Sample records for special numerical techniques

  1. Editing of EIA coded, numerically controlled, machine tool tapes

    NASA Technical Reports Server (NTRS)

    Weiner, J. M.

    1975-01-01

    Editing of numerically controlled (N/C) machine tool tapes (8-level paper tape) using an interactive graphic display processor is described. A rapid technique required for correcting production errors in N/C tapes was developed using the interactive text editor on the IMLAC PDS-ID graphic display system and two special programs resident on disk. The correction technique and special programs for processing N/C tapes coded to EIA specifications are discussed.

  2. Numerical calculations of turbulent swirling flow

    NASA Technical Reports Server (NTRS)

    Kubo, I.; Gouldin, F. C.

    1974-01-01

    Description of a numerical technique for solving axisymmetric, incompressible, turbulent swirling flow problems. Isothermal flow calculations are presented for a coaxial flow configuration of special interest. The calculation results are discussed in regard to their implications for the design of gas turbine combustors.

  3. FLUX-CORRECTED TRANSPORT TECHNIQUE FOR OPEN CHANNEL FLOW. (R825200)

    EPA Science Inventory

    In modeling flow in open channels, the traditional finite difference/finite volume schemes become inefficient and warrant special numerical treatment in the presence of shocks and discontinuities. The numerical oscillations that arise by making use of a second- and higher-order s...

  4. Riemann Solvers in Relativistic Hydrodynamics: Basics and Astrophysical Applications

    NASA Astrophysics Data System (ADS)

    Ibanez, Jose M.

    2001-12-01

    My contribution to these proceedings summarizes a general overview on t High Resolution Shock Capturing methods (HRSC) in the field of relativistic hydrodynamics with special emphasis on Riemann solvers. HRSC techniques achieve highly accurate numerical approximations (formally second order or better) in smooth regions of the flow, and capture the motion of unresolved steep gradients without creating spurious oscillations. In the first part I will show how these techniques have been extended to relativistic hydrodynamics, making it possible to explore some challenging astrophysical scenarios. I will review recent literature concerning the main properties of different special relativistic Riemann solvers, and discuss several 1D and 2D test problems which are commonly used to evaluate the performance of numerical methods in relativistic hydrodynamics. In the second part I will illustrate the use of HRSC methods in several astrophysical applications where special and general relativistic hydrodynamical processes play a crucial role.

  5. A direct Primitive Variable Recovery Scheme for hyperbolic conservative equations: The case of relativistic hydrodynamics.

    PubMed

    Aguayo-Ortiz, A; Mendoza, S; Olvera, D

    2018-01-01

    In this article we develop a Primitive Variable Recovery Scheme (PVRS) to solve any system of coupled differential conservative equations. This method obtains directly the primitive variables applying the chain rule to the time term of the conservative equations. With this, a traditional finite volume method for the flux is applied in order avoid violation of both, the entropy and "Rankine-Hugoniot" jump conditions. The time evolution is then computed using a forward finite difference scheme. This numerical technique evades the recovery of the primitive vector by solving an algebraic system of equations as it is often used and so, it generalises standard techniques to solve these kind of coupled systems. The article is presented bearing in mind special relativistic hydrodynamic numerical schemes with an added pedagogical view in the appendix section in order to easily comprehend the PVRS. We present the convergence of the method for standard shock-tube problems of special relativistic hydrodynamics and a graphical visualisation of the errors using the fluctuations of the numerical values with respect to exact analytic solutions. The PVRS circumvents the sometimes arduous computation that arises from standard numerical methods techniques, which obtain the desired primitive vector solution through an algebraic polynomial of the charges.

  6. A direct Primitive Variable Recovery Scheme for hyperbolic conservative equations: The case of relativistic hydrodynamics

    PubMed Central

    Mendoza, S.; Olvera, D.

    2018-01-01

    In this article we develop a Primitive Variable Recovery Scheme (PVRS) to solve any system of coupled differential conservative equations. This method obtains directly the primitive variables applying the chain rule to the time term of the conservative equations. With this, a traditional finite volume method for the flux is applied in order avoid violation of both, the entropy and “Rankine-Hugoniot” jump conditions. The time evolution is then computed using a forward finite difference scheme. This numerical technique evades the recovery of the primitive vector by solving an algebraic system of equations as it is often used and so, it generalises standard techniques to solve these kind of coupled systems. The article is presented bearing in mind special relativistic hydrodynamic numerical schemes with an added pedagogical view in the appendix section in order to easily comprehend the PVRS. We present the convergence of the method for standard shock-tube problems of special relativistic hydrodynamics and a graphical visualisation of the errors using the fluctuations of the numerical values with respect to exact analytic solutions. The PVRS circumvents the sometimes arduous computation that arises from standard numerical methods techniques, which obtain the desired primitive vector solution through an algebraic polynomial of the charges. PMID:29659602

  7. Topography Modeling in Atmospheric Flows Using the Immersed Boundary Method

    NASA Technical Reports Server (NTRS)

    Ackerman, A. S.; Senocak, I.; Mansour, N. N.; Stevens, D. E.

    2004-01-01

    Numerical simulation of flow over complex geometry needs accurate and efficient computational methods. Different techniques are available to handle complex geometry. The unstructured grid and multi-block body-fitted grid techniques have been widely adopted for complex geometry in engineering applications. In atmospheric applications, terrain fitted single grid techniques have found common use. Although these are very effective techniques, their implementation, coupling with the flow algorithm, and efficient parallelization of the complete method are more involved than a Cartesian grid method. The grid generation can be tedious and one needs to pay special attention in numerics to handle skewed cells for conservation purposes. Researchers have long sought for alternative methods to ease the effort involved in simulating flow over complex geometry.

  8. Temporal and Spatio-Temporal Dynamic Instabilities: Novel Computational and Experimental approaches

    NASA Astrophysics Data System (ADS)

    Doedel, Eusebius J.; Panayotaros, Panayotis; Lambruschini, Carlos L. Pando

    2016-11-01

    This special issue contains a concise account of significant research results presented at the international workshop on Advanced Computational and Experimental Techniques in Nonlinear Dynamics, which was held in Cusco, Peru in August 2015. The meeting gathered leading experts, as well as new researchers, who have contributed to different aspects of Nonlinear Dynamics. Particularly significant was the presence of many active scientists from Latin America. The topics covered in this special issue range from advanced numerical techniques to novel physical experiments, and reflect the present state of the art in several areas of Nonlinear Dynamics. It contains seven review articles, followed by twenty-one regular papers that are organized in five categories, namely (1) Nonlinear Evolution Equations and Applications, (2) Numerical Continuation in Self-sustained Oscillators, (3) Synchronization, Control and Data Analysis, (4) Hamiltonian Systems, and (5) Scaling Properties in Maps.

  9. Parameter estimation in IMEX-trigonometrically fitted methods for the numerical solution of reaction-diffusion problems

    NASA Astrophysics Data System (ADS)

    D'Ambrosio, Raffaele; Moccaldi, Martina; Paternoster, Beatrice

    2018-05-01

    In this paper, an adapted numerical scheme for reaction-diffusion problems generating periodic wavefronts is introduced. Adapted numerical methods for such evolutionary problems are specially tuned to follow prescribed qualitative behaviors of the solutions, making the numerical scheme more accurate and efficient as compared with traditional schemes already known in the literature. Adaptation through the so-called exponential fitting technique leads to methods whose coefficients depend on unknown parameters related to the dynamics and aimed to be numerically computed. Here we propose a strategy for a cheap and accurate estimation of such parameters, which consists essentially in minimizing the leading term of the local truncation error whose expression is provided in a rigorous accuracy analysis. In particular, the presented estimation technique has been applied to a numerical scheme based on combining an adapted finite difference discretization in space with an implicit-explicit time discretization. Numerical experiments confirming the effectiveness of the approach are also provided.

  10. Investigation of deformation of elements of three-dimensional reinforced concrete structures located in the soil, interacting with each other through rubber gaskets

    NASA Astrophysics Data System (ADS)

    Berezhnoi, D. V.; Balafendieva, I. S.; Sachenkov, A. A.; Sekaeva, L. R.

    2017-06-01

    In work the technique of calculation of elements of three-dimensional reinforced concrete substructures located in a soil, interacting with each other through rubber linings is realized. To describe the interaction of deformable structures with the ground, special “semi-infinite” finite elements are used. A technique has been implemented that allows one to describe the contact interaction of three-dimensional structures by means of a special contact finite element with specific properties. The obtained numerical results are compared with the experimental data, their good agreement is noted.

  11. Modern Display Technologies for Airborne Applications.

    DTIC Science & Technology

    1983-04-01

    the case of LED head-down direct view displays, this requires that special attention be paid to the optical filtering , the electrical drive/address...effectively attenuates the LED specular reflectance component, the colour and neutral density filtering attentuate the diffuse component and the... filter techniques are planned for use with video, multi- colour and advanced versions of numeric, alphanumeric and graphic displays; this technique

  12. The NASTRAN theoretical manual

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Designed to accommodate additions and modifications, this commentary on NASTRAN describes the problem solving capabilities of the program in a narrative fashion and presents developments of the analytical and numerical procedures that underlie the program. Seventeen major sections and numerous subsections cover; the organizational aspects of the program, utility matrix routines, static structural analysis, heat transfer, dynamic structural analysis, computer graphics, special structural modeling techniques, error analysis, interaction between structures and fluids, and aeroelastic analysis.

  13. Nucleon-nucleon interactions via Lattice QCD: Methodology. HAL QCD approach to extract hadronic interactions in lattice QCD

    NASA Astrophysics Data System (ADS)

    Aoki, Sinya

    2013-07-01

    We review the potential method in lattice QCD, which has recently been proposed to extract nucleon-nucleon interactions via numerical simulations. We focus on the methodology of this approach by emphasizing the strategy of the potential method, the theoretical foundation behind it, and special numerical techniques. We compare the potential method with the standard finite volume method in lattice QCD, in order to make pros and cons of the approach clear. We also present several numerical results for nucleon-nucleon potentials.

  14. Nonequilibrium flow computations. 1: An analysis of numerical formulations of conservation laws

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Vinokur, Marcel

    1988-01-01

    Modern numerical techniques employing properties of flux Jacobian matrices are extended to general, nonequilibrium flows. Generalizations of the Beam-Warming scheme, Steger-Warming and van Leer Flux-vector splittings, and Roe's approximate Riemann solver are presented for 3-D, time-varying grids. The analysis is based on a thermodynamic model that includes the most general thermal and chemical nonequilibrium flow of an arbitrary gas. Various special cases are also discussed.

  15. Numerical solution of special ultra-relativistic Euler equations using central upwind scheme

    NASA Astrophysics Data System (ADS)

    Ghaffar, Tayabia; Yousaf, Muhammad; Qamar, Shamsul

    2018-06-01

    This article is concerned with the numerical approximation of one and two-dimensional special ultra-relativistic Euler equations. The governing equations are coupled first-order nonlinear hyperbolic partial differential equations. These equations describe perfect fluid flow in terms of the particle density, the four-velocity and the pressure. A high-resolution shock-capturing central upwind scheme is employed to solve the model equations. To avoid excessive numerical diffusion, the considered scheme avails the specific information of local propagation speeds. By using Runge-Kutta time stepping method and MUSCL-type initial reconstruction, we have obtained 2nd order accuracy of the proposed scheme. After discussing the model equations and the numerical technique, several 1D and 2D test problems are investigated. For all the numerical test cases, our proposed scheme demonstrates very good agreement with the results obtained by well-established algorithms, even in the case of highly relativistic 2D test problems. For validation and comparison, the staggered central scheme and the kinetic flux-vector splitting (KFVS) method are also implemented to the same model. The robustness and efficiency of central upwind scheme is demonstrated by the numerical results.

  16. Swirling flow in a model of the carotid artery: Numerical and experimental study

    NASA Astrophysics Data System (ADS)

    Kotmakova, Anna A.; Gataulin, Yakov A.; Yukhnev, Andrey D.

    2018-05-01

    The present contribution is aimed at numerical and experimental study of inlet swirling flow in a model of the carotid artery. Flow visualization is performed both with the ultrasound color Doppler imaging mode and with CFD data postprocessing of swirling flows in a carotid artery model. Special attention is paid to obtaining data for the secondary motion in the internal carotid artery. Principal errors of the measurement technique developed are estimated using the results of flow calculations.

  17. Numerical simulation of an elastic structure behavior under transient fluid flow excitation

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Irina N.; Lantsova, Irina Yu.

    2017-01-01

    This paper deals with the verification of a numerical technique of modeling fluid-structure interaction (FSI) problems. The configuration consists of incompressible viscous fluid around an elastic structure in the channel. External flow is laminar. Multivariate calculations are performed using special software ANSYS CFX and ANSYS Mechanical. Different types of parameters of mesh deformation and solver controls (time step, under relaxation factor, number of iterations at coupling step) were tested. The results are presented in tables and plots in comparison with reference data.

  18. Production and manipulation of bovine embryos: techniques and terminology.

    PubMed

    Machaty, Z; Peippo, J; Peter, A

    2012-09-15

    There are numerous publications regarding bovine embryos, ranging from descriptions of their appearance and development to emerging techniques in the field of assisted reproductive technology. Concurrently, several specialized terms have been developed to describe the bovine embryo. The purpose of the current review is two-fold; it is primarily to describe techniques involved in the in vivo and in vitro production of bovine embryos and their manipulation, and secondarily to summarize specialized terms used in these processes. The intention is not to review these techniques in detail, but instead to provide salient points and current knowledge regarding these techniques, with a focus on terminology. The first review dealt with classical and contemporary terminology used to describe morphologic aspects of ovarian dynamics in cattle. Subsequently, the terms and current understanding of processes involved in preattachment bovine embryos were described in the second review. As the third article in a series, this mini-review is focused on defining the production, manipulation, and transfer of bovine preattachment embryos. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. New Techniques in Numerical Analysis and Their Application to Aerospace Systems.

    DTIC Science & Technology

    1979-01-01

    employment of the sequential gradient-restoration algorithm and the modified quasilineari- zation algorithm in some problems of structural analysis (Refs. 6...and a state inequa - lity constraint. The state inequality constraint is of a special type, namely, it is linear in some or all of the com- ponents of

  20. NSWC Library of Mathematics Subroutines

    DTIC Science & Technology

    1990-01-01

    sufficiently many zero elements for it to be worthwhile to use special techniques that avoid storing and operating with the zeros.U The scheme adopted by the... general purpose numerical mathematics subroutines began. The subroutines are written in ANSI standard Fortran. This manual describes the subroutines in...PLCOPYDPCOPY ............ ...................... 113 Addition of Polynomials - PADD ,DPADD ............. .................. I.... 115 Subtraction of

  1. Global Journal of Computer Science and Technology. Volume 9, Issue 5 (Ver. 2.0)

    ERIC Educational Resources Information Center

    Dixit, R. K.

    2010-01-01

    This is a special issue published in version 1.0 of "Global Journal of Computer Science and Technology." Articles in this issue include: (1) [Theta] Scheme (Orthogonal Milstein Scheme), a Better Numerical Approximation for Multi-dimensional SDEs (Klaus Schmitz Abe); (2) Input Data Processing Techniques in Intrusion Detection…

  2. High-order cyclo-difference techniques: An alternative to finite differences

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Otto, John C.

    1993-01-01

    The summation-by-parts energy norm is used to establish a new class of high-order finite-difference techniques referred to here as 'cyclo-difference' techniques. These techniques are constructed cyclically from stable subelements, and require no numerical boundary conditions; when coupled with the simultaneous approximation term (SAT) boundary treatment, they are time asymptotically stable for an arbitrary hyperbolic system. These techniques are similar to spectral element techniques and are ideally suited for parallel implementation, but do not require special collocation points or orthogonal basis functions. The principal focus is on methods of sixth-order formal accuracy or less; however, these methods could be extended in principle to any arbitrary order of accuracy.

  3. Randomized Controlled Trial of a Special Acupuncture Technique for Pain after Thoracotomy

    PubMed Central

    Deng, Gary; Rusch, Valerie; Vickers, Andrew; Malhortra, Vivek; Ginex, Pamela; Downey, Robert; Bains, Manjit; Park, Bernard; Rizk, Nabil; Flores, Raja; Yeung, Simon; Cassileth, Barrie

    2009-01-01

    Objective To determine whether an acupuncture technique specially developed for a surgical oncology population (intervention) reduces pain or analgesic use after thoracotomy compared to a sham acupuncture technique (control). Methods One hundred and sixty two cancer patients undergoing thoracotomy were randomized to group A) preoperative implantation of small intradermal needles which were retained for 4 weeks or B) preoperative placement of sham needles at the same schedule. Numerical Rating Scale (NRS) of pain and total opioid use we evaluated during the in-patient stay; Brief Pain Inventory (BPI) and Medication Quantification Scale (MQS) were evaluated after discharge up to 3 months after the surgery. Results The principal analysis, a comparison of BPI pain intensity scores at the 30 day follow-up, showed no significant difference between the intervention and control group. Pain scores were marginally higher in the intervention group 0.05 (95% C.I.: 0.74, -0.64; p=0.9). There were also no statistically significant differences between groups for secondary endpoints, including chronic pain assessments at 60 and 90 days, in-patient pain, and medication use in hospital and after discharge. Conclusion A special acupuncture technique as provided in this study did not reduce pain or use of pain medication after thoracotomy more than a sham technique. PMID:19114190

  4. Laboratory techniques and rhythmometry

    NASA Technical Reports Server (NTRS)

    Halberg, F.

    1973-01-01

    Some of the procedures used for the analysis of rhythms are illustrated, notably as these apply to current medical and biological practice. For a quantitative approach to medical and broader socio-ecologic goals, the chronobiologist gathers numerical objective reference standards for rhythmic biophysical, biochemical, and behavioral variables. These biological reference standards can be derived by specialized computer analyses of largely self-measured (until eventually automatically recorded) time series (autorhythmometry). Objective numerical values for individual and population parameters of reproductive cycles can be obtained concomitantly with characteristics of about-yearly (circannual), about-daily (circadian) and other rhythms.

  5. Verification of Numerical Solutions for the Deployment of the Highly Nonlinear MARSIS Antenna Boom Lenticular Joints

    NASA Technical Reports Server (NTRS)

    Adams, Douglas S.; Wu, Shih-Chin

    2006-01-01

    The MARSIS antenna booms are constructed using lenticular hinges between straight boom segments in a novel design which allows the booms to be extremely lightweight while retaining a high stiffness and well defined structural properties once they are deployed. Lenticular hinges are elegant in form but are complicated to model as they deploy dynamically and require highly specialized nonlinear techniques founded on carefully measured mechanical properties. Results from component level testing were incorporated into a highly specialized ADAMS model which employed an automated damping algorithm to account for the discontinuous boom lengths formed during the deployment. Additional models with more limited capabilities were also developed in both DADS and ABAQUS to verify the ADAMS model computations and to help better define the numerical behavior of the models at the component and system levels. A careful comparison is made between the ADAMS and DADS models in a series of progressive steps in order to verify their numerical results. Different trade studies considered in the model development are outlined to demonstrate a suitable level of model fidelity. Some model sensitivities to various parameters are explored using subscale and full system models. Finally, some full system DADS models are exercised to illustrate the limitations of traditional modeling techniques for variable geometry systems which were overcome in the ADAMS model.

  6. Rapid execution of fan beam image reconstruction algorithms using efficient computational techniques and special-purpose processors

    NASA Astrophysics Data System (ADS)

    Gilbert, B. K.; Robb, R. A.; Chu, A.; Kenue, S. K.; Lent, A. H.; Swartzlander, E. E., Jr.

    1981-02-01

    Rapid advances during the past ten years of several forms of computer-assisted tomography (CT) have resulted in the development of numerous algorithms to convert raw projection data into cross-sectional images. These reconstruction algorithms are either 'iterative,' in which a large matrix algebraic equation is solved by successive approximation techniques; or 'closed form'. Continuing evolution of the closed form algorithms has allowed the newest versions to produce excellent reconstructed images in most applications. This paper will review several computer software and special-purpose digital hardware implementations of closed form algorithms, either proposed during the past several years by a number of workers or actually implemented in commercial or research CT scanners. The discussion will also cover a number of recently investigated algorithmic modifications which reduce the amount of computation required to execute the reconstruction process, as well as several new special-purpose digital hardware implementations under development in laboratories at the Mayo Clinic.

  7. Studying Turbulence Using Numerical Simulation Databases, 2. Proceedings of the 1988 Summer Program

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The focus of the program was on the use of direct numerical simulations of turbulent flow for study of turbulence physics and modeling. A special interest was placed on turbulent mixing layers. The required data for these investigations were generated from four newly developed codes for simulation of time and spatially developing incompressible and compressible mixing layers. Also of interest were the structure of wall bounded turbulent and transitional flows, evaluation of diagnostic techniques for detection of organized motions, energy transfer in isotropic turbulence, optical propagation through turbulent media, and detailed analysis of the interaction of vortical structures.

  8. A study of optical scattering methods in laboratory plasma diagnosis

    NASA Technical Reports Server (NTRS)

    Phipps, C. R., Jr.

    1972-01-01

    Electron velocity distributions are deduced along axes parallel and perpendicular to the magnetic field in a pulsed, linear Penning discharge in hydrogen by means of a laser Thomson scattering experiment. Results obtained are numerical averages of many individual measurements made at specific space-time points in the plasma evolution. Because of the high resolution in k-space and the relatively low maximum electron density 2 x 10 to the 13th power/cu cm, special techniques were required to obtain measurable scattering signals. These techniques are discussed and experimental results are presented.

  9. Optical design applications for enhanced illumination performance

    NASA Astrophysics Data System (ADS)

    Gilray, Carl; Lewin, Ian

    1995-08-01

    Nonimaging optical design techniques have been applied in the illumination industry for many years. Recently however, powerful software has been developed which allows accurate simulation and optimization of illumination devices. Wide experience has been obtained in using such design techniques for practical situations. These include automotive lighting where safety is of greatest importance, commercial lighting systems designed for energy efficiency, and numerous specialized applications. This presentation will discuss the performance requirements of a variety of illumination devices. It will further cover design methodology and present a variety of examples of practical applications for enhanced system performance.

  10. Geodynamics for Everyone: Robust Finite-Difference Heat Transfer Models using MS Excel 2007 Spreadsheets

    NASA Astrophysics Data System (ADS)

    Grose, C. J.

    2008-05-01

    Numerical geodynamics models of heat transfer are typically thought of as specialized topics of research requiring knowledge of specialized modelling software, linux platforms, and state-of-the-art finite-element codes. I have implemented analytical and numerical finite-difference techniques with Microsoft Excel 2007 spreadsheets to solve for complex solid-earth heat transfer problems for use by students, teachers, and practicing scientists without specialty in geodynamics modelling techniques and applications. While implementation of equations for use in Excel spreadsheets is occasionally cumbersome, once case boundary structure and node equations are developed, spreadsheet manipulation becomes routine. Model experimentation by modifying parameter values, geometry, and grid resolution makes Excel a useful tool whether in the classroom at the undergraduate or graduate level or for more engaging student projects. Furthermore, the ability to incorporate complex geometries and heat-transfer characteristics makes it ideal for first and occasionally higher order geodynamics simulations to better understand and constrain the results of professional field research in a setting that does not require the constraints of state-of-the-art modelling codes. The straightforward expression and manipulation of model equations in excel can also serve as a medium to better understand the confusing notations of advanced mathematical problems. To illustrate the power and robustness of computation and visualization in spreadsheet models I focus primarily on one-dimensional analytical and two-dimensional numerical solutions to two case problems: (i) the cooling of oceanic lithosphere and (ii) temperatures within subducting slabs. Excel source documents will be made available.

  11. Hydroforming Of Patchwork Blanks — Numerical Modeling And Experimental Validation

    NASA Astrophysics Data System (ADS)

    Lamprecht, Klaus; Merklein, Marion; Geiger, Manfred

    2005-08-01

    In comparison to the commonly applied technology of tailored blanks the concept of patchwork blanks offers a number of additional advantages. Potential application areas for patchwork blanks in automotive industry are e.g. local reinforcements of automotive closures, structural reinforcements of rails and pillars as well as shock towers. But even if there is a significant application potential for patchwork blanks in automobile production, industrial realization of this innovative technique is decelerated due to a lack of knowledge regarding the forming behavior and the numerical modeling of patchwork blanks. Especially for the numerical simulation of hydroforming processes, where one part of the forming tool is replaced by a fluid under pressure, advanced modeling techniques are required to ensure an accurate prediction of the blanks' forming behavior. The objective of this contribution is to provide an appropriate model for the numerical simulation of patchwork blanks' forming processes. Therefore, different finite element modeling techniques for patchwork blanks are presented. In addition to basic shell element models a combined finite element model consisting of shell and solid elements is defined. Special emphasis is placed on the modeling of the weld seam. For this purpose the local mechanical properties of the weld metal, which have been determined by means of Martens-hardness measurements and uniaxial tensile tests, are integrated in the finite element models. The results obtained from the numerical simulations are compared to experimental data from a hydraulic bulge test. In this context the focus is laid on laser- and spot-welded patchwork blanks.

  12. Detection of symmetric homoclinic orbits to saddle-centres in reversible systems

    NASA Astrophysics Data System (ADS)

    Yagasaki, Kazuyuki; Wagenknecht, Thomas

    2006-02-01

    We present a perturbation technique for the detection of symmetric homoclinic orbits to saddle-centre equilibria in reversible systems of ordinary differential equations. We assume that the unperturbed system has primary, symmetric homoclinic orbits, which may be either isolated or appear in a family, and use an idea similar to that of Melnikov’s method to detect homoclinic orbits in their neighbourhood. This technique also allows us to identify bifurcations of unperturbed or perturbed, symmetric homoclinic orbits. Our technique is of importance in applications such as nonlinear optics and water waves since homoclinic orbits to saddle-centre equilibria describe embedded solitons (ESs) in systems of partial differential equations representing physical models, and except for special cases their existence has been previously studied only numerically using shooting methods and continuation techniques. We apply the general theory to two examples, a four-dimensional system describing ESs in nonlinear optical media and a six-dimensional system which can possess a one-parameter family of symmetric homoclinic orbits in the unperturbed case. For these examples, the analysis is compared with numerical computations and an excellent agreement between both results is found.

  13. Computational approach to Thornley's problem by bivariate operational calculus

    NASA Astrophysics Data System (ADS)

    Bazhlekova, E.; Dimovski, I.

    2012-10-01

    Thornley's problem is an initial-boundary value problem with a nonlocal boundary condition for linear onedimensional reaction-diffusion equation, used as a mathematical model of spiral phyllotaxis in botany. Applying a bivariate operational calculus we find explicit representation of the solution, containing two convolution products of special solutions and the arbitrary initial and boundary functions. We use a non-classical convolution with respect to the space variable, extending in this way the classical Duhamel principle. The special solutions involved are represented in the form of fast convergent series. Numerical examples are considered to show the application of the present technique and to analyze the character of the solution.

  14. Superhydrophobic Natural and Artificial Surfaces—A Structural Approach

    PubMed Central

    Avrămescu, Roxana-Elena; Ghica, Mihaela Violeta; Dinu-Pîrvu, Cristina; Prisada, Răzvan; Popa, Lăcrămioara

    2018-01-01

    Since ancient times humans observed animal and plants features and tried to adapt them according to their own needs. Biomimetics represents the foundation of many inventions from various fields: From transportation devices (helicopter, airplane, submarine) and flying techniques, to sports’ wear industry (swimming suits, scuba diving gear, Velcro closure system), bullet proof vests made from Kevlar etc. It is true that nature provides numerous noteworthy models (shark skin, spider web, lotus leaves), referring both to the plant and animal kingdom. This review paper summarizes a few of “nature’s interventions” in human evolution, regarding understanding of surface wettability and development of innovative special surfaces. Empirical models are described in order to reveal the science behind special wettable surfaces (superhydrophobic /superhydrophilic). Materials and methods used in order to artificially obtain special wettable surfaces are described in correlation with plants’ and animals’ unique features. Emphasis is placed on joining superhydrophobic and superhydrophilic surfaces, with important applications in cell culturing, microorganism isolation/separation and molecule screening techniques. Bio-inspired wettability is presented as a constitutive part of traditional devices/systems, intended to improve their characteristics and extend performances. PMID:29789488

  15. Superhydrophobic Natural and Artificial Surfaces-A Structural Approach.

    PubMed

    Avrămescu, Roxana-Elena; Ghica, Mihaela Violeta; Dinu-Pîrvu, Cristina; Prisada, Răzvan; Popa, Lăcrămioara

    2018-05-22

    Since ancient times humans observed animal and plants features and tried to adapt them according to their own needs. Biomimetics represents the foundation of many inventions from various fields: From transportation devices (helicopter, airplane, submarine) and flying techniques, to sports' wear industry (swimming suits, scuba diving gear, Velcro closure system), bullet proof vests made from Kevlar etc. It is true that nature provides numerous noteworthy models (shark skin, spider web, lotus leaves), referring both to the plant and animal kingdom. This review paper summarizes a few of "nature's interventions" in human evolution, regarding understanding of surface wettability and development of innovative special surfaces. Empirical models are described in order to reveal the science behind special wettable surfaces (superhydrophobic /superhydrophilic). Materials and methods used in order to artificially obtain special wettable surfaces are described in correlation with plants' and animals' unique features. Emphasis is placed on joining superhydrophobic and superhydrophilic surfaces, with important applications in cell culturing, microorganism isolation/separation and molecule screening techniques. Bio-inspired wettability is presented as a constitutive part of traditional devices/systems, intended to improve their characteristics and extend performances.

  16. Numerical analysis of the photo-injection time-of-flight curves in molecularly doped polymers

    NASA Astrophysics Data System (ADS)

    Tyutnev, A. P.; Ikhsanov, R. Sh.; Saenko, V. S.; Nikerov, D. V.

    2018-03-01

    We have performed numerical analysis of the charge carrier transport in a specific molecularly doped polymer using the multiple trapping model. The computations covered a wide range of applied electric fields, temperatures and most importantly, of the initial energies of photo injected one-sign carriers (in our case, holes). Special attention has been given to comparison of time of flight curves measured by the photo-injection and radiation-induced techniques which has led to a problematic situation concerning an interpretation of the experimental data. Computational results have been compared with both analytical and experimental results available in literature.

  17. On a new iterative method for solving linear systems and comparison results

    NASA Astrophysics Data System (ADS)

    Jing, Yan-Fei; Huang, Ting-Zhu

    2008-10-01

    In Ujevic [A new iterative method for solving linear systems, Appl. Math. Comput. 179 (2006) 725-730], the author obtained a new iterative method for solving linear systems, which can be considered as a modification of the Gauss-Seidel method. In this paper, we show that this is a special case from a point of view of projection techniques. And a different approach is established, which is both theoretically and numerically proven to be better than (at least the same as) Ujevic's. As the presented numerical examples show, in most cases, the convergence rate is more than one and a half that of Ujevic.

  18. Automated optimization techniques for aircraft synthesis

    NASA Technical Reports Server (NTRS)

    Vanderplaats, G. N.

    1976-01-01

    Application of numerical optimization techniques to automated conceptual aircraft design is examined. These methods are shown to be a general and efficient way to obtain quantitative information for evaluating alternative new vehicle projects. Fully automated design is compared with traditional point design methods and time and resource requirements for automated design are given. The NASA Ames Research Center aircraft synthesis program (ACSYNT) is described with special attention to calculation of the weight of a vehicle to fly a specified mission. The ACSYNT procedures for automatically obtaining sensitivity of the design (aircraft weight, performance and cost) to various vehicle, mission, and material technology parameters are presented. Examples are used to demonstrate the efficient application of these techniques.

  19. Guide star targeting success for the HEAO-B observatory

    NASA Technical Reports Server (NTRS)

    Farrenkopf, R. L.; Hoffman, D. P.

    1977-01-01

    The statistics associated with the successful selection and acquisition of guide stars as attitude benchmarks for use in reorientation maneuvers of the HEAO-B observatory are considered as a function of the maneuver angle, initial attitude uncertainties, and the pertinent celestial region. Success likelihoods in excess of 0.99 are predicted assuming anticipated gyro and star tracker error sources. The maneuver technique and guide star selection constraints are described in detail. The results presented are specialized numerically to the HEAO-B observatory. However, the analytical techniques developed are considered applicable to broader classes of spacecraft requiring celestial targeting.

  20. Analytical solutions to time-fractional partial differential equations in a two-dimensional multilayer annulus

    NASA Astrophysics Data System (ADS)

    Chen, Shanzhen; Jiang, Xiaoyun

    2012-08-01

    In this paper, analytical solutions to time-fractional partial differential equations in a multi-layer annulus are presented. The final solutions are obtained in terms of Mittag-Leffler function by using the finite integral transform technique and Laplace transform technique. In addition, the classical diffusion equation (α=1), the Helmholtz equation (α→0) and the wave equation (α=2) are discussed as special cases. Finally, an illustrative example problem for the three-layer semi-circular annular region is solved and numerical results are presented graphically for various kind of order of fractional derivative.

  1. Flow field predictions for a slab delta wing at incidence

    NASA Technical Reports Server (NTRS)

    Conti, R. J.; Thomas, P. D.; Chou, Y. S.

    1972-01-01

    Theoretical results are presented for the structure of the hypersonic flow field of a blunt slab delta wing at moderately high angle of attack. Special attention is devoted to the interaction between the boundary layer and the inviscid entropy layer. The results are compared with experimental data. The three-dimensional inviscid flow is computed numerically by a marching finite difference method. Attention is concentrated on the windward side of the delta wing, where detailed comparisons are made with the data for shock shape and surface pressure distributions. Surface streamlines are generated, and used in the boundary layer analysis. The three-dimensional laminar boundary layer is computed numerically using a specially-developed technique based on small cross-flow in streamline coordinates. In the rear sections of the wing the boundary layer decreases drastically in the spanwise direction, so that it is still submerged in the entropy layer at the centerline, but surpasses it near the leading edge. Predicted heat transfer distributions are compared with experimental data.

  2. MANTRA AND YANTRA IN INDIAN MEDICINE AND ALCHEMY

    PubMed Central

    Rosu, Arion

    1988-01-01

    This paper was presented at the International Workshop on mantras and ritual diagrams in Hinduism, held in Paris, 21-22 June1984. The complete text in French, which appeared in the Journal asiatique 1986, p.203, is based upon an analysis of Ayurvedc literature from ancient times down to the present and of numerous Sanskrit sources concerning he specialized sciences: alchemy and latrochemisry, veterinary medicine as well as agricultural and horticulture techniques. PMID:22557624

  3. Air Force Operational Test and Evaluation Center, Volume 2, Number 2

    DTIC Science & Technology

    1988-01-01

    the special class of attributes arc recorded, cost or In place of the normalization ( I). we propose beliefit. the lollowins normalization NUMERICAL ...comprchcnsi\\c set of modular basic data flow to meet requirements at test tools ,. designed to provide flexible data reduction start, then building to...possible. a totlinaion ot the two position error measurement techniques arc used SLR is a methd of fitting a linear model o accumlulate a position error

  4. High Order Approximations for Compressible Fluid Dynamics on Unstructured and Cartesian Meshes

    NASA Technical Reports Server (NTRS)

    Barth, Timothy (Editor); Deconinck, Herman (Editor)

    1999-01-01

    The development of high-order accurate numerical discretization techniques for irregular domains and meshes is often cited as one of the remaining challenges facing the field of computational fluid dynamics. In structural mechanics, the advantages of high-order finite element approximation are widely recognized. This is especially true when high-order element approximation is combined with element refinement (h-p refinement). In computational fluid dynamics, high-order discretization methods are infrequently used in the computation of compressible fluid flow. The hyperbolic nature of the governing equations and the presence of solution discontinuities makes high-order accuracy difficult to achieve. Consequently, second-order accurate methods are still predominately used in industrial applications even though evidence suggests that high-order methods may offer a way to significantly improve the resolution and accuracy for these calculations. To address this important topic, a special course was jointly organized by the Applied Vehicle Technology Panel of NATO's Research and Technology Organization (RTO), the von Karman Institute for Fluid Dynamics, and the Numerical Aerospace Simulation Division at the NASA Ames Research Center. The NATO RTO sponsored course entitled "Higher Order Discretization Methods in Computational Fluid Dynamics" was held September 14-18, 1998 at the von Karman Institute for Fluid Dynamics in Belgium and September 21-25, 1998 at the NASA Ames Research Center in the United States. During this special course, lecturers from Europe and the United States gave a series of comprehensive lectures on advanced topics related to the high-order numerical discretization of partial differential equations with primary emphasis given to computational fluid dynamics (CFD). Additional consideration was given to topics in computational physics such as the high-order discretization of the Hamilton-Jacobi, Helmholtz, and elasticity equations. This volume consists of five articles prepared by the special course lecturers. These articles should be of particular relevance to those readers with an interest in numerical discretization techniques which generalize to very high-order accuracy. The articles of Professors Abgrall and Shu consider the mathematical formulation of high-order accurate finite volume schemes utilizing essentially non-oscillatory (ENO) and weighted essentially non-oscillatory (WENO) reconstruction together with upwind flux evaluation. These formulations are particularly effective in computing numerical solutions of conservation laws containing solution discontinuities. Careful attention is given by the authors to implementational issues and techniques for improving the overall efficiency of these methods. The article of Professor Cockburn discusses the discontinuous Galerkin finite element method. This method naturally extends to high-order accuracy and has an interpretation as a finite volume method. Cockburn addresses two important issues associated with the discontinuous Galerkin method: controlling spurious extrema near solution discontinuities via "limiting" and the extension to second order advective-diffusive equations (joint work with Shu). The articles of Dr. Henderson and Professor Schwab consider the mathematical formulation and implementation of the h-p finite element methods using hierarchical basis functions and adaptive mesh refinement. These methods are particularly useful in computing high-order accurate solutions containing perturbative layers and corner singularities. Additional flexibility is obtained using a mortar FEM technique whereby nonconforming elements are interfaced together. Numerous examples are given by Henderson applying the h-p FEM method to the simulation of turbulence and turbulence transition.

  5. Algorithms for Performance, Dependability, and Performability Evaluation using Stochastic Activity Networks

    NASA Technical Reports Server (NTRS)

    Deavours, Daniel D.; Qureshi, M. Akber; Sanders, William H.

    1997-01-01

    Modeling tools and technologies are important for aerospace development. At the University of Illinois, we have worked on advancing the state of the art in modeling by Markov reward models in two important areas: reducing the memory necessary to numerically solve systems represented as stochastic activity networks and other stochastic Petri net extensions while still obtaining solutions in a reasonable amount of time, and finding numerically stable and memory-efficient methods to solve for the reward accumulated during a finite mission time. A long standing problem when modeling with high level formalisms such as stochastic activity networks is the so-called state space explosion, where the number of states increases exponentially with size of the high level model. Thus, the corresponding Markov model becomes prohibitively large and solution is constrained by the the size of primary memory. To reduce the memory necessary to numerically solve complex systems, we propose new methods that can tolerate such large state spaces that do not require any special structure in the model (as many other techniques do). First, we develop methods that generate row and columns of the state transition-rate-matrix on-the-fly, eliminating the need to explicitly store the matrix at all. Next, we introduce a new iterative solution method, called modified adaptive Gauss-Seidel, that exhibits locality in its use of data from the state transition-rate-matrix, permitting us to cache portions of the matrix and hence reduce the solution time. Finally, we develop a new memory and computationally efficient technique for Gauss-Seidel based solvers that avoids the need for generating rows of A in order to solve Ax = b. This is a significant performance improvement for on-the-fly methods as well as other recent solution techniques based on Kronecker operators. Taken together, these new results show that one can solve very large models without any special structure.

  6. Time is Money

    NASA Astrophysics Data System (ADS)

    Ausloos, Marcel; Vandewalle, Nicolas; Ivanova, Kristinka

    Specialized topics on financial data analysis from a numerical and physical point of view are discussed when pertaining to the analysis of coherent and random sequences in financial fluctuations within (i) the extended detrended fluctuation analysis method, (ii) multi-affine analysis technique, (iii) mobile average intersection rules and distributions, (iv) sandpile avalanches models for crash prediction, (v) the (m,k)-Zipf method and (vi) the i-variability diagram technique for sorting out short range correlations. The most baffling result that needs further thought from mathematicians and physicists is recalled: the crossing of two mobile averages is an original method for measuring the "signal" roughness exponent, but why it is so is not understood up to now.

  7. Photoacoustic spectroscopy of condensed matter

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.

    1978-01-01

    Photoacoustic spectroscopy is a new analytical tool that provides a simple nondestructive technique for obtaining information about the electronic absorption spectrum of samples such as powders, semisolids, gels, and liquids. It can also be applied to samples which cannot be examined by conventional optical methods. Numerous applications of this technique in the field of inorganic and organic semiconductors, biology, and catalysis have been described. Among the advantages of photoacoustic spectroscopy, the signal is almost insensitive to light scattering by the sample and information can be obtained about nonradiative deactivation processes. Signal saturation, which can modify the intensity of individual absorption bands in special cases, is a drawback of the method.

  8. NanoSPD activity in Ufa and International Cooperation

    NASA Astrophysics Data System (ADS)

    Reshetnikova, N.; Salakhova, M.

    2014-08-01

    This report presents main achievements of R&D activities of the Institute of Physics of Advanced Materials of Ufa State Aviation Technical University (IPAM USATU, Ufa, Russia) with a special attention to innovative potential of nanostructured metals and alloys produced by the severe plastic deformation (SPD) techniques. Several examples of the first promising applications of bulk nanostructured materials (BNM) as well as potential competing technologies are considered and discussed. The authors would like to focus special emphasis on international cooperation in view of numerous emerging projects as well as different conferences and seminars that pave the way to close and fruitful cooperation, working visits and exchange of young scientists. The possibilities of international cooperation through various foundations and programs are considered.

  9. Computational modeling of mediator oxidation by oxygen in an amperometric glucose biosensor.

    PubMed

    Simelevičius, Dainius; Petrauskas, Karolis; Baronas, Romas; Razumienė, Julija

    2014-02-07

    In this paper, an amperometric glucose biosensor is modeled numerically. The model is based on non-stationary reaction-diffusion type equations. The model consists of four layers. An enzyme layer lies directly on a working electrode surface. The enzyme layer is attached to an electrode by a polyvinyl alcohol (PVA) coated terylene membrane. This membrane is modeled as a PVA layer and a terylene layer, which have different diffusivities. The fourth layer of the model is the diffusion layer, which is modeled using the Nernst approach. The system of partial differential equations is solved numerically using the finite difference technique. The operation of the biosensor was analyzed computationally with special emphasis on the biosensor response sensitivity to oxygen when the experiment was carried out in aerobic conditions. Particularly, numerical experiments show that the overall biosensor response sensitivity to oxygen is insignificant. The simulation results qualitatively explain and confirm the experimentally observed biosensor behavior.

  10. Computational Modeling of Mediator Oxidation by Oxygen in an Amperometric Glucose Biosensor

    PubMed Central

    Šimelevičius, Dainius; Petrauskas, Karolis; Baronas, Romas; Julija, Razumienė

    2014-01-01

    In this paper, an amperometric glucose biosensor is modeled numerically. The model is based on non-stationary reaction-diffusion type equations. The model consists of four layers. An enzyme layer lies directly on a working electrode surface. The enzyme layer is attached to an electrode by a polyvinyl alcohol (PVA) coated terylene membrane. This membrane is modeled as a PVA layer and a terylene layer, which have different diffusivities. The fourth layer of the model is the diffusion layer, which is modeled using the Nernst approach. The system of partial differential equations is solved numerically using the finite difference technique. The operation of the biosensor was analyzed computationally with special emphasis on the biosensor response sensitivity to oxygen when the experiment was carried out in aerobic conditions. Particularly, numerical experiments show that the overall biosensor response sensitivity to oxygen is insignificant. The simulation results qualitatively explain and confirm the experimentally observed biosensor behavior. PMID:24514882

  11. Enhancement Of Reading Accuracy By Multiple Data Integration

    NASA Astrophysics Data System (ADS)

    Lee, Kangsuk

    1989-07-01

    In this paper, a multiple sensor integration technique with neural network learning algorithms is presented which can enhance the reading accuracy of the hand-written numerals. Many document reading applications involve hand-written numerals in a predetermined location on a form, and in many cases, critical data is redundantly described. The amount of a personal check is one such case which is written redundantly in numerals and in alphabetical form. Information from two optical character recognition modules, one specialized for digits and one for words, is combined to yield an enhanced recognition of the amount. The combination can be accomplished by a decision tree with "if-then" rules, but by simply fusing two or more sets of sensor data in a single expanded neural net, the same functionality can be expected with a much reduced system cost. Experimental results of fusing two neural nets to enhance overall recognition performance using a controlled data set are presented.

  12. Techniques of orbital decay and long-term ephemeris prediction for satellites in earth orbit

    NASA Technical Reports Server (NTRS)

    Barry, B. F.; Pimm, R. S.; Rowe, C. K.

    1971-01-01

    In the special perturbation method, Cowell and variation-of-parameters formulations of the motion equations are implemented and numerically integrated. Variations in the orbital elements due to drag are computed using the 1970 Jacchia atmospheric density model, which includes the effects of semiannual variations, diurnal bulge, solar activity, and geomagnetic activity. In the general perturbation method, two-variable asymptotic series and automated manipulation capabilities are used to obtain analytical solutions to the variation-of-parameters equations. Solutions are obtained considering the effect of oblateness only and the combined effects of oblateness and drag. These solutions are then numerically evaluated by means of a FORTRAN program in which an updating scheme is used to maintain accurate epoch values of the elements. The atmospheric density function is approximated by a Fourier series in true anomaly, and the 1970 Jacchia model is used to periodically update the Fourier coefficients. The accuracy of both methods is demonstrated by comparing computed orbital elements to actual elements over time spans of up to 8 days for the special perturbation method and up to 356 days for the general perturbation method.

  13. Imaging of the peripheral retina

    PubMed Central

    Kernt, Marcus; Kampik, Anselm

    2013-01-01

    The technical progress of the recent years has revolutionized imaging in ophthalmology. Scanning laser ophthalmoscopy (SLO), digital angiography, optical coherence tomography (OCT), and detection of fundus autofluorescence (FAF) have fundamentally changed our understanding of numerous retinal and choroidal diseases. Besides the tremendous advances in macular diagnostics, there is more and more evidence that central pathologies are often directly linked to changes in the peripheral retina. This review provides a brief overview on current posterior segment imaging techniques with a special focus on the peripheral retina. PMID:24391370

  14. Neural Decoder for Topological Codes

    NASA Astrophysics Data System (ADS)

    Torlai, Giacomo; Melko, Roger G.

    2017-07-01

    We present an algorithm for error correction in topological codes that exploits modern machine learning techniques. Our decoder is constructed from a stochastic neural network called a Boltzmann machine, of the type extensively used in deep learning. We provide a general prescription for the training of the network and a decoding strategy that is applicable to a wide variety of stabilizer codes with very little specialization. We demonstrate the neural decoder numerically on the well-known two-dimensional toric code with phase-flip errors.

  15. Direct numerical simulations of mack-mode damping on porous coated cones

    NASA Astrophysics Data System (ADS)

    Lüdeke, H.; Wartemann, V.

    2013-06-01

    The flow field over a 3 degree blunt cone is investigated with respect to a hypersonic stability analysis of the boundary-layer flow at Mach 6 with porous as well as smooth walls by comparing local direct numerical simulations (DNS) and linear stability theory (LST) data. The original boundary-layer profile is generated by a finite volume solver, using shock capturing techniques to generate an axisymmetric flow field. Local boundary-layer profiles are extracted from this flow field and hypersonic Mack-modes are superimposed for cone-walls with and without a porous surface used as a passive transition-reduction device. Special care is taken of curvature effects of the wall on the mode development over smooth and porous walls.

  16. Numerical modelling of river morphodynamics: Latest developments and remaining challenges

    NASA Astrophysics Data System (ADS)

    Siviglia, Annunziato; Crosato, Alessandra

    2016-07-01

    Numerical morphodynamic models provide scientific frameworks for advancing our understanding of river systems. The research on involved topics is an important and socially relevant undertaking regarding our environment. Nowadays numerical models are used for different purposes, from answering questions about basic morphodynamic research to managing complex river engineering problems. Due to increasing computer power and the development of advanced numerical techniques, morphodynamic models are now more and more used to predict the bed patterns evolution to a broad spectrum of spatial and temporal scales. The development and the success of application of such models are based upon a wide range of disciplines from applied mathematics for the numerical solution of the equations to geomorphology for the physical interpretation of the results. In this light we organized this special issue (SI) soliciting multidisciplinary contributions which encompass any aspect needed for the development and applications of such models. Most of the papers in the SI stem from contributions to session HS9.5/GM7.11 on numerical modelling and experiments in river morphodynamics at the European Geosciences Union (EGU) General Assembly held in Vienna, April 27th to May 2nd 2014.

  17. A successive overrelaxation iterative technique for an adaptive equalizer

    NASA Technical Reports Server (NTRS)

    Kosovych, O. S.

    1973-01-01

    An adaptive strategy for the equalization of pulse-amplitude-modulated signals in the presence of intersymbol interference and additive noise is reported. The successive overrelaxation iterative technique is used as the algorithm for the iterative adjustment of the equalizer coefficents during a training period for the minimization of the mean square error. With 2-cyclic and nonnegative Jacobi matrices substantial improvement is demonstrated in the rate of convergence over the commonly used gradient techniques. The Jacobi theorems are also extended to nonpositive Jacobi matrices. Numerical examples strongly indicate that the improvements obtained for the special cases are possible for general channel characteristics. The technique is analytically demonstrated to decrease the mean square error at each iteration for a large range of parameter values for light or moderate intersymbol interference and for small intervals for general channels. Analytically, convergence of the relaxation algorithm was proven in a noisy environment and the coefficient variance was demonstrated to be bounded.

  18. Weak-value amplification and optimal parameter estimation in the presence of correlated noise

    NASA Astrophysics Data System (ADS)

    Sinclair, Josiah; Hallaji, Matin; Steinberg, Aephraim M.; Tollaksen, Jeff; Jordan, Andrew N.

    2017-11-01

    We analytically and numerically investigate the performance of weak-value amplification (WVA) and related parameter estimation methods in the presence of temporally correlated noise. WVA is a special instance of a general measurement strategy that involves sorting data into separate subsets based on the outcome of a second "partitioning" measurement. Using a simplified correlated noise model that can be analyzed exactly together with optimal statistical estimators, we compare WVA to a conventional measurement method. We find that WVA indeed yields a much lower variance of the parameter of interest than the conventional technique does, optimized in the absence of any partitioning measurements. In contrast, a statistically optimal analysis that employs partitioning measurements, incorporating all partitioned results and their known correlations, is found to yield an improvement—typically slight—over the noise reduction achieved by WVA. This result occurs because the simple WVA technique is not tailored to any specific noise environment and therefore does not make use of correlations between the different partitions. We also compare WVA to traditional background subtraction, a familiar technique where measurement outcomes are partitioned to eliminate unknown offsets or errors in calibration. Surprisingly, for the cases we consider, background subtraction turns out to be a special case of the optimal partitioning approach, possessing a similar typically slight advantage over WVA. These results give deeper insight into the role of partitioning measurements (with or without postselection) in enhancing measurement precision, which some have found puzzling. They also resolve previously made conflicting claims about the usefulness of weak-value amplification to precision measurement in the presence of correlated noise. We finish by presenting numerical results to model a more realistic laboratory situation of time-decaying correlations, showing that our conclusions hold for a wide range of statistical models.

  19. Graphical and PC-software analysis of volcano eruption precursors according to the Materials Failure Forecast Method (FFM)

    NASA Astrophysics Data System (ADS)

    Cornelius, Reinold R.; Voight, Barry

    1995-03-01

    The Materials Failure Forecasting Method for volcanic eruptions (FFM) analyses the rate of precursory phenomena. Time of eruption onset is derived from the time of "failure" implied by accelerating rate of deformation. The approach attempts to fit data, Ω, to the differential relationship Ω¨=AΩ˙, where the dot superscript represents the time derivative, and the data Ω may be any of several parameters describing the accelerating deformation or energy release of the volcanic system. Rate coefficients, A and α, may be derived from appropriate data sets to provide an estimate of time to "failure". As the method is still an experimental technique, it should be used with appropriate judgment during times of volcanic crisis. Limitations of the approach are identified and discussed. Several kinds of eruption precursory phenomena, all simulating accelerating creep during the mechanical deformation of the system, can be used with FFM. Among these are tilt data, slope-distance measurements, crater fault movements and seismicity. The use of seismic coda, seismic amplitude-derived energy release and time-integrated amplitudes or coda lengths are examined. Usage of cumulative coda length directly has some practical advantages to more rigorously derived parameters, and RSAM and SSAM technologies appear to be well suited to real-time applications. One graphical and four numerical techniques of applying FFM are discussed. The graphical technique is based on an inverse representation of rate versus time. For α = 2, the inverse rate plot is linear; it is concave upward for α < 2 and concave downward for α > 2. The eruption time is found by simple extrapolation of the data set toward the time axis. Three numerical techniques are based on linear least-squares fits to linearized data sets. The "linearized least-squares technique" is most robust and is expected to be the most practical numerical technique. This technique is based on an iterative linearization of the given rate-time series. The hindsight technique is disadvantaged by a bias favouring a too early eruption time in foresight applications. The "log rate versus log acceleration technique", utilizing a logarithmic representation of the fundamental differential equation, is disadvantaged by large data scatter after interpolation of accelerations. One further numerical technique, a nonlinear least-squares fit to rate data, requires special and more complex software. PC-oriented computer codes were developed for data manipulation, application of the three linearizing numerical methods, and curve fitting. Separate software is required for graphing purposes. All three linearizing techniques facilitate an eruption window based on a data envelope according to the linear least-squares fit, at a specific level of confidence, and an estimated rate at time of failure.

  20. Radar studies of the atmosphere using spatial and frequency diversity

    NASA Astrophysics Data System (ADS)

    Yu, Tian-You

    This work provides results from a thorough investigation of atmospheric radar imaging including theory, numerical simulations, observational verification, and applications. The theory is generalized to include the existing imaging techniques of coherent radar imaging (CRI) and range imaging (RIM), which are shown to be special cases of three-dimensional imaging (3D Imaging). Mathematically, the problem of atmospheric radar imaging is posed as an inverse problem. In this study, the Fourier, Capon, and maximum entropy (MaxEnt) methods are proposed to solve the inverse problem. After the introduction of the theory, numerical simulations are used to test, validate, and exercise these techniques. Statistical comparisons of the three methods of atmospheric radar imaging are presented for various signal-to-noise ratio (SNR), receiver configuration, and frequency sampling. The MaxEnt method is shown to generally possess the best performance for low SNR. The performance of the Capon method approaches the performance of the MaxEnt method for high SNR. In limited cases, the Capon method actually outperforms the MaxEnt method. The Fourier method generally tends to distort the model structure due to its limited resolution. Experimental justification of CRI and RIM is accomplished using the Middle and Upper (MU) Atmosphere Radar in Japan and the SOUnding SYstem (SOUSY) in Germany, respectively. A special application of CRI to the observation of polar mesosphere summer echoes (PMSE) is used to show direct evidence of wave steepening and possibly explain gravity wave variations associated with PMSE.

  1. Flexible system model reduction and control system design based upon actuator and sensor influence functions

    NASA Technical Reports Server (NTRS)

    Yam, Yeung; Johnson, Timothy L.; Lang, Jeffrey H.

    1987-01-01

    A model reduction technique based on aggregation with respect to sensor and actuator influence functions rather than modes is presented for large systems of coupled second-order differential equations. Perturbation expressions which can predict the effects of spillover on both the reduced-order plant model and the neglected plant model are derived. For the special case of collocated actuators and sensors, these expressions lead to the derivation of constraints on the controller gains that are, given the validity of the perturbation technique, sufficient to guarantee the stability of the closed-loop system. A case study demonstrates the derivation of stabilizing controllers based on the present technique. The use of control and observation synthesis in modifying the dimension of the reduced-order plant model is also discussed. A numerical example is provided for illustration.

  2. Lateral conduction effects on heat-transfer data obtained with the phase-change paint technique

    NASA Technical Reports Server (NTRS)

    Maise, G.; Rossi, M. J.

    1974-01-01

    A computerized tool, CAPE, (Conduction Analysis Program using Eigenvalues) has been developed to account for lateral heat conduction in wind tunnel models in the data reduction of the phase-change paint technique. The tool also accounts for the effects of finite thickness (thin wings) and surface curvature. A special reduction procedure using just one time of melt is also possible on leading edges. A novel iterative numerical scheme was used, with discretized spatial coordinates but analytic integration in time, to solve the inverse conduction problem involved in the data reduction. A yes-no chart is provided which tells the test engineer when various corrections are large enough so that CAPE should be used. The accuracy of the phase-change paint technique in the presence of finite thickness and lateral conduction is also investigated.

  3. Two dimensional fully nonlinear numerical wave tank based on the BEM

    NASA Astrophysics Data System (ADS)

    Sun, Zhe; Pang, Yongjie; Li, Hongwei

    2012-12-01

    The development of a two dimensional numerical wave tank (NWT) with a rocker or piston type wavemaker based on the high order boundary element method (BEM) and mixed Eulerian-Lagrangian (MEL) is examined. The cauchy principle value (CPV) integral is calculated by a special Gauss type quadrature and a change of variable. In addition the explicit truncated Taylor expansion formula is employed in the time-stepping process. A modified double nodes method is assumed to tackle the corner problem, as well as the damping zone technique is used to absorb the propagation of the free surface wave at the end of the tank. A variety of waves are generated by the NWT, for example; a monochromatic wave, solitary wave and irregular wave. The results confirm the NWT model is efficient and stable.

  4. Unsteady magnetohydrodynamics mixed convection flow in a rotating medium with double diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiann, Lim Yeou; Ismail, Zulkhibri; Khan, Ilyas

    2015-05-15

    Exact solutions of an unsteady Magnetohydrodynamics (MHD) flow over an impulsively started vertical plate in a rotating medium are presented. The effects of thermal radiative and thermal diffusion on the fluid flow are also considered. The governing equations are modelled and solved for velocity, temperature and concentration using Laplace transforms technique. Expressions of velocity, temperature and concentration profiles are obtained and their numerical results are presented graphically. Skin friction, Sherwood number and Nusselt number are also computed and presented in tabular forms. The determined solutions can generate a large class of solutions as special cases corresponding to different motions withmore » technical relevance. The results obtained herein may be used to verify the validation of obtained numerical solutions for more complicated fluid flow problems.« less

  5. Advanced Techniques for Seismic Protection of Historical Buildings: Experimental and Numerical Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazzolani, Federico M.

    2008-07-08

    The seismic protection of historical and monumental buildings, namely dating back from the ancient age up to the 20th Century, is being looked at with greater and greater interest, above all in the Euro-Mediterranean area, its cultural heritage being strongly susceptible to undergo severe damage or even collapse due to earthquake. The cultural importance of historical and monumental constructions limits, in many cases, the possibility to upgrade them from the seismic point of view, due to the fear of using intervention techniques which could have detrimental effects on their cultural value. Consequently, a great interest is growing in the developmentmore » of sustainable methodologies for the use of Reversible Mixed Technologies (RMTs) in the seismic protection of the existing constructions. RMTs, in fact, are conceived for exploiting the peculiarities of innovative materials and special devices, and they allow ease of removal when necessary. This paper deals with the experimental and numerical studies, framed within the EC PROHITECH research project, on the application of RMTs to the historical and monumental constructions mainly belonging to the cultural heritage of the Euro-Mediterranean area. The experimental tests and the numerical analyses are carried out at five different levels, namely full scale models, large scale models, sub-systems, devices, materials and elements.« less

  6. Recovery of time-dependent volatility in option pricing model

    NASA Astrophysics Data System (ADS)

    Deng, Zui-Cha; Hon, Y. C.; Isakov, V.

    2016-11-01

    In this paper we investigate an inverse problem of determining the time-dependent volatility from observed market prices of options with different strikes. Due to the non linearity and sparsity of observations, an analytical solution to the problem is generally not available. Numerical approximation is also difficult to obtain using most of the existing numerical algorithms. Based on our recent theoretical results, we apply the linearisation technique to convert the problem into an inverse source problem from which recovery of the unknown volatility function can be achieved. Two kinds of strategies, namely, the integral equation method and the Landweber iterations, are adopted to obtain the stable numerical solution to the inverse problem. Both theoretical analysis and numerical examples confirm that the proposed approaches are effective. The work described in this paper was partially supported by a grant from the Research Grant Council of the Hong Kong Special Administrative Region (Project No. CityU 101112) and grants from the NNSF of China (Nos. 11261029, 11461039), and NSF grants DMS 10-08902 and 15-14886 and by Emylou Keith and Betty Dutcher Distinguished Professorship at the Wichita State University (USA).

  7. Application of Central Upwind Scheme for Solving Special Relativistic Hydrodynamic Equations

    PubMed Central

    Yousaf, Muhammad; Ghaffar, Tayabia; Qamar, Shamsul

    2015-01-01

    The accurate modeling of various features in high energy astrophysical scenarios requires the solution of the Einstein equations together with those of special relativistic hydrodynamics (SRHD). Such models are more complicated than the non-relativistic ones due to the nonlinear relations between the conserved and state variables. A high-resolution shock-capturing central upwind scheme is implemented to solve the given set of equations. The proposed technique uses the precise information of local propagation speeds to avoid the excessive numerical diffusion. The second order accuracy of the scheme is obtained with the use of MUSCL-type initial reconstruction and Runge-Kutta time stepping method. After a discussion of the equations solved and of the techniques employed, a series of one and two-dimensional test problems are carried out. To validate the method and assess its accuracy, the staggered central and the kinetic flux-vector splitting schemes are also applied to the same model. The scheme is robust and efficient. Its results are comparable to those obtained from the sophisticated algorithms, even in the case of highly relativistic two-dimensional test problems. PMID:26070067

  8. Adapted all-numerical correlator for face recognition applications

    NASA Astrophysics Data System (ADS)

    Elbouz, M.; Bouzidi, F.; Alfalou, A.; Brosseau, C.; Leonard, I.; Benkelfat, B.-E.

    2013-03-01

    In this study, we suggest and validate an all-numerical implementation of a VanderLugt correlator which is optimized for face recognition applications. The main goal of this implementation is to take advantage of the benefits (detection, localization, and identification of a target object within a scene) of correlation methods and exploit the reconfigurability of numerical approaches. This technique requires a numerical implementation of the optical Fourier transform. We pay special attention to adapt the correlation filter to this numerical implementation. One main goal of this work is to reduce the size of the filter in order to decrease the memory space required for real time applications. To fulfil this requirement, we code the reference images with 8 bits and study the effect of this coding on the performances of several composite filters (phase-only filter, binary phase-only filter). The saturation effect has for effect to decrease the performances of the correlator for making a decision when filters contain up to nine references. Further, an optimization is proposed based for an optimized segmented composite filter. Based on this approach, we present tests with different faces demonstrating that the above mentioned saturation effect is significantly reduced while minimizing the size of the learning data base.

  9. A limiting analysis for edge effects in angle-ply laminates

    NASA Technical Reports Server (NTRS)

    Hsu, P. W.; Herakovich, C. T.

    1976-01-01

    A zeroth order solution for edge effects in angle ply composite laminates using perturbation techniques and a limiting free body approach was developed. The general method of solution for laminates is developed and then applied to the special case of a graphite/epoxy laminate. Interlaminar stress distributions are obtained as a function of the laminate thickness to width ratio h/b and compared to existing numerical results. The solution predicts stable, continuous stress distributions, determines finite maximum tensile interlaminar normal stress for two laminates, and provides mathematical evidence for singular interlaminar shear stresses.

  10. Treating convection in sequential solvers

    NASA Technical Reports Server (NTRS)

    Shyy, Wei; Thakur, Siddharth

    1992-01-01

    The treatment of the convection terms in the sequential solver, a standard procedure found in virtually all pressure based algorithms, to compute the flow problems with sharp gradients and source terms is investigated. Both scalar model problems and one-dimensional gas dynamics equations have been used to study the various issues involved. Different approaches including the use of nonlinear filtering techniques and adoption of TVD type schemes have been investigated. Special treatments of the source terms such as pressure gradients and heat release have also been devised, yielding insight and improved accuracy of the numerical procedure adopted.

  11. A Survey of Symplectic and Collocation Integration Methods for Orbit Propagation

    NASA Technical Reports Server (NTRS)

    Jones, Brandon A.; Anderson, Rodney L.

    2012-01-01

    Demands on numerical integration algorithms for astrodynamics applications continue to increase. Common methods, like explicit Runge-Kutta, meet the orbit propagation needs of most scenarios, but more specialized scenarios require new techniques to meet both computational efficiency and accuracy needs. This paper provides an extensive survey on the application of symplectic and collocation methods to astrodynamics. Both of these methods benefit from relatively recent theoretical developments, which improve their applicability to artificial satellite orbit propagation. This paper also details their implementation, with several tests demonstrating their advantages and disadvantages.

  12. Numerical Hydrodynamics in Special Relativity.

    PubMed

    Martí, J M; Müller, E

    1999-01-01

    This review is concerned with a discussion of numerical methods for the solution of the equations of special relativistic hydrodynamics (SRHD). Particular emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods in SRHD. Results obtained with different numerical SRHD methods are compared, and two astrophysical applications of SRHD flows are discussed. An evaluation of the various numerical methods is given and future developments are analyzed. Supplementary material is available for this article at 10.12942/lrr-1999-3.

  13. Accuracy Study of the Space-Time CE/SE Method for Computational Aeroacoustics Problems Involving Shock Waves

    NASA Technical Reports Server (NTRS)

    Wang, Xiao Yen; Chang, Sin-Chung; Jorgenson, Philip C. E.

    1999-01-01

    The space-time conservation element and solution element(CE/SE) method is used to study the sound-shock interaction problem. The order of accuracy of numerical schemes is investigated. The linear model problem.govemed by the 1-D scalar convection equation, sound-shock interaction problem governed by the 1-D Euler equations, and the 1-D shock-tube problem which involves moving shock waves and contact surfaces are solved to investigate the order of accuracy of numerical schemes. It is concluded that the accuracy of the CE/SE numerical scheme with designed 2nd-order accuracy becomes 1st order when a moving shock wave exists. However, the absolute error in the CE/SE solution downstream of the shock wave is on the same order as that obtained using a fourth-order accurate essentially nonoscillatory (ENO) scheme. No special techniques are used for either high-frequency low-amplitude waves or shock waves.

  14. The Technique of Special Effects in Television.

    ERIC Educational Resources Information Center

    Wilkie, Bernard

    Television, with its special need for movement and continuous shooting, often demands different special effects techniques from those used in films. This book covers the techniques used to create special effects for television which meet these requirements and which also require less time and money than many film techniques. Included are…

  15. An evaluation of some special techniques for nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Mackay, J. S.

    1973-01-01

    A preliminary examination is reported of several special ways for space disposal of nuclear waste material which utilize the radioactive heat in the waste to assist in the propulsion for deep space trajectories. These include use of the wastes in a thermoelectric generator (RTG) which operates an electric propulsion device and a radioisotope - thermal thruster which uses hydrogen or ammonia as the propellant. These propulsive devices are compared to the space tug and the space tug/solar electric propulsion combination for disposal of waste on a solar system escape trajectory. Such comparisons indicate that the waste-RTG approach has considerable potential provided the combined specific mass of the waste container - RTG system does not exceed approximately 150 kg/kw sub e. Several exploratory numerical calculations have been made for high earth orbit and Earth escape destinations.

  16. A finite element-boundary integral formulation for scattering by three-dimensional cavity-backed apertures

    NASA Technical Reports Server (NTRS)

    Jin, Jian-Ming; Volakis, John L.

    1990-01-01

    A numerical technique is proposed for the electromagnetic characterization of the scattering by a three-dimensional cavity-backed aperture in an infinite ground plane. The technique combines the finite element and boundary integral methods to formulate a system of equations for the solution of the aperture fields and those inside the cavity. Specifically, the finite element method is employed to formulate the fields in the cavity region and the boundary integral approach is used in conjunction with the equivalence principle to represent the fields above the ground plane. Unlike traditional approaches, the proposed technique does not require knowledge of the cavity's Green's function and is, therefore, applicable to arbitrary shape depressions and material fillings. Furthermore, the proposed formulation leads to a system having a partly full and partly sparse as well as symmetric and banded matrix which can be solved efficiently using special algorithms.

  17. Freely Suspended Two-Dimensional Electron Gases.

    NASA Astrophysics Data System (ADS)

    Blick, Robert; Monzon, Franklin; Roukes, Michael; Wegscheider, Werner; Stern, Frank

    1998-03-01

    We present a new technique that has allowed us to build the first freely suspended two-dimensional electron gas devices from AlGaAs/GaAs/AlAs heterostructures. This technique is based upon specially MBE grown structures that include a sacrificial layer. In order to design the MBE layer sequence, the conduction band lineup for these samples was modelled numerically. The overall focus of this work is to provide a new approach for studies of the quantum mechanical properties of nanomachined structures. Our current experiments are directed toward use of these techniques for research on very high frequency nanomechanical resonators. The high mobility 2DEG system provides a unique approach to realizing wideband, extremely sensitive displacement detection, using the piezoelectric properties of GaAs to modulate a suspended nanometer-scale HEMT. This approach offers promise for sensitive displacement detectors with sub-nanometer resolution and bandwidths into the microwave range.

  18. Fast secant methods for the iterative solution of large nonsymmetric linear systems

    NASA Technical Reports Server (NTRS)

    Deuflhard, Peter; Freund, Roland; Walter, Artur

    1990-01-01

    A family of secant methods based on general rank-1 updates was revisited in view of the construction of iterative solvers for large non-Hermitian linear systems. As it turns out, both Broyden's good and bad update techniques play a special role, but should be associated with two different line search principles. For Broyden's bad update technique, a minimum residual principle is natural, thus making it theoretically comparable with a series of well known algorithms like GMRES. Broyden's good update technique, however, is shown to be naturally linked with a minimum next correction principle, which asymptotically mimics a minimum error principle. The two minimization principles differ significantly for sufficiently large system dimension. Numerical experiments on discretized partial differential equations of convection diffusion type in 2-D with integral layers give a first impression of the possible power of the derived good Broyden variant.

  19. Visualization of Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Gerald-Yamasaki, Michael; Hultquist, Jeff; Bryson, Steve; Kenwright, David; Lane, David; Walatka, Pamela; Clucas, Jean; Watson, Velvin; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    Scientific visualization serves the dual purpose of exploration and exposition of the results of numerical simulations of fluid flow. Along with the basic visualization process which transforms source data into images, there are four additional components to a complete visualization system: Source Data Processing, User Interface and Control, Presentation, and Information Management. The requirements imposed by the desired mode of operation (i.e. real-time, interactive, or batch) and the source data have their effect on each of these visualization system components. The special requirements imposed by the wide variety and size of the source data provided by the numerical simulation of fluid flow presents an enormous challenge to the visualization system designer. We describe the visualization system components including specific visualization techniques and how the mode of operation and source data requirements effect the construction of computational fluid dynamics visualization systems.

  20. Comparison of four stable numerical methods for Abel's integral equation

    NASA Technical Reports Server (NTRS)

    Murio, Diego A.; Mejia, Carlos E.

    1991-01-01

    The 3-D image reconstruction from cone-beam projections in computerized tomography leads naturally, in the case of radial symmetry, to the study of Abel-type integral equations. If the experimental information is obtained from measured data, on a discrete set of points, special methods are needed in order to restore continuity with respect to the data. A new combined Regularized-Adjoint-Conjugate Gradient algorithm, together with two different implementations of the Mollification Method (one based on a data filtering technique and the other on the mollification of the kernal function) and a regularization by truncation method (initially proposed for 2-D ray sample schemes and more recently extended to 3-D cone-beam image reconstruction) are extensively tested and compared for accuracy and numerical stability as functions of the level of noise in the data.

  1. Simulation analysis of a novel high efficiency silicon solar cell

    NASA Technical Reports Server (NTRS)

    Mokashi, Anant R.; Daud, T.; Kachare, A. H.

    1985-01-01

    It is recognized that crystalline silicon photovoltaic module efficiency of 15 percent or more is required for cost-effective photovoltaic energy utilization. This level of module efficiency requires large-area encapsulated production cell efficiencies in the range of 18 to 20 percent. Though the theoretical maximum of silicon solar cell efficiency for an idealized case is estimated to be around 30 percent, practical performance of cells to-date are considerably below this limit. This is understood to be largely a consequence of minority carrier losses in the bulk as well as at all surfaces including those under the metal contacts. In this paper a novel device design with special features to reduce bulk and surface recombination losses is evaluated using numerical analysis technique. Details of the numerical model, cell design, and analysis results are presented.

  2. A computing method for sound propagation through a nonuniform jet stream

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Liu, C. H.

    1974-01-01

    The classical formulation of sound propagation through a jet flow was found to be inadequate for computer solutions. Previous investigations selected the phase and amplitude of the acoustic pressure as dependent variables requiring the solution of a system of nonlinear algebraic equations. The nonlinearities complicated both the analysis and the computation. A reformulation of the convective wave equation in terms of a new set of dependent variables is developed with a special emphasis on its suitability for numerical solutions on fast computers. The technique is very attractive because the resulting equations are linear in nonwaving variables. The computer solution to such a linear system of algebraic equations may be obtained by well-defined and direct means which are conservative of computer time and storage space. Typical examples are illustrated and computational results are compared with available numerical and experimental data.

  3. Resonant frequency calculations using a hybrid perturbation-Galerkin technique

    NASA Technical Reports Server (NTRS)

    Geer, James F.; Andersen, Carl M.

    1991-01-01

    A two-step hybrid perturbation Galerkin technique is applied to the problem of determining the resonant frequencies of one or several degree of freedom nonlinear systems involving a parameter. In one step, the Lindstedt-Poincare method is used to determine perturbation solutions which are formally valid about one or more special values of the parameter (e.g., for large or small values of the parameter). In step two, a subset of the perturbation coordinate functions determined in step one is used in Galerkin type approximation. The technique is illustrated for several one degree of freedom systems, including the Duffing and van der Pol oscillators, as well as for the compound pendulum. For all of the examples considered, it is shown that the frequencies obtained by the hybrid technique using only a few terms from the perturbation solutions are significantly more accurate than the perturbation results on which they are based, and they compare very well with frequencies obtained by purely numerical methods.

  4. Least squares polynomial chaos expansion: A review of sampling strategies

    NASA Astrophysics Data System (ADS)

    Hadigol, Mohammad; Doostan, Alireza

    2018-04-01

    As non-institutive polynomial chaos expansion (PCE) techniques have gained growing popularity among researchers, we here provide a comprehensive review of major sampling strategies for the least squares based PCE. Traditional sampling methods, such as Monte Carlo, Latin hypercube, quasi-Monte Carlo, optimal design of experiments (ODE), Gaussian quadratures, as well as more recent techniques, such as coherence-optimal and randomized quadratures are discussed. We also propose a hybrid sampling method, dubbed alphabetic-coherence-optimal, that employs the so-called alphabetic optimality criteria used in the context of ODE in conjunction with coherence-optimal samples. A comparison between the empirical performance of the selected sampling methods applied to three numerical examples, including high-order PCE's, high-dimensional problems, and low oversampling ratios, is presented to provide a road map for practitioners seeking the most suitable sampling technique for a problem at hand. We observed that the alphabetic-coherence-optimal technique outperforms other sampling methods, specially when high-order ODE are employed and/or the oversampling ratio is low.

  5. Implementation of numerical simulation techniques in analysis of the accidents in complex technological systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klishin, G.S.; Seleznev, V.E.; Aleoshin, V.V.

    1997-12-31

    Gas industry enterprises such as main pipelines, compressor gas transfer stations, gas extracting complexes belong to the energy intensive industry. Accidents there can result into the catastrophes and great social, environmental and economic losses. Annually, according to the official data several dozens of large accidents take place at the pipes in the USA and Russia. That is why prevention of the accidents, analysis of the mechanisms of their development and prediction of their possible consequences are acute and important tasks nowadays. The accidents reasons are usually of a complicated character and can be presented as a complex combination of natural,more » technical and human factors. Mathematical and computer simulations are safe, rather effective and comparatively inexpensive methods of the accident analysis. It makes it possible to analyze different mechanisms of a failure occurrence and development, to assess its consequences and give recommendations to prevent it. Besides investigation of the failure cases, numerical simulation techniques play an important role in the treatment of the diagnostics results of the objects and in further construction of mathematical prognostic simulations of the object behavior in the period of time between two inspections. While solving diagnostics tasks and in the analysis of the failure cases, the techniques of theoretical mechanics, of qualitative theory of different equations, of mechanics of a continuous medium, of chemical macro-kinetics and optimizing techniques are implemented in the Conversion Design Bureau {number_sign}5 (DB{number_sign}5). Both universal and special numerical techniques and software (SW) are being developed in DB{number_sign}5 for solution of such tasks. Almost all of them are calibrated on the calculations of the simulated and full-scale experiments performed at the VNIIEF and MINATOM testing sites. It is worth noting that in the long years of work there has been established a fruitful and effective collaboration of theoreticians, mathematicians and experimentalists of the institute to solve such tasks.« less

  6. Special Year on Numerical Linear Algebra

    DTIC Science & Technology

    1988-09-01

    ORNL) Worley, Pat (ORNL) A special acknowledgement should go to Mary Drake (UT) and Mitzy Denson (ORNL) who carried the burden of making the innumerable...a time step appropriate for the regular cells with no stability restriction. Entrance to Y-12 requires a pass. Contact Mitzy Denson (615) 574-3125 to...requires a pass. Contact Mitzy Denson (615) 574-3125 to obtain one. ’This seminar is part of the Special Year on Numerical Linear Algebra sponsored by the

  7. Low-thrust trajectory analysis for the geosynchronous mission

    NASA Technical Reports Server (NTRS)

    Jasper, T. P.

    1973-01-01

    Methodology employed in development of a computer program designed to analyze optimal low-thrust trajectories is described, and application of the program to a Solar Electric Propulsion Stage (SEPS) geosynchronous mission is discussed. To avoid the zero inclination and eccentricity singularities which plague many small-force perturbation techniques, a special set of state variables (equinoctial) is used. Adjoint equations are derived for the minimum time problem and are also free from the singularities. Solutions to the state and adjoint equations are obtained by both orbit averaging and precision numerical integration; an evaluation of these approaches is made.

  8. A structure preserving Lanczos algorithm for computing the optical absorption spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Meiyue; Jornada, Felipe H. da; Lin, Lin

    2016-11-16

    We present a new structure preserving Lanczos algorithm for approximating the optical absorption spectrum in the context of solving full Bethe-Salpeter equation without Tamm-Dancoff approximation. The new algorithm is based on a structure preserving Lanczos procedure, which exploits the special block structure of Bethe-Salpeter Hamiltonian matrices. A recently developed technique of generalized averaged Gauss quadrature is incorporated to accelerate the convergence. We also establish the connection between our structure preserving Lanczos procedure with several existing Lanczos procedures developed in different contexts. Numerical examples are presented to demonstrate the effectiveness of our Lanczos algorithm.

  9. Full color natural light holographic camera.

    PubMed

    Kim, Myung K

    2013-04-22

    Full-color, three-dimensional images of objects under incoherent illumination are obtained by a digital holography technique. Based on self-interference of two beam-split copies of the object's optical field with differential curvatures, the apparatus consists of a beam-splitter, a few mirrors and lenses, a piezo-actuator, and a color camera. No lasers or other special illuminations are used for recording or reconstruction. Color holographic images of daylight-illuminated outdoor scenes and a halogen lamp-illuminated toy figure are obtained. From a recorded hologram, images can be calculated, or numerically focused, at any distances for viewing.

  10. Practical adaptive quantum tomography

    NASA Astrophysics Data System (ADS)

    Granade, Christopher; Ferrie, Christopher; Flammia, Steven T.

    2017-11-01

    We introduce a fast and accurate heuristic for adaptive tomography that addresses many of the limitations of prior methods. Previous approaches were either too computationally intensive or tailored to handle special cases such as single qubits or pure states. By contrast, our approach combines the efficiency of online optimization with generally applicable and well-motivated data-processing techniques. We numerically demonstrate these advantages in several scenarios including mixed states, higher-dimensional systems, and restricted measurements. http://cgranade.com complete data and source code for this work are available online [1], and can be previewed at https://goo.gl/koiWxR.

  11. Efficient Computation Of Behavior Of Aircraft Tires

    NASA Technical Reports Server (NTRS)

    Tanner, John A.; Noor, Ahmed K.; Andersen, Carl M.

    1989-01-01

    NASA technical paper discusses challenging application of computational structural mechanics to numerical simulation of responses of aircraft tires during taxing, takeoff, and landing. Presents details of three main elements of computational strategy: use of special three-field, mixed-finite-element models; use of operator splitting; and application of technique reducing substantially number of degrees of freedom. Proposed computational strategy applied to two quasi-symmetric problems: linear analysis of anisotropic tires through use of two-dimensional-shell finite elements and nonlinear analysis of orthotropic tires subjected to unsymmetric loading. Three basic types of symmetry and combinations exhibited by response of tire identified.

  12. Transient Phenomena in Multiphase and Multicomponent Systems: Research Report

    NASA Astrophysics Data System (ADS)

    Zur Beurteilung von Stoffen in der Landwirtschaft, Senatskommission

    2000-09-01

    Due to the reinforced risk and safety-analysis of industrial plants in chemical and energy-engineering there has been increased demand in industry for more information on thermo- and fluiddynamic effects of non-equilibria during strong transients. Therefore, the 'Deutsche Forschungsgemeinschaft' initiated a special research program focusing on the study of transient phenomena in multiphase systems with one or several components. This book describes macroscopic as well as microscopic transient situations. A large part of the book deals with numerical methods for describing transients in two-phase mixtures. New developments in measuring techniques are also presented.

  13. Programming Probabilistic Structural Analysis for Parallel Processing Computer

    NASA Technical Reports Server (NTRS)

    Sues, Robert H.; Chen, Heh-Chyun; Twisdale, Lawrence A.; Chamis, Christos C.; Murthy, Pappu L. N.

    1991-01-01

    The ultimate goal of this research program is to make Probabilistic Structural Analysis (PSA) computationally efficient and hence practical for the design environment by achieving large scale parallelism. The paper identifies the multiple levels of parallelism in PSA, identifies methodologies for exploiting this parallelism, describes the development of a parallel stochastic finite element code, and presents results of two example applications. It is demonstrated that speeds within five percent of those theoretically possible can be achieved. A special-purpose numerical technique, the stochastic preconditioned conjugate gradient method, is also presented and demonstrated to be extremely efficient for certain classes of PSA problems.

  14. Monolithic multigrid method for the coupled Stokes flow and deformable porous medium system

    NASA Astrophysics Data System (ADS)

    Luo, P.; Rodrigo, C.; Gaspar, F. J.; Oosterlee, C. W.

    2018-01-01

    The interaction between fluid flow and a deformable porous medium is a complicated multi-physics problem, which can be described by a coupled model based on the Stokes and poroelastic equations. A monolithic multigrid method together with either a coupled Vanka smoother or a decoupled Uzawa smoother is employed as an efficient numerical technique for the linear discrete system obtained by finite volumes on staggered grids. A specialty in our modeling approach is that at the interface of the fluid and poroelastic medium, two unknowns from the different subsystems are defined at the same grid point. We propose a special discretization at and near the points on the interface, which combines the approximation of the governing equations and the considered interface conditions. In the decoupled Uzawa smoother, Local Fourier Analysis (LFA) helps us to select optimal values of the relaxation parameter appearing. To implement the monolithic multigrid method, grid partitioning is used to deal with the interface updates when communication is required between two subdomains. Numerical experiments show that the proposed numerical method has an excellent convergence rate. The efficiency and robustness of the method are confirmed in numerical experiments with typically small realistic values of the physical coefficients.

  15. Bone tissue engineering scaffolding: computer-aided scaffolding techniques.

    PubMed

    Thavornyutikarn, Boonlom; Chantarapanich, Nattapon; Sitthiseripratip, Kriskrai; Thouas, George A; Chen, Qizhi

    Tissue engineering is essentially a technique for imitating nature. Natural tissues consist of three components: cells, signalling systems (e.g. growth factors) and extracellular matrix (ECM). The ECM forms a scaffold for its cells. Hence, the engineered tissue construct is an artificial scaffold populated with living cells and signalling molecules. A huge effort has been invested in bone tissue engineering, in which a highly porous scaffold plays a critical role in guiding bone and vascular tissue growth and regeneration in three dimensions. In the last two decades, numerous scaffolding techniques have been developed to fabricate highly interconnective, porous scaffolds for bone tissue engineering applications. This review provides an update on the progress of foaming technology of biomaterials, with a special attention being focused on computer-aided manufacturing (Andrade et al. 2002) techniques. This article starts with a brief introduction of tissue engineering (Bone tissue engineering and scaffolds) and scaffolding materials (Biomaterials used in bone tissue engineering). After a brief reviews on conventional scaffolding techniques (Conventional scaffolding techniques), a number of CAM techniques are reviewed in great detail. For each technique, the structure and mechanical integrity of fabricated scaffolds are discussed in detail. Finally, the advantaged and disadvantage of these techniques are compared (Comparison of scaffolding techniques) and summarised (Summary).

  16. A method for screening of plant species for space use

    NASA Technical Reports Server (NTRS)

    Goeschl, J. D.; Sauer, R. L.; Scheld, H. W.

    1986-01-01

    A cost-effective methodology which monitors numerous dynamic aspects of carbon assimilation and allocation kinetics in live, intact plants is discussed. Analogous methods can apply to nitrogen uptake and allocation. This methodology capitalizes on the special properties of the short-lived, positron-gamma emitting isotope C-11 especially when applied as CO2-11 in a special extended square wave (ESW) pattern. The 20.4 minute half-life allows for repeated or continuous experiments on the same plant over periods of minutes, hours, days, or weeks. The steady-state isotope equilibrium approached during the ESW experiments, and the parameters which can be analyzed by this technique are also direct results of that short half-life. Additionally, the paired .511 MeV gamma rays penetrate any amount of tissue and their 180 deg opposite orientation provides good collimation and allows coincidence counting which nearly eliminates background.

  17. Review of Trackside Monitoring Solutions: From Strain Gages to Optical Fibre Sensors

    PubMed Central

    Kouroussis, Georges; Caucheteur, Christophe; Kinet, Damien; Alexandrou, Georgios; Verlinden, Olivier; Moeyaert, Véronique

    2015-01-01

    A review of recent research on structural monitoring in railway industry is proposed in this paper, with a special focus on stress-based solutions. After a brief analysis of the mechanical behaviour of ballasted railway tracks, an overview of the most common monitoring techniques is presented. A special attention is paid on strain gages and accelerometers for which the accurate mounting position on the track is requisite. These types of solution are then compared to another modern approach based on the use of optical fibres. Besides, an in-depth discussion is made on the evolution of numerical models that investigate the interaction between railway vehicles and tracks. These models are used to validate experimental devices and to predict the best location(s) of the sensors. It is hoped that this review article will stimulate further research activities in this continuously expanding field. PMID:26287207

  18. [Free radicals and hepatic ischemia-reperfusion].

    PubMed

    Szijártó, Attila

    2015-11-22

    The critical importance of the ischemic-reperfusive injury is well documented with regards to numerous organs and clinical conditions. Oxygen free radicals play a central role in the mediation of the injury, which dominantly influences the prevalence of postoperative complications, (long term) organ damage, and the potential manifestation of systemic reactions. The both anatomically and pathophysiologically unique ischemic-reperfusive injury of the liver, which is expressively vulnerable to free radicals, is of utmost importance in liver surgery. Several techniques (adaptive maneuvers, chemical agents) are known to ameliorate the reperfusive injury. Based on the prior research of the workgroup of the author, the aim of the current article is to overview the set of measures capable of attenuating ischemic-reperfusive injury (ischemic preconditioning, -perconditioning, administration of adenosine, -inosine, -levosimendan, and -poly-ADP-ribose-polymerase inhibitor), with special attention to the ischemic-reperfusive injury of the liver, as well as the special pathophysiological role of free radicals in mediating hepatic damage.

  19. Touching Hearts, Touching Minds: using emotion-based messaging to promote healthful behavior in the Massachusetts WIC program.

    PubMed

    Colchamiro, Rachel; Ghiringhelli, Kara; Hause, Judith

    2010-01-01

    The Touching Hearts, Touching Minds initiative was funded through a 2003 United States Department of Agriculture Special Projects grant to revitalize nutrition education and services in the Massachusetts Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) Program. The 30 nutrition education materials and facilitated group counseling techniques developed through the project use the power of parent-identified emotional "pulse points" to become more influential in guiding WIC participants to practice positive eating and physical activity behaviors that lead to healthier families. Touching Hearts, Touching Minds materials and strategies have been well received and provide opportunities to transform the nutrition counseling relationship between WIC families and WIC staff. Touching Hearts, Touching Minds has changed nutrition education in Massachusetts and is influencing nutrition education across the country and beyond in numerous venues. Published by Elsevier Inc.

  20. The least-squares finite element method for low-mach-number compressible viscous flows

    NASA Technical Reports Server (NTRS)

    Yu, Sheng-Tao

    1994-01-01

    The present paper reports the development of the Least-Squares Finite Element Method (LSFEM) for simulating compressible viscous flows at low Mach numbers in which the incompressible flows pose as an extreme. Conventional approach requires special treatments for low-speed flows calculations: finite difference and finite volume methods are based on the use of the staggered grid or the preconditioning technique; and, finite element methods rely on the mixed method and the operator-splitting method. In this paper, however, we show that such difficulty does not exist for the LSFEM and no special treatment is needed. The LSFEM always leads to a symmetric, positive-definite matrix through which the compressible flow equations can be effectively solved. Two numerical examples are included to demonstrate the method: first, driven cavity flows at various Reynolds numbers; and, buoyancy-driven flows with significant density variation. Both examples are calculated by using full compressible flow equations.

  1. Human exposure assessment in the near field of GSM base-station antennas using a hybrid finite element/method of moments technique.

    PubMed

    Meyer, Frans J C; Davidson, David B; Jakobus, Ulrich; Stuchly, Maria A

    2003-02-01

    A hybrid finite-element method (FEM)/method of moments (MoM) technique is employed for specific absorption rate (SAR) calculations in a human phantom in the near field of a typical group special mobile (GSM) base-station antenna. The MoM is used to model the metallic surfaces and wires of the base-station antenna, and the FEM is used to model the heterogeneous human phantom. The advantages of each of these frequency domain techniques are, thus, exploited, leading to a highly efficient and robust numerical method for addressing this type of bioelectromagnetic problem. The basic mathematical formulation of the hybrid technique is presented. This is followed by a discussion of important implementation details-in particular, the linear algebra routines for sparse, complex FEM matrices combined with dense MoM matrices. The implementation is validated by comparing results to MoM (surface equivalence principle implementation) and finite-difference time-domain (FDTD) solutions of human exposure problems. A comparison of the computational efficiency of the different techniques is presented. The FEM/MoM implementation is then used for whole-body and critical-organ SAR calculations in a phantom at different positions in the near field of a base-station antenna. This problem cannot, in general, be solved using the MoM or FDTD due to computational limitations. This paper shows that the specific hybrid FEM/MoM implementation is an efficient numerical tool for accurate assessment of human exposure in the near field of base-station antennas.

  2. Fluid-structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Tezduyar, Tayfun E.; Boben, Joseph; Kostov, Nikolay; Boswell, Cody; Buscher, Austin

    2013-12-01

    To increase aerodynamic performance, the geometric porosity of a ringsail spacecraft parachute canopy is sometimes increased, beyond the "rings" and "sails" with hundreds of "ring gaps" and "sail slits." This creates extra computational challenges for fluid-structure interaction (FSI) modeling of clusters of such parachutes, beyond those created by the lightness of the canopy structure, geometric complexities of hundreds of gaps and slits, and the contact between the parachutes of the cluster. In FSI computation of parachutes with such "modified geometric porosity," the flow through the "windows" created by the removal of the panels and the wider gaps created by the removal of the sails cannot be accurately modeled with the Homogenized Modeling of Geometric Porosity (HMGP), which was introduced to deal with the hundreds of gaps and slits. The flow needs to be actually resolved. All these computational challenges need to be addressed simultaneously in FSI modeling of clusters of spacecraft parachutes with modified geometric porosity. The core numerical technology is the Stabilized Space-Time FSI (SSTFSI) technique, and the contact between the parachutes is handled with the Surface-Edge-Node Contact Tracking (SENCT) technique. In the computations reported here, in addition to the SSTFSI and SENCT techniques and HMGP, we use the special techniques we have developed for removing the numerical spinning component of the parachute motion and for restoring the mesh integrity without a remesh. We present results for 2- and 3-parachute clusters with two different payload models.

  3. Evaluation of decadal predictions using a satellite simulator for the Special Sensor Microwave Imager (SSM/I)

    NASA Astrophysics Data System (ADS)

    Spangehl, Thomas; Schröder, Marc; Bodas-Salcedo, Alejandro; Glowienka-Hense, Rita; Hense, Andreas; Hollmann, Rainer; Dietzsch, Felix

    2017-04-01

    Decadal climate predictions are commonly evaluated focusing on geophysical parameters such as temperature, precipitation or wind speed using observational datasets and reanalysis. Alternatively, satellite based radiance measurements combined with satellite simulator techniques to deduce virtual satellite observations from the numerical model simulations can be used. The latter approach enables an evaluation in the instrument's parameter space and has the potential to reduce uncertainties on the reference side. Here we present evaluation methods focusing on forward operator techniques for the Special Sensor Microwave Imager (SSM/I). The simulator is developed as an integrated part of the CFMIP Observation Simulator Package (COSP). On the observational side the SSM/I and SSMIS Fundamental Climate Data Record (FCDR) released by CM SAF (http://dx.doi.org/10.5676/EUM_SAF_CM/FCDR_MWI/V002) is used, which provides brightness temperatures for different channels and covers the period from 1987 to 2013. The simulator is applied to hindcast simulations performed within the MiKlip project (http://fona-miklip.de) which is funded by the BMBF (Federal Ministry of Education and Research in Germany). Probabilistic evaluation results are shown based on a subset of the hindcast simulations covering the observational period.

  4. Extraction of mandibular premolars and molars: comparison between local infiltration via pressure syringe and inferior alveolar nerve block anesthesia.

    PubMed

    Thiem, Daniel G E; Schnaith, Florian; Van Aken, Caroline M E; Köntges, Anne; Kumar, Vinay V; Al-Nawas, Bilal; Kämmerer, Peer W

    2018-04-01

    The purpose of this study was to evaluate the anesthetic efficiency of local infiltration anesthesia administered with a pressure syringe (P-INF) via a special technique versus direct block anesthesia of the inferior alveolar nerve (IANB) for tooth extraction in the posterior mandible. In a prospective randomized study, 101 teeth in 101 patients were extracted in the posterior mandible under local anesthesia whereby two different administration techniques were used (P-INF n = 48; IANB n = 53). Primary objectives were comparisons of anesthetic success rate (yes/no) and efficacy (full/sufficient vs. insufficient). Secondary objectives were patients' pain perception during treatment, pain of injection (numerical rating scale), need for second injections (always IANB), time until onset of anesthetic action (min), and duration of local numbness (min). IANB was successful in all cases, whereas initial P-INF achieved 35% of success only. Furthermore, IANB reached significant higher values of anesthetic efficacy compared to P-INF (P < 0.001). Concerning pain of injection, patients rated IANB to be more painful (P = 0.039). Second injections were significantly more often necessary for P-INF (P = 0.006) whereas duration until onset of action as well as the duration of local numbness were found to be equal. For anesthetic efficacy as well as anesthetic success, block anesthesia of the inferior alveolar nerve (IANB) turned out to be more proficient to local infiltration via special delivering system with a special technique. Infiltration, even when performed with 4% articaine and a pressure syringe system, is not a suitable method of anesthesia in the posterior mandible.

  5. A fully non-linear multi-species Fokker–Planck–Landau collision operator for simulation of fusion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hager, Robert, E-mail: rhager@pppl.gov; Yoon, E.S., E-mail: yoone@rpi.edu; Ku, S., E-mail: sku@pppl.gov

    2016-06-15

    Fusion edge plasmas can be far from thermal equilibrium and require the use of a non-linear collision operator for accurate numerical simulations. In this article, the non-linear single-species Fokker–Planck–Landau collision operator developed by Yoon and Chang (2014) [9] is generalized to include multiple particle species. The finite volume discretization used in this work naturally yields exact conservation of mass, momentum, and energy. The implementation of this new non-linear Fokker–Planck–Landau operator in the gyrokinetic particle-in-cell codes XGC1 and XGCa is described and results of a verification study are discussed. Finally, the numerical techniques that make our non-linear collision operator viable onmore » high-performance computing systems are described, including specialized load balancing algorithms and nested OpenMP parallelization. The collision operator's good weak and strong scaling behavior are shown.« less

  6. A fully non-linear multi-species Fokker–Planck–Landau collision operator for simulation of fusion plasma

    DOE PAGES

    Hager, Robert; Yoon, E. S.; Ku, S.; ...

    2016-04-04

    Fusion edge plasmas can be far from thermal equilibrium and require the use of a non-linear collision operator for accurate numerical simulations. The non-linear single-species Fokker–Planck–Landau collision operator developed by Yoon and Chang (2014) [9] is generalized to include multiple particle species. Moreover, the finite volume discretization used in this work naturally yields exact conservation of mass, momentum, and energy. The implementation of this new non-linear Fokker–Planck–Landau operator in the gyrokinetic particle-in-cell codes XGC1 and XGCa is described and results of a verification study are discussed. Finally, the numerical techniques that make our non-linear collision operator viable on high-performance computingmore » systems are described, including specialized load balancing algorithms and nested OpenMP parallelization. As a result, the collision operator's good weak and strong scaling behavior are shown.« less

  7. The Evolution and Discharge of Electric Fields within a Thunderstorm

    NASA Astrophysics Data System (ADS)

    Hager, William W.; Nisbet, John S.; Kasha, John R.

    1989-05-01

    A 3-dimensional electrical model for a thunderstorm is developed and finite difference approximations to the model are analyzed. If the spatial derivatives are approximated by a method akin to the ☐ scheme and if the temporal derivative is approximated by either a backward difference or the Crank-Nicholson scheme, we show that the resulting discretization is unconditionally stable. The forward difference approximation to the time derivative is stable when the time step is sufficiently small relative to the ratio between the permittivity and the conductivity. Max-norm error estimates for the discrete approximations are established. To handle the propagation of lightning, special numerical techniques are devised based on the Inverse Matrix Modification Formula and Cholesky updates. Numerical comparisons between the model and theoretical results of Wilson and Holzer-Saxon are presented. We also apply our model to a storm observed at the Kennedy Space Center on July 11, 1978.

  8. A multivariate quadrature based moment method for LES based modeling of supersonic combustion

    NASA Astrophysics Data System (ADS)

    Donde, Pratik; Koo, Heeseok; Raman, Venkat

    2012-07-01

    The transported probability density function (PDF) approach is a powerful technique for large eddy simulation (LES) based modeling of scramjet combustors. In this approach, a high-dimensional transport equation for the joint composition-enthalpy PDF needs to be solved. Quadrature based approaches provide deterministic Eulerian methods for solving the joint-PDF transport equation. In this work, it is first demonstrated that the numerical errors associated with LES require special care in the development of PDF solution algorithms. The direct quadrature method of moments (DQMOM) is one quadrature-based approach developed for supersonic combustion modeling. This approach is shown to generate inconsistent evolution of the scalar moments. Further, gradient-based source terms that appear in the DQMOM transport equations are severely underpredicted in LES leading to artificial mixing of fuel and oxidizer. To overcome these numerical issues, a semi-discrete quadrature method of moments (SeQMOM) is formulated. The performance of the new technique is compared with the DQMOM approach in canonical flow configurations as well as a three-dimensional supersonic cavity stabilized flame configuration. The SeQMOM approach is shown to predict subfilter statistics accurately compared to the DQMOM approach.

  9. Hardware Simulations of Spacecraft Attitude Synchronization Using Lyapunov-Based Controllers

    NASA Astrophysics Data System (ADS)

    Jung, Juno; Park, Sang-Young; Eun, Youngho; Kim, Sung-Woo; Park, Chandeok

    2018-04-01

    In the near future, space missions with multiple spacecraft are expected to replace traditional missions with a single large spacecraft. These spacecraft formation flying missions generally require precise knowledge of relative position and attitude between neighboring agents. In this study, among the several challenging issues, we focus on the technique to control spacecraft attitude synchronization in formation. We develop a number of nonlinear control schemes based on the Lyapunov stability theorem and considering special situations: full-state feedback control, full-state feedback control with unknown inertia parameters, and output feedback control without angular velocity measurements. All the proposed controllers offer absolute and relative control using reaction wheel assembly for both regulator and tracking problems. In addition to the numerical simulations, an air-bearing-based hardware-in-the-loop (HIL) system is used to verify the proposed control laws in real-time hardware environments. The pointing errors converge to 0.5{°} with numerical simulations and to 2{°} using the HIL system. Consequently, both numerical and hardware simulations confirm the performance of the spacecraft attitude synchronization algorithms developed in this study.

  10. Advanced numerical technique for analysis of surface and bulk acoustic waves in resonators using periodic metal gratings

    NASA Astrophysics Data System (ADS)

    Naumenko, Natalya F.

    2014-09-01

    A numerical technique characterized by a unified approach for the analysis of different types of acoustic waves utilized in resonators in which a periodic metal grating is used for excitation and reflection of such waves is described. The combination of the Finite Element Method analysis of the electrode domain with the Spectral Domain Analysis (SDA) applied to the adjacent upper and lower semi-infinite regions, which may be multilayered and include air as a special case of a dielectric material, enables rigorous simulation of the admittance in resonators using surface acoustic waves, Love waves, plate modes including Lamb waves, Stonely waves, and other waves propagating along the interface between two media, and waves with transient structure between the mentioned types. The matrix formalism with improved convergence incorporated into SDA provides fast and robust simulation for multilayered structures with arbitrary thickness of each layer. The described technique is illustrated by a few examples of its application to various combinations of LiNbO3, isotropic silicon dioxide and silicon with a periodic array of Cu electrodes. The wave characteristics extracted from the admittance functions change continuously with the variation of the film and plate thicknesses over wide ranges, even when the wave nature changes. The transformation of the wave nature with the variation of the layer thicknesses is illustrated by diagrams and contour plots of the displacements calculated at resonant frequencies.

  11. Reactive silica transport in fractured porous media: Analytical solutions for a system of parallel fractures

    NASA Astrophysics Data System (ADS)

    Yang, Jianwen

    2012-04-01

    A general analytical solution is derived by using the Laplace transformation to describe transient reactive silica transport in a conceptualized 2-D system involving a set of parallel fractures embedded in an impermeable host rock matrix, taking into account of hydrodynamic dispersion and advection of silica transport along the fractures, molecular diffusion from each fracture to the intervening rock matrix, and dissolution of quartz. A special analytical solution is also developed by ignoring the longitudinal hydrodynamic dispersion term but remaining other conditions the same. The general and special solutions are in the form of a double infinite integral and a single infinite integral, respectively, and can be evaluated using Gauss-Legendre quadrature technique. A simple criterion is developed to determine under what conditions the general analytical solution can be approximated by the special analytical solution. It is proved analytically that the general solution always lags behind the special solution, unless a dimensionless parameter is less than a critical value. Several illustrative calculations are undertaken to demonstrate the effect of fracture spacing, fracture aperture and fluid flow rate on silica transport. The analytical solutions developed here can serve as a benchmark to validate numerical models that simulate reactive mass transport in fractured porous media.

  12. Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method

    NASA Astrophysics Data System (ADS)

    Shen-Shen, Chen; Juan, Wang; Qing-Hua, Li

    2016-04-01

    A scaled boundary node method (SBNM) is developed for two-dimensional fracture analysis of piezoelectric material, which allows the stress and electric displacement intensity factors to be calculated directly and accurately. As a boundary-type meshless method, the SBNM employs the moving Kriging (MK) interpolation technique to an approximate unknown field in the circumferential direction and therefore only a set of scattered nodes are required to discretize the boundary. As the shape functions satisfy Kronecker delta property, no special techniques are required to impose the essential boundary conditions. In the radial direction, the SBNM seeks analytical solutions by making use of analytical techniques available to solve ordinary differential equations. Numerical examples are investigated and satisfactory solutions are obtained, which validates the accuracy and simplicity of the proposed approach. Project supported by the National Natural Science Foundation of China (Grant Nos. 11462006 and 21466012), the Foundation of Jiangxi Provincial Educational Committee, China (Grant No. KJLD14041), and the Foundation of East China Jiaotong University, China (Grant No. 09130020).

  13. Improved numerical methods for turbulent viscous recirculating flows

    NASA Technical Reports Server (NTRS)

    Vandoormaal, J. P.; Turan, A.; Raithby, G. D.

    1986-01-01

    The objective of the present study is to improve both the accuracy and computational efficiency of existing numerical techniques used to predict viscous recirculating flows in combustors. A review of the status of the study is presented along with some illustrative results. The effort to improve the numerical techniques consists of the following technical tasks: (1) selection of numerical techniques to be evaluated; (2) two dimensional evaluation of selected techniques; and (3) three dimensional evaluation of technique(s) recommended in Task 2.

  14. Overview of the CHarring Ablator Response (CHAR) Code

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Oliver, A. Brandon; Kirk, Benjamin S.; Salazar, Giovanni; Droba, Justin

    2016-01-01

    An overview of the capabilities of the CHarring Ablator Response (CHAR) code is presented. CHAR is a one-, two-, and three-dimensional unstructured continuous Galerkin finite-element heat conduction and ablation solver with both direct and inverse modes. Additionally, CHAR includes a coupled linear thermoelastic solver for determination of internal stresses induced from the temperature field and surface loading. Background on the development process, governing equations, material models, discretization techniques, and numerical methods is provided. Special focus is put on the available boundary conditions including thermochemical ablation and contact interfaces, and example simulations are included. Finally, a discussion of ongoing development efforts is presented.

  15. Overview of the CHarring Ablator Response (CHAR) Code

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Oliver, A. Brandon; Kirk, Benjamin S.; Salazar, Giovanni; Droba, Justin

    2016-01-01

    An overview of the capabilities of the CHarring Ablator Response (CHAR) code is presented. CHAR is a one-, two-, and three-dimensional unstructured continuous Galerkin finite-element heat conduction and ablation solver with both direct and inverse modes. Additionally, CHAR includes a coupled linear thermoelastic solver for determination of internal stresses induced from the temperature field and surface loading. Background on the development process, governing equations, material models, discretization techniques, and numerical methods is provided. Special focus is put on the available boundary conditions including thermochemical ablation, surface-to-surface radiation exchange, and flowfield coupling. Finally, a discussion of ongoing development efforts is presented.

  16. Diamondlike carbon applications in infrared optics and microelectronics

    NASA Technical Reports Server (NTRS)

    Woollam, John A.; De, Bhola N.; Orzeszko, S.; Ianno, N. J.; Snyder, Paul G.; Alterovitz, Samuel A.; Pouch, John J.; Wu, R. L. C.; Ingram, D. C.

    1990-01-01

    The use of diamondlike carbon (DLC) as a protective coating in harsh environments is addressed. There are three topics presented. The first is a description of the preparation of DLC on seven different infrared transmitting materials, and the possibility of using DLC as an antireflecting coating at commonly used wavelengths. DLC doesn't bond easily to all materials, and special techniques for bonding are presented. The second topic deals with how well DLC will protect a substrate from moisture penetration. This is an important aspect in numerous uses of DLC, including both infrared optics and integrated circuits. The third topic is the effect of particulate impact on film performance and integrity.

  17. The museum maze in oral pathology demystifed: part II.

    PubMed

    Patil, Shankargouda; Rao, Roopa S; Ganavi, Bs

    2013-09-01

    Museum technology is perpetually changing due to current requirements and added inventions for our comfort and furbished display of specimens. Hence numerous methods of specimen preservation have been put on trial by diverse people in the medical feld as are the inventions. But only few have caught people's interest and are popularized today. This part provides unique insights into specialized custom-made techniques, evolution of recent advances like plastination and virtual museum that have popularized as visual delights. Plastination gives handy, perennial life-like acrylic specimens, whereas virtual museum takes museum feld to the electronic era making use of computers and virtual environment.

  18. Numerical modelling of thin-walled Z-columns made of general laminates subjected to uniform shortening

    NASA Astrophysics Data System (ADS)

    Teter, Andrzej; Kolakowski, Zbigniew

    2018-01-01

    The numerical modelling of a plate structure was performed with the finite element method and a one-mode approach based on Koiter's method. The first order approximation of Koiter's method enables one to solve the eigenvalue problem. The second order approximation describes post-buckling equilibrium paths. In the finite element analysis, the Lanczos method was used to solve the linear problem of buckling. Simulations of the non-linear problem were performed with the Newton-Raphson method. Detailed calculations were carried out for a short Z-column made of general laminates. Configurations of laminated layers were non-symmetric. Due to possibilities of its application, the general laminate is very interesting. The length of the samples was chosen to obtain the lowest value of local buckling load. The amplitude of initial imperfections was 10% of the wall thickness. Thin-walled structures were simply supported on both ends. The numerical results were verified in experimental tests. A strain-gauge technique was applied. A static compression test was performed on a universal testing machine and a special grip, which consisted of two rigid steel plates and clamping sleeves, was used. Specimens were obtained with an autoclave technique. Tests were performed at a constant velocity of the cross-bar equal to 2 mm/min. The compressive load was less than 150% of the bifurcation load. Additionally, soft and thin pads were used to reduce inaccuracy of the sample ends.

  19. Analysis of fluctuations in semiconductor devices

    NASA Astrophysics Data System (ADS)

    Andrei, Petru

    The random nature of ion implantation and diffusion processes as well as inevitable tolerances in fabrication result in random fluctuations of doping concentrations and oxide thickness in semiconductor devices. These fluctuations are especially pronounced in ultrasmall (nanoscale) semiconductor devices when the spatial scale of doping and oxide thickness variations become comparable with the geometric dimensions of devices. In the dissertation, the effects of these fluctuations on device characteristics are analyzed by using a new technique for the analysis of random doping and oxide thickness induced fluctuations. This technique is universal in nature in the sense that it is applicable to any transport model (drift-diffusion, semiclassical transport, quantum transport etc.) and it can be naturally extended to take into account random fluctuations of the oxide (trapped) charges and channel length. The technique is based on linearization of the transport equations with respect to the fluctuating quantities. It is computationally much (a few orders of magnitude) more efficient than the traditional Monte-Carlo approach and it yields information on the sensitivity of fluctuations of parameters of interest (e.g. threshold voltage, small-signal parameters, cut-off frequencies, etc.) to the locations of doping and oxide thickness fluctuations. For this reason, it can be very instrumental in the design of fluctuation-resistant structures of semiconductor devices. Quantum mechanical effects are taken into account by using the density-gradient model as well as through self-consistent Poisson-Schrodinger computations. Special attention is paid to the presenting of the technique in a form that is suitable for implementation on commercial device simulators. The numerical implementation of the technique is discussed in detail and numerous computational results are presented and compared with those previously published in literature.

  20. Maintenance Audit through Value Analysis Technique: A Case Study

    NASA Astrophysics Data System (ADS)

    Carnero, M. C.; Delgado, S.

    2008-11-01

    The increase in competitiveness, technological changes and the increase in the requirements of quality and service have forced a change in the design and application of maintenance, as well as the way in which it is considered within the managerial strategy. There are numerous maintenance activities that must be developed in a service company. As a result the maintenance functions as a whole have to be outsourced. Nevertheless, delegating this subject to specialized personnel does not exempt the company from responsibilities, but rather leads to the need for control of each maintenance activity. In order to achieve this control and to evaluate the efficiency and effectiveness of the company it is essential to carry out an audit that diagnoses the problems that could develop. In this paper a maintenance audit applied to a service company is developed. The methodology applied is based on the expert systems. The expert system by means of rules uses the weighting technique SMART and value analysis to obtain the weighting between the decision functions and between the alternatives. The expert system applies numerous rules and relations between different variables associated with the specific maintenance functions, to obtain the maintenance state by sections and the general maintenance state of the enterprise. The contributions of this paper are related to the development of a maintenance audit in a service enterprise, in which maintenance is not generally considered a strategic subject and to the integration of decision-making tools such as the weighting technique SMART with value analysis techniques, typical in the design of new products, in the area of the rule-based expert systems.

  1. Fluid{Structure Interaction Modeling of Modified-Porosity Parachutes and Parachute Clusters

    NASA Astrophysics Data System (ADS)

    Boben, Joseph J.

    To increase aerodynamic performance, the geometric porosity of a ringsail spacecraft parachute canopy is sometimes increased, beyond the "rings" and "sails" with hundreds of "ring gaps" and "sail slits." This creates extra computational challenges for fluid-structure interaction (FSI) modeling of clusters of such parachutes, beyond those created by the lightness of the canopy structure, geometric complexities of hundreds of gaps and slits, and the contact between the parachutes of the cluster. In FSI computation of parachutes with such "modified geometric porosity," the ow through the "windows" created by the removal of the panels and the wider gaps created by the removal of the sails cannot be accurately modeled with the Homogenized Modeling of Geometric Porosity (HMGP), which was introduced to deal with the hundreds of gaps and slits. The ow needs to be actually resolved. All these computational challenges need to be addressed simultaneously in FSI modeling of clusters of spacecraft parachutes with modified geometric porosity. The core numerical technology is the Stabilized Space-Time FSI (SSTFSI) technique, and the contact between the parachutes is handled with the Surface-Edge-Node Contact Tracking (SENCT) technique. In the computations reported here, in addition to the SSTFSI and SENCT techniques and HMGP, we use the special techniques we have developed for removing the numerical spinning component of the parachute motion and for restoring the mesh integrity without a remesh. We present results for 2- and 3-parachute clusters with two different payload models. We also present the FSI computations we carried out for a single, subscale modified-porosity parachute.

  2. Performance Comparison of NAMI DANCE and FLOW-3D® Models in Tsunami Propagation, Inundation and Currents using NTHMP Benchmark Problems

    NASA Astrophysics Data System (ADS)

    Velioglu Sogut, Deniz; Yalciner, Ahmet Cevdet

    2018-06-01

    Field observations provide valuable data regarding nearshore tsunami impact, yet only in inundation areas where tsunami waves have already flooded. Therefore, tsunami modeling is essential to understand tsunami behavior and prepare for tsunami inundation. It is necessary that all numerical models used in tsunami emergency planning be subject to benchmark tests for validation and verification. This study focuses on two numerical codes, NAMI DANCE and FLOW-3D®, for validation and performance comparison. NAMI DANCE is an in-house tsunami numerical model developed by the Ocean Engineering Research Center of Middle East Technical University, Turkey and Laboratory of Special Research Bureau for Automation of Marine Research, Russia. FLOW-3D® is a general purpose computational fluid dynamics software, which was developed by scientists who pioneered in the design of the Volume-of-Fluid technique. The codes are validated and their performances are compared via analytical, experimental and field benchmark problems, which are documented in the ``Proceedings and Results of the 2011 National Tsunami Hazard Mitigation Program (NTHMP) Model Benchmarking Workshop'' and the ``Proceedings and Results of the NTHMP 2015 Tsunami Current Modeling Workshop". The variations between the numerical solutions of these two models are evaluated through statistical error analysis.

  3. Adaptive mesh refinement and front-tracking for shear bands in an antiplane shear model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garaizar, F.X.; Trangenstein, J.

    1998-09-01

    In this paper the authors describe a numerical algorithm for the study of hear-band formation and growth in a two-dimensional antiplane shear of granular materials. The algorithm combines front-tracking techniques and adaptive mesh refinement. Tracking provides a more careful evolution of the band when coupled with special techniques to advance the ends of the shear band in the presence of a loss of hyperbolicity. The adaptive mesh refinement allows the computational effort to be concentrated in important areas of the deformation, such as the shear band and the elastic relief wave. The main challenges are the problems related to shearmore » bands that extend across several grid patches and the effects that a nonhyperbolic growth rate of the shear bands has in the refinement process. They give examples of the success of the algorithm for various levels of refinement.« less

  4. Eigenproblem solution by a combined Sturm sequence and inverse iteration technique.

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1973-01-01

    Description of an efficient and numerically stable algorithm, along with a complete listing of the associated computer program, developed for the accurate computation of specified roots and associated vectors of the eigenvalue problem Aq = lambda Bq with band symmetric A and B, B being also positive-definite. The desired roots are first isolated by the Sturm sequence procedure; then a special variant of the inverse iteration technique is applied for the individual determination of each root along with its vector. The algorithm fully exploits the banded form of relevant matrices, and the associated program written in FORTRAN V for the JPL UNIVAC 1108 computer proves to be most significantly economical in comparison to similar existing procedures. The program may be conveniently utilized for the efficient solution of practical engineering problems, involving free vibration and buckling analysis of structures. Results of such analyses are presented for representative structures.

  5. NASA's program on icing research and technology

    NASA Technical Reports Server (NTRS)

    Reinmann, John J.; Shaw, Robert J.; Ranaudo, Richard J.

    1989-01-01

    NASA's program in aircraft icing research and technology is reviewed. The program relies heavily on computer codes and modern applied physics technology in seeking icing solutions on a finer scale than those offered in earlier programs. Three major goals of this program are to offer new approaches to ice protection, to improve our ability to model the response of an aircraft to an icing encounter, and to provide improved techniques and facilities for ground and flight testing. This paper reviews the following program elements: (1) new approaches to ice protection; (2) numerical codes for deicer analysis; (3) measurement and prediction of ice accretion and its effect on aircraft and aircraft components; (4) special wind tunnel test techniques for rotorcraft icing; (5) improvements of icing wind tunnels and research aircraft; (6) ground de-icing fluids used in winter operation; (7) fundamental studies in icing; and (8) droplet sizing instruments for icing clouds.

  6. van der Waals Layered Materials: Opportunities and Challenges.

    PubMed

    Duong, Dinh Loc; Yun, Seok Joon; Lee, Young Hee

    2017-12-26

    Since graphene became available by a scotch tape technique, a vast class of two-dimensional (2D) van der Waals (vdW) layered materials has been researched intensively. What is more intriguing is that the well-known physics and chemistry of three-dimensional (3D) bulk materials are often irrelevant, revealing exotic phenomena in 2D vdW materials. By further constructing heterostructures of these materials in the planar and vertical directions, which can be easily achieved via simple exfoliation techniques, numerous quantum mechanical devices have been demonstrated for fundamental research and technological applications. It is, therefore, necessary to review the special features in 2D vdW materials and to discuss the remaining issues and challenges. Here, we review the vdW materials library, technology relevance, and specialties of vdW materials covering the vdW interaction, strong Coulomb interaction, layer dependence, dielectric screening engineering, work function modulation, phase engineering, heterostructures, stability, growth issues, and the remaining challenges.

  7. Probing the photon polarization in B → K*γ with conversion

    DOE PAGES

    Bishara, Fady; Robinson, Dean J.

    2015-09-02

    We re-examine the possibility to measure the photon polarization in B → K*γ decays, via decays in which the photon subsequently undergoes nuclear conversion to a lepton pair. We obtain compact expressions for the full decay-plus-conversion amplitude. With these results we show that interference between the B → (K* → Kπ)γ decay and the γN → ℓ + ℓ – N conversion permits both the ratio and relative weak phase between the left- and right-handed photon amplitudes to be probed by an angular observable, constructed from the final state dilepton, kaon and pion kinematic configuration. Exploiting this technique will bemore » experimentally challenging. However, we present special kinematic cuts that enhance the statistical power of this technique by an O(1) factor. Furthermore, we verify this effect and extract pertinent angular kinematic distributions with dedicated numerical simulations.« less

  8. Complex traumatic posterior urethral strictures.

    PubMed

    Turner-Warwick, R

    1976-01-01

    A distinction between simple and complex posterior urethral strictures is proposed. The development of a complex stricture, requiring an extensive transpubic repair, must be regarded as a less than admirable result of the initial treatment, even if it is occasionally inevitable. However, it is particularly important that our endeavors to improve the end result of the relatively rare severe urethral injuries should not result in over-management of the relatively minor injuries, since this could increase the stricture potential of many. Therefore, we must keep our over-all concepts of the initial management of urethral injuries under careful review. Posterior urethroplasty should be regarded as a specialist procedure. It can be made to appear beguilingly simple but it cannot be recommended for occasional or general use. Even the relatively simple free patch graft technique is inadvisable for use in the sphincter area for surgeons who do not have considerable experience of it in the relatively forgiving bulbourethral area. The results of repair of posterior urethral strictures, even the complex ones, by anastomotic procedures can be excellent but real competence depends upon a particular aptitude of the surgeon for the minutiae of reconstructive techniques, appropriate training in a specializing department, a real ongoing numerical experience and special instrumentation with facilities for detailed urodynamic evaluation of this sphincter active area of the urethra.

  9. Cross-Cultural Perspectives on Parent-Adolescent Discrepancies: Existing Findings and Future Directions.

    PubMed

    Rescorla, Leslie A

    2016-10-01

    As summarized in this commentary, the first generation of cross-informant agreement research focused on perceptions of child and adolescent mental health. Contributions of this research include demonstrating that modest cross-informant agreement is a very robust phenomenon, utilizing numerous statistical approaches to measure degree of agreement, and identifying many factors that moderate agreement. An important focus of this work has been using multi-society international comparisons to examine cross-cultural similarities and differences in cross-informant agreement. The articles in this Special Issue represent a significant paradigm shift in which cross-informant agreement is examined as an independent variable predicting a wide variety of outcomes. Furthermore, moving beyond perceptions of adolescent mental health, these articles compare parent and adolescent perceptions of diverse aspects of family functioning (e.g., family conflict, parent-adolescent communication, family relationships, parental authority). Additionally, the research presented in this Special Issue employs innovative and sophisticated statistical techniques. Although the Special Issue represents some first steps toward considering cross-cultural aspects of perceptions of family functioning, much work still needs to be done in this area. Some suggestions for future research strategies to accomplish this goal conclude this commentary.

  10. Detection of special nuclear materials with the associate particle technique

    NASA Astrophysics Data System (ADS)

    Carasco, Cédric; Deyglun, Clément; Pérot, Bertrand; Eléon, Cyrille; Normand, Stéphane; Sannié, Guillaume; Boudergui, Karim; Corre, Gwenolé; Konzdrasovs, Vladimir; Pras, Philippe

    2013-04-01

    In the frame of the French trans-governmental R&D program against chemical, biological, radiological, nuclear and explosives (CBRN-E) threats, CEA is studying the detection of Special Nuclear Materials (SNM) by neutron interrogation with fast neutrons produced by an associated particle sealed tube neutron generator. The deuterium-tritium fusion reaction produces an alpha particle and a 14 MeV neutron almost back to back, allowing tagging neutron emission both in time and direction with an alpha particle position-sensitive sensor embedded in the generator. Fission prompt neutrons and gamma rays induced by tagged neutrons which are tagged by an alpha particle are detected in coincidence with plastic scintillators. This paper presents numerical simulations performed with the MCNP-PoliMi Monte Carlo computer code and with post processing software developed with the ROOT data analysis package. False coincidences due to neutron and photon scattering between adjacent detectors (cross talk) are filtered out to increase the selectivity between nuclear and benign materials. Accidental coincidences, which are not correlated to an alpha particle, are also taken into account in the numerical model, as well as counting statistics, and the time-energy resolution of the data acquisition system. Such realistic calculations show that relevant quantities of SNM (few kg) can be distinguished from cargo and shielding materials in 10 min acquisitions. First laboratory tests of the system under development in CEA laboratories are also presented.

  11. Synchronization of coupled stochastic complex-valued dynamical networks with time-varying delays via aperiodically intermittent adaptive control

    NASA Astrophysics Data System (ADS)

    Wang, Pengfei; Jin, Wei; Su, Huan

    2018-04-01

    This paper deals with the synchronization problem of a class of coupled stochastic complex-valued drive-response networks with time-varying delays via aperiodically intermittent adaptive control. Different from the previous works, the intermittent control is aperiodic and adaptive, and the restrictions on the control width and time delay are removed, which lead to a larger application scope for this control strategy. Then, based on the Lyapunov method and Kirchhoff's Matrix Tree Theorem as well as differential inequality techniques, several novel synchronization conditions are derived for the considered model. Specially, impulsive control is also considered, which can be seen as a special case of the aperiodically intermittent control when the control width tends to zero. And the corresponding synchronization criteria are given as well. As an application of the theoretical results, a class of stochastic complex-valued coupled oscillators with time-varying delays is studied, and the numerical simulations are also given to demonstrate the effectiveness of the control strategies.

  12. Efficient Usage of Dense GNSS Networks in Central Europe for the Visualization and Investigation of Ionospheric TEC Variations

    PubMed Central

    Zanimonskiy, Yevgen M.; Yampolski, Yuri M.; Figurski, Mariusz

    2017-01-01

    The technique of the orthogonal projection of ionosphere electronic content variations for mapping total electron content (TEC) allows us to visualize ionospheric irregularities. For the reconstruction of global ionospheric characteristics, numerous global navigation satellite system (GNSS) receivers located in different regions of the Earth are used as sensors. We used dense GNSS networks in central Europe to detect and investigate a special type of plasma inhomogeneities, called travelling ionospheric disturbances (TID). Such use of GNSS sensors allows us to reconstruct the main TID parameters, such as spatial dimensions, velocities, and directions of their movement. The paper gives examples of the restoration of dynamic characteristics of ionospheric irregularities for quiet and disturbed geophysical conditions. Special attention is paid to the dynamics of ionospheric disturbances stimulated by the magnetic storms of two St. Patrick’s Days (17 March 2013 and 2015). Additional opportunities for the remote sensing of the ionosphere with the use of dense regional networks of GNSS receiving sensors have been noted too. PMID:28994718

  13. The effect of driven electron-phonon coupling on the electronic conductance of a polar nanowire

    NASA Astrophysics Data System (ADS)

    Mardaani, Mohammad; Rabani, Hassan; Esmaili, Esmat; Shariati, Ashrafalsadat

    2015-08-01

    A semi-classical model is proposed to explore the effect of electron-phonon coupling on the coherent electronic transport of a polar chain which is confined between two rigid leads in the presence of an external electric field. To this end, we construct the model by means of Green's function technique within the nearest neighbor tight-binding and harmonic approximations. For a time-periodic electric field, the atomic displacements from the equilibrium positions are obtained precisely. The result is then used to compute the electronic transport properties of the chain within the Peierls-type model. The numerical results indicate that the conductance of the system shows interesting behavior in some special frequencies. For each special frequency, there is an electronic quasi-state in which the scattering of electrons by vibrating atoms reaches maximum. The system electronic conductance decreases dramatically at the strong electron-phonon couplings and low electron energies. In the presence of damping forces, the electron-phonon interaction has a less significant effect on the conductance.

  14. Efficient Usage of Dense GNSS Networks in Central Europe for the Visualization and Investigation of Ionospheric TEC Variations.

    PubMed

    Nykiel, Grzegorz; Zanimonskiy, Yevgen M; Yampolski, Yuri M; Figurski, Mariusz

    2017-10-10

    The technique of the orthogonal projection of ionosphere electronic content variations for mapping total electron content (TEC) allows us to visualize ionospheric irregularities. For the reconstruction of global ionospheric characteristics, numerous global navigation satellite system (GNSS) receivers located in different regions of the Earth are used as sensors. We used dense GNSS networks in central Europe to detect and investigate a special type of plasma inhomogeneities, called travelling ionospheric disturbances (TID). Such use of GNSS sensors allows us to reconstruct the main TID parameters, such as spatial dimensions, velocities, and directions of their movement. The paper gives examples of the restoration of dynamic characteristics of ionospheric irregularities for quiet and disturbed geophysical conditions. Special attention is paid to the dynamics of ionospheric disturbances stimulated by the magnetic storms of two St. Patrick's Days (17 March 2013 and 2015). Additional opportunities for the remote sensing of the ionosphere with the use of dense regional networks of GNSS receiving sensors have been noted too.

  15. A new adaptive mesh refinement strategy for numerically solving evolutionary PDE's

    NASA Astrophysics Data System (ADS)

    Burgarelli, Denise; Kischinhevsky, Mauricio; Biezuner, Rodney Josue

    2006-11-01

    A graph-based implementation of quadtree meshes for dealing with adaptive mesh refinement (AMR) in the numerical solution of evolutionary partial differential equations is discussed using finite volume methods. The technique displays a plug-in feature that allows replacement of a group of cells in any region of interest for another one with arbitrary refinement, and with only local changes occurring in the data structure. The data structure is also specially designed to minimize the number of operations needed in the AMR. Implementation of the new scheme allows flexibility in the levels of refinement of adjacent regions. Moreover, storage requirements and computational cost compare competitively with mesh refinement schemes based on hierarchical trees. Low storage is achieved for only the children nodes are stored when a refinement takes place. These nodes become part of a graph structure, thus motivating the denomination autonomous leaves graph (ALG) for the new scheme. Neighbors can then be reached without accessing their parent nodes. Additionally, linear-system solvers based on the minimization of functionals can be easily employed. ALG was not conceived with any particular problem or geometry in mind and can thus be applied to the study of several phenomena. Some test problems are used to illustrate the effectiveness of the technique.

  16. Recent advances in computational-analytical integral transforms for convection-diffusion problems

    NASA Astrophysics Data System (ADS)

    Cotta, R. M.; Naveira-Cotta, C. P.; Knupp, D. C.; Zotin, J. L. Z.; Pontes, P. C.; Almeida, A. P.

    2017-10-01

    An unifying overview of the Generalized Integral Transform Technique (GITT) as a computational-analytical approach for solving convection-diffusion problems is presented. This work is aimed at bringing together some of the most recent developments on both accuracy and convergence improvements on this well-established hybrid numerical-analytical methodology for partial differential equations. Special emphasis is given to novel algorithm implementations, all directly connected to enhancing the eigenfunction expansion basis, such as a single domain reformulation strategy for handling complex geometries, an integral balance scheme in dealing with multiscale problems, the adoption of convective eigenvalue problems in formulations with significant convection effects, and the direct integral transformation of nonlinear convection-diffusion problems based on nonlinear eigenvalue problems. Then, selected examples are presented that illustrate the improvement achieved in each class of extension, in terms of convergence acceleration and accuracy gain, which are related to conjugated heat transfer in complex or multiscale microchannel-substrate geometries, multidimensional Burgers equation model, and diffusive metal extraction through polymeric hollow fiber membranes. Numerical results are reported for each application and, where appropriate, critically compared against the traditional GITT scheme without convergence enhancement schemes and commercial or dedicated purely numerical approaches.

  17. A comparative study of integrated pest management strategies based on impulsive control.

    PubMed

    Páez Chávez, Joseph; Jungmann, Dirk; Siegmund, Stefan

    2018-12-01

    The paper presents a comprehensive numerical study of mathematical models used to describe complex biological systems in the framework of integrated pest management. Our study considers two specific ecosystems that describe the application of control mechanisms based on pesticides and natural enemies, implemented in an impulsive and periodic manner, due to which the considered models belong to the class of impulsive differential equations. The present work proposes a numerical approach to study such type of models in detail, via the application of path-following (continuation) techniques for nonsmooth dynamical systems, via the novel continuation platform COCO (Dankowicz and Schilder). In this way, a detailed study focusing on the influence of selected system parameters on the effectiveness of the pest control scheme is carried out for both ecological scenarios. Furthermore, a comparative study is presented, with special emphasis on the mechanisms upon which a pest outbreak can occur in the considered ecosystems. Our study reveals that such outbreaks are determined by the presence of a branching point found during the continuation analysis. The numerical investigation concludes with an in-depth study of the state-dependent pesticide mortality considered in one of the ecological scenarios.

  18. A NUMERICAL SCHEME FOR SPECIAL RELATIVISTIC RADIATION MAGNETOHYDRODYNAMICS BASED ON SOLVING THE TIME-DEPENDENT RADIATIVE TRANSFER EQUATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohsuga, Ken; Takahashi, Hiroyuki R.

    2016-02-20

    We develop a numerical scheme for solving the equations of fully special relativistic, radiation magnetohydrodynamics (MHDs), in which the frequency-integrated, time-dependent radiation transfer equation is solved to calculate the specific intensity. The radiation energy density, the radiation flux, and the radiation stress tensor are obtained by the angular quadrature of the intensity. In the present method, conservation of total mass, momentum, and energy of the radiation magnetofluids is guaranteed. We treat not only the isotropic scattering but also the Thomson scattering. The numerical method of MHDs is the same as that of our previous work. The advection terms are explicitlymore » solved, and the source terms, which describe the gas–radiation interaction, are implicitly integrated. Our code is suitable for massive parallel computing. We present that our code shows reasonable results in some numerical tests for propagating radiation and radiation hydrodynamics. Particularly, the correct solution is given even in the optically very thin or moderately thin regimes, and the special relativistic effects are nicely reproduced.« less

  19. Dynamical topology and statistical properties of spatiotemporal chaos.

    PubMed

    Zhuang, Quntao; Gao, Xun; Ouyang, Qi; Wang, Hongli

    2012-12-01

    For spatiotemporal chaos described by partial differential equations, there are generally locations where the dynamical variable achieves its local extremum or where the time partial derivative of the variable vanishes instantaneously. To a large extent, the location and movement of these topologically special points determine the qualitative structure of the disordered states. We analyze numerically statistical properties of the topologically special points in one-dimensional spatiotemporal chaos. The probability distribution functions for the number of point, the lifespan, and the distance covered during their lifetime are obtained from numerical simulations. Mathematically, we establish a probabilistic model to describe the dynamics of these topologically special points. In spite of the different definitions in different spatiotemporal chaos, the dynamics of these special points can be described in a uniform approach.

  20. MHD effects and heat transfer for the UCM fluid along with Joule heating and thermal radiation using Cattaneo-Christov heat flux model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, S., E-mail: sajidshah313@yahoo.com; Hussain, S.; Sagheer, M.

    2016-08-15

    Present study examines the numerical analysis of MHD flow of Maxwell fluid with thermal radiation and Joule heating by considering the recently developed Cattaneo-Christov heat flux model which explains the time relaxation characteristics for the heat flux. The objective is to analyze the governing parameters such as viscoelastic fluid parameter, Magnetic parameter, Eckert and Prandtl number’s impact on the velocity and temperature profiles through graphs and tables. Suitable similarity transformations have been used to reduce the formulated PDEs into a system of coupled non-linear ODEs. Shooting technique has been invoked for finding the numerical solutions of the dimensionless velocity andmore » temperature profiles. Additionally, the MATLAB built-in routine bvp4c has also been used to verify and strengthen the results obtained by shooting method. From some special cases of the present work, a comparison with the previously published results has been presented.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Masood; Malik, Rabia, E-mail: rabiamalik.qau@gmail.com; Munir, Asif

    In this article, the mixed convective heat transfer to Sisko fluid over a radially stretching surface in the presence of convective boundary conditions is investigated. The viscous dissipation and thermal radiation effects are also taken into account. The suitable transformations are applied to convert the governing partial differential equations into a set of nonlinear coupled ordinary differential equations. The analytical solution of the governing problem is obtained by using the homotopy analysis method (HAM). Additionally, these analytical results are compared with the numerical results obtained by the shooting technique. The obtained results for the velocity and temperature are analyzed graphicallymore » for several physical parameters for the assisting and opposing flows. It is found that the effect of buoyancy parameter is more prominent in case of the assisting flow as compared to the opposing flow. Further, in tabular form the numerical values are given for the local skin friction coefficient and local Nusselt number. A remarkable agreement is noticed by comparing the present results with the results reported in the literature as a special case.« less

  2. Effective dimensional reduction algorithm for eigenvalue problems for thin elastic structures: A paradigm in three dimensions

    PubMed Central

    Ovtchinnikov, Evgueni E.; Xanthis, Leonidas S.

    2000-01-01

    We present a methodology for the efficient numerical solution of eigenvalue problems of full three-dimensional elasticity for thin elastic structures, such as shells, plates and rods of arbitrary geometry, discretized by the finite element method. Such problems are solved by iterative methods, which, however, are known to suffer from slow convergence or even convergence failure, when the thickness is small. In this paper we show an effective way of resolving this difficulty by invoking a special preconditioning technique associated with the effective dimensional reduction algorithm (EDRA). As an example, we present an algorithm for computing the minimal eigenvalue of a thin elastic plate and we show both theoretically and numerically that it is robust with respect to both the thickness and discretization parameters, i.e. the convergence does not deteriorate with diminishing thickness or mesh refinement. This robustness is sine qua non for the efficient computation of large-scale eigenvalue problems for thin elastic structures. PMID:10655469

  3. Teaching Square Roots: Conceptual Complexity in Mathematics Language

    ERIC Educational Resources Information Center

    Gough, John

    2007-01-01

    Mathematics is an "artificial" deliberately constructed language, supported crucially by: (1) special alpha-numeric characters and usages; (2) extra-special non-alphanumeric symbols; (3) special written formats within a single line, such as superscripts and subscripts; (4) grouping along a line, including bracketing using round brackets,…

  4. Immersed boundary lattice Boltzmann model based on multiple relaxation times

    NASA Astrophysics Data System (ADS)

    Lu, Jianhua; Han, Haifeng; Shi, Baochang; Guo, Zhaoli

    2012-01-01

    As an alterative version of the lattice Boltzmann models, the multiple relaxation time (MRT) lattice Boltzmann model introduces much less numerical boundary slip than the single relaxation time (SRT) lattice Boltzmann model if some special relationship between the relaxation time parameters is chosen. On the other hand, most current versions of the immersed boundary lattice Boltzmann method, which was first introduced by Feng and improved by many other authors, suffer from numerical boundary slip as has been investigated by Le and Zhang. To reduce such a numerical boundary slip, an immerse boundary lattice Boltzmann model based on multiple relaxation times is proposed in this paper. A special formula is given between two relaxation time parameters in the model. A rigorous analysis and the numerical experiments carried out show that the numerical boundary slip reduces dramatically by using the present model compared to the single-relaxation-time-based model.

  5. Light and Life in Baltimore—and Beyond

    PubMed Central

    Edidin, Michael

    2015-01-01

    Baltimore has been the home of numerous biophysical studies using light to probe cells. One such study, quantitative measurement of lateral diffusion of rhodopsin, set the standard for experiments in which recovery after photobleaching is used to measure lateral diffusion. Development of this method from specialized microscopes to commercial scanning confocal microscopes has led to widespread use of the technique to measure lateral diffusion of membrane proteins and lipids, and as well diffusion and binding interactions in cell organelles and cytoplasm. Perturbation of equilibrium distributions by photobleaching has also been developed into a robust method to image molecular proximity in terms of fluorescence resonance energy transfer between donor and acceptor fluorophores. PMID:25650914

  6. CAD/CAM for development and fabrication of cosecant reflector antennas

    NASA Astrophysics Data System (ADS)

    Petri, U.

    The application of CAD/CAM techniques to lower the cost of redesigning and manufacturing specialized cosecant reflector antennas for use in the mm-wave range is described and demonstrated. Consideration is given to the theoretical computation of reflector surfaces; the representation of a reflector surface in a CAD system; the numerically controlled milling of an Al, wood, or plastic model antenna; and the construction of the antenna (by spraying the 300-micron Sn-alloy conducting layer onto the coated model surface and then applying a 1-mm-thick epoxy-matrix GFRP layer, a 20-30-mm layer of flexible polyurethane foam, and a final GFRP layer). Diagrams and photographs are provided.

  7. Study of grid independence of finite element method on MHD free convective casson fluid flow with slip effect

    NASA Astrophysics Data System (ADS)

    Raju, R. Srinivasa; Ramesh, K.

    2018-05-01

    The purpose of this work is to study the grid independence of finite element method on MHD Casson fluid flow past a vertically inclined plate filled in a porous medium in presence of chemical reaction, heat absorption, an external magnetic field and slip effect has been investigated. For this study of grid independence, a mathematical model is developed and analyzed by using appropriate mathematical technique, called finite element method. Grid study discussed with the help of numerical values of velocity, temperature and concentration profiles in tabular form. avourable comparisons with previously published work on various special cases of the problem are obtained.

  8. Job Design: An Administrator's Guide to Supporting and Retaining Special Educators

    ERIC Educational Resources Information Center

    Bettini, Elizabeth A.; Cheyney, Kristi; Wang, Jun; Leko, Christopher

    2015-01-01

    Special education teacher attrition has numerous negative impacts for students and schools. Administrators play an essential role in supporting special educators, but they seldom receive adequate preparation to provide this support effectively. The authors synthesize job characteristics theory, an area of research conducted by organizational…

  9. Dynamic stability analysis for capillary channel flow: One-dimensional and three-dimensional computations and the equivalent steady state technique

    NASA Astrophysics Data System (ADS)

    Grah, Aleksander; Dreyer, Michael E.

    2010-01-01

    Spacecraft technology provides a series of applications for capillary channel flow. It can serve as a reliable means for positioning and transport of liquids under low gravity conditions. Basically, capillary channels provide liquid paths with one or more free surfaces. A problem may be flow instabilities leading to a collapse of the liquid surfaces. A result is undesired gas ingestion and a two phase flow which can in consequence cause several technical problems. The presented capillary channel consists of parallel plates with two free liquid surfaces. The flow rate is established by a pump at the channel outlet, creating a lower pressure within the channel. Owing to the pressure difference between the liquid phase and the ambient gas phase the free surfaces bend inwards and remain stable as long as they are able to resist the steady and unsteady pressure effects. For the numerical prediction of the flow stability two very different models are used. The one-dimensional unsteady model is mainly based on the Bernoulli equation, the continuity equation, and the Gauss-Laplace equation. For three-dimensional evaluations an open source computational fluid dynamics (CFD) tool is applied. For verifications the numerical results are compared with quasisteady and unsteady data of a sounding rocket experiment. Contrary to previous experiments this one results in a significantly longer observation sequence. Furthermore, the critical point of the steady flow instability could be approached by a quasisteady technique. As in previous experiments the comparison to the numerical model evaluation shows a very good agreement for the movement of the liquid surfaces and for the predicted flow instability. The theoretical prediction of the flow instability is related to the speed index, based on characteristic velocities of the capillary channel flow. Stable flow regimes are defined by stability criteria for steady and unsteady flow. The one-dimensional computation of the speed index is based on the technique of the equivalent steady system, which is published for the first time in the present paper. This approach assumes that for every unsteady state an equivalent steady state with a special boundary condition can be formulated. The equivalent steady state technique enables a reformulation of the equation system and an efficient and reliable speed index computation. Furthermore, the existence of the numerical singularity at the critical point of the steady flow instability, postulated in previous publication, is demonstrated in detail. The numerical singularity is related to the stability criterion for steady flow and represents the numerical consequence of the liquid surface collapse. The evaluation and generation of the pressure diagram is demonstrated in detail with a series of numerical dynamic flow studies. The stability diagram, based on one-dimensional computation, gives a detailed overview of the stable and instable flow regimes. This prediction is in good agreement with the experimentally observed critical flow conditions and results of three-dimensional CFD computations.

  10. Predictor-based control for an inverted pendulum subject to networked time delay.

    PubMed

    Ghommam, J; Mnif, F

    2017-03-01

    The inverted pendulum is considered as a special class of underactuated mechanical systems with two degrees of freedom and a single control input. This mechanical configuration allows to transform the underactuated system into a nonlinear system that is referred to as the normal form, whose control design techniques for stabilization are well known. In the presence of time delays, these control techniques may result in inadequate behavior and may even cause finite escape time in the controlled system. In this paper, a constructive method is presented to design a controller for an inverted pendulum characterized by a time-delayed balance control. First, the partial feedback linearization control for the inverted pendulum is modified and coupled with a state predictor to compensate for the delay. Several coordinate transformations are processed to transform the estimated partial linearized system into an upper-triangular form. Second, nested saturation and backstepping techniques are combined to derive the control law of the transformed system that would complete the design of the whole control input. The effectiveness of the proposed technique is illustrated by numerical simulations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. An improved DPSM technique for modelling ultrasonic fields in cracked solids

    NASA Astrophysics Data System (ADS)

    Banerjee, Sourav; Kundu, Tribikram; Placko, Dominique

    2007-04-01

    In recent years Distributed Point Source Method (DPSM) is being used for modelling various ultrasonic, electrostatic and electromagnetic field modelling problems. In conventional DPSM several point sources are placed near the transducer face, interface and anomaly boundaries. The ultrasonic or the electromagnetic field at any point is computed by superimposing the contributions of different layers of point sources strategically placed. The conventional DPSM modelling technique is modified in this paper so that the contributions of the point sources in the shadow region can be removed from the calculations. For this purpose the conventional point sources that radiate in all directions are replaced by Controlled Space Radiation (CSR) sources. CSR sources can take care of the shadow region problem to some extent. Complete removal of the shadow region problem can be achieved by introducing artificial interfaces. Numerically synthesized fields obtained by the conventional DPSM technique that does not give any special consideration to the point sources in the shadow region and the proposed modified technique that nullifies the contributions of the point sources in the shadow region are compared. One application of this research can be found in the improved modelling of the real time ultrasonic non-destructive evaluation experiments.

  12. Estimation of the mechanical properties of the eye through the study of its vibrational modes

    PubMed Central

    2017-01-01

    Measuring the eye’s mechanical properties in vivo and with minimally invasive techniques can be the key for individualized solutions to a number of eye pathologies. The development of such techniques largely relies on a computational modelling of the eyeball and, it optimally requires the synergic interplay between experimentation and numerical simulation. In Astrophysics and Geophysics the remote measurement of structural properties of the systems of their realm is performed on the basis of (helio-)seismic techniques. As a biomechanical system, the eyeball possesses normal vibrational modes encompassing rich information about its structure and mechanical properties. However, the integral analysis of the eyeball vibrational modes has not been performed yet. Here we develop a new finite difference method to compute both the spheroidal and, specially, the toroidal eigenfrequencies of the human eye. Using this numerical model, we show that the vibrational eigenfrequencies of the human eye fall in the interval 100 Hz–10 MHz. We find that compressible vibrational modes may release a trace on high frequency changes of the intraocular pressure, while incompressible normal modes could be registered analyzing the scattering pattern that the motions of the vitreous humour leave on the retina. Existing contact lenses with embebed devices operating at high sampling frequency could be used to register the microfluctuations of the eyeball shape we obtain. We advance that an inverse problem to obtain the mechanical properties of a given eye (e.g., Young’s modulus, Poisson ratio) measuring its normal frequencies is doable. These measurements can be done using non-invasive techniques, opening very interesting perspectives to estimate the mechanical properties of eyes in vivo. Future research might relate various ocular pathologies with anomalies in measured vibrational frequencies of the eye. PMID:28922351

  13. Estimation of the mechanical properties of the eye through the study of its vibrational modes.

    PubMed

    Aloy, M Á; Adsuara, J E; Cerdá-Durán, P; Obergaulinger, M; Esteve-Taboada, J J; Ferrer-Blasco, T; Montés-Micó, R

    2017-01-01

    Measuring the eye's mechanical properties in vivo and with minimally invasive techniques can be the key for individualized solutions to a number of eye pathologies. The development of such techniques largely relies on a computational modelling of the eyeball and, it optimally requires the synergic interplay between experimentation and numerical simulation. In Astrophysics and Geophysics the remote measurement of structural properties of the systems of their realm is performed on the basis of (helio-)seismic techniques. As a biomechanical system, the eyeball possesses normal vibrational modes encompassing rich information about its structure and mechanical properties. However, the integral analysis of the eyeball vibrational modes has not been performed yet. Here we develop a new finite difference method to compute both the spheroidal and, specially, the toroidal eigenfrequencies of the human eye. Using this numerical model, we show that the vibrational eigenfrequencies of the human eye fall in the interval 100 Hz-10 MHz. We find that compressible vibrational modes may release a trace on high frequency changes of the intraocular pressure, while incompressible normal modes could be registered analyzing the scattering pattern that the motions of the vitreous humour leave on the retina. Existing contact lenses with embebed devices operating at high sampling frequency could be used to register the microfluctuations of the eyeball shape we obtain. We advance that an inverse problem to obtain the mechanical properties of a given eye (e.g., Young's modulus, Poisson ratio) measuring its normal frequencies is doable. These measurements can be done using non-invasive techniques, opening very interesting perspectives to estimate the mechanical properties of eyes in vivo. Future research might relate various ocular pathologies with anomalies in measured vibrational frequencies of the eye.

  14. Developmental specialization of the left parietal cortex for the semantic representation of Arabic numerals: an fMR-adaptation study.

    PubMed

    Vogel, Stephan E; Goffin, Celia; Ansari, Daniel

    2015-04-01

    The way the human brain constructs representations of numerical symbols is poorly understood. While increasing evidence from neuroimaging studies has indicated that the intraparietal sulcus (IPS) becomes increasingly specialized for symbolic numerical magnitude representation over developmental time, the extent to which these changes are associated with age-related differences in symbolic numerical magnitude representation or with developmental changes in non-numerical processes, such as response selection, remains to be uncovered. To address these outstanding questions we investigated developmental changes in the cortical representation of symbolic numerical magnitude in 6- to 14-year-old children using a passive functional magnetic resonance imaging adaptation design, thereby mitigating the influence of response selection. A single-digit Arabic numeral was repeatedly presented on a computer screen and interspersed with the presentation of novel digits deviating as a function of numerical ratio (smaller/larger number). Results demonstrated a correlation between age and numerical ratio in the left IPS, suggesting an age-related increase in the extent to which numerical symbols are represented in the left IPS. Brain activation of the right IPS was modulated by numerical ratio but did not correlate with age, indicating hemispheric differences in IPS engagement during the development of symbolic numerical representation. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Interaction of a weak shock wave with a discontinuous heavy-gas cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiansheng; Yang, Dangguo; Wu, Junqiang

    2015-06-15

    The interaction between a cylindrical inhomogeneity and a weak planar shock wave is investigated experimentally and numerically, and special attention is given to the wave patterns and vortex dynamics in this scenario. A soap-film technique is realized to generate a well-controlled discontinuous cylinder (SF{sub 6} surrounded by air) with no supports or wires in the shock-tube experiment. The symmetric evolving interfaces and few disturbance waves are observed in a high-speed schlieren photography. Numerical simulations are also carried out for a detailed analysis. The refracted shock wave inside the cylinder is perturbed by the diffracted shock waves and divided into threemore » branches. When these shock branches collide, the shock focusing occurs. A nonlinear model is then proposed to elucidate effects of the wave patterns on the evolution of the cylinder. A distinct vortex pair is gradually developing during the shock-cylinder interaction. The numerical results show that a low pressure region appears at the vortex core. Subsequently, the ambient fluid is entrained into the vortices which are expanding at the same time. Based on the relation between the vortex motion and the circulation, several theoretical models of circulation in the literature are then checked by the experimental and numerical results. Most of these theoretical circulation models provide a reasonably good prediction of the vortex motion in the present configuration.« less

  16. Exact special twist method for quantum Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Dagrada, Mario; Karakuzu, Seher; Vildosola, Verónica Laura; Casula, Michele; Sorella, Sandro

    2016-12-01

    We present a systematic investigation of the special twist method introduced by Rajagopal et al. [Phys. Rev. B 51, 10591 (1995), 10.1103/PhysRevB.51.10591] for reducing finite-size effects in correlated calculations of periodic extended systems with Coulomb interactions and Fermi statistics. We propose a procedure for finding special twist values which, at variance with previous applications of this method, reproduce the energy of the mean-field infinite-size limit solution within an adjustable (arbitrarily small) numerical error. This choice of the special twist is shown to be the most accurate single-twist solution for curing one-body finite-size effects in correlated calculations. For these reasons we dubbed our procedure "exact special twist" (EST). EST only needs a fully converged independent-particles or mean-field calculation within the primitive cell and a simple fit to find the special twist along a specific direction in the Brillouin zone. We first assess the performances of EST in a simple correlated model such as the three-dimensional electron gas. Afterwards, we test its efficiency within ab initio quantum Monte Carlo simulations of metallic elements of increasing complexity. We show that EST displays an overall good performance in reducing finite-size errors comparable to the widely used twist average technique but at a much lower computational cost since it involves the evaluation of just one wave function. We also demonstrate that the EST method shows similar performances in the calculation of correlation functions, such as the ionic forces for structural relaxation and the pair radial distribution function in liquid hydrogen. Our conclusions point to the usefulness of EST for correlated supercell calculations; our method will be particularly relevant when the physical problem under consideration requires large periodic cells.

  17. The application of generalized, cyclic, and modified numerical integration algorithms to problems of satellite orbit computation

    NASA Technical Reports Server (NTRS)

    Chesler, L.; Pierce, S.

    1971-01-01

    Generalized, cyclic, and modified multistep numerical integration methods are developed and evaluated for application to problems of satellite orbit computation. Generalized methods are compared with the presently utilized Cowell methods; new cyclic methods are developed for special second-order differential equations; and several modified methods are developed and applied to orbit computation problems. Special computer programs were written to generate coefficients for these methods, and subroutines were written which allow use of these methods with NASA's GEOSTAR computer program.

  18. African American Learners in Special Education: A Closer Look at Milwaukee

    ERIC Educational Resources Information Center

    Obiakor, Festus E.; Harris, Mateba K.; Offor, MaxMary T.; Beachum, Floyd D.

    2010-01-01

    Problems facing African American students with special needs are numerous and complex. Although processes and procedures are in place to properly serve these students, far too many become ensnared in webs of bureaucracy and benign neglect. This article examines African American students? experiences with special education in Milwaukee Public…

  19. On computing special functions in marine engineering

    NASA Astrophysics Data System (ADS)

    Constantinescu, E.; Bogdan, M.

    2015-11-01

    Important modeling applications in marine engineering conduct us to a special class of solutions for difficult differential equations with variable coefficients. In order to be able to solve and implement such models (in wave theory, in acoustics, in hydrodynamics, in electromagnetic waves, but also in many other engineering fields), it is necessary to compute so called special functions: Bessel functions, modified Bessel functions, spherical Bessel functions, Hankel functions. The aim of this paper is to develop numerical solutions in Matlab for the above mentioned special functions. Taking into account the main properties for Bessel and modified Bessel functions, we shortly present analytically solutions (where possible) in the form of series. Especially it is studied the behavior of these special functions using Matlab facilities: numerical solutions and plotting. Finally, it will be compared the behavior of the special functions and point out other directions for investigating properties of Bessel and spherical Bessel functions. The asymptotic forms of Bessel functions and modified Bessel functions allow determination of important properties of these functions. The modified Bessel functions tend to look more like decaying and growing exponentials.

  20. On the numerical treatment of selected oscillatory evolutionary problems

    NASA Astrophysics Data System (ADS)

    Cardone, Angelamaria; Conte, Dajana; D'Ambrosio, Raffaele; Paternoster, Beatrice

    2017-07-01

    We focus on evolutionary problems whose qualitative behaviour is known a-priori and exploited in order to provide efficient and accurate numerical schemes. For classical numerical methods, depending on constant coefficients, the required computational effort could be quite heavy, due to the necessary employ of very small stepsizes needed to accurately reproduce the qualitative behaviour of the solution. In these situations, it may be convenient to use special purpose formulae, i.e. non-polynomially fitted formulae on basis functions adapted to the problem (see [16, 17] and references therein). We show examples of special purpose strategies to solve two families of evolutionary problems exhibiting periodic solutions, i.e. partial differential equations and Volterra integral equations.

  1. Numerical calculation on infrared characteristics of the special vehicle exhaust system

    NASA Astrophysics Data System (ADS)

    Feng, Yun-song; Li, Xiao-xia; Jin, Wei

    2017-10-01

    For mastery of infrared radiation characteristics and flow field of the special vehicle exhaust system, first, a physical model of the special vehicle exhaust system is established with the Gambit, and the mathematical model of flow field is determined. Secondly, software Fluent6.3 is used to simulated the 3-D exterior flow field of the special vehicle exhaust system, and the datum of flow field, such as temperature, pressure and density, are obtained. Thirdly, based on the plume temperature, the special vehicle exhaust space is divided. The exhaust is equivalent to a gray-body. A calculating model of the vehicle exhaust infrared radiation is established, and the exhaust infrared radiation characteristics are calculated by the software MATLAB, then the spatial distribution curves are drawn. Finally, the numerical results are analyzing, and the basic laws of the special vehicle exhaust infrared radiation are explored. The results show that with the increase of the engine speed, the temperature of the exhaust pipe wall of the special vehicle increases, and the temperature and pressure of the exhaust gas flow field increase, which leads to the enhancement of the infrared radiation intensity

  2. Optical diffraction tomography with fully and partially coherent illumination in high numerical aperture label-free microscopy [Invited].

    PubMed

    Soto, Juan M; Rodrigo, José A; Alieva, Tatiana

    2018-01-01

    Quantitative label-free imaging is an important tool for the study of living microorganisms that, during the last decade, has attracted wide attention from the optical community. Optical diffraction tomography (ODT) is probably the most relevant technique for quantitative label-free 3D imaging applied in wide-field microscopy in the visible range. The ODT is usually performed using spatially coherent light illumination and specially designed holographic microscopes. Nevertheless, the ODT is also compatible with partially coherent illumination and can be realized in conventional wide-field microscopes by applying refocusing techniques, as it has been recently demonstrated. Here, we compare these two ODT modalities, underlining their pros and cons and discussing the optical setups for their implementation. In particular, we pay special attention to a system that is compatible with a conventional wide-field microscope that can be used for both ODT modalities. It consists of two easily attachable modules: the first for sample illumination engineering based on digital light processing technology; the other for focus scanning by using an electrically driven tunable lens. This hardware allows for a programmable selection of the wavelength and the illumination design, and provides fast data acquisition as well. Its performance is experimentally demonstrated in the case of ODT with partially coherent illumination providing speckle-free 3D quantitative imaging.

  3. Retention and application of Skylab experiences to future programs. [a postflight review of technical programs.

    NASA Technical Reports Server (NTRS)

    Gillespie, V. G.; Kelly, R. O.

    1974-01-01

    The problems encountered and special techniques and procedures developed on the Skylab program are described along with the experiences and practical benefits obtained for dissemination and use on future programs. Three major topics are discussed: electrical problems, mechanical problems, and special techniques. Special techniques and procedures are identified that were either developed or refined during the Skylab program. These techniques and procedures came from all manufacturing and test phases of the Skylab program and include both flight and GSE items from component level to sophisticated spaceflight systems.

  4. Inclusive Pedagogy in Light of Social Justice. Special Educational Rights and Inclusive Classrooms: On Whose Terms? a Field Study in Stockholm Suburbs

    ERIC Educational Resources Information Center

    De Silva, Nilani Ljunggren

    2013-01-01

    The question of inclusive education is not straightforward. Despite all its good intentions, inclusive education, in practice faces numerous challenges today. This study analyses these challenges in the Swedish special education context. The author explores special educators' experiences, possibilities and challenges when applying inclusive…

  5. Public and Private School Principals' Knowledge of Special Education Law

    ERIC Educational Resources Information Center

    Boyd, Marie Nicole

    2018-01-01

    The purpose of this study is to examine the knowledge of special education law held by public and private school principals as the law pertains to providing the appropriate services to students with disabilities. Numerous studies have investigated public school principals' level of preparation, training, and role within in special education law.…

  6. Many Hats and a Delicate Balance: The Lives and Times of Today's Special Education Directors

    ERIC Educational Resources Information Center

    Thompson, James R.; O'Brian, Mary

    2007-01-01

    A statewide survey of special education directors revealed that director of special education preparation programs should be time limited and offered in convenient locations to recruit the best possible pool of students and future directors. Current directors have come to their positions through numerous and diverse career paths. The lack of…

  7. 26 CFR 26.2642-3 - Special rule for charitable lead annuity trusts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 14 2014-04-01 2013-04-01 true Special rule for charitable lead annuity trusts... 1986 § 26.2642-3 Special rule for charitable lead annuity trusts. (a) In general. In determining the applicable fraction with respect to a charitable lead annuity trust— (1) The numerator is the adjusted...

  8. 26 CFR 26.2642-3 - Special rule for charitable lead annuity trusts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 14 2011-04-01 2010-04-01 true Special rule for charitable lead annuity trusts... 1986 § 26.2642-3 Special rule for charitable lead annuity trusts. (a) In general. In determining the applicable fraction with respect to a charitable lead annuity trust— (1) The numerator is the adjusted...

  9. 26 CFR 26.2642-3 - Special rule for charitable lead annuity trusts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 14 2012-04-01 2012-04-01 false Special rule for charitable lead annuity trusts... 1986 § 26.2642-3 Special rule for charitable lead annuity trusts. (a) In general. In determining the applicable fraction with respect to a charitable lead annuity trust— (1) The numerator is the adjusted...

  10. 26 CFR 26.2642-3 - Special rule for charitable lead annuity trusts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 14 2013-04-01 2013-04-01 false Special rule for charitable lead annuity trusts... 1986 § 26.2642-3 Special rule for charitable lead annuity trusts. (a) In general. In determining the applicable fraction with respect to a charitable lead annuity trust— (1) The numerator is the adjusted...

  11. Understanding Vocabulary Use by Native American Students and the Relationship with Special Education

    ERIC Educational Resources Information Center

    Costa-Guerra, Leslie; Costa-Guerra, Boris

    2016-01-01

    The Pueblo People of the Southwest face numerous challenges with reference to language issues. A substantial number of Native American students are placed into special education possibly due to different linguistic abilities. The over-identification of Native American students for special education programs may be due to the lack of knowledge as a…

  12. Light and life in Baltimore--and beyond.

    PubMed

    Edidin, Michael

    2015-02-03

    Baltimore has been the home of numerous biophysical studies using light to probe cells. One such study, quantitative measurement of lateral diffusion of rhodopsin, set the standard for experiments in which recovery after photobleaching is used to measure lateral diffusion. Development of this method from specialized microscopes to commercial scanning confocal microscopes has led to widespread use of the technique to measure lateral diffusion of membrane proteins and lipids, and as well diffusion and binding interactions in cell organelles and cytoplasm. Perturbation of equilibrium distributions by photobleaching has also been developed into a robust method to image molecular proximity in terms of fluorescence resonance energy transfer between donor and acceptor fluorophores. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. ɛ-subgradient algorithms for bilevel convex optimization

    NASA Astrophysics Data System (ADS)

    Helou, Elias S.; Simões, Lucas E. A.

    2017-05-01

    This paper introduces and studies the convergence properties of a new class of explicit ɛ-subgradient methods for the task of minimizing a convex function over a set of minimizers of another convex minimization problem. The general algorithm specializes to some important cases, such as first-order methods applied to a varying objective function, which have computationally cheap iterations. We present numerical experimentation concerning certain applications where the theoretical framework encompasses efficient algorithmic techniques, enabling the use of the resulting methods to solve very large practical problems arising in tomographic image reconstruction. ES Helou was supported by FAPESP grants 2013/07375-0 and 2013/16508-3 and CNPq grant 311476/2014-7. LEA Simões was supported by FAPESP grants 2011/02219-4 and 2013/14615-7.

  14. Optimal parameter estimation with a fixed rate of abstention

    NASA Astrophysics Data System (ADS)

    Gendra, B.; Ronco-Bonvehi, E.; Calsamiglia, J.; Muñoz-Tapia, R.; Bagan, E.

    2013-07-01

    The problems of optimally estimating a phase, a direction, and the orientation of a Cartesian frame (or trihedron) with general pure states are addressed. Special emphasis is put on estimation schemes that allow for inconclusive answers or abstention. It is shown that such schemes enable drastic improvements, up to the extent of attaining the Heisenberg limit in some cases, and the required amount of abstention is quantified. A general mathematical framework to deal with the asymptotic limit of many qubits or large angular momentum is introduced and used to obtain analytical results for all the relevant cases under consideration. Parameter estimation with abstention is also formulated as a semidefinite programming problem, for which very efficient numerical optimization techniques exist.

  15. Exploration of Mars by Mariner 9 - Television sensors and image processing.

    NASA Technical Reports Server (NTRS)

    Cutts, J. A.

    1973-01-01

    Two cameras equipped with selenium sulfur slow scan vidicons were used in the orbital reconnaissance of Mars by the U.S. Spacecraft Mariner 9 and the performance characteristics of these devices are presented. Digital image processing techniques have been widely applied in the analysis of images of Mars and its satellites. Photometric and geometric distortion corrections, image detail enhancement and transformation to standard map projection have been routinely employed. More specializing applications included picture differencing, limb profiling, solar lighting corrections, noise removal, line plots and computer mosaics. Information on enhancements as well as important picture geometric information was stored in a master library. Display of the library data in graphic or numerical form was accomplished by a data management computer program.

  16. Optimality study of a gust alleviation system for light wing-loading STOL aircraft

    NASA Technical Reports Server (NTRS)

    Komoda, M.

    1976-01-01

    An analytical study was made of an optimal gust alleviation system that employs a vertical gust sensor mounted forward of an aircraft's center of gravity. Frequency domain optimization techniques were employed to synthesize the optimal filters that process the corrective signals to the flaps and elevator actuators. Special attention was given to evaluating the effectiveness of lead time, that is, the time by which relative wind sensor information should lead the actual encounter of the gust. The resulting filter is expressed as an implicit function of the prescribed control cost. A numerical example for a light wing loading STOL aircraft is included in which the optimal trade-off between performance and control cost is systematically studied.

  17. The Dysfunctions of Bureaucratic Structure.

    ERIC Educational Resources Information Center

    Duttweiler, Patricia Cloud

    1988-01-01

    Numerous dysfunctions result from bureaucratic school organization, including an overemphasis on specialized tasks, routine operating rules, and formal procedures for managing teaching and learning. Such schools are characterized by numerous regulations; formal communications; centralized decision making; and sharp distinctions among…

  18. A generalized vortex lattice method for subsonic and supersonic flow applications

    NASA Technical Reports Server (NTRS)

    Miranda, L. R.; Elliot, R. D.; Baker, W. M.

    1977-01-01

    If the discrete vortex lattice is considered as an approximation to the surface-distributed vorticity, then the concept of the generalized principal part of an integral yields a residual term to the vorticity-induced velocity field. The proper incorporation of this term to the velocity field generated by the discrete vortex lines renders the present vortex lattice method valid for supersonic flow. Special techniques for simulating nonzero thickness lifting surfaces and fusiform bodies with vortex lattice elements are included. Thickness effects of wing-like components are simulated by a double (biplanar) vortex lattice layer, and fusiform bodies are represented by a vortex grid arranged on a series of concentrical cylindrical surfaces. The analysis of sideslip effects by the subject method is described. Numerical considerations peculiar to the application of these techniques are also discussed. The method has been implemented in a digital computer code. A users manual is included along with a complete FORTRAN compilation, an executed case, and conversion programs for transforming input for the NASA wave drag program.

  19. Guidelines for developing vectorizable computer programs

    NASA Technical Reports Server (NTRS)

    Miner, E. W.

    1982-01-01

    Some fundamental principles for developing computer programs which are compatible with array-oriented computers are presented. The emphasis is on basic techniques for structuring computer codes which are applicable in FORTRAN and do not require a special programming language or exact a significant penalty on a scalar computer. Researchers who are using numerical techniques to solve problems in engineering can apply these basic principles and thus develop transportable computer programs (in FORTRAN) which contain much vectorizable code. The vector architecture of the ASC is discussed so that the requirements of array processing can be better appreciated. The "vectorization" of a finite-difference viscous shock-layer code is used as an example to illustrate the benefits and some of the difficulties involved. Increases in computing speed with vectorization are illustrated with results from the viscous shock-layer code and from a finite-element shock tube code. The applicability of these principles was substantiated through running programs on other computers with array-associated computing characteristics, such as the Hewlett-Packard (H-P) 1000-F.

  20. BOOK REVIEW: Vortex Methods: Theory and Practice

    NASA Astrophysics Data System (ADS)

    Cottet, G.-H.; Koumoutsakos, P. D.

    2001-03-01

    The book Vortex Methods: Theory and Practice presents a comprehensive account of the numerical technique for solving fluid flow problems. It provides a very nice balance between the theoretical development and analysis of the various techniques and their practical implementation. In fact, the presentation of the rigorous mathematical analysis of these methods instills confidence in their implementation. The book goes into some detail on the more recent developments that attempt to account for viscous effects, in particular the presence of viscous boundary layers in some flows of interest. The presentation is very readable, with most points illustrated with well-chosen examples, some quite sophisticated. It is a very worthy reference book that should appeal to a large body of readers, from those interested in the mathematical analysis of the methods to practitioners of computational fluid dynamics. The use of the book as a text is compromised by its lack of exercises for students, but it could form the basis of a graduate special topics course. Juan Lopez

  1. A GA based penalty function technique for solving constrained redundancy allocation problem of series system with interval valued reliability of components

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Bhunia, A. K.; Roy, D.

    2009-10-01

    In this paper, we have considered the problem of constrained redundancy allocation of series system with interval valued reliability of components. For maximizing the overall system reliability under limited resource constraints, the problem is formulated as an unconstrained integer programming problem with interval coefficients by penalty function technique and solved by an advanced GA for integer variables with interval fitness function, tournament selection, uniform crossover, uniform mutation and elitism. As a special case, considering the lower and upper bounds of the interval valued reliabilities of the components to be the same, the corresponding problem has been solved. The model has been illustrated with some numerical examples and the results of the series redundancy allocation problem with fixed value of reliability of the components have been compared with the existing results available in the literature. Finally, sensitivity analyses have been shown graphically to study the stability of our developed GA with respect to the different GA parameters.

  2. QR code-based non-linear image encryption using Shearlet transform and spiral phase transform

    NASA Astrophysics Data System (ADS)

    Kumar, Ravi; Bhaduri, Basanta; Hennelly, Bryan

    2018-02-01

    In this paper, we propose a new quick response (QR) code-based non-linear technique for image encryption using Shearlet transform (ST) and spiral phase transform. The input image is first converted into a QR code and then scrambled using the Arnold transform. The scrambled image is then decomposed into five coefficients using the ST and the first Shearlet coefficient, C1 is interchanged with a security key before performing the inverse ST. The output after inverse ST is then modulated with a random phase mask and further spiral phase transformed to get the final encrypted image. The first coefficient, C1 is used as a private key for decryption. The sensitivity of the security keys is analysed in terms of correlation coefficient and peak signal-to noise ratio. The robustness of the scheme is also checked against various attacks such as noise, occlusion and special attacks. Numerical simulation results are shown in support of the proposed technique and an optoelectronic set-up for encryption is also proposed.

  3. Hydraulic fracturing - an attempt of DEM simulation

    NASA Astrophysics Data System (ADS)

    Kosmala, Alicja; Foltyn, Natalia; Klejment, Piotr; Dębski, Wojciech

    2017-04-01

    Hydraulic fracturing is a technique widely used in oil, gas and unconventional reservoirs exploitation in order to enable the oil/gas to flow more easily and enhance the production. It relays on pumping into a rock a special fluid under a high pressure which creates a set of microcracks which enhance porosity of the reservoir rock. In this research, attempt of simulation of such hydrofracturing process using the Discrete Element Method approach is presented. The basic assumption of this approach is that the rock can be represented as an assembly of discrete particles cemented into a rigid sample (Potyondy 2004). An existence of voids among particles simulates then a pore system which can be filled out by fracturing fluid, numerically represented by much smaller particles. Following this microscopic point of view and its numerical representation by DEM method we present primary results of numerical analysis of hydrofracturing phenomena, using the ESyS-Particle Software. In particular, we consider what is happening in distinct vicinity of the border between rock sample and fracking particles, how cracks are creating and evolving by breaking bonds between particles, how acoustic/seismic energy is releasing and so on. D.O. Potyondy, P.A. Cundall. A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41 (2004), pp. 1329-1364.

  4. A fast CT reconstruction scheme for a general multi-core PC.

    PubMed

    Zeng, Kai; Bai, Erwei; Wang, Ge

    2007-01-01

    Expensive computational cost is a severe limitation in CT reconstruction for clinical applications that need real-time feedback. A primary example is bolus-chasing computed tomography (CT) angiography (BCA) that we have been developing for the past several years. To accelerate the reconstruction process using the filtered backprojection (FBP) method, specialized hardware or graphics cards can be used. However, specialized hardware is expensive and not flexible. The graphics processing unit (GPU) in a current graphic card can only reconstruct images in a reduced precision and is not easy to program. In this paper, an acceleration scheme is proposed based on a multi-core PC. In the proposed scheme, several techniques are integrated, including utilization of geometric symmetry, optimization of data structures, single-instruction multiple-data (SIMD) processing, multithreaded computation, and an Intel C++ compilier. Our scheme maintains the original precision and involves no data exchange between the GPU and CPU. The merits of our scheme are demonstrated in numerical experiments against the traditional implementation. Our scheme achieves a speedup of about 40, which can be further improved by several folds using the latest quad-core processors.

  5. Thoughts for food in cognitive neuroscience: An introduction to the special issue.

    PubMed

    Rumiati, Raffaella I; di Pellegrino, Giuseppe

    2016-12-01

    Food is essential to our survival. It is also one of the greatest pleasures of life. Over the last decade, our understanding about how the brain responds to food cues and guides food search and intake has greatly increased. This special issue brings together various perspectives and research approaches on food cognitive neuroscience, encompassing a wide variety of techniques and methods. As these studies will add substantially to the ever-growing research on food cognitive neuroscience, we hope that they will also inspire new and useful ideas to fill the gaps that remain in this critical area of inquiry. By providing nutrients to generate energy and sustain life, food is an essential fuel for our survival and a pervasive element of our daily environment. Food also represents one of the greatest pleasures that we experience in life. More recently, numerous cognitive neuroscientific studies about how the brain responds to food cues and guides food search and consumption have been published. Evidence points to several and closely interrelated neural circuits underlying the homeostatic and hedonic mechanisms that regulate food intake. Copyright © 2016. Published by Elsevier Inc.

  6. A Fast CT Reconstruction Scheme for a General Multi-Core PC

    PubMed Central

    Zeng, Kai; Bai, Erwei; Wang, Ge

    2007-01-01

    Expensive computational cost is a severe limitation in CT reconstruction for clinical applications that need real-time feedback. A primary example is bolus-chasing computed tomography (CT) angiography (BCA) that we have been developing for the past several years. To accelerate the reconstruction process using the filtered backprojection (FBP) method, specialized hardware or graphics cards can be used. However, specialized hardware is expensive and not flexible. The graphics processing unit (GPU) in a current graphic card can only reconstruct images in a reduced precision and is not easy to program. In this paper, an acceleration scheme is proposed based on a multi-core PC. In the proposed scheme, several techniques are integrated, including utilization of geometric symmetry, optimization of data structures, single-instruction multiple-data (SIMD) processing, multithreaded computation, and an Intel C++ compilier. Our scheme maintains the original precision and involves no data exchange between the GPU and CPU. The merits of our scheme are demonstrated in numerical experiments against the traditional implementation. Our scheme achieves a speedup of about 40, which can be further improved by several folds using the latest quad-core processors. PMID:18256731

  7. A technique to remove the tensile instability in weakly compressible SPH

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyang; Yu, Peng

    2018-01-01

    When smoothed particle hydrodynamics (SPH) is directly applied for the numerical simulations of transient viscoelastic free surface flows, a numerical problem called tensile instability arises. In this paper, we develop an optimized particle shifting technique to remove the tensile instability in SPH. The basic equations governing free surface flow of an Oldroyd-B fluid are considered, and approximated by an improved SPH scheme. This includes the implementations of the correction of kernel gradient and the introduction of Rusanov flux into the continuity equation. To verify the effectiveness of the optimized particle shifting technique in removing the tensile instability, the impacting drop, the injection molding of a C-shaped cavity, and the extrudate swell, are conducted. The numerical results obtained are compared with those simulated by other numerical methods. A comparison among different numerical techniques (e.g., the artificial stress) to remove the tensile instability is further performed. All numerical results agree well with the available data.

  8. A weak Galerkin generalized multiscale finite element method

    DOE PAGES

    Mu, Lin; Wang, Junping; Ye, Xiu

    2016-03-31

    In this study, we propose a general framework for weak Galerkin generalized multiscale (WG-GMS) finite element method for the elliptic problems with rapidly oscillating or high contrast coefficients. This general WG-GMS method features in high order accuracy on general meshes and can work with multiscale basis derived by different numerical schemes. A special case is studied under this WG-GMS framework in which the multiscale basis functions are obtained by solving local problem with the weak Galerkin finite element method. Convergence analysis and numerical experiments are obtained for the special case.

  9. A weak Galerkin generalized multiscale finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Wang, Junping; Ye, Xiu

    In this study, we propose a general framework for weak Galerkin generalized multiscale (WG-GMS) finite element method for the elliptic problems with rapidly oscillating or high contrast coefficients. This general WG-GMS method features in high order accuracy on general meshes and can work with multiscale basis derived by different numerical schemes. A special case is studied under this WG-GMS framework in which the multiscale basis functions are obtained by solving local problem with the weak Galerkin finite element method. Convergence analysis and numerical experiments are obtained for the special case.

  10. Statements of Special Educational Needs and Tribunal Appeals in England and Wales 2003-2013--In Numbers

    ERIC Educational Resources Information Center

    Marsh, Alan J.

    2014-01-01

    The study presents a statistical analysis of statements of special educational needs and Special Educational Needs and Disability (SEND) tribunal appeal rates in England and Wales. It is set against the backcloth of the 2014 Children and Families Act which replaces statements with Education, Health and Care (EHC) plans. The numerical overview…

  11. The Boy Factor: Can Single-Gender Classes Reduce the Over-Representation of Boys in Special Education?

    ERIC Educational Resources Information Center

    Piechura-Couture, Kathy; Heins, Elizabeth; Tichenor, Mercedes

    2013-01-01

    Since the early 1990s numerous studies have concluded that there is an over-representation of males and minorities in special education. This paper examines the question if a different educational format, such as single-gender education, can help boys' behavior and thus reduce the number of special education referrals? The rationale for…

  12. The Boy Factor: Can Single-Gender Classes Reduce the Over-Representation of Boys in Special Education?

    ERIC Educational Resources Information Center

    Piechura-Couture, Kathy; Heins, Elizabeth; Tichenor, Mercedes

    2011-01-01

    Since the early 1990s numerous studies have concluded that there is an over-representation of males and minorities in special education. This paper examines the question if a different educational format, such as single-gender education, can help boys' behavior and thus reduce the number of special education referrals? The rationale for…

  13. A posteriori error estimates in voice source recovery

    NASA Astrophysics Data System (ADS)

    Leonov, A. S.; Sorokin, V. N.

    2017-12-01

    The inverse problem of voice source pulse recovery from a segment of a speech signal is under consideration. A special mathematical model is used for the solution that relates these quantities. A variational method of solving inverse problem of voice source recovery for a new parametric class of sources, that is for piecewise-linear sources (PWL-sources), is proposed. Also, a technique for a posteriori numerical error estimation for obtained solutions is presented. A computer study of the adequacy of adopted speech production model with PWL-sources is performed in solving the inverse problems for various types of voice signals, as well as corresponding study of a posteriori error estimates. Numerical experiments for speech signals show satisfactory properties of proposed a posteriori error estimates, which represent the upper bounds of possible errors in solving the inverse problem. The estimate of the most probable error in determining the source-pulse shapes is about 7-8% for the investigated speech material. It is noted that a posteriori error estimates can be used as a criterion of the quality for obtained voice source pulses in application to speaker recognition.

  14. Suzuki-Trotter Formula for Real-Time Dependent LDA I: Electron Dynamics

    NASA Astrophysics Data System (ADS)

    Sugino, Osamu; Miyamoto, Yoshiyuki

    1998-03-01

    To investigate various physical and chemical processes where electron dynamics play a role (e.g. collisions or photochemical reactions), solving the real-time Schrödinger equation is essentially important. ihbar fracpartialφpartial t=H φ Trial of solving eqn. (1) from first principles has begun very recently(K. Yabana and G. F. Bertch, Phys. Rev. B54) 4484 (1996)., and it is now in the stage of establishing efficient, stable, and accurate method for numerical calculation. In this talk, we present several improvements in the method of solving eqn. (1) within the density functional theory: (A) higher order Suzuki-Trotter formula(M. Suzuki, Phys. Lett. A146) 319 (1990). to integrate eqn. (1) keeping the orthonormality of the wavefunctions, (B) special interpolation scheme for the self-consistent potential to reduce the drift in the total-energy, and (C) the preconditioning techniques to increase the time step for the simulation. We will demonstrate numerical stability and efficiency using several cluster calculations, and will address the accuracy by comparing the computed cross sections for atom-electron collisions with experiment.

  15. A Computing Method for Sound Propagation Through a Nonuniform Jet Stream

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Liu, C. H.

    1974-01-01

    Understanding the principles of jet noise propagation is an essential ingredient of systematic noise reduction research. High speed computer methods offer a unique potential for dealing with complex real life physical systems whereas analytical solutions are restricted to sophisticated idealized models. The classical formulation of sound propagation through a jet flow was found to be inadequate for computer solutions and a more suitable approach was needed. Previous investigations selected the phase and amplitude of the acoustic pressure as dependent variables requiring the solution of a system of nonlinear algebraic equations. The nonlinearities complicated both the analysis and the computation. A reformulation of the convective wave equation in terms of a new set of dependent variables is developed with a special emphasis on its suitability for numerical solutions on fast computers. The technique is very attractive because the resulting equations are linear in nonwaving variables. The computer solution to such a linear system of algebraic equations may be obtained by well-defined and direct means which are conservative of computer time and storage space. Typical examples are illustrated and computational results are compared with available numerical and experimental data.

  16. a Numerical Method for Stability Analysis of Pinned Flexible Mechanisms

    NASA Astrophysics Data System (ADS)

    Beale, D. G.; Lee, S. W.

    1996-05-01

    A technique is presented to investigate the stability of mechanisms with pin-jointed flexible members. The method relies on a special floating frame from which elastic link co-ordinates are defined. Energies are easily developed for use in a Lagrange equation formulation, leading to a set of non-linear and mixed ordinary differential-algebraic equations of motion with constraints. Stability and bifurcation analysis is handled using a numerical procedure (generalized co-ordinate partitioning) that avoids the tedious and difficult task of analytically reducing the system of equations to a number equalling the system degrees of freedom. The proposed method was then applied to (1) a slider-crank mechanism with a flexible connecting rod and crank of constant rotational speed, and (2) a four-bar linkage with a flexible coupler with a constant speed crank. In both cases, a single pinned-pinned beam bending mode is employed to develop resonance curves and stability boundaries in the crank length-crank speed parameter plane. Flip and fold bifurcations are common occurrences in both mechanisms. The accuracy of the proposed method was also verified by comparison with previous experimental results [1].

  17. Numerical simulation of axisymmetric turbulent flow in combustors and diffusors. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Yung, Chain Nan

    1988-01-01

    A method for predicting turbulent flow in combustors and diffusers is developed. The Navier-Stokes equations, incorporating a turbulence kappa-epsilon model equation, were solved in a nonorthogonal curvilinear coordinate system. The solution applied the finite volume method to discretize the differential equations and utilized the SIMPLE algorithm iteratively to solve the differenced equations. A zonal grid method, wherein the flow field was divided into several subsections, was developed. This approach permitted different computational schemes to be used in the various zones. In addition, grid generation was made a more simple task. However, treatment of the zonal boundaries required special handling. Boundary overlap and interpolating techniques were used and an adjustment of the flow variables was required to assure conservation of mass, momentum and energy fluxes. The numerical accuracy was assessed using different finite differencing methods, i.e., hybrid, quadratic upwind and skew upwind, to represent the convection terms. Flows in different geometries of combustors and diffusers were simulated and results compared with experimental data and good agreement was obtained.

  18. Development, integrated investigation, laboratory and in-flight testing of Chibis-M microsatellite ADCS

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, M. Yu.; Ivanov, D. S.; Ivlev, N. A.; Karpenko, S. O.; Roldugin, D. S.; Tkachev, S. S.

    2014-01-01

    Design, analytical investigation, laboratory and in-flight testing of the attitude determination and control system (ADCS) of a microsatellites are considered. The system consists of three pairs of reaction wheels, three magnetorquers, a set of Sun sensors, a three-axis magnetometer and a control unit. The ADCS is designed for a small 10-50 kg LEO satellite. System development is accomplished in several steps: satellite dynamics preliminary study using asymptotical and numerical techniques, hardware and software design, laboratory testing of each actuator and sensor and the whole ADCS. Laboratory verification is carried out on the specially designed test-bench. In-flight ADCS exploitation results onboard the Russian microsatellite "Chibis-M" are presented. The satellite was developed, designed and manufactured by the Institute of Space Research of RAS. "Chibis-M" was launched by the "Progress-13M" cargo vehicle on January 25, 2012 after undocking from the International Space Station (ISS). This paper assess both the satellite and the ADCS mock-up dynamics. Analytical, numerical and laboratory study results are in good correspondence with in-flight data.

  19. Method of moments comparison for soot population modeling in turbulent combustion

    NASA Astrophysics Data System (ADS)

    Chong, Shao Teng; Im, Hong; Raman, Venkat

    2017-11-01

    Representation of soot population is an important component in the efficient computational prediction of particulate emissions. However, there are a number of moments-based techniques with varying numerical complexity. In the past, development of such methods has been principally carried out on canonical laminar and 0-D flows. However, their applications in realistic solvers developed for turbulent combustion may face challenges from turbulence closure to selection of moment sets. In this work, the accuracy and relative computational expense of a few common soot method of moments are tested in canonical turbulent flames for different configurations. Large eddy simulation (LES) will be used as the turbulence modeling framework. In grid-filtered LES, the interaction of numerical and modeling errors is a first-order problem that can undermine the accuracy of soot predictions. In the past, special moments-based methods for solvers that transport high frequency content fluid with ability to reconstruct particle size distribution have been developed. Here, a similar analysis will be carried out for the moment-based soot modeling approaches above. Specifically, realizability of moments methods with nonlinear advection schemes will be discussed.

  20. Numerical Simulations of Thermo-Mechanical Processes during Thermal Spallation Drilling for Geothermal Reservoirs

    NASA Astrophysics Data System (ADS)

    Vogler, D.; Walsh, S. D. C.; Rudolf von Rohr, P.; Saar, M. O.

    2017-12-01

    Drilling expenses constitute a significant share of the upfront capital costs and thereby the associated risks of geothermal energy production. This is especially true for deep boreholes, as drilling costs per meter increase significantly with depth. Thermal spallation drilling is a relatively new drilling technique, particularly suited to the hard crystalline (e.g., basement) rocks in which many deep geothermal resources are located. The method uses a hot jet-flame to rapidly heat the rock surface, which leads to large temperature gradients in the rock. These temperature gradients cause localized thermal stresses that, in combination with the in situ stress field, lead to the formation and ejection of spalls. These spalls are then transported out of the borehole with the drilling mud. Thermal spallation not only in principle enables much faster rates of penetration than traditional rotary drilling, but is also contact-less, which significantly reduces the long tripping times associated with conventional rotary head drilling. We present numerical simulations investigating the influence of rock heterogeneities on the thermal spallation process. Special emphasis is put on different mineral compositions, stress regimes, and heat sources.

  1. MHD Flow and Heat Transfer Characteristics in a Casson Liquid Film Towards an Unsteady Stretching Sheet with Temperature-Dependent Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Mahmoud, Mostafa A. A.; Megahed, Ahmed M.

    2017-10-01

    Theoretical and numerical outcomes of the non-Newtonian Casson liquid thin film fluid flow owing to an unsteady stretching sheet which exposed to a magnetic field, Ohmic heating and slip velocity phenomena is reported here. The non-Newtonian thermal conductivity is imposed and treated as it vary with temperature. The nonlinear partial differential equations governing the non-Newtonian Casson thin film fluid are simplified into a group of highly nonlinear ordinary differential equations by using an adequate dimensionless transformations. With this in mind, the numerical solutions for the ordinary conservation equations are found using an accurate shooting iteration technique together with the Runge-Kutta algorithm. The lineaments of the thin film flow and the heat transfer characteristics for the pertinent parameters are discussed through graphs. The results obtained here detect many concern for the local Nusselt number and the local skin-friction coefficient in which they may be beneficial for the material processing industries. Furthermore, in some special conditions, the present problem has an excellent agreement with previously published work.

  2. A technique for increasing the accuracy of the numerical inversion of the Laplace transform with applications

    NASA Technical Reports Server (NTRS)

    Berger, B. S.; Duangudom, S.

    1973-01-01

    A technique is introduced which extends the range of useful approximation of numerical inversion techniques to many cycles of an oscillatory function without requiring either the evaluation of the image function for many values of s or the computation of higher-order terms. The technique consists in reducing a given initial value problem defined over some interval into a sequence of initial value problems defined over a set of subintervals. Several numerical examples demonstrate the utility of the method.

  3. Fluid Structure Interaction Techniques For Extrusion And Mixing Processes

    NASA Astrophysics Data System (ADS)

    Valette, Rudy; Vergnes, Bruno; Coupez, Thierry

    2007-05-01

    This work focuses on the development of numerical techniques devoted to the simulation of mixing processes of complex fluids such as twin-screw extrusion or batch mixing. In mixing process simulation, the absence of symmetry of the moving boundaries (the screws or the rotors) implies that their rigid body motion has to be taken into account by using a special treatment We therefore use a mesh immersion technique (MIT), which consists in using a P1+/P1-based (MINI-element) mixed finite element method for solving the velocity-pressure problem and then solving the problem in the whole barrel cavity by imposing a rigid motion (rotation) to nodes found located inside the so called immersed domain, each sub-domain (screw, rotor) being represented by a surface CAD mesh (or its mathematical equation in simple cases). The independent meshes are immersed into a unique background computational mesh by computing the distance function to their boundaries. Intersections of meshes are accounted for, allowing to compute a fill factor usable as for the VOF methodology. This technique, combined with the use of parallel computing, allows to compute the time-dependent flow of generalized Newtonian fluids including yield stress fluids in a complex system such as a twin screw extruder, including moving free surfaces, which are treated by a "level set" and Hamilton-Jacobi method.

  4. EDITORIAL: Measurement techniques for multiphase flows Measurement techniques for multiphase flows

    NASA Astrophysics Data System (ADS)

    Okamoto, Koji; Murai, Yuichi

    2009-11-01

    Research on multiphase flows is very important for industrial applications, including power stations, vehicles, engines, food processing and so on. Multiphase flows originally have nonlinear features because of multiphase systems. The interaction between the phases plays a very interesting role in the flows. The nonlinear interaction causes the multiphase flows to be very complicated. Therefore techniques for measuring multiphase flows are very useful in helping to understand the nonlinear phenomena. The state-of-the-art measurement techniques were presented and discussed at the sixth International Symposium on Measurement Techniques for Multiphase Flows (ISMTMF2008) held in Okinawa, Japan, on 15-17 December 2008. This special feature of Measurement Science and Technology includes selected papers from ISMTMF2008. Okinawa has a long history as the Ryukyus Kingdom. China, Japan and many western Pacific countries have had cultural and economic exchanges through Okinawa for over 1000 years. Much technical and scientific information was exchanged at the symposium in Okinawa. The proceedings of ISMTMF2008 apart from these special featured papers were published in Journal of Physics: Conference Series vol. 147 (2009). We would like to express special thanks to all the contributors to the symposium and this special feature. This special feature will be a milestone in measurement techniques for multiphase flows.

  5. Code Optimization Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MAGEE,GLEN I.

    Computers transfer data in a number of different ways. Whether through a serial port, a parallel port, over a modem, over an ethernet cable, or internally from a hard disk to memory, some data will be lost. To compensate for that loss, numerous error detection and correction algorithms have been developed. One of the most common error correction codes is the Reed-Solomon code, which is a special subset of BCH (Bose-Chaudhuri-Hocquenghem) linear cyclic block codes. In the AURA project, an unmanned aircraft sends the data it collects back to earth so it can be analyzed during flight and possible flightmore » modifications made. To counter possible data corruption during transmission, the data is encoded using a multi-block Reed-Solomon implementation with a possibly shortened final block. In order to maximize the amount of data transmitted, it was necessary to reduce the computation time of a Reed-Solomon encoding to three percent of the processor's time. To achieve such a reduction, many code optimization techniques were employed. This paper outlines the steps taken to reduce the processing time of a Reed-Solomon encoding and the insight into modern optimization techniques gained from the experience.« less

  6. Analysis of the Harrier forebody/inlet design using computational techniques

    NASA Technical Reports Server (NTRS)

    Chow, Chuen-Yen

    1993-01-01

    Under the support of this Cooperative Agreement, computations of transonic flow past the complex forebody/inlet configuration of the AV-8B Harrier II have been performed. The actual aircraft configuration was measured and its surface and surrounding domain were defined using computational structured grids. The thin-layer Navier-Stokes equations were used to model the flow along with the Chimera embedded multi-grid technique. A fully conservative, alternating direction implicit (ADI), approximately-factored, partially flux-split algorithm was employed to perform the computation. An existing code was altered to conform with the needs of the study, and some special engine face boundary conditions were developed. The algorithm incorporated the Chimera technique and an algebraic turbulence model in order to deal with the embedded multi-grids and viscous governing equations. Comparison with experimental data has yielded good agreement for the simplifications incorporated into the analysis. The aim of the present research was to provide a methodology for the numerical solution of complex, combined external/internal flows. This is the first time-dependent Navier-Stokes solution for a geometry in which the fuselage and inlet share a wall. The results indicate the methodology used here is a viable tool for transonic aircraft modeling.

  7. Numerical research of the optimal control problem in the semi-Markov inventory model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorshenin, Andrey K.; Belousov, Vasily V.; Shnourkoff, Peter V.

    2015-03-10

    This paper is devoted to the numerical simulation of stochastic system for inventory management products using controlled semi-Markov process. The results of a special software for the system’s research and finding the optimal control are presented.

  8. Recursive least squares method of regression coefficients estimation as a special case of Kalman filter

    NASA Astrophysics Data System (ADS)

    Borodachev, S. M.

    2016-06-01

    The simple derivation of recursive least squares (RLS) method equations is given as special case of Kalman filter estimation of a constant system state under changing observation conditions. A numerical example illustrates application of RLS to multicollinearity problem.

  9. Field Museum of Natural History Library.

    ERIC Educational Resources Information Center

    Williams, Benjamin W.; Fawcett, W. Peyton

    1986-01-01

    Founded in 1894 to support museum research, the Field Museum of Natural History Library specializes in fields of anthropology, archaeology, botany, geology, palaeontology, and zoology. A rich serials collection and numerous special collections serve both the scientific community and wider public as noncirculating reference collection and through…

  10. Integration Of Heat Transfer Coefficient In Glass Forming Modeling With Special Interface Element

    NASA Astrophysics Data System (ADS)

    Moreau, P.; César de Sá, J.; Grégoire, S.; Lochegnies, D.

    2007-05-01

    Numerical modeling of the glass forming processes requires the accurate knowledge of the heat exchange between the glass and the forming tools. A laboratory testing is developed to determine the evolution of the heat transfer coefficient in different glass/mould contact conditions (contact pressure, temperature, lubrication…). In this paper, trials are performed to determine heat transfer coefficient evolutions in experimental conditions close to the industrial blow-and-blow process conditions. In parallel of this work, a special interface element is implemented in a commercial Finite Element code in order to deal with heat transfer between glass and mould for non-meshing meshes and evolutive contact. This special interface element, implemented by using user subroutines, permits to introduce the previous heat transfer coefficient evolutions in the numerical modelings at the glass/mould interface in function of the local temperatures, contact pressures, contact time and kind of lubrication. The blow-and-blow forming simulation of a perfume bottle is finally performed to assess the special interface element performance.

  11. Flow and heat transfer enhancement in tube heat exchangers

    NASA Astrophysics Data System (ADS)

    Sayed Ahmed, Sayed Ahmed E.; Mesalhy, Osama M.; Abdelatief, Mohamed A.

    2015-11-01

    The performance of heat exchangers can be improved to perform a certain heat-transfer duty by heat transfer enhancement techniques. Enhancement techniques can be divided into two categories: passive and active. Active methods require external power, such as electric or acoustic field, mechanical devices, or surface vibration, whereas passive methods do not require external power but make use of a special surface geometry or fluid additive which cause heat transfer enhancement. The majority of commercially interesting enhancement techniques are passive ones. This paper presents a review of published works on the characteristics of heat transfer and flow in finned tube heat exchangers of the existing patterns. The review considers plain, louvered, slit, wavy, annular, longitudinal, and serrated fins. This review can be indicated by the status of the research in this area which is important. The comparison of finned tubes heat exchangers shows that those with slit, plain, and wavy finned tubes have the highest values of area goodness factor while the heat exchanger with annular fin shows the lowest. A better heat transfer coefficient ha is found for a heat exchanger with louvered finned and thus should be regarded as the most efficient one, at fixed pumping power per heat transfer area. This study points out that although numerous studies have been conducted on the characteristics of flow and heat transfer in round, elliptical, and flat tubes, studies on some types of streamlined-tubes shapes are limited, especially on wing-shaped tubes (Sayed Ahmed et al. in Heat Mass Transf 50: 1091-1102, 2014; in Heat Mass Transf 51: 1001-1016, 2015). It is recommended that further detailed studies via numerical simulations and/or experimental investigations should be carried out, in the future, to put further insight to these fin designs.

  12. Projection Moire measurement of the deflection of composite plates subject to bird strike impact

    NASA Astrophysics Data System (ADS)

    Shulev, A.; Van Paepegem, W.; Harizanova, J.; Moentjens, A.; Degrieck, J.; Sainov, V.

    2007-06-01

    For the new generation aircraft families, the use of fibre-reinforced plastics is considered for the leading edge of the wings. However, this leading edge is very prone to bird strike impact. This paper presents the use of the projection moire technique to measure the out-of-plane deflections of composite plates subject to bird strike. Very strict constraints with regard to: (i) high speed image acquisition, (ii) vibrations of the impact chamber, and (iii) projection and observation angles - complicated substantially the development of the set-up. Moreover, the high frame rates (12000 fps) required a very intensive illumination. In the optimized configuration, a specially designed grating with gradually changing period is projected by means of special Metal Hydride lamps through one of the side windows of the impact chamber onto the composite plate riveted in a steel frame. The digital high speed camera is mounted on the roof of the impact chamber and records through a mirror the object surface with the projected fringe pattern on it. Numerical routines based on Local Fourier Transform were developed to process the digital images, to extract the phase and the out-of-plane displacements. The phase evaluation is possible due to the carrier frequency nature of the projected moire pattern. This carrier frequency allows separation of the unwanted additive and multiplicative fringe pattern components in the frequency domain via the application of a proper mask. The numerical calculations were calibrated for the bird strike of an aluminium plate, where the plastic deformation could be checked after the test.

  13. Application of LANDSAT data to wetland study and land use classification in west Tennessee

    NASA Technical Reports Server (NTRS)

    Jones, N. L.; Shahrokhi, F.

    1977-01-01

    The Obion-Forked Deer River Basin in northwest Tennessee is confronted with several acute land use problems which result in excessive erosion, sedimentation, pollution, and hydrologic runoff. LANDSAT data was applied to determine land use of selected watershed areas within the basin, with special emphasis on determining wetland boundaries. Densitometric analysis was performed to allow numerical classification of objects observed in the imagery on the basis of measurements of optical densities. Multispectral analysis of the LANDSAT imagery provided the capability of altering the color of the image presentation in order to enhance desired relationships. Manual mapping and classification techniques were performed in order to indicate a level of accuracy of the LANDSAT data as compared with high and low altitude photography for land use classification.

  14. Computational open-channel hydraulics for movable-bed problems

    USGS Publications Warehouse

    Lai, Chintu; ,

    1990-01-01

    As a major branch of computational hydraulics, notable advances have been made in numerical modeling of unsteady open-channel flow since the beginning of the computer age. According to the broader definition and scope of 'computational hydraulics,' the basic concepts and technology of modeling unsteady open-channel flow have been systematically studied previously. As a natural extension, computational open-channel hydraulics for movable-bed problems are addressed in this paper. The introduction of the multimode method of characteristics (MMOC) has made the modeling of this class of unsteady flows both practical and effective. New modeling techniques are developed, thereby shedding light on several aspects of computational hydraulics. Some special features of movable-bed channel-flow simulation are discussed here in the same order as given by the author in the fixed-bed case.

  15. Critical Analyses of Data Differences Between FNMOC and AFGWC Spawned SSM/I Datasets

    NASA Technical Reports Server (NTRS)

    Ritchie, Adrian A., Jr.; Smith, Matthew R.; Goodman, H. Michael; Schudalla, Ronald L.; Conway, Dawn K.; LaFontaine, Frank J.; Moss, Don; Motta, Brian

    1998-01-01

    Antenna temperatures and the corresponding geolocation data from the five sources of the Special Sensor Microwave/Imager data from the Defense Meteorological Satellite Program F11 satellite have been characterized. Data from the Fleet Numerical Meteorology and Oceanography Center (FNMOC) have been compared with data from other sources to define and document the differences resulting from different processing systems. While all sources used similar methods to calculate antenna temperatures, different calibration averaging techniques and other processing methods yielded temperature differences. Analyses of the geolocation data identified perturbations in the FNMOC and National Environmental Satellite, Data and Information Service data. The effects of the temperature differences were examined by generating rain rates using the Goddard Scattering Algorithm. Differences in the geophysical precipitation products are directly attributable to antenna temperature differences.

  16. Surface tension models for a multi-material ALE code with AMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wangyi; Koniges, Alice; Gott, Kevin

    A number of surface tension models have been implemented in a 3D multi-physics multi-material code, ALE–AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR). ALE–AMR is unique in its ability to model hot radiating plasmas, cold fragmenting solids, and most recently, the deformation of molten material. The surface tension models implemented include a diffuse interface approach with special numerical techniques to remove parasitic flow and a height function approach in conjunction with a volume-fraction interface reconstruction package. These surface tension models are benchmarked with a variety of test problems. In conclusion, based on the results, themore » height function approach using volume fractions was chosen to simulate droplet dynamics associated with extreme ultraviolet (EUV) lithography.« less

  17. Inhalation exposure methodology.

    PubMed Central

    Phalen, R F; Mannix, R C; Drew, R T

    1984-01-01

    Modern man is being confronted with an ever-increasing inventory of potentially toxic airborne substances. Exposures to these atmospheric contaminants occur in residential and commercial settings, as well as in the workplace. In order to study the toxicity of such materials, a special technology relating to inhalation exposure systems has evolved. The purpose of this paper is to provide a description of the techniques which are used in exposing laboratory subjects to airborne particles and gases. The various modes of inhalation exposure (whole body, head only, nose or mouth only, etc.) are described at length, including the advantages and disadvantages inherent to each mode. Numerous literature citations are included for further reading. Among the topics briefly discussed are the selection of appropriate animal species for toxicological testing, and the types of inhalation studies performed (acute, chronic, etc.). PMID:6383799

  18. New Developments in Magnetostatic Cleanliness Modeling

    NASA Astrophysics Data System (ADS)

    Mehlem, K.; Wiegand, A.; Weickert, S.

    2012-05-01

    The paper describes improvements and extensions of the multiple magnetic dipole modeling method (MDM) for cleanliness verification which had been introduced by the author1 in 1977 and then applied during 3 decades to numerous international projects. The solutions of specific modeling problems which had been left unsolved so far, are described in the present paper. Special attention is given to the ambiguities of MDM solutions caused by the limited data coverage available. Constraint handling by the constraint-free NLP solver, optimal MDM sizing and multiple-point far-field compensation techniques are presented. The recent extension of the MDM method to field gradient data is formulated and demonstrated by an example. Finally, a complex MDM application (Ulysses) is presented. Finally, a short description of the MDM software GAMAG, recently introduced by the author1, is given.

  19. Surface tension models for a multi-material ALE code with AMR

    DOE PAGES

    Liu, Wangyi; Koniges, Alice; Gott, Kevin; ...

    2017-06-01

    A number of surface tension models have been implemented in a 3D multi-physics multi-material code, ALE–AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR). ALE–AMR is unique in its ability to model hot radiating plasmas, cold fragmenting solids, and most recently, the deformation of molten material. The surface tension models implemented include a diffuse interface approach with special numerical techniques to remove parasitic flow and a height function approach in conjunction with a volume-fraction interface reconstruction package. These surface tension models are benchmarked with a variety of test problems. In conclusion, based on the results, themore » height function approach using volume fractions was chosen to simulate droplet dynamics associated with extreme ultraviolet (EUV) lithography.« less

  20. Upwind methods for the Baer–Nunziato equations and higher-order reconstruction using artificial viscosity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraysse, F., E-mail: francois.fraysse@rs2n.eu; E. T. S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Madrid; Redondo, C.

    This article is devoted to the numerical discretisation of the hyperbolic two-phase flow model of Baer and Nunziato. A special attention is paid on the discretisation of intercell flux functions in the framework of Finite Volume and Discontinuous Galerkin approaches, where care has to be taken to efficiently approximate the non-conservative products inherent to the model equations. Various upwind approximate Riemann solvers have been tested on a bench of discontinuous test cases. New discretisation schemes are proposed in a Discontinuous Galerkin framework following the criterion of Abgrall and the path-conservative formalism. A stabilisation technique based on artificial viscosity is appliedmore » to the high-order Discontinuous Galerkin method and compared against classical TVD-MUSCL Finite Volume flux reconstruction.« less

  1. Krylov Subspace Methods for Complex Non-Hermitian Linear Systems. Thesis

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.

    1991-01-01

    We consider Krylov subspace methods for the solution of large sparse linear systems Ax = b with complex non-Hermitian coefficient matrices. Such linear systems arise in important applications, such as inverse scattering, numerical solution of time-dependent Schrodinger equations, underwater acoustics, eddy current computations, numerical computations in quantum chromodynamics, and numerical conformal mapping. Typically, the resulting coefficient matrices A exhibit special structures, such as complex symmetry, or they are shifted Hermitian matrices. In this paper, we first describe a Krylov subspace approach with iterates defined by a quasi-minimal residual property, the QMR method, for solving general complex non-Hermitian linear systems. Then, we study special Krylov subspace methods designed for the two families of complex symmetric respectively shifted Hermitian linear systems. We also include some results concerning the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  2. Special data base of Informational - Computational System 'INM RAS - Black Sea' for solving inverse and data assimilation problems

    NASA Astrophysics Data System (ADS)

    Zakharova, Natalia; Piskovatsky, Nicolay; Gusev, Anatoly

    2014-05-01

    Development of Informational-Computational Systems (ICS) for data assimilation procedures is one of multidisciplinary problems. To study and solve these problems one needs to apply modern results from different disciplines and recent developments in: mathematical modeling; theory of adjoint equations and optimal control; inverse problems; numerical methods theory; numerical algebra and scientific computing. The above problems are studied in the Institute of Numerical Mathematics of the Russian Academy of Science (INM RAS) in ICS for personal computers. In this work the results on the Special data base development for ICS "INM RAS - Black Sea" are presented. In the presentation the input information for ICS is discussed, some special data processing procedures are described. In this work the results of forecast using ICS "INM RAS - Black Sea" with operational observation data assimilation are presented. This study was supported by the Russian Foundation for Basic Research (project No 13-01-00753) and by Presidium Program of Russian Academy of Sciences (project P-23 "Black sea as an imitational ocean model"). References 1. V.I. Agoshkov, M.V. Assovskii, S.A. Lebedev, Numerical simulation of Black Sea hydrothermodynamics taking into account tide-forming forces. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, pp. 5-31. 2. E.I. Parmuzin, V.I. Agoshkov, Numerical solution of the variational assimilation problem for sea surface temperature in the model of the Black Sea dynamics. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, pp. 69-94. 3. V.B. Zalesny, N.A. Diansky, V.V. Fomin, S.N. Moshonkin, S.G. Demyshev, Numerical model of the circulation of Black Sea and Sea of Azov. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, pp. 95-111. 4. Agoshkov V.I.,Assovsky M.B., Giniatulin S. V., Zakharova N.B., Kuimov G.V., Parmuzin E.I., Fomin V.V. Informational Computational system of variational assimilation of observation data "INM RAS - Black sea"// Ecological safety of coastal and shelf zones and complex use of shelf resources: Collection of scientific works. Issue 26, Volume 2. - National Academy of Sciences of Ukraine, Marine Hydrophysical Institute, Sebastopol, 2012. Pages 352-360. (In russian)

  3. PREFACE: Special section on vortex rings Special section on vortex rings

    NASA Astrophysics Data System (ADS)

    Fukumoto, Yasuhide

    2009-10-01

    This special section of Fluid Dynamics Research includes five articles on vortex rings in both classical and quantum fluids. The leading scientists of the field describe the trends in and the state-of-the-art development of experiments, theories and numerical simulations of vortex rings. The year 2008 was the 150th anniversary of 'vortex motion' since Hermann von Helmholtz opened up this field. In 1858, Helmholtz published a paper in Crelle's Journal which put forward the concept of 'vorticity' and made the first analysis of vortex motion. Fluid mechanics before that was limited to irrotational motion. In the absence of vorticity, the motion of an incompressible homogeneous fluid is virtually equivalent to a rigid-body motion in the sense that the fluid motion is determined once the boundary configuration is specified. Helmholtz proved, among other things, that, without viscosity, a vortex line is frozen into the fluid. This Helmholtz's law immediately implies the preservation of knots and links of vortex lines and its implication is enormous. One of the major trends of fluid mechanics since the latter half of the 20th century is to clarify the topological meaning of Helmholtz's law and to exploit it to develop theoretical and numerical methods to find the solutions of the Euler equations and to develop experimental techniques to gain an insight into fluid motion. Vortex rings are prominent coherent structures in a variety of fluid motions from the microscopic scale, through human and mesoscale to astrophysical scales, and have attracted people's interest. The late professor Philip G Saffman (1981) emphasized the significance of studies on vortex rings. One particular motion exemplifies the whole range of problems of vortex motion and is also a commonly known phenomenon, namely the vortex ring or smoke ring. Vortex rings are easily produced by dropping drops of one liquid into another, or by puffing fluid out of a hole, or by exhaling smoke if one has the skill. Their formation is a problem of vortex sheet dynamics, the steady state is a problem of existence, their duration is a problem of stability, and if there are several we have the problem of vortex interactions. Helmholtz himself, in the same paper (1858), devoted a few pages to an analysis of the motion of a vortex ring, and made substantial contributions. Since then, theoretical, experimental and numerical treatments of vortex rings have been developing continuously, yet we encounter mysteries and novel phenomena, with which vortex rings find new applications in, say, bio-fluid mechanics. Recently vortex rings have enlarged their scope beyond classical fluids to encompass super-fluids and Bose-Einstein condensates. On the occasion of the 150th anniversary of Helmholtz's theory on a vortex ring, it is worthwhile to bring together, in one issue, the latest understandings of and open problems in vortex rings from various aspects. The topics in this issue include development of theories and experiments for motion of vortex rings and their interaction with other vortex rings, flows and boundaries, with application to vortex-ring manipulation for flow control, original experiments on collision of vortex rings with a porous boundary, a novel numerical technique to simulate three-dimensional motion of vortex rings and new theories of dynamics of quantum vortex rings governed by nonlinear Schrödinger equations. I hope that this special section gives a sketch, in some proportion, of the current frontier of the field and provides a means to tackle future problems. References Saffman P G 1981 Dynamics of vorticity J. Fluid Mech. 106 49-58 von Helmholtz H 1858 Über Integrale der hydrodynamischen Gleichungen welche den Wirbelbewegungen entsprechen J. Reine Angew. Math. 55 25-55 (Engl. transl.: Tait P G 1867 On the integrals of the hydrodynamical equations which express vortex-motion Phil. Mag. 33 (4) 485-512)

  4. A review of numerical techniques approaching microstructures of crystalline rocks

    NASA Astrophysics Data System (ADS)

    Zhang, Yahui; Wong, Louis Ngai Yuen

    2018-06-01

    The macro-mechanical behavior of crystalline rocks including strength, deformability and failure pattern are dominantly influenced by their grain-scale structures. Numerical technique is commonly used to assist understanding the complicated mechanisms from a microscopic perspective. Each numerical method has its respective strengths and limitations. This review paper elucidates how numerical techniques take geometrical aspects of the grain into consideration. Four categories of numerical methods are examined: particle-based methods, block-based methods, grain-based methods, and node-based methods. Focusing on the grain-scale characters, specific relevant issues including increasing complexity of micro-structure, deformation and breakage of model elements, fracturing and fragmentation process are described in more detail. Therefore, the intrinsic capabilities and limitations of different numerical approaches in terms of accounting for the micro-mechanics of crystalline rocks and their phenomenal mechanical behavior are explicitly presented.

  5. Unsteady laminar boundary-layer calculations on oscillating configurations including backflow. Part 1: Flat plate, oscillating in its own plane

    NASA Technical Reports Server (NTRS)

    Geissler, W.

    1983-01-01

    A finite difference method has been developed to calculate the unsteady boundary layer over an oscillating flat plate. Low- and high frequency approximations were used for comparison with numerical results. Special emphasis was placed on the behavior of the flow and on the numerical calculation procedure as soon as reversed flow has occurred over part of the oscillation cycle. The numerical method displayed neither problems nor singular behavior at the beginning of or within the reversed flow region. Calculations, however, came to a limit where the back-flow region reached the plate's leading edge in the case of high oscillation amplitudes. It is assumed that this limit is caused by the special behavior of the flow at the plate's leading edge where the boundary layer equations are not valid.

  6. Behaviors of printed circuit boards due to microwave supported curing process of coating materials.

    PubMed

    Bremerkamp, Felix; Nowottnick, Mathias; Seehase, Dirk; Bui, Trinh Dung

    2012-01-01

    The Application of a microwave supported curing process for coatings in the field of electronic industry poses a challenge. Here the implementation of this technology is represented. Within the scope of the investigation special PCB Test Layouts were designed and the polymer curing process examined by the method of dielectric analysis. Furthermore the coupling of microwave radiation with conductive PCB structures was analyzed experimentally by means of special test boards. The formation of standing waves and regular heating distribution along the conductive wires on the PCB could be observed. The experimental results were compared with numerical simulation. In this context the numerical analysis of microwave PCB interaction led to important findings concerning wave propagation on wired PCB. The final valuation demonstrated a substantial similarity between numerical simulations and experimental results.

  7. Making the Road While Walking It: A Conversation with Richard Simpson

    ERIC Educational Resources Information Center

    Zabel, Robert H.; Kaff, Marilyn; Teagarden, James

    2016-01-01

    Richard Simpson is professor of special education at the University of Kansas (KU). Dr. Simpson's duties at KU have included roles of staff psychologist, teaching associate, assistant professor, project director, associate professor, professor, and chairperson for the Department of Special Education. He has directed numerous University of Kansas…

  8. Precision Machining. FasTrak Specialization Integrated Technical and Academic Competency (ITAC). 2002 Revision.

    ERIC Educational Resources Information Center

    Ohio State Dept. of Education, Columbus. Div. of Career-Technical and Adult Education.

    This publication provided the competencies and key indicators for a program that enables students to prepare for a number of occupations within the broader metalworking industry. Specializations include machinist, computer numerical control programmers, and maintenance and machine builders. Competencies and the related key indicators are presented…

  9. Numerical model updating technique for structures using firefly algorithm

    NASA Astrophysics Data System (ADS)

    Sai Kubair, K.; Mohan, S. C.

    2018-03-01

    Numerical model updating is a technique used for updating the existing experimental models for any structures related to civil, mechanical, automobiles, marine, aerospace engineering, etc. The basic concept behind this technique is updating the numerical models to closely match with experimental data obtained from real or prototype test structures. The present work involves the development of numerical model using MATLAB as a computational tool and with mathematical equations that define the experimental model. Firefly algorithm is used as an optimization tool in this study. In this updating process a response parameter of the structure has to be chosen, which helps to correlate the numerical model developed with the experimental results obtained. The variables for the updating can be either material or geometrical properties of the model or both. In this study, to verify the proposed technique, a cantilever beam is analyzed for its tip deflection and a space frame has been analyzed for its natural frequencies. Both the models are updated with their respective response values obtained from experimental results. The numerical results after updating show that there is a close relationship that can be brought between the experimental and the numerical models.

  10. Diffusion in random networks: Asymptotic properties, and numerical and engineering approximations

    NASA Astrophysics Data System (ADS)

    Padrino, Juan C.; Zhang, Duan Z.

    2016-11-01

    The ensemble phase averaging technique is applied to model mass transport by diffusion in random networks. The system consists of an ensemble of random networks, where each network is made of a set of pockets connected by tortuous channels. Inside a channel, we assume that fluid transport is governed by the one-dimensional diffusion equation. Mass balance leads to an integro-differential equation for the pores mass density. The so-called dual porosity model is found to be equivalent to the leading order approximation of the integration kernel when the diffusion time scale inside the channels is small compared to the macroscopic time scale. As a test problem, we consider the one-dimensional mass diffusion in a semi-infinite domain, whose solution is sought numerically. Because of the required time to establish the linear concentration profile inside a channel, for early times the similarity variable is xt- 1 / 4 rather than xt- 1 / 2 as in the traditional theory. This early time sub-diffusive similarity can be explained by random walk theory through the network. In addition, by applying concepts of fractional calculus, we show that, for small time, the governing equation reduces to a fractional diffusion equation with known solution. We recast this solution in terms of special functions easier to compute. Comparison of the numerical and exact solutions shows excellent agreement.

  11. A solution to the Navier-Stokes equations based upon the Newton Kantorovich method

    NASA Technical Reports Server (NTRS)

    Davis, J. E.; Gabrielsen, R. E.; Mehta, U. B.

    1977-01-01

    An implicit finite difference scheme based on the Newton-Kantorovich technique was developed for the numerical solution of the nonsteady, incompressible, two-dimensional Navier-Stokes equations in conservation-law form. The algorithm was second-order-time accurate, noniterative with regard to the nonlinear terms in the vorticity transport equation except at the earliest few time steps, and spatially factored. Numerical results were obtained with the technique for a circular cylinder at Reynolds number 15. Results indicate that the technique is in excellent agreement with other numerical techniques for all geometries and Reynolds numbers investigated, and indicates a potential for significant reduction in computation time over current iterative techniques.

  12. Moving microphone arrays to reduce spatial aliasing in the beamforming technique: theoretical background and numerical investigation.

    PubMed

    Cigada, Alfredo; Lurati, Massimiliano; Ripamonti, Francesco; Vanali, Marcello

    2008-12-01

    This paper introduces a measurement technique aimed at reducing or possibly eliminating the spatial aliasing problem in the beamforming technique. Beamforming main disadvantages are a poor spatial resolution, at low frequency, and the spatial aliasing problem, at higher frequency, leading to the identification of false sources. The idea is to move the microphone array during the measurement operation. In this paper, the proposed approach is theoretically and numerically investigated by means of simple sound propagation models, proving its efficiency in reducing the spatial aliasing. A number of different array configurations are numerically investigated together with the most important parameters governing this measurement technique. A set of numerical results concerning the case of a planar rotating array is shown, together with a first experimental validation of the method.

  13. Machine Learning Techniques in Optimal Design

    NASA Technical Reports Server (NTRS)

    Cerbone, Giuseppe

    1992-01-01

    Many important applications can be formalized as constrained optimization tasks. For example, we are studying the engineering domain of two-dimensional (2-D) structural design. In this task, the goal is to design a structure of minimum weight that bears a set of loads. A solution to a design problem in which there is a single load (L) and two stationary support points (S1 and S2) consists of four members, E1, E2, E3, and E4 that connect the load to the support points is discussed. In principle, optimal solutions to problems of this kind can be found by numerical optimization techniques. However, in practice [Vanderplaats, 1984] these methods are slow and they can produce different local solutions whose quality (ratio to the global optimum) varies with the choice of starting points. Hence, their applicability to real-world problems is severely restricted. To overcome these limitations, we propose to augment numerical optimization by first performing a symbolic compilation stage to produce: (a) objective functions that are faster to evaluate and that depend less on the choice of the starting point and (b) selection rules that associate problem instances to a set of recommended solutions. These goals are accomplished by successive specializations of the problem class and of the associated objective functions. In the end, this process reduces the problem to a collection of independent functions that are fast to evaluate, that can be differentiated symbolically, and that represent smaller regions of the overall search space. However, the specialization process can produce a large number of sub-problems. This is overcome by deriving inductively selection rules which associate problems to small sets of specialized independent sub-problems. Each set of candidate solutions is chosen to minimize a cost function which expresses the tradeoff between the quality of the solution that can be obtained from the sub-problem and the time it takes to produce it. The overall solution to the problem, is then obtained by solving in parallel each of the sub-problems in the set and computing the one with the minimum cost. In addition to speeding up the optimization process, our use of learning methods also relieves the expert from the burden of identifying rules that exactly pinpoint optimal candidate sub-problems. In real engineering tasks it is usually too costly to the engineers to derive such rules. Therefore, this paper also contributes to a further step towards the solution of the knowledge acquisition bottleneck [Feigenbaum, 1977] which has somewhat impaired the construction of rulebased expert systems.

  14. New Results in Software Model Checking and Analysis

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina S.

    2010-01-01

    This introductory article surveys new techniques, supported by automated tools, for the analysis of software to ensure reliability and safety. Special focus is on model checking techniques. The article also introduces the five papers that are enclosed in this special journal volume.

  15. The technique of numerical research of cooling medium flow in the water jacket of self-lubricated bearing

    NASA Astrophysics Data System (ADS)

    Raikovskiy, N. A.; Tretyakov, A. V.; Abramov, S. A.; Nazmeev, F. G.; Pavlichev, S. V.

    2017-08-01

    The paper presents a numerical study method of the cooling medium flowing in the water jacket of self-lubricating sliding bearing based on ANSYS CFX. The results of numerical calculations have satisfactory convergence with the empirical data obtained on the testbed. Verification data confirm the possibility of applying this numerical technique for the analysis of coolant flowings in the self-lubricating bearing containing the water jacket.

  16. Specialization in the Human Brain: The Case of Numbers

    PubMed Central

    Kadosh, Roi Cohen; Bahrami, Bahador; Walsh, Vincent; Butterworth, Brian; Popescu, Tudor; Price, Cathy J.

    2011-01-01

    How numerical representation is encoded in the adult human brain is important for a basic understanding of human brain organization, its typical and atypical development, its evolutionary precursors, cognitive architectures, education, and rehabilitation. Previous studies have shown that numerical processing activates the same intraparietal regions irrespective of the presentation format (e.g., symbolic digits or non-symbolic dot arrays). This has led to claims that there is a single format-independent, numerical representation. In the current study we used a functional magnetic resonance adaptation paradigm, and effective connectivity analysis to re-examine whether numerical processing in the intraparietal sulci is dependent or independent on the format of the stimuli. We obtained two novel results. First, the whole brain analysis revealed that format change (e.g., from dots to digits), in the absence of a change in magnitude, activated the same intraparietal regions as magnitude change, but to a greater degree. Second, using dynamic causal modeling as a tool to disentangle neuronal specialization across regions that are commonly activated, we found that the connectivity between the left and right intraparietal sulci is format-dependent. Together, this line of results supports the idea that numerical representation is subserved by multiple mechanisms within the same parietal regions. PMID:21808615

  17. Varieties of numerical abilities.

    PubMed

    Dehaene, S

    1992-08-01

    This paper provides a tutorial introduction to numerical cognition, with a review of essential findings and current points of debate. A tacit hypothesis in cognitive arithmetic is that numerical abilities derive from human linguistic competence. One aim of this special issue is to confront this hypothesis with current knowledge of number representations in animals, infants, normal and gifted adults, and brain-lesioned patients. First, the historical evolution of number notations is presented, together with the mental processes for calculating and transcoding from one notation to another. While these domains are well described by formal symbol-processing models, this paper argues that such is not the case for two other domains of numerical competence: quantification and approximation. The evidence for counting, subitizing and numerosity estimation in infants, children, adults and animals is critically examined. Data are also presented which suggest a specialization for processing approximate numerical quantities in animals and humans. A synthesis of these findings is proposed in the form of a triple-code model, which assumes that numbers are mentally manipulated in an arabic, verbal or analogical magnitude code depending on the requested mental operation. Only the analogical magnitude representation seems available to animals and preverbal infants.

  18. Advances in Parallelization for Large Scale Oct-Tree Mesh Generation

    NASA Technical Reports Server (NTRS)

    O'Connell, Matthew; Karman, Steve L.

    2015-01-01

    Despite great advancements in the parallelization of numerical simulation codes over the last 20 years, it is still common to perform grid generation in serial. Generating large scale grids in serial often requires using special "grid generation" compute machines that can have more than ten times the memory of average machines. While some parallel mesh generation techniques have been proposed, generating very large meshes for LES or aeroacoustic simulations is still a challenging problem. An automated method for the parallel generation of very large scale off-body hierarchical meshes is presented here. This work enables large scale parallel generation of off-body meshes by using a novel combination of parallel grid generation techniques and a hybrid "top down" and "bottom up" oct-tree method. Meshes are generated using hardware commonly found in parallel compute clusters. The capability to generate very large meshes is demonstrated by the generation of off-body meshes surrounding complex aerospace geometries. Results are shown including a one billion cell mesh generated around a Predator Unmanned Aerial Vehicle geometry, which was generated on 64 processors in under 45 minutes.

  19. Diesel Engine Valve Clearance Fault Diagnosis Based on Features Extraction Techniques and FastICA-SVM

    NASA Astrophysics Data System (ADS)

    Jing, Ya-Bing; Liu, Chang-Wen; Bi, Feng-Rong; Bi, Xiao-Yang; Wang, Xia; Shao, Kang

    2017-07-01

    Numerous vibration-based techniques are rarely used in diesel engines fault diagnosis in a direct way, due to the surface vibration signals of diesel engines with the complex non-stationary and nonlinear time-varying features. To investigate the fault diagnosis of diesel engines, fractal correlation dimension, wavelet energy and entropy as features reflecting the diesel engine fault fractal and energy characteristics are extracted from the decomposed signals through analyzing vibration acceleration signals derived from the cylinder head in seven different states of valve train. An intelligent fault detector FastICA-SVM is applied for diesel engine fault diagnosis and classification. The results demonstrate that FastICA-SVM achieves higher classification accuracy and makes better generalization performance in small samples recognition. Besides, the fractal correlation dimension and wavelet energy and entropy as the special features of diesel engine vibration signal are considered as input vectors of classifier FastICA-SVM and could produce the excellent classification results. The proposed methodology improves the accuracy of feature extraction and the fault diagnosis of diesel engines.

  20. Modelling of structural flexiblity in multibody railroad vehicle systems

    NASA Astrophysics Data System (ADS)

    Escalona, José L.; Sugiyama, Hiroyuki; Shabana, Ahmed A.

    2013-07-01

    This paper presents a review of recent research investigations on the computer modelling of flexible bodies in railroad vehicle systems. The paper will also discuss the influence of the structural flexibility of various components, including the wheelset, the truck frames, tracks, pantograph/catenary systems, and car bodies, on the dynamics of railroad vehicles. While several formulations and computer techniques for modelling structural flexibility are discussed in this paper, a special attention is paid to the floating frame of reference formulation which is widely used and leads to reduced-order finite-element models for flexible bodies by employing component modes synthesis techniques. Other formulations and numerical methods such as semi-analytical approaches, absolute nodal coordinate formulation, finite-segment method, boundary elements method, and discrete elements method are also discussed. This investigation is motivated by the fact that the structural flexibility can have a significant effect on the overall dynamics of railroad vehicles, ride comfort, vibration suppression and noise level reduction, lateral stability, track response to vehicle forces, stress analysis, wheel-rail contact forces, wear and crashworthiness.

  1. In situ strain and temperature measurement and modelling during arc welding

    DOE PAGES

    Chen, Jian; Yu, Xinghua; Miller, Roger G.; ...

    2014-12-26

    In this study, experiments and numerical models were applied to investigate the thermal and mechanical behaviours of materials adjacent to the weld pool during arc welding. In the experiment, a new high temperature strain measurement technique based on digital image correlation (DIC) was developed and applied to measure the in situ strain evolution. In contrast to the conventional DIC method that is vulnerable to the high temperature and intense arc light involved in fusion welding processes, the new technique utilised a special surface preparation method to produce high temperature sustaining speckle patterns required by the DIC algorithm as well asmore » a unique optical illumination and filtering system to suppress the influence of the intense arc light. These efforts made it possible for the first time to measure in situ the strain field 1 mm away from the fusion line. The temperature evolution in the weld and the adjacent regions was simultaneously monitored by an infrared camera. Finally and additionally, a thermal–mechanical finite element model was applied to substantiate the experimental measurement.« less

  2. A robust adaptive flightpath reconstruction technique

    NASA Technical Reports Server (NTRS)

    Verhaegen, M. H.

    1986-01-01

    Computational schemes are presented that allow accurate reconstruction of an aircraft's flightpath in real-time. The reconstruction of the flightpath is formulated as a linear state reconstruction problem, which can be solved via Kalman filtering (KF) techniques. This imposes some conditions upon the flight-test equipment. A reliable square root covariance KF (SRCF) implementation is chosen and further developed into a fully adaptive flightpath reconstruction scheme. Therefore, the basic SRCF is modified in order to cope with several practical problems such as: the automatic control of the convergence of the recursive KF calculations, time varying zero-bias errors on the input signal of the system model used in the KF, and the changing aircraft dynamics owing to a change in reference flight condition. The developed solutions for these problems are all implemented in a numerically stable way, which guarantees the overall flightpath reconstruction scheme to be robust. Furthermore, some special features of the used system model are exploited to make the algorithmic implementation very efficient. An experimental simulation study using simulated flight test data demonstrated these different capabilities.

  3. Performance Analysis of Physical Layer Security of Opportunistic Scheduling in Multiuser Multirelay Cooperative Networks

    PubMed Central

    Shim, Kyusung; Do, Nhu Tri; An, Beongku

    2017-01-01

    In this paper, we study the physical layer security (PLS) of opportunistic scheduling for uplink scenarios of multiuser multirelay cooperative networks. To this end, we propose a low-complexity, yet comparable secrecy performance source relay selection scheme, called the proposed source relay selection (PSRS) scheme. Specifically, the PSRS scheme first selects the least vulnerable source and then selects the relay that maximizes the system secrecy capacity for the given selected source. Additionally, the maximal ratio combining (MRC) technique and the selection combining (SC) technique are considered at the eavesdropper, respectively. Investigating the system performance in terms of secrecy outage probability (SOP), closed-form expressions of the SOP are derived. The developed analysis is corroborated through Monte Carlo simulation. Numerical results show that the PSRS scheme significantly improves the secure ability of the system compared to that of the random source relay selection scheme, but does not outperform the optimal joint source relay selection (OJSRS) scheme. However, the PSRS scheme drastically reduces the required amount of channel state information (CSI) estimations compared to that required by the OJSRS scheme, specially in dense cooperative networks. PMID:28212286

  4. Methicillin-resistant Staphylococcus aureus and infection control for restorative dental treatment in nursing homes.

    PubMed

    Hall, David L

    2003-01-01

    The prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in nursing home residents now averages 20-35%. This includes both numerous asymptomatic mostly unidentified carriers, and the occasional patient with an active infection. Among the most common sites for positive MRSA colonization are the nares and mouth (saliva). Ohio State University (OSU) dental students perform routine restorative dental care onsite in local nursing homes using portable equipment including handpieces that can generate aerosols. Using a series of cultured test swabs and plates, this pilot study suggests that protection for both dental health care personnel and patients are provided by the following: 1. universal barrier precautions (for example, gloves, gowns, masks, hats, facial shields, glasses), 2. surface disinfectants, 3. pre-op 0.12% chlorhexidene mouth rinses, 4. high volume evacuation, 5. perioral skin scrubs. Additional infection control methods, techniques and equipment were evaluated and compared including rubber dam isolation, hand excavation and bond technique, high-speed air turbine and electric "high" speed handpiece. There was no indication of a special tendency or heightened ability of MRSA to aerosolize.

  5. Lunar flyby transfers between libration point orbits

    NASA Astrophysics Data System (ADS)

    Qi, Yi; Xu, Shijie; Qi, Rui

    2017-06-01

    Lunar flyby or lunar gravity assist is a classical technique to change the energy and trajectory of space vehicle in space mission. In this paper, lunar flyby transfers between Sun-Earth/Moon libration point orbits with different energies are investigated in the Sun-Earth-Moon restricted four-body problem. Distinguished by behaviours before and after lunar flyby, classification of lunar flyby orbits is defined and studied. Research indicates that junction point of special regions of four types of lunar flyby orbits denotes the perilune of lunar flyby transfer between libration point orbits. Based on those special perilunes, retrograde and prograde lunar flyby transfers are discussed in detail, respectively. The mean energy level transition distribution is proposed and applied to analyse the influence of phase angle and eccentricity on lunar flyby transfers. The phase space is divided into normal and chaotic intervals based on the topology pattern of transfers. A continuation strategy of lunar flyby transfer in the bicircular model is presented. Numerical examples show that compared with the single-impulse transfers based on patched invariant manifolds, lunar flyby transfers are more energy efficient. Finally, lunar flyby transfers are further extended to the realistic models.

  6. Domain Immersion Technique And Free Surface Computations Applied To Extrusion And Mixing Processes

    NASA Astrophysics Data System (ADS)

    Valette, Rudy; Vergnes, Bruno; Basset, Olivier; Coupez, Thierry

    2007-04-01

    This work focuses on the development of numerical techniques devoted to the simulation of mixing processes of complex fluids such as twin-screw extrusion or batch mixing. In mixing process simulation, the absence of symmetry of the moving boundaries (the screws or the rotors) implies that their rigid body motion has to be taken into account by using a special treatment. We therefore use a mesh immersion technique (MIT), which consists in using a P1+/P1-based (MINI-element) mixed finite element method for solving the velocity-pressure problem and then solving the problem in the whole barrel cavity by imposing a rigid motion (rotation) to nodes found located inside the so called immersed domain, each subdomain (screw, rotor) being represented by a surface CAD mesh (or its mathematical equation in simple cases). The independent meshes are immersed into a unique backgound computational mesh by computing the distance function to their boundaries. Intersections of meshes are accounted for, allowing to compute a fill factor usable as for the VOF methodology. This technique, combined with the use of parallel computing, allows to compute the time-dependent flow of generalized Newtonian fluids including yield stress fluids in a complex system such as a twin screw extruder, including moving free surfaces, which are treated by a "level set" and Hamilton-Jacobi method.

  7. Practicing Collaboration: What We Learn from a Cohort that Functions Well

    ERIC Educational Resources Information Center

    Ross, Dorene D.; Stafford, Lynn; Church-Pupke, Penny; Bondy, Elizabeth

    2006-01-01

    Students in the Unified Elementary/Special Education Program at the University of Florida are organized into cohort groups, a common recommendation within the special education teacher education literature. Although highly effective in some instances, the literature also documents numerous problems in the use of cohorts. The current study was…

  8. Collection-Level Surveys for Special Collections: Coalescing Descriptors across Standards

    ERIC Educational Resources Information Center

    Ascher, James P.; Ferris, Anna M.

    2012-01-01

    Developing collection-level surveys to expose hidden collections in special collections and archives departments within ARL libraries has received a great deal of scholarly attention in the recent years. Numerous standards have been explored, and each has its strengths and weaknesses. This paper summarizes some of the major initiatives in…

  9. Busting the Limits of Science Laboratory Economics

    ERIC Educational Resources Information Center

    Bush, Robert C.

    2008-01-01

    This article discusses the trend facing today's scientific laboratories: that the more specialized the lab, the more expensive it is, and the less accessible it becomes. Or conversely, the more accessible a lab needs to be, the fewer resources can be dedicated per capita, and the less specialized it becomes. From a numerical standpoint, "real"…

  10. Risk in Schooling: The Contribution of Qualitative Research to Our Understanding of the Overrepresentation of Minorities in Special Education

    ERIC Educational Resources Information Center

    Harry, Beth; Fenton, Patrice

    2016-01-01

    This article reviews 15 qualitative studies examining factors contributing to the overrepresentation of minorities in special education. Eleven studies constituted numerical surveys of practitioner perspectives, with additional questions that were analyzed qualitatively. Four studies relied on face-to-face interviews or qualitative surveys,…

  11. Highly efficient full-wave electromagnetic analysis of 3-D arbitrarily shaped waveguide microwave devices using an integral equation technique

    NASA Astrophysics Data System (ADS)

    Vidal, A.; San-Blas, A. A.; Quesada-Pereira, F. D.; Pérez-Soler, J.; Gil, J.; Vicente, C.; Gimeno, B.; Boria, V. E.

    2015-07-01

    A novel technique for the full-wave analysis of 3-D complex waveguide devices is presented. This new formulation, based on the Boundary Integral-Resonant Mode Expansion (BI-RME) method, allows the rigorous full-wave electromagnetic characterization of 3-D arbitrarily shaped metallic structures making use of extremely low CPU resources (both time and memory). The unknown electric current density on the surface of the metallic elements is represented by means of Rao-Wilton-Glisson basis functions, and an algebraic procedure based on a singular value decomposition is applied to transform such functions into the classical solenoidal and nonsolenoidal basis functions needed by the original BI-RME technique. The developed tool also provides an accurate computation of the electromagnetic fields at an arbitrary observation point of the considered device, so it can be used for predicting high-power breakdown phenomena. In order to validate the accuracy and efficiency of this novel approach, several new designs of band-pass waveguides filters are presented. The obtained results (S-parameters and electromagnetic fields) are successfully compared both to experimental data and to numerical simulations provided by a commercial software based on the finite element technique. The results obtained show that the new technique is specially suitable for the efficient full-wave analysis of complex waveguide devices considering an integrated coaxial excitation, where the coaxial probes may be in contact with the metallic insets of the component.

  12. MEDIASSIST: medical assistance for intraoperative skill transfer in minimally invasive surgery using augmented reality

    NASA Astrophysics Data System (ADS)

    Sudra, Gunther; Speidel, Stefanie; Fritz, Dominik; Müller-Stich, Beat Peter; Gutt, Carsten; Dillmann, Rüdiger

    2007-03-01

    Minimally invasive surgery is a highly complex medical discipline with various risks for surgeon and patient, but has also numerous advantages on patient-side. The surgeon has to adapt special operation-techniques and deal with difficulties like the complex hand-eye coordination, limited field of view and restricted mobility. To alleviate with these new problems, we propose to support the surgeon's spatial cognition by using augmented reality (AR) techniques to directly visualize virtual objects in the surgical site. In order to generate an intelligent support, it is necessary to have an intraoperative assistance system that recognizes the surgical skills during the intervention and provides context-aware assistance surgeon using AR techniques. With MEDIASSIST we bundle our research activities in the field of intraoperative intelligent support and visualization. Our experimental setup consists of a stereo endoscope, an optical tracking system and a head-mounted-display for 3D visualization. The framework will be used as platform for the development and evaluation of our research in the field of skill recognition and context-aware assistance generation. This includes methods for surgical skill analysis, skill classification, context interpretation as well as assistive visualization and interaction techniques. In this paper we present the objectives of MEDIASSIST and first results in the fields of skill analysis, visualization and multi-modal interaction. In detail we present a markerless instrument tracking for surgical skill analysis as well as visualization techniques and recognition of interaction gestures in an AR environment.

  13. Integration Of Heat Transfer Coefficient In Glass Forming Modeling With Special Interface Element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreau, P.; Gregoire, S.; Lochegnies, D.

    2007-05-17

    Numerical modeling of the glass forming processes requires the accurate knowledge of the heat exchange between the glass and the forming tools. A laboratory testing is developed to determine the evolution of the heat transfer coefficient in different glass/mould contact conditions (contact pressure, temperature, lubrication...). In this paper, trials are performed to determine heat transfer coefficient evolutions in experimental conditions close to the industrial blow-and-blow process conditions. In parallel of this work, a special interface element is implemented in a commercial Finite Element code in order to deal with heat transfer between glass and mould for non-meshing meshes and evolutivemore » contact. This special interface element, implemented by using user subroutines, permits to introduce the previous heat transfer coefficient evolutions in the numerical modelings at the glass/mould interface in function of the local temperatures, contact pressures, contact time and kind of lubrication. The blow-and-blow forming simulation of a perfume bottle is finally performed to assess the special interface element performance.« less

  14. Numerical Hydrodynamics in Special Relativity.

    PubMed

    Martí, José Maria; Müller, Ewald

    2003-01-01

    This review is concerned with a discussion of numerical methods for the solution of the equations of special relativistic hydrodynamics (SRHD). Particular emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods in SRHD. Results of a set of demanding test bench simulations obtained with different numerical SRHD methods are compared. Three applications (astrophysical jets, gamma-ray bursts and heavy ion collisions) of relativistic flows are discussed. An evaluation of various SRHD methods is presented, and future developments in SRHD are analyzed involving extension to general relativistic hydrodynamics and relativistic magneto-hydrodynamics. The review further provides FORTRAN programs to compute the exact solution of a 1D relativistic Riemann problem with zero and nonzero tangential velocities, and to simulate 1D relativistic flows in Cartesian Eulerian coordinates using the exact SRHD Riemann solver and PPM reconstruction. Supplementary material is available for this article at 10.12942/lrr-2003-7 and is accessible for authorized users.

  15. Numerical treatment of free surface problems in ferrohydrodynamics

    NASA Astrophysics Data System (ADS)

    Lavrova, O.; Matthies, G.; Mitkova, T.; Polevikov, V.; Tobiska, L.

    2006-09-01

    The numerical treatment of free surface problems in ferrohydrodynamics is considered. Starting from the general model, special attention is paid to field-surface and flow-surface interactions. Since in some situations these feedback interactions can be partly or even fully neglected, simpler models can be derived. The application of such models to the numerical simulation of dissipative systems, rotary shaft seals, equilibrium shapes of ferrofluid drops, and pattern formation in the normal-field instability of ferrofluid layers is given. Our numerical strategy is able to recover solitary surface patterns which were discovered recently in experiments.

  16. Seismic response of a full-scale wind turbine tower using experimental and numerical modal analysis

    NASA Astrophysics Data System (ADS)

    Kandil, Kamel Sayed Ahmad; Saudi, Ghada N.; Eltaly, Boshra Aboul-Anen; El-khier, Mostafa Mahmoud Abo

    2016-12-01

    Wind turbine technology has developed tremendously over the past years. In Egypt, the Zafarana wind farm is currently generating at a capacity of 517 MW, making it one of the largest onshore wind farms in the world. It is located in an active seismic zone along the west side of the Gulf of Suez. Accordingly, seismic risk assessment is demanded for studying the structural integrity of wind towers under expected seismic hazard events. In the context of ongoing joint Egypt-US research project "Seismic Risk Assessment of Wind Turbine Towers in Zafarana wind Farm Egypt" (Project ID: 4588), this paper describes the dynamic performance investigation of an existing Nordex N43 wind turbine tower. Both experimental and numerical work are illustrated explaining the methodology adopted to investigate the dynamic behavior of the tower under seismic load. Field dynamic testing of the full-scale tower was performed using ambient vibration techniques (AVT). Both frequency domain and time domain methods were utilized to identify the actual dynamic properties of the tower as built in the site. Mainly, the natural frequencies, their corresponding mode shapes and damping ratios of the tower were successfully identified using AVT. A vibration-based finite element model (FEM) was constructed using ANSYS V.12 software. The numerical and experimental results of modal analysis were both compared for matching purpose. Using different simulation considerations, the initial FEM was updated to finally match the experimental results with good agreement. Using the final updated FEM, the response of the tower under the AQABA earthquake excitation was investigated. Time history analysis was conducted to define the seismic response of the tower in terms of the structural stresses and displacements. This work is considered as one of the pioneer structural studies of the wind turbine towers in Egypt. Identification of the actual dynamic properties of the existing tower was successfully performed based on AVT. Using advanced techniques in both the field testing and the numerical investigations produced reliable FEM specific for the tested tower, which can be further used in more advanced structural investigations for improving the design of such special structures.

  17. S-192 analysis: Conventional and special data processing techniques. [Michigan

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Morganstern, J.; Cicone, R.; Sarno, J.; Lambeck, P.; Malila, W.

    1975-01-01

    The author has identified the following significant results. Multispectral scanner data gathered over test sites in southeast Michigan were analyzed. This analysis showed the data to be somewhat deficient especially in terms of the limited signal range in most SDOs and also in regard to SDO-SDO misregistration. Further analysis showed that the scan line straightening algorithm increased the misregistration of the data. Data were processed using the conic format. The effects of such misregistration on classification accuracy was analyzed via simulation and found to be significant. Results of employing conventional as well as special, unresolved object, processing techniques were disappointing due, at least in part, to the limited signal range and noise content of the data. Application of a second class of special processing techniques, signature extension techniques, yielded better results. Two of the more basic signature extension techniques seemed to be useful in spite of the difficulties.

  18. Hydrocode simulations of air and water shocks for facility vulnerability assessments.

    PubMed

    Clutter, J Keith; Stahl, Michael

    2004-01-02

    Hydrocodes are widely used in the study of explosive systems but their use in routine facility vulnerability assessments has been limited due to the computational resources typically required. These requirements are due to the fact that the majority of hydrocodes have been developed primarily for the simulation of weapon-scale phenomena. It is not practical to use these same numerical frameworks on the large domains found in facility vulnerability studies. Here, a hydrocode formulated specifically for facility vulnerability assessments is reviewed. Techniques used to accurately represent the explosive source while maintaining computational efficiency are described. Submodels for addressing other issues found in typical terrorist attack scenarios are presented. In terrorist attack scenarios, loads produced by shocks play an important role in vulnerability. Due to the difference in the material properties of water and air and interface phenomena, there exists significant contrast in wave propagation phenomena in these two medium. These physical variations also require special attention be paid to the mathematical and numerical models used in the hydrocodes. Simulations for a variety of air and water shock scenarios are presented to validate the computational models used in the hydrocode and highlight the phenomenological issues.

  19. G-Jitter Induced Magnetohydrodynamics Flow of Nanofluid with Constant Convective Thermal and Solutal Boundary Conditions

    PubMed Central

    Uddin, Mohammed J.; Khan, Waqar A.; Ismail, Ahmad Izani Md.

    2015-01-01

    Taking into account the effect of constant convective thermal and mass boundary conditions, we present numerical solution of the 2-D laminar g-jitter mixed convective boundary layer flow of water-based nanofluids. The governing transport equations are converted into non-similar equations using suitable transformations, before being solved numerically by an implicit finite difference method with quasi-linearization technique. The skin friction decreases with time, buoyancy ratio, and thermophoresis parameters while it increases with frequency, mixed convection and Brownian motion parameters. Heat transfer rate decreases with time, Brownian motion, thermophoresis and diffusion-convection parameters while it increases with the Reynolds number, frequency, mixed convection, buoyancy ratio and conduction-convection parameters. Mass transfer rate decreases with time, frequency, thermophoresis, conduction-convection parameters while it increases with mixed convection, buoyancy ratio, diffusion-convection and Brownian motion parameters. To the best of our knowledge, this is the first paper on this topic and hence the results are new. We believe that the results will be useful in designing and operating thermal fluids systems for space materials processing. Special cases of the results have been compared with published results and an excellent agreement is found. PMID:25933066

  20. Probability density function evolution of power systems subject to stochastic variation of renewable energy

    NASA Astrophysics Data System (ADS)

    Wei, J. Q.; Cong, Y. C.; Xiao, M. Q.

    2018-05-01

    As renewable energies are increasingly integrated into power systems, there is increasing interest in stochastic analysis of power systems.Better techniques should be developed to account for the uncertainty caused by penetration of renewables and consequently analyse its impacts on stochastic stability of power systems. In this paper, the Stochastic Differential Equations (SDEs) are used to represent the evolutionary behaviour of the power systems. The stationary Probability Density Function (PDF) solution to SDEs modelling power systems excited by Gaussian white noise is analysed. Subjected to such random excitation, the Joint Probability Density Function (JPDF) solution to the phase angle and angular velocity is governed by the generalized Fokker-Planck-Kolmogorov (FPK) equation. To solve this equation, the numerical method is adopted. Special measure is taken such that the generalized FPK equation is satisfied in the average sense of integration with the assumed PDF. Both weak and strong intensities of the stochastic excitations are considered in a single machine infinite bus power system. The numerical analysis has the same result as the one given by the Monte Carlo simulation. Potential studies on stochastic behaviour of multi-machine power systems with random excitations are discussed at the end.

  1. A global stochastic programming approach for the optimal placement of gas detectors with nonuniform unavailabilities

    DOE PAGES

    Liu, Jianfeng; Laird, Carl Damon

    2017-09-22

    Optimal design of a gas detection systems is challenging because of the numerous sources of uncertainty, including weather and environmental conditions, leak location and characteristics, and process conditions. Rigorous CFD simulations of dispersion scenarios combined with stochastic programming techniques have been successfully applied to the problem of optimal gas detector placement; however, rigorous treatment of sensor failure and nonuniform unavailability has received less attention. To improve reliability of the design, this paper proposes a problem formulation that explicitly considers nonuniform unavailabilities and all backup detection levels. The resulting sensor placement problem is a large-scale mixed-integer nonlinear programming (MINLP) problem thatmore » requires a tailored solution approach for efficient solution. We have developed a multitree method which depends on iteratively solving a sequence of upper-bounding master problems and lower-bounding subproblems. The tailored global solution strategy is tested on a real data problem and the encouraging numerical results indicate that our solution framework is promising in solving sensor placement problems. This study was selected for the special issue in JLPPI from the 2016 International Symposium of the MKO Process Safety Center.« less

  2. Worldline approach for numerical computation of electromagnetic Casimir energies: Scalar field coupled to magnetodielectric media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackrory, Jonathan B.; Bhattacharya, Tanmoy; Steck, Daniel A.

    Here, we present a worldline method for the calculation of Casimir energies for scalar fields coupled to magnetodielectric media. The scalar model we consider may be applied in arbitrary geometries, and it corresponds exactly to one polarization of the electromagnetic field in planar layered media. Starting from the field theory for electromagnetism, we work with the two decoupled polarizations in planar media and develop worldline path integrals, which represent the two polarizations separately, for computing both Casimir and Casimir-Polder potentials. We then show analytically that the path integrals for the transverse-electric polarization coupled to a dielectric medium converge to themore » proper solutions in certain special cases, including the Casimir-Polder potential of an atom near a planar interface, and the Casimir energy due to two planar interfaces. We also evaluate the path integrals numerically via Monte Carlo path-averaging for these cases, studying the convergence and performance of the resulting computational techniques. Lastly, while these scalar methods are only exact in particular geometries, they may serve as an approximation for Casimir energies for the vector electromagnetic field in other geometries.« less

  3. Worldline approach for numerical computation of electromagnetic Casimir energies: Scalar field coupled to magnetodielectric media

    DOE PAGES

    Mackrory, Jonathan B.; Bhattacharya, Tanmoy; Steck, Daniel A.

    2016-10-12

    Here, we present a worldline method for the calculation of Casimir energies for scalar fields coupled to magnetodielectric media. The scalar model we consider may be applied in arbitrary geometries, and it corresponds exactly to one polarization of the electromagnetic field in planar layered media. Starting from the field theory for electromagnetism, we work with the two decoupled polarizations in planar media and develop worldline path integrals, which represent the two polarizations separately, for computing both Casimir and Casimir-Polder potentials. We then show analytically that the path integrals for the transverse-electric polarization coupled to a dielectric medium converge to themore » proper solutions in certain special cases, including the Casimir-Polder potential of an atom near a planar interface, and the Casimir energy due to two planar interfaces. We also evaluate the path integrals numerically via Monte Carlo path-averaging for these cases, studying the convergence and performance of the resulting computational techniques. Lastly, while these scalar methods are only exact in particular geometries, they may serve as an approximation for Casimir energies for the vector electromagnetic field in other geometries.« less

  4. Aerosol simulation including chemical and nuclear reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marwil, E.S.; Lemmon, E.C.

    1985-01-01

    The numerical simulation of aerosol transport, including the effects of chemical and nuclear reactions presents a challenging dynamic accounting problem. Particles of different sizes agglomerate and settle out due to various mechanisms, such as diffusion, diffusiophoresis, thermophoresis, gravitational settling, turbulent acceleration, and centrifugal acceleration. Particles also change size, due to the condensation and evaporation of materials on the particle. Heterogeneous chemical reactions occur at the interface between a particle and the suspending medium, or a surface and the gas in the aerosol. Homogeneous chemical reactions occur within the aersol suspending medium, within a particle, and on a surface. These reactionsmore » may include a phase change. Nuclear reactions occur in all locations. These spontaneous transmutations from one element form to another occur at greatly varying rates and may result in phase or chemical changes which complicate the accounting process. This paper presents an approach for inclusion of these effects on the transport of aerosols. The accounting system is very complex and results in a large set of stiff ordinary differential equations (ODEs). The techniques for numerical solution of these ODEs require special attention to achieve their solution in an efficient and affordable manner. 4 refs.« less

  5. Detection of inter-turn short-circuit at start-up of induction machine based on torque analysis

    NASA Astrophysics Data System (ADS)

    Pietrowski, Wojciech; Górny, Konrad

    2017-12-01

    Recently, interest in new diagnostics methods in a field of induction machines was observed. Research presented in the paper shows the diagnostics of induction machine based on torque pulsation, under inter-turn short-circuit, during start-up of a machine. In the paper three numerical techniques were used: finite element analysis, signal analysis and artificial neural networks (ANN). The elaborated numerical model of faulty machine consists of field, circuit and motion equations. Voltage excited supply allowed to determine the torque waveform during start-up. The inter-turn short-circuit was treated as a galvanic connection between two points of the stator winding. The waveforms were calculated for different amounts of shorted-turns from 0 to 55. Due to the non-stationary waveforms a wavelet packet decomposition was used to perform an analysis of the torque. The obtained results of analysis were used as input vector for ANN. The response of the neural network was the number of shorted-turns in the stator winding. Special attention was paid to compare response of general regression neural network (GRNN) and multi-layer perceptron neural network (MLP). Based on the results of the research, the efficiency of the developed algorithm can be inferred.

  6. A global stochastic programming approach for the optimal placement of gas detectors with nonuniform unavailabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jianfeng; Laird, Carl Damon

    Optimal design of a gas detection systems is challenging because of the numerous sources of uncertainty, including weather and environmental conditions, leak location and characteristics, and process conditions. Rigorous CFD simulations of dispersion scenarios combined with stochastic programming techniques have been successfully applied to the problem of optimal gas detector placement; however, rigorous treatment of sensor failure and nonuniform unavailability has received less attention. To improve reliability of the design, this paper proposes a problem formulation that explicitly considers nonuniform unavailabilities and all backup detection levels. The resulting sensor placement problem is a large-scale mixed-integer nonlinear programming (MINLP) problem thatmore » requires a tailored solution approach for efficient solution. We have developed a multitree method which depends on iteratively solving a sequence of upper-bounding master problems and lower-bounding subproblems. The tailored global solution strategy is tested on a real data problem and the encouraging numerical results indicate that our solution framework is promising in solving sensor placement problems. This study was selected for the special issue in JLPPI from the 2016 International Symposium of the MKO Process Safety Center.« less

  7. Multi-scale imaging and elastic simulation of carbonates

    NASA Astrophysics Data System (ADS)

    Faisal, Titly Farhana; Awedalkarim, Ahmed; Jouini, Mohamed Soufiane; Jouiad, Mustapha; Chevalier, Sylvie; Sassi, Mohamed

    2016-05-01

    Digital Rock Physics (DRP) is an emerging technology that can be used to generate high quality, fast and cost effective special core analysis (SCAL) properties compared to conventional experimental techniques and modeling techniques. The primary workflow of DRP conssits of three elements: 1) image the rock sample using high resolution 3D scanning techniques (e.g. micro CT, FIB/SEM), 2) process and digitize the images by segmenting the pore and matrix phases 3) simulate the desired physical properties of the rocks such as elastic moduli and velocities of wave propagation. A Finite Element Method based algorithm, that discretizes the basic Hooke's Law equation of linear elasticity and solves it numerically using a fast conjugate gradient solver, developed by Garboczi and Day [1] is used for mechanical and elastic property simulations. This elastic algorithm works directly on the digital images by treating each pixel as an element. The images are assumed to have periodic constant-strain boundary condition. The bulk and shear moduli of the different phases are required inputs. For standard 1.5" diameter cores however the Micro-CT scanning reoslution (around 40 μm) does not reveal smaller micro- and nano- pores beyond the resolution. This results in an unresolved "microporous" phase, the moduli of which is uncertain. Knackstedt et al. [2] assigned effective elastic moduli to the microporous phase based on self-consistent theory (which gives good estimation of velocities for well cemented granular media). Jouini et al. [3] segmented the core plug CT scan image into three phases and assumed that micro porous phase is represented by a sub-extracted micro plug (which too was scanned using Micro-CT). Currently the elastic numerical simulations based on CT-images alone largely overpredict the bulk, shear and Young's modulus when compared to laboratory acoustic tests of the same rocks. For greater accuracy of numerical simulation prediction, better estimates of moduli inputs for this current unresolved phase is important. In this work we take a multi-scale imaging approach by first extracting a smaller 0.5" core and scanning at approx 13 µm, then further extracting a 5mm diameter core scanned at 5 μm. From this last scale, region of interests (containing unresolved areas) are identified for scanning at higher resolutions using Focalised Ion Beam (FIB/SEM) scanning technique reaching 50 nm resolution. Numerical simulation is run on such a small unresolved section to obtain a better estimate of the effective moduli which is then used as input for simulations performed using CT-images. Results are compared with expeirmental acoustic test moduli obtained also at two scales: 1.5" and 0.5" diameter cores.

  8. Finite element solutions of free convective Casson fluid flow past a vertically inclined plate submitted in magnetic field in presence of heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Raju, R. Srinivasa; Reddy, B. Mahesh; Reddy, G. Jithender

    2017-09-01

    The aim of this research work is to study the influence of thermal radiation on steady magnetohydrodynamic-free convective Casson fluid flow of an optically thick fluid over an inclined vertical plate with heat and mass transfer. Combined phenomenon of heat and mass transfer is considered. Numerical solutions in general form are obtained by using the finite element method. The sum of thermal and mechanical parts is expressed as velocity of fluid. Corresponding limiting solutions are also reduced from the general solutions. It is found that the obtained numerical solutions satisfy all imposed initial and boundary conditions and reduce to some known solutions from the literature as special cases. Numerical results for the controlling flow parameters are drawn graphically and discussed in detail. In some special cases, the obtained numerical results are compared and found to be in good agreement with the previously published results which are available in literature. Applications of this study includes laminar magneto-aerodynamics, materials processing and magnetohydrodynamic propulsion thermo-fluid dynamics, etc.

  9. Generation of structural topologies using efficient technique based on sorted compliances

    NASA Astrophysics Data System (ADS)

    Mazur, Monika; Tajs-Zielińska, Katarzyna; Bochenek, Bogdan

    2018-01-01

    Topology optimization, although well recognized is still widely developed. It has gained recently more attention since large computational ability become available for designers. This process is stimulated simultaneously by variety of emerging, innovative optimization methods. It is observed that traditional gradient-based mathematical programming algorithms, in many cases, are replaced by novel and e cient heuristic methods inspired by biological, chemical or physical phenomena. These methods become useful tools for structural optimization because of their versatility and easy numerical implementation. In this paper engineering implementation of a novel heuristic algorithm for minimum compliance topology optimization is discussed. The performance of the topology generator is based on implementation of a special function utilizing information of compliance distribution within the design space. With a view to cope with engineering problems the algorithm has been combined with structural analysis system Ansys.

  10. Multistage Schemes with Multigrid for Euler and Navier-Strokes Equations: Components and Analysis

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Turkel, Eli

    1997-01-01

    A class of explicit multistage time-stepping schemes with centered spatial differencing and multigrids are considered for the compressible Euler and Navier-Stokes equations. These schemes are the basis for a family of computer programs (flow codes with multigrid (FLOMG) series) currently used to solve a wide range of fluid dynamics problems, including internal and external flows. In this paper, the components of these multistage time-stepping schemes are defined, discussed, and in many cases analyzed to provide additional insight into their behavior. Special emphasis is given to numerical dissipation, stability of Runge-Kutta schemes, and the convergence acceleration techniques of multigrid and implicit residual smoothing. Both the Baldwin and Lomax algebraic equilibrium model and the Johnson and King one-half equation nonequilibrium model are used to establish turbulence closure. Implementation of these models is described.

  11. Grid adaption using Chimera composite overlapping meshes

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1993-01-01

    The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.

  12. Evaluating lightning hazards to building environments using explicit numerical solutions of Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Collier, Richard S.; McKenna, Paul M.; Perala, Rodney A.

    1991-08-01

    The objective here is to describe the lightning hazards to buildings and their internal environments using advanced formulations of Maxwell's Equations. The method described is the Three Dimensional Finite Difference Time Domain Solution. It can be used to solve for the lightning interaction with such structures in three dimensions with the inclusion of a considerable amount of detail. Special techniques were developed for including wire, plumbing, and rebar into the model. Some buildings have provisions for lightning protection in the form of air terminals connected to a ground counterpoise system. It is shown that fields and currents within these structures can be significantly high during a lightning strike. Time lapse video presentations were made showing the electric and magnetic field distributions on selected cross sections of the buildings during a simulated lightning strike.

  13. Evaluating lightning hazards to building environments using explicit numerical solutions of Maxwell's equations

    NASA Technical Reports Server (NTRS)

    Collier, Richard S.; Mckenna, Paul M.; Perala, Rodney A.

    1991-01-01

    The objective here is to describe the lightning hazards to buildings and their internal environments using advanced formulations of Maxwell's Equations. The method described is the Three Dimensional Finite Difference Time Domain Solution. It can be used to solve for the lightning interaction with such structures in three dimensions with the inclusion of a considerable amount of detail. Special techniques were developed for including wire, plumbing, and rebar into the model. Some buildings have provisions for lightning protection in the form of air terminals connected to a ground counterpoise system. It is shown that fields and currents within these structures can be significantly high during a lightning strike. Time lapse video presentations were made showing the electric and magnetic field distributions on selected cross sections of the buildings during a simulated lightning strike.

  14. UTCI-Fiala multi-node model of human heat transfer and temperature regulation

    NASA Astrophysics Data System (ADS)

    Fiala, Dusan; Havenith, George; Bröde, Peter; Kampmann, Bernhard; Jendritzky, Gerd

    2012-05-01

    The UTCI-Fiala mathematical model of human temperature regulation forms the basis of the new Universal Thermal Climate Index (UTC). Following extensive validation tests, adaptations and extensions, such as the inclusion of an adaptive clothing model, the model was used to predict human temperature and regulatory responses for combinations of the prevailing outdoor climate conditions. This paper provides an overview of the underlying algorithms and methods that constitute the multi-node dynamic UTCI-Fiala model of human thermal physiology and comfort. Treated topics include modelling heat and mass transfer within the body, numerical techniques, modelling environmental heat exchanges, thermoregulatory reactions of the central nervous system, and perceptual responses. Other contributions of this special issue describe the validation of the UTCI-Fiala model against measured data and the development of the adaptive clothing model for outdoor climates.

  15. Binary neutron star mergers: a review of Einstein's richest laboratory.

    PubMed

    Baiotti, Luca; Rezzolla, Luciano

    2017-09-01

    In a single process, the merger of binary neutron star systems combines extreme gravity, the copious emission of gravitational waves, complex microphysics and electromagnetic processes, which can lead to astrophysical signatures observable at the largest redshifts. We review here the recent progress in understanding what could be considered Einstein's richest laboratory, highlighting in particular the numerous significant advances of the last decade. Although special attention is paid to the status of models, techniques and results for fully general-relativistic dynamical simulations, a review is also offered on the initial data and advanced simulations with approximate treatments of gravity. Finally, we review the considerable amount of work carried out on the post-merger phase, including black-hole formation, torus accretion onto the merged compact object, the connection with gamma-ray burst engines, ejected material, and its nucleosynthesis.

  16. Binary neutron star mergers: a review of Einstein’s richest laboratory

    NASA Astrophysics Data System (ADS)

    Baiotti, Luca; Rezzolla, Luciano

    2017-09-01

    In a single process, the merger of binary neutron star systems combines extreme gravity, the copious emission of gravitational waves, complex microphysics and electromagnetic processes, which can lead to astrophysical signatures observable at the largest redshifts. We review here the recent progress in understanding what could be considered Einstein’s richest laboratory, highlighting in particular the numerous significant advances of the last decade. Although special attention is paid to the status of models, techniques and results for fully general-relativistic dynamical simulations, a review is also offered on the initial data and advanced simulations with approximate treatments of gravity. Finally, we review the considerable amount of work carried out on the post-merger phase, including black-hole formation, torus accretion onto the merged compact object, the connection with gamma-ray burst engines, ejected material, and its nucleosynthesis.

  17. A great leap forward in microbial ecology.

    PubMed

    Okabe, Satoshi; Oshiki, Mamoru; Kamagata, Yoichi; Yamaguchi, Nobuyasu; Toyofuku, Masanori; Yawata, Yutaka; Tashiro, Yosuke; Nomura, Nobuhiko; Ohta, Hiroyuki; Ohkuma, Moriya; Hiraishi, Akira; Minamisawa, Kiwamu

    2010-01-01

    Ribosomal RNA (rRNA) sequence-based molecular techniques emerged in the late 1980s, which completely changed our general view of microbial life. Coincidentally, the Japanese Society of Microbial Ecology (JSME) was founded, and its official journal "Microbes and Environments (M&E)" was launched, in 1985. Thus, the past 25 years have been an exciting and fruitful period for M&E readers and microbiologists as demonstrated by the numerous excellent papers published in M&E. In this minireview, recent progress made in microbial ecology and related fields is summarized, with a special emphasis on 8 landmark areas; the cultivation of uncultured microbes, in situ methods for the assessment of microorganisms and their activities, biofilms, plant microbiology, chemolithotrophic bacteria in early volcanic environments, symbionts of animals and their ecology, wastewater treatment microbiology, and the biodegradation of hazardous organic compounds.

  18. Modeling of heterogeneous elastic materials by the multiscale hp-adaptive finite element method

    NASA Astrophysics Data System (ADS)

    Klimczak, Marek; Cecot, Witold

    2018-01-01

    We present an enhancement of the multiscale finite element method (MsFEM) by combining it with the hp-adaptive FEM. Such a discretization-based homogenization technique is a versatile tool for modeling heterogeneous materials with fast oscillating elasticity coefficients. No assumption on periodicity of the domain is required. In order to avoid direct, so-called overkill mesh computations, a coarse mesh with effective stiffness matrices is used and special shape functions are constructed to account for the local heterogeneities at the micro resolution. The automatic adaptivity (hp-type at the macro resolution and h-type at the micro resolution) increases efficiency of computation. In this paper details of the modified MsFEM are presented and a numerical test performed on a Fichera corner domain is presented in order to validate the proposed approach.

  19. Grid adaptation using chimera composite overlapping meshes

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1994-01-01

    The objective of this paper is to perform grid adaptation using composite overlapping meshes in regions of large gradient to accurately capture the salient features during computation. The chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using trilinear interpolation. Application to the Euler equations for shock reflections and to shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well-resolved.

  20. Grid adaptation using Chimera composite overlapping meshes

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1993-01-01

    The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.

  1. White Light Used to Enable Enhanced Surface Topography, Geometry, and Wear Characterization of Oil-Free Bearings

    NASA Technical Reports Server (NTRS)

    Lucero, John M.

    2003-01-01

    A new optically based measuring capability that characterizes surface topography, geometry, and wear has been employed by NASA Glenn Research Center s Tribology and Surface Science Branch. To characterize complex parts in more detail, we are using a three-dimensional, surface structure analyzer-the NewView5000 manufactured by Zygo Corporation (Middlefield, CT). This system provides graphical images and high-resolution numerical analyses to accurately characterize surfaces. Because of the inherent complexity of the various analyzed assemblies, the machine has been pushed to its limits. For example, special hardware fixtures and measuring techniques were developed to characterize Oil- Free thrust bearings specifically. We performed a more detailed wear analysis using scanning white light interferometry to image and measure the bearing structure and topography, enabling a further understanding of bearing failure causes.

  2. Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller.

    PubMed

    Ding, Zhixia; Shen, Yi

    2016-04-01

    This paper investigates global projective synchronization of nonidentical fractional-order neural networks (FNNs) based on sliding mode control technique. We firstly construct a fractional-order integral sliding surface. Then, according to the sliding mode control theory, we design a sliding mode controller to guarantee the occurrence of the sliding motion. Based on fractional Lyapunov direct methods, system trajectories are driven to the proposed sliding surface and remain on it evermore, and some novel criteria are obtained to realize global projective synchronization of nonidentical FNNs. As the special cases, some sufficient conditions are given to ensure projective synchronization of identical FNNs, complete synchronization of nonidentical FNNs and anti-synchronization of nonidentical FNNs. Finally, one numerical example is given to demonstrate the effectiveness of the obtained results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Refinement and application of acoustic impulse technique to study nozzle transmission characteristics

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Brown, W. H.; Ramakrishnan, R.; Tanna, H. K.

    1983-01-01

    An improved acoustic impulse technique was developed and was used to study the transmission characteristics of duct/nozzle systems. To accomplish the above objective, various problems associated with the existing spark-discharge impulse technique were first studied. These included (1) the nonlinear behavior of high intensity pulses, (2) the contamination of the signal with flow noise, (3) low signal-to-noise ratio at high exhaust velocities, and (4) the inability to control or shape the signal generated by the source, specially when multiple spark points were used as the source. The first step to resolve these problems was the replacement of the spark-discharge source with electroacoustic driver(s). These included (1) synthesizing on acoustic impulse with acoustic driver(s) to control and shape the output signal, (2) time domain signal averaging to remove flow noise from the contaminated signal, (3) signal editing to remove unwanted portions of the time history, (4) spectral averaging, and (5) numerical smoothing. The acoustic power measurement technique was improved by taking multiple induct measurements and by a modal decomposition process to account for the contribution of higher order modes in the power computation. The improved acoustic impulse technique was then validated by comparing the results derived by an impedance tube method. The mechanism of acoustic power loss, that occurs when sound is transmitted through nozzle terminations, was investigated. Finally, the refined impulse technique was applied to obtain more accurate results for the acoustic transmission characteristics of a conical nozzle and a multi-lobe multi-tube supressor nozzle.

  4. Miniature injection-molded optics for fiber-optic, in vivo confocal microscopy

    NASA Astrophysics Data System (ADS)

    Chidley, Matthew D.; Liang, Chen; Descour, Michael R.; Sung, Kung-Bin; Richards-Kortum, Rebecca R.; Gillenwater, Ann

    2002-12-01

    In collaboration with the Department of Biomedical Engineering at the University of Texas at Austin and the UT MD Anderson Cancer Center, a laser scanning fiber confocal reflectance microscope (FCRM) system has been designed and tested for in vivo detection of cervical and oral pre-cancers. This system along with specially developed diagnosis algorithms and techniques can achieve an unprecedented specificity and sensitivity for the diagnosis of pre-cancers in epithelial tissue. The FCRM imaging system consists of an NdYAG laser (1064 nm), scanning mirrors/optics, precision pinhole, detector, and an endoscopic probe (the objective). The objective is connected to the rest of the imaging system via a fiber bundle. The fiber bundle allows the rest of the system to be remotely positioned in a convenient location. Only the objective comes into contact with the patient. It is our intent that inexpensive mass-produced disposable endoscopic probes would be produced for large clinical trials. This paper touches on the general design process of developing a miniature, high numerical aperture, injection-molded (IM) objective. These IM optical designs are evaluated and modified based on manufacturing and application constraints. Based on these driving criteria, one specific optical design was chosen and a detailed tolerance analysis was conducted. The tolerance analysis was custom built to create a realistic statistical analysis for integrated IM lens elements that can be stacked one on top of another using micro-spheres resting in tiny circular grooves. These configurations allow each lens element to be rotated and possibly help compensate for predicted manufacturing errors. This research was supported by a grant from the National Institutes of Health (RO1 CA82880). Special thanks go to Applied Image Group/Optics for the numerous fabrication meetings concerning the miniature IM objective.

  5. Pseudoinverse Decoding Process in Delay-Encoded Synthetic Transmit Aperture Imaging.

    PubMed

    Gong, Ping; Kolios, Michael C; Xu, Yuan

    2016-09-01

    Recently, we proposed a new method to improve the signal-to-noise ratio of the prebeamformed radio-frequency data in synthetic transmit aperture (STA) imaging: the delay-encoded STA (DE-STA) imaging. In the decoding process of DE-STA, the equivalent STA data were obtained by directly inverting the coding matrix. This is usually regarded as an ill-posed problem, especially under high noise levels. Pseudoinverse (PI) is usually used instead for seeking a more stable inversion process. In this paper, we apply singular value decomposition to the coding matrix to conduct the PI. Our numerical studies demonstrate that the singular values of the coding matrix have a special distribution, i.e., all the values are the same except for the first and last ones. We compare the PI in two cases: complete PI (CPI), where all the singular values are kept, and truncated PI (TPI), where the last and smallest singular value is ignored. The PI (both CPI and TPI) DE-STA processes are tested against noise with both numerical simulations and experiments. The CPI and TPI can restore the signals stably, and the noise mainly affects the prebeamformed signals corresponding to the first transmit channel. The difference in the overall enveloped beamformed image qualities between the CPI and TPI is negligible. Thus, it demonstrates that DE-STA is a relatively stable encoding and decoding technique. Also, according to the special distribution of the singular values of the coding matrix, we propose a new efficient decoding formula that is based on the conjugate transpose of the coding matrix. We also compare the computational complexity of the direct inverse and the new formula.

  6. Computational modelling of the mechanics of trabecular bone and marrow using fluid structure interaction techniques.

    PubMed

    Birmingham, E; Grogan, J A; Niebur, G L; McNamara, L M; McHugh, P E

    2013-04-01

    Bone marrow found within the porous structure of trabecular bone provides a specialized environment for numerous cell types, including mesenchymal stem cells (MSCs). Studies have sought to characterize the mechanical environment imposed on MSCs, however, a particular challenge is that marrow displays the characteristics of a fluid, while surrounded by bone that is subject to deformation, and previous experimental and computational studies have been unable to fully capture the resulting complex mechanical environment. The objective of this study was to develop a fluid structure interaction (FSI) model of trabecular bone and marrow to predict the mechanical environment of MSCs in vivo and to examine how this environment changes during osteoporosis. An idealized repeating unit was used to compare FSI techniques to a computational fluid dynamics only approach. These techniques were used to determine the effect of lower bone mass and different marrow viscosities, representative of osteoporosis, on the shear stress generated within bone marrow. Results report that shear stresses generated within bone marrow under physiological loading conditions are within the range known to stimulate a mechanobiological response in MSCs in vitro. Additionally, lower bone mass leads to an increase in the shear stress generated within the marrow, while a decrease in bone marrow viscosity reduces this generated shear stress.

  7. In-orbit verification of MHS spectral channels co-registration using the moon

    NASA Astrophysics Data System (ADS)

    Bonsignori, Roberto

    2017-09-01

    In-orbit verification of the co-registration of channels in a scanning microwave or infrared radiometer can in principle be done during normal in-orbit operation, by using the regular events of lunar intrusion in the instrument cold space calibration view. A technique of data analysis based on best fit of data across lunar intrusions has been used to check the mutual alignment of the spectral channels of the MHS instrument. MHS (Microwave Humidity Sounder) is a cross-track scanning radiometer in the millimetre-wave range flying on EUMETSAT and NOAA polar satellites, used operationally for the retrieval of atmospheric parameters in numerical weather prediction and nowcasting. This technique does not require any special operation or manoeuvre and only relies on analysis of data from the nominal scanning operation. The co-alignment of sounding channels and window channels can be evaluated by this technique, which would not be possible by using earth landmarks, due to the absorption effect of the atmosphere. The analysis reported in this paper shows an achievable accuracy below 0.5 mrad against a beam width at 3dB and spatial sampling interval of about 20 mrad. In-orbit results for the MHS instrument on Metop-B are also compared with the pre-launch instrument characterisation, showing a good correlation.

  8. Air data position-error calibration using state reconstruction techniques

    NASA Technical Reports Server (NTRS)

    Whitmore, S. A.; Larson, T. J.; Ehernberger, L. J.

    1984-01-01

    During the highly maneuverable aircraft technology (HiMAT) flight test program recently completed at NASA Ames Research Center's Dryden Flight Research Facility, numerous problems were experienced in airspeed calibration. This necessitated the use of state reconstruction techniques to arrive at a position-error calibration. For the HiMAT aircraft, most of the calibration effort was expended on flights in which the air data pressure transducers were not performing accurately. Following discovery of this problem, the air data transducers of both aircraft were wrapped in heater blankets to correct the problem. Additional calibration flights were performed, and from the resulting data a satisfactory position-error calibration was obtained. This calibration and data obtained before installation of the heater blankets were used to develop an alternate calibration method. The alternate approach took advantage of high-quality inertial data that was readily available. A linearized Kalman filter (LKF) was used to reconstruct the aircraft's wind-relative trajectory; the trajectory was then used to separate transducer measurement errors from the aircraft position error. This calibration method is accurate and inexpensive. The LKF technique has an inherent advantage of requiring that no flight maneuvers be specially designed for airspeed calibrations. It is of particular use when the measurements of the wind-relative quantities are suspected to have transducer-related errors.

  9. Efficient Numerical Methods for Nonlinear-Facilitated Transport and Exchange in a Blood-Tissue Exchange Unit

    PubMed Central

    Poulain, Christophe A.; Finlayson, Bruce A.; Bassingthwaighte, James B.

    2010-01-01

    The analysis of experimental data obtained by the multiple-indicator method requires complex mathematical models for which capillary blood-tissue exchange (BTEX) units are the building blocks. This study presents a new, nonlinear, two-region, axially distributed, single capillary, BTEX model. A facilitated transporter model is used to describe mass transfer between plasma and intracellular spaces. To provide fast and accurate solutions, numerical techniques suited to nonlinear convection-dominated problems are implemented. These techniques are the random choice method, an explicit Euler-Lagrange scheme, and the MacCormack method with and without flux correction. The accuracy of the numerical techniques is demonstrated, and their efficiencies are compared. The random choice, Euler-Lagrange and plain MacCormack method are the best numerical techniques for BTEX modeling. However, the random choice and Euler-Lagrange methods are preferred over the MacCormack method because they allow for the derivation of a heuristic criterion that makes the numerical methods stable without degrading their efficiency. Numerical solutions are also used to illustrate some nonlinear behaviors of the model and to show how the new BTEX model can be used to estimate parameters from experimental data. PMID:9146808

  10. Non-standard finite difference and Chebyshev collocation methods for solving fractional diffusion equation

    NASA Astrophysics Data System (ADS)

    Agarwal, P.; El-Sayed, A. A.

    2018-06-01

    In this paper, a new numerical technique for solving the fractional order diffusion equation is introduced. This technique basically depends on the Non-Standard finite difference method (NSFD) and Chebyshev collocation method, where the fractional derivatives are described in terms of the Caputo sense. The Chebyshev collocation method with the (NSFD) method is used to convert the problem into a system of algebraic equations. These equations solved numerically using Newton's iteration method. The applicability, reliability, and efficiency of the presented technique are demonstrated through some given numerical examples.

  11. Music Techniques in Therapy, Counseling, and Special Education, Third Edition

    ERIC Educational Resources Information Center

    Standley, Jayne M.; Jones, Jennifer

    2007-01-01

    "Music Techniques in Therapy, Counseling, and Special Education" is the culmination of the first author's research in the skill development of prospective music therapists and music educators during graduate and undergraduate preparation. Standley studied the abilities and progress of students across multiple clinical music therapy and music…

  12. Rapid Vision Correction by Special Operations Forces.

    PubMed

    Reynolds, Mark E

    This report describes a rapid method of vision correction used by Special Operations Medics in multiple operational engagements. Between 2011 and 2015, Special Operations Medics used an algorithm- driven refraction technique. A standard block of instruction was provided to the medics, along with a packaged kit. The technique was used in multiple operational engagements with host nation military and civilians. Data collected for program evaluation were later analyzed to assess the utility of the technique. Glasses were distributed to 230 patients with complaints of either decreased distance or near (reading). Most patients (84%) with distance complaints achieved corrected binocular vision of 20/40 or better, and 97% of patients with near-vision complaints achieved corrected near-binocular vision of 20/40 or better. There was no statistically significant difference between the percentages of patients achieving 20/40 when medics used the technique under direct supervision versus independent use. A basic refraction technique using a designed kit allows for meaningful improvement in distance and/or near vision at austere locations. Special Operations Medics can leverage this approach after specific training with minimal time commitment. It can serve as a rapid, effective intervention with multiple applications in diverse operational environments. 2017.

  13. A special purpose silicon compiler for designing supercomputing VLSI systems

    NASA Technical Reports Server (NTRS)

    Venkateswaran, N.; Murugavel, P.; Kamakoti, V.; Shankarraman, M. J.; Rangarajan, S.; Mallikarjun, M.; Karthikeyan, B.; Prabhakar, T. S.; Satish, V.; Venkatasubramaniam, P. R.

    1991-01-01

    Design of general/special purpose supercomputing VLSI systems for numeric algorithm execution involves tackling two important aspects, namely their computational and communication complexities. Development of software tools for designing such systems itself becomes complex. Hence a novel design methodology has to be developed. For designing such complex systems a special purpose silicon compiler is needed in which: the computational and communicational structures of different numeric algorithms should be taken into account to simplify the silicon compiler design, the approach is macrocell based, and the software tools at different levels (algorithm down to the VLSI circuit layout) should get integrated. In this paper a special purpose silicon (SPS) compiler based on PACUBE macrocell VLSI arrays for designing supercomputing VLSI systems is presented. It is shown that turn-around time and silicon real estate get reduced over the silicon compilers based on PLA's, SLA's, and gate arrays. The first two silicon compiler characteristics mentioned above enable the SPS compiler to perform systolic mapping (at the macrocell level) of algorithms whose computational structures are of GIPOP (generalized inner product outer product) form. Direct systolic mapping on PLA's, SLA's, and gate arrays is very difficult as they are micro-cell based. A novel GIPOP processor is under development using this special purpose silicon compiler.

  14. Reflections on the Conception, Birth, and Childhood of Numerical Weather Prediction

    NASA Astrophysics Data System (ADS)

    Lorenz, Edward N.

    2006-05-01

    In recognition of the contributions of Norman Phillips and Joseph Smagorinsky to the field of numerical weather prediction (NWP), a symposium was held in 2003; this account is an amplification of a talk presented there. Ideas anticipating the advent of NWP, the first technically successful numerical weather forcast, and the subsequent progression of NWP to a mature discipline are described, with special emphasis on the work of Phillips and Smagorinsky and their mentor Jule Charney.

  15. Learning about the Numerator and Denominator in Teacher-Designed Lessons

    ERIC Educational Resources Information Center

    Kullberg, Angelika; Runesson, Ulla

    2013-01-01

    This study concerns pupils' experience of unit and non-unit fractions of a discrete quantity during specially designed lessons. The aim was to explore pupils' understanding of operations such as "b/c of a" in lessons where the teachers were aware of some pupils' difficulties beforehand and what needed special attention.…

  16. Teachers' Perception of Mobile Edutainment for Special Needs Learners: The Malaysian Case

    ERIC Educational Resources Information Center

    Mohd Yusof, Anuar; Daniel, Esther Gnanamalar Sarojini; Low, Wah Yun; Ab. Aziz, Kamarulzaman

    2014-01-01

    Study of Malaysian adoption of mobile learning (m-learning) is still in the early stages. However, there are numerous researchers in the country exploring the potential and application of m-learning in the Malaysian education system, including special education. A key question is whether teachers are prepared to incorporate mobile technology as…

  17. The world wide web: an emerging technology for marketing special forest products (poster abstract)

    Treesearch

    A.L. Hammett; Shelby Jones; Philip A. Araman

    1999-01-01

    Interest by forest landowners and agriculturist in Special Forest Products (SFPs) is increasing rapidly. At present there are numerous efforts to increase awareness of these products and the market potential. However, there is a shortage of information available and there are few means effective in disseminating the information necessary for the sustainable management...

  18. DIAGNOSTIC EVALUATION OF NUMBERICAL AIR QUALITY MODELS WITH SPECIALIZED AMBIENT OBSERVATIONS: TESTING THE COMMUNITY MULTISCALE AIR QUALITY MODELING SYSTEM (CMAQ) AT SELECTED SOS 95 GROUND SITES

    EPA Science Inventory

    Three probes for diagnosing photochemical dynamics are presented and applied to specialized ambient surface-level observations and to a numerical photochemical model to better understand rates of production and other process information in the atmosphere and in the model. Howeve...

  19. For Lesbian Parents: Your Guide to Helping Your Family Grow Up Happy, Healthy, and Proud.

    ERIC Educational Resources Information Center

    Johnson, Suzanne M.; O'Connor, Elizabeth

    In addition to those adjustments that any new parents must make, lesbian mothers face numerous special concerns. This book offers information and support for lesbian parents on relations between lesbian mothers and the outside world, child development and social issues, and special circumstances. Chapter 1 introduces a group of lesbian mothers and…

  20. Air motions inside dome room of Big Telescope Alt-azimuth at Special Astrophysical Observatory RAS. Numerical solutions of Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Nosov, V. V.; Lukin, V. P.; Nosov, E. V.; Torgaev, A. V.

    2017-11-01

    The structure of air turbulent motion inside the closed dome room of Big Telescope Alt-azimuth at Special Astrophysical Observatory of the Russian Academy of Sciences (RAS) has been experimentally and theoretically studied. Theoretical results have been reached by numerical solving of boundary value problem for Navier-Stokes equations. Solitary large vortices (coherent structures, topological solitons) are observed indoors. Coherent breakdown of these vortices leads to the coherent turbulence. In the case of identical boundary conditions the pattern of air motions as a result of the simulation and the pattern, registered experimentally using the compact portable ultrasonic weather station, are practically the same.

  1. New Activities of the U.S. National Tsunami Hazard Mitigation Program, Mapping and Modeling Subcommittee

    NASA Astrophysics Data System (ADS)

    Wilson, R. I.; Eble, M. C.

    2013-12-01

    The U.S. National Tsunami Hazard Mitigation Program (NTHMP) is comprised of representatives from coastal states and federal agencies who, under the guidance of NOAA, work together to develop protocols and products to help communities prepare for and mitigate tsunami hazards. Within the NTHMP are several subcommittees responsible for complimentary aspects of tsunami assessment, mitigation, education, warning, and response. The Mapping and Modeling Subcommittee (MMS) is comprised of state and federal scientists who specialize in tsunami source characterization, numerical tsunami modeling, inundation map production, and warning forecasting. Until September 2012, much of the work of the MMS was authorized through the Tsunami Warning and Education Act, an Act that has since expired but the spirit of which is being adhered to in parallel with reauthorization efforts. Over the past several years, the MMS has developed guidance and best practices for states and territories to produce accurate and consistent tsunami inundation maps for community level evacuation planning, and has conducted benchmarking of numerical inundation models. Recent tsunami events have highlighted the need for other types of tsunami hazard analyses and products for improving evacuation planning, vertical evacuation, maritime planning, land-use planning, building construction, and warning forecasts. As the program responsible for producing accurate and consistent tsunami products nationally, the NTHMP-MMS is initiating a multi-year plan to accomplish the following: 1) Create and build on existing demonstration projects that explore new tsunami hazard analysis techniques and products, such as maps identifying areas of strong currents and potential damage within harbors as well as probabilistic tsunami hazard analysis for land-use planning. 2) Develop benchmarks for validating new numerical modeling techniques related to current velocities and landslide sources. 3) Generate guidance and protocols for the production and use of new tsunami hazard analysis products. 4) Identify multistate collaborations and funding partners interested in these new products. Application of these new products will improve the overall safety and resilience of coastal communities exposed to tsunami hazards.

  2. Investigation of the feasibility of an analytical method of accounting for the effects of atmospheric drag on satellite motion

    NASA Technical Reports Server (NTRS)

    Bozeman, Robert E.

    1987-01-01

    An analytic technique for accounting for the joint effects of Earth oblateness and atmospheric drag on close-Earth satellites is investigated. The technique is analytic in the sense that explicit solutions to the Lagrange planetary equations are given; consequently, no numerical integrations are required in the solution process. The atmospheric density in the technique described is represented by a rotating spherical exponential model with superposed effects of the oblate atmosphere and the diurnal variations. A computer program implementing the process is discussed and sample output is compared with output from program NSEP (Numerical Satellite Ephemeris Program). NSEP uses a numerical integration technique to account for atmospheric drag effects.

  3. Physiologically based pharmacokinetic modeling using microsoft excel and visual basic for applications.

    PubMed

    Marino, Dale J

    2005-01-01

    Abstract Physiologically based pharmacokinetic (PBPK) models are mathematical descriptions depicting the relationship between external exposure and internal dose. These models have found great utility for interspecies extrapolation. However, specialized computer software packages, which are not widely distributed, have typically been used for model development and utilization. A few physiological models have been reported using more widely available software packages (e.g., Microsoft Excel), but these tend to include less complex processes and dose metrics. To ascertain the capability of Microsoft Excel and Visual Basis for Applications (VBA) for PBPK modeling, models for styrene, vinyl chloride, and methylene chloride were coded in Advanced Continuous Simulation Language (ACSL), Excel, and VBA, and simulation results were compared. For styrene, differences between ACSL and Excel or VBA compartment concentrations and rates of change were less than +/-7.5E-10 using the same numerical integration technique and time step. Differences using VBA fixed step or ACSL Gear's methods were generally <1.00E-03, although larger differences involving very small values were noted after exposure transitions. For vinyl chloride and methylene chloride, Excel and VBA PBPK model dose metrics differed by no more than -0.013% or -0.23%, respectively, from ACSL results. These differences are likely attributable to different step sizes rather than different numerical integration techniques. These results indicate that Microsoft Excel and VBA can be useful tools for utilizing PBPK models, and given the availability of these software programs, it is hoped that this effort will help facilitate the use and investigation of PBPK modeling.

  4. An efficient technique for the numerical solution of the bidomain equations.

    PubMed

    Whiteley, Jonathan P

    2008-08-01

    Computing the numerical solution of the bidomain equations is widely accepted to be a significant computational challenge. In this study we extend a previously published semi-implicit numerical scheme with good stability properties that has been used to solve the bidomain equations (Whiteley, J.P. IEEE Trans. Biomed. Eng. 53:2139-2147, 2006). A new, efficient numerical scheme is developed which utilizes the observation that the only component of the ionic current that must be calculated on a fine spatial mesh and updated frequently is the fast sodium current. Other components of the ionic current may be calculated on a coarser mesh and updated less frequently, and then interpolated onto the finer mesh. Use of this technique to calculate the transmembrane potential and extracellular potential induces very little error in the solution. For the simulations presented in this study an increase in computational efficiency of over two orders of magnitude over standard numerical techniques is obtained.

  5. RELAP-7 Software Verification and Validation Plan: Requirements Traceability Matrix (RTM) Part 1 – Physics and numerical methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yong Joon; Yoo, Jun Soo; Smith, Curtis Lee

    2015-09-01

    This INL plan comprehensively describes the Requirements Traceability Matrix (RTM) on main physics and numerical method of the RELAP-7. The plan also describes the testing-based software verification and validation (SV&V) process—a set of specially designed software models used to test RELAP-7.

  6. PREFACE: Joint Varenna-Lausanne International Workshop 2014

    NASA Astrophysics Data System (ADS)

    2014-11-01

    The 2014 joint Varenna-Lausanne international workshop on the theory of fusion plasmas was once more a great meeting. The programme covers a wide variety of topics, namely turbulence, MHD, edge physics and RF wave heating. The broad spectrum of skills involved in this meeting, from fundamental to applied physics, is striking. The works published in this special issue combine mathematics, numerics and physics at various levels - confirming the increasing integration of expertise in our community. As an incentive to read this cluster, let us mention a few outstanding results. Several papers address fundamental issues in turbulent transport, in particular the dynamics of structures. It is quite remarkable that this subject is now mature enough to propose signatures that can be tested by measurements. Linear and non linear MHD was also at the forefront. Several works illustrate the increasing level of realistic description of a fusion device, in particular by implementing complicated wall geometries. Moreover some noticeable progress has been made in the understanding of reconnection processes in collisionless regimes. The activity on radio-frequency heating and current drive is well represented, driven by the future operation of W7-X, ITER, and DEMO on a longer time scale. Finally the development of innovative numerical techniques, an old tradition of the conference, has driven several nice articles. The programme committee is traditionally keen in promoting young scientists. A number of senior scientists also attend the meeting on a regular basis, so that the attendance was nicely balanced. We believe that these efforts have been particularly fruitful this year. The number of young (and less young) faces was particularly impressive and this special issue illustrates this feature. The success of the 2014 edition brings evidence that the joint Varenna-Lausanne is the right place for presenting th The quality and size of the scientific production is illustrated by the 22 papers which appear in the present volume of Journal of Physics Conference Series - all peer reviewed. Let us mention another set of 19 papers to appear in Plasma Physics and Controlled Fusion. We hope the reader will enjoy this special issue and will find ideas for new bright achievements. Xavier Garbet, Olivier Sauter October 23, 2014

  7. Numerical Integration

    ERIC Educational Resources Information Center

    Sozio, Gerry

    2009-01-01

    Senior secondary students cover numerical integration techniques in their mathematics courses. In particular, students would be familiar with the "midpoint rule," the elementary "trapezoidal rule" and "Simpson's rule." This article derives these techniques by methods which secondary students may not be familiar with and an approach that…

  8. Solving fractional optimal control problems within a Chebyshev-Legendre operational technique

    NASA Astrophysics Data System (ADS)

    Bhrawy, A. H.; Ezz-Eldien, S. S.; Doha, E. H.; Abdelkawy, M. A.; Baleanu, D.

    2017-06-01

    In this manuscript, we report a new operational technique for approximating the numerical solution of fractional optimal control (FOC) problems. The operational matrix of the Caputo fractional derivative of the orthonormal Chebyshev polynomial and the Legendre-Gauss quadrature formula are used, and then the Lagrange multiplier scheme is employed for reducing such problems into those consisting of systems of easily solvable algebraic equations. We compare the approximate solutions achieved using our approach with the exact solutions and with those presented in other techniques and we show the accuracy and applicability of the new numerical approach, through two numerical examples.

  9. Intermediate-mass-ratio black-hole binaries: numerical relativity meets perturbation theory.

    PubMed

    Lousto, Carlos O; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela

    2010-05-28

    We study black-hole binaries in the intermediate-mass-ratio regime 0.01≲q≲0.1 with a new technique that makes use of nonlinear numerical trajectories and efficient perturbative evolutions to compute waveforms at large radii for the leading and nonleading (ℓ, m) modes. As a proof-of-concept, we compute waveforms for q=1/10. We discuss applications of these techniques for LIGO and VIRGO data analysis and the possibility that our technique can be extended to produce accurate waveform templates from a modest number of fully nonlinear numerical simulations.

  10. Practical Framework for an Electron Beam Induced Current Technique Based on a Numerical Optimization Approach

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hideshi; Soeda, Takeshi

    2015-03-01

    A practical framework for an electron beam induced current (EBIC) technique has been established for conductive materials based on a numerical optimization approach. Although the conventional EBIC technique is useful for evaluating the distributions of dopants or crystal defects in semiconductor transistors, issues related to the reproducibility and quantitative capability of measurements using this technique persist. For instance, it is difficult to acquire high-quality EBIC images throughout continuous tests due to variation in operator skill or test environment. Recently, due to the evaluation of EBIC equipment performance and the numerical optimization of equipment items, the constant acquisition of high contrast images has become possible, improving the reproducibility as well as yield regardless of operator skill or test environment. The technique proposed herein is even more sensitive and quantitative than scanning probe microscopy, an imaging technique that can possibly damage the sample. The new technique is expected to benefit the electrical evaluation of fragile or soft materials along with LSI materials.

  11. Numerical solution of potential flow about arbitrary 2-dimensional multiple bodies

    NASA Technical Reports Server (NTRS)

    Thompson, J. F.; Thames, F. C.

    1982-01-01

    A procedure for the finite-difference numerical solution of the lifting potential flow about any number of arbitrarily shaped bodies is given. The solution is based on a technique of automatic numerical generation of a curvilinear coordinate system having coordinate lines coincident with the contours of all bodies in the field, regardless of their shapes and number. The effects of all numerical parameters involved are analyzed and appropriate values are recommended. Comparisons with analytic solutions for single Karman-Trefftz airfoils and a circular cylinder pair show excellent agreement. The technique of application of the boundary-fitted coordinate systems to the numerical solution of partial differential equations is illustrated.

  12. HOPE: Just-in-time Python compiler for astrophysical computations

    NASA Astrophysics Data System (ADS)

    Akeret, Joel; Gamper, Lukas; Amara, Adam; Refregier, Alexandre

    2014-11-01

    HOPE is a specialized Python just-in-time (JIT) compiler designed for numerical astrophysical applications. HOPE focuses on a subset of the language and is able to translate Python code into C++ while performing numerical optimization on mathematical expressions at runtime. To enable the JIT compilation, the user only needs to add a decorator to the function definition. By using HOPE, the user benefits from being able to write common numerical code in Python while getting the performance of compiled implementation.

  13. Multiresolution representation and numerical algorithms: A brief review

    NASA Technical Reports Server (NTRS)

    Harten, Amiram

    1994-01-01

    In this paper we review recent developments in techniques to represent data in terms of its local scale components. These techniques enable us to obtain data compression by eliminating scale-coefficients which are sufficiently small. This capability for data compression can be used to reduce the cost of many numerical solution algorithms by either applying it to the numerical solution operator in order to get an approximate sparse representation, or by applying it to the numerical solution itself in order to reduce the number of quantities that need to be computed.

  14. "Push back" technique: A simple method to remove broken drill bit from the proximal femur.

    PubMed

    Chouhan, Devendra K; Sharma, Siddhartha

    2015-11-18

    Broken drill bits can be difficult to remove from the proximal femur and may necessitate additional surgical exploration or special instrumentation. We present a simple technique to remove a broken drill bit that does not require any special instrumentation and can be accomplished through the existing incision. This technique is useful for those cases where the length of the broken drill bit is greater than the diameter of the bone.

  15. Korean Affairs Report.

    DTIC Science & Technology

    1986-10-24

    Meets Japanese Delegation 112 Foreign Visitors 112 CSSR Trade Group Arrives 112 Hungarian Embassy Hosts Film Show ill Chinese Buddhists Delegation...of ground, sea and air forces, special units which use "nuclear backpacks " along with numerous units and personnel specializing in nuclear warfare...considered encouraging to all Asian nations, particularly since the Chinese sports champions and officials are presently participating in the Seoul Asiad in

  16. [Hospital financing in 2015. Relevant changes for rheumatology].

    PubMed

    Fiori, W; Lakomek, H-J; Buscham, K; Lehmann, H; Fuchs, A-K; Bessler, F; Roeder, N

    2015-06-01

    The announced major reforms will most probably not have an impact on hospital financing before 2016. Nevertheless, the numerous minor changes in the legislative framework and the new version of the German diagnosis-related groups (G-DRG) system can be important for hospitals specialized in rheumatology. The following article presents the relevant changes and discusses the consequences for hospitals specialized in rheumatology.

  17. Mechanisms of interactive specialization and emergence of functional brain circuits supporting cognitive development in children

    NASA Astrophysics Data System (ADS)

    Battista, Christian; Evans, Tanya M.; Ngoon, Tricia J.; Chen, Tianwen; Chen, Lang; Kochalka, John; Menon, Vinod

    2018-01-01

    Cognitive development is thought to depend on the refinement and specialization of functional circuits over time, yet little is known about how this process unfolds over the course of childhood. Here we investigated growth trajectories of functional brain circuits and tested an interactive specialization model of neurocognitive development which posits that the refinement of task-related functional networks is driven by a shared history of co-activation between cortical regions. We tested this model in a longitudinal cohort of 30 children with behavioral and task-related functional brain imaging data at multiple time points spanning childhood and adolescence, focusing on the maturation of parietal circuits associated with numerical problem solving and learning. Hierarchical linear modeling revealed selective strengthening as well as weakening of functional brain circuits. Connectivity between parietal and prefrontal cortex decreased over time, while connectivity within posterior brain regions, including intra-hemispheric and inter-hemispheric parietal connectivity, as well as parietal connectivity with ventral temporal occipital cortex regions implicated in quantity manipulation and numerical symbol recognition, increased over time. Our study provides insights into the longitudinal maturation of functional circuits in the human brain and the mechanisms by which interactive specialization shapes children's cognitive development and learning.

  18. Accommodating the Special Learner in Secondary General Music Classes

    ERIC Educational Resources Information Center

    VanWeelden, Kimberly

    2011-01-01

    It can be challenging to know which accommodations for special learners can be used within the various secondary general music class settings. Fortunately, there have been several recent music education and therapy articles based on special education practices that have addressed techniques for working with students with special needs in music.…

  19. An efficient numerical technique for calculating thermal spreading resistance

    NASA Technical Reports Server (NTRS)

    Gale, E. H., Jr.

    1977-01-01

    An efficient numerical technique for solving the equations resulting from finite difference analyses of fields governed by Poisson's equation is presented. The method is direct (noniterative)and the computer work required varies with the square of the order of the coefficient matrix. The computational work required varies with the cube of this order for standard inversion techniques, e.g., Gaussian elimination, Jordan, Doolittle, etc.

  20. Onset of detachment in adhesive contact of an elastic half-space and flat-ended punches with non-circular shape: analytic estimates and comparison with numeric analysis

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Argatov, Ivan; Popov, Valentin L.

    2018-04-01

    A recent paper by Popov, Pohrt and Li (PPL) in Friction investigated adhesive contacts of flat indenters in unusual shapes using numerical, analytical and experimental methods. Based on that paper, we analyze some special cases for which analytical solutions are known. As in the PPL paper, we consider adhesive contact in the Johnson-Kendall-Roberts approximation. Depending on the energy balance, different upper and lower estimates are obtained in terms of certain integral characteristics of the contact area. The special cases of an elliptical punch as well as a system of two circular punches are considered. Theoretical estimations for the first critical force (force at which the detachment process begins) are confirmed by numerical simulations using the adhesive boundary element method. It is shown that simpler approximations for the pull-off force, based both on the Holm radius of contact and the contact area, substantially overestimate the maximum adhesive force.

  1. Formulation of a dynamic analysis method for a generic family of hoop-mast antenna systems

    NASA Technical Reports Server (NTRS)

    Gabriele, A.; Loewy, R.

    1981-01-01

    Analytical studies of mast-cable-hoop-membrane type antennas were conducted using a transfer matrix numerical analysis approach. This method, by virtue of its specialization and the inherently easy compartmentalization of the formulation and numerical procedures, can be significantly more efficient in computer time required and in the time needed to review and interpret the results.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewett, D.W.; Yu-Jiuan Chen

    The authors describe how they hold onto orthogonal mesh discretization when dealing with curved boundaries. Special difference operators were constructed to approximate numerical zones split by the domain boundary; the operators are particularly simple for this rectangular mesh. The authors demonstrated that this simple numerical approach, termed Dynamic Alternating Direction Implicit, turned out to be considerably more efficient than more complex grid-adaptive algorithms that were tried previously.

  3. Developmental Specialization in the Right Intraparietal Sulcus for the Abstract Representation of Numerical Magnitude

    ERIC Educational Resources Information Center

    Holloway, Ian D.; Ansari, Daniel

    2010-01-01

    Because number is an abstract quality of a set, the way in which a number is externally represented does not change its quantitative meaning. In this study, we examined the development of the brain regions that support format-independent representation of numerical magnitude. We asked children and adults to perform both symbolic (Hindu-Arabic…

  4. Numerical simulation of conservation laws

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; To, Wai-Ming

    1992-01-01

    A new numerical framework for solving conservation laws is being developed. This new approach differs substantially from the well established methods, i.e., finite difference, finite volume, finite element and spectral methods, in both concept and methodology. The key features of the current scheme include: (1) direct discretization of the integral forms of conservation laws, (2) treating space and time on the same footing, (3) flux conservation in space and time, and (4) unified treatment of the convection and diffusion fluxes. The model equation considered in the initial study is the standard one dimensional unsteady constant-coefficient convection-diffusion equation. In a stability study, it is shown that the principal and spurious amplification factors of the current scheme, respectively, are structurally similar to those of the leapfrog/DuFort-Frankel scheme. As a result, the current scheme has no numerical diffusion in the special case of pure convection and is unconditionally stable in the special case of pure diffusion. Assuming smooth initial data, it will be shown theoretically and numerically that, by using an easily determined optimal time step, the accuracy of the current scheme may reach a level which is several orders of magnitude higher than that of the MacCormack scheme, with virtually identical operation count.

  5. Orientational imaging of a single plasmonic nanoparticle using dark-field hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Mehta, Nishir; Mahigir, Amirreza; Veronis, Georgios; Gartia, Manas Ranjan

    2017-08-01

    Orientation of plasmonic nanostructures is an important feature in many nanoscale applications such as catalyst, biosensors DNA interactions, protein detections, hotspot of surface enhanced Raman spectroscopy (SERS), and fluorescence resonant energy transfer (FRET) experiments. However, due to diffraction limit, it is challenging to obtain the exact orientation of the nanostructure using standard optical microscope. Hyperspectral Imaging Microscopy is a state-of-the-art visualization technology that combines modern optics with hyperspectral imaging and computer system to provide the identification and quantitative spectral analysis of nano- and microscale structures. In this work, initially we use transmitted dark field imaging technique to locate single nanoparticle on a glass substrate. Then we employ hyperspectral imaging technique at the same spot to investigate orientation of single nanoparticle. No special tagging or staining of nanoparticle has been done, as more likely required in traditional microscopy techniques. Different orientations have been identified by carefully understanding and calibrating shift in spectral response from each different orientations of similar sized nanoparticles. Wavelengths recorded are between 300 nm to 900 nm. The orientations measured by hyperspectral microscopy was validated using finite difference time domain (FDTD) electrodynamics calculations and scanning electron microscopy (SEM) analysis. The combination of high resolution nanometer-scale imaging techniques and the modern numerical modeling capacities thus enables a meaningful advance in our knowledge of manipulating and fabricating shaped nanostructures. This work will advance our understanding of the behavior of small nanoparticle clusters useful for sensing, nanomedicine, and surface sciences.

  6. Evaluation of a transfinite element numerical solution method for nonlinear heat transfer problems

    NASA Technical Reports Server (NTRS)

    Cerro, J. A.; Scotti, S. J.

    1991-01-01

    Laplace transform techniques have been widely used to solve linear, transient field problems. A transform-based algorithm enables calculation of the response at selected times of interest without the need for stepping in time as required by conventional time integration schemes. The elimination of time stepping can substantially reduce computer time when transform techniques are implemented in a numerical finite element program. The coupling of transform techniques with spatial discretization techniques such as the finite element method has resulted in what are known as transfinite element methods. Recently attempts have been made to extend the transfinite element method to solve nonlinear, transient field problems. This paper examines the theoretical basis and numerical implementation of one such algorithm, applied to nonlinear heat transfer problems. The problem is linearized and solved by requiring a numerical iteration at selected times of interest. While shown to be acceptable for weakly nonlinear problems, this algorithm is ineffective as a general nonlinear solution method.

  7. Polarisation Dynamics of Vector Soliton Molecules in Mode Locked Fibre Laser

    PubMed Central

    Tsatourian, Veronika; Sergeyev, Sergey V.; Mou, Chengbo; Rozhin, Alex; Mikhailov, Vitaly; Rabin, Bryan; Westbrook, Paul S.; Turitsyn, Sergei K.

    2013-01-01

    Two fundamental laser physics phenomena - dissipative soliton and polarisation of light are recently merged to the concept of vector dissipative soliton (VDS), viz. train of short pulses with specific state of polarisation (SOP) and shape defined by an interplay between anisotropy, gain/loss, dispersion, and nonlinearity. Emergence of VDSs is both of the fundamental scientific interest and is also a promising technique for control of dynamic SOPs important for numerous applications from nano-optics to high capacity fibre optic communications. Using specially designed and developed fast polarimeter, we present here the first experimental results on SOP evolution of vector soliton molecules with periodic polarisation switching between two and three SOPs and superposition of polarisation switching with SOP precessing. The underlying physics presents an interplay between linear and circular birefringence of a laser cavity along with light induced anisotropy caused by polarisation hole burning. PMID:24193374

  8. Polarisation Dynamics of Vector Soliton Molecules in Mode Locked Fibre Laser

    NASA Astrophysics Data System (ADS)

    Tsatourian, Veronika; Sergeyev, Sergey V.; Mou, Chengbo; Rozhin, Alex; Mikhailov, Vitaly; Rabin, Bryan; Westbrook, Paul S.; Turitsyn, Sergei K.

    2013-11-01

    Two fundamental laser physics phenomena - dissipative soliton and polarisation of light are recently merged to the concept of vector dissipative soliton (VDS), viz. train of short pulses with specific state of polarisation (SOP) and shape defined by an interplay between anisotropy, gain/loss, dispersion, and nonlinearity. Emergence of VDSs is both of the fundamental scientific interest and is also a promising technique for control of dynamic SOPs important for numerous applications from nano-optics to high capacity fibre optic communications. Using specially designed and developed fast polarimeter, we present here the first experimental results on SOP evolution of vector soliton molecules with periodic polarisation switching between two and three SOPs and superposition of polarisation switching with SOP precessing. The underlying physics presents an interplay between linear and circular birefringence of a laser cavity along with light induced anisotropy caused by polarisation hole burning.

  9. Tacky COC: a solvent bonding technique for fabrication of microfluidic systems

    NASA Astrophysics Data System (ADS)

    Keller, Nico; Nargang, Tobias M.; Helmer, Dorothea; Rapp, Bastian E.

    2016-03-01

    The academic community knows cyclic olefin copolymer (COC) as a well suited material for microfluidic applications because COC has numerous interesting properties such as high transmittance, good chemical resistance and good biocompatibility. Here we present a fast and cost-effective method for bonding of two COC substrates: exposure to appropriate solvents gives a tacky COC surface which when brought in contact with untreated COC forms a strong and optical clear bond. The bonding process is carried out at room temperature and takes less than three minutes which makes it significantly faster than currently described methods: This method does not require special lab equipment such as hot plates or hydraulic presses. The mild conditions of the bond process also allow for such "tacky COC" lids to be used for sealing of microfluidic chips containing immobilized protein patterns which is of high interest for immunodiagnostic testing inside microfluidic chips.

  10. Invertebrate biomechanics.

    PubMed

    Patek, S N; Summers, A P

    2017-05-22

    Invertebrate biomechanics focuses on mechanical analyses of non-vertebrate animals, which at root is no different in aim and technique from vertebrate biomechanics, or for that matter the biomechanics of plants and fungi. But invertebrates are special - they are fabulously diverse in form, habitat, and ecology and manage this without the use of hard, internal skeletons. They are also numerous and, in many cases, tractable in an experimental and field setting. In this Primer, we will probe three axes of invertebrate diversity: worms (Phylum Annelida), spiders (Class Arachnida) and insects (Class Insecta); three habitats: subterranean, terrestrial and airborne; and three integrations with other fields: ecology, engineering and evolution. Our goal is to capture the field of invertebrate biomechanics, which has blossomed from having a primary focus on discoveries at the interface of physics and biology to being inextricably linked with integrative challenges that span biology, physics, mathematics and engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Application of program generation technology in solving heat and flow problems

    NASA Astrophysics Data System (ADS)

    Wan, Shui; Wu, Bangxian; Chen, Ningning

    2007-05-01

    Based on a new DIY concept for software development, an automatic program-generating technology attached on a software system called as Finite Element Program Generator (FEPG) provides a platform of developing programs, through which a scientific researcher can submit his special physico-mathematical problem to the system in a more direct and convenient way for solution. For solving flow and heat problems by using finite element method, the stabilization technologies and fraction-step methods are adopted to overcome the numerical difficulties caused mainly due to the dominated convection. A couple of benchmark problems are given in this paper as examples to illustrate the usage and the superiority of the automatic program generation technique, including the flow in a lid-driven cavity, the starting flow in a circular pipe, the natural convection in a square cavity, and the flow past a circular cylinder, etc. They are also shown as the verification of the algorithms.

  12. Sixth SIAM conference on applied linear algebra: Final program and abstracts. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-31

    Linear algebra plays a central role in mathematics and applications. The analysis and solution of problems from an amazingly wide variety of disciplines depend on the theory and computational techniques of linear algebra. In turn, the diversity of disciplines depending on linear algebra also serves to focus and shape its development. Some problems have special properties (numerical, structural) that can be exploited. Some are simply so large that conventional approaches are impractical. New computer architectures motivate new algorithms, and fresh ways to look at old ones. The pervasive nature of linear algebra in analyzing and solving problems means that peoplemore » from a wide spectrum--universities, industrial and government laboratories, financial institutions, and many others--share an interest in current developments in linear algebra. This conference aims to bring them together for their mutual benefit. Abstracts of papers presented are included.« less

  13. Experimental and computational fluid dynamics studies of mixing of complex oral health products

    NASA Astrophysics Data System (ADS)

    Cortada-Garcia, Marti; Migliozzi, Simona; Weheliye, Weheliye Hashi; Dore, Valentina; Mazzei, Luca; Angeli, Panagiota; ThAMes Multiphase Team

    2017-11-01

    Highly viscous non-Newtonian fluids are largely used in the manufacturing of specialized oral care products. Mixing often takes place in mechanically stirred vessels where the flow fields and mixing times depend on the geometric configuration and the fluid physical properties. In this research, we study the mixing performance of complex non-Newtonian fluids using Computational Fluid Dynamics models and validate them against experimental laser-based optical techniques. To this aim, we developed a scaled-down version of an industrial mixer. As test fluids, we used mixtures of glycerol and a Carbomer gel. The viscosities of the mixtures against shear rate at different temperatures and phase ratios were measured and found to be well described by the Carreau model. The numerical results were compared against experimental measurements of velocity fields from Particle Image Velocimetry (PIV) and concentration profiles from Planar Laser Induced Fluorescence (PLIF).

  14. Experiments on the applicability of MAE techniques for predicting sound diffraction by irregular terrains. [Matched Asymptotic Expansion

    NASA Technical Reports Server (NTRS)

    Berthelot, Yves H.; Pierce, Allan D.; Kearns, James A.

    1987-01-01

    The sound field diffracted by a single smooth hill of finite impedance is studied both analytically, within the context of the theory of Matched Asymptotic Expansions (MAE), and experimentally, under laboratory scale modeling conditions. Special attention is given to the sound field on the diffracting surface and throughout the transition region between the illuminated and the shadow zones. The MAE theory yields integral equations that are amenable to numerical computations. Experimental results are obtained with a spark source producing a pulse of 42 microsec duration and about 130 Pa at 1 m. The insertion loss of the hill is inferred from measurements of the acoustic signals at two locations in the field, with subsequent Fourier analysis on an IBM PC/AT. In general, experimental results support the predictions of the MAE theory, and provide a basis for the analysis of more complicated geometries.

  15. Internal oxidation phenomenon in pure copper

    NASA Astrophysics Data System (ADS)

    Rudolf, Rebeka; Anžel, Ivan

    2009-04-01

    This paper presents two special kinds of internal oxidation phenomenon that can take place in pure metals containing a high concentration of non-equilibrium defects. These processes are Internal Oxidation (IO) and Internal Carbonisation (IC). Both processes start with the dissolution of oxidant (O or C) into the pure metal at the free surfaces, and continue with the diffusion of oxidant atoms into the metal matrix volume, where they are trapped at numerous defects within the crystal lattice. Increasing oxidant activity at these places causes local oxidation of the matrix and, consequently, precipitation of fine oxide or graphite particles. The IO and IC processes were tested on the rapidly solidified pure copper which was produced by the Chill-Block Melt Spinning Technique. Analysis of the IO process showed the formation of Cu-Cu2O, and the formation of Cu-C composite from the IC process.

  16. Vertical solidification of dendritic binary alloys

    NASA Technical Reports Server (NTRS)

    Heinrich, J. C.; Felicelli, S.; Poirier, D. R.

    1991-01-01

    Three numerical techniques are employed to analyze the influence of thermosolutal convection on defect formation in directionally solidified (DS) alloys. The finite-element models are based on the Boussinesq approximation and include the plane-front model and two plane-front models incorporating special dendritic regions. In the second model the dendritic region has a time-independent volume fraction of liquid, and in the last model the dendritic region evolves as local conditions dictate. The finite-element models permit the description of nonlinear thermosolutal convection by treating the dendritic regions as porous media with variable porosities. The models are applied to lead-tin alloys including DS alloys, and severe segregation phenomena such as freckles and channels are found to develop in the DS alloys. The present calculations and the permeability functions selected are shown to predict behavior in the dendritic regions that qualitatively matches that observed experimentally.

  17. Contact Modelling in Isogeometric Analysis: Application to Sheet Metal Forming Processes

    NASA Astrophysics Data System (ADS)

    Cardoso, Rui P. R.; Adetoro, O. B.; Adan, D.

    2016-08-01

    Isogeometric Analysis (IGA) has been growing in popularity in the past few years essentially due to the extra flexibility it introduces with the use of higher degrees in the basis functions leading to higher convergence rates. IGA also offers the capability of easily reproducing discontinuous displacement and/or strain fields by just manipulating the multiplicity of the knot parametric coordinates. Another advantage of IGA is that it uses the Non-Uniform Rational B-Splines (NURBS) basis functions, that are very common in CAD solid modelling, and consequently it makes easier the transition from CAD models to numerical analysis. In this work it is explored the contact analysis in IGA for both implicit and explicit time integration schemes. Special focus will be given on contact search and contact detection techniques under NURBS patches for both the rigid tools and the deformed sheet blank.

  18. Direct estimation of diffuse gaseous emissions from coal fires: current methods and future directions

    USGS Publications Warehouse

    Engle, Mark A.; Olea, Ricardo A.; O'Keefe, Jennifer M. K.; Hower, James C.; Geboy, Nicholas J.

    2013-01-01

    Coal fires occur in nature spontaneously, contribute to increases in greenhouse gases, and emit atmospheric toxicants. Increasing interest in quantifying coal fire emissions has resulted in the adaptation and development of specialized approaches and adoption of numerical modeling techniques. Overview of these methods for direct estimation of diffuse gas emissions from coal fires is presented in this paper. Here we take advantage of stochastic Gaussian simulation to interpolate CO2 fluxes measured using a dynamic closed chamber at the Ruth Mullins coal fire in Perry County, Kentucky. This approach allows for preparing a map of diffuse gas emissions, one of the two primary ways that gases emanate from coal fires, and establishing the reliability of the study both locally and for the entire fire. Future research directions include continuous and automated sampling to improve quantification of gaseous coal fire emissions.

  19. Analysis of surface structures of chemically peculiar stars with modern and future interferometers

    NASA Astrophysics Data System (ADS)

    Shulyak, D.; Perraut, K.; Paladini, Claudia; Li Causi, G.; Sacuto, Stephane; Kochukhov, O.

    2014-07-01

    Interferometry is a very powerful observational technique known in astronomy for many decades. Its application to main-sequence stars, however, is still limited to only brightest objects. In this work we aim to explore the application of interferometry to a special class of main-sequence stars known as chemically peculiar (CP) stars. These stars demonstrate surface chemical abundance inhomogeneities (spots) that usually cover a considerable part of the stellar surface and induce a pronounced spectral and photometric variability. Interferometry thus has a potential to naturally resolve such spots in single stars, providing unique complementary information about spots sizes and contrasts. By means of numerical experiments we derive the actual interferometric requirements essential for the CP stars research that can be addressed in future instrument development. The first comparison between theoretical predictions and already available observations will also be discussed.

  20. Inorganic fullerenes and nanotubes: Wealth of materials and morphologies

    NASA Astrophysics Data System (ADS)

    Bar-Sadan, M.; Kaplan-Ashiri, I.; Tenne, R.

    2007-10-01

    It is already well established today that numerous materials form closed-cage structures, of which carbon fullerenes and nanotubes are a special case [1]. Inorganic fullerene-like nanoparticles (designated IF) and inorganic nanotubes (INT) have been produced by different routes and experimental techniques, achieving persistent growth of a variety of materials and structural wealth within them. The research in this area has focused on synthesizing new IF and INT materials and understanding their different properties as well as scaling up the synthetic process in order to make it suitable for industrial applications. In this review, the main synthetic procedures to obtain inorganic fullerene-like nanoparticles and nanotubes will be discussed alongside with the different mechanisms that affect the morphology of the final product. The main differences between the morphologies will be presented. Some general considerations relating the properties of the parent compound with the morphology of the product will be mentioned.

  1. Compound matrices

    NASA Astrophysics Data System (ADS)

    Kravvaritis, Christos; Mitrouli, Marilena

    2009-02-01

    This paper studies the possibility to calculate efficiently compounds of real matrices which have a special form or structure. The usefulness of such an effort lies in the fact that the computation of compound matrices, which is generally noneffective due to its high complexity, is encountered in several applications. A new approach for computing the Singular Value Decompositions (SVD's) of the compounds of a matrix is proposed by establishing the equality (up to a permutation) between the compounds of the SVD of a matrix and the SVD's of the compounds of the matrix. The superiority of the new idea over the standard method is demonstrated. Similar approaches with some limitations can be adopted for other matrix factorizations, too. Furthermore, formulas for the n - 1 compounds of Hadamard matrices are derived, which dodge the strenuous computations of the respective numerous large determinants. Finally, a combinatorial counting technique for finding the compounds of diagonal matrices is illustrated.

  2. Analysis of an Aircraft Honeycomb Sandwich Panel with Circular Face Sheet/Core Disbond Subjected to Ground-Air Pressurization

    NASA Technical Reports Server (NTRS)

    Rinker, Martin; Krueger, Ronald; Ratcliffe, James

    2013-01-01

    The ground-air pressurization of lightweight honeycomb sandwich structures caused by alternating pressure differences between the enclosed air within the honeycomb core and the ambient environment is a well-known and controllable loading condition of aerospace structures. However, initial face sheet/core disbonds intensify the face sheet peeling effect of the internal pressure load significantly and can decrease the reliability of the sandwich structure drastically. Within this paper, a numerical parameter study was carried out to investigate the criticality of initial disbonds in honeycomb sandwich structures under ground-air pressurization. A fracture mechanics approach was used to evaluate the loading at the disbond front. In this case, the strain energy release rate was computed via the Virtual Crack Closure Technique. Special attention was paid to the pressure-deformation coupling which can decrease the pressure load within the disbonded sandwich section significantly when the structure is highly deformed.

  3. Heat Transfer Measurements during DC Casting of Aluminium Part I: Measurement Technique

    NASA Astrophysics Data System (ADS)

    Bakken, J. A.; Bergström, T.

    A method for determination of surface heat transfer to the cooling water and mould based on in-situ temperature measurements in the DC cast ingot has been developed. Three or more steel mantled coaxial thermocouples (0.5 mm diam.) are mounted on a wire frame called a "harp". Allowing the "harp" to freeze into the solid ingots during the casting time-temperature plots T1 (t), T2(t), T3 (t) are obtained for three moving points positioned typically 3, 7 and 11 mm from the ingot surface. From these measurements surface temperature, heat flux and heat transfer coefficients are computed as functions of vertical distance. The computer program is based on steady-state two-dimensional heat balances with convective terms for two fixed volume elements: one around thermocouple T1 and one surface element. A special numerical smoothing procedure is incorporated. The heat of solidification is taken into account.

  4. MASS SPECTROMETRY-BASED METABOLOMICS

    PubMed Central

    Dettmer, Katja; Aronov, Pavel A.; Hammock, Bruce D.

    2007-01-01

    This review presents an overview of the dynamically developing field of mass spectrometry-based metabolomics. Metabolomics aims at the comprehensive and quantitative analysis of wide arrays of metabolites in biological samples. These numerous analytes have very diverse physico-chemical properties and occur at different abundance levels. Consequently, comprehensive metabolomics investigations are primarily a challenge for analytical chemistry and specifically mass spectrometry has vast potential as a tool for this type of investigation. Metabolomics require special approaches for sample preparation, separation, and mass spectrometric analysis. Current examples of those approaches are described in this review. It primarily focuses on metabolic fingerprinting, a technique that analyzes all detectable analytes in a given sample with subsequent classification of samples and identification of differentially expressed metabolites, which define the sample classes. To perform this complex task, data analysis tools, metabolite libraries, and databases are required. Therefore, recent advances in metabolomics bioinformatics are also discussed. PMID:16921475

  5. Dissipative stability analysis and control of two-dimensional Fornasini-Marchesini local state-space model

    NASA Astrophysics Data System (ADS)

    Wang, Lanning; Chen, Weimin; Li, Lizhen

    2017-06-01

    This paper is concerned with the problems of dissipative stability analysis and control of the two-dimensional (2-D) Fornasini-Marchesini local state-space (FM LSS) model. Based on the characteristics of the system model, a novel definition of 2-D FM LSS (Q, S, R)-α-dissipativity is given first, and then a sufficient condition in terms of linear matrix inequality (LMI) is proposed to guarantee the asymptotical stability and 2-D (Q, S, R)-α-dissipativity of the systems. As its special cases, 2-D passivity performance and 2-D H∞ performance are also discussed. Furthermore, by use of this dissipative stability condition and projection lemma technique, 2-D (Q, S, R)-α-dissipative state-feedback control problem is solved as well. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.

  6. Implications of outer-zone radiations on operations in the geostationary region utilizing the ae4 environmental model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, J.W.; Denn, F.M.

    1977-05-01

    The radiation exposure in the region of geostationary orbits is examined in search for means of optimizing human performance. It is found that the use of slightly inclined circular orbits is one means by which exposure and spacesuit thickness requirements can be reduced. Another effective technique is to limit the extravehicular activity to those days when the short term fluctuations result in low exposure. Space-suit shielding approaching 1/2 sq cm or less may be possible by utilizing work stoppages and inclined orbits. If aluminum and other low-atomic-number materials are used to construct the habitat, then excessive wall thicknesses are required.more » If special bremsstrahlung shielding is used, then the habitat shield may be reduced to as low as 2 g/sq cm. Numerous tables and graphs are presented for future analysis of dose in the geostationary region.« less

  7. Zein-based Nanocarriers as Potential Natural Alternatives for Drug and Gene Delivery: Focus on Cancer Therapy.

    PubMed

    Elzoghby, Ahmed; Freag, May; Mamdouh, Hadeer; Elkhodairy, Kadria

    2017-01-01

    Protein nanocarriers possess unique merits including minimal cytotoxicity, numerous renewable sources, and high drug-binding capability. In opposition to delivery carriers utilizing hydrophilic animal proteins, hydrophobic plant proteins (e.g, zein) have great tendency in fabricating controlled-release particulate carriers without additional chemical modification to stiffen them, which in turn evades the use of toxic chemical crosslinkers. Moreover, zein is related to a class of alcohol-soluble prolamins and generally recognized as safe (GRAS) carrier for drug delivery. Various techniques have been adopted to fabricate zein-based nanoparticulate systems including phase separation coacervation, spray-drying, supercritical anti-solvent approach, electrospinning and self-assembly. This manuscript reviews the recent advances in the zein-based colloidal nano-carrier systems such as nanospheres, nanocapsules, micelles and nanofibers with a special focus on their physicochemical characteristics and drug delivery applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Solving the transient water age distribution problem in environmental flow systems

    NASA Astrophysics Data System (ADS)

    Cornaton, F. J.

    2011-12-01

    The temporal evolution of groundwater age and its frequency distributions can display important changes as flow regimes vary due to the natural change in climate and hydrologic conditions and/or to human induced pressures on the resource to satisfy the water demand. Groundwater age being nowadays frequently used to investigate reservoir properties and recharge conditions, special attention needs to be put on the way this property is characterized, would it be using isotopic methods, multiple tracer techniques, or mathematical modelling. Steady-state age frequency distributions can be modelled using standard numerical techniques, since the general balance equation describing age transport under steady-state flow conditions is exactly equivalent to a standard advection-dispersion equation. The time-dependent problem is however described by an extended transport operator that incorporates an additional coordinate for water age. The consequence is that numerical solutions can hardly be achieved, especially for real 3-D applications over large time periods of interest. The absence of any robust method has thus left us in the quantitative hydrogeology community dodging the issue of transience. Novel algorithms for solving the age distribution problem under time-varying flow regimes are presented and, for some specific configurations, extended to the problem of generalized component exposure time. The solution strategy is based on the combination of the Laplace Transform technique applied to the age (or exposure time) coordinate with standard time-marching schemes. The method is well-suited for groundwater problems with possible density-dependency of fluid flow (e.g. coupled flow and heat/salt concentration problems), but also presents significance to the homogeneous flow (compressible case) problem. The approach is validated using 1-D analytical solutions and exercised on some demonstration problems that are relevant to topical issues in groundwater age, including analysis of transfer times in the vadose zone, aquifer-aquitard interactions and the induction of transient age distributions when a well pump is started.

  9. Developmental specialization in the right intraparietal sulcus for the abstract representation of numerical magnitude.

    PubMed

    Holloway, Ian D; Ansari, Daniel

    2010-11-01

    Because number is an abstract quality of a set, the way in which a number is externally represented does not change its quantitative meaning. In this study, we examined the development of the brain regions that support format-independent representation of numerical magnitude. We asked children and adults to perform both symbolic (Hindu-Arabic numerals) and nonsymbolic (arrays of squares) numerical comparison tasks as well as two control tasks while their brains were scanned using fMRI. In a preliminary analysis, we calculated the conjunction between symbolic and nonsymbolic numerical comparison. We then examined in which brain regions this conjunction differed between children and adults. This analysis revealed a large network of visual and parietal regions that showed greater activation in adults relative to children. In our primary analysis, we examined age-related differences in the conjunction of symbolic and nonsymbolic comparison after subtracting the control tasks. This analysis revealed a much more limited set of regions including the right inferior parietal lobe near the intraparietal sulcus. In addition to showing increased activation to both symbolic and nonsymbolic magnitudes over and above activation related to response selection, this region showed age-related differences in the distance effect. Our findings demonstrate that the format-independent representation of numerical magnitude in the right inferior parietal lobe is the product of developmental processes of cortical specialization and highlight the importance of using appropriate control tasks when conducting developmental neuroimaging studies.

  10. EDITORIAL: Invited papers from the international meeting on 'New Frontiers in Numerical Relativity' (Albert Einstein Institute, Potsdam, Germany, 17 21 July 2006)

    NASA Astrophysics Data System (ADS)

    Campanelli, M.; Rezzolla, L.

    2007-06-01

    Traditionally, frontiers represent a treacherous terrain to venture into, where hidden obstacles are present and uncharted territories lie ahead. At the same time, frontiers are also a place where new perspectives can be appreciated and have often been the cradle of new and thriving developments. With this in mind and inspired by this spirit, the Numerical Relativity Group at the Albert Einstein Institute (AEI) organized a `New Frontiers in Numerical Relativity' meeting on 17 21 July 2006 at the AEI campus in Potsdam, Germany. It is an interesting historical remark that the suggestion of the meeting was first made in the late summer of 2005 and thus at a time that for many reasons has been a turning point in the recent history of numerical relativity. A few months earlier (April 2005) in fact, F Pretorius had announced the first multi-orbit simulations of binary black holes and computed the waveforms from the inspiral, merger and ring-down (`Numerical Relativity', Banff International Research Station, Banff, Canada, 16 21 April 2005). At that time, the work of Pretorius served as an important boost to the research in this field and although no other group has yet adopted the techniques he employed, his results provided the numerical relativity community with clear evidence that the binary black hole problem could be solved. A few months later (November 2005), equally striking results were presented by the NASA Goddard and Texas/Brownsville groups, who also reported, independently, multi-orbit evolutions of binary black holes using numerical techniques and formulations of the Einstein equations which were markedly distinct from those suggested by Pretorius (`Numerical Relativity 2005', Goddard Space Flight Centre, Greenbelt, MD, USA, 2 4 November 2005). A few months later other groups were able to repeat the same simulations and obtain equivalent results, testifying that the community as a whole had reached comparable levels of maturity in both the numerical techniques and the mathematical methods needed for successful solution of the Einstein equations for binary black holes. Clearly, an important frontier, and actually a long-awaited one, was finally open and the `gold rush' was just about to begin by the time the `New Frontiers in Numerical Relativity' meeting started its sessions in July 2006. And so, almost 20 years since the almost homonymous meeting held at Urbana Champaign (`Frontiers in Numerical Relativity', University of Illinois, IL, USA, 1988), the `New Frontiers in Numerical Relativity' meeting at the AEI saw the enthusiastic participation of a great part of the community, with 127 participants present (in 1988 they were 55) and with a large majority being represented by students and postdocs, a reassuring sign of good health for the community. Faithful to the title of the conference, the programme was dedicated to the many and diversified `frontiers' in numerical relativity and organized so as to have few talks with ample time dedicated to discussions. Overall, the talks presented at the meeting covered all of the most salient aspects of numerical relativity: from the formulation of the Einstein equations, over to the initial-value problem in general relativity, from the evolution of vacuum and non-vacuum spacetimes, to multiblock adaptive mesh-refinement techniques, from boundary conditions and perturbative methods, to relativistic fluids and plasmas. The contributions in this special issue represent a selection of that research, but also include invited papers from authors who were not present at the meeting but were pursuing research at the forefronts of numerical relativity. In addition to the more traditional sessions, the `New Frontiers in Numerical Relativity' meeting also hosted a less traditional session, dedicated to an `unconstrained' discussion which covered some of the most controversial issues that emerged during the conference. During this session, chaired by E Seidel, a lively discussion took place in the non-trivial attempt of marking the new frontiers on the map of numerical relativity. The transcript of this discussion is an integral part of this issue and it is available, along with the audio recording, in the online version only. We believe they embody an important part of the development of this field and, like a good bottle of wine, it will be interesting to read them again once sufficiently aged. As a concluding remark we note that it is almost one year since the `New Frontiers in Numerical Relativity' meeting and dozens of excellent papers have been published or posted on the preprint archive. Some of the scientific results obtained over these months, especially those revolving around binary black holes, were simply unimaginable a few years ago and represent an indisputable evidence that the research in numerical relativity has never been as exciting as it is now. These results have already had an impact in astrophysics and the community interested in the analysis of gravitational-wave data, thus opening new and different frontiers in numerical relativity. Interestingly, all of this is happening while ground-based gravitational wave detectors in the US and Europe are operating at a sensitivity such that gravitational radiation may soon be directly detected. While much still needs to be understood and improved, the gold rush towards the new frontiers of numerical relativity does not yet show any sign of being close to a rapid end.

  11. [Advance in interferogram data processing technique].

    PubMed

    Jing, Juan-Juan; Xiangli, Bin; Lü, Qun-Bo; Huang, Min; Zhou, Jin-Song

    2011-04-01

    Fourier transform spectrometry is a type of novel information obtaining technology, which integrated the functions of imaging and spectra, but the data that the instrument acquired is the interference data of the target, which is an intermediate data and couldn't be used directly, so data processing must be adopted for the successful application of the interferometric data In the present paper, data processing techniques are divided into two classes: general-purpose and special-type. First, the advance in universal interferometric data processing technique is introduced, then the special-type interferometric data extracting method and data processing technique is illustrated according to the classification of Fourier transform spectroscopy. Finally, the trends of interferogram data processing technique are discussed.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, David

    In the January 2002 edition of SIAM News, Nick Trefethen announced the '$100, 100-Digit Challenge'. In this note he presented ten easy-to-state but hard-to-solve problems of numerical analysis, and challenged readers to find each answer to ten-digit accuracy. Trefethen closed with the enticing comment: 'Hint: They're hard! If anyone gets 50 digits in total, I will be impressed.' This challenge obviously struck a chord in hundreds of numerical mathematicians worldwide, as 94 teams from 25 nations later submitted entries. Many of these submissions exceeded the target of 50 correct digits; in fact, 20 teams achieved a perfect score of 100more » correct digits. Trefethen had offered $100 for the best submission. Given the overwhelming response, a generous donor (William Browning, founder of Applied Mathematics, Inc.) provided additional funds to provide a $100 award to each of the 20 winning teams. Soon after the results were out, four participants, each from a winning team, got together and agreed to write a book about the problems and their solutions. The team is truly international: Bornemann is from Germany, Laurie is from South Africa, Wagon is from the USA, and Waldvogel is from Switzerland. This book provides some mathematical background for each problem, and then shows in detail how each of them can be solved. In fact, multiple solution techniques are mentioned in each case. The book describes how to extend these solutions to much larger problems and much higher numeric precision (hundreds or thousands of digit accuracy). The authors also show how to compute error bounds for the results, so that one can say with confidence that one's results are accurate to the level stated. Numerous numerical software tools are demonstrated in the process, including the commercial products Mathematica, Maple and Matlab. Computer programs that perform many of the algorithms mentioned in the book are provided, both in an appendix to the book and on a website. In the process, the authors take the reader on a wide-ranging tour of modern numerical mathematics, with enough background material so that even readers with little or no training in numerical analysis can follow. Here is a list of just a few of the topics visited: numerical quadrature (i.e., numerical integration), series summation, sequence extrapolation, contour integration, Fourier integrals, high-precision arithmetic, interval arithmetic, symbolic computing, numerical linear algebra, perturbation theory, Euler-Maclaurin summation, global minimization, eigenvalue methods, evolutionary algorithms, matrix preconditioning, random walks, special functions, elliptic functions, Monte-Carlo methods, and numerical differentiation.« less

  13. Novel residual-based large eddy simulation turbulence models for incompressible magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Sondak, David

    The goal of this work was to develop, introduce, and test a promising computational paradigm for the development of turbulence models for incompressible magnetohydrodynamics (MHD). MHD governs the behavior of an electrically conducting fluid in the presence of an external electromagnetic (EM) field. The incompressible MHD model is used in many engineering and scientific disciplines from the development of nuclear fusion as a sustainable energy source to the study of space weather and solar physics. Many interesting MHD systems exhibit the phenomenon of turbulence which remains an elusive problem from all scientific perspectives. This work focuses on the computational perspective and proposes techniques that enable the study of systems involving MHD turbulence. Direct numerical simulation (DNS) is not a feasible approach for studying MHD turbulence. In this work, turbulence models for incompressible MHD were developed from the variational multiscale (VMS) formulation wherein the solution fields were decomposed into resolved and unresolved components. The unresolved components were modeled with a term that is proportional to the residual of the resolved scales. Two additional MHD models were developed based off of the VMS formulation: a residual-based eddy viscosity (RBEV) model and a mixed model that partners the VMS formulation with the RBEV model. These models are endowed with several special numerical and physics features. Included in the numerical features is the internal numerical consistency of each of the models. Physically, the new models are able to capture desirable MHD physics such as the inverse cascade of magnetic energy and the subgrid dynamo effect. The models were tested with a Fourier-spectral numerical method and the finite element method (FEM). The primary test problem was the Taylor-Green vortex. Results comparing the performance of the new models to DNS were obtained. The performance of the new models was compared to classic and cutting-edge dynamic Smagorinsky eddy viscosity (DSEV) models. The new models typically outperform the classical models.

  14. Numerical simulation of coupled electrochemical and transport processes in battery systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liaw, B.Y.; Gu, W.B.; Wang, C.Y.

    1997-12-31

    Advanced numerical modeling to simulate dynamic battery performance characteristics for several types of advanced batteries is being conducted using computational fluid dynamics (CFD) techniques. The CFD techniques provide efficient algorithms to solve a large set of highly nonlinear partial differential equations that represent the complex battery behavior governed by coupled electrochemical reactions and transport processes. The authors have recently successfully applied such techniques to model advanced lead-acid, Ni-Cd and Ni-MH cells. In this paper, the authors briefly discuss how the governing equations were numerically implemented, show some preliminary modeling results, and compare them with other modeling or experimental data reportedmore » in the literature. The authors describe the advantages and implications of using the CFD techniques and their capabilities in future battery applications.« less

  15. A Comparison of Metamodeling Techniques via Numerical Experiments

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2016-01-01

    This paper presents a comparative analysis of a few metamodeling techniques using numerical experiments for the single input-single output case. These experiments enable comparing the models' predictions with the phenomenon they are aiming to describe as more data is made available. These techniques include (i) prediction intervals associated with a least squares parameter estimate, (ii) Bayesian credible intervals, (iii) Gaussian process models, and (iv) interval predictor models. Aspects being compared are computational complexity, accuracy (i.e., the degree to which the resulting prediction conforms to the actual Data Generating Mechanism), reliability (i.e., the probability that new observations will fall inside the predicted interval), sensitivity to outliers, extrapolation properties, ease of use, and asymptotic behavior. The numerical experiments describe typical application scenarios that challenge the underlying assumptions supporting most metamodeling techniques.

  16. Special Issue: NextGen Materials for 3D Printing.

    PubMed

    Chua, Chee Kai; Yeong, Wai Yee; An, Jia

    2018-04-04

    Only a handful of materials are well-established in three-dimensional (3D) printing and well-accepted in industrial manufacturing applications. However, recent advances in 3D printable materials have shown potential for enabling numerous novel applications in the future. This special issue, consisting of 2 reviews and 10 research articles, intends to explore the possible materials that could define next-generation 3D printing.

  17. Parallel algorithms for placement and routing in VLSI design. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Brouwer, Randall Jay

    1991-01-01

    The computational requirements for high quality synthesis, analysis, and verification of very large scale integration (VLSI) designs have rapidly increased with the fast growing complexity of these designs. Research in the past has focused on the development of heuristic algorithms, special purpose hardware accelerators, or parallel algorithms for the numerous design tasks to decrease the time required for solution. Two new parallel algorithms are proposed for two VLSI synthesis tasks, standard cell placement and global routing. The first algorithm, a parallel algorithm for global routing, uses hierarchical techniques to decompose the routing problem into independent routing subproblems that are solved in parallel. Results are then presented which compare the routing quality to the results of other published global routers and which evaluate the speedups attained. The second algorithm, a parallel algorithm for cell placement and global routing, hierarchically integrates a quadrisection placement algorithm, a bisection placement algorithm, and the previous global routing algorithm. Unique partitioning techniques are used to decompose the various stages of the algorithm into independent tasks which can be evaluated in parallel. Finally, results are presented which evaluate the various algorithm alternatives and compare the algorithm performance to other placement programs. Measurements are presented on the parallel speedups available.

  18. New understanding of rhizosphere processes enabled by advances in molecular and spatially resolved techniques

    DOE PAGES

    Hess, Nancy J.; Pasa-Tolic, Ljiljana; Bailey, Vanessa L.; ...

    2017-04-12

    Understanding the role played by microorganisms within soil systems is challenged by the unique intersection of physics, chemistry, mineralogy and biology in fostering habitat for soil microbial communities. To address these challenges will require observations across multiple spatial and temporal scales to capture the dynamics and emergent behavior from complex and interdependent processes. The heterogeneity and complexity of the rhizosphere require advanced techniques that press the simultaneous frontiers of spatial resolution, analyte sensitivity and specificity, reproducibility, large dynamic range, and high throughput. Fortunately many exciting technical advancements are now available to inform and guide the development of new hypotheses. Themore » aim of this Special issue is to provide a holistic view of the rhizosphere in the perspective of modern molecular biology methodologies that enabled a highly-focused, detailed view on the processes in the rhizosphere, including numerous, strong and complex interactions between plant roots, soil constituents and microorganisms. We discuss the current rhizosphere research challenges and knowledge gaps, as well as perspectives and approaches using newly available state-of-the-art toolboxes. These new approaches and methodologies allow the study of rhizosphere processes and properties, and rhizosphere as a central component of ecosystems and biogeochemical cycles.« less

  19. An approach to unbiased subsample interpolation for motion tracking.

    PubMed

    McCormick, Matthew M; Varghese, Tomy

    2013-04-01

    Accurate subsample displacement estimation is necessary for ultrasound elastography because of the small deformations that occur and the subsequent application of a derivative operation on local displacements. Many of the commonly used subsample estimation techniques introduce significant bias errors. This article addresses a reduced bias approach to subsample displacement estimations that consists of a two-dimensional windowed-sinc interpolation with numerical optimization. It is shown that a Welch or Lanczos window with a Nelder-Mead simplex or regular-step gradient-descent optimization is well suited for this purpose. Little improvement results from a sinc window radius greater than four data samples. The strain signal-to-noise ratio (SNR) obtained in a uniformly elastic phantom is compared with other parabolic and cosine interpolation methods; it is found that the strain SNR ratio is improved over parabolic interpolation from 11.0 to 13.6 in the axial direction and 0.7 to 1.1 in the lateral direction for an applied 1% axial deformation. The improvement was most significant for small strains and displacement tracking in the lateral direction. This approach does not rely on special properties of the image or similarity function, which is demonstrated by its effectiveness with the application of a previously described regularization technique.

  20. New understanding of rhizosphere processes enabled by advances in molecular and spatially resolved techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Nancy J.; Paša-Tolić, Ljiljana; Bailey, Vanessa L.

    Understanding the role played by microorganisms within soil systems is challenged by the unique intersection of physics, chemistry, mineralogy and biology in fostering habitat for soil microbial communities. To address these challenges will require observations across multiple spatial and temporal scales to capture the dynamics and emergent behavior from complex and interdependent processes. The heterogeneity and complexity of the rhizosphere require advanced techniques that press the simultaneous frontiers of spatial resolution, analyte sensitivity and specificity, reproducibility, large dynamic range, and high throughput. Fortunately many exciting technical advancements are now available to inform and guide the development of new hypotheses. Themore » aim of this Special issue is to provide a holistic view of the rhizosphere in the perspective of modern molecular biology methodologies that enabled a highly-focused, detailed view on the processes in the rhizosphere, including numerous, strong and complex interactions between plant roots, soil constituents and microorganisms. We discuss the current rhizosphere research challenges and knowledge gaps, as well as perspectives and approaches using newly available state-of-the-art toolboxes. These new approaches and methodologies allow the study of rhizosphere processes and properties, and rhizosphere as a central component of ecosystems and biogeochemical cycles.« less

  1. Analysis and experiments for a system of two spacecraft paired by means of a flexible link

    NASA Astrophysics Data System (ADS)

    Sabatini, Marco; Palmerini, Giovanni B.; Gasbarri, Paolo

    2016-11-01

    A field of current interest in space technology is the on-orbit operation concept, often requiring that a chaser spacecraft captures a target spacecraft. The physical link connecting the two satellites is usually characterized by a high degree of flexibility, because of the special requirements imposed to the space systems, and specifically the constraints on the mass at launch. The focus of this paper is the study of an attitude control of the paired spacecraft system such that the elastic oscillations do not interfere with the attitude dynamics, and the final configuration is reached without residual vibrations. At the scope, a rest-to-rest techniques, that requires an accurate description of the dynamic model of the paired satellites as a flexible multibody setup, is applied. The results of this control are first tested by means of a numerical tool, simulating nominal and non-nominal scenarios. Then the identified control is proved in an experimental test-bed, consisting of two free-floating platforms connected by means of an elastic joint. The performance of the rest-to-rest technique is compared to other classical control laws aiming to minimally excite the system undesired dynamics, showing a promising superiority.

  2. A strategy to couple the material point method (MPM) and smoothed particle hydrodynamics (SPH) computational techniques

    NASA Astrophysics Data System (ADS)

    Raymond, Samuel J.; Jones, Bruce; Williams, John R.

    2018-01-01

    A strategy is introduced to allow coupling of the material point method (MPM) and smoothed particle hydrodynamics (SPH) for numerical simulations. This new strategy partitions the domain into SPH and MPM regions, particles carry all state variables and as such no special treatment is required for the transition between regions. The aim of this work is to derive and validate the coupling methodology between MPM and SPH. Such coupling allows for general boundary conditions to be used in an SPH simulation without further augmentation. Additionally, as SPH is a purely particle method, and MPM is a combination of particles and a mesh. This coupling also permits a smooth transition from particle methods to mesh methods, where further coupling to mesh methods could in future provide an effective farfield boundary treatment for the SPH method. The coupling technique is introduced and described alongside a number of simulations in 1D and 2D to validate and contextualize the potential of using these two methods in a single simulation. The strategy shown here is capable of fully coupling the two methods without any complicated algorithms to transform information from one method to another.

  3. Efficient field testing for load rating railroad bridges

    NASA Astrophysics Data System (ADS)

    Schulz, Jeffrey L.; Brett C., Commander

    1995-06-01

    As the condition of our infrastructure continues to deteriorate, and the loads carried by our bridges continue to increase, an ever growing number of railroad and highway bridges require load limits. With safety and transportation costs at both ends of the spectrum. the need for accurate load rating is paramount. This paper describes a method that has been developed for efficient load testing and evaluation of short- and medium-span bridges. Through the use of a specially-designed structural testing system and efficient load test procedures, a typical bridge can be instrumented and tested at 64 points in less than one working day and with minimum impact on rail traffic. Various techniques are available to evaluate structural properties and obtain a realistic model. With field data, a simple finite element model is 'calibrated' and its accuracy is verified. Appropriate design and rating loads are applied to the resulting model and stress predictions are made. This technique has been performed on numerous structures to address specific problems and to provide accurate load ratings. The merits and limitations of this approach are discussed in the context of actual examples of both rail and highway bridges that were tested and evaluated.

  4. Fluorescent imaging of cancerous tissues for targeted surgery

    PubMed Central

    Bu, Lihong; Shen, Baozhong; Cheng, Zhen

    2014-01-01

    To maximize tumor excision and minimize collateral damage is the primary goal of cancer surgery. Emerging molecular imaging techniques have to “image-guided surgery” developing into “molecular imaging-guided surgery”, which is termed “targeted surgery” in this review. Consequently, the precision of surgery can be advanced from tissue-scale to molecule-scale, enabling “targeted surgery” to be a component of “targeted therapy”. Evidence from numerous experimental and clinical studies has demonstrated significant benefits of fluorescent imaging in targeted surgery with preoperative molecular diagnostic screening. Fluorescent imaging can help to improve intraoperative staging and enable more radical cytoreduction, detect obscure tumor lesions in special organs, highlight tumor margins, better map lymph node metastases, and identify important normal structures intraoperatively. Though limited tissue penetration of fluorescent imaging and tumor heterogeneity are two major hurdles for current targeted surgery, multimodality imaging and multiplex imaging may provide potential solutions to overcome these issues, respectively. Moreover, though many fluorescent imaging techniques and probes have been investigated, targeted surgery remains at a proof-of-principle stage. The impact of fluorescent imaging on cancer surgery will likely be realized through persistent interdisciplinary amalgamation of research in diverse fields. PMID:25064553

  5. Laser Peening Process and Its Impact on Materials Properties in Comparison with Shot Peening and Ultrasonic Impact Peening

    PubMed Central

    Gujba, Abdullahi K.; Medraj, Mamoun

    2014-01-01

    The laser shock peening (LSP) process using a Q-switched pulsed laser beam for surface modification has been reviewed. The development of the LSP technique and its numerous advantages over the conventional shot peening (SP) such as better surface finish, higher depths of residual stress and uniform distribution of intensity were discussed. Similar comparison with ultrasonic impact peening (UIP)/ultrasonic shot peening (USP) was incorporated, when possible. The generation of shock waves, processing parameters, and characterization of LSP treated specimens were described. Special attention was given to the influence of LSP process parameters on residual stress profiles, material properties and structures. Based on the studies so far, more fundamental understanding is still needed when selecting optimized LSP processing parameters and substrate conditions. A summary of the parametric studies of LSP on different materials has been presented. Furthermore, enhancements in the surface micro and nanohardness, elastic modulus, tensile yield strength and refinement of microstructure which translates to increased fatigue life, fretting fatigue life, stress corrosion cracking (SCC) and corrosion resistance were addressed. However, research gaps related to the inconsistencies in the literature were identified. Current status, developments and challenges of the LSP technique were discussed. PMID:28788284

  6. Application of Paste Backfill in Underground Coal Fires

    NASA Astrophysics Data System (ADS)

    Masniyom, M.; Drebenstedt, C.

    2009-04-01

    Coal fires are known from different coalfields worldwide. China, India, USA, Australia, Indonesia and South Africa are the main countries affected by coal fires. The fires is thermally intensive and cause numerous sinkholes, large-scale subsidence, air pollution, global warming, loss of mining productivity and increasing safety risk. The Wuda Inner Mongolia coalfield has been selected as a possible test area for paste backfill. The traditional methods, executed by fire fighting teams, by covering the coalfire areas with soil, blasting burning coal outcrops and injecting water in the subsurface fire pockets are continuously improved and extended. Initiatives to introduce modern techniques, such as backfill placement at fracture and borehole, to cool down the burning coal and cut off the air supply. This study is to investigate backfill materials and techniques suited for underground coal fires. Laboratory tests were carried out on physical, chemical and mechanical properties of different backfill materials and mixtures thereof. Special attention was paid to materials generated as by-products and other cheaply available materials e.g. fly ash from power plants. There is a good chance that one of the different material mixtures investigated can be used as a technically and economically viable backfill for underground coal fires.

  7. Numerical Hydrodynamics in General Relativity.

    PubMed

    Font, José A

    2000-01-01

    The current status of numerical solutions for the equations of ideal general relativistic hydrodynamics is reviewed. Different formulations of the equations are presented, with special mention of conservative and hyperbolic formulations well-adapted to advanced numerical methods. A representative sample of available numerical schemes is discussed and particular emphasis is paid to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. A comprehensive summary of relevant astrophysical simulations in strong gravitational fields, including gravitational collapse, accretion onto black holes and evolution of neutron stars, is also presented. Supplementary material is available for this article at 10.12942/lrr-2000-2.

  8. Group Counseling: Techniques for Teaching Social Skills to Students with Special Needs

    ERIC Educational Resources Information Center

    Stephens, Derk; Jain, Sachin; Kim, Kioh

    2010-01-01

    This paper examines literature that supports the use of group counseling techniques in the school setting to teach social skills to children and adolescents with special needs. From the review of this literature it was found that group counseling is a very effective way of addressing a variety of social skills problems that can be displayed by…

  9. Numerical simulation of steady cavitating flow of viscous fluid in a Francis hydroturbine

    NASA Astrophysics Data System (ADS)

    Panov, L. V.; Chirkov, D. V.; Cherny, S. G.; Pylev, I. M.; Sotnikov, A. A.

    2012-09-01

    Numerical technique was developed for simulation of cavitating flows through the flow passage of a hydraulic turbine. The technique is based on solution of steady 3D Navier—Stokes equations with a liquid phase transfer equation. The approch for setting boundary conditions meeting the requirements of cavitation testing standard was suggested. Four different models of evaporation and condensation were compared. Numerical simulations for turbines of different specific speed were compared with experiment.

  10. Common aero vehicle autonomous reentry trajectory optimization satisfying waypoint and no-fly zone constraints

    NASA Astrophysics Data System (ADS)

    Jorris, Timothy R.

    2007-12-01

    To support the Air Force's Global Reach concept, a Common Aero Vehicle is being designed to support the Global Strike mission. "Waypoints" are specified for reconnaissance or multiple payload deployments and "no-fly zones" are specified for geopolitical restrictions or threat avoidance. Due to time critical targets and multiple scenario analysis, an autonomous solution is preferred over a time-intensive, manually iterative one. Thus, a real-time or near real-time autonomous trajectory optimization technique is presented to minimize the flight time, satisfy terminal and intermediate constraints, and remain within the specified vehicle heating and control limitations. This research uses the Hypersonic Cruise Vehicle (HCV) as a simplified two-dimensional platform to compare multiple solution techniques. The solution techniques include a unique geometric approach developed herein, a derived analytical dynamic optimization technique, and a rapidly emerging collocation numerical approach. This up-and-coming numerical technique is a direct solution method involving discretization then dualization, with pseudospectral methods and nonlinear programming used to converge to the optimal solution. This numerical approach is applied to the Common Aero Vehicle (CAV) as the test platform for the full three-dimensional reentry trajectory optimization problem. The culmination of this research is the verification of the optimality of this proposed numerical technique, as shown for both the two-dimensional and three-dimensional models. Additionally, user implementation strategies are presented to improve accuracy and enhance solution convergence. Thus, the contributions of this research are the geometric approach, the user implementation strategies, and the determination and verification of a numerical solution technique for the optimal reentry trajectory problem that minimizes time to target while satisfying vehicle dynamics and control limitation, and heating, waypoint, and no-fly zone constraints.

  11. Controlling Reflections from Mesh Refinement Interfaces in Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Baker, John G.; Van Meter, James R.

    2005-01-01

    A leading approach to improving the accuracy on numerical relativity simulations of black hole systems is through fixed or adaptive mesh refinement techniques. We describe a generic numerical error which manifests as slowly converging, artificial reflections from refinement boundaries in a broad class of mesh-refinement implementations, potentially limiting the effectiveness of mesh- refinement techniques for some numerical relativity applications. We elucidate this numerical effect by presenting a model problem which exhibits the phenomenon, but which is simple enough that its numerical error can be understood analytically. Our analysis shows that the effect is caused by variations in finite differencing error generated across low and high resolution regions, and that its slow convergence is caused by the presence of dramatic speed differences among propagation modes typical of 3+1 relativity. Lastly, we resolve the problem, presenting a class of finite-differencing stencil modifications which eliminate this pathology in both our model problem and in numerical relativity examples.

  12. NUMERICAL TECHNIQUES TO SOLVE CONDENSATIONAL AND DISSOLUTIONAL GROWTH EQUATIONS WHEN GROWTH IS COUPLED TO REVERSIBLE REACTIONS (R823186)

    EPA Science Inventory

    Noniterative, unconditionally stable numerical techniques for solving condensational and
    dissolutional growth equations are given. Growth solutions are compared to Gear-code solutions for
    three cases when growth is coupled to reversible equilibrium chemistry. In all cases, ...

  13. Development of Pelton turbine using numerical simulation

    NASA Astrophysics Data System (ADS)

    Patel, K.; Patel, B.; Yadav, M.; Foggia, T.

    2010-08-01

    This paper describes recent research and development activities in the field of Pelton turbine design. Flow inside Pelton turbine is most complex due to multiphase (mixture of air and water) and free surface in nature. Numerical calculation is useful to understand flow physics as well as effect of geometry on flow. The optimized design is obtained using in-house special optimization loop. Either single phase or two phase unsteady numerical calculation could be performed. Numerical results are used to visualize the flow pattern in the water passage and to predict performance of Pelton turbine at full load as well as at part load. Model tests are conducted to determine performance of turbine and it shows good agreement with numerically predicted performance.

  14. A semi-analytical method for near-trapped mode and fictitious frequencies of multiple scattering by an array of elliptical cylinders in water waves

    NASA Astrophysics Data System (ADS)

    Chen, Jeng-Tzong; Lee, Jia-Wei

    2013-09-01

    In this paper, we focus on the water wave scattering by an array of four elliptical cylinders. The null-field boundary integral equation method (BIEM) is used in conjunction with degenerate kernels and eigenfunctions expansion. The closed-form fundamental solution is expressed in terms of the degenerate kernel containing the Mathieu and the modified Mathieu functions in the elliptical coordinates. Boundary densities are represented by using the eigenfunction expansion. To avoid using the addition theorem to translate the Mathieu functions, the present approach can solve the water wave problem containing multiple elliptical cylinders in a semi-analytical manner by introducing the adaptive observer system. Regarding water wave problems, the phenomena of numerical instability of fictitious frequencies may appear when the BIEM/boundary element method (BEM) is used. Besides, the near-trapped mode for an array of four identical elliptical cylinders is observed in a special layout. Both physical (near-trapped mode) and mathematical (fictitious frequency) resonances simultaneously appear in the present paper for a water wave problem by an array of four identical elliptical cylinders. Two regularization techniques, the combined Helmholtz interior integral equation formulation (CHIEF) method and the Burton and Miller approach, are adopted to alleviate the numerical resonance due to fictitious frequency.

  15. Effects of incident energy and angle on carbon cluster ions implantation on silicon substrate: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Wei, Ye; Sang, Shengbo; Zhou, Bing; Deng, Xiao; Chai, Jing; Ji, Jianlong; Ge, Yang; Huo, Yuanliang; Zhang, Wendong

    2017-09-01

    Carbon cluster ion implantation is an important technique in fabricating functional devices at micro/nanoscale. In this work, a numerical model is constructed for implantation and implemented with a cutting-edge molecular dynamics method. A series of simulations with varying incident energies and incident angles is performed for incidence on silicon substrate and correlated effects are compared in detail. Meanwhile, the behavior of the cluster during implantation is also examined under elevated temperatures. By mapping the nanoscopic morphology with variable parameters, numerical formalism is proposed to explain the different impacts on phrase transition and surface pattern formation. Particularly, implantation efficiency (IE) is computed and further used to evaluate the performance of the overall process. The calculated results could be properly adopted as the theoretical basis for designing nano-structures and adjusting devices’ properties. Project supported by the National Natural Science Foundation of China (Nos. 51622507, 61471255, 61474079, 61403273, 51502193, 51205273), the Natural Science Foundation of Shanxi (Nos. 201601D021057, 201603D421035), the Youth Foundation Project of Shanxi Province (Nos. 2015021097), the Doctoral Fund of MOE of China (No. 20131402110013), the National High Technology Research and Development Program of China (No. 2015AA042601), and the Specialized Project in Public Welfare from The Ministry of Water Resources of China (Nos. 1261530110110).

  16. Reliability enhancement of Navier-Stokes codes through convergence acceleration

    NASA Technical Reports Server (NTRS)

    Merkle, Charles L.; Dulikravich, George S.

    1995-01-01

    Methods for enhancing the reliability of Navier-Stokes computer codes through improving convergence characteristics are presented. The improving of these characteristics decreases the likelihood of code unreliability and user interventions in a design environment. The problem referred to as a 'stiffness' in the governing equations for propulsion-related flowfields is investigated, particularly in regard to common sources of equation stiffness that lead to convergence degradation of CFD algorithms. Von Neumann stability theory is employed as a tool to study the convergence difficulties involved. Based on the stability results, improved algorithms are devised to ensure efficient convergence in different situations. A number of test cases are considered to confirm a correlation between stability theory and numerical convergence. The examples of turbulent and reacting flow are presented, and a generalized form of the preconditioning matrix is derived to handle these problems, i.e., the problems involving additional differential equations for describing the transport of turbulent kinetic energy, dissipation rate and chemical species. Algorithms for unsteady computations are considered. The extension of the preconditioning techniques and algorithms derived for Navier-Stokes computations to three-dimensional flow problems is discussed. New methods to accelerate the convergence of iterative schemes for the numerical integration of systems of partial differential equtions are developed, with a special emphasis on the acceleration of convergence on highly clustered grids.

  17. Preface to advances in numerical simulation of plasmas

    NASA Astrophysics Data System (ADS)

    Parker, Scott E.; Chacon, Luis

    2016-10-01

    This Journal of Computational Physics Special Issue, titled ;Advances in Numerical Simulation of Plasmas,; presents a snapshot of the international state of the art in the field of computational plasma physics. The articles herein are a subset of the topics presented as invited talks at the 24th International Conference on the Numerical Simulation of Plasmas (ICNSP), August 12-14, 2015 in Golden, Colorado. The choice of papers was highly selective. The ICNSP is held every other year and is the premier scientific meeting in the field of computational plasma physics.

  18. Meso- to micro-scale coupled simulations of flow over complex terrain at the Perdigao site

    NASA Astrophysics Data System (ADS)

    Neher, J.; van Veen, L.; Chow, F. K.; Mirocha, J. D.; Lundquist, J. K.

    2017-12-01

    In this work, the site of the 2017 Perdigao field campaign is analyzed with high resolution large-eddy simulations generated using the Weather Research and Forecasting (WRF) model as a coupled mesoscale to microscale model. The fine topographic features of the site, with its ridgelines a mere 1.2 km apart, the occurrence of intermittent turbulence at night, and the presence of a wind turbine on one of the ridgelines pose a challenge for many current numerical models. Key test cases in the observational data that demonstrate these modelling difficulties are identified, and advanced modeling techniques for overcoming these issues in the WRF model are presented. These techniques include vertical grid nesting for control of the grid aspect ratio, the cell perturbation method for accelerating the generation of turbulence at the boundary, the dynamic reconstruction model as a closure model that allows for backscatter of turbulence, and the actuator disk model for representing the turbine wake. Multiple nesting configurations are considered, with special consideration given to spanning the `grey zone' where neither PBL nor LES closures are effective. Comparisons between model results and measured sounding, meteorological tower, and Lidar data are used to evaluate the effectiveness of these techniques, and the model results are evaluated to provide a broader view of the flow field and the turbine wake interactions at the site.

  19. All-Digital Baseband 65nm PLL/FPLL Clock Multiplier using 10-cell Library

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L., Jr.; Wu, Qiong; Liu, Rui; Chen, Li

    2014-01-01

    PLLs for clock generation are essential for modern circuits, to generate specialized frequencies for many interfaces and high frequencies for chip internal operation. These circuits depend on analog circuits and careful tailoring for each new process, and making them fault tolerant is an incompletely solved problem. Until now, all digital PLLs have been restricted to sampled data DSP techniques and not available for the highest frequency baseband applications. This paper presents the design and preliminary evaluation of an all-digital baseband technique built entirely with an easily portable 10-cell digital library. The library is also described, as it aids in research and low volume design porting to new processes. The advantages of the digital approach are the wide variety of techniques available to give varying degrees of fault tolerance, and the simplicity of porting the design to new processes, even to exotic processes that may not have analog capability. The only tuning parameter is digital gate delay. An all-digital approach presents unique problems and standard analog loop stability design criteria cannot be directly used. Because of the quantization of frequency, there is effectively infinite gain for very small loop error feedback. The numerically controlled oscillator (NCO) based on a tapped delay line cannot be reliably updated while a pulse is active in the delay line, and ordinarily does not have enough frequency resolution for a low-jitter output.

  20. ALL-Digital Baseband 65nm PLL/FPLL Clock Multiplier Using 10-Cell Library

    NASA Technical Reports Server (NTRS)

    Schuler, Robert L., Jr.; Wu, Qiong; Liu, Rui; Chen, Li; Madala, Shridhar

    2014-01-01

    PLLs for clock generation are essential for modern circuits, to generate specialized frequencies for many interfaces and high frequencies for chip internal operation. These circuits depend on analog circuits and careful tailoring for each new process, and making them fault tolerant is an incompletely solved problem. Until now, all digital PLLs have been restricted to sampled data DSP techniques and not available for the highest frequency baseband applications. This paper presents the design and preliminary evaluation of an all-digital baseband technique built entirely with an easily portable 10-cell digital library. The library is also described, as it aids in research and low volume design porting to new processes. The advantages of the digital approach are the wide variety of techniques available to give varying degrees of fault tolerance, and the simplicity of porting the design to new processes, even to exotic processes that may not have analog capability. The only tuning parameter is digital gate delay. An all-digital approach presents unique problems and standard analog loop stability design criteria cannot be directly used. Because of the quantization of frequency, there is effectively infinite gain for very small loop error feedback. The numerically controlled oscillator (NCO) based on a tapped delay line cannot be reliably updated while a pulse is active in the delay line, and ordinarily does not have enough frequency resolution for a low-jitter output.

  1. Studies on spectral analysis of randomly sampled signals: Application to laser velocimetry data

    NASA Technical Reports Server (NTRS)

    Sree, David

    1992-01-01

    Spectral analysis is very useful in determining the frequency characteristics of many turbulent flows, for example, vortex flows, tail buffeting, and other pulsating flows. It is also used for obtaining turbulence spectra from which the time and length scales associated with the turbulence structure can be estimated. These estimates, in turn, can be helpful for validation of theoretical/numerical flow turbulence models. Laser velocimetry (LV) is being extensively used in the experimental investigation of different types of flows, because of its inherent advantages; nonintrusive probing, high frequency response, no calibration requirements, etc. Typically, the output of an individual realization laser velocimeter is a set of randomly sampled velocity data. Spectral analysis of such data requires special techniques to obtain reliable estimates of correlation and power spectral density functions that describe the flow characteristics. FORTRAN codes for obtaining the autocorrelation and power spectral density estimates using the correlation-based slotting technique were developed. Extensive studies have been conducted on simulated first-order spectrum and sine signals to improve the spectral estimates. A first-order spectrum was chosen because it represents the characteristics of a typical one-dimensional turbulence spectrum. Digital prefiltering techniques, to improve the spectral estimates from randomly sampled data were applied. Studies show that the spectral estimates can be increased up to about five times the mean sampling rate.

  2. High-energy gravitational scattering and the general relativistic two-body problem

    NASA Astrophysics Data System (ADS)

    Damour, Thibault

    2018-02-01

    A technique for translating the classical scattering function of two gravitationally interacting bodies into a corresponding (effective one-body) Hamiltonian description has been recently introduced [Phys. Rev. D 94, 104015 (2016), 10.1103/PhysRevD.94.104015]. Using this technique, we derive, for the first time, to second-order in Newton's constant (i.e. one classical loop) the Hamiltonian of two point masses having an arbitrary (possibly relativistic) relative velocity. The resulting (second post-Minkowskian) Hamiltonian is found to have a tame high-energy structure which we relate both to gravitational self-force studies of large mass-ratio binary systems, and to the ultra high-energy quantum scattering results of Amati, Ciafaloni and Veneziano. We derive several consequences of our second post-Minkowskian Hamiltonian: (i) the need to use special phase-space gauges to get a tame high-energy limit; and (ii) predictions about a (rest-mass independent) linear Regge trajectory behavior of high-angular-momenta, high-energy circular orbits. Ways of testing these predictions by dedicated numerical simulations are indicated. We finally indicate a way to connect our classical results to the quantum gravitational scattering amplitude of two particles, and we urge amplitude experts to use their novel techniques to compute the two-loop scattering amplitude of scalar masses, from which one could deduce the third post-Minkowskian effective one-body Hamiltonian.

  3. A randomized, prospective cross-over trial comparing methylene blue-directed biopsy and conventional random biopsy for detecting intestinal metaplasia and dysplasia in Barrett's esophagus.

    PubMed

    Ragunath, K; Krasner, N; Raman, V S; Haqqani, M T; Cheung, W Y

    2003-12-01

    The value of methylene blue-directed biopsies (MBDB) in detecting specialized intestinal metaplasia and dysplasia in Barrett's esophagus remains unclear. The aim of this study was to compare the accuracy of MBDB with random biopsy in detecting intestinal metaplasia and dysplasia in patients with Barrett's esophagus. A prospective, randomized, cross-over trial was undertaken to compare MBDB with random biopsy in patients with Barrett's esophagus segments 3 cm or more in length without macroscopic evidence of dysplasia or cancer. Dysplasia was graded as: indefinite for dysplasia, low-grade dysplasia, high-grade dysplasia, or carcinoma, and was reported in a blinded fashion. Fifty-seven patients were recruited, 44 of whom were male. A total of 1,269 biopsies were taken (MBDB-651, random biopsie-618). Analysis of the results by per-biopsy protocol showed that the MBDB technique diagnosed significantly more specialized intestinal metaplasia (75 %) compared to the random biopsy technique (68 %; P = 0.032). The sensitivity and specificity rates of MBDB for diagnosing specialized intestinal metaplasia were 91 % (95 % CI, 88 - 93 %) and 43 % (95 % CI, 36 - 51 %), respectively. The sensitivity and specificity rates of MBDB for diagnosing dysplasia or carcinoma were 49 % (95 % CI, 38 - 61 %) and 85 % (95 % CI, 82 - 88 %), respectively. There were no significant differences in the diagnosis of dysplasia and carcinoma - MBDB 12 %, random biopsy 10 %. The methylene blue staining pattern appeared to have an influence on the detection of specialized intestinal metaplasia and dysplasia/carcinoma. Dark blue staining was associated with increased detection of specialized intestinal metaplasia (P < 0.0001), and heterogeneous staining (P = 0.137) or no staining (P = 0.005) were associated with dysplasia and/or carcinoma detection. The MBDB technique prolonged the endoscopy examination by an average of 6 min. The diagnostic accuracy of the MBDB technique was superior to that of the random biopsy technique for identifying specialized intestinal metaplasia, but not dysplasia or carcinoma. The intensity of methylene blue staining has an influence on the detection of specialized intestinal metaplasia and dysplasia or carcinoma, which may help in targeting the biopsies. Although MBDB prolongs the endoscopy procedure slightly, it is a safe and well-tolerated procedure. Further clinical studies on the MBDB technique exclusively in endoscopically normal dysplastic Barrett's esophagus are needed.

  4. A Sensitivity Analysis of Circular Error Probable Approximation Techniques

    DTIC Science & Technology

    1992-03-01

    SENSITIVITY ANALYSIS OF CIRCULAR ERROR PROBABLE APPROXIMATION TECHNIQUES THESIS Presented to the Faculty of the School of Engineering of the Air Force...programming skills. Major Paul Auclair patiently advised me in this endeavor, and Major Andy Howell added numerous insightful contributions. I thank my...techniques. The two ret(st accuratec techniiques require numerical integration and can take several hours to run ov a personal comlputer [2:1-2,4-6]. Some

  5. Numerical modelling techniques of soft soil improvement via stone columns: A brief review

    NASA Astrophysics Data System (ADS)

    Zukri, Azhani; Nazir, Ramli

    2018-04-01

    There are a number of numerical studies on stone column systems in the literature. Most of the studies found were involved with two-dimensional analysis of the stone column behaviour, while only a few studies used three-dimensional analysis. The most popular software utilised in those studies was Plaxis 2D and 3D. Other types of software that used for numerical analysis are DIANA, EXAMINE, ZSoil, ABAQUS, ANSYS, NISA, GEOSTUDIO, CRISP, TOCHNOG, CESAR, GEOFEM (2D & 3D), FLAC, and FLAC 3. This paper will review the methodological approaches to model stone column numerically, both in two-dimensional and three-dimensional analyses. The numerical techniques and suitable constitutive model used in the studies will also be discussed. In addition, the validation methods conducted were to verify the numerical analysis conducted will be presented. This review paper also serves as a guide for junior engineers through the applicable procedures and considerations when constructing and running a two or three-dimensional numerical analysis while also citing numerous relevant references.

  6. A numerical study of mixing in supersonic combustors with hypermixing injectors

    NASA Technical Reports Server (NTRS)

    Lee, J.

    1993-01-01

    A numerical study was conducted to evaluate the performance of wall mounted fuel-injectors designed for potential Supersonic Combustion Ramjet (SCRAM-jet) engine applications. The focus of this investigation was to numerically simulate existing combustor designs for the purpose of validating the numerical technique and the physical models developed. Three different injector designs of varying complexity were studied to fully understand the computational implications involved in accurate predictions. A dual transverse injection system and two streamwise injector designs were studied. The streamwise injectors were designed with swept ramps to enhance fuel-air mixing and combustion characteristics at supersonic speeds without the large flow blockage and drag contribution of the transverse injection system. For this study, the Mass-Average Navier-Stokes equations and the chemical species continuity equations were solved. The computations were performed using a finite-volume implicit numerical technique and multiple block structured grid system. The interfaces of the multiple block structured grid systems were numerically resolved using the flux-conservative technique. Detailed comparisons between the computations and existing experimental data are presented. These comparisons show that numerical predictions are in agreement with the experimental data. These comparisons also show that a number of turbulence model improvements are needed for accurate combustor flowfield predictions.

  7. A numerical study of mixing in supersonic combustors with hypermixing injectors

    NASA Technical Reports Server (NTRS)

    Lee, J.

    1992-01-01

    A numerical study was conducted to evaluate the performance of wall mounted fuel-injectors designed for potential Supersonic Combustion Ramjet (SCRAM-jet) engine applications. The focus of this investigation was to numerically simulate existing combustor designs for the purpose of validating the numerical technique and the physical models developed. Three different injector designs of varying complexity were studied to fully understand the computational implications involved in accurate predictions. A dual transverse injection system and two streamwise injector designs were studied. The streamwise injectors were designed with swept ramps to enhance fuel-air mixing and combustion characteristics at supersonic speeds without the large flow blockage and drag contribution of the transverse injection system. For this study, the Mass-Averaged Navier-Stokes equations and the chemical species continuity equations were solved. The computations were performed using a finite-volume implicit numerical technique and multiple block structured grid system. The interfaces of the multiple block structured grid systems were numerically resolved using the flux-conservative technique. Detailed comparisons between the computations and existing experimental data are presented. These comparisons show that numerical predictions are in agreement with the experimental data. These comparisons also show that a number of turbulence model improvements are needed for accurate combustor flowfield predictions.

  8. Zdeněk Kopal: Numerical Analyst

    NASA Astrophysics Data System (ADS)

    Křížek, M.

    2015-07-01

    We give a brief overview of Zdeněk Kopal's life, his activities in the Czech Astronomical Society, his collaboration with Vladimír Vand, and his studies at Charles University, Cambridge, Harvard, and MIT. Then we survey Kopal's professional life. He published 26 monographs and 20 conference proceedings. We will concentrate on Kopal's extensive monograph Numerical Analysis (1955, 1961) that is widely accepted to be the first comprehensive textbook on numerical methods. It describes, for instance, methods for polynomial interpolation, numerical differentiation and integration, numerical solution of ordinary differential equations with initial or boundary conditions, and numerical solution of integral and integro-differential equations. Special emphasis will be laid on error analysis. Kopal himself applied numerical methods to celestial mechanics, in particular to the N-body problem. He also used Fourier analysis to investigate light curves of close binaries to discover their properties. This is, in fact, a problem from mathematical analysis.

  9. Special Education--Non-Special Education Achievement Gap in Math: Effects of Reporting Methods, Analytical Techniques, and Reclassification

    ERIC Educational Resources Information Center

    Thurlow, Martha L.; Wu, Yi-Chen; Lazarus, Sheryl S.; Ysseldyke, James E.

    2016-01-01

    Federal regulations indicate that the achievement gap must be closed between subgroups, including the gap between special education and non-special education students. We explored the ways in which achievement trends are influenced by three methods of reporting (cross-sectional, cohort-static, and cohort-dynamic). We also investigated (a) the ways…

  10. Numerical reconstruction of tsunami source using combined seismic, satellite and DART data

    NASA Astrophysics Data System (ADS)

    Krivorotko, Olga; Kabanikhin, Sergey; Marinin, Igor

    2014-05-01

    Recent tsunamis, for instance, in Japan (2011), in Sumatra (2004), and at the Indian coast (2004) showed that a system of producing exact and timely information about tsunamis is of a vital importance. Numerical simulation is an effective instrument for providing such information. Bottom relief characteristics and the initial perturbation data (a tsunami source) are required for the direct simulation of tsunamis. The seismic data about the source are usually obtained in a few tens of minutes after an event has occurred (the seismic waves velocity being about five hundred kilometres per minute, while the velocity of tsunami waves is less than twelve kilometres per minute). A difference in the arrival times of seismic and tsunami waves can be used when operationally refining the tsunami source parameters and modelling expected tsunami wave height on the shore. The most suitable physical models related to the tsunamis simulation are based on the shallow water equations. The problem of identification parameters of a tsunami source using additional measurements of a passing wave is called inverse tsunami problem. We investigate three different inverse problems of determining a tsunami source using three different additional data: Deep-ocean Assessment and Reporting of Tsunamis (DART) measurements, satellite wave-form images and seismic data. These problems are severely ill-posed. We apply regularization techniques to control the degree of ill-posedness such as Fourier expansion, truncated singular value decomposition, numerical regularization. The algorithm of selecting the truncated number of singular values of an inverse problem operator which is agreed with the error level in measured data is described and analyzed. In numerical experiment we used gradient methods (Landweber iteration and conjugate gradient method) for solving inverse tsunami problems. Gradient methods are based on minimizing the corresponding misfit function. To calculate the gradient of the misfit function, the adjoint problem is solved. The conservative finite-difference schemes for solving the direct and adjoint problems in the approximation of shallow water are constructed. Results of numerical experiments of the tsunami source reconstruction are presented and discussed. We show that using a combination of three different types of data allows one to increase the stability and efficiency of tsunami source reconstruction. Non-profit organization WAPMERR (World Agency of Planetary Monitoring and Earthquake Risk Reduction) in collaboration with Informap software development department developed the Integrated Tsunami Research and Information System (ITRIS) to simulate tsunami waves and earthquakes, river course changes, coastal zone floods, and risk estimates for coastal constructions at wave run-ups and earthquakes. The special scientific plug-in components are embedded in a specially developed GIS-type graphic shell for easy data retrieval, visualization and processing. This work was supported by the Russian Foundation for Basic Research (project No. 12-01-00773 'Theory and Numerical Methods for Solving Combined Inverse Problems of Mathematical Physics') and interdisciplinary project of SB RAS 14 'Inverse Problems and Applications: Theory, Algorithms, Software'.

  11. Numerical Study of Periodic Traveling Wave Solutions for the Predator-Prey Model with Landscape Features

    NASA Astrophysics Data System (ADS)

    Yun, Ana; Shin, Jaemin; Li, Yibao; Lee, Seunggyu; Kim, Junseok

    We numerically investigate periodic traveling wave solutions for a diffusive predator-prey system with landscape features. The landscape features are modeled through the homogeneous Dirichlet boundary condition which is imposed at the edge of the obstacle domain. To effectively treat the Dirichlet boundary condition, we employ a robust and accurate numerical technique by using a boundary control function. We also propose a robust algorithm for calculating the numerical periodicity of the traveling wave solution. In numerical experiments, we show that periodic traveling waves which move out and away from the obstacle are effectively generated. We explain the formation of the traveling waves by comparing the wavelengths. The spatial asynchrony has been shown in quantitative detail for various obstacles. Furthermore, we apply our numerical technique to the complicated real landscape features.

  12. Special feature on imaging systems and techniques

    NASA Astrophysics Data System (ADS)

    Yang, Wuqiang; Giakos, George

    2013-07-01

    The IEEE International Conference on Imaging Systems and Techniques (IST'2012) was held in Manchester, UK, on 16-17 July 2012. The participants came from 26 countries or regions: Austria, Brazil, Canada, China, Denmark, France, Germany, Greece, India, Iran, Iraq, Italy, Japan, Korea, Latvia, Malaysia, Norway, Poland, Portugal, Sweden, Switzerland, Taiwan, Tunisia, UAE, UK and USA. The technical program of the conference consisted of a series of scientific and technical sessions, exploring physical principles, engineering and applications of new imaging systems and techniques, as reflected by the diversity of the submitted papers. Following a rigorous review process, a total of 123 papers were accepted, and they were organized into 30 oral presentation sessions and a poster session. In addition, six invited keynotes were arranged. The conference not only provided the participants with a unique opportunity to exchange ideas and disseminate research outcomes but also paved a way to establish global collaboration. Following the IST'2012, a total of 55 papers, which were technically extended substantially from their versions in the conference proceeding, were submitted as regular papers to this special feature of Measurement Science and Technology . Following a rigorous reviewing process, 25 papers have been finally accepted for publication in this special feature and they are organized into three categories: (1) industrial tomography, (2) imaging systems and techniques and (3) image processing. These papers not only present the latest developments in the field of imaging systems and techniques but also offer potential solutions to existing problems. We hope that this special feature provides a good reference for researchers who are active in the field and will serve as a catalyst to trigger further research. It has been our great pleasure to be the guest editors of this special feature. We would like to thank the authors for their contributions, without which it would not be possible to have this special feature published. We are grateful to all reviewers, who devoted their time and effort, on a voluntary basis, to ensure that all submissions were reviewed rigorously and fairly. The publishing staff of Measurement Science and Technology are particularly acknowledged for giving us timely advice on guest-editing this special feature.

  13. Symmetries and Boundary Conditions with a Twist

    NASA Astrophysics Data System (ADS)

    Zawadzki, Krissia; D'Amico, Irene; Oliveira, Luiz N.

    2017-10-01

    Interest in finite-size systems has risen in the last decades, due to the focus on nanotechnological applications and because they are convenient for numerical treatment that can subsequently be extrapolated to infinite lattices. Independently of the envisioned application, special attention must be given to boundary condition, which may or may not preserve the symmetry of the infinite lattice. Here, we present a detailed study of the compatibility between boundary conditions and conservation laws. The conflict between open boundary conditions and momentum conservation is well understood, but we examine other symmetries, as well: we discuss gauge invariance, inversion, spin, and particle-hole symmetry and their compatibility with open, periodic, and twisted boundary conditions. In the interest of clarity, we develop the reasoning in the framework of the one-dimensional half-filled Hubbard model, whose Hamiltonian displays a variety of symmetries. Our discussion includes analytical and numerical results. Our analytical survey shows that, as a rule, boundary conditions break one or more symmetries of the infinite-lattice Hamiltonian. The exception is twisted boundary condition with the special torsion Θ = πL/2, where L is the lattice size. Our numerical results for the ground-state energy at half-filling and the energy gap for L = 2-7 show how the breaking of symmetry affects the convergence to the L → ∞ limit. We compare the computed energies and gaps with the exact results for the infinite lattice drawn from the Bethe-Ansatz solution. The deviations are boundary-condition dependent. The special torsion yields more rapid convergence than open or periodic boundary conditions. For sizes as small as L = 7, the numerical results for twisted condition are very close to the L → ∞ limit. We also discuss the ground-state electronic density and magnetization at half filling under the three boundary conditions.

  14. Numerical simulation for solution of space-time fractional telegraphs equations with local fractional derivatives via HAFSTM

    NASA Astrophysics Data System (ADS)

    Pandey, Rishi Kumar; Mishra, Hradyesh Kumar

    2017-11-01

    In this paper, the semi-analytic numerical technique for the solution of time-space fractional telegraph equation is applied. This numerical technique is based on coupling of the homotopy analysis method and sumudu transform. It shows the clear advantage with mess methods like finite difference method and also with polynomial methods similar to perturbation and Adomian decomposition methods. It is easily transform the complex fractional order derivatives in simple time domain and interpret the results in same meaning.

  15. Lagrangian analysis of multiscale particulate flows with the particle finite element method

    NASA Astrophysics Data System (ADS)

    Oñate, Eugenio; Celigueta, Miguel Angel; Latorre, Salvador; Casas, Guillermo; Rossi, Riccardo; Rojek, Jerzy

    2014-05-01

    We present a Lagrangian numerical technique for the analysis of flows incorporating physical particles of different sizes. The numerical approach is based on the particle finite element method (PFEM) which blends concepts from particle-based techniques and the FEM. The basis of the Lagrangian formulation for particulate flows and the procedure for modelling the motion of small and large particles that are submerged in the fluid are described in detail. The numerical technique for analysis of this type of multiscale particulate flows using a stabilized mixed velocity-pressure formulation and the PFEM is also presented. Examples of application of the PFEM to several particulate flows problems are given.

  16. A numerical projection technique for large-scale eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Gamillscheg, Ralf; Haase, Gundolf; von der Linden, Wolfgang

    2011-10-01

    We present a new numerical technique to solve large-scale eigenvalue problems. It is based on the projection technique, used in strongly correlated quantum many-body systems, where first an effective approximate model of smaller complexity is constructed by projecting out high energy degrees of freedom and in turn solving the resulting model by some standard eigenvalue solver. Here we introduce a generalization of this idea, where both steps are performed numerically and which in contrast to the standard projection technique converges in principle to the exact eigenvalues. This approach is not just applicable to eigenvalue problems encountered in many-body systems but also in other areas of research that result in large-scale eigenvalue problems for matrices which have, roughly speaking, mostly a pronounced dominant diagonal part. We will present detailed studies of the approach guided by two many-body models.

  17. Science of Nowcasting Olympic Weather for Vancouver 2010 (SNOW-V10): a World Weather Research Programme Project

    NASA Astrophysics Data System (ADS)

    Isaac, G. A.; Joe, P. I.; Mailhot, J.; Bailey, M.; Bélair, S.; Boudala, F. S.; Brugman, M.; Campos, E.; Carpenter, R. L.; Crawford, R. W.; Cober, S. G.; Denis, B.; Doyle, C.; Reeves, H. D.; Gultepe, I.; Haiden, T.; Heckman, I.; Huang, L. X.; Milbrandt, J. A.; Mo, R.; Rasmussen, R. M.; Smith, T.; Stewart, R. E.; Wang, D.; Wilson, L. J.

    2014-01-01

    A World Weather Research Programme (WWRP) project entitled the Science of Nowcasting Olympic Weather for Vancouver 2010 (SNOW-V10) was developed to be associated with the Vancouver 2010 Olympic and Paralympic Winter Games conducted between 12 February and 21 March 2010. The SNOW-V10 international team augmented the instrumentation associated with the Winter Games and several new numerical weather forecasting and nowcasting models were added. Both the additional observational and model data were available to the forecasters in real time. This was an excellent opportunity to demonstrate existing capability in nowcasting and to develop better techniques for short term (0-6 h) nowcasts of winter weather in complex terrain. Better techniques to forecast visibility, low cloud, wind gusts, precipitation rate and type were evaluated. The weather during the games was exceptionally variable with many periods of low visibility, low ceilings and precipitation in the form of both snow and rain. The data collected should improve our understanding of many physical phenomena such as the diabatic effects due to melting snow, wind flow around and over terrain, diurnal flow reversal in valleys associated with daytime heating, and precipitation reductions and increases due to local terrain. Many studies related to these phenomena are described in the Special Issue on SNOW-V10 for which this paper was written. Numerical weather prediction and nowcast models have been evaluated against the unique observational data set now available. It is anticipated that the data set and the knowledge learned as a result of SNOW-V10 will become a resource for other World Meteorological Organization member states who are interested in improving forecasts of winter weather.

  18. Strategies and Techniques for Mainstreaming. Revised.

    ERIC Educational Resources Information Center

    Scheetz, Janet A.; Hudak, Barbara J.

    The handbook is intended for the special education teacher and covers all aspects of mainstreaming according to the Monroe model, developed in Monroe County, Michigan. The model focuses on the special education teacher/consultant, who provides direct diagnostic and instructional services to special students, and indirect services to building…

  19. Stress: The Special Educator's Perspective.

    ERIC Educational Resources Information Center

    Raschke, Donna; And Others

    1988-01-01

    The article describes approaches special education teachers can take to reduce stress including diet and exercise, relaxation techniques, use of social support systems, goal setting, time management, and networking. A survey of special education teachers found the use of humor the most common strategy for coping with stress. (DB)

  20. Special Machines; Apparel Manufacturing: 9377.10.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This course allows students who are interested in careers in apparel manufacturing to learn the techniques for operating the various types of special machines used for finishing garments professionally and for specialty work. Course content includes goals, specific objectives, orientation, safety practices, special machines, assembling a child's…

  1. Suicide Prevention in Special Populations.

    ERIC Educational Resources Information Center

    Bogdaniak, Roman C.; Coronado, Maria G.

    Suicide prevention techniques, from a clinical perspective, need to be as diversified as the population they serve. In certain special population groups, suicide has reached epidemic proportions, and there is a significant public health need for specific suicide prevention strategies. Special populations need to be identified and their suicide…

  2. Special Issue: NextGen Materials for 3D Printing

    PubMed Central

    Yeong, Wai Yee

    2018-01-01

    Only a handful of materials are well-established in three-dimensional (3D) printing and well-accepted in industrial manufacturing applications. However, recent advances in 3D printable materials have shown potential for enabling numerous novel applications in the future. This special issue, consisting of 2 reviews and 10 research articles, intends to explore the possible materials that could define next-generation 3D printing. PMID:29617311

  3. Surface critical behavior of thin Ising films at the ‘special point’

    NASA Astrophysics Data System (ADS)

    Moussa, Najem; Bekhechi, Smaine

    2003-03-01

    The critical surface phenomena of a magnetic thin Ising film is studied using numerical Monte-Carlo method based on Wolff cluster algorithm. With varying the surface coupling, js= Js/ J, the phase diagram exhibits a special surface coupling jsp at which all the films have a unique critical temperature Tc for an arbitrary thickness n. In spite of this, the critical exponent of the surface magnetization at the special point is found to increase with n. Moreover, non-universal features as well as dimensionality crossover from two- to three-dimensional behavior are found at this point.

  4. Thermal equilibrium and statistical thermometers in special relativity.

    PubMed

    Cubero, David; Casado-Pascual, Jesús; Dunkel, Jörn; Talkner, Peter; Hänggi, Peter

    2007-10-26

    There is an intense debate in the recent literature about the correct generalization of Maxwell's velocity distribution in special relativity. The most frequently discussed candidate distributions include the Jüttner function as well as modifications thereof. Here we report results from fully relativistic one-dimensional molecular dynamics simulations that resolve the ambiguity. The numerical evidence unequivocally favors the Jüttner distribution. Moreover, our simulations illustrate that the concept of "thermal equilibrium" extends naturally to special relativity only if a many-particle system is spatially confined. They make evident that "temperature" can be statistically defined and measured in an observer frame independent way.

  5. The Special Educator and Job Stress.

    ERIC Educational Resources Information Center

    Dedrick, Charles V. L.; Raschke, Donna B.

    This monograph examines stressors encountered by special educators, ways of coping with professional demands, and reasons why some teachers handle job stress better than others. It is intended to help special education teachers take a more objective look at what they do and identify strategies and techniques to alleviate some job-related stress…

  6. The Odd Man Out: How Fathers Navigate the Special Education System

    ERIC Educational Resources Information Center

    Mueller, Tracy Gershwin; Buckley, Pamela C.

    2014-01-01

    Research about parent experiences with the special education system is largely dominated by the perspectives of mothers. Using purposeful sampling techniques, we interviewed 20 active fathers about their experiences navigating the special education system. All the fathers described three primary roles they experienced, including acting as a…

  7. Fast Solution in Sparse LDA for Binary Classification

    NASA Technical Reports Server (NTRS)

    Moghaddam, Baback

    2010-01-01

    An algorithm that performs sparse linear discriminant analysis (Sparse-LDA) finds near-optimal solutions in far less time than the prior art when specialized to binary classification (of 2 classes). Sparse-LDA is a type of feature- or variable- selection problem with numerous applications in statistics, machine learning, computer vision, computational finance, operations research, and bio-informatics. Because of its combinatorial nature, feature- or variable-selection problems are NP-hard or computationally intractable in cases involving more than 30 variables or features. Therefore, one typically seeks approximate solutions by means of greedy search algorithms. The prior Sparse-LDA algorithm was a greedy algorithm that considered the best variable or feature to add/ delete to/ from its subsets in order to maximally discriminate between multiple classes of data. The present algorithm is designed for the special but prevalent case of 2-class or binary classification (e.g. 1 vs. 0, functioning vs. malfunctioning, or change versus no change). The present algorithm provides near-optimal solutions on large real-world datasets having hundreds or even thousands of variables or features (e.g. selecting the fewest wavelength bands in a hyperspectral sensor to do terrain classification) and does so in typical computation times of minutes as compared to days or weeks as taken by the prior art. Sparse LDA requires solving generalized eigenvalue problems for a large number of variable subsets (represented by the submatrices of the input within-class and between-class covariance matrices). In the general (fullrank) case, the amount of computation scales at least cubically with the number of variables and thus the size of the problems that can be solved is limited accordingly. However, in binary classification, the principal eigenvalues can be found using a special analytic formula, without resorting to costly iterative techniques. The present algorithm exploits this analytic form along with the inherent sequential nature of greedy search itself. Together this enables the use of highly-efficient partitioned-matrix-inverse techniques that result in large speedups of computation in both the forward-selection and backward-elimination stages of greedy algorithms in general.

  8. Validation of numerical simulations for nano-aluminum composite solid propellants

    NASA Astrophysics Data System (ADS)

    Yan, Allen H.

    2011-12-01

    Nano-aluminum is of interest as an energetic additive in composite solid propellant formulations for its demonstrated ability to increase combustion efficiency and burning rate. However, due to the current cost of nano-aluminum and the associated safety risks associated with propellant testing, it may not always be practical to spend the time and effort to mix, cast, and thoroughly evaluate the burning rate of a new formulation. To provide an alternative method of determining this parameter, numerical methods have been developed to predict the performance of nano-aluminum composite propellants, but these codes still require thorough validation before application. For this purpose, six propellant compositions were formulated, fully characterized, and burn rates were measured at several pressures between 34.0 and 129.3 atmospheres at room temperature, 20°C, and at an elevated temperature of 71.1°C in order to test the code's ability to predict pressure dependent burn rate and temperature sensitivity. To ensure the most accurate model possible, special emphasis was placed on characterizing the size distribution of the constituent nano-aluminum and ammonium perchlorate powders through optical diffraction or optical imaging techniques. Experimental burn rate is compared to the propellant combustion model and shows excellent agreement within 5% for a range of formulations and pressures, however under other conditions the model deviates by as much as 21%. An analysis of the results suggests that the current framework of the numerical model is unable to accurately simulate all the combustion physics of high aluminum content propellants, and suggestions for improvements are identified.

  9. Numerical modelling of biomass combustion: Solid conversion processes in a fixed bed furnace

    NASA Astrophysics Data System (ADS)

    Karim, Md. Rezwanul; Naser, Jamal

    2017-06-01

    Increasing demand for energy and rising concerns over global warming has urged the use of renewable energy sources to carry a sustainable development of the world. Bio mass is a renewable energy which has become an important fuel to produce thermal energy or electricity. It is an eco-friendly source of energy as it reduces carbon dioxide emissions. Combustion of solid biomass is a complex phenomenon due to its large varieties and physical structures. Among various systems, fixed bed combustion is the most commonly used technique for thermal conversion of solid biomass. But inadequate knowledge on complex solid conversion processes has limited the development of such combustion system. Numerical modelling of this combustion system has some advantages over experimental analysis. Many important system parameters (e.g. temperature, density, solid fraction) can be estimated inside the entire domain under different working conditions. In this work, a complete numerical model is used for solid conversion processes of biomass combustion in a fixed bed furnace. The combustion system is divided in to solid and gas phase. This model includes several sub models to characterize the solid phase of the combustion with several variables. User defined subroutines are used to introduce solid phase variables in commercial CFD code. Gas phase of combustion is resolved using built-in module of CFD code. Heat transfer model is modified to predict the temperature of solid and gas phases with special radiation heat transfer solution for considering the high absorptivity of the medium. Considering all solid conversion processes the solid phase variables are evaluated. Results obtained are discussed with reference from an experimental burner.

  10. Brownian dynamics of confined rigid bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delong, Steven; Balboa Usabiaga, Florencio; Donev, Aleksandar, E-mail: donev@courant.nyu.edu

    2015-10-14

    We introduce numerical methods for simulating the diffusive motion of rigid bodies of arbitrary shape immersed in a viscous fluid. We parameterize the orientation of the bodies using normalized quaternions, which are numerically robust, space efficient, and easy to accumulate. We construct a system of overdamped Langevin equations in the quaternion representation that accounts for hydrodynamic effects, preserves the unit-norm constraint on the quaternion, and is time reversible with respect to the Gibbs-Boltzmann distribution at equilibrium. We introduce two schemes for temporal integration of the overdamped Langevin equations of motion, one based on the Fixman midpoint method and the othermore » based on a random finite difference approach, both of which ensure that the correct stochastic drift term is captured in a computationally efficient way. We study several examples of rigid colloidal particles diffusing near a no-slip boundary and demonstrate the importance of the choice of tracking point on the measured translational mean square displacement (MSD). We examine the average short-time as well as the long-time quasi-two-dimensional diffusion coefficient of a rigid particle sedimented near a bottom wall due to gravity. For several particle shapes, we find a choice of tracking point that makes the MSD essentially linear with time, allowing us to estimate the long-time diffusion coefficient efficiently using a Monte Carlo method. However, in general, such a special choice of tracking point does not exist, and numerical techniques for simulating long trajectories, such as the ones we introduce here, are necessary to study diffusion on long time scales.« less

  11. Flow in water-intake pump bays: A guide for utility engineers. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ettema, R.

    1998-09-01

    This report is intended to serve as a guide for power-plant engineers facing problems with flow conditions in pump bays in water-intake structures, especially those located alongside rivers. The guide briefly introduces the typical prevailing flow field outside of a riverside water intake. That flow field often sets the inflow conditions for pump bays located within the water intake. The monograph then presents and discusses the main flow problems associated with pump bays. The problems usually revolve around the formation of troublesome vortices. A novel feature of this monograph is the use of numerical modeling to reveal diagnostically how themore » vortices form and their sensitivities to flow conditions, such as uniformity of approach flow entering the bay and water-surface elevation relative to pump-bell submergence. The modeling was carried out using a computer code developed specially for the present project. Pump-bay layouts are discussed next. The discussion begins with a summary of the main variables influencing bay flows. The numerical model is used to determine the sensitivities of the vortices to variations in the geometric parameters. The fixes include the use of flow-control vanes and suction scoops for ensuring satisfactory flow performance in severe flow conditions; notably flows with strong cross flow and shallow flows. The monograph ends with descriptions of modeling techniques. An extensive discussion is provided on the use of numerical model for illuminating bay flows. The model is used to show how fluid viscosity affects bay flow. The effect of fluid viscosity is an important consideration in hydraulic modeling of water intakes.« less

  12. Topological quantum error correction in the Kitaev honeycomb model

    NASA Astrophysics Data System (ADS)

    Lee, Yi-Chan; Brell, Courtney G.; Flammia, Steven T.

    2017-08-01

    The Kitaev honeycomb model is an approximate topological quantum error correcting code in the same phase as the toric code, but requiring only a 2-body Hamiltonian. As a frustrated spin model, it is well outside the commuting models of topological quantum codes that are typically studied, but its exact solubility makes it more amenable to analysis of effects arising in this noncommutative setting than a generic topologically ordered Hamiltonian. Here we study quantum error correction in the honeycomb model using both analytic and numerical techniques. We first prove explicit exponential bounds on the approximate degeneracy, local indistinguishability, and correctability of the code space. These bounds are tighter than can be achieved using known general properties of topological phases. Our proofs are specialized to the honeycomb model, but some of the methods may nonetheless be of broader interest. Following this, we numerically study noise caused by thermalization processes in the perturbative regime close to the toric code renormalization group fixed point. The appearance of non-topological excitations in this setting has no significant effect on the error correction properties of the honeycomb model in the regimes we study. Although the behavior of this model is found to be qualitatively similar to that of the standard toric code in most regimes, we find numerical evidence of an interesting effect in the low-temperature, finite-size regime where a preferred lattice direction emerges and anyon diffusion is geometrically constrained. We expect this effect to yield an improvement in the scaling of the lifetime with system size as compared to the standard toric code.

  13. A satellite observational and numerical study of precipitation characteristics in western North Atlantic tropical cyclones

    NASA Technical Reports Server (NTRS)

    Rodgers, Edward B.; Chang, Simon W.; Pierce, Harold F.

    1994-01-01

    Special Sensor Microwave/Imager (SSM/I) observations were used to examine the spatial and temporal changes of the precipitation characteristics of tropical cyclones. SSM/I observations were also combined with the results of a tropical cyclone numerical model to examine the role of inner-core diabatic heating in subsequent intensity changes of tropical cyclones. Included in the SSM/I observations were rainfall characteristics of 18 named western North Atlantic tropical cyclones between 1987 and 1989. The SSM/I rain-rate algorithm that employed the 85-GHz channel provided an analysis of the rain-rate distribution in greater detail. However, the SSM/I algorithm underestimated the rain rates when compared to in situ techniques but appeared to be comparable to the rain rates obtained from other satellite-borne passive microwave radiometers. The analysis of SSM/I observations found that more intense systems had higher rain rates, more latent heat release, and a greater contribution from heavier rain to the total tropical cyclone rainfall. In addition, regions with the heaviest rain rates were found near the center of the most intense tropical cyclones. Observational analysis from SSM/I also revealed that the greatest rain rates in the inner-core regions were found in the right half of fast-moving cyclones, while the heaviest rain rates in slow-moving tropical cyclones were found in the forward half. The combination of SSM/I observations and an interpretation of numerical model simulations revealed that the correlation between changes in the inner core diabetic heating and the subsequent intensity became greater as the tropical cyclones became more intense.

  14. Long-range correlations in time series generated by time-fractional diffusion: A numerical study

    NASA Astrophysics Data System (ADS)

    Barbieri, Davide; Vivoli, Alessandro

    2005-09-01

    Time series models showing power law tails in autocorrelation functions are common in econometrics. A special non-Markovian model for such kind of time series is provided by the random walk introduced by Gorenflo et al. as a discretization of time fractional diffusion. The time series so obtained are analyzed here from a numerical point of view in terms of autocorrelations and covariance matrices.

  15. Comment on "Applications of homogenous balanced principle on investigating exact solutions to a series of time fractional nonlinear PDEs", [Commun Nonlinear Sci Numer Simulat 47 (2017) 253-266

    NASA Astrophysics Data System (ADS)

    Li, Xiangzheng

    2018-06-01

    A counterexample is given to show that the product rule of the Caputo fractional derivatives does not hold except on a special point. The function-expansion method of separation variable proposed by Rui[Commun Nonlinear Sci Numer Simulat 47 (2017) 253-266] based on the product rule must be modified.

  16. Applications of Massive Mathematical Computations

    DTIC Science & Technology

    1990-04-01

    particles from the first principles of QCD . This problem is under intensive numerical study 11-6 using special purpose parallel supercomputers in...several places around the world. The method used here is the Monte Carlo integration for a fixed 3-D plus time lattices . Reliable results are still years...mathematical and theoretical physics, but its most promising applications are in the numerical realization of QCD computations. Our programs for the solution

  17. NEW TECHNIQUES IN DIAGNOSIS AND APPRAISAL AND IMPLICATION FOR THERAPY FOR ALL PUBLIC SCHOOL CHILDREN WITH COMMUNICATION DISORDERS, PROCEEDINGS OF A SPECIAL STUDY INSTITUTE (OCTOBER 4-6, 1967, MONTGOMERY, ALABAMA).

    ERIC Educational Resources Information Center

    Alabama State Dept. of Education, Montgomery.

    IN OCTOBER, 1967, A SPECIAL STUDY INSTITUTE, SPONSORED BY THE ALABAMA STATE DEPARTMENT OF EDUCATION, CONVENED FOR THE PURPOSES OF (1) DISCUSSING THE MOST EFFICACIOUS MEANS OF SPEECH THERAPY PROGRAM ORGANIZATION, (2) EXPLORING NEW TECHNIQUES OF SPEECH PROBLEM IDENTIFICATION, PROGNOSIS DETERMINATION, AND THERAPEUTIC SEQUENCE DEVELOPMENT, AND (3)…

  18. Development of the vertical Bridgman technique for 6-inch diameter c-axis sapphire growth supported by numerical simulation

    NASA Astrophysics Data System (ADS)

    Miyagawa, Chihiro; Kobayashi, Takumi; Taishi, Toshinori; Hoshikawa, Keigo

    2014-09-01

    Based on the growth of 3-inch diameter c-axis sapphire using the vertical Bridgman (VB) technique, numerical simulations were made and used to guide the growth of a 6-inch diameter sapphire. A 2D model of the VB hot-zone was constructed, the seeding interface shape of the 3-inch diameter sapphire as revealed by green laser scattering was estimated numerically, and the temperature distributions of two VB hot-zone models designed for 6-inch diameter sapphire growth were numerically simulated to achieve the optimal growth of large crystals. The hot-zone model with one heater was selected and prepared, and 6-inch diameter c-axis sapphire boules were actually grown, as predicted by the numerical results.

  19. Making it Easy to Construct Accurate Hydrological Models that Exploit High Performance Computers (Invited)

    NASA Astrophysics Data System (ADS)

    Kees, C. E.; Farthing, M. W.; Terrel, A.; Certik, O.; Seljebotn, D.

    2013-12-01

    This presentation will focus on two barriers to progress in the hydrological modeling community, and research and development conducted to lessen or eliminate them. The first is a barrier to sharing hydrological models among specialized scientists that is caused by intertwining the implementation of numerical methods with the implementation of abstract numerical modeling information. In the Proteus toolkit for computational methods and simulation, we have decoupled these two important parts of computational model through separate "physics" and "numerics" interfaces. More recently we have begun developing the Strong Form Language for easy and direct representation of the mathematical model formulation in a domain specific language embedded in Python. The second major barrier is sharing ANY scientific software tools that have complex library or module dependencies, as most parallel, multi-physics hydrological models must have. In this setting, users and developer are dependent on an entire distribution, possibly depending on multiple compilers and special instructions depending on the environment of the target machine. To solve these problem we have developed, hashdist, a stateless package management tool and a resulting portable, open source scientific software distribution.

  20. Materials properties numerical database system established and operational at CINDAS/Purdue University

    NASA Technical Reports Server (NTRS)

    Ho, C. Y.; Li, H. H.

    1989-01-01

    A computerized comprehensive numerical database system on the mechanical, thermophysical, electronic, electrical, magnetic, optical, and other properties of various types of technologically important materials such as metals, alloys, composites, dielectrics, polymers, and ceramics has been established and operational at the Center for Information and Numerical Data Analysis and Synthesis (CINDAS) of Purdue University. This is an on-line, interactive, menu-driven, user-friendly database system. Users can easily search, retrieve, and manipulate the data from the database system without learning special query language, special commands, standardized names of materials, properties, variables, etc. It enables both the direct mode of search/retrieval of data for specified materials, properties, independent variables, etc., and the inverted mode of search/retrieval of candidate materials that meet a set of specified requirements (which is the computer-aided materials selection). It enables also tabular and graphical displays and on-line data manipulations such as units conversion, variables transformation, statistical analysis, etc., of the retrieved data. The development, content, accessibility, etc., of the database system are presented and discussed.

  1. Recent advances in numerical PDEs

    NASA Astrophysics Data System (ADS)

    Zuev, Julia Michelle

    In this thesis, we investigate four neighboring topics, all in the general area of numerical methods for solving Partial Differential Equations (PDEs). Topic 1. Radial Basis Functions (RBF) are widely used for multi-dimensional interpolation of scattered data. This methodology offers smooth and accurate interpolants, which can be further refined, if necessary, by clustering nodes in select areas. We show, however, that local refinements with RBF (in a constant shape parameter [varepsilon] regime) may lead to the oscillatory errors associated with the Runge phenomenon (RP). RP is best known in the case of high-order polynomial interpolation, where its effects can be accurately predicted via Lebesgue constant L (which is based solely on the node distribution). We study the RP and the applicability of Lebesgue constant (as well as other error measures) in RBF interpolation. Mainly, we allow for a spatially variable shape parameter, and demonstrate how it can be used to suppress RP-like edge effects and to improve the overall stability and accuracy. Topic 2. Although not as versatile as RBFs, cubic splines are useful for interpolating grid-based data. In 2-D, we consider a patch representation via Hermite basis functions s i,j ( u, v ) = [Special characters omitted.] h mn H m ( u ) H n ( v ), as opposed to the standard bicubic representation. Stitching requirements for the rectangular non-equispaced grid yield a 2-D tridiagonal linear system AX = B, where X represents the unknown first derivatives. We discover that the standard methods for solving this NxM system do not take advantage of the spline-specific format of the matrix B. We develop an alternative approach using this specialization of the RHS, which allows us to pre-compute coefficients only once, instead of N times. MATLAB implementation of our fast 2-D cubic spline algorithm is provided. We confirm analytically and numerically that for large N ( N > 200), our method is at least 3 times faster than the standard algorithm and is just as accurate. Topic 3. The well-known ADI-FDTD method for solving Maxwell's curl equations is second-order accurate in space/time, unconditionally stable, and computationally efficient. We research Richardson extrapolation -based techniques to improve time discretization accuracy for spatially oversampled ADI-FDTD. A careful analysis of temporal accuracy, computational efficiency, and the algorithm's overall stability is presented. Given the context of wave- type PDEs, we find that only a limited number of extrapolations to the ADI-FDTD method are beneficial, if its unconditional stability is to be preserved. We propose a practical approach for choosing the size of a time step that can be used to improve the efficiency of the ADI-FDTD algorithm, while maintaining its accuracy and stability. Topic 4. Shock waves and their energy dissipation properties are critical to understanding the dynamics controlling the MHD turbulence. Numerical advection algorithms used in MHD solvers (e.g. the ZEUS package) introduce undesirable numerical viscosity. To counteract its effects and to resolve shocks numerically, Richtmyer and von Neumann's artificial viscosity is commonly added to the model. We study shock power by analyzing the influence of both artificial and numerical viscosity on energy decay rates. Also, we analytically characterize the numerical diffusivity of various advection algorithms by quantifying their diffusion coefficients e.

  2. Hierarchical and Parallelizable Direct Volume Rendering for Irregular and Multiple Grids

    NASA Technical Reports Server (NTRS)

    Wilhelms, Jane; VanGelder, Allen; Tarantino, Paul; Gibbs, Jonathan

    1996-01-01

    A general volume rendering technique is described that efficiently produces images of excellent quality from data defined over irregular grids having a wide variety of formats. Rendering is done in software, eliminating the need for special graphics hardware, as well as any artifacts associated with graphics hardware. Images of volumes with about one million cells can be produced in one to several minutes on a workstation with a 150 MHz processor. A significant advantage of this method for applications such as computational fluid dynamics is that it can process multiple intersecting grids. Such grids present problems for most current volume rendering techniques. Also, the wide range of cell sizes (by a factor of 10,000 or more), which is typical of such applications, does not present difficulties, as it does for many techniques. A spatial hierarchical organization makes it possible to access data from a restricted region efficiently. The tree has greater depth in regions of greater detail, determined by the number of cells in the region. It also makes it possible to render useful 'preview' images very quickly (about one second for one-million-cell grids) by displaying each region associated with a tree node as one cell. Previews show enough detail to navigate effectively in very large data sets. The algorithmic techniques include use of a kappa-d tree, with prefix-order partitioning of triangles, to reduce the number of primitives that must be processed for one rendering, coarse-grain parallelism for a shared-memory MIMD architecture, a new perspective transformation that achieves greater numerical accuracy, and a scanline algorithm with depth sorting and a new clipping technique.

  3. Use of Ultrasound Elastography in the Assessment of the Musculoskeletal System.

    PubMed

    Paluch, Łukasz; Nawrocka-Laskus, Ewa; Wieczorek, Janusz; Mruk, Bartosz; Frel, Małgorzata; Walecki, Jerzy

    2016-01-01

    This article presents possible applications of ultrasound elastography in musculoskeletal imaging based on the available literature, as well as the possibility of extending indications for the use of elastography in the future. Ultrasound elastography (EUS) is a new method that shows structural changes in tissues following application of physical stress. Elastography techniques have been widely used to assess muscles and tendons in vitro since the early parts of the twentieth century. Only recently with the advent of new technology and creation of highly specialized ultrasound devices, has elastography gained widespread use in numerous applications. The authors performed a search of the Medline/PubMed databases for original research and reviewed publications on the application of ultrasound elastography for musculoskeletal imaging. All publications demonstrate possible uses of ultrasound elastography in examinations of the musculoskeletal system. The most widely studied areas include the muscles, tendons and rheumatic diseases. There are also reports on the employment in vessel imaging. The main limitation of elastography as a technique is above all the variability of applied pressure during imaging, which is operator-dependent. It would therefore be reasonable to provide clear guidelines on the technique applied, as well as clear indications for performing the test. It is important to develop methods for creating artifact-free, closed-loop, compression-decompression cycles. The main advantages include cost-effectiveness, short duration of the study, non-invasive nature of the procedure, as well as a potentially broader clinical availability. There are no clear guidelines with regard to indications as well as examination techniques. Ultrasound elastography is a new and still poorly researched method. We conclude, however, that it can be widely used in the examinations of musculoskeletal system. Therefore, it is necessary to conduct large, multi-center studies to determine the methodology, indications and technique of examination.

  4. Modeling of Convective-Stratiform Precipitation Processes: Sensitivity to Partitioning Methods and Numerical Advection Schemes

    NASA Technical Reports Server (NTRS)

    Lang, Steve; Tao, W.-K.; Simpson, J.; Ferrier, B.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Six different convective-stratiform separation techniques, including a new technique that utilizes the ratio of vertical and terminal velocities, are compared and evaluated using two-dimensional numerical simulations of a tropical [Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE)] and midlatitude continental [Preliminary Regional Experiment for STORM-Central (PRESTORM)] squall line. The simulations are made using two different numerical advection schemes: 4th order and positive definite advection. Comparisons are made in terms of rainfall, cloud coverage, mass fluxes, apparent heating and moistening, mean hydrometeor profiles, CFADs (Contoured Frequency with Altitude Diagrams), microphysics, and latent heating retrieval. Overall, it was found that the different separation techniques produced results that qualitatively agreed. However, the quantitative differences were significant. Observational comparisons were unable to conclusively evaluate the performance of the techniques. Latent heating retrieval was shown to be sensitive to the use of separation technique mainly due to the stratiform region for methods that found very little stratiform rain. The midlatitude PRESTORM simulation was found to be nearly invariant with respect to advection type for most quantities while for TOGA COARE fourth order advection produced numerous shallow convective cores and positive definite advection fewer cells that were both broader and deeper penetrating above the freezing level.

  5. Comparative analysis of numerical simulation techniques for incoherent imaging of extended objects through atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Lachinova, Svetlana L.; Vorontsov, Mikhail A.; Filimonov, Grigory A.; LeMaster, Daniel A.; Trippel, Matthew E.

    2017-07-01

    Computational efficiency and accuracy of wave-optics-based Monte-Carlo and brightness function numerical simulation techniques for incoherent imaging of extended objects through atmospheric turbulence are evaluated. Simulation results are compared with theoretical estimates based on known analytical solutions for the modulation transfer function of an imaging system and the long-exposure image of a Gaussian-shaped incoherent light source. It is shown that the accuracy of both techniques is comparable over the wide range of path lengths and atmospheric turbulence conditions, whereas the brightness function technique is advantageous in terms of the computational speed.

  6. Description of a computer program and numerical techniques for developing linear perturbation models from nonlinear systems simulations

    NASA Technical Reports Server (NTRS)

    Dieudonne, J. E.

    1978-01-01

    A numerical technique was developed which generates linear perturbation models from nonlinear aircraft vehicle simulations. The technique is very general and can be applied to simulations of any system that is described by nonlinear differential equations. The computer program used to generate these models is discussed, with emphasis placed on generation of the Jacobian matrices, calculation of the coefficients needed for solving the perturbation model, and generation of the solution of the linear differential equations. An example application of the technique to a nonlinear model of the NASA terminal configured vehicle is included.

  7. Numerical dispersion compensation for Partial Coherence Interferometry and Optical Coherence Tomography.

    PubMed

    Fercher, A; Hitzenberger, C; Sticker, M; Zawadzki, R; Karamata, B; Lasser, T

    2001-12-03

    Dispersive samples introduce a wavelength dependent phase distortion to the probe beam. This leads to a noticeable loss of depth resolution in high resolution OCT using broadband light sources. The standard technique to avoid this consequence is to balance the dispersion of the sample byarrangingadispersive materialinthereference arm. However, the impact of dispersion is depth dependent. A corresponding depth dependent dispersion balancing technique is diffcult to implement. Here we present a numerical dispersion compensation technique for Partial Coherence Interferometry (PCI) and Optical Coherence Tomography (OCT) based on numerical correlation of the depth scan signal with a depth variant kernel. It can be used a posteriori and provides depth dependent dispersion compensation. Examples of dispersion compensated depth scan signals obtained from microscope cover glasses are presented.

  8. A Fourier-based total-field/scattered-field technique for three-dimensional broadband simulations of elastic targets near a water-sand interface.

    PubMed

    Shao, Yu; Wang, Shumin

    2016-12-01

    The numerical simulation of acoustic scattering from elastic objects near a water-sand interface is critical to underwater target identification. Frequency-domain methods are computationally expensive, especially for large-scale broadband problems. A numerical technique is proposed to enable the efficient use of finite-difference time-domain method for broadband simulations. By incorporating a total-field/scattered-field boundary, the simulation domain is restricted inside a tightly bounded region. The incident field is further synthesized by the Fourier transform for both subcritical and supercritical incidences. Finally, the scattered far field is computed using a half-space Green's function. Numerical examples are further provided to demonstrate the accuracy and efficiency of the proposed technique.

  9. Numerical techniques for solving nonlinear instability problems in smokeless tactical solid rocket motors. [finite difference technique

    NASA Technical Reports Server (NTRS)

    Baum, J. D.; Levine, J. N.

    1980-01-01

    The selection of a satisfactory numerical method for calculating the propagation of steep fronted shock life waveforms in a solid rocket motor combustion chamber is discussed. A number of different numerical schemes were evaluated by comparing the results obtained for three problems: the shock tube problems; the linear wave equation, and nonlinear wave propagation in a closed tube. The most promising method--a combination of the Lax-Wendroff, Hybrid and Artificial Compression techniques, was incorporated into an existing nonlinear instability program. The capability of the modified program to treat steep fronted wave instabilities in low smoke tactical motors was verified by solving a number of motor test cases with disturbance amplitudes as high as 80% of the mean pressure.

  10. Phenolic Compounds in Apple (Malus x domestica Borkh.): Compounds Characterization and Stability during Postharvest and after Processing

    PubMed Central

    Francini, Alessandra; Sebastiani, Luca

    2013-01-01

    This paper summarizes the information on the occurrence of phenolic compounds in apple (Malus x domestica Borkh.) fruit and juice, with special reference to their health related properties. As phytochemical molecules belonging to polyphenols are numerous, we will focus on the main apples phenolic compounds with special reference to changes induced by apple cultivar, breeding approaches, fruit postharvest and transformation into juice. PMID:26784345

  11. Density-matrix-based algorithm for solving eigenvalue problems

    NASA Astrophysics Data System (ADS)

    Polizzi, Eric

    2009-03-01

    A fast and stable numerical algorithm for solving the symmetric eigenvalue problem is presented. The technique deviates fundamentally from the traditional Krylov subspace iteration based techniques (Arnoldi and Lanczos algorithms) or other Davidson-Jacobi techniques and takes its inspiration from the contour integration and density-matrix representation in quantum mechanics. It will be shown that this algorithm—named FEAST—exhibits high efficiency, robustness, accuracy, and scalability on parallel architectures. Examples from electronic structure calculations of carbon nanotubes are presented, and numerical performances and capabilities are discussed.

  12. Material parameter measurements at high temperatures

    NASA Technical Reports Server (NTRS)

    Dominek, A.; Park, A.; Peters, L., Jr.

    1988-01-01

    Alternate fixtures of techniques for the measurement of the constitutive material parameters at elevated temperatures are presented. The technique utilizes scattered field data from material coated cylinders between parallel plates or material coated hemispheres over a finite size groundplane. The data acquisition is centered around the HP 8510B Network Analyzer. The parameters are then found from a numerical search algorithm using the Newton-Ralphson technique with the measured and calculated fields from these canonical scatters. Numerical and experimental results are shown.

  13. Formal Solutions for Polarized Radiative Transfer. I. The DELO Family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janett, Gioele; Carlin, Edgar S.; Steiner, Oskar

    The discussion regarding the numerical integration of the polarized radiative transfer equation is still open and the comparison between the different numerical schemes proposed by different authors in the past is not fully clear. Aiming at facilitating the comprehension of the advantages and drawbacks of the different formal solvers, this work presents a reference paradigm for their characterization based on the concepts of order of accuracy , stability , and computational cost . Special attention is paid to understand the numerical methods belonging to the Diagonal Element Lambda Operator family, in an attempt to highlight their specificities.

  14. Numerical studies of interacting vortices

    NASA Technical Reports Server (NTRS)

    Liu, G. C.; Hsu, C. H.

    1985-01-01

    To get a basic understanding of the physics of flowfields modeled by vortex filaments with finite vortical cores, systematic numerical studies of the interactions of two dimensional vortices and pairs of coaxial axisymmetric circular vortex rings were made. Finite difference solutions of the unsteady incompressible Navier-Stokes equations were carried out using vorticity and stream function as primary variables. Special emphasis was placed on the formulation of appropriate boundary conditions necessary for the calculations in a finite computational domain. Numerical results illustrate the interaction of vortex filaments, demonstrate when and how they merge with each other, and establish the region of validity for an asymptotic analysis.

  15. Effectiveness of braille and audio-tactile performance technique for improving oral hygiene status of visually impaired adolescents.

    PubMed

    Deshpande, Sushmita; Rajpurohit, Ladusingh; Kokka, Vivian Varghese

    2017-01-01

    Visually impaired people encounter numerous challenges in their daily life which makes it a cumbersome task to pay special attention to oral health needs. Furthermore, there is little knowledge about oral health practices among caretakers and visually impaired individuals, due to which oral health is often neglected when compared to the general health. Hence, there was a need to educate visually challenged individuals about oral hygiene practices in a customized format so that the comprehension of brushing techniques could be conveyed at its best. The present study was a randomized control trial of sixty visually impaired adolescents who were divided into three groups of 20 each. In Group 1, Braille was used, whereas in Group 2, audio-tactile performance (ATP) technique and in Group 3, a combination of both the methods were used to teach tooth brushing as a part of oral health education. Pre- and post-plaque index score using Silness and Loe (1967) after health education were calculated and tabulated for statistical analysis. The postintervention mean plaque index score increased in Group 1 from 29.45 to 42.98, whereas the mean plaque score decreased in Groups 2 and 3 from 30.83-29.9 to 30.23-18.73, respectively. Intergroup comparison of postplaque index score using Kruskal-Wallis and ANOVA analysis showed significant difference among all three study groups. The combination of Braille and ATP technique of health education served as the most effective medium to teach oral hygiene methods to visually impaired adolescents.

  16. Effectiveness of braille and audio-tactile performance technique for improving oral hygiene status of visually impaired adolescents

    PubMed Central

    Deshpande, Sushmita; Rajpurohit, Ladusingh; Kokka, Vivian Varghese

    2017-01-01

    Background: Visually impaired people encounter numerous challenges in their daily life which makes it a cumbersome task to pay special attention to oral health needs. Furthermore, there is little knowledge about oral health practices among caretakers and visually impaired individuals, due to which oral health is often neglected when compared to the general health. Hence, there was a need to educate visually challenged individuals about oral hygiene practices in a customized format so that the comprehension of brushing techniques could be conveyed at its best. Materials and Methods: The present study was a randomized control trial of sixty visually impaired adolescents who were divided into three groups of 20 each. In Group 1, Braille was used, whereas in Group 2, audio-tactile performance (ATP) technique and in Group 3, a combination of both the methods were used to teach tooth brushing as a part of oral health education. Pre- and post-plaque index score using Silness and Loe (1967) after health education were calculated and tabulated for statistical analysis. Results: The postintervention mean plaque index score increased in Group 1 from 29.45 to 42.98, whereas the mean plaque score decreased in Groups 2 and 3 from 30.83–29.9 to 30.23–18.73, respectively. Intergroup comparison of postplaque index score using Kruskal–Wallis and ANOVA analysis showed significant difference among all three study groups. Conclusion: The combination of Braille and ATP technique of health education served as the most effective medium to teach oral hygiene methods to visually impaired adolescents. PMID:29386797

  17. Numerical method and FORTRAN program for the solution of an axisymmetric electrostatic collector design problem

    NASA Technical Reports Server (NTRS)

    Reese, O. W.

    1972-01-01

    The numerical calculation is described of the steady-state flow of electrons in an axisymmetric, spherical, electrostatic collector for a range of boundary conditions. The trajectory equations of motion are solved alternately with Poisson's equation for the potential field until convergence is achieved. A direct (noniterative) numerical technique is used to obtain the solution to Poisson's equation. Space charge effects are included for initial current densities as large as 100 A/sq cm. Ways of dealing successfully with the difficulties associated with these high densities are discussed. A description of the mathematical model, a discussion of numerical techniques, results from two typical runs, and the FORTRAN computer program are included.

  18. Locating CVBEM collocation points for steady state heat transfer problems

    USGS Publications Warehouse

    Hromadka, T.V.

    1985-01-01

    The Complex Variable Boundary Element Method or CVBEM provides a highly accurate means of developing numerical solutions to steady state two-dimensional heat transfer problems. The numerical approach exactly solves the Laplace equation and satisfies the boundary conditions at specified points on the boundary by means of collocation. The accuracy of the approximation depends upon the nodal point distribution specified by the numerical analyst. In order to develop subsequent, refined approximation functions, four techniques for selecting additional collocation points are presented. The techniques are compared as to the governing theory, representation of the error of approximation on the problem boundary, the computational costs, and the ease of use by the numerical analyst. ?? 1985.

  19. Numerical approximations for fractional diffusion equations via a Chebyshev spectral-tau method

    NASA Astrophysics Data System (ADS)

    Doha, Eid H.; Bhrawy, Ali H.; Ezz-Eldien, Samer S.

    2013-10-01

    In this paper, a class of fractional diffusion equations with variable coefficients is considered. An accurate and efficient spectral tau technique for solving the fractional diffusion equations numerically is proposed. This method is based upon Chebyshev tau approximation together with Chebyshev operational matrix of Caputo fractional differentiation. Such approach has the advantage of reducing the problem to the solution of a system of algebraic equations, which may then be solved by any standard numerical technique. We apply this general method to solve four specific examples. In each of the examples considered, the numerical results show that the proposed method is of high accuracy and is efficient for solving the time-dependent fractional diffusion equations.

  20. Special Libraries: Planning and Operation; Preliminary Draft.

    ERIC Educational Resources Information Center

    Weiner, Betty H.

    An attempt is made in this report to combine a pragmatic how-to-do-it approach with suggestions for applying system analysis techniques for planning and operating a small special library or information center. A special library is defined as a library in a commercial, industrial, governmental or non-profit organization such as research…

  1. Fish Hearing.

    ERIC Educational Resources Information Center

    Blaxter, J. H. S.

    1980-01-01

    Provides related information about hearing in fish, including the sensory stimulus of sound in the underwater environment, mechanoreceptors in fish, pressure perception and the swimbladder, specializations in sound conduction peculiar to certain fish families. Includes numerous figures. (CS)

  2. Silicon Carbide Transistor For Detecting Hydrocarbon Gases

    NASA Technical Reports Server (NTRS)

    Shields, Virgil B.; Ryan, Margaret A.; Williams, Roger M.

    1996-01-01

    Proposed silicon carbide variable-potential insulated-gate field-effect transistor specially designed for use in measuring concentrations of hydrocarbon gases. Devices like this prove useful numerous automotive, industrial, aeronautical, and environmental monitoring applications.

  3. Sensational placodes: Neurogenesis in the otic and olfactory systems

    PubMed Central

    Maier, Esther C.; Saxena, Ankur; Alsina, Berta; Bronner, Marianne E.; Whitfield, Tanya T.

    2014-01-01

    For both the intricate morphogenetic layout of the sensory cells in the ear and the elegantly radial arrangement of the sensory neurons in the nose, numerous signaling molecules and genetic determinants are required in concert to generate these specialized neuronal populations that help connect us to our environment. In this review, we outline many of the proteins and pathways that play essential roles in the differentiation of otic and olfactory neurons and their integration into their non-neuronal support structures. In both cases, well-known signaling pathways together with region-specific factors transform thickened ectodermal placodes into complex sense organs containing numerous, diverse neuronal subtypes. Olfactory and otic placodes, in combination with migratory neural crest stem cells, generate highly specialized subtypes of neuronal cells that sense sound, position and movement in space, odors and pheromones throughout our lives. PMID:24508480

  4. Introduction to This Special Issue on Geostatistics and Geospatial Techniques in Remote Sensing

    NASA Technical Reports Server (NTRS)

    Atkinson, Peter; Quattrochi, Dale A.; Goodman, H. Michael (Technical Monitor)

    2000-01-01

    The germination of this special Computers & Geosciences (C&G) issue began at the Royal Geographical Society (with the Institute of British Geographers) (RGS-IBG) annual meeting in January 1997 held at the University of Exeter, UK. The snow and cold of the English winter were tempered greatly by warm and cordial discussion of how to stimulate and enhance cooperation on geostatistical and geospatial research in remote sensing 'across the big pond' between UK and US researchers. It was decided that one way forward would be to hold parallel sessions in 1998 on geostatistical and geospatial research in remote sensing at appropriate venues in both the UK and the US. Selected papers given at these sessions would be published as special issues of C&G on the UK side and Photogrammetric Engineering and Remote Sensing (PE&RS) on the US side. These issues would highlight the commonality in research on geostatistical and geospatial research in remote sensing on both sides of the Atlantic Ocean. As a consequence, a session on "Geostatistics and Geospatial Techniques for Remote Sensing of Land Surface Processes" was held at the RGS-IBG annual meeting in Guildford, Surrey, UK in January 1998, organized by the Modeling and Advanced Techniques Special Interest Group (MAT SIG) of the Remote Sensing Society (RSS). A similar session was held at the Association of American Geographers (AAG) annual meeting in Boston, Massachusetts in March 1998, sponsored by the AAG's Remote Sensing Specialty Group (RSSG). The 10 papers that make up this issue of C&G, comprise 7 papers from the UK and 3 papers from the LIS. We are both co-editors of each of the journal special issues, with the lead editor of each journal issue being from their respective side of the Atlantic. The special issue of PE&RS (vol. 65) that constitutes the other half of this co-edited journal series was published in early 1999, comprising 6 papers by US authors. We are indebted to the International Association for Mathematical Geology for allowing us to use C&G as a vehicle to convey how geostatistics and geospatial techniques can be used to analyze remote sensing and other types of spatial data. We see this special issue of C&G. and its complementary issue of PE&RS. as a testament to the vitality and interest in the application of geostatistical and geospatial techniques in remote sensing. We also see these special journal issues as the beginning of a fruitful. and hopefully long-term relationship, between American and British geographers and other researchers interested in geostatistical and geospatial techniques applied to remote sensing and other spatial data.

  5. Numerical Simulation of Two-Fluid Mingling Using the Particle Finite Element Method with Applications to Magmatic and Volcanic Processes

    NASA Astrophysics Data System (ADS)

    de Mier, M.; Costa, F.; Idelsohn, S.

    2008-12-01

    Many magmatic and volcanic processes (e.g., magma differentiation, mingling, transport in the volcanic conduit) are controlled by the physical properties and flow styles of high-temperature silicate melts. Such processes can be experimentally investigated using analog systems and scaling methods, but it is difficult to find the suitable material and it is generally not possible to quantitatively extrapolate the results to the natural system. An alternative means of studying fluid dynamics in volcanic systems is with numerical models. We have chosen the Particle Finite Element Method (PFEM), which is based on a Delaunay mesh that moves with the fluid velocity, the Navier-Stokes equations in Lagrangian formulation, and linear elements for velocity, pressure, and temperature. Remeshing is performed when the grid becomes too distorted [E. Oñate et al., 2004. The Particle Finite Element Method: An Overview. Int. J. Comput. Meth. 1, 267-307]. The method is ideal for tracking material interfaces between different fluids or media. Methods based on Eulerian reference frames need special techniques, such as level-set or volume-of-fluid, to capture the interface position, and these techniques add a significant numerical diffusion at the interface. We have performed a series of two-dimensional simulations of a classical problem of fluid dynamics in magmatic and volcanic systems: intrusion of a basaltic melt in a silica-rich magma reservoir. We have used realistic physical properties and equations of state for the silicate melts (e.g., temperature, viscosity, and density) and tracked the changes in the system for geologically relevant time scales (up to 100 years). The problem is modeled by the low-Mach-number equations derived from an asymptotic analysis of the compressible Navier-Stokes equations that removes shock waves from the flow but allows however large variations of density due to temperature variations. Non-constant viscosity and volume changes are taken into account in the momentum conservation equation through the full shear-stress tensor. The implications of different magma intrusion rates, volumes, and times will be discussed in the context of mafic-silicic magma mixing and eruption triggers.

  6. Finite element techniques in computational time series analysis of turbulent flows

    NASA Astrophysics Data System (ADS)

    Horenko, I.

    2009-04-01

    In recent years there has been considerable increase of interest in the mathematical modeling and analysis of complex systems that undergo transitions between several phases or regimes. Such systems can be found, e.g., in weather forecast (transitions between weather conditions), climate research (ice and warm ages), computational drug design (conformational transitions) and in econometrics (e.g., transitions between different phases of the market). In all cases, the accumulation of sufficiently detailed time series has led to the formation of huge databases, containing enormous but still undiscovered treasures of information. However, the extraction of essential dynamics and identification of the phases is usually hindered by the multidimensional nature of the signal, i.e., the information is "hidden" in the time series. The standard filtering approaches (like f.~e. wavelets-based spectral methods) have in general unfeasible numerical complexity in high-dimensions, other standard methods (like f.~e. Kalman-filter, MVAR, ARCH/GARCH etc.) impose some strong assumptions about the type of the underlying dynamics. Approach based on optimization of the specially constructed regularized functional (describing the quality of data description in terms of the certain amount of specified models) will be introduced. Based on this approach, several new adaptive mathematical methods for simultaneous EOF/SSA-like data-based dimension reduction and identification of hidden phases in high-dimensional time series will be presented. The methods exploit the topological structure of the analysed data an do not impose severe assumptions on the underlying dynamics. Special emphasis will be done on the mathematical assumptions and numerical cost of the constructed methods. The application of the presented methods will be first demonstrated on a toy example and the results will be compared with the ones obtained by standard approaches. The importance of accounting for the mathematical assumptions used in the analysis will be pointed up in this example. Finally, applications to analysis of meteorological and climate data will be presented.

  7. Least-squares finite element method for fluid dynamics

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Povinelli, Louis A.

    1989-01-01

    An overview is given of new developments of the least squares finite element method (LSFEM) in fluid dynamics. Special emphasis is placed on the universality of LSFEM; the symmetry and positiveness of the algebraic systems obtained from LSFEM; the accommodation of LSFEM to equal order interpolations for incompressible viscous flows; and the natural numerical dissipation of LSFEM for convective transport problems and high speed compressible flows. The performance of LSFEM is illustrated by numerical examples.

  8. xLIPA: Promotion of Electrons from the K-shell to 2 GeV using 10 PW Laser Pulses

    DTIC Science & Technology

    2015-08-19

    field [34]. Since then numerous analytical and numerical approaches have been employed with special emphasis on laser photoionization . Besides interest in... photoionization as a fundamental physical process there are many applications for photoelectrons. Knowledge of the electron properties, e.g., energy...Schwinger field. Photoionization of inner-shell electrons in high-Z atoms is another example where relativistic effects are important. Two analytical

  9. NONLINEAR AND FIBER OPTICS: Self-similar solution obtained by self-focusing of annular laser beams

    NASA Astrophysics Data System (ADS)

    Azimov, B. S.; Platonenko, Viktor T.; Sagatov, M. M.

    1991-03-01

    A numerical modeling is reported of steady-state self-focusing of an annular beam with thin "walls." An approximate similar solution is found to describe well the relationships observed in the numerical experiment for a special selection of the input parameters of the beam. This solution is used to estimate the focal length. Such self-similar self-focusing is shown to affect the whole power of the beam.

  10. Operant Conditioning: A Tool for Special Physical Educators in the 1980s.

    ERIC Educational Resources Information Center

    Dunn, John M.; French, Ron

    1982-01-01

    The usefulness of operant conditioning for the special physical educator in managing behavior problems is pointed out, and steps to follow in applying operant conditioning techniques are outlined. (SB)

  11. Fecal impaction

    MedlinePlus

    ... problems Examine you carefully. Recommend changes in your diet, how to use laxatives and stool softeners, special exercises, lifestyle changes, and other special techniques to retrain your bowel. Follow you closely to make sure the program works for you.

  12. Computational method for analysis of polyethylene biodegradation

    NASA Astrophysics Data System (ADS)

    Watanabe, Masaji; Kawai, Fusako; Shibata, Masaru; Yokoyama, Shigeo; Sudate, Yasuhiro

    2003-12-01

    In a previous study concerning the biodegradation of polyethylene, we proposed a mathematical model based on two primary factors: the direct consumption or absorption of small molecules and the successive weight loss of large molecules due to β-oxidation. Our model is an initial value problem consisting of a differential equation whose independent variable is time. Its unknown variable represents the total weight of all the polyethylene molecules that belong to a molecular-weight class specified by a parameter. In this paper, we describe a numerical technique to introduce experimental results into analysis of our model. We first establish its mathematical foundation in order to guarantee its validity, by showing that the initial value problem associated with the differential equation has a unique solution. Our computational technique is based on a linear system of differential equations derived from the original problem. We introduce some numerical results to illustrate our technique as a practical application of the linear approximation. In particular, we show how to solve the inverse problem to determine the consumption rate and the β-oxidation rate numerically, and illustrate our numerical technique by analyzing the GPC patterns of polyethylene wax obtained before and after 5 weeks cultivation of a fungus, Aspergillus sp. AK-3. A numerical simulation based on these degradation rates confirms that the primary factors of the polyethylene biodegradation posed in modeling are indeed appropriate.

  13. Session on techniques and resources for storm-scale numerical weather prediction

    NASA Technical Reports Server (NTRS)

    Droegemeier, Kelvin

    1993-01-01

    The session on techniques and resources for storm-scale numerical weather prediction are reviewed. The recommendations of this group are broken down into three area: modeling and prediction, data requirements in support of modeling and prediction, and data management. The current status, modeling and technological recommendations, data requirements in support of modeling and prediction, and data management are addressed.

  14. Numerical Modeling of Inclusion Behavior in Liquid Metal Processing

    NASA Astrophysics Data System (ADS)

    Bellot, Jean-Pierre; Descotes, Vincent; Jardy, Alain

    2013-09-01

    Thermomechanical performance of metallic alloys is directly related to the metal cleanliness that has always been a challenge for metallurgists. During liquid metal processing, particles can grow or decrease in size either by mass transfer with the liquid phase or by agglomeration/fragmentation mechanisms. As a function of numerical density of inclusions and of the hydrodynamics of the reactor, different numerical modeling approaches are proposed; in the case of an isolated particle, the Lagrangian technique coupled with a dissolution model is applied, whereas in the opposite case of large inclusion phase concentration, the population balance equation must be solved. Three examples of numerical modeling studies achieved at Institut Jean Lamour are discussed. They illustrate the application of the Lagrangian technique (for isolated exogenous inclusion in titanium bath) and the Eulerian technique without or with the aggregation process: for precipitation and growing of inclusions at the solidification front of a Maraging steel, and for endogenous inclusions in the molten steel bath of a gas-stirred ladle, respectively.

  15. Numerical method for predicting flow characteristics and performance of nonaxisymmetric nozzles, theory

    NASA Technical Reports Server (NTRS)

    Thomas, P. D.

    1979-01-01

    The theoretical foundation and formulation of a numerical method for predicting the viscous flowfield in and about isolated three dimensional nozzles of geometrically complex configuration are presented. High Reynolds number turbulent flows are of primary interest for any combination of subsonic, transonic, and supersonic flow conditions inside or outside the nozzle. An alternating-direction implicit (ADI) numerical technique is employed to integrate the unsteady Navier-Stokes equations until an asymptotic steady-state solution is reached. Boundary conditions are computed with an implicit technique compatible with the ADI technique employed at interior points of the flow region. The equations are formulated and solved in a boundary-conforming curvilinear coordinate system. The curvilinear coordinate system and computational grid is generated numerically as the solution to an elliptic boundary value problem. A method is developed that automatically adjusts the elliptic system so that the interior grid spacing is controlled directly by the a priori selection of the grid spacing on the boundaries of the flow region.

  16. Preserving Simplecticity in the Numerical Integration of Linear Beam Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Christopher K.

    2017-07-01

    Presented are mathematical tools and methods for the development of numerical integration techniques that preserve the symplectic condition inherent to mechanics. The intended audience is for beam physicists with backgrounds in numerical modeling and simulation with particular attention to beam optics applications. The paper focuses on Lie methods that are inherently symplectic regardless of the integration accuracy order. Section 2 provides the mathematically tools used in the sequel and necessary for the reader to extend the covered techniques. Section 3 places those tools in the context of charged-particle beam optics; in particular linear beam optics is presented in terms ofmore » a Lie algebraic matrix representation. Section 4 presents numerical stepping techniques with particular emphasis on a third-order leapfrog method. Section 5 discusses the modeling of field imperfections with particular attention to the fringe fields of quadrupole focusing magnets. The direct computation of a third order transfer matrix for a fringe field is shown.« less

  17. Drilling technique for crystals

    NASA Technical Reports Server (NTRS)

    Hunter, T.; Miyagawa, I.

    1977-01-01

    Hole-drilling technique uses special crystal driller in which drill bit rotates at fixed position at speed of 30 rpm while crystal slowly advances toward drill. Technique has been successfully applied to crystal of Rochell salt, Triglycine sulfate, and N-acetyglycine. Technique limits heat buildup and reduces strain on crystal.

  18. A numerical study on the influence of slope and curvature on smoke flow in special section tunnel with natural ventilation

    NASA Astrophysics Data System (ADS)

    Wang, Wenzhou; Zhou, Xianping; Liu, Zhigang; Liu, Ya; Liu, Wanfu; Hong, Li

    2017-09-01

    In this study, a special section tunnel model was established by using FDS (Fire Dynamics Simulator). The influences of lope and curvature on smoke flow under natural ventilation have been studied. The results showed that under the condition of natural ventilation, the slope has some influences on the smoke flow in special section tunnel. The smoke spreading speed is accelerated along the upstream direction and decrease along the downstream direction due to buoyancy effect of slope. The steeper the tunnel, the more obvious the buoyancy effect. The curvature has little effect on the flow of flue gas.

  19. A Delayed Neutron Counting System for the Analysis of Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Sellers, Madison Theresa

    Nuclear forensic analysis is a modem science that uses numerous analytical techniques to identify and attribute nuclear materials in the event of a nuclear explosion, radiological terrorist attack or the interception of illicit nuclear material smuggling. The Canadian Department of National Defence has participated in recent international exercises that have highlighted the Nation's requirement to develop nuclear forensics expertise, protocol and capabilities, specifically pertaining to the analysis of special nuclear materials (SNM). A delayed neutron counting (DNC) system has been designed and established at the Royal Military College of Canada (RMC) to enhance the Government's SNM analysis capabilities. This analytical technique complements those already at RMC by providing a rapid and non-destructive method for the analysis of the fissile isotopes of both uranium (U) and plutonium (Pu). The SLOWPOKE-2 reactor at RMC produces a predominately thermal neutron flux. These neutrons induce fission in the SNM isotopes 233U, 235U and 239Pu releasing prompt fast neutrons, energy and radioactive fission fragments. Some of these fission fragments undergo beta - decay and subsequently emit neutrons, which can be recorded by an array of sensitive 3He detectors. The significant time period between the fission process and the release of these neutrons results in their identification as 'delayed neutrons'. The recorded neutron spectrum varies with time and the count rate curve is unique to each fissile isotope. In-house software, developed by this project, can analyze this delayed neutron curve and provides the fissile mass in the sample. Extensive characterization of the DNC system has been performed with natural U samples with 235 U content ranging from 2--7 microg. The system efficiency and dead time behaviour determined by the natural uranium sample analyses were validated by depleted uranium samples with similar quantities of 235 U resulting in a typical relative error of 3.6%. The system has accurately determined 235U content over three orders of magnitude with 235U amounts as low as 10 ng. The results have also been proven to be independent of small variations in total analyte volume and geometry, indicating that it is an ideal technique for the analysis of samples containing SNM in a variety of different matrices. The Analytical Sciences Group at RMC plans to continue DNC system development to include 233U and 239pu analysis and mixtures of SNM isotopes. Keywords: delayed neutron counting, special nuclear materials, nuclear forensics.

  20. Numerical investigations of two-phase flow with dynamic capillary pressure in porous media via a moving mesh method

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Zegeling, Paul Andries

    2017-09-01

    Motivated by observations of saturation overshoot, this paper investigates numerical modeling of two-phase flow in porous media incorporating dynamic capillary pressure. The effects of the dynamic capillary coefficient, the infiltrating flux rate and the initial and boundary values are systematically studied using a traveling wave ansatz and efficient numerical methods. The traveling wave solutions may exhibit monotonic, non-monotonic or plateau-shaped behavior. Special attention is paid to the non-monotonic profiles. The traveling wave results are confirmed by numerically solving the partial differential equation using an accurate adaptive moving mesh solver. Comparisons between the computed solutions using the Brooks-Corey model and the laboratory measurements of saturation overshoot verify the effectiveness of our approach.

  1. Gene Regulatory Networks in Cardiac Conduction System Development

    PubMed Central

    Munshi, Nikhil V.

    2014-01-01

    The cardiac conduction system is a specialized tract of myocardial cells responsible for maintaining normal cardiac rhythm. Given its critical role in coordinating cardiac performance, a detailed analysis of the molecular mechanisms underlying conduction system formation should inform our understanding of arrhythmia pathophysiology and affect the development of novel therapeutic strategies. Historically, the ability to distinguish cells of the conduction system from neighboring working myocytes presented a major technical challenge for performing comprehensive mechanistic studies. Early lineage tracing experiments suggested that conduction cells derive from cardiomyocyte precursors, and these claims have been substantiated by using more contemporary approaches. However, regional specialization of conduction cells adds an additional layer of complexity to this system, and it appears that different components of the conduction system utilize unique modes of developmental formation. The identification of numerous transcription factors and their downstream target genes involved in regional differentiation of the conduction system has provided insight into how lineage commitment is achieved. Furthermore, by adopting cutting-edge genetic techniques in combination with sophisticated phenotyping capabilities, investigators have made substantial progress in delineating the regulatory networks that orchestrate conduction system formation and their role in cardiac rhythm and physiology. This review describes the connectivity of these gene regulatory networks in cardiac conduction system development and discusses how they provide a foundation for understanding normal and pathological human cardiac rhythms. PMID:22628576

  2. Actual Romanian research in post-newtonian dynamics

    NASA Astrophysics Data System (ADS)

    Mioc, V.; Stavinschi, M.

    2007-05-01

    We survey the recent Romanian results in the study of the two-body problem in post-Newtonian fields. Such a field is characterized, in general, by a potential of the form U(q)=|q|^{-1}+ something (small, but not compulsorily). We distinguish some classes of post-Newtonian models: relativistic (Schwarzschild, Fock, Einstein PN, Reissner-Nordström, Schwarzschild - de Sitter, etc.) and nonrelativistic (Manev, Mücket-Treder, Seeliger, gravito-elastic, etc.). Generalized models (the zonal-satellite problem, quasihomogeneous fields), as well as special cases (anisotropic Manev-type and Schwarzschild-type models, Popovici or Popovici-Manev photogravitational problem), were also tackled. The methods used in such studies are various: analytical (using mainly the theory of perturbations, but also other theories: functions of complex variable, variational calculus, etc.), geometric (qualitative approach of the theory of dynamical systems), and numerical (especially using the Poincaré-section technique). The areas of interest and the general results obtained focus on: exact or approximate analytical solutions; characteristics of local flows (especially at limit situations: collision and escape); quasiperiodic and periodic orbits; equilibria; symmetries; chaoticity; geometric description of the global flow (and physical interpretation of the phase-space structure). We emphasize some special features, which cannot be met within the Newtonian framework: black-hole effect, oscillatory collisions, radial librations, bounded orbits for nonnegative energy, existence of unstable circular motion (or unstable rest), symmetric periodic orbits within anisotropic models, etc.

  3. Creep crack-growth: A new path-independent integral (T sub c), and computational studies. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Stonesifer, R. B.; Atluri, S. N.

    1982-01-01

    The development of valid creep fracture criteria is considered. Two path-independent integral parameters which show some degree of promise are the C* and (Delta T)sub c integrals. The mathematical aspects of these parameters are reviewed by deriving generalized vector forms of the parameters using conservation laws which are valid for arbitrary, three dimensional, cracked bodies with crack surface tractions (or applied displacements), body forces, inertial effects, and large deformations. Two principal conclusions are that (Delta T)sub c has an energy rate interpretation whereas C* does not. The development and application of fracture criteria often involves the solution of boundary/initial value problems associated with deformation and stresses. The finite element method is used for this purpose. An efficient, small displacement, infinitesimal strain, displacement based finite element model is specialized to two dimensional plane stress and plane strain and to power law creep constitutive relations. A mesh shifting/remeshing procedure is used for simulating crack growth. The model is implemented with the quartz-point node technique and also with specially developed, conforming, crack-tip singularity elements which provide for the r to the n-(1+n) power strain singularity associated with the HRR crack-tip field. Comparisons are made with a variety of analytical solutions and alternate numerical solutions for a number of problems.

  4. The fungus gardens of leaf-cutter ants undergo a distinct physiological transition during biomass degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Eric L.; Aylward, Frank O.; Kim, Young-Mo

    Leaf-cutter ants are dominant herbivores in ecosystems throughout the Neotropics. Rather than directly consuming the fresh foliar biomass they harvest, these ants use it to cultivate specialized fungus gardens. Although recent investigations have shed light on how plant biomass is degraded in fungus gardens, the cycling of nutrients that takes place in these specialized microbial ecosystems is still not well understood. Here, using metametabolomics and metaproteomics techniques, we examine the dynamics of nutrient turnover and biosynthesis in these gardens. Our results reveal that numerous free amino acids and sugars are depleted throughout the process of biomass degradation, indicating that easilymore » accessible nutrients from plant material are readily consumed by microbes in these ecosystems. Accumulation of cellobiose and lignin derivatives near the end of the degradation process is consistent with previous findings of cellulases and laccases produced by Leucoagaricus gongylophorus, the fungus cultivated by leaf-cutter ants. Our results also suggest that ureides may be an important source of nitrogen in fungus gardens, especially during nitrogen-limiting conditions. No free arginine was detected in our metametabolomics experiments despite evidence that the host ants cannot produce this amino acid, suggesting that biosynthesis of this metabolite may be tightly regulated in the fungus garden. These results provide new insights into the dynamics of nutrient cycling that underlie this important ant-fungus symbiosis.« less

  5. 46 CFR 151.45-2 - Special operating requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... conditions. (c) No cargo tank hatch, ullage hole, or tank cleaning openings shall be opened or remain open... shown in black block style letters and numerals (characters) at least 3 inches high on a white...

  6. 46 CFR 151.45-2 - Special operating requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... conditions. (c) No cargo tank hatch, ullage hole, or tank cleaning openings shall be opened or remain open... shown in black block style letters and numerals (characters) at least 3 inches high on a white...

  7. 46 CFR 151.45-2 - Special operating requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... conditions. (c) No cargo tank hatch, ullage hole, or tank cleaning openings shall be opened or remain open... shown in black block style letters and numerals (characters) at least 3 inches high on a white...

  8. Starting Point: A Proposed Framework for Unconventional Warfare Planning

    DTIC Science & Technology

    2014-06-01

    beginning in 2010 saw regime changes in numerous Middle Eastern countries such as; Egypt , Tunisia and Libya. In 2013, Thailand saw uprisings...Poland, 22. 114 Peggy Noonan, “We Want God ,” Wall Street Journal, April 7, 2005, http://online.wsj.com/news/articles/SB122479408458463941. 115 Ibid... ancient and contemporary history of Poland this tomb has a special basis, a special reason for its existence. In how many places in our native land has

  9. Efficient XML Interchange (EXI) Compression and Performance Benefits: Development, Implementation and Evaluation

    DTIC Science & Technology

    2010-03-01

    to a graphics card , and not the redesign of XML. The justification is that if XML is going to be prevalent, special optimized hardware is...the answer, similar to the specialized functions of a video card .  Given the Moore’s law that processing power doubles every few years, let the...and numerous multimedia players such as iTunes from Apple. These applications are free to use, but the source is restricted by software licenses

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, P. W.

    Secure Transport Management Course (STMC) course provides managers with information related to procedures and equipment used to successfully transport special nuclear material. This workshop outlines these procedures and reinforces the information presented with the aid of numerous practical examples. The course focuses on understanding the regulatory framework for secure transportation of special nuclear materials, identifying the insider and outsider threat(s) to secure transportation, organization of a secure transportation unit, management and supervision of secure transportation units, equipment and facilities required, training and qualification needed.

  11. Symplectic molecular dynamics simulations on specially designed parallel computers.

    PubMed

    Borstnik, Urban; Janezic, Dusanka

    2005-01-01

    We have developed a computer program for molecular dynamics (MD) simulation that implements the Split Integration Symplectic Method (SISM) and is designed to run on specialized parallel computers. The MD integration is performed by the SISM, which analytically treats high-frequency vibrational motion and thus enables the use of longer simulation time steps. The low-frequency motion is treated numerically on specially designed parallel computers, which decreases the computational time of each simulation time step. The combination of these approaches means that less time is required and fewer steps are needed and so enables fast MD simulations. We study the computational performance of MD simulation of molecular systems on specialized computers and provide a comparison to standard personal computers. The combination of the SISM with two specialized parallel computers is an effective way to increase the speed of MD simulations up to 16-fold over a single PC processor.

  12. Development of a new technique (ATP) for training visually impaired children in oral hygiene maintenance.

    PubMed

    Hebbal, M; Ankola, A V

    2012-10-01

    To develop a special oral health education technique and compare plaque scores before and after health education. Non-randomised before and after comparison trial without controls. The final study population comprised of 96 visually impaired children aged 6-18 years old. Silness and Loe plaque index scores were recorded at baseline. 'Audio tactile performance technique' (ATP Technique) a specially designed health education method was used to educate these children regarding oral hygiene maintenance. Periodic reinforcement of health education was performed at an interval of 9 months. Re-examination was carried out after 18 months of health education to assess plaque scores. Wilcoxon's sign rank test and paired t test was used to assess the difference between the scores before and after health education. There was increase in frequency of tooth brushing after health education. The mean plaque scores pre- and post-health education were 1.41 (+/-0.58) and 0.63 (+/-0.39) respectively. The difference was statistically significant (p<0.001). Visually impaired children could maintain an acceptable level of oral hygiene when taught using special customised methods.

  13. Teachers' Attitude and Competence in the Use of Assistive Technologies in Special Needs Schools

    ERIC Educational Resources Information Center

    Onivehu, Adams Ogirima; Ohawuiro, Onyiyeche Emilia; Oyeniran, Bunmi Juliana

    2017-01-01

    This study examined teachers' attitude and competence in the use of assistive technologies in special needs schools. The descriptive survey method was employed for the study among 100 teachers who were drawn using purposive sampling technique from special needs schools in Osun State, Nigeria. Six research questions were generated while four…

  14. Impacts of southern pine beetles in special management areas

    Treesearch

    Stephen R. Clarke

    1995-01-01

    Southern pine beetles have had great impacts on wilderness and other special management areas. Infestations have spread and affected adjacent [and, and they have disrupted the intended uses and goals desired for these areas. Coping with SPB in special management areas requires advance planning and management, then the use of new and integrated techniques for SPB risk...

  15. The Impact of Teacher Related Factors on the Academic Achievement of 8th Grade Special Education Students

    ERIC Educational Resources Information Center

    Walker Lewis, Shanique

    2017-01-01

    The purpose of this study was to examine the influence of teacher-related factors on the academic achievement of 8th grade special education students. Specifically, this study examines effect of the teacher related factors of instructional technique, teacher specialization, teaching experience, teacher certification, and teacher attitudes toward…

  16. D[superscript 4]S[superscript 4]: A Four Dimensions Instructional Strategy for Web-Based and Blended Learning

    ERIC Educational Resources Information Center

    Abdelaziz, Hamdy A.

    2012-01-01

    Web-based education is facing a paradigm shift under the rapid development of information and communication technology. The new paradigm of learning requires special techniques of course design, special instructional models, and special methods of evaluation. This paper investigates the effectiveness of an adaptive instructional strategy for…

  17. Memory efficient solution of the primitive equations for numerical weather prediction on the CYBER 205

    NASA Technical Reports Server (NTRS)

    Tuccillo, J. J.

    1984-01-01

    Numerical Weather Prediction (NWP), for both operational and research purposes, requires only fast computational speed but also large memory. A technique for solving the Primitive Equations for atmospheric motion on the CYBER 205, as implemented in the Mesoscale Atmospheric Simulation System, which is fully vectorized and requires substantially less memory than other techniques such as the Leapfrog or Adams-Bashforth Schemes is discussed. The technique presented uses the Euler-Backard time marching scheme. Also discussed are several techniques for reducing computational time of the model by replacing slow intrinsic routines by faster algorithms which use only hardware vector instructions.

  18. A vector scanning processing technique for pulsed laser velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Edwards, Robert V.

    1989-01-01

    Pulsed-laser-sheet velocimetry yields two-dimensional velocity vectors across an extended planar region of a flow. Current processing techniques offer high-precision (1-percent) velocity estimates, but can require hours of processing time on specialized array processors. Sometimes, however, a less accurate (about 5 percent) data-reduction technique which also gives unambiguous velocity vector information is acceptable. Here, a direct space-domain processing technique is described and shown to be far superior to previous methods in achieving these objectives. It uses a novel data coding and reduction technique and has no 180-deg directional ambiguity. A complex convection vortex flow was recorded and completely processed in under 2 min on an 80386-based PC, producing a two-dimensional velocity-vector map of the flowfield. Pulsed-laser velocimetry data can thus be reduced quickly and reasonably accurately, without specialized array processing hardware.

  19. Optimal order policy in response to announced price increase for deteriorating items with limited special order quantity

    NASA Astrophysics Data System (ADS)

    Ouyang, Liang-Yuh; Wu, Kun-Shan; Yang, Chih-Te; Yen, Hsiu-Feng

    2016-02-01

    When a supplier announces an impending price increase due to take effect at a certain time in the future, it is important for each retailer to decide whether to purchase additional stock to take advantage of the present lower price. This study explores the possible effects of price increases on a retailer's replenishment policy when the special order quantity is limited and the rate of deterioration of the goods is assumed to be constant. The two situations discussed in this study are as follows: (1) when the special order time coincides with the retailer's replenishment time and (2) when the special order time occurs during the retailer's sales period. By analysing the total cost savings between special and regular orders during the depletion time of the special order quantity, the optimal order policy for each situation can be determined. We provide several numerical examples to illustrate the theories in practice. Additionally, we conduct a sensitivity analysis on the optimal solution with respect to the main parameters.

  20. DEVELOPMENTS IN GRworkbench

    NASA Astrophysics Data System (ADS)

    Moylan, Andrew; Scott, Susan M.; Searle, Anthony C.

    2006-02-01

    The software tool GRworkbench is an ongoing project in visual, numerical General Relativity at The Australian National University. Recently, GRworkbench has been significantly extended to facilitate numerical experimentation in analytically-defined space-times. The numerical differential geometric engine has been rewritten using functional programming techniques, enabling objects which are normally defined as functions in the formalism of differential geometry and General Relativity to be directly represented as function variables in the C++ code of GRworkbench. The new functional differential geometric engine allows for more accurate and efficient visualisation of objects in space-times and makes new, efficient computational techniques available. Motivated by the desire to investigate a recent scientific claim using GRworkbench, new tools for numerical experimentation have been implemented, allowing for the simulation of complex physical situations.

  1. Numerical human models for accident research and safety - potentials and limitations.

    PubMed

    Praxl, Norbert; Adamec, Jiri; Muggenthaler, Holger; von Merten, Katja

    2008-01-01

    The method of numerical simulation is frequently used in the area of automotive safety. Recently, numerical models of the human body have been developed for the numerical simulation of occupants. Different approaches in modelling the human body have been used: the finite-element and the multibody technique. Numerical human models representing the two modelling approaches are introduced and the potentials and limitations of these models are discussed.

  2. The IERS Special Bureau for Tides

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Chao, B. F.; Desai, S. D.

    2002-01-01

    The Global Geophysical Fluids Center of the International Earth Rotation Service (IERS) comprises 8 special bureaus, one of which is the Special Bureau for Tides. Its purpose is to facilitate studies related to tidal effects in earth rotation. To that end it collects various relevant datasets and distributes them, primarily through its website at bowie.gsfc.nasa.gov/ggfc/tides. Example datasets include tabulations of tidal variations in angular momentum and in earth rotation as estimated from numerical ocean tide models and from meteorological reanalysis products. The web site also features an interactive tidal prediction "machine" which generates tidal predictions (e.g., of UT1) from lists of harmonic constants. The Special Bureau relies on the tidal and earth-rotation communities to build and enlarge its datasets; further contributions from this community are most welcome.

  3. Materials and scaffolds in medical 3D printing and bioprinting in the context of bone regeneration.

    PubMed

    Heller, Martin; Bauer, Heide-Katharina; Goetze, Elisabeth; Gielisch, Matthias; Ozbolat, Ibrahim T; Moncal, Kazim K; Rizk, Elias; Seitz, Hermann; Gelinsky, Michael; Schröder, Heinz C; Wang, Xiaohong H; Müller, Werner E G; Al-Nawas, Bilal

    The structural and functional repair of lost bone is still one of the biggest challenges in regenerative medicine. In many cases, autologous bone is used for the reconstruction of bone tissue; however, the availability of autologous material is limited, which always means additional stress to the patient. Due to this, more and more frequently various biocompatible materials are being used instead for bone augmentation. In this context, in order to ensure the structural function of the bone, scaffolds are implanted and fixed into the bone defect, depending on the medical indication. Nevertheless, for the surgeon, every individual clinical condition in which standardized scaffolds have to be aligned is challenging, and in many cases the alignment is not possible without limitations. Therefore, in the last decades, 3D printing (3DP) or additive manufacturing (AM) of scaffolds has become one of the most innovative approaches in surgery to individualize and improve the treatment of patients. Numerous biocompatible materials are available for 3DP, and various printing techniques can be applied, depending on the process conditions of these materials. Besides these conventional printing techniques, another promising approach in the context of medical AM is 3D bioprinting, a technique which makes it possible to print human cells embedded in special carrier substances to generate functional tissues. Even the direct printing into bone defects or lesions becomes possible. 3DP is already improving the treatment of patients, and has the potential to revolutionize regenerative medicine in future.

  4. An Approach to Unbiased Subsample Interpolation for Motion Tracking

    PubMed Central

    McCormick, Matthew M.; Varghese, Tomy

    2013-01-01

    Accurate subsample displacement estimation is necessary for ultrasound elastography because of the small deformations that occur and the subsequent application of a derivative operation on local displacements. Many of the commonly used subsample estimation techniques introduce significant bias errors. This article addresses a reduced bias approach to subsample displacement estimations that consists of a two-dimensional windowed-sinc interpolation with numerical optimization. It is shown that a Welch or Lanczos window with a Nelder–Mead simplex or regular-step gradient-descent optimization is well suited for this purpose. Little improvement results from a sinc window radius greater than four data samples. The strain signal-to-noise ratio (SNR) obtained in a uniformly elastic phantom is compared with other parabolic and cosine interpolation methods; it is found that the strain SNR ratio is improved over parabolic interpolation from 11.0 to 13.6 in the axial direction and 0.7 to 1.1 in the lateral direction for an applied 1% axial deformation. The improvement was most significant for small strains and displacement tracking in the lateral direction. This approach does not rely on special properties of the image or similarity function, which is demonstrated by its effectiveness with the application of a previously described regularization technique. PMID:23493609

  5. Numerical simulation of the interaction of biological cells with an ice front during freezing

    NASA Astrophysics Data System (ADS)

    Carin, M.; Jaeger, M.

    2001-12-01

    The goal of this study is a better understanding of the interaction between cells and a solidification front during a cryopreservation process. This technique of freezing is commonly used to conserve biological material for long periods at low temperatures. However the biophysical mechanisms of cell injuries during freezing are difficult to understand because a cell is a very sophisticated microstructure interacting with its environment. We have developed a finite element model to simulate the response of cells to an advancing solidification front. A special front-tracking technique is used to compute the motion of the cell membrane and the ice front during freezing. The model solves the conductive heat transfer equation and the diffusion equation of a solute on a domain containing three phases: one or more cells, the extra-cellular solution and the growing ice. This solid phase growing from a binary salt solution rejects the solute in the liquid phase and increases the solute gradient around the cell. This induces the shrinkage of the cell. The model is used to simulate the engulfment of one cell modelling a red blood cell by an advancing solidification front initially planar or not is computed. We compare the incorporation of a cell with that of a solid particle.

  6. Quantitative Image Analysis Techniques with High-Speed Schlieren Photography

    NASA Technical Reports Server (NTRS)

    Pollard, Victoria J.; Herron, Andrew J.

    2017-01-01

    Optical flow visualization techniques such as schlieren and shadowgraph photography are essential to understanding fluid flow when interpreting acquired wind tunnel test data. Output of the standard implementations of these visualization techniques in test facilities are often limited only to qualitative interpretation of the resulting images. Although various quantitative optical techniques have been developed, these techniques often require special equipment or are focused on obtaining very precise and accurate data about the visualized flow. These systems are not practical in small, production wind tunnel test facilities. However, high-speed photography capability has become a common upgrade to many test facilities in order to better capture images of unsteady flow phenomena such as oscillating shocks and flow separation. This paper describes novel techniques utilized by the authors to analyze captured high-speed schlieren and shadowgraph imagery from wind tunnel testing for quantification of observed unsteady flow frequency content. Such techniques have applications in parametric geometry studies and in small facilities where more specialized equipment may not be available.

  7. Application of up-sampling and resolution scaling to Fresnel reconstruction of digital holograms.

    PubMed

    Williams, Logan A; Nehmetallah, Georges; Aylo, Rola; Banerjee, Partha P

    2015-02-20

    Fresnel transform implementation methods using numerical preprocessing techniques are investigated in this paper. First, it is shown that up-sampling dramatically reduces the minimum reconstruction distance requirements and allows maximal signal recovery by eliminating aliasing artifacts which typically occur at distances much less than the Rayleigh range of the object. Second, zero-padding is employed to arbitrarily scale numerical resolution for the purpose of resolution matching multiple holograms, where each hologram is recorded using dissimilar geometric or illumination parameters. Such preprocessing yields numerical resolution scaling at any distance. Both techniques are extensively illustrated using experimental results.

  8. Algorithms for computing the geopotential using a simple density layer

    NASA Technical Reports Server (NTRS)

    Morrison, F.

    1976-01-01

    Several algorithms have been developed for computing the potential and attraction of a simple density layer. These are numerical cubature, Taylor series, and a mixed analytic and numerical integration using a singularity-matching technique. A computer program has been written to combine these techniques for computing the disturbing acceleration on an artificial earth satellite. A total of 1640 equal-area, constant surface density blocks on an oblate spheroid are used. The singularity-matching algorithm is used in the subsatellite region, Taylor series in the surrounding zone, and numerical cubature on the rest of the earth.

  9. Assessment of gadolinium calcium oxoborate (GdCOB) for laser applications

    NASA Astrophysics Data System (ADS)

    Bajor, A. L.; Kisielewski, J.; Kłos, A.; Kopczyński, K.; Łukasiewicz, T.; Mierczyk, J.; Młyńczak, J.

    2011-12-01

    Increasing demand for growing high quality laser crystals puts a question about their most important parameters that one should concentrate on to get a desired product which will exhibit best properties in practical use. And by no means, this is a simple question. Apart of the usual lasing properties associated with a special dopant in the host material itself, one needs to consider another two lasing phenomena, namely second (SHG) and higher harmonic generation, and self-frequency doubling (SFD). Not necessarily all of these three can meet altogether in the same host material to yield in its best appearance in every case. We have made a review of basic properties of gadolinium oxoborate GdCa4O(BO3)3 (GdCOB) crystal and came to the conclusion that, currently, as a host material this is probably the best in all of its lasing applications. Although GdCOB has low thermal conductivity, which requires a suitable cooling, on the other hand it has got small thermo-optic coefficients which govern good operation in SHG and SFD experiments. Two inch dia. Nd-doped crystals were grown by the Czochralski technique. Since a large discrepancy in the literature exists on exact values of nonlinear coefficients, one is never sure about this whether theoretically predicted phase-matching angles (PMA) are those that are really optimal. Besides, none has yet measured the values of nonlinear coefficients as a function of doping concentration. Therefore we have not decided to cut numerous differently oriented samples for generation of different wavelengths in SHG and SFD, but rather tried to generate different wavelengths from the same samples. We have also not paid special attention to get highest possible conversion efficiencies. However, we have concentrated our attention on potential use of the core region in laser technique. Unlike in YAG crystals, when the core is by all means a parasitic structure, we discovered that the core region in GdCOB, that majority of investigators are even not aware of its presence in the crystal, can be also useful in laser technique. According to our best knowledge, a SHG of red light in this work is the second reported case in the world-wide literature.

  10. A collocation-shooting method for solving fractional boundary value problems

    NASA Astrophysics Data System (ADS)

    Al-Mdallal, Qasem M.; Syam, Muhammed I.; Anwar, M. N.

    2010-12-01

    In this paper, we discuss the numerical solution of special class of fractional boundary value problems of order 2. The method of solution is based on a conjugating collocation and spline analysis combined with shooting method. A theoretical analysis about the existence and uniqueness of exact solution for the present class is proven. Two examples involving Bagley-Torvik equation subject to boundary conditions are also presented; numerical results illustrate the accuracy of the present scheme.

  11. Glycogen distribution in porcine fallopian tube epithelium during the estrus cycle.

    PubMed

    Gregoraszczuk, E Ł; Cała, M; Witkowska, E

    2000-01-01

    Histochemical features of two different parts of the porcine Fallopian tube have been studied, with special reference to cyclic changes in the distribution of glycogen particles. Porcine Fallopian tubes were obtained from a local slaughterhouse. Slides were studied under light microscopy utilising histological and histochemical techniques. The most striking feature during the periovulatory stage of the estrus cycle was the occurrence of glycogen granules in the apical cytoplasm of epithelial cells in both the ampulla and isthmus of the Fallopian tubes. In the isthmus, cells containing numerous granules of polysaccharides aggregated into areas of different sizes were noted after ovulation. During the midluteal phase their number was minimal or were even absent. In the ampula typical extrusion of secretory granules and nuclei protruding into the tubal lumen was visible after ovulation. In the luteal phase a lot of nuclei protruded into the tubal lumen and some free in the lumen were noted. It is possible that glycogen in the preovulatory stage functions as a source of energy for ciliary movement and as a nourishment for the ovum. In the isthmus large number of aggregated glycogen particles was observed also after ovulation. In this stage of the cycle, numerous granules of polysaccharide aggregated in isthmus epithelium could be the major energy source for embriogenesis when the embryo travels down the Fallopian tubes, during the early cleavage stage.

  12. Comparison of numerical techniques for the evaluation of the Doppler broadening functions psi(x,theta) and chi(x,theta)

    NASA Technical Reports Server (NTRS)

    Canright, R. B., Jr.; Semler, T. T.

    1972-01-01

    Several approximations to the Doppler broadening functions psi(x, theta) and chi(x, theta) are compared with respect to accuracy and speed of evaluation. A technique, due to A. M. Turning (1943), is shown to be at least as accurate as direct numerical quadrature and somewhat faster than Gaussian quadrature. FORTRAN 4 listings are included.

  13. Application of artificial intelligence to impulsive orbital transfers

    NASA Technical Reports Server (NTRS)

    Burns, Rowland E.

    1987-01-01

    A generalized technique for the numerical solution of any given class of problems is presented. The technique requires the analytic (or numerical) solution of every applicable equation for all variables that appear in the problem. Conditional blocks are employed to rapidly expand the set of known variables from a minimum of input. The method is illustrated via the use of the Hohmann transfer problem from orbital mechanics.

  14. Analysis and design of three dimensional supersonic nozzles. Volume 2: Numerical program for analysis of nozzle-exhaust flow fields

    NASA Technical Reports Server (NTRS)

    Kalben, P.

    1972-01-01

    The FORTRAN IV Program developed to analyze the flow field associated with scramjet exhaust systems is presented. The instructions for preparing input and interpreting output are described. The program analyzes steady three dimensional supersonic flow by the reference plane characteristic technique. The governing equations and numerical techniques employed are presented in Volume 1 of this report.

  15. Numerical investigation of tip clearance cavitation in Kaplan runners

    NASA Astrophysics Data System (ADS)

    Nikiforova, K.; Semenov, G.; Kuznetsov, I.; Spiridonov, E.

    2016-11-01

    There is a gap between the Kaplan runner blade and the shroud that makes for a special kind of cavitation: cavitation in the tip leakage flow. Two types of cavitation caused by the presence of clearance gap are known: tip vortex cavitation that appears at the core of the rolled up vortex on the blade suction side and tip clearance cavitation that appears precisely in the gap between the blade tip edge and the shroud. In the context of this work numerical investigation of the model Kaplan runner has been performed taking into account variable tip clearance for several cavitation regimes. The focus is put on investigation of structure and origination of mechanism of cavitation in the tip leakage flow. Calculations have been performed with the help of 3-D unsteady numerical model for two-phase medium. Modeling of turbulent flow in this work has been carried out using full equations of Navier-Stokes averaged by Reynolds with correction for streamline curvature and system rotation. For description of this medium (liquid-vapor) simplification of Euler approach is used; it is based on the model of interpenetrating continuums, within the bounds of this two- phase medium considered as a quasi-homogeneous mixture with the common velocity field and continuous distribution of density for both phases. As a result, engineering techniques for calculation of cavitation conditioned by existence of tip clearance in model turbine runner have been developed. The detailed visualization of the flow was carried out and vortex structure on the suction side of the blade was reproduced. The range of frequency with maximum value of pulsation was assigned and maximum energy frequency was defined; it is based on spectral analysis of the obtained data. Comparison between numerical computation results and experimental data has been also performed. The location of cavitation zone has a good agreement with experiment for all analyzed regimes.

  16. An iterative analytical technique for the design of interplanetary direct transfer trajectories including perturbations

    NASA Astrophysics Data System (ADS)

    Parvathi, S. P.; Ramanan, R. V.

    2018-06-01

    An iterative analytical trajectory design technique that includes perturbations in the departure phase of the interplanetary orbiter missions is proposed. The perturbations such as non-spherical gravity of Earth and the third body perturbations due to Sun and Moon are included in the analytical design process. In the design process, first the design is obtained using the iterative patched conic technique without including the perturbations and then modified to include the perturbations. The modification is based on, (i) backward analytical propagation of the state vector obtained from the iterative patched conic technique at the sphere of influence by including the perturbations, and (ii) quantification of deviations in the orbital elements at periapsis of the departure hyperbolic orbit. The orbital elements at the sphere of influence are changed to nullify the deviations at the periapsis. The analytical backward propagation is carried out using the linear approximation technique. The new analytical design technique, named as biased iterative patched conic technique, does not depend upon numerical integration and all computations are carried out using closed form expressions. The improved design is very close to the numerical design. The design analysis using the proposed technique provides a realistic insight into the mission aspects. Also, the proposed design is an excellent initial guess for numerical refinement and helps arrive at the four distinct design options for a given opportunity.

  17. Transient well flow in vertically heterogeneous aquifers

    NASA Astrophysics Data System (ADS)

    Hemker, C. J.

    1999-11-01

    A solution for the general problem of computing well flow in vertically heterogeneous aquifers is found by an integration of both analytical and numerical techniques. The radial component of flow is treated analytically; the drawdown is a continuous function of the distance to the well. The finite-difference technique is used for the vertical flow component only. The aquifer is discretized in the vertical dimension and the heterogeneous aquifer is considered to be a layered (stratified) formation with a finite number of homogeneous sublayers, where each sublayer may have different properties. The transient part of the differential equation is solved with Stehfest's algorithm, a numerical inversion technique of the Laplace transform. The well is of constant discharge and penetrates one or more of the sublayers. The effect of wellbore storage on early drawdown data is taken into account. In this way drawdowns are found for a finite number of sublayers as a continuous function of radial distance to the well and of time since the pumping started. The model is verified by comparing results with published analytical and numerical solutions for well flow in homogeneous and heterogeneous, confined and unconfined aquifers. Instantaneous and delayed drainage of water from above the water table are considered, combined with the effects of partially penetrating and finite-diameter wells. The model is applied to demonstrate that the transient effects of wellbore storage in unconfined aquifers are less pronounced than previous numerical experiments suggest. Other applications of the presented solution technique are given for partially penetrating wells in heterogeneous formations, including a demonstration of the effect of decreasing specific storage values with depth in an otherwise homogeneous aquifer. The presented solution can be a powerful tool for the analysis of drawdown from pumping tests, because hydraulic properties of layered heterogeneous aquifer systems with partially penetrating wells may be estimated without the need to construct transient numerical models. A computer program based on the hybrid analytical-numerical technique is available from the author.

  18. Symmetry-Resolved Entanglement in Many-Body Systems.

    PubMed

    Goldstein, Moshe; Sela, Eran

    2018-05-18

    Similarly to the system Hamiltonian, a subsystem's reduced density matrix is composed of blocks characterized by symmetry quantum numbers (charge sectors). We present a geometric approach for extracting the contribution of individual charge sectors to the subsystem's entanglement measures within the replica trick method, via threading appropriate conjugate Aharonov-Bohm fluxes through a multisheet Riemann surface. Specializing to the case of 1+1D conformal field theory, we obtain general exact results for the entanglement entropies and spectrum, and apply them to a variety of systems, ranging from free and interacting fermions to spin and parafermion chains, and verify them numerically. We find that the total entanglement entropy, which scales as lnL, is composed of sqrt[lnL] contributions of individual subsystem charge sectors for interacting fermion chains, or even O(L^{0}) contributions when total spin conservation is also accounted for. We also explain how measurements of the contribution to the entanglement from separate charge sectors can be performed experimentally with existing techniques.

  19. The Evolution of Hyperedge Cardinalities and Bose-Einstein Condensation in Hypernetworks.

    PubMed

    Guo, Jin-Li; Suo, Qi; Shen, Ai-Zhong; Forrest, Jeffrey

    2016-09-27

    To depict the complex relationship among nodes and the evolving process of a complex system, a Bose-Einstein hypernetwork is proposed in this paper. Based on two basic evolutionary mechanisms, growth and preference jumping, the distribution of hyperedge cardinalities is studied. The Poisson process theory is used to describe the arrival process of new node batches. And, by using the Poisson process theory and a continuity technique, the hypernetwork is analyzed and the characteristic equation of hyperedge cardinalities is obtained. Additionally, an analytical expression for the stationary average hyperedge cardinality distribution is derived by employing the characteristic equation, from which Bose-Einstein condensation in the hypernetwork is obtained. The theoretical analyses in this paper agree with the conducted numerical simulations. This is the first study on the hyperedge cardinality in hypernetworks, where Bose-Einstein condensation can be regarded as a special case of hypernetworks. Moreover, a condensation degree is also discussed with which Bose-Einstein condensation can be classified.

  20. Extending the Binomial Checkpointing Technique for Resilience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walther, Andrea; Narayanan, Sri Hari Krishna

    In terms of computing time, adjoint methods offer a very attractive alternative to compute gradient information, re- quired, e.g., for optimization purposes. However, together with this very favorable temporal complexity result comes a memory requirement that is in essence proportional with the operation count of the underlying function, e.g., if algo- rithmic differentiation is used to provide the adjoints. For this reason, checkpointing approaches in many variants have become popular. This paper analyzes an extension of the so-called binomial approach to cover also possible failures of the computing systems. Such a measure of precaution is of special interest for massivemore » parallel simulations and adjoint calculations where the mean time between failure of the large scale computing system is smaller than the time needed to complete the calculation of the adjoint information. We de- scribe the extensions of standard checkpointing approaches required for such resilience, provide a corresponding imple- mentation and discuss numerical results.« less

Top