Data-Based Decision-Making: Developing a Method for Capturing Teachers' Understanding of CBM Graphs
ERIC Educational Resources Information Center
Espin, Christine A.; Wayman, Miya Miura; Deno, Stanley L.; McMaster, Kristen L.; de Rooij, Mark
2017-01-01
In this special issue, we explore the decision-making aspect of "data-based decision-making". The articles in the issue address a wide range of research questions, designs, methods, and analyses, but all focus on data-based decision-making for students with learning difficulties. In this first article, we introduce the topic of…
Garcia-Ramos, Camille; Lin, Jack J; Kellermann, Tanja S; Bonilha, Leonardo; Prabhakaran, Vivek; Hermann, Bruce P
2016-11-01
The recent revision of the classification of the epilepsies released by the ILAE Commission on Classification and Terminology (2005-2009) has been a major development in the field. Papers in this section of the special issue explore the relevance of other techniques to examine, categorize, and classify cognitive and behavioral comorbidities in epilepsy. In this review, we investigate the applicability of graph theory to understand the impact of epilepsy on cognition compared with controls and, then, the patterns of cognitive development in normally developing children which would set the stage for prospective comparisons of children with epilepsy and controls. The overall goal is to examine the potential utility of this analytic tool and approach to conceptualize the cognitive comorbidities in epilepsy. Given that the major cognitive domains representing cognitive function are interdependent, the associations between neuropsychological abilities underlying these domains can be referred to as a cognitive network. Therefore, the architecture of this cognitive network can be quantified and assessed using graph theory methods, rendering a novel approach to the characterization of cognitive status. We first provide fundamental information about graph theory procedures, followed by application of these techniques to cross-sectional analysis of neuropsychological data in children with epilepsy compared with that of controls, concluding with prospective analysis of neuropsychological development in younger and older healthy controls. This article is part of a Special Issue entitled "The new approach to classification: Rethinking cognition and behavior in epilepsy". Copyright © 2016 Elsevier Inc. All rights reserved.
Mathematical Methods of Communication Signal Design
1990-09-30
Labelling of Annals of Discrete Math ., 1989-90. iv. T. Etzion, S.W. Golomb, and H. Taylor, "Polygonal Path Constructions for Tuscan-k Squares...the Special Issue on Graph Labellings of A,.nals of Discrete Math ., 1989-1990. vi. T. Etzion, "An Algorithm for Realization of Permutations in a
CALL FOR PAPERS: Special Issue on `Singular Interactions in Quantum Mechanics: Solvable Models'
NASA Astrophysics Data System (ADS)
Dell'Antonio, G.; Exner, P.; Geyler, V.
2004-07-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and General entitled `Singular Interactions in Quantum Mechanics: Solvable Models'. This issue should be a repository for high quality original work. We are interested in having the topic interpreted broadly, that is, to include contributions dealing with point-interaction models, one- and many-body, quantum graphs, including graph-like structures coupling different dimensions, interactions supported by curves, manifolds, and more complicated sets, random and nonlinear couplings, etc., as well as approximations helping us to understand the meaning of singular couplings and applications of such models on different parts of quantum mechanics. We believe that when the second printing of the `bible' of the field, the book Solvable Models in Quantum Mechanics by S Albeverio, F Gesztesy, the late R Høegh-Krohn and H Holden, appears it is the right moment to review new developments in this area, with the hope of stimulating further development of these extremely useful techniques. The Editorial Board has invited G Dell'Antonio, P Exner and V Geyler to serve as Guest Editors for the special issue. Their criteria for acceptance of contributions are as follows: bullet The subject of the paper should relate to singular interactions in quantum mechanics in the sense described above. bullet Contributions will be refereed and processed according to the usual procedure of the journal. bullet Papers should be original; reviews of a work published elsewhere will not be accepted. The guidelines for the preparation of contributions are as follows: bullet The DEADLINE for submission of contributions is 31 October 2004. This deadline will allow the special issue to appear in about April 2005. bullet There is a nominal page limit of 15 printed pages (approximately 9000 words) per contribution. Papers exceeding these limits may be accepted at the discretion of the Guest Editors. Further advice on publishing your work in Journal of Physics A: Mathematical and General may be found at www.iop.org/Journals/jphysa. bullet Contributions to the Special Issue should if possible be submitted electronically by web upload at {www.iop.org/Journals/jphysa or by e-mail to jphysa@iop.org, quoting `JPhysA Special Issue-Quantum Mechanics: Solvable Models'. Submissions should ideally be in standard LaTeX form; we are, however, able to accept most formats including Microsoft Word. Please see the web site for further information on electronic submissions. bullet Authors unable to submit electronically may send hard copy contributions to: Publishing Administrators, Journal of Physics A, Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK, enclosing the electronic code on floppy disk if available and quoting `JPhysA Special Issue-Quantum Mechanics: Solvable Models'. bullet All contributions should be accompanied by a read-me file or covering letter giving the postal and e-mail addresses for correspondence. The Publishing Office should be notified of any subsequent change of address. This special issue will be published in the paper and online version of the journal. The corresponding author of each contribution will receive a complimentary copy of the issue. G Dell'Antonio, P Exner and V Geyler Guest Editors
Graph analysis of functional brain networks: practical issues in translational neuroscience
De Vico Fallani, Fabrizio; Richiardi, Jonas; Chavez, Mario; Achard, Sophie
2014-01-01
The brain can be regarded as a network: a connected system where nodes, or units, represent different specialized regions and links, or connections, represent communication pathways. From a functional perspective, communication is coded by temporal dependence between the activities of different brain areas. In the last decade, the abstract representation of the brain as a graph has allowed to visualize functional brain networks and describe their non-trivial topological properties in a compact and objective way. Nowadays, the use of graph analysis in translational neuroscience has become essential to quantify brain dysfunctions in terms of aberrant reconfiguration of functional brain networks. Despite its evident impact, graph analysis of functional brain networks is not a simple toolbox that can be blindly applied to brain signals. On the one hand, it requires the know-how of all the methodological steps of the pipeline that manipulate the input brain signals and extract the functional network properties. On the other hand, knowledge of the neural phenomenon under study is required to perform physiologically relevant analysis. The aim of this review is to provide practical indications to make sense of brain network analysis and contrast counterproductive attitudes. PMID:25180301
Writing a Scientific Paper II. Communication by Graphics
NASA Astrophysics Data System (ADS)
Sterken, C.
2011-07-01
This paper discusses facets of visual communication by way of images, graphs, diagrams and tabular material. Design types and elements of graphical images are presented, along with advice on how to create graphs, and on how to read graphical illustrations. This is done in astronomical context, using case studies and historical examples of good and bad graphics. Design types of graphs (scatter and vector plots, histograms, pie charts, ternary diagrams and three-dimensional surface graphs) are explicated, as well as the major components of graphical images (axes, legends, textual parts, etc.). The basic features of computer graphics (image resolution, vector images, bitmaps, graphical file formats and file conversions) are explained, as well as concepts of color models and of color spaces (with emphasis on aspects of readability of color graphics by viewers suffering from color-vision deficiencies). Special attention is given to the verity of graphical content, and to misrepresentations and errors in graphics and associated basic statistics. Dangers of dot joining and curve fitting are discussed, with emphasis on the perception of linearity, the issue of nonsense correlations, and the handling of outliers. Finally, the distinction between data, fits and models is illustrated.
Some special values of vertices of trees on the suborbital graphs
NASA Astrophysics Data System (ADS)
Deǧer, A. H.; Akbaba, Ü.
2018-01-01
In the present study, the action of a congruence subgroup of S L(2, Z) on ℚ ^ is examined. From this action and its properties, vertices of paths of minimal length on the suborbital graph Fu,N give rise to some special sequence values, that are alternate sequences such as identity, Fibonacci and Lucas sequences. These types of vertices also give rise to special continued fractions, hence from recurrence relations for continued fractions, values of these vertices and values of special sequences were associated.
Groupies in multitype random graphs.
Shang, Yilun
2016-01-01
A groupie in a graph is a vertex whose degree is not less than the average degree of its neighbors. Under some mild conditions, we show that the proportion of groupies is very close to 1/2 in multitype random graphs (such as stochastic block models), which include Erdős-Rényi random graphs, random bipartite, and multipartite graphs as special examples. Numerical examples are provided to illustrate the theoretical results.
Xuan, Junyu; Lu, Jie; Zhang, Guangquan; Luo, Xiangfeng
2015-12-01
Graph mining has been a popular research area because of its numerous application scenarios. Many unstructured and structured data can be represented as graphs, such as, documents, chemical molecular structures, and images. However, an issue in relation to current research on graphs is that they cannot adequately discover the topics hidden in graph-structured data which can be beneficial for both the unsupervised learning and supervised learning of the graphs. Although topic models have proved to be very successful in discovering latent topics, the standard topic models cannot be directly applied to graph-structured data due to the "bag-of-word" assumption. In this paper, an innovative graph topic model (GTM) is proposed to address this issue, which uses Bernoulli distributions to model the edges between nodes in a graph. It can, therefore, make the edges in a graph contribute to latent topic discovery and further improve the accuracy of the supervised and unsupervised learning of graphs. The experimental results on two different types of graph datasets show that the proposed GTM outperforms the latent Dirichlet allocation on classification by using the unveiled topics of these two models to represent graphs.
Asymptote Misconception on Graphing Functions: Does Graphing Software Resolve It?
ERIC Educational Resources Information Center
Öçal, Mehmet Fatih
2017-01-01
Graphing function is an important issue in mathematics education due to its use in various areas of mathematics and its potential roles for students to enhance learning mathematics. The use of some graphing software assists students' learning during graphing functions. However, the display of graphs of functions that students sketched by hand may…
Building Specialized Multilingual Lexical Graphs Using Community Resources
NASA Astrophysics Data System (ADS)
Daoud, Mohammad; Boitet, Christian; Kageura, Kyo; Kitamoto, Asanobu; Mangeot, Mathieu; Daoud, Daoud
We are describing methods for compiling domain-dedicated multilingual terminological data from various resources. We focus on collecting data from online community users as a main source, therefore, our approach depends on acquiring contributions from volunteers (explicit approach), and it depends on analyzing users' behaviors to extract interesting patterns and facts (implicit approach). As a generic repository that can handle the collected multilingual terminological data, we are describing the concept of dedicated Multilingual Preterminological Graphs MPGs, and some automatic approaches for constructing them by analyzing the behavior of online community users. A Multilingual Preterminological Graph is a special lexical resource that contains massive amount of terms related to a special domain. We call it preterminological, because it is a raw material that can be used to build a standardized terminological repository. Building such a graph is difficult using traditional approaches, as it needs huge efforts by domain specialists and terminologists. In our approach, we build such a graph by analyzing the access log files of the website of the community, and by finding the important terms that have been used to search in that website, and their association with each other. We aim at making this graph as a seed repository so multilingual volunteers can contribute. We are experimenting this approach with the Digital Silk Road Project. We have used its access log files since its beginning in 2003, and obtained an initial graph of around 116000 terms. As an application, we used this graph to obtain a preterminological multilingual database that is serving a CLIR system for the DSR project.
1990-03-01
Assmus, E. F., and J. D. Key, "Affine and projective planes", to appear in Discrete Math (Special Coding Theory Issue). 5. Assumus, E. F. and J. D...S. Locke, ’The subchromatic number of a graph", Discrete Math . 74 (1989)33-49. 24. Hedetniemi, S. T., and T. V. Wimer, "K-terminal recursive families...34Designs and geometries with Cayley", submitted to Journal of Symbolic Computation. 34. Key, J. D., "Regular sets in geometries", Annals of Discrete Math . 37
Enabling Graph Appliance for Genome Assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Rina; Graves, Jeffrey A; Lee, Sangkeun
2015-01-01
In recent years, there has been a huge growth in the amount of genomic data available as reads generated from various genome sequencers. The number of reads generated can be huge, ranging from hundreds to billions of nucleotide, each varying in size. Assembling such large amounts of data is one of the challenging computational problems for both biomedical and data scientists. Most of the genome assemblers developed have used de Bruijn graph techniques. A de Bruijn graph represents a collection of read sequences by billions of vertices and edges, which require large amounts of memory and computational power to storemore » and process. This is the major drawback to de Bruijn graph assembly. Massively parallel, multi-threaded, shared memory systems can be leveraged to overcome some of these issues. The objective of our research is to investigate the feasibility and scalability issues of de Bruijn graph assembly on Cray s Urika-GD system; Urika-GD is a high performance graph appliance with a large shared memory and massively multithreaded custom processor designed for executing SPARQL queries over large-scale RDF data sets. However, to the best of our knowledge, there is no research on representing a de Bruijn graph as an RDF graph or finding Eulerian paths in RDF graphs using SPARQL for potential genome discovery. In this paper, we address the issues involved in representing a de Bruin graphs as RDF graphs and propose an iterative querying approach for finding Eulerian paths in large RDF graphs. We evaluate the performance of our implementation on real world ebola genome datasets and illustrate how genome assembly can be accomplished with Urika-GD using iterative SPARQL queries.« less
ERIC Educational Resources Information Center
Stark, Merritt W.; Stark, Kathleen LaPiana
Visual aids have been developed to strengthen non-English speaking students' ability to speak and write English effectively in their subject areas. Among these aids, graphs have been valuable for economics students because they readily illustrate the nature of the relationship between two sets of numbers. Frequently, the ability to analyze graphs…
Garcia-Ramos, Camille; Lin, Jack J; Kellermann, Tanja S; Bonilha, Leonardo; Prabhakaran, Vivek; Hermann, Bruce P
2016-01-01
The recent revision of the classification of the epilepsies released by the ILAE Commission on Classification and Terminology (2005–2009) has been a major development in the field. Papers in this section of the special issue were charged with examining the relevance of other techniques and approaches to examining, categorizing and classifying cognitive and behavioral comorbidities. In that light, we investigate the applicability of graph theory to understand the impact of epilepsy on cognition compared to controls, and then the patterns of cognitive development in normally developing children which would set the stage for prospective comparisons of children with epilepsy and controls. The overall goal is to examine the potential utility of other analytic tools and approaches to conceptualize the cognitive comorbidities in epilepsy. Given that the major cognitive domains representing cognitive function are interdependent, the associations between the neuropsychological abilities underlying these domains can be referred to as a cognitive network. Therefore, the architecture of this cognitive network can be quantified and assessed using graph theory methods, rendering a novel approach to the characterization of cognitive status. In this article we provide fundamental information about graph theory procedures, followed by application of these techniques to cross-sectional analysis of neuropsychological data in children with epilepsy compared to controls, finalizing with prospective analysis of neuropsychological development in younger and older healthy controls. PMID:27017326
Special issue on cluster algebras in mathematical physics
NASA Astrophysics Data System (ADS)
Di Francesco, Philippe; Gekhtman, Michael; Kuniba, Atsuo; Yamazaki, Masahito
2014-02-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to cluster algebras in mathematical physics. Over the ten years since their introduction by Fomin and Zelevinsky, the theory of cluster algebras has witnessed a spectacular growth, first and foremost due to the many links that have been discovered with a wide range of subjects in mathematics and, increasingly, theoretical and mathematical physics. The main motivation of this special issue is to gather together reviews, recent developments and open problems, mainly from a mathematical physics viewpoint, into a single comprehensive issue. We expect that such a special issue will become a valuable reference for the broad scientific community working in mathematical and theoretical physics. The issue will consist of invited review articles and contributed papers containing new results on the interplays of cluster algebras with mathematical physics. Editorial policy The Guest Editors for this issue are Philippe Di Francesco, Michael Gekhtman, Atsuo Kuniba and Masahito Yamazaki. The areas and topics for this issue include, but are not limited to: discrete integrable systems arising from cluster mutations cluster structure on Poisson varieties cluster algebras and soliton interactions cluster positivity conjecture Y-systems in the thermodynamic Bethe ansatz and Zamolodchikov's periodicity conjecture T-system of transfer matrices of integrable lattice models dilogarithm identities in conformal field theory wall crossing in 4d N = 2 supersymmetric gauge theories 4d N = 1 quiver gauge theories described by networks scattering amplitudes of 4d N = 4 theories 3d N = 2 gauge theories described by flat connections on 3-manifolds integrability of dimer/Ising models on graphs. All contributions will be refereed and processed according to the usual procedure of the journal. Guidelines for preparation of contributions The deadline for contributed papers is 31 March 2014. This deadline will allow the special issue to appear at the end of 2014. There is no strict regulation on article size, but as a guide the preferable size is 15-30 pages for contributed papers and 40-60 pages for reviews. Further advice on publishing your work in Journal of Physics A may be found at iopscience.iop.org/jphysa. Contributions to the special issue should be submitted by web upload via ScholarOne Manuscripts, quoting 'JPhysA special issue on cluster algebras in mathematical physics'. Submissions should ideally be in standard LaTeX form. Please see the website for further information on electronic submissions. All contributions should be accompanied by a read-me file or covering letter giving the postal and e-mail addresses for correspondence. The Publishing Office should be notified of any subsequent change of address. The special issue will be published in the print and online versions of the journal.
Special issue on cluster algebras in mathematical physics
NASA Astrophysics Data System (ADS)
Di Francesco, Philippe; Gekhtman, Michael; Kuniba, Atsuo; Yamazaki, Masahito
2013-12-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to cluster algebras in mathematical physics. Over the ten years since their introduction by Fomin and Zelevinsky, the theory of cluster algebras has witnessed a spectacular growth, first and foremost due to the many links that have been discovered with a wide range of subjects in mathematics and, increasingly, theoretical and mathematical physics. The main motivation of this special issue is to gather together reviews, recent developments and open problems, mainly from a mathematical physics viewpoint, into a single comprehensive issue. We expect that such a special issue will become a valuable reference for the broad scientific community working in mathematical and theoretical physics. The issue will consist of invited review articles and contributed papers containing new results on the interplays of cluster algebras with mathematical physics. Editorial policy The Guest Editors for this issue are Philippe Di Francesco, Michael Gekhtman, Atsuo Kuniba and Masahito Yamazaki. The areas and topics for this issue include, but are not limited to: discrete integrable systems arising from cluster mutations cluster structure on Poisson varieties cluster algebras and soliton interactions cluster positivity conjecture Y-systems in the thermodynamic Bethe ansatz and Zamolodchikov's periodicity conjecture T-system of transfer matrices of integrable lattice models dilogarithm identities in conformal field theory wall crossing in 4d N = 2 supersymmetric gauge theories 4d N = 1 quiver gauge theories described by networks scattering amplitudes of 4d N = 4 theories 3d N = 2 gauge theories described by flat connections on 3-manifolds integrability of dimer/Ising models on graphs. All contributions will be refereed and processed according to the usual procedure of the journal. Guidelines for preparation of contributions The deadline for contributed papers is 31 March 2014. This deadline will allow the special issue to appear at the end of 2014. There is no strict regulation on article size, but as a guide the preferable size is 15-30 pages for contributed papers and 40-60 pages for reviews. Further advice on publishing your work in Journal of Physics A may be found at iopscience.iop.org/jphysa. Contributions to the special issue should be submitted by web upload via ScholarOne Manuscripts, quoting 'JPhysA special issue on cluster algebras in mathematical physics'. Submissions should ideally be in standard LaTeX form. Please see the website for further information on electronic submissions. All contributions should be accompanied by a read-me file or covering letter giving the postal and e-mail addresses for correspondence. The Publishing Office should be notified of any subsequent change of address. The special issue will be published in the print and online versions of the journal.
Special issue on cluster algebras in mathematical physics
NASA Astrophysics Data System (ADS)
Di Francesco, Philippe; Gekhtman, Michael; Kuniba, Atsuo; Yamazaki, Masahito
2013-11-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to cluster algebras in mathematical physics. Over the ten years since their introduction by Fomin and Zelevinsky, the theory of cluster algebras has witnessed a spectacular growth, first and foremost due to the many links that have been discovered with a wide range of subjects in mathematics and, increasingly, theoretical and mathematical physics. The main motivation of this special issue is to gather together reviews, recent developments and open problems, mainly from a mathematical physics viewpoint, into a single comprehensive issue. We expect that such a special issue will become a valuable reference for the broad scientific community working in mathematical and theoretical physics. The issue will consist of invited review articles and contributed papers containing new results on the interplays of cluster algebras with mathematical physics. Editorial policy The Guest Editors for this issue are Philippe Di Francesco, Michael Gekhtman, Atsuo Kuniba and Masahito Yamazaki. The areas and topics for this issue include, but are not limited to: discrete integrable systems arising from cluster mutations cluster structure on Poisson varieties cluster algebras and soliton interactions cluster positivity conjecture Y-systems in the thermodynamic Bethe ansatz and Zamolodchikov's periodicity conjecture T-system of transfer matrices of integrable lattice models dilogarithm identities in conformal field theory wall crossing in 4d N = 2 supersymmetric gauge theories 4d N = 1 quiver gauge theories described by networks scattering amplitudes of 4d N = 4 theories 3d N = 2 gauge theories described by flat connections on 3-manifolds integrability of dimer/Ising models on graphs. All contributions will be refereed and processed according to the usual procedure of the journal. Guidelines for preparation of contributions The deadline for contributed papers is 31 March 2014. This deadline will allow the special issue to appear at the end of 2014. There is no strict regulation on article size, but as a guide the preferable size is 15-30 pages for contributed papers and 40-60 pages for reviews. Further advice on publishing your work in Journal of Physics A may be found at iopscience.iop.org/jphysa. Contributions to the special issue should be submitted by web upload via ScholarOne Manuscripts, quoting 'JPhysA special issue on cluster algebras in mathematical physics'. Submissions should ideally be in standard LaTeX form. Please see the website for further information on electronic submissions. All contributions should be accompanied by a read-me file or covering letter giving the postal and e-mail addresses for correspondence. The Publishing Office should be notified of any subsequent change of address. The special issue will be published in the print and online versions of the journal.
Interference graph-based dynamic frequency reuse in optical attocell networks
NASA Astrophysics Data System (ADS)
Liu, Huanlin; Xia, Peijie; Chen, Yong; Wu, Lan
2017-11-01
Indoor optical attocell network may achieve higher capacity than radio frequency (RF) or Infrared (IR)-based wireless systems. It is proposed as a special type of visible light communication (VLC) system using Light Emitting Diodes (LEDs). However, the system spectral efficiency may be severely degraded owing to the inter-cell interference (ICI), particularly for dense deployment scenarios. To address these issues, we construct the spectral interference graph for indoor optical attocell network, and propose the Dynamic Frequency Reuse (DFR) and Weighted Dynamic Frequency Reuse (W-DFR) algorithms to decrease ICI and improve the spectral efficiency performance. The interference graph makes LEDs can transmit data without interference and select the minimum sub-bands needed for frequency reuse. Then, DFR algorithm reuses the system frequency equally across service-providing cells to mitigate spectrum interference. While W-DFR algorithm can reuse the system frequency by using the bandwidth weight (BW), which is defined based on the number of service users. Numerical results show that both of the proposed schemes can effectively improve the average spectral efficiency (ASE) of the system. Additionally, improvement of the user data rate is also obtained by analyzing its cumulative distribution function (CDF).
Knowledge Representation Issues in Semantic Graphs for Relationship Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barthelemy, M; Chow, E; Eliassi-Rad, T
2005-02-02
An important task for Homeland Security is the prediction of threat vulnerabilities, such as through the detection of relationships between seemingly disjoint entities. A structure used for this task is a ''semantic graph'', also known as a ''relational data graph'' or an ''attributed relational graph''. These graphs encode relationships as typed links between a pair of typed nodes. Indeed, semantic graphs are very similar to semantic networks used in AI. The node and link types are related through an ontology graph (also known as a schema). Furthermore, each node has a set of attributes associated with it (e.g., ''age'' maymore » be an attribute of a node of type ''person''). Unfortunately, the selection of types and attributes for both nodes and links depends on human expertise and is somewhat subjective and even arbitrary. This subjectiveness introduces biases into any algorithm that operates on semantic graphs. Here, we raise some knowledge representation issues for semantic graphs and provide some possible solutions using recently developed ideas in the field of complex networks. In particular, we use the concept of transitivity to evaluate the relevance of individual links in the semantic graph for detecting relationships. We also propose new statistical measures for semantic graphs and illustrate these semantic measures on graphs constructed from movies and terrorism data.« less
ERIC Educational Resources Information Center
Reading Teacher, 2012
2012-01-01
The "Toolbox" column features content adapted from ReadWriteThink.org lesson plans and provides practical tools for classroom teachers. This issue's column features a lesson plan adapted from "Graphing Plot and Character in a Novel" by Lisa Storm Fink and "Bio-graph: Graphing Life Events" by Susan Spangler. Students retell biographic events…
World Eagle, The Monthly Social Studies Resource: Data, Maps, Graphs. 1990-1991.
ERIC Educational Resources Information Center
World Eagle, 1991
1991-01-01
This document consists of the 10 issues of "World Eagle" issued during the 1990-1991 school year. World Eagle is a monthly social studies resource in which demographic and geographic information is presented in the forms of maps, graphs, charts, and text. Each issue of World Eagle has a section that focuses on a particular topic, along with other…
Probabilistic models of cognition: conceptual foundations.
Chater, Nick; Tenenbaum, Joshua B; Yuille, Alan
2006-07-01
Remarkable progress in the mathematics and computer science of probability has led to a revolution in the scope of probabilistic models. In particular, 'sophisticated' probabilistic methods apply to structured relational systems such as graphs and grammars, of immediate relevance to the cognitive sciences. This Special Issue outlines progress in this rapidly developing field, which provides a potentially unifying perspective across a wide range of domains and levels of explanation. Here, we introduce the historical and conceptual foundations of the approach, explore how the approach relates to studies of explicit probabilistic reasoning, and give a brief overview of the field as it stands today.
Neural coding in graphs of bidirectional associative memories.
Bouchain, A David; Palm, Günther
2012-01-24
In the last years we have developed large neural network models for the realization of complex cognitive tasks in a neural network architecture that resembles the network of the cerebral cortex. We have used networks of several cortical modules that contain two populations of neurons (one excitatory, one inhibitory). The excitatory populations in these so-called "cortical networks" are organized as a graph of Bidirectional Associative Memories (BAMs), where edges of the graph correspond to BAMs connecting two neural modules and nodes of the graph correspond to excitatory populations with associative feedback connections (and inhibitory interneurons). The neural code in each of these modules consists essentially of the firing pattern of the excitatory population, where mainly it is the subset of active neurons that codes the contents to be represented. The overall activity can be used to distinguish different properties of the patterns that are represented which we need to distinguish and control when performing complex tasks like language understanding with these cortical networks. The most important pattern properties or situations are: exactly fitting or matching input, incomplete information or partially matching pattern, superposition of several patterns, conflicting information, and new information that is to be learned. We show simple simulations of these situations in one area or module and discuss how to distinguish these situations based on the overall internal activation of the module. This article is part of a Special Issue entitled "Neural Coding". Copyright © 2011 Elsevier B.V. All rights reserved.
Special issue on cluster algebras in mathematical physics
NASA Astrophysics Data System (ADS)
Di Francesco, Philippe; Gekhtman, Michael; Kuniba, Atsuo; Yamazaki, Masahito
2013-10-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to cluster algebras in mathematical physics. Over the ten years since their introduction by Fomin and Zelevinsky, the theory of cluster algebras has witnessed a spectacular growth, first and foremost due to the many links that have been discovered with a wide range of subjects in mathematics and, increasingly, theoretical and mathematical physics. The main motivation of this special issue is to gather together reviews, recent developments and open problems, mainly from a mathematical physics viewpoint, into a single comprehensive issue. We expect that such a special issue will become a valuable reference for the broad scientific community working in mathematical and theoretical physics. The issue will consist of invited review articles and contributed papers containing new results on the interplays of cluster algebras with mathematical physics. Editorial policy The Guest Editors for this issue are Philippe Di Francesco, Michael Gekhtman, Atsuo Kuniba and Masahito Yamazaki. The areas and topics for this issue include, but are not limited to: discrete integrable systems arising from cluster mutations cluster structure on Poisson varieties cluster algebras and soliton interactions cluster positivity conjecture Y-systems in the thermodynamic Bethe ansatz and Zamolodchikov's periodicity conjecture T-system of transfer matrices of integrable lattice models dilogarithm identities in conformal field theory wall crossing in 4d N = 2 supersymmetric gauge theories 4d N = 1 quiver gauge theories described by networks scattering amplitudes of 4d N = 4 theories 3d N = 2 gauge theories described by flat connections on 3-manifolds integrability of dimer/Ising models on graphs. All contributions will be refereed and processed according to the usual procedure of the journal. Guidelines for preparation of contributions The deadline for contributed papers is 31 March 2014. This deadline will allow the special issue to appear at the end of 2014. There is no strict regulation on article size, but as a guide the preferable size is 15-30 pages for contributed papers and 40-60 pages for reviews. Further advice on publishing your work in Journal of Physics A may be found at iopscience.iop.org/jphysa. Contributions to the special issue should be submitted by web upload via authors.iop.org/, or by email to jphysa@iop.org, quoting 'JPhysA special issue on cluster algebras in mathematical physics'. Submissions should ideally be in standard LaTeX form. Please see the website for further information on electronic submissions. All contributions should be accompanied by a read-me file or covering letter giving the postal and e-mail addresses for correspondence. The Publishing Office should be notified of any subsequent change of address. The special issue will be published in the print and online versions of the journal.
Greenberger-Horne-Zeilinger paradoxes from qudit graph states.
Tang, Weidong; Yu, Sixia; Oh, C H
2013-03-08
One fascinating way of revealing quantum nonlocality is the all-versus-nothing test due to Greenberger, Horne, and Zeilinger (GHZ) known as the GHZ paradox. So far genuine multipartite and multilevel GHZ paradoxes are known to exist only in systems containing an odd number of particles. Here we shall construct GHZ paradoxes for an arbitrary number (greater than 3) of particles with the help of qudit graph states on a special kind of graphs, called GHZ graphs. Furthermore, based on the GHZ paradox arising from a GHZ graph, we derive a Bell inequality with two d-outcome observables for each observer, whose maximal violation attained by the corresponding graph state, and a Kochen-Specker inequality testing the quantum contextuality in a state-independent fashion.
Self-organizing maps for learning the edit costs in graph matching.
Neuhaus, Michel; Bunke, Horst
2005-06-01
Although graph matching and graph edit distance computation have become areas of intensive research recently, the automatic inference of the cost of edit operations has remained an open problem. In the present paper, we address the issue of learning graph edit distance cost functions for numerically labeled graphs from a corpus of sample graphs. We propose a system of self-organizing maps (SOMs) that represent the distance measuring spaces of node and edge labels. Our learning process is based on the concept of self-organization. It adapts the edit costs in such a way that the similarity of graphs from the same class is increased, whereas the similarity of graphs from different classes decreases. The learning procedure is demonstrated on two different applications involving line drawing graphs and graphs representing diatoms, respectively.
An Out-of-Math Experience: Einstein, Relativity, and the Developmental Mathematics Student.
ERIC Educational Resources Information Center
Fiore, Greg
2000-01-01
Discusses Einstein's special relativity theory and some of the developmental mathematics involved. Presents motivational classroom materials used in discussing relative-motion problems, evaluating a radical expression, graphing with asymptotes, interpreting a graph, studying variation, and solving literal and radical equations. (KHR)
Resistance distance and Kirchhoff index in circulant graphs
NASA Astrophysics Data System (ADS)
Zhang, Heping; Yang, Yujun
The resistance distance rij between vertices i and j of a connected (molecular) graph G is computed as the effective resistance between nodes i and j in the corresponding network constructed from G by replacing each edge of G with a unit resistor. The Kirchhoff index Kf(G) is the sum of resistance distances between all pairs of vertices. In this work, closed-form formulae for Kirchhoff index and resistance distances of circulant graphs are derived in terms of Laplacian spectrum and eigenvectors. Special formulae are also given for four classes of circulant graphs (complete graphs, complete graphs minus a perfect matching, cycles, Möbius ladders Mp). In particular, the asymptotic behavior of Kf(Mp) as p ? ? is obtained, that is, Kf(Mp) grows as ⅙p3 as p ? ?.
An evaluation of the directed flow graph methodology
NASA Technical Reports Server (NTRS)
Snyder, W. E.; Rajala, S. A.
1984-01-01
The applicability of the Directed Graph Methodology (DGM) to the design and analysis of special purpose image and signal processing hardware was evaluated. A special purpose image processing system was designed and described using DGM. The design, suitable for very large scale integration (VLSI) implements a region labeling technique. Two computer chips were designed, both using metal-nitride-oxide-silicon (MNOS) technology, as well as a functional system utilizing those chips to perform real time region labeling. The system is described in terms of DGM primitives. As it is currently implemented, DGM is inappropriate for describing synchronous, tightly coupled, special purpose systems. The nature of the DGM formalism lends itself more readily to modeling networks of general purpose processors.
Students' Reading Images in Kinematics: The Case of Real-Time Graphs.
ERIC Educational Resources Information Center
Testa, Italo; Monroy, Gabriella; Sassi, Elena
2002-01-01
Describes a study in which secondary school students were called upon to read and interpret documents containing images of real-time kinematics graphs specially designed to address common learning problems and minimize iconic difficulties. Makes suggestions regarding the acquisition of some specific capabilities that are needed to avoid…
Resistance Distances and Kirchhoff Index in Generalised Join Graphs
NASA Astrophysics Data System (ADS)
Chen, Haiyan
2017-03-01
The resistance distance between any two vertices of a connected graph is defined as the effective resistance between them in the electrical network constructed from the graph by replacing each edge with a unit resistor. The Kirchhoff index of a graph is defined as the sum of all the resistance distances between any pair of vertices of the graph. Let G=H[G1, G2, …, Gk ] be the generalised join graph of G1, G2, …, Gk determined by H. In this paper, we first give formulae for resistance distances and Kirchhoff index of G in terms of parameters of {G'_i}s and H. Then, we show that computing resistance distances and Kirchhoff index of G can be decomposed into simpler ones. Finally, we obtain explicit formulae for resistance distances and Kirchhoff index of G when {G'_i}s and H take some special graphs, such as the complete graph, the path, and the cycle.
Graph Theoretic Foundations of Multibody Dynamics Part I: Structural Properties
Jain, Abhinandan
2011-01-01
This is the first part of two papers that use concepts from graph theory to obtain a deeper understanding of the mathematical foundations of multibody dynamics. The key contribution is the development of a unifying framework that shows that key analytical results and computational algorithms in multibody dynamics are a direct consequence of structural properties and require minimal assumptions about the specific nature of the underlying multibody system. This first part focuses on identifying the abstract graph theoretic structural properties of spatial operator techniques in multibody dynamics. The second part paper exploits these structural properties to develop a broad spectrum of analytical results and computational algorithms. Towards this, we begin with the notion of graph adjacency matrices and generalize it to define block-weighted adjacency (BWA) matrices and their 1-resolvents. Previously developed spatial operators are shown to be special cases of such BWA matrices and their 1-resolvents. These properties are shown to hold broadly for serial and tree topology multibody systems. Specializations of the BWA and 1-resolvent matrices are referred to as spatial kernel operators (SKO) and spatial propagation operators (SPO). These operators and their special properties provide the foundation for the analytical and algorithmic techniques developed in the companion paper. We also use the graph theory concepts to study the topology induced sparsity structure of these operators and the system mass matrix. Similarity transformations of these operators are also studied. While the detailed development is done for the case of rigid-link multibody systems, the extension of these techniques to a broader class of systems (e.g. deformable links) are illustrated. PMID:22102790
Evolutionary dynamics on graphs
NASA Astrophysics Data System (ADS)
Lieberman, Erez; Hauert, Christoph; Nowak, Martin A.
2005-01-01
Evolutionary dynamics have been traditionally studied in the context of homogeneous or spatially extended populations. Here we generalize population structure by arranging individuals on a graph. Each vertex represents an individual. The weighted edges denote reproductive rates which govern how often individuals place offspring into adjacent vertices. The homogeneous population, described by the Moran process, is the special case of a fully connected graph with evenly weighted edges. Spatial structures are described by graphs where vertices are connected with their nearest neighbours. We also explore evolution on random and scale-free networks. We determine the fixation probability of mutants, and characterize those graphs for which fixation behaviour is identical to that of a homogeneous population. Furthermore, some graphs act as suppressors and others as amplifiers of selection. It is even possible to find graphs that guarantee the fixation of any advantageous mutant. We also study frequency-dependent selection and show that the outcome of evolutionary games can depend entirely on the structure of the underlying graph. Evolutionary graph theory has many fascinating applications ranging from ecology to multi-cellular organization and economics.
Graph characterization via Ihara coefficients.
Ren, Peng; Wilson, Richard C; Hancock, Edwin R
2011-02-01
The novel contributions of this paper are twofold. First, we demonstrate how to characterize unweighted graphs in a permutation-invariant manner using the polynomial coefficients from the Ihara zeta function, i.e., the Ihara coefficients. Second, we generalize the definition of the Ihara coefficients to edge-weighted graphs. For an unweighted graph, the Ihara zeta function is the reciprocal of a quasi characteristic polynomial of the adjacency matrix of the associated oriented line graph. Since the Ihara zeta function has poles that give rise to infinities, the most convenient numerically stable representation is to work with the coefficients of the quasi characteristic polynomial. Moreover, the polynomial coefficients are invariant to vertex order permutations and also convey information concerning the cycle structure of the graph. To generalize the representation to edge-weighted graphs, we make use of the reduced Bartholdi zeta function. We prove that the computation of the Ihara coefficients for unweighted graphs is a special case of our proposed method for unit edge weights. We also present a spectral analysis of the Ihara coefficients and indicate their advantages over other graph spectral methods. We apply the proposed graph characterization method to capturing graph-class structure and clustering graphs. Experimental results reveal that the Ihara coefficients are more effective than methods based on Laplacian spectra.
Metaphors for Understanding Graphs: What You See Is What You See.
ERIC Educational Resources Information Center
Goldenberg, E. Paul; Kliman, Marlene
Computer graphing makes it easier for students and teachers to create and manipulate graphs. Scale issues are nearly unavoidable in the computer context. In interviews and protocol analysis with six students from grade 8, and 12 students from grades 11 and 12, it became apparent that some aspects of scale are clearly understood very early while…
ERIC Educational Resources Information Center
Rizzi, Gleides A. L.
2016-01-01
This article provides teachers in rural settings with suggestions on how to engage classroom resource personnel (i.e., volunteers, instructional assistants) in monitoring students' achievement. The target, act, and graph (TAG) strategy offers rural special educators ways to empower classroom resource persons through training and use of the TAG…
NEFI: Network Extraction From Images
Dirnberger, M.; Kehl, T.; Neumann, A.
2015-01-01
Networks are amongst the central building blocks of many systems. Given a graph of a network, methods from graph theory enable a precise investigation of its properties. Software for the analysis of graphs is widely available and has been applied to study various types of networks. In some applications, graph acquisition is relatively simple. However, for many networks data collection relies on images where graph extraction requires domain-specific solutions. Here we introduce NEFI, a tool that extracts graphs from images of networks originating in various domains. Regarding previous work on graph extraction, theoretical results are fully accessible only to an expert audience and ready-to-use implementations for non-experts are rarely available or insufficiently documented. NEFI provides a novel platform allowing practitioners to easily extract graphs from images by combining basic tools from image processing, computer vision and graph theory. Thus, NEFI constitutes an alternative to tedious manual graph extraction and special purpose tools. We anticipate NEFI to enable time-efficient collection of large datasets. The analysis of these novel datasets may open up the possibility to gain new insights into the structure and function of various networks. NEFI is open source and available at http://nefi.mpi-inf.mpg.de. PMID:26521675
The Hockey Stick and the Climate Wars: Dispatches From The Front Lines
NASA Astrophysics Data System (ADS)
Mann, M. E.
2011-12-01
A central figure in the controversy over human-caused climate change has been The Hockey Stick, a simple, easy-to-understand graph my colleagues and I constructed to depict changes in Earth's temperature back to 1000 AD. The graph was featured in the high-profile Summary for Policy Makers of the 2001 report of the Intergovernmental Panel on Climate Change (IPCC), and it quickly became an icon in the debate over human-caused (anthropogenic) climate change. I will tell the story behind the Hockey Stick, using it as a vehicle for exploring broader issues regarding the role of skepticism in science, the uneasy relationship between science and politics, and the dangers that arise when special economic interests and those who do their bidding attempt to skew the discourse over policy-relevant areas of science. In short, I attempt to use the Hockey Stick to cut through the fog of disinformation that has been generated by the campaign to deny the reality of climate change. It is my intent, in so doing, to reveal the very real threat to our future that lies behind it.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braunstein, Samuel L.; Ghosh, Sibasish; Severini, Simone
We reconsider density matrices of graphs as defined in quant-ph/0406165. The density matrix of a graph is the combinatorial Laplacian of the graph normalized to have unit trace. We describe a simple combinatorial condition (the 'degree condition') to test the separability of density matrices of graphs. The condition is directly related to the Peres-Horodecki partial transposition condition. We prove that the degree condition is necessary for separability, and we conjecture that it is also sufficient. We prove special cases of the conjecture involving nearest-point graphs and perfect matchings. We observe that the degree condition appears to have a value beyondmore » the density matrices of graphs. In fact, we point out that circulant density matrices and other matrices constructed from groups always satisfy the condition and indeed are separable with respect to any split. We isolate a number of problems and delineate further generalizations.« less
Tutte polynomial in functional magnetic resonance imaging
NASA Astrophysics Data System (ADS)
García-Castillón, Marlly V.
2015-09-01
Methods of graph theory are applied to the processing of functional magnetic resonance images. Specifically the Tutte polynomial is used to analyze such kind of images. Functional Magnetic Resonance Imaging provide us connectivity networks in the brain which are represented by graphs and the Tutte polynomial will be applied. The problem of computing the Tutte polynomial for a given graph is #P-hard even for planar graphs. For a practical application the maple packages "GraphTheory" and "SpecialGraphs" will be used. We will consider certain diagram which is depicting functional connectivity, specifically between frontal and posterior areas, in autism during an inferential text comprehension task. The Tutte polynomial for the resulting neural networks will be computed and some numerical invariants for such network will be obtained. Our results show that the Tutte polynomial is a powerful tool to analyze and characterize the networks obtained from functional magnetic resonance imaging.
Huang, Xiaoke; Zhao, Ye; Yang, Jing; Zhang, Chong; Ma, Chao; Ye, Xinyue
2016-01-01
We propose TrajGraph, a new visual analytics method, for studying urban mobility patterns by integrating graph modeling and visual analysis with taxi trajectory data. A special graph is created to store and manifest real traffic information recorded by taxi trajectories over city streets. It conveys urban transportation dynamics which can be discovered by applying graph analysis algorithms. To support interactive, multiscale visual analytics, a graph partitioning algorithm is applied to create region-level graphs which have smaller size than the original street-level graph. Graph centralities, including Pagerank and betweenness, are computed to characterize the time-varying importance of different urban regions. The centralities are visualized by three coordinated views including a node-link graph view, a map view and a temporal information view. Users can interactively examine the importance of streets to discover and assess city traffic patterns. We have implemented a fully working prototype of this approach and evaluated it using massive taxi trajectories of Shenzhen, China. TrajGraph's capability in revealing the importance of city streets was evaluated by comparing the calculated centralities with the subjective evaluations from a group of drivers in Shenzhen. Feedback from a domain expert was collected. The effectiveness of the visual interface was evaluated through a formal user study. We also present several examples and a case study to demonstrate the usefulness of TrajGraph in urban transportation analysis.
CALL FOR PAPERS: Special issue on the random search problem: trends and perspectives
NASA Astrophysics Data System (ADS)
da Luz, Marcos G. E.; Grosberg, Alexander Y.; Raposo, Ernesto P.; Viswanathan, Gandhi M.
2008-11-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to the subject of the random search problem. The motivation behind this special issue is to summarize in a single comprehensive publication, the main aspects (past and present), latest developments, different viewpoints and the directions being followed in this multidisciplinary field. We hope that such a special issue could become a particularly valuable reference for the broad scientific community working with the general random search problem. The Editorial Board has invited Marcos G E da Luz, Alexander Y Grosberg, Ernesto P Raposo and Gandhi M Viswanathan to serve as Guest Editors for the special issue. The general question of how to optimize the search for specific target objects in either continuous or discrete environments when the information available is limited is of significant importance in a broad range of fields. Representative examples include ecology (animal foraging, dispersion of populations), geology (oil recovery from mature reservoirs), information theory (automated researchers of registers in high-capacity database), molecular biology (proteins searching for their sites, e.g., on DNA ), etc. One reason underlying the richness of the random search problem relates to the `ignorance' of the locations of the randomly located `targets'. A statistical approach to the search problem can deal adequately with incomplete information and so stochastic strategies become advantageous. The general problem of how to search efficiently for randomly located target sites can thus be quantitatively described using the concepts and methods of statistical physics and stochastic processes. Scope Thus far, to the best of our knowledge, no recent textbook or review article in a physics journal has appeared on this topic. This makes a special issue with review and research articles attractive to those interested in acquiring a general introduction to the field. The subject can be approached from the perspective of different fields: ecology, networks, transport problems, molecular biology, etc. The study of the problem is particularly suited to the concepts and methods of statistical physics and stochastic processes; for example, fractals, random walks, anomalous diffusion. Discrete landscapes can be approached via graph theory, random lattices and complex networks. Such topics are regularly discussed in Journal of Physics A: Mathematical and Theoretical. All such aspects of the problem fall within the scope and focus of this special issue on the random search problem: trends and perspectives. Editorial policy All contributions to the special issue will be refereed in accordance with the refereeing policy of the journal. In particular, all research papers will be expected to be original work reporting substantial new results. The issue will also contain a number of review articles by invitation only. The Guest Editors reserve the right to judge whether a contribution fits the scope of the special issue. Guidelines for preparation of contributions We aim to publish the special issue in August 2009. To realize this, the DEADLINE for contributed papers is 15 January 2009. There is a page limit of 15 printed pages (approximately 9000 words) per contribution. For papers exceeding this limit, the Guest Editors reserve the right to request a reduction in length. Further advice on document preparation can be found at www.iop.org/Journals/jphysa. Contributions to the special issue should if possible be submitted electronically by web upload at www.iop.org/Journals/jphysa, or by email to jphysa@iop.org, quoting 'J. Phys. A Special Issue— Random Search Problem'. Please state whether the paper has been invited or is contributed. Submissions should ideally be in standard LaTeX form. Please see the website for further information on electronic submissions. Authors unable to submit electronically may send hard-copy contributions to: Publishing Administrators, Journal of Physics A, Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK, enclosing electronic code on CD if available and quoting 'J. Phys. A Special Issue—Random Search Problem'. All contributions should be accompanied by a read-me file or covering letter giving the postal and e-mail addresses for correspondence. The Publishing Office should be notified of any subsequent change of address. This special issue will be published in the paper and online version of the journal. The corresponding author of each contribution will receive a complimentary copy of the issue.
Learning and Inductive Inference
1982-07-01
a set of graph grammars to describe visual scenes . Other researchers have applied graph grammars to the pattern recognition of handwritten characters...345 1. Issues / 345 2. Mostows’ operationalizer / 350 0. Learning from ezamples / 360 1. Issues / 3t60 2. Learning in control and pattern recognition ...art.icleis on rote learntinig and ailvice- tAik g. K(ennieth Clarkson contributed Ltte article on grmvit atical inference, anid Geoff’ lroiney wrote
Rossi, Luca; Torsello, Andrea; Hancock, Edwin R
2015-02-01
In this paper we propose a quantum algorithm to measure the similarity between a pair of unattributed graphs. We design an experiment where the two graphs are merged by establishing a complete set of connections between their nodes and the resulting structure is probed through the evolution of continuous-time quantum walks. In order to analyze the behavior of the walks without causing wave function collapse, we base our analysis on the recently introduced quantum Jensen-Shannon divergence. In particular, we show that the divergence between the evolution of two suitably initialized quantum walks over this structure is maximum when the original pair of graphs is isomorphic. We also prove that under special conditions the divergence is minimum when the sets of eigenvalues of the Hamiltonians associated with the two original graphs have an empty intersection.
Process and representation in graphical displays
NASA Technical Reports Server (NTRS)
Gillan, Douglas J.; Lewis, Robert; Rudisill, Marianne
1993-01-01
Our initial model of graphic comprehension has focused on statistical graphs. Like other models of human-computer interaction, models of graphical comprehension can be used by human-computer interface designers and developers to create interfaces that present information in an efficient and usable manner. Our investigation of graph comprehension addresses two primary questions: how do people represent the information contained in a data graph?; and how do they process information from the graph? The topics of focus for graphic representation concern the features into which people decompose a graph and the representations of the graph in memory. The issue of processing can be further analyzed as two questions: what overall processing strategies do people use?; and what are the specific processing skills required?
Traffic Safety for Special Children
ERIC Educational Resources Information Center
Wilson, Val; MacKenzie, R. A.
1974-01-01
In a 6 weeks' unit on traffic education using flannel graphs, filmstrips and models, 12 special class students (IQ 55-82) ages 7- to 11-years-old learned six basic skills including crossing a road, obeying traffic lights and walking on country roads. (CL)
Upper bound for the span of pencil graph
NASA Astrophysics Data System (ADS)
Parvathi, N.; Vimala Rani, A.
2018-04-01
An L(2,1)-Coloring or Radio Coloring or λ coloring of a graph is a function f from the vertex set V(G) to the set of all nonnegative integers such that |f(x) ‑ f(y)| ≥ 2 if d(x,y) = 1 and |f(x) ‑ f(y)| ≥ 1 if d(x,y)=2, where d(x,y) denotes the distance between x and y in G. The L(2,1)-coloring number or span number λ(G) of G is the smallest number k such that G has an L(2,1)-coloring with max{f(v) : v ∈ V(G)} = k. [2]The minimum number of colors used in L(2,1)-coloring is called the radio number rn(G) of G (Positive integer). Griggs and yeh conjectured that λ(G) ≤ Δ2 for any simple graph with maximum degree Δ>2. In this article, we consider some special graphs like, n-sunlet graph, pencil graph families and derive its upper bound of (G) and rn(G).
Degree sequence in message transfer
NASA Astrophysics Data System (ADS)
Yamuna, M.
2017-11-01
Message encryption is always an issue in current communication scenario. Methods are being devised using various domains. Graphs satisfy numerous unique properties which can be used for message transfer. In this paper, I propose a message encryption method based on degree sequence of graphs.
An MBO Scheme for Minimizing the Graph Ohta-Kawasaki Functional
NASA Astrophysics Data System (ADS)
van Gennip, Yves
2018-06-01
We study a graph-based version of the Ohta-Kawasaki functional, which was originally introduced in a continuum setting to model pattern formation in diblock copolymer melts and has been studied extensively as a paradigmatic example of a variational model for pattern formation. Graph-based problems inspired by partial differential equations (PDEs) and variational methods have been the subject of many recent papers in the mathematical literature, because of their applications in areas such as image processing and data classification. This paper extends the area of PDE inspired graph-based problems to pattern-forming models, while continuing in the tradition of recent papers in the field. We introduce a mass conserving Merriman-Bence-Osher (MBO) scheme for minimizing the graph Ohta-Kawasaki functional with a mass constraint. We present three main results: (1) the Lyapunov functionals associated with this MBO scheme Γ -converge to the Ohta-Kawasaki functional (which includes the standard graph-based MBO scheme and total variation as a special case); (2) there is a class of graphs on which the Ohta-Kawasaki MBO scheme corresponds to a standard MBO scheme on a transformed graph and for which generalized comparison principles hold; (3) this MBO scheme allows for the numerical computation of (approximate) minimizers of the graph Ohta-Kawasaki functional with a mass constraint.
NASA Astrophysics Data System (ADS)
Kobylkin, Konstantin
2016-10-01
Computational complexity and approximability are studied for the problem of intersecting of a set of straight line segments with the smallest cardinality set of disks of fixed radii r > 0 where the set of segments forms straight line embedding of possibly non-planar geometric graph. This problem arises in physical network security analysis for telecommunication, wireless and road networks represented by specific geometric graphs defined by Euclidean distances between their vertices (proximity graphs). It can be formulated in a form of known Hitting Set problem over a set of Euclidean r-neighbourhoods of segments. Being of interest computational complexity and approximability of Hitting Set over so structured sets of geometric objects did not get much focus in the literature. Strong NP-hardness of the problem is reported over special classes of proximity graphs namely of Delaunay triangulations, some of their connected subgraphs, half-θ6 graphs and non-planar unit disk graphs as well as APX-hardness is given for non-planar geometric graphs at different scales of r with respect to the longest graph edge length. Simple constant factor approximation algorithm is presented for the case where r is at the same scale as the longest edge length.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kupavskii, A B; Raigorodskii, A M
2013-10-31
We investigate in detail some properties of distance graphs constructed on the integer lattice. Such graphs find wide applications in problems of combinatorial geometry, in particular, such graphs were employed to answer Borsuk's question in the negative and to obtain exponential estimates for the chromatic number of the space. This work is devoted to the study of the number of cliques and the chromatic number of such graphs under certain conditions. Constructions of sequences of distance graphs are given, in which the graphs have unit length edges and contain a large number of triangles that lie on a sphere of radius 1/√3more » (which is the minimum possible). At the same time, the chromatic numbers of the graphs depend exponentially on their dimension. The results of this work strengthen and generalize some of the results obtained in a series of papers devoted to related issues. Bibliography: 29 titles.« less
Informative graphing of continuous safety variables relative to normal reference limits.
Breder, Christopher D
2018-05-16
Interpreting graphs of continuous safety variables can be complicated because differences in age, gender, and testing site methodologies data may give rise to multiple reference limits. Furthermore, data below the lower limit of normal are compressed relative to those points above the upper limit of normal. The objective of this study is to develop a graphing technique that addresses these issues and is visually intuitive. A mock dataset with multiple reference ranges is initially used to develop the graphing technique. Formulas are developed for conditions where data are above the upper limit of normal, normal, below the lower limit of normal, and below the lower limit of normal when the data value equals zero. After the formulae are developed, an anonymized dataset from an actual set of trials for an approved drug is evaluated comparing the technique developed in this study to standard graphical methods. Formulas are derived for the novel graphing method based on multiples of the normal limits. The formula for values scaled between the upper and lower limits of normal is a novel application of a readily available scaling formula. The formula for the lower limit of normal is novel and addresses the issue of this value potentially being indeterminate when the result to be scaled as a multiple is zero. The formulae and graphing method described in this study provides a visually intuitive method to graph continuous safety data including laboratory values, vital sign data.
Simulator for heterogeneous dataflow architectures
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R.
1993-01-01
A new simulator is developed to simulate the execution of an algorithm graph in accordance with the Algorithm to Architecture Mapping Model (ATAMM) rules. ATAMM is a Petri Net model which describes the periodic execution of large-grained, data-independent dataflow graphs and which provides predictable steady state time-optimized performance. This simulator extends the ATAMM simulation capability from a heterogenous set of resources, or functional units, to a more general heterogenous architecture. Simulation test cases show that the simulator accurately executes the ATAMM rules for both a heterogenous architecture and a homogenous architecture, which is the special case for only one processor type. The simulator forms one tool in an ATAMM Integrated Environment which contains other tools for graph entry, graph modification for performance optimization, and playback of simulations for analysis.
Decentralized Estimation and Control for Preserving the Strong Connectivity of Directed Graphs.
Sabattini, Lorenzo; Secchi, Cristian; Chopra, Nikhil
2015-10-01
In order to accomplish cooperative tasks, decentralized systems are required to communicate among each other. Thus, maintaining the connectivity of the communication graph is a fundamental issue. Connectivity maintenance has been extensively studied in the last few years, but generally considering undirected communication graphs. In this paper, we introduce a decentralized control and estimation strategy to maintain the strong connectivity property of directed communication graphs. In particular, we introduce a hierarchical estimation procedure that implements power iteration in a decentralized manner, exploiting an algorithm for balancing strongly connected directed graphs. The output of the estimation system is then utilized for guaranteeing preservation of the strong connectivity property. The control strategy is validated by means of analytical proofs and simulation results.
Communication: Analysing kinetic transition networks for rare events.
Stevenson, Jacob D; Wales, David J
2014-07-28
The graph transformation approach is a recently proposed method for computing mean first passage times, rates, and committor probabilities for kinetic transition networks. Here we compare the performance to existing linear algebra methods, focusing on large, sparse networks. We show that graph transformation provides a much more robust framework, succeeding when numerical precision issues cause the other methods to fail completely. These are precisely the situations that correspond to rare event dynamics for which the graph transformation was introduced.
Does Your Graphing Software Real-ly Work?
ERIC Educational Resources Information Center
Marchand, R. J.; McDevitt, T. J.; Bosse, Michael J.; Nandakumar, N. R.
2007-01-01
Many popular mathematical software products including Maple, Mathematica, Derive, Mathcad, Matlab, and some of the TI calculators produce incorrect graphs because they use complex arithmetic instead of "real" arithmetic. This article expounds on this issue, provides possible remedies for instructors to share with their students, and demonstrates…
Graph-Based Semi-Supervised Hyperspectral Image Classification Using Spatial Information
NASA Astrophysics Data System (ADS)
Jamshidpour, N.; Homayouni, S.; Safari, A.
2017-09-01
Hyperspectral image classification has been one of the most popular research areas in the remote sensing community in the past decades. However, there are still some problems that need specific attentions. For example, the lack of enough labeled samples and the high dimensionality problem are two most important issues which degrade the performance of supervised classification dramatically. The main idea of semi-supervised learning is to overcome these issues by the contribution of unlabeled samples, which are available in an enormous amount. In this paper, we propose a graph-based semi-supervised classification method, which uses both spectral and spatial information for hyperspectral image classification. More specifically, two graphs were designed and constructed in order to exploit the relationship among pixels in spectral and spatial spaces respectively. Then, the Laplacians of both graphs were merged to form a weighted joint graph. The experiments were carried out on two different benchmark hyperspectral data sets. The proposed method performed significantly better than the well-known supervised classification methods, such as SVM. The assessments consisted of both accuracy and homogeneity analyses of the produced classification maps. The proposed spectral-spatial SSL method considerably increased the classification accuracy when the labeled training data set is too scarce.When there were only five labeled samples for each class, the performance improved 5.92% and 10.76% compared to spatial graph-based SSL, for AVIRIS Indian Pine and Pavia University data sets respectively.
Performance Analysis of Evolutionary Algorithms for Steiner Tree Problems.
Lai, Xinsheng; Zhou, Yuren; Xia, Xiaoyun; Zhang, Qingfu
2017-01-01
The Steiner tree problem (STP) aims to determine some Steiner nodes such that the minimum spanning tree over these Steiner nodes and a given set of special nodes has the minimum weight, which is NP-hard. STP includes several important cases. The Steiner tree problem in graphs (GSTP) is one of them. Many heuristics have been proposed for STP, and some of them have proved to be performance guarantee approximation algorithms for this problem. Since evolutionary algorithms (EAs) are general and popular randomized heuristics, it is significant to investigate the performance of EAs for STP. Several empirical investigations have shown that EAs are efficient for STP. However, up to now, there is no theoretical work on the performance of EAs for STP. In this article, we reveal that the (1+1) EA achieves 3/2-approximation ratio for STP in a special class of quasi-bipartite graphs in expected runtime [Formula: see text], where [Formula: see text], [Formula: see text], and [Formula: see text] are, respectively, the number of Steiner nodes, the number of special nodes, and the largest weight among all edges in the input graph. We also show that the (1+1) EA is better than two other heuristics on two GSTP instances, and the (1+1) EA may be inefficient on a constructed GSTP instance.
A Ranking Approach on Large-Scale Graph With Multidimensional Heterogeneous Information.
Wei, Wei; Gao, Bin; Liu, Tie-Yan; Wang, Taifeng; Li, Guohui; Li, Hang
2016-04-01
Graph-based ranking has been extensively studied and frequently applied in many applications, such as webpage ranking. It aims at mining potentially valuable information from the raw graph-structured data. Recently, with the proliferation of rich heterogeneous information (e.g., node/edge features and prior knowledge) available in many real-world graphs, how to effectively and efficiently leverage all information to improve the ranking performance becomes a new challenging problem. Previous methods only utilize part of such information and attempt to rank graph nodes according to link-based methods, of which the ranking performances are severely affected by several well-known issues, e.g., over-fitting or high computational complexity, especially when the scale of graph is very large. In this paper, we address the large-scale graph-based ranking problem and focus on how to effectively exploit rich heterogeneous information of the graph to improve the ranking performance. Specifically, we propose an innovative and effective semi-supervised PageRank (SSP) approach to parameterize the derived information within a unified semi-supervised learning framework (SSLF-GR), then simultaneously optimize the parameters and the ranking scores of graph nodes. Experiments on the real-world large-scale graphs demonstrate that our method significantly outperforms the algorithms that consider such graph information only partially.
Efficient and Scalable Graph Similarity Joins in MapReduce
Chen, Yifan; Zhang, Weiming; Tang, Jiuyang
2014-01-01
Along with the emergence of massive graph-modeled data, it is of great importance to investigate graph similarity joins due to their wide applications for multiple purposes, including data cleaning, and near duplicate detection. This paper considers graph similarity joins with edit distance constraints, which return pairs of graphs such that their edit distances are no larger than a given threshold. Leveraging the MapReduce programming model, we propose MGSJoin, a scalable algorithm following the filtering-verification framework for efficient graph similarity joins. It relies on counting overlapping graph signatures for filtering out nonpromising candidates. With the potential issue of too many key-value pairs in the filtering phase, spectral Bloom filters are introduced to reduce the number of key-value pairs. Furthermore, we integrate the multiway join strategy to boost the verification, where a MapReduce-based method is proposed for GED calculation. The superior efficiency and scalability of the proposed algorithms are demonstrated by extensive experimental results. PMID:25121135
Efficient and scalable graph similarity joins in MapReduce.
Chen, Yifan; Zhao, Xiang; Xiao, Chuan; Zhang, Weiming; Tang, Jiuyang
2014-01-01
Along with the emergence of massive graph-modeled data, it is of great importance to investigate graph similarity joins due to their wide applications for multiple purposes, including data cleaning, and near duplicate detection. This paper considers graph similarity joins with edit distance constraints, which return pairs of graphs such that their edit distances are no larger than a given threshold. Leveraging the MapReduce programming model, we propose MGSJoin, a scalable algorithm following the filtering-verification framework for efficient graph similarity joins. It relies on counting overlapping graph signatures for filtering out nonpromising candidates. With the potential issue of too many key-value pairs in the filtering phase, spectral Bloom filters are introduced to reduce the number of key-value pairs. Furthermore, we integrate the multiway join strategy to boost the verification, where a MapReduce-based method is proposed for GED calculation. The superior efficiency and scalability of the proposed algorithms are demonstrated by extensive experimental results.
Structure and strategy in encoding simplified graphs
NASA Technical Reports Server (NTRS)
Schiano, Diane J.; Tversky, Barbara
1992-01-01
Tversky and Schiano (1989) found a systematic bias toward the 45-deg line in memory for the slopes of identical lines when embedded in graphs, but not in maps, suggesting the use of a cognitive reference frame specifically for encoding meaningful graphs. The present experiments explore this issue further using the linear configurations alone as stimuli. Experiments 1 and 2 demonstrate that perception and immediate memory for the slope of a test line within orthogonal 'axes' are predictable from purely structural considerations. In Experiments 3 and 4, subjects were instructed to use a diagonal-reference strategy in viewing the stimuli, which were described as 'graphs' only in Experiment 3. Results for both studies showed the diagonal bias previously found only for graphs. This pattern provides converging evidence for the diagonal as a cognitive reference frame in encoding linear graphs, and demonstrates that even in highly simplified displays, strategic factors can produce encoding biases not predictable solely from stimulus structure alone.
An industrial robot singular trajectories planning based on graphs and neural networks
NASA Astrophysics Data System (ADS)
Łęgowski, Adrian; Niezabitowski, Michał
2016-06-01
Singular trajectories are rarely used because of issues during realization. A method of planning trajectories for given set of points in task space with use of graphs and neural networks is presented. In every desired point the inverse kinematics problem is solved in order to derive all possible solutions. A graph of solutions is made. The shortest path is determined to define required nodes in joint space. Neural networks are used to define the path between these nodes.
Scarselli, Franco; Tsoi, Ah Chung; Hagenbuchner, Markus; Noi, Lucia Di
2013-12-01
This paper proposes the combination of two state-of-the-art algorithms for processing graph input data, viz., the probabilistic mapping graph self organizing map, an unsupervised learning approach, and the graph neural network, a supervised learning approach. We organize these two algorithms in a cascade architecture containing a probabilistic mapping graph self organizing map, and a graph neural network. We show that this combined approach helps us to limit the long-term dependency problem that exists when training the graph neural network resulting in an overall improvement in performance. This is demonstrated in an application to a benchmark problem requiring the detection of spam in a relatively large set of web sites. It is found that the proposed method produces results which reach the state of the art when compared with some of the best results obtained by others using quite different approaches. A particular strength of our method is its applicability towards any input domain which can be represented as a graph. Copyright © 2013 Elsevier Ltd. All rights reserved.
Combinatorial Statistics on Trees and Networks
2010-09-29
interaction graph is drawn from the Erdos- Renyi , G(n,p), where each edge is present independently with probability p. For this model we establish a double...special interest is the behavior of Gibbs sampling on the Erdos- Renyi random graph G{n, d/n), where each edge is chosen independently with...which have no counterparts in the coloring setting. Our proof presented here exploits in novel ways the local treelike structure of Erdos- Renyi
Enhancing Community Detection By Affinity-based Edge Weighting Scheme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Andy; Sanders, Geoffrey; Henson, Van
Community detection refers to an important graph analytics problem of finding a set of densely-connected subgraphs in a graph and has gained a great deal of interest recently. The performance of current community detection algorithms is limited by an inherent constraint of unweighted graphs that offer very little information on their internal community structures. In this paper, we propose a new scheme to address this issue that weights the edges in a given graph based on recently proposed vertex affinity. The vertex affinity quantifies the proximity between two vertices in terms of their clustering strength, and therefore, it is idealmore » for graph analytics applications such as community detection. We also demonstrate that the affinity-based edge weighting scheme can improve the performance of community detection algorithms significantly.« less
A Brief Historical Introduction to Matrices and Their Applications
ERIC Educational Resources Information Center
Debnath, L.
2014-01-01
This paper deals with the ancient origin of matrices, and the system of linear equations. Included are algebraic properties of matrices, determinants, linear transformations, and Cramer's Rule for solving the system of algebraic equations. Special attention is given to some special matrices, including matrices in graph theory and electrical…
NASA Astrophysics Data System (ADS)
Kruglov, V. E.; Malyshev, D. S.; Pochinka, O. V.
2018-01-01
Studying the dynamics of a flow on surfaces by partitioning the phase space into cells with the same limit behaviour of trajectories within a cell goes back to the classical papers of Andronov, Pontryagin, Leontovich and Maier. The types of cells (the number of which is finite) and how the cells adjoin one another completely determine the topological equivalence class of a flow with finitely many special trajectories. If one trajectory is chosen in every cell of a rough flow without periodic orbits, then the cells are partitioned into so-called triangular regions of the same type. A combinatorial description of such a partition gives rise to the three-colour Oshemkov-Sharko graph, the vertices of which correspond to the triangular regions, and the edges to separatrices connecting them. Oshemkov and Sharko proved that such flows are topologically equivalent if and only if the three-colour graphs of the flows are isomorphic, and described an algorithm of distinguishing three-colour graphs. But their algorithm is not efficient with respect to graph theory. In the present paper, we describe the dynamics of Ω-stable flows without periodic trajectories on surfaces in the language of four-colour graphs, present an efficient algorithm for distinguishing such graphs, and develop a realization of a flow from some abstract graph. Bibliography: 17 titles.
AGM: A DSL for mobile cloud computing based on directed graph
NASA Astrophysics Data System (ADS)
Tanković, Nikola; Grbac, Tihana Galinac
2016-06-01
This paper summarizes a novel approach for consuming a domain specific language (DSL) by transforming it to a directed graph representation persisted by a graph database. Using such specialized database enables advanced navigation trough the stored model exposing only relevant subsets of meta-data to different involved services and components. We applied this approach in a mobile cloud computing system and used it to model several mobile applications in retail, supply chain management and merchandising domain. These application are distributed in a Software-as-a-Service (SaaS) fashion and used by thousands of customers in Croatia. We report on lessons learned and propose further research on this topic.
Graph and Table Use in Special Education: A Review and Analysis of the Communication of Data
ERIC Educational Resources Information Center
Kubina, Richard M.; Kostewicz, Douglas E.; Datchuk, Shawn M.
2010-01-01
An emerging line of research demonstrates a distinction between social and natural sciences; natural sciences devote more page space in journals to data graphics than social sciences. The present survey asked how the subdiscipline of Education, Special Education, compares to other disciplines of science. Also, how do the Individuals with…
39 CFR 230.11 - What special definitions apply to these rules?
Code of Federal Regulations, 2010 CFR
2010-07-01
..., calendar and diary entries, graphs, notes, charts, tabulations, data analyses, statistical or information accumulations, records of meetings and conversations, film impressions, magnetic tapes, computer discs, and...
New methods for analyzing semantic graph based assessments in science education
NASA Astrophysics Data System (ADS)
Vikaros, Lance Steven
This research investigated how the scoring of semantic graphs (known by many as concept maps) could be improved and automated in order to address issues of inter-rater reliability and scalability. As part of the NSF funded SENSE-IT project to introduce secondary school science students to sensor networks (NSF Grant No. 0833440), semantic graphs illustrating how temperature change affects water ecology were collected from 221 students across 16 schools. The graphing task did not constrain students' use of terms, as is often done with semantic graph based assessment due to coding and scoring concerns. The graphing software used provided real-time feedback to help students learn how to construct graphs, stay on topic and effectively communicate ideas. The collected graphs were scored by human raters using assessment methods expected to boost reliability, which included adaptations of traditional holistic and propositional scoring methods, use of expert raters, topical rubrics, and criterion graphs. High levels of inter-rater reliability were achieved, demonstrating that vocabulary constraints may not be necessary after all. To investigate a new approach to automating the scoring of graphs, thirty-two different graph features characterizing graphs' structure, semantics, configuration and process of construction were then used to predict human raters' scoring of graphs in order to identify feature patterns correlated to raters' evaluations of graphs' topical accuracy and complexity. Results led to the development of a regression model able to predict raters' scoring with 77% accuracy, with 46% accuracy expected when used to score new sets of graphs, as estimated via cross-validation tests. Although such performance is comparable to other graph and essay based scoring systems, cross-context testing of the model and methods used to develop it would be needed before it could be recommended for widespread use. Still, the findings suggest techniques for improving the reliability and scalability of semantic graph based assessments without requiring constraint of how ideas are expressed.
Characterizing networks formed by P. polycephalum
NASA Astrophysics Data System (ADS)
Dirnberger, M.; Mehlhorn, K.
2017-06-01
We present a systematic study of the characteristic vein networks formed by the slime mold P. polycephalum. Our study is based on an extensive set of graph representations of slime mold networks. We analyze a total of 1998 graphs capturing growth and network formation of P. polycephalum as observed in 36 independent, identical, wet-lab experiments. Relying on concepts from graph theory such as face cycles and cuts as well as ideas from percolation theory, we establish a broad collection of individual observables taking into account various complementary aspects of P. polycephalum networks. As a whole, the collection is intended to serve as a specialized knowledge-base providing a comprehensive characterization of P. polycephalum networks. To this end, it contains individual as well as cumulative results for all investigated observables across all available data series, down to the level of single P. polycephalum graphs. Furthermore we include the raw numerical data as well as various plotting and analysis tools to ensure reproducibility and increase the usefulness of the collection. All our results are publicly available in an organized fashion in the slime mold graph repository (Smgr).
Dynamic Load Balancing for Adaptive Computations on Distributed-Memory Machines
NASA Technical Reports Server (NTRS)
1999-01-01
Dynamic load balancing is central to adaptive mesh-based computations on large-scale parallel computers. The principal investigator has investigated various issues on the dynamic load balancing problem under NASA JOVE and JAG rants. The major accomplishments of the project are two graph partitioning algorithms and a load balancing framework. The S-HARP dynamic graph partitioner is known to be the fastest among the known dynamic graph partitioners to date. It can partition a graph of over 100,000 vertices in 0.25 seconds on a 64- processor Cray T3E distributed-memory multiprocessor while maintaining the scalability of over 16-fold speedup. Other known and widely used dynamic graph partitioners take over a second or two while giving low scalability of a few fold speedup on 64 processors. These results have been published in journals and peer-reviewed flagship conferences.
Phase-change lines, scale breaks, and trend lines using Excel 2013.
Deochand, Neil; Costello, Mack S; Fuqua, R Wayne
2015-01-01
The development of graphing skills for behavior analysts is an ongoing process. Specialized graphing software is often expensive, is not widely disseminated, and may require specific training. Dixon et al. (2009) provided an updated task analysis for graph making in the widely used platform Excel 2007. Vanselow and Bourret (2012) provided online tutorials that outline some alternate methods also using Office 2007. This article serves as an update to those task analyses and includes some alternative and underutilized methods in Excel 2013. To examine the utility of our recommendations, 12 psychology graduate students were presented with the task analyses, and the experimenters evaluated their performance and noted feedback. The task analyses were rated favorably. © Society for the Experimental Analysis of Behavior.
ERIC Educational Resources Information Center
Yoon, Susan A.
2011-01-01
This study extends previous research that explores how visualization affordances that computational tools provide and social network analyses that account for individual- and group-level dynamic processes can work in conjunction to improve learning outcomes. The study's main hypothesis is that when social network graphs are used in instruction,…
Edge grouping combining boundary and region information.
Stahl, Joachim S; Wang, Song
2007-10-01
This paper introduces a new edge-grouping method to detect perceptually salient structures in noisy images. Specifically, we define a new grouping cost function in a ratio form, where the numerator measures the boundary proximity of the resulting structure and the denominator measures the area of the resulting structure. This area term introduces a preference towards detecting larger-size structures and, therefore, makes the resulting edge grouping more robust to image noise. To find the optimal edge grouping with the minimum grouping cost, we develop a special graph model with two different kinds of edges and then reduce the grouping problem to finding a special kind of cycle in this graph with a minimum cost in ratio form. This optimal cycle-finding problem can be solved in polynomial time by a previously developed graph algorithm. We implement this edge-grouping method, test it on both synthetic data and real images, and compare its performance against several available edge-grouping and edge-linking methods. Furthermore, we discuss several extensions of the proposed method, including the incorporation of the well-known grouping cues of continuity and intensity homogeneity, introducing a factor to balance the contributions from the boundary and region information, and the prevention of detecting self-intersecting boundaries.
Li, Xiaojin; Hu, Xintao; Jin, Changfeng; Han, Junwei; Liu, Tianming; Guo, Lei; Hao, Wei; Li, Lingjiang
2013-01-01
Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-scale cortical regions of interest (ROIs) are localized by recently developed and validated brain reference system named Dense Individualized Common Connectivity-based Cortical Landmarks (DICCCOL) to address the limitations in the identification of the brain network ROIs in previous studies. Then, we construct structural brain networks based on diffusion tensor imaging (DTI) data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition, we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY) and scale-free gene duplication model (SF-GD), that have higher similarity with the real structural brain networks in terms of global and local graph properties. Our experimental results suggest that among the seven theoretical graph models compared in this study, STICKY and SF-GD models have better performances in characterizing the structural human brain network.
Reactome graph database: Efficient access to complex pathway data
Korninger, Florian; Viteri, Guilherme; Marin-Garcia, Pablo; Ping, Peipei; Wu, Guanming; Stein, Lincoln; D’Eustachio, Peter
2018-01-01
Reactome is a free, open-source, open-data, curated and peer-reviewed knowledgebase of biomolecular pathways. One of its main priorities is to provide easy and efficient access to its high quality curated data. At present, biological pathway databases typically store their contents in relational databases. This limits access efficiency because there are performance issues associated with queries traversing highly interconnected data. The same data in a graph database can be queried more efficiently. Here we present the rationale behind the adoption of a graph database (Neo4j) as well as the new ContentService (REST API) that provides access to these data. The Neo4j graph database and its query language, Cypher, provide efficient access to the complex Reactome data model, facilitating easy traversal and knowledge discovery. The adoption of this technology greatly improved query efficiency, reducing the average query time by 93%. The web service built on top of the graph database provides programmatic access to Reactome data by object oriented queries, but also supports more complex queries that take advantage of the new underlying graph-based data storage. By adopting graph database technology we are providing a high performance pathway data resource to the community. The Reactome graph database use case shows the power of NoSQL database engines for complex biological data types. PMID:29377902
Statistically significant relational data mining :
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, Jonathan W.; Leung, Vitus Joseph; Phillips, Cynthia Ann
This report summarizes the work performed under the project (3z(BStatitically significant relational data mining.(3y (BThe goal of the project was to add more statistical rigor to the fairly ad hoc area of data mining on graphs. Our goal was to develop better algorithms and better ways to evaluate algorithm quality. We concetrated on algorithms for community detection, approximate pattern matching, and graph similarity measures. Approximate pattern matching involves finding an instance of a relatively small pattern, expressed with tolerance, in a large graph of data observed with uncertainty. This report gathers the abstracts and references for the eight refereed publicationsmore » that have appeared as part of this work. We then archive three pieces of research that have not yet been published. The first is theoretical and experimental evidence that a popular statistical measure for comparison of community assignments favors over-resolved communities over approximations to a ground truth. The second are statistically motivated methods for measuring the quality of an approximate match of a small pattern in a large graph. The third is a new probabilistic random graph model. Statisticians favor these models for graph analysis. The new local structure graph model overcomes some of the issues with popular models such as exponential random graph models and latent variable models.« less
Reactome graph database: Efficient access to complex pathway data.
Fabregat, Antonio; Korninger, Florian; Viteri, Guilherme; Sidiropoulos, Konstantinos; Marin-Garcia, Pablo; Ping, Peipei; Wu, Guanming; Stein, Lincoln; D'Eustachio, Peter; Hermjakob, Henning
2018-01-01
Reactome is a free, open-source, open-data, curated and peer-reviewed knowledgebase of biomolecular pathways. One of its main priorities is to provide easy and efficient access to its high quality curated data. At present, biological pathway databases typically store their contents in relational databases. This limits access efficiency because there are performance issues associated with queries traversing highly interconnected data. The same data in a graph database can be queried more efficiently. Here we present the rationale behind the adoption of a graph database (Neo4j) as well as the new ContentService (REST API) that provides access to these data. The Neo4j graph database and its query language, Cypher, provide efficient access to the complex Reactome data model, facilitating easy traversal and knowledge discovery. The adoption of this technology greatly improved query efficiency, reducing the average query time by 93%. The web service built on top of the graph database provides programmatic access to Reactome data by object oriented queries, but also supports more complex queries that take advantage of the new underlying graph-based data storage. By adopting graph database technology we are providing a high performance pathway data resource to the community. The Reactome graph database use case shows the power of NoSQL database engines for complex biological data types.
High-performance analysis of filtered semantic graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buluc, Aydin; Fox, Armando; Gilbert, John R.
2012-01-01
High performance is a crucial consideration when executing a complex analytic query on a massive semantic graph. In a semantic graph, vertices and edges carry "attributes" of various types. Analytic queries on semantic graphs typically depend on the values of these attributes; thus, the computation must either view the graph through a filter that passes only those individual vertices and edges of interest, or else must first materialize a subgraph or subgraphs consisting of only the vertices and edges of interest. The filtered approach is superior due to its generality, ease of use, and memory efficiency, but may carry amore » performance cost. In the Knowledge Discovery Toolbox (KDT), a Python library for parallel graph computations, the user writes filters in a high-level language, but those filters result in relatively low performance due to the bottleneck of having to call into the Python interpreter for each edge. In this work, we use the Selective Embedded JIT Specialization (SEJITS) approach to automatically translate filters defined by programmers into a lower-level efficiency language, bypassing the upcall into Python. We evaluate our approach by comparing it with the high-performance C++ /MPI Combinatorial BLAS engine, and show that the productivity gained by using a high-level filtering language comes without sacrificing performance.« less
Graph theory applied to noise and vibration control in statistical energy analysis models.
Guasch, Oriol; Cortés, Lluís
2009-06-01
A fundamental aspect of noise and vibration control in statistical energy analysis (SEA) models consists in first identifying and then reducing the energy flow paths between subsystems. In this work, it is proposed to make use of some results from graph theory to address both issues. On the one hand, linear and path algebras applied to adjacency matrices of SEA graphs are used to determine the existence of any order paths between subsystems, counting and labeling them, finding extremal paths, or determining the power flow contributions from groups of paths. On the other hand, a strategy is presented that makes use of graph cut algorithms to reduce the energy flow from a source subsystem to a receiver one, modifying as few internal and coupling loss factors as possible.
On Bipartite Graphs Trees and Their Partial Vertex Covers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caskurlu, Bugra; Mkrtchyan, Vahan; Parekh, Ojas D.
2015-03-01
Graphs can be used to model risk management in various systems. Particularly, Caskurlu et al. in [7] have considered a system, which has threats, vulnerabilities and assets, and which essentially represents a tripartite graph. The goal in this model is to reduce the risk in the system below a predefined risk threshold level. One can either restricting the permissions of the users, or encapsulating the system assets. The pointed out two strategies correspond to deleting minimum number of elements corresponding to vulnerabilities and assets, such that the flow between threats and assets is reduced below the predefined threshold level. Itmore » can be shown that the main goal in this risk management system can be formulated as a Partial Vertex Cover problem on bipartite graphs. It is well-known that the Vertex Cover problem is in P on bipartite graphs, however; the computational complexity of the Partial Vertex Cover problem on bipartite graphs has remained open. In this paper, we establish that the Partial Vertex Cover problem is NP-hard on bipartite graphs, which was also recently independently demonstrated [N. Apollonio and B. Simeone, Discrete Appl. Math., 165 (2014), pp. 37–48; G. Joret and A. Vetta, preprint, arXiv:1211.4853v1 [cs.DS], 2012]. We then identify interesting special cases of bipartite graphs, for which the Partial Vertex Cover problem, the closely related Budgeted Maximum Coverage problem, and their weighted extensions can be solved in polynomial time. We also present an 8/9-approximation algorithm for the Budgeted Maximum Coverage problem in the class of bipartite graphs. We show that this matches and resolves the integrality gap of the natural LP relaxation of the problem and improves upon a recent 4/5-approximation.« less
Bipartite graphs in systems biology and medicine: a survey of methods and applications.
Pavlopoulos, Georgios A; Kontou, Panagiota I; Pavlopoulou, Athanasia; Bouyioukos, Costas; Markou, Evripides; Bagos, Pantelis G
2018-04-01
The latest advances in high-throughput techniques during the past decade allowed the systems biology field to expand significantly. Today, the focus of biologists has shifted from the study of individual biological components to the study of complex biological systems and their dynamics at a larger scale. Through the discovery of novel bioentity relationships, researchers reveal new information about biological functions and processes. Graphs are widely used to represent bioentities such as proteins, genes, small molecules, ligands, and others such as nodes and their connections as edges within a network. In this review, special focus is given to the usability of bipartite graphs and their impact on the field of network biology and medicine. Furthermore, their topological properties and how these can be applied to certain biological case studies are discussed. Finally, available methodologies and software are presented, and useful insights on how bipartite graphs can shape the path toward the solution of challenging biological problems are provided.
Yan, Fei; Christmas, William; Kittler, Josef
2008-10-01
In this paper, we propose a multilayered data association scheme with graph-theoretic formulation for tracking multiple objects that undergo switching dynamics in clutter. The proposed scheme takes as input object candidates detected in each frame. At the object candidate level, "tracklets'' are "grown'' from sets of candidates that have high probabilities of containing only true positives. At the tracklet level, a directed and weighted graph is constructed, where each node is a tracklet, and the edge weight between two nodes is defined according to the "compatibility'' of the two tracklets. The association problem is then formulated as an all-pairs shortest path (APSP) problem in this graph. Finally, at the path level, by analyzing the APSPs, all object trajectories are identified, and track initiation and track termination are automatically dealt with. By exploiting a special topological property of the graph, we have also developed a more efficient APSP algorithm than the general-purpose ones. The proposed data association scheme is applied to tennis sequences to track tennis balls. Experiments show that it works well on sequences where other data association methods perform poorly or fail completely.
A Whirlwind Tour of Computational Geometry.
ERIC Educational Resources Information Center
Graham, Ron; Yao, Frances
1990-01-01
Described is computational geometry which used concepts and results from classical geometry, topology, combinatorics, as well as standard algorithmic techniques such as sorting and searching, graph manipulations, and linear programing. Also included are special techniques and paradigms. (KR)
de Lima Verde Brito, Thiago Delevidove; Baptista, Roberto Silva; de Lima Lopes, Paulo Roberto; Haddad, Ana Estela; Messina, Luiz Ary; Torres Pisa, Ivan
2015-01-01
In Brazil the Telemedicine University Network (Rede Universitária de Telemedicina RUTE) is an initiative that among others promotes collaboration between university hospitals, universities, and health professionals through information technology infrastructure and special interest groups (SIGs) support. This paper presents results of analyses on collaboration during implementation and coordination activities of RUTE SIGs. This study is based on descriptive statistics and data visualization previously collected by RUTE national coordination relative to the status in July 2014. The analysis through collaboration graph identified the strongest collaboration RUTE units. The graph also highlights the collaborative relationship of RUTE units in form of communities, the most collaborative with each other in a communion in the same SIGs, and the less the collaborative units in the network. It should be stated that the most active units are also the oldest in the community.
Local Higher-Order Graph Clustering
Yin, Hao; Benson, Austin R.; Leskovec, Jure; Gleich, David F.
2018-01-01
Local graph clustering methods aim to find a cluster of nodes by exploring a small region of the graph. These methods are attractive because they enable targeted clustering around a given seed node and are faster than traditional global graph clustering methods because their runtime does not depend on the size of the input graph. However, current local graph partitioning methods are not designed to account for the higher-order structures crucial to the network, nor can they effectively handle directed networks. Here we introduce a new class of local graph clustering methods that address these issues by incorporating higher-order network information captured by small subgraphs, also called network motifs. We develop the Motif-based Approximate Personalized PageRank (MAPPR) algorithm that finds clusters containing a seed node with minimal motif conductance, a generalization of the conductance metric for network motifs. We generalize existing theory to prove the fast running time (independent of the size of the graph) and obtain theoretical guarantees on the cluster quality (in terms of motif conductance). We also develop a theory of node neighborhoods for finding sets that have small motif conductance, and apply these results to the case of finding good seed nodes to use as input to the MAPPR algorithm. Experimental validation on community detection tasks in both synthetic and real-world networks, shows that our new framework MAPPR outperforms the current edge-based personalized PageRank methodology. PMID:29770258
Distance Magic-Type and Distance Antimagic-Type Labelings of Graphs
NASA Astrophysics Data System (ADS)
Freyberg, Bryan J.
Generally speaking, a distance magic-type labeling of a graph G of order n is a bijection l from the vertex set of the graph to the first n natural numbers or to the elements of a group of order n, with the property that the weight of each vertex is the same. The weight of a vertex x is defined as the sum (or appropriate group operation) of all the labels of vertices adjacent to x. If instead we require that all weights differ, then we refer to the labeling as a distance antimagic-type labeling. This idea can be generalized for directed graphs; the weight will take into consideration the direction of the arcs. In this manuscript, we provide new results for d-handicap labeling, a distance antimagic-type labeling, and introduce a new distance magic-type labeling called orientable Gamma-distance magic labeling. A d-handicap distance antimagic labeling (or just d-handicap labeling for short) of a graph G = ( V,E) of order n is a bijection l from V to the set {1,2,...,n} with induced weight function [special characters omitted]. such that l(xi) = i and the sequence of weights w(x 1),w(x2),...,w (xn) forms an arithmetic sequence with constant difference d at least 1. If a graph G admits a d-handicap labeling, we say G is a d-handicap graph. A d-handicap incomplete tournament, H(n,k,d ) is an incomplete tournament of n teams ranked with the first n natural numbers such that each team plays exactly k games and the strength of schedule of the ith ranked team is d more than the i + 1st ranked team. That is, strength of schedule increases arithmetically with strength of team. Constructing an H(n,k,d) is equivalent to finding a d-handicap labeling of a k-regular graph of order n.. In Chapter 2 we provide general constructions for every d for large classes of both n and k, providing breadfth and depth to the catalog of known H(n,k,d)'s. In Chapters 3 - 6, we introduce a new type of labeling called orientable Gamma-distance magic labeling. Let Gamma be an abelian group of order n. If for a graph G = (V,E) of order n there exists an orientation of the edges of G and a companion bijection from V to Gamma with the property that there is an element mu of Gamma (called the magic constant) such that [special characters omitted] where w(x) is the weight of vertex x, we say that G is orientable Gamma -distance magic. In addition to introducing the concept, we provide numerous results on orientable Zn-distance magic graphs, where Zn is the cyclic group of order n.. In Chapter 7, we summarize the results of this dissertation and provide suggestions for future work.
ERIC Educational Resources Information Center
Keenan, Trisha; And Others
This document presents tables, graphs, and narrative text providing information on the number and characteristics of infants and toddlers, under the age of 3, with disabilities and special health problems who were enrolled in Washington State's infant and toddler early intervention program in 1995. Major findings of the report include the…
The Easy Way to Create Computer Slide Shows.
ERIC Educational Resources Information Center
Anderson, Mary Alice
1995-01-01
Discusses techniques for creating computer slide shows. Topics include memory; format; color use; HyperCard and CD-ROM; font styles and sizes; graphs and graphics; the slide show option; special effects; and tips for effective presentation. (Author/AEF)
Optimized Graph Learning Using Partial Tags and Multiple Features for Image and Video Annotation.
Song, Jingkuan; Gao, Lianli; Nie, Feiping; Shen, Heng Tao; Yan, Yan; Sebe, Nicu
2016-11-01
In multimedia annotation, due to the time constraints and the tediousness of manual tagging, it is quite common to utilize both tagged and untagged data to improve the performance of supervised learning when only limited tagged training data are available. This is often done by adding a geometry-based regularization term in the objective function of a supervised learning model. In this case, a similarity graph is indispensable to exploit the geometrical relationships among the training data points, and the graph construction scheme essentially determines the performance of these graph-based learning algorithms. However, most of the existing works construct the graph empirically and are usually based on a single feature without using the label information. In this paper, we propose a semi-supervised annotation approach by learning an optimized graph (OGL) from multi-cues (i.e., partial tags and multiple features), which can more accurately embed the relationships among the data points. Since OGL is a transductive method and cannot deal with novel data points, we further extend our model to address the out-of-sample issue. Extensive experiments on image and video annotation show the consistent superiority of OGL over the state-of-the-art methods.
Dissolving variables in connectionist combinatory logic
NASA Technical Reports Server (NTRS)
Barnden, John; Srinivas, Kankanahalli
1990-01-01
A connectionist system which can represent and execute combinator expressions to elegantly solve the variable binding problem in connectionist networks is presented. This system is a graph reduction machine utilizing graph representations and traversal mechanisms similar to ones described in the BoltzCONS system of Touretzky (1986). It is shown that, as combinators eliminate variables by introducing special functions, these functions can be connectionistically implemented without reintroducing variable binding. This approach 'dissolves' an important part of the variable binding problem, in that a connectionist system still has to manipulate complex data structures, but those structures and their manipulations are rendered more uniform.
Using Behavior Over Time Graphs to Spur Systems Thinking Among Public Health Practitioners.
Calancie, Larissa; Anderson, Seri; Branscomb, Jane; Apostolico, Alexsandra A; Lich, Kristen Hassmiller
2018-02-01
Public health practitioners can use Behavior Over Time (BOT) graphs to spur discussion and systems thinking around complex challenges. Multiple large systems, such as health care, the economy, and education, affect chronic disease rates in the United States. System thinking tools can build public health practitioners' capacity to understand these systems and collaborate within and across sectors to improve population health. BOT graphs show a variable, or variables (y axis) over time (x axis). Although analyzing trends is not new to public health, drawing BOT graphs, annotating the events and systemic forces that are likely to influence the depicted trends, and then discussing the graphs in a diverse group provides an opportunity for public health practitioners to hear each other's perspectives and creates a more holistic understanding of the key factors that contribute to a trend. We describe how BOT graphs are used in public health, how they can be used to generate group discussion, and how this process can advance systems-level thinking. Then we describe how BOT graphs were used with groups of maternal and child health (MCH) practitioners and partners (N = 101) during a training session to advance their thinking about MCH challenges. Eighty-six percent of the 84 participants who completed an evaluation agreed or strongly agreed that they would use this BOT graph process to engage stakeholders in their home states and jurisdictions. The BOT graph process we describe can be applied to a variety of public health issues and used by practitioners, stakeholders, and researchers.
Bond Graph Modeling and Validation of an Energy Regenerative System for Emulsion Pump Tests
Li, Yilei; Zhu, Zhencai; Chen, Guoan
2014-01-01
The test system for emulsion pump is facing serious challenges due to its huge energy consumption and waste nowadays. To settle this energy issue, a novel energy regenerative system (ERS) for emulsion pump tests is briefly introduced at first. Modeling such an ERS of multienergy domains needs a unified and systematic approach. Bond graph modeling is well suited for this task. The bond graph model of this ERS is developed by first considering the separate components before assembling them together and so is the state-space equation. Both numerical simulation and experiments are carried out to validate the bond graph model of this ERS. Moreover the simulation and experiments results show that this ERS not only satisfies the test requirements, but also could save at least 25% of energy consumption as compared to the original test system, demonstrating that it is a promising method of energy regeneration for emulsion pump tests. PMID:24967428
Private Graphs - Access Rights on Graphs for Seamless Navigation
NASA Astrophysics Data System (ADS)
Dorner, W.; Hau, F.; Pagany, R.
2016-06-01
After the success of GNSS (Global Navigational Satellite Systems) and navigation services for public streets, indoor seems to be the next big development in navigational services, relying on RTLS - Real Time Locating Services (e.g. WIFI) and allowing seamless navigation. In contrast to navigation and routing services on public streets, seamless navigation will cause an additional challenge: how to make routing data accessible to defined users or restrict access rights for defined areas or only to parts of the graph to a defined user group? The paper will present case studies and data from literature, where seamless and especially indoor navigation solutions are presented (hospitals, industrial complexes, building sites), but the problem of restricted access rights was only touched from a real world, but not a technical perspective. The analysis of case studies will show, that the objective of navigation and the different target groups for navigation solutions will demand well defined access rights and require solutions, how to make only parts of a graph to a user or application available to solve a navigational task. The paper will therefore introduce the concept of private graphs, which is defined as a graph for navigational purposes covering the street, road or floor network of an area behind a public street and suggest different approaches how to make graph data for navigational purposes available considering access rights and data protection, privacy and security issues as well.
NASA Technical Reports Server (NTRS)
Clement, J. D.
1973-01-01
Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.
Graph Theory at the Service of Electroencephalograms.
Iakovidou, Nantia D
2017-04-01
The brain is one of the largest and most complex organs in the human body and EEG is a noninvasive electrophysiological monitoring method that is used to record the electrical activity of the brain. Lately, the functional connectivity in human brain has been regarded and studied as a complex network using EEG signals. This means that the brain is studied as a connected system where nodes, or units, represent different specialized brain regions and links, or connections, represent communication pathways between the nodes. Graph theory and theory of complex networks provide a variety of measures, methods, and tools that can be useful to efficiently model, analyze, and study EEG networks. This article is addressed to computer scientists who wish to be acquainted and deal with the study of EEG data and also to neuroscientists who would like to become familiar with graph theoretic approaches and tools to analyze EEG data.
Social inertia and diversity in collaboration networks
NASA Astrophysics Data System (ADS)
Ramasco, J. J.
2007-04-01
Random graphs are useful tools to study social interactions. In particular, the use of weighted random graphs allows to handle a high level of information concerning which agents interact and in which degree the interactions take place. Taking advantage of this representation, we recently defined a magnitude, the Social Inertia, that measures the eagerness of agents to keep ties with previous partners. To study this magnitude, we used collaboration networks that are specially appropriate to obtain valid statitical results due to the large size of publically available databases. In this work, I study the Social Inertia in two of these empirical networks, IMDB movie database and condmat. More specifically, I focus on how the Inertia relates to other properties of the graphs, and show that the Inertia provides information on how the weight of neighboring edges correlates. A social interpretation of this effect is also offered.
EmptyHeaded: A Relational Engine for Graph Processing
Aberger, Christopher R.; Tu, Susan; Olukotun, Kunle; Ré, Christopher
2016-01-01
There are two types of high-performance graph processing engines: low- and high-level engines. Low-level engines (Galois, PowerGraph, Snap) provide optimized data structures and computation models but require users to write low-level imperative code, hence ensuring that efficiency is the burden of the user. In high-level engines, users write in query languages like datalog (SociaLite) or SQL (Grail). High-level engines are easier to use but are orders of magnitude slower than the low-level graph engines. We present EmptyHeaded, a high-level engine that supports a rich datalog-like query language and achieves performance comparable to that of low-level engines. At the core of EmptyHeaded’s design is a new class of join algorithms that satisfy strong theoretical guarantees but have thus far not achieved performance comparable to that of specialized graph processing engines. To achieve high performance, EmptyHeaded introduces a new join engine architecture, including a novel query optimizer and data layouts that leverage single-instruction multiple data (SIMD) parallelism. With this architecture, EmptyHeaded outperforms high-level approaches by up to three orders of magnitude on graph pattern queries, PageRank, and Single-Source Shortest Paths (SSSP) and is an order of magnitude faster than many low-level baselines. We validate that EmptyHeaded competes with the best-of-breed low-level engine (Galois), achieving comparable performance on PageRank and at most 3× worse performance on SSSP. PMID:28077912
Pogliani, Lionello
2010-01-30
Twelve properties of a highly heterogeneous class of organic solvents have been modeled with a graph-theoretical molecular connectivity modified (MC) method, which allows to encode the core electrons and the hydrogen atoms. The graph-theoretical method uses the concepts of simple, general, and complete graphs, where these last types of graphs are used to encode the core electrons. The hydrogen atoms have been encoded by the aid of a graph-theoretical perturbation parameter, which contributes to the definition of the valence delta, delta(v), a key parameter in molecular connectivity studies. The model of the twelve properties done with a stepwise search algorithm is always satisfactory, and it allows to check the influence of the hydrogen content of the solvent molecules on the choice of the type of descriptor. A similar argument holds for the influence of the halogen atoms on the type of core electron representation. In some cases the molar mass, and in a minor way, special "ad hoc" parameters have been used to improve the model. A very good model of the surface tension could be obtained by the aid of five experimental parameters. A mixed model method based on experimental parameters plus molecular connectivity indices achieved, instead, to consistently improve the model quality of five properties. To underline is the importance of the boiling point temperatures as descriptors in these last two model methodologies. Copyright 2009 Wiley Periodicals, Inc.
Some theoretical issues on computer simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, C.L.; Reidys, C.M.
1998-02-01
The subject of this paper is the development of mathematical foundations for a theory of simulation. Sequentially updated cellular automata (sCA) over arbitrary graphs are employed as a paradigmatic framework. In the development of the theory, the authors focus on the properties of causal dependencies among local mappings in a simulation. The main object of and study is the mapping between a graph representing the dependencies among entities of a simulation and a representing the equivalence classes of systems obtained by all possible updates.
Hewitt, Robin; Gobbi, Alberto; Lee, Man-Ling
2005-01-01
Relational databases are the current standard for storing and retrieving data in the pharmaceutical and biotech industries. However, retrieving data from a relational database requires specialized knowledge of the database schema and of the SQL query language. At Anadys, we have developed an easy-to-use system for searching and reporting data in a relational database to support our drug discovery project teams. This system is fast and flexible and allows users to access all data without having to write SQL queries. This paper presents the hierarchical, graph-based metadata representation and SQL-construction methods that, together, are the basis of this system's capabilities.
Two-character motion analysis and synthesis.
Kwon, Taesoo; Cho, Young-Sang; Park, Sang Il; Shin, Sung Yong
2008-01-01
In this paper, we deal with the problem of synthesizing novel motions of standing-up martial arts such as Kickboxing, Karate, and Taekwondo performed by a pair of human-like characters while reflecting their interactions. Adopting an example-based paradigm, we address three non-trivial issues embedded in this problem: motion modeling, interaction modeling, and motion synthesis. For the first issue, we present a semi-automatic motion labeling scheme based on force-based motion segmentation and learning-based action classification. We also construct a pair of motion transition graphs each of which represents an individual motion stream. For the second issue, we propose a scheme for capturing the interactions between two players. A dynamic Bayesian network is adopted to build a motion transition model on top of the coupled motion transition graph that is constructed from an example motion stream. For the last issue, we provide a scheme for synthesizing a novel sequence of coupled motions, guided by the motion transition model. Although the focus of the present work is on martial arts, we believe that the framework of the proposed approach can be conveyed to other two-player motions as well.
Property Graph vs RDF Triple Store: A Comparison on Glycan Substructure Search
Alocci, Davide; Mariethoz, Julien; Horlacher, Oliver; Bolleman, Jerven T.; Campbell, Matthew P.; Lisacek, Frederique
2015-01-01
Resource description framework (RDF) and Property Graph databases are emerging technologies that are used for storing graph-structured data. We compare these technologies through a molecular biology use case: glycan substructure search. Glycans are branched tree-like molecules composed of building blocks linked together by chemical bonds. The molecular structure of a glycan can be encoded into a direct acyclic graph where each node represents a building block and each edge serves as a chemical linkage between two building blocks. In this context, Graph databases are possible software solutions for storing glycan structures and Graph query languages, such as SPARQL and Cypher, can be used to perform a substructure search. Glycan substructure searching is an important feature for querying structure and experimental glycan databases and retrieving biologically meaningful data. This applies for example to identifying a region of the glycan recognised by a glycan binding protein (GBP). In this study, 19,404 glycan structures were selected from GlycomeDB (www.glycome-db.org) and modelled for being stored into a RDF triple store and a Property Graph. We then performed two different sets of searches and compared the query response times and the results from both technologies to assess performance and accuracy. The two implementations produced the same results, but interestingly we noted a difference in the query response times. Qualitative measures such as portability were also used to define further criteria for choosing the technology adapted to solving glycan substructure search and other comparable issues. PMID:26656740
Resistance Distances and Kirchhoff Index in Generalised Join Graphs
NASA Astrophysics Data System (ADS)
Chen, Haiyan
2017-03-01
The resistance distance between any two vertices of a connected graph is defined as the effective resistance between them in the electrical network constructed from the graph by replacing each edge with a unit resistor. The Kirchhoff index of a graph is defined as the sum of all the resistance distances between any pair of vertices of the graph. Let G=H[G1, G2, …, Gk ] be the generalised join graph of G1, G2, …, Gk determined by H. In this paper, we first give formulae for resistance distances and Kirchhoff index of G in terms of parameters of
NASA Astrophysics Data System (ADS)
Sui, Xiukai; Wu, Bin; Wang, Long
2015-12-01
The likelihood that a mutant fixates in the wild population, i.e., fixation probability, has been intensively studied in evolutionary game theory, where individuals' fitness is frequency dependent. However, it is of limited interest when it takes long to take over. Thus the speed of evolution becomes an important issue. In general, it is still unclear how fixation times are affected by the population structure, although the fixation times have already been addressed in the well-mixed populations. Here we theoretically address this issue by pair approximation and diffusion approximation on regular graphs. It is shown (i) that under neutral selection, both unconditional and conditional fixation time are shortened by increasing the number of neighbors; (ii) that under weak selection, for the simplified prisoner's dilemma game, if benefit-to-cost ratio exceeds the degree of the graph, then the unconditional fixation time of a single cooperator is slower than that in the neutral case; and (iii) that under weak selection, for the conditional fixation time, limited neighbor size dilutes the counterintuitive stochastic slowdown which was found in well-mixed populations. Interestingly, we find that all of our results can be interpreted as that in the well-mixed population with a transformed payoff matrix. This interpretation is also valid for both death-birth and birth-death processes on graphs. This interpretation bridges the fixation time in the structured population and that in the well-mixed population. Thus it opens the avenue to investigate the challenging fixation time in structured populations by the known results in well-mixed populations.
NASA Astrophysics Data System (ADS)
Yalouz, S.; Falvo, C.; Pouthier, V.
2017-06-01
Based on the operatorial formulation of perturbation theory, the dynamical properties of a Frenkel exciton coupled with a thermal phonon bath on a star graph are studied. Within this method, the dynamics is governed by an effective Hamiltonian which accounts for exciton-phonon entanglement. The exciton is dressed by a virtual phonon cloud, whereas the phonons are dressed by virtual excitonic transitions. Special attention is paid to the description of the coherence of a qubit state initially located on the central node of the graph. Within the nonadiabatic weak coupling limit, it is shown that several timescales govern the coherence dynamics. In the short time limit, the coherence behaves as if the exciton was insensitive to the phonon bath. Then, quantum decoherence takes place, this decoherence being enhanced by the size of the graph and by temperature. However, the coherence does not vanish in the long time limit. Instead, it exhibits incomplete revivals that occur periodically at specific revival times and it shows almost exact recurrences that take place at particular super-revival times, a singular behavior that has been corroborated by performing exact quantum calculations.
Communication and complexity in a GRN-based multicellular system for graph colouring.
Buck, Moritz; Nehaniv, Chrystopher L
2008-01-01
Artificial Genetic Regulatory Networks (GRNs) are interesting control models through their simplicity and versatility. They can be easily implemented, evolved and modified, and their similarity to their biological counterparts makes them interesting for simulations of life-like systems as well. These aspects suggest they may be perfect control systems for distributed computing in diverse situations, but to be usable for such applications the computational power and evolvability of GRNs need to be studied. In this research we propose a simple distributed system implementing GRNs to solve the well known NP-complete graph colouring problem. Every node (cell) of the graph to be coloured is controlled by an instance of the same GRN. All the cells communicate directly with their immediate neighbours in the graph so as to set up a good colouring. The quality of this colouring directs the evolution of the GRNs using a genetic algorithm. We then observe the quality of the colouring for two different graphs according to different communication protocols and the number of different proteins in the cell (a measure for the possible complexity of a GRN). Those two points, being the main scalability issues that any computational paradigm raises, will then be discussed.
Path-sum solution of the Weyl quantum walk in 3 + 1 dimensions
NASA Astrophysics Data System (ADS)
D'Ariano, G. M.; Mosco, N.; Perinotti, P.; Tosini, A.
2017-10-01
We consider the Weyl quantum walk in 3+1 dimensions, that is a discrete-time walk describing a particle with two internal degrees of freedom moving on a Cayley graph of the group
The AME2016 atomic mass evaluation (II). Tables, graphs and references
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Meng; Audi, G.; Kondev, F. G.
This paper is the second part of the new evaluation of atomic masses, Ame2016. Using least-squares adjustments to all evaluated and accepted experimental data, described in Part I, we derive tables with numerical values and graphs to replace those given in Ame2012. The first table lists the recommended atomic mass values and their uncertainties. It is followed by a table of the influences of data on primary nuclides, a table of various reaction and decay energies, and finally, a series of graphs of separation and decay energies. The last section of this paper lists all references of the input datamore » used in the Ame2016 and the Nubase2016 evaluations (first paper in this issue). Amdc: http://amdc.impcas.ac.cn/« less
Bayesian exponential random graph modelling of interhospital patient referral networks.
Caimo, Alberto; Pallotti, Francesca; Lomi, Alessandro
2017-08-15
Using original data that we have collected on referral relations between 110 hospitals serving a large regional community, we show how recently derived Bayesian exponential random graph models may be adopted to illuminate core empirical issues in research on relational coordination among healthcare organisations. We show how a rigorous Bayesian computation approach supports a fully probabilistic analytical framework that alleviates well-known problems in the estimation of model parameters of exponential random graph models. We also show how the main structural features of interhospital patient referral networks that prior studies have described can be reproduced with accuracy by specifying the system of local dependencies that produce - but at the same time are induced by - decentralised collaborative arrangements between hospitals. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Fault management for data systems
NASA Technical Reports Server (NTRS)
Boyd, Mark A.; Iverson, David L.; Patterson-Hine, F. Ann
1993-01-01
Issues related to automating the process of fault management (fault diagnosis and response) for data management systems are considered. Substantial benefits are to be gained by successful automation of this process, particularly for large, complex systems. The use of graph-based models to develop a computer assisted fault management system is advocated. The general problem is described and the motivation behind choosing graph-based models over other approaches for developing fault diagnosis computer programs is outlined. Some existing work in the area of graph-based fault diagnosis is reviewed, and a new fault management method which was developed from existing methods is offered. Our method is applied to an automatic telescope system intended as a prototype for future lunar telescope programs. Finally, an application of our method to general data management systems is described.
Teacher's Representational Fluency in a Context of Technology Use
ERIC Educational Resources Information Center
Rocha, Helena
2016-01-01
This study focuses on teacher's Knowledge for Teaching Mathematics with Technology (KTMT), paying a special attention to teacher's representational fluency. It intends to characterize how the teacher uses and integrates the different representations provided by the graphing calculator on the process of teaching and learning functions at the high…
Software Reviews: Programs Worth a Second Look.
ERIC Educational Resources Information Center
Classroom Computer Learning, 1989
1989-01-01
Reviewed are three computer software programs: (1) "World GeoGraph"--geography, discovery tool, grades 6-12, Apple IIGS; (2) "Grammatik III"--language arts, grade 7-adult, IBM, PS/2, Tandy 1000; (3) "Words & Concepts I, II, III"--language and concept training for special education, age 3-9, Apple II with speech…
What is the Payoff for Diversifying Rural Economies?
ERIC Educational Resources Information Center
Killian, Molly S.; Hady, Thomas F.
1988-01-01
Examines the advantages and disadvantages of diversification as a strategy for economic development. In particular, rural economies that specialize in government and education tend to perform well. Includes map of U.S. labor market areas (LMAs), graphs and table comparing rural and urban LMAs' income and employment rates. (TES)
46 CFR 170.295 - Special consideration for free surface of passive roll stabilization tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) The factor (K) must be calculated as follows: (1) Plot (I/d)tan T on Graph 170.295 where— (i) (I) is... the roll tank; and (iii) (T) is the angle of heel. (2) Plot the moments of transference of the liquid...
ERIC Educational Resources Information Center
Char, Cynthia
Several research and design issues to be considered when creating educational software were identified by a field test evaluation of three types of innovative software created at Bank Street College: (1) Probe, software for measuring and graphing temperature data; (2) Rescue Mission, a navigation game that illustrates the computer's use for…
A graph-based approach to detect spatiotemporal dynamics in satellite image time series
NASA Astrophysics Data System (ADS)
Guttler, Fabio; Ienco, Dino; Nin, Jordi; Teisseire, Maguelonne; Poncelet, Pascal
2017-08-01
Enhancing the frequency of satellite acquisitions represents a key issue for Earth Observation community nowadays. Repeated observations are crucial for monitoring purposes, particularly when intra-annual process should be taken into account. Time series of images constitute a valuable source of information in these cases. The goal of this paper is to propose a new methodological framework to automatically detect and extract spatiotemporal information from satellite image time series (SITS). Existing methods dealing with such kind of data are usually classification-oriented and cannot provide information about evolutions and temporal behaviors. In this paper we propose a graph-based strategy that combines object-based image analysis (OBIA) with data mining techniques. Image objects computed at each individual timestamp are connected across the time series and generates a set of evolution graphs. Each evolution graph is associated to a particular area within the study site and stores information about its temporal evolution. Such information can be deeply explored at the evolution graph scale or used to compare the graphs and supply a general picture at the study site scale. We validated our framework on two study sites located in the South of France and involving different types of natural, semi-natural and agricultural areas. The results obtained from a Landsat SITS support the quality of the methodological approach and illustrate how the framework can be employed to extract and characterize spatiotemporal dynamics.
The definitive analysis of the Bendandi's methodology performed with a specific software
NASA Astrophysics Data System (ADS)
Ballabene, Adriano; Pescerelli Lagorio, Paola; Georgiadis, Teodoro
2015-04-01
The presentation aims to clarify the "Method Bendandi" supposed, in the past, to be able to forecast earthquakes and never let expressly resolved by the geophysicist from Faenza to posterity. The geoethics implications of the Bendandi's forecasts, and those that arise around the speculation of possible earthquakes inferred from suppositories "Bendandiane" methodologies, rose up in previous years caused by social alarms during supposed occurrences of earthquakes which never happened but where widely spread by media following some 'well informed' non conventional scientists. The analysis was conducted through an extensive literature search of the archive 'Raffaele Bendandi' at Geophy sical Observatory of Faenza and the forecasts analyzed utilising a specially developed software, called "Bendandiano Dashboard", that can reproduce the planetary configurations reported in the graphs made by Italian geophysicist. This analysis should serve to clarify 'definitively' what are the basis of the Bendandi's calculations as well as to prevent future unwarranted warnings issued on the basis of supposed prophecies and illusory legacy documents.
Automatic Generation of Issue Maps: Structured, Interactive Outputs for Complex Information Needs
2012-09-01
much can result in behaviour similar to the shortest-path chains. 24 Ronald Goldman Neil Lewis Judge Lance Ito 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 jury...Connecting the Dots has also been explored in non-textual domains. The authors of [ Heath et al., 2010] propose building graphs, called Image Webs, to...could imagine a metro map summarizing a dataset of medical records. 2. Images: In [ Heath et al., 2010], Heath et al build graphs called Image Webs to rep
Local Table Condensation in Rough Set Approach for Jumping Emerging Pattern Induction
NASA Astrophysics Data System (ADS)
Terlecki, Pawel; Walczak, Krzysztof
This paper extends the rough set approach for JEP induction based on the notion of a condensed decision table. The original transaction database is transformed to a relational form and patterns are induced by means of local reducts. The transformation employs an item aggregation obtained by coloring a graph that re0ects con0icts among items. For e±ciency reasons we propose to perform this preprocessing locally, i.e. at the transaction level, to achieve a higher dimensionality gain. Special maintenance strategy is also used to avoid graph rebuilds. Both global and local approach have been tested and discussed for dense and synthetically generated sparse datasets.
Disease Spreading Model with Partial Isolation
NASA Astrophysics Data System (ADS)
Chakraborty, Abhijit; Manna, S. S.
2013-08-01
The effect of partial isolation has been studied in disease spreading processes using the framework of susceptible-infected-susceptible (SIS) and susceptible-infected-recovered (SIR) models. The partial isolation is introduced by imposing a restriction: each infected individual can probabilistically infect up to a maximum number n of his susceptible neighbors, but not all. It has been observed that the critical values of the spreading rates for endemic states are non-zero in both models and decrease as 1/n with n, on all graphs including scale-free graphs. In particular, the SIR model with n = 2 turned out to be a special case, characterized by a new bond percolation threshold on square lattice.
Unapparent Information Revelation: Text Mining for Counterterrorism
NASA Astrophysics Data System (ADS)
Srihari, Rohini K.
Unapparent information revelation (UIR) is a special case of text mining that focuses on detecting possible links between concepts across multiple text documents by generating an evidence trail explaining the connection. A traditional search involving, for example, two or more person names will attempt to find documents mentioning both these individuals. This research focuses on a different interpretation of such a query: what is the best evidence trail across documents that explains a connection between these individuals? For example, all may be good golfers. A generalization of this task involves query terms representing general concepts (e.g. indictment, foreign policy). Previous approaches to this problem have focused on graph mining involving hyperlinked documents, and link analysis exploiting named entities. A new robust framework is presented, based on (i) generating concept chain graphs, a hybrid content representation, (ii) performing graph matching to select candidate subgraphs, and (iii) subsequently using graphical models to validate hypotheses using ranked evidence trails. We adapt the DUC data set for cross-document summarization to evaluate evidence trails generated by this approach
Role models for complex networks
NASA Astrophysics Data System (ADS)
Reichardt, J.; White, D. R.
2007-11-01
We present a framework for automatically decomposing (“block-modeling”) the functional classes of agents within a complex network. These classes are represented by the nodes of an image graph (“block model”) depicting the main patterns of connectivity and thus functional roles in the network. Using a first principles approach, we derive a measure for the fit of a network to any given image graph allowing objective hypothesis testing. From the properties of an optimal fit, we derive how to find the best fitting image graph directly from the network and present a criterion to avoid overfitting. The method can handle both two-mode and one-mode data, directed and undirected as well as weighted networks and allows for different types of links to be dealt with simultaneously. It is non-parametric and computationally efficient. The concepts of structural equivalence and modularity are found as special cases of our approach. We apply our method to the world trade network and analyze the roles individual countries play in the global economy.
An In-Depth Analysis of the Chung-Lu Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winlaw, M.; DeSterck, H.; Sanders, G.
2015-10-28
In the classic Erd}os R enyi random graph model [5] each edge is chosen with uniform probability and the degree distribution is binomial, limiting the number of graphs that can be modeled using the Erd}os R enyi framework [10]. The Chung-Lu model [1, 2, 3] is an extension of the Erd}os R enyi model that allows for more general degree distributions. The probability of each edge is no longer uniform and is a function of a user-supplied degree sequence, which by design is the expected degree sequence of the model. This property makes it an easy model to work withmore » theoretically and since the Chung-Lu model is a special case of a random graph model with a given degree sequence, many of its properties are well known and have been studied extensively [2, 3, 13, 8, 9]. It is also an attractive null model for many real-world networks, particularly those with power-law degree distributions and it is sometimes used as a benchmark for comparison with other graph generators despite some of its limitations [12, 11]. We know for example, that the average clustering coe cient is too low relative to most real world networks. As well, measures of a nity are also too low relative to most real-world networks of interest. However, despite these limitations or perhaps because of them, the Chung-Lu model provides a basis for comparing new graph models.« less
From brain topography to brain topology: relevance of graph theory to functional neuroscience.
Minati, Ludovico; Varotto, Giulia; D'Incerti, Ludovico; Panzica, Ferruccio; Chan, Dennis
2013-07-10
Although several brain regions show significant specialization, higher functions such as cross-modal information integration, abstract reasoning and conscious awareness are viewed as emerging from interactions across distributed functional networks. Analytical approaches capable of capturing the properties of such networks can therefore enhance our ability to make inferences from functional MRI, electroencephalography and magnetoencephalography data. Graph theory is a branch of mathematics that focuses on the formal modelling of networks and offers a wide range of theoretical tools to quantify specific features of network architecture (topology) that can provide information complementing the anatomical localization of areas responding to given stimuli or tasks (topography). Explicit modelling of the architecture of axonal connections and interactions among areas can furthermore reveal peculiar topological properties that are conserved across diverse biological networks, and highly sensitive to disease states. The field is evolving rapidly, partly fuelled by computational developments that enable the study of connectivity at fine anatomical detail and the simultaneous interactions among multiple regions. Recent publications in this area have shown that graph-based modelling can enhance our ability to draw causal inferences from functional MRI experiments, and support the early detection of disconnection and the modelling of pathology spread in neurodegenerative disease, particularly Alzheimer's disease. Furthermore, neurophysiological studies have shown that network topology has a profound link to epileptogenesis and that connectivity indices derived from graph models aid in modelling the onset and spread of seizures. Graph-based analyses may therefore significantly help understand the bases of a range of neurological conditions. This review is designed to provide an overview of graph-based analyses of brain connectivity and their relevance to disease aimed principally at general neuroscientists and clinicians.
America's Children 1976: A Bicentennial Assessment.
ERIC Educational Resources Information Center
Fleming, Virginia; And Others
This factbook presents 87 pages of pictures, graphs, diagrams, quotations, statistics, and text aimed at portraying the current status of children in America. The major areas examined include: (1) children in poverty; (2) child health; (3) family changes and day care; and (4) special child care needs for handicapped, abused, or neglected children.…
In-Memory Graph Databases for Web-Scale Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castellana, Vito G.; Morari, Alessandro; Weaver, Jesse R.
RDF databases have emerged as one of the most relevant way for organizing, integrating, and managing expo- nentially growing, often heterogeneous, and not rigidly structured data for a variety of scientific and commercial fields. In this paper we discuss the solutions integrated in GEMS (Graph database Engine for Multithreaded Systems), a software framework for implementing RDF databases on commodity, distributed-memory high-performance clusters. Unlike the majority of current RDF databases, GEMS has been designed from the ground up to primarily employ graph-based methods. This is reflected in all the layers of its stack. The GEMS framework is composed of: a SPARQL-to-C++more » compiler, a library of data structures and related methods to access and modify them, and a custom runtime providing lightweight software multithreading, network messages aggregation and a partitioned global address space. We provide an overview of the framework, detailing its component and how they have been closely designed and customized to address issues of graph methods applied to large-scale datasets on clusters. We discuss in details the principles that enable automatic translation of the queries (expressed in SPARQL, the query language of choice for RDF databases) to graph methods, and identify differences with respect to other RDF databases.« less
Hindersin, Laura; Traulsen, Arne
2015-11-01
We analyze evolutionary dynamics on graphs, where the nodes represent individuals of a population. The links of a node describe which other individuals can be displaced by the offspring of the individual on that node. Amplifiers of selection are graphs for which the fixation probability is increased for advantageous mutants and decreased for disadvantageous mutants. A few examples of such amplifiers have been developed, but so far it is unclear how many such structures exist and how to construct them. Here, we show that almost any undirected random graph is an amplifier of selection for Birth-death updating, where an individual is selected to reproduce with probability proportional to its fitness and one of its neighbors is replaced by that offspring at random. If we instead focus on death-Birth updating, in which a random individual is removed and its neighbors compete for the empty spot, then the same ensemble of graphs consists of almost only suppressors of selection for which the fixation probability is decreased for advantageous mutants and increased for disadvantageous mutants. Thus, the impact of population structure on evolutionary dynamics is a subtle issue that will depend on seemingly minor details of the underlying evolutionary process.
An effective trust-based recommendation method using a novel graph clustering algorithm
NASA Astrophysics Data System (ADS)
Moradi, Parham; Ahmadian, Sajad; Akhlaghian, Fardin
2015-10-01
Recommender systems are programs that aim to provide personalized recommendations to users for specific items (e.g. music, books) in online sharing communities or on e-commerce sites. Collaborative filtering methods are important and widely accepted types of recommender systems that generate recommendations based on the ratings of like-minded users. On the other hand, these systems confront several inherent issues such as data sparsity and cold start problems, caused by fewer ratings against the unknowns that need to be predicted. Incorporating trust information into the collaborative filtering systems is an attractive approach to resolve these problems. In this paper, we present a model-based collaborative filtering method by applying a novel graph clustering algorithm and also considering trust statements. In the proposed method first of all, the problem space is represented as a graph and then a sparsest subgraph finding algorithm is applied on the graph to find the initial cluster centers. Then, the proposed graph clustering algorithm is performed to obtain the appropriate users/items clusters. Finally, the identified clusters are used as a set of neighbors to recommend unseen items to the current active user. Experimental results based on three real-world datasets demonstrate that the proposed method outperforms several state-of-the-art recommender system methods.
A fuzzy pattern matching method based on graph kernel for lithography hotspot detection
NASA Astrophysics Data System (ADS)
Nitta, Izumi; Kanazawa, Yuzi; Ishida, Tsutomu; Banno, Koji
2017-03-01
In advanced technology nodes, lithography hotspot detection has become one of the most significant issues in design for manufacturability. Recently, machine learning based lithography hotspot detection has been widely investigated, but it has trade-off between detection accuracy and false alarm. To apply machine learning based technique to the physical verification phase, designers require minimizing undetected hotspots to avoid yield degradation. They also need a ranking of similar known patterns with a detected hotspot to prioritize layout pattern to be corrected. To achieve high detection accuracy and to prioritize detected hotspots, we propose a novel lithography hotspot detection method using Delaunay triangulation and graph kernel based machine learning. Delaunay triangulation extracts features of hotspot patterns where polygons locate irregularly and closely one another, and graph kernel expresses inner structure of graphs. Additionally, our method provides similarity between two patterns and creates a list of similar training patterns with a detected hotspot. Experiments results on ICCAD 2012 benchmarks show that our method achieves high accuracy with allowable range of false alarm. We also show the ranking of the similar known patterns with a detected hotspot.
DOGMA: A Disk-Oriented Graph Matching Algorithm for RDF Databases
NASA Astrophysics Data System (ADS)
Bröcheler, Matthias; Pugliese, Andrea; Subrahmanian, V. S.
RDF is an increasingly important paradigm for the representation of information on the Web. As RDF databases increase in size to approach tens of millions of triples, and as sophisticated graph matching queries expressible in languages like SPARQL become increasingly important, scalability becomes an issue. To date, there is no graph-based indexing method for RDF data where the index was designed in a way that makes it disk-resident. There is therefore a growing need for indexes that can operate efficiently when the index itself resides on disk. In this paper, we first propose the DOGMA index for fast subgraph matching on disk and then develop a basic algorithm to answer queries over this index. This algorithm is then significantly sped up via an optimized algorithm that uses efficient (but correct) pruning strategies when combined with two different extensions of the index. We have implemented a preliminary system and tested it against four existing RDF database systems developed by others. Our experiments show that our algorithm performs very well compared to these systems, with orders of magnitude improvements for complex graph queries.
A Graph Theory Practice on Transformed Image: A Random Image Steganography
Thanikaiselvan, V.; Arulmozhivarman, P.; Subashanthini, S.; Amirtharajan, Rengarajan
2013-01-01
Modern day information age is enriched with the advanced network communication expertise but unfortunately at the same time encounters infinite security issues when dealing with secret and/or private information. The storage and transmission of the secret information become highly essential and have led to a deluge of research in this field. In this paper, an optimistic effort has been taken to combine graceful graph along with integer wavelet transform (IWT) to implement random image steganography for secure communication. The implementation part begins with the conversion of cover image into wavelet coefficients through IWT and is followed by embedding secret image in the randomly selected coefficients through graph theory. Finally stegoimage is obtained by applying inverse IWT. This method provides a maximum of 44 dB peak signal to noise ratio (PSNR) for 266646 bits. Thus, the proposed method gives high imperceptibility through high PSNR value and high embedding capacity in the cover image due to adaptive embedding scheme and high robustness against blind attack through graph theoretic random selection of coefficients. PMID:24453857
Balaur, Irina; Saqi, Mansoor; Barat, Ana; Lysenko, Artem; Mazein, Alexander; Rawlings, Christopher J; Ruskin, Heather J; Auffray, Charles
2017-10-01
The development of colorectal cancer (CRC)-the third most common cancer type-has been associated with deregulations of cellular mechanisms stimulated by both genetic and epigenetic events. StatEpigen is a manually curated and annotated database, containing information on interdependencies between genetic and epigenetic signals, and specialized currently for CRC research. Although StatEpigen provides a well-developed graphical user interface for information retrieval, advanced queries involving associations between multiple concepts can benefit from more detailed graph representation of the integrated data. This can be achieved by using a graph database (NoSQL) approach. Data were extracted from StatEpigen and imported to our newly developed EpiGeNet, a graph database for storage and querying of conditional relationships between molecular (genetic and epigenetic) events observed at different stages of colorectal oncogenesis. We illustrate the enhanced capability of EpiGeNet for exploration of different queries related to colorectal tumor progression; specifically, we demonstrate the query process for (i) stage-specific molecular events, (ii) most frequently observed genetic and epigenetic interdependencies in colon adenoma, and (iii) paths connecting key genes reported in CRC and associated events. The EpiGeNet framework offers improved capability for management and visualization of data on molecular events specific to CRC initiation and progression.
Scale free effects in world currency exchange network
NASA Astrophysics Data System (ADS)
Górski, A. Z.; Drożdż, S.; Kwapień, J.
2008-11-01
A large collection of daily time series for 60 world currencies' exchange rates is considered. The correlation matrices are calculated and the corresponding Minimal Spanning Tree (MST) graphs are constructed for each of those currencies used as reference for the remaining ones. It is shown that multiplicity of the MST graphs' nodes to a good approximation develops a power like, scale free distribution with the scaling exponent similar as for several other complex systems studied so far. Furthermore, quantitative arguments in favor of the hierarchical organization of the world currency exchange network are provided by relating the structure of the above MST graphs and their scaling exponents to those that are derived from an exactly solvable hierarchical network model. A special status of the USD during the period considered can be attributed to some departures of the MST features, when this currency (or some other tied to it) is used as reference, from characteristics typical to such a hierarchical clustering of nodes towards those that correspond to the random graphs. Even though in general the basic structure of the MST is robust with respect to changing the reference currency some trace of a systematic transition from somewhat dispersed - like the USD case - towards more compact MST topology can be observed when correlations increase.
Adaptive graph-based multiple testing procedures
Klinglmueller, Florian; Posch, Martin; Koenig, Franz
2016-01-01
Multiple testing procedures defined by directed, weighted graphs have recently been proposed as an intuitive visual tool for constructing multiple testing strategies that reflect the often complex contextual relations between hypotheses in clinical trials. Many well-known sequentially rejective tests, such as (parallel) gatekeeping tests or hierarchical testing procedures are special cases of the graph based tests. We generalize these graph-based multiple testing procedures to adaptive trial designs with an interim analysis. These designs permit mid-trial design modifications based on unblinded interim data as well as external information, while providing strong family wise error rate control. To maintain the familywise error rate, it is not required to prespecify the adaption rule in detail. Because the adaptive test does not require knowledge of the multivariate distribution of test statistics, it is applicable in a wide range of scenarios including trials with multiple treatment comparisons, endpoints or subgroups, or combinations thereof. Examples of adaptations are dropping of treatment arms, selection of subpopulations, and sample size reassessment. If, in the interim analysis, it is decided to continue the trial as planned, the adaptive test reduces to the originally planned multiple testing procedure. Only if adaptations are actually implemented, an adjusted test needs to be applied. The procedure is illustrated with a case study and its operating characteristics are investigated by simulations. PMID:25319733
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webster, Jennifer B.; Erikson, Luke E.; Gastelum, Zoe N.
2014-05-12
The illicit trafficking of strategic nuclear commodities (defined here as the goods needed for a covert nuclear program excluding special nuclear materials) poses a significant challenge to the international nuclear nonproliferation community. Export control regulations, both domestically and internationally, seek to inhibit the spread of strategic nuclear commodities by restricting their sale to parties that may use them for nefarious purposes. However, export controls alone are not sufficient for preventing the illicit transfer of strategic nuclear goods. There are two major pitfalls to relying solely on export control regulations for the deterrence of proliferation of strategic goods. First, export controlmore » enforcement today relies heavily on the honesty and willingness of participants to adhere to the legal framework already in place. Secondly, current practices focus on the evaluation of single records which allow for the necessary goods to be purchased separately and hidden within the thousands of legitimate commerce transactions that occur each day, disregarding strategic information regarding several purchases. Our research presents two preliminary data-centric approaches for investigating procurement networks of strategic nuclear commodities. Pacific Northwest National Laboratory (PNNL) has been putting significant effort into nonproliferation activities as an institution, both in terms of the classical nuclear material focused approach and in the examination of other strategic goods necessary to implement a nuclear program. In particular, the PNNL Signature Discovery Initiative (SDI) has codified several scientific methodologies for the detection, characterization, and prediction of signatures that are indicative of a phenomenon of interest. The methodologies and tools developed under SDI have already been applied successfully to problems in bio-forensics, cyber security and power grid balancing efforts and they have now made the nonproliferation of strategic goods into a challenge problem for testing their methodology and tools. As a first step towards the detection and characterization of illicit procurement networks, our research examines procurement networks as defined by a system of entities (people or companies) that enter into transactions of specific items with one another. Once we have defined such networks, we are interested in answering questions about the behavior and characterization of such networks. The questions we wish to answer regarding procurement networks are, first, “Can we detect networks within large, noisy datasets?” and second, “To what extent can we compare multiple networks and identify their similarities?” As procurement networks can be naturally viewed as a graph, we have employed several graph analytic tools to aid in these tasks. In particular, Graphscape, an SDI tool, uses a novel method to approximate edit distance, a graph distance measure based on the number of changes needed to transform one graph into another, in order to measure how similar two given graphs are to each other. Given a set of graphs where vertices represent companies and edges represent a shipment from company A to company B, we can calculate an all-for-all comparison of graphs. In this way, we are able to determine which graphs are most similar, and which require more changes to transform one into the other. The set of graphs to be compared can be further specialized to provide more insight, e.g., using different time periods to explore events in a company life cycle.« less
Inference of alternative splicing from RNA-Seq data with probabilistic splice graphs
LeGault, Laura H.; Dewey, Colin N.
2013-01-01
Motivation: Alternative splicing and other processes that allow for different transcripts to be derived from the same gene are significant forces in the eukaryotic cell. RNA-Seq is a promising technology for analyzing alternative transcripts, as it does not require prior knowledge of transcript structures or genome sequences. However, analysis of RNA-Seq data in the presence of genes with large numbers of alternative transcripts is currently challenging due to efficiency, identifiability and representation issues. Results: We present RNA-Seq models and associated inference algorithms based on the concept of probabilistic splice graphs, which alleviate these issues. We prove that our models are often identifiable and demonstrate that our inference methods for quantification and differential processing detection are efficient and accurate. Availability: Software implementing our methods is available at http://deweylab.biostat.wisc.edu/psginfer. Contact: cdewey@biostat.wisc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23846746
Information-optimal genome assembly via sparse read-overlap graphs.
Shomorony, Ilan; Kim, Samuel H; Courtade, Thomas A; Tse, David N C
2016-09-01
In the context of third-generation long-read sequencing technologies, read-overlap-based approaches are expected to play a central role in the assembly step. A fundamental challenge in assembling from a read-overlap graph is that the true sequence corresponds to a Hamiltonian path on the graph, and, under most formulations, the assembly problem becomes NP-hard, restricting practical approaches to heuristics. In this work, we avoid this seemingly fundamental barrier by first setting the computational complexity issue aside, and seeking an algorithm that targets information limits In particular, we consider a basic feasibility question: when does the set of reads contain enough information to allow unambiguous reconstruction of the true sequence? Based on insights from this information feasibility question, we present an algorithm-the Not-So-Greedy algorithm-to construct a sparse read-overlap graph. Unlike most other assembly algorithms, Not-So-Greedy comes with a performance guarantee: whenever information feasibility conditions are satisfied, the algorithm reduces the assembly problem to an Eulerian path problem on the resulting graph, and can thus be solved in linear time. In practice, this theoretical guarantee translates into assemblies of higher quality. Evaluations on both simulated reads from real genomes and a PacBio Escherichia coli K12 dataset demonstrate that Not-So-Greedy compares favorably with standard string graph approaches in terms of accuracy of the resulting read-overlap graph and contig N50. Available at github.com/samhykim/nsg courtade@eecs.berkeley.edu or dntse@stanford.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
GraphCrunch 2: Software tool for network modeling, alignment and clustering.
Kuchaiev, Oleksii; Stevanović, Aleksandar; Hayes, Wayne; Pržulj, Nataša
2011-01-19
Recent advancements in experimental biotechnology have produced large amounts of protein-protein interaction (PPI) data. The topology of PPI networks is believed to have a strong link to their function. Hence, the abundance of PPI data for many organisms stimulates the development of computational techniques for the modeling, comparison, alignment, and clustering of networks. In addition, finding representative models for PPI networks will improve our understanding of the cell just as a model of gravity has helped us understand planetary motion. To decide if a model is representative, we need quantitative comparisons of model networks to real ones. However, exact network comparison is computationally intractable and therefore several heuristics have been used instead. Some of these heuristics are easily computable "network properties," such as the degree distribution, or the clustering coefficient. An important special case of network comparison is the network alignment problem. Analogous to sequence alignment, this problem asks to find the "best" mapping between regions in two networks. It is expected that network alignment might have as strong an impact on our understanding of biology as sequence alignment has had. Topology-based clustering of nodes in PPI networks is another example of an important network analysis problem that can uncover relationships between interaction patterns and phenotype. We introduce the GraphCrunch 2 software tool, which addresses these problems. It is a significant extension of GraphCrunch which implements the most popular random network models and compares them with the data networks with respect to many network properties. Also, GraphCrunch 2 implements the GRAph ALigner algorithm ("GRAAL") for purely topological network alignment. GRAAL can align any pair of networks and exposes large, dense, contiguous regions of topological and functional similarities far larger than any other existing tool. Finally, GraphCruch 2 implements an algorithm for clustering nodes within a network based solely on their topological similarities. Using GraphCrunch 2, we demonstrate that eukaryotic and viral PPI networks may belong to different graph model families and show that topology-based clustering can reveal important functional similarities between proteins within yeast and human PPI networks. GraphCrunch 2 is a software tool that implements the latest research on biological network analysis. It parallelizes computationally intensive tasks to fully utilize the potential of modern multi-core CPUs. It is open-source and freely available for research use. It runs under the Windows and Linux platforms.
The ergodicity landscape of quantum theories
NASA Astrophysics Data System (ADS)
Ho, Wen Wei; Radičević, Đorđe
2018-02-01
This paper is a physicist’s review of the major conceptual issues concerning the problem of spectral universality in quantum systems. Here, we present a unified, graph-based view of all archetypical models of such universality (billiards, particles in random media, interacting spin or fermion systems). We find phenomenological relations between the onset of ergodicity (Gaussian-random delocalization of eigenstates) and the structure of the appropriate graphs, and we construct a heuristic picture of summing trajectories on graphs that describes why a generic interacting system should be ergodic. We also provide an operator-based discussion of quantum chaos and propose criteria to distinguish bases that can usefully diagnose ergodicity. The result of this analysis is a rough but systematic outline of how ergodicity changes across the space of all theories with a given Hilbert space dimension. As a particular example, we study the SYK model and report on the transition from maximal to partial ergodicity as the disorder strength is decreased.
Winner Takes All: Competing Viruses or Ideas on Fair-Play Networks
2012-01-01
ratio (up to some exponents ). Also, clearly, the maximal ratios are attained at one of the last two fixed points. 4.3 Special Case: Barbell Graph A...Huberman. The dynamics of viral marketing. In EC, 2006. [24] J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance, and M. Hurst . Cascading behavior in large
The Preparation and Use of Specialist Material in Foreign Language Teaching for Industry.
ERIC Educational Resources Information Center
Conlin, Christine
1984-01-01
Outlines methods by which dialogs are produced in a program which teaches foreign languages to local British industries. Recommends that such dialogs on specialized topics be short and simple. Also discusses how role play and materials such as graphs, charts, forms, and diagrams can be used as language teaching material. (SED)
America's Black Population: 1970 to 1982. A Statistical View. Special Publication PIO/POP-83-1.
ERIC Educational Resources Information Center
Matney, William C.; Johnson, Dwight L.
This pamphlet is the first in a series designed to provide a compilation of selected demographic, social, economic, and other statistical data relating to selected populations. Topics covered here (in both discussion and table/graph format) include Black population growth and distribution, residence, income gain, poverty rate increase, labor force…
Student Performance Data in the Classroom: Measurement and Evaluation of Student Progress.
ERIC Educational Resources Information Center
Cooke, Nancy L.; And Others
1991-01-01
This survey of 510 special education teachers found that most teachers collect, record, and use data on student performance to determine instructional effectiveness, appropriate time to move students to the next skill, and which objectives have been met. Only one-third of teachers used graphs for displaying and interpreting data. (Author/JDD)
Seamless Provenance Representation and Use in Collaborative Science Scenarios
NASA Astrophysics Data System (ADS)
Missier, P.; Ludaescher, B.; Bowers, S.; Altintas, I.; Anand, M. K.; Dey, S.; Sarkar, A.; Shrestha, B.; Goble, C.
2010-12-01
The notion of sharing scientific data has only recently begun to gain ground in science, where data is still considered a private asset. There is growing evidence, however, that the benefits of scientific collaboration through early data sharing during the course of a science project may outgrow the risk of losing exclusive ownership of the data. As exemplar success stories are making the headlines[1], principles of effective information sharing have become the subject of e-science research. In particular, any piece of published data should be self-describing, to the extent necessary for consumers to determine its suitability for reuse in their own projects. This is accomplished by associating a body of formally specified and machine-processable metadata to the data. When data is produced and reused by independent groups, however, metadata interoperability issues emerge. This is the case for provenance, a form of metadata that describes the history of a data product, Y. Provenance is typically expressed as a graph-structured set of dependencies that account for the sequence of computational or interactive steps that led to Y, often starting from some primary, observational data. Traversing dependency graphs is one of the mechanisms used to answer questions on data reliability. In the context of the NSF DataONE project[2], we have been studying issues of provenance interoperability in scientific collaboration scenarios. Consider a first scientist, Alice, who publishes a data product X along with its provenance, and a second scientist who further transforms X into a new product Y, also along with its provenance. A third scientist, who is interested in Y, expects to be able to trace Y's history up to the inputs used by Alice. This is only possible, however, if provenance accumulates into a single, uniform graph that can be seamlessly traversed. This becomes problematic when provenance is captured using different tools and computational models (i.e. workflow systems), as well as when data is published and reused using mechanisms that are not provenance-aware. In this presentation we discuss requirements for ensuring provenance-aware data publishing and reuse, and describe the design and implementation of a prototype toolkit that involves two specific, and broadly used, workflow models, Kepler [3] and Taverna [4]. The implementation is expected to be adopted as part of DataONE's investigators' toolkit, in support of its mission of large-scale data preservation. Refs. [1]Sharing of Data Leads to Progress on Alzheimer’s, G. Kolata, NYT, 8/12/2010 [2]http://www.dataone.org [3]Ludaescher B., Altintas I. et al. Scientific Workflow Management and the Kepler System. Special Issue: Workflow in Grid Systems. Concurrency and Computation: Practice & Experience 18(10): 1039-1065, 2006 [4]D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R. Pocock, P. Li, T. Oinn. Taverna: a tool for building and running workflows of services. Nucl. Acids Res. 34: W729-W732, 2006
NASA Astrophysics Data System (ADS)
Connes, Alain; Kreimer, Dirk
This paper gives a complete selfcontained proof of our result announced in [6] showing that renormalization in quantum field theory is a special instance of a general mathematical procedure of extraction of finite values based on the Riemann-Hilbert problem. We shall first show that for any quantum field theory, the combinatorics of Feynman graphs gives rise to a Hopf algebra which is commutative as an algebra. It is the dual Hopf algebra of the enveloping algebra of a Lie algebra whose basis is labelled by the one particle irreducible Feynman graphs. The Lie bracket of two such graphs is computed from insertions of one graph in the other and vice versa. The corresponding Lie group G is the group of characters of . We shall then show that, using dimensional regularization, the bare (unrenormalized) theory gives rise to a loop
Metabolomics analysis: Finding out metabolic building blocks
2017-01-01
In this paper we propose a new methodology for the analysis of metabolic networks. We use the notion of strongly connected components of a graph, called in this context metabolic building blocks. Every strongly connected component is contracted to a single node in such a way that the resulting graph is a directed acyclic graph, called a metabolic DAG, with a considerably reduced number of nodes. The property of being a directed acyclic graph brings out a background graph topology that reveals the connectivity of the metabolic network, as well as bridges, isolated nodes and cut nodes. Altogether, it becomes a key information for the discovery of functional metabolic relations. Our methodology has been applied to the glycolysis and the purine metabolic pathways for all organisms in the KEGG database, although it is general enough to work on any database. As expected, using the metabolic DAGs formalism, a considerable reduction on the size of the metabolic networks has been obtained, specially in the case of the purine pathway due to its relative larger size. As a proof of concept, from the information captured by a metabolic DAG and its corresponding metabolic building blocks, we obtain the core of the glycolysis pathway and the core of the purine metabolism pathway and detect some essential metabolic building blocks that reveal the key reactions in both pathways. Finally, the application of our methodology to the glycolysis pathway and the purine metabolism pathway reproduce the tree of life for the whole set of the organisms represented in the KEGG database which supports the utility of this research. PMID:28493998
Solving the scalability issue in quantum-based refinement: Q|R#1.
Zheng, Min; Moriarty, Nigel W; Xu, Yanting; Reimers, Jeffrey R; Afonine, Pavel V; Waller, Mark P
2017-12-01
Accurately refining biomacromolecules using a quantum-chemical method is challenging because the cost of a quantum-chemical calculation scales approximately as n m , where n is the number of atoms and m (≥3) is based on the quantum method of choice. This fundamental problem means that quantum-chemical calculations become intractable when the size of the system requires more computational resources than are available. In the development of the software package called Q|R, this issue is referred to as Q|R#1. A divide-and-conquer approach has been developed that fragments the atomic model into small manageable pieces in order to solve Q|R#1. Firstly, the atomic model of a crystal structure is analyzed to detect noncovalent interactions between residues, and the results of the analysis are represented as an interaction graph. Secondly, a graph-clustering algorithm is used to partition the interaction graph into a set of clusters in such a way as to minimize disruption to the noncovalent interaction network. Thirdly, the environment surrounding each individual cluster is analyzed and any residue that is interacting with a particular cluster is assigned to the buffer region of that particular cluster. A fragment is defined as a cluster plus its buffer region. The gradients for all atoms from each of the fragments are computed, and only the gradients from each cluster are combined to create the total gradients. A quantum-based refinement is carried out using the total gradients as chemical restraints. In order to validate this interaction graph-based fragmentation approach in Q|R, the entire atomic model of an amyloid cross-β spine crystal structure (PDB entry 2oNA) was refined.
Unsupervised object segmentation with a hybrid graph model (HGM).
Liu, Guangcan; Lin, Zhouchen; Yu, Yong; Tang, Xiaoou
2010-05-01
In this work, we address the problem of performing class-specific unsupervised object segmentation, i.e., automatic segmentation without annotated training images. Object segmentation can be regarded as a special data clustering problem where both class-specific information and local texture/color similarities have to be considered. To this end, we propose a hybrid graph model (HGM) that can make effective use of both symmetric and asymmetric relationship among samples. The vertices of a hybrid graph represent the samples and are connected by directed edges and/or undirected ones, which represent the asymmetric and/or symmetric relationship between them, respectively. When applied to object segmentation, vertices are superpixels, the asymmetric relationship is the conditional dependence of occurrence, and the symmetric relationship is the color/texture similarity. By combining the Markov chain formed by the directed subgraph and the minimal cut of the undirected subgraph, the object boundaries can be determined for each image. Using the HGM, we can conveniently achieve simultaneous segmentation and recognition by integrating both top-down and bottom-up information into a unified process. Experiments on 42 object classes (9,415 images in total) show promising results.
NASA Astrophysics Data System (ADS)
Seppke, Benjamin; Dreschler-Fischer, Leonie; Wilms, Christian
2016-08-01
The extraction of road signatures from remote sensing images as a promising indicator for urbanization is a classical segmentation problem. However, some segmentation algorithms often lead to non-sufficient results. One way to overcome this problem is the usage of superpixels, that represent a locally coherent cluster of connected pixels. Superpixels allow flexible, highly adaptive segmentation approaches due to the possibility of merging as well as splitting and form new basic image entities. On the other hand, superpixels require an appropriate representation containing all relevant information about topology and geometry to maximize their advantages.In this work, we present a combined geometric and topological representation based on a special graph representation, the so-called RS-graph. Moreover, we present the use of the RS-graph by means of a case study: the extraction of partially occluded road networks in rural areas from open source (spectral) remote sensing images by tracking. In addition, multiprocessing and GPU-based parallelization is used to speed up the construction of the representation and the application.
Network representation of protein interactions: Theory of graph description and analysis.
Kurzbach, Dennis
2016-09-01
A methodological framework is presented for the graph theoretical interpretation of NMR data of protein interactions. The proposed analysis generalizes the idea of network representations of protein structures by expanding it to protein interactions. This approach is based on regularization of residue-resolved NMR relaxation times and chemical shift data and subsequent construction of an adjacency matrix that represents the underlying protein interaction as a graph or network. The network nodes represent protein residues. Two nodes are connected if two residues are functionally correlated during the protein interaction event. The analysis of the resulting network enables the quantification of the importance of each amino acid of a protein for its interactions. Furthermore, the determination of the pattern of correlations between residues yields insights into the functional architecture of an interaction. This is of special interest for intrinsically disordered proteins, since the structural (three-dimensional) architecture of these proteins and their complexes is difficult to determine. The power of the proposed methodology is demonstrated at the example of the interaction between the intrinsically disordered protein osteopontin and its natural ligand heparin. © 2016 The Protein Society.
ERIC Educational Resources Information Center
Schwartz, Richard
1992-01-01
Suggests that teachers use mathematics problems related to the "1992 World Population Data Sheet" to teach students about such population-related issues as hunger, resource scarcity, poverty, and pollution. Offers sample problems involving percents, ratios, basic calculations, sequences, variability, graphs, averages, and correlation. Includes a…
Efficient Synthesis of Graph Methods: a Dynamically Scheduled Architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minutoli, Marco; Castellana, Vito G.; Tumeo, Antonino
RDF databases naturally map to a graph representation and employ languages, such as SPARQL, that implements queries as graph pattern matching routines. Graph methods exhibit an irregular behavior: they present unpredictable, fine-grained data accesses, and are synchronization inten- sive. Graph data structures expose large amounts of dy- namic parallelism, but are difficult to partition without gen- erating load unbalance. In this paper, we present a novel ar- chitecture to improve the synthesis of graph methods. Our design addresses the issues of these algorithms with two com- ponents: a Dynamic Task Scheduler (DTS), which reduces load unbalance and maximize resource utilization,more » and a Hi- erarchical Memory Interface controller (HMI), which pro- vides support for concurrent memory operations on multi- ported/multi-banked shared memories. We evaluate our ap- proach by generating the accelerators for a set of SPARQL queries from the Lehigh University Benchmark (LUBM). We first analyze the load unbalance of these queries, showing that execution time among tasks can differ even of order of magnitudes. We then synthesize the queries and com- pare the performance of the resulting accelerators against the current state of the art. Experimental results show that our solution provides a speedup over the serial implementa- tion close to the theoretical maximum and a speedup up to 3.45 over a baseline parallel implementation. We conclude our study by exploring the design space to achieve maximum memory channels utilization. The best design used at least three of the four memory channels for more than 90% of the execution time.« less
Exact solution of matricial Φ23 quantum field theory
NASA Astrophysics Data System (ADS)
Grosse, Harald; Sako, Akifumi; Wulkenhaar, Raimar
2017-12-01
We apply a recently developed method to exactly solve the Φ3 matrix model with covariance of a two-dimensional theory, also known as regularised Kontsevich model. Its correlation functions collectively describe graphs on a multi-punctured 2-sphere. We show how Ward-Takahashi identities and Schwinger-Dyson equations lead in a special large- N limit to integral equations that we solve exactly for all correlation functions. The solved model arises from noncommutative field theory in a special limit of strong deformation parameter. The limit defines ordinary 2D Schwinger functions which, however, do not satisfy reflection positivity.
Gps-Denied Geo-Localisation Using Visual Odometry
NASA Astrophysics Data System (ADS)
Gupta, Ashish; Chang, Huan; Yilmaz, Alper
2016-06-01
The primary method for geo-localization is based on GPS which has issues of localization accuracy, power consumption, and unavailability. This paper proposes a novel approach to geo-localization in a GPS-denied environment for a mobile platform. Our approach has two principal components: public domain transport network data available in GIS databases or OpenStreetMap; and a trajectory of a mobile platform. This trajectory is estimated using visual odometry and 3D view geometry. The transport map information is abstracted as a graph data structure, where various types of roads are modelled as graph edges and typically intersections are modelled as graph nodes. A search for the trajectory in real time in the graph yields the geo-location of the mobile platform. Our approach uses a simple visual sensor and it has a low memory and computational footprint. In this paper, we demonstrate our method for trajectory estimation and provide examples of geolocalization using public-domain map data. With the rapid proliferation of visual sensors as part of automated driving technology and continuous growth in public domain map data, our approach has the potential to completely augment, or even supplant, GPS based navigation since it functions in all environments.
Sun, Peng; Guo, Jiong; Baumbach, Jan
2012-07-17
The explosion of biological data has largely influenced the focus of today’s biology research. Integrating and analysing large quantity of data to provide meaningful insights has become the main challenge to biologists and bioinformaticians. One major problem is the combined data analysis of data from different types, such as phenotypes and genotypes. This data is modelled as bi-partite graphs where nodes correspond to the different data points, mutations and diseases for instance, and weighted edges relate to associations between them. Bi-clustering is a special case of clustering designed for partitioning two different types of data simultaneously. We present a bi-clustering approach that solves the NP-hard weighted bi-cluster editing problem by transforming a given bi-partite graph into a disjoint union of bi-cliques. Here we contribute with an exact algorithm that is based on fixed-parameter tractability. We evaluated its performance on artificial graphs first. Afterwards we exemplarily applied our Java implementation to data of genome-wide association studies (GWAS) data aiming for discovering new, previously unobserved geno-to-pheno associations. We believe that our results will serve as guidelines for further wet lab investigations. Generally our software can be applied to any kind of data that can be modelled as bi-partite graphs. To our knowledge it is the fastest exact method for weighted bi-cluster editing problem.
Sun, Peng; Guo, Jiong; Baumbach, Jan
2012-06-01
The explosion of biological data has largely influenced the focus of today's biology research. Integrating and analysing large quantity of data to provide meaningful insights has become the main challenge to biologists and bioinformaticians. One major problem is the combined data analysis of data from different types, such as phenotypes and genotypes. This data is modelled as bi-partite graphs where nodes correspond to the different data points, mutations and diseases for instance, and weighted edges relate to associations between them. Bi-clustering is a special case of clustering designed for partitioning two different types of data simultaneously. We present a bi-clustering approach that solves the NP-hard weighted bi-cluster editing problem by transforming a given bi-partite graph into a disjoint union of bi-cliques. Here we contribute with an exact algorithm that is based on fixed-parameter tractability. We evaluated its performance on artificial graphs first. Afterwards we exemplarily applied our Java implementation to data of genome-wide association studies (GWAS) data aiming for discovering new, previously unobserved geno-to-pheno associations. We believe that our results will serve as guidelines for further wet lab investigations. Generally our software can be applied to any kind of data that can be modelled as bi-partite graphs. To our knowledge it is the fastest exact method for weighted bi-cluster editing problem.
NASA Astrophysics Data System (ADS)
Lacasa, Lucas
2014-09-01
Dynamical processes can be transformed into graphs through a family of mappings called visibility algorithms, enabling the possibility of (i) making empirical time series analysis and signal processing and (ii) characterizing classes of dynamical systems and stochastic processes using the tools of graph theory. Recent works show that the degree distribution of these graphs encapsulates much information on the signals' variability, and therefore constitutes a fundamental feature for statistical learning purposes. However, exact solutions for the degree distributions are only known in a few cases, such as for uncorrelated random processes. Here we analytically explore these distributions in a list of situations. We present a diagrammatic formalism which computes for all degrees their corresponding probability as a series expansion in a coupling constant which is the number of hidden variables. We offer a constructive solution for general Markovian stochastic processes and deterministic maps. As case tests we focus on Ornstein-Uhlenbeck processes, fully chaotic and quasiperiodic maps. Whereas only for certain degree probabilities can all diagrams be summed exactly, in the general case we show that the perturbation theory converges. In a second part, we make use of a variational technique to predict the complete degree distribution for special classes of Markovian dynamics with fast-decaying correlations. In every case we compare the theory with numerical experiments.
Chiral limit of N = 4 SYM and ABJM and integrable Feynman graphs
NASA Astrophysics Data System (ADS)
Caetano, João; Gürdoğan, Ömer; Kazakov, Vladimir
2018-03-01
We consider a special double scaling limit, recently introduced by two of the authors, combining weak coupling and large imaginary twist, for the γ-twisted N = 4 SYM theory. We also establish the analogous limit for ABJM theory. The resulting non-gauge chiral 4D and 3D theories of interacting scalars and fermions are integrable in the planar limit. In spite of the breakdown of conformality by double-trace interactions, most of the correlators for local operators of these theories are conformal, with non-trivial anomalous dimensions defined by specific, integrable Feynman diagrams. We discuss the details of this diagrammatics. We construct the doubly-scaled asymptotic Bethe ansatz (ABA) equations for multi-magnon states in these theories. Each entry of the mixing matrix of local conformal operators in the simplest of these theories — the bi-scalar model in 4D and tri-scalar model in 3D — is given by a single Feynman diagram at any given loop order. The related diagrams are in principle computable, up to a few scheme dependent constants, by integrability methods (quantum spectral curve or ABA). These constants should be fixed from direct computations of a few simplest graphs. This integrability-based method is advocated to be able to provide information about some high loop order graphs which are hardly computable by other known methods. We exemplify our approach with specific five-loop graphs.
A VLSI decomposition of the deBruijn graph
NASA Technical Reports Server (NTRS)
Collins, O.; Dolinar, S.; Mceliece, R.; Pollara, F.
1990-01-01
A new Viterbi decoder for convolutional codes with constraint lengths up to 15, called the Big Viterbi Decoder, is under development for the Deep Space Network. It will be demonstrated by decoding data from the Galileo spacecraft, which has a rate 1/4, constraint-length 15 convolutional encoder on board. Here, the mathematical theory underlying the design of the very-large-scale-integrated (VLSI) chips that are being used to build this decoder is explained. The deBruijn graph B sub n describes the topology of a fully parallel, rate 1/v, constraint length n+2 Viterbi decoder, and it is shown that B sub n can be built by appropriately wiring together (i.e., connecting together with extra edges) many isomorphic copies of a fixed graph called a B sub n building block. The efficiency of such a building block is defined as the fraction of the edges in B sub n that are present in the copies of the building block. It is shown, among other things, that for any alpha less than 1, there exists a graph G which is a B sub n building block of efficiency greater than alpha for all sufficiently large n. These results are illustrated by describing a special hierarchical family of deBruijn building blocks, which has led to the design of the gate-array chips being used in the Big Viterbi Decoder.
On the theory of thermometric titration.
Piloyan, G O; Dolinina, Y V
1974-09-01
The general equation defining the change in solution temperature DeltaT during a thermometric titration is DeltaT = T - T(0) = - AV 1 + BV where A and B are constants, V is the volume of titrant used to produce temperature T, and T(0) is the initial temperature. There is a linear relation between the inverse values of DeltaT and V: 1 Delta T = - a V - b where a = 1/A and b = B/A, both a and b being constants. A linear relation between DeltaT and V is usually a special case of this general relation, and is valid only over a narrow range of V. Graphs of 1/DeltaTvs. 1/V are more suitable for practical calculations than the usual graphs of DeltaTvs. V.
Graph-based similarity concepts in virtual screening.
Hutter, Michael C
2011-03-01
Applying similarity for finding new promising compounds is a key issue in drug design. Conversely, quantifying similarity between molecules has remained a difficult task despite the numerous approaches. Here, some general aspects along with recent developments regarding similarity criteria are collected. For the purpose of virtual screening, the compounds have to be encoded into a computer-readable format that permits a comparison, according to given similarity criteria, comprising the use of the 3D structure, fingerprints, graph-based and alignment-based approaches. Whereas finding the most common substructures is the most obvious method, more recent approaches take into account chemical modifications that appear throughout existing drugs, from various therapeutic categories and targets.
Burrows, Nilka R.; Geiss, Linda S.
2014-01-01
The Diabetes Interactive Atlas is a recently released Web-based collection of maps that allows users to view geographic patterns and examine trends in diabetes and its risk factors over time across the United States and within states. The atlas provides maps, tables, graphs, and motion charts that depict national, state, and county data. Large amounts of data can be viewed in various ways simultaneously. In this article, we describe the design and technical issues for developing the atlas and provide an overview of the atlas’ maps and graphs. The Diabetes Interactive Atlas improves visualization of geographic patterns, highlights observation of trends, and demonstrates the concomitant geographic and temporal growth of diabetes and obesity. PMID:24503340
ERIC Educational Resources Information Center
Trede, Mildred
1991-01-01
The "Game of Decisions" is presented to encourage students to consider the consequences of banning books and/or ideas. The game involves story writing, creating probability graphs, writing a letter protesting censorship from a chosen historical period, and examining a controversial science issue. Three thesis statements for generating group…
Image Reconstruction is a New Frontier of Machine Learning.
Wang, Ge; Ye, Jong Chu; Mueller, Klaus; Fessler, Jeffrey A
2018-06-01
Over past several years, machine learning, or more generally artificial intelligence, has generated overwhelming research interest and attracted unprecedented public attention. As tomographic imaging researchers, we share the excitement from our imaging perspective [item 1) in the Appendix], and organized this special issue dedicated to the theme of "Machine learning for image reconstruction." This special issue is a sister issue of the special issue published in May 2016 of this journal with the theme "Deep learning in medical imaging" [item 2) in the Appendix]. While the previous special issue targeted medical image processing/analysis, this special issue focuses on data-driven tomographic reconstruction. These two special issues are highly complementary, since image reconstruction and image analysis are two of the main pillars for medical imaging. Together we cover the whole workflow of medical imaging: from tomographic raw data/features to reconstructed images and then extracted diagnostic features/readings.
Teleradiology costs in a rural area
NASA Astrophysics Data System (ADS)
Chimiak, William J.
1994-05-01
There have been several excellent papers providing architectures for teleradiology. Effective teleradiology systems can be fielded today. However, cost issues arise which easily blur a decision to deploy a teleradiology system for a given hospital or regional hospital system. In this paper, a T1 infrastructure is assumed that is comprised of dedicated T1 links as well as fractional T1 links. The effects of teleconferencing are included in the analysis. Plots of the telecommunication costs provide visualization of the cost and performance issues as a function of varying degrees teleradiology and teleconference utilization. 1993 tariffs in North Carolina will be used as a baseline to arrive at some basic teleradiology cost plots and metrics. The graphs are produced by gnuplot that is freely available on many anonymous ftp sites and runs on Unix workstations as well as personal computers. The plotting commands used for the graphs are available at The Bowman Gray School of Medicine of Wake Forest University anonymous ftp site.
Functional Brain Networks Develop from a “Local to Distributed” Organization
Power, Jonathan D.; Dosenbach, Nico U. F.; Church, Jessica A.; Miezin, Francis M.; Schlaggar, Bradley L.; Petersen, Steven E.
2009-01-01
The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI), graph analysis, community detection, and spring-embedding visualization techniques to analyze four separate networks defined in earlier studies. As we have previously reported, we find, across development, a trend toward ‘segregation’ (a general decrease in correlation strength) between regions close in anatomical space and ‘integration’ (an increased correlation strength) between selected regions distant in space. The generalization of these earlier trends across multiple networks suggests that this is a general developmental principle for changes in functional connectivity that would extend to large-scale graph theoretic analyses of large-scale brain networks. Communities in children are predominantly arranged by anatomical proximity, while communities in adults predominantly reflect functional relationships, as defined from adult fMRI studies. In sum, over development, the organization of multiple functional networks shifts from a local anatomical emphasis in children to a more “distributed” architecture in young adults. We argue that this “local to distributed” developmental characterization has important implications for understanding the development of neural systems underlying cognition. Further, graph metrics (e.g., clustering coefficients and average path lengths) are similar in child and adult graphs, with both showing “small-world”-like properties, while community detection by modularity optimization reveals stable communities within the graphs that are clearly different between young children and young adults. These observations suggest that early school age children and adults both have relatively efficient systems that may solve similar information processing problems in divergent ways. PMID:19412534
Functional brain networks develop from a "local to distributed" organization.
Fair, Damien A; Cohen, Alexander L; Power, Jonathan D; Dosenbach, Nico U F; Church, Jessica A; Miezin, Francis M; Schlaggar, Bradley L; Petersen, Steven E
2009-05-01
The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI), graph analysis, community detection, and spring-embedding visualization techniques to analyze four separate networks defined in earlier studies. As we have previously reported, we find, across development, a trend toward 'segregation' (a general decrease in correlation strength) between regions close in anatomical space and 'integration' (an increased correlation strength) between selected regions distant in space. The generalization of these earlier trends across multiple networks suggests that this is a general developmental principle for changes in functional connectivity that would extend to large-scale graph theoretic analyses of large-scale brain networks. Communities in children are predominantly arranged by anatomical proximity, while communities in adults predominantly reflect functional relationships, as defined from adult fMRI studies. In sum, over development, the organization of multiple functional networks shifts from a local anatomical emphasis in children to a more "distributed" architecture in young adults. We argue that this "local to distributed" developmental characterization has important implications for understanding the development of neural systems underlying cognition. Further, graph metrics (e.g., clustering coefficients and average path lengths) are similar in child and adult graphs, with both showing "small-world"-like properties, while community detection by modularity optimization reveals stable communities within the graphs that are clearly different between young children and young adults. These observations suggest that early school age children and adults both have relatively efficient systems that may solve similar information processing problems in divergent ways.
A cultural study of a science classroom and graphing calculator-based technology
NASA Astrophysics Data System (ADS)
Casey, Dennis Alan
Social, political, and technological events of the past two decades have had considerable bearing on science education. While sociological studies of scientists at work have seriously questioned traditional histories of science, national and state educational systemic reform initiatives have been enacted, stressing standards and accountability. Recently, powerful instructional technologies have become part of the landscape of the classroom. One example, graphing calculator-based technology, has found its way from commercial and domestic applications into the pedagogy of science and math education. The purpose of this study was to investigate the culture of an "alternative" science classroom and how it functions with graphing calculator-based technology. Using ethnographic methods, a case study of one secondary, team-taught, Environmental/Physical Science (EPS) classroom was conducted. Nearly half of the 23 students were identified as students with special education needs. Over a four-month period, field data was gathered from written observations, videotaped interactions, audio taped interviews, and document analyses to determine how technology was used and what meaning it had for the participants. Analysis indicated that the technology helped to keep students from getting frustrated with handling data and graphs. In a relatively short period of time, students were able to gather data, produce graphs, and to use inscriptions in meaningful classroom discussions. In addition, teachers used the technology as a means to involve and motivate students to want to learn science. By employing pedagogical skills and by utilizing a technology that might not otherwise be readily available to these students, an environment of appreciation, trust, and respect was fostered. Further, the use of technology by these teachers served to expand students' social capital---the benefits that come from an individual's social contacts, social skills, and social resources.
Graph pyramids for protein function prediction
2015-01-01
Background Uncovering the hidden organizational characteristics and regularities among biological sequences is the key issue for detailed understanding of an underlying biological phenomenon. Thus pattern recognition from nucleic acid sequences is an important affair for protein function prediction. As proteins from the same family exhibit similar characteristics, homology based approaches predict protein functions via protein classification. But conventional classification approaches mostly rely on the global features by considering only strong protein similarity matches. This leads to significant loss of prediction accuracy. Methods Here we construct the Protein-Protein Similarity (PPS) network, which captures the subtle properties of protein families. The proposed method considers the local as well as the global features, by examining the interactions among 'weakly interacting proteins' in the PPS network and by using hierarchical graph analysis via the graph pyramid. Different underlying properties of the protein families are uncovered by operating the proposed graph based features at various pyramid levels. Results Experimental results on benchmark data sets show that the proposed hierarchical voting algorithm using graph pyramid helps to improve computational efficiency as well the protein classification accuracy. Quantitatively, among 14,086 test sequences, on an average the proposed method misclassified only 21.1 sequences whereas baseline BLAST score based global feature matching method misclassified 362.9 sequences. With each correctly classified test sequence, the fast incremental learning ability of the proposed method further enhances the training model. Thus it has achieved more than 96% protein classification accuracy using only 20% per class training data. PMID:26044522
Graph pyramids for protein function prediction.
Sandhan, Tushar; Yoo, Youngjun; Choi, Jin; Kim, Sun
2015-01-01
Uncovering the hidden organizational characteristics and regularities among biological sequences is the key issue for detailed understanding of an underlying biological phenomenon. Thus pattern recognition from nucleic acid sequences is an important affair for protein function prediction. As proteins from the same family exhibit similar characteristics, homology based approaches predict protein functions via protein classification. But conventional classification approaches mostly rely on the global features by considering only strong protein similarity matches. This leads to significant loss of prediction accuracy. Here we construct the Protein-Protein Similarity (PPS) network, which captures the subtle properties of protein families. The proposed method considers the local as well as the global features, by examining the interactions among 'weakly interacting proteins' in the PPS network and by using hierarchical graph analysis via the graph pyramid. Different underlying properties of the protein families are uncovered by operating the proposed graph based features at various pyramid levels. Experimental results on benchmark data sets show that the proposed hierarchical voting algorithm using graph pyramid helps to improve computational efficiency as well the protein classification accuracy. Quantitatively, among 14,086 test sequences, on an average the proposed method misclassified only 21.1 sequences whereas baseline BLAST score based global feature matching method misclassified 362.9 sequences. With each correctly classified test sequence, the fast incremental learning ability of the proposed method further enhances the training model. Thus it has achieved more than 96% protein classification accuracy using only 20% per class training data.
Transforming graph states using single-qubit operations.
Dahlberg, Axel; Wehner, Stephanie
2018-07-13
Stabilizer states form an important class of states in quantum information, and are of central importance in quantum error correction. Here, we provide an algorithm for deciding whether one stabilizer (target) state can be obtained from another stabilizer (source) state by single-qubit Clifford operations (LC), single-qubit Pauli measurements (LPM) and classical communication (CC) between sites holding the individual qubits. What is more, we provide a recipe to obtain the sequence of LC+LPM+CC operations which prepare the desired target state from the source state, and show how these operations can be applied in parallel to reach the target state in constant time. Our algorithm has applications in quantum networks, quantum computing, and can also serve as a design tool-for example, to find transformations between quantum error correcting codes. We provide a software implementation of our algorithm that makes this tool easier to apply. A key insight leading to our algorithm is to show that the problem is equivalent to one in graph theory, which is to decide whether some graph G ' is a vertex-minor of another graph G The vertex-minor problem is, in general, [Formula: see text]-Complete, but can be solved efficiently on graphs which are not too complex. A measure of the complexity of a graph is the rank-width which equals the Schmidt-rank width of a subclass of stabilizer states called graph states, and thus intuitively is a measure of entanglement. Here, we show that the vertex-minor problem can be solved in time O (| G | 3 ), where | G | is the size of the graph G , whenever the rank-width of G and the size of G ' are bounded. Our algorithm is based on techniques by Courcelle for solving fixed parameter tractable problems, where here the relevant fixed parameter is the rank width. The second half of this paper serves as an accessible but far from exhausting introduction to these concepts, that could be useful for many other problems in quantum information.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).
Bayesian Analysis for Exponential Random Graph Models Using the Adaptive Exchange Sampler.
Jin, Ick Hoon; Yuan, Ying; Liang, Faming
2013-10-01
Exponential random graph models have been widely used in social network analysis. However, these models are extremely difficult to handle from a statistical viewpoint, because of the intractable normalizing constant and model degeneracy. In this paper, we consider a fully Bayesian analysis for exponential random graph models using the adaptive exchange sampler, which solves the intractable normalizing constant and model degeneracy issues encountered in Markov chain Monte Carlo (MCMC) simulations. The adaptive exchange sampler can be viewed as a MCMC extension of the exchange algorithm, and it generates auxiliary networks via an importance sampling procedure from an auxiliary Markov chain running in parallel. The convergence of this algorithm is established under mild conditions. The adaptive exchange sampler is illustrated using a few social networks, including the Florentine business network, molecule synthetic network, and dolphins network. The results indicate that the adaptive exchange algorithm can produce more accurate estimates than approximate exchange algorithms, while maintaining the same computational efficiency.
Was Euclid an Unnecessarily Sophisticated Psychologist?
ERIC Educational Resources Information Center
Arabie, Phipps
1991-01-01
The current state of multidimensional scaling using the city-block metric is reviewed, with attention to (1) substantive and theoretical issues; (2) recent algorithmic developments and their implications for analysis; (3) isometries with other metrics; (4) links to graph-theoretic models; and (5) prospects for future development. (SLD)
User interface issues in supporting human-computer integrated scheduling
NASA Technical Reports Server (NTRS)
Cooper, Lynne P.; Biefeld, Eric W.
1991-01-01
The topics are presented in view graph form and include the following: characteristics of Operations Mission Planner (OMP) schedule domain; OMP architecture; definition of a schedule; user interface dimensions; functional distribution; types of users; interpreting user interaction; dynamic overlays; reactive scheduling; and transitioning the interface.
NASA Astrophysics Data System (ADS)
Tao, Yu; Muller, Jan-Peter
2013-04-01
The ESA ExoMars 2018 rover is planned to perform autonomous science target selection (ASTS) using the approaches described in [1]. However, the approaches shown to date have focused on coarse features rather than the identification of specific geomorphological units. These higher-level "geoobjects" can later be employed to perform intelligent reasoning or machine learning. In this work, we show the next stage in the ASTS through examples displaying the identification of bedding planes (not just linear features in rock-face images) and the identification and discrimination of rocks in a rock-strewn landscape (not just rocks). We initially detect the layers and rocks in 2D processing via morphological gradient detection [1] and graph cuts based segmentation [2] respectively. To take this further requires the retrieval of 3D point clouds and the combined processing of point clouds and images for reasoning about the scene. An example is the differentiation of rocks in rover images. This will depend on knowledge of range and range-order of features. We show demonstrations of these "geo-objects" using MER and MSL (released through the PDS) as well as data collected within the EU-PRoViScout project (http://proviscout.eu). An initial assessment will be performed of the automated "geo-objects" using the OpenSource StereoViewer developed within the EU-PRoViSG project (http://provisg.eu) which is released in sourceforge. In future, additional 3D measurement tools will be developed within the EU-FP7 PRoViDE2 project, which started on 1.1.13. References: [1] M. Woods, A. Shaw, D. Barnes, D. Price, D. Long, D. Pullan, (2009) "Autonomous Science for an ExoMars Rover-Like Mission", Journal of Field Robotics Special Issue: Special Issue on Space Robotics, Part II, Volume 26, Issue 4, pages 358-390. [2] J. Shi, J. Malik, (2000) "Normalized Cuts and Image Segmentation", IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 22. [3] D. Shin, and J.-P. Muller (2009), Stereo workstation for Mars rover image analysis, in EPSC (Europlanets), Potsdam, Germany, EPSC2009-390
3DScapeCS: application of three dimensional, parallel, dynamic network visualization in Cytoscape
2013-01-01
Background The exponential growth of gigantic biological data from various sources, such as protein-protein interaction (PPI), genome sequences scaffolding, Mass spectrometry (MS) molecular networking and metabolic flux, demands an efficient way for better visualization and interpretation beyond the conventional, two-dimensional visualization tools. Results We developed a 3D Cytoscape Client/Server (3DScapeCS) plugin, which adopted Cytoscape in interpreting different types of data, and UbiGraph for three-dimensional visualization. The extra dimension is useful in accommodating, visualizing, and distinguishing large-scale networks with multiple crossed connections in five case studies. Conclusions Evaluation on several experimental data using 3DScapeCS and its special features, including multilevel graph layout, time-course data animation, and parallel visualization has proven its usefulness in visualizing complex data and help to make insightful conclusions. PMID:24225050
Sy, B K; Deller, J R
1989-05-01
An intelligent communication device is developed to assist the nonverbal, motor disabled in the generation of written and spoken messages. The device is centered on a knowledge base of the grammatical rules and message elements. A "belief" reasoning scheme based on both the information from external sources and the embedded knowledge is used to optimize the process of message search. The search for the message elements is conceptualized as a path search in the language graph, and a special frame architecture is used to construct and to partition the graph. Bayesian "belief" reasoning from the Dempster-Shafer theory of evidence is augmented to cope with time-varying evidence. An "information fusion" strategy is also introduced to integrate various forms of external information. Experimental testing of the prototype system is discussed.
Optimization of scheduling system for plant watering using electric cars in agro techno park
NASA Astrophysics Data System (ADS)
Oktavia Adiwijaya, Nelly; Herlambang, Yudha; Slamin
2018-04-01
Agro Techno Park in University of Jember is a special area used for the development of agriculture, livestock and fishery. In this plantation, the process of watering the plants is according to the frequency of each plant needs. This research develops the optimization of plant watering scheduling system using edge coloring of graph. This research was conducted in 3 stages, namely, data collection phase, analysis phase, and system development stage. The collected data was analyzed and then converted into a graph by using bipartite adjacency matrix representation. The development phase is conducted to build a web-based watering schedule optimization system. The result of this research showed that the schedule system is optimal because it can maximize the use of all electric cars to water the plants and minimize the number of idle cars.
USDA-ARS?s Scientific Manuscript database
This special issue is published for the International Society of Biocatalysis and Biotechnology (ISBB). The ISBB special issue is devoted to all areas of biocatalysis and agricultural biotechnology in which biological systems are developed and/or used for the provision of commercial goods or serv...
A study of the dynamics of multi-player games on small networks using territorial interactions.
Broom, Mark; Lafaye, Charlotte; Pattni, Karan; Rychtář, Jan
2015-12-01
Recently, the study of structured populations using models of evolutionary processes on graphs has begun to incorporate a more general type of interaction between individuals, allowing multi-player games to be played among the population. In this paper, we develop a birth-death dynamics for use in such models and consider the evolution of populations for special cases of very small graphs where we can easily identify all of the population states and carry out exact analyses. To do so, we study two multi-player games, a Hawk-Dove game and a public goods game. Our focus is on finding the fixation probability of an individual from one type, cooperator or defector in the case of the public goods game, within a population of the other type. We compare this value for both games on several graphs under different parameter values and assumptions, and identify some interesting general features of our model. In particular there is a very close relationship between the fixation probability and the mean temperature, with high temperatures helping fitter individuals and punishing unfit ones and so enhancing selection, whereas low temperatures give a levelling effect which suppresses selection.
NASA Astrophysics Data System (ADS)
Acton, Scott T.; Gilliam, Andrew D.; Li, Bing; Rossi, Adam
2008-02-01
Improvised explosive devices (IEDs) are common and lethal instruments of terrorism, and linking a terrorist entity to a specific device remains a difficult task. In the effort to identify persons associated with a given IED, we have implemented a specialized content based image retrieval system to search and classify IED imagery. The system makes two contributions to the art. First, we introduce a shape-based matching technique exploiting shape, color, and texture (wavelet) information, based on novel vector field convolution active contours and a novel active contour initialization method which treats coarse segmentation as an inverse problem. Second, we introduce a unique graph theoretic approach to match annotated printed circuit board images for which no schematic or connectivity information is available. The shape-based image retrieval method, in conjunction with the graph theoretic tool, provides an efficacious system for matching IED images. For circuit imagery, the basic retrieval mechanism has a precision of 82.1% and the graph based method has a precision of 98.1%. As of the fall of 2007, the working system has processed over 400,000 case images.
Finite-size scaling of clique percolation on two-dimensional Moore lattices
NASA Astrophysics Data System (ADS)
Dong, Jia-Qi; Shen, Zhou; Zhang, Yongwen; Huang, Zi-Gang; Huang, Liang; Chen, Xiaosong
2018-05-01
Clique percolation has attracted much attention due to its significance in understanding topological overlap among communities and dynamical instability of structured systems. Rich critical behavior has been observed in clique percolation on Erdős-Rényi (ER) random graphs, but few works have discussed clique percolation on finite dimensional systems. In this paper, we have defined a series of characteristic events, i.e., the historically largest size jumps of the clusters, in the percolating process of adding bonds and developed a new finite-size scaling scheme based on the interval of the characteristic events. Through the finite-size scaling analysis, we have found, interestingly, that, in contrast to the clique percolation on an ER graph where the critical exponents are parameter dependent, the two-dimensional (2D) clique percolation simply shares the same critical exponents with traditional site or bond percolation, independent of the clique percolation parameters. This has been corroborated by bridging two special types of clique percolation to site percolation on 2D lattices. Mechanisms for the difference of the critical behaviors between clique percolation on ER graphs and on 2D lattices are also discussed.
Computing Maximum Cardinality Matchings in Parallel on Bipartite Graphs via Tree-Grafting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azad, Ariful; Buluc, Aydn; Pothen, Alex
It is difficult to obtain high performance when computing matchings on parallel processors because matching algorithms explicitly or implicitly search for paths in the graph, and when these paths become long, there is little concurrency. In spite of this limitation, we present a new algorithm and its shared-memory parallelization that achieves good performance and scalability in computing maximum cardinality matchings in bipartite graphs. This algorithm searches for augmenting paths via specialized breadth-first searches (BFS) from multiple source vertices, hence creating more parallelism than single source algorithms. Algorithms that employ multiple-source searches cannot discard a search tree once no augmenting pathmore » is discovered from the tree, unlike algorithms that rely on single-source searches. We describe a novel tree-grafting method that eliminates most of the redundant edge traversals resulting from this property of multiple-source searches. We also employ the recent direction-optimizing BFS algorithm as a subroutine to discover augmenting paths faster. Our algorithm compares favorably with the current best algorithms in terms of the number of edges traversed, the average augmenting path length, and the number of iterations. Here, we provide a proof of correctness for our algorithm. Our NUMA-aware implementation is scalable to 80 threads of an Intel multiprocessor and to 240 threads on an Intel Knights Corner coprocessor. On average, our parallel algorithm runs an order of magnitude faster than the fastest algorithms available. The performance improvement is more significant on graphs with small matching number.« less
Computing Maximum Cardinality Matchings in Parallel on Bipartite Graphs via Tree-Grafting
Azad, Ariful; Buluc, Aydn; Pothen, Alex
2016-03-24
It is difficult to obtain high performance when computing matchings on parallel processors because matching algorithms explicitly or implicitly search for paths in the graph, and when these paths become long, there is little concurrency. In spite of this limitation, we present a new algorithm and its shared-memory parallelization that achieves good performance and scalability in computing maximum cardinality matchings in bipartite graphs. This algorithm searches for augmenting paths via specialized breadth-first searches (BFS) from multiple source vertices, hence creating more parallelism than single source algorithms. Algorithms that employ multiple-source searches cannot discard a search tree once no augmenting pathmore » is discovered from the tree, unlike algorithms that rely on single-source searches. We describe a novel tree-grafting method that eliminates most of the redundant edge traversals resulting from this property of multiple-source searches. We also employ the recent direction-optimizing BFS algorithm as a subroutine to discover augmenting paths faster. Our algorithm compares favorably with the current best algorithms in terms of the number of edges traversed, the average augmenting path length, and the number of iterations. Here, we provide a proof of correctness for our algorithm. Our NUMA-aware implementation is scalable to 80 threads of an Intel multiprocessor and to 240 threads on an Intel Knights Corner coprocessor. On average, our parallel algorithm runs an order of magnitude faster than the fastest algorithms available. The performance improvement is more significant on graphs with small matching number.« less
Feature Grouping and Selection Over an Undirected Graph.
Yang, Sen; Yuan, Lei; Lai, Ying-Cheng; Shen, Xiaotong; Wonka, Peter; Ye, Jieping
2012-01-01
High-dimensional regression/classification continues to be an important and challenging problem, especially when features are highly correlated. Feature selection, combined with additional structure information on the features has been considered to be promising in promoting regression/classification performance. Graph-guided fused lasso (GFlasso) has recently been proposed to facilitate feature selection and graph structure exploitation, when features exhibit certain graph structures. However, the formulation in GFlasso relies on pairwise sample correlations to perform feature grouping, which could introduce additional estimation bias. In this paper, we propose three new feature grouping and selection methods to resolve this issue. The first method employs a convex function to penalize the pairwise l ∞ norm of connected regression/classification coefficients, achieving simultaneous feature grouping and selection. The second method improves the first one by utilizing a non-convex function to reduce the estimation bias. The third one is the extension of the second method using a truncated l 1 regularization to further reduce the estimation bias. The proposed methods combine feature grouping and feature selection to enhance estimation accuracy. We employ the alternating direction method of multipliers (ADMM) and difference of convex functions (DC) programming to solve the proposed formulations. Our experimental results on synthetic data and two real datasets demonstrate the effectiveness of the proposed methods.
78 FR 63959 - Notice of Intent To Grant Exclusive License
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-25
... Research Service, intends to grant to EPG Technologies, Inc. of Gainesville, Florida, an exclusive license to U.S. Patent No. 8,004,292, ``ELECTRICAL PENETRATION GRAPH SYSTEM,'' issued on August 23, 2011..., Office of Technology Transfer, 5601 Sunnyside Avenue, Rm. 4-1174, Beltsville, Maryland 20705-5131. FOR...
ERIC Educational Resources Information Center
Bonner, David
2012-01-01
Conducting labs isn't a new way to teach physics, but labs have become increasingly prevalent with the rise of inquiry. Physics students collect mostly quantitative data, often represented by graphs or tables. Interpreting this data can be a challenge for students, especially when it comes to experimental error. To address this issue, this article…
Who, How, and Where: Special Education's Issues in Perpetuity.
ERIC Educational Resources Information Center
Bateman, Barbara D.
1994-01-01
Issues that are central to special education and appear destined to remain so are discussed, including professional divisions among special educators and between special and regular educators, the population to be served, individualization, and placement. (JDD)
Using graph theory to quantify coarse sediment connectivity in alpine geosystems
NASA Astrophysics Data System (ADS)
Heckmann, Tobias; Thiel, Markus; Schwanghart, Wolfgang; Haas, Florian; Becht, Michael
2010-05-01
Networks are a common object of study in various disciplines. Among others, informatics, sociology, transportation science, economics and ecology frequently deal with objects which are linked with other objects to form a network. Despite this wide thematic range, a coherent formal basis to represent, measure and model the relational structure of models exists. The mathematical model for networks of all kinds is a graph which can be analysed using the tools of mathematical graph theory. In a graph model of a generic system, system components are represented by graph nodes, and the linkages between them are formed by graph edges. The latter may represent all kinds of linkages, from matter or energy fluxes to functional relations. To some extent, graph theory has been used in geosciences and related disciplines; in hydrology and fluvial geomorphology, for example, river networks have been modeled and analysed as graphs. An important issue in hydrology is the hydrological connectivity which determines if runoff generated on some area reaches the channel network. In ecology, a number of graph-theoretical indices is applicable to describing the influence of habitat distribution and landscape fragmentation on population structure and species mobility. In these examples, the mobility of matter (water, sediment, animals) through a system is an important consequence of system structure, i.e. the location and topology of its components as well as of properties of linkages between them. In geomorphology, sediment connectivity relates to the potential of sediment particles to move through the catchment. As a system property, connectivity depends, for example, on the degree to which hillslopes within a catchment are coupled to the channel system (lateral coupling), and to which channel reaches are coupled to each other (longitudinal coupling). In the present study, numerical GIS-based models are used to investigate the coupling of geomorphic process units by delineating the process domains of important geomorphic processes in a high-mountain environment (rockfall, slope-type debris flows, slope aquatic and fluvial processes). The results are validated by field mapping; they show that only small parts of a catchment are actually coupled to its outlet with respect to coarse (bedload) sediment. The models not only generate maps of the spatial extent and geomorphic activity of the aforementioned processes, they also output so-called edge lists that can be converted to adjacency matrices and graphs. Graph theory is then employed to explore ‘local' (i.e. referring to single nodes or edges) and ‘global' (i.e. system-wide, referring to the whole graph) measures that can be used to quantify coarse sediment connectivity. Such a quantification will complement the mainly qualitative appraisal of coupling and connectivity; the effect of connectivity on catchment properties such as specific sediment yield and catchment sensitivity will then be studied on the basis of quantitative measures.
Queues on a Dynamically Evolving Graph
NASA Astrophysics Data System (ADS)
Mandjes, Michel; Starreveld, Nicos J.; Bekker, René
2018-04-01
This paper considers a population process on a dynamically evolving graph, which can be alternatively interpreted as a queueing network. The queues are of infinite-server type, entailing that at each node all customers present are served in parallel. The links that connect the queues have the special feature that they are unreliable, in the sense that their status alternates between `up' and `down'. If a link between two nodes is down, with a fixed probability each of the clients attempting to use that link is lost; otherwise the client remains at the origin node and reattempts using the link (and jumps to the destination node when it finds the link restored). For these networks we present the following results: (a) a system of coupled partial differential equations that describes the joint probability generating function corresponding to the queues' time-dependent behavior (and a system of ordinary differential equations for its stationary counterpart), (b) an algorithm to evaluate the (time-dependent and stationary) moments, and procedures to compute user-perceived performance measures which facilitate the quantification of the impact of the links' outages, (c) a diffusion limit for the joint queue length process. We include explicit results for a series relevant special cases, such as tandem networks and symmetric fully connected networks.
ERIC Educational Resources Information Center
Pugach, Marleen C.; Mukhopadhyay, Ananya; Gomez-Najarro, Joyce
2014-01-01
In this response to the special issue, we would like to offer two additional considerations to the discourse on qualitative research and special education this issue is meant to catalyze. First, we would like to further problematize the question of why qualitative research continues to be so sparsely represented in most prominent publications of…
Advances in Special Education Volume 11, Issues, Practices and Concerns in Special Education.
ERIC Educational Resources Information Center
Rotatori, Anthony F., Ed.; Schwenn, John O., Ed.; Burkhardt, Sandra, Ed.
This volume presents 14 papers which address current issues and practices in special education. The papers are: (1) "National Educational Reform: General and Special Education" (Joyce Fiddler and Freddie W. Litton); (2) "Linguistically Appropriate Special Education" (Herbert Grossman); (3) "Portfolio Assessment: An Individualized Approach for…
ERIC Educational Resources Information Center
Whitty, Geoff
2009-01-01
The December 2008 special issue of the "Oxford Review of Education" provided a review of education policy during Tony Blair's tenure as Prime Minister. This paper forms a response to the ten contributions to that special issue and discusses some of the issues raised in them. While a few positive aspects of education under New Labour were…
A topo-graph model for indistinct target boundary definition from anatomical images.
Cui, Hui; Wang, Xiuying; Zhou, Jianlong; Gong, Guanzhong; Eberl, Stefan; Yin, Yong; Wang, Lisheng; Feng, Dagan; Fulham, Michael
2018-06-01
It can be challenging to delineate the target object in anatomical imaging when the object boundaries are difficult to discern due to the low contrast or overlapping intensity distributions from adjacent tissues. We propose a topo-graph model to address this issue. The first step is to extract a topographic representation that reflects multiple levels of topographic information in an input image. We then define two types of node connections - nesting branches (NBs) and geodesic edges (GEs). NBs connect nodes corresponding to initial topographic regions and GEs link the nodes at a detailed level. The weights for NBs are defined to measure the similarity of regional appearance, and weights for GEs are defined with geodesic and local constraints. NBs contribute to the separation of topographic regions and the GEs assist the delineation of uncertain boundaries. Final segmentation is achieved by calculating the relevance of the unlabeled nodes to the labels by the optimization of a graph-based energy function. We test our model on 47 low contrast CT studies of patients with non-small cell lung cancer (NSCLC), 10 contrast-enhanced CT liver cases and 50 breast and abdominal ultrasound images. The validation criteria are the Dice's similarity coefficient and the Hausdorff distance. Student's t-test show that our model outperformed the graph models with pixel-only, pixel and regional, neighboring and radial connections (p-values <0.05). Our findings show that the topographic representation and topo-graph model provides improved delineation and separation of objects from adjacent tissues compared to the tested models. Copyright © 2018 Elsevier B.V. All rights reserved.
Editorial: Special Issue on Experimental Vibration Analysis
NASA Astrophysics Data System (ADS)
Serra, Roger
2018-04-01
The vibratory analyses are particularly present today in the various fields of industry, from aeronautics to manufacturing, from machining and maintenance to civil engineering, to mention a few areas, which have made this special issue a true need. The International Journal of Mechanics & Industry compiles a Special Issue on Experimental Vibration Analysis. More than thirty manuscripts were received by the international scientific committee on the 6th congress AVE2016 and only eight papers have been selected after completing a careful and rigorous peer-review process for the Special Issue, which are briefly summarized below.
Evolutionary dynamics on any population structure
NASA Astrophysics Data System (ADS)
Allen, Benjamin; Lippner, Gabor; Chen, Yu-Ting; Fotouhi, Babak; Momeni, Naghmeh; Yau, Shing-Tung; Nowak, Martin A.
2017-03-01
Evolution occurs in populations of reproducing individuals. The structure of a population can affect which traits evolve. Understanding evolutionary game dynamics in structured populations remains difficult. Mathematical results are known for special structures in which all individuals have the same number of neighbours. The general case, in which the number of neighbours can vary, has remained open. For arbitrary selection intensity, the problem is in a computational complexity class that suggests there is no efficient algorithm. Whether a simple solution for weak selection exists has remained unanswered. Here we provide a solution for weak selection that applies to any graph or network. Our method relies on calculating the coalescence times of random walks. We evaluate large numbers of diverse population structures for their propensity to favour cooperation. We study how small changes in population structure—graph surgery—affect evolutionary outcomes. We find that cooperation flourishes most in societies that are based on strong pairwise ties.
Hughes, James Alexander; Houghten, Sheridan; Ashlock, Daniel
2016-12-01
DNA Fragment assembly - an NP-Hard problem - is one of the major steps in of DNA sequencing. Multiple strategies have been used for this problem, including greedy graph-based algorithms, deBruijn graphs, and the overlap-layout-consensus approach. This study focuses on the overlap-layout-consensus approach. Heuristics and computational intelligence methods are combined to exploit their respective benefits. These algorithm combinations were able to produce high quality results surpassing the best results obtained by a number of competitive algorithms specially designed and tuned for this problem on thirteen of sixteen popular benchmarks. This work also reinforces the necessity of using multiple search strategies as it is clearly observed that algorithm performance is dependent on problem instance; without a deeper look into many searches, top solutions could be missed entirely. Copyright © 2016. Published by Elsevier Ireland Ltd.
Percolation bounds for decoding thresholds with correlated erasures in quantum LDPC codes
NASA Astrophysics Data System (ADS)
Hamilton, Kathleen; Pryadko, Leonid
Correlations between errors can dramatically affect decoding thresholds, in some cases eliminating the threshold altogether. We analyze the existence of a threshold for quantum low-density parity-check (LDPC) codes in the case of correlated erasures. When erasures are positively correlated, the corresponding multi-variate Bernoulli distribution can be modeled in terms of cluster errors, where qubits in clusters of various size can be marked all at once. In a code family with distance scaling as a power law of the code length, erasures can be always corrected below percolation on a qubit adjacency graph associated with the code. We bound this correlated percolation transition by weighted (uncorrelated) percolation on a specially constructed cluster connectivity graph, and apply our recent results to construct several bounds for the latter. This research was supported in part by the NSF Grant PHY-1416578 and by the ARO Grant W911NF-14-1-0272.
Design of a Recommendation System for Adding Support in the Treatment of Chronic Patients.
Torkar, Simon; Benedik, Peter; Rajkovič, Uroš; Šušteršič, Olga; Rajkovič, Vladislav
2016-01-01
Rapid growth of chronic disease cases around the world is adding pressure on healthcare providers to ensure a structured patent follow-up during chronic disease management process. In response to the increasing demand for better chronic disease management and improved health care efficiency, nursing roles have been specialized or enhanced in the primary health care setting. Nurses become key players in chronic disease management process. Study describes a system to help nurses manage the care process of patient with chronic disease. It supports focusing nurse's attention on those resources/solutions that are likely to be most relevant to their particular situation/problem in nursing domain. System is based on multi-relational property graph representing a flexible modeling construct. Graph allows modeling a nursing ontology and the indices that partition domain into an efficient, searchable space where the solution to a problem is seen as abstractly defined traversals through its vertices and edges.
Vertices cannot be hidden from quantum spatial search for almost all random graphs
NASA Astrophysics Data System (ADS)
Glos, Adam; Krawiec, Aleksandra; Kukulski, Ryszard; Puchała, Zbigniew
2018-04-01
In this paper, we show that all nodes can be found optimally for almost all random Erdős-Rényi G(n,p) graphs using continuous-time quantum spatial search procedure. This works for both adjacency and Laplacian matrices, though under different conditions. The first one requires p=ω (log ^8(n)/n), while the second requires p≥ (1+ɛ )log (n)/n, where ɛ >0. The proof was made by analyzing the convergence of eigenvectors corresponding to outlying eigenvalues in the \\Vert \\cdot \\Vert _∞ norm. At the same time for p<(1-ɛ )log (n)/n, the property does not hold for any matrix, due to the connectivity issues. Hence, our derivation concerning Laplacian matrix is tight.
[Baseflow separation methods in hydrological process research: a review].
Xu, Lei-Lei; Liu, Jing-Lin; Jin, Chang-Jie; Wang, An-Zhi; Guan, De-Xin; Wu, Jia-Bing; Yuan, Feng-Hui
2011-11-01
Baseflow separation research is regarded as one of the most important and difficult issues in hydrology and ecohydrology, but lacked of unified standards in the concepts and methods. This paper introduced the theories of baseflow separation based on the definitions of baseflow components, and analyzed the development course of different baseflow separation methods. Among the methods developed, graph separation method is simple and applicable but arbitrary, balance method accords with hydrological mechanism but is difficult in application, whereas time series separation method and isotopic method can overcome the subjective and arbitrary defects caused by graph separation method, and thus can obtain the baseflow procedure quickly and efficiently. In recent years, hydrological modeling, digital filtering, and isotopic method are the main methods used for baseflow separation.
Iowa's Tech Prep Model: Issues/Model Components/"Patterns of Evidence." Revised.
ERIC Educational Resources Information Center
North Iowa Area Community Coll., Mason City.
Developed by the Iowa Department of Education, North Iowa Area Community College, and Hawkeye Community College (Iowa), this booklet presents the tech prep model for articulation efforts among all educational entities, business, industry, labor, and communities in Iowa. Following a list of committee members working on the model and graphs of the…
Review of "Conceptual Structures: Information Processing in Mind and Machine."
ERIC Educational Resources Information Center
Smoliar, Stephen W.
This review of the book, "Conceptual Structures: Information Processing in Mind and Machine," by John F. Sowa, argues that anyone who plans to get involved with issues of knowledge representation should have at least a passing acquaintance with Sowa's conceptual graphs for a database interface. (Used to model the underlying semantics of…
A Graphical Examination of Uranium and Plutonium Fissility
ERIC Educational Resources Information Center
Reed, B. Cameron
2008-01-01
The issue of why only particular isotopes of uranium and plutonium are suitable for use in nuclear weapons is analyzed with the aid of graphs and semiquantitative discussions of parameters such as excitation energies, fission barriers, reaction cross-sections, and the role of processes such as [alpha]-decay and spontaneous fission. The goal is to…
graph shows the lightcurve for this supernovae. NASA ADS NASA ADS 28 January 2017 Back issues of magazines from 1964 to 2014 (volume 50) are available on the NASA Astrophysical Data System (ADS). Welcome 2018 February to 2019 January Lightcurve for SN 2017eaw in NGC 6946 NASA ADS Welcome Tags awards
Supporting ontology adaptation and versioning based on a graph of relevance
NASA Astrophysics Data System (ADS)
Sassi, Najla; Jaziri, Wassim; Alharbi, Saad
2016-11-01
Ontologies recently have become a topic of interest in computer science since they are seen as a semantic support to explicit and enrich data-models as well as to ensure interoperability of data. Moreover, supporting ontology adaptation becomes essential and extremely important, mainly when using ontologies in changing environments. An important issue when dealing with ontology adaptation is the management of several versions. Ontology versioning is a complex and multifaceted problem as it should take into account change management, versions storage and access, consistency issues, etc. The purpose of this paper is to propose an approach and tool for ontology adaptation and versioning. A series of techniques are proposed to 'safely' evolve a given ontology and produce a new consistent version. The ontology versions are ordered in a graph according to their relevance. The relevance is computed based on four criteria: conceptualisation, usage frequency, abstraction and completeness. The techniques to carry out the versioning process are implemented in the Consistology tool, which has been developed to assist users in expressing adaptation requirements and managing ontology versions.
Research Library Issues: A Report from ARL, CNI, and SPARC. Special Issue on Copyright. RLI 285
ERIC Educational Resources Information Center
Baughman, M. Sue, Ed.
2015-01-01
"Research Library Issues" ("RLI") focuses on current and emerging topics that are strategically important to research libraries. The articles explore issues, share information, pose critical questions, and provide examples. This issue includes the following articles: (1) Special Issue on Copyright (Prudence S. Adler); (2) Fair…
Reforms and Collaborations in Europe--China Doctoral Education
ERIC Educational Resources Information Center
Zhu, Chang; Cai, Yuzhuo; Shen, Wen-Qin; François, Karen
2017-01-01
This special issue focuses on the reforms and collaborations in Europe--China doctoral education. The articles in this special issue provide an insightful picture of the recent reforms in doctoral education in China and EU countries. Next to the structural reforms in Europe and China, the special issue papers have also specifically focused on…
Introduction to the special issue: permafrost and periglacial research from coasts to mountains
NASA Astrophysics Data System (ADS)
Schrott, Lothar; Humlum, Ole
2017-09-01
This special issue of Geomorphology includes eleven papers dealing with permafrost and periglacial research from coasts to mountains. The compilation represents a selection from 47 presentations (oral and posters) given at the 4th European Conference on Permafrost - IPA Regional Conference (EUCOP4, June 2014) in the session ;Periglacial Geomorphology;. Geomorphology as a leading journal for our discipline is particularly suitable to publish advances in permafrost and periglacial research with a focus on geomorphic processes. Since 1989 Geomorphology has published 121 special issues and two special issues are explicitly dedicated to permafrost and periglacial research, however, only with a focus on research in Antarctica. In this special issue we present papers from the Canadian Beaufort Sea, Alaska, Spitzbergen, central western Poland, the European Alps, the eastern Sudetes, the southern Carpathians, Nepal, and Antarctica.
MIMO: an efficient tool for molecular interaction maps overlap
2013-01-01
Background Molecular pathways represent an ensemble of interactions occurring among molecules within the cell and between cells. The identification of similarities between molecular pathways across organisms and functions has a critical role in understanding complex biological processes. For the inference of such novel information, the comparison of molecular pathways requires to account for imperfect matches (flexibility) and to efficiently handle complex network topologies. To date, these characteristics are only partially available in tools designed to compare molecular interaction maps. Results Our approach MIMO (Molecular Interaction Maps Overlap) addresses the first problem by allowing the introduction of gaps and mismatches between query and template pathways and permits -when necessary- supervised queries incorporating a priori biological information. It then addresses the second issue by relying directly on the rich graph topology described in the Systems Biology Markup Language (SBML) standard, and uses multidigraphs to efficiently handle multiple queries on biological graph databases. The algorithm has been here successfully used to highlight the contact point between various human pathways in the Reactome database. Conclusions MIMO offers a flexible and efficient graph-matching tool for comparing complex biological pathways. PMID:23672344
Graph Theoretical Framework of Brain Networks in Multiple Sclerosis: A Review of Concepts.
Fleischer, Vinzenz; Radetz, Angela; Ciolac, Dumitru; Muthuraman, Muthuraman; Gonzalez-Escamilla, Gabriel; Zipp, Frauke; Groppa, Sergiu
2017-11-01
Network science provides powerful access to essential organizational principles of the human brain. It has been applied in combination with graph theory to characterize brain connectivity patterns. In multiple sclerosis (MS), analysis of the brain networks derived from either structural or functional imaging provides new insights into pathological processes within the gray and white matter. Beyond focal lesions and diffuse tissue damage, network connectivity patterns could be important for closely tracking and predicting the disease course. In this review, we describe concepts of graph theory, highlight novel issues of tissue reorganization in acute and chronic neuroinflammation and address pitfalls with regard to network analysis in MS patients. We further provide an outline of functional and structural connectivity patterns observed in MS, spanning from disconnection and disruption on one hand to adaptation and compensation on the other. Moreover, we link network changes and their relation to clinical disability based on the current literature. Finally, we discuss the perspective of network science in MS for future research and postulate its role in the clinical framework. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Graph Partitioning for Parallel Applications in Heterogeneous Grid Environments
NASA Technical Reports Server (NTRS)
Bisws, Rupak; Kumar, Shailendra; Das, Sajal K.; Biegel, Bryan (Technical Monitor)
2002-01-01
The problem of partitioning irregular graphs and meshes for parallel computations on homogeneous systems has been extensively studied. However, these partitioning schemes fail when the target system architecture exhibits heterogeneity in resource characteristics. With the emergence of technologies such as the Grid, it is imperative to study the partitioning problem taking into consideration the differing capabilities of such distributed heterogeneous systems. In our model, the heterogeneous system consists of processors with varying processing power and an underlying non-uniform communication network. We present in this paper a novel multilevel partitioning scheme for irregular graphs and meshes, that takes into account issues pertinent to Grid computing environments. Our partitioning algorithm, called MiniMax, generates and maps partitions onto a heterogeneous system with the objective of minimizing the maximum execution time of the parallel distributed application. For experimental performance study, we have considered both a realistic mesh problem from NASA as well as synthetic workloads. Simulation results demonstrate that MiniMax generates high quality partitions for various classes of applications targeted for parallel execution in a distributed heterogeneous environment.
Results on ultra-relativistic nucleus-nucleus interactions from balloon-borne emulsion chambers
NASA Technical Reports Server (NTRS)
Burnett, T. H.; Dake, S.; Derrickson, J. H.; Fountain, W.; Meegan, C. A.; Takahashi, Y.; Watts, J. W.; Fuki, M.; Gregory, J. C.; Hayashi, T.
1985-01-01
The results of balloon-borne emulsion-chamber measurements on high-energy cosmic-ray nuclei (Burnett et al., 1983) are summarized in tables and graphs and briefly characterized. Special consideration is given to seven nucleus-nucleus interaction events at energy in excess of 1 TeV/A with multiplicity greater than 400, and to Fe interactions (53 with CHO, 10 with emulsion, and 14 with Pb) at 20-60 GeV/A.
NASCOM network: Ground communications reliability report
NASA Technical Reports Server (NTRS)
1973-01-01
A reliability performance analysis of the NASCOM Network circuits is reported. Network performance narrative summary is presented to include significant changes in circuit configurations, current figures, and trends in each trouble category with notable circuit totals specified. Lost time and interruption tables listing circuits which were affected by outages showing their totals category are submitted. A special analysis of circuits with low reliabilities is developed with tables depicting the performance and graphs for individual reliabilities.
Shuttle cryogenic supply system optimization study. Volume 2: Technical report, sections 4 through 9
NASA Technical Reports Server (NTRS)
1973-01-01
The design and development of cryogenic supply systems for space shuttle vehicles are discussed. The weights, component counts, and statements of advantages and disadvantages of the systems considered are presented. Performance characteristics of the systems are analyzed in the form of graphs. Block diagrams and engineering drawings of the candidate systems are provided. Special consideration is given to flow rates and thermodynamic properties of the cryogenic systems.
The 1984 direct strike lightning data, part 3
NASA Technical Reports Server (NTRS)
Thomas, Mitchel E.; Carney, Harold K.
1986-01-01
Data waveforms are presented which were obtained during the 1984 direct-strike lightning tests utilizing the NASA F106-B aircraft specially instrumented for lightning electromagnetic measurements. The aircraft was operated in the vicinity of the NASA Langley Research Center, Hampton, Virginia, in a thunderstorm environment to elicit strikes. Electromagnetic field data and conduction currents on the aircraft were recorded for attached lightning. This is part 3, consisting entirely of charts and graphs.
77 FR 36604 - Office of Hazardous Materials Safety Actions on Special Permit Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-19
... special permits were issued. Issued in Washington, DC, on June 12, 2012. Donald Burger, Chief, Special.... 15531-M National Aeronautics 49 CFR Section To modify the special permit originally and Space 173.302(a... prior to shipment. (mode 2) EMERGENCY SPECIAL PERMIT GRANTED 15634-N SodaStream USA Inc., 49 CFR 171.2(k...
Seeing more clearly through the fog of encephalopathy.
Kaplan, Peter W; Sutter, Raoul
2013-10-01
Patients with acute confusional states (often referred to as encephalopathy or delirium) pose diagnostic and management challenges for treating physicians. Encephalopathy is associated with a high morbidity and mortality rate, and the diagnosis rests on clinical grounds but may also be supported by the finding of electroencephalographic (EEG) evidence for diffuse cerebral dysfunction. The myriad cerebral transmitter and metabolic disruptions are generated by systemic organ system failures, principal among which are those of the liver, kidneys, lungs, heart, and endocrine system, along with the effects of exogenous toxins and medications. In most cases, several of these organ failures together contribute to the confusional state, frequently in the context of a diffuse cerebral atrophy that affects the aging brain. This special issue of the Journal of Clinical Neurophysiology is dedicated to exploring the electrophysiology of these conditions. It reviews the pathophysiology, psychiatric manifestations, clinical and imaging correlations of the many causes and types of encephalopathy. A literature review of the EEG abnormalities in the various types of encephalopathy provides an overview that ranges from paraneoplastic causes, through organ system failures, postcardiorespiratory arrest, to postoperative delirium. The issue is supplemented by tables of relevant clinical correlations, graphs, Venn diagrams, and the use of mathematical modeling used to explain how defects in the neuronal interplay might generate the EEG patterns seen in encephalopathy. We hope that this assembly will act as a springboard for further discussion and investigation into the EEG underpinnings, clinical correlations, diagnosis. and prognostication of these common and morbid disturbances of brain function.
Reference-free compression of high throughput sequencing data with a probabilistic de Bruijn graph.
Benoit, Gaëtan; Lemaitre, Claire; Lavenier, Dominique; Drezen, Erwan; Dayris, Thibault; Uricaru, Raluca; Rizk, Guillaume
2015-09-14
Data volumes generated by next-generation sequencing (NGS) technologies is now a major concern for both data storage and transmission. This triggered the need for more efficient methods than general purpose compression tools, such as the widely used gzip method. We present a novel reference-free method meant to compress data issued from high throughput sequencing technologies. Our approach, implemented in the software LEON, employs techniques derived from existing assembly principles. The method is based on a reference probabilistic de Bruijn Graph, built de novo from the set of reads and stored in a Bloom filter. Each read is encoded as a path in this graph, by memorizing an anchoring kmer and a list of bifurcations. The same probabilistic de Bruijn Graph is used to perform a lossy transformation of the quality scores, which allows to obtain higher compression rates without losing pertinent information for downstream analyses. LEON was run on various real sequencing datasets (whole genome, exome, RNA-seq or metagenomics). In all cases, LEON showed higher overall compression ratios than state-of-the-art compression software. On a C. elegans whole genome sequencing dataset, LEON divided the original file size by more than 20. LEON is an open source software, distributed under GNU affero GPL License, available for download at http://gatb.inria.fr/software/leon/.
14 CFR 21.190 - Issue of a special airworthiness certificate for a light-sport category aircraft.
Code of Federal Regulations, 2014 CFR
2014-01-01
... certificate for a light-sport category aircraft. 21.190 Section 21.190 Aeronautics and Space FEDERAL AVIATION... Airworthiness Certificates § 21.190 Issue of a special airworthiness certificate for a light-sport category aircraft. (a) Purpose. The FAA issues a special airworthiness certificate in the light-sport category to...
14 CFR 21.190 - Issue of a special airworthiness certificate for a light-sport category aircraft.
Code of Federal Regulations, 2013 CFR
2013-01-01
... certificate for a light-sport category aircraft. 21.190 Section 21.190 Aeronautics and Space FEDERAL AVIATION... Airworthiness Certificates § 21.190 Issue of a special airworthiness certificate for a light-sport category aircraft. (a) Purpose. The FAA issues a special airworthiness certificate in the light-sport category to...
14 CFR 21.190 - Issue of a special airworthiness certificate for a light-sport category aircraft.
Code of Federal Regulations, 2012 CFR
2012-01-01
... certificate for a light-sport category aircraft. 21.190 Section 21.190 Aeronautics and Space FEDERAL AVIATION... Airworthiness Certificates § 21.190 Issue of a special airworthiness certificate for a light-sport category aircraft. (a) Purpose. The FAA issues a special airworthiness certificate in the light-sport category to...
14 CFR 21.190 - Issue of a special airworthiness certificate for a light-sport category aircraft.
Code of Federal Regulations, 2010 CFR
2010-01-01
... certificate for a light-sport category aircraft. 21.190 Section 21.190 Aeronautics and Space FEDERAL AVIATION... Airworthiness Certificates § 21.190 Issue of a special airworthiness certificate for a light-sport category aircraft. (a) Purpose. The FAA issues a special airworthiness certificate in the light-sport category to...
14 CFR 21.190 - Issue of a special airworthiness certificate for a light-sport category aircraft.
Code of Federal Regulations, 2011 CFR
2011-01-01
... certificate for a light-sport category aircraft. 21.190 Section 21.190 Aeronautics and Space FEDERAL AVIATION... Airworthiness Certificates § 21.190 Issue of a special airworthiness certificate for a light-sport category aircraft. (a) Purpose. The FAA issues a special airworthiness certificate in the light-sport category to...
Creativity Is Life: A Commentary on the Special Issue
ERIC Educational Resources Information Center
Kaufman, James C.
2015-01-01
In this commentary on the papers in the special issue, I discuss how many of the standard questions and debates in the field of creativity research tend to focus on the individual creator. The welcome recent resurgence of interest in questions of context, interaction, culture, and audience--as on full display in this special issue--is cause to…
A new adaptive mesh refinement strategy for numerically solving evolutionary PDE's
NASA Astrophysics Data System (ADS)
Burgarelli, Denise; Kischinhevsky, Mauricio; Biezuner, Rodney Josue
2006-11-01
A graph-based implementation of quadtree meshes for dealing with adaptive mesh refinement (AMR) in the numerical solution of evolutionary partial differential equations is discussed using finite volume methods. The technique displays a plug-in feature that allows replacement of a group of cells in any region of interest for another one with arbitrary refinement, and with only local changes occurring in the data structure. The data structure is also specially designed to minimize the number of operations needed in the AMR. Implementation of the new scheme allows flexibility in the levels of refinement of adjacent regions. Moreover, storage requirements and computational cost compare competitively with mesh refinement schemes based on hierarchical trees. Low storage is achieved for only the children nodes are stored when a refinement takes place. These nodes become part of a graph structure, thus motivating the denomination autonomous leaves graph (ALG) for the new scheme. Neighbors can then be reached without accessing their parent nodes. Additionally, linear-system solvers based on the minimization of functionals can be easily employed. ALG was not conceived with any particular problem or geometry in mind and can thus be applied to the study of several phenomena. Some test problems are used to illustrate the effectiveness of the technique.
An approach to multiscale modelling with graph grammars.
Ong, Yongzhi; Streit, Katarína; Henke, Michael; Kurth, Winfried
2014-09-01
Functional-structural plant models (FSPMs) simulate biological processes at different spatial scales. Methods exist for multiscale data representation and modification, but the advantages of using multiple scales in the dynamic aspects of FSPMs remain unclear. Results from multiscale models in various other areas of science that share fundamental modelling issues with FSPMs suggest that potential advantages do exist, and this study therefore aims to introduce an approach to multiscale modelling in FSPMs. A three-part graph data structure and grammar is revisited, and presented with a conceptual framework for multiscale modelling. The framework is used for identifying roles, categorizing and describing scale-to-scale interactions, thus allowing alternative approaches to model development as opposed to correlation-based modelling at a single scale. Reverse information flow (from macro- to micro-scale) is catered for in the framework. The methods are implemented within the programming language XL. Three example models are implemented using the proposed multiscale graph model and framework. The first illustrates the fundamental usage of the graph data structure and grammar, the second uses probabilistic modelling for organs at the fine scale in order to derive crown growth, and the third combines multiscale plant topology with ozone trends and metabolic network simulations in order to model juvenile beech stands under exposure to a toxic trace gas. The graph data structure supports data representation and grammar operations at multiple scales. The results demonstrate that multiscale modelling is a viable method in FSPM and an alternative to correlation-based modelling. Advantages and disadvantages of multiscale modelling are illustrated by comparisons with single-scale implementations, leading to motivations for further research in sensitivity analysis and run-time efficiency for these models.
An approach to multiscale modelling with graph grammars
Ong, Yongzhi; Streit, Katarína; Henke, Michael; Kurth, Winfried
2014-01-01
Background and Aims Functional–structural plant models (FSPMs) simulate biological processes at different spatial scales. Methods exist for multiscale data representation and modification, but the advantages of using multiple scales in the dynamic aspects of FSPMs remain unclear. Results from multiscale models in various other areas of science that share fundamental modelling issues with FSPMs suggest that potential advantages do exist, and this study therefore aims to introduce an approach to multiscale modelling in FSPMs. Methods A three-part graph data structure and grammar is revisited, and presented with a conceptual framework for multiscale modelling. The framework is used for identifying roles, categorizing and describing scale-to-scale interactions, thus allowing alternative approaches to model development as opposed to correlation-based modelling at a single scale. Reverse information flow (from macro- to micro-scale) is catered for in the framework. The methods are implemented within the programming language XL. Key Results Three example models are implemented using the proposed multiscale graph model and framework. The first illustrates the fundamental usage of the graph data structure and grammar, the second uses probabilistic modelling for organs at the fine scale in order to derive crown growth, and the third combines multiscale plant topology with ozone trends and metabolic network simulations in order to model juvenile beech stands under exposure to a toxic trace gas. Conclusions The graph data structure supports data representation and grammar operations at multiple scales. The results demonstrate that multiscale modelling is a viable method in FSPM and an alternative to correlation-based modelling. Advantages and disadvantages of multiscale modelling are illustrated by comparisons with single-scale implementations, leading to motivations for further research in sensitivity analysis and run-time efficiency for these models. PMID:25134929
Preface to Special Issue of ChemSusChem on Perovskite Optoelectronics.
Bolink, Henk J; Mhaisalkar, Subodh G
2017-10-09
This Editorial introduces one of two companion Special Issues on "Halide Perovskites for Optoelectronics Applications" in ChemSusChem and Energy Technology following the ICMAT 2017 Conference in Singapore. More information on the other Special Issue can be found in the Editorial published in Energy Technology. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
17 CFR 140.74 - Delegation of authority to issue special calls for Series 03 Reports and Form 40.
Code of Federal Regulations, 2010 CFR
2010-04-01
... issue special calls for Series 03 Reports and Form 40. 140.74 Section 140.74 Commodity and Securities... Functions § 140.74 Delegation of authority to issue special calls for Series 03 Reports and Form 40. (a) The Commodity Futures Trading Commission hereby delegates, until such time as the Commission orders otherwise...
17 CFR 140.74 - Delegation of authority to issue special calls for Series 03 Reports and Form 40.
Code of Federal Regulations, 2011 CFR
2011-04-01
... issue special calls for Series 03 Reports and Form 40. 140.74 Section 140.74 Commodity and Securities... Functions § 140.74 Delegation of authority to issue special calls for Series 03 Reports and Form 40. (a) The Commodity Futures Trading Commission hereby delegates, until such time as the Commission orders otherwise...
17 CFR 140.74 - Delegation of authority to issue special calls for Series 03 Reports and Form 40.
Code of Federal Regulations, 2012 CFR
2012-04-01
... issue special calls for Series 03 Reports and Form 40. 140.74 Section 140.74 Commodity and Securities... Functions § 140.74 Delegation of authority to issue special calls for Series 03 Reports and Form 40. (a) The Commodity Futures Trading Commission hereby delegates, until such time as the Commission orders otherwise...
Paul C. Van Deusen; Linda S. Heath
2010-01-01
Weighted estimation methods for analysis of mapped plot forest inventory data are discussed. The appropriate weighting scheme can vary depending on the type of analysis and graphical display. Both statistical issues and user expectations need to be considered in these methods. A weighting scheme is proposed that balances statistical considerations and the logical...
Federal Budget: Spending Out of Control? Today's Issues/Tomorrow's America.
ERIC Educational Resources Information Center
U.S. News & World Report, Inc., Washington, DC. Education Div.
Intended to provide secondary students with information on the federal budget, this kit provides a teacher's guide, a test, a crossword puzzle, and a series of reproducible graphs and handouts focusing on budget deficits and the national debt. Study materials and graphics are based almost entirely on articles and graphics found in "U.S. News…
Statistical Measures, Hypotheses, and Tests in Applied Research
ERIC Educational Resources Information Center
Saville, David J.; Rowarth, Jacqueline S.
2008-01-01
This article reviews and discusses the use of statistical concepts in a natural resources and life sciences journal on the basis of a census of the articles published in a recent issue of the "Agronomy Journal" and presents a flow chart and a graph that display the inter-relationships between the most commonly used statistical terms. It also…
Exploring First Responder Tactics in a Terrorist Chemical Attack
2008-12-01
on the Prowl. TODAY Newspaper. Singapore: Mediacorp Publishing, January 4. Lucas, T . W., S. M. Sanchez, L. R. Sickinger, F. Martinez, and J . W...APPENDIX J . PYTHAGORAS 2.0.X ISSUES ENCOUNTERED.......................185 A. DRAWING DISPLAY BUG...in base case scenario. Bar graph shows the t ratio, with blue line showing the 0.05 significance level
A Dynamic Intranet-Based Online-Portal Support for Computer Science Teaching
ERIC Educational Resources Information Center
Iyer, Viswanathan K.
2017-01-01
This paper addresses the issue of effective content-delivery of Computer Science subjects taking advantage of a university intranet. The proposal described herein for teaching a subject like Combinatorics and Graph Theory (CGT) is to supplement lectures with a moderated online forum against an associated intranet portal, which is referred to as a…
Trees, B-series and G-symplectic methods
NASA Astrophysics Data System (ADS)
Butcher, J. C.
2017-07-01
The order conditions for Runge-Kutta methods are intimately connected with the graphs known as rooted trees. The conditions can be expressed in terms of Taylor expansions written as weighted sums of elementary differentials, that is as B-series. Polish notation provides a unifying structure for representing many of the quantities appearing in this theory. Applications include the analysis of general linear methods with special reference to G-symplectic methods. A new order 6 method has recently been constructed.
Quantitative data standardization of X-ray based densitometry methods
NASA Astrophysics Data System (ADS)
Sergunova, K. A.; Petraikin, A. V.; Petrjajkin, F. A.; Akhmad, K. S.; Semenov, D. S.; Potrakhov, N. N.
2018-02-01
In the present work is proposed the design of special liquid phantom for assessing the accuracy of quantitative densitometric data. Also are represented the dependencies between the measured bone mineral density values and the given values for different X-ray based densitometry techniques. Shown linear graphs make it possible to introduce correction factors to increase the accuracy of BMD measurement by QCT, DXA and DECT methods, and to use them for standardization and comparison of measurements.
Regularized Embedded Multiple Kernel Dimensionality Reduction for Mine Signal Processing.
Li, Shuang; Liu, Bing; Zhang, Chen
2016-01-01
Traditional multiple kernel dimensionality reduction models are generally based on graph embedding and manifold assumption. But such assumption might be invalid for some high-dimensional or sparse data due to the curse of dimensionality, which has a negative influence on the performance of multiple kernel learning. In addition, some models might be ill-posed if the rank of matrices in their objective functions was not high enough. To address these issues, we extend the traditional graph embedding framework and propose a novel regularized embedded multiple kernel dimensionality reduction method. Different from the conventional convex relaxation technique, the proposed algorithm directly takes advantage of a binary search and an alternative optimization scheme to obtain optimal solutions efficiently. The experimental results demonstrate the effectiveness of the proposed method for supervised, unsupervised, and semisupervised scenarios.
Understanding Game-Based Learning Cultures: Introduction to Special Issue
ERIC Educational Resources Information Center
Engerman, Jason A.; Carr-Chellman, Alison
2017-01-01
This special issue expands our understanding of teaching and learning through video game play, with specific attention to culture. The issue gives insight into the ways educators, researchers, and developers should be discussing and designing for impactful learner-centered game-based learning experiences. The issue features forward-thinking…
ERIC Educational Resources Information Center
Moradi, Bonnie; Mohr, Jonathan J.; Worthington, Roger L.; Fassinger, Ruth E.
2009-01-01
This lead article of the special issue discusses conceptual and methodological considerations in studying sexual minority issues, particularly in research conducted by counseling psychologists (including the work represented in this special issue). First, the overarching challenge of conceptualizing and defining sexual minority populations is…
ERIC Educational Resources Information Center
Campbell, Todd; Oh, Phil Seok
2015-01-01
This article provides an introduction for the special issue of the "Journal of Science Education and Technology" focused on science teaching and learning with models. The article provides initial framing for questions that guided the special issue. Additionally, based on our careful review of each of these articles, some discussion of…
90 Minutes on a Sunday Afternoon or: The Proof of the Special MT Issue Is in...
ERIC Educational Resources Information Center
Pinel, Adrian
2002-01-01
This article was written as a result of the author reading "MT177," a special issue dedicated to the teaching of "proof" in mathematics. He used the ideas in this special issue for planning his session "mathematical reasoning and proof," which was part of a weekend course for primary trainees. It consisted of three activities: (1) How many…
ERIC Educational Resources Information Center
Kristjansson, Kristjan
2009-01-01
This paper takes as its starting point the Journal of Moral Education Special Issue (September, 2008, 37[3]) "Towards an integrated model of moral reasoning". Although explicitly post-Kohlbergian, the authors in this Special Issue do not, I argue, depart far enough from Kohlberg's impoverished notion of the role of the affective in moral life--or…
NASA Technical Reports Server (NTRS)
Stephens, J. B.
1976-01-01
The National Aeronautics and Space Administration/Marshall Space Flight Center multilayer diffusion algorithms have been specialized for the prediction of the surface impact for the dispersive transport of the exhaust effluents from the launch of a Delta-Thor vehicle. This specialization permits these transport predictions to be made at the launch range in real time so that the effluent monitoring teams can optimize their monitoring grids. Basically, the data reduction routine requires only the meteorology profiles for the thermodynamics and kinematics of the atmosphere as an input. These profiles are graphed along with the resulting exhaust cloud rise history, the centerline concentrations and dosages, and the hydrogen chloride isopleths.
A graph-based approach for designing extensible pipelines
2012-01-01
Background In bioinformatics, it is important to build extensible and low-maintenance systems that are able to deal with the new tools and data formats that are constantly being developed. The traditional and simplest implementation of pipelines involves hardcoding the execution steps into programs or scripts. This approach can lead to problems when a pipeline is expanding because the incorporation of new tools is often error prone and time consuming. Current approaches to pipeline development such as workflow management systems focus on analysis tasks that are systematically repeated without significant changes in their course of execution, such as genome annotation. However, more dynamism on the pipeline composition is necessary when each execution requires a different combination of steps. Results We propose a graph-based approach to implement extensible and low-maintenance pipelines that is suitable for pipeline applications with multiple functionalities that require different combinations of steps in each execution. Here pipelines are composed automatically by compiling a specialised set of tools on demand, depending on the functionality required, instead of specifying every sequence of tools in advance. We represent the connectivity of pipeline components with a directed graph in which components are the graph edges, their inputs and outputs are the graph nodes, and the paths through the graph are pipelines. To that end, we developed special data structures and a pipeline system algorithm. We demonstrate the applicability of our approach by implementing a format conversion pipeline for the fields of population genetics and genetic epidemiology, but our approach is also helpful in other fields where the use of multiple software is necessary to perform comprehensive analyses, such as gene expression and proteomics analyses. The project code, documentation and the Java executables are available under an open source license at http://code.google.com/p/dynamic-pipeline. The system has been tested on Linux and Windows platforms. Conclusions Our graph-based approach enables the automatic creation of pipelines by compiling a specialised set of tools on demand, depending on the functionality required. It also allows the implementation of extensible and low-maintenance pipelines and contributes towards consolidating openness and collaboration in bioinformatics systems. It is targeted at pipeline developers and is suited for implementing applications with sequential execution steps and combined functionalities. In the format conversion application, the automatic combination of conversion tools increased both the number of possible conversions available to the user and the extensibility of the system to allow for future updates with new file formats. PMID:22788675
Mesman, Judi
2018-03-22
This introduction to the special issue on video observations of sensitive caregiving in different cultural communities provides a general theoretical and methodological framework for the seven empirical studies that are at the heart of this special issue. It highlights the cross-cultural potential of the sensitivity construct, the importance of research on sensitivity "off the beaten track," the advantages and potential challenges of the use of video in diverse cultural contexts, and the benefits of forming research teams that include local scholars. The paper concludes with an overview of the seven empirical studies of sensitivity in this special issue with video observations from Brazil, Indonesia, Iran, Kenya, Peru, South Africa, and Yemen.
Schulenberg, Stefan E
2016-12-01
This article serves as an introduction to the Journal of Clinical Psychology's special issue on disaster mental health and positive psychology. The special issue comprises two sections. The first section presents a series of data-driven articles and research-informed reviews examining meaning and resilience in the context of natural and technological disasters. The second section presents key topics in the area of disaster mental health, with particular relevance for positive psychology and related frameworks. The special issue is intended to bridge the gap between these two areas of applied science, with the audience being experienced clinicians or clinicians in training. © 2016 Wiley Periodicals, Inc.
Special Section: Colorectal Cancer Symptoms, Diagnosis and Treatment
... Bar Home Current Issue Past Issues Special Section: Colorectal Cancer Colorectal Cancer: Symptoms, Diagnosis and Treatment Past Issues / Spring 2009 ... are placed directly into or near the cancer. Colorectal cancer is a disease in which malignant (cancer) cells ...
Introduction to special issue on carbon and landscape dynamics
Madej, Mary Ann; Wohl, Ellen E.
2016-01-01
In October, 2013, at the Geological Society of America annual meeting, a theme session focused on carbon and landscape dynamics. That event led to interest in producing a special issue in ESPL compiling papers on this subject. The 13 papers collected for this special issue reflect the diversity of recent geomorphic research, across a range of climatic and geomorphic settings, addressing some aspect of carbon dynamics.
NASA Astrophysics Data System (ADS)
Ohlsson, Tommy
2016-07-01
In 2015, the Nobel Prize in Physics was awarded jointly to Takaaki Kajita from the Super-Kamiokande Collaboration and Arthur B. McDonald from the SNO Collaboration ;for the discovery of neutrino oscillations, which shows that neutrinos have mass;. Furthermore, the Daya Bay, K2K and T2K, KamLAND, SNO, and Super-Kamiokande Collaborations shared the Fundamental Physics Breakthrough Prize the same year. In order to celebrate this successful and fruitful year for neutrino oscillations, the editors and the publisher of Nuclear Physics B decided to publish a Special Issue on neutrino oscillations. We invited prominent scientists in the area of neutrino physics that relates to neutrino oscillations to write contributions for this Special Issue, which was open to both original research articles as well as review articles. The authors of this Special Issue consist of e.g. the two Nobel Laureates, International Participants of the Nobel Symposium 129 on Neutrino Physics at Haga Slott in Enköping, Sweden (August 19-24, 2004), selected active researchers, and members from large experimental collaborations with major results in the last ten years. In total, this Special Issue consists of 28 contributions. Please note that the cover of this Special Issue contains a figure from each of the 26 contributions that have figures included.
Integrability of conformal fishnet theory
NASA Astrophysics Data System (ADS)
Gromov, Nikolay; Kazakov, Vladimir; Korchemsky, Gregory; Negro, Stefano; Sizov, Grigory
2018-01-01
We study integrability of fishnet-type Feynman graphs arising in planar four-dimensional bi-scalar chiral theory recently proposed in arXiv:1512.06704 as a special double scaling limit of gamma-deformed N = 4 SYM theory. We show that the transfer matrix "building" the fishnet graphs emerges from the R-matrix of non-compact conformal SU(2 , 2) Heisenberg spin chain with spins belonging to principal series representations of the four-dimensional conformal group. We demonstrate explicitly a relationship between this integrable spin chain and the Quantum Spectral Curve (QSC) of N = 4 SYM. Using QSC and spin chain methods, we construct Baxter equation for Q-functions of the conformal spin chain needed for computation of the anomalous dimensions of operators of the type tr( ϕ 1 J ) where ϕ 1 is one of the two scalars of the theory. For J = 3 we derive from QSC a quantization condition that fixes the relevant solution of Baxter equation. The scaling dimensions of the operators only receive contributions from wheel-like graphs. We develop integrability techniques to compute the divergent part of these graphs and use it to present the weak coupling expansion of dimensions to very high orders. Then we apply our exact equations to calculate the anomalous dimensions with J = 3 to practically unlimited precision at any coupling. These equations also describe an infinite tower of local conformal operators all carrying the same charge J = 3. The method should be applicable for any J and, in principle, to any local operators of bi-scalar theory. We show that at strong coupling the scaling dimensions can be derived from semiclassical quantization of finite gap solutions describing an integrable system of noncompact SU(2 , 2) spins. This bears similarities with the classical strings arising in the strongly coupled limit of N = 4 SYM.
Empirical Bayes conditional independence graphs for regulatory network recovery.
Mahdi, Rami; Madduri, Abishek S; Wang, Guoqing; Strulovici-Barel, Yael; Salit, Jacqueline; Hackett, Neil R; Crystal, Ronald G; Mezey, Jason G
2012-08-01
Computational inference methods that make use of graphical models to extract regulatory networks from gene expression data can have difficulty reconstructing dense regions of a network, a consequence of both computational complexity and unreliable parameter estimation when sample size is small. As a result, identification of hub genes is of special difficulty for these methods. We present a new algorithm, Empirical Light Mutual Min (ELMM), for large network reconstruction that has properties well suited for recovery of graphs with high-degree nodes. ELMM reconstructs the undirected graph of a regulatory network using empirical Bayes conditional independence testing with a heuristic relaxation of independence constraints in dense areas of the graph. This relaxation allows only one gene of a pair with a putative relation to be aware of the network connection, an approach that is aimed at easing multiple testing problems associated with recovering densely connected structures. Using in silico data, we show that ELMM has better performance than commonly used network inference algorithms including GeneNet, ARACNE, FOCI, GENIE3 and GLASSO. We also apply ELMM to reconstruct a network among 5492 genes expressed in human lung airway epithelium of healthy non-smokers, healthy smokers and individuals with chronic obstructive pulmonary disease assayed using microarrays. The analysis identifies dense sub-networks that are consistent with known regulatory relationships in the lung airway and also suggests novel hub regulatory relationships among a number of genes that play roles in oxidative stress and secretion. Software for running ELMM is made available at http://mezeylab.cb.bscb.cornell.edu/Software.aspx. ramimahdi@yahoo.com or jgm45@cornell.edu Supplementary data are available at Bioinformatics online.
NASA Astrophysics Data System (ADS)
Kuvychko, Igor
2001-10-01
Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolving ambiguity and uncertainty via feedback, and provide image understanding, that is an interpretation of visual information in terms of such knowledge models. A computer vision system based on such principles requires unifying representation of perceptual and conceptual information. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/networks models is found. That means a very important shift of paradigm in our knowledge about brain from neural networks to the cortical software. Starting from the primary visual areas, brain analyzes an image as a graph-type spatial structure. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. The spatial combination of different neighbor features cannot be described as a statistical/integral characteristic of the analyzed region, but uniquely characterizes such region itself. Spatial logic and topology naturally present in such structures. Mid-level vision processes like clustering, perceptual grouping, multilevel hierarchical compression, separation of figure from ground, etc. are special kinds of graph/network transformations. They convert low-level image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena like shape from shading, occlusion, etc. are results of such analysis. Such approach gives opportunity not only to explain frequently unexplainable results of the cognitive science, but also to create intelligent computer vision systems that simulate perceptional processes in both what and where visual pathways. Such systems can open new horizons for robotic and computer vision industries.
A Factor Graph Approach to Automated GO Annotation
Spetale, Flavio E.; Tapia, Elizabeth; Krsticevic, Flavia; Roda, Fernando; Bulacio, Pilar
2016-01-01
As volume of genomic data grows, computational methods become essential for providing a first glimpse onto gene annotations. Automated Gene Ontology (GO) annotation methods based on hierarchical ensemble classification techniques are particularly interesting when interpretability of annotation results is a main concern. In these methods, raw GO-term predictions computed by base binary classifiers are leveraged by checking the consistency of predefined GO relationships. Both formal leveraging strategies, with main focus on annotation precision, and heuristic alternatives, with main focus on scalability issues, have been described in literature. In this contribution, a factor graph approach to the hierarchical ensemble formulation of the automated GO annotation problem is presented. In this formal framework, a core factor graph is first built based on the GO structure and then enriched to take into account the noisy nature of GO-term predictions. Hence, starting from raw GO-term predictions, an iterative message passing algorithm between nodes of the factor graph is used to compute marginal probabilities of target GO-terms. Evaluations on Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster protein sequences from the GO Molecular Function domain showed significant improvements over competing approaches, even when protein sequences were naively characterized by their physicochemical and secondary structure properties or when loose noisy annotation datasets were considered. Based on these promising results and using Arabidopsis thaliana annotation data, we extend our approach to the identification of most promising molecular function annotations for a set of proteins of unknown function in Solanum lycopersicum. PMID:26771463
A Factor Graph Approach to Automated GO Annotation.
Spetale, Flavio E; Tapia, Elizabeth; Krsticevic, Flavia; Roda, Fernando; Bulacio, Pilar
2016-01-01
As volume of genomic data grows, computational methods become essential for providing a first glimpse onto gene annotations. Automated Gene Ontology (GO) annotation methods based on hierarchical ensemble classification techniques are particularly interesting when interpretability of annotation results is a main concern. In these methods, raw GO-term predictions computed by base binary classifiers are leveraged by checking the consistency of predefined GO relationships. Both formal leveraging strategies, with main focus on annotation precision, and heuristic alternatives, with main focus on scalability issues, have been described in literature. In this contribution, a factor graph approach to the hierarchical ensemble formulation of the automated GO annotation problem is presented. In this formal framework, a core factor graph is first built based on the GO structure and then enriched to take into account the noisy nature of GO-term predictions. Hence, starting from raw GO-term predictions, an iterative message passing algorithm between nodes of the factor graph is used to compute marginal probabilities of target GO-terms. Evaluations on Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster protein sequences from the GO Molecular Function domain showed significant improvements over competing approaches, even when protein sequences were naively characterized by their physicochemical and secondary structure properties or when loose noisy annotation datasets were considered. Based on these promising results and using Arabidopsis thaliana annotation data, we extend our approach to the identification of most promising molecular function annotations for a set of proteins of unknown function in Solanum lycopersicum.
... Home Current Issue Past Issues Special Section CAM Acupuncture From Ancient Practice to Modern Science Past Issues / ... percent of U.S. adults use acupuncture. What Is Acupuncture? Dr. Adeline Ge adjusts placement of acupuncture needles ...
Chin, Jean Lau; Sanchez-Hucles, Janis
2007-09-01
Comments on the six articles contained in the special issue of the American Psychologist (January 2007) devoted to leadership, written by W. Bennis; S. J. Zaccaro; V. H. Vroom and A. G. Yago; B. J. Avolio; R. J. Sternberg; and R. J. Hackman and R. Wageman. The current authors express concern that the special issue failed to include attention to issues of diversity and intersecting identities as they pertain to leadership. A Special Issue Part II on Diversity and Leadership is being proposed to (a) advance new models of leadership, (b) expand on existing leadership theories, and (c) incorporate diversity and multiple identities in the formulation of more inclusive leadership research and theory. The goal of this special issue will be to revise our theories of leadership and our understanding of effective leadership to include gender, racial/ethnic minority status, sexual orientation, and disability status.
76 FR 52593 - Airworthiness Directives; Eurocopter Canada Ltd. Model BO 105 LS A-3 Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-23
... fatigue failure of a TT strap, loss of a blade, and subsequent loss of control of the helicopter. DATES... failure of a TT strap, loss of a blade, and subsequent loss of control of the helicopter. Since issuing... ASB also describes and contains a graph for determining the revised life limit, and provides various...
ERIC Educational Resources Information Center
Brossart, Daniel F.; Parker, Richard I.; Olson, Elizabeth A.; Mahadevan, Lakshmi
2006-01-01
This study explored some practical issues for single-case researchers who rely on visual analysis of graphed data, but who also may consider supplemental use of promising statistical analysis techniques. The study sought to answer three major questions: (a) What is a typical range of effect sizes from these analytic techniques for data from…
ERIC Educational Resources Information Center
General Accounting Office, Washington, DC. Health, Education, and Human Services Div.
This report provides social and demographic information about teen mothers. Specific information on trends in birth rates for teens, a statistical profile of teen mothers, and sociocultural factors related to these trends are reported. The findings are presented in graphs and figures related to the following issues: (1) teen birth rates, birth…
ERIC Educational Resources Information Center
Hein, Dawn L.; Wimer, Sandra L.
2007-01-01
An action research project report was complete to discuss how homework completion and motivation is an ongoing issue and debate within the public schools. This is especially true in the middle school setting. The teacher researchers of this project chose to conduct a study in order to increase homework completion and motivation of middle school…
Nonlinear dimensionality reduction methods for synthetic biology biobricks' visualization.
Yang, Jiaoyun; Wang, Haipeng; Ding, Huitong; An, Ning; Alterovitz, Gil
2017-01-19
Visualizing data by dimensionality reduction is an important strategy in Bioinformatics, which could help to discover hidden data properties and detect data quality issues, e.g. data noise, inappropriately labeled data, etc. As crowdsourcing-based synthetic biology databases face similar data quality issues, we propose to visualize biobricks to tackle them. However, existing dimensionality reduction methods could not be directly applied on biobricks datasets. Hereby, we use normalized edit distance to enhance dimensionality reduction methods, including Isomap and Laplacian Eigenmaps. By extracting biobricks from synthetic biology database Registry of Standard Biological Parts, six combinations of various types of biobricks are tested. The visualization graphs illustrate discriminated biobricks and inappropriately labeled biobricks. Clustering algorithm K-means is adopted to quantify the reduction results. The average clustering accuracy for Isomap and Laplacian Eigenmaps are 0.857 and 0.844, respectively. Besides, Laplacian Eigenmaps is 5 times faster than Isomap, and its visualization graph is more concentrated to discriminate biobricks. By combining normalized edit distance with Isomap and Laplacian Eigenmaps, synthetic biology biobircks are successfully visualized in two dimensional space. Various types of biobricks could be discriminated and inappropriately labeled biobricks could be determined, which could help to assess crowdsourcing-based synthetic biology databases' quality, and make biobricks selection.
Issues and Research in Special Education. Volume 2.
ERIC Educational Resources Information Center
Gaylord-Ross, Robert, Ed.
This compilation presents five papers on issues and research in special education. "Qualitative Research in Special Education: An Evaluative Review" (Charles A. Peck and Gail C. Furman) explicates some of the epistemological assumptions underlying qualitative research methods, reviews examples of qualitative research, evaluates the contributions…
Special Issue: Book Reviews. Resources for Career Management, Counseling, Training and Development.
ERIC Educational Resources Information Center
Horvath, Clara, Ed.; And Others
1995-01-01
This special issue includes reviews of 32 books on the following topics: management, human resources, and organizational development; career counseling, guidance, and assessment; job search; resumes; careers in specific fields; careers for special populations; career transitions; and finding balance. (SK)
NASA Astrophysics Data System (ADS)
Tkačik, Gašper
2016-07-01
The article by O. Martin and colleagues provides a much needed systematic review of a body of work that relates the topological structure of genetic regulatory networks to evolutionary selection for function. This connection is very important. Using the current wealth of genomic data, statistical features of regulatory networks (e.g., degree distributions, motif composition, etc.) can be quantified rather easily; it is, however, often unclear how to interpret the results. On a graph theoretic level the statistical significance of the results can be evaluated by comparing observed graphs to ;randomized; ones (bravely ignoring the issue of how precisely to randomize!) and comparing the frequency of appearance of a particular network structure relative to a randomized null expectation. While this is a convenient operational test for statistical significance, its biological meaning is questionable. In contrast, an in-silico genotype-to-phenotype model makes explicit the assumptions about the network function, and thus clearly defines the expected network structures that can be compared to the case of no selection for function and, ultimately, to data.
Toppi, J; Ciaramidaro, A; Vogel, P; Mattia, D; Babiloni, F; Siniatchkin, M; Astolfi, L
2015-08-01
Hyperscanning consists in the simultaneous recording of hemodynamic or neuroelectrical signals from two or more subjects acting in a social context. Well-established methodologies for connectivity estimation have already been adapted to hyperscanning purposes. The extension of graph theory approach to multi-subjects case is still a challenging issue. In the present work we aim to test the ability of the currently used graph theory global indices in describing the properties of a network given by two interacting subjects. The testing was conducted first on surrogate brain-to-brain networks reproducing typical social scenarios and then on real EEG hyperscanning data recorded during a Joint Action task. The results of the simulation study highlighted the ability of all the investigated indexes in modulating their values according to the level of interaction between subjects. However, only global efficiency and path length indexes demonstrated to be sensitive to an asymmetry in the communication between the two subjects. Such results were, then, confirmed by the application on real EEG data. Global efficiency modulated, in fact, their values according to the inter-brain density, assuming higher values in the social condition with respect to the non-social condition.
Bone marrow cavity segmentation using graph-cuts with wavelet-based texture feature.
Shigeta, Hironori; Mashita, Tomohiro; Kikuta, Junichi; Seno, Shigeto; Takemura, Haruo; Ishii, Masaru; Matsuda, Hideo
2017-10-01
Emerging bioimaging technologies enable us to capture various dynamic cellular activities [Formula: see text]. As large amounts of data are obtained these days and it is becoming unrealistic to manually process massive number of images, automatic analysis methods are required. One of the issues for automatic image segmentation is that image-taking conditions are variable. Thus, commonly, many manual inputs are required according to each image. In this paper, we propose a bone marrow cavity (BMC) segmentation method for bone images as BMC is considered to be related to the mechanism of bone remodeling, osteoporosis, and so on. To reduce manual inputs to segment BMC, we classified the texture pattern using wavelet transformation and support vector machine. We also integrated the result of texture pattern classification into the graph-cuts-based image segmentation method because texture analysis does not consider spatial continuity. Our method is applicable to a particular frame in an image sequence in which the condition of fluorescent material is variable. In the experiment, we evaluated our method with nine types of mother wavelets and several sets of scale parameters. The proposed method with graph-cuts and texture pattern classification performs well without manual inputs by a user.
X-Ray Attenuation Coefficients from 10 Kev to 100 Mev,
1957-04-30
is u&Ung"w APR n 4 1994 94-10025 0 Z1UNITED STATES DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS 94 .4 1 096 Data on Radiation Physics Graphs...OF COMMERCE • Sinclair Weeks, Secretary NATIONAL BUREAU OF STANDARDS , A. V. Astin, Dirvcew X-ray Attenuation Coefficients From 10 key to 100 Mev...Dit. ibtion I Availabiilty Codes Avai# and/or Dist Special National Bureau of Standards Circular 583 Issuw1 April 30, 1957 Fo e teSpr dt
On k-ary n-cubes: Theory and applications
NASA Technical Reports Server (NTRS)
Mao, Weizhen; Nicol, David M.
1994-01-01
Many parallel processing networks can be viewed as graphs called k-ary n-cubes, whose special cases include rings, hypercubes and toruses. In this paper, combinatorial properties of k-ary n-cubes are explored. In particular, the problem of characterizing the subgraph of a given number of nodes with the maximum edge count is studied. These theoretical results are then used to compute a lower bounding function in branch-and-bound partitioning algorithms and to establish the optimality of some irregular partitions.
Raster and vector processing for scanned linework
Greenlee, David D.
1987-01-01
An investigation of raster editing techniques, including thinning, filling, and node detecting, was performed by using specialized software. The techniques were based on encoding the state of the 3-by-3 neighborhood surrounding each pixel into a single byte. A prototypical method for converting the edited raster linkwork into vectors was also developed. Once vector representations of the lines were formed, they were formatted as a Digital Line Graph, and further refined by deletion of nonessential vertices and by smoothing with a curve-fitting technique.
Integrating Semantic Information in Metadata Descriptions for a Geoscience-wide Resource Inventory.
NASA Astrophysics Data System (ADS)
Zaslavsky, I.; Richard, S. M.; Gupta, A.; Valentine, D.; Whitenack, T.; Ozyurt, I. B.; Grethe, J. S.; Schachne, A.
2016-12-01
Integrating semantic information into legacy metadata catalogs is a challenging issue and so far has been mostly done on a limited scale. We present experience of CINERGI (Community Inventory of Earthcube Resources for Geoscience Interoperability), an NSF Earthcube Building Block project, in creating a large cross-disciplinary catalog of geoscience information resources to enable cross-domain discovery. The project developed a pipeline for automatically augmenting resource metadata, in particular generating keywords that describe metadata documents harvested from multiple geoscience information repositories or contributed by geoscientists through various channels including surveys and domain resource inventories. The pipeline examines available metadata descriptions using text parsing, vocabulary management and semantic annotation and graph navigation services of GeoSciGraph. GeoSciGraph, in turn, relies on a large cross-domain ontology of geoscience terms, which bridges several independently developed ontologies or taxonomies including SWEET, ENVO, YAGO, GeoSciML, GCMD, SWO, and CHEBI. The ontology content enables automatic extraction of keywords reflecting science domains, equipment used, geospatial features, measured properties, methods, processes, etc. We specifically focus on issues of cross-domain geoscience ontology creation, resolving several types of semantic conflicts among component ontologies or vocabularies, and constructing and managing facets for improved data discovery and navigation. The ontology and keyword generation rules are iteratively improved as pipeline results are presented to data managers for selective manual curation via a CINERGI Annotator user interface. We present lessons learned from applying CINERGI metadata augmentation pipeline to a number of federal agency and academic data registries, in the context of several use cases that require data discovery and integration across multiple earth science data catalogs of varying quality and completeness. The inventory is accessible at http://cinergi.sdsc.edu, and the CINERGI project web page is http://earthcube.org/group/cinergi
NASA Technical Reports Server (NTRS)
Zhang, Zhong
1997-01-01
The development of large-scale, composite software in a geographically distributed environment is an evolutionary process. Often, in such evolving systems, striving for consistency is complicated by many factors, because development participants have various locations, skills, responsibilities, roles, opinions, languages, terminology and different degrees of abstraction they employ. This naturally leads to many partial specifications or viewpoints. These multiple views on the system being developed usually overlap. From another aspect, these multiple views give rise to the potential for inconsistency. Existing CASE tools do not efficiently manage inconsistencies in distributed development environment for a large-scale project. Based on the ViewPoints framework the WHERE (Web-Based Hypertext Environment for requirements Evolution) toolkit aims to tackle inconsistency management issues within geographically distributed software development projects. Consequently, WHERE project helps make more robust software and support software assurance process. The long term goal of WHERE tools aims to the inconsistency analysis and management in requirements specifications. A framework based on Graph Grammar theory and TCMJAVA toolkit is proposed to detect inconsistencies among viewpoints. This systematic approach uses three basic operations (UNION, DIFFERENCE, INTERSECTION) to study the static behaviors of graphic and tabular notations. From these operations, subgraphs Query, Selection, Merge, Replacement operations can be derived. This approach uses graph PRODUCTIONS (rewriting rules) to study the dynamic transformations of graphs. We discuss the feasibility of implementation these operations. Also, We present the process of porting original TCM (Toolkit for Conceptual Modeling) project from C++ to Java programming language in this thesis. A scenario based on NASA International Space Station Specification is discussed to show the applicability of our approach. Finally, conclusion and future work about inconsistency management issues in WHERE project will be summarized.
ERIC Educational Resources Information Center
n11 Sep, Nov 1979, 1980
1980-01-01
The document presents five issues of the PRISE Reporter, a newsletter of the Pennsylvania Resources and Information Center for Special Education devoted to issues and happenings in the field of special education. Separate issues treat the following disabilities: mental retardation, health impairments/learning disabilities, emotional disturbances,…
Special Issue: Book Reviews 2002-2003.
ERIC Educational Resources Information Center
Grauer, Barbara Ellman, Ed.
2003-01-01
This special issue reviews 71 books on the following topics: career management; career opportunities for people with disabilities; federal government career information; college career development/counseling; job search strategies, tools, methods; coaching; retirement issues; strategies for managers; women and careers; general career books; and…
Code of Federal Regulations, 2013 CFR
2013-07-01
... special procedures for declassification of records pertaining to intelligence activities and intelligence... procedures for declassification of records pertaining to intelligence activities and intelligence sources or... Intelligence is responsible for issuing special procedures for declassification of classified records...
Quantized Average Consensus on Gossip Digraphs with Reduced Computation
NASA Astrophysics Data System (ADS)
Cai, Kai; Ishii, Hideaki
The authors have recently proposed a class of randomized gossip algorithms which solve the distributed averaging problem on directed graphs, with the constraint that each node has an integer-valued state. The essence of this algorithm is to maintain local records, called “surplus”, of individual state updates, thereby achieving quantized average consensus even though the state sum of all nodes is not preserved. In this paper we study a modified version of this algorithm, whose feature is primarily in reducing both computation and communication effort. Concretely, each node needs to update fewer local variables, and can transmit surplus by requiring only one bit. Under this modified algorithm we prove that reaching the average is ensured for arbitrary strongly connected graphs. The condition of arbitrary strong connection is less restrictive than those known in the literature for either real-valued or quantized states; in particular, it does not require the special structure on the network called balanced. Finally, we provide numerical examples to illustrate the convergence result, with emphasis on convergence time analysis.
Optimal processor assignment for pipeline computations
NASA Technical Reports Server (NTRS)
Nicol, David M.; Simha, Rahul; Choudhury, Alok N.; Narahari, Bhagirath
1991-01-01
The availability of large scale multitasked parallel architectures introduces the following processor assignment problem for pipelined computations. Given a set of tasks and their precedence constraints, along with their experimentally determined individual responses times for different processor sizes, find an assignment of processor to tasks. Two objectives are of interest: minimal response given a throughput requirement, and maximal throughput given a response time requirement. These assignment problems differ considerably from the classical mapping problem in which several tasks share a processor; instead, it is assumed that a large number of processors are to be assigned to a relatively small number of tasks. Efficient assignment algorithms were developed for different classes of task structures. For a p processor system and a series parallel precedence graph with n constituent tasks, an O(np2) algorithm is provided that finds the optimal assignment for the response time optimization problem; it was found that the assignment optimizing the constrained throughput in O(np2log p) time. Special cases of linear, independent, and tree graphs are also considered.
Dynamic multicast routing scheme in WDM optical network
NASA Astrophysics Data System (ADS)
Zhu, Yonghua; Dong, Zhiling; Yao, Hong; Yang, Jianyong; Liu, Yibin
2007-11-01
During the information era, the Internet and the service of World Wide Web develop rapidly. Therefore, the wider and wider bandwidth is required with the lower and lower cost. The demand of operation turns out to be diversified. Data, images, videos and other special transmission demands share the challenge and opportunity with the service providers. Simultaneously, the electrical equipment has approached their limit. So the optical communication based on the wavelength division multiplexing (WDM) and the optical cross-connects (OXCs) shows great potentials and brilliant future to build an optical network based on the unique technical advantage and multi-wavelength characteristic. In this paper, we propose a multi-layered graph model with inter-path between layers to solve the problem of multicast routing wavelength assignment (RWA) contemporarily by employing an efficient graph theoretic formulation. And at the same time, an efficient dynamic multicast algorithm named Distributed Message Copying Multicast (DMCM) mechanism is also proposed. The multicast tree with minimum hops can be constructed dynamically according to this proposed scheme.
Sacchet, Matthew D; Prasad, Gautam; Foland-Ross, Lara C; Thompson, Paul M; Gotlib, Ian H
2014-04-01
Graph theory is increasingly used in the field of neuroscience to understand the large-scale network structure of the human brain. There is also considerable interest in applying machine learning techniques in clinical settings, for example, to make diagnoses or predict treatment outcomes. Here we used support-vector machines (SVMs), in conjunction with whole-brain tractography, to identify graph metrics that best differentiate individuals with Major Depressive Disorder (MDD) from nondepressed controls. To do this, we applied a novel feature-scoring procedure that incorporates iterative classifier performance to assess feature robustness. We found that small-worldness , a measure of the balance between global integration and local specialization, most reliably differentiated MDD from nondepressed individuals. Post-hoc regional analyses suggested that heightened connectivity of the subcallosal cingulate gyrus (SCG) in MDDs contributes to these differences. The current study provides a novel way to assess the robustness of classification features and reveals anomalies in large-scale neural networks in MDD.
CONSISTENCY UNDER SAMPLING OF EXPONENTIAL RANDOM GRAPH MODELS.
Shalizi, Cosma Rohilla; Rinaldo, Alessandro
2013-04-01
The growing availability of network data and of scientific interest in distributed systems has led to the rapid development of statistical models of network structure. Typically, however, these are models for the entire network, while the data consists only of a sampled sub-network. Parameters for the whole network, which is what is of interest, are estimated by applying the model to the sub-network. This assumes that the model is consistent under sampling , or, in terms of the theory of stochastic processes, that it defines a projective family. Focusing on the popular class of exponential random graph models (ERGMs), we show that this apparently trivial condition is in fact violated by many popular and scientifically appealing models, and that satisfying it drastically limits ERGM's expressive power. These results are actually special cases of more general results about exponential families of dependent random variables, which we also prove. Using such results, we offer easily checked conditions for the consistency of maximum likelihood estimation in ERGMs, and discuss some possible constructive responses.
Chinese Mainland Movie Network
NASA Astrophysics Data System (ADS)
Liu, Ai-Fen; Xue, Yu-Hua; He, Da-Ren
2008-03-01
We propose describing a large kind of cooperation-competition networks by bipartite graphs and their unipartite projections. In the graphs the topological structure describe the cooperation-competition configuration of the basic elements, and the vertex weight describe their different roles in cooperation or results of competition. This complex network description may be helpful for finding and understanding common properties of cooperation-competition systems. In order to show an example, we performed an empirical investigation on the movie cooperation-competition network within recent 80 years in the Chinese mainland. In the net the movies are defined as nodes, and two nodes are connected by a link if a common main movie actor performs in them. The edge represents the competition relationship between two movies for more audience among a special audience colony. We obtained the statistical properties, such as the degree distribution, act degree distribution, act size distribution, and distribution of the total node weight, and explored the influence factors of Chinese mainland movie competition intensity.
Mobile satellite services: A survey of business needs
NASA Astrophysics Data System (ADS)
Hainzer, Eric M.
Conceptualizing and understanding the international business traveler's communication requirements by the use of a survey and selection of a mobile satellite system that satisfies those requirements are discussed. Chapter 5 incorporates an in depth analysis of the respondent's answers to survey questions and graphing them with frequency distribution histograms. Chapter 6 concludes with a selection of the most likely MSS manufacturer who appears to satisfy those communication requirements discovered in the previous chapter. Following a general-introduction in Chapter 1, the current climate of mobile satellite system (MSS) providers is discussed in Chapter 2. Chapter 3 assesses the implication of launch vehicles as it pertains to the political, technical, and financial aspects of MSS manufacturers and users. Special attention is provided, when possible, between the political environment and its relationship with forefront technology. In chapter 4, the procedure that was used to create the survey and its research methodology is shown. Graphs and charts are used, where appropriate, for the purpose of clarity and readability.
CONSISTENCY UNDER SAMPLING OF EXPONENTIAL RANDOM GRAPH MODELS
Shalizi, Cosma Rohilla; Rinaldo, Alessandro
2015-01-01
The growing availability of network data and of scientific interest in distributed systems has led to the rapid development of statistical models of network structure. Typically, however, these are models for the entire network, while the data consists only of a sampled sub-network. Parameters for the whole network, which is what is of interest, are estimated by applying the model to the sub-network. This assumes that the model is consistent under sampling, or, in terms of the theory of stochastic processes, that it defines a projective family. Focusing on the popular class of exponential random graph models (ERGMs), we show that this apparently trivial condition is in fact violated by many popular and scientifically appealing models, and that satisfying it drastically limits ERGM’s expressive power. These results are actually special cases of more general results about exponential families of dependent random variables, which we also prove. Using such results, we offer easily checked conditions for the consistency of maximum likelihood estimation in ERGMs, and discuss some possible constructive responses. PMID:26166910
Community detection enhancement using non-negative matrix factorization with graph regularization
NASA Astrophysics Data System (ADS)
Liu, Xiao; Wei, Yi-Ming; Wang, Jian; Wang, Wen-Jun; He, Dong-Xiao; Song, Zhan-Jie
2016-06-01
Community detection is a meaningful task in the analysis of complex networks, which has received great concern in various domains. A plethora of exhaustive studies has made great effort and proposed many methods on community detection. Particularly, a kind of attractive one is the two-step method which first makes a preprocessing for the network and then identifies its communities. However, not all types of methods can achieve satisfactory results by using such preprocessing strategy, such as the non-negative matrix factorization (NMF) methods. In this paper, rather than using the above two-step method as most works did, we propose a graph regularized-based model to improve, specialized, the NMF-based methods for the detection of communities, namely NMFGR. In NMFGR, we introduce the similarity metric which contains both the global and local information of networks, to reflect the relationships between two nodes, so as to improve the accuracy of community detection. Experimental results on both artificial and real-world networks demonstrate the superior performance of NMFGR to some competing methods.
Taking Development Seriously: Critique of the 2008 "JME" Special Issue on Moral Functioning
ERIC Educational Resources Information Center
Gibbs, John C.; Moshman, David; Berkowitz, Marvin W.; Basinger, Karen S.; Grime, Rebecca L.
2009-01-01
This essay comments on articles comprising a "Journal of Moral Education" Special Issue (September, 2008, 37[3]). The issue was intended to honour the 50th anniversary of Lawrence Kohlberg's doctoral dissertation and his subsequent impact on the field of moral development and education. The articles were characterised by the Issue editor (Don…
Ma, Zhiwei; Perez, Pablo; Ma, Zilu; Liu, Yikang; Hamilton, Christina; Liang, Zhifeng; Zhang, Nanyin
2018-04-15
Connectivity-based parcellation approaches present an innovative method to segregate the brain into functionally specialized regions. These approaches have significantly advanced our understanding of the human brain organization. However, parallel progress in animal research is sparse. Using resting-state fMRI data and a novel, data-driven parcellation method, we have obtained robust functional parcellations of the rat brain. These functional parcellations reveal the regional specialization of the rat brain, which exhibited high within-parcel homogeneity and high reproducibility across animals. Graph analysis of the whole-brain network constructed based on these functional parcels indicates that the rat brain has a topological organization similar to humans, characterized by both segregation and integration. Our study also provides compelling evidence that the cingulate cortex is a functional hub region conserved from rodents to humans. Together, this study has characterized the rat brain specialization and integration, and has significantly advanced our understanding of the rat brain organization. In addition, it is valuable for studies of comparative functional neuroanatomy in mammalian brains. Copyright © 2016 Elsevier Inc. All rights reserved.
The use of control charts by laypeople and hospital decision-makers for guiding decision making.
Schmidtke, K A; Watson, D G; Vlaev, I
2017-07-01
Graphs presenting healthcare data are increasingly available to support laypeople and hospital staff's decision making. When making these decisions, hospital staff should consider the role of chance-that is, random variation. Given random variation, decision-makers must distinguish signals (sometimes called special-cause data) from noise (common-cause data). Unfortunately, many graphs do not facilitate the statistical reasoning necessary to make such distinctions. Control charts are a less commonly used type of graph that support statistical thinking by including reference lines that separate data more likely to be signals from those more likely to be noise. The current work demonstrates for whom (laypeople and hospital staff) and when (treatment and investigative decisions) control charts strengthen data-driven decision making. We present two experiments that compare people's use of control and non-control charts to make decisions between hospitals (funnel charts vs. league tables) and to monitor changes across time (run charts with control lines vs. run charts without control lines). As expected, participants more accurately identified the outlying data using a control chart than using a non-control chart, but their ability to then apply that information to more complicated questions (e.g., where should I go for treatment?, and should I investigate?) was limited. The discussion highlights some common concerns about using control charts in hospital settings.
Standardization of databases for AMDB taxi routing functions
NASA Astrophysics Data System (ADS)
Pschierer, C.; Sindlinger, A.; Schiefele, J.
2010-04-01
Input, management, and display of taxi routes on airport moving map displays (AMM) have been covered in various studies in the past. The demonstrated applications are typically based on Aerodrome Mapping Databases (AMDB). Taxi routing functions require specific enhancements, typically in the form of a graph network with nodes and edges modeling all connectivities within an airport, which are not supported by the current AMDB standards. Therefore, the data schemas and data content have been defined specifically for the purpose and test scenarios of these studies. A standardization of the data format for taxi routing information is a prerequisite for turning taxi routing functions into production. The joint RTCA/EUROCAE special committee SC-217, responsible for updating and enhancing the AMDB standards DO-272 [1] and DO-291 [2], is currently in the process of studying different alternatives and defining reasonable formats. Requirements for taxi routing data are primarily driven by depiction concepts for assigned and cleared taxi routes, but also by database size and the economic feasibility. Studied concepts are similar to the ones described in the GDF (geographic data files) specification [3], which is used in most car navigation systems today. They include - A highly aggregated graph network of complex features - A modestly aggregated graph network of simple features - A non-explicit topology of plain AMDB taxi guidance line elements This paper introduces the different concepts and their advantages and disadvantages.
Viability of NLCD Products From IRS-P6, And From Landsat 7 Scan-gap Data
NASA Technical Reports Server (NTRS)
Coan, Michael
2007-01-01
Landcover test on Salt Lake test site illustrates potential issues with AWiFS/LISS-III for classification of certain land cover classes (evergreen, shrub/scrub, woody wetlands, emergent wetlands). Canopy and impervious graphs of product differences from source indicate slightly lower overall accuracies (shorter peaks, wider bases) for AWiFS/LISS-III, compared to L5/L7. Inspection of individual products from canopy and impervious estimate tests revealed issues with combining AWifs quadrants, and similar but less severe effects with combining multiple dates of L7 scan gap data.
Fitting ERGMs on big networks.
An, Weihua
2016-09-01
The exponential random graph model (ERGM) has become a valuable tool for modeling social networks. In particular, ERGM provides great flexibility to account for both covariates effects on tie formations and endogenous network formation processes. However, there are both conceptual and computational issues for fitting ERGMs on big networks. This paper describes a framework and a series of methods (based on existent algorithms) to address these issues. It also outlines the advantages and disadvantages of the methods and the conditions to which they are most applicable. Selected methods are illustrated through examples. Copyright © 2016 Elsevier Inc. All rights reserved.
Structured sparse linear graph embedding.
Wang, Haixian
2012-03-01
Subspace learning is a core issue in pattern recognition and machine learning. Linear graph embedding (LGE) is a general framework for subspace learning. In this paper, we propose a structured sparse extension to LGE (SSLGE) by introducing a structured sparsity-inducing norm into LGE. Specifically, SSLGE casts the projection bases learning into a regression-type optimization problem, and then the structured sparsity regularization is applied to the regression coefficients. The regularization selects a subset of features and meanwhile encodes high-order information reflecting a priori structure information of the data. The SSLGE technique provides a unified framework for discovering structured sparse subspace. Computationally, by using a variational equality and the Procrustes transformation, SSLGE is efficiently solved with closed-form updates. Experimental results on face image show the effectiveness of the proposed method. Copyright © 2011 Elsevier Ltd. All rights reserved.
The "Preface to the Special Edition on Model Evaluation: Evaluation of Urban and Regional Eulerian Air Quality Models" is a brief introduction to the papers included in a special issue of Atmospheric Environment. The Preface provides a background for the papers, which have thei...
ERIC Educational Resources Information Center
Hanley, Tom V., Ed.; And Others
1984-01-01
Ten information bulletins on the implementation of microcomputers in special education are presented. Topics covered include the following: (1) implementation issues (including a description of a study assessing microcomputer applications in 12 local school districts' special education programs); (2) implementation strategies (which focuses on…
... A healthy weight for girls Eating healthy at restaurants Special food issues Vegetarian eating Eating for strong ... Healthy weight goals How to eat healthy at restaurants Lactose intolerance and other special food issues What ...
Applied Optics Golden Anniversary commemorative reviews: introduction.
Mait, Joseph N; Mendez, Eugenio; Peyghambarian, Nasser; Poon, T-C
2013-01-01
Applied Optics presents three special issues to end its retrospective of Applied Optics' 50 years. The special issues are interference, interferometry, and phase; imaging, optical processing, and telecommunications; and polarization and scattering. The issues, which contain 19 commemorative reviews from some of the journal's luminaries, are summarized.
14 CFR 21.199 - Issue of special flight permits.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Issue of special flight permits. 21.199 Section 21.199 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Airworthiness Certificates § 21.199 Issue of...
NASA Astrophysics Data System (ADS)
Twareque Ali, Syed; Antoine, Jean-Pierre; Bagarello, Fabio; Gazeau, Jean-Pierre
2011-07-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to coherent states. The motivation behind this special issue is to gather in a single comprehensive volume the main aspects (past and present), latest developments, different viewpoints and directions being followed in this multidisciplinary field. Given the impressive development of the field in the past two decades, the topicality of such a volume can hardly be overemphasized. We strongly believe that such a special issue could become a particularly valuable reference for the broad scientific community working in mathematical and theoretical physics, as well as in signal processing and mathematics. Editorial policy The Guest Editors for this issue will be Syed Twareque Ali, Jean-Pierre Antoine, Fabio Bagarello and Jean-Pierre Gazeau. Potential topics include, but are not limited to, developments in the theory and applications of coherent states in: quantum optics, optomechanics, Bose-Einstein condensates quantum information, quantum measurement signal processing quantum gravity pseudo-Hermitian quantum mechanics supersymmetric quantum mechanics non-commutative quantum mechanics quantization theory harmonic and functional analysis operator theory Berezin-Toeplitz operators, PT-symmetric operators holomorphic representation theory, reproducing kernel spaces generalization of coherent states All contributions will be refereed and processed according to the usual procedure of the journal. Papers should report original and significant research that has not already been published. Guidelines for preparation of contributions The deadline for contributed papers will be 31 October 2011. This deadline will allow the special issue to appear before the end of May 2012 There is a nominal page limit of 15 printed pages per contribution (invited review papers can be longer). For papers exceeding this limit, the Guest Editors reserve the right to request a reduction in length. Further advice on publishing your work in Journal of Physics A: Mathematical and Theoretical may be found at iopscience.iop.org/jphysa. Contributions to the special issue should be submitted by web upload via authors.iop.org/, or by email to jphysa@iop.org, quoting `JPhysA Special issue on coherent states: mathematical and physical aspects'. Submissions should ideally be in standard LaTeX form. Please see the website for further information on electronic submissions. All contributions should be accompanied by a read-me file or covering letter giving the postal and e-mail addresses for correspondence. The Publishing Office should be notified of any subsequent change of address. The special issue will be published in the print and online versions of the journal.
NASA Astrophysics Data System (ADS)
Twareque Ali, Syed; Antoine, Jean-Pierre; Bagarello, Fabio; Gazeau, Jean-Pierre
2011-06-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to coherent states. The motivation behind this special issue is to gather in a single comprehensive volume the main aspects (past and present), latest developments, different viewpoints and directions being followed in this multidisciplinary field. Given the impressive development of the field in the past two decades, the topicality of such a volume can hardly be overemphasized. We strongly believe that such a special issue could become a particularly valuable reference for the broad scientific community working in mathematical and theoretical physics, as well as in signal processing and mathematics. Editorial policy The Guest Editors for this issue will be Syed Twareque Ali, Jean-Pierre Antoine, Fabio Bagarello and Jean-Pierre Gazeau. Potential topics include, but are not limited to, developments in the theory and applications of coherent states in: quantum optics, optomechanics, Bose-Einstein condensates quantum information, quantum measurement signal processing quantum gravity pseudo-Hermitian quantum mechanics supersymmetric quantum mechanics non-commutative quantum mechanics quantization theory harmonic and functional analysis operator theory Berezin-Toeplitz operators, PT-symmetric operators holomorphic representation theory, reproducing kernel spaces generalization of coherent states All contributions will be refereed and processed according to the usual procedure of the journal. Papers should report original and significant research that has not already been published. Guidelines for preparation of contributions The deadline for contributed papers will be 31 October 2011. This deadline will allow the special issue to appear before the end of May 2012 There is a nominal page limit of 15 printed pages per contribution (invited review papers can be longer). For papers exceeding this limit, the Guest Editors reserve the right to request a reduction in length. Further advice on publishing your work in Journal of Physics A: Mathematical and Theoretical may be found at iopscience.iop.org/jphysa. Contributions to the special issue should be submitted by web upload via authors.iop.org/, or by email to jphysa@iop.org, quoting `JPhysA Special issue on coherent states: mathematical and physical aspects'. Submissions should ideally be in standard LaTeX form. Please see the website for further information on electronic submissions. All contributions should be accompanied by a read-me file or covering letter giving the postal and e-mail addresses for correspondence. The Publishing Office should be notified of any subsequent change of address. The special issue will be published in the print and online versions of the journal.
ERIC Educational Resources Information Center
Bureau of National Affairs, Inc., Washington, DC.
This special report updates a September, 1988 Bureau of National Affairs (BNA) special report, "82 Key Statistics on Work and Family Issues," by presenting 101 new statistics on work and family concerns. Data concern: (1) child care; (2) parental leave; (3) elder care; (4) flexible work schedules; and (5) miscellaneous issues, such as…
Space shuttle propulsion systems
NASA Technical Reports Server (NTRS)
Bardos, Russell
1991-01-01
This is a presentation of view graphs. The design parameters are given for the redesigned solid rocket motor (RSRM), the Advanced Solid Rocket Motor (ASRM), Space Shuttle Main Engine (SSME), Solid Rocket Booster (SRB) separation motor, Orbit Maneuvering System (OMS), and the Reaction Control System (RCS) primary and Vernier thrusters. Space shuttle propulsion issues are outlined along with ASA program definition, ASA program selection methodology, its priorities, candidates, and categories.
ERIC Educational Resources Information Center
Stacey, Kaye; Price, Beth; Steinle, Vicki
2012-01-01
This paper discusses issues arising in the design of questions to use in an on-line computer-based formative assessment system, focussing on how best to identify the stages of a learning hierarchy for reporting to teachers. Data from several hundred students is used to illustrate how design decisions have been made for a test on interpreting line…
Combating WMD Journal. Issue 6, Fall/Winter 2010
2010-12-31
Editorial Board prior to publication. Submit articles in Microsoft Word without automatic features, include photographs , graphs, tables, etc. as...presenters as many in attendance were unlikely to be swayed and in some cases the meet- ings turned into adversarial shouting matches. 19 These...Solar Superstorm, http://science.nasa.gov/ science-news/science-at- nasa /2003/23oct_superstorm/ 8. Pfeffer, Robert, The Need to Re- define
ERIC Educational Resources Information Center
Brown, William H., Ed.
The document comprises two issues of a journal devoted to learning and adolescence. Each issue contains articles which were contributed by participants in a conference on learning and adolescence held at Phillips Academy, Andover, Massachusetts, in 1977. Articles in the Spring issue deal with formation of adolescents' values, observations of…
Cognitive Architectures and Human-Computer Interaction. Introduction to Special Issue.
ERIC Educational Resources Information Center
Gray, Wayne D.; Young, Richard M.; Kirschenbaum, Susan S.
1997-01-01
In this introduction to a special issue on cognitive architectures and human-computer interaction (HCI), editors and contributors provide a brief overview of cognitive architectures. The following four architectures represented by articles in this issue are: Soar; LICAI (linked model of comprehension-based action planning and instruction taking);…
Introduction: Special issue on Global Lesbian Cinema.
Farr, Daniel
2012-01-01
This article offers a brief introduction to this special issue on Global Lesbian Cinema. This issue particularly highlights the importance of recognizing lesbian discourse as a separate, related piece of the discourse of queer transnational and global cinema. Subsequently, brief summaries of the eight articles of this collection are provided.
Retention Issues: A Study of Alabama Special Education Teachers
ERIC Educational Resources Information Center
Plash, Shawn; Piotrowski, Chris
2006-01-01
This study investigated issues that impact attrition, migration and retention of special education teachers in Alabama. The sample comprised 70 teachers designated as "highly-qualified" who responded to a job satisfaction instrument, with a focus on retention issues, developed by Levine (2001). The results indicated that the major…
The 1980 Presidential Debates. Special Issue.
ERIC Educational Resources Information Center
Ritter, Kurt W., Ed.
1981-01-01
Prepared by educators and researchers involved in argumentation and debate, the articles in this special journal issue are based upon the assumptions that presidential debates are important, are likely to continue, and are of unique interest to students, scholars, and practitioners of argument. The first two articles in the issue provide overviews…
This special issue of Atmospheric Environment provides a selection of papers that were presented at the 2005 AAAR PM Supersites Program and Related Studies International Specialty Conference held in Atlanta, GA, 7-11 February 2005. Topics of papers in this issue range from the e...
Special nuclear materials cutoff exercise: Issues and lessons learned. Volume 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Libby, R.A.; Segal, J.E.; Stanbro, W.D.
1995-08-01
This document is appendices D-J for the Special Nuclear Materials Cutoff Exercise: Issues and Lessons Learned. Included are discussions of the US IAEA Treaty, safeguard regulations for nuclear materials, issue sheets for the PUREX process, and the LANL follow up activity for reprocessing nuclear materials.
Assistive Technology Design in Special Education. Issue Brief 2.
ERIC Educational Resources Information Center
Burnette, Jane
The issue brief discusses technological principles, issues, and design features discovered or used by projects funded by the Office of Special Education Programs (OSEP). Information was obtained from interviews with project directors who were asked about their project experiences, the features and design principles essential to the success of…
Students at Risk. SET Special Issue.
ERIC Educational Resources Information Center
Wright, Judith, Ed.
1996-01-01
This special issue of the serial SET for 1996 contains seven newly commissioned articles and four reprints all related to the education of children at risk. This issue includes: (1) "Students at Risk: An Overview" (Margaret Batten, Graeme Withers, and Jean Russell); (2) "Inquiry into Children in Education at Risk through Truancy and…
ERIC Educational Resources Information Center
Ashton, Ray
As part of a 3-year study to identify emerging issues and trends in technology for special education, this paper addresses the role of interactive multimedia, especially the digital, optical compact disc technologies, in providing instructional services to special education students. An overview identifies technological and economic trends,…
Rural Special Education Quarterly, Volume 5, Nos. 1-4, Spring-Fall 1984, Winter 1985.
ERIC Educational Resources Information Center
Rural Special Education Quarterly, 1985
1985-01-01
Four newsletter issues examine aspects of rural special education. Issue number one considers the generic problems or solutions in rural special education leadership, the need for innovative preservice preparation for rural educators, preservice training for Native American professionals and paraprofessionals, a model for rural early intervention,…
14 CFR 91.715 - Special flight authorizations for foreign civil aircraft.
Code of Federal Regulations, 2010 CFR
2010-01-01
... RULES Foreign Aircraft Operations and Operations of U.S.-Registered Civil Aircraft Outside of the United... required under § 91.203 if a special flight authorization for that operation is issued under this section... which the airshow is located. (b) The Administrator may issue a special flight authorization for a...
Important Issues in Rural Education: A Collection of ERIC/CRESS Fact Sheets and Mini Reviews.
ERIC Educational Resources Information Center
Seager, D. D.; And Others
The two mini reviews and two fact sheets contained in this collection synthesize basic information regarding four issues in rural education: special education, transportation, early childhood education, and reading achievement. Solutions to the special education problems of child identification, parent involvement, delivery of special education…
"Special Issue": Regional Dimensions of the Triple Helix Model
ERIC Educational Resources Information Center
Todeva, Emanuela; Danson, Mike
2016-01-01
This paper introduces the rationale for the special issue and its contributions, which bridge the literature on regional development and the Triple Helix model. The concept of the Triple Helix at the sub-national, and specifically regional, level is established and examined, with special regard to regional economic development founded on…
Review of the Literature on Children with Special Educational Needs
ERIC Educational Resources Information Center
Alkahtani, Mohammed Ali
2016-01-01
This study outlines the literature relevant to the Cross-cultural issues and the politics of SEN and the different perspectives arising from the literature on this widely debated issue are addressed. In addition, the origin of the term "special educational needs" (SEN), its definitions and the types of special education needs are…
Coker, David L; Kim, Young-Suk Grace
In this introduction to the special series "Critical Issues in the Understanding of Young Elementary School Students at Risk for Problems in Written Expression," we consider some of the contextual factors that have changed since a similar special issue was published in the Journal of Learning Disabilities in 2002. We also explore how the five articles included in this special series address the following important themes: early writing development, identification of students with writing difficulties, and effective interventions for struggling writers. In conclusion, we envision future directions to advance the field.
Special Issue of Selected Papers from Visualization and Data Analysis 2011
NASA Technical Reports Server (NTRS)
Kao, David L.; Wong, Pak Chung
2012-01-01
This special issue features the best papers that were selected from the 18th SPIE Conference on Visualization and Data Analysis (VDA 2011). This annual conference is a major international forum for researchers and practitioners interested in data visualization and analytics research, development, and applications. VDA 2011 received 42 high-quality submissions from around the world. Twenty-four papers were selected for full conference papers. The top five papers have been expanded and reviewed for this special issue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amy Honchar
The contribution of funds from DOE supported publication costs of a special issue of Deep Sea Research arising from presentations at the First U.S. Atlantic Meridional Overturning Circulation (AMOC) Meeting held 4-6 May, 2009 to review the US implementation plan and its coordination with other monitoring activities. The special issue includes a total of 16 papers, including publications from three DOE-supported investigators (ie Sevellec, F., and A.V. Fedorov; Hu et. al., and Wan et. al.,). The special issue addresses DOE interests in understanding and simulation/modeling of abrupt climate change.
ISDRS 2016 special issue foreword
NASA Astrophysics Data System (ADS)
Iliadis, Agis A.; Akturk, Akin; Tompkins, Randy P.
2017-10-01
This 8th ISDRS Special Issue of Solid-State Electronics contains manuscripts presented at the 2016 International Semiconductor Device Research Symposium (ISDRS 2016) that was held at the Hyatt Regency Hotel, in Bethesda, Maryland, on December 7-9, 2016. A total of 32 manuscripts were submitted, which were sent out for review by both the ISDRS Guest Editors, Agis Iliadis, Akin Akturk, Randy Tompkins, and the Solid-State Electronics Editor, Alex Zaslavsky. This ISDRS Special Issue of Solid-State Electronics contains the manuscripts selected through this rigorous review process.
Special Issue: "Functional Dendrimers".
Tomalia, Donald A
2016-08-09
This special issue entitled "Functional Dendrimers" focuses on the manipulation of at least six "critical nanoscale design parameters" (CNDPs) of dendrimers including: size, shape, surface chemistry, flexibility/rigidity, architecture and elemental composition. These CNDPs collectively define properties of all "functional dendrimers". This special issue contains many interesting examples describing the manipulation of certain dendrimer CNDPs to create new emerging properties and, in some cases, predictive nanoperiodic property patterns (i.e., dendritic effects). The systematic engineering of CNDPs provides a valuable strategy for optimizing functional dendrimer properties for use in specific applications.
Introduction to the Special Issue.
ERIC Educational Resources Information Center
Savickas, Mark L.
2003-01-01
To commemorate the 90th anniversary of the National Career Development Association and to anticipate its centennial, this special issue presents 9 analyses of the career counseling profession's strengths, weaknesses, opportunities, and threats. (GCP)
Changes in functional brain networks following sports-related concussion in adolescents.
Virji-Babul, Naznin; Hilderman, Courtney G E; Makan, Nadia; Liu, Aiping; Smith-Forrester, Jenna; Franks, Chris; Wang, Z J
2014-12-01
Sports-related concussion is a major public health issue; however, little is known about the underlying changes in functional brain networks in adolescents following injury. Our aim was to use the tools from graph theory to evaluate the changes in brain network properties following concussion in adolescent athletes. We recorded resting state electroencephalography (EEG) in 33 healthy adolescent athletes and 9 adolescent athletes with a clinical diagnosis of subacute concussion. Graph theory analysis was applied to these data to evaluate changes in brain networks. Global and local metrics of the structural properties of the graph were calculated for each group and correlated with Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) scores. Brain networks of both groups showed small-world topology with no statistically significant differences in the global metrics; however, significant differences were found in the local metrics. Specifically, in the concussed group, we noted: 1) increased values of betweenness and degree in frontal electrode sites corresponding to the (R) dorsolateral prefrontal cortex and the (R) inferior frontal gyrus and 2) decreased values of degree in the region corresponding to the (R) frontopolar prefrontal cortex. In addition, there was significant negative correlation between degree and hub value, with total symptom score at the electrode site corresponding to the (R) prefrontal cortex. This preliminary report in adolescent athletes shows for the first time that resting-state EEG combined with graph theoretical analysis may provide an objective method of evaluating changes in brain networks following concussion. This approach may be useful in identifying individuals at risk for future injury.
Couple Graph Based Label Propagation Method for Hyperspectral Remote Sensing Data Classification
NASA Astrophysics Data System (ADS)
Wang, X. P.; Hu, Y.; Chen, J.
2018-04-01
Graph based semi-supervised classification method are widely used for hyperspectral image classification. We present a couple graph based label propagation method, which contains both the adjacency graph and the similar graph. We propose to construct the similar graph by using the similar probability, which utilize the label similarity among examples probably. The adjacency graph was utilized by a common manifold learning method, which has effective improve the classification accuracy of hyperspectral data. The experiments indicate that the couple graph Laplacian which unite both the adjacency graph and the similar graph, produce superior classification results than other manifold Learning based graph Laplacian and Sparse representation based graph Laplacian in label propagation framework.
Bocknek, Erika L; Hossain, Ziarat; Roggman, Lori
2014-01-01
Research on fathering and the father-child relationship has made substantial progress in the most recent 15 years since the last special issue of the Infant Mental Health Journal on fathers and young children. This special issue on fathers and young children contains a series of papers exemplifying this progress, including advances in methodology-more direct assessment and more observational measures-in addition to the increasing dynamic complexity of the conceptual models used to study fathers, the diversity of fathers studied, and the growth of programs to support early father involvement. In assessing the current state of the field, special attention is given to contributions made by the papers contained in this special issue, and two critical areas for continued progress are addressed: (1) methodological and measurement development that specifically address fathers and fathering relationships and (2) cross-cultural and ecologically valid research examining the diversity of models of fathering. © 2014 Michigan Association for Infant Mental Health.
Introduction to the Special Issue on Climate Ethics: Uncertainty, Values and Policy.
Roeser, Sabine
2017-10-01
Climate change is a pressing phenomenon with huge potential ethical, legal and social policy implications. Climate change gives rise to intricate moral and policy issues as it involves contested science, uncertainty and risk. In order to come to scientifically and morally justified, as well as feasible, policies, targeting climate change requires an interdisciplinary approach. This special issue will identify the main challenges that climate change poses from social, economic, methodological and ethical perspectives by focusing on the complex interrelations between uncertainty, values and policy in this context. This special issue brings together scholars from economics, social sciences and philosophy in order to address these challenges.
Multi-Centrality Graph Spectral Decompositions and Their Application to Cyber Intrusion Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pin-Yu; Choudhury, Sutanay; Hero, Alfred
Many modern datasets can be represented as graphs and hence spectral decompositions such as graph principal component analysis (PCA) can be useful. Distinct from previous graph decomposition approaches based on subspace projection of a single topological feature, e.g., the centered graph adjacency matrix (graph Laplacian), we propose spectral decomposition approaches to graph PCA and graph dictionary learning that integrate multiple features, including graph walk statistics, centrality measures and graph distances to reference nodes. In this paper we propose a new PCA method for single graph analysis, called multi-centrality graph PCA (MC-GPCA), and a new dictionary learning method for ensembles ofmore » graphs, called multi-centrality graph dictionary learning (MC-GDL), both based on spectral decomposition of multi-centrality matrices. As an application to cyber intrusion detection, MC-GPCA can be an effective indicator of anomalous connectivity pattern and MC-GDL can provide discriminative basis for attack classification.« less
Graphs, matrices, and the GraphBLAS: Seven good reasons
Kepner, Jeremy; Bader, David; Buluç, Aydın; ...
2015-01-01
The analysis of graphs has become increasingly important to a wide range of applications. Graph analysis presents a number of unique challenges in the areas of (1) software complexity, (2) data complexity, (3) security, (4) mathematical complexity, (5) theoretical analysis, (6) serial performance, and (7) parallel performance. Implementing graph algorithms using matrix-based approaches provides a number of promising solutions to these challenges. The GraphBLAS standard (istcbigdata.org/GraphBlas) is being developed to bring the potential of matrix based graph algorithms to the broadest possible audience. The GraphBLAS mathematically defines a core set of matrix-based graph operations that can be used to implementmore » a wide class of graph algorithms in a wide range of programming environments. This paper provides an introduction to the GraphBLAS and describes how the GraphBLAS can be used to address many of the challenges associated with analysis of graphs.« less
Adjusting protein graphs based on graph entropy.
Peng, Sheng-Lung; Tsay, Yu-Wei
2014-01-01
Measuring protein structural similarity attempts to establish a relationship of equivalence between polymer structures based on their conformations. In several recent studies, researchers have explored protein-graph remodeling, instead of looking a minimum superimposition for pairwise proteins. When graphs are used to represent structured objects, the problem of measuring object similarity become one of computing the similarity between graphs. Graph theory provides an alternative perspective as well as efficiency. Once a protein graph has been created, its structural stability must be verified. Therefore, a criterion is needed to determine if a protein graph can be used for structural comparison. In this paper, we propose a measurement for protein graph remodeling based on graph entropy. We extend the concept of graph entropy to determine whether a graph is suitable for representing a protein. The experimental results suggest that when applied, graph entropy helps a conformational on protein graph modeling. Furthermore, it indirectly contributes to protein structural comparison if a protein graph is solid.
Adjusting protein graphs based on graph entropy
2014-01-01
Measuring protein structural similarity attempts to establish a relationship of equivalence between polymer structures based on their conformations. In several recent studies, researchers have explored protein-graph remodeling, instead of looking a minimum superimposition for pairwise proteins. When graphs are used to represent structured objects, the problem of measuring object similarity become one of computing the similarity between graphs. Graph theory provides an alternative perspective as well as efficiency. Once a protein graph has been created, its structural stability must be verified. Therefore, a criterion is needed to determine if a protein graph can be used for structural comparison. In this paper, we propose a measurement for protein graph remodeling based on graph entropy. We extend the concept of graph entropy to determine whether a graph is suitable for representing a protein. The experimental results suggest that when applied, graph entropy helps a conformational on protein graph modeling. Furthermore, it indirectly contributes to protein structural comparison if a protein graph is solid. PMID:25474347
Special Issues for People with Aplastic Anemia
... Menu Donate Special Issues for People with Aplastic Anemia Because you have aplastic anemia , everyday events can ... bleeding, such as contact sports. Pregnancy and Aplastic Anemia Pregnancy is possible for women who have been ...
Overview: Clinical Identification of Sexually Abused Children.
ERIC Educational Resources Information Center
Corwin, David L.; Olafson, Erna
1993-01-01
This introduction to the special issue on clinical identification of sexually abused children reviews the history of the study of child sexual abuse and describes the 14 papers included in the special issue. (JDD)
NASA Astrophysics Data System (ADS)
2018-06-01
This special issue of the Journal of Atmospheric and Solar-Terrestrial Physics comprises papers dealing with investigation of the coupling phenomena in the neutral Atmosphere-Ionosphere System of the Earth. The core of the special issue is formed by the recent results presented during the 6th IAGA/ICMA/SCOSTEP Workshop on the Vertical Coupling in the Neutral Atmosphere-Ionosphere System held in Taipei, Taiwan, July 2016. Workshops are organized with a substantial support of the scientific international bodies, such as the International Association of Geomagnetism and Aeronomy (IAGA), International Commission for the Middle Atmosphere (ICMA) and Committee on Solar-Terrestrial Physics (SCOSTEP). The special issue includes also recent results of other members of the aeronomic research community. Hence it represents the state-of-art knowledge in the associated research fields.
Asian Creativity, Chapter One: Creativity across Three Chinese Societies
ERIC Educational Resources Information Center
Wu, Jing-Jyi; Albanese, Dale
2010-01-01
This commentary looks at the contributions and future research implications of the four articles in this Special Issue of "Thinking Skills and Creativity" to the fields of creativity and creativity education, both in culture-specific and culture-general terms. The articles included in this Special Issue draw attention to issues of…
Conceptual Metaphor and Embodied Cognition in Science Learning: Introduction to Special Issue
ERIC Educational Resources Information Center
Amin, Tamer G.; Jeppsson, Fredrik; Haglund, Jesper
2015-01-01
This special issue of "International Journal of Science Education" is based on the theme "Conceptual Metaphor and Embodied Cognition in Science Learning." The idea for this issue grew out of a symposium organized on this topic at the conference of the European Science Education Research Association (ESERA) in September 2013.…
Responding to Policy Challenges with Research Evidence: Introduction to Special Issue
ERIC Educational Resources Information Center
Aydarova, Elena; Berliner, David C.
2018-01-01
In a policy climate where various actors claim to have solutions for the enduring challenges of teacher education, policy deliberations sideline certain voices and omit important perspectives. This special issue brings together scholars who attend to the voices, perspectives, and issues overlooked by teacher education policy debates dominated by…
Researching Language and Neoliberalism
ERIC Educational Resources Information Center
Shin, Hyunjung; Park, Joseph Sung-Yul
2016-01-01
This special issue aims to develop a research agenda that brings language to the centre of our inquiry and critique of neoliberalism. Based on empirical case studies from across diverse contexts in Europe, North America, and East Asia, contributors to this special issue address two issues: (1) What can be said about the nature of neoliberalism…
ERIC Educational Resources Information Center
Aleman, Steven R.
This paper examines issues concerning the eligibility of children with attention deficit disorder (ADD) for special education and related services under the Individuals with Disabilities Education Act (IDEA). A policy memorandum was issued by the Department of Education in September 1991, identifying those circumstances under which such children…
Introduction to special issue: moving forward in pediatric neuropsychology.
Daly, Brian P; Giovannetti, Tania; Zabel, T Andrew; Chute, Douglas L
2011-08-01
This special issue of The Clinical Neuropsychologist focuses on advances in the emerging subspecialty of pediatric neuropsychology. The national and international contributions in this issue cover a range of key clinical, research, training, and professional issues specific to pediatric neuropsychology. The genesis for this project developed out of a series of talks at the Philadelphia Pediatric Neuropsychology Symposium in 2010, hosted by the Stein Family Fellow, the Department of Psychology of the College of Arts and Sciences at Drexel University, and the Philadelphia Neuropsychology Society. Articles that explore clinical practice issue focus on the assessment of special medical populations with congenital and/or acquired central nervous system insults. Research articles investigate the core features of developmental conditions, the use of technology in neuropsychological research studies, and large sample size genomic, neuropsychological, and imaging studies of under-represented populations. The final series of articles examine new considerations in training, advocacy, and subspecialty board certification that have emerged in pediatric neuropsychology. This introductory article provides an overview of the articles in this special issue and concluding thoughts about the future of pediatric neuropsychology.
ERIC Educational Resources Information Center
Holdheide, Lynn
2013-01-01
This Special Issues Brief from the Center on Great Teachers and Leaders (GTL Center) offers recommendations for the design and implementation of educator evaluation systems that support the academic and social growth of students with disabilities. Teachers of students with disabilities work closely with specialized instructional support personnel…
ERIC Educational Resources Information Center
Bakken, Jeffrey P., Ed.; Obiakor, Festus E., Ed.; Rotatori, Anthony F., Ed.
2012-01-01
Volumes 22 and 23 of the "Advances in Special Education" address the current top perspectives and issues in the field of emotional and behavioral disorders (EBD) by providing chapters written by active researchers and scholarly university professors who specialize in this area. Volume 22 first delineates legal issues, themes, and dimensions…
Kumar, Abhishek; Clement, Shibu; Agrawal, V P
2010-07-15
An attempt is made to address a few ecological and environment issues by developing different structural models for effluent treatment system for electroplating. The effluent treatment system is defined with the help of different subsystems contributing to waste minimization. Hierarchical tree and block diagram showing all possible interactions among subsystems are proposed. These non-mathematical diagrams are converted into mathematical models for design improvement, analysis, comparison, storage retrieval and commercially off-the-shelf purchases of different subsystems. This is achieved by developing graph theoretic model, matrix models and variable permanent function model. Analysis is carried out by permanent function, hierarchical tree and block diagram methods. Storage and retrieval is done using matrix models. The methodology is illustrated with the help of an example. Benefits to the electroplaters/end user are identified. 2010 Elsevier B.V. All rights reserved.
Shaban-Nejad, Arash; Haarslev, Volker
2015-01-01
The issue of ontology evolution and change management is inadequately addressed by available tools and algorithms, mostly due to the lack of suitable knowledge representation formalisms to deal with temporal abstract notations and the overreliance on human factors. Also most of the current approaches have been focused on changes within the internal structure of ontologies and interactions with other existing ontologies have been widely neglected. In our research, after revealing and classifying some of the common alterations in a number of popular biomedical ontologies, we present a novel agent-based framework, Represent, Legitimate and Reproduce (RLR), to semi-automatically manage the evolution of bio-ontologies, with emphasis on the FungalWeb Ontology, with minimal human intervention. RLR assists and guides ontology engineers through the change management process in general and aids in tracking and representing the changes, particularly through the use of category theory and hierarchical graph transformation.
Automating Phase Change Lines and Their Labels Using Microsoft Excel(R).
Deochand, Neil
2017-09-01
Many researchers have rallied against drawn in graphical elements and offered ways to avoid them, especially regarding the insertion of phase change lines (Deochand, Costello, & Fuqua, 2015; Dubuque, 2015; Vanselow & Bourret, 2012). However, few have offered a solution to automating the phase labels, which are often utilized in behavior analytic graphical displays (Deochand et al., 2015). Despite the fact that Microsoft Excel® is extensively utilized by behavior analysts, solutions to resolve issues in our graphing practices are not always apparent or user-friendly. Considering the insertion of phase change lines and their labels constitute a repetitious and laborious endeavor, any minimization in the steps to accomplish these graphical elements could offer substantial time-savings to the field. The purpose of this report is to provide an updated way (and templates in the supplemental materials) to add phase change lines with their respective labels, which stay embedded to the graph when they are moved or updated.
LQR-Based Optimal Distributed Cooperative Design for Linear Discrete-Time Multiagent Systems.
Zhang, Huaguang; Feng, Tao; Liang, Hongjing; Luo, Yanhong
2017-03-01
In this paper, a novel linear quadratic regulator (LQR)-based optimal distributed cooperative design method is developed for synchronization control of general linear discrete-time multiagent systems on a fixed, directed graph. Sufficient conditions are derived for synchronization, which restrict the graph eigenvalues into a bounded circular region in the complex plane. The synchronizing speed issue is also considered, and it turns out that the synchronizing region reduces as the synchronizing speed becomes faster. To obtain more desirable synchronizing capacity, the weighting matrices are selected by sufficiently utilizing the guaranteed gain margin of the optimal regulators. Based on the developed LQR-based cooperative design framework, an approximate dynamic programming technique is successfully introduced to overcome the (partially or completely) model-free cooperative design for linear multiagent systems. Finally, two numerical examples are given to illustrate the effectiveness of the proposed design methods.
Constructing Temporally Extended Actions through Incremental Community Detection
Li, Ge
2018-01-01
Hierarchical reinforcement learning works on temporally extended actions or skills to facilitate learning. How to automatically form such abstraction is challenging, and many efforts tackle this issue in the options framework. While various approaches exist to construct options from different perspectives, few of them concentrate on options' adaptability during learning. This paper presents an algorithm to create options and enhance their quality online. Both aspects operate on detected communities of the learning environment's state transition graph. We first construct options from initial samples as the basis of online learning. Then a rule-based community revision algorithm is proposed to update graph partitions, based on which existing options can be continuously tuned. Experimental results in two problems indicate that options from initial samples may perform poorly in more complex environments, and our presented strategy can effectively improve options and get better results compared with flat reinforcement learning. PMID:29849543
Real-time path planning in dynamic virtual environments using multiagent navigation graphs.
Sud, Avneesh; Andersen, Erik; Curtis, Sean; Lin, Ming C; Manocha, Dinesh
2008-01-01
We present a novel approach for efficient path planning and navigation of multiple virtual agents in complex dynamic scenes. We introduce a new data structure, Multi-agent Navigation Graph (MaNG), which is constructed using first- and second-order Voronoi diagrams. The MaNG is used to perform route planning and proximity computations for each agent in real time. Moreover, we use the path information and proximity relationships for local dynamics computation of each agent by extending a social force model [Helbing05]. We compute the MaNG using graphics hardware and present culling techniques to accelerate the computation. We also address undersampling issues and present techniques to improve the accuracy of our algorithm. Our algorithm is used for real-time multi-agent planning in pursuit-evasion, terrain exploration and crowd simulation scenarios consisting of hundreds of moving agents, each with a distinct goal.
NASA Astrophysics Data System (ADS)
Bender, Carl M.; Fring, Andreas; Guenther, Uwe; Jones, Hugh F.
2012-01-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to quantum physics with non-Hermitian operators. The main motivation behind this special issue is to gather together recent results, developments and open problems in this rapidly evolving field of research in a single comprehensive volume. We expect that such a special issue will become a valuable reference for the broad scientific community working in mathematical and theoretical physics. The issue will be open to all contributions containing new results on non-Hermitian theories which are explicitly PT-symmetric and/or pseudo-Hermitian or quasi-Hermitian. The main novelties in the past years in this area have been many experimental observations, realizations, and applications of PT symmetric Hamiltonians in optics and microwave cavities. We especially invite contributions on the theoretical interpretations of these recent PT-symmetric experiments and on theoretical proposals for new experiments. Editorial policy The Guest Editors for this issue are Carl Bender, Andreas Fring, Uwe Guenther and Hugh Jones. The areas and topics for this issue include, but are not limited to: spectral problems novel properties of complex optical potentials PT-symmetry related threshold lasers and spectral singularities construction of metric operators scattering theory supersymmetric theories Lie algebraic and Krein-space methods random matrix models classical and semi-classical models exceptional points in model systems operator theoretic approaches microwave cavities aspects of integrability and exact solvability field theories with indefinite metric All contributions will be refereed and processed according to the usual procedure of the journal. Papers should report original and significant research that has not already been published. Guidelines for preparation of contributions The deadline for contributed papers will be 31 March 2012. This deadline will allow the special issue to appear before the end of November 2012. There is a nominal page limit of 15 printed pages per contribution (invited review papers can be longer). For papers exceeding this limit, the Guest Editors reserve the right to request a reduction in length. Further advice on publishing your work in Journal of Physics A: Mathematical and Theoretical may be found at iopscience.iop.org/jphysa. Contributions to the special issue should be submitted by web upload via authors.iop.org/, or by email to jphysa@iop.org, quoting 'JPhysA Special issue on quantum physics with non-Hermitian operators'. Submissions should ideally be in standard LaTeX form. Please see the website for further information on electronic submissions. All contributions should be accompanied by a read-me file or covering letter giving the postal and e-mail addresses for correspondence. The Publishing Office should be notified of any subsequent change of address. The special issue will be published in the print and online versions of the journal.
NASA Astrophysics Data System (ADS)
Bender, Carl M.; Fring, Andreas; Guenther, Uwe; Jones, Hugh F.
2012-01-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to quantum physics with non-Hermitian operators. The main motivation behind this special issue is to gather together recent results, developments and open problems in this rapidly evolving field of research in a single comprehensive volume. We expect that such a special issue will become a valuable reference for the broad scientific community working in mathematical and theoretical physics. The issue will be open to all contributions containing new results on non-Hermitian theories which are explicitly PT-symmetric and/or pseudo-Hermitian or quasi-Hermitian. The main novelties in the past years in this area have been many experimental observations, realizations, and applications of PT symmetric Hamiltonians in optics and microwave cavities. We especially invite contributions on the theoretical interpretations of these recent PT-symmetric experiments and on theoretical proposals for new experiments. Editorial policy The Guest Editors for this issue are Carl Bender, Andreas Fring, Uwe Guenther and Hugh Jones. The areas and topics for this issue include, but are not limited to: spectral problems novel properties of complex optical potentials PT-symmetry related threshold lasers and spectral singularities construction of metric operators scattering theory supersymmetric theories Lie algebraic and Krein-space methods random matrix models classical and semi-classical models exceptional points in model systems operator theoretic approaches microwave cavities aspects of integrability and exact solvability field theories with indefinite metric All contributions will be refereed and processed according to the usual procedure of the journal. Papers should report original and significant research that has not already been published. Guidelines for preparation of contributions The deadline for contributed papers will be 31 March 2012. This deadline will allow the special issue to appear before the end of November 2012. There is a nominal page limit of 15 printed pages per contribution (invited review papers can be longer). For papers exceeding this limit, the Guest Editors reserve the right to request a reduction in length. Further advice on publishing your work in Journal of Physics A: Mathematical and Theoretical may be found at iopscience.iop.org/jphysa. Contributions to the special issue should be submitted by web upload via authors.iop.org, or by email to jphysa@iop.org, quoting 'JPhysA Special issue on quantum physics with non-Hermitian operators'. Submissions should ideally be in standard LaTeX form. Please see the website for further information on electronic submissions. All contributions should be accompanied by a read-me file or covering letter giving the postal and e-mail addresses for correspondence. The Publishing Office should be notified of any subsequent change of address. The special issue will be published in the print and online versions of the journal.
Characterizing Containment and Related Classes of Graphs,
1985-01-01
Math . to appear. [G2] Golumbic,. Martin C., D. Rotem and J. Urrutia. "Comparability graphs and intersection graphs" Discrete Math . 43 (1983) 37-40. [G3...intersection classes of graphs" Discrete Math . to appear. [S2] Scheinerman, Edward R. Intersection Classes and Multiple Intersection Parameters of Graphs...graphs and of interval graphs" Canad. Jour. of blath. 16 (1964) 539-548. [G1] Golumbic, Martin C. "Containment graphs: and. intersection graphs" Discrete
Special issue : pedestrian injuries:
DOT National Transportation Integrated Search
1999-03-13
This special issue focuses on effective ways to reduce pedestrian deaths and injuries. Pedestrians represent the second largest group of motor vehicle deaths, second only to passenger vehicle occupant deaths. This study examines some of the most effe...
Foreword to the special issue on intercalibration of satellite instruments
Chander, Gyanesh; Hewison, T.J.; Fox, Nigel; Wu, Xiangqian; Xiong, Xiaoxiong; Blackwell, William J.
2013-01-01
This forty papers in this special issue focus on how intercalibration and comparison between sensors can provide an effective and convenient means of verifying their postlaunch performance and correcting their measurement differences.
A Collection of Features for Semantic Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliassi-Rad, T; Fodor, I K; Gallagher, B
2007-05-02
Semantic graphs are commonly used to represent data from one or more data sources. Such graphs extend traditional graphs by imposing types on both nodes and links. This type information defines permissible links among specified nodes and can be represented as a graph commonly referred to as an ontology or schema graph. Figure 1 depicts an ontology graph for data from National Association of Securities Dealers. Each node type and link type may also have a list of attributes. To capture the increased complexity of semantic graphs, concepts derived for standard graphs have to be extended. This document explains brieflymore » features commonly used to characterize graphs, and their extensions to semantic graphs. This document is divided into two sections. Section 2 contains the feature descriptions for static graphs. Section 3 extends the features for semantic graphs that vary over time.« less
Hegarty, Peter; Lemieux, Anthony F; McQueen, Grant
2010-03-01
Graphs seem to connote facts more than words or tables do. Consequently, they seem unlikely places to spot implicit sexism at work. Yet, in 6 studies (N = 741), women and men constructed (Study 1) and recalled (Study 2) gender difference graphs with men's data first, and graphed powerful groups (Study 3) and individuals (Study 4) ahead of weaker ones. Participants who interpreted graph order as evidence of author "bias" inferred that the author graphed his or her own gender group first (Study 5). Women's, but not men's, preferences to graph men first were mitigated when participants graphed a difference between themselves and an opposite-sex friend prior to graphing gender differences (Study 6). Graph production and comprehension are affected by beliefs and suppositions about the groups represented in graphs to a greater degree than cognitive models of graph comprehension or realist models of scientific thinking have yet acknowledged.
Wireless Sensor Networks for High Fidelity Sampling
2007-07-20
Transmission Schedule . . . . . . . . . . 156 8.3 CSMA versus TDMA . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 8.4 Practical Issues...goes into sleep mode when no job is running. Let W be the wakeup time; then the peak at 0 moves to W . In fact the entire graph can be moved to the left...tio n Immediate Context Switching Wakeup from Sleep Context Switching after Finishing Atomic Section Figure 2.9. Histogram of Jitter at 5kHz Sampling
NASA Astrophysics Data System (ADS)
Mackaness, William; Duchateau, Rica; Cross, Jamie
2018-05-01
Land registration is important in land tenure security and often resolves land-related issues. Volunteered geographic information is a cheap and quick alternative to formal and traditional approaches to land registration. This research investigates the extent to which this tool is meaningful for land registration, with the Scottish crofting com- munity as a case study. CroftCappture was developed to record points along boundaries and save geotagged photo- graphs and descriptions. The project raised interesting questions over usability, functionality and accuracy, as well issues of privacy, crofting practices, digital competency, and highlighted the fractal nature of the digital divide.
Use of graph algorithms in the processing and analysis of images with focus on the biomedical data.
Zdimalova, M; Roznovjak, R; Weismann, P; El Falougy, H; Kubikova, E
2017-01-01
Image segmentation is a known problem in the field of image processing. A great number of methods based on different approaches to this issue was created. One of these approaches utilizes the findings of the graph theory. Our work focuses on segmentation using shortest paths in a graph. Specifically, we deal with methods of "Intelligent Scissors," which use Dijkstra's algorithm to find the shortest paths. We created a new software in Microsoft Visual Studio 2013 integrated development environment Visual C++ in the language C++/CLI. We created a format application with a graphical users development environment for system Windows, with using the platform .Net (version 4.5). The program was used for handling and processing the original medical data. The major disadvantage of the method of "Intelligent Scissors" is the computational time length of Dijkstra's algorithm. However, after the implementation of a more efficient priority queue, this problem could be alleviated. The main advantage of this method we see in training that enables to adapt to a particular kind of edge, which we need to segment. The user involvement has a significant influence on the process of segmentation, which enormously aids to achieve high-quality results (Fig. 7, Ref. 13).
Special issue dedicated to the 70th birthday of Glenn F. Webb. Preface.
Hinow, Peter; Magal, Pierre; Ruan, Shigui
2015-08-01
This special issue is dedicated to the 70th birthday of Glenn F. Webb. The topics of the 12 articles appearing in this special issue include evolutionary dynamics of population growth, spatio-temporal dynamics in reaction-diffusion biological models, transmission dynamics of infectious diseases, modeling of antibiotic-resistant bacteria in hospitals, analysis of Prion models, age-structured models in ecology and epidemiology, modeling of immune response to infections, modeling of cancer growth, etc. These topics partially represent the broad areas of Glenn's research interest.
Special Issue of Solid-State Electronics, dedicated to EUROSOI-ULIS 2016
NASA Astrophysics Data System (ADS)
Sverdlov, Viktor; Selberherr, Siegfried
2017-02-01
The current special issue of Solid-State Electronics includes 29 extended papers presented at the 2016 Second Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS 2016) held in Wien, Austria, on January 25-27, 2016. The papers entering to the special issue have been selected by the EUROSOI-ULIS 2016 Technical Program Committee based on the excellence of abstracts submitted and presentations delivered at the conference. In order to comply with the high standards of Solid-State Electronics the manuscripts went through the standard reviewing procedure.
Aerodynamic design trends for commercial aircraft
NASA Technical Reports Server (NTRS)
Hilbig, R.; Koerner, H.
1986-01-01
Recent research on advanced-configuration commercial aircraft at DFVLR is surveyed, with a focus on aerodynamic approaches to improved performance. Topics examined include transonic wings with variable camber or shock/boundary-layer control, wings with reduced friction drag or laminarized flow, prop-fan propulsion, and unusual configurations or wing profiles. Drawings, diagrams, and graphs of predicted performance are provided, and the need for extensive development efforts using powerful computer facilities, high-speed and low-speed wind tunnels, and flight tests of models (mounted on specially designed carrier aircraft) is indicated.
Exponential energy growth due to slow parameter oscillations in quantum mechanical systems.
Turaev, Dmitry
2016-05-01
It is shown that a periodic emergence and destruction of an additional quantum number leads to an exponential growth of energy of a quantum mechanical system subjected to a slow periodic variation of parameters. The main example is given by systems (e.g., quantum billiards and quantum graphs) with periodically divided configuration space. In special cases, the process can also lead to a long period of cooling that precedes the acceleration, and to the desertion of the states with a particular value of the quantum number.
A model for dynamic allocation of human attention among multiple tasks
NASA Technical Reports Server (NTRS)
Sheridan, T. B.; Tulga, M. K.
1978-01-01
The problem of multi-task attention allocation with special reference to aircraft piloting is discussed with the experimental paradigm used to characterize this situation and the experimental results obtained in the first phase of the research. A qualitative description of an approach to mathematical modeling, and some results obtained with it are also presented to indicate what aspects of the model are most promising. Two appendices are given which (1) discuss the model in relation to graph theory and optimization and (2) specify the optimization algorithm of the model.
The properties of Q-deformed hyperbolic and trigonometric functions in quantum deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deta, U. A., E-mail: utamaalan@yahoo.co.id, E-mail: utamadeta@unesa.ac.id; Suparmi
2015-09-30
Quantum deformation has been studied due to its relation with applications in nuclear physics, conformal field theory, and statistical-quantum theory. The q-deformation of hyperbolic function was introduced by Arai. The application of q-deformed functions has been widely used in quantum mechanics. The properties of this two kinds of system explained in this paper including their derivative. The graph of q-deformed functions presented using Matlab. The special case is given for modified Poschl-Teller plus q-deformed Scarf II trigonometry potentials.
ERIC Educational Resources Information Center
Yoder, Sharon K.
This book discusses four kinds of graphs that are taught in mathematics at the middle school level: pictographs, bar graphs, line graphs, and circle graphs. The chapters on each of these types of graphs contain information such as starting, scaling, drawing, labeling, and finishing the graphs using "LogoWriter." The final chapter of the…
Will These Trees "Ever" Bear Fruit? A Response to the Special Issue on Student Engagement
ERIC Educational Resources Information Center
McCormick, Alexander C.; McClenney, Kay
2012-01-01
The authors articulate objections to the organization of the recent special issue on student engagement and respond in detail to three criticisms leveled in that issue. Situating their response relative to longstanding calls to make research more relevant to practice, they argue that the validity critique inappropriately focuses on criterion…
ERIC Educational Resources Information Center
Bruininks, Robert H.; And Others
This paper examines issues in designing post-school follow-up studies in special education. The examination focuses on survey research techniques, which are widely used in the investigation of post-school adjustment of former students with handicaps. In special education, survey research studies are used commonly to address many important…
ERIC Educational Resources Information Center
Cobb, Cam
2015-01-01
What happens when children are asked to give up their right to special education in order to access a French immersion program? By examining one mother's efforts to secure gifted support in a French immersion program, this critical inquiry offers a parental perspective of the special education issues of accessibility and inclusion. The two…
ERIC Educational Resources Information Center
Bakken, Jeffrey P., Ed.; Obiakor, Festus E., Ed.; Rotatori, Anthony F., Ed.
2012-01-01
Volumes 22 and 23 of "Advances in Special Education" address the current top perspectives and issues in the field of EBD by providing chapters written by active researchers and scholarly university professors who specialize in this area. Volume 22 first delineates legal issues, themes, and dimensions related to the historical development of the…
Islamic Education, Possibilities, Opportunities and Tensions: Introduction to the Special Issue
ERIC Educational Resources Information Center
Waghid, Yusef; Davids, Nuraan
2014-01-01
If Islam continues to evoke skepticism, as it has done most intensely since 9/11, then it stands to reason that its tenets and education are viewed with equal mistrust, and as will be highlighted in this special issue, equal misunderstanding. The intention of this special edition is neither to counter the accusations Islam stands accused of, nor…
Materials & Engineering: Propelling Innovation MRS Bulletin Special Issue Session
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Gopal
Materials enable engineering; and, engineering in turn depends on materials to transform design concepts and equations into physical entities. This relationship continues to grow with expanding societal demand for new products and processes. MRS Bulletin, a publication of the Materials Research Society (MRS) and Cambridge University Press, planned a special issue for December 2015 on Materials and Engineering: Propelling Innovation. This special issue of MRS Bulletin captured the unique relationship between materials and engineering, which are closely intertwined. A special half day session at the 2015 MRS Fall Meeting in Boston captured this discussion through presentations by high level expertsmore » followed by a panel discussion on what it takes to translate materials discoveries into products to benefit society. The Special Session included presentations by experts who are practitioners in materials as well as engineering applications, followed by a panel discussion. Participants discussed state-of-the-art in materials applications in engineering, as well as how engineering needs have pushed materials developments, as also reflected in the 20 or so articles published in the special issue of MRS Bulletin. As expected, the discussions spanned the broad spectrum of materials and provided very strong interdisciplinary interactions and discussions by participants and presenters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fangyan; Zhang, Song; Chung Wong, Pak
Effectively visualizing large graphs and capturing the statistical properties are two challenging tasks. To aid in these two tasks, many sampling approaches for graph simplification have been proposed, falling into three categories: node sampling, edge sampling, and traversal-based sampling. It is still unknown which approach is the best. We evaluate commonly used graph sampling methods through a combined visual and statistical comparison of graphs sampled at various rates. We conduct our evaluation on three graph models: random graphs, small-world graphs, and scale-free graphs. Initial results indicate that the effectiveness of a sampling method is dependent on the graph model, themore » size of the graph, and the desired statistical property. This benchmark study can be used as a guideline in choosing the appropriate method for a particular graph sampling task, and the results presented can be incorporated into graph visualization and analysis tools.« less
Special issue : neck injuries and rear-end crashes
DOT National Transportation Integrated Search
1999-05-22
Research has indicated that head restraints could prevent whiplash injuries in rear-end crashes, but so far the existing head restraints do not satisfactorily prevent whiplash injuries. This special issue of 'Status Report' first provides a snapshot ...
Introduction to the special issue: Thermodynamic aspects of cryobiology.
Elliott, Janet A W
2010-02-01
This brief paper introduces the subject of thermodynamics and the papers of the special issue on thermodynamic aspects of cryobiology. Thermodynamic terminology is defined for the non-specialist. Copyright 2009 Elsevier Inc. All rights reserved.
Special Issue of Teaching Ideas.
ERIC Educational Resources Information Center
Health Education (Washington D.C.), 1986
1986-01-01
This special issue contains teaching strategies and suggestions for health-related activities at all educational levels. A few of the topics addressed by the 21 articles are heart disease, testicular cancer, hospital stress, family life, and sexual responsibility. (MT)
Stahl, Joachim S; Wang, Song
2008-03-01
Many natural and man-made structures have a boundary that shows a certain level of bilateral symmetry, a property that plays an important role in both human and computer vision. In this paper, we present a new grouping method for detecting closed boundaries with symmetry. We first construct a new type of grouping token in the form of symmetric trapezoids by pairing line segments detected from the image. A closed boundary can then be achieved by connecting some trapezoids with a sequence of gap-filling quadrilaterals. For such a closed boundary, we define a unified grouping cost function in a ratio form: the numerator reflects the boundary information of proximity and symmetry and the denominator reflects the region information of the enclosed area. The introduction of the region-area information in the denominator is able to avoid a bias toward shorter boundaries. We then develop a new graph model to represent the grouping tokens. In this new graph model, the grouping cost function can be encoded by carefully designed edge weights and the desired optimal boundary corresponds to a special cycle with a minimum ratio-form cost. We finally show that such a cycle can be found in polynomial time using a previous graph algorithm. We implement this symmetry-grouping method and test it on a set of synthetic data and real images. The performance is compared to two previous grouping methods that do not consider symmetry in their grouping cost functions.
NASA Astrophysics Data System (ADS)
Mishra, C.; Samantaray, A. K.; Chakraborty, G.
2016-09-01
Vibration analysis for diagnosis of faults in rolling element bearings is complicated when the rotor speed is variable or slow. In the former case, the time interval between the fault-induced impact responses in the vibration signal are non-uniform and the signal strength is variable. In the latter case, the fault-induced impact response strength is weak and generally gets buried in the noise, i.e. noise dominates the signal. This article proposes a diagnosis scheme based on a combination of a few signal processing techniques. The proposed scheme initially represents the vibration signal in terms of uniformly resampled angular position of the rotor shaft by using the interpolated instantaneous angular position measurements. Thereafter, intrinsic mode functions (IMFs) are generated through empirical mode decomposition (EMD) of resampled vibration signal which is followed by thresholding of IMFs and signal reconstruction to de-noise the signal and envelope order tracking to diagnose the faults. Data for validating the proposed diagnosis scheme are initially generated from a multi-body simulation model of rolling element bearing which is developed using bond graph approach. This bond graph model includes the ball and cage dynamics, localized fault geometry, contact mechanics, rotor unbalance, and friction and slip effects. The diagnosis scheme is finally validated with experiments performed with the help of a machine fault simulator (MFS) system. Some fault scenarios which could not be experimentally recreated are then generated through simulations and analyzed through the developed diagnosis scheme.
Special Issue: "Molecules against Alzheimer".
Decker, Michael; Muñoz-Torrero, Diego
2016-12-16
This Special Issue, entitled "Molecules against Alzheimer", gathers a number of original articles, short communications, and review articles on recent research efforts toward the development of novel drug candidates, diagnostic agents and therapeutic approaches for Alzheimer's disease (AD), the most prevalent neurodegenerative disorder and a leading cause of death worldwide. This Special Issue contains many interesting examples describing the design, synthesis, and pharmacological profiling of novel compounds that hit one or several key biological targets, such as cholinesterases, β-amyloid formation or aggregation, monoamine oxidase B, oxidative stress, biometal dyshomeostasis, mitochondrial dysfunction, serotonin and/or melatonin systems, the Wnt/β-catenin pathway, sigma receptors, nicotinamide phosphoribosyltransferase, or nuclear erythroid 2-related factor. The development of novel AD diagnostic agents based on tau protein imaging and the use of lithium or intranasal insulin for the prevention or the symptomatic treatment of AD is also covered in some articles of the Special Issue.
Scientific uncertainty in media content: Introduction to this special issue.
Peters, Hans Peter; Dunwoody, Sharon
2016-11-01
This introduction sets the stage for the special issue on the public communication of scientific uncertainty that follows by sketching the wider landscape of issues related to the communication of uncertainty and showing how the individual contributions fit into that landscape. The first part of the introduction discusses the creation of media content as a process involving journalists, scientific sources, stakeholders, and the responsive audience. The second part then provides an overview of the perception of scientific uncertainty presented by the media and the consequences for the recipients' own assessments of uncertainty. Finally, we briefly describe the six research articles included in this special issue. © The Author(s) 2016.
Tripartite community structure in social bookmarking data
NASA Astrophysics Data System (ADS)
Neubauer, Nicolas; Obermayer, Klaus
2011-12-01
Community detection is a branch of network analysis concerned with identifying strongly connected subnetworks. Social bookmarking sites aggregate datasets of often hundreds of millions of triples (document, user, and tag), which, when interpreted as edges of a graph, give rise to special networks called 3-partite, 3-uniform hypergraphs. We identify challenges and opportunities of generalizing community detection and in particular modularity optimization to these structures. Two methods for community detection are introduced that preserve the hypergraph's special structure to different degrees. Their performance is compared on synthetic datasets, showing the benefits of structure preservation. Furthermore, a tool for interactive exploration of the community detection results is introduced and applied to examples from real datasets. We find additional evidence for the importance of structure preservation and, more generally, demonstrate how tripartite community detection can help understand the structure of social bookmarking data.
An algorithm for finding a similar subgraph of all Hamiltonian cycles
NASA Astrophysics Data System (ADS)
Wafdan, R.; Ihsan, M.; Suhaimi, D.
2018-01-01
This paper discusses an algorithm to find a similar subgraph called findSimSubG algorithm. A similar subgraph is a subgraph with a maximum number of edges, contains no isolated vertex and is contained in every Hamiltonian cycle of a Hamiltonian Graph. The algorithm runs only on Hamiltonian graphs with at least two Hamiltonian cycles. The algorithm works by examining whether the initial subgraph of the first Hamiltonian cycle is a subgraph of comparison graphs. If the initial subgraph is not in comparison graphs, the algorithm will remove edges and vertices of the initial subgraph that are not in comparison graphs. There are two main processes in the algorithm, changing Hamiltonian cycle into a cycle graph and removing edges and vertices of the initial subgraph that are not in comparison graphs. The findSimSubG algorithm can find the similar subgraph without using backtracking method. The similar subgraph cannot be found on certain graphs, such as an n-antiprism graph, complete bipartite graph, complete graph, 2n-crossed prism graph, n-crown graph, n-möbius ladder, prism graph, and wheel graph. The complexity of this algorithm is O(m|V|), where m is the number of Hamiltonian cycles and |V| is the number of vertices of a Hamiltonian graph.
Mathematical foundations of the GraphBLAS
Kepner, Jeremy; Aaltonen, Peter; Bader, David; ...
2016-12-01
The GraphBLAS standard (GraphBlas.org) is being developed to bring the potential of matrix-based graph algorithms to the broadest possible audience. Mathematically, the GraphBLAS defines a core set of matrix-based graph operations that can be used to implement a wide class of graph algorithms in a wide range of programming environments. This study provides an introduction to the mathematics of the GraphBLAS. Graphs represent connections between vertices with edges. Matrices can represent a wide range of graphs using adjacency matrices or incidence matrices. Adjacency matrices are often easier to analyze while incidence matrices are often better for representing data. Fortunately, themore » two are easily connected by matrix multiplication. A key feature of matrix mathematics is that a very small number of matrix operations can be used to manipulate a very wide range of graphs. This composability of a small number of operations is the foundation of the GraphBLAS. A standard such as the GraphBLAS can only be effective if it has low performance overhead. Finally, performance measurements of prototype GraphBLAS implementations indicate that the overhead is low.« less
1990-01-09
data structures can easily be presented to the user interface. An emphasis of the Graph Browser was the realization of graph views and graph animation ... animation of the graph. Anima- tion of the graph includes changing node shapes, changing node and arc colors, changing node and arc text, and making...many graphs tend to be tree-like. Animtion of a graph is a useful feature. One of the primary goals of GMB was to support animated graphs. For animation
Introduction to This Special Issue on Geostatistics and Geospatial Techniques in Remote Sensing
NASA Technical Reports Server (NTRS)
Atkinson, Peter; Quattrochi, Dale A.; Goodman, H. Michael (Technical Monitor)
2000-01-01
The germination of this special Computers & Geosciences (C&G) issue began at the Royal Geographical Society (with the Institute of British Geographers) (RGS-IBG) annual meeting in January 1997 held at the University of Exeter, UK. The snow and cold of the English winter were tempered greatly by warm and cordial discussion of how to stimulate and enhance cooperation on geostatistical and geospatial research in remote sensing 'across the big pond' between UK and US researchers. It was decided that one way forward would be to hold parallel sessions in 1998 on geostatistical and geospatial research in remote sensing at appropriate venues in both the UK and the US. Selected papers given at these sessions would be published as special issues of C&G on the UK side and Photogrammetric Engineering and Remote Sensing (PE&RS) on the US side. These issues would highlight the commonality in research on geostatistical and geospatial research in remote sensing on both sides of the Atlantic Ocean. As a consequence, a session on "Geostatistics and Geospatial Techniques for Remote Sensing of Land Surface Processes" was held at the RGS-IBG annual meeting in Guildford, Surrey, UK in January 1998, organized by the Modeling and Advanced Techniques Special Interest Group (MAT SIG) of the Remote Sensing Society (RSS). A similar session was held at the Association of American Geographers (AAG) annual meeting in Boston, Massachusetts in March 1998, sponsored by the AAG's Remote Sensing Specialty Group (RSSG). The 10 papers that make up this issue of C&G, comprise 7 papers from the UK and 3 papers from the LIS. We are both co-editors of each of the journal special issues, with the lead editor of each journal issue being from their respective side of the Atlantic. The special issue of PE&RS (vol. 65) that constitutes the other half of this co-edited journal series was published in early 1999, comprising 6 papers by US authors. We are indebted to the International Association for Mathematical Geology for allowing us to use C&G as a vehicle to convey how geostatistics and geospatial techniques can be used to analyze remote sensing and other types of spatial data. We see this special issue of C&G. and its complementary issue of PE&RS. as a testament to the vitality and interest in the application of geostatistical and geospatial techniques in remote sensing. We also see these special journal issues as the beginning of a fruitful. and hopefully long-term relationship, between American and British geographers and other researchers interested in geostatistical and geospatial techniques applied to remote sensing and other spatial data.
Special issue : transport in a post-carbon society
DOT National Transportation Integrated Search
2009-04-01
This special issue of World Transport Policy & Practice is an outcome of the conference Planning for the Carbon Neutral World: Challenges for Cities and Regions, held 15-18 May 2008 in Salzburg, Austria. The conference, organised by SCUPAD Salzbu...
Preface of the special issue quantum foundations: information approach
2016-01-01
This special issue is based on the contributions of a group of top experts in quantum foundations and quantum information and probability. It enlightens a number of interpretational, mathematical and experimental problems of quantum theory. PMID:27091161
Special Issue on Creativity at Work.
ERIC Educational Resources Information Center
Donnelly, Brian; And Others
1994-01-01
Special issue includes "Creativity at the Workplace" (Donnelly); "Creativity Revisited" (Iandoli); interviews with 16 people who work in or teach industrial engineering, software, and graphic design; "On Creativity and Schooling" (Coppola, Iandoli); and "End Notes: What I Learned" (Iandoli). (SK)
Cybernetics and Education (Special Issue)
ERIC Educational Resources Information Center
Kopstein, Felix F., Ed.
1977-01-01
This is a special issue examining the potential of cybernetics in educational technology. Articles discuss: cybernetic methods, algorithms, feedback learning theory, a structural approach to behavioral objectives and criterion-referenced testing, task specifications and diagnosis, teacher-child interaction, educational development, teaching…
ERIC Educational Resources Information Center
Phage, Itumeleng B.; Lemmer, Miriam; Hitge, Mariette
2017-01-01
Students' graph comprehension may be affected by the background of the students who are the readers or interpreters of the graph, their knowledge of the context in which the graph is set, and the inferential processes required by the graph operation. This research study investigated these aspects of graph comprehension for 152 first year…
NASA Astrophysics Data System (ADS)
Xiong, B.; Oude Elberink, S.; Vosselman, G.
2014-07-01
In the task of 3D building model reconstruction from point clouds we face the problem of recovering a roof topology graph in the presence of noise, small roof faces and low point densities. Errors in roof topology graphs will seriously affect the final modelling results. The aim of this research is to automatically correct these errors. We define the graph correction as a graph-to-graph problem, similar to the spelling correction problem (also called the string-to-string problem). The graph correction is more complex than string correction, as the graphs are 2D while strings are only 1D. We design a strategy based on a dictionary of graph edit operations to automatically identify and correct the errors in the input graph. For each type of error the graph edit dictionary stores a representative erroneous subgraph as well as the corrected version. As an erroneous roof topology graph may contain several errors, a heuristic search is applied to find the optimum sequence of graph edits to correct the errors one by one. The graph edit dictionary can be expanded to include entries needed to cope with errors that were previously not encountered. Experiments show that the dictionary with only fifteen entries already properly corrects one quarter of erroneous graphs in about 4500 buildings, and even half of the erroneous graphs in one test area, achieving as high as a 95% acceptance rate of the reconstructed models.
ERIC Educational Resources Information Center
Woodward, John
As part of a 3-year study to identify emerging issues and trends in technology for special education, this paper addresses the possible contributions of virtual reality technology to educational services for students with disabilities. An example of the use of virtual reality in medical imaging introduces the paper and leads to a brief review of…
Cognitive Neuroscience and Mathematics Learning: How Far Have We Come? Where Do We Need to Go?
ERIC Educational Resources Information Center
Ansari, Daniel; Lyons, Ian M.
2016-01-01
In this commentary on the ZDM special issue: "Cognitive neuroscience and mathematics learning--revisited after 5 years," we explore the progress that has been made since ZDM published a similar special issue in 2010. We consider the extent to which future frontiers and methodological concerns raised in the commentary on the 2010 issue by…
The Supreme Court: 1995. Special Edition! Summary of Supreme Court Year.
ERIC Educational Resources Information Center
Fenske, Kenneth F., Ed.
1996-01-01
This special issue is intended to help teachers educate students about today's important U.S. Supreme Court and other judicial decisions, the legal issues they involve, and their impact on students' lives. The issue focuses upon the 1995 term of the Supreme Court and the tendency for the justices to vote unanimously. An overview of the cases and…
Self and Identity in Early Adolescence: Some Reflections and an Introduction to the Special Issue
ERIC Educational Resources Information Center
Schwartz, Seth J.
2008-01-01
This article reviews contemporary issues in the study of self and identity and introduces the special issue. Particularly highlighted are the need to integrate the various currents in self and identity, the need to study the role of context in the development of self and identity, research on self and identity in ethnic minority and international…
Innovations in Play Therapy: Issues, Process, and Special Populations.
ERIC Educational Resources Information Center
Landreth, Garry L., Ed.
This book is a compilation of discussions on current issues in play therapy. It is designed to help therapists fill in the gaps about working with special populations, which is often not directly addressed in other play therapy resources. The object of the book is to bring together information related to issues and dynamics of the process of this…
ERIC Educational Resources Information Center
Gilger, Jeffrey W.
2001-01-01
This introductory article briefly describes each of the following eight articles in this special issue on the neurology and genetics of learning related disorders. It notes the greater appreciation of learning disability as a set of complex disorders with broad and intricate neurological bases and of the large individual differences in how these…
ERIC Educational Resources Information Center
Seligman, Martin E. P.
2011-01-01
Seligman responds to the comments made about the January 2011 "American Psychologist" "Special Issue on Comprehensive Soldier Fitness" (CSF). Seligman proposed an entire issue of on the topic of CSF to encourage psychologists to come to the aid of our government, and he urges psychologists not to be discouraged by this tactic.…
What does the structure of its visibility graph tell us about the nature of the time series?
NASA Astrophysics Data System (ADS)
Franke, Jasper G.; Donner, Reik V.
2017-04-01
Visibility graphs are a recently introduced method to construct complex network representations based upon univariate time series in order to study their dynamical characteristics [1]. In the last years, this approach has been successfully applied to studying a considerable variety of geoscientific research questions and data sets, including non-trivial temporal patterns in complex earthquake catalogs [2] or time-reversibility in climate time series [3]. It has been shown that several characteristic features of the thus constructed networks differ between stochastic and deterministic (possibly chaotic) processes, which is, however, relatively hard to exploit in the case of real-world applications. In this study, we propose studying two new measures related with the network complexity of visibility graphs constructed from time series, one being a special type of network entropy [4] and the other a recently introduced measure of the heterogeneity of the network's degree distribution [5]. For paradigmatic model systems exhibiting bifurcation sequences between regular and chaotic dynamics, both properties clearly trace the transitions between both types of regimes and exhibit marked quantitative differences for regular and chaotic dynamics. Moreover, for dynamical systems with a small amount of additive noise, the considered properties demonstrate gradual changes prior to the bifurcation point. This finding appears closely related to the subsequent loss of stability of the current state known to lead to a critical slowing down as the transition point is approaches. In this spirit, both considered visibility graph characteristics provide alternative tracers of dynamical early warning signals consistent with classical indicators. Our results demonstrate that measures of visibility graph complexity (i) provide a potentially useful means to tracing changes in the dynamical patterns encoded in a univariate time series that originate from increasing autocorrelation and (ii) allow to systematically distinguish regular from deterministic-chaotic dynamics. We demonstrate the application of our method for different model systems as well as selected paleoclimate time series from the North Atlantic region. Notably, visibility graph based methods are particularly suited for studying the latter type of geoscientific data, since they do not impose intrinsic restrictions or assumptions on the nature of the time series under investigation in terms of noise process, linearity and sampling homogeneity. [1] Lacasa, Lucas, et al. "From time series to complex networks: The visibility graph." Proceedings of the National Academy of Sciences 105.13 (2008): 4972-4975. [2] Telesca, Luciano, and Michele Lovallo. "Analysis of seismic sequences by using the method of visibility graph." EPL (Europhysics Letters) 97.5 (2012): 50002. [3] Donges, Jonathan F., Reik V. Donner, and Jürgen Kurths. "Testing time series irreversibility using complex network methods." EPL (Europhysics Letters) 102.1 (2013): 10004. [4] Small, Michael. "Complex networks from time series: capturing dynamics." 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013), Beijing (2013): 2509-2512. [5] Jacob, Rinku, K.P. Harikrishnan, Ranjeev Misra, and G. Ambika. "Measure for degree heterogeneity in complex networks and its application to recurrence network analysis." arXiv preprint 1605.06607 (2016).
NASA Technical Reports Server (NTRS)
Sung, C.-M.; Singer, R. B.; Parkin, K. M.; Burns, R. G.; Osborne, M.
1977-01-01
Results are reported of Fe(++) crystal field spectral measurements for olivines and pyroxenes up to 400 C. The results are correlated with crystal structure data at elevated temperatures, and the validity of remote-sensed identifications of minerals on hot surfaces of the moon and Mercury is assessed. Two techniques were used to obtain spectra of minerals at elevated temperatures using a spectrophotometer. One employed a diamond cell assembly or a specially designed sample holder to measure polarized absorption spectra of heated single crystals. For the other technique, a sample holder was designed to attach to a diffuse reflectance accessory to produce reflectance spectra of heated powdered samples. Polarized absorption spectra of forsterite at 20-400 C are shown in a graph. Other graphs show the temperature dependence of Fe(++) crystal field bands in olivines, the diffuse reflectance spectra of olivine at 40-400 C, the polarization absorption spectra of orthopyroxene at 30-400 C, the diffuse reflectance spectra of pigeonite at 40-400 C, and unpolarized absorption spectra of lunar pyroxene from Apollo 15 rock 15058.
A Linear Kernel for Co-Path/Cycle Packing
NASA Astrophysics Data System (ADS)
Chen, Zhi-Zhong; Fellows, Michael; Fu, Bin; Jiang, Haitao; Liu, Yang; Wang, Lusheng; Zhu, Binhai
Bounded-Degree Vertex Deletion is a fundamental problem in graph theory that has new applications in computational biology. In this paper, we address a special case of Bounded-Degree Vertex Deletion, the Co-Path/Cycle Packing problem, which asks to delete as few vertices as possible such that the graph of the remaining (residual) vertices is composed of disjoint paths and simple cycles. The problem falls into the well-known class of 'node-deletion problems with hereditary properties', is hence NP-complete and unlikely to admit a polynomial time approximation algorithm with approximation factor smaller than 2. In the framework of parameterized complexity, we present a kernelization algorithm that produces a kernel with at most 37k vertices, improving on the super-linear kernel of Fellows et al.'s general theorem for Bounded-Degree Vertex Deletion. Using this kernel,and the method of bounded search trees, we devise an FPT algorithm that runs in time O *(3.24 k ). On the negative side, we show that the problem is APX-hard and unlikely to have a kernel smaller than 2k by a reduction from Vertex Cover.
Approximate labeling via graph cuts based on linear programming.
Komodakis, Nikos; Tziritas, Georgios
2007-08-01
A new framework is presented for both understanding and developing graph-cut-based combinatorial algorithms suitable for the approximate optimization of a very wide class of Markov Random Fields (MRFs) that are frequently encountered in computer vision. The proposed framework utilizes tools from the duality theory of linear programming in order to provide an alternative and more general view of state-of-the-art techniques like the \\alpha-expansion algorithm, which is included merely as a special case. Moreover, contrary to \\alpha-expansion, the derived algorithms generate solutions with guaranteed optimality properties for a much wider class of problems, for example, even for MRFs with nonmetric potentials. In addition, they are capable of providing per-instance suboptimality bounds in all occasions, including discrete MRFs with an arbitrary potential function. These bounds prove to be very tight in practice (that is, very close to 1), which means that the resulting solutions are almost optimal. Our algorithms' effectiveness is demonstrated by presenting experimental results on a variety of low-level vision tasks, such as stereo matching, image restoration, image completion, and optical flow estimation, as well as on synthetic problems.
The Effects of Sacred Value Networks Within an Evolutionary, Adversarial Game
NASA Astrophysics Data System (ADS)
McCalla, Scott G.; Short, Martin B.; Brantingham, P. Jeffrey
2013-05-01
The effects of personal relationships and shared ideologies on levels of crime and the formation of criminal coalitions are studied within the context of an adversarial, evolutionary game first introduced in Short et al. (Phys. Rev. E 82:066114, 2010). Here, we interpret these relationships as connections on a graph of N players. These connections are then used in a variety of ways to define each player's "sacred value network"—groups of individuals that are subject to special consideration or treatment by that player. We explore the effects on the dynamics of the system that these networks introduce, through various forms of protection from both victimization and punishment. Under local protection, these networks introduce a new fixed point within the game dynamics, which we find through a continuum approximation of the discrete game. Under more complicated, extended protection, we numerically observe the emergence of criminal coalitions, or "gangs". We also find that a high-crime steady state is much more frequent in the context of extended protection networks, in both the case of Erdős-Rényi and small world random graphs.
Special issue on the spectroscopy of transient plasmas
NASA Astrophysics Data System (ADS)
Bailey, James; Hoarty, David; Mancini, Roberto; Yoneda, Hitoki
2015-01-01
Experimental and theoretical papers are invited for a special issue of Journal of Physics B: Atomic, Molecular and Optical Physics on Spectroscopy of Transient Plasmas, covering plasma conditions produced by pulsed laboratory sources including for example, short and long pulse lasers; pulsed power devices; FELs; XFELs and ion beams. The full range of plasma spectroscopy from the optical range up to high energy bremsstrahlung radiation will be covered. The deadline for submitting to this special issue is 1 March 2015. (Expected web publication: autumn 2015). Late submissions will be considered for the journal, but may not be included in the special issue. All submitted articles will be fully refereed to the journal's usual high standards. Upon publication, the issue will be widely promoted to the atomic, molecular and optical physics community, ensuring that your work receives maximum visibility. Articles should be submitted at http://mc04.manuscriptcentral.com/jphysb-iop. Should you have any questions regarding the preparation of manuscripts or the suitability of your work for this Issue, please do not hesitate to contact the J. Phys. B: At. Mol. Opt. Editorial team (jphysb@iop.org). We look forward to hearing from you and hope that we can welcome you as a contributing author.
Comparison and Enumeration of Chemical Graphs
Akutsu, Tatsuya; Nagamochi, Hiroshi
2013-01-01
Chemical compounds are usually represented as graph structured data in computers. In this review article, we overview several graph classes relevant to chemical compounds and the computational complexities of several fundamental problems for these graph classes. In particular, we consider the following problems: determining whether two chemical graphs are identical, determining whether one input chemical graph is a part of the other input chemical graph, finding a maximum common part of two input graphs, finding a reaction atom mapping, enumerating possible chemical graphs, and enumerating stereoisomers. We also discuss the relationship between the fifth problem and kernel functions for chemical compounds. PMID:24688697
Preface to the Special Issue: Strategic Opportunities for Fusion Energy
Mauel, M. E.; Greenwald, Martin; Ryutov, Dmitri D.; ...
2016-01-23
Here, the Journal of Fusion Energy provides a forum for discussion of broader policy and planning issues that play a crucial role in energy fusion programs. In keeping with this purpose and in response to several recent strategic planning efforts worldwide, this Special Issue on Strategic Opportunities was launched with the goal to invite fusion scientists and engineers to record viewpoints of the scientific opportunities and policy issues that can drive continued advancements in fusion energy research.
Mean square cordial labelling related to some acyclic graphs and its rough approximations
NASA Astrophysics Data System (ADS)
Dhanalakshmi, S.; Parvathi, N.
2018-04-01
In this paper we investigate that the path Pn, comb graph Pn⊙K1, n-centipede graph,centipede graph (n,2) and star Sn admits mean square cordial labeling. Also we proved that the induced sub graph obtained by the upper approximation of any sub graph H of the above acyclic graphs admits mean square cordial labeling.
Relating zeta functions of discrete and quantum graphs
NASA Astrophysics Data System (ADS)
Harrison, Jonathan; Weyand, Tracy
2018-02-01
We write the spectral zeta function of the Laplace operator on an equilateral metric graph in terms of the spectral zeta function of the normalized Laplace operator on the corresponding discrete graph. To do this, we apply a relation between the spectrum of the Laplacian on a discrete graph and that of the Laplacian on an equilateral metric graph. As a by-product, we determine how the multiplicity of eigenvalues of the quantum graph, that are also in the spectrum of the graph with Dirichlet conditions at the vertices, depends on the graph geometry. Finally we apply the result to calculate the vacuum energy and spectral determinant of a complete bipartite graph and compare our results with those for a star graph, a graph in which all vertices are connected to a central vertex by a single edge.
Journal of Transportation and Statistics : special issue on the Northridge earthquake
DOT National Transportation Integrated Search
1998-09-01
This is special issue on the Northridge Earthquake. Contents: Impacts of the Northridge Earthquake on Transit and Highway Use by Genevieve Giuliano; Transport Related Impacts on the Northridge Earthquake by Peter Gordon; Goods Movement After the Nort...
Controversial Issues Confronting Special Education: Divergent Perspectives.
ERIC Educational Resources Information Center
Stainback, William; Stainback, Susan
This book of 24 papers presents divergent views on 12 issues in special education: organizational strategies, classroom service delivery approaches, maximizing the talents and gifts of students, classification and labeling, assessment, instructional strategies, classroom management, collaboration/consultation, research practices, higher education,…
Assessment of interpersonal aggression and violence: introduction to the special issue.
Edens, John F; Douglas, Kevin S
2006-09-01
Violence and interpersonal aggression are considered major public health problems throughout the world. Yet there is considerable variability in how these terms are operationalized, measured, and studied in the social sciences, which can lead to ambiguity and confusion in the field. In this introduction to the special issue, the authors highlight some of the difficulties inherent in studying interpersonal aggression and violence and briefly review the heterogeneous nature of the research conducted in this area. The authors conclude with a summary of the key findings of the articles that appear in this special issue.
Automated diagnosis of interstitial lung diseases and emphysema in MDCT imaging
NASA Astrophysics Data System (ADS)
Fetita, Catalin; Chang Chien, Kuang-Che; Brillet, Pierre-Yves; Prêteux, Françoise
2007-09-01
Diffuse lung diseases (DLD) include a heterogeneous group of non-neoplasic disease resulting from damage to the lung parenchyma by varying patterns of inflammation. Characterization and quantification of DLD severity using MDCT, mainly in interstitial lung diseases and emphysema, is an important issue in clinical research for the evaluation of new therapies. This paper develops a 3D automated approach for detection and diagnosis of diffuse lung diseases such as fibrosis/honeycombing, ground glass and emphysema. The proposed methodology combines multi-resolution 3D morphological filtering (exploiting the sup-constrained connection cost operator) and graph-based classification for a full characterization of the parenchymal tissue. The morphological filtering performs a multi-level segmentation of the low- and medium-attenuated lung regions as well as their classification with respect to a granularity criterion (multi-resolution analysis). The original intensity range of the CT data volume is thus reduced in the segmented data to a number of levels equal to the resolution depth used (generally ten levels). The specificity of such morphological filtering is to extract tissue patterns locally contrasting with their neighborhood and of size inferior to the resolution depth, while preserving their original shape. A multi-valued hierarchical graph describing the segmentation result is built-up according to the resolution level and the adjacency of the different segmented components. The graph nodes are then enriched with the textural information carried out by their associated components. A graph analysis-reorganization based on the nodes attributes delivers the final classification of the lung parenchyma in normal and ILD/emphysematous regions. It also makes possible to discriminate between different types, or development stages, among the same class of diseases.
Introduction to the special issue on college student mental health.
Castillo, Linda G; Schwartz, Seth J
2013-04-01
This article provides an introduction to the special issue on college student mental health. It gives an overview of the establishment of the Multi-Site University Study of Identity and Culture (MUSIC) collaborative by a group of national experts on culture and identity. Information about the procedures used to collect a nationally represented sample of college students are provided. Data were collected from 30 university sites across the United States. The sample comprised 10,573 undergraduate college students, of which 73% were women, 63% White, 9% African American/Black, 14% Latino/Hispanic, 13% Asian American, and 1% Other. The special issue comprises a compilation of 8 studies that used the dataset specifically created to examine the issues of emerging adults, culture, and identity. Student mental health problems are a growing concern on college campuses. Studies covered in this special issue have implications for policy development regarding college alcohol use and traumatic victimization, include attention to underrepresented minority and immigrant groups on college campuses, and focus on positive as well as pathological aspects of the college experience. © 2013 Wiley Periodicals, Inc.
Cosmic strings and galaxy formation
NASA Technical Reports Server (NTRS)
Bertschinger, Edmund
1989-01-01
The cosmogonical model proposed by Zel'dovich and Vilenkin (1981), in which superconducting cosmic strings act as seeds for the origin of structure in the universe, is discussed, summarizing the results of recent theoretical investigations. Consideration is given to the formation of cosmic strings, the microscopic structure of strings, gravitational effects, cosmic string evolution, and the formation of galaxies and large-scale structure. Simulation results are presented in graphs, and several outstanding issues are listed and briefly characterized.
Papadimitriou, Christina; Magasi, Susan; Frank, Gelya
2012-01-01
In this introduction to the special issue on current thinking in qualitative research and occupational therapy and science, the authors focus on the importance of rigorous qualitative research to inform occupational therapy practice. The authors chosen for this special issue reflect a "second generation of qualitative researchers" who are critical, theoretically sophisticated, methodologically productive, and politically relevant to show that working with disabled clients is political work. Three themes emerged across the articles included in this special issue: (1) recognizing and addressing social justice issues; (2) learning from clients' experiences; and (3) critically reframing occupational therapy's role. These themes can inform occupational therapy practice, research, and education to reflect a more client-centered and politically engaging approach. Copyright 2012, SLACK Incorporated.
Preserving Differential Privacy in Degree-Correlation based Graph Generation
Wang, Yue; Wu, Xintao
2014-01-01
Enabling accurate analysis of social network data while preserving differential privacy has been challenging since graph features such as cluster coefficient often have high sensitivity, which is different from traditional aggregate functions (e.g., count and sum) on tabular data. In this paper, we study the problem of enforcing edge differential privacy in graph generation. The idea is to enforce differential privacy on graph model parameters learned from the original network and then generate the graphs for releasing using the graph model with the private parameters. In particular, we develop a differential privacy preserving graph generator based on the dK-graph generation model. We first derive from the original graph various parameters (i.e., degree correlations) used in the dK-graph model, then enforce edge differential privacy on the learned parameters, and finally use the dK-graph model with the perturbed parameters to generate graphs. For the 2K-graph model, we enforce the edge differential privacy by calibrating noise based on the smooth sensitivity, rather than the global sensitivity. By doing this, we achieve the strict differential privacy guarantee with smaller magnitude noise. We conduct experiments on four real networks and compare the performance of our private dK-graph models with the stochastic Kronecker graph generation model in terms of utility and privacy tradeoff. Empirical evaluations show the developed private dK-graph generation models significantly outperform the approach based on the stochastic Kronecker generation model. PMID:24723987
CALL FOR PAPERS: Special issue: One hundred years of PVI, the Fuchs Painlevé equation
NASA Astrophysics Data System (ADS)
Clarkson, P. A.; Joshi, N.; Mazzocco, M.; Nijhoff, F. W.; Noumi, M.
2005-10-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and General entitled `One hundred years of Painlevé VI, the Fuchs Painlevé equation'. The motivation behind this special issue is to celebrate the centenary of the discovery of this famous differential equation. The Editorial Board has invited P A Clarkson, N Joshi, M Mazzocco, F W Nijhoff and M Noumi to serve as Guest Editors for the issue. The nonlinear ordinary differential equation, which is nowadays known as the Painlevé VI (PVI) equation, is one of the most important differential equations in mathematical physics. It was discovered 100 years ago by Richard Fuchs (son of the famous mathematician Lazarus Fuchs) and reported for the first time in Comptes Rendus de l'Academie des Sciences Paris 141 555 8 (1905). Gambier, in his seminal paper of 1906, included this equation as the top equation in the list of what are now known as the six Painlevé transcendental equations. The Painlevé list emerged from the work on the classification of all ordinary second-order differential equations whose general solution are `uniform', in the sense that there are no movable (i.e. as a function of the initial data) singularities (meaning branch points) worse than poles. The latter is known as the Painlevé property. As the top equation in the Painlevé list of transcendental equations, the importance of PVI can be appreciated by recognizing that this is a universal differential equation, which is the most general (in terms of number of free parameters) of the known second order ODEs defining nonlinear special functions. As such, parallels can be drawn between the role played by PVI transcendents in the nonlinear case and the hypergeometric functions at the linear level. In fact, the monograph From Gauss to Painlevé by K Iwasaki, H Kimura, S Shimomura and M Yoshida (Vieweg, 1991), draws very clearly the line stretching over more than 150 years of special function theory in which PVI is placed as the key equation. In recent years these lines have been extended into the discrete domain, i.e. the field of nonlinear ordinary difference equations, and discrete analogues of PVI have opened entirely new fields of investigation. The aim of the special issue, dedicated specifically to the PVI equations and its avatars rather than to general Painlevé theory, is to consolidate the state-of-the-art knowledge of the properties of this equation and to highlight modern developments (including generalizations of PVI, such as the Garnier system, as well as discrete versions of the equation). The issue should be a repository of high-quality original research papers as well as some invited topical reviews. Scope of the special issue The special issue is dedicated to the study of the Painlevé VI equation, its solutions and properties, and to its generalizations—either in the direction of higher-order differential equations associated with PVI (and related Garnier and Schlesinger systems), or in the direction of difference analogues of the equation. The special issue will welcome contributions that go into the analysis (including asymptotic theory) of Painlevé VI transcendents, the corresponding monodromy theory, the representation theory aspects, the underlying algebraic geometry of the solution manifolds, associated combinatorics and random matrix theory, as well as q-difference and discrete versions of the equation, and last but not least applications in physics. Papers dealing primarily with Painlevé equations other than PVI, or with general Painlevé theory, are not encouraged as these would deflect the contents of the special issue from its specific celebrational motivation. Editorial policy All contributions to the special issue will be refereed in accordance with the refereeing policy of the journal. The Guest Editors will reserve the right to judge whether a contribution fits the scope of the topic of the special issue. Guidelines for preparation of contributions • We aim to publish the special issue in the first half of 2006, in order not to lose the connection with the celebrational year 2005, marking the 100-year anniversary of the discovery of PVI. To realize this, the deadline for contributed papers will be 31 January 2006. • There is a page limit of 16 printed pages (approximately 9600 words) per contribution. For submitted papers exceeding this length the Guest Editors reserve the right to request a reduction in length. Further advice on document preparation can be found at www.iop.org/Journals/jphysa • Contributions to the special issue should if possible be submitted electronically by web upload at www.iop.org/Journals/jphysa, or by email to jphysa@iop.org, quoting `J. Phys. A Special Issue: Painlevé VI'. Submissions should ideally be in standard LaTeX form; we are, however, able to accept most formats including Microsoft Word. Please see the website for further information on electronic submissions. • Authors unable to submit electronically may send hard-copy contributions to: Publishing Administrators, Journal of Physics A, Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK, enclosing electronic code on floppy disk if available and quoting `J. Phys. A Special Issue: Painlevé VI'. • All contributions should be accompanied by a read-me file or covering letter giving the postal and email address for correspondence. The Publishing Office should be notified of any subsequent change of address. The special issue will be published in the paper and online version of the journal. The corresponding author of each contribution will receive a complimentary copy of the issue.
A general method for computing Tutte polynomials of self-similar graphs
NASA Astrophysics Data System (ADS)
Gong, Helin; Jin, Xian'an
2017-10-01
Self-similar graphs were widely studied in both combinatorics and statistical physics. Motivated by the construction of the well-known 3-dimensional Sierpiński gasket graphs, in this paper we introduce a family of recursively constructed self-similar graphs whose inner duals are of the self-similar property. By combining the dual property of the Tutte polynomial and the subgraph-decomposition trick, we show that the Tutte polynomial of this family of graphs can be computed in an iterative way and in particular the exact expression of the formula of the number of their spanning trees is derived. Furthermore, we show our method is a general one that is easily extended to compute Tutte polynomials for other families of self-similar graphs such as Farey graphs, 2-dimensional Sierpiński gasket graphs, Hanoi graphs, modified Koch graphs, Apollonian graphs, pseudofractal scale-free web, fractal scale-free network, etc.
Bipartite separability and nonlocal quantum operations on graphs
NASA Astrophysics Data System (ADS)
Dutta, Supriyo; Adhikari, Bibhas; Banerjee, Subhashish; Srikanth, R.
2016-07-01
In this paper we consider the separability problem for bipartite quantum states arising from graphs. Earlier it was proved that the degree criterion is the graph-theoretic counterpart of the familiar positive partial transpose criterion for separability, although there are entangled states with positive partial transpose for which the degree criterion fails. Here we introduce the concept of partially symmetric graphs and degree symmetric graphs by using the well-known concept of partial transposition of a graph and degree criteria, respectively. Thus, we provide classes of bipartite separable states of dimension m ×n arising from partially symmetric graphs. We identify partially asymmetric graphs that lack the property of partial symmetry. We develop a combinatorial procedure to create a partially asymmetric graph from a given partially symmetric graph. We show that this combinatorial operation can act as an entanglement generator for mixed states arising from partially symmetric graphs.
ERIC Educational Resources Information Center
Scheepers, M.; Kerr, M.; O'Hara, D.; Bainbridge, D.; Cooper, S.-A.; Davis, R.; Fujiura, G.; Heller, T.; Holland, A.; Krahn, G.; Lennox, N.; Meaney, J.; Wehmeyer, M.
2005-01-01
Disparities in the health status and care experienced by people with intellectual disabilities are increasingly being recognized. This special report presents the results of an international expert consensus workshop held under the auspices of the Health Issues Special Interest Research Group of the International Association for the Scientific…
On the local edge antimagicness of m-splitting graphs
NASA Astrophysics Data System (ADS)
Albirri, E. R.; Dafik; Slamin; Agustin, I. H.; Alfarisi, R.
2018-04-01
Let G be a connected and simple graph. A split graph is a graph derived by adding new vertex v‧ in every vertex v‧ such that v‧ adjacent to v in graph G. An m-splitting graph is a graph which has m v‧-vertices, denoted by mSpl(G). A local edge antimagic coloring in G = (V, E) graph is a bijection f:V (G)\\to \\{1,2,3,\\ldots,|V(G)|\\} in which for any two adjacent edges e 1 and e 2 satisfies w({e}1)\
Survey of Approaches to Generate Realistic Synthetic Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Seung-Hwan; Lee, Sangkeun; Powers, Sarah S
A graph is a flexible data structure that can represent relationships between entities. As with other data analysis tasks, the use of realistic graphs is critical to obtaining valid research results. Unfortunately, using the actual ("real-world") graphs for research and new algorithm development is difficult due to the presence of sensitive information in the data or due to the scale of data. This results in practitioners developing algorithms and systems that employ synthetic graphs instead of real-world graphs. Generating realistic synthetic graphs that provide reliable statistical confidence to algorithmic analysis and system evaluation involves addressing technical hurdles in a broadmore » set of areas. This report surveys the state of the art in approaches to generate realistic graphs that are derived from fitted graph models on real-world graphs.« less
Apparatuses and Methods for Producing Runtime Architectures of Computer Program Modules
NASA Technical Reports Server (NTRS)
Abi-Antoun, Marwan Elia (Inventor); Aldrich, Jonathan Erik (Inventor)
2013-01-01
Apparatuses and methods for producing run-time architectures of computer program modules. One embodiment includes creating an abstract graph from the computer program module and from containment information corresponding to the computer program module, wherein the abstract graph has nodes including types and objects, and wherein the abstract graph relates an object to a type, and wherein for a specific object the abstract graph relates the specific object to a type containing the specific object; and creating a runtime graph from the abstract graph, wherein the runtime graph is a representation of the true runtime object graph, wherein the runtime graph represents containment information such that, for a specific object, the runtime graph relates the specific object to another object that contains the specific object.
Special Issue: Competencies from the Individual's Viewpoint.
ERIC Educational Resources Information Center
Career Planning and Adult Development Journal, 2003
2003-01-01
Ten articles in this special issue deal with competencies and how their use is revolutionizing human resource management and the work of career practitioners. Topics include competency technology, models, and mapping; behavioral interviewing; talent management; emotional intelligence; succession planning; and lifelong learning. (JOW)
Special Issue: Productive Employment for the Poor.
ERIC Educational Resources Information Center
Gaude, Jacques, Ed.; Miller, Steven, Ed.
1992-01-01
This special issue contains nine articles on labor-intensive public works, social investment funds, rural infrastructure projects, grassroots socioeconomic rights, remuneration systems for self-help projects, road construction and rural transport, employment and environmental rehabilitation, and water as a source of employment. (SK)
Foreword for Special Issue on Environmental Biophysics
USDA-ARS?s Scientific Manuscript database
This special issue on Environmental Biophysics is presented in honor of Dr. John Norman. Over the past four decades, Dr. Norman has dedicated himself to building bridges between disparate scientific disciplines for a better understanding and prediction of biophysical interactions. The consummate i...
The Person-Centered Approach to Peace.
ERIC Educational Resources Information Center
Whiteley, John M.
1987-01-01
This article introduces a special issue of the journal dedicated to Carl Rogers' person-centered approach to peace. Background work leading to the special issue is reviewed and a brief overview of Rogers' accomplishments in psychology before his death in 1987 is included. (NB)
Giangreco, Michael F; Prelock, Patricia A; Turnbull, H Rutherford
2010-10-01
Under the Individuals With Disabilities Education Act (IDEA; as amended, 2004), speech-language pathology services may be either special education or a related service. Given the absence of guidance documents or research on this issue, the purposes of this clinical exchange are to (a) present and analyze the IDEA definitions related to speech-language pathologists (SLPs) and their roles, (b) offer a rationale for the importance of and distinction between their roles, (c) propose an initial conceptualization (i.e., flow chart) to distinguish between when an SLP should function as a related services provider versus a special educator, and (d) suggest actions to develop and disseminate a clearer shared understanding of this issue. Federal definitions of special education and related services as related to SLPs are discussed in terms of determining special education eligibility, meeting student needs, ensuring SLPs are following their code of ethics and scope of practice, and facilitating appropriate personnel utilization and service delivery planning. Clarifying the distinction between special education and related services should lead to increased likelihood of appropriate services for students with disabilities, improved working conditions for SLPs, and enhanced collaboration among team members. This clinical exchange is meant to promote dialogue and research about this underexamined issue.
ERIC Educational Resources Information Center
Lian, Ming-Gon John; Tse, Andrew Chung-yee; Li, Alison Man Ching
2007-01-01
Since the handover of the sovereignty from the United Kingdom to the People's Republic of China in 1997, there have been a series of change, development, and related issues in special education programs for learners with disabilities in Hong Kong. In this paper, we try to describe the background and recent trends, issues, and implications that…
ERIC Educational Resources Information Center
Biancarosa, Gina; Cummings, Kelli D.
2015-01-01
The primary objective of this special issue is to synthesize results from recent reading fluency research endeavors, and to link these findings to practical uses of reading curriculum-based measurement (R-CBM) tools. Taken together, the manuscripts presented in this issue discuss measurement work related to new metrics of indexing student reading…
Examining Key Issues Underlying the Audit Commission Reports on SEN Policy Paper 1 (5th Series)
ERIC Educational Resources Information Center
Norwich, Brahm; Beek, Chris; Richardson, Penny; Gray, Peter
2004-01-01
This book is the first publication in the fifth series of seminars organised by the SEN Policy Options Steering Group to examine policy issues to do with special educational needs. The aim of the seminar was to examine in depth several underlying issues raised by the recent Audit Commission Reports on special educational needs. The seminar…
Introduction to the Special Issue: Drugs, Wars, Military Personnel, and Veterans
Golub, Andrew; Bennett, Alexander S.
2013-01-01
This special issue examines major structural, sociocultural, and behavioral issues surrounding substance use and misuse among US military personnel and veterans who served in recent military conflicts in Iraq and Afghanistan. This introduction provides a brief historical review of the US’s experiences of the linkages between war and substance use, misuse, and abuse. It then describes how the various topics covered in this issue span the military-veteran life course and explains the significance of each contribution. PMID:23869453
G-Hash: Towards Fast Kernel-based Similarity Search in Large Graph Databases.
Wang, Xiaohong; Smalter, Aaron; Huan, Jun; Lushington, Gerald H
2009-01-01
Structured data including sets, sequences, trees and graphs, pose significant challenges to fundamental aspects of data management such as efficient storage, indexing, and similarity search. With the fast accumulation of graph databases, similarity search in graph databases has emerged as an important research topic. Graph similarity search has applications in a wide range of domains including cheminformatics, bioinformatics, sensor network management, social network management, and XML documents, among others.Most of the current graph indexing methods focus on subgraph query processing, i.e. determining the set of database graphs that contains the query graph and hence do not directly support similarity search. In data mining and machine learning, various graph kernel functions have been designed to capture the intrinsic similarity of graphs. Though successful in constructing accurate predictive and classification models for supervised learning, graph kernel functions have (i) high computational complexity and (ii) non-trivial difficulty to be indexed in a graph database.Our objective is to bridge graph kernel function and similarity search in graph databases by proposing (i) a novel kernel-based similarity measurement and (ii) an efficient indexing structure for graph data management. Our method of similarity measurement builds upon local features extracted from each node and their neighboring nodes in graphs. A hash table is utilized to support efficient storage and fast search of the extracted local features. Using the hash table, a graph kernel function is defined to capture the intrinsic similarity of graphs and for fast similarity query processing. We have implemented our method, which we have named G-hash, and have demonstrated its utility on large chemical graph databases. Our results show that the G-hash method achieves state-of-the-art performance for k-nearest neighbor (k-NN) classification. Most importantly, the new similarity measurement and the index structure is scalable to large database with smaller indexing size, faster indexing construction time, and faster query processing time as compared to state-of-the-art indexing methods such as C-tree, gIndex, and GraphGrep.
GraphReduce: Processing Large-Scale Graphs on Accelerator-Based Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Dipanjan; Song, Shuaiwen; Agarwal, Kapil
2015-11-15
Recent work on real-world graph analytics has sought to leverage the massive amount of parallelism offered by GPU devices, but challenges remain due to the inherent irregularity of graph algorithms and limitations in GPU-resident memory for storing large graphs. We present GraphReduce, a highly efficient and scalable GPU-based framework that operates on graphs that exceed the device’s internal memory capacity. GraphReduce adopts a combination of edge- and vertex-centric implementations of the Gather-Apply-Scatter programming model and operates on multiple asynchronous GPU streams to fully exploit the high degrees of parallelism in GPUs with efficient graph data movement between the host andmore » device.« less
Wicked Problems in Special and Inclusive Education
ERIC Educational Resources Information Center
Armstrong, David
2017-01-01
This special paper provides a critical overview of wicked problems in special and inclusive education. Practically, this paper provides a strategic framework for future special issues in the "Journal of Special Educational Needs". Critical attention is also given to the concept of a wicked problem when applied to research in special and…
Comparing Internet Probing Methodologies Through an Analysis of Large Dynamic Graphs
2014-06-01
comparable Internet topologies in less time. We compare these by modeling union of traceroute outputs as graphs, and using standard graph theoretical...topologies in less time. We compare these by modeling union of traceroute outputs as graphs, and using standard graph theoretical measurements as well...We compare these by modeling union of traceroute outputs as graphs, and study the graphs by using vertex and edge count, average vertex degree
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukumar, Sreenivas R.; Hong, Seokyong; Lee, Sangkeun
2016-06-01
GraphBench is a benchmark suite for graph pattern mining and graph analysis systems. The benchmark suite is a significant addition to conducting apples-apples comparison of graph analysis software (databases, in-memory tools, triple stores, etc.)
Generalized graph states based on Hadamard matrices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Shawn X.; Yu, Nengkun; Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario N1G 2W1
2015-07-15
Graph states are widely used in quantum information theory, including entanglement theory, quantum error correction, and one-way quantum computing. Graph states have a nice structure related to a certain graph, which is given by either a stabilizer group or an encoding circuit, both can be directly given by the graph. To generalize graph states, whose stabilizer groups are abelian subgroups of the Pauli group, one approach taken is to study non-abelian stabilizers. In this work, we propose to generalize graph states based on the encoding circuit, which is completely determined by the graph and a Hadamard matrix. We study themore » entanglement structures of these generalized graph states and show that they are all maximally mixed locally. We also explore the relationship between the equivalence of Hadamard matrices and local equivalence of the corresponding generalized graph states. This leads to a natural generalization of the Pauli (X, Z) pairs, which characterizes the local symmetries of these generalized graph states. Our approach is also naturally generalized to construct graph quantum codes which are beyond stabilizer codes.« less
Graph processing platforms at scale: practices and experiences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Seung-Hwan; Lee, Sangkeun; Brown, Tyler C
2015-01-01
Graph analysis unveils hidden associations of data in many phenomena and artifacts, such as road network, social networks, genomic information, and scientific collaboration. Unfortunately, a wide diversity in the characteristics of graphs and graph operations make it challenging to find a right combination of tools and implementation of algorithms to discover desired knowledge from the target data set. This study presents an extensive empirical study of three representative graph processing platforms: Pegasus, GraphX, and Urika. Each system represents a combination of options in data model, processing paradigm, and infrastructure. We benchmarked each platform using three popular graph operations, degree distribution,more » connected components, and PageRank over a variety of real-world graphs. Our experiments show that each graph processing platform shows different strength, depending the type of graph operations. While Urika performs the best in non-iterative operations like degree distribution, GraphX outputforms iterative operations like connected components and PageRank. In addition, we discuss challenges to optimize the performance of each platform over large scale real world graphs.« less
A fast algorithm for vertex-frequency representations of signals on graphs
Jestrović, Iva; Coyle, James L.; Sejdić, Ervin
2016-01-01
The windowed Fourier transform (short time Fourier transform) and the S-transform are widely used signal processing tools for extracting frequency information from non-stationary signals. Previously, the windowed Fourier transform had been adopted for signals on graphs and has been shown to be very useful for extracting vertex-frequency information from graphs. However, high computational complexity makes these algorithms impractical. We sought to develop a fast windowed graph Fourier transform and a fast graph S-transform requiring significantly shorter computation time. The proposed schemes have been tested with synthetic test graph signals and real graph signals derived from electroencephalography recordings made during swallowing. The results showed that the proposed schemes provide significantly lower computation time in comparison with the standard windowed graph Fourier transform and the fast graph S-transform. Also, the results showed that noise has no effect on the results of the algorithm for the fast windowed graph Fourier transform or on the graph S-transform. Finally, we showed that graphs can be reconstructed from the vertex-frequency representations obtained with the proposed algorithms. PMID:28479645
Behavioral medicine and clinical health psychology: introduction to the special issue.
Christensen, Alan J; Nezu, Arthur M
2013-04-01
This issue represents the 4th Journal of Consulting and Clinical Psychology special issue on behavioral medicine and clinical health psychology over the past 4 decades. Recent developments in health care policy, as well as in the maturation of the science, make a special issue in this area particularly timely. This collection includes state of the clinical science reviews, reports of clinical trials, and articles addressing theory and methods in behavioral medicine and clinical health psychology. A multilevel, ecological perspective that considers multiple levels of influences (e.g., cultural influences on behavior-health linkages, individual differences) is salient throughout many of the articles. Our hope is that this sampling of this broad field, and coverage of some key issues and areas, will play a role in stimulating the next 10 years of research, practice, and policy implementation in behavioral medicine and clinical health psychology.
Formation of Teachers as Leaders: Response to the Articles in This Special Issue
ERIC Educational Resources Information Center
Frick, William C.; Browne-Ferrigno, Tricia
2016-01-01
This article contains a response to three manuscripts that are part of the "JRLE" special issue entitled Developing and Empowering Teacher Leaders for Collective Leadership. Discussion of the articles, lessons learned, and implications for teacher leadership development are discussed.
Code of Federal Regulations, 2011 CFR
2011-07-01
... issuing special procedures for declassification of information pertaining to intelligence activities... procedures for declassification of information pertaining to intelligence activities, sources and methods, or of classified cryptologic information in NARA's holdings? (a) The Director of National Intelligence...
Code of Federal Regulations, 2010 CFR
2010-07-01
... issuing special procedures for declassification of information pertaining to intelligence activities... procedures for declassification of information pertaining to intelligence activities, sources and methods, or of classified cryptologic information in NARA's holdings? (a) The Director of National Intelligence...
Perspectives on the Nature and Future of Work. Special Issue.
ERIC Educational Resources Information Center
Supiot, Alain; And Others
1996-01-01
This special theme issue includes: "Perspectives on Work" (Supiot); "Work and Usefulness to the World" (Castel); "Work and Identity in India" (Heuze-Brigant); "New Perspectives on Work as Value" (Meda); "Decline and Resurgence of Unremunerated Work" (Le Guidec); "Work and Public/Private…
Introduction to Special Issue on Education and Health.
ERIC Educational Resources Information Center
Kiker, B. F.
1998-01-01
Introduces a special issue devoted to education-health linkages. The scope of coverage is quite broad. Papers treat education's connections with specific health-related behaviors, full-time employees' health insurance coverage, medical care/lifestyle choices, nurses' wage profiles, low birthweight children's capabilities, smoking decisions,…
Introduction to the Special Issue.
ERIC Educational Resources Information Center
Petrosino, Anthony
2003-01-01
Introduces the articles of this special issue focusing on randomized field trials in criminology. In spite of the overall lack of randomized field trials in criminology, some agencies and individuals are able to mount an impressive number of field trials, and these articles focus on their experiences. (SLD)
Special issue : graduated licensing
DOT National Transportation Integrated Search
1999-12-04
This special issue focuses on graduated licensing. Until recently, it was legal for five or six teenagers to pile into a car and go joyriding at 2.a.m. That has changed. In a few short years, 35 states have adopted one or more elements of graduated l...
Introduction to the special issue Hermann Weyl and the philosophy of the 'New Physics'
NASA Astrophysics Data System (ADS)
De Bianchi, Silvia; Catren, Gabriel
2018-02-01
This Special Issue Hermann Weyl and the Philosophy of the 'New Physics' has two main objectives: first, to shed fresh light on the relevance of Weyl's work for modern physics and, second, to evaluate the importance of Weyl's work and ideas for contemporary philosophy of physics. Regarding the first objective, this Special Issue emphasizes aspects of Weyl's work (e.g. his work on spinors in n dimensions) whose importance has recently been emerging in research fields across both mathematical and experimental physics, as well as in the history and philosophy of physics. Regarding the second objective, this Special Issue addresses the relevance of Weyl's ideas regarding important open problems in the philosophy of physics, such as the problem of characterizing scientific objectivity and the problem of providing a satisfactory interpretation of fundamental symmetries in gauge theories and quantum mechanics. In this Introduction, we sketch the state of the art in Weyl studies and we summarize the content of the contributions to the present volume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grossman, Max; Pritchard Jr., Howard Porter; Budimlic, Zoran
2016-12-22
Graph500 [14] is an effort to offer a standardized benchmark across large-scale distributed platforms which captures the behavior of common communicationbound graph algorithms. Graph500 differs from other large-scale benchmarking efforts (such as HPL [6] or HPGMG [7]) primarily in the irregularity of its computation and data access patterns. The core computational kernel of Graph500 is a breadth-first search (BFS) implemented on an undirected graph. The output of Graph500 is a spanning tree of the input graph, usually represented by a predecessor mapping for every node in the graph. The Graph500 benchmark defines several pre-defined input sizes for implementers to testmore » against. This report summarizes investigation into implementing the Graph500 benchmark on OpenSHMEM, and focuses on first building a strong and practical understanding of the strengths and limitations of past work before proposing and developing novel extensions.« less
Graphing trillions of triangles.
Burkhardt, Paul
2017-07-01
The increasing size of Big Data is often heralded but how data are transformed and represented is also profoundly important to knowledge discovery, and this is exemplified in Big Graph analytics. Much attention has been placed on the scale of the input graph but the product of a graph algorithm can be many times larger than the input. This is true for many graph problems, such as listing all triangles in a graph. Enabling scalable graph exploration for Big Graphs requires new approaches to algorithms, architectures, and visual analytics. A brief tutorial is given to aid the argument for thoughtful representation of data in the context of graph analysis. Then a new algebraic method to reduce the arithmetic operations in counting and listing triangles in graphs is introduced. Additionally, a scalable triangle listing algorithm in the MapReduce model will be presented followed by a description of the experiments with that algorithm that led to the current largest and fastest triangle listing benchmarks to date. Finally, a method for identifying triangles in new visual graph exploration technologies is proposed.
Multiple graph regularized protein domain ranking.
Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin
2012-11-19
Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.
Evolutionary graph theory: breaking the symmetry between interaction and replacement
Ohtsuki, Hisashi; Pacheco, Jorge M.; Nowak, Martin A.
2008-01-01
We study evolutionary dynamics in a population whose structure is given by two graphs: the interaction graph determines who plays with whom in an evolutionary game; the replacement graph specifies the geometry of evolutionary competition and updating. First, we calculate the fixation probabilities of frequency dependent selection between two strategies or phenotypes. We consider three different update mechanisms: birth-death, death-birth and imitation. Then, as a particular example, we explore the evolution of cooperation. Suppose the interaction graph is a regular graph of degree h, the replacement graph is a regular graph of degree g and the overlap between the two graphs is a regular graph of degree l. We show that cooperation is favored by natural selection if b/c > hg/l. Here, b and c denote the benefit and cost of the altruistic act. This result holds for death-birth updating, weak selection and large population size. Note that the optimum population structure for cooperators is given by maximum overlap between the interaction and the replacement graph (g = h = l), which means that the two graphs are identical. We also prove that a modified replicator equation can describe how the expected values of the frequencies of an arbitrary number of strategies change on replacement and interaction graphs: the two graphs induce a transformation of the payoff matrix. PMID:17350049
Multiple graph regularized protein domain ranking
2012-01-01
Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. PMID:23157331
Alternative Fuels Data Center: Maps and Data
fleet type from 1992-2014 Last update August 2016 View Graph Graph Download Data Generated_thumb20160830 Trend of S&FP AFV acquisitions by fuel type from 1992-2015 Last update August 2016 View Graph Graph transactions from 1997-2014 Last update August 2016 View Graph Graph Download Data Biofuelsatlas BioFuels Atlas
GraphReduce: Large-Scale Graph Analytics on Accelerator-Based HPC Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Dipanjan; Agarwal, Kapil; Song, Shuaiwen
2015-09-30
Recent work on real-world graph analytics has sought to leverage the massive amount of parallelism offered by GPU devices, but challenges remain due to the inherent irregularity of graph algorithms and limitations in GPU-resident memory for storing large graphs. We present GraphReduce, a highly efficient and scalable GPU-based framework that operates on graphs that exceed the device’s internal memory capacity. GraphReduce adopts a combination of both edge- and vertex-centric implementations of the Gather-Apply-Scatter programming model and operates on multiple asynchronous GPU streams to fully exploit the high degrees of parallelism in GPUs with efficient graph data movement between the hostmore » and the device.« less
Special Issue: Big data and predictive computational modeling
NASA Astrophysics Data System (ADS)
Koutsourelakis, P. S.; Zabaras, N.; Girolami, M.
2016-09-01
The motivation for this special issue stems from the symposium on "Big Data and Predictive Computational Modeling" that took place at the Institute for Advanced Study, Technical University of Munich, during May 18-21, 2015. With a mindset firmly grounded in computational discovery, but a polychromatic set of viewpoints, several leading scientists, from physics and chemistry, biology, engineering, applied mathematics, scientific computing, neuroscience, statistics and machine learning, engaged in discussions and exchanged ideas for four days. This special issue contains a subset of the presentations. Video and slides of all the presentations are available on the TUM-IAS website http://www.tum-ias.de/bigdata2015/.
Special Issue ;Sediment cascades in cold climate geosystems;
NASA Astrophysics Data System (ADS)
Morche, David; Krautblatter, Michael; Beylich, Achim A.
2017-06-01
This Editorial introduces the Special Issue on sediment cascades in cold climate geosystems that evolved from the eighth I.A.G./A.I.G. SEDIBUD (Sediment Budgets in Cold Environments; http://www.geomorph.org/sedibud-working-group/) workshop. The workshop was held from 1st to 4th September 2014 at the Environmental Research Station ;Schneefernerhaus; (http://www.schneefernerhaus.de/en/home.html) located at Mt. Zugspitze, the highest peak of Germany, (2962 m asl). Paper and poster presentations focused on observations, measurements and modeling of geomorphological processes in sediment cascades in cold climate geosystems. This resulting Special Issue brings together ten selected contributions from arctic and alpine environments.
Beliefs and expectancies in legal decision making: an introduction to the Special Issue
McAuliff, Bradley D.; Bornstein, Brian H.
2013-01-01
This introduction describes what the co-editors believe readers can expect in this Special Issue. After beliefs and expectancies are defined, examples of how these constructs influence human thought, feeling, and behavior in legal settings are considered. Brief synopses are provided for the Special Issue papers on beliefs and expectancies regarding alibis, children’s testimony behavior, eyewitness testimony, confessions, sexual assault victims, judges’ decisions in child protection cases, and attorneys’ beliefs about jurors’ perceptions of juvenile offender culpability. Areas for future research are identified, and readers are encouraged to discover new ways that beliefs and expectancies operate in the legal system. PMID:24348006
Steroid promiscuity: Diversity of enzyme action. Preface.
Lathe, Richard; Kotelevtsev, Yuri; Mason, J Ian
2015-07-01
This Special Issue on the topic of Steroid and Sterol Signaling: Promiscuity and Diversity, dwells on the growing realization that the 'one ligand, one binding site' and 'one enzyme, one reaction' concepts are out of date. Focusing on cytochromes P450 (CYP), hydroxysteroid dehydrogenases (HSDs), and related enzymes, the Special Issue highlights that a single enzyme can bind to diverse substrates, and in different conformations, and can catalyze multiple different conversions (and in different directions), thereby, generating an unexpectedly wide spectrum of ligands that can have subtly different biological actions. This article is part of a Special Issue entitled 'Steroid/Sterol Signaling' . Copyright © 2015 Elsevier Ltd. All rights reserved.
Unheard Voices: The Need for HIV Research and Prevention Priorities for YMSM in the Global Context.
Hall, Casey D; Murdock, Daniel; Nehl, Eric J; Wong, Frank Y
2016-06-01
This commentary considers the AIDS Education and Prevention special issue (volume 28, number 3) entitled "Behavioral HIV Prevention Interventions for Diverse Young Men Who Have Sex with Men (MSM)." The research presented in this special issue highlights the importance of addressing sub-populations of young MSM in order to better understand the unique realities and risk-factors affecting HIV epidemics and intervention needs. Here, we focus on several broad topics raised in this special issue and comment on their implications for HIV research and practice targeting young MSM in low- and middle-income countries. We consider issues relevant to reaching hidden populations, tailoring interventions, and integrating new communications and bio-medical technologies in research and practice in low-resource settings.
Special education for intellectual disability: current trends and perspectives.
Kauffman, James M; Hung, Li-Yu
2009-09-01
To inform readers of current issues in special education for individuals with intellectual disabilities and summarize recent research and opinion. Two issues dominate special education for students with intellectual disabilities in the early 21st century. First, what should be taught to such students and who should teach them? Second, where should such students be taught - in 'inclusive' settings alongside normal peers or in special settings dedicated to their special needs? Research on teaching reading, arithmetic, and functional daily living skills to students with disabilities suggests the superiority of direct, systematic instruction. Universal design is often seen as supportive of inclusion. Inclusion has been seen as the central issue in special education but is gradually giving way to concern for what students learn. Direct, systematic instruction in reading, arithmetic, and daily living skills is the most effective approach to teaching students with intellectual disabilities. Basic concepts and logic suggest that special and general education cannot be equivalent. We conclude that what students are taught should be put ahead of where they are taught. Our fundamental concern is that students with intellectual disabilities be respected and be taught all they can learn.
SING: Subgraph search In Non-homogeneous Graphs
2010-01-01
Background Finding the subgraphs of a graph database that are isomorphic to a given query graph has practical applications in several fields, from cheminformatics to image understanding. Since subgraph isomorphism is a computationally hard problem, indexing techniques have been intensively exploited to speed up the process. Such systems filter out those graphs which cannot contain the query, and apply a subgraph isomorphism algorithm to each residual candidate graph. The applicability of such systems is limited to databases of small graphs, because their filtering power degrades on large graphs. Results In this paper, SING (Subgraph search In Non-homogeneous Graphs), a novel indexing system able to cope with large graphs, is presented. The method uses the notion of feature, which can be a small subgraph, subtree or path. Each graph in the database is annotated with the set of all its features. The key point is to make use of feature locality information. This idea is used to both improve the filtering performance and speed up the subgraph isomorphism task. Conclusions Extensive tests on chemical compounds, biological networks and synthetic graphs show that the proposed system outperforms the most popular systems in query time over databases of medium and large graphs. Other specific tests show that the proposed system is effective for single large graphs. PMID:20170516
GrouseFlocks: steerable exploration of graph hierarchy space.
Archambault, Daniel; Munzner, Tamara; Auber, David
2008-01-01
Several previous systems allow users to interactively explore a large input graph through cuts of a superimposed hierarchy. This hierarchy is often created using clustering algorithms or topological features present in the graph. However, many graphs have domain-specific attributes associated with the nodes and edges, which could be used to create many possible hierarchies providing unique views of the input graph. GrouseFlocks is a system for the exploration of this graph hierarchy space. By allowing users to see several different possible hierarchies on the same graph, the system helps users investigate graph hierarchy space instead of a single fixed hierarchy. GrouseFlocks provides a simple set of operations so that users can create and modify their graph hierarchies based on selections. These selections can be made manually or based on patterns in the attribute data provided with the graph. It provides feedback to the user within seconds, allowing interactive exploration of this space.
Spectral partitioning in equitable graphs.
Barucca, Paolo
2017-06-01
Graph partitioning problems emerge in a wide variety of complex systems, ranging from biology to finance, but can be rigorously analyzed and solved only for a few graph ensembles. Here, an ensemble of equitable graphs, i.e., random graphs with a block-regular structure, is studied, for which analytical results can be obtained. In particular, the spectral density of this ensemble is computed exactly for a modular and bipartite structure. Kesten-McKay's law for random regular graphs is found analytically to apply also for modular and bipartite structures when blocks are homogeneous. An exact solution to graph partitioning for two equal-sized communities is proposed and verified numerically, and a conjecture on the absence of an efficient recovery detectability transition in equitable graphs is suggested. A final discussion summarizes results and outlines their relevance for the solution of graph partitioning problems in other graph ensembles, in particular for the study of detectability thresholds and resolution limits in stochastic block models.
Spectral partitioning in equitable graphs
NASA Astrophysics Data System (ADS)
Barucca, Paolo
2017-06-01
Graph partitioning problems emerge in a wide variety of complex systems, ranging from biology to finance, but can be rigorously analyzed and solved only for a few graph ensembles. Here, an ensemble of equitable graphs, i.e., random graphs with a block-regular structure, is studied, for which analytical results can be obtained. In particular, the spectral density of this ensemble is computed exactly for a modular and bipartite structure. Kesten-McKay's law for random regular graphs is found analytically to apply also for modular and bipartite structures when blocks are homogeneous. An exact solution to graph partitioning for two equal-sized communities is proposed and verified numerically, and a conjecture on the absence of an efficient recovery detectability transition in equitable graphs is suggested. A final discussion summarizes results and outlines their relevance for the solution of graph partitioning problems in other graph ensembles, in particular for the study of detectability thresholds and resolution limits in stochastic block models.
Online Graph Completion: Multivariate Signal Recovery in Computer Vision.
Kim, Won Hwa; Jalal, Mona; Hwang, Seongjae; Johnson, Sterling C; Singh, Vikas
2017-07-01
The adoption of "human-in-the-loop" paradigms in computer vision and machine learning is leading to various applications where the actual data acquisition (e.g., human supervision) and the underlying inference algorithms are closely interwined. While classical work in active learning provides effective solutions when the learning module involves classification and regression tasks, many practical issues such as partially observed measurements, financial constraints and even additional distributional or structural aspects of the data typically fall outside the scope of this treatment. For instance, with sequential acquisition of partial measurements of data that manifest as a matrix (or tensor), novel strategies for completion (or collaborative filtering) of the remaining entries have only been studied recently. Motivated by vision problems where we seek to annotate a large dataset of images via a crowdsourced platform or alternatively, complement results from a state-of-the-art object detector using human feedback, we study the "completion" problem defined on graphs, where requests for additional measurements must be made sequentially. We design the optimization model in the Fourier domain of the graph describing how ideas based on adaptive submodularity provide algorithms that work well in practice. On a large set of images collected from Imgur, we see promising results on images that are otherwise difficult to categorize. We also show applications to an experimental design problem in neuroimaging.
Oh, Taekjun; Lee, Donghwa; Kim, Hyungjin; Myung, Hyun
2015-01-01
Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping) algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach. PMID:26151203
Causal discovery in the geosciences-Using synthetic data to learn how to interpret results
NASA Astrophysics Data System (ADS)
Ebert-Uphoff, Imme; Deng, Yi
2017-02-01
Causal discovery algorithms based on probabilistic graphical models have recently emerged in geoscience applications for the identification and visualization of dynamical processes. The key idea is to learn the structure of a graphical model from observed spatio-temporal data, thus finding pathways of interactions in the observed physical system. Studying those pathways allows geoscientists to learn subtle details about the underlying dynamical mechanisms governing our planet. Initial studies using this approach on real-world atmospheric data have shown great potential for scientific discovery. However, in these initial studies no ground truth was available, so that the resulting graphs have been evaluated only by whether a domain expert thinks they seemed physically plausible. The lack of ground truth is a typical problem when using causal discovery in the geosciences. Furthermore, while most of the connections found by this method match domain knowledge, we encountered one type of connection for which no explanation was found. To address both of these issues we developed a simulation framework that generates synthetic data of typical atmospheric processes (advection and diffusion). Applying the causal discovery algorithm to the synthetic data allowed us (1) to develop a better understanding of how these physical processes appear in the resulting connectivity graphs, and thus how to better interpret such connectivity graphs when obtained from real-world data; (2) to solve the mystery of the previously unexplained connections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Allan Ray
1987-05-01
Increases in high speed hardware have mandated studies in software techniques to exploit the parallel capabilities. This thesis examines the effects a run-time scheduler has on a multiprocessor. The model consists of directed, acyclic graphs, generated from serial FORTRAN benchmark programs by the parallel compiler Parafrase. A multitasked, multiprogrammed environment is created. Dependencies are generated by the compiler. Tasks are bidimensional, i.e., they may specify both time and processor requests. Processor requests may be folded into execution time by the scheduler. The graphs may arrive at arbitrary time intervals. The general case is NP-hard, thus, a variety of heuristics aremore » examined by a simulator. Multiprogramming demonstrates a greater need for a run-time scheduler than does monoprogramming for a variety of reasons, e.g., greater stress on the processors, a larger number of independent control paths, more variety in the task parameters, etc. The dynamic critical path series of algorithms perform well. Dynamic critical volume did not add much. Unfortunately, dynamic critical path maximizes turnaround time as well as throughput. Two schedulers are presented which balance throughput and turnaround time. The first requires classification of jobs by type; the second requires selection of a ratio value which is dependent upon system parameters. 45 refs., 19 figs., 20 tabs.« less
1991-01-01
critical G’s/# G’s -) 0 as IV(G)I -- oo? References [B1] C. Berge, Regularizable graphs, Ann. Discrete Math ., 3, 1978, 11-19. [B2] _ _, Some common...Springer-Verlag, Berlin, 1980, 108-123. [B3] _ _, Some common properties for regularizable graphs, edge-critical graphs, and B-graphs, Ann. Discrete Math ., 12...graphs - an extension of the K6nig-Egervgiry theorem, Discrete Math ., 27, 1979, 23-33. [ER] M.N Ellingham and G.F. Royle, Well-covered cubic graphs
77 FR 38463 - Issuance of Special Airworthiness Certificates for Light-Sport Category Aircraft
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-28
... standards for LSA design, manufacturing, continued airworthiness, and maintenance. It also made... aviation authorities on any issues affecting the design, production, continued airworthiness, or other... assessment of the special light-sport aircraft (SLSA) manufacturing industry, the FAA is issuing this notice...
49 CFR 172.203 - Additional description requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., TRAINING REQUIREMENTS, AND SECURITY PLANS Shipping Papers § 172.203 Additional description requirements. (a) Special permits. Except as provided in § 173.23 of this subchapter, each shipping paper issued in... to which the special permit applies. Each shipping paper issued in connection with a shipment made...
49 CFR 172.203 - Additional description requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., TRAINING REQUIREMENTS, AND SECURITY PLANS Shipping Papers § 172.203 Additional description requirements. (a) Special permits. Except as provided in § 173.23 of this subchapter, each shipping paper issued in... to which the special permit applies. Each shipping paper issued in connection with a shipment made...
49 CFR 172.203 - Additional description requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., TRAINING REQUIREMENTS, AND SECURITY PLANS Shipping Papers § 172.203 Additional description requirements. (a) Special permits. Except as provided in § 173.23 of this subchapter, each shipping paper issued in... to which the special permit applies. Each shipping paper issued in connection with a shipment made...
49 CFR 172.203 - Additional description requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., TRAINING REQUIREMENTS, AND SECURITY PLANS Shipping Papers § 172.203 Additional description requirements. (a) Special permits. Except as provided in § 173.23 of this subchapter, each shipping paper issued in... to which the special permit applies. Each shipping paper issued in connection with a shipment made...
Commentary: Indigenous Health Special Issue
ERIC Educational Resources Information Center
Tonmyr, Lil; Blackstock, Cindy
2010-01-01
This commentary highlights indigenous public health research from a special issue of the International Journal of Mental Health and Addiction dealing with child maltreatment, mental health, substance abuse and gambling. We focus on the emerging and growing research movement in Indigenous research through three important themes: 1) worldview and…
Special Educational Needs: A Public Issue
ERIC Educational Resources Information Center
Liasidou, Anastasia
2010-01-01
This article explores the contribution of sociological scholarship to understanding and analysing the notions of "special educational needs" and "disability" and the ways in which the two notions have been reconfigured and theorised as "public issues" rather than "personal troubles". Barton's contribution is signified both in terms of his…
Changing the Discourse on "Race" and Special Educational Needs.
ERIC Educational Resources Information Center
Diniz, Fernando Almeida; Usmani, Khushi
2001-01-01
Describes attempts to influence the current discourse on special educational needs in Scotland from an antiracist perspective. Maps the national context, issues, and changing circumstances, then summarizes evidence on the issue presented to the Scottish Parliament. Discusses various research and development projects being undertaken to promote…
Special Issue on Clinical Supervision: A Reflection
ERIC Educational Resources Information Center
Bernard, Janine M.
2010-01-01
This special issue about clinical supervision offers an array of contributions with disparate insights into the supervision process. Using a synergy of supervision model, the articles are categorized as addressing the infrastructure required for adequate supervision, the relationship dynamics endemic to supervision, or the process of delivering…
Introduction to the Special Issue on "State-of-the-Art Sensor Technology in Japan 2015".
Tokumitsu, Masahiro; Ishida, Yoshiteru
2016-08-23
This Special Issue, "State-of-the-Art Sensor Technology in Japan 2015", collected papers on different kinds of sensing technology: fundamental technology for intelligent sensors, information processing for monitoring humans, and information processing for adaptive and survivable sensor systems.[...].
Orbital motion (3rd revised and enlarged edition)
NASA Astrophysics Data System (ADS)
Roy, A. E.
The fundamental principles of celestial mechanics are discussed in an introduction for students of astronomy, aerospace engineering, and geography. Chapters are devoted to the dynamic structure of the universe, coordinate and timekeeping systems, the reduction of observational data, the two-body problem, the many-body problem, general and special perturbations, and the stability and evolution of the solar system. Consideration is given to lunar theory, artificial satellites, rocket dynamics and transfer orbits, interplanetary and lunar trajectories, orbit determination and interplanetary navigation, binaries and other few-body systems, and many-body systems of stars. Diagrams, graphs, tables, and problems with solutions are provided.
Coverage Maximization Using Dynamic Taint Tracing
2007-03-28
we do not have source code are handled, incompletely, via models of taint transfer. We use a little language to specify how taint transfers across a...n) 2.3.7 Implementation and Runtime Issues The taint graph instrumentation is a 2K line Ocaml module extending CIL and is supported by 5K lines of...modern scripting languages such as Ruby have taint modes that work similarly; however, all propagate taint at the variable rather than the byte level and
ERIC Educational Resources Information Center
Jurs, Stephen; And Others
The scree test and its linear regression technique are reviewed, and results of its use in factor analysis and Delphi data sets are described. The scree test was originally a visual approach for making judgments about eigenvalues, which considered the relationships of the eigenvalues to one another as well as their actual values. The graph that is…
A rederivation of the conformal anomaly for spin-{\\frac{1}{2}}
NASA Astrophysics Data System (ADS)
Godazgar, Hadi; Nicolai, Hermann
2018-05-01
We rederive the conformal anomaly for spin- fermions by a genuine Feynman graph calculation, which has not been available so far. Although our calculation merely confirms a result that has been known for a long time, the derivation is new, and thus furnishes a method to investigate more complicated cases (in particular concerning the significance of the quantum trace of the stress tensor in non-conformal theories) where there remain several outstanding and unresolved issues.
Multi-level Operational C2 Holonic Reference Architecture Modeling for MHQ with MOC
2009-06-01
x), x(k), uj(k)) is defined as the task success probability, based on the asset allocation and task execution activities at the tactical level...on outcomes of asset- task allocation at the tactical level. We employ semi-Markov decision process (SMDP) approach to decide on missions to be...AGA) graph for addressing the mission monitoring/ planning issues related to task sequencing and asset allocation at the OLC-TLC layer (coordination
Study of Chromatic parameters of Line, Total, Middle graphs and Graph operators of Bipartite graph
NASA Astrophysics Data System (ADS)
Nagarathinam, R.; Parvathi, N.
2018-04-01
Chromatic parameters have been explored on the basis of graph coloring process in which a couple of adjacent nodes receives different colors. But the Grundy and b-coloring executes maximum colors under certain restrictions. In this paper, Chromatic, b-chromatic and Grundy number of some graph operators of bipartite graph has been investigat
DOE Office of Scientific and Technical Information (OSTI.GOV)
2010-09-30
The Umbra gbs (Graph-Based Search) library provides implementations of graph-based search/planning algorithms that can be applied to legacy graph data structures. Unlike some other graph algorithm libraries, this one does not require your graph class to inherit from a specific base class. Implementations of Dijkstra's Algorithm and A-Star search are included and can be used with graphs that are lazily-constructed.
Information visualisation based on graph models
NASA Astrophysics Data System (ADS)
Kasyanov, V. N.; Kasyanova, E. V.
2013-05-01
Information visualisation is a key component of support tools for many applications in science and engineering. A graph is an abstract structure that is widely used to model information for its visualisation. In this paper, we consider practical and general graph formalism called hierarchical graphs and present the Higres and Visual Graph systems aimed at supporting information visualisation on the base of hierarchical graph models.
ERIC Educational Resources Information Center
van Eijck, Michiel; Goedhart, Martin J.; Ellermeijer, Ton
2011-01-01
Polysemy in graph-related practices is the phenomenon that a single graph can sustain different meanings assigned to it. Considerable research has been done on polysemy in graph-related practices in school science in which graphs are rather used as scientific tools. However, graphs in science textbooks are also used rather pedagogically to…
Lamplighter groups, de Brujin graphs, spider-web graphs and their spectra
NASA Astrophysics Data System (ADS)
Grigorchuk, R.; Leemann, P.-H.; Nagnibeda, T.
2016-05-01
We study the infinite family of spider-web graphs \\{{{ S }}k,N,M\\}, k≥slant 2, N≥slant 0 and M≥slant 1, initiated in the 50s in the context of network theory. It was later shown in physical literature that these graphs have remarkable percolation and spectral properties. We provide a mathematical explanation of these properties by putting the spider-web graphs in the context of group theory and algebraic graph theory. Namely, we realize them as tensor products of the well-known de Bruijn graphs \\{{{ B }}k,N\\} with cyclic graphs \\{{C}M\\} and show that these graphs are described by the action of the lamplighter group {{ L }}k={Z}/k{Z}\\wr {Z} on the infinite binary tree. Our main result is the identification of the infinite limit of \\{{{ S }}k,N,M\\}, as N,M\\to ∞ , with the Cayley graph of the lamplighter group {{ L }}k which, in turn, is one of the famous Diestel-Leader graphs {{DL}}k,k. As an application we compute the spectra of all spider-web graphs and show their convergence to the discrete spectral distribution associated with the Laplacian on the lamplighter group.
Image/video understanding systems based on network-symbolic models
NASA Astrophysics Data System (ADS)
Kuvich, Gary
2004-03-01
Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolve ambiguity and uncertainty via feedback projections, and provide image understanding that is an interpretation of visual information in terms of such knowledge models. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/network models is found. Symbols, predicates and grammars naturally emerge in such networks, and logic is simply a way of restructuring such models. Brain analyzes an image as a graph-type relational structure created via multilevel hierarchical compression of visual information. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. Spatial logic and topology naturally present in such structures. Mid-level vision processes like perceptual grouping, separation of figure from ground, are special kinds of network transformations. They convert primary image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena are results of such analysis. Composition of network-symbolic models combines learning, classification, and analogy together with higher-level model-based reasoning into a single framework, and it works similar to frames and agents. Computational intelligence methods transform images into model-based knowledge representation. Based on such principles, an Image/Video Understanding system can convert images into the knowledge models, and resolve uncertainty and ambiguity. This allows creating intelligent computer vision systems for design and manufacturing.
Biometric Subject Verification Based on Electrocardiographic Signals
NASA Technical Reports Server (NTRS)
Dusan, Sorin V. (Inventor); Jorgensen, Charles C. (Inventor)
2014-01-01
A method of authenticating or declining to authenticate an asserted identity of a candidate-person. In an enrollment phase, a reference PQRST heart action graph is provided or constructed from information obtained from a plurality of graphs that resemble each other for a known reference person, using a first graph comparison metric. In a verification phase, a candidate-person asserts his/her identity and presents a plurality of his/her heart cycle graphs. If a sufficient number of the candidate-person's measured graphs resemble each other, a representative composite graph is constructed from the candidate-person's graphs and is compared with a composite reference graph, for the person whose identity is asserted, using a second graph comparison metric. When the second metric value lies in a selected range, the candidate-person's assertion of identity is accepted.
EvoGraph: On-The-Fly Efficient Mining of Evolving Graphs on GPU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Dipanjan; Song, Shuaiwen
With the prevalence of the World Wide Web and social networks, there has been a growing interest in high performance analytics for constantly-evolving dynamic graphs. Modern GPUs provide massive AQ1 amount of parallelism for efficient graph processing, but the challenges remain due to their lack of support for the near real-time streaming nature of dynamic graphs. Specifically, due to the current high volume and velocity of graph data combined with the complexity of user queries, traditional processing methods by first storing the updates and then repeatedly running static graph analytics on a sequence of versions or snapshots are deemed undesirablemore » and computational infeasible on GPU. We present EvoGraph, a highly efficient and scalable GPU- based dynamic graph analytics framework.« less