the native range, the presence of drifting bigheaded carp eggs was not related to changes in hydrological regime or mean daily water temperature. Bigheaded carp also exhibited protracted spawning, since we found drifting eggs throughout the summer and as late as 1 September 2011. Finally, we detected bigheaded carp eggs in a river reach where the channel is c. 30 m wide with a catchment area of 4579 km2, the smallest stream in which spawning has yet been documented. 4. Taken with previous observations of spawning traits that depart from those observed within the native ranges of both bighead and silver carp, our findings provide direct evidence that bigheaded carp exhibit plastic spawning traits in novel ecosystems that may facilitate invasion and establishment in a wider range of river conditions than previously envisaged.
Attributes of Yellowstone cutthroat trout redds in a tributary of the Snake River, Idaho
Russell F. Thurow; John G. King
1994-01-01
We characterized spawning sites of Yellowstone cutthroat trout Oncorhynchus clarki bouvieri, described the microhabitat of completed redds, and tested the influence of habitat conditions on the morphology of completed redds in Pine Creek, Idaho. Cutthroat trout spawned in June as flows subsided after peak stream discharge. During spawning, minimum and maximum water...
The relationship of spawning mode to conservation of North American minnows (Cyprinidae)
Carol E. Johnston
1999-01-01
Approximately 20 percent of North American minnows are considered imperiled. The factors responsible for imperilment in this group are complex, but the relationship of spawning mode to conservation of North American minnows has not been explored. The author provides a summary of the spawning modes of imperiled North American minnows, discuss patterns between these...
A mathematical model of salmonid spawning habitat
Robert N. Havis; Carlos V. Alonzo; Keith E Woeste; Russell F. Thurow
1993-01-01
A simulation model [Salmonid Spawning Analysis Model (SSAM)I was developed as a management tool to evaluate the relative impacts of stream sediment load and water temperature on salmonid egg survival. The model is usefi.il for estimating acceptable sediment loads to spawning habitat that may result from upland development, such as logging and agriculture. Software in...
Hewitt, David A.; Janney, Eric C.; Hayes, Brian S.; Harris, Alta C.
2017-07-21
Executive SummaryData from a long-term capture-recapture program were used to assess the status and dynamics of populations of two long-lived, federally endangered catostomids in Upper Klamath Lake, Oregon. Lost River suckers (LRS; Deltistes luxatus) and shortnose suckers (SNS; Chasmistes brevirostris) have been captured and tagged with passive integrated transponder (PIT) tags during their spawning migrations in each year since 1995. In addition, beginning in 2005, individuals that had been previously PIT-tagged were re-encountered on remote underwater antennas deployed throughout sucker spawning areas. Captures and remote encounters during the spawning season in spring 2015 were incorporated into capture-recapture analyses of population dynamics. Cormack-Jolly-Seber (CJS) open population capture-recapture models were used to estimate annual survival probabilities, and a reverse-time analog of the CJS model was used to estimate recruitment of new individuals into the spawning populations. In addition, data on the size composition of captured fish were examined to provide corroborating evidence of recruitment. Separate analyses were done for each species and also for each subpopulation of LRS. Shortnose suckers and one subpopulation of LRS migrate into tributary rivers to spawn, whereas the other LRS subpopulation spawns at groundwater upwelling areas along the eastern shoreline of the lake. Characteristics of the spawning migrations in 2015, such as the effects of temperature on the timing of the migrations, were similar to past years.Capture-recapture analyses for the LRS subpopulation that spawns at the shoreline areas included encounter histories for 13,617 individuals, and analyses for the subpopulation that spawns in the rivers included 39,321 encounter histories. With a few exceptions, the survival of males and females in both subpopulations was high (greater than or equal to 0.86) between 1999 and 2013. Survival was notably lower for males from the rivers in 2000, 2006, and 2012. Survival probabilities were lower for males from the shoreline areas in 2002. Between 2001 and 2014, the abundance of males in the lakeshore spawning subpopulation decreased by at least 59 percent and the abundance of females decreased by at least 53 percent. By combining information from capture-recapture models and size composition data, we concluded that the abundance of both sexes in the river spawning subpopulation of LRS likely has decreased at rates similar to the rates for the lakeshore spawning subpopulation between 2002 and 2014. Capture-recapture analyses for SNS included encounter histories for 20,981 individuals. Most annual survival estimates between 2005 and 2009 were high (greater than 0.88), but both sexes of SNS experienced lower and more variable survival in 2001–04 and 2010–13. The best-case scenario for SNS, based on capture-recapture recruitment modeling, indicates that the abundance of males in the spawning population decreased by 77 percent and the abundance of females decreased by 74 percent between 2001 and 2014. Decreases in abundance for both sexes likely are greater than these estimates indicate. Despite relatively high survival in most years, we conclude that both species have experienced substantial decreases in the abundance of spawning adults because losses from mortality have not been balanced by recruitment of new individuals. The status of the endangered sucker populations in Upper Klamath Lake remains worrisome, especially for SNS.
Papoulias, Diana M.; Annis, Mandy L.; Delonay, Aaron J.; Tillitt, Donald E.
2007-01-01
In a natural, unaltered river, the location and timing of sturgeon spawning will be dictated by the prevailing environmental conditions to which the sturgeon have adapted. A goal of the Comprehensive Sturgeon Research Program (CSRP; see chap. A) at the U.S. Geological Survey Columbia Environmental Research Center is to identify where, when, and under what conditions shovelnose sturgeon (Scaphirhynchus platorynchus) and pallid sturgeon (S. albus) spawn in the altered Missouri River so that those conditions necessary for spawning success can be defined. One approach to achieving this goal is to exploit what is known about fish reproductive physiology to develop and apply a suite of diagnostic indicators of readiness to spawn. In 2005 and 2006, gravid shovelnose sturgeon and a limited number of pallid sturgeon were fitted with transmitters and tracked on their spawning migration. A suite of physiological indicators of reproductive state such as reproductive hormones and oocyte development were measured. These same measurements were made on tissues collected from additional fish, presumably migrating to spawn, that were not tagged or tracked. The data presented here indicating the sturgeons’ readiness to spawn are to be evaluated together with their behavior and the environmental conditions. The U.S. Army Corps of Engineers (ACOE) Sturgeon Response to Flow Modification (SRFM; see chap. A) study, initiated in 2006, provides additional opportunities to experimentally evaluate the sturgeon reproductive response indicators relative to changes in flow. In this chapter, we report progress made on identifying and developing the physiological indicators and summarize 2 years’ worth of indicator data collected thus far.
NASA Astrophysics Data System (ADS)
Baptista, Miguel; Repolho, Tiago; Maulvault, Ana Luísa; Lopes, Vanessa M.; Narciso, Luis; Marques, António; Bandarra, Narcisa; Rosa, Rui
2014-12-01
Few studies have been conducted on the temporal dynamics of both amino acid (AA) and fatty acid (FA) profiles in marine bivalves. We investigated the seasonal variation of these compounds in the pod razor clam Ensis siliqua in relation to food availability, salinity, water temperature and reproductive cycle. AA content varied between 46.94 and 54.67 % dry weight (DW), and the AAs found in greater quantity were glutamic acid, glycine and aspartic acid. FA content varied between 34.02 and 87.94 mg g-1 DW and the FAs found in greater quantity were 16:0 and 22:6 n-3. Seasonal trends were observed for AAs and FAs. FAs increased with gametogenesis and decreased with spawning while AA content increased throughout spawning. The effect of increasing temperature and high food availability during the spawning season masked the loss of AAs resulting from gamete release. Still, a comparatively greater increase in the contents of glutamic acid and leucine with spawning indicate their possible involvement in a post-spawning gonad recovery mechanism. A post-spawning decrease in 14:0, 16:0, 16:1 n-7, 18:1 n-7 and 18:1 n-9 is indicative of the importance of these FAs in bivalve eggs. An increase in 18:3 n-3, 18:4 n-3, 20:1 n-9 and 20:2 n-6 during gametogenesis suggests their involvement in oocyte maturation. The FA 22:4 n-6, while increasing with spawning, appears to play a role in post-spawning gonad recovery. Salinity did not have an effect on the AA composition. None of the environmental parameters measured had an effect on FA composition.
Multiscale hydrogeomorphic influences on bull trout (Salvelinus confluentus) spawning habitat
Bean, Jared R; Wilcox, Andrew C.; Woessner, William W.; Muhlfeld, Clint C.
2015-01-01
We investigated multiscale hydrogeomorphic influences on the distribution and abundance of bull trout (Salvelinus confluentus) spawning in snowmelt-dominated streams of the upper Flathead River basin, northwestern Montana. Within our study reaches, bull trout tended to spawn in the finest available gravel substrates. Analysis of the mobility of these substrates, based on one-dimensional hydraulic modeling and calculation of dimensionless shear stresses, indicated that bed materials in spawning reaches would be mobilized at moderate (i.e., 2-year recurrence interval) high-flow conditions, although the asynchronous timing of the fall–winter egg incubation period and typical late spring – early summer snowmelt high flows in our study area may limit susceptibility to redd scour under current hydrologic regimes. Redd occurrence also tended to be associated with concave-up bedforms (pool tailouts) with downwelling intragravel flows. Streambed temperatures tracked stream water diurnal temperature cycles to a depth of at least 25 cm, averaging 6.1–8.1 °C in different study reaches during the spawning period. Ground water provided thermal moderation of stream water for several high-density spawning reaches. Bull trout redds were more frequent in unconfined alluvial valley reaches (8.5 versus 5.0 redds·km−1 in confined valley reaches), which were strongly influenced by hyporheic and groundwater – stream water exchange. A considerable proportion of redds were patchily distributed in confined valley reaches, however, emphasizing the influence of local physical conditions in supporting bull trout spawning habitat. Moreover, narrowing or “bounding” of these alluvial valley segments did not appear to be important. Our results suggest that geomorphic, thermal, and hydrological factors influence bull trout spawning occurrence at multiple spatial scales.
Farley, Jessica H.; Eveson, J. Paige; Davis, Tim L. O.; Andamari, Retno; Proctor, Craig H.; Nugraha, Budi; Davies, Campbell R.
2014-01-01
The demographics of the southern bluefin tuna (SBT) Thunnus maccoyii spawning stock were examined through a large-scale monitoring program of the Indonesian longline catch on the spawning ground between 1995 and 2012. The size and age structure of the spawning population has undergone significant changes since monitoring began. There has been a reduction in the relative abundance of larger/older SBT in the catch since the early 2000s, and a corresponding decrease in mean length and age, but there was no evidence of a significant truncation of the age distribution. Pulses of young SBT appear in the catches in the early- and mid-2000s and may be the first evidence of increased recruitment into the spawning stock since 1995. Fish in these two recruitment pulses were spawned around 1991 and 1997. Size-related variations in sex ratio were also observed with female bias for fish less than 170 cm FL and male bias for fish greater than 170 cm FL. This trend of increasing proportion of males with size above 170 cm FL is likely to be related to sexual dimorphism in growth rates as male length-at-age is greater than that for females after age 10 years. Mean length-at-age of fish aged 8–10 years was greater for both males and females on the spawning ground than off the spawning ground, suggesting that size may be the dominant factor determining timing of maturation in SBT. In addition to these direct results, the data and samples from this program have been central to the assessment and management of this internationally harvested stock. PMID:24797529
Fischer, Jason L.; Bennion, David; Roseman, Edward F.; Manny, Bruce A.
2015-01-01
Lake sturgeon (Acipenser fulvescens) populations have suffered precipitous declines in the St. Clair–Detroit River system, following the removal of gravel spawning substrates and overfishing in the late 1800s to mid-1900s. To assist the remediation of lake sturgeon spawning habitat, three hydrodynamic models were integrated into a spatial model to identify areas in two large rivers, where water velocities were appropriate for the restoration of lake sturgeon spawning habitat. Here we use water velocity data collected with an acoustic Doppler current profiler (ADCP) to assess the ability of the spatial model and its sub-models to correctly identify areas where water velocities were deemed suitable for restoration of fish spawning habitat. ArcMap 10.1 was used to create raster grids of water velocity data from model estimates and ADCP measurements which were compared to determine the percentage of cells similarly classified as unsuitable, suitable, or ideal for fish spawning habitat remediation. The spatial model categorized 65% of the raster cells the same as depth-averaged water velocity measurements from the ADCP and 72% of the raster cells the same as surface water velocity measurements from the ADCP. Sub-models focused on depth-averaged velocities categorized the greatest percentage of cells similar to ADCP measurements where 74% and 76% of cells were the same as depth-averaged water velocity measurements. Our results indicate that integrating depth-averaged and surface water velocity hydrodynamic models may have biased the spatial model and overestimated suitable spawning habitat. A model solely integrating depth-averaged velocity models could improve identification of areas suitable for restoration of fish spawning habitat.
Homel, Kristen M.; Gresswell, Robert E.; Kershner, Jeffrey L.
2015-01-01
Over the last century, native trout have experienced dramatic population declines, particularly in larger river systems where habitats associated with different spawning life history forms have been lost through habitat degradation and fragmentation. The resulting decrease in life history diversity has affected the capacity of populations to respond to environmental variability and disturbance. Unfortunately, because few large rivers are intact enough to permit full expression of life history diversity, it is unclear what patterns of diversity should be a conservation target. In this study, radiotelemetry was used to identify spawning and migration patterns of Snake River Finespotted Cutthroat Trout Oncorhynchus clarkii behnkei in the upper Snake River. Individuals were implanted with radio tags in October 2007 and 2008, and monitored through October 2009. Radio-tagged cutthroat trout in the upper Snake River exhibited variation in spawning habitat type and location, migration distance, spawn timing, postspawning behavior, and susceptibility to mortality sources. Between May and July, Cutthroat Trout spawned in runoff-dominated tributaries, groundwater-dominated spring creeks, and side channels of the Snake River. Individuals migrated up to 101 km from tagging locations in the upper Snake River to access spawning habitats, indicating that the upper Snake River provided seasonal habitat for spawners originating throughout the watershed. Postspawning behavior also varied; by August each year, 28% of spring-creek spawners remained in their spawning location, compared with 0% of side-channel spawners and 7% of tributary spawners. These spawning and migration patterns reflect the connectivity, habitat diversity, and dynamic template of the Snake River. Ultimately, promoting life history diversity through restoration of complex habitats may provide the most opportunities for cutthroat trout persistence in an environment likely to experience increased variability from climate change and disturbance from invasive species.
Reproductive longevity and fecundity associated with nonannual spawning in cui-ui
Scoppettone, G.G.; Rissler, P.H.; Buettner, M.E.
2000-01-01
The cui-ui Chasmistes cujus, a long-lived (40 years or more) and highly fecund catostomid, is often prevented from spawning in drought years. We studied the effect of cui-ui age on egg viability and the effect of nonannual spawning on fecundity in relation to length, age, and growth rate. Egg hatching and survival of swim-up larvae were examined for the offspring of first-time spawners, intermediate-aged females, and old females. Fecundity was tested for three growth categories (fast, intermediate, and slow) in years that were sufficiently wet to allow fish to spawn in the Truckee River and after dry years when fish did not spawn because of river inaccessibility. Females in the fast-growth category were first-time spawners, those in the middle-growth category were young to middle aged, and those in the slow-growth category were middle aged to old. Females up to 44 years of age still had viable eggs and a reproductive life of at least 29 years. Fecundity was greater after no-spawn years (dry year) compared with a spawn year (wet year), especially for fish in the slow-growth category. This study provides insight into the reproductive adaptation of a long-lived western North American catostomid and suggests possible reasons for the wide variation in fecundity in other long-lived catostomids. Our data will be used to improve the accuracy of an existing cui-ui population viability model. The revised model will have greater sensitivity to cui-ui survival relative to their spawning frequency and, thus, contribute to better management of conditions needed for the long-term survival of endangered cui-ui.
Confirmation of cisco spawning in Chaumont Bay, Lake Ontario using an egg pumping device
George, Ellen M.; Stott, Wendylee; Young, Brian; Karboski, Curtis T.; Crabtree, Darran L.; Roseman, Edward; Rudstam, Lars G.
2017-01-01
Cisco Coregonus artedi, a historically abundant and commercially important fish in the Great Lakes, have declined drastically in the last century due to the impacts of invasive species, overfishing, and habitat degradation. Chaumont Bay, New York is believed to contain one of the last remaining spawning populations of cisco in Lake Ontario although direct evidence of spawning has remained elusive. We document cisco spawning in Chaumont Bay for the first time in decades through the use of an egg pumping device specifically developed to sample through lake ice. Forty-one eggs were identified as cisco using genetic barcoding of the mitochondrial cytochrome c oxidase I (COI) gene. Cisco eggs were associated with shallow, rocky shoals. Contemporary knowledge of spawning behavior is an important step toward the successful restoration of cisco in Lake Ontario and across the Great Lakes.
First evidence of egg deposition by walleye (Sander vitreus) in the Detroit River
Manny, B.A.; Kennedy, G.W.; Allen, J.D.; French, J. R. P.
2007-01-01
The importance of fish spawning habitat in channels connecting the Great Lakes to fishery productivity in those lakes is poorly understood and has not been adequately documented. The Detroit River is a reputed spawning and nursery area for many fish, including walleye (Sander vitreus) that migrate between adjacent Lakes Erie and St. Clair. During April–May 2004, near the head of the Detroit River, we collected 136 fish eggs from the bottom of the river on egg mats. We incubated the eggs at the Great Lakes Science Center until they hatched. All eleven larvae that hatched from the eggs were identified as walleye. These eggs and larvae are the first credible scientific evidence that walleye spawn in the Detroit River. Their origin might be a stock of river-spawning walleye. Such a stock of walleye could potentially add resilience to production by walleye stocks that spawn and are harvested in adjacent waters.
Biju, K C; Singru, Praful S; Schreibman, Martin P; Subhedar, Nishikant
2003-10-01
The reproductive biology of the Indian major carp Cirrhinus mrigala is tightly synchronized with the seasonal changes in the environment. While the ovaries show growth from February through June, the fish spawn in July-August to coincide with the monsoon; thereafter the fish pass into the postspawning and resting phases. We investigated the pattern of GnRH immunoreactivity in the olfactory system at regular intervals extending over a period of 35 months. Although no signal was detected in the olfactory organ of fish collected from April through February following year, distinct GnRH-like immunoreactivity appeared in the fish collected in March. Intense immunoreactivity was noticed in several olfactory receptor neurons (ORNs) and their axonal fibers as they extend over the olfactory nerve, spread in the periphery of the olfactory bulb (OB), and terminate in the glomerular layer. Strong immunoreactivity was seen in some fascicles of the medial olfactory tracts extending from the OB to the telencephalon. Some neurons of the ganglion cells of nervus terminalis showed GnRH immunostaining during March; no immunoreactivity was detected at other times of the year. Plexus of GnRH immunoreactive fibers extending throughout the bulb represented a different component of the olfactory system; the fiber density showed a seasonal pattern that could be related to the status of gonadal maturity. While it was highest in the prespawning phase, significant reduction in the fiber density was noticed in the fish of spawning and the following regressive phases. Taken together the data suggest that the GnRH in the olfactory system of C. mrigala may play a major role in translation of the environmental cues and influence the downstream signals leading to the stimulation of the brain-pituitary-ovary axis.
A simulation model for the infiltration of heterogeneous sediment into a stream bed
Tim Lauck; Roland Lamberson; Thomas E. Lisle
1993-01-01
Abstract - Salmonid embryos depend on the adequate flow of oxygenated water to survive and interstitial passageways to emerge from the gravel bed. Spawning gravels are initially cleaned by the spawning female, but sediment transported during subsequent high-runoff events can nfiltrate the porous substrate. In many gravel-bed channels used for spawning, most of the...
John M. Buffington; David R. Montgomery; Harvey M. Greenberg
2004-01-01
A general framework is presented for examining the effects of channel type and associated hydraulic roughness on salmonid spawning-gravel availability in mountain catchments. Digital elevation models are coupled with grain-size predictions to provide basin-scale assessments of the potential extent and spatial pattern of spawning gravels. To demonstrate both the model...
USDA-ARS?s Scientific Manuscript database
Channel x blue hybrid catfish are exclusively produced by hormone-induced spawning protocols and this process has proved to be a reliable method to mass produce hybrid catfish in hatcheries. Strip spawning of channel catfish needs a continuous and reliable supply of mature (gravid) fish during the...
Christopher C. Downs; Dona Horan; Erin Morgan-Harris; Robert Jakubowski
2006-01-01
We utilized a screw trap, trap-box weir, remote passive integrated transponder tag (PIT) detection weir, and otolith microchemistry to evaluate (2000â2004) spawning demographics and migration patterns of adfluvial bull trout Salvelinus confluentus in Trestle Creek, Idaho, a tributary to Lake Pend Oreille. Annual repeat spawning was more common than...
Effects of habitat quality and ambient hyporheic flows on salmon spawning site selection
Rohan Benjankar; Daniele Tonina; Alessandra Marzadri; Jim McKean; Daniel J. Isaak
2016-01-01
Understanding the role of stream hydrologic and morphologic variables on the selection of spawning sites by salmonid fishes at high resolution across broad scales is needed for effective habitat restoration and protection. Here we used remotely sensed meter-scale channel bathymetry for a 13.5 km reach of Chinook salmon spawning stream in central Idaho to...
Endocrine events associated with spawning behavior in the sea lamprey (Petromyzon marinus)
Linville, Jane E.; Hanson, Lee H.; Sower, Stacia A.
1987-01-01
Levels of estradiol, progesterone, and testosterone were determined in plasma of sea lamprey (Petromyzon marinus) undergoing certain behaviors associated with spawning in natural and artifical stream environments. Significantly higher levels of estradiol, progesterone, and testosterone were found in males than in females. In the artifical spawning channel, levels of estradiol were significantly higher in females exhibiting resting and swimming behaviors than in fanning, nest building, and spawning behaviors. No significant correlation was found with either progesterone or testosterone levels and the various reproductive behaviors. The data presented are the first experimental evidence that suggest gonadal steroids may be correlated with certain reproductive behaviors in the sea lamprey.
Binder, Thomas R.; Holbrook, Christopher M.; Miehls, Scott M.; Thompson, Henry T.; Krueger, Charles C.
2014-01-01
Our results satisfied the three assumptions of oviduct tagging and suggested that oviduct transmitters can be used with positional telemetry to estimate time and location of spawning in lake trout and other species. In situations where oviduct transmitters may be difficult to position once expelled into substrate, pairing oviduct transmitters with a normal-sized fish transmitter that remains in the fish is recommended, with spawning inferred when the two tags separate in space. Optimal transmitter delay will depend on expected degree of spawning site residency and swim speed.
Flowing recirculated-water system for inducing laboratory spawning of sea lampreys
Fredricks, Kim T.; Seelye, James G.
1995-01-01
We describe a water-recirculating system for inducing spawning of sea lampreys (Petromyzon marinus) held under laboratory conditions. Water temperature in the system was gradually increased to and maintained at 18 +/- 2 degrees C, the optimal temperature for spawning. About 10% freshwater was added daily to prevent buildup of waste products. Sea lampreys were provided substrate (approximately 3-6 cm in diameter) to build nests, and a water velocity of 0.2-0.3 m/s was maintained with an electric trolling motor. Sea lampreys held in this system exhibited characteristic spawning behavior. Prolarvae produced from artificial fertilization of gametes developed according to the standard timeline.
Stanley, Ryan R E; deYoung, Brad; Snelgrove, Paul V R; Gregory, Robert S
2013-01-01
To understand coastal dispersal dynamics of Atlantic cod (Gadus morhua), we examined spatiotemporal egg and larval abundance patterns in coastal Newfoundland. In recent decades, Smith Sound, Trinity Bay has supported the largest known overwintering spawning aggregation of Atlantic cod in the region. We estimated spawning and dispersal characteristics for the Smith Sound-Trinity Bay system by fitting ichthyoplankton abundance data to environmentally-driven, simplified box models. Results show protracted spawning, with sharply increased egg production in early July, and limited dispersal from the Sound. The model for the entire spawning season indicates egg export from Smith Sound is 13%•day(-1) with a net mortality of 27%•day(-1). Eggs and larvae are consistently found in western Trinity Bay with little advection from the system. These patterns mirror particle tracking models that suggest residence times of 10-20 days, and circulation models indicating local gyres in Trinity Bay that act in concert with upwelling dynamics to retain eggs and larvae. Our results are among the first quantitative dispersal estimates from Smith Sound, linking this spawning stock to the adjacent coastal waters. These results illustrate the biophysical interplay regulating dispersal and connectivity originating from inshore spawning of coastal northwest Atlantic.
Sasson, Daniel A; Ryan, Joseph F
2016-01-01
Ctenophores (comb jellies) are emerging as important animals for investigating fundamental questions across numerous branches of biology (e.g., evodevo, neuroscience and biogeography). A few ctenophore species including, most notably, Mnemiopsis leidyi, are considered as invasive species, adding to the significance of studying ctenophore ecology. Despite the growing interest in ctenophore biology, relatively little is known about their reproduction. Like most ctenophores, M. leidyi is a simultaneous hermaphrodite capable of self-fertilization. In this study, we assess the influence of light on spawning, the effect of body size on spawning likelihood and reproductive output, and the cost of self-fertilization on egg viability in M. leidyi. Our results suggest that M. leidyi spawning is more strongly influenced by circadian rhythms than specific light cues and that body size significantly impacts spawning and reproductive output. Mnemiopsis leidyi adults that spawned alone produced a lower percentage of viable embryos versus those that spawned in pairs, suggesting that self-fertilization may be costly in this species. These results provide insight into the reproductive ecology of M. leidyi and provide a fundamental resource for researchers working with them in the laboratory.
The pre-spawning migratory behaviour of Atlantic salmon Salmo salar in a large lacustrine catchment.
Kennedy, R J; Allen, M
2016-09-01
The movements of adult Atlantic salmon Salmo salar were determined as they migrated to spawning habitats in a large lacustrine catchment, Lough Neagh, in Northern Ireland. The minimum average ground speed of S. salar through the lake was 2·1 km day(-1) and the mean residence time was 11 days. Tagged S. salar tended to actively migrate through the lake which represented a transitory habitat for adult S. salar. Migration time from the release site, through the lake, to a spawning tributary decreased during the migratory period. During the 4 year study period between 20·5 and 41·6% of tagged S. salar which entered the lake each year, explored at least one other channel before ascending the final spawning tributary. Exploratory behaviour was more likely in S. salar which spawned in the tributaries furthest from the sea. Exploratory behaviour was also more likely to occur during periods of reduced discharge in the natal stream. The fishery management implications of complex pre-spawning behaviour in a mixed stock lacustrine system, are discussed. © 2016 The Fisheries Society of the British Isles.
Filipović Marijić, Vlatka; Vardić Smrzlić, Irena; Raspor, Biserka
2014-10-01
Application of fish intestinal parasites, acanthocephalans, as bioindicators in metal exposure assessment usually involves estimation of their metal levels and bioconcentration factors. Metal levels in parasite final host, fishes, are influenced by fish physiology but there is no data for acanthocephalan metal levels. Gastrointestinal Zn, Fe, Mn, Cd, Ag levels in European chub (Squalius cephalus L.) from the Sava River were significantly higher during chub spawning (April/May) compared to the post-spawning period (September). In acanthocephalans (Pomphorhynchus laevis and Acanthocephalus anguillae) significantly higher metal levels during chub spawning were observed only for Zn in P. laevis. Bioconcentration factors were twice as high for Fe, Mn, Ag, Pb in the post-spawning period, probably as a consequence of lower gastrointestinal metal levels in fish rather than metal exposure. Therefore, bioconcentration factors should be interpreted with caution, due to their possible variability in relation to fish physiology. In addition, gastrointestinal Cu, Cd and Pb levels were lower in infected than uninfected chub, indicating that metal variability in fishes might be affected by the presence of acanthocephalans. Copyright © 2014 Elsevier Ltd. All rights reserved.
Huntsman, Brock M; Falke, Jeffrey A; Savereide, James W; Bennett, Katrina E
2017-01-01
Density-dependent (DD) and density-independent (DI) habitat selection is strongly linked to a species' evolutionary history. Determining the relative importance of each is necessary because declining populations are not always the result of altered DI mechanisms but can often be the result of DD via a reduced carrying capacity. We developed spatially and temporally explicit models throughout the Chena River, Alaska to predict important DI mechanisms that influence Chinook salmon spawning success. We used resource-selection functions to predict suitable spawning habitat based on geomorphic characteristics, a semi-distributed water-and-energy balance hydrologic model to generate stream flow metrics, and modeled stream temperature as a function of climatic variables. Spawner counts were predicted throughout the core and periphery spawning sections of the Chena River from escapement estimates (DD) and DI variables. Additionally, we used isodar analysis to identify whether spawners actively defend spawning habitat or follow an ideal free distribution along the riverscape. Aerial counts were best explained by escapement and reference to the core or periphery, while no models with DI variables were supported in the candidate set. Furthermore, isodar plots indicated habitat selection was best explained by ideal free distributions, although there was strong evidence for active defense of core spawning habitat. Our results are surprising, given salmon commonly defend spawning resources, and are likely due to competition occurring at finer spatial scales than addressed in this study.
Huntsman, Brock M.; Falke, Jeffrey A.; Savereide, James W.; ...
2017-05-22
Density-dependent (DD) and density-independent (DI) habitat selection is strongly linked to a species’ evolutionary history. Determining the relative importance of each is necessary because declining populations are not always the result of altered DI mechanisms but can often be the result of DD via a reduced carrying capacity. Here, we developed spatially and temporally explicit models throughout the Chena River, Alaska to predict important DI mechanisms that influence Chinook salmon spawning success. We used resource-selection functions to predict suitable spawning habitat based on geomorphic characteristics, a semi-distributed water-and-energy balance hydrologic model to generate stream flow metrics, and modeled stream temperaturemore » as a function of climatic variables. Spawner counts were predicted throughout the core and periphery spawning sections of the Chena River from escapement estimates (DD) and DI variables. In addition, we used isodar analysis to identify whether spawners actively defend spawning habitat or follow an ideal free distribution along the riverscape. Aerial counts were best explained by escapement and reference to the core or periphery, while no models with DI variables were supported in the candidate set. Moreover, isodar plots indicated habitat selection was best explained by ideal free distributions, although there was strong evidence for active defense of core spawning habitat. These results are surprising, given salmon commonly defend spawning resources, and are likely due to competition occurring at finer spatial scales than addressed in this study.« less
NASA Astrophysics Data System (ADS)
Bacheler, Nathan M.; Ciannelli, Lorenzo; Bailey, Kevin M.; Bartolino, Valerio
2012-06-01
Environmental variability is increasingly recognized as a primary determinant of year-class strength of marine fishes by directly or indirectly influencing egg and larval development, growth, and survival. Here we examined the role of annual water temperature variability in determining when and where walleye pollock (Theragra chalcogramma) spawn in the eastern Bering Sea. Walleye pollock spawning was examined using both long-term ichthyoplankton data (N=19 years), as well as with historical spatially explicit, foreign-reported, commercial catch data occurring during the primary walleye pollock spawning season (February-May) each year (N=22 years in total). We constructed variable-coefficient generalized additive models (GAMs) to relate the spatially explicit egg or adult catch-per-unit-effort (CPUE) to predictor variables including spawning stock biomass, season, position, and water temperature. The adjusted R2 value was 63.1% for the egg CPUE model and 35.5% for the adult CPUE model. Both egg and adult GAMs suggest that spawning progresses seasonally from Bogoslof Island in February and March to Outer Domain waters between the Pribilof and Unimak Islands by May. Most importantly, walleye pollock egg and adult CPUE was predicted to generally increase throughout the study area as mean annual water temperature increased. These results suggest low interannual variability in the spatial and temporal dynamics of walleye pollock spawning regardless of changes in environmental conditions, at least at the spatial scale examined in this study and within the time frame of decades.
Estimation of streambed groundwater fluxes associated with coaster brook trout spawning habitat.
Van Grinsven, Matthew; Mayer, Alex; Huckins, Casey
2012-01-01
We hypothesized that the spatial distribution of groundwater inflows through river bottom sediments is a critical factor associated with the distribution of coaster brook trout (a life history variant of Salvelinus fontinalis) spawning redds. An 80-m reach of the Salmon Trout River, in the Huron Mountains of the upper peninsula of Michigan, was selected to test the hypothesis based on long-term documentation of coaster brook trout spawning at this site. A monitoring well system consisting of 22 wells was installed in the riverbed to measure surface and subsurface temperatures over a 13-month period. The array of monitoring wells was positioned to span areas where spawning has and has not been observed. Over 200,000 total temperature measurements were collected from five depths within each monitoring well. Temperatures in the substrate beneath the spawning area were generally less variable than river temperatures, whereas temperatures under the nonspawning area were generally more variable and closely tracked temporal variations in river temperatures. Temperature data were inverted to obtain subsurface groundwater velocities using a numerical approximation of the heat transfer equation. Approximately 45,000 estimates of groundwater velocities were obtained. Estimated groundwater velocities in the spawning area were primarily in the upward direction and were generally greater in magnitude than velocities in the nonspawning area. Both the temperature and velocity results confirm the hypothesis that spawning sites correspond to areas of significant groundwater flux into the river bed. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.
Barriers impede upstream spawning migration of flathead chub
Walters, David M.; Zuellig, Robert E.; Crockett, Harry J.; Bruce, James F.; Lukacs, Paul M.; Fitzpatrick, Ryan M.
2014-01-01
Many native cyprinids are declining throughout the North American Great Plains. Some of these species require long reaches of contiguous, flowing riverine habitat for drifting eggs or larvae to develop, and their declining populations have been attributed to habitat fragmentation or barriers (e.g., dams, dewatered channels, and reservoirs) that restrict fish movement. Upstream dispersal is also needed to maintain populations of species with passively drifting eggs or larvae, and prior researchers have suggested that these fishes migrate upstream to spawn. To test this hypothesis, we conducted a mark–recapture study of Flathead Chub Platygobio gracilis within a 91-km reach of continuous riverine habitat in Fountain Creek, Colorado. We measured CPUE, spawning readiness (percent of Flathead Chub expressing milt), and fish movement relative to a channel-spanning dam. Multiple lines of evidence indicate that Flathead Chub migrate upstream to spawn during summer. The CPUE was much higher at the base of the dam than at downstream sites; the seasonal increases in CPUE at the dam closely tracked seasonal increases in spawning readiness, and marked fish moved upstream as far as 33 km during the spawning run. The upstream migration was effectively blocked by the dam. The CPUE of Flathead Chub was much lower upstream of the OHDD than at downstream sites, and <0.2% of fish marked at the dam were recaptured upstream. This study provides the first direct evidence of spawning migration for Flathead Chub and supports the general hypothesis that barriers limit adult dispersal of these and other plains fishes.
Huntsman, Brock M.; Falke, Jeffrey A.; Savereide, James W.; Bennett, Katrina E.
2017-01-01
Density-dependent (DD) and density-independent (DI) habitat selection is strongly linked to a species’ evolutionary history. Determining the relative importance of each is necessary because declining populations are not always the result of altered DI mechanisms but can often be the result of DD via a reduced carrying capacity. We developed spatially and temporally explicit models throughout the Chena River, Alaska to predict important DI mechanisms that influence Chinook salmon spawning success. We used resource-selection functions to predict suitable spawning habitat based on geomorphic characteristics, a semi-distributed water-and-energy balance hydrologic model to generate stream flow metrics, and modeled stream temperature as a function of climatic variables. Spawner counts were predicted throughout the core and periphery spawning sections of the Chena River from escapement estimates (DD) and DI variables. Additionally, we used isodar analysis to identify whether spawners actively defend spawning habitat or follow an ideal free distribution along the riverscape. Aerial counts were best explained by escapement and reference to the core or periphery, while no models with DI variables were supported in the candidate set. Furthermore, isodar plots indicated habitat selection was best explained by ideal free distributions, although there was strong evidence for active defense of core spawning habitat. Our results are surprising, given salmon commonly defend spawning resources, and are likely due to competition occurring at finer spatial scales than addressed in this study.
Opdal, Anders Frugård; Jørgensen, Christian
2015-01-01
Harvesting may be a potent driver of demographic change and contemporary evolution, which both may have great impacts on animal populations. Research has focused on changes in phenotypic traits that are easily quantifiable and for which time series exist, such as size, age, sex, or gonad size, whereas potential changes in behavioural traits have been under-studied. Here, we analyse potential drivers of long-term changes in a behavioural trait for the Northeast Arctic stock of Atlantic cod Gadus morhua, namely choice of spawning location. For 104 years (1866–1969), commercial catches were recorded annually and reported by county along the Norwegian coast. During this time period, spawning ground distribution has fluctuated with a trend towards more northerly spawning. Spawning location is analysed against a suite of explanatory factors including climate, fishing pressure, density dependence, and demography. We find that demography (age or age at maturation) had the highest explanatory power for variation in spawning location, while climate had a limited effect below statistical significance. As to potential mechanisms, some effects of climate may act through demography, and explanatory variables for demography may also have absorbed direct evolutionary change in migration distance for which proxies were unavailable. Despite these caveats, we argue that fishing mortality, either through demographic or evolutionary change, has served as an effective driver for changing spawning locations in cod, and that additional explanatory factors related to climate add no significant information. PMID:25336028
Lake sturgeon response to a spawning reef constructed in the Detroit river
Roseman, Edward F.; Manny, B.; Boase, J.; Child, M.; Kennedy, G.; Craig, J.; Soper, K.; Drouin, R.
2011-01-01
Prior to the First World War, the bi-national Detroit River provided vast areas of functional fish spawning and nursery habitat. However, ongoing conflicting human uses of these waters for activities such as waste disposal, water withdrawals, shoreline development, shipping, recreation, and fishing have altered many of the chemical, physical, and biological processes of the Detroit River. Of particular interest and concern to resource managers and stakeholders is the significant loss and impairment of fish spawning and nursery habitat that led to the decline in abundance of most fish species using this ecosystem. Lake sturgeon (Acipenser fulvescens) populations for example, were nearly extirpated by the middle of the 20th century, leaving only a small fraction of their former population. Fisheries managers recognized that the loss of suitable fish spawning habitat is a limiting factor in lake sturgeon population rehabilitation in the Detroit River. In efforts to remediate this beneficial water use impairment, a reef consisting of a mixture of natural rock and limestone was constructed at the upstream end of Fighting Island in 2008. This paper focuses on the response by lake sturgeon to the different replicates of suitable natural materials used to construct the fish spawning habitat at Fighting Island in the Detroit River. Pre-construction fisheries assessment during 2006–2008 showed that along with the presence of adult lake sturgeon, spawning conditions were favorable. However, no eggs were found in assessments conducted prior to reef construction. The 3300 m2 Fighting Island reef was placed at the upstream end of the island in October of 2008. The construction design included 12 spawning beds of three replicates each consisting of either round rock, small or large (shot-rock) diameter limestone or a mixture thereof. An observed response by spawning lake sturgeon occurred the following year when spawning-ready adults (ripe), viable eggs, and larvae were collected during May and June 2009. Additional eggs and spawning-ready adults were found in 2010 (no larval sampling occurred in 2010) as well as collection of three age-0 juvenile lake sturgeon in bottom trawls fished downstream of the reef during July 2010. Spawning lake sturgeon showed no repeatable preference for any of the four particular substrate types but showed a high degree of preference for the island side of the channel, where faster water current velocities occurred. In 2009, overall lake sturgeon egg densities across all replicates averaged 102 m-2 and seven larvae were found in night drift-net samples. In 2010, average lake sturgeon egg density was 12 m-2 and three age-0 lake sturgeon averaging 120 mm TL were collected in bottom trawls in deepwater (∼8 m depth) downstream from the constructed reef. These results demonstrated successful reproduction by lake sturgeon on a man-made reef and suggested that additions and improvements to fish spawning habitat could enhance reproduction and early life history survival of lake sturgeon in the Detroit River.
Eiler, John H.; Masuda, Michele; Spencer, Ted R.; Driscoll, Richard J.; Schreck, Carl B.
2014-01-01
Chinook Salmon Oncorhynchus tshawytscha returns to the Yukon River basin have declined dramatically since the late 1990s, and detailed information on the spawning distribution, stock structure, and stock timing is needed to better manage the run and facilitate conservation efforts. A total of 2,860 fish were radio-tagged in the lower basin during 2002–2004 and tracked upriver. Fish traveled to spawning areas throughout the basin, ranging from several hundred to over 3,000 km from the tagging site. Similar distribution patterns were observed across years, suggesting that the major components of the run were identified. Daily and seasonal composition estimates were calculated for the component stocks. The run was dominated by two regional components comprising over 70% of the return. Substantially fewer fish returned to other areas, ranging from 2% to 9% of the return, but their collective contribution was appreciable. Most regional components consisted of several principal stocks and a number of small, spatially isolated populations. Regional and stock composition estimates were similar across years even though differences in run abundance were reported, suggesting that the differences in abundance were not related to regional or stock-specific variability. Run timing was relatively compressed compared with that in rivers in the southern portion of the species’ range. Most stocks passed through the lower river over a 6-week period, ranging in duration from 16 to 38 d. Run timing was similar for middle- and upper-basin stocks, limiting the use of timing information for management. The lower-basin stocks were primarily later-run fish. Although differences were observed, there was general agreement between our composition and timing estimates and those from other assessment projects within the basin, suggesting that the telemetry-based estimates provided a plausible approximation of the return. However, the short duration of the run, complex stock structure, and similar stock timing complicate management of Yukon River returns.
Jim McKean; Daniele Tonina
2013-01-01
Incubating eggs of autumn-spawning Chinook salmon (Oncorhynchus tshawytscha) could be at risk of midwinter high flows and substrate scour in a changing climate. A high-spatial-resolution multidimensional hydrodynamics model was used to assess the degree of scour risk in low-gradient unconfined gravel bed channels that are the favored environment for autumn-spawning...
Migration and spawning of radio-tagged zulega Prochilodus argenteus in a dammed Brazilian river
Godinho, Alexandre L.; Kynard, B.
2006-01-01
It is difficult for agencies to evaluate the impacts of the many planned dams on Sa??o Francisco River, Brazil, migratory fishes because fish migrations are poorly known. We conducted a study on zulega Prochilodus argenteus, an important commercial and recreational fish in the Sa??o Francisco River, to identify migrations and spawning areas and to determine linear home range. During two spawning seasons (2001-2003), we radio-tagged fish in three main-stem reaches downstream of Tre??s Marias Dam (TMD), located at river kilometer (rkm) 2,109. We tagged 10 fish at Tre??s Marias (TM), which is 5 km downstream of TMD; 12 fish at Pontal, which is 28 km downstream of TMD and which includes the mouth of the Abaete?? River, and 10 fish at Cilga, which is 45 km downstream of TMD. Late-stage (ripe) adults tagged in each area during the spawning season remained at or near the tagging site, except for four Cilga fish that went to Pontal and probably spawned. The Pontal area at the Abaete?? River mouth was the most important spawning site we found. Prespawning fish moved back and forth between main-stem staging areas upstream of the Abaete?? River mouth and Pontal for short visits. These multiple visits were probably needed as ripe fish waited for spawning cues from a flooding Abaete?? River. Some fish homed to prespaw ning staging areas, spawning areas, and nonspawning areas. The migratory style of zulega was dualistic, with resident and migratory fish. Total linear home range was also dualistic, with small (<26-km) and large (53-127-km) ranges. The locations of spawning areas and home ranges suggest that the Pontal group (which includes Cilga fish) is one population that occupies about 110 km. The Pontal population overlaps a short distance with a population located downstream of Cilga. Movements of late-stage TM adults suggest that the TM group is a separate population, possibly with connections to populations upstream of TMD. ?? Copyright by the American Fisheries Society 2006.
von Dewitz, Burkhard; Tamm, Susanne; Höflich, Katharina; Voss, Rüdiger; Hinrichsen, Hans-Harald
2018-01-01
The semi-enclosed nature and estuarine characteristics, together with its strongly alternating bathymetry, make the Baltic Sea prone to much stronger interannual variations in the abiotic environment, than other spawning habitats of Atlantic cod (Gadus morhua). Processes determining salinity and oxygen conditions in the basins are influenced both by long term gradual climate change, e.g. global warming, but also by short-term meteorological variations and events. Specifically one main factor influencing cod spawning conditions, the advection of highly saline and well-oxygenated water masses from the North Sea, is observed in irregular frequencies and causes strong interannual variations in stock productivity. This study investigates the possibility to use the available hydrographic process knowledge to predict the annual spawning conditions for Eastern Baltic cod in its most important spawning ground, the Bornholm Basin, only by salinity measurements from a specific location in the western Baltic. Such a prediction could serve as an environmental early warning indicator to inform stock assessment and management. Here we used a hydrodynamic model to hindcast hydrographic property fields for the last 40+ years. High and significant correlations were found for months early in the year between the 33m salinity level in the Arkona Basin and the oxygen-dependent cod spawning environment in the Bornholm Basin. Direct prediction of the Eastern Baltic cod egg survival in the Bornholm Basin based on salinity values in the Arkona Basin at the 33 m depth level is shown to be possible for eggs spawned by mid-age and young females, which currently predominate the stock structure. We recommend to routinely perform short-term predictions of the Eastern Baltic cod spawning environment, in order to generate environmental information highly relevant for stock dynamics. Our statistical approach offers the opportunity to make best use of permanently existing infrastructure in the western Baltic to timely provide scientific knowledge on the spawning conditions of Eastern Baltic cod. Furthermore it could be a tool to assist ecosystem-based fisheries management with a cost-effective implementation by including the short term predictions as a simple indicator in the annual assessments.
Tamm, Susanne; Höflich, Katharina; Voss, Rüdiger; Hinrichsen, Hans-Harald
2018-01-01
The semi-enclosed nature and estuarine characteristics, together with its strongly alternating bathymetry, make the Baltic Sea prone to much stronger interannual variations in the abiotic environment, than other spawning habitats of Atlantic cod (Gadus morhua). Processes determining salinity and oxygen conditions in the basins are influenced both by long term gradual climate change, e.g. global warming, but also by short-term meteorological variations and events. Specifically one main factor influencing cod spawning conditions, the advection of highly saline and well-oxygenated water masses from the North Sea, is observed in irregular frequencies and causes strong interannual variations in stock productivity. This study investigates the possibility to use the available hydrographic process knowledge to predict the annual spawning conditions for Eastern Baltic cod in its most important spawning ground, the Bornholm Basin, only by salinity measurements from a specific location in the western Baltic. Such a prediction could serve as an environmental early warning indicator to inform stock assessment and management. Here we used a hydrodynamic model to hindcast hydrographic property fields for the last 40+ years. High and significant correlations were found for months early in the year between the 33m salinity level in the Arkona Basin and the oxygen-dependent cod spawning environment in the Bornholm Basin. Direct prediction of the Eastern Baltic cod egg survival in the Bornholm Basin based on salinity values in the Arkona Basin at the 33 m depth level is shown to be possible for eggs spawned by mid-age and young females, which currently predominate the stock structure. We recommend to routinely perform short-term predictions of the Eastern Baltic cod spawning environment, in order to generate environmental information highly relevant for stock dynamics. Our statistical approach offers the opportunity to make best use of permanently existing infrastructure in the western Baltic to timely provide scientific knowledge on the spawning conditions of Eastern Baltic cod. Furthermore it could be a tool to assist ecosystem-based fisheries management with a cost-effective implementation by including the short term predictions as a simple indicator in the annual assessments. PMID:29768443
NASA Astrophysics Data System (ADS)
Brochier, T.; Colas, F.; Lett, C.; Echevin, V.; Cubillos, L. A.; Tam, J.; Chlaida, M.; Mullon, C.; Fréon, P.
2009-12-01
Although little is known about the individual-level mechanisms that influence small pelagic fish species’ reproductive strategy, Mullon et al. [Mullon, C., Cury, P., Penven, P., 2002. Evolutionary individual-based model for the recruitment of anchovy ( Engraulis capensis) in the southern Benguela. Canadian Journal of Fisheries and Aquatic Sciences 59, 910-922] showed that the observed anchovy spawning patterns in the southern Benguela Current system off South Africa could be accurately reproduced by simulating a natal homing reproductive strategy, i.e. individuals spawning at their natal date and place. Here we used a similar method, i.e., an individual-based model of the natal homing reproductive strategy, and applied it to other upwelling systems: the northern Humboldt Current system off Peru, the southern Humboldt Current system off Chile and the central Canary Current system off Morocco. We investigated the spatial (horizontal and vertical) and seasonal spawning patterns that emerged after applying different environmental constraints in the model, and compared these to observed spawning patterns of sardine and anchovy in their respective systems. The selective environmental constraints tested were: (1) lethal temperature; (2) retention over the continental shelf; and (3) avoidance of dispersive structures. Simulated horizontal spatial patterns and seasonal patterns compared reasonably well with field data, but vertical patterns in most cases did not. Similarly to what was found for the southern Benguela, temperature was a determinant constraint in the southern Humboldt. The shelf retention constraint led to selection of a particular spawning season during the period of minimum upwelling in all three of the upwelling regions considered, and to spatial patterns that matched observed anchovy spawning off Chile and sardine spawning off Morocco. The third constraint, avoidance of dispersive structures, led to the emergence of a spawning season during the period of maximum upwelling off Chile and Morocco, but not in Peru. The most accurate representation of observed spatio-temporal spawning patterns off Peru was achieved through a combination of shelf retention and non-dispersion constraints.
Amundsen, CR; Gjøen, HM; Larsen, B; Egeland, ES
2015-01-01
Reports on reddish carotenoid-based ornaments in female three-spined sticklebacks (Gasterosteus aculeatus) are few, despite the large interest in the species’ behaviour, ornamentation, morphology and evolution. We sampled sticklebacks from 17 sites in north-western Europe in this first extensive study on the occurrence of carotenoid-based female pelvic spines and throat ornaments. The field results showed that females, and males, with reddish spines were found in all 17 populations. Specimens of both sexes with conspicuous red spines were found in several of the sites. The pelvic spines of males were more intensely red compared to the females’ spines, and large specimens were more red than small ones. Fish infected with the tapeworm (Schistocephalus solidus) had drabber spines than uninfected fish. Both sexes had red spines both during and after the spawning period, but the intensity of the red colour was more exaggerated during the spawning period. As opposed to pelvic spines, no sign of red colour at the throat was observed in any female from any of the 17 populations. A rearing experiment was carried out to estimate a potential genetic component of the pelvic spine ornament by artificial crossing and rearing of 15 family groups during a 12 months period. The results indicated that the genetic component of the red colour at the spines was low or close to zero. Although reddish pelvic spines seem common in populations of stickleback, the potential adaptive function of the reddish pelvic spines remains largely unexplained. PMID:25861558
Bio-foam enhances larval retention in a free-spawning marine tunicate
Castilla, Juan Carlos; Manríquez, Patricio H.; Delgado, Alejandro P.; Gargallo, Ligia; Leiva, Angel; Radic, Deodato
2007-01-01
Here we report a mechanism that reduces dispersal of early developing stages and larvae in a free-spawning intertidal and shallow subtidal tunicate, Pyura praeputialis (Heller 1878), in the Bay of Antofagasta, Chile. The spawning of gametes by the tunicate into the naturally turbulent aerated seawater decreases their surface tension and induces the formation of a bio-foam. Water collected from foamy intertidal pools and tide channels showed a high concentration of P. praeputialis early developing stages and tadpole larvae in the foam. Because gametes are synchronically spawned for external fertilization and larvae settle near adults, our results suggest that this bio-foam increases fertilization success and effective settlement of their short-lived larvae in the vicinity of the adults spawning the gametes. This mechanism reinforces published evidence suggesting that local retention of intertidal and inshore marine invertebrate larvae may be more common than previously thought, offering, for instance, new perspectives for the design and networking of marine protected and management areas. PMID:17984045
Bio-foam enhances larval retention in a free-spawning marine tunicate.
Castilla, Juan Carlos; Manríquez, Patricio H; Delgado, Alejandro P; Gargallo, Ligia; Leiva, Angel; Radic, Deodato
2007-11-13
Here we report a mechanism that reduces dispersal of early developing stages and larvae in a free-spawning intertidal and shallow subtidal tunicate, Pyura praeputialis (Heller 1878), in the Bay of Antofagasta, Chile. The spawning of gametes by the tunicate into the naturally turbulent aerated seawater decreases their surface tension and induces the formation of a bio-foam. Water collected from foamy intertidal pools and tide channels showed a high concentration of P. praeputialis early developing stages and tadpole larvae in the foam. Because gametes are synchronically spawned for external fertilization and larvae settle near adults, our results suggest that this bio-foam increases fertilization success and effective settlement of their short-lived larvae in the vicinity of the adults spawning the gametes. This mechanism reinforces published evidence suggesting that local retention of intertidal and inshore marine invertebrate larvae may be more common than previously thought, offering, for instance, new perspectives for the design and networking of marine protected and management areas.
Use of Aerial Photography to Monitor Fall Chinook Salmon Spawning in the Columbia River
DOE Office of Scientific and Technical Information (OSTI.GOV)
Visser, Richard H.; Dauble, Dennis D.; Geist, David R.
2002-11-01
This paper compares two methods for enumerating salmon redds and their application to monitoring spawning activity. Aerial photographs of fall chinook salmon spawning areas in the Hanford Reach of the Columbia River were digitized and mapped using Geographic Information Systems (GIS) techniques in 1994 and 1995 as part of an annual assessment of the population. The number of visible redds from these photographs were compared to counts obtained from visual surveys with fixed wing aircraft. The proportion of the total redds within each of five general survey areas was similar for the two monitoring techniques. However, the total number ofmore » redds based on aerial photographs was 2.2 and 3.0 times higher than those observed during visual surveys for 1994 and 1995, respectively. The divergence in redd counts was most evident near peak spawning activity when the number of redds within individual spawning clusters exceeded 500. Aerial photography improved our ability to monitor numbers of visible salmon redds and to quantify habitat use.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rondorf, Dennis W.; Tiffan, Kenneth F.
1994-12-01
Recovery efforts for the endangered fall chinook salmon necessitates knowledge of the factors limiting the various life history stages. This study attempts to identify those physical and biological factors which affect spawning of the fish in the free-flowing Snake River and their rearing seward migration through Columbia River basin reservoirs. The spawning was generally a November event in 1993, with some activity in late Oct. and early Dec. Spawning habitat availability was assessed by applying hydraulic and habitat models to known fall chinook salmon spawning sites. Juveniles were seined and PIT tagged in the free-flowing Snake River, and in themore » Columbia River in he Hanford Reach and in McNary Reservoir. Subyearling fish were marked at McNary Dam to relate river flow and migration patterns of juveniles to adult returns. Hydroacoustic surveys were conducted on McNary and John Day reservoirs and in net pens.« less
Burdick, Summer M.; Rasmussen, Josh
2012-01-01
Poor recruitment appears to limit the recovery of Lost River and shortnose sucker populations in Clear Lake Reservoir, California, but the cause is unknown. Adult suckers migrate up Willow Creek and its tributaries to spawn in some years, but low flow in Willow Creek may inhibit spawning migrations in other years. It is unclear whether spawning is successful, larvae survive, or juveniles persist to adulthood. Environmental variables associated with successful spawning or young-of-year survival have not been identified and early life history for these populations is poorly understood. The U.S. Geological Survey in cooperation with the U.S. Fish and Wildlife Service and Ruby Pipeline L.L.C. Corporation (El Paso, Tex.) initiated a study in 2011 to better understand juvenile sucker life history in Clear Lake Reservoir, and to identify constraints in the early life history that may limit recruitment to the adult spawning populations. This is a report on the 2011 pilot study for this project.
Grabowski, T.B.; Thorsteinsson, Vilhjalmur; McAdam, B.J.; Marteinsdottir, G.
2011-01-01
There is increasing recognition of intraspecific diversity and population structure within marine fish species, yet there is little direct evidence of the isolating mechanisms that maintain it or documentation of its ecological extent. We analyzed depth and temperature histories collected by electronic data storage tags retrieved from 104 Atlantic cod at liberty ???1 year to evaluate a possible isolating mechanisms maintaining population structure within the Icelandic cod stock. This stock consists of two distinct behavioral types, resident coastal cod and migratory frontal cod, each occurring within two geographically distinct populations. Despite being captured together on the same spawning grounds, we show the behavioral types seem reproductively isolated by fine-scale differences in spawning habitat selection, primarily depth. Additionally, the different groups occupied distinct seasonal thermal and bathymetric niches that generally demonstrated low levels of overlap throughout the year. Our results indicate that isolating mechanisms, such as differential habitat selection during spawning, might contribute to maintaining diversity and fine-scale population structure in broadcast-spawning marine fishes.
Parsley, M.J.; Anders, P.J.; Miller, Allen I.; Beckman, L.G.; McCabe, G.T.
2002-01-01
Recovery or maintenance of sturgeon populations through natural production in perturbed rivers requires adequate knowledge of the abiotic and biotic factors that influence spawning and cause mortality of embryonic, larval, and juvenile life stages. Although it is known that year-class strength of white sturgeon Acipenser transmontanus is determined within 2-3 months after spawning, little is known about specific causes of mortality to early life stages during this period. Initial spawning success is critical in the development of a strong year-class, and maximized recruitment may be dependent upon water temperature and the availability of optimal in-river habitat. Analyses have shown that increased river discharge combined with suitable water temperatures during spawning, egg incubation, yolk sac larvae dispersal, and first exogenous feeding result in greater recruitment. However, little is known about the importance of other variables, such as food availability or losses due to predation that influence year-class strength. ?? 2002 by the American Fisheries Society.
Diel spawning behavior of chum salmon in the Columbia River
Tiffan, K.F.; Rondorf, D.W.; Skalicky, J.J.
2005-01-01
We conducted a study during 2003 in a side channel of the Columbia River downstream of Bonneville Dam to describe the diel spawning behavior of wild chum salmon Oncorhynchus keta. We collected observational data on 14 pairs of chum salmon using a dual-frequency identification sonar. Spawners of both genders were observed chasing intruders during nighttime and daytime as nests were constructed. Regardless of diel period, females were engaged in digging to both construct nests and cover eggs, and courting males exhibited the prespawning behavior of tail-crossing. We observed a total of 13 spawning events, of which 9 occurred at night and 4 occurred during the day. Once chum salmon begin nest construction, visual cues are apparently not required for courtship, nest defense, and spawning. To enhance successful spawning, flows from Bonneville Dam during the spawning season were reduced during the day but were sometimes increased at night to pass water and meet power demand (i.e., reverse loading), the assumption being that chum salmon are inactive at night. Our findings show that this assumption was violated. Therefore, reverse loading may disrupt the complex prespawning behavior that occurs both during the day and at night, as well as attract spawners to areas that were dewatered during the day.
Stanley, Ryan R. E.; deYoung, Brad; Snelgrove, Paul V. R.; Gregory, Robert S.
2013-01-01
To understand coastal dispersal dynamics of Atlantic cod (Gadus morhua), we examined spatiotemporal egg and larval abundance patterns in coastal Newfoundland. In recent decades, Smith Sound, Trinity Bay has supported the largest known overwintering spawning aggregation of Atlantic cod in the region. We estimated spawning and dispersal characteristics for the Smith Sound-Trinity Bay system by fitting ichthyoplankton abundance data to environmentally-driven, simplified box models. Results show protracted spawning, with sharply increased egg production in early July, and limited dispersal from the Sound. The model for the entire spawning season indicates egg export from Smith Sound is 13%•day−1 with a net mortality of 27%•day–1. Eggs and larvae are consistently found in western Trinity Bay with little advection from the system. These patterns mirror particle tracking models that suggest residence times of 10–20 days, and circulation models indicating local gyres in Trinity Bay that act in concert with upwelling dynamics to retain eggs and larvae. Our results are among the first quantitative dispersal estimates from Smith Sound, linking this spawning stock to the adjacent coastal waters. These results illustrate the biophysical interplay regulating dispersal and connectivity originating from inshore spawning of coastal northwest Atlantic. PMID:24058707
Inhibitory mechanism of l-glutamic acid on spawning of the starfish Patiria (Asterina) pectinifera.
Mita, Masatoshi
2017-03-01
l-Glutamic acid was previously identified as an inhibitor of spawning in the starfish Patiria (Asterina) pectinifera; this study examined how l-glutamic acid works. Oocyte release from ovaries of P. pectinifera occurred after germinal vesicle breakdown (GVBD) and follicular envelope breakdown (FEBD) when gonads were incubated ex vivo with either relaxin-like gonad-stimulating peptide (RGP) or 1-methyladenine (1-MeAde). l-Glutamic acid blocked this spawning phenotype, causing the mature oocytes to remain within the ovaries. Neither RGP-induced 1-MeAde production in ovarian follicle cells nor 1-MeAde-induced GVBD and FEBD was affected by l-glutamic acid. l-Glutamic acid may act through metabotropic receptors in the ovaries to inhibit spawning, as l-(+)-2-amino-4-phosphonobutyric acid, an agonist for metabotropic glutamate receptors, also inhibited spawning induced by 1-MeAde. Application of acetylcholine (ACH) to ovaries under inhibitory conditions with l-glutamic acid, however, brought about spawning, possibly by inducing contraction of the ovarian wall to discharge mature oocytes from the ovaries concurrently with GVBD and FEBD. Thus, l-glutamic acid may inhibit ACH secretion from gonadal nerve cells in the ovary. Mol. Reprod. Dev. 84: 246-256, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Maturation, fecundity, and intertidal spawning of Pacific sand lance in the northern Gulf of Alaska
Robards, Martin D.; Piatt, John F.; Rose, G.A.
1999-01-01
Pacific sand lance Ammodytes hexapterus in Kachemak Bay, Alaska, showed no sexual dimorphism in length-to-weight (gonad-free) ratio or length-at-age relationship. Most matured in their second year, males earlier in the season than females, but females (31%) attained a higher gonadosomatic index than males (21%). Sand lance spawned intertidally once each year in late September and October on fine gravel or sandy beaches soon after the seasonal peak in water temperatures. Sand lance in Cook Inlet and Prince William Sound displayed similar maturation schedules. Schools were dominated 2: 1 by males as they approached the intertidal zone at a site where spawning has taken place for decades. Sand lance spawned vigorously in dense formations, leaving scoured pits in beach sediments. Fecundity of females (93–199 mm) was proportional to length, ranging from 1468 to 16 081 ova per female. About half of the overall spawning school fecundity was derived from age group 1 females (55% of the school by number). Spawned eggs were 1·02 mm in diameter, demersal, slightly adhesive, and deposited in the intertidal just below the waterline. Sand lance embryos developed over 67 days through periods of intertidal exposure and sub-freezing air temperatures.
Spawning habitat and behavior of Gila trout, a rare salmonid of the southwestern United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinne, J.N.
1980-01-01
The spawning season of Gila trout, Salmo gilae Miller, in three streams in the Gila National Forest, New Mexico, began in early April at the lowest elevation and continued through June at the highest elevation. Water temperature and stream flow interacted to induce spawning; however, the former was more important. Spawning commenced at water temperatures near 8 C. Redds were normally in 6 to 15 cm deep water, about a quarter of the stream width from one bank and within 5 m of cover. The substrate was predominantly gravel and small pebble (0.2 to 3.8 cm). Spawning fish selected reddmore » sites based on depth of water and substrate rather than on water velocity. Redds ranged in area from less than 0.1 m/sup 2/ to nearly 2.0 m/sup 2/ and averaged 3 to 4 cm in structural depth. Normally a single fish or a pair of fish occupied a redd, but occupancy by three to four fish was common. Most spawning activity occurred between 1300 and 1600 hours. Fry (15 to 20 mm long) emerged in 8 to 10 weeks and inhibited riffle areas. Absence of fry from pools occupied by adults indicated that cannibalism may occur.« less
Dorr, John A.; O'Connor, Daniel V.; Foster, Neal R.; Jude, David J.
1981-01-01
Spawning by planted lake trout (Salvelinus namaycush) was documented by sampling with a diver-assisted pump in a traditional spawning area in southeastern Lake Michigan near Saugatuck, Michigan in mid-November in 1978 and 1979. Bottom depths at the 11 locations sampled ranged from 3 to 12 m and substrate size from boulders to sand. Periphyton (Cladophora and associated biota) was several millimeters thick at most stations but sparse at the shallowest. The most eggs recovered from a single sample occurred at the shallowest depth (3 m). In both years, some of the small numbers of eggs collected (9 in 1978, 14 in 1979) were alive and fertilized. Laboratory incubation of viable eggs resulted in successful hatching of larvae. When compared with egg densities measured at spawning sites used by self-sustaining populations of lake trout in other lakes, densities in the study are (0-13/m2) appeared to be critically low. Insufficient numbers of eggs, combined with harsh incubation conditions (turbulence, ice scour, sedimentation), were implicated as prime causes for lake trout reproductive failure in the study area, although other factors, such as inappropriate spawning behavior (selection of suboptimal spawning location, depth, or substrate) also may have reduced survival of eggs and larvae.
Lee, D.; Lack, Justin B.; Van Den Bussche, Ronald A.; Long, James M.
2012-01-01
Tributaries of tailwater fisheries in the southeastern USA have been used for spawning by stocked rainbow trout (Oncorhynchus mykiss), but their importance may have been underestimated using traditional fish survey methods such as electrofishing and redd counts. We used a bi-genomic approach, mitochondrial DNA sequences and nuclear microsatellite loci, to estimate the number of spawning adults in one small tributary (Cabin Creek) of the Chattahoochee River, Georgia, where rainbow trout are known to spawn and have successful recruitment. We extracted and analysed DNA from seven mature male rainbow trout and four juveniles that were captured in February 2006 in Cabin Creek and from 24 young-of-year (YOY) trout that were captured in April 2006. From these samples, we estimated that 24 individuals were spawning to produce the amount of genetic variation observed in the juveniles and YOY, although none of the mature males we sampled were indicated as sires. Analysis of the mitochondrial D-loop region identified four distinct haplotypes, suggesting that individuals representing four maternal lineages contributed to the offspring. Our analyses indicated that many more adults were spawning in this system than previously estimated with direct count methods and provided insight into rainbow trout spawning behavior.
Spawning activity of the Australian lungfish Neoceratodus forsteri in an impoundment.
Roberts, D T; Mallett, S; Krück, N C; Loh, W; Tibbetts, I
2014-01-01
This study assessed the spawning activity of the threatened Australian lungfish Neoceratodus forsteri by measuring egg densities within the artificial habitat of a large impoundment (Lake Wivenhoe, Australia). Eggs were sampled (August to November 2009) from multiple locations across the impoundment, but occurred at highest densities in water shallower than 40 cm along shorelines with a dense cover of submerged terrestrial vegetation. The numbers of eggs declined over the study period and all samples were dominated by early developmental stages and high proportions of unviable eggs. The quality of the littoral spawning habitats declined over the study as flooded terrestrial grasses decomposed and filamentous algae coverage increased. Water temperatures at the spawning site exhibited extreme variations, ranging over 20·4° C in water shallower than 5 cm. Dissolved oxygen concentrations regularly declined to <1 mg l⁻¹ at 40 and 80 cm water depth. Spawning habitats utilised by N. forsteri within impoundments expose embryos to increased risk of desiccation or excessive submergence through water-level variations, and extremes in temperature and dissolved oxygen concentration that present numerous challenges for successful spawning and recruitment of N. forsteri in large impoundment environments. © 2014 The Fisheries Society of the British Isles.
Kocovsky, Patrick M.; Chapman, Duane C.; McKenna, James E.
2012-01-01
Bighead carp Hypophthalmichthys nobilis, silver carp H. molitrix, and grass carp Ctenopharyngodon idella (hereafter Asian carps) have expanded throughout the Mississippi River basin and threaten to invade Lakes Michigan and Erie. Adult bighead carp and grass carp have been captured in Lake Erie, but self-sustaining populations probably do not exist. We examined thermal conditions within Lake Erie to determine if Asian carps would mature, and to estimate time of year when fish would reach spawning condition. We also examined whether thermal and hydrologic conditions in the largest tributaries to western and central Lake Erie were suitable for spawning of Asian carps. We used length of undammed river, predicted summer temperatures, and predicted water velocity during flood events to determine whether sufficient lengths of river are available for spawning of Asian carps. Most rivers we examined have at least 100 km of passable river and summer temperatures suitable (> 21 C) for rapid incubation of eggs of Asian carps. Predicted water velocity and temperature were sufficient to ensure that incubating eggs, which drift in the water column, would hatch before reaching Lake Erie for most flood events in most rivers if spawned far enough upstream. The Maumee, Sandusky, and Grand Rivers were predicted to be the most likely to support spawning of Asian carps. The Black, Huron, Portage, and Vermilion Rivers were predicted to be less suitable. The weight of the evidence suggests that the largest western and central Lake Erie tributaries are thermally and hydrologically suitable to support spawning of Asian carps.
Spawning characteristics of redband trout in a headwater stream in Montana
Muhlfeld, Clint C.
2002-01-01
I investigated the spawning characteristics of redband trout Oncorhynchus mykiss gairdneri (a rainbow trout subspecies) during the spring of 1998 in Basin Creek, a third-order headwater stream located in the Kootenai River drainage in northwestern Montana. I examined the timing of spawning as related to discharge and water temperature and analyzed microhabitat selection of 30 completed redds in a low-gradient (0.5–1.5%) reach. Redband trout spawned as flow declined after peak runoff and as mean daily water temperature exceeded 6.0C and maximum daily temperature exceeded 7.0C. Redband trout began spawning on 6 June (mean daily discharge = 2.1 m3/s), 10 d after the peak discharge (8.7 m3/s) occurred. The last redd was completed on 24 June, when discharge was 1.5 m3/s. The mean total redd length was 53 cm (SD = 14; range = 31–91 cm), and the mean total area was 51 cm2 (SD = 8; range= 46– 76 cm2). Eighty percent of the redds were located in pool tailouts, 13% in runs, and 7% in riffles. Spawning redband trout selected redd sites based on substrate size and water depth but not water velocity. Fish selected substrate sizes of 2–6 mm, water depths of 20–30 cm, and water velocities of 40–70 cm/s. My results suggest that redband trout in a low-gradient, third-order mountain stream found suitable spawning habitat in pool tail-outs that contained abundant gravels.
Lee, Chi-Hoon; Kaang, Bong-Kiun; Lee, Young-Don
2014-01-01
This study was investigated spawning behavior, structure of egg masses and egg development in Aplysia kurodai inhabiting the coastal waters of Jeju Island, Korea. The mating and courtship behavior of A. kurodai occurred in the form of unilateral copulating with chain formation. In chain copulation, only the first animal acted as a female; the second and succeeding animals acted as males (sperm donors) to the animals in front and as females to the animals behind. The fertilized eggs were packaged in capsules that are embedded in jelly to form a cylindrical string called an egg masses. The number of capsule per cm of the egg masses was 55 to 60 capsules and each capsule within the egg masses held 15 to 25 eggs. After spawning, the egg masses were bright yellow or orange in color. This egg masses color not changed until embryos developed into trochophore stage. Thereafter, as embryo developed from trochophore stage to veliger stage the egg masses color became brownish. The fertilized eggs were spherical, with a diameter of approximately 80±1 μm at spawning. At 5 to 6 days after spawning, the embryo developed into trochophore stage and began to rotate within the egg capsule. In the trochophore stage, the precursor of the velum, called the prototroch or prevelum, developed. At 10 days after spawning, the prevelum is transformed into the velum, and the trochophore developed into veliger stage. Between 10 to 15 days after spawning, the veligers broke out of the egg capsule, and hatched as free-swimming larvae. PMID:25949168
Characterization of Atlantic cod spawning habitat and behavior in Icelandic coastal waters
Grabowski, Timothy B.; Boswell, Kevin M.; McAdam, Bruce J.; Wells, R. J. David; Marteinsdóttir, Gudrún
2012-01-01
The physical habitat used during spawning may potentially be an important factor affecting reproductive output of broadcast spawning marine fishes, particularly for species with complex, substrate-oriented mating systems and behaviors, such as Atlantic cod Gadus morhua. We characterized the habitat use and behavior of spawning Atlantic cod at two locations off the coast of southwestern Iceland during a 2-d research cruise (15–16 April 2009). We simultaneously operated two different active hydroacoustic gear types, a split beam echosounder and a dual frequency imaging sonar (DIDSON), as well as a remotely operated underwater vehicle (ROV). A total of five fish species were identified through ROV surveys: including cusk Brosme brosme, Atlantic cod, haddock Melanogrammus aeglefinus, lemon sole Microstomus kitt, and Atlantic redfish Sebastes spp. Of the three habitats identified in the acoustic surveys, the transitional habitat between boulder/lava field and sand habitats was characterized by greater fish density and acoustic target strength compared to that of sand or boulder/lava field habitats independently. Atlantic cod were observed behaving in a manner consistent with published descriptions of spawning. Individuals were observed ascending 1–5 m into the water column from the bottom at an average vertical swimming speed of 0.20–0.25 m s−1 and maintained an average spacing of 1.0–1.4 m between individuals. Our results suggest that cod do not choose spawning locations indiscriminately despite the fact that it is a broadcast spawning fish with planktonic eggs that are released well above the seafloor.
Optimal reproduction in salmon spawning substrates linked to grain size and fish length
NASA Astrophysics Data System (ADS)
Riebe, Clifford S.; Sklar, Leonard S.; Overstreet, Brandon T.; Wooster, John K.
2014-02-01
Millions of dollars are spent annually on revitalizing salmon spawning in riverbeds where redd building by female salmon is inhibited by sediment that is too big for fish to move. Yet the conditions necessary for productive spawning remain unclear. There is no gauge for quantifying how grain size influences the reproductive potential of coarse-bedded rivers. Hence, managers lack a quantitative basis for optimizing spawning habitat restoration for reproductive value. To overcome this limitation, we studied spawning by Chinook, sockeye, and pink salmon (Oncorhynchus tshawytscha, O. nerka, and O. gorbuscha) in creeks and rivers of California and the Pacific Northwest. Our analysis shows that coarse substrates have been substantially undervalued as spawning habitat in previous work. We present a field-calibrated approach for estimating the number of redds and eggs a substrate can accommodate from measurements of grain size and fish length. Bigger fish can move larger sediment and thus use more riverbed area for spawning. They also tend to have higher fecundity, and so can deposit more eggs per redd. However, because redd area increases with fish length, the number of eggs a substrate can accommodate is maximized for moderate-sized fish. This previously unrecognized tradeoff raises the possibility that differences in grain size help regulate river-to-river differences in salmon size. Thus, population diversity and species resilience may be linked to lithologic, geomorphic, and climatic factors that determine grain size in rivers. Our approach provides a tool for managing grain-size distributions in support of optimal reproductive potential and species resilience.
Opdal, Anders Frugård; Jørgensen, Christian
2015-04-01
Harvesting may be a potent driver of demographic change and contemporary evolution, which both may have great impacts on animal populations. Research has focused on changes in phenotypic traits that are easily quantifiable and for which time series exist, such as size, age, sex, or gonad size, whereas potential changes in behavioural traits have been under-studied. Here, we analyse potential drivers of long-term changes in a behavioural trait for the Northeast Arctic stock of Atlantic cod Gadus morhua, namely choice of spawning location. For 104 years (1866-1969), commercial catches were recorded annually and reported by county along the Norwegian coast. During this time period, spawning ground distribution has fluctuated with a trend towards more northerly spawning. Spawning location is analysed against a suite of explanatory factors including climate, fishing pressure, density dependence, and demography. We find that demography (age or age at maturation) had the highest explanatory power for variation in spawning location, while climate had a limited effect below statistical significance. As to potential mechanisms, some effects of climate may act through demography, and explanatory variables for demography may also have absorbed direct evolutionary change in migration distance for which proxies were unavailable. Despite these caveats, we argue that fishing mortality, either through demographic or evolutionary change, has served as an effective driver for changing spawning locations in cod, and that additional explanatory factors related to climate add no significant information. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Characterization of Atlantic Cod Spawning Habitat and Behavior in Icelandic Coastal Waters
Grabowski, Timothy B.; Boswell, Kevin M.; McAdam, Bruce J.; Wells, R. J. David; Marteinsdóttir, Guđrún
2012-01-01
The physical habitat used during spawning may potentially be an important factor affecting reproductive output of broadcast spawning marine fishes, particularly for species with complex, substrate-oriented mating systems and behaviors, such as Atlantic cod Gadus morhua. We characterized the habitat use and behavior of spawning Atlantic cod at two locations off the coast of southwestern Iceland during a 2-d research cruise (15–16 April 2009). We simultaneously operated two different active hydroacoustic gear types, a split beam echosounder and a dual frequency imaging sonar (DIDSON), as well as a remotely operated underwater vehicle (ROV). A total of five fish species were identified through ROV surveys: including cusk Brosme brosme, Atlantic cod, haddock Melanogrammus aeglefinus, lemon sole Microstomus kitt, and Atlantic redfish Sebastes spp. Of the three habitats identified in the acoustic surveys, the transitional habitat between boulder/lava field and sand habitats was characterized by greater fish density and acoustic target strength compared to that of sand or boulder/lava field habitats independently. Atlantic cod were observed behaving in a manner consistent with published descriptions of spawning. Individuals were observed ascending 1–5 m into the water column from the bottom at an average vertical swimming speed of 0.20–0.25 m s−1 and maintained an average spacing of 1.0–1.4 m between individuals. Our results suggest that cod do not choose spawning locations indiscriminately despite the fact that it is a broadcast spawning fish with planktonic eggs that are released well above the seafloor. PMID:23236471
Sloat, Matthew R; Reeves, Gordon H; Christiansen, Kelly R
2017-02-01
In rivers supporting Pacific salmon in southeast Alaska, USA, regional trends toward a warmer, wetter climate are predicted to increase mid- and late-21st-century mean annual flood size by 17% and 28%, respectively. Increased flood size could alter stream habitats used by Pacific salmon for reproduction, with negative consequences for the substantial economic, cultural, and ecosystem services these fish provide. We combined field measurements and model simulations to estimate the potential influence of future flood disturbance on geomorphic processes controlling the quality and extent of coho, chum, and pink salmon spawning habitat in over 800 southeast Alaska watersheds. Spawning habitat responses varied widely across watersheds and among salmon species. Little variation among watersheds in potential spawning habitat change was explained by predicted increases in mean annual flood size. Watershed response diversity was mediated primarily by topographic controls on stream channel confinement, reach-scale geomorphic associations with spawning habitat preferences, and complexity in the pace and mode of geomorphic channel responses to altered flood size. Potential spawning habitat loss was highest for coho salmon, which spawn over a wide range of geomorphic settings, including steeper, confined stream reaches that are more susceptible to streambed scour during high flows. We estimated that 9-10% and 13-16% of the spawning habitat for coho salmon could be lost by the 2040s and 2080s, respectively, with losses occurring primarily in confined, higher-gradient streams that provide only moderate-quality habitat. Estimated effects were lower for pink and chum salmon, which primarily spawn in unconfined floodplain streams. Our results illustrate the importance of accounting for valley and reach-scale geomorphic features in watershed assessments of climate vulnerability, especially in topographically complex regions. Failure to consider the geomorphic context of stream networks will hamper efforts to understand and mitigate the vulnerability of anadromous fish habitat to climate-induced hydrologic change. © 2016 John Wiley & Sons Ltd.
The hydrology of four streams in western Washington as related to several Pacific salmon species
Collings, Michael R.; Smith, Ronald W.; Higgins, G.T.
1972-01-01
Enhancement-or possibly even preservation-of the Pacific salmon hinges on the careful planning and proper management of the streamflow upon which they depend for spawning. Most spawning activity occurs on reaches of streams where specific hydraulic conditions exist and where stream-channel characteristics and water-quality criteria are met. The present report is the first of a series and is used to present the method of determining preferred spawning conditions and results of the investigation of 129 measurements on 14 study reaches of the Dewatto, Cedar, Kalama, and North 'Fork Nooksack Rivers. Subsequent reports, using the same method will present analyses and preferred spawning and rearing discharges for other streams used by salmon. The method consists of measuring water depth and velocities to designate, from area-(spawnable) discharge curves, peak, preferred spawning discharges for fall chinook, spring chinook, sockeye, and coho salmon at each reach on each river. Also, streambed gravels, water temperature, suspended sediment, dissolved oxygen, and specific conductance are used to help evaluate river conditions during spawning. In examining the repeatability of the method, tested by analyzing independently each of selected pairs of adjacent reaches on the Cedar River, it was found that the preferred peak discharges from the comparisons varied 4.6 percent for the average of four species and two pairs of reaches. Peak spawning discharges ranged, for the four salmon species on each of the three study reaches of each river, from 50 to 140 cfs (cubic feet per second) on Dewatto River, from 230 to 510 cfs on Cedar River, from 245 to 800 cfs on Kalama River, and from 195 to 710 cfs on North Fork Nooksack River. The results indicate that the methods used and the probable discharge values determined are reasonable and, if economically justified, may be used to select discharges, for salmon spawning and rearing.
Hatten, James R.; Batt, Thomas R.; Skalicky, Joseph J.; Engle, Rod; Barton, Gary J.; Fosness, Ryan L.; Warren, Joe
2016-01-01
Condit Dam is one of the largest hydroelectric dams ever removed in the USA. Breached in a single explosive event in October 2011, hundreds-of-thousands of cubic metres of sediment washed down the White Salmon River onto spawning grounds of a threatened species, Columbia River tule fall Chinook salmon Oncorhynchus tshawytscha. We investigated over a 3-year period (2010–2012) how dam breaching affected channel morphology, river hydraulics, sediment composition and tule fall Chinook salmon (hereafter ‘tule salmon’) spawning habitat in the lower 1.7 km of the White Salmon River (project area). As expected, dam breaching dramatically affected channel morphology and spawning habitat due to a large load of sediment released from Northwestern Lake. Forty-two per cent of the project area that was previously covered in water was converted into islands or new shoreline, while a large pool near the mouth filled with sediments and a delta formed at the mouth. A two-dimensional hydrodynamic model revealed that pool area decreased 68.7% in the project area, while glides and riffles increased 659% and 530%, respectively. A spatially explicit habitat model found the mean probability of spawning habitat increased 46.2% after dam breaching due to an increase in glides and riffles. Shifting channels and bank instability continue to negatively affect some spawning habitat as sediments continue to wash downstream from former Northwestern Lake, but 300 m of new spawning habitat (river kilometre 0.6 to 0.9) that formed immediately post-breach has persisted into 2015. Less than 10% of tule salmon have spawned upstream of the former dam site to date, but the run sizes appear healthy and stable. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Hinch, S G; Cooke, S J; Farrell, A P; Miller, K M; Lapointe, M; Patterson, D A
2012-07-01
Adult sockeye salmon Oncorhynchus nerka destined for the Fraser River, British Columbia are some of the most economically important populations but changes in the timing of their homeward migration have led to management challenges and conservation concerns. After a directed migration from the open ocean to the coast, this group historically would mill just off shore for 3-6 weeks prior to migrating up the Fraser River. This milling behaviour changed abruptly in 1995 and thereafter, decreasing to only a few days in some years (termed early migration), with dramatic consequences that have necessitated risk-averse management strategies. Early migrating fish consistently suffer extremely high mortality (exceeding 90% in some years) during freshwater migration and on spawning grounds prior to spawning. This synthesis examines multidisciplinary, collaborative research aimed at understanding what triggers early migration, why it results in high mortality, and how fisheries managers can utilize these scientific results. Tissue analyses from thousands of O. nerka captured along their migration trajectory from ocean to spawning grounds, including hundreds that were tracked with biotelemetry, have revealed that early migrants are more reproductively advanced and ill-prepared for osmoregulatory transition upon their entry into fresh water. Gene array profiles indicate that many early migrants are also immunocompromised and stressed, carrying a genomic profile consistent with a viral infection. The causes of these physiological changes are still under investigation. Early migration brings O. nerka into the river when it is 3-6° C warmer than historical norms, which for some late-run populations approaches or exceeds their critical maxima leading to the collapse of metabolic and cardiac scope, and mortality. As peak spawning dates have not changed, the surviving early migrants tend to mill in warm lakes near to spawning areas. These results in the accumulation of many more thermal units and longer exposures to freshwater diseases and parasites compared to fish that delay freshwater entry by milling in the cool ocean environment. Experiments have confirmed that thermally driven processes are a primary cause of mortality for early-entry migrants. The Fraser River late-run O. nerka early migration phenomenon illustrates the complex links that exist between salmonid physiology, behaviour and environment and the pivotal role that water temperature can have on population-specific migration survival. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
Marineau, Mathieu D.; Wright, Scott A.; Whealdon-Haught, Daniel R.; Kinzel, Paul J.
2017-07-19
The U.S. Fish and Wildlife Service confirmed that white sturgeon (Acipenser transmontanus) recently spawned in the lower San Joaquin River, California. Decreases in the San Francisco Bay estuary white sturgeon population have led to an increased effort to understand their migration behavior and habitat preferences. The preferred spawning habitat of other white sturgeon (for example, those in the Columbia and Klamath Rivers) is thought to be areas that have high water velocity, deep pools, and coarse bed material. Coarse bed material (pebbles and cobbles), in particular, is important for the survival of white sturgeon eggs and larvae. Knowledge of the physical characteristics of the lower San Joaquin River can be used to preserve sturgeon spawning habitat and lead to management decisions that could help increase the San Francisco Bay estuary white sturgeon population.Between 2011 and 2014, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, assessed selected reaches and tributaries of the lower river in relation to sturgeon spawning habitat by (1) describing selected spawning reaches in terms of habitat-related physical characteristics (such as water depth and velocity, channel slope, and bed material) of the lower San Joaquin River between its confluences with the Stanislaus and Merced Rivers, (2) describing variations in these physical characteristics during wet and dry years, and (3) identifying potential reasons for these variations.The lower San Joaquin River was divided into five study reaches. Although data were collected from all study reaches, three subreaches where the USFWS collected viable eggs at multiple sites in 2011–12 from Orestimba Creek to Sturgeon Bend were of special interest. Water depth and velocity were measured using two different approaches—channel cross sections and longitudinal profiles—and data were collected using an acoustic Doppler current profiler.During the first year of data collection (water year 2011), runoff was greatest, and gaged streamflow, measured as discharge, peaked at 875 cubic meters per second in the lower San Joaquin River. Also during that year, water velocity was generally between 0.6 and 0.9 meters per second, and depth was typically between 2.5 and 4.5 meters, but water depth exceeded 6 meters in several pools. Water year 2011 was classified as a “wet” year. Later water years were classified as either “dry” (water year 2012) or “critical” (water years 2013 and 2014). During the drier years, water was shallower, and velocities were slower. The streambed aggraded in several areas during the study. At Sturgeon Bend, for example, which had the deepest pool measured in 2011 (maximum depth was 14 meters), about 8 meters of sediment was deposited by 2014.The bed of the lower San Joaquin River was predominately sand, except in areas downstream from the mouth of Del Puerto Creek. A large amount of sand, gravel, and cobble was deposited at the mouth of Del Puerto Creek, and in the 9.5 kilometers downstream from the mouth of Del Puerto Creek, we encountered several gravel bars and patches of gravel-size (8–64 millimeters) bed material. Del Puerto and Orestimba Creeks drain from the Coast Ranges on the west side of the river. Only small quantities of gravel-size bed material were observed in the reach downstream from Orestimba Creek, indicating Orestimba Creek does not deliver much coarse sediment to the lower San Joaquin River. Del Puerto Creek appeared to be the primary source of gravels suitable for white sturgeon spawning in the lower San Joaquin River, and thus, it is important for the long-term spawning success of sturgeon in the San Joaquin River.
Dirk W. Lang; Gordon H. Reeves; James D. Hall; Mark S. Wipfli
2006-01-01
This study examined the influence of fall-spawning coho salmon (Oncorhynchrcs kisutch) on the density, growth rate, body condition, and survival to outmigration of juvenile coho salmon on the Copper River Delta, Alaska, USA. During the fall of 1999 and 2000, fish rearing in beaver ponds that received spawning salmon were compared with fish from...
Schwanke, C.J.; Hubert, W.A.
2004-01-01
Alternatives to electrofishing are needed for sampling sexually mature rainbow trout Oncorhynchus mykiss during the spawning season in large Alaskan rivers. We compared hook and line, beach seining, and actively fished gill nets as sampling tools. Beach seining and active gill netting yielded similar catch rates, length frequencies, and sex ratios of sexually mature fish. Hook-and-line sampling was less effective, with a lower catch rate and selectivity for immature fish and sexually mature females. We conclude that both beach seining and active gill netting can serve as alternatives to electrofishing for sampling sexually mature rainbow trout stocks during the spawning season in large rivers with stable spring flows and spawning areas with few snags.
Spawning of zebra mussels (Dreissena polymorpha) and rearing of veligers under laboratory conditions
Nichols, S. Jerrine; Nalepa, Thomas F.; Schloesser, Donald W.
1992-01-01
The spawning cycle of the zebra mussel, Dreissena polymorpha, is amenable to laboratory manipulations. Techniques are presented that can be used to initiate spawning and rear veligers from fertilized egg to settlement stage. Spawning can be induced in sexually mature mussels by temperature flucuations or by the addition of ripe gametes. Embryonic survival is excellent until the straight-hinge stage when the first wave of mortality occurs, usually due to improper food. The second critical stage of development occurs just prior to settlement when mortality increases again. Veliger mortality averaged over 90% from egg to settlement. The results indicate that obtaining large numbers of veligers for laboratory experiments to be conducted year-round is difficult.
A simple method for in situ monitoring of water temperature in substrates used by spawning salmonids
Zimmerman, Christian E.; Finn, James E.
2012-01-01
Interstitial water temperature within spawning habitats of salmonids may differ from surface-water temperature depending on intragravel flow paths, geomorphic setting, or presence of groundwater. Because survival and developmental timing of salmon are partly controlled by temperature, monitoring temperature within gravels used by spawning salmonids is required to adequately describe the environment experienced by incubating eggs and embryos. Here we describe a simple method of deploying electronic data loggers within gravel substrates with minimal alteration of the natural gravel structure and composition. Using data collected in spawning sites used by summer and fall chum salmon Oncorhynchus keta from two streams within the Yukon River watershed, we compare contrasting thermal regimes to demonstrate the utility of this method.
White sturgeon spawning areas in the lower Snake River
Parsley, M.J.; Kappenman, K.M.
2000-01-01
We documented 17 white sturgeon Acipenser transmontanus spawning locations in the Snake River from the mouth to Lower Granite Dam (river km 0 to 173). Spawning locations were determined by the collection of fertilized eggs on artificial substrates or in plankton nets. We collected 245 eggs at seven locations in McNary Reservoir, 22 eggs at three locations in Ice Harbor Reservoir, 30 eggs from two locations in Lower Monumental Reservoir, and 464 eggs at five locations in Little Goose Reservoir. All 17 locations were in high water velocity areas and between 1.0 and 7.0 km downstream from a hydroelectric dam. The documentation of spawning areas is important because this habitat is necessary to maintain natural and viable populations.
Evaluation of Salmon Spawning Below Bonneville Dam, Annual Report October 2005 - September 2006.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arntzen, Evan V.; Mueller, Robert P.; Murray, Christopher J.
2007-09-21
Since FY 2000, scientists at Pacific Northwest National Laboratory (PNNL) have conducted research to assess the extent of spawning by chum salmon (Oncorhynchus keta) and fall Chinook salmon (O. tshawytscha) in the lower mainstem Columbia River. Their work supports a larger project funded by the Bonneville Power Administration (BPA) aimed at characterizing the physical habitat used by mainstem fall Chinook and chum salmon populations. Multiple collaborators in addition to PNNL are involved in the BPA project--counterparts include the Washington Department of Fish and Wildlife (WDFW), U.S. Fish and Wildlife Service (USFWS), Pacific States Marine Fisheries Commission (PSMFC), U.S. Geological Surveymore » (USGS), and Oregon Department of Fish and Wildlife (ODFW). Data resulting from the individual tasks each agency conducts are providing a sound scientific basis for developing strategies to operate the Federal Columbia River Power System (FCRPS) in ways that will effectively protect and enhance the chum and tule fall Chinook salmon populations--both listed as threatened under the Endangered Species Act (ESA). Fall Chinook salmon, thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by WDFW biologists in 1993. Known spawning areas include gravel beds on the Washington side of the river near Hamilton Creek and near Ives Island. Limited surveys of spawning ground were conducted in the area around Ives and Pierce islands from 1994 through 1997. Based on those surveys, it is believed that fall Chinook salmon are spawning successfully in this area. The size of this population from 1994 to 1996 was estimated at 1800 to 5200 fish. Chum salmon also have been documented spawning downstream of Bonneville Dam. Chum salmon were listed as threatened under the ESA in March 1999. At present there is a need to determine the number of fall Chinook and chum salmon spawning downstream of Bonneville Dam, the characteristics of their spawning areas, and the flows necessary to ensure their long-term survival. Ongoing discussions regarding the minimum and maximum flows will result in optimal spawning habitat usage and survival of embryos of both species. Collection of additional data as part of this project will ensure that established flow guidelines are appropriate and provide adequate protection for the species of concern. This is consistent with the high priority placed by the Northwest Power and Conservation Council Independent Scientific Advisory Board and the salmon managers on determining the importance of mainstem habitats to the production of salmon in the Columbia River Basin. Thus, there is a need to better understand the physical habitat variables used by mainstem fall Chinook and chum salmon populations and the effects of hydropower project operations on spawning and incubation. Pacific Northwest National Laboratory was asked to participate in the cooperative study during FY 2000. Since then, we have focused on (1) investigating the interactions between groundwater and surface water near fall Chinook and chum salmon spawning areas; (2) providing in-season hyporheic temperature data and assisting state agencies with emergence timing estimates; (3) locating and mapping deep-water fall Chinook salmon spawning areas; and (4) providing support to the WDFW for analysis of stranding data. Work conducted during FY 2006 addressed these same efforts. This report documents the studies and tasks performed by PNNL during FY 2006. Chapter 1 provides a description of the searches conducted for deepwater redds--adjacent to Pierce and Ives islands for fall Chinook salmon and near the Interstate 205 bridge for chum salmon. The chapter also provides data on redd location, information about habitat associations, and estimates of total spawning populations. Chapter 2 documents the collection of data on riverbed and river temperatures and water surface elevations, from the onset of spawning to the end of emergence, and the provision of those data in-season to fisheries management agencies to assist with emergence timing estimates and evaluations of redd dewatering. Technical assistance provided to the WDFW and PSMFC in evaluation of stranding data is summarized in Chapter 3.« less
Evaluation of Salmon Spawning Below Bonneville Dam, 2005-2006 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arntzen, Evan; Mueller, Robert; Murray, Christopher
2007-03-01
Since FY 2000, scientists at Pacific Northwest National Laboratory (PNNL) have conducted research to assess the extent of spawning by chum salmon (Oncorhynchus keta) and fall Chinook salmon (O. tshawytscha) in the lower mainstem Columbia River. Their work supports a larger project funded by the Bonneville Power Administration (BPA) aimed at characterizing the physical habitat used by mainstem fall Chinook and chum salmon populations. Multiple collaborators in addition to PNNL are involved in the BPA project--counterparts include the Washington Department of Fish and Wildlife (WDFW), U.S. Fish and Wildlife Service (USFWS), Pacific States Marine Fisheries Commission (PSMFC), U.S. Geological Surveymore » (USGS), and Oregon Department of Fish and Wildlife (ODFW). Data resulting from the individual tasks each agency conducts are providing a sound scientific basis for developing strategies to operate the Federal Columbia River Power System (FCRPS) in ways that will effectively protect and enhance the chum and tule fall Chinook salmon populations--both listed as threatened under the Endangered Species Act (ESA). Fall Chinook salmon, thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by WDFW biologists in 1993. Known spawning areas include gravel beds on the Washington side of the river near Hamilton Creek and near Ives Island. Limited surveys of spawning ground were conducted in the area around Ives and Pierce islands from 1994 through 1997. Based on those surveys, it is believed that fall Chinook salmon are spawning successfully in this area. The size of this population from 1994 to 1996 was estimated at 1800 to 5200 fish. Chum salmon also have been documented spawning downstream of Bonneville Dam. Chum salmon were listed as threatened under the ESA in March 1999. At present there is a need to determine the number of fall Chinook and chum salmon spawning downstream of Bonneville Dam, the characteristics of their spawning areas, and the flows necessary to ensure their long-term survival. Ongoing discussions regarding the minimum and maximum flows will result in optimal spawning habitat usage and survival of embryos of both species. Collection of additional data as part of this project will ensure that established flow guidelines are appropriate and provide adequate protection for the species of concern. This is consistent with the high priority placed by the Northwest Power and Conservation Council Independent Scientific Advisory Board and the salmon managers on determining the importance of mainstem habitats to the production of salmon in the Columbia River Basin. Thus, there is a need to better understand the physical habitat variables used by mainstem fall Chinook and chum salmon populations and the effects of hydropower project operations on spawning and incubation. Pacific Northwest National Laboratory was asked to participate in the cooperative study during FY 2000. Since then, we have focused on (1) investigating the interactions between groundwater and surface water near fall Chinook and chum salmon spawning areas; (2) providing in-season hyporheic temperature data and assisting state agencies with emergence timing estimates; (3) locating and mapping deep-water fall Chinook salmon spawning areas; and (4) providing support to the WDFW for analysis of stranding data. Work conducted during FY 2006 addressed these same efforts. This report documents the studies and tasks performed by PNNL during FY 2006. Chapter 1 provides a description of the searches conducted for deepwater redds--adjacent to Pierce and Ives islands for fall Chinook salmon and near the Interstate 205 bridge for chum salmon. The chapter also provides data on redd location, information about habitat associations, and estimates of total spawning populations. Chapter 2 documents the collection of data on riverbed and river temperatures and water surface elevations, from the onset of spawning to the end of emergence, and the provision of those data in-season to fisheries management agencies to assist with emergence timing estimates and evaluations of redd dewatering. Technical assistance provided to the WDFW and PSMFC in evaluation of stranding data is summarized in Chapter 3.« less
Martin, Barbara A.; Hewitt, David A.; Ellsworth, Craig M.
2013-01-01
Chiloquin Dam was constructed in 1914 on the Sprague River near the town of Chiloquin, Oregon. The dam was identified as a barrier that potentially inhibited or prevented the upstream spawning migrations and other movements of endangered Lost River (Deltistes luxatusChasmistes brevirostris) suckers, as well as other fish species. In 2002, the Bureau of Reclamation led a working group that examined several alternatives to improve fish passage at Chiloquin Dam. Ultimately it was decided that dam removal was the best alternative and the dam was removed in the summer of 2008. The U.S. Geological Survey conducted a long-term study on the spawning ecology of Lost River, shortnose, and Klamath largescale suckers (Catostomus snyderi) in the Sprague and lower Williamson Rivers from 2004 to 2010. The objective of this study was to evaluate shifts in spawning distribution following the removal of Chiloquin Dam. Radio telemetry was used in conjunction with larval production data and detections of fish tagged with passive integrated transponders (PIT tags) to evaluate whether dam removal resulted in increased utilization of spawning habitat farther upstream in the Sprague River. Increased densities of drifting larvae were observed at a site in the lower Williamson River after the dam was removed, but no substantial changes occurred upstream of the former dam site. Adult spawning migrations primarily were influenced by water temperature and did not change with the removal of the dam. Emigration of larvae consistently occurred about 3-4 weeks after adults migrated into a section of river. Detections of PIT-tagged fish showed increases in the numbers of all three suckers that migrated upstream of the dam site following removal, but the increases for Lost River and shortnose suckers were relatively small compared to the total number of fish that made a spawning migration in a given season. Increases for Klamath largescale suckers were more substantial. Post-dam removal monitoring only included 2 years with below average river discharge during the spawning season; data from years with higher flows may provide a different perspective on the effects of dam removal on the spawning migrations of the two endangered sucker species.
Bentley, Kale T; Schindler, Daniel E; Cline, Timothy J; Armstrong, Jonathan B; Macias, Daniel; Ciepiela, Lindsy R; Hilborn, Ray
2014-11-01
Daily movements of mobile organisms between habitats in response to changing trade-offs between predation risk and foraging gains are well established; however, less in known about whether similar tactics are used during reproduction, a time period when many organisms are particularly vulnerable to predators. We investigated the reproductive behaviour of adult sockeye salmon (Oncorhynchus nerka) and the activity of their principal predator, brown bears (Ursus arctos), on streams in south-western Alaska. Specifically, we continuously monitored movements of salmon between lake habitat, where salmon are invulnerable to bears, and three small streams, where salmon spawn and are highly vulnerable to bears. We conducted our study across 2 years that offered a distinct contrast in bear activity and predation rates. Diel movements by adult sockeye salmon between stream and lake habitat were observed in 51.3% ± 17.7% (mean ± SD) of individuals among years and sites. Fish that moved tended to hold in the lake for most of the day and then migrated into spawning streams during the night, coincident with when bear activity on streams tended to be lowest. Additionally, cyclic movements between lakes and spawning streams were concentrated earlier in the spawning season. Individuals that exhibited diel movements had longer average reproductive life spans than those who made only one directed movement into a stream. However, the relative effect was dependent on the timing of bear predation, which varied between years. When predation pressure primarily occurred early in the spawning run (i.e., during the height of the diel movements), movers lived 120-310% longer than non-movers. If predation pressure was concentrated later in the spawning run (i.e. when most movements had ceased), movers only lived 10-60% longer. Our results suggest a dynamic trade-off in reproductive strategies of sockeye salmon; adults must be in the stream to reproduce, but must also avoid predation long enough to spawn. Given the interannual variation in the timing and intensity of predation pressure, the advantages of a particular movement strategy will likely vary among years. Regardless, movements by salmon allowed individuals to exploit fine-scale habitat heterogeneity during reproduction, which appears to be a strategy to reduce predation risk on the spawning grounds. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Breece, Matthew W; Oliver, Matthew J; Cimino, Megan A; Fox, Dewayne A
2013-01-01
Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) experienced severe declines due to habitat destruction and overfishing beginning in the late 19(th) century. Subsequent to the boom and bust period of exploitation, there has been minimal fishing pressure and improving habitats. However, lack of recovery led to the 2012 listing of Atlantic sturgeon under the Endangered Species Act. Although habitats may be improving, the availability of high quality spawning habitat, essential for the survival and development of eggs and larvae may still be a limiting factor in the recovery of Atlantic sturgeon. To estimate adult Atlantic sturgeon spatial distributions during riverine occupancy in the Delaware River, we utilized a maximum entropy (MaxEnt) approach along with passive biotelemetry during the likely spawning season. We found that substrate composition and distance from the salt front significantly influenced the locations of adult Atlantic sturgeon in the Delaware River. To broaden the scope of this study we projected our model onto four scenarios depicting varying locations of the salt front in the Delaware River: the contemporary location of the salt front during the likely spawning season, the location of the salt front during the historic fishery in the late 19(th) century, an estimated shift in the salt front by the year 2100 due to climate change, and an extreme drought scenario, similar to that which occurred in the 1960's. The movement of the salt front upstream as a result of dredging and climate change likely eliminated historic spawning habitats and currently threatens areas where Atlantic sturgeon spawning may be taking place. Identifying where suitable spawning substrate and water chemistry intersect with the likely occurrence of adult Atlantic sturgeon in the Delaware River highlights essential spawning habitats, enhancing recovery prospects for this imperiled species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paragamian, Vaughn L.
1997-09-01
Test flows for Kootenai River white sturgeon Acipenser transmontanus spawning, scheduled for June 1996, were postponed until July. However, an estimated 126% snow pack and unusually heavy precipitation created conditions for sturgeon spawning that were similar to those occurring before construction of Libby Dam. Discharge in the Kootenai River at Bonners Ferry rose to nearly 1,204 m{sup 3}/s (42,500 cfs) during May and water temperature ranged from 5.8 C to 8.4 C (42 F to 47 F). Migration of adult white sturgeon into spawning areas occurred in late May during a rising hydrograph. Discharge and water temperature were rising andmore » had reached approximately 1,077 m{sup 3}/s (38,000 cfs) and 8 C (46 F). Discharge at Bonners Ferry peaked at about 1,397 m{sup 3}/s (49,300 cfs) on June 5. A total of 348 eggs (and one egg shell) were collected with 106,787 h of mat effort during the flow events. The first white sturgeon eggs were collected on June 8 and continued through June 30. Staging of eggs and back-calculating to spawning dates indicated there were at least 18 spawning episodes between June 6 and June 25. Discharge on June 6 was 1,196 m{sup 3}/s (42,200 cfs) and decreased steadily to 850 m{sup 3}/s (30,000 cfs) by June 26. Although sturgeon spawned in the same reach of river that they had during 1994 and 1995, the majority of eggs were found significantly (P = 0.0001) farther upstream than 1994 and 1995 and this in turn may be related to elevation of Kootenay Lake.« less
Howell, P.J.; Dunham, J.B.; Sankovich, P.M.
2010-01-01
Understanding thermal habitat use by migratory fish has been limited by difficulties in matching fish locations with water temperatures. To describe spatial and temporal patterns of thermal habitat use by migratory adult bull trout, Salvelinus confluentus, that spawn in the Lostine River, Oregon, we employed a combination of archival temperature tags, radio tags, and thermographs. We also compared temperatures of the tagged fish to ambient water temperatures to determine if the fish were using thermal refuges. The timing and temperatures at which fish moved upstream from overwintering areas to spawning locations varied considerably among individuals. The annual maximum 7-day average daily maximum (7DADM) temperatures of tagged fish were 16-18 ??C and potentially as high as 21 ??C. Maximum 7DADM ambient water temperatures within the range of tagged fish during summer were 18-25 ??C. However, there was no evidence of the tagged fish using localized cold water refuges. Tagged fish appeared to spawn at 7DADM temperatures of 7-14 ??C. Maximum 7DADM temperatures of tagged fish and ambient temperatures at the onset of the spawning period in late August were 11-18 ??C. Water temperatures in most of the upper Lostine River used for spawning and rearing appear to be largely natural since there has been little development, whereas downstream reaches used by migratory bull trout are heavily diverted for irrigation. Although the population effects of these temperatures are unknown, summer temperatures and the higher temperatures observed for spawning fish appear to be at or above the upper range of suitability reported for the species. Published 2009. This article is a US Governmentwork and is in the public domain in the USA.
Lake trout spawning habitat in the Great Lakes - a review of current knowledge
Marsden, J. Ellen; Casselman, John M.; Edsall, Thomas A.; Elliott, Robert F.; Fitzsimons, John D.; Horns, William H.; Manny, Bruce A.; McAughey, Scott C.; Sly, Peter G.; Swanson, Bruce L.
1995-01-01
We review existing information on lake trout spawning habitat, which might indicate whether habitat is now a limiting factor in lake trout reproductive success. Lake trout spawning habitat quality is defined by the presence or absence of olfactory cues for homing, reef location with respect to the shoreline, water depth, proximity to nursery areas, reef size, contour, substrate size and shape, depth of interstitial spaces, water temperature at spawning time, water quality in interstitial spaces, and the presence of egg and fry predators. Data on factors which attracted native spawners to spawning reefs are lacking, due to the absence of historic data on egg deposition. No direct evidence of egg deposition has been collected from sites deeper than 18 m. Interstitial space and, therefore, substrate size and shape, appear to be critical for both site selection by adults and protection of eggs and fry. Water quality is clearly important for egg incubation, but the critical parameters which define water quality have not yet been well determined in the field. Exposure to wave energy, dictated in part by reef location, may maintain high water quality but may also damage or dislodge eggs. The importance of olfactory cues, water temperature, and proximity to nursery habitat to spawning trout is unclear. Limited data suggest that egg and fry predators, particularly exotic species, may critically affect fry production and survival. Although availability of physical spawning habitat is probably not limiting lake trout reproduction, changes in water quality and species composition may negatively affect early life stages. This review of habitat factors that affect early life stages of lake trout suggests several priorities for research and management.
Hoff, Michael H.
2004-01-01
The lake herring (Coregonus artedi) was one of the most commercially and ecologically valuable Lake Superior fishes, but declined in the second half of the 20th century as the result of overharvest of putatively discrete stocks. No tools were previously available that described lake herring stock structure and accurately classified lake herring to their spawning stocks. The accuracy of discriminating among spawning aggregations was evaluated using whole-body morphometrics based on a truss network. Lake herring were collected from 11 spawning aggregations in Lake Superior and two inland Wisconsin lakes to evaluate morphometrics as a stock discrimination tool. Discriminant function analysis correctly classified 53% of all fish from all spawning aggregations, and fish from all but one aggregation were classified at greater rates than were possible by chance. Discriminant analysis also correctly classified 66% of fish to nearest neighbor groups, which were groups that accounted for the possibility of mixing among the aggregations. Stepwise discriminant analysis showed that posterior body length and depth measurements were among the best discriminators of spawning aggregations. These findings support other evidence that discrete stocks of lake herring exist in Lake Superior, and fishery managers should consider all but one of the spawning aggregations as discrete stocks. Abundance, annual harvest, total annual mortality rate, and exploitation data should be collected from each stock, and surplus production of each stock should be estimated. Prudent management of stock surplus production and exploitation rates will aid in restoration of stocks and will prevent a repeat of the stock collapses that occurred in the middle of the 20th century, when the species was nearly extirpated from the lake.
Smith, David R.; Robinson, Timothy J.
2015-01-01
A Delaware Bay, USA, standardized survey of spawning horseshoe crabs, Limulus polyphemus, was carried out in 1999 − 2013 through a citizen science network. Previous trend analyses of the data were at the state (DE or NJ) or bay-wide levels. Here, an alternative mixed-model regression analysis was used to estimate trends in female and male spawning densities at the beach level (n = 26) with the objective of inferring their causes. For females, there was no overall trend and no single explanation applies to the temporal and spatial patterns in their densities. Individual beaches that initially had higher densities tended to experience a decrease, while beaches that initially had lower densities tended to experience an increase. As a result, densities of spawning females at the end of the study period were relatively similar among beaches, suggesting a redistribution of females among the beaches over the study period. For males, there was a positive overall trend in spawning abundance from 1999 to 2013, and this increase occurred broadly among beaches. Moreover, the beaches with below-average initial male density tended to have the greatest increases. Possible explanations for these patterns include harvest reduction, sampling artifact, habitat change, density-dependent habitat selection, or mate selection. The broad and significant increase in male spawning density, which occurred after enactment of harvest controls, is consistent with the harvest reduction explanation, but there is no single explanation for the temporal or spatial pattern in female densities. These results highlight the continued value of a citizen-science-based spawning survey in understanding horseshoe crab ecology and conservation.
Evidence of Asian carp spawning upstream of a key choke point in the Mississippi River
Larson, James H.; Knights, Brent C.; McCalla, S. Grace; Monroe, Emy; Tuttle-Lau, Maren T.; Chapman, Duane C.; George, Amy E.; Vallazza, Jon; Amberg, Jon J.
2017-01-01
Bighead Carp Hypophthalmichthys nobilis, Silver Carp H. molitrix, and Grass Carp Ctenopharyngodon idella(collectively termed “Asian carp”) were introduced into North America during the 1960s and 1970s and have become established in the lower Mississippi River basin. Previously published evidence for spawning of these species in the upper Mississippi River has been limited to an area just downstream of Dam 22 (near Saverton, Missouri). In 2013 and 2014, we sampled ichthyoplankton at 18 locations in the upper Mississippi River main stem from Dam 9 through Dam 19 and in four tributaries of the Mississippi River (Des Moines, Skunk, Iowa, and Wisconsin rivers). We identified eggs and larvae by using morphological techniques and then used genetic tools to confirm species identity. The spawning events we observed often included more than one species of Asian carp and in a few cases included eggs that must have been derived from more than one upstream spawning event. The upstream extent of genetically confirmed Grass Carp ichthyoplankton was the Wisconsin River, while Bighead Carp and Silver Carp ichthyoplankton were observed in Pool 16. In all these cases, ichthyoplankton likely drifted downstream for several hours prior to collection. Higher water velocities (and, to a lesser extent, higher temperatures) were associated with an increased likelihood of observing eggs or larvae, although the temperature range we encountered was mostly above 17°C. Several major spawning events were detected in 2013, but no major spawning events were observed in 2014. The area between Dam 15 and Dam 19 appears to be the upstream edge of spawning activity for both Silver Carp and Bighead Carp, suggesting that this area could be a focal point for management efforts designed to limit further upstream movement of these species..
Dudley, Robert W.; Schalk, Charles W.; Stasulis, Nicholas W.; Trial, Joan G.
2011-01-01
In 2009, the U.S. Geological Survey entered into a cooperative agreement with the International Joint Commission, St. Croix River Board to do an analysis of historical smallmouth bass habitat as a function of lake level for Spednic Lake in an effort to quantify the effects, if any, of historical lake-level management and meteorological conditions (from 1970 to 2009) on smallmouth bass year-class failure. The analysis requires estimating habitat availability as a function of lake level during spawning periods from 1970 to 2009, which is documented in this report. Field work was done from October 19 to 23, and from November 2 to 10, 2009, to acquire acoustic bathymetric (depth) data and acoustic data indicating the character of the surficial lake-bottom sediments. Historical lake-level data during smallmouth bass spawning (May-June) were applied to the bathymetric and surficial-sediment type data sets to produce annual historic estimates of smallmouth-bass-spawning-habitat area. Results show that minimum lake level during the spawning period explained most of the variability (R2 = 0.89) in available spawning habitat for nearshore areas of shallow slope (less than 10 degrees) on the basis of linear correlation. The change in lake level during the spawning period explained most of the variability (R2 = 0.90) in available spawning habitat for areas of steeper slopes (10 to 40 degrees) on the basis of linear correlation. The next step in modeling historic smallmouth bass year-class persistence is to combine this analysis of the effects of lake-level management on habitat availability with meteorological conditions.
Goes, Marcio Douglas; Reis Goes, Elenice Souza Dos; Ribeiro, Ricardo Pereira; Lopera-Barrero, Nelson Maurício; Castro, Pedro Luiz de; Bignotto, Thaís Souto; Bombardelli, Robie Allan
2017-01-15
This study evaluated the reproductive parameters and genetic variability of offspring of Rhamdia quelen from mating by natural spawning and by controlled fertilization with fresh and cryopreserved semen. After hormonal manipulation, three R quelen pairs were used for natural spawning in high-flow tanks, three pairs were used for mating with fresh semen, and another three pairs were used with cryopreserved semen. Matings were performed in triplicate. For matings with fresh and cryopreserved semen, semen from each male was used to individually fertilize oocytes from each female. Pools of semen and oocytes were made, and aliquots of these gametes were taken for fertilization. No differences (P > 0.05) were detected for absolute or relative fecundity, fertilization rate, or egg hatching rate. The use of fresh semen led to a higher (P < 0.01) percentage of normal larvae. The use of fresh semen in pooled mating resulted in a greater effective number of alleles and a higher expected heterozygosity. Offspring from natural spawning presented higher observed heterozygosity and a lower inbreeding coefficient. The highest inbreeding coefficient was found in offspring from individual matings using fresh semen. Regarding paternal contributions, a single male dominated in matings with fresh semen, whereas two males dominated in natural spawning and matings using cryopreserved semen. The use of gamete pools for mating and natural spawning resulted in higher genetic variability of offspring, and mating using cryopreserved semen found no effects on genetic variability of offspring but did reduce the percentage of normal larvae. Other reproductive parameters were not influenced by spawning strategies. Copyright © 2016. Published by Elsevier Inc.
Oncorhynchus nerka population monitoring in the Sawtooth Valley Lakes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teuscher, D.M.; Taki, D.; Ariwite, K.
1996-05-01
Critical habitat for endangered Snake River sockeye salmon includes five rearing lakes located in the Sawtooth Valley of central Idaho. Most of the lakes contain either introduced or endemic kokanee populations. Snake River sockeye occur naturally in Redfish Lake, and are being stocked in Redfish and Pettit Lakes. Because kokanee compete with sockeye for limited food resources, understanding population characteristics of both species such as spawn timing, egg-to-fry survival, distribution and abundance are important components of sockeye recovery. This chapter describes some of those characteristics. In 1995, hydroacoustic estimates of O. nerka densities in the Sawtooth Valley Lakes ranged frommore » 57 to 465 fish/ha. Densities were greatest in Pettit followed by Redfish (167), Alturas (95), and Stanley Lakes. O. nerka numbers increased from 1994 values in Pettit and Alturas Lakes, but declined in Redfish and Stanley. Despite a decline in total lake abundance, O. nerka biomass estimates in Redfish Lake increased. Approximately 144,000 kokanee fry recruited to Redfish Lake from Fishhook Creek. O. nerka fry recruitment to Stanley and Alturas lake was 5,000 and 30,000 fry, respectively. Egg-to-fry survival was 14% in Fishhook and 7% in Stanley Lake Creek. In Fishhook Creek, kokanee spawning escapement was estimated using stream surveys and a weir. Escapement estimates were 4,860 from weir counts, and 7,000 from stream surveys. As part of the kokanee reduction program, 385 of the spawning female kokanee were culled. Escapement for Stanley Lake Creek was only 60 fish, a ten fold decrease from 1994. In Alturas Lake, kokanee spawners dropped by 50% to 1,600.« less
McGowan, Conor P.; Hines, James E.; Nichols, James D.; Lyons, James E.; Smith, David; Kalasz, Kevin S.; Niles, Lawrence J.; Dey, Amanda D.; Clark, Nigel A.; Atkinson, Philip W.; Minton, Clive D.T.; Kendall, William
2011-01-01
Understanding how events during one period of the annual cycle carry over to affect survival and other fitness components in other periods is essential to understanding migratory bird demography and conservation needs. Previous research has suggested that western Atlantic red knot (Calidris canutus rufa) populations are greatly affected by horseshoe crab (Limulus polyphemus) egg availability at Delaware Bay stopover sites during their spring northward migration. We present a mass-based multistate, capturerecapture/resighting model linking (1) red knot stopover mass gain to horseshoe crab spawning abundance and (2) subsequent apparent annual survival to mass state at the time of departure from the Delaware Bay stopover area. The model and analysis use capture-recapture/resighting data with over 16,000 individual captures and 13,000 resightings collected in Delaware Bay over a 12 year period from 1997–2008, and the results are used to evaluate the central management hypothesis that red knot populations can be influenced by horseshoe crab harvest regulations as part of a larger adaptive management effort. Model selection statistics showed support for a positive relationship between horseshoe crab spawning abundance during the stopover and the probability of red knots gaining mass (parameter coefficient from the top model b = 1.71, SE = 0.46). Our analyses also supported the link between red knot mass and apparent annual survival, although average estimates for the two mass classes differed only slightly. The addition of arctic snow depth as a covariate influencing apparent survival improved the fit of the data to the models (parameter coefficient from the top model b = 0.50, SE = 0.08). Our results indicate that managing horseshoe crab resources in the Delaware Bay has the potential to improve red knot population status.
Storlazzi, Curt; van Ormondt, Maarten; Chen, Yi-Leng; Elias, Edwin P. L.
2017-01-01
Connectivity among individual marine protected areas (MPAs) is one of the most important considerations in the design of integrated MPA networks. To provide such information for managers in Hawaii, USA, a numerical circulation model was developed to determine the role of ocean currents in transporting coral larvae from natal reefs throughout the high volcanic islands of the Maui Nui island complex in the southeastern Hawaiian Archipelago. Spatially- and temporally-varying wind, wave, and circulation model outputs were used to drive a km-scale, 3-dimensional, physics-based circulation model for Maui Nui. The model was calibrated and validated using satellite-tracked ocean surface current drifters deployed during coral-spawning conditions, then used to simulate the movement of the larvae of the dominant reef-building coral, Porites compressa, from 17 reefs during eight spawning events in 2010–2013. These simulations make it possible to investigate not only the general dispersal patterns from individual coral reefs, but also how anomalous conditions during individual spawning events can result in large deviations from those general patterns. These data also help identify those reefs that are dominated by self-seeding and those where self-seeding is limited to determine their relative susceptibility to stressors and potential roadblocks to recovery. Overall, the numerical model results indicate that many of the coral reefs in Maui Nui seed reefs on adjacent islands, demonstrating the interconnected nature of the coral reefs in Maui Nui and providing a key component of the scientific underpinning essential for the design of a mutually supportive network of MPAs to enhance conservation of coral reefs.
Hershberger, P.K.; Kocan, R.M.; Elder, N.E.; Meyers, T.R.; Winton, J.R.
1999-01-01
Both the prevalence and tissue titer of viral hemorrhagic septicemia virus (VHSV) increased in Pacific herring Clupea pallasi following their introduction into net pens (pounds) used in the closed pound spawn-on-kelp (SOK) fishery in Prince William Sound, Alaska. VHSV was also found in water samples from inside and outside the SOK pounds after herring had been confined for several days; however, water samples taken near wild free-ranging, spawning herring either failed to test positive or tested weakly positive for virus. Little or no virus was found in tissue samples from free-ranging, spawning herring captured from the vicinity of the pounds, nor did the prevalence of VHSV increase following spawning as it did in impounded herring. The data indicated that increased prevalences of VHSV were correlated with confinement of herring for the closed pound SOK fishery and that infection was spread within the pounds through waterborne exposure to virus particles originating from impounded fish. In addition, pounds containing predominantly young fish had higher prevalences of VHSV, suggesting that older fish may be partially immune, perhaps as a result of previous infection with the virus. Operation of SOK pounds during spawning seasons in which young herring predominate may amplify the disease and possibly exacerbate the population fluctuations observed in wild herring stocks.
Hershberger, P.K.; Kocan, R.M.; Elder, N.E.; Meyers, T.R.; Winton, J.R.
1999-01-01
Both the prevalence and tissue titer of viral hemorrhagic septicemia virus (VHSV) increased in Pacific herring Clupea pallasi following their introduction into net pens (pounds) used in the closed pound spawn-on-kelp (SOK) fishery in Prince William Sound, Alaska. VHSV was also found in water samples from inside and outside the SOK pounds after herring had been confined for several days; however, water samples taken near wild free-ranging, spawning herring either failed to test positive or tested weakly positive for virus. Little or no virus was found in tissue samples from free-ranging, spawning herring captured from the vicinity of the pounds, nor did the prevalence of VHSV increase following spawning as it did in impounded herring. The data indicated that increased prevalences of VHSV were correlated with confinement of herring for the closed pound SOK fishery and that infection was spread within the pounds through waterborne exposure to virus particles originating from impounded fish. In addition, pounds containing predominantly young fish had higher prevalences of VHSV, suggesting that older fish may be partially immune, perhaps as a result of previous infection with the virus. Operation of SOK pounds during spawning seasons in which young herring predominate may amplify the disease and possibly exacerbate the population fluctuations observed in wild herring stocks.
NASA Astrophysics Data System (ADS)
Koster, W. M.; Crook, D. A.; Dawson, D. R.; Gaskill, S.; Morrongiello, J. R.
2018-03-01
The development of effective strategies to restore the biological functioning of aquatic ecosystems with altered flow regimes requires a detailed understanding of flow-ecology requirements, which is unfortunately lacking in many cases. By understanding the flow conditions required to initiate critical life history events such as migration and spawning, it is possible to mitigate the threats posed by regulated river flow by providing targeted environmental flow releases from impoundments. In this study, we examined the influence of hydrological variables (e.g., flow magnitude), temporal variables (e.g., day of year) and spatial variables (e.g., longitudinal position of fish) on two key life history events (migration to spawning grounds and spawning activity) for a threatened diadromous fish (Australian grayling Prototroctes maraena) using data collected from 2008 to 2015 in the Bunyip-Tarago river system in Victoria. Our analyses revealed that flow changes act as a cue to downstream migration, but movement responses differed spatially: fish in the upper catchment showed a more specific requirement for rising discharge to initiate migration than fish in the lower catchment. Egg concentrations peaked in May when weekly flows increased relative to the median flow during a given spawning period. This information has recently been incorporated into the development of targeted environmental flows to facilitate migration and spawning by Australian grayling in the Bunyip-Tarago river system and other coastal systems in Victoria.
Prey resources before spawning influence gonadal investment of female, but not male, white crappie
Bunnell, D.B.; Thomas, S.E.; Stein, R.A.
2007-01-01
In this study, an outdoor pool experiment was used to evaluate the effect of prey resources during 4 months before spawning on the gonadal investments of male and female white crappie Pomoxis annularis, a popular freshwater sportfish that exhibits erratic recruitment. Fish were assigned one of three feeding treatments: starved, fed once every 5 days (intermediate) or fed daily (high). All measurements of male testes (i.e. wet mass, energy density and spermatocrit) were similar across treatments. Conversely, high-fed females produced larger ovaries than those of intermediate-fed and starved fish, and invested more energy in their ovaries than starved fish. Compared to pre-experiment fish, starved and intermediate-fed females appeared to increase their ovary size by relying on liver energy stores (‘capital’ spawning). Conversely, high-fed females increased liver and gonad mass, implying an ‘income’-spawning strategy (where gonads are built from recently acquired energy). Fecundity did not differ among treatments, but high-fed fish built larger eggs than those starved. Females rarely ‘skipped’ spawning opportunities when prey resources were low, as only 8% of starved females and 8% of intermediate-fed females lacked vitellogenic eggs. These results suggest that limited prey resources during the months before spawning can limit ovary production, which, in turn, can limit reproductive success of white crappies.
NASA Astrophysics Data System (ADS)
Huret, M.; Petitgas, P.; Woillez, M.
2010-10-01
Dispersal of fish early life stages explains part of the recruitment success, through interannual variability in spawning, transport and survival. Dispersal results from a complex interaction between physical and biological processes acting at different temporal and spatial scales, and at the individual or population level. In this paper we quantify the response of anchovy egg and larval dispersal in the Bay of Biscay to the following sources of variability: vertical larval behaviour, drift duration, adult spawning location and timing, and spatio-temporal variability in the hydrodynamics. We use simulations of Lagrangian trajectories in a 3-dimensional hydrodynamic model, as well as spatial indices describing different properties of the dispersal kernel: the mean transport (distance, direction), its variance, occupation of space by particles and their aggregation. We show that larval drift duration has a major impact on the dispersion at scales of ˜100 km, but that vertical behaviour becomes dominant reducing dispersion at scales of ˜1-10 km. Spawning location plays a major role in explaining connectivity patterns, in conjunction with spawning temporal variability. Interannual variability in the circulation dominates over seasonal variability. However, seasonal patterns become predominant for coastal spawning locations, revealing a recurrent shift in the direction of dispersal during the anchovy spawning season.
Fincel, M.J.; Chipps, S.R.; Bennett, D.H.
2009-01-01
Methods for improving spawning habitat for lakeshore spawning kokanee, Oncorhynchus nerka (Walbaum), were explored by quantifying incubation success of embryos exposed to three substrate treatments in Lake Pend Oreille, Idaho, USA. Substrate treatments included no modification that used existing gravels in the lake (EXISTING), a cleaned substrate treatment where existing gravels were sifted in the water column to remove silt (CLEANED) and the addition of new, silt-free gravel (ADDED). Incubation success was evaluated using Whitlock-Vibert incubation boxes buried within each substrate treatment that contained recently fertilised embryos. Upon retrieval, live and dead sac fry and eyed eggs were enumerated to determine incubation success (sac fry and eyed eggs ?? 100/number of fertilised embryos). Incubation success varied significantly among locations and redd treatments. In general, incubation success among ADDED redds (0.0-13.0%) was significantly lower than that for EXISTING (1.4-61.0%) and CLEANED (0.4-62.5%) redds. Adding new gravel to spawning areas changed the morphometry of the gravel-water interface and probably exposed embryos to disturbance from wave action and reduced embryo survival. Moreover, efforts to improve spawning habitat for lakeshore spawning kokanee should consider water depth and location (e.g. protected shorelines) as important variables. Adding clean gravel to existing spawning areas may provide little benefit if water depth or lake-bottom morphometry are altered. ?? 2009 Blackwell Publishing Ltd.
Migration and habitats of diadromous Danube River sturgeons in Romania: 1998-2000
Kynard, B.; Suciu, R.; Horgan, M.
2002-01-01
Upstream migrant adults of stellate sturgeon, Acipenser stellatus (10 in 1998, 43 in 1999) and Russian sturgeon, A. gueldenstaedtii (three in 1999) were captured at river km (rkm) 58-137, mostly in the spring, and tagged with acoustic tags offering a reward for return. The overharvest was revealed by tag returns (38% in 1998, 28% in 1999) and by harvest within 26 days (and before reaching spawning grounds) of the six stellate sturgeon tracked upstream. A drop-back of > 50% of the tagged sturgeon, some to the Black Sea, shows a high sensitivity to interruption of migration and capture/handling/holding. Harvesting and dropback prevented tracking of sturgeon to spawning sites. Gillnetting and tracking of stellate sturgeon showed that the autumn migration ended in early October (river temperature 16??C) and identified a likely wintering area at river km (rkm) 75-76 (St George Branch). Thus, fishery harvesting after early October captures wintering fish, not migrants. Rare shoreline cliffs in the lower river likely create the only rocky habitat for sturgeon spawning. A survey for potential spawning habitats found five sites with rocky substrate and moderate water velocity, all ???rkm 258. Drift netting caught early life-stages of 17 fish species and one sturgeon, a beluga, Huso huso, larva likely spawned at ???rkm 258. All diadromous Danube sturgeons likely spawn at ???rkm 258.
Maturity Gonad Sea Cucumber Holothuria scabra Under The Month Cycle
NASA Astrophysics Data System (ADS)
Penina Tua Rahantoknam, Santi
2017-10-01
Gonad maturity level of the sea cucumber Holothuria scabra is important to note for selection of parent ready spawn. Sea cucumbers are giving a reaction to the treatment of excitatory spawn mature individuals only. For the determination of the level of maturity of gonads of sea cucumbers, the necessary observation of the gonads are microscopic, macroscopic and gonad maturity gonado somatic indeks (GSI). GSI value is important to know the changes that occur in the gonads quantitatively, so that time can be presumed spawning (Effendie, 1997). Reproductive cycle can be determined by observing the evolution of GSI. The study of sea cucumbers Holothuria scabra gonad maturity conducted in Langgur, Southeast Maluku. Observations were made at every cycle of the moon is the full moon phase (BP) and new moon (BB) in the period January 29, 2017 until July 23, 2017. Observations H. scabra gonad maturity level is done with surgery, observation and calculation GSI gonad histology. GSI highest value obtained in May that full moon cycle at 90% of individuals that are in the spawning stage (phase 5), then 70% of the individuals that are in the spawning stage (phase 5) in March that the full moon cycle. The results obtained show that the peak spawning H. scabra period January 2017 to July 2017 occurred on the full moon cycle in May.
Bouckaert, Emliy K.; Auer, Nancy A.; Roseman, Edward F.; James Boase,
2014-01-01
Lake sturgeon (Acipenser fulvescens) were historically abundant in the St. Clair – Detroit River System (SCDRS), a 160 km river/channel network. In the SCDRS, lake sturgeon populations have been negatively affected by the loss/degradation of natural spawning habitat. To address habitat loss for lake sturgeon and other species, efforts are underway to restore spawning substrate by constructing artificial reefs. The main objective of this study was to conduct post-construction monitoring of lake sturgeon egg deposition and larval emergence near two of these artificial reefs: Fighting Island Reef (FIR) in the Detroit River, and Middle Channel Reef in the St. Clair River. An additional site in the St. Clair River where lake sturgeon spawn on a coal clinker bed was also investigated. From 2010 to 2012, viable eggs and larvae were collected from all of these reefs, indicating that conditions are suitable for egg deposition, incubation, and larval emergence. In the St. Clair River, the results indicate the likelihood of other spawning sites upstream of these artificial reef sites.
Kafemann, R.; Thiel, R.; Finn, J.E.; Neukamm, R.
1998-01-01
Abundance and biomass data for juveniles and adults, length frequency histograms and the electron microprobe analysis (EPMA) of otoliths were used to indicate density, migration and reproduction of common bream Abramis brama in the Kiel Canal drainage, Germany. The reproduction of common bream was primarily restricted to two types of spawning habitats: one in the Haaler Au, a freshwater tributary and another in shallow, oligohaline portion of the main Canal. Both spawning habitats were morphologically characterized as shallow with submerged vegetation. During April to June concentrations of spawners were observed, whereas age-0 common bream dominated from August through December. The distribution of age-0 common bream was primarily restricted to fresh and oligohaline waters. Outside the spawning season, the distribution of common bream was less obvious. Adult fish were more widely distributed within the Canal, indicating a tolerance for higher salinities. During the spawning season common bream seem to show an exceptional mobility between spawning and feeding habitats, which are denoted by different salinities.
Hewitt, David A.; Janney, Eric C.; Hayes, Brian S.; Harris, Alta C.
2014-01-01
Data from a long-term capture-recapture program were used to assess the status and dynamics of populations of two long-lived, federally endangered catostomids in Upper Klamath Lake, Oregon. Lost River suckers (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) have been captured and tagged with passive integrated transponder (PIT) tags during their spawning migrations in each year since 1995. In addition, beginning in 2005, individuals that had been previously PIT-tagged were re-encountered on remote underwater antennas deployed throughout sucker spawning areas. Captures and remote encounters during spring 2012 were used to describe the spawning migrations in that year and also were incorporated into capture-recapture analyses of population dynamics. Cormack-Jolly-Seber (CJS) open population capture-recapture models were used to estimate annual survival probabilities, and a reverse-time analog of the CJS model was used to estimate recruitment of new individuals into the spawning populations. In addition, data on the size composition of captured fish were examined to provide corroborating evidence of recruitment. Model estimates of survival and recruitment were used to derive estimates of changes in population size over time and to determine the status of the populations in 2011. Separate analyses were conducted for each species and also for each subpopulation of Lost River suckers (LRS). Shortnose suckers (SNS) and one subpopulation of LRS migrate into tributary rivers to spawn, whereas the other LRS subpopulation spawns at groundwater upwelling areas along the eastern shoreline of the lake. In 2012, we captured, tagged, and released 749 LRS at four lakeshore spawning areas and recaptured an additional 969 individuals that had been tagged in previous years. Across all four areas, the remote antennas detected 6,578 individual LRS during the spawning season. Spawning activity peaked in April and most individuals were encountered at Cinder Flats and Sucker Springs. In the Williamson River, we captured, tagged, and released 3,376 LRS and 299 SNS, and recaptured 551 LRS and 125 SNS that had been tagged in previous years. Remote PIT tag antennas in the traps at the weir on the Williamson River and remote antenna systems that spanned the river at four different locations on the Williamson and Sprague Rivers detected a total of 19,321 LRS and 6,124 SNS. Most LRS passed upstream between late April and mid-May when water temperatures were increasing and greater than 10 °C. In contrast, most upstream passage for SNS occurred in early and mid-May when water temperatures were increasing and near or greater than 12 °C. Finally, an additional 1,188 LRS and 1,665 SNS were captured in trammel net sampling at pre-spawn staging areas in the northeastern part of the lake. Of these, 291 of the LRS and 653 of the SNS had been PIT-tagged in previous years. For LRS captured at the staging areas that had encounter histories that were informative about their spawning location, over 90 percent of the fish were members of the subpopulation that spawns in the rivers. Capture-recapture analyses for the LRS subpopulation that spawns at the shoreline areas included encounter histories for more than 12,150 individuals, and analyses for the subpopulation that spawns in the rivers included more than 29,500 encounter histories. With a few exceptions, the survival of males and females in both subpopulations was high (greater than 0.9) between 1999 and 2010. Notably lower survival occurred for both sexes from the rivers in 2000, for both sexes from the shoreline areas in 2002, and for males from the rivers in 2006. Between 2001 and 2011, the abundance of males in the lakeshore spawning subpopulation decreased by 53–65 percent and the abundance of females decreased by 36–48 percent. Capture-recapture models suggested that the abundance of both sexes in the river spawning subpopulation of LRS had increased substantially since 2006; increases were due to large estimated recruitment events in 2006 and 2008. We know that the estimates in 2006 are substantially biased in favor of recruitment because of a sampling issue. We are skeptical of the magnitude of recruitment indicated by the 2008 estimates as well because (1) few small individuals that would indicate the presence of new recruits were captured in that year, and (2) recapture probabilities in recruitment models based on just physical recaptures were lower than desired for robust inferences from capture-recapture models. If we assume that little or no recruitment occurred in 2006 or 2008, the abundance of both sexes in the river spawning subpopulation likely has decreased at rates similar to the rates for the lakeshore spawning subpopulation between 2002 and 2011. Capture-recapture analyses for SNS included encounter histories for more than 17,700 individuals. Most annual survival estimates between 2001 and 2010 were high (greater than 0.8), but SNS experienced more years of low survival than either LRS subpopulation. Annual survival of both sexes was particularly low in 2001, 2004, and 2010. In addition, male survival was somewhat low in 2002. Capture-recapture models and size composition data indicate that recruitment of new individuals into the SNS spawning population was trivial between 2001 and 2005. Models indicate substantial recruitment of new individuals into the SNS spawning population in 2006, 2008, and 2009. As a result, capture-recapture modeling suggests that the abundance of adult spawning SNS was relatively stable between 2006 and 2010. We are skeptical of the estimated recruitment in 2006, 2008, and 2009 because few small individuals that would indicate the presence of new recruits were captured in any of those years, and recapture probabilities in recruitment models were low. The best-case scenario for SNS, based on capture-recapture recruitment modeling, indicates that the abundance of males in the spawning population decreased by 71 percent and the abundance of females decreased by 69 percent between 2001 and 2011. The worst-case scenario, which assumes no recruitment and seems more likely, suggests an 86 percent decrease for males and an 81 percent decrease for females. Despite relatively high survival in most years, we conclude that both species have experienced substantial declines in the abundance of spawning fish because losses from mortality have not been balanced by recruitment of new individuals. Although capture-recapture data indicate substantial recruitment of new individuals into the adult spawning populations for SNS and river spawning LRS in some years, size data do not corroborate these estimates. In fact, fork length data indicate that all populations are largely comprised of fish that were present in the late 1990s and early 2000s. As a result, the status of the endangered sucker populations in Upper Klamath Lake remains worrisome, and the situation is especially dire for shortnose suckers. Future investigations should explore the connections between sucker recruitment and survival and various environmental factors, such as water quality and disease. Our monitoring program provides a robust platform for estimating vital population parameters, evaluating the status of the populations, and assessing the effectiveness of conservation and recovery efforts.
The Regional Patterns of Chemical Composition in the Otolith Core of Larval Fish
NASA Astrophysics Data System (ADS)
Chang, M. Y.; Geffen, A. J.; Nash, R. D. M.; Clemmesen, C.
2012-04-01
The elemental composition of fish otoliths can record the environmental information because once a trace element is deposited in the otolith; it presents a permanent record of the environmental conditions experienced by the fish at a particular time. The elemental signature of the otolith nucleus, the area lying within the first annual growth ring, is likely to be characteristic of the nursery areas of the species, and could be used as biological tracer for tracking origin and dispersal. However, ocean acidification may alter otolith growth and element incorporation, and it is important to establish baseline information about the sources of variation - both biotic and abiotic. The objectives of this study, as part of the wider CalMarO network, is to examine the regional differences in the otolith cores of selected fish species, contrast these differences with those measured between these same species in areas where their larvae co-exist and to find out the maternal effect to the chemical composition during the first forming of otoliths. The laboratory and field experiments were included to produce otolith material reflecting the maternal and regional patterns. Otolith composition was measured using laser-ablation ICPMS. For clarifying the regional patterns, juveniles from six locations and seven spawning groups along the west of the British Isles and larvae from the North Sea were sampled to distinguish the origin of spawning herring. There are three main nursery-ground groups, the Irish Sea, Scottish sea lochs and the Minch, contributing to the spawning herring in the west of the British Isles according to the otolith elemental composition data. However, the spawning origin of the North Sea herring larvae was still unclear. The otolith concentrations of Li, Na, Mg, Mn, Cu, Ru and Sr were significantly different among nursery-ground populations. Together with length-at-age data, at least two nursery-ground groups contributed to each spawning population. The juveniles from western Irish Sea and the Stanton Bank contributed most to the spawning populations. The otolith signature (without length-at-age information) indicated that the North Sea larvae contributed mostly to the spawning herring from the Dingle and the Cape Wrath. The results suggested that there might be different current systems, which drove the larval dispersal both northward and southward from the spawning ground to the North Sea. Although there might be mixtures and interconnections among the west coast herrings, which resulted in the similar otolith chemical signals, the otolith chemical composition still provided useful information of regional differences for tracing back the origin of spawning populations. The detailed current system may be needed to provide more inference for the larval dispersal and the linkage between nursery-ground and spawning populations. * present address: Biodiversity Research Center, Academia Sinica, Taiwan, R.O.C.
1989-12-01
for the Atlantic sturgeon were the St. Johns River, Florida, suggests that lack characterized by relatively slow current, turbid of documented spawning...apparently fccd mostly at spcees that might also spawn over sturgeon night or on windy d,.vs when turbidity is high spawning grounds include walleye...Beginning Feeding apparently occurs mostly at night or on in the early 1870’s, the taste of sturgeon flesh windy days when turbidity is high and
[Postspawning survival in lacustrine sock-eyed salmon Oncorhynchus nerka Walb].
Markevich, G N; Ivashkin, E G; Pavlov, E D
2011-01-01
The state of gonads, age, structure of scales, and size of specimens of the resident lacustrine form of sock-eyed salmon--kokanee Onchorhynchus nerka--are analyzed. In stocked, previously fishless, lakes, there are specimens that have survived spawning and have remained active for a year or several years. No evidence was found of the possibility of repeated spawning. Thus, such fish do not belong to the spawning stock of the population, and their ecological function is not clear.
Evaluation of Salmon Spawning Below Bonneville Dam Annual Report October 2006 - September 2007.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arntzen, Evan V.; Mueller, Robert P.; Murray, Katherine J.
2008-08-08
From 1999 through 2007, the Fish and Wildlife Program of the Bonneville Power Administration funded a project to determine the number of fall Chinook and chum salmon spawning downstream of Bonneville Dam, the characteristics of their spawning areas, and the flows necessary to ensure their long-term survival. Data were collected to ensure that established flow guidelines are appropriate and provide adequate protection for the species of concern. The projects objectives are consistent with the high priority placed by the Northwest Power and Conservation Council Independent Scientific Advisory Board and the salmon managers on determining the importance of mainstem habitats tomore » the production of salmon in the Columbia River Basin. Because of the influence of mainstem habitat on salmon production, there is a continued need to better understand the physical habitat variables used by mainstem fall Chinook and chum salmon populations and the effects of hydropower project operations on spawning and incubation. During FY 2007, Pacific Northwest National Laboratory focused on (1) locating and mapping deep-water fall Chinook salmon and chum salmon spawning areas, (2) investigating the interaction between groundwater and surface water near fall Chinook and chum salmon spawning areas, and (3) providing in-season hyporheic temperature and water surface elevation data to assist state agencies with emergence timing and redd dewatering estimates. This report documents the studies and tasks performed by PNNL during FY 2007. Chapter 1 provides a description of the searches conducted for deepwater redds-adjacent to Pierce and Ives islands for fall Chinook salmon and near the Interstate 205 bridge for chum salmon. The chapter also provides data on redd location, information about habitat associations, and estimates of total spawning populations. Chapter 2 documents the collection of data on riverbed and river temperatures and water surface elevations, from the onset of spawning to the end of emergence, and the provision of those data in-season to fisheries management agencies to assist with emergence timing estimates and evaluations of redd dewatering.« less
NASA Astrophysics Data System (ADS)
Abookire, Alisa A.; Bailey, Kevin M.
2007-02-01
Dover sole ( Microstomus pacificus) and rex sole ( Glyptocephalus zachirus) are both commercially valuable, long-lived pleuronectids that are distributed widely throughout the North Pacific. While their ecology and life cycle have been described for southern stocks, few investigations have focused on these species at higher latitudes. We synthesized historical research survey data among critical developmental stages to determine the distribution of life cycle stages for both species in the northern Gulf of Alaska (GOA). Bottom trawl survey data from 1953 to 2004 (25 519 trawls) were used to characterize adult distribution during the non-spawning and spawning seasons, ichthyoplankton data from 1972 to 2003 (10 776 tows) were used to determine the spatial and vertical distribution of eggs and larvae, and small-meshed shrimp trawl survey data from 1972 to 2004 (6536 trawls) were used to characterize areas utilized by immature stages. During the non-spawning season, adult Dover sole and rex sole were widely distributed from the inner shelf to outer slope. While both species concentrated on the continental slope to spawn, Dover sole spawning areas were more geographically specific than rex sole. Although spawned in deep water, eggs of both species were found in surface waters near spawning areas. Dover sole larvae did not appear to have an organized migration from offshore spawning grounds toward coastal nursery areas, and our data indicated facultative settling to their juvenile habitat in winter. Rex sole larvae progressively moved cross-shelf toward shore as they grew from April to September, and larvae presumably settled in coastal nursery areas in the autumn. In contrast with studies in the southern end of their range, we found no evidence in the GOA that Dover or rex sole have pelagic larval stages longer than nine months; however, more sampling for large larvae is needed in winter offshore of the continental shelf as well as sampling for newly settled larvae over the shelf to verify an abbreviated pelagic larval stage for both species at the northern end of their range.
Roseman, E.F.; Kennedy, G.W.; Boase, J.; Manny, B.A.; Todd, T.N.; Stott, W.
2007-01-01
Historic reports imply that the lower Detroit River was once a prolific spawning area for lake whitefish (Coregonus clupeaformis) prior to the construction of the Livingstone shipping channel in 1911. Large numbers of lake whitefish migrated into the river in fall where they spawned on expansive limestone bedrock and gravel bars. Lake whitefish were harvested in the river during this time by commercial fisheries and for fish culture operations. The last reported landing of lake whitefish from the Detroit River was in 1925. Loss of suitable spawning habitat during the construction of the shipping channels as well as the effects of over-fishing, sea lamprey (Petromyzon marinus) predation, loss of riparian wetlands, and other perturbations to riverine habitat are associated with the disappearance of lake whitefish spawning runs. Because lake whitefish are recovering in Lake Erie with substantial spawning occurring in the western basin, we suspected they may once again be using the Detroit River to spawn. We sampled in the Detroit River for lake whitefish adults and eggs in late fall of 2005 and for lake whitefish eggs and fish larvae in 2006 to assess the extent of reproduction in the river. A spawning-ready male lake whitefish was collected in gillnets and several dozen viable lake whitefish eggs were collected with a pump in the Detroit River in November and December 2005. No lake whitefish eggs were found at lower river sites in March of 2006, but viable lake whitefish eggs were found at Belle Isle in the upper river in early April. Several hundred lake whitefish larvae were collected in the river during March through early May 2006. Peak larval densities (30 fish/1,000 m3 of water) were observed during the week of 3 April. Because high numbers of lake whitefish larvae were collected from mid- and downstream sample sites in the river, we believe that production of lake whitefish in the Detroit River may be a substantial contribution to the lake whitefish population in Lake Erie.
Wildhaber, M.L.; Holan, S.H.; Davis, G.M.; Gladish, D.W.; DeLonay, A.J.; Papoulias, D.M.; Sommerhauser, D.K.
2011-01-01
Approaches using telemetry, precise reproductive assessments, and surgically implanted data storage tags (DSTs) were used in combination with novel applications of analytical techniques for fish movement studies to describe patterns in migratory behavior and predict spawning success of gravid shovelnose sturgeon. From 2004 to 2007, over 300 gravid female shovelnose sturgeon (Scaphirhynchus platorynchus) from the Lower Missouri River, that were expected to spawn in the year they were collected, were surgically implanted with transmitters and archival DSTs. Functional cluster modeling of telemetry data from the spawning season suggested two common migration patterns of gravid female shovelnose sturgeon. Fish implanted from 958 to 1181 river kilometer (rkm) from the mouth of the Missouri River (or northern portion of the Lower Missouri River within 354rkm of the lowest Missouri River dam at rkm 1305) had one migration pattern. Of fish implanted from 209 to 402rkm from the mouth of the Missouri River (or southern portion of the Lower Missouri River), half demonstrated a movement pattern similar to the northern fish while the other half demonstrated a migration pattern that covered more of the river. There was no apparent difference in migration patterns between successful and unsuccessful spawners. Multiple hypotheses exist to explain differences in migratory patterns among fish from different river reaches. Additional work is required to determine if observed differences are due to multiple adapted strategies, environmental alteration, and/or initial tagging date. Hierarchical Bayesian modeling of DST data indicated that variation in depth usage patterns was consistently different between successful and unsuccessful spawners, as indicated by differences in likelihood of switching between high and low variability states. Analyses of DST data, and data collected at capture, were sufficient to predict 8 of 10 non-spawners/incomplete spawners and all 30 spawners in the absence of telemetry location data. Together, the results of these two separate analyses suggest that caution is necessary in extrapolating spawning success from broad-scale movement data alone. More direct measures of spawning success may be necessary to precisely determine spawning success and to evaluate the effects of management actions. ?? 2011 Blackwell Verlag, Berlin.
Reproductive Potential of Salmon Spawning Substrates Inferred from Grain Size and Fish Length
NASA Astrophysics Data System (ADS)
Riebe, C. S.; Sklar, L. S.; Overstreet, B. T.; Wooster, J. K.; Bellugi, D. G.
2014-12-01
The river restoration industry spends millions of dollars every year on improving salmon spawning in riverbeds where sediment is too big for fish to move and thus use during redd building. However, few studies have addressed the question of how big is too big in salmon spawning substrates. Hence managers have had little quantitative basis for gauging the amount of spawning habitat in coarse-bedded rivers. Moreover, the scientific framework has remained weak for restoration projects that seek to improve spawning conditions. To overcome these limitations, we developed a physically based, field-calibrated model for the fraction of the bed that is fine-grained enough to support spawning by fish of a given size. Model inputs are fish length and easy-to-measure indices of bed-surface grain size. Model outputs include the number of redds and eggs the substrate can accommodate when flow depth, temperature, and other environmental factors are not limiting. The mechanistic framework of the model captures the biophysical limits on sediment movement and the space limitations on redd building and egg deposition in riverbeds. We explored the parameter space of the model and found a previously unrecognized tradeoff in salmon size: bigger fish can move larger sediment and thus use more riverbed area for spawning; they also tend to have higher fecundity, and so can deposit more eggs per redd; however, because redd area increases with fish length, the number of eggs a substrate can accommodate is highest for moderate-sized fish. One implication of this tradeoff is that differences in grain size may help regulate river-to-river differences in salmon size. Thus, our model suggests that population diversity and, by extension, species resilience are linked to lithologic, geomorphic, and climatic factors that determine grain size in rivers. We cast the model into easy-to-use look-up tables, charts, and computer applications, including a JavaScript app that works on tablets and mobile phones. We explain how these tools can be used in a new, mechanistic approach to assessing spawning substrates and optimizing gravel augmentation projects in coarse-bedded rivers.
Wildhaber, M.L.; Holan, S.H.; Davis, G.M.; Gladish, D.W.; DeLonay, A.J.; Papoulias, D.M.; Sommerhauser, D.K.
2011-01-01
Approaches using telemetry, precise reproductive assessments, and surgically implanted data storage tags (DSTs) were used in combination with novel applications of analytical techniques for fish movement studies to describe patterns in migratory behavior and predict spawning success of gravid shovelnose sturgeon. From 2004 to 2007, over 300 gravid female shovelnose sturgeon (Scaphirhynchus platorynchus) from the Lower Missouri River, that were expected to spawn in the year they were collected, were surgically implanted with transmitters and archival DSTs. Functional cluster modeling of telemetry data from the spawning season suggested two common migration patterns of gravid female shovelnose sturgeon. Fish implanted from 958 to 1181 river kilometer (rkm) from the mouth of the Missouri River (or northern portion of the Lower Missouri River within 354 rkm of the lowest Missouri River dam at rkm 1305) had one migration pattern. Of fish implanted from 209 to 402 rkm from the mouth of the Missouri River (or southern portion of the Lower Missouri River), half demonstrated a movement pattern similar to the northern fish while the other half demonstrated a migration pattern that covered more of the river. There was no apparent difference in migration patterns between successful and unsuccessful spawners. Multiple hypotheses exist to explain differences in migratory patterns among fish from different river reaches. Additional work is required to determine if observed differences are due to multiple adapted strategies, environmental alteration, and/or initial tagging date. Hierarchical Bayesian modeling of DST data indicated that variation in depth usage patterns was consistently different between successful and unsuccessful spawners, as indicated by differences in likelihood of switching between high and low variability states. Analyses of DST data, and data collected at capture, were sufficient to predict 8 of 10 non-spawners/incomplete spawners and all 30 spawners in the absence of telemetry location data. Together, the results of these two separate analyses suggest that caution is necessary in extrapolating spawning success from broad-scale movement data alone. More direct measures of spawning success may be necessary to precisely determine spawning success and to evaluate the effects of management actions.
Salmon as drivers of physical and biological disturbance in river channels
NASA Astrophysics Data System (ADS)
Albers, S. J.; Petticrew, E. L.
2012-04-01
Large migrations across landscapes and ecosystem boundaries combined with disturbances of riverine spawning habitats through nest construction indicate the huge potential that Pacific salmon (Onchorhynchus sp.) have to disturb and alter regional energy flow. Nutrients derived from ocean-reared dead and decaying salmon are released into surrounding aquatic ecosystems fertilizing the water column, recently disturbed by increased suspended sediments due to nest construction. These opposing forces of disturbance and fertilization on spawning habitat have been demonstrated to impact local geomorphic and ecological cycles within salmon streams. An often cited, yet not fully tested, hypothesis is that this pulse of nutrients provided by decaying salmon can shift freshwater habitats to higher production levels. This hypothesis, however, remains contested and uncertain. Fine sediments are increasingly being recognized as important delivery and storage vectors for marine-derived nutrients (MDNs) in spawning streams. The temporal and spatial significance of these sediment vectors on gravelbed storage of MDN have not been quantified thereby restricting our ability to estimate the impact of gravelbed storage of MDNs on the riverine habitats. The objectives of this study were to i) quantify the magnitude of sediment deposition and retention in an active spawning area and ii) determine the contribution of MDN associated with the fine sediment storage. The Horsefly River spawning channel (HFC), an artificial salmon stock enhancement stream, was used to examine the biogeomorphic impacts of salmon spawning. We organized the HFC in an upstream-downstream paired treatment approach where the upstream enclosure was kept free of salmon and the downstream enclosure was loaded with actively spawning salmon. We used the difference in suspended sediment concentration between the salmon enclosure and the control enclosure to determine the contribution of salmon nest construction to suspended sediment concentration. To monitor sediment infiltration into the gravelbed we used modified infiltration bag samplers. Lastly, to examine the contribution of salmon nutrients to the infiltrated sediment we sampled for the presence of a marine isotope signature (15N) in the sediment. Increased sediment in the water column of the salmon enclosure during the active spawn period indicated salmon-mediated sediment resuspension. A gravelbed response to this water column disturbance was detected via increased sediment infiltration during salmon spawning. This stored sediment was enriched in organic matter and 15N indicating a marine salmon signal. Significant relationships between sediment infiltration and salmon enrichment provided further evidence that salmon organic matter, using resuspended sediment as a vector, was infiltrating into the gravelbed. During the post-spawn period organic sediment was elevated in the water column and gravelbed infiltration was reduced reflecting respectively, the release of decay products from salmon carcasses and MDN release from temporary gravelbed storage. This study demonstrated that localized patterns of sediment deposition are regulated by salmon activity, which control gravelbed MDN storage and release. Salmon-mediated, sediment vector influences on riverine habitat have been quantified here on a small experimental scale, but we expect that the effect is replicated and magnified, as it occurs regionally throughout the spawning grounds, with significant ecosystem implications.
Sediment transport and resulting deposition in spawning gravels, north coastal California
Thomas E. Lisle
1989-01-01
Incubating salmonid eggs in streambeds are often threatened by deposition of fine sediment within the gravel. To relate sedimentation of spawning gravel beds to sediment transport, infiltration of fine sediment (
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troia, Matthew J.; Whitney, James E.; Gido, Keith B.
2014-06-01
To determine if the strategy of spawning in saucer-like depressions is obligate or facultative for longfin dace ( Agosia chrysogaster), we collected adults from four sites in the upper Gila River (southwestern New Mexico), stocked them in separate outdoor stream-mesocosms lined with cobble substrate, and made daily observations for the presence of saucer-nests and hatched larvae. Larvae were observed from three of the four mesocosms and emerged at temperatures ranging from 19.2 24.0 °C. Here, the absence of saucer-nests in all mesocosms throughout the study indicates that longfin dace can spawn over cobble substrate and have larvae hatch successfully, suggestingmore » that longfin dace can use an alternate spawning strategy when sand substrate is not available for construction of saucer-nests.« less
Casazza, Tara L.; Ross, Steve W.; Necaise, Ann Marie; Sulak, Kenneth J.
2005-01-01
The reproductive biology of Cheilopogon melanurus (Valenciennes, 1847) was examined off North Carolina during the summers of 1991–1992 and 1999–2003. Specimens were collected using a small mesh neuston net and dip nets. A spawning event, the first observation of mating behavior for this species, was recorded off Cape Fear, North Carolina, on 19 August 2003. It was considered to be a spawning event due to: 1) unusual coloration of both sexes, 2) unusual swimming behavior of both sexes, and 3) ready release of gametes by both sexes upon capture. The spawning event occurred in the presence of small clumps of floating Sargassum, but the fish did not appear to use the algae. Over all collections, female gonadosomatic indices were highest in June and July, but mature females were collected each month (June, July, and August). The overall female to male sex ratio did not vary significantly from 1:1. Number of ova increased with increasing fish size, but the relationship was not strong. Our data indicate a spawning season of at least June through August off North Carolina due to high female gonadosomatic indices, large egg diameters, presence of egg filaments, presence of spent females in July and August, and presence of small juveniles (≤ 25 mm) in July and August. This is the first report of single pair spawning for this family; other species reportedly spawn in large aggregations.
Importance of reservoir tributaries to spawning of migratory fish in the upper Paraná River
da Silva, P.S.; Makrakis, Maristela Cavicchioli; Miranda, Leandro E.; Makrakis, Sergio; Assumpcao, L.; Paula, S.; Dias, João Henrique Pinheiro; Marques, H.
2015-01-01
Regulation of rivers by dams transforms previously lotic reaches above the dam into lentic ones and limits or prevents longitudinal connectivity, which impairs access to suitable habitats for the reproduction of many migratory fish species. Frequently, unregulated tributaries can provide important habitat heterogeneity to a regulated river and may mitigate the influence of impoundments on the mainstem river. We evaluated the importance of tributaries to spawning of migratory fish species over three spawning seasons, by comparing several abiotic conditions and larval fish distributions in four rivers that are tributaries to an impounded reach of the Upper Parana River, Brazil. Our study confirmed reproduction of at least 8 long-distance migrators, likely nine, out of a total of 19 occurring in the Upper Parana River. Total larval densities and percentage species composition differed among tributaries, but the differences were not consistent among spawning seasons and unexpectedly were not strongly related to annual differences in temperature and hydrology. We hypothesize that under present conditions, densities of larvae of migratory species may be better related to efficiency of fish passage facilities than to temperature and hydrology. Our study indicates that adult fish are finding suitable habitat for spawning in tributaries, fish eggs are developing into larvae, and larvae are finding suitable rearing space in lagoons adjacent to the tributaries. Our findings also suggest the need for establishment of protected areas in unregulated and lightly regulated tributaries to preserve essential spawning and nursery habitats.
Nissling, A; Larsson, R
2018-06-07
Marine teleosts inhabiting the brackish Baltic Sea have adapted to the less saline water with activation of spermatozoa at low salinity hypo-osmotic conditions but with shorter longevity and lower swimming speed that affect the fertilization capacity. Aiming to elucidate if the fertilization capacity may be maintained by increasing the number of spermatozoa produced, testis size for the euryhaline flounder Platichthys flesus with external fertilization was assessed along a salinity gradient; with spawning at a salinity of c. 7, 10-18 and 30-35. Fulton's condition factor K = 0.881 ± 0.085 (mean ± S.D.), 0.833 ± 0.096 and 0.851 ± 0.086, for fish spawning at salinities of c. 7, 10-18 and 30-35, respectively, with no difference between areas, i.e. analysed fish were in similar nutritional condition. A general linear model, with testes dry mass as the dependent variable and somatic mass as covariate resulted in a significant difference between areas-populations with larger testes for P. flesus spawning at a salinity of c. 7 but no difference between fish spawning at a salinity of 10-18 and 30-35. The result suggests that adaptation by increasing the number of spermatozoa produced may be a key mechanism for marine teleosts spawning in areas with low salinities to sustain the fertilization capacity as shown here for the euryhaline P. flesus. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Fall and winter survival of brook trout and brown trout in a north-central Pennsylvania watershed
Sweka, John A.; Davis, Lori A.; Wagner, Tyler
2017-01-01
Stream-dwelling salmonids that spawn in the fall generally experience their lowest survival during the fall and winter due to behavioral changes associated with spawning and energetic deficiencies during this time of year. We used data from Brook Trout Salvelinus fontinalis and Brown Trout Salmo trutta implanted with radio transmitters in tributaries of the Hunts Run watershed of north-central Pennsylvania to estimate survival from the fall into the winter seasons (September 2012–February 2013). We examined the effects that individual-level covariates (trout species, size, and movement rates) and stream-level covariates (individual stream and cumulative drainage area of a stream) have on survival. Brook Trout experienced significantly lower survival than Brown Trout, especially in the early fall during their peak spawning period. Besides a significant species effect, none of the other covariates examined influenced survival for either species. A difference in life history between these species, with Brook Trout having a shorter life expectancy than Brown Trout, is likely the primary reason for the lower survival of Brook Trout. However, Brook Trout also spawn earlier in the fall than Brown Trout and low flows during Brook Trout spawning may have resulted in a greater risk of predation for Brook Trout compared with Brown Trout, thereby also contributing to the observed differences in survival between these species. Our estimates of survival can aid parameterization of future population models for Brook Trout and Brown Trout through the spawning season and into winter.
Fishing-induced changes in adult length are mediated by skipped-spawning.
Wang, Hui-Yu; Chen, Ying-Shiuan; Hsu, Chien-Chung; Shen, Sheng-Feng
2017-01-01
Elucidating fishing effects on fish population dynamics is a critical step toward sustainable fisheries management. Despite previous studies that have suggested age or size truncation in exploited fish populations, other aspects of fishing effects on population demography, e.g., via altering life histories and density, have received less attention. Here, we investigated the fishing effects altering adult demography via shifting reproductive trade-offs in the iconic, overexploited, Pacific bluefin tuna Thunnus orientalis. We found that, contrary to our expectation, mean lengths of catch increased over time in longline fisheries. On the other hand, mean catch lengths for purse seine fisheries did not show such increasing trends. We hypothesized that the size-dependent energetic cost of the spawning migration and elevated fishing mortality on the spawning grounds potentially drive size-dependent skipped spawning for adult tuna, mediating the observed changes in the catch lengths. Using eco-genetic individual-based modeling, we demonstrated that fishing-induced evolution of skipped spawning and size truncation interacted to shape the observed temporal changes in mean catch lengths for tuna. Skipped spawning of the small adults led to increased mean catch lengths for the longline fisheries, while truncation of small adults by the purse seines could offset such a pattern. Our results highlight the eco-evolutionary dynamics of fishing effects on population demography and caution against using demographic traits as a basis for fisheries management of the Pacific bluefin tuna as well as other migratory species. © 2016 by the Ecological Society of America.
Forecasting relative impacts of land use on anadromous fish habitat to guide conservation planning.
Lohse, Kathleen A; Newburn, David A; Opperman, Jeff J; Merenlender, Adina M
2008-03-01
Land use change can adversely affect water quality and freshwater ecosystems, yet our ability to predict how systems will respond to different land uses, particularly rural-residential development, is limited by data availability and our understanding of biophysical thresholds. In this study, we use spatially explicit parcel-level data to examine the influence of land use (including urban, rural-residential, and vineyard) on salmon spawning substrate quality in tributaries of the Russian River in California. We develop a land use change model to forecast the probability of losses in high-quality spawning habitat and recommend priority areas for incentive-based land conservation efforts. Ordinal logistic regression results indicate that all three land use types were negatively associated with spawning substrate quality, with urban development having the largest marginal impact. For two reasons, however, forecasted rural-residential and vineyard development have much larger influences on decreasing spawning substrate quality relative to urban development. First, the land use change model estimates 10 times greater land use conversion to both rural-residential and vineyard compared to urban. Second, forecasted urban development is concentrated in the most developed watersheds, which already have poor spawning substrate quality, such that the marginal response to future urban development is less significant. To meet the goals of protecting salmonid spawning habitat and optimizing investments in salmon recovery, we suggest investing in watersheds where future rural-residential development and vineyards threaten high-quality fish habitat, rather than the most developed watersheds, where land values are higher.
Egg production of turbot, Scophthalmus maximus, in the Baltic Sea
NASA Astrophysics Data System (ADS)
Nissling, Anders; Florin, Ann-Britt; Thorsen, Anders; Bergström, Ulf
2013-11-01
In the brackish water Baltic Sea turbot spawn at ~ 6-9 psu along the coast and on offshore banks in ICES SD 24-29, with salinity influencing the reproductive success. The potential fecundity (the stock of vitellogenic oocytes in the pre-spawning ovary), egg size (diameter and dry weight of artificially fertilized 1-day-old eggs) and gonad dry weight were assessed for fish sampled in SD 25 and SD 28. Multiple regression analysis identified somatic weight, or total length in combination with Fulton's condition factor, as main predictors of fecundity and gonad dry weight with stage of maturity (oocyte packing density or leading cohort) as an additional predictor. For egg size, somatic weight was identified as main predictor while otolith weight (proxy for age) was an additional predictor. Univariate analysis using GLM revealed significantly higher fecundity and gonad dry weight for turbot from SD 28 (3378-3474 oocytes/g somatic weight) compared to those from SD 25 (2343 oocytes/g somatic weight), with no difference in egg size (1.05 ± 0.03 mm diameter and 46.8 ± 6.5 μg dry weight; mean ± sd). The difference in egg production matched egg survival probabilities in relation to salinity conditions suggesting selection for higher fecundity as a consequence of poorer reproductive success at lower salinities. This supports the hypothesis of higher size-specific fecundity towards the limit of the distribution of a species as an adaptation to harsher environmental conditions and lower offspring survival probabilities. Within SD 28 comparisons were made between two major fishing areas targeting spawning aggregations and a marine protected area without fishing. The outcome was inconclusive and is discussed with respect to potential fishery induced effects, effects of the salinity gradient, effects of specific year-classes, and effects of maturation status of sampled fish.
NASA Astrophysics Data System (ADS)
Vanyushin, George; Bulatova, Tatiana; Klochkov, Dmitriy; Troshkov, Anatoliy; Kruzhalov, Michail
2013-04-01
In this study, the attempt to consider the relationship between sea surface anomalies of temperature (SST anomalies °C) in spawning area of the Norwegian Arctic cod off the Lofoten islands in coastal zone of the Norwegian Sea and modern cod total stock biomass including forecasting assessment of future cod generation success. Continuous long-term database of the sea surface temperature (SST) was created on the NOAA satellites data. Mean monthly SST and SST anomalies are computed for the selected area on the basis of the weekly SST maps for the period of 1998-2012. These maps were plotted with the satellite SST data, as well as information of vessels, byoies and coastal stations. All data were classified by spawning seasons (March-April) and years. The results indicate that poor and low middle generations of cod (2001, 2006, 2007) occurred in years with negative or extremely high positive anomalies in the spawning area. The SST anomalies in years which were close to normal or some more normal significances provide conditions for appearance strong or very strong generations of cod (1998, 2000, 2002, 2004, 2005, 2006, 2008, 2009). Temperature conditions in concrete years influence on different indexes of cod directly. So, the mean temperature in spawning seasons in years 1999-2005 was ≈5,0°C and SST anomaly - +0,35°C, by the way average year significances indexes of cod were: total stock biomass - 1425,0 th.t., total spawning biomass - 460,0 th.t., recruitment (age 3+) - 535,0 mln. units and landings - 530,0 th.t. In spawning seasons 2006-2012 years the average data were following: mean SST ≈6,0°C, SST anomaly - +1,29°C, total stock biomass - 2185,0 th.t., total spawning biomass - 1211,0 th.t., recruitment (age 3+) - 821,0 mln. units and landings - 600,0 th.t. The SST and SST anomalies (the NOAA satellite data) characterize increase of decrease in input of warm Atlantic waters which form numerous eddies along the flows of the main warm currents thus creating favorable conditions for development of the cod larvae and fry and provide them with food stock, finally, direct influence on forming total stock biomass of cod and helping its population forecast. Key words: satellite monitoring of SST, Northeast Arctic cod, spawning area, maps of SST, prognosis.
NASA Astrophysics Data System (ADS)
Lefebvre, Lyndsey S.; Payne, Amber M.; Field, John C.
2016-01-01
Female Pacific sanddab were collected from the Monterey Bay, California to describe their reproductive strategy and annual reproductive cycle, as well as to estimate length at maturity, fecundity, spawning fraction (SF), and spawning interval (SI). Captive females were held to examine degradation of spawning markers and confirmed the biological spawning capabilities of the species. The reproductive season extended from May through January, as determined through macroscopic and histological examination of ovaries. Oocyte development was asynchronous, and an indeterminate fecundity pattern was displayed. Absolute and relative batch fecundity values were variable (means = 6663 eggs and 54 eggs g- 1 somatic weight, respectively) and significantly related to maternal length. During the period of highest reproductive activity, SF ranged from 0.42 to 0.98, suggesting some females were spawning on a daily basis. Monthly SF and SI were related to length, with smaller females having a truncated season and lower SF compared to larger females. Lengths at 50% (119 mm) and 95% (149 mm) maturity showed a downward shift relative to the 1940s, though the magnitude and cause of this shift remain unknown. This study highlights the importance of considering demographic shifts and size-related dynamics when modeling a stock's reproductive potential.
Side-scan sonar mapping of lake trout spawning habitat in northern Lake Michigan
Edsall, Thomas A.; Poe, Thomas P.; Nester, Robert T.; Brown, Charles L.
1989-01-01
Native stocks of lake trout Salvelinus namaycush were virtually or completely extirpated from the lower four Great Lakes by the early 1960s. The failure of early attempts to reestablish self-sustaining populations of lake trout was attributed partly to the practice of stocking hatcheryreared juveniles at locations and over substrates that had not been used in the past for spawning by native fish. Subsequent attempts to improve the selection of stocking locations were impeded by the lack of reliable information on the distribution of substrates on historical spawning grounds. Here we demonstrate the potential of side-scan sonar to substantially expand the data base needed to pinpoint the location of substrates where lake trout eggs, fry, or juveniles could be stocked to maximize survival and help ensure that survivors returning to spawn would encounter suitable substrates. We also describe the substrates and bathymetry of large areas on historical lake trout spawning grounds in the Fox Island Lake Trout Sanctuary in northern Lake Michigan. These areas could be used to support a contemporary self-sustaining lake trout population in the sanctuary and perhaps also in adjacent waters.
Weaver, Daniel M.; Coghlan, Stephen M.; Zydlewski, Joseph D.
2018-01-01
Aquatic macroinvertebrates respond to patch dynamics arising from interactions of physical and chemical disturbances across space and time. Anadromous fish, such as sea lamprey, Petromyzon marinus, migrate from the ocean and alter physical and chemical properties of recipient spawning streams. Sea lamprey disturb stream benthos physically through nest construction and spawning, and enrich food webs through nutrient deposition from decomposing carcasses. Sea lamprey spawning nests support greater macroinvertebrate abundance than adjacent reference areas, but concurrent effects of stream bed modification and nutrient supplementation have not been examined sequentially. We added carcasses and cleared substrate experimentally to mimic the physical disturbance and nutrient enrichment associated with lamprey spawning, and characterized effects on macroinvertebrate assemblage structure. We found that areas receiving cleared substrate and carcass nutrients were colonized largely by Simuliidae compared to upstream and downstream control areas that were colonized largely by Hydropsychidae, Philopotamidae, and Chironomidae. Environmental factors such as stream flow likely shape assemblages by physically constraining macroinvertebrate establishment and feeding. Our results indicate potential changes in macroinvertebrate assemblages from the physical and chemical changes to streams brought by spawning populations of sea lamprey.
Pritt, Jeremy J.; DuFour, Mark R.; Mayer, Christine M.; Kocovsky, Patrick M.; Tyson, Jeffrey T.; Weimer, Eric J.; Vandergoot, Christopher S.
2013-01-01
Walleye (Sander vitreus) in Lake Erie is a valuable and migratory species that spawns in tributaries. We used hydroacoustic sampling, gill net sampling, and Bayesian state-space modeling to estimate the spawning stock abundance, characterize size and sex structure, and explore environmental factors cuing migration of walleye in the Maumee River for 2011 and 2012. We estimated the spawning stock abundance to be between 431,000 and 1,446,000 individuals in 2011 and between 386,400 and 857,200 individuals in 2012 (95% Bayesian credible intervals). A back-calculation from a concurrent larval fish study produced an estimate of 78,000 to 237,000 spawners for 2011. The sex ratio was skewed towards males early in the spawning season but approached 1:1 later, and larger individuals entered the river earlier in the season than smaller individuals. Walleye migration was greater during low river discharge and intermediate temperatures. Our approach to estimating absolute abundance and uncertainty as well as characterization of the spawning stock could improve assessment and management of this species, and our methodology is applicable to other diadromous populations.
Floodplains within reservoirs promote earlier spawning of white crappies Pomoxis annularis
Miranda, Leandro E.; Dagel, Jonah D.; Kaczka, Levi J.; Mower, Ethan; Wigen, S. L.
2015-01-01
Reservoirs impounded over floodplain rivers are unique because they may include within their upper reaches extensive shallow water stored over preexistent floodplains. Because of their relatively flat topography and riverine origin, floodplains in the upper reaches of reservoirs provide broad expanses of vegetation within a narrow range of reservoir water levels. Elsewhere in the reservoir, topography creates a band of shallow water along the contour of the reservoir where vegetation often does not grow. Thus, as water levels rise, floodplains may be the first vegetated habitats inundated within the reservoir. We hypothesized that shallow water in reservoir floodplains would attract spawning white crappies Pomoxis annularis earlier than reservoir embayments. Crappie relative abundance over five years in floodplains and embayments of four reservoirs increased as spawning season approached, peaked, and decreased as fish exited shallow water. Relative abundance peaked earlier in floodplains than embayments, and the difference was magnified with higher water levels. Early access to suitable spawning habitat promotes earlier spawning and may increase population fitness. Recognition of the importance of reservoir floodplains, an understanding of how reservoir water levels can be managed to provide timely connectivity to floodplains, and conservation of reservoir floodplains may be focal points of environmental management in reservoirs.
Spawning and rearing habitat use by white sturgeons in the Columbia River downstream from McNary Dam
Parsley, Michael J.; Beckman, Lance G.; McCabe, George T.
1993-01-01
Spawning and rearing habitats used by white sturgeons Acipenser transmontanuswere described from water temperature, depth, and velocity measurements and substrate types present at sites where eggs, larvae, young-of-the-year, and juveniles (ages 1–7) were collected. Spawning and egg incubation occurred in the swiftest water available (mean water column velocity, 0.8–2.8 m/s), which was within 8 km downstream from each of the four main-stem Columbia River dams in our study area. Substrates where spawning occurred were mainly cobble, boulder, and bedrock. Yolk-sac larvae were transported by the river currents from spawning areas into deeper areas with lower water velocities and finer substrates. Young-of-the-year white sturgeons were found at depths of 9–57 m, at mean water column velocities of 0.6 m/s and less, and over substrates of hard clay, mud and silt, sand, gravel, and cobble. Juvenile fish were found at depths of 2–58 m, at mean water column velocities of 1.2 m/s and less, and over substrates of hard clay, mud and silt, sand, gravel, cobble, boulder, and bedrock.
Costa, Deliane Cristina; de Souza e Silva, Walisson; Melillo Filho, Reinaldo; Miranda Filho, Kleber Campos; Epaminondas dos Santos, José Claudio; Kennedy Luz, Ronald
2015-08-01
The present study describes the capture adaptation and reproduction of wild Lophiosilurus alexandri broodstock in laboratory conditions. There were two periods when capturing was performed in natural habitats. The animals were placed in four tanks of 5m(3) with water temperatures at 28°C with two tanks having sand bottoms. Thirty days after the temperature increased (during the winter) the first spawning occurred naturally, but only in tanks with sand on the bottom. During the breeding season, there were 24 spawning bouts with egg mass collections occurring as a result of the spawning bouts that occurred in the tanks. The hatching rates for eggs varied from 0% to 95%. The spawning bouts were mainly at night and on weekends. In the second reproductive period, the animals were sexed by cannulation and distributed in four tanks with all animals being maintained in tanks with sand on the bottom at 28°C. During this phase, there were 36 spawning bouts. Findings in the present study contribute to the understanding of the reproductive biology of this endangered species during captivity. Copyright © 2015 Elsevier B.V. All rights reserved.
Jumbo tornado outbreak of 3 April 1974
NASA Technical Reports Server (NTRS)
Fujita, T. T.
1974-01-01
General meteorological data concerning the Jumbo tornado outbreak are presented. In terms of tornado number and total path mileage, it was more extensive than all known outbreaks. Most of the intense tornadoes avoided the large cities, however. Turn information is analyzed in detail. Left-turn tornadoes were more intense than right-turn tornadoes. Many important phenomena were observed, such as multiple suction vortices, family tornadoes, and cousin tornadoes spawned from interacting tornado cyclones. Aerial survey data will aid greatly in the solution of various scales of rotating motions, leading to improved prediction and warning of tornadoes.
Striped Bass Spawning in Non-Estuarine Portions of the Savannah River
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, D.; Paller, M.
2007-04-17
Historically, the estuarine portions of the Savannah River have been considered to be the only portion of the river in which significant amounts of striped bass (Morone saxatilis) spawning normally occur. A reexamination of data from 1983 through 1985 shows a region between River Kilometers 144 and 253 where significant numbers of striped bass eggs and larvae occur with estimated total egg production near that currently produced in the estuarine reaches. It appears possible that there are two separate spawning populations of striped bass in the Savannah River.
Hewitt, David A.; Janney, Eric C.; Hayes, Brian S.; Harris, Alta C.
2018-04-24
Executive SummaryData from a long-term capture-recapture program were used to assess the status and dynamics of populations of two long-lived, federally endangered catostomids in Upper Klamath Lake, Oregon. Lost River suckers (LRS; Deltistes luxatus) and shortnose suckers (SNS; Chasmistes brevirostris) have been captured and tagged with passive integrated transponder (PIT) tags during their spawning migrations in each year since 1995. In addition, beginning in 2005, individuals that had been previously PIT-tagged were re-encountered on remote underwater antennas deployed throughout sucker spawning areas. Captures and remote encounters during the spawning season in spring 2016 were incorporated into capture-recapture analyses of population dynamics.Cormack-Jolly-Seber (CJS) open population capture-recapture models were used to estimate annual survival probabilities, and a reverse-time analog of the CJS model was used to estimate recruitment of new individuals into the spawning populations. In addition, data on the size composition of captured fish were examined to provide corroborating evidence of recruitment. Model estimates of survival and recruitment were used to derive estimates of changes in population size over time and to determine the status of the populations through 2015. Separate analyses were done for each species and also for each subpopulation of LRS. Shortnose suckers and one subpopulation of LRS migrate into tributary rivers to spawn, whereas the other LRS subpopulation spawns at groundwater upwelling areas along the eastern shoreline of the lake.Capture-recapture analyses indicated that with a few exceptions, the survival of males and females in both Lost River sucker subpopulations was high (greater than 0.88) from 1999 to 2015. Survival was notably lower for males from the river in 2000, 2006, and 2012, and for the shoreline areas in 2002. From 2001 to 2015, the abundance of males in the lakeshore spawning subpopulation decreased by at least 64 percent and the abundance of females decreased by at least 56 percent. Capture-recapture models suggested that the abundance of both sexes in the river spawning subpopulation of LRS had increased substantially since 2006; increases were mostly due to large estimated recruitment events in 2006 and 2008. We know that the estimates in 2006 are substantially biased in favor of recruitment because of a sampling issue. We are skeptical of the magnitude of recruitment indicated by the 2008 estimates as well because (1) few small individuals that would indicate the presence of new recruits were captured in that year, and (2) recapture probabilities in recruitment models based on just physical recaptures of fish were lower than desired for robust inferences from capture-recapture models. If we assume instead that little or no recruitment occurred for this subpopulation, the abundance of both sexes in the river spawning subpopulation likely has decreased at rates similar to the rates for the lakeshore spawning subpopulation from 2002 to 2015.Shortnose suckers experienced lower and more variable annual survival than either LRS subpopulation. Annual survival of both sexes was relatively low in 2003, 2004, 2010, and 2012. In addition, female survival was low in 1999 and 2000 while male survival was low in 2002. Survival estimate precision in early years of the study; however, are poor. Capture-recapture models and size composition data indicate that recruitment of new individuals into the SNS spawning population was trivial from 2001 to 2005. Models indicate that more than 10 percent of the population was new recruits in a number of more recent years. As a result, capture-recapture modeling suggests that the abundance of adult spawning SNS was relatively stable from 2006 to 2010. We are skeptical of the estimated recruitment in 2006 because of the known sampling issue. We also are skeptical of the estimated recruitment in other recent years because few small individuals that would indicate the presence of new recruits were captured in any of those years, and recapture probabilities in recruitment models were low. The best-case scenario for SNS, based on capture-recapture recruitment modeling, indicates that the abundance of males in the spawning population decreased by 78 percent and the abundance of females decreased by 77 percent from 2001 to 2015. Decreases in abundance for both sexes are likely greater than these estimates indicate.Despite relatively high survival in most years, we conclude that both species have experienced substantial decreases in the abundance of spawning adults because losses from mortality have not been balanced by recruitment of new individuals. Although capture-recapture data indicate substantial recruitment of new individuals into the spawning populations for SNS and river spawning LRS in some years, size data do not corroborate these estimates. As a result, the status of the endangered sucker populations in Upper Klamath Lake remains distressed, especially for SNS. Our monitoring program provides a robust platform for estimating vital population parameters, evaluating the status of the populations, and assessing the effectiveness of conservation and recovery efforts.
Auth, Toby D; Daly, Elizabeth A; Brodeur, Richard D; Fisher, Jennifer L
2018-01-01
Understanding changes in the migratory and reproductive phenology of fish stocks in relation to climate change is critical for accurate ecosystem-based fisheries management. Relocation and changes in timing of reproduction can have dramatic effects upon the success of fish populations and throughout the food web. During anomalously warm conditions (1-4°C above normal) in the northeast Pacific Ocean during 2015-2016, we documented shifts in timing and spawning location of several pelagic fish stocks based on larval fish samples. Total larval concentrations in the northern California Current (NCC) during winter (January-March) 2015 and 2016 were the highest observed since annual collections first occurred in 1998, primarily due to increased abundances of Engraulis mordax (northern anchovy) and Sardinops sagax (Pacific sardine) larvae, which are normally summer spawning species in this region. Sardinops sagax and Merluccius productus (Pacific hake) exhibited an unprecedented early and northward spawning expansion during 2015-16. In addition, spawning duration was greatly increased for E. mordax, as the presence of larvae was observed throughout the majority of 2015-16, indicating prolonged and nearly continuous spawning of adults throughout the warm period. Larvae from all three of these species have never before been collected in the NCC as early in the year. In addition, other southern species were collected in the NCC during this period. This suggests that the spawning phenology and distribution of several ecologically and commercially important fish species dramatically and rapidly changed in response to the warming conditions occurring in 2014-2016, and could be an indication of future conditions under projected climate change. Changes in spawning timing and poleward migration of fish populations due to warmer ocean conditions or global climate change will negatively impact areas that were historically dependent on these fish, and change the food web structure of the areas that the fish move into with unforeseen consequences. © 2017 John Wiley & Sons Ltd.
Effects of regulated river flows on habitat suitability for the robust redhorse
Fisk, J. M.; Kwak, Thomas J.; Heise, R. J.
2015-01-01
The Robust Redhorse Moxostoma robustum is a rare and imperiled fish, with wild populations occurring in three drainages from North Carolina to Georgia. Hydroelectric dams have altered the species’ habitat and restricted its range. An augmented minimum-flow regime that will affect Robust Redhorse habitat was recently prescribed for Blewett Falls Dam, a hydroelectric facility on the Pee Dee River, North Carolina. Our objective was to quantify suitable spawning and nonspawning habitat under current and proposed minimum-flow regimes. We implanted radio transmitters into 27 adult Robust Redhorses and relocated the fish from spring 2008 to summer 2009, and we described habitat at 15 spawning capture locations. Nonspawning habitat consisted of deep, slow-moving pools (mean depth D 2.3 m; mean velocity D 0.23 m/s), bedrock and sand substrates, and boulders or coarse woody debris as cover. Spawning habitat was characterized as shallower, faster-moving water (mean depth D 0.84 m; mean velocity D 0.61 m/s) with gravel and cobble as substrates and boulders as cover associated with shoals. Telemetry relocations revealed two behavioral subgroups: a resident subgroup (linear range [mean § SE] D 7.9 § 3.7 river kilometers [rkm]) that remained near spawning areas in the Piedmont region throughout the year; and a migratory subgroup (linear range D 64.3 § 8.4 rkm) that migrated extensively downstream into the Coastal Plain region. Spawning and nonspawning habitat suitability indices were developed based on field microhabitat measurements and were applied to model suitable available habitat (weighted usable area) for current and proposed augmented minimum flows. Suitable habitat (both spawning and nonspawning) increased for each proposed seasonal minimum flow relative to former minimum flows, with substantial increases for spawning sites. Our results contribute to an understanding of how regulated flows affect available habitats for imperiled species. Flow managers can use these findings to regulate discharge more effectively and to create and maintain important habitats during critical periods for priority species.
Ellsworth, Craig M.; VanderKooi, Scott P.
2011-01-01
The Chiloquin Dam was located at river kilometer (rkm) 1.3 on the Sprague River near the town of Chiloquin, Oregon. The dam was identified as a barrier that potentially inhibited or prevented the upstream spawning migrations and other movements of endangered Lost River suckers (Deltistes luxatus), shortnose suckers (Chasmistes brevirostris), and other fish in the Sprague River. Our research objectives in 2009 were to evaluate adult catostomid spawning migration patterns using radio telemetry to identify and describe shifts in spawning area distribution and migration behavior following the removal of Chiloquin Dam in 2008. We attached external radio transmitters to 58 Lost River suckers and 59 shortnose suckers captured at the Williamson River fish weir. A total of 17 radio-tagged Lost River suckers and one radio-tagged shortnose sucker were detected approaching the site of the former Chiloquin Dam but only two radio-tagged fish (one male Lost River sucker and one female Lost River sucker) were detected crossing upstream of the dam site. A lower proportion of radio-tagged shortnose suckers were detected migrating into the Sprague River when compared with previous years. Detections on remote passive integrated transponder (PIT) tag arrays located in the Sprague River show that although the proportion of fish coming into the Sprague River is small when compared to the number of fish crossing the Williamson River fish weir, the number of fish migrating upstream of the Chiloquin Dam site increased exponentially in the first year since its removal. These data will be used in conjunction with larval production and adult spawning distribution data to evaluate the effectiveness of dam removal in order to provide increased access to underutilized spawning habitat located further upstream in the Sprague River and to reduce the crowding of spawning fish below the dam site.
Breece, Matthew W.; Oliver, Matthew J.; Cimino, Megan A.; Fox, Dewayne A.
2013-01-01
Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) experienced severe declines due to habitat destruction and overfishing beginning in the late 19th century. Subsequent to the boom and bust period of exploitation, there has been minimal fishing pressure and improving habitats. However, lack of recovery led to the 2012 listing of Atlantic sturgeon under the Endangered Species Act. Although habitats may be improving, the availability of high quality spawning habitat, essential for the survival and development of eggs and larvae may still be a limiting factor in the recovery of Atlantic sturgeon. To estimate adult Atlantic sturgeon spatial distributions during riverine occupancy in the Delaware River, we utilized a maximum entropy (MaxEnt) approach along with passive biotelemetry during the likely spawning season. We found that substrate composition and distance from the salt front significantly influenced the locations of adult Atlantic sturgeon in the Delaware River. To broaden the scope of this study we projected our model onto four scenarios depicting varying locations of the salt front in the Delaware River: the contemporary location of the salt front during the likely spawning season, the location of the salt front during the historic fishery in the late 19th century, an estimated shift in the salt front by the year 2100 due to climate change, and an extreme drought scenario, similar to that which occurred in the 1960’s. The movement of the salt front upstream as a result of dredging and climate change likely eliminated historic spawning habitats and currently threatens areas where Atlantic sturgeon spawning may be taking place. Identifying where suitable spawning substrate and water chemistry intersect with the likely occurrence of adult Atlantic sturgeon in the Delaware River highlights essential spawning habitats, enhancing recovery prospects for this imperiled species. PMID:24260570
Hamer, P A; Acevedo, S; Jenkins, G P; Newman, A
2011-04-01
Ichthyoplankton sampling and otolith chemistry were used to determine the importance of transient spawning aggregations of snapper Chrysophrys auratus (Sparidae) in a large embayment, Port Phillip Bay (PPB), Australia, as a source of local and broad-scale fishery replenishment. Ichthyoplankton sampling across five spawning seasons within PPB, across the narrow entrance to the bay and in adjacent coastal waters, indicated that although spawning may occur in coastal waters, the spawning aggregations within the bay were the primary source of larval recruitment to the bay. Otolith chemical signatures previously characterized for 0+ year C. auratus of two cohorts (2000 and 2001) were used as the baseline signatures to quantify the contribution that fish derived from reproduction in PPB make to fishery replenishment. Sampling of these cohorts over a 5 year period at various widely dispersed fishery regions, combined with maximum likelihood analyses of the chemistry of the 0+ year otolith portions of these older fish, indicated that C. auratus of 1 to 3+ years of age displayed both local residency and broad-scale emigration from PPB to populate coastal waters and an adjacent bay (Western Port). While the PPB fishery was consistently dominated (>70%) by locally derived fish irrespective of cohort or age, the contribution of fish that had originated from PPB to distant populations increased with age. At 4 to 5+ years of age, when C. auratus mature and fully recruit to the fishery, populations of both cohorts across the entire central and western Victorian fishery, including two major embayments and c. 800 km of coastal waters, were dominated (>70%) by fish that had originated from the spawning aggregations and nursery habitat within PPB. Dependence of this broadly dispersed fishery on replenishment from heavily targeted spawning aggregations within one embayment has significant implications for management and monitoring programmes. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.
External and internal controls of lunar-related reproductive rhythms in fishes.
Takemura, A; Rahman, M S; Park, Y J
2010-01-01
Reproductive activities of many fish species are, to some extent, entrained to cues from the moon. During the spawning season, synchronous spawning is repeated at intervals of c. 1 month (lunar spawning cycle) and 2 weeks (semi-lunar spawning cycle) or daily according to tidal changes (tidal spawning cycle). In species showing lunar-related spawning cycles, oocytes in the ovary develop towards and mature around a specific moon phase for lunar spawners, around spring tides for semi-lunar spawners and at daytime high tides for tidal spawners. The production of sex steroid hormones also changes in accordance with synchronous oocyte development. Since the production of the steroid hormones with lunar-related reproductive periodicity is regulated by gonadotropins, it is considered that the higher parts of the hypothalamus-pituitary-gonad axis play important roles in the perception and regulation of lunar-related periodicity. It is likely that fishes perceive cues from the moon by sensory organs; however, it is still unknown how lunar cues are transduced as an endogenous rhythm exerting lunar-related spawning rhythmicity. Recent research has revealed that melatonin fluctuated according to the brightness at night, magnetic fields and the tidal cycle. In addition, cyclic changes in hydrostatic pressure had an effect on monoamine contents in the brain. These factors may be indirectly related to the exertion of lunar-related periodicity. Molecular approaches have revealed that mRNA expressions of light-sensitive clock genes change with moonlight, suggesting that brightness at night plays a role in phase-shifting or resetting of biological clocks. Some species may have evolved biological clocks in relation to lunar cycles, although it is still not known how lunar periodicities are endogenously regulated in fishes. This review demonstrates that lunar-related periodicity is utilized and incorporated by ecological and physiological mechanisms governing the reproductive success of fishes.
Barton, Gary J.; McDonald, Richard R.; Nelson, Jonathan M.
2009-01-01
During 2005, the U.S. Geological Survey (USGS) developed, calibrated, and validated a multidimensional flow model for simulating streamflow in the white sturgeon spawning habitat of the Kootenai River in Idaho. The model was developed as a tool to aid understanding of the physical factors affecting quality and quantity of spawning and rearing habitat used by the endangered white sturgeon (Acipenser transmontanus) and for assessing the feasibility of various habitat-enhancement scenarios to re-establish recruitment of white sturgeon. At the request of the Kootenai Tribe of Idaho, the USGS extended the two-dimensional flow model developed in 2005 into a braided reach upstream of the current white sturgeon spawning reach. Many scientists consider the braided reach a suitable substrate with adequate streamflow velocities for re-establishing recruitment of white sturgeon. The 2005 model was extended upstream to help assess the feasibility of various strategies to encourage white sturgeon to spawn in the reach. At the request of the Idaho Department of Fish and Game, the USGS also extended the two-dimensional flow model several kilometers downstream of the white sturgeon spawning reach. This modified model can quantify the physical characteristics of a reach that white sturgeon pass through as they swim upstream from Kootenay Lake to the spawning reach. The USGS Multi-Dimensional Surface-Water Modeling System was used for the 2005 modeling effort and for this subsequent modeling effort. This report describes the model applications and limitations, presents the results of a few simple simulations, and demonstrates how the model can be used to link physical characteristics of streamflow to the location of white sturgeon spawning events during 1994-2001. Model simulations also were used to report on the length and percentage of longitudinal profiles that met the minimum criteria during May and June 2006 and 2007 as stipulated in the U.S. Fish and Wildlife Biological Opinion.
Marsden, J. Ellen; Binder, Thomas R.; Johnson, James; He, Ji; Dingledine, Natalie; Adams, Janice; Johnson, Nicholas S.; Buchinger, Tyler J.; Krueger, Charles C.
2016-01-01
Degradation of aquatic habitats has motivated construction and research on the use of artificial reefs to enhance production of fish populations. However, reefs are often poorly planned, reef design characteristics are not evaluated, and reef assessments are short-term. We constructed 29 reefs in Thunder Bay, Lake Huron, in 2010 and 2011 to mitigate for degradation of a putative lake trout spawning reef. Reefs were designed to evaluate lake trout preferences for height, orientation, and size, and were compared with two degraded natural reefs and a high-quality natural reef (East Reef). Eggs and fry were sampled on each reef for five years post-construction, and movements of 40 tagged lake trout were tracked during three spawning seasons using acoustic telemetry. Numbers of adults and spawning on the constructed reefs were initially low, but increased significantly over the five years, while remaining consistent on East Reef. Adult density, egg deposition, and fry catch were not related to reef height or orientation of the constructed reefs, but were related to reef size and adjacency to East Reef. Adult lake trout visited and spawned on all except the smallest constructed reefs. Of the metrics used to evaluate the reefs, acoustic telemetry produced the most valuable and consistent data, including fine-scale examination of lake trout movements relative to individual reefs. Telemetry data, supplemented with diver observations, identified several previously unknown natural spawning sites, including the high-use portions of East Reef. Reef construction has increased the capacity for fry production in Thunder Bay without apparently decreasing the use of the natural reef. Results of this project emphasize the importance of multi-year reef assessment, use of multiple assessment methods, and comparison of reef characteristics when developing artificial reef projects. Specific guidelines for construction of reefs focused on enhancing lake trout spawning are suggested.
29 CFR 780.117 - “Production, cultivation, growing.”
Code of Federal Regulations, 2013 CFR
2013-07-01
... commodities. The furnishing of mushroom spawn by a canner of mushrooms to growers who supply the canner with mushrooms grown from such spawn does not constitute the “growing” of mushrooms. Similarly, employees of the...
29 CFR 780.117 - “Production, cultivation, growing.”
Code of Federal Regulations, 2014 CFR
2014-07-01
... commodities. The furnishing of mushroom spawn by a canner of mushrooms to growers who supply the canner with mushrooms grown from such spawn does not constitute the “growing” of mushrooms. Similarly, employees of the...
29 CFR 780.117 - “Production, cultivation, growing.”
Code of Federal Regulations, 2011 CFR
2011-07-01
... commodities. The furnishing of mushroom spawn by a canner of mushrooms to growers who supply the canner with mushrooms grown from such spawn does not constitute the “growing” of mushrooms. Similarly, employees of the...
29 CFR 780.117 - “Production, cultivation, growing.”
Code of Federal Regulations, 2012 CFR
2012-07-01
... commodities. The furnishing of mushroom spawn by a canner of mushrooms to growers who supply the canner with mushrooms grown from such spawn does not constitute the “growing” of mushrooms. Similarly, employees of the...
Spawning strategy in Atlantic bobtail squid Sepiola atlantica (Cephalopoda: Sepiolidae)
NASA Astrophysics Data System (ADS)
Rodrigues, Marcelo; Garcí, Manuel E.; Troncoso, Jesús S.; Guerra, Ángel
2011-03-01
This study aimed to determine the spawning strategy in the Atlantic bobtail squid Sepiola atlantica, in order to add new information to the knowledge of its reproductive strategy. A total of 12 females that spawned in aquaria were examined. Characteristics of the reproductive traits and egg clutches were similar to those of other known Sepiolidae. Clutch size varied from 31 up to 115 eggs. Females of this species had incorporated up to 1.58 times of their body weight into laid eggs. The size of laid eggs showed a positive correlation with maternal body size, supporting the idea that female size is a determinant of egg size. Our data suggest that S. atlantica is an intermittent terminal spawner , and that its spawning strategy comprises group-synchronous ovary maturation, multiple egg laying, and deposition of egg clutches in different locations. The obtained data provide insights for future comparative studies on reproductive allocation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brannon, E.L.; Thorgaard, G.H.; Cummings, S.A.
1994-10-01
The study has shown through life history examination and DNA analysis that three forms of O. nerka are present in Redfish Lake. The three forms are closely related, but may be sufficiently different to be considered three separate stocks. Fishhook Creek kokanee are temporally isolated from the beach spawners, and may represent the gene pool most similar to the historic sockeye population that once spawned there. Fishhook Creek offers the best spawning area available in the lake system, and should be considered for use in reestablishing an anadromous Fishhook Creek sockeye swain. The resident beach spawning strain of O. nerkamore » is likewise the most similar genetic form of the companion anadromous beach spawning O. nerka, and needs to be considered the most appropriate genetic source to help minimize reduced fitness of the sockeye from inbreeding.« less
Parsley, M.J.; Kofoot, P.
2007-01-01
River discharge and water temperatures that occurred during April through July 2005 provided conditions suitable for spawning by white sturgeon downstream from Bonneville, The Dalles, John Day, and McNary dams. Optimal spawning temperatures in the four tailraces occurred for 3-4 weeks and coincided with the peak of the river hydrograph. However, the peak of the hydrograph occurred in mid May and discharges dropped quickly and water temperature rose during June, which is reflected in the monthly and annual indices of suitable spawning habitat. Indices of available spawning habitat for the month of June 2005 were less than one-half of the average of the period from 1985-2004. Bottom-trawl sampling in the Bonneville Reservoir revealed the presence of young-of-the-year (YOY) white sturgeon but the proportion of positive tows was quite low at 0.06.
Direct observations of American eels migrating across the continental shelf to the Sargasso Sea
Béguer-Pon, Mélanie; Castonguay, Martin; Shan, Shiliang; Benchetrit, José; Dodson, Julian J.
2015-01-01
Since inferring spawning areas from larval distributions in the Sargasso Sea a century ago, the oceanic migration of adult American eels has remained a mystery. No adult eel has ever been observed migrating in the open ocean or in the spawning area. Here, we track movements of maturing eels equipped with pop-up satellite archival tags from the Scotian Shelf (Canada) into the open ocean, with one individual migrating 2,400 km to the northern limit of the spawning site in the Sargasso Sea. The reconstructed routes suggest a migration in two phases: one over the continental shelf and along its edge in shallow waters; the second in deeper waters straight south towards the spawning area. This study is the first direct evidence of adult Anguilla migrating to the Sargasso Sea and represents an important step forward in the understanding of routes and migratory cues. PMID:26505325
Detecting the movement and spawning activity of bigheaded carps with environmental DNA.
Erickson, Richard A; Rees, Christopher B; Coulter, Alison A; Merkes, Christopher M; McCalla, Sunnie G; Touzinsky, Katherine F; Walleser, Liza; Goforth, Reuben R; Amberg, Jon J
2016-07-01
Bigheaded carps are invasive fishes threatening to invade the Great Lakes basin and establish spawning populations, and have been monitored using environmental DNA (eDNA). Not only does eDNA hold potential for detecting the presence of species, but may also allow for quantitative comparisons like relative abundance of species across time or space. We examined the relationships among bigheaded carp movement, hydrography, spawning and eDNA on the Wabash River, IN, USA. We found positive relationships between eDNA and movement and eDNA and hydrography. We did not find a relationship between eDNA and spawning activity in the form of drifting eggs. Our first finding demonstrates how eDNA may be used to monitor species abundance, whereas our second finding illustrates the need for additional research into eDNA methodologies. Current applications of eDNA are widespread, but the relatively new technology requires further refinement. © 2016 John Wiley & Sons Ltd.
Detecting the movement and spawning activity of bigheaded carps with environmental DNA
Erickson, Richard A.; Rees, Christopher B.; Coulter, Alison A.; Merkes, Christopher; McCalla, S. Grace; Touzinsky, Katherine F; Walleser, Liza R.; Goforth, Reuben R.; Amberg, Jon J.
2016-01-01
Bigheaded carps are invasive fishes threatening to invade the Great Lakes basin and establish spawning populations, and have been monitored using environmental DNA (eDNA). Not only does eDNA hold potential for detecting the presence of species, but may also allow for quantitative comparisons like relative abundance of species across time or space. We examined the relationships among bigheaded carp movement, hydrography, spawning and eDNA on the Wabash River, IN, USA. We found positive relationships between eDNA and movement and eDNA and hydrography. We did not find a relationship between eDNA and spawning activity in the form of drifting eggs. Our first finding demonstrates how eDNA may be used to monitor species abundance, whereas our second finding illustrates the need for additional research into eDNA methodologies. Current applications of eDNA are widespread, but the relatively new technology requires further refinement.
Sterilizing effects of cobalt-60 and cesium-137 radiation on male sea lampreys
Hanson, L.H.
1990-01-01
Male spawning-run sea lampreys Petromyzon marinus were exposed to various doses of cobalt-60 or cesium-137 radiation in an attempt to sterilize them for use in a program for controlling sea lampreys through the release of sterile males. Males captured and irradiated during the early part of the upstream migration were not effectively sterilized at the doses tested. After irradiation, the sea lampreys were more susceptible to fungal infections by Saprolegnia sp., and many died without attempting to spawn. Males captured and irradiated during the middle and late parts of the spawning migration were effectively sterilized at a dose of 2,000 rads. However, some radiation-induced mortality was observed in males captured and irradiated during the middle part of the spawning migration. Radiation is not as effective as the chemosterilant bisazir for sterilizing male sea lampreys.
Penney, Zachary L.; Moffitt, Christine M.
2014-01-01
Steelhead trout (Oncorhynchus mykiss) are anadromous and iteroparous, but repeat-spawning rates are generally low. Like other anadromous salmonids, steelhead trout fast during freshwater spawning migrations, but little is known about the changes that occur in vital organs and tissues. We hypothesized that fish capable of repeat-spawning would not undergo the same irreversible degeneration and cellular necrosis documented in semelparous salmon. Using Snake River steelhead trout as a model we used histological analysis to assess the cellular architecture in the pyloric stomach, ovary, liver, and spleen in sexually mature and kelt steelhead trout. We observed 38 % of emigrating kelts with food or fecal material in the gastrointestinal tract. Evidence of feeding was more likely in good condition kelts, and feeding was associated with a significant renewal of villi in the pyloric stomach. No vitellogenic oocytes were observed in sections of kelt ovaries, but perinucleolar and early/late stage cortical alveolus oocytes were present suggesting iteroparity was possible. We documented a negative correlation between the quantity of perinucleolar oocytes in ovarian tissues and fork length of kelts suggesting that larger steelhead trout may invest more into a single spawning event. Liver and spleen tissues of both mature and kelt steelhead trout had minimal cellular necroses. Our findings indicate that the physiological processes causing rapid senescence and death in semelparous salmon are not evident in steelhead trout, and recovery begins in fresh water. Future management efforts to increase iteroparity in steelhead trout and Atlantic salmon must consider the physiological processes that influence post-spawning recovery.
NASA Astrophysics Data System (ADS)
Cameron, K. C.; Sirovic, A.; Jaffe, J. S.; Semmens, B.; Pattengill-Semmens, C.; Gibb, J.
2016-02-01
Fish spawning aggregation (FSA) sites are extremely vulnerable to over-exploitation. Accurate understanding of the spatial and temporal use of such sites is necessary for effective species management. The size of FSAs can be on the order of kilometers and peak spawning often occurs at night, posing challenges to visual observation. Passive acoustics are an alternative method for dealing with these challenges. An array of passive acoustic recorders and GoPro cameras were deployed during Nassau grouper (Epinephelus striatus) spawning from February 7th to 12th, 2015 at a multispecies spawning aggregation site in Little Cayman, Cayman Islands. In addition to Nassau grouper, at least 10 other species are known to spawn at this location including tiger grouper (Mycteroperca tigris), red hind (Epinephelus guttatus), black grouper (Mycteroperca bonaci), and yellowfin grouper (Mycteroperca venenosa). During 5 days of continuous recordings, over 21,000 fish calls were detected. These calls were classified into 15 common types. Species identification and behavioral context of unknown common call types were determined by coupling video recordings collected during this time with call localizations. There are distinct temporal patterns in call production of different species. For example, red hind and yellowfin grouper call predominately at night with yellowfin call rates increasing after midnight, and black grouper call primarily during dusk and dawn. In addition, localization methods were used to reveal how the FSA area was divided among species. These findings facilitate a better understanding of the behavior of these important reef fish species allowing policymakers to more effectively manage and protect them.
Reproductive ecology of lampreys
Johnson, Nicholas S.; Buchinger, Tyler J.; Li, Weiming
2014-01-01
Lampreys typically spawn in riffle habitats during the spring. Spawning activity and diel (i.e., during daylight and at night) behavioral patterns are initiated when spring water temperatures increase to levels that coincide with optimal embryologic development. Nests are constructed in gravel substrate using the oral disc to move stones and the tail to fan sediment out of the nest. Spawning habitat used by individual species is generally a function of adult size, where small-bodied species construct nests in shallower water with slower flow and smaller gravel than large-bodied species. The mating system of lampreys is primarily polygynandrous (i.e., where multiple males mate with multiple females). Lamprey species with adult total length less than 30 cm generally spawn communally, where a nest may contain 20 or more individuals of both sexes. Lamprey species with adult sizes greater than 35 cm generally spawn in groups of two to four. Operational sex ratios of lampreys are highly variable across species, populations, and time, but are generally male biased. The act of spawning typically starts with the male attaching with his oral disc to the back of the female’s head; the male and female then entwine and simultaneously release gametes. However, alternative mating behaviors (e.g., release of gametes without paired courtship and sneaker males) have been observed. Future research should determine how multiple modalities of communication among lampreys (including mating pheromones) are integrated to inform species recognition and mate choice. Such research could inform both sea lamprey control strategies and provide insight into possible evolution of reproductive isolation mechanisms between paired lamprey species in sympatry.
Brady, Aisling K; Willis, Bette L; Harder, Lawrence D; Vize, Peter D
2016-04-01
Many broadcast spawning corals in multiple reef regions release their gametes with incredible temporal precision just once per year, using the lunar cycle to set the night of spawning. Moonlight, rather than tides or other lunar-regulated processes, is thought to be the proximate factor responsible for linking the night of spawning to the phase of the Moon. We compared patterns of gene expression among colonies of the broadcast spawning coral Acropora millepora at different phases of the lunar cycle, and when they were maintained under one of three experimentally simulated lunar lighting treatments: i) lunar lighting conditions matching those on the reef, or lunar patterns mimicking either ii) constant full Moon conditions, or iii) constant new Moon conditions. Normal lunar illumination was found to shift both the level and timing of clock gene transcription cycles between new and full moons, with the peak hour of expression for a number of genes occurring earlier in the evening under a new Moon when compared to a full Moon. When the normal lunar cycle is replaced with nighttime patterns equivalent to either a full Moon or a new Moon every evening, the normal monthlong changes in the level of expression are destroyed for most genes. In combination, these results indicate that daily changes in moonlight that occur over the lunar cycle are essential for maintaining normal lunar periodicity of clock gene transcription, and this may play a role in regulating spawn timing. These data also show that low levels of light pollution may have an impact on coral biological clocks. © 2016 Marine Biological Laboratory.
Curran, Janet H.; McTeague, Monica L.; Burril, Sean E.; Zimmerman, Christian E.
2011-01-01
Turbid, glacially influenced rivers are often considered to be poor salmon spawning and rearing habitats and, consequently, little is known about salmon habitats that do occur within rivers of this type. To better understand salmon spawning habitats in the Matanuska River of southcentral Alaska, the distribution and characteristics of clearwater side-channel spawning habitats were determined and compared to spawning habitats in tributaries. More than 100 kilometers of clearwater side channels within the braided mainstem of the Matanuska River were mapped for 2006 from aerial images and ground-based surveys. In reaches selected for historical analysis, side channel locations shifted appreciably between 1949 and 2006, but the relative abundance of clearwater side channels was fairly stable during the same period. Geospatial analysis of side channel distribution shows side channels typically positioned along abandoned bars at the braid plain margin rather than on bars between mainstem channels, and shows a strong correlation of channel abundance with braid plain width. Physical and geomorphic characteristics of the channel and chemical character of the water measured at 19 side channel sites, 6 tributary sites, 4 spring sites, and 5 mainstem channel sites showed conditions suitable for salmon spawning in side channels and tributaries, and a correlation of side channel characteristics with the respective tributary or groundwater source water. Autumn-through-spring monitoring of intergravel water temperatures adjacent to salmon redds (nests) in three side channels and two tributaries indicate adequate accumulated thermal units for incubation and emergence of salmon in side channels and relatively low accumulated thermal units in tributaries.
Colavolpe, María Belén; Mejía, Santiago Jaramillo; Albertó, Edgardo
2014-01-01
Trichoderma spp is the cause of the green mold disease in mushroom cultivation production. Many disinfection treatments are commonly applied to lignocellulose substrates to prevent contamination. Mushroom growers are usually worried about the contaminations that may occur after these treatments during handling or spawning. The aim of this paper is to estimate the growth of the green mold Trichoderma sp on lignocellulose substrates after different disinfection treatments to know which of them is more effective to avoid contamination during spawning phase. Three different treatments were assayed: sterilization (121 °C), immersion in hot water (60 and 80 °C), and immersion in alkalinized water. Wheat straw, wheat seeds and Eucalyptus or Populus sawdust were used separately as substrates. After the disinfection treatments, bagged substrates were sprayed with 3 mL of suspension of conidia of Trichoderma sp (10(5) conidia/mL) and then separately spawned with Pleurotus ostreatus or Gymnopilus pampeanus. The growth of Trichoderma sp was evaluated based on a qualitative scale. Trichoderma sp could not grow on non-sterilized substrates. Immersions in hot water treatments and immersion in alkalinized water were also unfavorable treatments for its growth. Co- cultivation with mushrooms favored Trichoderma sp growth. Mushroom cultivation disinfection treatments of lignocellulose substrates influence on the growth of Trichoderma sp when contaminations occur during spawning phase. The immersion in hot water at 60 °C for 30 min or in alkalinized water for 36 h, are treatments which better reduced the contaminations with Trichoderma sp during spawning phase for the cultivation of lignicolous species.
Colavolpe, María Belén; Mejía, Santiago Jaramillo; Albertó, Edgardo
2014-01-01
Trichoderma spp is the cause of the green mold disease in mushroom cultivation production. Many disinfection treatments are commonly applied to lignocellulose substrates to prevent contamination. Mushroom growers are usually worried about the contaminations that may occur after these treatments during handling or spawning. The aim of this paper is to estimate the growth of the green mold Trichoderma sp on lignocellulose substrates after different disinfection treatments to know which of them is more effective to avoid contamination during spawning phase. Three different treatments were assayed: sterilization (121 °C), immersion in hot water (60 and 80 °C), and immersion in alkalinized water. Wheat straw, wheat seeds and Eucalyptus or Populus sawdust were used separately as substrates. After the disinfection treatments, bagged substrates were sprayed with 3 mL of suspension of conidia of Trichoderma sp (105 conidia/mL) and then separately spawned with Pleurotus ostreatus or Gymnopilus pampeanus. The growth of Trichoderma sp was evaluated based on a qualitative scale. Trichoderma sp could not grow on non-sterilized substrates. Immersions in hot water treatments and immersion in alkalinized water were also unfavorable treatments for its growth. Co- cultivation with mushrooms favored Trichoderma sp growth. Mushroom cultivation disinfection treatments of lignocellulose substrates influence on the growth of Trichoderma sp when contaminations occur during spawning phase. The immersion in hot water at 60 °C for 30 min or in alkalinized water for 36 h, are treatments which better reduced the contaminations with Trichoderma sp during spawning phase for the cultivation of lignicolous species. PMID:25763030
Sex in the Suwannee, the secretive love life of Gulf Sturgeons
Sulak, Kenneth J.
2014-01-01
Mid-February in the Gulf of Mexico and a timeless ritual is about to repeat itself for perhaps the millionth time. Some mysterious signal, possibly increasing day length, flips an internal switch, feeding stops, and the homeward migration begins for the Gulf Sturgeon (Acipenser oxyrinchus desotoi). From far flung places along the Gulf Coast, Gulf Sturgeons start heading back to their natal rivers – they know the way instinctively. Maybe they seek out the special chemical taste of their home river, imprinted at hatching. Or perhaps the ultrasensitive electric organs decorating the underside of the snout can follow the map of the earth’s magnetic field. Either way, time to make a beeline for the welcoming waters of the Suwannee River, or maybe the Apalachicola, Choctawhatchee, or one of four other spawning rivers. Some of the adults are on a special mission – time to spawn, time to perpetuate the species. Mature males form the first wave in this homebound marathon, eager to get to the spawning grounds, eager to be the first to greet ready females with a series of sharp clicking sounds. Only spawning once each three years, females laden with large black eggs demure, taking their time, arriving in mid to late March, a month behind the early males. But most sturgeons, juveniles and immature adults not ready to spawn, are simply heading home. Not prompted by the spawning urge, they are just following the ancient annual cycle of intense winter feeding in the Gulf, followed by several months of fasting and R&R in the river.
First direct confirmation of grass carp spawning in a Great Lakes tributary
Embke, Holly S.; Kocovsky, Patrick M.; Richter, Catherine A.; Pritt, Jeremy J.; Christine M. Mayer,; Qian, Song
2016-01-01
Grass carp (Ctenopharyngodon idella), an invasive species of Asian carp, has been stocked for many decades in the United States for vegetation control. Adult individuals have been found in all of the Great Lakes except Lake Superior, but no self-sustaining populations have yet been identified in Great Lakes tributaries. In 2012, a commercial fisherman caught four juvenile diploid grass carp in the Sandusky River, a major tributary to Lake Erie. Otolith microchemistry and the capture location of these fish permitted the conclusion that they were most likely produced in the Sandusky River. Due to this finding, we sampled ichthyoplankton using paired bongo net tows and larval light traps during June–August of 2014 and 2015 to determine if grass carp are spawning in the Sandusky River. From the samples collected in 2015, we identified and staged eight eggs that were morphologically consistent with grass carp. Five eggs were confirmed as grass carp using quantitative Polymerase Chain Reaction for a grass carp-specific marker, while the remaining three were retained for future analysis. Our finding confirms that grass carp are naturally spawning in this Great Lakes tributary. All eggs were collected during high-flow events, either on the day of peak flow or 1–2 days following peak flow, supporting an earlier suggestion that high flow conditions favor grass carp spawning. The next principal goal is to identify the spawning and hatch location(s) for the Sandusky River. Predicting locations and conditions where grass carp spawning is most probable may aid targeted management efforts.
Ram, Jeffrey L.; Fong, Peter; Croll, Roger P.; Nichols, Susan J.; Wall, Darcie
1992-01-01
The zebra mussel (Dreissena polymorpha) has spread rapidly in temperate fresh waters of North America since its introduction into the Great Lakes in 1985 or 1986. It attaches to hard substrates, forming layers, occluding water intakes, encrusting and killing native mussels, filtering algae in competition with other planktivores, and possibly interfering with fish spawning. It reproduces prolifically, suggesting that an approach to its control may be by controlling its reproduction. Previous literature suggests that spawning in bivalves is regulated by both environmental and internal chemical cues. A suggested sequence is that phytoplankton chemicals initially trigger spawning; chemicals associated with gametes provide a species-specific pheromonal positive feedback for spawning; and the response to environmental chemicals is mediated internally by serotonin (5-HT). The role of 5-HT in zebra mussels is under investigation. Both males and females can be induced to spawn by either injection or external application of 5-HT. The response can also be activated by 8-hydroxy-2-(di-n-propylamino)-tetralin, an agonist at 5-HT1A receptors. HPLC analysis has detected 5-HT as the major biogenic amine in both male and female gonads. 5-HT immunocytochemistry demonstrates nerves containing serotonergic fibers innervating gonads of both males and females, with prominent varicosities surrounding the follicles in both sexes. A role of 5-HT in mediating spawning responses in zebra mussels is thus strongly supported. These studies have shown that reproductive behavior of zebra mussels can be modified by outside chemicals, a property that may be exploited for purposes of control.
Code of Federal Regulations, 2014 CFR
2014-10-01
... conservation of the southern DPS of eulachon are: (1) Freshwater spawning and incubation sites with water flow, quality and temperature conditions and substrate supporting spawning and incubation. (2) Freshwater and...
Code of Federal Regulations, 2012 CFR
2012-10-01
... conservation of the southern DPS of eulachon are: (1) Freshwater spawning and incubation sites with water flow, quality and temperature conditions and substrate supporting spawning and incubation. (2) Freshwater and...
Code of Federal Regulations, 2013 CFR
2013-10-01
... conservation of the southern DPS of eulachon are: (1) Freshwater spawning and incubation sites with water flow, quality and temperature conditions and substrate supporting spawning and incubation. (2) Freshwater and...
Turbulence, cleavage, and the naked embryo: a case for coral clones.
Heyward, A J; Negri, A P
2012-03-02
After mass spawning events, coral embryos, lacking the protective capsule of other metazoans, are directly exposed to the environment at the ocean surface. Here, we present evidence that modest turbulence disrupts the integrity of these embryos, which fragment into totipotent cells that develop into proportionately smaller functional larvae. The level of turbulence required to fragment coral embryos can be generated from small wind-generated waves, which occur frequently during coral spawning on the Great Barrier Reef. The formation of planktonic coral clones, through natural embryo fragmentation of broadcast spawn, is a previously unknown mode of reproduction in the animal kingdom.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laevastu, T.
1983-01-01
The effects of fishing on a given species biomass have been quantitatively evaluated. A constant recruitment is assumed in this study, but the evaluation can be computed on any known age distribution of exploitable biomass. Fishing mortality is assumed to be constant with age; however, spawning stress mortality increases with age. When fishing (mortality) increases, the spawning stress mortality decreases relative to total and exploitable biomasses. These changes are quantitatively shown for two species from the Bering Sea - walleye pollock, Theragra chalcogramma, and yellowfin sole, Limanda aspera.
Parsley, M.J.; Kofoot, P.
2008-01-01
Describe reproduction and early life history characteristics of white sturgeon populations in the Columbia River between Bonneville and Priest Rapids dams. Define habitat requirements for spawning and rearing white sturgeon and quantify the extent of habitat available in the Columbia River between Bonneville and Priest Rapids dams. Progress updates on young-of-the-year recruitment in Bonneville Reservoir and indices of white sturgeon spawning habitat for 2006 for McNary, John Day, The Dalles, and Bonneville dam tailrace spawning areas.
[Obtaining sturgeon spawn in accordance with the German Pharmaceuticals Act].
Bräuer, G; Emmerich, I U
2014-01-01
Obtaining sturgeon spawn in aquaculture is carried out with different objectives. Sturgeons are increasingly used for ornamental purposes or to serve as food. Previously, sturgeon roe was obtained primarily by surgical opening of the abdomen or during slaughter. Recently, in aquaculture roe has been increasingly produced by stripping off the eggs. In this new method it is necessary to synchronize spawn production by stimulating the fish through hormone usage. Therefore, the complete egg package can be taken from the fish, which avoids resorption disorders. This article discusses how this method can be evaluated from the perspective of drug law.
Bronte, Charles R.; Schram, Stephen T.; Selgeby, James H.; Swanson, Bruce L.
2002-01-01
Fertilized eggs from lake trout Salvelinus namaycush were placed in artificial turf incubators and deployed on Devils Island Shoal, Lake Superior, in an attempt to reestablish a spawning population on this once important spawning area. Efficacy was measured by the changes in catch rates, age composition, and origin of adult lake trout returning to the shoal in the fall in subsequent years. The abundance of lake trout spawners without fin clips, which implies that these fish hatched in the lake, increased throughout the sampling period, whereas the abundance of hatchery-reared fish (indicated by one or more fin clips) stocked for restoration purposes remained low. Year-class-specific stock-recruitment analysis suggested that the recruitment of unclipped spawners was related to the number of eggs planted in previous years rather than to spawning by the few adult lake trout visiting the reef. Increases in adult fish at Devils Island Shoal were independent of trends at adjacent sites, where unclipped spawner abundances remained low. Enhanced survival to hatch and apparent site imprinting of young lake trout make this technique a viable alternative to stocking fingerling and yearling lake trout to reestablish spawning populations on specific sites in the Great Lakes.
Interactions between brown bears and chum salmon at McNeil River, Alaska
Peirce, Joshua M.; Otis, Edward O.; Wipfli, Mark S.; Follmann, Erich H.
2013-01-01
Predation on returning runs of adult salmon (Oncorhynchus spp.) can have a large influence on their spawning success. At McNeil River State Game Sanctuary (MRSGS), Alaska, brown bears (Ursus arctos) congregate in high numbers annually along the lower McNeil River to prey upon returning adult chum salmon (O. keta). Low chum salmon escapements into McNeil River since the late 1990s have been proposed as a potential factor contributing to concurrent declines in bear numbers. The objective of this study was to determine the extent of bear predation on chum salmon in McNeil River, especially on pre-spawning fish, and use those data to adjust the escapement goal for the river. In 2005 and 2006, 105 chum salmon were radiotagged at the river mouth and tracked to determine cause and location of death. Below the falls, predators consumed 99% of tagged fish, killing 59% of them before they spawned. Subsequently, the escapement goal was nearly doubled to account for this pre-spawning mortality and to ensure enough salmon to sustain both predators and prey. This approach to integrated fish and wildlife management at MRSGS can serve as a model for other systems where current salmon escapement goals may not account for pre-spawning mortality.
Gruenthal, Kristen M; Drawbridge, Mark A
2012-06-01
The evolutionary effects captive-bred individuals that can have on wild conspecifics are necessary considerations for stock enhancement programs, but breeding protocols are often developed without the knowledge of realized reproductive behavior. To help fill that gap, parentage was assigned to offspring produced by a freely mating group of 50 white seabass (Atractoscion nobilis), a representative broadcast spawning marine finfish cultured for conservation. Similar to the well-known and closely related red drum (Sciaenops ocellatus), A. nobilis exhibited large variation in reproductive success. More males contributed and contributed more equally than females within and among spawns in a mating system best described as lottery polygyny. Two females produced 27% of the seasonal offspring pool and female breeding effective size averaged 1.85 per spawn and 12.38 seasonally, whereas male breeding effective size was higher (6.42 and 20.87, respectively), with every male contributing 1-7% of offspring. Further, females batch spawned every 1-5 weeks, while males displayed continuous reproductive readiness. Sex-specific mating strategies resulted in multiple successful mate pairings and a breeding effective to census size ratio of ≥0.62. Understanding a depleted species' mating system allowed management to more effectively utilize parental genetic variability for culture, but the fitness consequences of long-term stocking can be difficult to address.
Milardi, Marco; Chapman, Duane; Lanzoni, Mattia; Long, James M; Castaldelli, Giuseppe
2017-01-01
Bighead carp (Hypophthalmichthys nobilis) have been introduced throughout Europe, mostly unintentionally, and little attention has been given to their potential for natural reproduction. We investigated the presence of young-of-the-year bighead carp in an irrigation canal network of Northern Italy and the environmental conditions associated with spawning in 2011-2015. The adult bighead carp population of the canal network was composed by large, likely mature, individuals with an average density of 45.2 kg/ha (over 10 fold more than in the main river). The 29 juvenile bighead carp found were 7.4-13.1 cm long (TL) and weighed 9.5-12.7 g. Using otolith-derived spawning dates we estimated that these juveniles were 94-100 days old, placing their fertilization and hatch dates in mid-to-end-June. Using this information in combination with thermal and hydraulic data, we examined the validity of existing models predicting the onset of spawning conditions and the viability of egg pathways to elucidate spawning location of the species. While evidence of reproduction was not found every year, we determined that potentially viable spawning conditions (annual degree-days and temperature thresholds) and pathways of egg drift suitable for hatching are present in short, slow-flowing canals.
Milardi, Marco; Chapman, Duane C.; Long, James M.; Castaldelli, Giuseppe
2017-01-01
Bighead carp (Hypophthalmichthys nobilis) have been introduced throughout Europe, mostly unintentionally, and little attention has been given to their potential for natural reproduction. We investigated the presence of young-of-the-year bighead carp in an irrigation canal network of Northern Italy and the environmental conditions associated with spawning in 2011–2015. The adult bighead carp population of the canal network was composed by large, likely mature, individuals with an average density of 45.2 kg/ha (over 10 fold more than in the main river). The 29 juvenile bighead carp found were 7.4–13.1 cm long (TL) and weighed 9.5–12.7 g. Using otolith-derived spawning dates we estimated that these juveniles were 94–100 days old, placing their fertilization and hatch dates in mid-to-end-June. Using this information in combination with thermal and hydraulic data, we examined the validity of existing models predicting the onset of spawning conditions and the viability of egg pathways to elucidate spawning location of the species. While evidence of reproduction was not found every year, we determined that potentially viable spawning conditions (annual degree-days and temperature thresholds) and pathways of egg drift suitable for hatching are present in short, slow-flowing canals.
Edsall, Thomas A.; Brown, Charles L.; Kennedy, Gregory W.; French, John R. P.
1992-01-01
The reestablishment of self-sustaining stocks of lake trout (Salvelinus namaycush) in the lower four Great Lakes has been substantially impeded because planted fish do not produce enough progeny that survive and reproduce. The causes for this failure are unknown, but many historical spawning sites of lake trout have been degraded by human activities and can no longer produce viable swim-up fry. In this study, we used side-scan sonar and an underwater video camera to survey, map, and evaluate the sustainability of one reef in each of the five Great Lakes for lake trout spawning and fry production. At four of the reef sites, we found good-to-excellent substrate for spawning and fry production by the shallow-water strains of lake trout that are now being planted. These substrates were in water 6-22 m deep and were composed largely of rounded or angular rubble and cobble. Interstitial spaces in these substrates were 20 cm or deeper and would protect naturally spawned eggs and fry from predators, ice scour, and buffeting by waves and currents. Subsequent studies of egg survival by other researchers confirmed our evaluation that the best substrates at two of these sites still have the potential to produce viable swim-up fry.
Dolan, Brian P.; Fisher, Kathleen M.; Colvin, Michael E.; Benda, Susan E.; Peterson, James T.; Kent, Michael L.; Schreck, Carl B.
2016-01-01
Adult Chinook salmon (Oncorhynchus tshawytscha) migrate from salt water to freshwater streams to spawn. Immune responses in migrating adult salmon are thought to diminish in the run up to spawning, though the exact mechanisms for diminished immune responses remain unknown. Here we examine both adaptive and innate immune responses as well as pathogen burdens in migrating adult Chinook salmon in the Upper Willamette River basin. Messenger RNA transcripts encoding antibody heavy chain molecules slightly diminish as a function of time, but are still present even after fish have successfully spawned. In contrast, the innate anti-bacterial effector proteins present in fish plasma rapidly decrease as spawning approaches. Fish also were examined for the presence and severity of eight different pathogens in different organs. While pathogen burden tended to increase during the migration, no specific pathogen signature was associated with diminished immune responses. Transcript levels of the immunosuppressive cytokines IL-10 and TGF beta were measured and did not change during the migration. These results suggest that loss of immune functions in adult migrating salmon are not due to pathogen infection or cytokine-mediated immune suppression, but is rather part of the life history of Chinook salmon likely induced by diminished energy reserves or hormonal changes which accompany spawning.
Temperature affects the timing of spawning and migration of North Sea mackerel
NASA Astrophysics Data System (ADS)
Jansen, Teunis; Gislason, Henrik
2011-01-01
Climate change accentuates the need for knowing how temperature impacts the life history and productivity of economically and ecologically important species of fish. We examine the influence of temperature on the timing of the spawning and migrations of North Sea Mackerel using data from larvae CPR surveys, egg surveys and commercial landings from Danish coastal fisheries in the North Sea, Skagerrak, Kattegat and inner Danish waters. The three independent sources of data all show that there is a significant relationship between the timing of spawning and sea surface temperature. Large mackerel are shown to arrive at the feeding areas before and leave later than small mackerel and the sequential appearance of mackerel in each of the feeding areas studied supports the anecdotal evidence for an eastward post-spawning migration. Occasional commercial catches taken in winter in the Sound N, Kattegat and Skagerrak together with catches in the first quarter IBTS survey furthermore indicate some overwintering here. Significant relationships between temperature and North Sea mackerel spawning and migration have not been documented before. The results have implications for mackerel resource management and monitoring. An increase in temperature is likely to affect the timing and magnitude of the growth, recruitment and migration of North Sea mackerel with subsequent impacts on its sustainable exploitation.
Correa-Herrera, Tatiana; Correa-Rendón, Juan Diego; Márquez-Velásquez, Viviana; Jiménez-Segura, Luz Fernanda; Carvajal-Quintero, Juan David
2017-03-01
Some species of marine fish have complex relationships with coastal ecosystems during their reproductive periods, as the needle fish Tylosurus pacificus that forms spawning aggregations in gravel beaches in Utría Park. We described fishery and some aspects of the reproductive biology of T. pacificus and proposed some strategies to mitigate the impact of this event and associated ecological processes. Fisheries monitoring were conducted between April 2008 and February 2009 in the Utría National Park, Colombian Pacific. Catch volumes, length structure, sex ratio and fecundity (n= 84) were analyzed. The total length ranged among 60.5 and 104 cm with a mean and standard deviation of 85.35 ± 9.09 cm. The average fertility of oocytes per gonad was 189 685.56, with a mode of 8 mm diameter and an asynchronous gonadal development. This species spawns collectively on the beach when the tide reaches the highest level during full and new moon, usually in the evening. Fishermen of a near town take advantage of the spawning aggregation of this species. The reproduction study of T. pacificus and ecological processes associated with their spawning, should be expanded to give adequate use, and ensure the sustainability of their fishery over the long term.
NASA Astrophysics Data System (ADS)
Neira, Francisco J.; Lyle, Jeremy M.; Keane, John P.
2009-03-01
The spawning habitat of Emmelichthys nitidus (Emmelichthyidae) in south-eastern Australia is described from vertical ichthyoplankton samples collected along the shelf region off eastern through to south-western Tasmania during peak spawning in October 2005-06. Surveys covered eastern waters in 2005 (38.8-43.5°S), and both eastern and southern waters in 2006 (40.5°S around to 43.5°S off the south-west). Eggs ( n = 10,393) and larvae ( n = 378) occurred along eastern Tasmania in both years but were rare along southern waters south and westwards of 43.5°S in 2006. Peak egg abundances (1950-2640 per m -2) were obtained off north-eastern Tasmania (40.5-41.5°S) between the shelf break and 2.5 nm inshore from the break. Eggs were up to 5-days old, while nearly 95% of larvae were at the early preflexion stage, i.e. close to newly emerged. Average abundances of aged eggs pooled across each survey declined steadily from day-1 to day-5 eggs both in 2005 (97-18) and 2006 (175-34). Moreover, day-1 egg abundances were significantly greater 2.5 nm at either side of the break, including at the break, than in waters ≥5 nm both inshore and offshore from the break. These results, complemented with egg and larval data obtained in shelf waters off New South Wales (NSW; 35.0-37.7°S) in October 2002-03, indicate that the main spawning area of E. nitidus in south-eastern Australia lies between 35.5°S off southern NSW and 43.5°S off south-eastern Tasmania, and that spawning activity declines abruptly south and westwards of 43.5°S around to the south-west coast. In addition, quotient analyses of day-1 egg abundances point to a preferred spawning habitat contained predominantly within a 5 nm corridor along the shelf break, where waters are 125-325 m deep and median temperatures 13.5-14.0 °C. Spawning off eastern Tasmania is timed with the productivity outburst typical of the region during the austral spring, and the temperature increase from the mixing between the southwards advancing, warm East Australian Current and cooler subantarctic water over the shelf. Overall, ichthyoplankton data, coupled with reproductive information from adults trawled off Tasmania, indicate that E. nitidus constitutes a suitable species for the application of the daily egg production method (DEPM) to estimate spawning biomass. This finding, together with evidence in support of a discrete eastern spawning stock extending from southern NSW to southern Tasmania, strengthens the need for DEPM-based biomass estimates of E. nitidus prior to further fishery expansion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paragamian, Vaughn L.; Kruse, Gretchen L.; Wakkinen, Virginia
2001-03-01
Flows in the Kootenai River for white sturgeon Acipenser transmontanus spawning in 1998 were expected to be at a minimum because the snow pack in the basin was only about 79% normal, and local inflow was expected to be very low, <142 m{sup 3}/s (5,000 cfs). Flows in the Kootenai River at Bonners Ferry from late April through early May were at about 425 m{sup 3}/s (15,000 cfs) while water temperature ranged from about 8 to 10 C (45 to 50 F). Spawning and incubation flows from Libby Dam began on May 18 when flow at the dam was broughtmore » up to 765 m{sup 3}/s (27,000 cfs). Unusually frequent rains and several enormous storms brought peak flows at Bonners Ferry to over 1,175 m{sup 3}/s (41,500 cfs) on May 27, temperature ranged between 8 and 10.6 C (45 to 51 F). Flow gradually subsided at Bonners Ferry during June and was steady at 708 to 765 m{sup 3}/s (25,000 to 27,000 cfs) while temperature gradually rose to 14.4 C (58 F). Forty-seven adult white sturgeon were captured with 4,220 hours of angling and setlining effort between March 1 and April 15, 1998 by the Idaho Department of Fish and Game (IDFG). Sonic and radio tags were attached to four female and five male sturgeon during this effort. From April 1 through July 31, 1998, a total of 17 fish were monitored specifically for pre-spawn and spawning activities. White sturgeon spawning location, timing, frequency, and habitat were evaluated by sampling for eggs with artificial substrate mats. Four hundred and eighty-four eggs were collected, 393 eggs (81%) were collected on 60 standard mats, and 91 eggs (19%) were collected on seven experimental mats with drift nets. Ten eggs collected with experimental mats were found mixed with sand, suggesting eggs are moving in the lower water column with sand. The middle Shorty's Island reach (rkm 229.6-231.5) produced the most eggs (173) while the Deep Creek section (rkm 237.6-240.5) produced 112 eggs. No eggs were collected above the Deep Creek section (>rkm 240.5). Four hundred and twenty (87%) of the 484 white sturgeon eggs collected in 1998 were viable. Development ranged from stage 12 to 28 (1 h to 12 d old), with 95% of the viable eggs at stage 21 (about 2.4 days) or earlier. The oldest egg was estimated at 293 hours old or about 12 days. Based on ages of viable eggs and the dates of egg collection, we estimated that white sturgeon spawned during at least 20 days in 1998. The first spawning episode was estimated to have occurred on May 6. The next episode was estimated to have occurred May 7 with a gap in spawning until May 10. Thereafter, spawning occurred for the next three days with a second break. From May 22, spawning occurred nearly every day through June 6. Peak spawning appeared to occur between from May 23 through May 28. Juvenile sampling yielded 163 individual fish (several fish were recaptured) of which 160 were hatchery and three wild sturgeon recruited from flow test years. Food habit studies of hatchery age-3 sturgeon indicated Chironomids comprised about 36% of the total food items by number while the Ephemeropterans Ephemerellidae and Baetidae contributed 22%. Continuous seismic profiling of a 12-km (7.45 mi) reach of the Kootenai River (rkm 228-240) indicated the riverbed was comprised primarily of fine and coarse sand. There was no evidence to suggest pre-dam gravels were overlain with sand. Recommendations for the 1999 spawning season include coordinating the flow test with sturgeon behavior and river temperatures of 8-10 C (46-50 F), and discharge should be in increments of 57 m{sup 3}/s (2,000 cfs) per day to a minimum of 1,130 m{sup 3}/s (40,000 cfs) at Bonners Ferry. We also recommend no load following.« less
How Well Can We Predict Salmonid Spawning Habitat with LiDAR?
NASA Astrophysics Data System (ADS)
Pfeiffer, A.; Finnegan, N. J.; Hayes, S.
2013-12-01
Suitable salmonid spawning habitat is, to a great extent, determined by physical, landscape driven characteristics such as channel morphology and grain size. Identifying reaches with high-quality spawning habitat is essential to restoration efforts in areas where salmonid species are endangered or threatened. While both predictions of suitable habitat and observations of utilized habitat are common in the literature, they are rarely combined. Here we exploit a unique combination of high-resolution LiDAR data and seven years of 387 individually surveyed Coho and Steelhead redds in Scott Creek, a 77 km2 un-glaciated coastal California drainage in the Santa Cruz Mountains, to both make and test predictions of spawning habitat. Using a threshold channel assumption, we predict grain size throughout Scott Creek via a shear stress model that incorporates channel width, instead of height, using Manning's equation (Snyder et al., 2013). Slope and drainage area are computed from a LiDAR-derived DEM, and channel width is calculated via hydraulic modeling. Our results for median grain size predictions closely match median grain sizes (D50) measured in the field, with the majority of sites having predicted D50's within a factor of two of the observed values, especially for reaches with D50 > 0.02m. This success suggests that the threshold model used to predict grain size is appropriate for un-glaciated alluvial channel systems. However, it appears that grain size alone is not a strong predictor of salmon spawning. Reaches with a high (>0.1m) average predicted D50 do have lower redd densities, as expected based on spawning gravel sizes in the literature. However, reaches with lower (<0.1m) predicted D50 have a wide range of redd densities, suggesting that reach-average grain size alone cannot explain spawning site selection in the finer-grained reaches of Scott Creek. We turn to analysis of bedform morphology in order to explain the variation in redd density in the low-slope, finer-grained reaches of Lower Scott Creek. Because spawning is strongly correlated with riffle locations, we use a LiDAR-derived longitudinal profile to predict where riffle habitat is located within the watershed. To accomplish this, we use previous studies that constrain pool-riffle habitat to slopes <1.5%, then use wavelet analysis of the longitudinal profile within these pool-riffle reaches to investigate the spacing of drops in water surface slope, with the goal of identifying reaches with high riffle density. Our slope-based predictions of pool-riffle morphology closely match the extent of pool-riffle reaches observed in the field. Average redd density in pool-riffle reaches is more than double the average redd density in reaches of other channel morphologies. Initial wavelet analysis suggests that riffle spacing may be longer in the lower reaches of Scott Creek and shorter in the high-redd density upper reaches, a finding that agrees with the hypothesis that spawning habitat is limited by riffle density. Our results suggest that high resolution topographic data can be successfully used to identify reaches of utilized spawning habitat based on grain size predictions and wavelet analysis of bedform spacing.
SPAWNING SUCCESS OF FATHEAD MINNOWS ON SELECTED ARTIFICIAL SUBSTRATES
Spawning success of fathead minnows (Pimephales promelas) on six different substrates was tested and evaluated. Egg adhesiveness was equally good on cement-asbestos tile and sand-coated stainless steel substrates, but was poor on unaltered stainless steel, shot-peened stainless s...
Shaw, Stephanie L.; Chipps, Steven R.; Windels, Steve K.; Webb, Molly A. H.; McLeod, Darryl T.
2013-01-01
We evaluated the influence of sex and reproductive condition on seasonal distribution and movement patterns of Lake Sturgeon Acipenser fulvescens in Namakan Reservoir, Minnesota–Ontario. Blood samples were collected from 133 Lake Sturgeon prior to spawning and plasma concentrations of testosterone and estradiol-17ß were analyzed using radioimmunoassay. Steroid concentrations were used to determine sex and the reproductive stage of each sturgeon. A subset of 60 adults were implanted with acoustic transmitters prior to spawning in 2007 and 2008. Movement was monitored using an array of 15 stationary receivers covering U.S. and Canadian waters of Namakan Reservoir and its tributaries. Of the monitored sturgeon, there was no significant difference in the minimum distance traveled between sexes or among seasons. Site residency did not differ between sexes but differed significantly among seasons, and Lake Sturgeon of both sexes had higher residency during winter (mean = 24 d). Five females implanted with transmitters were characterized as presumed reproductive and 14 as nonreproductive based on plasma steroid concentrations. In general, movement patterns (i.e., migration) of presumed reproductive females corresponded positively with availability of spawning habitat in tributaries. Moreover, presumed reproductive females traveled greater distances than nonreproductive females, particularly during prespawn, spawning, and fall time periods. Distance traveled by presumed reproductive females was highest in the fall compared with other seasons and may be linked to increased energy requirements during late oogenesis before spawning in spring. Combining movement data with information on Lake Sturgeon reproductive status and habitat suitability provided a robust approach for understanding their seasonal migration patterns and identifying spawning locations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyons, John D.; Walchak, D.; Haglund, J.
The goal of this study was to compare the possible locations, timing, and characteristics of potentially spawning shovelnose sturgeon ( Scaphirhynchus platorynchus), blue sucker ( Cycleptus elongatus), and associated species during the spring of 2007-2015 in the 149-km-long lower Wisconsin River, Wisconsin, USA, a large, shallow, sand-dominated Mississippi River tributary. A 5-km index station of two pairs of rocky shoals surrounded by sandy areas was electrofished for shovelnose sturgeon and blue sucker in a standardized fashion a total of 40 times from late March through mid- June, the presumed spawning period. On one date in 2008 and two dates inmore » 2012, all rocky shoals and adjacent sandy areas in the lowermost 149 km of the river were also electrofished for both species. Shovelnose sturgeon and blue sucker appeared to spawn in the limited rocky areas of the river along with at least four other species: mooneye ( Hiodon tergisus), quillback ( Carpiodes cyprinus), smallmouth buffalo ( Ictiobus bubalus), and shorthead redhorse ( Moxostoma macrolepidotum), usually at depths of 0.8-2.0 m and surface velocities of 0.4–1.0 m/s. However, apparently spawning shovelnose sturgeon were found only on mid-channel cobble and coarse gravel shoals within a single 7-km segment that included the 5-km index station, whereas apparently spawning blue suckers were encountered on these same shoals but also more widely throughout the river on eroding bluff shorelines of bedrock and boulder and on artificial boulder wing dams and shoreline rip-rap. Both species showed evidence of homing to the same mid-channel shoal complexes across years.« less
Nichols, S. Jerrine; Kennedy, Gregory; Crawford, Eric; Allen, Jeffrey; French, John; Black, Glen; Blouin, Marc; Hickey, James P.; Chernyak, Sergei; Haas, Robert; Thomas, Michael
2003-01-01
One of the most threatened remaining populations of lake sturgeon in the Great Lakes is found in the connecting channels between Lake Huron and Lake Erie. Only two spawning grounds are presently known to be active in this region, and both are in the St. Clair River. The spawning reef in the St. Clair River delta has been recently colonized by round gobies (Neogobius melanostomus) in densities up to 25/m2, raising concerns regarding predation on the benthic-oriented eggs and larvae of the sturgeon. Investigations in 1998–1999 showed that while round goby predation does occur, a number of other factors may be equally affecting sturgeon spawning success, including few spawning adults (< 60), suspected poaching pressure, low retention rate of eggs on the reef, low hatch rate (~0.5%), the presence of organic contaminants, and predation from native and exotic invertebrates and fish. Overall, we estimate that less than 1% of the eggs deposited during a spawning run survive to hatch. We were able to increase the egg hatch rate to 16% by placing eggs in predator-exclusion chambers on the reef. The fate of the larvae is uncertain. Two weeks after hatching, no larvae were found on the reef. We were unable to find them anywhere else in the river, nor was predation on larvae noted in either year. There were factors other than predation affecting larval survival in 1999. There was a higher silt load on the reef than in 1998 and large numbers of dead larvae were found. Recruitment success from this site could be improved by utilizing techniques to increase the number of eggs on the reef, such as reducing the illegal take of adult fish and by placing eggs in predator-exclusion chambers to increase hatch rate.
Janney, E.C.; Shively, R.S.; Hayes, B.S.; Barry, P.M.; Perkins, D.
2008-01-01
We used 13 years (1995-2007) of capture-mark-recapture data to assess population dynamics of endangered Lost River suckers Deltistes luxatus and shortnose suckers Chasmistes brevirostris in Upper Klamath Lake, Oregon. The Cormack-Jolly-Seber method was used to estimate survival, and information theoretic modeling was used to assess variation due to time, gender, species, and spawning subpopulations. Length data were used to detect multiple year-class failures and events of high recruitment into adult spawning populations. Average annual survival probability was 0.88 for Lost River suckers and 0.76 for shortnose suckers. Mean life span estimates based on these survival rates indicated that Lost River suckers survived long enough on average to attempt reproduction eight times, whereas shortnose suckers only survived to spawn three to four times. Shortnose sucker survival was not only poor in years of fish kills (1995-1997) but also was low in years without fish kills (i.e., 2002 and 2004). This suggests that high mortality occurs in some years but is not necessarily associated with fish kills. Annual survival probabilities were not only different between the two species but also differed between two spawning subpopulations of Lost River suckers. Length composition data indicated that recruitment into spawning populations only occurred intermittently. Populations of both species transitioned from primarily old individuals with little size diversity and consistently poor recruitment in the late 1980s and early 1990s to mostly small, recruit-sized fish by the late 1990s. A better understanding of the factors influencing adult survival and recruitment into spawning populations is needed. Monitoring these vital parameters will provide a quantitative means to evaluate population status and assess the effectiveness of conservation and recovery efforts.
Lyons, John D.; Walchak, D.; Haglund, J.; ...
2016-11-07
The goal of this study was to compare the possible locations, timing, and characteristics of potentially spawning shovelnose sturgeon ( Scaphirhynchus platorynchus), blue sucker ( Cycleptus elongatus), and associated species during the spring of 2007-2015 in the 149-km-long lower Wisconsin River, Wisconsin, USA, a large, shallow, sand-dominated Mississippi River tributary. A 5-km index station of two pairs of rocky shoals surrounded by sandy areas was electrofished for shovelnose sturgeon and blue sucker in a standardized fashion a total of 40 times from late March through mid- June, the presumed spawning period. On one date in 2008 and two dates inmore » 2012, all rocky shoals and adjacent sandy areas in the lowermost 149 km of the river were also electrofished for both species. Shovelnose sturgeon and blue sucker appeared to spawn in the limited rocky areas of the river along with at least four other species: mooneye ( Hiodon tergisus), quillback ( Carpiodes cyprinus), smallmouth buffalo ( Ictiobus bubalus), and shorthead redhorse ( Moxostoma macrolepidotum), usually at depths of 0.8-2.0 m and surface velocities of 0.4–1.0 m/s. However, apparently spawning shovelnose sturgeon were found only on mid-channel cobble and coarse gravel shoals within a single 7-km segment that included the 5-km index station, whereas apparently spawning blue suckers were encountered on these same shoals but also more widely throughout the river on eroding bluff shorelines of bedrock and boulder and on artificial boulder wing dams and shoreline rip-rap. Both species showed evidence of homing to the same mid-channel shoal complexes across years.« less
Eggers, Florian; Slotte, Aril; Libungan, Lísa Anne; Johannessen, Arne; Kvamme, Cecilie; Moland, Even; Olsen, Esben M; Nash, Richard D M
2014-01-01
Gillnet sampling and analyses of otolith shape, vertebral count and growth indicated the presence of three putative Atlantic herring (Clupea harengus L.) populations mixing together over the spawning season February-June inside and outside an inland brackish water lake (Landvikvannet) in southern Norway. Peak spawning of oceanic Norwegian spring spawners and coastal Skagerrak spring spawners occurred in March-April with small proportions of spawners entering the lake. In comparison, spawning of Landvik herring peaked in May-June with high proportions found inside the lake, which could be explained by local adaptations to the environmental conditions and seasonal changes of this marginal habitat. The 1.85 km(2) lake was characterized by oxygen depletion occurring between 2.5 and 5 m depth between March and June. This was followed by changes in salinity from 1-7‰ in the 0-1 m surface layer to levels of 20-25‰ deeper than 10 m. In comparison, outside the 3 km long narrow channel connecting the lake with the neighboring fjord, no anoxic conditions were found. Here salinity in the surface layer increased over the season from 10 to 25‰, whereas deeper than 5 m it was stable at around 35‰. Temperature at 0-5 m depth increased significantly over the season in both habitats, from 7 to 14 °C outside and 5 to 17 °C inside the lake. Despite differences in peak spawning and utilization of the lake habitat between the three putative populations, there was an apparent temporal and spatial overlap in spawning stages suggesting potential interbreeding in accordance with the metapopulation concept.
Murphy, Elizabeth A.; Garcia, Tatiana; Jackson, P. Ryan; Duncker, James J.
2016-04-05
As part of the Great Lakes and Mississippi River Interbasin Study, the U.S. Army Corps of Engineers (USACE) is conducting an assessment of the vulnerability of the Chicago Area Waterway System and Des Plaines River to Asian carp (specifically, Hypophthalmichthys nobilis (bighead carp) and Hypophthalmichthys molitrix (silver carp)) spawning and recruitment. As part of this assessment, the USACE requested the help of the U.S. Geological Survey in predicting the fate and transport of Asian carp eggs hypothetically spawned at the electric dispersal barrier on the Chicago Sanitary and Ship Canal and downstream of the Brandon Road Lock and Dam on the Des Plaines River under dry weather flow and high water temperature conditions. The Fluvial Egg Drift Simulator (FluEgg) model predicted that approximately 80 percent of silver carp eggs spawned near the electric dispersal barrier would hatch within the Lockport and Brandon Road pools (as close as 3.6 miles downstream of the barrier) and approximately 82 percent of the silver carp eggs spawned near the Brandon Road Dam would hatch in the Des Plaines River (as close as 1.6 miles downstream from the gates of Brandon Road Lock). Extension of the FluEgg model to include the fate and transport of larvae until gas bladder inflation—the point at which the larvae begin to leave the drift—suggests that eggs spawned at the electric dispersal barrier would reach the gas bladder inflation stage primarily within the Dresden Island Pool, and those spawned at the Brandon Road Dam would reach this stage primarily within the Marseilles and Starved Rock Pools.
NASA Astrophysics Data System (ADS)
Walsh, C. T.; Reinfelds, I. V.; Ives, M. C.; Gray, C. A.; West, R. J.; van der Meulen, D. E.
2013-02-01
Estuarine-resident fishes are highly susceptible to the effects of environmental and anthropogenic impacts on their assemblages and habitats. We investigated the distribution, movement and spawning behaviour of estuary perch, Macquaria colonorum, in response to selected environmental variables using an acoustic telemetry array in a large tidal river in south-eastern (SE) Australia. Adult M. colonorum were monitored for up to two years, covering two consecutive spawning periods between September 2007 and 2009. Salinity, water temperature and river flows all had a significant relationship with their estuarine distribution. In particular, large-scale movements were influenced by large freshwater inflow events and the resultant reduction in salinity levels, together with the seasonal cooling and warming trends in water temperatures associated with spawning behaviour. During the winter months, male and female M. colonorum migrated from their upper estuarine home ranges to the lower estuarine spawning grounds in synchrony, with numbers of individual visits by both sexes consistently higher in the 'wetter' winter/spring period of 2008. Location, arrival, departure and occupation time within the spawning grounds were similar between sexes and years. Both resident and migrating M. colonorum exhibited strong diel, and to a lesser extent, tidal behavioural patterns, with fish more likely to be detected at night and during the ebb tides. It is postulated that the effect of environmental fluctuations on the distribution and movement of M. colonorum is influenced by behavioural mechanisms in response to osmoregulatory stress, predator-prey interactions and reproductive activity. The results also demonstrate the importance of accounting for autocorrelation inherent in telemetry data, and for developing management strategies that are more robust to the effect of future climate trends on estuarine fish populations.
Harris, Julianne E.; Hightower, Joseph E.
2011-01-01
American shad Alosa sapidissima are in decline throughout much of their native range as a result of overfishing, pollution, and habitat alteration in coastal rivers where they spawn. One approach to restoration in regulated rivers is to provide access to historical spawning habitat above dams through a trap-and-transport program. We examined the initial survival, movement patterns, spawning, and downstream passage of sonic-tagged adult American shad transported to reservoir and riverine habitats upstream of hydroelectric dams on the Roanoke River, North Carolina and Virginia, during 2007–2009. Average survival to release in 2007–2008 was 85%, but survival decreased with increasing water temperature. Some tagged fish released in reservoirs migrated upstream to rivers; however, most meandered back and forth within the reservoir. A higher percentage of fish migrated through a smaller (8,215-ha) than a larger (20,234-ha) reservoir, suggesting that the population-level effects of transport may depend on upper basin characteristics. Transported American shad spent little time in upper basin rivers but were there when temperatures were appropriate for spawning. No American shad eggs were collected during weekly plankton sampling in upper basin rivers. The estimated initial survival of sonic-tagged American shad after downstream passage through each dam was 71–100%; however, only 1% of the detected fish migrated downstream through all three dams and many were relocated just upstream of a dam late in the season. Although adult American shad were successfully transported to upstream habitats in the Roanoke River basin, under present conditions transported individuals may have reduced effective fecundity and postspawning survival compared with nontransported fish that spawn in the lower Roanoke River.
Smith, D.R.
2007-01-01
Because the Delaware Bay horseshoe crab (Limulus polyphemus) population is managed to provide for dependent species, such as migratory shorebirds, there is a need to understand the process of egg exhumation and to predict eggs available to foraging shorebirds. A simple spatial model was used to simulate horseshoe crab spawning that would occur on a typical Delaware Bay beach during spring tide cycles to quantify density-dependent nest disturbance. At least 20% of nests and eggs were disturbed for levels of spawning greater than one third of the average density in Delaware Bay during 2004. Nest disturbance increased approximately linearly as spawning density increased from one half to twice the 2004 level. As spawning density increased further, the percentage of eggs that were disturbed reached an asymptote of 70% for densities up to 10 times the density in 2004. Nest disturbance was heaviest in the mid beach zone. Nest disturbance precedes entrainment and begins the process of exhumation of eggs to surface sediments. Model predictions were combined with observations from egg surveys to estimate a snap-shot exhumation rate of 5-9% of disturbed eggs. Because an unknown quantity of eggs were exhumed and removed from the beach prior to the survey, cumulative exhumation rate was likely to have been higher than the snap-shot estimate. Because egg exhumation is density-dependent, in addition to managing for a high population size, identification and conservation of beaches where spawning horseshoe crabs concentrate in high densities (i.e., hot spots) are important steps toward providing a reliable food supply for migratory shorebirds. ?? 2007 Estuarine Research Federation.
A global baseline for spawning aggregations of reef fishes.
Sadovy De Mitcheson, Yvonne; Cornish, Andrew; Domeier, Michael; Colin, Patrick L; Russell, Martin; Lindeman, Kenyon C
2008-10-01
Species that periodically and predictably congregate on land or in the sea can be extremely vulnerable to overexploitation. Many coral reef fishes form spawning aggregations that are increasingly the target of fishing. Although serious declines are well known for a few species, the extent of this behavior among fishes and the impacts of aggregation fishing are not appreciated widely. To profile aggregating species globally, establish a baseline for future work, and strengthen the case for protection, we (as members of the Society for the Conservation of Reef Fish Aggregations) developed a global database on the occurrence, history, and management of spawning aggregations. We complemented the database with information from interviews with over 300 fishers in Asia and the western Pacific. Sixty-seven species, mainly commercial, in 9 families aggregate to spawn in the 29 countries or territories considered in the database. Ninety percent of aggregation records were from reef pass channels, promontories, and outer reef-slope drop-offs. Multispecies aggregation sites were common, and spawning seasons of most species typically lasted <3 months. The best-documented species in the database, the Nassau grouper (Epinephelus striatus), has undergone substantial declines in aggregations throughout its range and is now considered threatened. Our findings have important conservation and management implications for aggregating species given that exploitation pressures on them are increasing, there is little effective management, and 79% of those aggregations sufficiently well documented were reported to be in decline. Nonetheless, a few success stories demonstrate the benefits of aggregation management. A major shift in perspective on spawning aggregations of reef fish, from being seen as opportunities for exploitation to acknowledging them as important life-history phenomena in need of management, is urgently needed.
Spawning and nursery habitats of neotropical fish species in the tributaries of a regulated river
Makrakis, Maristela Cavicchioli; da Silva, Patrícia S.; Makrakis, Sergio; de Lima, Ariane F.; de Assumpção, Lucileine; de Paula, Salete; Miranda, Leandro E.; Dias, João Henrique Pinheiro
2012-01-01
This chapter provides information on ontogenetic patterns of neotropical fish species distribution in tributaries (Verde, Pardo, Anhanduí, and Aguapeí rivers) of the Porto Primavera Reservoir, in the heavily dammed Paraná River, Brazil, identifying key spawning and nursery habitats. Samplings were conducted monthly in the main channel of rivers and in marginal lagoons from October through March during three consecutive spawning seasons in 2007-2010. Most species spawn in December especially in Verde River. Main river channels are spawning habitats and marginal lagoons are nursery areas for most fish, mainly for migratory species. The tributaries have high diversity of larvae species: a total of 56 taxa representing 21 families, dominated by Characidae. Sedentary species without parental care are more abundant (45.7%), and many long-distance migratory fish species are present (17.4%). Migrators included Prochilodus lineatus, Rhaphiodon vulpinus, Hemisorubim platyrhynchos, Pimelodus maculatus, Pseudoplatystoma corruscans, Sorubim lima, two threatened migratory species: Salminus brasiliensis and Zungaro jahu, and one endangered migratory species: Brycon orbignyanus. Most of these migratory species are vital to commercial and recreational fishing, and their stocks have decreased drastically in the last decades, attributed to habitat alteration, especially impoundments. The fish ladder at Porto Primavera Dam appears to be playing an important role in re-establishing longitudinal connectivity among critical habitats, allowing ascent to migratory fish species, and thus access to upstream reaches and tributaries. Establishment of Permanent Conservation Units in tributaries can help preserve habitats identified as essential spawning and nursery areas, and can be key to the maintenance and conservation of the fish species in the Paraná River basin.
Simulating the Oceanic Migration of Silver Japanese Eels
Chang, Yu-Lin; Miyazawa, Yasumasa; Béguer-Pon, Mélanie
2016-01-01
The oceanic migration of silver Japanese eels starts from their continental growth habitats in East Asia and ends at the spawning area near the West Mariana Ridge seamount chain. However, the actual migration routes remain unknown. In this study, we examined the possible oceanic migration routes and strategies of silver Japanese eels using a particle tracking method in which virtual eels (v-eels) were programmed to move vertically and horizontally in an ocean circulation model (Japan Coastal Ocean Predictability Experiment 2, JCOPE2). Four horizontal swimming strategies were tested: random heading, true navigation (readjusted heading), orientation toward the spawning area (fixed heading), and swimming against the Kuroshio. We found that all strategies, except random swimming, allowed v-eels swimming at 0.65 m s−1 to reach the spawning area within eight months after their departure from the south coast of Japan (end of the spawning season). The estimated minimum swimming speed required to reach the area spawning within eight months was 0.1 m s−1 for true navigation, 0.12 m s−1 for constant compass heading, and 0.35 m s−1 for swimming against the Kuroshio. The lowest swimming speed estimated from tracked Japanese eels at sea was 0.03 m.s−1, which would not allow them to reach the spawning area within eight months, through any of the tested orientation strategies. Our numerical experiments also showed that ocean circulation significantly affected the migration of Japanese v-eels. A strong Kuroshio could advect v-eels further eastward. In addition, western Pacific ocean currents accelerated the migration of navigating v-eels. The migration duration was shortened in years with a stronger southward flow, contributed by a stronger recirculation south of Japan, an enhanced subtropical gyre, or a higher southward Kuroshio velocity. PMID:26982484
Simulating the Oceanic Migration of Silver Japanese Eels.
Chang, Yu-Lin; Miyazawa, Yasumasa; Béguer-Pon, Mélanie
2016-01-01
The oceanic migration of silver Japanese eels starts from their continental growth habitats in East Asia and ends at the spawning area near the West Mariana Ridge seamount chain. However, the actual migration routes remain unknown. In this study, we examined the possible oceanic migration routes and strategies of silver Japanese eels using a particle tracking method in which virtual eels (v-eels) were programmed to move vertically and horizontally in an ocean circulation model (Japan Coastal Ocean Predictability Experiment 2, JCOPE2). Four horizontal swimming strategies were tested: random heading, true navigation (readjusted heading), orientation toward the spawning area (fixed heading), and swimming against the Kuroshio. We found that all strategies, except random swimming, allowed v-eels swimming at 0.65 m s-1 to reach the spawning area within eight months after their departure from the south coast of Japan (end of the spawning season). The estimated minimum swimming speed required to reach the area spawning within eight months was 0.1 m s-1 for true navigation, 0.12 m s-1 for constant compass heading, and 0.35 m s-1 for swimming against the Kuroshio. The lowest swimming speed estimated from tracked Japanese eels at sea was 0.03 m.s-1, which would not allow them to reach the spawning area within eight months, through any of the tested orientation strategies. Our numerical experiments also showed that ocean circulation significantly affected the migration of Japanese v-eels. A strong Kuroshio could advect v-eels further eastward. In addition, western Pacific ocean currents accelerated the migration of navigating v-eels. The migration duration was shortened in years with a stronger southward flow, contributed by a stronger recirculation south of Japan, an enhanced subtropical gyre, or a higher southward Kuroshio velocity.
Hong, Lu Yan; Hong, Wan Shu; Zhu, Wen Bo; Shi, Qiong; You, Xin Xin; Chen, Shi Xi
2014-01-01
The mudskipper Boleophthalmus pectinirostris, a burrow-dwelling fish inhabiting intertidal mudflats, spawns only once during the spawning season around either the first or last lunar quarters. To understand the molecular mechanisms regulating this semilunar spawning rhythm, we cloned all melatonin receptor subtypes (mtnr1a1.4, mtnr1a1.7, mtnr1b, and mtnr1c). Expression of three melatonin receptor subtypes (except mtnr1c) was found in the ovaries. In contrast, the expression of all receptor subtypes was found in the diencephalon and the pituitary. In the fully-grown follicles, only mtnr1a1.7 mRNA was detected in both the isolated follicle layers and denuded oocytes. Interestingly, the transcript levels of both mtnr1a1.4 in the diencephalon and mtnr1a1.7 in the ovary displayed two cycles within one lunar month, and peaked around the first and last lunar quarters. We used 17α,20β-dihydroxy-4-pregnen-3-one (DHP), a maturation-inducing hormone, as a biomarker to examine the involvement of melatonin receptors in the control of the spawning cycle. Melatonin significantly increased the plasma DHP level 1h post intraperitoneal injection. Melatonin also directly stimulated ovarian fragments in vitro to produce a significantly higher amount of DHP. Taken together, these results provided the first evidence that melatonin receptors were involved in the synchronization of the semilunar spawning rhythm in the female mudskipper by acting through the HPG axis and/or directly on ovarian tissues to stimulate the production of DHP. Copyright © 2013 Elsevier Inc. All rights reserved.
Criscuolo-Urbinati, E; Kuradomi, R Y; Urbinati, E C; Batlouni, S R
2012-12-01
Based on the reports of unsuccessful ovulation in pacu (Piaractus mesopotamicus) by fish farmers and researchers undertaking artificial reproduction programs, we evaluated the use of prostaglandin F (PGF) to improve pacu ovulation. This study was conducted during two spawning seasons (2009/2010 and 2010/2011) with two samplings in the first season and one sampling in the second season. A total of 45 females was sampled in this study. The control group was injected with carp pituitary extract (crude extract, 6 mg/kg), and the treatment group received PGF (2 mL per fish in the 2009/2010 season and 5 mL per fish in the 2010/2011 season) in addition to the crude extract. In both seasons, 100% (N = 4, 2009/2010 first sampling; N = 5, 2009/2010 second sampling; and N = 3, 2010/2011) of the PGF-treated fish spawned. In contrast, 53.0% (N = 9) and 83.3% (N = 10) of the control fish spawned in the first and second samplings of the 2009/2010 season, respectively, and only 25.0% (N = 1) spawned in the 2010/2011 season. Fecundity, fertility, and hatching rates did not differ (P > 0.05) between the treated and control fish. Based on oocyte volume frequency analysis, ovaries of the control fish had more (P < 0.05) vitellogenic oocytes with germinal vesicle breakdown that remained unovulated after spawning, whereas more (P < 0.05) of previtellogenic oocytes were present in the ovaries of the PGF-treated fish. In conclusion, administration of exogenous prostaglandin may improve the outcome of hormonally induced spawning in tropical migratory fish. Copyright © 2012 Elsevier Inc. All rights reserved.
A habitat suitability model for Chinese sturgeon determined using the generalized additive method
NASA Astrophysics Data System (ADS)
Yi, Yujun; Sun, Jie; Zhang, Shanghong
2016-03-01
The Chinese sturgeon is a type of large anadromous fish that migrates between the ocean and rivers. Because of the construction of dams, this sturgeon's migration path has been cut off, and this species currently is on the verge of extinction. Simulating suitable environmental conditions for spawning followed by repairing or rebuilding its spawning grounds are effective ways to protect this species. Various habitat suitability models based on expert knowledge have been used to evaluate the suitability of spawning habitat. In this study, a two-dimensional hydraulic simulation is used to inform a habitat suitability model based on the generalized additive method (GAM). The GAM is based on real data. The values of water depth and velocity are calculated first via the hydrodynamic model and later applied in the GAM. The final habitat suitability model is validated using the catch per unit effort (CPUEd) data of 1999 and 2003. The model results show that a velocity of 1.06-1.56 m/s and a depth of 13.33-20.33 m are highly suitable ranges for the Chinese sturgeon to spawn. The hydraulic habitat suitability indexes (HHSI) for seven discharges (4000; 9000; 12,000; 16,000; 20,000; 30,000; and 40,000 m3/s) are calculated to evaluate integrated habitat suitability. The results show that the integrated habitat suitability reaches its highest value at a discharge of 16,000 m3/s. This study is the first to apply a GAM to evaluate the suitability of spawning grounds for the Chinese sturgeon. The study provides a reference for the identification of potential spawning grounds in the entire basin.
Butts, I A E; Litvak, M K; Trippel, E A
2010-04-15
The objective was to investigate changes, throughout the spawning season, in body size attributes and quantitative semen characteristics of wild-caught and cultivated Atlantic cod, Gadus morhua L. Sperm velocity increased significantly throughout the spawning season of cod from both origins. Curvilinear velocity (VCL; 30 sec post-activation) increased from 78.9+/-6.5 to 128.2+/-6.5 microm/sec (mean+/-SEM) between the beginning and end of the spawning season, respectively, for wild-caught cod, whereas for cultivated fish, it increased from 26.6+/-2.4 to 48.9+/-3.1 microm/sec between January and March. Spermatocrit did not undergo a significant seasonal change in wild-caught cod but did thicken for cultivated cod (24.6+/-4.2% in January to 40.5+/-4.4% in April; P<0.01). Sperm head area, perimeter, length, and width declined significantly at the end of the spawning season of cod from both origins (all P values<0.01). Seminal plasma osmolality and Na(+) ion concentration followed a dome-shaped function through the spawning season for both wild-caught and cultivated cod (P<0.05). For cultivated cod, seminal plasma pH was significantly lower at the start of the spawning season (P<0.001), whereas Ca(2+) increased then decreased (P<0.05). Body size attributes, spermatocrit, and seminal plasma constituents had significant relationships with sperm activity variables. These relationships varied as a function of time post-activation, month, and fish origin. Our findings may be used to (i) assess spermiation stage without killing males; (ii) optimize semen collection for hatchery production; (iii) characterize the potential impact of farming on sperm quality; and (iv) improve success of sperm cryopreservation and short-term storage. Copyright 2010 Elsevier Inc. All rights reserved.
Protect and Restore Red River Watershed, 2007-2008 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bransford, Stephanie
2009-05-04
The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe (NPT) and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Red River Watershed of the South Fork Clearwater River in 2001. Progress has been made in restoring the watershed through road decommissioning and culvert replacement. From completing a watershed assessment to two NEPAmore » efforts and a final stream restoration design, we will begin the effort of restoring the mainstem channel of Red River to provide spawning and rearing habitat for anadromous and resident fish species. Roads have been surveyed and prioritized for removal or improvement as well as culverts being prioritized for replacement to accommodate fish passage throughout the watershed. Another major, and extremely, important component of this project is the Red River Meadow Conservation Easement. We have begun the process of pursuing a conservation easement on approximately 270 acres of prime meadow habitat (Red River runs through this meadow and is prime spawning and rearing habitat).« less
Miehls, Scott M.; Johnson, Nicholas S.; Hrodey, Pete J.
2017-01-01
Control of the invasive Sea Lamprey Petromyzon marinus is critical for management of commercial and recreational fisheries in the Laurentian Great Lakes. Use of physical barriers to block Sea Lampreys from spawning habitat is a major component of the control program. However, the resulting interruption of natural streamflow and blockage of nontarget species present substantial challenges. Development of an effective nonphysical barrier would aid the control of Sea Lampreys by eliminating their access to spawning locations while maintaining natural streamflow. We tested the effect of a nonphysical barrier consisting of strobe lights, low-frequency sound, and a bubble screen on the movement of Sea Lampreys in an experimental raceway designed as a two-choice maze with a single main channel fed by two identical inflow channels (one control and one blocked). Sea Lampreys were more likely to move upstream during trials when the strobe light and low-frequency sound were active compared with control trials and trials using the bubble screen alone. For those Sea Lampreys that did move upstream to the confluence of inflow channels, no combination of stimuli or any individual stimulus significantly influenced the likelihood that Sea Lampreys would enter the blocked inflow channel, enter the control channel, or return downstream.
Hewitt, David A.; Hayes, Brian S.; Janney, Eric C.; Harris, Alta C.; Koller, Justin P.; Johnson, Mark A.
2011-01-01
Data from a long-term capture-recapture program were used to assess the status and dynamics of populations of two long-lived, federally endangered catostomids in Upper Klamath Lake, Oregon. Lost River suckers (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) have been captured and tagged with passive integrated transponder (PIT) tags during their spawning migrations in each year since 1995. In addition, beginning in 2005, individuals that had been previously PIT-tagged were reencountered on remote underwater antennas deployed throughout the spawning areas. Captures and remote encounters during spring 2009 were used to describe the spawning migrations in that year and also were incorporated into capture-recapture analyses of population dynamics over the last decade. Cormack-Jolly-Seber (CJS) open population capture-recapture models were used to estimate annual survival probabilities, and a reverse-time analog of the CJS model was used to estimate recruitment of new individuals into the spawning populations. In addition, data on the size composition of captured fish was examined for any additional evidence of recruitment. Survival and recruitment estimates were combined to estimate changes in population size over time and to determine the status of the populations through 2007. Separate analyses were conducted for each species and also for each subpopulation of Lost River suckers (LRS). One subpopulation of LRS migrates into tributaries to spawn, similar to shortnose suckers (SNS), whereas the other subpopulation spawns at upwelling areas along the eastern shoreline of the lake. In 2009, we captured and tagged 781 LRS at four shoreline areas and recaptured an additional 638 individuals that had been tagged in previous years. Across all four areas, the remote antennas detected 6,056 individual LRS during the spawning season. Spawning activity peaked in April and most individuals were encountered at Sucker Springs and Cinder Flats. In the Williamson River, we captured and tagged 3,008 LRS and 287 SNS, and recaptured 271 LRS and 81 SNS that had been tagged in previous years. Remote antennas that spanned the river downstream of the tributary spawning areas detected a total of 12,509 LRS and 5,023 SNS. Most LRS passed upstream in mid-April when water temperatures were rising and near or greater than 10°C. In contrast, peaks in upstream passage of SNS occurred in late April and early May when water temperatures were rising and near or greater than 12°C. Finally, an additional 1,569 LRS and 1,794 SNS were captured in trammel net sampling at prespawn staging areas in the northeastern portion of the lake. Of these, 209 of the LRS and 452 of the SNS had been PIT-tagged in previous years. For LRS, encounter histories showed that nearly all of the fish captured at the staging areas were members of the subpopulation that spawns in the tributaries.Capture-recapture analyses for the LRS subpopulation that spawns at the shoreline areas included encounter histories for more than 9,000 individuals, and analyses for the subpopulation that spawns in the tributaries included more than 14,000 encounter histories. With a few exceptions, the survival of males and females in both subpopulations was high (>0.9) between 1999 and 2007. Notably lower survival occurred for both sexes from the tributaries in 2000, for males from the shoreline areas in 2002, and for males from the tributaries in 2006. Recruitment of new individuals into either spawning population was trivial in all years between 2002 and 2007. Over that period, the abundance of males in the lakeshore spawning subpopulation declined by 44–53 percent and the abundance of females declined by 25–38 percent. Similarly, the abundance of males in the tributary spawning subpopulation declined by as much as 39 percent and the abundance of females declined by as much as 33 percent. Capture-recapture analyses for SNS included encounter histories for more than 12,000 individuals. The majority of annual survival estimates between 2001 and 2007 were high (>0.8), but SNS experienced more years of low survival than either LRS subpopulation. The survival of both sexes was particularly low in both 2001 and 2004, and male survival also was somewhat low in 2002 and 2006. Similar to LRS, recruitment of new individuals into the spawning population was trivial in all years between 2001 and 2007. Over that period, the abundance of male SNS declined by 58–80 percent and the abundance of females declined by 52–73 percent. Despite relatively high survival in most years, both species have experienced substantial declines in the abundance of spawning fish because losses from mortality have not been balanced by recruitment of new individuals. Indeed, all populations appear to be largely comprised of fish that were present in the late 1990s and early 2000s. As a result, the status of the endangered sucker populations in Upper Klamath Lake remains worrisome, and the situation is most dire for shortnose suckers. Survival analyses show that the two species do not necessarily experience poor survival in the same years and that poor survival on an annual scale is not predictable from fish die-offs observed in the summer and fall. Future analyses will explore the connections between annual sucker survival and environmental factors of interest, such as water quality and disease. Our monitoring program provides a robust platform for estimating vital population parameters, evaluating the status of the populations, and assessing the effectiveness of conservation and recovery efforts.
Hormone preparation, dosage calculation, and injection technique for induced spawning of foodfish
USDA-ARS?s Scientific Manuscript database
Reliable spawning and fry production of food species is critical for successful commercial production. Environmental stimuli often fail to trigger the requisite hormone cascades for gamete formation, final oocyte maturation, and ovulation in fish held under captive conditions. In general, enviro...
Estimating spawning times of Alligator Gar (Atractosteus spatula) in Lake Texoma, Oklahoma
Snow, Richard A.; Long, James M.
2015-01-01
In 2013, juvenile Alligator Gar were sampled in the reservoir-river interface of the Red River arm of Lake Texoma. The Red River, which flows 860 km along Oklahoma’s border with Texas, is the primary in-flow source of Lake Texoma, and is impounded by Denison Dam. Minifyke nets were deployed using an adaptive random cluster sampling design, which has been used to effectively sample rare species. Lapilli otoliths (one of the three pair of ear stones found within the inner ear of fish) were removed from juvenile Alligator Gar collected in July of 2013. Daily ages were estimated by counting the number of rings present, and spawn dates were back-calculated from date of capture and subtracting 8 days (3 days from spawn to hatch and 5 days from hatch to swimup when the first ring forms). Alligator Gar daily age estimation ranged from 50 to 63 days old since swim-up. Spawn dates corresponded to rising pool elevations of Lake Texoma and water pulses of tributaries.
Dispersal of Adult Black Marlin (Istiompax indica) from a Great Barrier Reef Spawning Aggregation
Domeier, Michael L.; Speare, Peter
2012-01-01
The black marlin (Istiompax indica) is one of the largest bony fishes in the world with females capable of reaching a mass of over 700 kg. This highly migratory predator occurs in the tropical regions of the Pacific and Indian Oceans, and is the target of regional recreational and commercial fisheries. Through the sampling of ichthyoplankton and ovaries we provide evidence that the relatively high seasonal abundance of black marlin off the Great Barrier Reef is, in fact, a spawning aggregation. Furthermore, through the tracking of individual black marlin via satellite popup tags, we document the dispersal of adult black marlin away from the spawning aggregation, thereby identifying the catchment area for this spawning stock. Although tag shedding is an issue when studying billfish, we tentatively identify the catchment area for this stock of black marlin to extend throughout the Coral Sea, including the waters of Papua New Guinea, the Solomon Islands, Micronesia, New Caledonia, Kiribati, Vanuatu, Fiji, Tuvalu and Nauru. PMID:22363692
NASA Astrophysics Data System (ADS)
Cooper, D. W.; Duffy-Anderson, J. T.; Stockhausen, W. T.; Cheng, W.
2013-11-01
Connectivity between spawning and potential nursery areas of northern rock sole, Lepidopsetta polyxystra, in the eastern Bering Sea was examined using an individual-based biophysical-coupled model. Presumed spawning areas were identified using historical field-collected ichthyoplankton data, and nursery habitats were characterized based on previously described settlement areas. Simulated larvae were released from spawning areas near the Pribilof Islands, south of the Pribilof Islands along the outer continental shelf, on the north side of the Alaska Peninsula, and in the Gulf of Alaska south of Unimak Island. Simulated larvae were transported along two general pathways: 1) northwards along the outer continental shelf from Unimak Island towards the Pribilof Islands and further north offshore of mainland Alaska, and 2) eastward along the Alaska Peninsula. At the end of the 2-month simulation, drift pathways placed pre-settlement stage larvae offshore of known nursery areas of older juveniles near mainland Alaska, consistent with a hypothesis that initial settlement may be followed by substantial post-settlement redistribution.
Dispersal of adult black marlin (Istiompax indica) from a Great Barrier Reef spawning aggregation.
Domeier, Michael L; Speare, Peter
2012-01-01
The black marlin (Istiompax indica) is one of the largest bony fishes in the world with females capable of reaching a mass of over 700 kg. This highly migratory predator occurs in the tropical regions of the Pacific and Indian Oceans, and is the target of regional recreational and commercial fisheries. Through the sampling of ichthyoplankton and ovaries we provide evidence that the relatively high seasonal abundance of black marlin off the Great Barrier Reef is, in fact, a spawning aggregation. Furthermore, through the tracking of individual black marlin via satellite popup tags, we document the dispersal of adult black marlin away from the spawning aggregation, thereby identifying the catchment area for this spawning stock. Although tag shedding is an issue when studying billfish, we tentatively identify the catchment area for this stock of black marlin to extend throughout the Coral Sea, including the waters of Papua New Guinea, the Solomon Islands, Micronesia, New Caledonia, Kiribati, Vanuatu, Fiji, Tuvalu and Nauru.
Madenjian, Charles P.
2017-01-01
For the past 20 years or so, a commonly used explanation in the scientific literature for higher polychlorinated biphenyl (PCB) concentrations in male fish than in female fish has been that females lose a high proportion of their PCB body burden by releasing eggs at spawning time, and therefore the females undergo a substantial decrease in their PCB concentration immediately after spawning due to shedding of their eggs [1]. Indeed, this explanation can be viewed as the conventional wisdom used by toxicologists to account for differences in PCB concentrations between the sexes of fish. On the surface, this explanation seems plausible. PCBs are lipid soluble, and eggs are thought to be relatively high in lipid concentration. If a sufficiently high proportion of the PCB body burden within a female fish is transferred to the eggs, then the release of eggs at spawning would be expected to result in a dramatic decrease in the PCB concentration of the female.
A gonad-expressed opsin mediates light-induced spawning in the jellyfish Clytia
Quiroga Artigas, Gonzalo; Lapébie, Pascal; Leclère, Lucas; Takeda, Noriyo; Deguchi, Ryusaku; Jékely, Gáspár
2018-01-01
Across the animal kingdom, environmental light cues are widely involved in regulating gamete release, but the molecular and cellular bases of the photoresponsive mechanisms are poorly understood. In hydrozoan jellyfish, spawning is triggered by dark-light or light-dark transitions acting on the gonad, and is mediated by oocyte maturation-inducing neuropeptide hormones (MIHs) released from the ectoderm. We determined in Clytia hemisphaerica that blue-cyan light triggers spawning in isolated gonads. A candidate opsin (Opsin9) was found co-expressed with MIH within specialised ectodermal cells. Opsin9 knockout jellyfish generated by CRISPR/Cas9 failed to undergo oocyte maturation and spawning, a phenotype reversible by synthetic MIH. Gamete maturation and release in Clytia is thus regulated by gonadal photosensory-neurosecretory cells that secrete MIH in response to light via Opsin9. Similar cells in ancestral eumetazoans may have allowed tissue-level photo-regulation of diverse behaviours, a feature elaborated in cnidarians in parallel with expansion of the opsin gene family. PMID:29303477
White sturgeon spawning and rearing habitat in the lower Columbia River
Parsley, Michael J.; Beckman, Lance G.
1994-01-01
Estimates of spawning habitat for white sturgeons Acipenser transmontanus in the tailraces of the four dams on the lower 470 km of the Columbia River were obtained by using the Physical Habitat Simulation System of the U.S. Fish and Wildlife Service's Instream Flow Incremental Methodology to identify areas with suitable water depths, water velocities, and substrates. Rearing habitat throughout the lower Columbia River was assessed by using a geographic information system to identify areas with suitable water depths and substrates. The lowering of spring and summer river discharges from hydropower system operation reduces the availability of spawning habitat for white sturgeons. The four dam tailraces in the study area differ in the amount and quality of spawning habitat available at various discharges; the differences are due to channel morphology. The three impoundments and the free-flowing Columbia River downstream from Bonneville Dam provide extensive areas that are physically suitable for rearing young-of-the-year and juvenile white sturgeons.
Bueno, L S; Bertoncini, A A; Koenig, C C; Coleman, F C; Freitas, M O; Leite, J R; De Souza, T F; Hostim-Silva, M
2016-07-01
In this study, seasonal numerical abundance of the critically endangered Atlantic goliath grouper Epinephelus itajara was estimated by conducting scuba dive surveys and calculating sightings-per-unit-effort (SPUE) at three sites in southern Brazil. Seasonal differences in size and reproductive condition of captured or confiscated specimens were compared. The SPUE differed significantly with season, increasing in late spring and peaking during the austral summer months. A significant effect was observed in the number of fish relative to the lunar cycle. All females sampled during the summer were spawning capable, while all those sampled during other seasons were either regressing or regenerating. What these data strongly infer is that the E. itajara spawning aggregation sites have been located in the southern state of Paraná and the northern state of Santa Catarina and summer is the most likely spawning season. Size frequency distributions, abundance and reproductive state were estimated and correlated with environmental variables. © 2016 The Fisheries Society of the British Isles.
Mishra, Surabhi; Chaube, Radha
2017-01-15
In vertebrates, steroids are synthesized de novo in the central and peripheral nervous system, independent of peripheral steroidogenic glands, such as the adrenal, gonads and placenta. 3β-Hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase (3β-HSD) is a key steroidogenic enzyme in vertebrate gonads, placenta and adrenal. It mediates the oxidation and isomerization reactions of progesterone from pregnenolone, 17-hydroxyprogesterone from 17-hydroxypregnenolone and androstenedione from dehydroepiandrosterone. In the present study, we examined the expression of 3β-HSD cDNA by real time-PCR and localization of the mRNA by in situ hybridization in the brain and its regions during the different phases of the reproductive cycle of the catfish Heteropneustes fossilis. Further, 3β-HSD activity was assayed biochemically to show seasonal variations. We showed significant seasonal and sexual dimorphic changes in the levels of transcript abundance in the whole brain and its regions. In whole brain, level was the highest in post-spawning phase and lowest in spawning phase in males. In females, there was a progressive increase through resting phase to pre-spawning phase, a decline in the spawning phase and increase in the post-spawning phase. In the preparatory phase, the highest transcript level was seen in medulla oblongata and the lowest in pituitary in males. In females, the level was the highest in the hypothalamus and lowest in olfactory bulb and pituitary. However, in the pre-spawning phase, in males it was the highest in telencephalon and hypothalamus and lowest in pituitary. In females, the highest transcript level was in olfactory bulb and lowest in pituitary. 3β-HSD enzyme activity showed significant seasonal variation in the brain, the highest in the resting phase and lowest in the preparatory and spawning phases. In situ hybridization showed the presence of 3β-HSD transcript was especially high in the cerebellum region. The presence of 3β-HSD in the brain may indicate steroidogenesis in the catfish brain. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanrahan, T.P.
2009-01-08
The Bonneville Power Administration (BPA) Project 2003-038-00, Evaluate the restoration potential of Snake River fall Chinook salmon spawning habitat, began in FY04 (15 December 2003) and continues into FY06. This status report is intended to summarize accomplishments during FY04 and FY05. Accomplishments are summarized by Work Elements, as detailed in the Statement of Work (see BPA's project management database PISCES). This project evaluates the restoration potential of mainstem habitats for fall Chinook salmon. The studies address two research questions: 'Are there sections not currently used by spawning fall Chinook salmon within the impounded lower Snake River that possess the physicalmore » characteristics for potentially suitable fall Chinook spawning habitat?' and 'Can hydrosystem operations affecting these sections be adjusted such that the sections closely resemble the physical characteristics of current fall Chinook salmon spawning areas in similar physical settings?' Efforts are focused at two study sites: (1) the Ice Harbor Dam tailrace downstream to the Columbia River confluence, and (2) the Lower Granite Dam tailrace. Our previous studies indicated that these two areas have the highest potential for restoring Snake River fall Chinook salmon spawning habitat. The study sites will be evaluated under existing structural configurations at the dams (i.e., without partial removal of a dam structure), and alternative operational scenarios (e.g., varying forebay/tailwater elevations). The areas studied represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We are using a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats is the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Escapement estimates for fall of 2000 indicate more than 9000 adult fall Chinook salmon returned to this area, accounting for more than 2100 redds within a 5 km section of river.« less
Wuenschel, M J; Able, K W; Byrne, D
2009-05-01
To resolve varied and sometimes conflicting accounts of spawning and habitat characteristics for winter flounder Pseudopleuronectes americanus, seasonal patterns in abundance and reproductive condition were investigated in the New York Bight, near the southern edge of their current reproductive range. Fish were collected from trawl surveys on the inner continental shelf from October 2006 to October 2007. Pseudopleuronectes americanus were most abundant during January and April surveys, were rarely collected in August, with intermediate abundances in June and October. Measurements of fish condition [hepato-somatic index (I(H)), condition factor (K) and the per cent dry mass of muscle tissue (%M(D))] and reproductive condition [gonado-somatic index (I(G))] were determined to evaluate seasonal changes in energy accumulation and depletion and reproduction. Males and females had similar patterns in body and reproductive condition, although the magnitude of change was greater for females. I(H) values were highest during spring and early summer, suggesting increased feeding following spawning. K and %M(D) increased through spring and summer then declined in the autumn and winter concurrent with gonadal development. Gonads began developing in the autumn, and in January, I(G) values approached spawning levels, with many spent individuals collected in spring. Within these general patterns, however, there was a large degree of variability among individuals, and a few mature non-reproductive ('skipped spawning') females were observed. In the period after spawning, increased energy intake, indicated by increased I(H), may influence reproductive output since this energy is gradually transferred to the muscle and used for gonadal development in the forthcoming year. The occurrence of ripening individuals on the inner continental shelf in January suggests that these fish either rapidly move into estuaries to spawn by February-March or they remain on the inner shelf to spawn, or some combination of these. Future studies should evaluate these possibilities, as both estuarine and inner shelf habitats are potentially affected by activities such as dredging, sand dredging and wind energy development.
Early life history of the northern pikeminnow in the lower Columbia River basin
Gadomski, D.M.; Barfoot, C.A.; Bayer, J.M.; Poe, T.P.
2001-01-01
The northern pikeminnow Ptychocheilus oregonensis is a large, native cyprinid in the Columbia River basin that has persisted in spite of substantial habitat alterations. During the months of June to September 1993-1996, we investigated the temporal and spatial patterns of northern pikeminnow spawning, along with describing larval drift and characterizing larval and early juvenile rearing habitats in the lower Columbia River (the John Day and Dalles reservoirs and the free-flowing section downstream of Bonneville Dam) as well as in the lower sections of two major tributaries (the John Day and Deschutes rivers). The density of newly emerged drifting larvae was higher in dam tailraces (a mean of 7.7 larvae/100 m3 in surface tows) than in the lower reservoirs (0.3 larvae/100 m3), indicating that tailraces were areas of more intense spawning. Density was particularly high in the Bonneville Dam tailrace (15.1 larvae/100 m3), perhaps because adult northern pikeminnow are abundant below Bonneville Dam and this is the first tailrace and suitable main-stem spawning habitat encountered during upriver spawning migrations. Spawning also occurred in both of the tributaries sampled but not in a backwater. Spawning in the Columbia River primarily took place during the month of June in 1993 and 1994, when the water temperature rose from 14??C to 18??C, but occurred about 2 weeks later in 1995 and 1996, possibly because of cooler June water temperature (14-15??C) in these years. The period of drift was brief (about 1-3 d), with larvae recruiting to shallow, low-velocity shorelines of main-channel and backwater areas to rear. Larvae reared in greatest densities at sites with fine sediment or sand substrates and moderate- to high-density vegetation (a mean density of 92.1 larvae/10 m3). The success of northern pikeminnow in the Columbia River basin may be partly attributable to their ability to locate adequate spawning and rearing conditions in a variety of main-stem and tributary locations.
Characteristics of fall chum salmon spawning habitat on a mainstem river in Interior Alaska
Burril, Sean E.; Zimmerman, Christian E.; Finn, James E.
2010-01-01
Chum salmon (Oncorhynchus keta) are the most abundant species of salmon spawning in the Yukon River drainage system, and they support important personal use, subsistence, and commercial fisheries. Chum salmon returning to the Tanana River in Interior Alaska are a significant contribution to the overall abundance of Yukon River chum salmon and an improved understanding of habitat use is needed to improve conservation of this important resource. We characterized spawning habitat of chum salmon using the mainstem Tanana River as part of a larger study to document spawning distributions and habitat use in this river. Areas of spawning activity were located using radiotelemetry and aerial helicopter surveys. At 11 spawning sites in the mainstem Tanana River, we recorded inter-gravel and surface-water temperatures and vertical hydraulic gradient (an indication of the direction of water flux) in substrate adjacent to salmon redds. At all locations, vertical hydraulic gradient adjacent to redds was positive, indicating that water was upwelling through the gravel. Inter-gravel temperatures adjacent to redds generally were warmer than surface water at most locations and were more stable than surface-water temperature. Inter-gravel water temperature adjacent to redds ranged from 2.6 to 5.8 degrees Celsius, whereas surface-water temperature ranged from greater than 0 to 5.5 degrees Celsius. Some sites were affected more by extremes in air temperature than others. At these sites, inter-gravel water temperature profiles were variable (with ranges similar to those observed in surface water), suggesting that even though upwelling habitats provide a stable thermal incubation environment, eggs and embryos still may be affected by extremes in air temperature. Fine sand and silt covered redds at multiple sites and were evidence of increased river flow during the winter months, which may be a potential source of increased mortality during egg-to-fry development. This study provides documentation of spawning by fall chum salmon and is the first study to continuously measure inter-gravel water temperature at sites in the mainstem Tanana River.
Bellmore, J. Ryan; Fremier, Alexander K.; Mejia, Francine; Newsom, Michael
2014-01-01
1. In stream ecosystems, Pacific salmon deliver subsidies of marine-derived nutrients and disturb the stream bed during spawning. The net effect of this nutrient subsidy and physical disturbance on biological communities can be hard to predict and is likely to be mediated by environmental conditions. For periphyton, empirical studies have revealed that the magnitude and direction of the response to salmon varies from one location to the next. Salmon appear to increase periphyton biomass and/or production in some contexts (a positive response), but decrease them in others (a negative response). 2. To reconcile these seemingly conflicting results, we constructed a system dynamics model that links periphyton biomass and production to salmon spawning. We used this model to explore how environmental conditions influence the periphyton response to salmon. 3. Our simulations suggest that the periphyton response to salmon is strongly mediated by both background nutrient concentrations and the proportion of the stream bed suitable for spawning. Positive periphyton responses occurred when both background nutrient concentrations were low (nutrient limiting conditions) and when little of the stream bed was suitable for spawning (because the substratum is too coarse). In contrast, negative responses occurred when nutrient concentrations were higher or a larger proportion of the bed was suitable for spawning. 4. Although periphyton biomass generally remained above or below background conditions for several months following spawning, periphyton production returned quickly to background values shortly afterwards. As a result, based upon our simulations, salmon did not greatly increase or decrease overall annual periphyton production. This suggests that any increase in production by fish or invertebrates in response to returning salmon is more likely to occur via direct consumption of salmon carcasses and/or eggs, rather than the indirect effects of greater periphyton production. 5. Overall, our simulations suggest that environmental factors need to be taken into account when considering the effects of spawning salmon on aquatic ecosystems. Our model offers researchers a framework for testing periphyton response to salmon across a range of conditions, which can be used to generate hypotheses, plan field experiments and guide data collection.
Method of making compost and spawned compost, mushroom spawn and generating methane gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoller, B.B.
1981-04-28
Newly designed ribbon-type mixers provide an improved method for making composts, aerating composts, growing mushroom spawn, generating methane gas, and filling conveyors in the mushroom-growing industry. The mixers may be the double-ribbon type for purely mixing operations or the single-ribbon type for moving the material from one place to another. Both types can operate under pressure. In preparing compost for mushroom growing, operators can first use the airtight mixers for a preliminary anaerobic fermentation to produce methane, then by changing the atmosphere to an oxidizing one, complete the compost preparation under the necessary aerobic conditions.
Use of female nest characteristics in the sexual behaviour of male sockeye salmon
Hamon, T.R.; Foote, C.J.; Brown, G.S.
1999-01-01
On three island beaches in Iliamna Lake, Alaska, large numbers of male sockeye salmon gathered and spawned in artificial excavations that mimicked a female's nest immediately prior to spawning, while apparently ignoring the control site. The number of males attracted was correlated positively with changes in the operational sex ratio. In contrast, on the mainland beach examined, no reaction to the artificial nests was apparent. The results are discussed in terms of mate searching behaviour by males, the duration of the spawning period, and associated selection pressures on males to use characteristics of their environment that provide information on availability of females.
18 CFR 1304.411 - Fish attractor, spawning, and habitat structures.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Fish attractor... STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.411 Fish attractor, spawning, and habitat structures. Fish attractors constitute potential obstructions and require TVA approval. (a) Fish attractors may be...
18 CFR 1304.411 - Fish attractor, spawning, and habitat structures.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Fish attractor... STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.411 Fish attractor, spawning, and habitat structures. Fish attractors constitute potential obstructions and require TVA approval. (a) Fish attractors may be...
18 CFR 1304.411 - Fish attractor, spawning, and habitat structures.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Fish attractor... STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.411 Fish attractor, spawning, and habitat structures. Fish attractors constitute potential obstructions and require TVA approval. (a) Fish attractors may be...
18 CFR 1304.411 - Fish attractor, spawning, and habitat structures.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Fish attractor... STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.411 Fish attractor, spawning, and habitat structures. Fish attractors constitute potential obstructions and require TVA approval. (a) Fish attractors may be...
NASA Astrophysics Data System (ADS)
Buffington, J. M.; Buxton, T.; Fremier, A. K.; Hassan, M. A.; Yager, E.
2013-12-01
The construction of redds by spawning salmonids modifies fluvial processes in ways that are beneficial to egg and embryo survival. Redd topography induces hyporheic flow that oxygenates embryos incubating within the streambed and creates form drag that reduces bed mobility and scour of salmonid eggs. Winnowing of fine material during redd construction also coarsens the streambed, increasing bed porosity and hyporheic flow and reducing bed mobility. In addition to the biological benefits, redds may influence channel morphology by altering channel hydraulics and bed load transport rates depending on the size and extent of redds relative to the size of the channel. A key question is how long do the physical and biological effects of redds last? Field observations indicate that in some basins redds are ephemeral, with redd topography rapidly erased by subsequent floods, while in other basins, redds can persist for years. We hypothesize that redd persistence is a function of basin hydrology, sediment supply, and characteristics of the spawning fish. Hydrology controls the frequency and magnitude of bed mobilizing flows following spawning, while bed load supply (volume and caliber) controls the degree of textural fining and consequent bed mobility after spawning, as well as the potential for burial of redd features. The effectiveness of flows in terms of their magnitude and duration depend on hydroclimate (i.e., snowmelt, rainfall, or transitional hydrographs), while bed load supply depends on basin geology, land use, and natural disturbance regimes (e.g., wildfire). Location within the stream network may also influence redd persistence. In particular, lakes effectively trap sediment and regulate downstream flow, which may promote long-lived redds in stream reaches below lakes. These geomorphic controls are modulated by biological factors: fish species (size of fish controls size of redds and magnitude of streambed coarsening); life history (timing of spawning and incubation relative to high flows); and population size (density of redds and extent of streambed alteration within a given reach). Species and life history also control the location of spawning within the basin, dictating the flow and sediment supply regimes. A theoretical framework is developed for predicting redd persistence as a function of the above physical and biological factors. We expect that long-lived redds will indicate either that the river is not competent to re-work the effects of spawning or that spawning occurs after peak flow events that are capable of modifying redd features. The longevity of redds and their associated effects on fluvial processes also provides a measure of the degree of potential ecological conditioning for future generations of fish. Future work will test the framework in field and laboratory settings.
Genetic evaluation of a Great Lakes lake trout hatchery program
Page, K.S.; Scribner, K.T.; Bast, D.; Holey, M.E.; Burnham-Curtis, M. K.
2005-01-01
Efforts over several decades to restore lake trout Salvelinus namaycush in U.S. waters of the upper Great Lakes have emphasized the stocking of juveniles from each of six hatchery broodstocks. Retention of genetic diversity across all offspring life history stages throughout the hatchery system has been an important component of the restoration hatchery and stocking program. Different stages of the lake trout hatchery program were examined to determine how effective hatchery practices have been in minimizing the loss of genetic diversity in broodstock adults and in progeny stocked. Microsatellite loci were used to estimate allele frequencies, measures of genetic diversity, and relatedness for wild source populations, hatchery broodstocks, and juveniles. We also estimated the effective number of breeders for each broodstock. Hatchery records were used to track destinations of fertilized eggs from all spawning dates to determine whether adult contributions to stocking programs were proportional to reproductive effort. Overall, management goals of maintaining genetic diversity were met across all stages of the hatchery program; however, we identified key areas where changes in mating regimes and in the distribution of fertilized gametes and juveniles could be improved. Estimates of effective breeding population size (Nb) were 9-41% of the total number of adults spawned. Low estimates of Nb were primarily attributed to spawning practices, including the pooling of gametes from multiple males and females and the reuse of males. Nonrandom selection and distribution of fertilized eggs before stocking accentuated declines in effective breeding population size and increased levels of relatedness of juveniles distributed to different rearing facilities and stocking locales. Adoption of guidelines that decrease adult reproductive variance and promote more equitable reproductive contributions of broodstock adults to juveniles would further enhance management goals of maintaining genetic diversity and minimize probabilities of consanguineous matings among stocked individuals when sexually mature. ?? Copyright by the American Fisheries Society 2005.
Chinook salmon use of spawning patches: relative roles of habitat quality, size, and connectivity.
Isaak, Daniel J; Thurow, Russell F; Rieman, Bruce E; Dunham, Jason B
2007-03-01
Declines in many native fish populations have led to reassessments of management goals and shifted priorities from consumptive uses to species preservation. As management has shifted, relevant environmental characteristics have evolved from traditional metrics that described local habitat quality to characterizations of habitat size and connectivity. Despite the implications this shift has for how habitats may be prioritized for conservation, it has been rare to assess the relative importance of these habitat components. We used an information-theoretic approach to select the best models from sets of logistic regressions that linked habitat quality, size, and connectivity to the occurrence of chinook salmon (Oncorhynchus tshawytscha) nests. Spawning distributions were censused annually from 1995 to 2004, and data were complemented with field measurements that described habitat quality in 43 suitable spawning patches across a stream network that drained 1150 km2 in central Idaho. Results indicated that the most plausible models were dominated by measures of habitat size and connectivity, whereas habitat quality was of minor importance. Connectivity was the strongest predictor of nest occurrence, but connectivity interacted with habitat size, which became relatively more important when populations were reduced. Comparison of observed nest distributions to null model predictions confirmed that the habitat size association was driven by a biological mechanism when populations were small, but this association may have been an area-related sampling artifact at higher abundances. The implications for habitat management are that the size and connectivity of existing habitat networks should be maintained whenever possible. In situations where habitat restoration is occurring, expansion of existing areas or creation of new habitats in key areas that increase connectivity may be beneficial. Information about habitat size and connectivity also could be used to strategically prioritize areas for improvement of local habitat quality, with areas not meeting minimum thresholds being deemed inappropriate for pursuit of restoration activities.