Sample records for specialized image processing

  1. Visual Communications and Image Processing

    NASA Astrophysics Data System (ADS)

    Hsing, T. Russell

    1987-07-01

    This special issue of Optical Engineering is concerned with visual communications and image processing. The increase in communication of visual information over the past several decades has resulted in many new image processing and visual communication systems being put into service. The growth of this field has been rapid in both commercial and military applications. The objective of this special issue is to intermix advent technology in visual communications and image processing with ideas generated from industry, universities, and users through both invited and contributed papers. The 15 papers of this issue are organized into four different categories: image compression and transmission, image enhancement, image analysis and pattern recognition, and image processing in medical applications.

  2. 76 FR 7868 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... Special Emphasis Panel, Small Business: Computational Biology, Image Processing and Data Mining. Date... for Scientific Review Special Emphasis Panel, Quick Trial on Imaging and Image-Guided Intervention...

  3. Image Reconstruction is a New Frontier of Machine Learning.

    PubMed

    Wang, Ge; Ye, Jong Chu; Mueller, Klaus; Fessler, Jeffrey A

    2018-06-01

    Over past several years, machine learning, or more generally artificial intelligence, has generated overwhelming research interest and attracted unprecedented public attention. As tomographic imaging researchers, we share the excitement from our imaging perspective [item 1) in the Appendix], and organized this special issue dedicated to the theme of "Machine learning for image reconstruction." This special issue is a sister issue of the special issue published in May 2016 of this journal with the theme "Deep learning in medical imaging" [item 2) in the Appendix]. While the previous special issue targeted medical image processing/analysis, this special issue focuses on data-driven tomographic reconstruction. These two special issues are highly complementary, since image reconstruction and image analysis are two of the main pillars for medical imaging. Together we cover the whole workflow of medical imaging: from tomographic raw data/features to reconstructed images and then extracted diagnostic features/readings.

  4. The precision-processing subsystem for the Earth Resources Technology Satellite.

    NASA Technical Reports Server (NTRS)

    Chapelle, W. E.; Bybee, J. E.; Bedross, G. M.

    1972-01-01

    Description of the precision processor, a subsystem in the image-processing system for the Earth Resources Technology Satellite (ERTS). This processor is a special-purpose image-measurement and printing system, designed to process user-selected bulk images to produce 1:1,000,000-scale film outputs and digital image data, presented in a Universal-Transverse-Mercator (UTM) projection. The system will remove geometric and radiometric errors introduced by the ERTS multispectral sensors and by the bulk-processor electron-beam recorder. The geometric transformations required for each input scene are determined by resection computations based on reseau measurements and image comparisons with a special ground-control base contained within the system; the images are then printed and digitized by electronic image-transfer techniques.

  5. Medical Devices; General Hospital and Personal Use Devices; Classification of the Image Processing Device for Estimation of External Blood Loss. Final order.

    PubMed

    2017-12-20

    The Food and Drug Administration (FDA or we) is classifying the image processing device for estimation of external blood loss into class II (special controls). The special controls that apply to the device type are identified in this order and will be part of the codified language for the image processing device for estimation of external blood loss' classification. We are taking this action because we have determined that classifying the device into class II (special controls) will provide a reasonable assurance of safety and effectiveness of the device. We believe this action will also enhance patients' access to beneficial innovative devices, in part by reducing regulatory burdens.

  6. Video image processing

    NASA Technical Reports Server (NTRS)

    Murray, N. D.

    1985-01-01

    Current technology projections indicate a lack of availability of special purpose computing for Space Station applications. Potential functions for video image special purpose processing are being investigated, such as smoothing, enhancement, restoration and filtering, data compression, feature extraction, object detection and identification, pixel interpolation/extrapolation, spectral estimation and factorization, and vision synthesis. Also, architectural approaches are being identified and a conceptual design generated. Computationally simple algorithms will be research and their image/vision effectiveness determined. Suitable algorithms will be implimented into an overall architectural approach that will provide image/vision processing at video rates that are flexible, selectable, and programmable. Information is given in the form of charts, diagrams and outlines.

  7. Special Software for Planetary Image Processing and Research

    NASA Astrophysics Data System (ADS)

    Zubarev, A. E.; Nadezhdina, I. E.; Kozlova, N. A.; Brusnikin, E. S.; Karachevtseva, I. P.

    2016-06-01

    The special modules of photogrammetric processing of remote sensing data that provide the opportunity to effectively organize and optimize the planetary studies were developed. As basic application the commercial software package PHOTOMOD™ is used. Special modules were created to perform various types of data processing: calculation of preliminary navigation parameters, calculation of shape parameters of celestial body, global view image orthorectification, estimation of Sun illumination and Earth visibilities from planetary surface. For photogrammetric processing the different types of data have been used, including images of the Moon, Mars, Mercury, Phobos, Galilean satellites and Enceladus obtained by frame or push-broom cameras. We used modern planetary data and images that were taken over the years, shooting from orbit flight path with various illumination and resolution as well as obtained by planetary rovers from surface. Planetary data image processing is a complex task, and as usual it can take from few months to years. We present our efficient pipeline procedure that provides the possibilities to obtain different data products and supports a long way from planetary images to celestial body maps. The obtained data - new three-dimensional control point networks, elevation models, orthomosaics - provided accurate maps production: a new Phobos atlas (Karachevtseva et al., 2015) and various thematic maps that derived from studies of planetary surface (Karachevtseva et al., 2016a).

  8. Recent advances in high-performance fluorescent and bioluminescent RNA imaging probes.

    PubMed

    Xia, Yuqiong; Zhang, Ruili; Wang, Zhongliang; Tian, Jie; Chen, Xiaoyuan

    2017-05-22

    RNA plays an important role in life processes. Imaging of messenger RNAs (mRNAs) and micro-RNAs (miRNAs) not only allows us to learn the formation and transcription of mRNAs and the biogenesis of miRNAs involved in various life processes, but also helps in detecting cancer. High-performance RNA imaging probes greatly expand our view of life processes and enhance the cancer detection accuracy. In this review, we summarize the state-of-the-art high-performance RNA imaging probes, including exogenous probes that can image RNA sequences with special modification and endogeneous probes that can directly image endogenous RNAs without special treatment. For each probe, we review its structure and imaging principle in detail. Finally, we summarize the application of mRNA and miRNA imaging probes in studying life processes as well as in detecting cancer. By correlating the structures and principles of various probes with their practical uses, we compare different RNA imaging probes and offer guidance for better utilization of the current imaging probes and the future design of higher-performance RNA imaging probes.

  9. Vision-sensing image analysis for GTAW process control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, D.D.

    1994-11-01

    Image analysis of a gas tungsten arc welding (GTAW) process was completed using video images from a charge coupled device (CCD) camera inside a specially designed coaxial (GTAW) electrode holder. Video data was obtained from filtered and unfiltered images, with and without the GTAW arc present, showing weld joint features and locations. Data Translation image processing boards, installed in an IBM PC AT 386 compatible computer, and Media Cybernetics image processing software were used to investigate edge flange weld joint geometry for image analysis.

  10. Fast Pixel Buffer For Processing With Lookup Tables

    NASA Technical Reports Server (NTRS)

    Fisher, Timothy E.

    1992-01-01

    Proposed scheme for buffering data on intensities of picture elements (pixels) of image increases rate or processing beyond that attainable when data read, one pixel at time, from main image memory. Scheme applied in design of specialized image-processing circuitry. Intended to optimize performance of processor in which electronic equivalent of address-lookup table used to address those pixels in main image memory required for processing.

  11. Voyager Cartography

    NASA Technical Reports Server (NTRS)

    Batson, R. M.; Bridges, P. M.; Mullins, K. F.

    1985-01-01

    The Jovian and Saturnian satellites are being mapped at several scales from Voyager 1 and 2 data. The maps include specially formatted color mosaics, controlled photomosaics, and airbrush maps. More than 500 Voyager images of the Jovian and Saturnian satellites were radiometrically processed in preparation for cartographic processing. Of these images, 235 were geometrically transformed to map projections for base mosaic compilations. Special techniques for producing hybrid photomosaic/airbrush maps of Callisto are under investigation. The techniques involve making controlled computer mosaics of all available images with highest resolution images superimposed on lowest resolution images. The mosaics are then improved by airbrushing: seams and artifacts are removed, and image details enhanced that had been lost by saturation in some images. A controlled mosaic of the northern hemisphere of Rhea is complete, as is all processing for a similar mosaic of the equatorial region. Current plans and status of the various series are shown in a table.

  12. Visual Communications And Image Processing

    NASA Astrophysics Data System (ADS)

    Hsing, T. Russell; Tzou, Kou-Hu

    1989-07-01

    This special issue on Visual Communications and Image Processing contains 14 papers that cover a wide spectrum in this fast growing area. For the past few decades, researchers and scientists have devoted their efforts to these fields. Through this long-lasting devotion, we witness today the growing popularity of low-bit-rate video as a convenient tool for visual communication. We also see the integration of high-quality video into broadband digital networks. Today, with more sophisticated processing, clearer and sharper pictures are being restored from blurring and noise. Also, thanks to the advances in digital image processing, even a PC-based system can be built to recognize highly complicated Chinese characters at the speed of 300 characters per minute. This special issue can be viewed as a milestone of visual communications and image processing on its journey to eternity. It presents some overviews on advanced topics as well as some new development in specific subjects.

  13. Data Visualization and Animation Lab (DVAL) overview

    NASA Technical Reports Server (NTRS)

    Stacy, Kathy; Vonofenheim, Bill

    1994-01-01

    The general capabilities of the Langley Research Center Data Visualization and Animation Laboratory is described. These capabilities include digital image processing, 3-D interactive computer graphics, data visualization and analysis, video-rate acquisition and processing of video images, photo-realistic modeling and animation, video report generation, and color hardcopies. A specialized video image processing system is also discussed.

  14. Latent Image Processing Can Bolster the Value of Quizzes.

    ERIC Educational Resources Information Center

    Singer, David

    1985-01-01

    Latent image processing is a method which reveals hidden ink when marked with a special pen. Using multiple-choice items with commercially available latent image transfers can provide immediate feedback on take-home quizzes. Students benefitted from formative evaluation and were challenged to search for alternative solutions and explain unexpected…

  15. An evolutionary computation based algorithm for calculating solar differential rotation by automatic tracking of coronal bright points

    NASA Astrophysics Data System (ADS)

    Shahamatnia, Ehsan; Dorotovič, Ivan; Fonseca, Jose M.; Ribeiro, Rita A.

    2016-03-01

    Developing specialized software tools is essential to support studies of solar activity evolution. With new space missions such as Solar Dynamics Observatory (SDO), solar images are being produced in unprecedented volumes. To capitalize on that huge data availability, the scientific community needs a new generation of software tools for automatic and efficient data processing. In this paper a prototype of a modular framework for solar feature detection, characterization, and tracking is presented. To develop an efficient system capable of automatic solar feature tracking and measuring, a hybrid approach combining specialized image processing, evolutionary optimization, and soft computing algorithms is being followed. The specialized hybrid algorithm for tracking solar features allows automatic feature tracking while gathering characterization details about the tracked features. The hybrid algorithm takes advantages of the snake model, a specialized image processing algorithm widely used in applications such as boundary delineation, image segmentation, and object tracking. Further, it exploits the flexibility and efficiency of Particle Swarm Optimization (PSO), a stochastic population based optimization algorithm. PSO has been used successfully in a wide range of applications including combinatorial optimization, control, clustering, robotics, scheduling, and image processing and video analysis applications. The proposed tool, denoted PSO-Snake model, was already successfully tested in other works for tracking sunspots and coronal bright points. In this work, we discuss the application of the PSO-Snake algorithm for calculating the sidereal rotational angular velocity of the solar corona. To validate the results we compare them with published manual results performed by an expert.

  16. The Application of Special Computing Techniques to Speed-Up Image Feature Extraction and Processing Techniques.

    DTIC Science & Technology

    1981-12-01

    ocessors has led to the possibility of implementing a large number of image processing functions in near real time . ~CC~ jnro _ j:% UNLSSFE (b-.YC ASIIAINO...to the possibility of implementing a large number of image processing functions in near " real - time ," a result which is essential to establishing a...for example, and S) rapid image handling for near real - time in- teraction by a user at a display. For example, for a large resolution image, say

  17. Techniques for using diazo materials in remote sensor data analysis

    NASA Technical Reports Server (NTRS)

    Whitebay, L. E.; Mount, S.

    1978-01-01

    The use of data derived from LANDSAT is facilitated when special products or computer enhanced images can be analyzed. However, the facilities required to produce and analyze such products prevent many users from taking full advantages of the LANDSAT data. A simple, low-cost method is presented by which users can make their own specially enhanced composite images from the four band black and white LANDSAT images by using the diazo process. The diazo process is described and a detailed procedure for making various color composites, such as color infrared, false natural color, and false color, is provided. The advantages and limitations of the diazo process are discussed. A brief discussion interpretation of diazo composites for land use mapping with some typical examples is included.

  18. Special feature on imaging systems and techniques

    NASA Astrophysics Data System (ADS)

    Yang, Wuqiang; Giakos, George

    2013-07-01

    The IEEE International Conference on Imaging Systems and Techniques (IST'2012) was held in Manchester, UK, on 16-17 July 2012. The participants came from 26 countries or regions: Austria, Brazil, Canada, China, Denmark, France, Germany, Greece, India, Iran, Iraq, Italy, Japan, Korea, Latvia, Malaysia, Norway, Poland, Portugal, Sweden, Switzerland, Taiwan, Tunisia, UAE, UK and USA. The technical program of the conference consisted of a series of scientific and technical sessions, exploring physical principles, engineering and applications of new imaging systems and techniques, as reflected by the diversity of the submitted papers. Following a rigorous review process, a total of 123 papers were accepted, and they were organized into 30 oral presentation sessions and a poster session. In addition, six invited keynotes were arranged. The conference not only provided the participants with a unique opportunity to exchange ideas and disseminate research outcomes but also paved a way to establish global collaboration. Following the IST'2012, a total of 55 papers, which were technically extended substantially from their versions in the conference proceeding, were submitted as regular papers to this special feature of Measurement Science and Technology . Following a rigorous reviewing process, 25 papers have been finally accepted for publication in this special feature and they are organized into three categories: (1) industrial tomography, (2) imaging systems and techniques and (3) image processing. These papers not only present the latest developments in the field of imaging systems and techniques but also offer potential solutions to existing problems. We hope that this special feature provides a good reference for researchers who are active in the field and will serve as a catalyst to trigger further research. It has been our great pleasure to be the guest editors of this special feature. We would like to thank the authors for their contributions, without which it would not be possible to have this special feature published. We are grateful to all reviewers, who devoted their time and effort, on a voluntary basis, to ensure that all submissions were reviewed rigorously and fairly. The publishing staff of Measurement Science and Technology are particularly acknowledged for giving us timely advice on guest-editing this special feature.

  19. Imaging Systems: What, When, How.

    ERIC Educational Resources Information Center

    Lunin, Lois F.; And Others

    1992-01-01

    The three articles in this special section on document image files discuss intelligent character recognition, including comparison with optical character recognition; selection of displays for document image processing, focusing on paperlike displays; and imaging hardware, software, and vendors, including guidelines for system selection. (MES)

  20. An evaluation of the directed flow graph methodology

    NASA Technical Reports Server (NTRS)

    Snyder, W. E.; Rajala, S. A.

    1984-01-01

    The applicability of the Directed Graph Methodology (DGM) to the design and analysis of special purpose image and signal processing hardware was evaluated. A special purpose image processing system was designed and described using DGM. The design, suitable for very large scale integration (VLSI) implements a region labeling technique. Two computer chips were designed, both using metal-nitride-oxide-silicon (MNOS) technology, as well as a functional system utilizing those chips to perform real time region labeling. The system is described in terms of DGM primitives. As it is currently implemented, DGM is inappropriate for describing synchronous, tightly coupled, special purpose systems. The nature of the DGM formalism lends itself more readily to modeling networks of general purpose processors.

  1. A specialized plug-in software module for computer-aided quantitative measurement of medical images.

    PubMed

    Wang, Q; Zeng, Y J; Huo, P; Hu, J L; Zhang, J H

    2003-12-01

    This paper presents a specialized system for quantitative measurement of medical images. Using Visual C++, we developed a computer-aided software based on Image-Pro Plus (IPP), a software development platform. When transferred to the hard disk of a computer by an MVPCI-V3A frame grabber, medical images can be automatically processed by our own IPP plug-in for immunohistochemical analysis, cytomorphological measurement and blood vessel segmentation. In 34 clinical studies, the system has shown its high stability, reliability and ease of utility.

  2. Photogrammetry Toolbox Reference Manual

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu; Burner, Alpheus W.

    2014-01-01

    Specialized photogrammetric and image processing MATLAB functions useful for wind tunnel and other ground-based testing of aerospace structures are described. These functions include single view and multi-view photogrammetric solutions, basic image processing to determine image coordinates, 2D and 3D coordinate transformations and least squares solutions, spatial and radiometric camera calibration, epipolar relations, and various supporting utility functions.

  3. Digital imaging technology assessment: Digital document storage project

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An ongoing technical assessment and requirements definition project is examining the potential role of digital imaging technology at NASA's STI facility. The focus is on the basic components of imaging technology in today's marketplace as well as the components anticipated in the near future. Presented is a requirement specification for a prototype project, an initial examination of current image processing at the STI facility, and an initial summary of image processing projects at other sites. Operational imaging systems incorporate scanners, optical storage, high resolution monitors, processing nodes, magnetic storage, jukeboxes, specialized boards, optical character recognition gear, pixel addressable printers, communications, and complex software processes.

  4. Physical Modeling for Processing Geosynchronous Imaging Fourier Transform Spectrometer-Indian Ocean METOC Imager (GIFTS-IOMI) Hyperspectral Data

    DTIC Science & Technology

    2002-09-30

    Physical Modeling for Processing Geosynchronous Imaging Fourier Transform Spectrometer-Indian Ocean METOC Imager ( GIFTS -IOMI) Hyperspectral Data...water quality assessment. OBJECTIVES The objective of this DoD research effort is to develop and demonstrate a fully functional GIFTS - IOMI...environment once GIFTS -IOMI is stationed over the Indian Ocean. The system will provide specialized methods for the characterization of the atmospheric

  5. The development of a specialized processor for a space-based multispectral earth imager

    NASA Astrophysics Data System (ADS)

    Khedr, Mostafa E.

    2008-10-01

    This work was done in the Department of Computer Engineering, Lvov Polytechnic National University, Lvov, Ukraine, as a thesis entitled "Space Imager Computer System for Raw Video Data Processing" [1]. This work describes the synthesis and practical implementation of a specialized computer system for raw data control and processing onboard a satellite MultiSpectral earth imager. This computer system is intended for satellites with resolution in the range of one meter with 12-bit precession. The design is based mostly on general off-the-shelf components such as (FPGAs) plus custom designed software for interfacing with PC and test equipment. The designed system was successfully manufactured and now fully functioning in orbit.

  6. Medical devices; radiology devices; reclassification of full-field digital mammography system. Final rule.

    PubMed

    2010-11-05

    The Food and Drug Administration (FDA) is announcing the reclassification of the full-field digital mammography (FFDM) system from class III (premarket approval) to class II (special controls). The device type is intended to produce planar digital x-ray images of the entire breast; this generic type of device may include digital mammography acquisition software, full-field digital image receptor, acquisition workstation, automatic exposure control, image processing and reconstruction programs, patient and equipment supports, component parts, and accessories. The special control that will apply to the device is the guidance document entitled "Class II Special Controls Guidance Document: Full-Field Digital Mammography System." FDA is reclassifying the device into class II (special controls) because general controls along with special controls will provide a reasonable assurance of safety and effectiveness of the device. Elsewhere in this issue of the Federal Register, FDA is announcing the availability of the guidance document that will serve as the special control for this device.

  7. OIPAV: an integrated software system for ophthalmic image processing, analysis and visualization

    NASA Astrophysics Data System (ADS)

    Zhang, Lichun; Xiang, Dehui; Jin, Chao; Shi, Fei; Yu, Kai; Chen, Xinjian

    2018-03-01

    OIPAV (Ophthalmic Images Processing, Analysis and Visualization) is a cross-platform software which is specially oriented to ophthalmic images. It provides a wide range of functionalities including data I/O, image processing, interaction, ophthalmic diseases detection, data analysis and visualization to help researchers and clinicians deal with various ophthalmic images such as optical coherence tomography (OCT) images and color photo of fundus, etc. It enables users to easily access to different ophthalmic image data manufactured from different imaging devices, facilitate workflows of processing ophthalmic images and improve quantitative evaluations. In this paper, we will present the system design and functional modules of the platform and demonstrate various applications. With a satisfying function scalability and expandability, we believe that the software can be widely applied in ophthalmology field.

  8. Terahertz (THZ) Imaging

    DTIC Science & Technology

    2006-03-01

    work in image processing for CWD and other security-related imaging with visual, x - ray , infrared and millimeter wave imagery was seen as a jumping-off...advantage of the fact that, unlike x - rays which offer only magnitude information, THz offers phase information. as well. While the magnitude contains...perspective are analyzed, specially compared with X - ray process tomography system. 5. Gregory, I.S.; Tribe, W.R.; Cole, B.E.; Baker, C.; Evans, M.J

  9. A gallery of HCMM images

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A gallery of what might be called the ""Best of HCMM'' imagery is presented. These 100 images, consisting mainly of Day-VIS, Day-IR, and Night-IR scenes plus a few thermal inertia images, were selected from the collection accrued in the Missions Utilization Office (Code 902) at the Goddard Space Flight Center. They were selected because of both their pictorial quality and their information or interest content. Nearly all the images are the computer processed and contrast stretched products routinely produced by the image processing facility at GSFC. Several LANDSAT images, special HCMM images made by HCMM investigators, and maps round out the input.

  10. Analyses of requirements for computer control and data processing experiment subsystems. Volume 1: ATM experiment S-056 image data processing system techniques development

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The solar imaging X-ray telescope experiment (designated the S-056 experiment) is described. It will photograph the sun in the far ultraviolet or soft X-ray region. Because of the imaging characteristics of this telescope and the necessity of using special techniques for capturing images on film at these wave lengths, methods were developed for computer processing of the photographs. The problems of image restoration were addressed to develop and test digital computer techniques for applying a deconvolution process to restore overall S-056 image quality. Additional techniques for reducing or eliminating the effects of noise and nonlinearity in S-056 photographs were developed.

  11. Realistic tissue visualization using photoacoustic image

    NASA Astrophysics Data System (ADS)

    Cho, Seonghee; Managuli, Ravi; Jeon, Seungwan; Kim, Jeesu; Kim, Chulhong

    2018-02-01

    Visualization methods are very important in biomedical imaging. As a technology that understands life, biomedical imaging has the unique advantage of providing the most intuitive information in the image. This advantage of biomedical imaging can be greatly improved by choosing a special visualization method. This is more complicated in volumetric data. Volume data has the advantage of containing 3D spatial information. Unfortunately, the data itself cannot directly represent the potential value. Because images are always displayed in 2D space, visualization is the key and creates the real value of volume data. However, image processing of 3D data requires complicated algorithms for visualization and high computational burden. Therefore, specialized algorithms and computing optimization are important issues in volume data. Photoacoustic-imaging is a unique imaging modality that can visualize the optical properties of deep tissue. Because the color of the organism is mainly determined by its light absorbing component, photoacoustic data can provide color information of tissue, which is closer to real tissue color. In this research, we developed realistic tissue visualization using acoustic-resolution photoacoustic volume data. To achieve realistic visualization, we designed specialized color transfer function, which depends on the depth of the tissue from the skin. We used direct ray casting method and processed color during computing shader parameter. In the rendering results, we succeeded in obtaining similar texture results from photoacoustic data. The surface reflected rays were visualized in white, and the reflected color from the deep tissue was visualized red like skin tissue. We also implemented the CUDA algorithm in an OpenGL environment for real-time interactive imaging.

  12. Digital processing of Mariner 9 television data.

    NASA Technical Reports Server (NTRS)

    Green, W. B.; Seidman, J. B.

    1973-01-01

    The digital image processing performed by the Image Processing Laboratory (IPL) at JPL in support of the Mariner 9 mission is summarized. The support is divided into the general categories of image decalibration (the removal of photometric and geometric distortions from returned imagery), computer cartographic projections in support of mapping activities, and adaptive experimenter support (flexible support to provide qualitative digital enhancements and quantitative data reduction of returned imagery). Among the tasks performed were the production of maximum discriminability versions of several hundred frames to support generation of a geodetic control net for Mars, and special enhancements supporting analysis of Phobos and Deimos images.

  13. Design and assessment of compact optical systems towards special effects imaging

    NASA Astrophysics Data System (ADS)

    Shaoulov, Vesselin Iossifov

    A main challenge in the field of special effects is to create special effects in real time in a way that the user can preview the effect before taking the actual picture or movie sequence. There are many techniques currently used to create computer-simulated special effects, however current techniques in computer graphics do not provide the option for the creation of real-time texture synthesis. Thus, while computer graphics is a powerful tool in the field of special effects, it is neither portable nor does it provide work in real-time capabilities. Real-time special effects may, however, be created optically. Such approach will provide not only real-time image processing at the speed of light but also a preview option, allowing the user or the artist to preview the effect on various parts of the object in order to optimize the outcome. The work presented in this dissertation was inspired by the idea of optically created special effects, such as painterly effects, encoded in images captured by photographic or motion picture cameras. As part of the presented work, compact relay optics was assessed, developed, and a working prototype was built. It was concluded that even though compact relay optics can be achieved, further push for compactness and cost-effectiveness was impossible in the paradigm of bulk macro-optics systems. Thus, a paradigm for imaging with multi-aperture micro-optics was proposed and demonstrated for the first time, which constitutes one of the key contributions of this work. This new paradigm was further extended to the most general case of magnifying multi-aperture micro-optical systems. Such paradigm allows an extreme reduction in size of the imaging optics by a factor of about 10 and a reduction in weight by a factor of about 500. Furthermore, an experimental quantification of the feasibility of optically created special effects was completed, and consequently raytracing software was developed, which was later commercialized by SmARTLens(TM). While the art forms created via raytracing were powerful, they did not predict all effects acquired experimentally. Thus, finally, as key contribution of this work, the principles of scalar diffraction theory were applied to optical imaging of extended objects under quasi-monochromatic incoherent illumination in order to provide a path to more accurately model the proposed optical imaging process for special effects obtained in the hardware. The existing theoretical framework was generalized to non-paraxial in- and out-of-focus imaging and results were obtained to verify the generalized framework. In the generalized non-paraxial framework, even the most complex linear systems, without any assumptions for shift invariance, can be modeled and analyzed.

  14. A new concept of real-time security camera monitoring with privacy protection by masking moving objects

    NASA Astrophysics Data System (ADS)

    Yabuta, Kenichi; Kitazawa, Hitoshi; Tanaka, Toshihisa

    2006-02-01

    Recently, monitoring cameras for security have been extensively increasing. However, it is normally difficult to know when and where we are monitored by these cameras and how the recorded images are stored and/or used. Therefore, how to protect privacy in the recorded images is a crucial issue. In this paper, we address this problem and introduce a framework for security monitoring systems considering the privacy protection. We state requirements for monitoring systems in this framework. We propose a possible implementation that satisfies the requirements. To protect privacy of recorded objects, they are made invisible by appropriate image processing techniques. Moreover, the original objects are encrypted and watermarked into the image with the "invisible" objects, which is coded by the JPEG standard. Therefore, the image decoded by a normal JPEG viewer includes the objects that are unrecognized or invisible. We also introduce in this paper a so-called "special viewer" in order to decrypt and display the original objects. This special viewer can be used by limited users when necessary for crime investigation, etc. The special viewer allows us to choose objects to be decoded and displayed. Moreover, in this proposed system, real-time processing can be performed, since no future frame is needed to generate a bitstream.

  15. Privacy Protection by Masking Moving Objects for Security Cameras

    NASA Astrophysics Data System (ADS)

    Yabuta, Kenichi; Kitazawa, Hitoshi; Tanaka, Toshihisa

    Because of an increasing number of security cameras, it is crucial to establish a system that protects the privacy of objects in the recorded images. To this end, we propose a framework of image processing and data hiding for security monitoring and privacy protection. First, we state the requirements of the proposed monitoring systems and suggest possible implementation that satisfies those requirements. The underlying concept of our proposed framework is as follows: (1) in the recorded images, the objects whose privacy should be protected are deteriorated by appropriate image processing; (2) the original objects are encrypted and watermarked into the output image, which is encoded using an image compression standard; (3) real-time processing is performed such that no future frame is required to generate on output bitstream. It should be noted that in this framework, anyone can observe the decoded image that includes the deteriorated objects that are unrecognizable or invisible. On the other hand, for crime investigation, this system allows a limited number of users to observe the original objects by using a special viewer that decrypts and decodes the watermarked objects with a decoding password. Moreover, the special viewer allows us to select the objects to be decoded and displayed. We provide an implementation example, experimental results, and performance evaluations to support our proposed framework.

  16. Missing

    NASA Image and Video Library

    2009-04-30

    Here we see two different views of the spiral galaxy, Messier 81. On the left is an image taken in blue light, while on the right is a specially-processed version of an image taken with NASA Spitzer infrared array camera at 4.5 microns.

  17. 36 CFR 251.51 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of motion picture, videotaping, sound recording, or any other moving image or audio recording... category—A processing or monitoring category requiring more than 50 hours of agency time to process an application for a special use authorization (processing category 6 and, in certain situations, processing...

  18. 36 CFR 251.51 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of motion picture, videotaping, sound recording, or any other moving image or audio recording... category—A processing or monitoring category requiring more than 50 hours of agency time to process an application for a special use authorization (processing category 6 and, in certain situations, processing...

  19. 36 CFR 251.51 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of motion picture, videotaping, sound recording, or any other moving image or audio recording... category—A processing or monitoring category requiring more than 50 hours of agency time to process an application for a special use authorization (processing category 6 and, in certain situations, processing...

  20. Specialized CCDs for high-frame-rate visible imaging and UV imaging applications

    NASA Astrophysics Data System (ADS)

    Levine, Peter A.; Taylor, Gordon C.; Shallcross, Frank V.; Tower, John R.; Lawler, William B.; Harrison, Lorna J.; Socker, Dennis G.; Marchywka, Mike

    1993-11-01

    This paper reports recent progress by the authors in two distinct charge coupled device (CCD) technology areas. The first technology area is high frame rate, multi-port, frame transfer imagers. A 16-port, 512 X 512, split frame transfer imager and a 32-port, 1024 X 1024, split frame transfer imager are described. The thinned, backside illuminated devices feature on-chip correlated double sampling, buried blooming drains, and a room temperature dark current of less than 50 pA/cm2, without surface accumulation. The second technology area is vacuum ultraviolet (UV) frame transfer imagers. A developmental 1024 X 640 frame transfer imager with 20% quantum efficiency at 140 nm is described. The device is fabricated in a p-channel CCD process, thinned for backside illumination, and utilizes special packaging to achieve stable UV response.

  1. Image Processing

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Electronic Imagery, Inc.'s ImageScale Plus software, developed through a Small Business Innovation Research (SBIR) contract with Kennedy Space Flight Center for use on space shuttle Orbiter in 1991, enables astronauts to conduct image processing, prepare electronic still camera images in orbit, display them and downlink images to ground based scientists for evaluation. Electronic Imagery, Inc.'s ImageCount, a spin-off product of ImageScale Plus, is used to count trees in Florida orange groves. Other applications include x-ray and MRI imagery, textile designs and special effects for movies. As of 1/28/98, company could not be located, therefore contact/product information is no longer valid.

  2. Applied Optics Golden Anniversary commemorative reviews: introduction.

    PubMed

    Mait, Joseph N; Mendez, Eugenio; Peyghambarian, Nasser; Poon, T-C

    2013-01-01

    Applied Optics presents three special issues to end its retrospective of Applied Optics' 50 years. The special issues are interference, interferometry, and phase; imaging, optical processing, and telecommunications; and polarization and scattering. The issues, which contain 19 commemorative reviews from some of the journal's luminaries, are summarized.

  3. 36 CFR 251.51 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... recording, or any other moving image or audio recording equipment on National Forest System lands that... processing or monitoring category requiring more than 50 hours of agency time to process an application for a special use authorization (processing category 6 and, in certain situations, processing category 5) or...

  4. A special vegetation index for the weed detection in sensor based precision agriculture.

    PubMed

    Langner, Hans-R; Böttger, Hartmut; Schmidt, Helmut

    2006-06-01

    Many technologies in precision agriculture (PA) require image analysis and image- processing with weed and background differentiations. The detection of weeds on mulched cropland is one important image-processing task for sensor based precision herbicide applications. The article introduces a special vegetation index, the Difference Index with Red Threshold (DIRT), for the weed detection on mulched croplands. Experimental investigations in weed detection on mulched areas point out that the DIRT performs better than the Normalized Difference Vegetation Index (NDVI). The result of the evaluation with four different decision criteria indicate, that the new DIRT gives the highest reliability in weed/background differentiation on mulched areas. While using the same spectral bands (infrared and red) as the NDVI, the new DIRT is more suitable for weed detection than the other vegetation indices and requires only a small amount of additional calculation power. The new vegetation index DIRT was tested on mulched areas during automatic ratings with a special weed camera system. The test results compare the new DIRT and three other decision criteria: the difference between infrared and red intensity (Diff), the soil-adjusted quotient between infrared and red intensity (Quotient) and the NDVI. The decision criteria were compared with the definition of a worse case decision quality parameter Q, suitable for mulched croplands. Although this new index DIRT needs further testing, the index seems to be a good decision criterion for the weed detection on mulched areas and should also be useful for other image processing applications in precision agriculture. The weed detection hardware and the PC program for the weed image processing were developed with funds from the German Federal Ministry of Education and Research (BMBF).

  5. 5 CFR 850.103 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... graphical image of a handwritten signature, usually created using a special computer input device, such as a... comparison with the characteristics and biometric data of a known or exemplar signature image. Director means... folder across the Government. Electronic retirement and insurance processing system means the new...

  6. 5 CFR 850.103 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... graphical image of a handwritten signature, usually created using a special computer input device, such as a... comparison with the characteristics and biometric data of a known or exemplar signature image. Director means... folder across the Government. Electronic retirement and insurance processing system means the new...

  7. 5 CFR 850.103 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... graphical image of a handwritten signature, usually created using a special computer input device, such as a... comparison with the characteristics and biometric data of a known or exemplar signature image. Director means... folder across the Government. Electronic retirement and insurance processing system means the new...

  8. Cloud and Radiation Mission with Active and Passive Sensing from the Space Station

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.

    1998-01-01

    A cloud and aerosol radiative forcing and physical process study involving active laser and radar profiling with a combination of passive radiometric sounders and imagers would use the space station as an observation platform. The objectives are to observe the full three dimensional cloud and aerosol structure and the associated physical parameters leading to a complete measurement of radiation forcing processes. The instruments would include specialized radar and lidar for cloud and aerosol profiling, visible, infrared and microwave imaging radiometers with comprehensive channels for cloud and aerosol observation and specialized sounders. The low altitude,. available power and servicing capability of the space station are significant advantages for the active sensors and multiple passive instruments.

  9. Design and DSP implementation of star image acquisition and star point fast acquiring and tracking

    NASA Astrophysics Data System (ADS)

    Zhou, Guohui; Wang, Xiaodong; Hao, Zhihang

    2006-02-01

    Star sensor is a special high accuracy photoelectric sensor. Attitude acquisition time is an important function index of star sensor. In this paper, the design target is to acquire 10 samples per second dynamic performance. On the basis of analyzing CCD signals timing and star image processing, a new design and a special parallel architecture for improving star image processing are presented in this paper. In the design, the operation moving the data in expanded windows including the star to the on-chip memory of DSP is arranged in the invalid period of CCD frame signal. During the CCD saving the star image to memory, DSP processes the data in the on-chip memory. This parallelism greatly improves the efficiency of processing. The scheme proposed here results in enormous savings of memory normally required. In the scheme, DSP HOLD mode and CPLD technology are used to make a shared memory between CCD and DSP. The efficiency of processing is discussed in numerical tests. Only in 3.5ms is acquired the five lightest stars in the star acquisition stage. In 43us, the data in five expanded windows including stars are moved into the internal memory of DSP, and in 1.6ms, five star coordinates are achieved in the star tracking stage.

  10. Special raster scanning for reduction of charging effects in scanning electron microscopy.

    PubMed

    Suzuki, Kazuhiko; Oho, Eisaku

    2014-01-01

    A special raster scanning (SRS) method for reduction of charging effects is developed for the field of SEM. Both a conventional fast scan (horizontal direction) and an unusual scan (vertical direction) are adopted for acquiring raw data consisting of many sub-images. These data are converted to a proper SEM image using digital image processing techniques. About sharpness of the image and reduction of charging effects, the SRS is compared with the conventional fast scan (with frame-averaging) and the conventional slow scan. Experimental results show the effectiveness of SRS images. By a successful combination of the proposed scanning method and low accelerating voltage (LV)-SEMs, it is expected that higher-quality SEM images can be more easily acquired by the considerable reduction of charging effects, while maintaining the resolution. © 2013 Wiley Periodicals, Inc.

  11. 36 CFR 251.51 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of motion picture, videotaping, sound recording, or any other moving image or audio recording.... Major category—A processing or monitoring category requiring more than 50 hours of agency time to process an application for a special use authorization (processing category 6 and, in certain situations...

  12. EOS image data processing system definition study

    NASA Technical Reports Server (NTRS)

    Gilbert, J.; Honikman, T.; Mcmahon, E.; Miller, E.; Pietrzak, L.; Yorsz, W.

    1973-01-01

    The Image Processing System (IPS) requirements and configuration are defined for NASA-sponsored advanced technology Earth Observatory System (EOS). The scope included investigation and definition of IPS operational, functional, and product requirements considering overall system constraints and interfaces (sensor, etc.) The scope also included investigation of the technical feasibility and definition of a point design reflecting system requirements. The design phase required a survey of present and projected technology related to general and special-purpose processors, high-density digital tape recorders, and image recorders.

  13. Image-based information, communication, and retrieval

    NASA Technical Reports Server (NTRS)

    Bryant, N. A.; Zobrist, A. L.

    1980-01-01

    IBIS/VICAR system combines video image processing and information management. Flexible programs require user to supply only parameters specific to particular application. Special-purpose input/output routines transfer image data with reduced memory requirements. New application programs are easily incorporated. Program is written in FORTRAN IV, Assembler, and OS JCL for batch execution and has been implemented on IBM 360.

  14. Overview on METEOSAT geometrical image data processing

    NASA Technical Reports Server (NTRS)

    Diekmann, Frank J.

    1994-01-01

    Digital Images acquired from the geostationary METEOSAT satellites are processed and disseminated at ESA's European Space Operations Centre in Darmstadt, Germany. Their scientific value is mainly dependent on their radiometric quality and geometric stability. This paper will give an overview on the image processing activities performed at ESOC, concentrating on the geometrical restoration and quality evaluation. The performance of the rectification process for the various satellites over the past years will be presented and the impacts of external events as for instance the Pinatubo eruption in 1991 will be explained. Special developments both in hard and software, necessary to cope with demanding tasks as new image resampling or to correct for spacecraft anomalies, are presented as well. The rotating lens of MET-5 causing severe geometrical image distortions is an example for the latter.

  15. A special purpose knowledge-based face localization method

    NASA Astrophysics Data System (ADS)

    Hassanat, Ahmad; Jassim, Sabah

    2008-04-01

    This paper is concerned with face localization for visual speech recognition (VSR) system. Face detection and localization have got a great deal of attention in the last few years, because it is an essential pre-processing step in many techniques that handle or deal with faces, (e.g. age, face, gender, race and visual speech recognition). We shall present an efficient method for localization human's faces in video images captured on mobile constrained devices, under a wide variation in lighting conditions. We use a multiphase method that may include all or some of the following steps starting with image pre-processing, followed by a special purpose edge detection, then an image refinement step. The output image will be passed through a discrete wavelet decomposition procedure, and the computed LL sub-band at a certain level will be transformed into a binary image that will be scanned by using a special template to select a number of possible candidate locations. Finally, we fuse the scores from the wavelet step with scores determined by color information for the candidate location and employ a form of fuzzy logic to distinguish face from non-face locations. We shall present results of large number of experiments to demonstrate that the proposed face localization method is efficient and achieve high level of accuracy that outperforms existing general-purpose face detection methods.

  16. 5 CFR 850.103 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) ELECTRONIC RETIREMENT PROCESSING General Provisions § 850.103 Definitions. In this part— Agency means an... graphical image of a handwritten signature usually created using a special computer input device (such as a... comparison with the characteristics and biometric data of a known or exemplar signature image. Director means...

  17. Real-time blind image deconvolution based on coordinated framework of FPGA and DSP

    NASA Astrophysics Data System (ADS)

    Wang, Ze; Li, Hang; Zhou, Hua; Liu, Hongjun

    2015-10-01

    Image restoration takes a crucial place in several important application domains. With the increasing of computation requirement as the algorithms become much more complexity, there has been a significant rise in the need for accelerating implementation. In this paper, we focus on an efficient real-time image processing system for blind iterative deconvolution method by means of the Richardson-Lucy (R-L) algorithm. We study the characteristics of algorithm, and an image restoration processing system based on the coordinated framework of FPGA and DSP (CoFD) is presented. Single precision floating-point processing units with small-scale cascade and special FFT/IFFT processing modules are adopted to guarantee the accuracy of the processing. Finally, Comparing experiments are done. The system could process a blurred image of 128×128 pixels within 32 milliseconds, and is up to three or four times faster than the traditional multi-DSPs systems.

  18. Including the Child with Special Needs: Learning from Reggio Emilia

    ERIC Educational Resources Information Center

    Gilman, Sheryl

    2007-01-01

    Inclusive education aims toward integrating special needs students into all events of the typical classroom. For North American educators, the process of inclusion does not unfold naturally as in the routines of the Reggio Emilia approach. Reggio's powerful image of the child nourishes the authentic practice of maximizing each child's…

  19. System design and implementation of digital-image processing using computational grids

    NASA Astrophysics Data System (ADS)

    Shen, Zhanfeng; Luo, Jiancheng; Zhou, Chenghu; Huang, Guangyu; Ma, Weifeng; Ming, Dongping

    2005-06-01

    As a special type of digital image, remotely sensed images are playing increasingly important roles in our daily lives. Because of the enormous amounts of data involved, and the difficulties of data processing and transfer, an important issue for current computer and geo-science experts is developing internet technology to implement rapid remotely sensed image processing. Computational grids are able to solve this problem effectively. These networks of computer workstations enable the sharing of data and resources, and are used by computer experts to solve imbalances of network resources and lopsided usage. In China, computational grids combined with spatial-information-processing technology have formed a new technology: namely, spatial-information grids. In the field of remotely sensed images, spatial-information grids work more effectively for network computing, data processing, resource sharing, task cooperation and so on. This paper focuses mainly on the application of computational grids to digital-image processing. Firstly, we describe the architecture of digital-image processing on the basis of computational grids, its implementation is then discussed in detail with respect to the technology of middleware. The whole network-based intelligent image-processing system is evaluated on the basis of the experimental analysis of remotely sensed image-processing tasks; the results confirm the feasibility of the application of computational grids to digital-image processing.

  20. Machine processing of remotely sensed data; Proceedings of the Conference, Purdue University, West Lafayette, Ind., October 16-18, 1973

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Topics discussed include the management and processing of earth resources information, special-purpose processors for the machine processing of remotely sensed data, digital image registration by a mathematical programming technique, the use of remote-sensor data in land classification (in particular, the use of ERTS-1 multispectral scanning data), the use of remote-sensor data in geometrical transformations and mapping, earth resource measurement with the aid of ERTS-1 multispectral scanning data, the use of remote-sensor data in the classification of turbidity levels in coastal zones and in the identification of ecological anomalies, the problem of feature selection and the classification of objects in multispectral images, the estimation of proportions of certain categories of objects, and a number of special systems and techniques. Individual items are announced in this issue.

  1. NASA sea ice and snow validation plan for the Defense Meteorological Satellite Program special sensor microwave/imager

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J. (Editor); Swift, Calvin T. (Editor)

    1987-01-01

    This document addresses the task of developing and executing a plan for validating the algorithm used for initial processing of sea ice data from the Special Sensor Microwave/Imager (SSMI). The document outlines a plan for monitoring the performance of the SSMI, for validating the derived sea ice parameters, and for providing quality data products before distribution to the research community. Because of recent advances in the application of passive microwave remote sensing to snow cover on land, the validation of snow algorithms is also addressed.

  2. Integrated Imaging and Vision Techniques for Industrial Inspection: A Special Issue on Machine Vision and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zheng; Ukida, H.; Ramuhalli, Pradeep

    2010-06-05

    Imaging- and vision-based techniques play an important role in industrial inspection. The sophistication of the techniques assures high- quality performance of the manufacturing process through precise positioning, online monitoring, and real-time classification. Advanced systems incorporating multiple imaging and/or vision modalities provide robust solutions to complex situations and problems in industrial applications. A diverse range of industries, including aerospace, automotive, electronics, pharmaceutical, biomedical, semiconductor, and food/beverage, etc., have benefited from recent advances in multi-modal imaging, data fusion, and computer vision technologies. Many of the open problems in this context are in the general area of image analysis methodologies (preferably in anmore » automated fashion). This editorial article introduces a special issue of this journal highlighting recent advances and demonstrating the successful applications of integrated imaging and vision technologies in industrial inspection.« less

  3. Dedicated computer system AOTK for image processing and analysis of horse navicular bone

    NASA Astrophysics Data System (ADS)

    Zaborowicz, M.; Fojud, A.; Koszela, K.; Mueller, W.; Górna, K.; Okoń, P.; Piekarska-Boniecka, H.

    2017-07-01

    The aim of the research was made the dedicated application AOTK (pol. Analiza Obrazu Trzeszczki Kopytowej) for image processing and analysis of horse navicular bone. The application was produced by using specialized software like Visual Studio 2013 and the .NET platform. To implement algorithms of image processing and analysis were used libraries of Aforge.NET. Implemented algorithms enabling accurate extraction of the characteristics of navicular bones and saving data to external files. Implemented in AOTK modules allowing the calculations of distance selected by user, preliminary assessment of conservation of structure of the examined objects. The application interface is designed in a way that ensures user the best possible view of the analyzed images.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tschudi, T.; Herden, A.; Goltz, J.

    A theoretical and experimental study of two- and four-wave mixing in photorefractive crystals (BaTiO/sub 3/) is presented, giving special priority to image amplification in optical information processing systems.

  5. Video streaming technologies using ActiveX and LabVIEW

    NASA Astrophysics Data System (ADS)

    Panoiu, M.; Rat, C. L.; Panoiu, C.

    2015-06-01

    The goal of this paper is to present the possibilities of remote image processing through data exchange between two programming technologies: LabVIEW and ActiveX. ActiveX refers to the process of controlling one program from another via ActiveX component; where one program acts as the client and the other as the server. LabVIEW can be either client or server. Both programs (client and server) exist independent of each other but are able to share information. The client communicates with the ActiveX objects that the server opens to allow the sharing of information [7]. In the case of video streaming [1] [2], most ActiveX controls can only display the data, being incapable of transforming it into a data type that LabVIEW can process. This becomes problematic when the system is used for remote image processing. The LabVIEW environment itself provides little if any possibilities for video streaming, and the methods it does offer are usually not high performance, but it possesses high performance toolkits and modules specialized in image processing, making it ideal for processing the captured data. Therefore, we chose to use existing software, specialized in video streaming along with LabVIEW and to capture the data provided by them, for further use, within LabVIEW. The software we studied (the ActiveX controls of a series of media players that utilize streaming technology) provide high quality data and a very small transmission delay, ensuring the reliability of the results of the image processing.

  6. Spatial Standard Observer

    NASA Technical Reports Server (NTRS)

    Watson, Andrw B. (Inventor)

    2010-01-01

    The present invention relates to devices and methods for the measurement and/or for the specification of the perceptual intensity of a visual image. or the perceptual distance between a pair of images. Grayscale test and reference images are processed to produce test and reference luminance images. A luminance filter function is convolved with the reference luminance image to produce a local mean luminance reference image . Test and reference contrast images are produced from the local mean luminance reference image and the test and reference luminance images respectively, followed by application of a contrast sensitivity filter. The resulting images are combined according to mathematical prescriptions to produce a Just Noticeable Difference, JND value, indicative of a Spatial Standard Observer. SSO. Some embodiments include masking functions. window functions. special treatment for images lying on or near border and pre-processing of test images.

  7. Spatial Standard Observer

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    2012-01-01

    The present invention relates to devices and methods for the measurement and/or for the specification of the perceptual intensity of a visual image, or the perceptual distance between a pair of images. Grayscale test and reference images are processed to produce test and reference luminance images. A luminance filter function is convolved with the reference luminance image to produce a local mean luminance reference image. Test and reference contrast images are produced from the local mean luminance reference image and the test and reference luminance images respectively, followed by application of a contrast sensitivity filter. The resulting images are combined according to mathematical prescriptions to produce a Just Noticeable Difference, JND value, indicative of a Spatial Standard Observer, SSO. Some embodiments include masking functions, window functions, special treatment for images lying on or near borders and pre-processing of test images.

  8. Noise reduction and image enhancement using a hardware implementation of artificial neural networks

    NASA Astrophysics Data System (ADS)

    David, Robert; Williams, Erin; de Tremiolles, Ghislain; Tannhof, Pascal

    1999-03-01

    In this paper, we present a neural based solution developed for noise reduction and image enhancement using the ZISC, an IBM hardware processor which implements the Restricted Coulomb Energy algorithm and the K-Nearest Neighbor algorithm. Artificial neural networks present the advantages of processing time reduction in comparison with classical models, adaptability, and the weighted property of pattern learning. The goal of the developed application is image enhancement in order to restore old movies (noise reduction, focus correction, etc.), to improve digital television images, or to treat images which require adaptive processing (medical images, spatial images, special effects, etc.). Image results show a quantitative improvement over the noisy image as well as the efficiency of this system. Further enhancements are being examined to improve the output of the system.

  9. A Study of Alternative Computer Architectures for System Reliability and Software Simplification.

    DTIC Science & Technology

    1981-04-22

    compression. Several known applications of neighborhood processing, such as noise removal, and boundary smoothing, are shown to be special cases of...Processing [21] A small effort was undertaken to implement image array processing at a very low cost. To this end, a standard Qwip Facsimile

  10. Thread concept for automatic task parallelization in image analysis

    NASA Astrophysics Data System (ADS)

    Lueckenhaus, Maximilian; Eckstein, Wolfgang

    1998-09-01

    Parallel processing of image analysis tasks is an essential method to speed up image processing and helps to exploit the full capacity of distributed systems. However, writing parallel code is a difficult and time-consuming process and often leads to an architecture-dependent program that has to be re-implemented when changing the hardware. Therefore it is highly desirable to do the parallelization automatically. For this we have developed a special kind of thread concept for image analysis tasks. Threads derivated from one subtask may share objects and run in the same context but may process different threads of execution and work on different data in parallel. In this paper we describe the basics of our thread concept and show how it can be used as basis of an automatic task parallelization to speed up image processing. We further illustrate the design and implementation of an agent-based system that uses image analysis threads for generating and processing parallel programs by taking into account the available hardware. The tests made with our system prototype show that the thread concept combined with the agent paradigm is suitable to speed up image processing by an automatic parallelization of image analysis tasks.

  11. [Advance in interferogram data processing technique].

    PubMed

    Jing, Juan-Juan; Xiangli, Bin; Lü, Qun-Bo; Huang, Min; Zhou, Jin-Song

    2011-04-01

    Fourier transform spectrometry is a type of novel information obtaining technology, which integrated the functions of imaging and spectra, but the data that the instrument acquired is the interference data of the target, which is an intermediate data and couldn't be used directly, so data processing must be adopted for the successful application of the interferometric data In the present paper, data processing techniques are divided into two classes: general-purpose and special-type. First, the advance in universal interferometric data processing technique is introduced, then the special-type interferometric data extracting method and data processing technique is illustrated according to the classification of Fourier transform spectroscopy. Finally, the trends of interferogram data processing technique are discussed.

  12. An Ibm PC/AT-Based Image Acquisition And Processing System For Quantitative Image Analysis

    NASA Astrophysics Data System (ADS)

    Kim, Yongmin; Alexander, Thomas

    1986-06-01

    In recent years, a large number of applications have been developed for image processing systems in the area of biological imaging. We have already finished the development of a dedicated microcomputer-based image processing and analysis system for quantitative microscopy. The system's primary function has been to facilitate and ultimately automate quantitative image analysis tasks such as the measurement of cellular DNA contents. We have recognized from this development experience, and interaction with system users, biologists and technicians, that the increasingly widespread use of image processing systems, and the development and application of new techniques for utilizing the capabilities of such systems, would generate a need for some kind of inexpensive general purpose image acquisition and processing system specially tailored for the needs of the medical community. We are currently engaged in the development and testing of hardware and software for a fairly high-performance image processing computer system based on a popular personal computer. In this paper, we describe the design and development of this system. Biological image processing computer systems have now reached a level of hardware and software refinement where they could become convenient image analysis tools for biologists. The development of a general purpose image processing system for quantitative image analysis that is inexpensive, flexible, and easy-to-use represents a significant step towards making the microscopic digital image processing techniques more widely applicable not only in a research environment as a biologist's workstation, but also in clinical environments as a diagnostic tool.

  13. Web-based platform for collaborative medical imaging research

    NASA Astrophysics Data System (ADS)

    Rittner, Leticia; Bento, Mariana P.; Costa, André L.; Souza, Roberto M.; Machado, Rubens C.; Lotufo, Roberto A.

    2015-03-01

    Medical imaging research depends basically on the availability of large image collections, image processing and analysis algorithms, hardware and a multidisciplinary research team. It has to be reproducible, free of errors, fast, accessible through a large variety of devices spread around research centers and conducted simultaneously by a multidisciplinary team. Therefore, we propose a collaborative research environment, named Adessowiki, where tools and datasets are integrated and readily available in the Internet through a web browser. Moreover, processing history and all intermediate results are stored and displayed in automatic generated web pages for each object in the research project or clinical study. It requires no installation or configuration from the client side and offers centralized tools and specialized hardware resources, since processing takes place in the cloud.

  14. Cardiovascular Imaging and Image Processing: Theory and Practice - 1975

    NASA Technical Reports Server (NTRS)

    Harrison, Donald C. (Editor); Sandler, Harold (Editor); Miller, Harry A. (Editor); Hood, Manley J. (Editor); Purser, Paul E. (Editor); Schmidt, Gene (Editor)

    1975-01-01

    Ultrasonography was examined in regard to the developmental highlights and present applicatons of cardiac ultrasound. Doppler ultrasonic techniques and the technology of miniature acoustic element arrays were reported. X-ray angiography was discussed with special considerations on quantitative three dimensional dynamic imaging of structure and function of the cardiopulmonary and circulatory systems in all regions of the body. Nuclear cardiography and scintigraphy, three--dimensional imaging of the myocardium with isotopes, and the commercialization of the echocardioscope were studied.

  15. Using Microsoft PowerPoint as an Astronomical Image Analysis Tool

    NASA Astrophysics Data System (ADS)

    Beck-Winchatz, Bernhard

    2006-12-01

    Engaging students in the analysis of authentic scientific data is an effective way to teach them about the scientific process and to develop their problem solving, teamwork and communication skills. In astronomy several image processing and analysis software tools have been developed for use in school environments. However, the practical implementation in the classroom is often difficult because the teachers may not have the comfort level with computers necessary to install and use these tools, they may not have adequate computer privileges and/or support, and they may not have the time to learn how to use specialized astronomy software. To address this problem, we have developed a set of activities in which students analyze astronomical images using basic tools provided in PowerPoint. These include measuring sizes, distances, and angles, and blinking images. In contrast to specialized software, PowerPoint is broadly available on school computers. Many teachers are already familiar with PowerPoint, and the skills developed while learning how to analyze astronomical images are highly transferable. We will discuss several practical examples of measurements, including the following: -Variations in the distances to the sun and moon from their angular sizes -Magnetic declination from images of shadows -Diameter of the moon from lunar eclipse images -Sizes of lunar craters -Orbital radii of the Jovian moons and mass of Jupiter -Supernova and comet searches -Expansion rate of the universe from images of distant galaxies

  16. Fringe image processing based on structured light series

    NASA Astrophysics Data System (ADS)

    Gai, Shaoyan; Da, Feipeng; Li, Hongyan

    2009-11-01

    The code analysis of the fringe image is playing a vital role in the data acquisition of structured light systems, which affects precision, computational speed and reliability of the measurement processing. According to the self-normalizing characteristic, a fringe image processing method based on structured light is proposed. In this method, a series of projective patterns is used when detecting the fringe order of the image pixels. The structured light system geometry is presented, which consist of a white light projector and a digital camera, the former projects sinusoidal fringe patterns upon the object, and the latter acquires the fringe patterns that are deformed by the object's shape. Then the binary images with distinct white and black strips can be obtained and the ability to resist image noise is improved greatly. The proposed method can be implemented easily and applied for profile measurement based on special binary code in a wide field.

  17. Increasing the speed of medical image processing in MatLab®

    PubMed Central

    Bister, M; Yap, CS; Ng, KH; Tok, CH

    2007-01-01

    MatLab® has often been considered an excellent environment for fast algorithm development but is generally perceived as slow and hence not fit for routine medical image processing, where large data sets are now available e.g., high-resolution CT image sets with typically hundreds of 512x512 slices. Yet, with proper programming practices – vectorization, pre-allocation and specialization – applications in MatLab® can run as fast as in C language. In this article, this point is illustrated with fast implementations of bilinear interpolation, watershed segmentation and volume rendering. PMID:21614269

  18. High data volume and transfer rate techniques used at NASA's image processing facility

    NASA Technical Reports Server (NTRS)

    Heffner, P.; Connell, E.; Mccaleb, F.

    1978-01-01

    Data storage and transfer operations at a new image processing facility are described. The equipment includes high density digital magnetic tape drives and specially designed controllers to provide an interface between the tape drives and computerized image processing systems. The controller performs the functions necessary to convert the continuous serial data stream from the tape drive to a word-parallel blocked data stream which then goes to the computer-based system. With regard to the tape packing density, 1.8 times 10 to the tenth data bits are stored on a reel of one-inch tape. System components and their operation are surveyed, and studies on advanced storage techniques are summarized.

  19. Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS)

    NASA Astrophysics Data System (ADS)

    Ryu, Joo-Hyung; Han, Hee-Jeong; Cho, Seongick; Park, Young-Je; Ahn, Yu-Hwan

    2012-09-01

    GOCI, the world's first geostationary ocean color satellite, provides images with a spatial resolution of 500 m at hourly intervals up to 8 times a day, allowing observations of short-term changes in the Northeast Asian region. The GOCI Data Processing System (GDPS), a specialized data processing software for GOCI, was developed for real-time generation of various products. This paper describes GOCI characteristics and GDPS workflow/products, so as to enable the efficient utilization of GOCI. To provide quality images and data, atmospheric correction and data analysis algorithms must be improved through continuous Cal/Val. GOCI-II will be developed by 2018 to facilitate in-depth studies on geostationary ocean color satellites.

  20. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning.

    PubMed

    Sattler, Bernhard; Lee, John A; Lonsdale, Markus; Coche, Emmanuel

    2010-09-01

    The positron emission tomography in combination with CT in hybrid, cross-modality imaging systems (PET/CT) gains more and more importance as a part of the treatment-planning procedure in radiotherapy. Positron emission tomography (PET), as a integral part of nuclear medicine imaging and non-invasive imaging technique, offers the visualization and quantification of pre-selected tracer metabolism. In combination with the structural information from CT, this molecular imaging technique has great potential to support and improve the outcome of the treatment-planning procedure prior to radiotherapy. By the choice of the PET-Tracer, a variety of different metabolic processes can be visualized. First and foremost, this is the glucose metabolism of a tissue as well as for instance hypoxia or cell proliferation. This paper comprises the system characteristics of hybrid PET/CT systems. Acquisition and processing protocols are described in general and modifications to cope with the special needs in radiooncology. This starts with the different position of the patient on a special table top, continues with the use of the same fixation material as used for positioning of the patient in radiooncology while simulation and irradiation and leads to special processing protocols that include the delineation of the volumes that are subject to treatment planning and irradiation (PTV, GTV, CTV, etc.). General CT acquisition and processing parameters as well as the use of contrast enhancement of the CT are described. The possible risks and pitfalls the investigator could face during the hybrid-imaging procedure are explained and listed. The interdisciplinary use of different imaging modalities implies a increase of the volume of data created. These data need to be stored and communicated fast, safe and correct. Therefore, the DICOM-Standard provides objects and classes for this purpose (DICOM RT). Furthermore, the standard DICOM objects and classes for nuclear medicine (NM, PT) and computed tomography (CT) are used to communicate the actual image data created by the modalities. Care must be taken for data security, especially when transferring data across the (network-) borders of different hospitals. Overall, the most important precondition for successful integration of functional imaging in RT treatment planning is the goal orientated as well as close and thorough communication between nuclear medicine and radiotherapy departments on all levels of interaction (personnel, imaging protocols, GTV delineation, and selection of the data transfer method). Copyright 2010 European Society for Therapeutic Radiology and Oncology and European Association of Nuclear Medicine. Published by Elsevier Ireland Ltd.. All rights reserved.

  1. Rapid execution of fan beam image reconstruction algorithms using efficient computational techniques and special-purpose processors

    NASA Astrophysics Data System (ADS)

    Gilbert, B. K.; Robb, R. A.; Chu, A.; Kenue, S. K.; Lent, A. H.; Swartzlander, E. E., Jr.

    1981-02-01

    Rapid advances during the past ten years of several forms of computer-assisted tomography (CT) have resulted in the development of numerous algorithms to convert raw projection data into cross-sectional images. These reconstruction algorithms are either 'iterative,' in which a large matrix algebraic equation is solved by successive approximation techniques; or 'closed form'. Continuing evolution of the closed form algorithms has allowed the newest versions to produce excellent reconstructed images in most applications. This paper will review several computer software and special-purpose digital hardware implementations of closed form algorithms, either proposed during the past several years by a number of workers or actually implemented in commercial or research CT scanners. The discussion will also cover a number of recently investigated algorithmic modifications which reduce the amount of computation required to execute the reconstruction process, as well as several new special-purpose digital hardware implementations under development in laboratories at the Mayo Clinic.

  2. X-ray diffraction imaging (topography) of electroopticcrystals by synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Steiner, Bruce; Kuriyama, Masao; Dobbyn, Ronald C.; Laor, Uri

    1988-01-01

    Information of special interest to crystal growers and device physicists now available from monochromatic synchrotron diffraction imaging (topography) is reviewed. Illustrations are taken from a variety of electro-optic crystals. Aspects of the detailed understanding of crystal growth processes obtainable from carefully selected samples are described. Finally, new experimental opportunities now available for exploitation are indicated.

  3. Application of LANDSAT TM images to assess circulation and dispersion in coastal lagoons

    NASA Technical Reports Server (NTRS)

    Kjerfve, B.; Jensen, J. R.; Magill, K. E.

    1986-01-01

    The main objectives are formulated around a four pronged work approach, consisting of tasks related to: image processing and analysis of LANDSAT thematic mapping; numerical modeling of circulation and dispersion; hydrographic and spectral radiation field sampling/ground truth data collection; and special efforts to focus the investigation on turbid coastal/estuarine fronts.

  4. Enhancement of time images for photointerpretation

    NASA Technical Reports Server (NTRS)

    Gillespie, A. R.

    1986-01-01

    The Thermal Infrared Multispectral Scanner (TIMS) images consist of six channels of data acquired in bands between 8 and 12 microns, thus they contain information about both temperature and emittance. Scene temperatures are controlled by reflectivity of the surface, but also by its geometry with respect to the Sun, time of day, and other factors unrelated to composition. Emittance is dependent upon composition alone. Thus the photointerpreter may wish to enhance emittance information selectively. Because thermal emittances in real scenes vary but little, image data tend to be highly correlated along channels. Special image processing is required to make this information available for the photointerpreter. Processing includes noise removal, construction of model emittance images, and construction of false-color pictures enhanced by decorrelation techniques.

  5. Spatial super-resolution of colored images by micro mirrors

    NASA Astrophysics Data System (ADS)

    Dahan, Daniel; Yaacobi, Ami; Pinsky, Ephraim; Zalevsky, Zeev

    2018-06-01

    In this paper, we present two methods of dealing with the geometric resolution limit of color imaging sensors. It is possible to overcome the pixel size limit by adding a digital micro-mirror device component on the intermediate image plane of an optical system, and adapting its pattern in a computerized manner before sampling each frame. The full RGB image can be reconstructed from the Bayer camera by building a dedicated optical design, or by adjusting the demosaicing process to the special format of the enhanced image.

  6. Self-Calibrated In-Process Photogrammetry for Large Raw Part Measurement and Alignment before Machining

    PubMed Central

    Mendikute, Alberto; Zatarain, Mikel; Bertelsen, Álvaro; Leizea, Ibai

    2017-01-01

    Photogrammetry methods are being used more and more as a 3D technique for large scale metrology applications in industry. Optical targets are placed on an object and images are taken around it, where measuring traceability is provided by precise off-process pre-calibrated digital cameras and scale bars. According to the 2D target image coordinates, target 3D coordinates and camera views are jointly computed. One of the applications of photogrammetry is the measurement of raw part surfaces prior to its machining. For this application, post-process bundle adjustment has usually been adopted for computing the 3D scene. With that approach, a high computation time is observed, leading in practice to time consuming and user dependent iterative review and re-processing procedures until an adequate set of images is taken, limiting its potential for fast, easy-to-use, and precise measurements. In this paper, a new efficient procedure is presented for solving the bundle adjustment problem in portable photogrammetry. In-process bundle computing capability is demonstrated on a consumer grade desktop PC, enabling quasi real time 2D image and 3D scene computing. Additionally, a method for the self-calibration of camera and lens distortion has been integrated into the in-process approach due to its potential for highest precision when using low cost non-specialized digital cameras. Measurement traceability is set only by scale bars available in the measuring scene, avoiding the uncertainty contribution of off-process camera calibration procedures or the use of special purpose calibration artifacts. The developed self-calibrated in-process photogrammetry has been evaluated both in a pilot case scenario and in industrial scenarios for raw part measurement, showing a total in-process computing time typically below 1 s per image up to a maximum of 2 s during the last stages of the computed industrial scenes, along with a relative precision of 1/10,000 (e.g., 0.1 mm error in 1 m) with an error RMS below 0.2 pixels at image plane, ranging at the same performance reported for portable photogrammetry with precise off-process pre-calibrated cameras. PMID:28891946

  7. Self-Calibrated In-Process Photogrammetry for Large Raw Part Measurement and Alignment before Machining.

    PubMed

    Mendikute, Alberto; Yagüe-Fabra, José A; Zatarain, Mikel; Bertelsen, Álvaro; Leizea, Ibai

    2017-09-09

    Photogrammetry methods are being used more and more as a 3D technique for large scale metrology applications in industry. Optical targets are placed on an object and images are taken around it, where measuring traceability is provided by precise off-process pre-calibrated digital cameras and scale bars. According to the 2D target image coordinates, target 3D coordinates and camera views are jointly computed. One of the applications of photogrammetry is the measurement of raw part surfaces prior to its machining. For this application, post-process bundle adjustment has usually been adopted for computing the 3D scene. With that approach, a high computation time is observed, leading in practice to time consuming and user dependent iterative review and re-processing procedures until an adequate set of images is taken, limiting its potential for fast, easy-to-use, and precise measurements. In this paper, a new efficient procedure is presented for solving the bundle adjustment problem in portable photogrammetry. In-process bundle computing capability is demonstrated on a consumer grade desktop PC, enabling quasi real time 2D image and 3D scene computing. Additionally, a method for the self-calibration of camera and lens distortion has been integrated into the in-process approach due to its potential for highest precision when using low cost non-specialized digital cameras. Measurement traceability is set only by scale bars available in the measuring scene, avoiding the uncertainty contribution of off-process camera calibration procedures or the use of special purpose calibration artifacts. The developed self-calibrated in-process photogrammetry has been evaluated both in a pilot case scenario and in industrial scenarios for raw part measurement, showing a total in-process computing time typically below 1 s per image up to a maximum of 2 s during the last stages of the computed industrial scenes, along with a relative precision of 1/10,000 (e.g. 0.1 mm error in 1 m) with an error RMS below 0.2 pixels at image plane, ranging at the same performance reported for portable photogrammetry with precise off-process pre-calibrated cameras.

  8. System for verifiable CT radiation dose optimization based on image quality. part II. process control system.

    PubMed

    Larson, David B; Malarik, Remo J; Hall, Seth M; Podberesky, Daniel J

    2013-10-01

    To evaluate the effect of an automated computed tomography (CT) radiation dose optimization and process control system on the consistency of estimated image noise and size-specific dose estimates (SSDEs) of radiation in CT examinations of the chest, abdomen, and pelvis. This quality improvement project was determined not to constitute human subject research. An automated system was developed to analyze each examination immediately after completion, and to report individual axial-image-level and study-level summary data for patient size, image noise, and SSDE. The system acquired data for 4 months beginning October 1, 2011. Protocol changes were made by using parameters recommended by the prediction application, and 3 months of additional data were acquired. Preimplementation and postimplementation mean image noise and SSDE were compared by using unpaired t tests and F tests. Common-cause variation was differentiated from special-cause variation by using a statistical process control individual chart. A total of 817 CT examinations, 490 acquired before and 327 acquired after the initial protocol changes, were included in the study. Mean patient age and water-equivalent diameter were 12.0 years and 23.0 cm, respectively. The difference between actual and target noise increased from -1.4 to 0.3 HU (P < .01) and the standard deviation decreased from 3.9 to 1.6 HU (P < .01). Mean SSDE decreased from 11.9 to 7.5 mGy, a 37% reduction (P < .01). The process control chart identified several special causes of variation. Implementation of an automated CT radiation dose optimization system led to verifiable simultaneous decrease in image noise variation and SSDE. The automated nature of the system provides the opportunity for consistent CT radiation dose optimization on a broad scale. © RSNA, 2013.

  9. Real-time orthorectification by FPGA-based hardware acceleration

    NASA Astrophysics Data System (ADS)

    Kuo, David; Gordon, Don

    2010-10-01

    Orthorectification that corrects the perspective distortion of remote sensing imagery, providing accurate geolocation and ease of correlation to other images is a valuable first-step in image processing for information extraction. However, the large amount of metadata and the floating-point matrix transformations required to operate on each pixel make this a computation and I/O (Input/Output) intensive process. As result much imagery is either left unprocessed or loses timesensitive value in the long processing cycle. However, the computation on each pixel can be reduced substantially by using computational results of the neighboring pixels and accelerated by special pipelined hardware architecture in one to two orders of magnitude. A specialized coprocessor that is implemented inside an FPGA (Field Programmable Gate Array) chip and surrounded by vendorsupported hardware IP (Intellectual Property) shares the computation workload with CPU through PCI-Express interface. The ultimate speed of one pixel per clock (125 MHz) is achieved by the pipelined systolic array architecture. The optimal partition between software and hardware, the timing profile among image I/O and computation, and the highly automated GUI (Graphical User Interface) that fully exploits this speed increase to maximize overall image production throughput will also be discussed. The software that runs on a workstation with the acceleration hardware orthorectifies 16 Megapixels per second, which is 16 times faster than without the hardware. It turns the production time from months to days. A real-life successful story of an imaging satellite company that adopted such workstations for their orthorectified imagery production will be presented. The potential candidacy of the image processing computation that can be accelerated more efficiently by the same approach will also be analyzed.

  10. An optical processor for object recognition and tracking

    NASA Technical Reports Server (NTRS)

    Sloan, J.; Udomkesmalee, S.

    1987-01-01

    The design and development of a miniaturized optical processor that performs real time image correlation are described. The optical correlator utilizes the Vander Lugt matched spatial filter technique. The correlation output, a focused beam of light, is imaged onto a CMOS photodetector array. In addition to performing target recognition, the device also tracks the target. The hardware, composed of optical and electro-optical components, occupies only 590 cu cm of volume. A complete correlator system would also include an input imaging lens. This optical processing system is compact, rugged, requires only 3.5 watts of operating power, and weighs less than 3 kg. It represents a major achievement in miniaturizing optical processors. When considered as a special-purpose processing unit, it is an attractive alternative to conventional digital image recognition processing. It is conceivable that the combined technology of both optical and ditital processing could result in a very advanced robot vision system.

  11. ID card number detection algorithm based on convolutional neural network

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Ma, Hanjie; Feng, Jie; Dai, Leiyan

    2018-04-01

    In this paper, a new detection algorithm based on Convolutional Neural Network is presented in order to realize the fast and convenient ID information extraction in multiple scenarios. The algorithm uses the mobile device equipped with Android operating system to locate and extract the ID number; Use the special color distribution of the ID card, select the appropriate channel component; Use the image threshold segmentation, noise processing and morphological processing to take the binary processing for image; At the same time, the image rotation and projection method are used for horizontal correction when image was tilting; Finally, the single character is extracted by the projection method, and recognized by using Convolutional Neural Network. Through test shows that, A single ID number image from the extraction to the identification time is about 80ms, the accuracy rate is about 99%, It can be applied to the actual production and living environment.

  12. Optics and optronics in university courses for officers of the Federal Armed Forces - special curricula and hands-on lessons vs. academic requirements

    NASA Astrophysics Data System (ADS)

    Hahlweg, Cornelius; Rothe, Hendrik

    2016-09-01

    For more than two decades lessons in optics, digital image processing and optronics are compulsory optional subjects and as such integral parts of the courses in mechanical engineering at the University of the Federal Armed Forces in Hamburg. They are provided by the Chair for Measurement and Information Technology. Historically, the curricula started as typical basic lessons in optics and digital image processing and related sensors. Practical sessions originally concentrated on image processing procedures in Pascal, C and later Matlab. They evolved into a broad portfolio of practical hands-on lessons in lab and field, including high-tech and especially military equipment, but also homemaker style primitive experiments, of which the paper will give a methodical overview. A special topic - as always with optics in education - is the introduction to the various levels of abstraction in conjunction with the highly complex and wide-ranging matter squeezed into only two trimesters - instead of semesters at civil universities - for an audience being subject to strains from both study and duty. The talk will be accompanied by striking multi-media material, which will be also part of the multi-media attachment of the paper.

  13. Radar transponder apparatus and signal processing technique

    DOEpatents

    Axline, Jr., Robert M.; Sloan, George R.; Spalding, Richard E.

    1996-01-01

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder's echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR.

  14. Radar transponder apparatus and signal processing technique

    DOEpatents

    Axline, R.M. Jr.; Sloan, G.R.; Spalding, R.E.

    1996-01-23

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder`s echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR. 4 figs.

  15. Optical image encryption via high-quality computational ghost imaging using iterative phase retrieval

    NASA Astrophysics Data System (ADS)

    Liansheng, Sui; Yin, Cheng; Bing, Li; Ailing, Tian; Krishna Asundi, Anand

    2018-07-01

    A novel computational ghost imaging scheme based on specially designed phase-only masks, which can be efficiently applied to encrypt an original image into a series of measured intensities, is proposed in this paper. First, a Hadamard matrix with a certain order is generated, where the number of elements in each row is equal to the size of the original image to be encrypted. Each row of the matrix is rearranged into the corresponding 2D pattern. Then, each pattern is encoded into the phase-only masks by making use of an iterative phase retrieval algorithm. These specially designed masks can be wholly or partially used in the process of computational ghost imaging to reconstruct the original information with high quality. When a significantly small number of phase-only masks are used to record the measured intensities in a single-pixel bucket detector, the information can be authenticated without clear visualization by calculating the nonlinear correlation map between the original image and its reconstruction. The results illustrate the feasibility and effectiveness of the proposed computational ghost imaging mechanism, which will provide an effective alternative for enriching the related research on the computational ghost imaging technique.

  16. Advanced image based methods for structural integrity monitoring: Review and prospects

    NASA Astrophysics Data System (ADS)

    Farahani, Behzad V.; Sousa, Pedro José; Barros, Francisco; Tavares, Paulo J.; Moreira, Pedro M. G. P.

    2018-02-01

    There is a growing trend in engineering to develop methods for structural integrity monitoring and characterization of in-service mechanical behaviour of components. The fast growth in recent years of image processing techniques and image-based sensing for experimental mechanics, brought about a paradigm change in phenomena sensing. Hence, several widely applicable optical approaches are playing a significant role in support of experiment. The current review manuscript describes advanced image based methods for structural integrity monitoring, and focuses on methods such as Digital Image Correlation (DIC), Thermoelastic Stress Analysis (TSA), Electronic Speckle Pattern Interferometry (ESPI) and Speckle Pattern Shearing Interferometry (Shearography). These non-contact full-field techniques rely on intensive image processing methods to measure mechanical behaviour, and evolve even as reviews such as this are being written, which justifies a special effort to keep abreast of this progress.

  17. DISTA: a portable software solution for 3D compilation of photogrammetric image blocks

    NASA Astrophysics Data System (ADS)

    Boochs, Frank; Mueller, Hartmut; Neifer, Markus

    2001-04-01

    A photogrammetric evaluation system used for the precise determination of 3D-coordinates from blocks of large metric images will be presented. First, the motivation for the development is shown, which is placed in the field of processing tools for photogrammetric evaluation tasks. As the use and availability of metric images of digital type rapidly increases corresponding equipment for the measuring process is needed. Systems which have been developed up to now are either very special ones, founded on high end graphics workstations with an according pricing or simple ones with restricted measuring functionality. A new conception will be shown, avoiding special high end graphics hardware but providing a complete processing chain for all elementary photogrammetric tasks ranging from preparatory steps over the formation of image blocks up to the automatic and interactive 3D-evaluation within digital stereo models. The presented system is based on PC-hardware equipped with off the shelf graphics boards and uses an object oriented design. The specific needs of a flexible measuring system and the corresponding requirements which have to be met by the system are shown. Important aspects as modularity and hardware independence and their value for the solution are shown. The design of the software will be presented and first results with a prototype realised on a powerful PC-hardware configuration will be featured

  18. 75 FR 33816 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... Scientific Review Special Emphasis Panel; Small Business: Computational Biology, Image Processing, and Data Mining. Date: July 21, 2010. Time: 8 a.m. to 6 p.m. Agenda: To review and evaluate grant applications...

  19. Exploration of Mars by Mariner 9 - Television sensors and image processing.

    NASA Technical Reports Server (NTRS)

    Cutts, J. A.

    1973-01-01

    Two cameras equipped with selenium sulfur slow scan vidicons were used in the orbital reconnaissance of Mars by the U.S. Spacecraft Mariner 9 and the performance characteristics of these devices are presented. Digital image processing techniques have been widely applied in the analysis of images of Mars and its satellites. Photometric and geometric distortion corrections, image detail enhancement and transformation to standard map projection have been routinely employed. More specializing applications included picture differencing, limb profiling, solar lighting corrections, noise removal, line plots and computer mosaics. Information on enhancements as well as important picture geometric information was stored in a master library. Display of the library data in graphic or numerical form was accomplished by a data management computer program.

  20. The special effort processing of FGGE data

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The basic FGGE level IIb data set was enhanced. It focused on removing deficiencies in the objective methods of quality assurance, removing efficiencies in certain types of operationally produced satellite soundings, and removing deficiencies in certain types of operationally produced cloud tracked winds. The Special Effort was a joint NASA-NOAA-University of Wisconsin effort. The University of Wisconsin installed an interactive McIDAS capability on the Amdahl computer at the Goddard Laboratory of Atmospheric Sciences (GLAS) with one interactive video terminal at Goddard and the other at the World Weather Building. With this interactive capability a joint processing effort was undertaken to reprocess certain FGGE data sets. NOAA produced a specially edited data set for the special observing periods (SOPs) of FGGE. NASA produced an enhanced satellite sounding data set for the SOPs while the University of Wisconsin produced an enhanced cloud tracked wind set from the Japanese geostationary satellite images.

  1. Image processing and computer controls for video profile diagnostic system in the ground test accelerator (GTA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, R.M.; Zander, M.E.; Brown, S.K.

    1992-09-01

    This paper describes the application of video image processing to beam profile measurements on the Ground Test Accelerator (GTA). A diagnostic was needed to measure beam profiles in the intermediate matching section (IMS) between the radio-frequency quadrupole (RFQ) and the drift tube linac (DTL). Beam profiles are measured by injecting puffs of gas into the beam. The light emitted from the beam-gas interaction is captured and processed by a video image processing system, generating the beam profile data. A general purpose, modular and flexible video image processing system, imagetool, was used for the GTA image profile measurement. The development ofmore » both software and hardware for imagetool and its integration with the GTA control system (GTACS) will be discussed. The software includes specialized algorithms for analyzing data and calibrating the system. The underlying design philosophy of imagetool was tested by the experience of building and using the system, pointing the way for future improvements. The current status of the system will be illustrated by samples of experimental data.« less

  2. Image processing and computer controls for video profile diagnostic system in the ground test accelerator (GTA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, R.M.; Zander, M.E.; Brown, S.K.

    1992-01-01

    This paper describes the application of video image processing to beam profile measurements on the Ground Test Accelerator (GTA). A diagnostic was needed to measure beam profiles in the intermediate matching section (IMS) between the radio-frequency quadrupole (RFQ) and the drift tube linac (DTL). Beam profiles are measured by injecting puffs of gas into the beam. The light emitted from the beam-gas interaction is captured and processed by a video image processing system, generating the beam profile data. A general purpose, modular and flexible video image processing system, imagetool, was used for the GTA image profile measurement. The development ofmore » both software and hardware for imagetool and its integration with the GTA control system (GTACS) will be discussed. The software includes specialized algorithms for analyzing data and calibrating the system. The underlying design philosophy of imagetool was tested by the experience of building and using the system, pointing the way for future improvements. The current status of the system will be illustrated by samples of experimental data.« less

  3. Analysis of speech sounds is left-hemisphere predominant at 100-150ms after sound onset.

    PubMed

    Rinne, T; Alho, K; Alku, P; Holi, M; Sinkkonen, J; Virtanen, J; Bertrand, O; Näätänen, R

    1999-04-06

    Hemispheric specialization of human speech processing has been found in brain imaging studies using fMRI and PET. Due to the restricted time resolution, these methods cannot, however, determine the stage of auditory processing at which this specialization first emerges. We used a dense electrode array covering the whole scalp to record the mismatch negativity (MMN), an event-related brain potential (ERP) automatically elicited by occasional changes in sounds, which ranged from non-phonetic (tones) to phonetic (vowels). MMN can be used to probe auditory central processing on a millisecond scale with no attention-dependent task requirements. Our results indicate that speech processing occurs predominantly in the left hemisphere at the early, pre-attentive level of auditory analysis.

  4. False-color display of special sensor microwave/imager (SSM/I) data

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Adler, Robert F.; Kummerow, Christian D.

    1989-01-01

    Displays of multifrequency passive microwave data from the Special Sensor Microwave/Imager (SSM/I) flying on the Defense Meteorological Satellite Program (DMSP) spacecraft are presented. Observed brightness temperatures at 85.5 GHz (vertical and horizontal polarizations) and 37 GHz (vertical polarization) are respectively used to 'drive' the red, green, and blue 'guns' of a color monitor. The resultant false-color images can be used to distinguish land from water, highlight precipitation processes and structure over both land and water, and detail variations in other surfaces such as deserts, snow cover, and sea ice. The observations at 85.5 GHz also add a previously unavailable frequency to the problem of rainfall estimation from space. Examples of mesoscale squall lines, tropical and extra-tropical storms, and larger-scale land and atmospheric features as 'viewed' by the SSM/I are shown.

  5. False-color display of special sensor microwave/imager (SSM/I) data

    NASA Astrophysics Data System (ADS)

    Negri, Andrew J.; Adler, Robert F.; Kummerow, Christian D.

    1989-02-01

    Displays of multifrequency passive microwave data from the Special Sensor Microwave/Imager (SSM/I) flying on the Defense Meteorological Satellite Program (DMSP) spacecraft are presented. Observed brightness temperatures at 85.5 GHz (vertical and horizontal polarizations) and 37 GHz (vertical polarization) are respectively used to 'drive' the red, green, and blue 'guns' of a color monitor. The resultant false-color images can be used to distinguish land from water, highlight precipitation processes and structure over both land and water, and detail variations in other surfaces such as deserts, snow cover, and sea ice. The observations at 85.5 GHz also add a previously unavailable frequency to the problem of rainfall estimation from space. Examples of mesoscale squall lines, tropical and extra-tropical storms, and larger-scale land and atmospheric features as 'viewed' by the SSM/I are shown.

  6. Automatic measurement of images on astrometric plates

    NASA Astrophysics Data System (ADS)

    Ortiz Gil, A.; Lopez Garcia, A.; Martinez Gonzalez, J. M.; Yershov, V.

    1994-04-01

    We present some results on the process of automatic detection and measurement of objects in overlapped fields of astrometric plates. The main steps of our algorithm are the following: determination of the Scale and Tilt between charge coupled devices (CCD) and microscope coordinate systems and estimation of signal-to-noise ratio in each field;--image identification and improvement of its position and size;--image final centering;--image selection and storage. Several parameters allow the use of variable criteria for image identification, characterization and selection. Problems related with faint images and crowded fields will be approached by special techniques (morphological filters, histogram properties and fitting models).

  7. Semi-automated Neuron Boundary Detection and Nonbranching Process Segmentation in Electron Microscopy Images

    PubMed Central

    Jurrus, Elizabeth; Watanabe, Shigeki; Giuly, Richard J.; Paiva, Antonio R. C.; Ellisman, Mark H.; Jorgensen, Erik M.; Tasdizen, Tolga

    2013-01-01

    Neuroscientists are developing new imaging techniques and generating large volumes of data in an effort to understand the complex structure of the nervous system. The complexity and size of this data makes human interpretation a labor-intensive task. To aid in the analysis, new segmentation techniques for identifying neurons in these feature rich datasets are required. This paper presents a method for neuron boundary detection and nonbranching process segmentation in electron microscopy images and visualizing them in three dimensions. It combines both automated segmentation techniques with a graphical user interface for correction of mistakes in the automated process. The automated process first uses machine learning and image processing techniques to identify neuron membranes that deliniate the cells in each two-dimensional section. To segment nonbranching processes, the cell regions in each two-dimensional section are connected in 3D using correlation of regions between sections. The combination of this method with a graphical user interface specially designed for this purpose, enables users to quickly segment cellular processes in large volumes. PMID:22644867

  8. Engraving Print Classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoelck, Daniel; Barbe, Joaquim

    2008-04-15

    A print is a mark, or drawing, made in or upon a plate, stone, woodblock or other material which is cover with ink and then is press usually into a paper reproducing the image on the paper. Engraving prints usually are image composed of a group of binary lines, specially those are made with relief and intaglio techniques. Varying the number and the orientation of lines, the drawing of the engraving print is conformed. For this reason we propose an application based on image processing methods to classify engraving prints.

  9. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Optical information processing with transformation of the spatial coherence of light

    NASA Astrophysics Data System (ADS)

    Bykovskii, Yurii A.; Markilov, A. A.; Rodin, V. G.; Starikov, S. N.

    1995-10-01

    A description is given of systems with spatially incoherent illumination, intended for spectral and correlation analysis, and for the recording of Fourier holograms. These systems make use of transformation of the degree of the spatial coherence of light. The results are given of the processing of images and signals, including those transmitted by a bundle of fibre-optic waveguides both as monochromatic light and as quasimonochromatic radiation from a cathode-ray tube. The feasibility of spatial frequency filtering and of correlation analysis of images with a bipolar impulse response is considered for systems with spatially incoherent illumination where these tasks are performed by double transformation of the spatial coherence of light. A description is given of experimental systems and the results of image processing are reported.

  10. A user's guide to the Mariner 9 television reduced data record

    NASA Technical Reports Server (NTRS)

    Seidman, J. B.; Green, W. B.; Jepsen, P. L.; Ruiz, R. M.; Thorpe, T. E.

    1973-01-01

    The Mariner 9 television experiment used two cameras to photograph Mars from an orbiting spacecraft. For quantitative analysis of the image data transmitted to earth, the pictures were processed by digital computer to remove camera-induced distortions. The removal process was performed by the JPL Image Processing Laboratory (IPL) using calibration data measured during prelaunch testing of the cameras. The Reduced Data Record (RDR) is the set of data which results from the distortion-removal, or decalibration, process. The principal elements of the RDR are numerical data on magnetic tape and photographic data. Numerical data are the result of correcting for geometric and photometric distortions and residual-image effects. Photographic data are reproduced on negative and positive transparency films, strip contact and enlargement prints, and microfiche positive transparency film. The photographic data consist of two versions of each TV frame created by applying two special enhancement processes to the numerical data.

  11. SU-F-P-48: The Quantitative Evaluation and Comparison of Image Distortion and Loss of X-Ray Images Between Anti-Scattered Grid and Moire Compensation Processing in Digital Radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, W; Jung, J; Kang, Y

    Purpose: To quantitatively analyze the influence image processing for Moire elimination has in digital radiography by comparing the image acquired from optimized anti-scattered grid only and the image acquired from software processing paired with misaligned low-frequency grid. Methods: Special phantom, which does not create scattered radiation, was used to acquire non-grid reference images and they were acquired without any grids. A set of images was acquired with optimized grid, aligned to pixel of a detector and other set of images was acquired with misaligned low-frequency grid paired with Moire elimination processing algorithm. X-ray technique used was based on consideration tomore » Bucky factor derived from non-grid reference images. For evaluation, we analyze by comparing pixel intensity of acquired images with grids to that of reference images. Results: When compared to image acquired with optimized grid, images acquired with Moire elimination processing algorithm showed 10 to 50% lower mean contrast value of ROI. Severe distortion of images was found with when the object’s thickness was measured at 7 or less pixels. In this case, contrast value measured from images acquired with Moire elimination processing algorithm was under 30% of that taken from reference image. Conclusion: This study shows the potential risk of Moire compensation images in diagnosis. Images acquired with misaligned low-frequency grid results in Moire noise and Moire compensation processing algorithm used to remove this Moire noise actually caused an image distortion. As a result, fractures and/or calcifications which are presented in few pixels only may not be diagnosed properly. In future work, we plan to evaluate the images acquired without grid but based on 100% image processing and the potential risks it possesses.« less

  12. Communication between filamentous pathogens and plants at the biotrophic interface.

    PubMed

    Yi, Mihwa; Valent, Barbara

    2013-01-01

    Fungi and oomycetes that colonize living plant tissue form extensive interfaces with plant cells in which the cytoplasm of the microorganism is closely aligned with the host cytoplasm for an extended distance. In all cases, specialized biotrophic hyphae function to hijack host cellular processes across an interfacial zone consisting of a hyphal plasma membrane, a specialized interfacial matrix, and a plant-derived membrane. The interface is the site of active secretion by both players. This cross talk at the interface determines the winner in adversarial relationships and establishes the partnership in mutualistic relationships. Fungi and oomycetes secrete many specialized effector proteins for controlling the host, and they can stimulate remarkable cellular reorganization even in distant plant cells. Breakthroughs in live-cell imaging of fungal and oomycete encounter sites, including live-cell imaging of pathogens secreting fluorescently labeled effector proteins, have led to recent progress in understanding communication across the interface.

  13. Platform-independent software for medical image processing on the Internet

    NASA Astrophysics Data System (ADS)

    Mancuso, Michael E.; Pathak, Sayan D.; Kim, Yongmin

    1997-05-01

    We have developed a software tool for image processing over the Internet. The tool is a general purpose, easy to use, flexible, platform independent image processing software package with functions most commonly used in medical image processing.It provides for processing of medical images located wither remotely on the Internet or locally. The software was written in Java - the new programming language developed by Sun Microsystems. It was compiled and tested using Microsoft's Visual Java 1.0 and Microsoft's Just in Time Compiler 1.00.6211. The software is simple and easy to use. In order to use the tool, the user needs to download the software from our site before he/she runs it using any Java interpreter, such as those supplied by Sun, Symantec, Borland or Microsoft. Future versions of the operating systems supplied by Sun, Microsoft, Apple, IBM, and others will include Java interpreters. The software is then able to access and process any image on the iNternet or on the local computer. Using a 512 X 512 X 8-bit image, a 3 X 3 convolution took 0.88 seconds on an Intel Pentium Pro PC running at 200 MHz with 64 Mbytes of memory. A window/level operation took 0.38 seconds while a 3 X 3 median filter took 0.71 seconds. These performance numbers demonstrate the feasibility of using this software interactively on desktop computes. Our software tool supports various image processing techniques commonly used in medical image processing and can run without the need of any specialized hardware. It can become an easily accessible resource over the Internet to promote the learning and of understanding image processing algorithms. Also, it could facilitate sharing of medical image databases and collaboration amongst researchers and clinicians, regardless of location.

  14. Quantum realization of the bilinear interpolation method for NEQR.

    PubMed

    Zhou, Ri-Gui; Hu, Wenwen; Fan, Ping; Ian, Hou

    2017-05-31

    In recent years, quantum image processing is one of the most active fields in quantum computation and quantum information. Image scaling as a kind of image geometric transformation has been widely studied and applied in the classical image processing, however, the quantum version of which does not exist. This paper is concerned with the feasibility of the classical bilinear interpolation based on novel enhanced quantum image representation (NEQR). Firstly, the feasibility of the bilinear interpolation for NEQR is proven. Then the concrete quantum circuits of the bilinear interpolation including scaling up and scaling down for NEQR are given by using the multiply Control-Not operation, special adding one operation, the reverse parallel adder, parallel subtractor, multiplier and division operations. Finally, the complexity analysis of the quantum network circuit based on the basic quantum gates is deduced. Simulation result shows that the scaled-up image using bilinear interpolation is clearer and less distorted than nearest interpolation.

  15. Breadboard linear array scan imager using LSI solid-state technology

    NASA Technical Reports Server (NTRS)

    Tracy, R. A.; Brennan, J. A.; Frankel, D. G.; Noll, R. E.

    1976-01-01

    The performance of large scale integration photodiode arrays in a linear array scan (pushbroom) breadboard was evaluated for application to multispectral remote sensing of the earth's resources. The technical approach, implementation, and test results of the program are described. Several self scanned linear array visible photodetector focal plane arrays were fabricated and evaluated in an optical bench configuration. A 1728-detector array operating in four bands (0.5 - 1.1 micrometer) was evaluated for noise, spectral response, dynamic range, crosstalk, MTF, noise equivalent irradiance, linearity, and image quality. Other results include image artifact data, temporal characteristics, radiometric accuracy, calibration experience, chip alignment, and array fabrication experience. Special studies and experimentation were included in long array fabrication and real-time image processing for low-cost ground stations, including the use of computer image processing. High quality images were produced and all objectives of the program were attained.

  16. Advances of Molecular Imaging for Monitoring the Anatomical and Functional Architecture of the Olfactory System.

    PubMed

    Zhang, Xintong; Bi, Anyao; Gao, Quansheng; Zhang, Shuai; Huang, Kunzhu; Liu, Zhiguo; Gao, Tang; Zeng, Wenbin

    2016-01-20

    The olfactory system of organisms serves as a genetically and anatomically model for studying how sensory input can be translated into behavior output. Some neurologic diseases are considered to be related to olfactory disturbance, especially Alzheimer's disease, Parkinson's disease, multiple sclerosis, and so forth. However, it is still unclear how the olfactory system affects disease generation processes and olfaction delivery processes. Molecular imaging, a modern multidisciplinary technology, can provide valid tools for the early detection and characterization of diseases, evaluation of treatment, and study of biological processes in living subjects, since molecular imaging applies specific molecular probes as a novel approach to produce special data to study biological processes in cellular and subcellular levels. Recently, molecular imaging plays a key role in studying the activation of olfactory system, thus it could help to prevent or delay some diseases. Herein, we present a comprehensive review on the research progress of the imaging probes for visualizing olfactory system, which is classified on different imaging modalities, including PET, MRI, and optical imaging. Additionally, the probes' design, sensing mechanism, and biological application are discussed. Finally, we provide an outlook for future studies in this field.

  17. Absolute stellar photometry on moderate-resolution FPA images

    USGS Publications Warehouse

    Stone, T.C.

    2009-01-01

    An extensive database of star (and Moon) images has been collected by the ground-based RObotic Lunar Observatory (ROLO) as part of the US Geological Survey program for lunar calibration. The stellar data are used to derive nightly atmospheric corrections for the observations from extinction measurements, and absolute calibration of the ROLO sensors is based on observations of Vega and published reference flux and spectrum data. The ROLO telescopes were designed for imaging the Moon at moderate resolution, thus imposing some limitations for the stellar photometry. Attaining accurate stellar photometry with the ROLO image data has required development of specialized processing techniques. A key consideration is consistency in discriminating the star core signal from the off-axis point spread function. The analysis and processing methods applied to the ROLO stellar image database are described. ?? 2009 BIPM and IOP Publishing Ltd.

  18. 3D image acquisition by fiber-based fringe projection

    NASA Astrophysics Data System (ADS)

    Pfeifer, Tilo; Driessen, Sascha

    2005-02-01

    In macroscopic production processes several measuring methods are used to assure the quality of 3D parts. Definitely, one of the most widespread techniques is the fringe projection. It"s a fast and accurate method to receive the topography of a part as a computer file which can be processed in further steps, e.g. to compare the measured part to a given CAD file. In this article it will be shown how the fringe projection method is applied to a fiber-optic system. The fringes generated by a miniaturized fringe projector (MiniRot) are first projected onto the front-end of an image guide using special optics. The image guide serves as a transmitter for the fringes in order to get them onto the surface of a micro part. A second image guide is used to observe the micro part. It"s mounted under an angle relating to the illuminating image guide so that the triangulation condition is fulfilled. With a CCD camera connected to the second image guide the projected fringes are recorded and those data is analyzed by an image processing system.

  19. Semi-Automated Neuron Boundary Detection and Nonbranching Process Segmentation in Electron Microscopy Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jurrus, Elizabeth R.; Watanabe, Shigeki; Giuly, Richard J.

    2013-01-01

    Neuroscientists are developing new imaging techniques and generating large volumes of data in an effort to understand the complex structure of the nervous system. The complexity and size of this data makes human interpretation a labor-intensive task. To aid in the analysis, new segmentation techniques for identifying neurons in these feature rich datasets are required. This paper presents a method for neuron boundary detection and nonbranching process segmentation in electron microscopy images and visualizing them in three dimensions. It combines both automated segmentation techniques with a graphical user interface for correction of mistakes in the automated process. The automated processmore » first uses machine learning and image processing techniques to identify neuron membranes that deliniate the cells in each two-dimensional section. To segment nonbranching processes, the cell regions in each two-dimensional section are connected in 3D using correlation of regions between sections. The combination of this method with a graphical user interface specially designed for this purpose, enables users to quickly segment cellular processes in large volumes.« less

  20. An image-processing software package: UU and Fig for optical metrology applications

    NASA Astrophysics Data System (ADS)

    Chen, Lujie

    2013-06-01

    Modern optical metrology applications are largely supported by computational methods, such as phase shifting [1], Fourier Transform [2], digital image correlation [3], camera calibration [4], etc, in which image processing is a critical and indispensable component. While it is not too difficult to obtain a wide variety of image-processing programs from the internet; few are catered for the relatively special area of optical metrology. This paper introduces an image-processing software package: UU (data processing) and Fig (data rendering) that incorporates many useful functions to process optical metrological data. The cross-platform programs UU and Fig are developed based on wxWidgets. At the time of writing, it has been tested on Windows, Linux and Mac OS. The userinterface is designed to offer precise control of the underline processing procedures in a scientific manner. The data input/output mechanism is designed to accommodate diverse file formats and to facilitate the interaction with other independent programs. In terms of robustness, although the software was initially developed for personal use, it is comparably stable and accurate to most of the commercial software of similar nature. In addition to functions for optical metrology, the software package has a rich collection of useful tools in the following areas: real-time image streaming from USB and GigE cameras, computational geometry, computer vision, fitting of data, 3D image processing, vector image processing, precision device control (rotary stage, PZT stage, etc), point cloud to surface reconstruction, volume rendering, batch processing, etc. The software package is currently used in a number of universities for teaching and research.

  1. [Digital processing and evaluation of ultrasound images].

    PubMed

    Borchers, J; Klews, P M

    1993-10-01

    With the help of workstations and PCs, on-site image processing has become possible. If the images are not available in digital form the video signal has to be A/D converted. In the case of colour images the colour channels R (red), G (green) and B (blue) have to be digitized separately. "Truecolour" imaging calls for an 8 bit resolution per channel, leading to 24 bits per pixel. Out of a pool of 2(24) possible values only the relevant 128 gray values and 64 shades of red and blue respectively needed for a colour-coded ultrasound image have to be isolated. Digital images can be changed and evaluated with the help of readily available image evaluation programmes. It is mandatory that during image manipulation the gray scale and colour pixels and LUTs (Look-Up-Table) must be worked on separately. Using relatively simple LUT manipulations astonishing image improvements are possible. Application of simple mathematical operations can lead to completely new clinical results. For example, by subtracting two consecutive colour flow images in time and special LUT operations, local acceleration of blood flow can be visualized (Colour Acceleration Imaging).

  2. Managing Algorithmic Skeleton Nesting Requirements in Realistic Image Processing Applications: The Case of the SKiPPER-II Parallel Programming Environment's Operating Model

    NASA Astrophysics Data System (ADS)

    Coudarcher, Rémi; Duculty, Florent; Serot, Jocelyn; Jurie, Frédéric; Derutin, Jean-Pierre; Dhome, Michel

    2005-12-01

    SKiPPER is a SKeleton-based Parallel Programming EnviRonment being developed since 1996 and running at LASMEA Laboratory, the Blaise-Pascal University, France. The main goal of the project was to demonstrate the applicability of skeleton-based parallel programming techniques to the fast prototyping of reactive vision applications. This paper deals with the special features embedded in the latest version of the project: algorithmic skeleton nesting capabilities and a fully dynamic operating model. Throughout the case study of a complete and realistic image processing application, in which we have pointed out the requirement for skeleton nesting, we are presenting the operating model of this feature. The work described here is one of the few reported experiments showing the application of skeleton nesting facilities for the parallelisation of a realistic application, especially in the area of image processing. The image processing application we have chosen is a 3D face-tracking algorithm from appearance.

  3. Recent Advances in Techniques for Hyperspectral Image Processing

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; hide

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  4. The integrated design and archive of space-borne signal processing and compression coding

    NASA Astrophysics Data System (ADS)

    He, Qiang-min; Su, Hao-hang; Wu, Wen-bo

    2017-10-01

    With the increasing demand of users for the extraction of remote sensing image information, it is very urgent to significantly enhance the whole system's imaging quality and imaging ability by using the integrated design to achieve its compact structure, light quality and higher attitude maneuver ability. At this present stage, the remote sensing camera's video signal processing unit and image compression and coding unit are distributed in different devices. The volume, weight and consumption of these two units is relatively large, which unable to meet the requirements of the high mobility remote sensing camera. This paper according to the high mobility remote sensing camera's technical requirements, designs a kind of space-borne integrated signal processing and compression circuit by researching a variety of technologies, such as the high speed and high density analog-digital mixed PCB design, the embedded DSP technology and the image compression technology based on the special-purpose chips. This circuit lays a solid foundation for the research of the high mobility remote sensing camera.

  5. The clinical information system GastroBase: integration of image processing and laboratory communication.

    PubMed

    Kocna, P

    1995-01-01

    GastroBase, a clinical information system, incorporates patient identification, medical records, images, laboratory data, patient history, physical examination, and other patient-related information. Program modules are written in C; all data is processed using Novell-Btrieve data manager. Patient identification database represents the main core of this information systems. A graphic library developed in the past year and graphic modules with a special video-card enables the storing, archiving, and linking of different images to the electronic patient-medical-record. GastroBase has been running for more than four years in daily routine and the database contains more than 25,000 medical records and 1,500 images. This new version of GastroBase is now incorporated into the clinical information system of University Clinic in Prague.

  6. Development and implementation of software systems for imaging spectroscopy

    USGS Publications Warehouse

    Boardman, J.W.; Clark, R.N.; Mazer, A.S.; Biehl, L.L.; Kruse, F.A.; Torson, J.; Staenz, K.

    2006-01-01

    Specialized software systems have played a crucial role throughout the twenty-five year course of the development of the new technology of imaging spectroscopy, or hyperspectral remote sensing. By their very nature, hyperspectral data place unique and demanding requirements on the computer software used to visualize, analyze, process and interpret them. Often described as a marriage of the two technologies of reflectance spectroscopy and airborne/spaceborne remote sensing, imaging spectroscopy, in fact, produces data sets with unique qualities, unlike previous remote sensing or spectrometer data. Because of these unique spatial and spectral properties hyperspectral data are not readily processed or exploited with legacy software systems inherited from either of the two parent fields of study. This paper provides brief reviews of seven important software systems developed specifically for imaging spectroscopy.

  7. Mirror-Image Equivalence and Interhemispheric Mirror-Image Reversal

    PubMed Central

    Corballis, Michael C.

    2018-01-01

    Mirror-image confusions are common, especially in children and in some cases of neurological impairment. They can be a special impediment in activities such as reading and writing directional scripts, where mirror-image patterns (such as b and d) must be distinguished. Treating mirror images as equivalent, though, can also be adaptive in the natural world, which carries no systematic left-right bias and where the same object or event can appear in opposite viewpoints. Mirror-image equivalence and confusion are natural consequences of a bilaterally symmetrical brain. In the course of learning, mirror-image equivalence may be established through a process of symmetrization, achieved through homotopic interhemispheric exchange in the formation of memory circuits. Such circuits would not distinguish between mirror images. Learning to discriminate mirror-image discriminations may depend either on existing brain asymmetries, or on extensive learning overriding the symmetrization process. The balance between mirror-image equivalence and mirror-image discrimination may nevertheless be precarious, with spontaneous confusions or reversals, such as mirror writing, sometimes appearing naturally or as a manifestation of conditions like dyslexia. PMID:29706878

  8. Mirror-Image Equivalence and Interhemispheric Mirror-Image Reversal.

    PubMed

    Corballis, Michael C

    2018-01-01

    Mirror-image confusions are common, especially in children and in some cases of neurological impairment. They can be a special impediment in activities such as reading and writing directional scripts, where mirror-image patterns (such as b and d ) must be distinguished. Treating mirror images as equivalent, though, can also be adaptive in the natural world, which carries no systematic left-right bias and where the same object or event can appear in opposite viewpoints. Mirror-image equivalence and confusion are natural consequences of a bilaterally symmetrical brain. In the course of learning, mirror-image equivalence may be established through a process of symmetrization, achieved through homotopic interhemispheric exchange in the formation of memory circuits. Such circuits would not distinguish between mirror images. Learning to discriminate mirror-image discriminations may depend either on existing brain asymmetries, or on extensive learning overriding the symmetrization process. The balance between mirror-image equivalence and mirror-image discrimination may nevertheless be precarious, with spontaneous confusions or reversals, such as mirror writing, sometimes appearing naturally or as a manifestation of conditions like dyslexia.

  9. Sensori-motor experience leads to changes in visual processing in the developing brain.

    PubMed

    James, Karin Harman

    2010-03-01

    Since Broca's studies on language processing, cortical functional specialization has been considered to be integral to efficient neural processing. A fundamental question in cognitive neuroscience concerns the type of learning that is required for functional specialization to develop. To address this issue with respect to the development of neural specialization for letters, we used functional magnetic resonance imaging (fMRI) to compare brain activation patterns in pre-school children before and after different letter-learning conditions: a sensori-motor group practised printing letters during the learning phase, while the control group practised visual recognition. Results demonstrated an overall left-hemisphere bias for processing letters in these pre-literate participants, but, more interestingly, showed enhanced blood oxygen-level-dependent activation in the visual association cortex during letter perception only after sensori-motor (printing) learning. It is concluded that sensori-motor experience augments processing in the visual system of pre-school children. The change of activation in these neural circuits provides important evidence that 'learning-by-doing' can lay the foundation for, and potentially strengthen, the neural systems used for visual letter recognition.

  10. A fast 3-D object recognition algorithm for the vision system of a special-purpose dexterous manipulator

    NASA Technical Reports Server (NTRS)

    Hung, Stephen H. Y.

    1989-01-01

    A fast 3-D object recognition algorithm that can be used as a quick-look subsystem to the vision system for the Special-Purpose Dexterous Manipulator (SPDM) is described. Global features that can be easily computed from range data are used to characterize the images of a viewer-centered model of an object. This algorithm will speed up the processing by eliminating the low level processing whenever possible. It may identify the object, reject a set of bad data in the early stage, or create a better environment for a more powerful algorithm to carry the work further.

  11. The role of sensorimotor learning in the perception of letter-like forms: tracking the causes of neural specialization for letters.

    PubMed

    James, Karin H; Atwood, Thea P

    2009-02-01

    Functional specialization in the brain is considered a hallmark of efficient processing. It is therefore not surprising that there are brain areas specialized for processing letters. To better understand the causes of functional specialization for letters, we explore the emergence of this pattern of response in the ventral processing stream through a training paradigm. Previously, we hypothesized that the specialized response pattern seen during letter perception may be due in part to our experience in writing letters. The work presented here investigates whether or not this aspect of letter processing-the integration of sensorimotor systems through writing-leads to functional specialization in the visual system. To test this idea, we investigated whether or not different types of experiences with letter-like stimuli ("pseudoletters") led to functional specialization similar to that which exists for letters. Neural activation patterns were measured using functional magnetic resonance imaging (fMRI) before and after three different types of training sessions. Participants were trained to recognize pseudoletters by writing, typing, or purely visual practice. Results suggested that only after writing practice did neural activation patterns to pseudoletters resemble patterns seen for letters. That is, neural activation in the left fusiform and dorsal precentral gyrus was greater when participants viewed pseudoletters than other, similar stimuli but only after writing experience. Neural activation also increased after typing practice in the right fusiform and left precentral gyrus, suggesting that in some areas, any motor experience may change visual processing. The results of this experiment suggest an intimate interaction among perceptual and motor systems during pseudoletter perception that may be extended to everyday letter perception.

  12. Optical Disk Technology.

    ERIC Educational Resources Information Center

    Abbott, George L.; And Others

    1987-01-01

    This special feature focuses on recent developments in optical disk technology. Nine articles discuss current trends, large scale image processing, data structures for optical disks, the use of computer simulators to create optical disks, videodisk use in training, interactive audio video systems, impacts on federal information policy, and…

  13. Real-Time Implementation of Nonlinear Processing Functions.

    DTIC Science & Technology

    1981-08-01

    crystal devices and then to use them in a coherent optical data- processing apparatus using halftone masks custom designed at the University oi Southern...California. With the halftone mask technique, we have demonstrated logarithmic nonlinear transformation, allowing us to separate multiplicative images...improved.,_ This device allowed nonlinear functions to be implemented directly wit - out the need for specially made halftone masks. Besides

  14. Shaking the Trees: The Psychology of Collecting in U.S. Newspaper Coverage of the College Admissions Process

    ERIC Educational Resources Information Center

    Bishop, Ronald

    2009-01-01

    A frame analysis was conducted to explore themes in recent coverage by print journalists of the college application process, with special attention paid to the use by reporters of "keywords, stock phrases, stereotyped images, sources of information, and sentences that provide reinforcing clusters of facts or judgments" (Entman, p. 52) about this…

  15. Exploration of mineral resource deposits based on analysis of aerial and satellite image data employing artificial intelligence methods

    NASA Astrophysics Data System (ADS)

    Osipov, Gennady

    2013-04-01

    We propose a solution to the problem of exploration of various mineral resource deposits, determination of their forms / classification of types (oil, gas, minerals, gold, etc.) with the help of satellite photography of the region of interest. Images received from satellite are processed and analyzed to reveal the presence of specific signs of deposits of various minerals. Course of data processing and making forecast can be divided into some stages: Pre-processing of images. Normalization of color and luminosity characteristics, determination of the necessary contrast level and integration of a great number of separate photos into a single map of the region are performed. Construction of semantic map image. Recognition of bitmapped image and allocation of objects and primitives known to system are realized. Intelligent analysis. At this stage acquired information is analyzed with the help of a knowledge base, which contain so-called "attention landscapes" of experts. Used methods of recognition and identification of images: a) combined method of image recognition, b)semantic analysis of posterized images, c) reconstruction of three-dimensional objects from bitmapped images, d)cognitive technology of processing and interpretation of images. This stage is fundamentally new and it distinguishes suggested technology from all others. Automatic registration of allocation of experts` attention - registration of so-called "attention landscape" of experts - is the base of the technology. Landscapes of attention are, essentially, highly effective filters that cut off unnecessary information and emphasize exactly the factors used by an expert for making a decision. The technology based on denoted principles involves the next stages, which are implemented in corresponding program agents. Training mode -> Creation of base of ophthalmologic images (OI) -> Processing and making generalized OI (GOI) -> Mode of recognition and interpretation of unknown images. Training mode includes noncontact registration of eye motion, reconstruction of "attention landscape" fixed by the expert, recording the comments of the expert who is a specialist in the field of images` interpretation, and transfer this information into knowledge base.Creation of base of ophthalmologic images (OI) includes making semantic contacts from great number of OI based on analysis of OI and expert's comments.Processing of OI and making generalized OI (GOI) is realized by inductive logic algorithms and consists in synthesis of structural invariants of OI. The mode of recognition and interpretation of unknown images consists of several stages, which include: comparison of unknown image with the base of structural invariants of OI; revealing of structural invariants in unknown images; ynthesis of interpretive message of the structural invariants base and OI base (the experts` comments stored in it). We want to emphasize that the training mode does not assume special involvement of experts to teach the system - it is realized in the process of regular experts` work on image interpretation and it becomes possible after installation of a special apparatus for non contact registration of experts` attention. Consequently, the technology, which principles is described there, provides fundamentally new effective solution to the problem of exploration of mineral resource deposits based on computer analysis of aerial and satellite image data.

  16. Three-dimensional image signals: processing methods

    NASA Astrophysics Data System (ADS)

    Schiopu, Paul; Manea, Adrian; Craciun, Anca-Ileana; Craciun, Alexandru

    2010-11-01

    Over the years extensive studies have been carried out to apply coherent optics methods in real-time processing, communications and transmission image. This is especially true when a large amount of information needs to be processed, e.g., in high-resolution imaging. The recent progress in data-processing networks and communication systems has considerably increased the capacity of information exchange. We describe the results of literature investigation research of processing methods for the signals of the three-dimensional images. All commercially available 3D technologies today are based on stereoscopic viewing. 3D technology was once the exclusive domain of skilled computer-graphics developers with high-end machines and software. The images capture from the advanced 3D digital camera can be displayed onto screen of the 3D digital viewer with/ without special glasses. For this is needed considerable processing power and memory to create and render the complex mix of colors, textures, and virtual lighting and perspective necessary to make figures appear three-dimensional. Also, using a standard digital camera and a technique called phase-shift interferometry we can capture "digital holograms." These are holograms that can be stored on computer and transmitted over conventional networks. We present some research methods to process "digital holograms" for the Internet transmission and results.

  17. IEEE International Symposium on Biomedical Imaging.

    PubMed

    2017-01-01

    The IEEE International Symposium on Biomedical Imaging (ISBI) is a scientific conference dedicated to mathematical, algorithmic, and computational aspects of biological and biomedical imaging, across all scales of observation. It fosters knowledge transfer among different imaging communities and contributes to an integrative approach to biomedical imaging. ISBI is a joint initiative from the IEEE Signal Processing Society (SPS) and the IEEE Engineering in Medicine and Biology Society (EMBS). The 2018 meeting will include tutorials, and a scientific program composed of plenary talks, invited special sessions, challenges, as well as oral and poster presentations of peer-reviewed papers. High-quality papers are requested containing original contributions to the topics of interest including image formation and reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image quality assessment, and physical, biological, and statistical modeling. Accepted 4-page regular papers will be published in the symposium proceedings published by IEEE and included in IEEE Xplore. To encourage attendance by a broader audience of imaging scientists and offer additional presentation opportunities, ISBI 2018 will continue to have a second track featuring posters selected from 1-page abstract submissions without subsequent archival publication.

  18. Combined optimization of image-gathering and image-processing systems for scene feature detection

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Arduini, Robert F.; Samms, Richard W.

    1987-01-01

    The relationship between the image gathering and image processing systems for minimum mean squared error estimation of scene characteristics is investigated. A stochastic optimization problem is formulated where the objective is to determine a spatial characteristic of the scene rather than a feature of the already blurred, sampled and noisy image data. An analytical solution for the optimal characteristic image processor is developed. The Wiener filter for the sampled image case is obtained as a special case, where the desired characteristic is scene restoration. Optimal edge detection is investigated using the Laplacian operator x G as the desired characteristic, where G is a two dimensional Gaussian distribution function. It is shown that the optimal edge detector compensates for the blurring introduced by the image gathering optics, and notably, that it is not circularly symmetric. The lack of circular symmetry is largely due to the geometric effects of the sampling lattice used in image acquisition. The optimal image gathering optical transfer function is also investigated and the results of a sensitivity analysis are shown.

  19. Architecture of distributed picture archiving and communication systems for storing and processing high resolution medical images

    NASA Astrophysics Data System (ADS)

    Tokareva, Victoria

    2018-04-01

    New generation medicine demands a better quality of analysis increasing the amount of data collected during checkups, and simultaneously decreasing the invasiveness of a procedure. Thus it becomes urgent not only to develop advanced modern hardware, but also to implement special software infrastructure for using it in everyday clinical practice, so-called Picture Archiving and Communication Systems (PACS). Developing distributed PACS is a challenging task for nowadays medical informatics. The paper discusses the architecture of distributed PACS server for processing large high-quality medical images, with respect to technical specifications of modern medical imaging hardware, as well as international standards in medical imaging software. The MapReduce paradigm is proposed for image reconstruction by server, and the details of utilizing the Hadoop framework for this task are being discussed in order to provide the design of distributed PACS as ergonomic and adapted to the needs of end users as possible.

  20. Heuristic Enhancement of Magneto-Optical Images for NDE

    NASA Astrophysics Data System (ADS)

    Cacciola, Matteo; Megali, Giuseppe; Pellicanò, Diego; Calcagno, Salvatore; Versaci, Mario; Morabito, FrancescoCarlo

    2010-12-01

    The quality of measurements in nondestructive testing and evaluation plays a key role in assessing the reliability of different inspection techniques. Each different technique, like the magneto-optic imaging here treated, is affected by some special types of noise which are related to the specific device used for their acquisition. Therefore, the design of even more accurate image processing is often required by relevant applications, for instance, in implementing integrated solutions for flaw detection and characterization. The aim of this paper is to propose a preprocessing procedure based on independent component analysis (ICA) to ease the detection of rivets and/or flaws in the specimens under test. A comparison of the proposed approach with some other advanced image processing methodologies used for denoising magneto-optic images (MOIs) is carried out, in order to show advantages and weakness of ICA in improving the accuracy and performance of the rivets/flaw detection.

  1. Image-based 3D reconstruction and virtual environmental walk-through

    NASA Astrophysics Data System (ADS)

    Sun, Jifeng; Fang, Lixiong; Luo, Ying

    2001-09-01

    We present a 3D reconstruction method, which combines geometry-based modeling, image-based modeling and rendering techniques. The first component is an interactive geometry modeling method which recovery of the basic geometry of the photographed scene. The second component is model-based stereo algorithm. We discus the image processing problems and algorithms of walking through in virtual space, then designs and implement a high performance multi-thread wandering algorithm. The applications range from architectural planning and archaeological reconstruction to virtual environments and cinematic special effects.

  2. Multiplexing and de-multiplexing with scattering media for large field of view and multispectral imaging

    NASA Astrophysics Data System (ADS)

    Sahoo, Sujit Kumar; Tang, Dongliang; Dang, Cuong

    2018-02-01

    Large field of view multispectral imaging through scattering medium is a fundamental quest in optics community. It has gained special attention from researchers in recent years for its wide range of potential applications. However, the main bottlenecks of the current imaging systems are the requirements on specific illumination, poor image quality and limited field of view. In this work, we demonstrated a single-shot high-resolution colour-imaging through scattering media using a monochromatic camera. This novel imaging technique is enabled by the spatial, spectral decorrelation property and the optical memory effect of the scattering media. Moreover the use of deconvolution image processing further annihilate above-mentioned drawbacks arise due iterative refocusing, scanning or phase retrieval procedures.

  3. A simple solution for model comparison in bold imaging: the special case of reward prediction error and reward outcomes.

    PubMed

    Erdeniz, Burak; Rohe, Tim; Done, John; Seidler, Rachael D

    2013-01-01

    Conventional neuroimaging techniques provide information about condition-related changes of the BOLD (blood-oxygen-level dependent) signal, indicating only where and when the underlying cognitive processes occur. Recently, with the help of a new approach called "model-based" functional neuroimaging (fMRI), researchers are able to visualize changes in the internal variables of a time varying learning process, such as the reward prediction error or the predicted reward value of a conditional stimulus. However, despite being extremely beneficial to the imaging community in understanding the neural correlates of decision variables, a model-based approach to brain imaging data is also methodologically challenging due to the multicollinearity problem in statistical analysis. There are multiple sources of multicollinearity in functional neuroimaging including investigations of closely related variables and/or experimental designs that do not account for this. The source of multicollinearity discussed in this paper occurs due to correlation between different subjective variables that are calculated very close in time. Here, we review methodological approaches to analyzing such data by discussing the special case of separating the reward prediction error signal from reward outcomes.

  4. Use of high content image analysis to detect chemical-induced changes in synaptogenesis in vitro

    EPA Science Inventory

    Synaptogenesis is a critical process in nervous system development whereby neurons establish specialized contact sites which facilitate neurotransmission. There is evidence that early life exposure to chemicals can result in persistent deficits in nervous system function, cogniti...

  5. A colour image reproduction framework for 3D colour printing

    NASA Astrophysics Data System (ADS)

    Xiao, Kaida; Sohiab, Ali; Sun, Pei-li; Yates, Julian M.; Li, Changjun; Wuerger, Sophie

    2016-10-01

    In this paper, the current technologies in full colour 3D printing technology were introduced. A framework of colour image reproduction process for 3D colour printing is proposed. A special focus was put on colour management for 3D printed objects. Two approaches, colorimetric colour reproduction and spectral based colour reproduction are proposed in order to faithfully reproduce colours in 3D objects. Two key studies, colour reproduction for soft tissue prostheses and colour uniformity correction across different orientations are described subsequently. Results are clear shown that applying proposed colour image reproduction framework, performance of colour reproduction can be significantly enhanced. With post colour corrections, a further improvement in colour process are achieved for 3D printed objects.

  6. GUIs in the MIDAS environment

    NASA Technical Reports Server (NTRS)

    Ballester, P.

    1992-01-01

    MIDAS (Munich Image Data Analysis System) is the image processing system developed at ESO for astronomical data reduction. MIDAS is used for off-line data reduction at ESO and many astronomical institutes all over Europe. In addition to a set of general commands, enabling to process and analyze images, catalogs, graphics and tables, MIDAS includes specialized packages dedicated to astronomical applications or to specific ESO instruments. Several graphical interfaces are available in the MIDAS environment: XHelp provides an interactive help facility, and XLong and XEchelle enable data reduction of long-slip and echelle spectra. GUI builders facilitate the development of interfaces. All ESO interfaces comply to the ESO User Interfaces Common Conventions which secures an identical look and feel for telescope operations, data analysis, and archives.

  7. Spherical images and inextensible curved folding

    NASA Astrophysics Data System (ADS)

    Seffen, Keith A.

    2018-02-01

    In their study, Duncan and Duncan [Proc. R. Soc. London A 383, 191 (1982), 10.1098/rspa.1982.0126] calculate the shape of an inextensible surface folded in two about a general curve. They find the analytical relationships between pairs of generators linked across the fold curve, the shape of the original path, and the fold angle variation along it. They present two special cases of generator layouts for which the fold angle is uniform or the folded curve remains planar, for simplifying practical folding in sheet-metal processes. We verify their special cases by a graphical treatment according to a method of Gauss. We replace the fold curve by a piecewise linear path, which connects vertices of intersecting pairs of hinge lines. Inspired by the d-cone analysis by Farmer and Calladine [Int. J. Mech. Sci. 47, 509 (2005), 10.1016/j.ijmecsci.2005.02.013], we construct the spherical images for developable folding of successive vertices: the operating conditions of the special cases in Duncan and Duncan are then revealed straightforwardly by the geometric relationships between the images. Our approach may be used to synthesize folding patterns for novel deployable and shape-changing surfaces without need of complex calculation.

  8. Recent advances in imaging technologies in dentistry.

    PubMed

    Shah, Naseem; Bansal, Nikhil; Logani, Ajay

    2014-10-28

    Dentistry has witnessed tremendous advances in all its branches over the past three decades. With these advances, the need for more precise diagnostic tools, specially imaging methods, have become mandatory. From the simple intra-oral periapical X-rays, advanced imaging techniques like computed tomography, cone beam computed tomography, magnetic resonance imaging and ultrasound have also found place in modern dentistry. Changing from analogue to digital radiography has not only made the process simpler and faster but also made image storage, manipulation (brightness/contrast, image cropping, etc.) and retrieval easier. The three-dimensional imaging has made the complex cranio-facial structures more accessible for examination and early and accurate diagnosis of deep seated lesions. This paper is to review current advances in imaging technology and their uses in different disciplines of dentistry.

  9. Recent advances in imaging technologies in dentistry

    PubMed Central

    Shah, Naseem; Bansal, Nikhil; Logani, Ajay

    2014-01-01

    Dentistry has witnessed tremendous advances in all its branches over the past three decades. With these advances, the need for more precise diagnostic tools, specially imaging methods, have become mandatory. From the simple intra-oral periapical X-rays, advanced imaging techniques like computed tomography, cone beam computed tomography, magnetic resonance imaging and ultrasound have also found place in modern dentistry. Changing from analogue to digital radiography has not only made the process simpler and faster but also made image storage, manipulation (brightness/contrast, image cropping, etc.) and retrieval easier. The three-dimensional imaging has made the complex cranio-facial structures more accessible for examination and early and accurate diagnosis of deep seated lesions. This paper is to review current advances in imaging technology and their uses in different disciplines of dentistry. PMID:25349663

  10. Thermal imaging as a biometrics approach to facial signature authentication.

    PubMed

    Guzman, A M; Goryawala, M; Wang, Jin; Barreto, A; Andrian, J; Rishe, N; Adjouadi, M

    2013-01-01

    A new thermal imaging framework with unique feature extraction and similarity measurements for face recognition is presented. The research premise is to design specialized algorithms that would extract vasculature information, create a thermal facial signature and identify the individual. The proposed algorithm is fully integrated and consolidates the critical steps of feature extraction through the use of morphological operators, registration using the Linear Image Registration Tool and matching through unique similarity measures designed for this task. The novel approach at developing a thermal signature template using four images taken at various instants of time ensured that unforeseen changes in the vasculature over time did not affect the biometric matching process as the authentication process relied only on consistent thermal features. Thirteen subjects were used for testing the developed technique on an in-house thermal imaging system. The matching using the similarity measures showed an average accuracy of 88.46% for skeletonized signatures and 90.39% for anisotropically diffused signatures. The highly accurate results obtained in the matching process clearly demonstrate the ability of the thermal infrared system to extend in application to other thermal imaging based systems. Empirical results applying this approach to an existing database of thermal images proves this assertion.

  11. Opportunity on 'Cabo Frio' (Simulated)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image superimposes an artist's concept of the Mars Exploration Rover Opportunity atop the 'Cabo Frio' promontory on the rim of 'Victoria Crater' in the Meridiani Planum region of Mars. It is done to give a sense of scale. The underlying image was taken by Opportunity's panoramic camera during the rover's 952nd Martian day, or sol (Sept. 28, 2006).

    This synthetic image of NASA's Opportunity Mars Exploration Rover at Victoria Crater was produced using 'Virtual Presence in Space' technology. Developed at NASA's Jet Propulsion Laboratory, Pasadena, Calif., this technology combines visualization and image processing tools with Hollywood-style special effects. The image was created using a photorealistic model of the rover and an approximately full-color mosaic.

  12. Color engineering in the age of digital convergence

    NASA Astrophysics Data System (ADS)

    MacDonald, Lindsay W.

    1998-09-01

    Digital color imaging has developed over the past twenty years from specialized scientific applications into the mainstream of computing. In addition to the phenomenal growth of computer processing power and storage capacity, great advances have been made in the capabilities and cost-effectiveness of color imaging peripherals. The majority of imaging applications, including the graphic arts, video and film have made the transition from analogue to digital production methods. Digital convergence of computing, communications and television now heralds new possibilities for multimedia publishing and mobile lifestyles. Color engineering, the application of color science to the design of imaging products, is an emerging discipline that poses exciting challenges to the international color imaging community for training, research and standards.

  13. Pseudoinverse Decoding Process in Delay-Encoded Synthetic Transmit Aperture Imaging.

    PubMed

    Gong, Ping; Kolios, Michael C; Xu, Yuan

    2016-09-01

    Recently, we proposed a new method to improve the signal-to-noise ratio of the prebeamformed radio-frequency data in synthetic transmit aperture (STA) imaging: the delay-encoded STA (DE-STA) imaging. In the decoding process of DE-STA, the equivalent STA data were obtained by directly inverting the coding matrix. This is usually regarded as an ill-posed problem, especially under high noise levels. Pseudoinverse (PI) is usually used instead for seeking a more stable inversion process. In this paper, we apply singular value decomposition to the coding matrix to conduct the PI. Our numerical studies demonstrate that the singular values of the coding matrix have a special distribution, i.e., all the values are the same except for the first and last ones. We compare the PI in two cases: complete PI (CPI), where all the singular values are kept, and truncated PI (TPI), where the last and smallest singular value is ignored. The PI (both CPI and TPI) DE-STA processes are tested against noise with both numerical simulations and experiments. The CPI and TPI can restore the signals stably, and the noise mainly affects the prebeamformed signals corresponding to the first transmit channel. The difference in the overall enveloped beamformed image qualities between the CPI and TPI is negligible. Thus, it demonstrates that DE-STA is a relatively stable encoding and decoding technique. Also, according to the special distribution of the singular values of the coding matrix, we propose a new efficient decoding formula that is based on the conjugate transpose of the coding matrix. We also compare the computational complexity of the direct inverse and the new formula.

  14. Survey: interpolation methods for whole slide image processing.

    PubMed

    Roszkowiak, L; Korzynska, A; Zak, J; Pijanowska, D; Swiderska-Chadaj, Z; Markiewicz, T

    2017-02-01

    Evaluating whole slide images of histological and cytological samples is used in pathology for diagnostics, grading and prognosis . It is often necessary to rescale whole slide images of a very large size. Image resizing is one of the most common applications of interpolation. We collect the advantages and drawbacks of nine interpolation methods, and as a result of our analysis, we try to select one interpolation method as the preferred solution. To compare the performance of interpolation methods, test images were scaled and then rescaled to the original size using the same algorithm. The modified image was compared to the original image in various aspects. The time needed for calculations and results of quantification performance on modified images were also compared. For evaluation purposes, we used four general test images and 12 specialized biological immunohistochemically stained tissue sample images. The purpose of this survey is to determine which method of interpolation is the best to resize whole slide images, so they can be further processed using quantification methods. As a result, the interpolation method has to be selected depending on the task involving whole slide images. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  15. High-precision terahertz frequency modulated continuous wave imaging method using continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Wang, Tianyi; Dai, Bing; Li, Wenjun; Wang, Wei; You, Chengwu; Wang, Kejia; Liu, Jinsong; Wang, Shenglie; Yang, Zhengang

    2018-02-01

    Inspired by the extensive application of terahertz (THz) imaging technologies in the field of aerospace, we exploit a THz frequency modulated continuous-wave imaging method with continuous wavelet transform (CWT) algorithm to detect a multilayer heat shield made of special materials. This method uses the frequency modulation continuous-wave system to catch the reflected THz signal and then process the image data by the CWT with different basis functions. By calculating the sizes of the defects area in the final images and then comparing the results with real samples, a practical high-precision THz imaging method is demonstrated. Our method can be an effective tool for the THz nondestructive testing of composites, drugs, and some cultural heritages.

  16. Design Criteria For Networked Image Analysis System

    NASA Astrophysics Data System (ADS)

    Reader, Cliff; Nitteberg, Alan

    1982-01-01

    Image systems design is currently undergoing a metamorphosis from the conventional computing systems of the past into a new generation of special purpose designs. This change is motivated by several factors, notably among which is the increased opportunity for high performance with low cost offered by advances in semiconductor technology. Another key issue is a maturing in understanding of problems and the applicability of digital processing techniques. These factors allow the design of cost-effective systems that are functionally dedicated to specific applications and used in a utilitarian fashion. Following an overview of the above stated issues, the paper presents a top-down approach to the design of networked image analysis systems. The requirements for such a system are presented, with orientation toward the hospital environment. The three main areas are image data base management, viewing of image data and image data processing. This is followed by a survey of the current state of the art, covering image display systems, data base techniques, communications networks and software systems control. The paper concludes with a description of the functional subystems and architectural framework for networked image analysis in a production environment.

  17. Study on environment detection and appraisement of mining area with RS

    NASA Astrophysics Data System (ADS)

    Yang, Fengjie; Hou, Peng; Zhou, Guangzhu; Li, Qingting; Wang, Jie; Cheng, Jianguang

    2006-12-01

    In this paper, the big coal mining area Yanzhou is selected as the typical research area. According to the special dynamic change characteristic of the environment in the mining area, the environmental dynamic changes are timely monitored with the remote sensing detection technology. Environmental special factors, such as vegetation, water, air, land-over, are extracted by the professional remote sensing image processing software, then the spatial information is managed and analyzed in the geographical information system (GIS) software. As the result, the dynamic monitor and query for change information is achieved, and the special environmental factor dynamic change maps are protracted. On the base of the data coming from the remote sensing image, GIS and the traditional environment monitoring, the environmental quality is appraised with the method of indistinct matrix analysis, the multi-index and the analytical hierarchy process. At last, those provide the credible science foundation for the local environment appraised and the sustained development. In addition, this paper apply the hyper spectrum graphs by the FieldSpec Pro spectroradiometer, together with the analytical data from environmental chemical, to study the growth of vegetation which were seed in the land-over consisting of gangue, which is a new method to study the impact to vegetation that are growing in the soil.

  18. Image processing analysis on the air-water slug two-phase flow in a horizontal pipe

    NASA Astrophysics Data System (ADS)

    Dinaryanto, Okto; Widyatama, Arif; Majid, Akmal Irfan; Deendarlianto, Indarto

    2016-06-01

    Slug flow is a part of intermittent flow which is avoided in industrial application because of its irregularity and high pressure fluctuation. Those characteristics cause some problems such as internal corrosion and the damage of the pipeline construction. In order to understand the slug characteristics, some of the measurement techniques can be applied such as wire-mesh sensors, CECM, and high speed camera. The present study was aimed to determine slug characteristics by using image processing techniques. Experiment has been carried out in 26 mm i.d. acrylic horizontal pipe with 9 m long. Air-water flow was recorded 5 m from the air-water mixer using high speed video camera. Each of image sequence was processed using MATLAB. There are some steps including image complement, background subtraction, and image filtering that used in this algorithm to produce binary images. Special treatments also were applied to reduce the disturbance effect of dispersed bubble around the bubble. Furthermore, binary images were used to describe bubble contour and calculate slug parameter such as gas slug length, gas slug velocity, and slug frequency. As a result the effect of superficial gas velocity and superficial liquid velocity on the fundamental parameters can be understood. After comparing the results to the previous experimental results, the image processing techniques is a useful and potential technique to explain the slug characteristics.

  19. Space Telescope Design to Directly Image the Habitable Zone of Alpha Centauri

    NASA Technical Reports Server (NTRS)

    Bendek, Eduardo A.; Belikov, Ruslan; Lozi, Julien; Thomas, Sandrine; Males, Jared; Weston, Sasha; McElwain, Michael

    2015-01-01

    The scientific interest in directly imaging and identifying Earth-like planets within the Habitable Zone (HZ) around nearby stars is driving the design of specialized direct imaging missions such as ACESAT, EXO-C, EXO-S and AFTA-C. The inner edge of Alpha Cen A&B Habitable Zone is found at exceptionally large angular separations of 0.7" and 0.4" respectively. This enables direct imaging of the system with a 0.3m class telescope. Contrast ratios on the order of 10(exp 10) are needed to image Earth-brightness planets. Low-resolution (5-band) spectra of all planets may allow establishing the presence and amount of an atmosphere. This star system configuration is optimal for a specialized small, and stable space telescope that can achieve high-contrast but has limited resolution. This paper describes an innovative instrument design and a mission concept based on a full Silicon Carbide off-axis telescope, which has a Phase Induced Amplitude Apodization coronagraph embedded in the telescope. This architecture maximizes stability and throughput. A Multi-Star Wave Front algorithm is implemented to drive a deformable mirror controlling simultaneously diffracted light from the on-axis and binary companion star. The instrument has a Focal Plane Occulter to reject starlight into a high precision pointing control camera. Finally we utilize a Orbital Differential Imaging (ODI) post-processing method that takes advantage of a highly stable environment (Earth-trailing orbit) and a continuous sequence of images spanning 2 years, to reduce the final noise floor in post processing to approximately 2e-11 levels, enabling high confidence and at least 90% completeness detections of Earth-like planets.

  20. Multi sensor satellite imagers for commercial remote sensing

    NASA Astrophysics Data System (ADS)

    Cronje, T.; Burger, H.; Du Plessis, J.; Du Toit, J. F.; Marais, L.; Strumpfer, F.

    2005-10-01

    This paper will discuss and compare recent refractive and catodioptric imager designs developed and manufactured at SunSpace for Multi Sensor Satellite Imagers with Panchromatic, Multi-spectral, Area and Hyperspectral sensors on a single Focal Plane Array (FPA). These satellite optical systems were designed with applications to monitor food supplies, crop yield and disaster monitoring in mind. The aim of these imagers is to achieve medium to high resolution (2.5m to 15m) spatial sampling, wide swaths (up to 45km) and noise equivalent reflectance (NER) values of less than 0.5%. State-of-the-art FPA designs are discussed and address the choice of detectors to achieve these performances. Special attention is given to thermal robustness and compactness, the use of folding prisms to place multiple detectors in a large FPA and a specially developed process to customize the spectral selection with the need to minimize mass, power and cost. A refractive imager with up to 6 spectral bands (6.25m GSD) and a catodioptric imager with panchromatic (2.7m GSD), multi-spectral (6 bands, 4.6m GSD), hyperspectral (400nm to 2.35μm, 200 bands, 15m GSD) sensors on the same FPA will be discussed. Both of these imagers are also equipped with real time video view finding capabilities. The electronic units could be subdivided into the Front-End Electronics and Control Electronics with analogue and digital signal processing. A dedicated Analogue Front-End is used for Correlated Double Sampling (CDS), black level correction, variable gain and up to 12-bit digitizing and high speed LVDS data link to a mass memory unit.

  1. Fuzzy logic particle tracking velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1993-01-01

    Fuzzy logic has proven to be a simple and robust method for process control. Instead of requiring a complex model of the system, a user defined rule base is used to control the process. In this paper the principles of fuzzy logic control are applied to Particle Tracking Velocimetry (PTV). Two frames of digitally recorded, single exposure particle imagery are used as input. The fuzzy processor uses the local particle displacement information to determine the correct particle tracks. Fuzzy PTV is an improvement over traditional PTV techniques which typically require a sequence (greater than 2) of image frames for accurately tracking particles. The fuzzy processor executes in software on a PC without the use of specialized array or fuzzy logic processors. A pair of sample input images with roughly 300 particle images each, results in more than 200 velocity vectors in under 8 seconds of processing time.

  2. Functional selectivity for face processing in the temporal voice area of early deaf individuals

    PubMed Central

    van Ackeren, Markus J.; Rabini, Giuseppe; Zonca, Joshua; Foa, Valentina; Baruffaldi, Francesca; Rezk, Mohamed; Pavani, Francesco; Rossion, Bruno; Collignon, Olivier

    2017-01-01

    Brain systems supporting face and voice processing both contribute to the extraction of important information for social interaction (e.g., person identity). How does the brain reorganize when one of these channels is absent? Here, we explore this question by combining behavioral and multimodal neuroimaging measures (magneto-encephalography and functional imaging) in a group of early deaf humans. We show enhanced selective neural response for faces and for individual face coding in a specific region of the auditory cortex that is typically specialized for voice perception in hearing individuals. In this region, selectivity to face signals emerges early in the visual processing hierarchy, shortly after typical face-selective responses in the ventral visual pathway. Functional and effective connectivity analyses suggest reorganization in long-range connections from early visual areas to the face-selective temporal area in individuals with early and profound deafness. Altogether, these observations demonstrate that regions that typically specialize for voice processing in the hearing brain preferentially reorganize for face processing in born-deaf people. Our results support the idea that cross-modal plasticity in the case of early sensory deprivation relates to the original functional specialization of the reorganized brain regions. PMID:28652333

  3. Mueller matrix imaging and analysis of cancerous cells

    NASA Astrophysics Data System (ADS)

    Fernández, A.; Fernández-Luna, J. L.; Moreno, F.; Saiz, J. M.

    2017-08-01

    Imaging polarimetry is a focus of increasing interest in diagnostic medicine because of its non-invasive nature and its potential for recognizing abnormal tissues. However, handling polarimetric images is not an easy task, and different intermediate steps have been proposed to introduce physical parameters that may be helpful to interpret results. In this work, transmission Mueller matrices (MM) corresponding to cancer cell samples have been experimentally obtained, and three different transformations have been applied: MM-Polar Decomposition, MM-Transformation and MM-Differential Decomposition. Special attention has been paid to diattenuation as a sensitive parameter to identify apoptosis processes induced by cisplatin and etoposide.

  4. Further optimization of SeDDaRA blind image deconvolution algorithm and its DSP implementation

    NASA Astrophysics Data System (ADS)

    Wen, Bo; Zhang, Qiheng; Zhang, Jianlin

    2011-11-01

    Efficient algorithm for blind image deconvolution and its high-speed implementation is of great value in practice. Further optimization of SeDDaRA is developed, from algorithm structure to numerical calculation methods. The main optimization covers that, the structure's modularization for good implementation feasibility, reducing the data computation and dependency of 2D-FFT/IFFT, and acceleration of power operation by segmented look-up table. Then the Fast SeDDaRA is proposed and specialized for low complexity. As the final implementation, a hardware system of image restoration is conducted by using the multi-DSP parallel processing. Experimental results show that, the processing time and memory demand of Fast SeDDaRA decreases 50% at least; the data throughput of image restoration system is over 7.8Msps. The optimization is proved efficient and feasible, and the Fast SeDDaRA is able to support the real-time application.

  5. Man-machine interactive imaging and data processing using high-speed digital mass storage

    NASA Technical Reports Server (NTRS)

    Alsberg, H.; Nathan, R.

    1975-01-01

    The role of vision in teleoperation has been recognized as an important element in the man-machine control loop. In most applications of remote manipulation, direct vision cannot be used. To overcome this handicap, the human operator's control capabilities are augmented by a television system. This medium provides a practical and useful link between workspace and the control station from which the operator perform his tasks. Human performance deteriorates when the images are degraded as a result of instrumental and transmission limitations. Image enhancement is used to bring out selected qualities in a picture to increase the perception of the observer. A general purpose digital computer, an extensive special purpose software system is used to perform an almost unlimited repertoire of processing operations.

  6. Four years experience in APMS star plate processing - Results and future plans. [Automated Proper Motion Study

    NASA Technical Reports Server (NTRS)

    Newcomb, J. S.

    1975-01-01

    The present paper describes an automated system for measuring stellar proper motions on the basis of information contained in photographic plates. In this system, the images on a star plate are digitized by a scanning microdensitometer using light from a He-Ne gas laser, and a special-purpose computer arranges the measurements in computer-compatible form on magnetic tape. The scanning and image-reconstruction processes are briefly outlined, and the image-evaluation techniques are discussed. It is shown that the present system has been especially successful in measuring the proper motions of low-luminosity stars, including 119 stars with less than 1/10,000 of the solar bolometric luminosity. Plans for measurements of high-density Milky Way star plates are noted.

  7. Method for 3D noncontact measurements of cut trees package area

    NASA Astrophysics Data System (ADS)

    Knyaz, Vladimir A.; Vizilter, Yuri V.

    2001-02-01

    Progress in imaging sensors and computers create the background for numerous 3D imaging application for wide variety of manufacturing activity. Many demands for automated precise measurements are in wood branch of industry. One of them is the accurate volume definition for cut trees carried on the truck. The key point for volume estimation is determination of the front area of the cut tree package. To eliminate slow and inaccurate manual measurements being now in practice the experimental system for automated non-contact wood measurements is developed. The system includes two non-metric CCD video cameras, PC as central processing unit, frame grabbers and original software for image processing and 3D measurements. The proposed method of measurement is based on capturing the stereo pair of front of trees package and performing the image orthotranformation into the front plane. This technique allows to process transformed image for circle shapes recognition and calculating their area. The metric characteristics of the system are provided by special camera calibration procedure. The paper presents the developed method of 3D measurements, describes the hardware used for image acquisition and the software realized the developed algorithms, gives the productivity and precision characteristics of the system.

  8. Novel low-cost vision-sensing technology with controllable of exposal time for welding

    NASA Astrophysics Data System (ADS)

    Zhang, Wenzeng; Wang, Bin; Chen, Nian; Cao, Yipeng

    2005-02-01

    In the process of robot Welding, position of welding seam and welding pool shape is detected by CCD camera for quality control and seam tracking in real-time. It is difficult to always get a clear welding image in some welding methods, such as TIG welding. A novel idea that the exposal time of CCD camera is automatically controlled by arc voltage or arc luminance is proposed to get clear welding image. A set of special device and circuits are added to a common industrial CCD camera in order to flexibly control the CCD to start or close exposal by control of the internal clearing signal of the accumulated charge. Two special vision sensors according to the idea are developed. Their exposal grabbing can be triggered respectively by the arc voltage and the variety of the arc luminance. Two prototypes have been designed and manufactured. Experiments show that they can stably grab clear welding images at appointed moment, which is a basic for the feedback control of automatic welding.

  9. Millimeter-wave Imaging Radiometer (MIR) data processing and development of water vapor retrieval algorithms

    NASA Technical Reports Server (NTRS)

    Chang, L. Aron

    1995-01-01

    This document describes the progress of the task of the Millimeter-wave Imaging Radiometer (MIR) data processing and the development of water vapor retrieval algorithms, for the second six-month performing period. Aircraft MIR data from two 1995 field experiments were collected and processed with a revised data processing software. Two revised versions of water vapor retrieval algorithm were developed, one for the execution of retrieval on a supercomputer platform, and one for using pressure as the vertical coordinate. Two implementations of incorporating products from other sensors into the water vapor retrieval system, one from the Special Sensor Microwave Imager (SSM/I), the other from the High-resolution Interferometer Sounder (HIS). Water vapor retrievals were performed for both airborne MIR data and spaceborne SSM/T-2 data, during field experiments of TOGA/COARE, CAMEX-1, and CAMEX-2. The climatology of water vapor during TOGA/COARE was examined by SSM/T-2 soundings and conventional rawinsonde.

  10. Holographic digital microscopy in on-line process control

    NASA Astrophysics Data System (ADS)

    Osanlou, Ardeshir

    2011-09-01

    This article investigates the feasibility of real-time three-dimensional imaging of microscopic objects within various emulsions while being produced in specialized production vessels. The study is particularly relevant to on-line process monitoring and control in chemical, pharmaceutical, food, cleaning, and personal hygiene industries. Such processes are often dynamic and the materials cannot be measured once removed from the production vessel. The technique reported here is applicable to three-dimensional characterization analyses on stirred fluids in small reaction vessels. Relatively expensive pulsed lasers have been avoided through the careful control of the speed of the moving fluid in relation to the speed of the camera exposure and the wavelength of the continuous wave laser used. The ultimate aim of the project is to introduce a fully robust and compact digital holographic microscope as a process control tool in a full size specialized production vessel.

  11. RGB-to-RGBG conversion algorithm with adaptive weighting factors based on edge detection and minimal square error.

    PubMed

    Huang, Chengqiang; Yang, Youchang; Wu, Bo; Yu, Weize

    2018-06-01

    The sub-pixel arrangement of the RGBG panel and the image with RGB format are different and the algorithm that converts RGB to RGBG is urgently needed to display an image with RGB arrangement on the RGBG panel. However, the information loss is still large although color fringing artifacts are weakened in the published papers that study this conversion. In this paper, an RGB-to-RGBG conversion algorithm with adaptive weighting factors based on edge detection and minimal square error (EDMSE) is proposed. The main points of innovation include the following: (1) the edge detection is first proposed to distinguish image details with serious color fringing artifacts and image details which are prone to be lost in the process of RGB-RGBG conversion; (2) for image details with serious color fringing artifacts, the weighting factor 0.5 is applied to weaken the color fringing artifacts; and (3) for image details that are prone to be lost in the process of RGB-RGBG conversion, a special mechanism to minimize square error is proposed. The experiment shows that the color fringing artifacts are slightly improved by EDMSE, and the values of MSE of the image processed are 19.6% and 7% smaller than those of the image processed by the direct assignment and weighting factor algorithm, respectively. The proposed algorithm is implemented on a field programmable gate array to enable the image display on the RGBG panel.

  12. Neurolinguistic findings on the language lexicon: the special role of proper names.

    PubMed

    Müller, Horst M

    2010-12-31

    Cognitive linguistics proposes the existence of a human language lexicon as a necessary subsystem of language production and comprehension. While the inner structure of the lexicon remains speculative, measures of its function may distinguish separate processing paths for different types of lexical entries. Based upon the presented findings on nomina from reaction time measurements, event-related potentials (ERP) analysis, and functional magnetic resonance imaging (fMRI), the special role of proper names in language--in contrast to common nouns--appears to be grounded in a neurocognitive reality.

  13. NASA spinoffs to bioengineering and medicine

    NASA Technical Reports Server (NTRS)

    Rouse, Doris J.; Winfield, Daniel L.; Canada, S. Catherine

    1989-01-01

    The societal and economic benefits derived from the application of aerospace technology to improved health care are examined, and examples of the space-technology spinoffs are presented. Special attention is given to the applications of aerospace technology from digital image processing, space medicine and biology, microelectronics, optics and electrooptics, and ultrasonic imaging. The role of the NASA Technology Application Team in helping the potential technology users to identify and evaluate the technology transfer opportunities and to apply space technology in the field of medicine is discussed.

  14. Diffraction imaging (topography) with monochromatic synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Steiner, Bruce; Kuriyama, Masao; Dobbyn, Ronald C.; Laor, Uri

    1988-01-01

    Structural information of special interest to crystal growers and device physicists is now available from high resolution monochromatic synchrotron diffraction imaging (topography). In the review, the importance of superior resolution in momentum transfer and in space is described, and illustrations are taken from a variety of crystals: gallium arsenide, cadmium telluride, mercuric iodide, bismuth silicon oxide, and lithium niobate. The identification and understanding of local variations in crystal growth processes are shown. Finally, new experimental opportunities now available for exploitation are indicated.

  15. MuLoG, or How to Apply Gaussian Denoisers to Multi-Channel SAR Speckle Reduction?

    PubMed

    Deledalle, Charles-Alban; Denis, Loic; Tabti, Sonia; Tupin, Florence

    2017-09-01

    Speckle reduction is a longstanding topic in synthetic aperture radar (SAR) imaging. Since most current and planned SAR imaging satellites operate in polarimetric, interferometric, or tomographic modes, SAR images are multi-channel and speckle reduction techniques must jointly process all channels to recover polarimetric and interferometric information. The distinctive nature of SAR signal (complex-valued, corrupted by multiplicative fluctuations) calls for the development of specialized methods for speckle reduction. Image denoising is a very active topic in image processing with a wide variety of approaches and many denoising algorithms available, almost always designed for additive Gaussian noise suppression. This paper proposes a general scheme, called MuLoG (MUlti-channel LOgarithm with Gaussian denoising), to include such Gaussian denoisers within a multi-channel SAR speckle reduction technique. A new family of speckle reduction algorithms can thus be obtained, benefiting from the ongoing progress in Gaussian denoising, and offering several speckle reduction results often displaying method-specific artifacts that can be dismissed by comparison between results.

  16. Research on moving object detection based on frog's eyes

    NASA Astrophysics Data System (ADS)

    Fu, Hongwei; Li, Dongguang; Zhang, Xinyuan

    2008-12-01

    On the basis of object's information processing mechanism with frog's eyes, this paper discussed a bionic detection technology which suitable for object's information processing based on frog's vision. First, the bionics detection theory by imitating frog vision is established, it is an parallel processing mechanism which including pick-up and pretreatment of object's information, parallel separating of digital image, parallel processing, and information synthesis. The computer vision detection system is described to detect moving objects which has special color, special shape, the experiment indicates that it can scheme out the detecting result in the certain interfered background can be detected. A moving objects detection electro-model by imitating biologic vision based on frog's eyes is established, the video simulative signal is digital firstly in this system, then the digital signal is parallel separated by FPGA. IN the parallel processing, the video information can be caught, processed and displayed in the same time, the information fusion is taken by DSP HPI ports, in order to transmit the data which processed by DSP. This system can watch the bigger visual field and get higher image resolution than ordinary monitor systems. In summary, simulative experiments for edge detection of moving object with canny algorithm based on this system indicate that this system can detect the edge of moving objects in real time, the feasibility of bionic model was fully demonstrated in the engineering system, and it laid a solid foundation for the future study of detection technology by imitating biologic vision.

  17. Characterizing SOI Wafers By Use Of AOTF-PHI

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Li, Guann-Pyng; Zang, Deyu

    1995-01-01

    Developmental nondestructive method of characterizing layers of silicon-on-insulator (SOI) wafer involves combination of polarimetric hyperspectral imaging by use of acousto-optical tunable filters (AOTF-PHI) and computational resources for extracting pertinent data on SOI wafers from polarimetric hyperspectral images. Offers high spectral resolution and both ease and rapidity of optical-wavelength tuning. Further efforts to implement all of processing of polarimetric spectral image data in special-purpose hardware for sake of procesing speed. Enables characterization of SOI wafers in real time for online monitoring and adjustment of production. Also accelerates application of AOTF-PHI to other applications in which need for high-resolution spectral imaging, both with and without polarimetry.

  18. Object-oriented design of medical imaging software.

    PubMed

    Ligier, Y; Ratib, O; Logean, M; Girard, C; Perrier, R; Scherrer, J R

    1994-01-01

    A special software package for interactive display and manipulation of medical images was developed at the University Hospital of Geneva, as part of a hospital wide Picture Archiving and Communication System (PACS). This software package, called Osiris, was especially designed to be easily usable and adaptable to the needs of noncomputer-oriented physicians. The Osiris software has been developed to allow the visualization of medical images obtained from any imaging modality. It provides generic manipulation tools, processing tools, and analysis tools more specific to clinical applications. This software, based on an object-oriented paradigm, is portable and extensible. Osiris is available on two different operating systems: the Unix X-11/OSF-Motif based workstations, and the Macintosh family.

  19. Image registration assessment in radiotherapy image guidance based on control chart monitoring.

    PubMed

    Xia, Wenyao; Breen, Stephen L

    2018-04-01

    Image guidance with cone beam computed tomography in radiotherapy can guarantee the precision and accuracy of patient positioning prior to treatment delivery. During the image guidance process, operators need to take great effort to evaluate the image guidance quality before correcting a patient's position. This work proposes an image registration assessment method based on control chart monitoring to reduce the effort taken by the operator. According to the control chart plotted by daily registration scores of each patient, the proposed method can quickly detect both alignment errors and image quality inconsistency. Therefore, the proposed method can provide a clear guideline for the operators to identify unacceptable image quality and unacceptable image registration with minimal effort. Experimental results demonstrate that by using control charts from a clinical database of 10 patients undergoing prostate radiotherapy, the proposed method can quickly identify out-of-control signals and find special cause of out-of-control registration events.

  20. Attention affects visual perceptual processing near the hand.

    PubMed

    Cosman, Joshua D; Vecera, Shaun P

    2010-09-01

    Specialized, bimodal neural systems integrate visual and tactile information in the space near the hand. Here, we show that visuo-tactile representations allow attention to influence early perceptual processing, namely, figure-ground assignment. Regions that were reached toward were more likely than other regions to be assigned as foreground figures, and hand position competed with image-based information to bias figure-ground assignment. Our findings suggest that hand position allows attention to influence visual perceptual processing and that visual processes typically viewed as unimodal can be influenced by bimodal visuo-tactile representations.

  1. On techniques for angle compensation in nonideal iris recognition.

    PubMed

    Schuckers, Stephanie A C; Schmid, Natalia A; Abhyankar, Aditya; Dorairaj, Vivekanand; Boyce, Christopher K; Hornak, Lawrence A

    2007-10-01

    The popularity of the iris biometric has grown considerably over the past two to three years. Most research has been focused on the development of new iris processing and recognition algorithms for frontal view iris images. However, a few challenging directions in iris research have been identified, including processing of a nonideal iris and iris at a distance. In this paper, we describe two nonideal iris recognition systems and analyze their performance. The word "nonideal" is used in the sense of compensating for off-angle occluded iris images. The system is designed to process nonideal iris images in two steps: 1) compensation for off-angle gaze direction and 2) processing and encoding of the rotated iris image. Two approaches are presented to account for angular variations in the iris images. In the first approach, we use Daugman's integrodifferential operator as an objective function to estimate the gaze direction. After the angle is estimated, the off-angle iris image undergoes geometric transformations involving the estimated angle and is further processed as if it were a frontal view image. The encoding technique developed for a frontal image is based on the application of the global independent component analysis. The second approach uses an angular deformation calibration model. The angular deformations are modeled, and calibration parameters are calculated. The proposed method consists of a closed-form solution, followed by an iterative optimization procedure. The images are projected on the plane closest to the base calibrated plane. Biorthogonal wavelets are used for encoding to perform iris recognition. We use a special dataset of the off-angle iris images to quantify the performance of the designed systems. A series of receiver operating characteristics demonstrate various effects on the performance of the nonideal-iris-based recognition system.

  2. Blood pulsation measurement using cameras operating in visible light: limitations.

    PubMed

    Koprowski, Robert

    2016-10-03

    The paper presents an automatic method for analysis and processing of images from a camera operating in visible light. This analysis applies to images containing the human facial area (body) and enables to measure the blood pulse rate. Special attention was paid to the limitations of this measurement method taking into account the possibility of using consumer cameras in real conditions (different types of lighting, different camera resolution, camera movement). The proposed new method of image analysis and processing was associated with three stages: (1) image pre-processing-allowing for the image filtration and stabilization (object location tracking); (2) main image processing-allowing for segmentation of human skin areas, acquisition of brightness changes; (3) signal analysis-filtration, FFT (Fast Fourier Transformation) analysis, pulse calculation. The presented algorithm and method for measuring the pulse rate has the following advantages: (1) it allows for non-contact and non-invasive measurement; (2) it can be carried out using almost any camera, including webcams; (3) it enables to track the object on the stage, which allows for the measurement of the heart rate when the patient is moving; (4) for a minimum of 40,000 pixels, it provides a measurement error of less than ±2 beats per minute for p < 0.01 and sunlight, or a slightly larger error (±3 beats per minute) for artificial lighting; (5) analysis of a single image takes about 40 ms in Matlab Version 7.11.0.584 (R2010b) with Image Processing Toolbox Version 7.1 (R2010b).

  3. The Brain Adapts to Orthography with Experience: Evidence from English and Chinese

    ERIC Educational Resources Information Center

    Cao, Fan; Brennan, Christine; Booth, James R.

    2015-01-01

    Using functional magnetic resonance imaging (fMRI), we examined the process of language specialization in the brain by comparing developmental changes in two contrastive orthographies: Chinese and English. In a visual word rhyming judgment task, we found a significant interaction between age and language in left inferior parietal lobule and left…

  4. Sixth Annual Flight Mechanics/Estimation Theory Symposium

    NASA Technical Reports Server (NTRS)

    Lefferts, E. (Editor)

    1981-01-01

    Methods of orbital position estimation were reviewed. The problem of accuracy in orbital mechanics is discussed and various techniques in current use are presented along with suggested improvements. Of special interest is the compensation for bias in satelliteborne instruments due to attitude instabilities. Image processing and correctional techniques are reported for geodetic measurements and mapping.

  5. Use of MCIDAS as an earth science information systems tool

    NASA Technical Reports Server (NTRS)

    Goodman, H. Michael; Karitani, Shogo; Parker, Karen G.; Stooksbury, Laura M.; Wilson, Gregory S.

    1988-01-01

    The application of the man computer interactive data access system (MCIDAS) to information processing is examined. The computer systems that interface with the MCIDAS are discussed. Consideration is given to the computer networking of MCIDAS, data base archival, and the collection and distribution of real-time special sensor microwave/imager data.

  6. Professional Risk: Sex, Lies, and Violence in the Films about Teachers

    ERIC Educational Resources Information Center

    Fedorov, Alexander; Levitskaya, Anastasia; Gorbatkova, Olga; Mikhaleva, Galina

    2018-01-01

    Pedagogical issues are rather popular in the world's cinematography. Images of school and university teachers occupy a special place in it. Hoping to attract as many viewers as possible the cinematography prefers to refer not to everyday routine education process but to "hot spots" of teaching associated mainly with sex, lies and…

  7. New "Gifted" Media Provide Springboards for Discussion

    ERIC Educational Resources Information Center

    Hyatt, Charles

    2018-01-01

    Parents of gifted children are often faced with challenges as to how to process images, labels, and stereotypes of youth with special abilities. Just as books can provide healing for the troubled soul by reflecting on the stories of people experiencing similar challenges, cinema and video can help examine one's strengths and weaknesses while…

  8. Evaluation of Algorithms for Compressing Hyperspectral Data

    NASA Technical Reports Server (NTRS)

    Cook, Sid; Harsanyi, Joseph; Faber, Vance

    2003-01-01

    With EO-1 Hyperion in orbit NASA is showing their continued commitment to hyperspectral imaging (HSI). As HSI sensor technology continues to mature, the ever-increasing amounts of sensor data generated will result in a need for more cost effective communication and data handling systems. Lockheed Martin, with considerable experience in spacecraft design and developing special purpose onboard processors, has teamed with Applied Signal & Image Technology (ASIT), who has an extensive heritage in HSI spectral compression and Mapping Science (MSI) for JPEG 2000 spatial compression expertise, to develop a real-time and intelligent onboard processing (OBP) system to reduce HSI sensor downlink requirements. Our goal is to reduce the downlink requirement by a factor > 100, while retaining the necessary spectral and spatial fidelity of the sensor data needed to satisfy the many science, military, and intelligence goals of these systems. Our compression algorithms leverage commercial-off-the-shelf (COTS) spectral and spatial exploitation algorithms. We are currently in the process of evaluating these compression algorithms using statistical analysis and NASA scientists. We are also developing special purpose processors for executing these algorithms onboard a spacecraft.

  9. Neonatal Jaundice Detection System.

    PubMed

    Aydın, Mustafa; Hardalaç, Fırat; Ural, Berkan; Karap, Serhat

    2016-07-01

    Neonatal jaundice is a common condition that occurs in newborn infants in the first week of life. Today, techniques used for detection are required blood samples and other clinical testing with special equipment. The aim of this study is creating a non-invasive system to control and to detect the jaundice periodically and helping doctors for early diagnosis. In this work, first, a patient group which is consisted from jaundiced babies and a control group which is consisted from healthy babies are prepared, then between 24 and 48 h after birth, 40 jaundiced and 40 healthy newborns are chosen. Second, advanced image processing techniques are used on the images which are taken with a standard smartphone and the color calibration card. Segmentation, pixel similarity and white balancing methods are used as image processing techniques and RGB values and pixels' important information are obtained exactly. Third, during feature extraction stage, with using colormap transformations and feature calculation, comparisons are done in RGB plane between color change values and the 8-color calibration card which is specially designed. Finally, in the bilirubin level estimation stage, kNN and SVR machine learning regressions are used on the dataset which are obtained from feature extraction. At the end of the process, when the control group is based on for comparisons, jaundice is succesfully detected for 40 jaundiced infants and the success rate is 85 %. Obtained bilirubin estimation results are consisted with bilirubin results which are obtained from the standard blood test and the compliance rate is 85 %.

  10. Design, fabrication and actuation of a MEMS-based image stabilizer for photographic cell phone applications

    NASA Astrophysics Data System (ADS)

    Chiou, Jin-Chern; Hung, Chen-Chun; Lin, Chun-Ying

    2010-07-01

    This work presents a MEMS-based image stabilizer applied for anti-shaking function in photographic cell phones. The proposed stabilizer is designed as a two-axis decoupling XY stage 1.4 × 1.4 × 0.1 mm3 in size, and adequately strong to suspend an image sensor for anti-shaking photographic function. This stabilizer is fabricated by complex fabrication processes, including inductively coupled plasma (ICP) processes and flip-chip bonding technique. Based on the special designs of a hollow handle layer and a corresponding wire-bonding assisted holder, electrical signals of the suspended image sensor can be successfully sent out with 32 signal springs without incurring damage during wire-bonding packaging. The longest calculated traveling distance of the stabilizer is 25 µm which is sufficient to resolve the anti-shaking problem in a three-megapixel image sensor. Accordingly, the applied voltage for the 25 µm moving distance is 38 V. Moreover, the resonant frequency of the actuating device with the image sensor is 1.123 kHz.

  11. Anthropomorphic robot for recognition and drawing generalized object images

    NASA Astrophysics Data System (ADS)

    Ginzburg, Vera M.

    1998-10-01

    The process of recognition, for instance, understanding the text, written by different fonts, consists in the depriving of the individual attributes of the letters in the particular font. It is shown that such process, in Nature and technique, can be provided by the narrowing the spatial frequency of the object's image by its defocusing. In defocusing images remain only areas, so-called Informative Fragments (IFs), which all together form the generalized (stylized) image of many identical objects. It is shown that the variety of shapes of IFs is restricted and can be presented by `Geometrical alphabet'. The `letters' for this alphabet can be created using two basic `genetic' figures: a stripe and round spot. It is known from physiology that the special cells of visual cortex response to these particular figures. The prototype of such `genetic' alphabet has been made using Boolean algebra (Venn's diagrams). The algorithm for drawing the letter's (`genlet's') shape in this alphabet and generalized images of objects (for example, `sleeping cat'), are given. A scheme of an anthropomorphic robot is shown together with results of model computer experiment of the robot's action--`drawing' the generalized image.

  12. Sparsity based target detection for compressive spectral imagery

    NASA Astrophysics Data System (ADS)

    Boada, David Alberto; Arguello Fuentes, Henry

    2016-09-01

    Hyperspectral imagery provides significant information about the spectral characteristics of objects and materials present in a scene. It enables object and feature detection, classification, or identification based on the acquired spectral characteristics. However, it relies on sophisticated acquisition and data processing systems able to acquire, process, store, and transmit hundreds or thousands of image bands from a given area of interest which demands enormous computational resources in terms of storage, computationm, and I/O throughputs. Specialized optical architectures have been developed for the compressed acquisition of spectral images using a reduced set of coded measurements contrary to traditional architectures that need a complete set of measurements of the data cube for image acquisition, dealing with the storage and acquisition limitations. Despite this improvement, if any processing is desired, the image has to be reconstructed by an inverse algorithm in order to be processed, which is also an expensive task. In this paper, a sparsity-based algorithm for target detection in compressed spectral images is presented. Specifically, the target detection model adapts a sparsity-based target detector to work in a compressive domain, modifying the sparse representation basis in the compressive sensing problem by means of over-complete training dictionaries and a wavelet basis representation. Simulations show that the presented method can achieve even better detection results than the state of the art methods.

  13. Three-dimensional rendering of segmented object using matlab - biomed 2010.

    PubMed

    Anderson, Jeffrey R; Barrett, Steven F

    2010-01-01

    The three-dimensional rendering of microscopic objects is a difficult and challenging task that often requires specialized image processing techniques. Previous work has been described of a semi-automatic segmentation process of fluorescently stained neurons collected as a sequence of slice images with a confocal laser scanning microscope. Once properly segmented, each individual object can be rendered and studied as a three-dimensional virtual object. This paper describes the work associated with the design and development of Matlab files to create three-dimensional images from the segmented object data previously mentioned. Part of the motivation for this work is to integrate both the segmentation and rendering processes into one software application, providing a seamless transition from the segmentation tasks to the rendering and visualization tasks. Previously these tasks were accomplished on two different computer systems, windows and Linux. This transition basically limits the usefulness of the segmentation and rendering applications to those who have both computer systems readily available. The focus of this work is to create custom Matlab image processing algorithms for object rendering and visualization, and merge these capabilities to the Matlab files that were developed especially for the image segmentation task. The completed Matlab application will contain both the segmentation and rendering processes in a single graphical user interface, or GUI. This process for rendering three-dimensional images in Matlab requires that a sequence of two-dimensional binary images, representing a cross-sectional slice of the object, be reassembled in a 3D space, and covered with a surface. Additional segmented objects can be rendered in the same 3D space. The surface properties of each object can be varied by the user to aid in the study and analysis of the objects. This inter-active process becomes a powerful visual tool to study and understand microscopic objects.

  14. A novel parallel architecture for local histogram equalization

    NASA Astrophysics Data System (ADS)

    Ohannessian, Mesrob I.; Choueiter, Ghinwa F.; Diab, Hassan

    2005-07-01

    Local histogram equalization is an image enhancement algorithm that has found wide application in the pre-processing stage of areas such as computer vision, pattern recognition and medical imaging. The computationally intensive nature of the procedure, however, is a main limitation when real time interactive applications are in question. This work explores the possibility of performing parallel local histogram equalization, using an array of special purpose elementary processors, through an HDL implementation that targets FPGA or ASIC platforms. A novel parallelization scheme is presented and the corresponding architecture is derived. The algorithm is reduced to pixel-level operations. Processing elements are assigned image blocks, to maintain a reasonable performance-cost ratio. To further simplify both processor and memory organizations, a bit-serial access scheme is used. A brief performance assessment is provided to illustrate and quantify the merit of the approach.

  15. The ImageJ ecosystem: an open platform for biomedical image analysis

    PubMed Central

    Schindelin, Johannes; Rueden, Curtis T.; Hiner, Mark C.; Eliceiri, Kevin W.

    2015-01-01

    Technology in microscopy advances rapidly, enabling increasingly affordable, faster, and more precise quantitative biomedical imaging, which necessitates correspondingly more-advanced image processing and analysis techniques. A wide range of software is available – from commercial to academic, special-purpose to Swiss army knife, small to large–but a key characteristic of software that is suitable for scientific inquiry is its accessibility. Open-source software is ideal for scientific endeavors because it can be freely inspected, modified, and redistributed; in particular, the open-software platform ImageJ has had a huge impact on life sciences, and continues to do so. From its inception, ImageJ has grown significantly due largely to being freely available and its vibrant and helpful user community. Scientists as diverse as interested hobbyists, technical assistants, students, scientific staff, and advanced biology researchers use ImageJ on a daily basis, and exchange knowledge via its dedicated mailing list. Uses of ImageJ range from data visualization and teaching to advanced image processing and statistical analysis. The software's extensibility continues to attract biologists at all career stages as well as computer scientists who wish to effectively implement specific image-processing algorithms. In this review, we use the ImageJ project as a case study of how open-source software fosters its suites of software tools, making multitudes of image-analysis technology easily accessible to the scientific community. We specifically explore what makes ImageJ so popular, how it impacts life science, how it inspires other projects, and how it is self-influenced by coevolving projects within the ImageJ ecosystem. PMID:26153368

  16. The ImageJ ecosystem: An open platform for biomedical image analysis.

    PubMed

    Schindelin, Johannes; Rueden, Curtis T; Hiner, Mark C; Eliceiri, Kevin W

    2015-01-01

    Technology in microscopy advances rapidly, enabling increasingly affordable, faster, and more precise quantitative biomedical imaging, which necessitates correspondingly more-advanced image processing and analysis techniques. A wide range of software is available-from commercial to academic, special-purpose to Swiss army knife, small to large-but a key characteristic of software that is suitable for scientific inquiry is its accessibility. Open-source software is ideal for scientific endeavors because it can be freely inspected, modified, and redistributed; in particular, the open-software platform ImageJ has had a huge impact on the life sciences, and continues to do so. From its inception, ImageJ has grown significantly due largely to being freely available and its vibrant and helpful user community. Scientists as diverse as interested hobbyists, technical assistants, students, scientific staff, and advanced biology researchers use ImageJ on a daily basis, and exchange knowledge via its dedicated mailing list. Uses of ImageJ range from data visualization and teaching to advanced image processing and statistical analysis. The software's extensibility continues to attract biologists at all career stages as well as computer scientists who wish to effectively implement specific image-processing algorithms. In this review, we use the ImageJ project as a case study of how open-source software fosters its suites of software tools, making multitudes of image-analysis technology easily accessible to the scientific community. We specifically explore what makes ImageJ so popular, how it impacts the life sciences, how it inspires other projects, and how it is self-influenced by coevolving projects within the ImageJ ecosystem. © 2015 Wiley Periodicals, Inc.

  17. SEASAT synthetic-aperture radar data user's manual

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Huneycutt, B.; Holt, B. M.; Held, D. N.

    1983-01-01

    The SEASAT Synthetic-Aperture Radar (SAR) system, the data processors, the extent of the image data set, and the means by which a user obtains this data are described and the data quality is evaluated. The user is alerted to some potential problems with the existing volume of SEASAT SAR image data, and allows him to modify his use of that data accordingly. Secondly, the manual focuses on the ultimate focuses on the ultimate capabilities of the raw data set and evaluates the potential of this data for processing into accurately located, amplitude-calibrated imagery of high resolution. This allows the user to decide whether his needs require special-purpose data processing of the SAR raw data.

  18. Invisible data matrix detection with smart phone using geometric correction and Hough transform

    NASA Astrophysics Data System (ADS)

    Sun, Halit; Uysalturk, Mahir C.; Karakaya, Mahmut

    2016-04-01

    Two-dimensional data matrices are used in many different areas that provide quick and automatic data entry to the computer system. Their most common usage is to automatically read labeled products (books, medicines, food, etc.) and recognize them. In Turkey, alcohol beverages and tobacco products are labeled and tracked with the invisible data matrices for public safety and tax purposes. In this application, since data matrixes are printed on a special paper with a pigmented ink, it cannot be seen under daylight. When red LEDs are utilized for illumination and reflected light is filtered, invisible data matrices become visible and decoded by special barcode readers. Owing to their physical dimensions, price and requirement of special training to use; cheap, small sized and easily carried domestic mobile invisible data matrix reader systems are required to be delivered to every inspector in the law enforcement units. In this paper, we first developed an apparatus attached to the smartphone including a red LED light and a high pass filter. Then, we promoted an algorithm to process captured images by smartphones and to decode all information stored in the invisible data matrix images. The proposed algorithm mainly involves four stages. In the first step, data matrix code is processed by Hough transform processing to find "L" shaped pattern. In the second step, borders of the data matrix are found by using the convex hull and corner detection methods. Afterwards, distortion of invisible data matrix corrected by geometric correction technique and the size of every module is fixed in rectangular shape. Finally, the invisible data matrix is scanned line by line in the horizontal axis to decode it. Based on the results obtained from the real test images of invisible data matrix captured with a smartphone, the proposed algorithm indicates high accuracy and low error rate.

  19. Real-time video signal processing by generalized DDA and control memories: three-dimensional rotation and mapping

    NASA Astrophysics Data System (ADS)

    Hama, Hiromitsu; Yamashita, Kazumi

    1991-11-01

    A new method for video signal processing is described in this paper. The purpose is real-time image transformations at low cost, low power, and small size hardware. This is impossible without special hardware. Here generalized digital differential analyzer (DDA) and control memory (CM) play a very important role. Then indentation, which is called jaggy, is caused on the boundary of a background and a foreground accompanied with the processing. Jaggy does not occur inside the transformed image because of adopting linear interpretation. But it does occur inherently on the boundary of the background and the transformed images. It causes deterioration of image quality, and must be avoided. There are two well-know ways to improve image quality, blurring and supersampling. The former does not have much effect, and the latter has the much higher cost of computing. As a means of settling such a trouble, a method is proposed, which searches for positions that may arise jaggy and smooths such points. Computer simulations based on the real data from VTR, one scene of a movie, are presented to demonstrate our proposed scheme using DDA and CMs and to confirm the effectiveness on various transformations.

  20. Real-time thermal imaging of solid oxide fuel cell cathode activity in working condition.

    PubMed

    Montanini, Roberto; Quattrocchi, Antonino; Piccolo, Sebastiano A; Amato, Alessandra; Trocino, Stefano; Zignani, Sabrina C; Faro, Massimiliano Lo; Squadrito, Gaetano

    2016-09-01

    Electrochemical methods such as voltammetry and electrochemical impedance spectroscopy are effective for quantifying solid oxide fuel cell (SOFC) operational performance, but not for identifying and monitoring the chemical processes that occur on the electrodes' surface, which are thought to be strictly related to the SOFCs' efficiency. Because of their high operating temperature, mechanical failure or cathode delamination is a common shortcoming of SOFCs that severely affects their reliability. Infrared thermography may provide a powerful tool for probing in situ SOFC electrode processes and the materials' structural integrity, but, due to the typical design of pellet-type cells, a complete optical access to the electrode surface is usually prevented. In this paper, a specially designed SOFC is introduced, which allows temperature distribution to be measured over all the cathode area while still preserving the electrochemical performance of the device. Infrared images recorded under different working conditions are then processed by means of a dedicated image processing algorithm for quantitative data analysis. Results reported in the paper highlight the effectiveness of infrared thermal imaging in detecting the onset of cell failure during normal operation and in monitoring cathode activity when the cell is fed with different types of fuels.

  1. Super-Resolution for “Jilin-1” Satellite Video Imagery via a Convolutional Network

    PubMed Central

    Wang, Zhongyuan; Wang, Lei; Ren, Yexian

    2018-01-01

    Super-resolution for satellite video attaches much significance to earth observation accuracy, and the special imaging and transmission conditions on the video satellite pose great challenges to this task. The existing deep convolutional neural-network-based methods require pre-processing or post-processing to be adapted to a high-resolution size or pixel format, leading to reduced performance and extra complexity. To this end, this paper proposes a five-layer end-to-end network structure without any pre-processing and post-processing, but imposes a reshape or deconvolution layer at the end of the network to retain the distribution of ground objects within the image. Meanwhile, we formulate a joint loss function by combining the output and high-dimensional features of a non-linear mapping network to precisely learn the desirable mapping relationship between low-resolution images and their high-resolution counterparts. Also, we use satellite video data itself as a training set, which favors consistency between training and testing images and promotes the method’s practicality. Experimental results on “Jilin-1” satellite video imagery show that this method demonstrates a superior performance in terms of both visual effects and measure metrics over competing methods. PMID:29652838

  2. Super-Resolution for "Jilin-1" Satellite Video Imagery via a Convolutional Network.

    PubMed

    Xiao, Aoran; Wang, Zhongyuan; Wang, Lei; Ren, Yexian

    2018-04-13

    Super-resolution for satellite video attaches much significance to earth observation accuracy, and the special imaging and transmission conditions on the video satellite pose great challenges to this task. The existing deep convolutional neural-network-based methods require pre-processing or post-processing to be adapted to a high-resolution size or pixel format, leading to reduced performance and extra complexity. To this end, this paper proposes a five-layer end-to-end network structure without any pre-processing and post-processing, but imposes a reshape or deconvolution layer at the end of the network to retain the distribution of ground objects within the image. Meanwhile, we formulate a joint loss function by combining the output and high-dimensional features of a non-linear mapping network to precisely learn the desirable mapping relationship between low-resolution images and their high-resolution counterparts. Also, we use satellite video data itself as a training set, which favors consistency between training and testing images and promotes the method's practicality. Experimental results on "Jilin-1" satellite video imagery show that this method demonstrates a superior performance in terms of both visual effects and measure metrics over competing methods.

  3. Open framework for management and processing of multi-modality and multidimensional imaging data for analysis and modelling muscular function

    NASA Astrophysics Data System (ADS)

    García Juan, David; Delattre, Bénédicte M. A.; Trombella, Sara; Lynch, Sean; Becker, Matthias; Choi, Hon Fai; Ratib, Osman

    2014-03-01

    Musculoskeletal disorders (MSD) are becoming a big healthcare economical burden in developed countries with aging population. Classical methods like biopsy or EMG used in clinical practice for muscle assessment are invasive and not accurately sufficient for measurement of impairments of muscular performance. Non-invasive imaging techniques can nowadays provide effective alternatives for static and dynamic assessment of muscle function. In this paper we present work aimed toward the development of a generic data structure for handling n-dimensional metabolic and anatomical data acquired from hybrid PET/MR scanners. Special static and dynamic protocols were developed for assessment of physical and functional images of individual muscles of the lower limb. In an initial stage of the project a manual segmentation of selected muscles was performed on high-resolution 3D static images and subsequently interpolated to full dynamic set of contours from selected 2D dynamic images across different levels of the leg. This results in a full set of 4D data of lower limb muscles at rest and during exercise. These data can further be extended to a 5D data by adding metabolic data obtained from PET images. Our data structure and corresponding image processing extension allows for better evaluation of large volumes of multidimensional imaging data that are acquired and processed to generate dynamic models of the moving lower limb and its muscular function.

  4. Discrete Fourier Transform in a Complex Vector Space

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H. (Inventor)

    2015-01-01

    An image-based phase retrieval technique has been developed that can be used on board a space based iterative transformation system. Image-based wavefront sensing is computationally demanding due to the floating-point nature of the process. The discrete Fourier transform (DFT) calculation is presented in "diagonal" form. By diagonal we mean that a transformation of basis is introduced by an application of the similarity transform of linear algebra. The current method exploits the diagonal structure of the DFT in a special way, particularly when parts of the calculation do not have to be repeated at each iteration to converge to an acceptable solution in order to focus an image.

  5. SUPRA: open-source software-defined ultrasound processing for real-time applications : A 2D and 3D pipeline from beamforming to B-mode.

    PubMed

    Göbl, Rüdiger; Navab, Nassir; Hennersperger, Christoph

    2018-06-01

    Research in ultrasound imaging is limited in reproducibility by two factors: First, many existing ultrasound pipelines are protected by intellectual property, rendering exchange of code difficult. Second, most pipelines are implemented in special hardware, resulting in limited flexibility of implemented processing steps on such platforms. With SUPRA, we propose an open-source pipeline for fully software-defined ultrasound processing for real-time applications to alleviate these problems. Covering all steps from beamforming to output of B-mode images, SUPRA can help improve the reproducibility of results and make modifications to the image acquisition mode accessible to the research community. We evaluate the pipeline qualitatively, quantitatively, and regarding its run time. The pipeline shows image quality comparable to a clinical system and backed by point spread function measurements a comparable resolution. Including all processing stages of a usual ultrasound pipeline, the run-time analysis shows that it can be executed in 2D and 3D on consumer GPUs in real time. Our software ultrasound pipeline opens up the research in image acquisition. Given access to ultrasound data from early stages (raw channel data, radiofrequency data), it simplifies the development in imaging. Furthermore, it tackles the reproducibility of research results, as code can be shared easily and even be executed without dedicated ultrasound hardware.

  6. Intraoperative cerebral blood flow imaging of rodents

    NASA Astrophysics Data System (ADS)

    Li, Hangdao; Li, Yao; Yuan, Lu; Wu, Caihong; Lu, Hongyang; Tong, Shanbao

    2014-09-01

    Intraoperative monitoring of cerebral blood flow (CBF) is of interest to neuroscience researchers, which offers the assessment of hemodynamic responses throughout the process of neurosurgery and provides an early biomarker for surgical guidance. However, intraoperative CBF imaging has been challenging due to animal's motion and position change during the surgery. In this paper, we presented a design of an operation bench integrated with laser speckle contrast imager which enables monitoring of the CBF intraoperatively. With a specially designed stereotaxic frame and imager, we were able to monitor the CBF changes in both hemispheres during the rodent surgery. The rotatable design of the operation plate and implementation of online image registration allow the technician to move the animal without disturbing the CBF imaging during surgery. The performance of the system was tested by middle cerebral artery occlusion model of rats.

  7. Study of the urban evolution of Brasilia with the use of LANDSAT data

    NASA Technical Reports Server (NTRS)

    Deoliveira, M. D. N. (Principal Investigator); Foresti, C.; Niero, M.; Parreiras, E. M. D. F.

    1984-01-01

    The urban growth of Brasilia within the last ten years is analyzed with special emphasis on the utilization of remote sensing orbital data and automatic image processing. The urban spatial structure and the monitoring of its temporal changes were focused in a whole and dynamic way by the utilization of MSS-LANDSAT images for June 1973, 1978 and 1983. In order to aid data interpretation, a registration algorithm implemented at the Interactive Multispectral Image Analysis System (IMAGE-100) was utilized aiming at the overlap of multitemporal images. The utilization of suitable digital filters, combined with the images overlap, allowed a rapid identification of areas of possible urban growth and oriented the field work. The results obtained permitted an evaluation of the urban growth of Brasilia, taking as reference the proposed stated for the construction of the city.

  8. Mechanisms of hemispheric specialization: Insights from analyses of connectivity

    PubMed Central

    Stephan, Klaas Enno; Fink, Gereon R.; Marshall, John C.

    2007-01-01

    Traditionally, anatomical and physiological descriptions of hemispheric specialization have focused on hemispheric asymmetries of local brain structure or local functional properties, respectively. This article reviews the current state of an alternative approach that aims at unraveling the causes and functional principles of hemispheric specialization in terms of asymmetries in connectivity. Starting with an overview of the historical origins of the concept of lateralization, we briefly review recent evidence from anatomical and developmental studies that asymmetries in structural connectivity may be a critical factor shaping hemispheric specialization. These differences in anatomical connectivity, which are found both at the intra- and inter-regional level, are likely to form the structural substrate of different functional principles of information processing in the two hemispheres. The main goal of this article is to describe how these functional principles can be characterized using functional neuroimaging in combination with models of functional and effective connectivity. We discuss the methodology of established models of connectivity which are applicable to data from positron emission tomography and functional magnetic resonance imaging and review published studies that have applied these approaches to characterize asymmetries of connectivity during lateralized tasks. Adopting a model-based approach enables functional imaging to proceed from mere descriptions of asymmetric activation patterns to mechanistic accounts of how these asymmetries are caused. PMID:16949111

  9. Real-time Enhancement, Registration, and Fusion for a Multi-Sensor Enhanced Vision System

    NASA Technical Reports Server (NTRS)

    Hines, Glenn D.; Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.

    2006-01-01

    Over the last few years NASA Langley Research Center (LaRC) has been developing an Enhanced Vision System (EVS) to aid pilots while flying in poor visibility conditions. The EVS captures imagery using two infrared video cameras. The cameras are placed in an enclosure that is mounted and flown forward-looking underneath the NASA LaRC ARIES 757 aircraft. The data streams from the cameras are processed in real-time and displayed on monitors on-board the aircraft. With proper processing the camera system can provide better-than- human-observed imagery particularly during poor visibility conditions. However, to obtain this goal requires several different stages of processing including enhancement, registration, and fusion, and specialized processing hardware for real-time performance. We are using a real-time implementation of the Retinex algorithm for image enhancement, affine transformations for registration, and weighted sums to perform fusion. All of the algorithms are executed on a single TI DM642 digital signal processor (DSP) clocked at 720 MHz. The image processing components were added to the EVS system, tested, and demonstrated during flight tests in August and September of 2005. In this paper we briefly discuss the EVS image processing hardware and algorithms. We then discuss implementation issues and show examples of the results obtained during flight tests. Keywords: enhanced vision system, image enhancement, retinex, digital signal processing, sensor fusion

  10. Digital image compression for a 2f multiplexing optical setup

    NASA Astrophysics Data System (ADS)

    Vargas, J.; Amaya, D.; Rueda, E.

    2016-07-01

    In this work a virtual 2f multiplexing system was implemented in combination with digital image compression techniques and redundant information elimination. Depending on the image type to be multiplexed, a memory-usage saving of as much as 99% was obtained. The feasibility of the system was tested using three types of images, binary characters, QR codes, and grey level images. A multiplexing step was implemented digitally, while a demultiplexing step was implemented in a virtual 2f optical setup following real experimental parameters. To avoid cross-talk noise, each image was codified with a specially designed phase diffraction carrier that would allow the separation and relocation of the multiplexed images on the observation plane by simple light propagation. A description of the system is presented together with simulations that corroborate the method. The present work may allow future experimental implementations that will make use of all the parallel processing capabilities of optical systems.

  11. The Mark III Hypercube-Ensemble Computers

    NASA Technical Reports Server (NTRS)

    Peterson, John C.; Tuazon, Jesus O.; Lieberman, Don; Pniel, Moshe

    1988-01-01

    Mark III Hypercube concept applied in development of series of increasingly powerful computers. Processor of each node of Mark III Hypercube ensemble is specialized computer containing three subprocessors and shared main memory. Solves problem quickly by simultaneously processing part of problem at each such node and passing combined results to host computer. Disciplines benefitting from speed and memory capacity include astrophysics, geophysics, chemistry, weather, high-energy physics, applied mechanics, image processing, oil exploration, aircraft design, and microcircuit design.

  12. Improved Reconstruction of Radio Holographic Signal for Forward Scatter Radar Imaging

    PubMed Central

    Hu, Cheng; Liu, Changjiang; Wang, Rui; Zeng, Tao

    2016-01-01

    Forward scatter radar (FSR), as a specially configured bistatic radar, is provided with the capabilities of target recognition and classification by the Shadow Inverse Synthetic Aperture Radar (SISAR) imaging technology. This paper mainly discusses the reconstruction of radio holographic signal (RHS), which is an important procedure in the signal processing of FSR SISAR imaging. Based on the analysis of signal characteristics, the method for RHS reconstruction is improved in two parts: the segmental Hilbert transformation and the reconstruction of mainlobe RHS. In addition, a quantitative analysis of the method’s applicability is presented by distinguishing between the near field and far field in forward scattering. Simulation results validated the method’s advantages in improving the accuracy of RHS reconstruction and imaging. PMID:27164114

  13. Postnatal brain development: Structural imaging of dynamic neurodevelopmental processes

    PubMed Central

    Jernigan, Terry L.; Baaré, William F. C.; Stiles, Joan; Madsen, Kathrine Skak

    2013-01-01

    After birth, there is striking biological and functional development of the brain’s fiber tracts as well as remodeling of cortical and subcortical structures. Behavioral development in children involves a complex and dynamic set of genetically guided processes by which neural structures interact constantly with the environment. This is a protracted process, beginning in the third week of gestation and continuing into early adulthood. Reviewed here are studies using structural imaging techniques, with a special focus on diffusion weighted imaging, describing age-related brain maturational changes in children and adolescents, as well as studies that link these changes to behavioral differences. Finally, we discuss evidence for effects on the brain of several factors that may play a role in mediating these brain–behavior associations in children, including genetic variation, behavioral interventions, and hormonal variation associated with puberty. At present longitudinal studies are few, and we do not yet know how variability in individual trajectories of biological development in specific neural systems map onto similar variability in behavioral trajectories. PMID:21489384

  14. Automatic diagnosis of malaria based on complete circle-ellipse fitting search algorithm.

    PubMed

    Sheikhhosseini, M; Rabbani, H; Zekri, M; Talebi, A

    2013-12-01

    Diagnosis of malaria parasitemia from blood smears is a subjective and time-consuming task for pathologists. The automatic diagnostic process will reduce the diagnostic time. Also, it can be worked as a second opinion for pathologists and may be useful in malaria screening. This study presents an automatic method for malaria diagnosis from thin blood smears. According to this fact that malaria life cycle is started by forming a ring around the parasite nucleus, the proposed approach is mainly based on curve fitting to detect parasite ring in the blood smear. The method is composed of six main phases: stain object extraction step, which extracts candidate objects that may be infected by malaria parasites. This phase includes stained pixel extraction step based on intensity and colour, and stained object segmentation by defining stained circle matching. Second step is preprocessing phase which makes use of nonlinear diffusion filtering. The process continues with detection of parasite nucleus from resulted image of previous step according to image intensity. Fourth step introduces a complete search process in which the circle search step identifies the direction and initial points for direct least-square ellipse fitting algorithm. Furthermore in the ellipse searching process, although parasite shape is completed undesired regions with high error value are removed and ellipse parameters are modified. Features are extracted from the parasite candidate region instead of whole candidate object in the fifth step. By employing this special feature extraction way, which is provided by special searching process, the necessity of employing clump splitting methods is removed. Also, defining stained circle matching process in the first step speeds up the whole procedure. Finally, a series of decision rules are applied on the extracted features to decide on the positivity or negativity of malaria parasite presence. The algorithm is applied on 26 digital images which are provided from thin blood smear films. The images are contained 1274 objects which may be infected by parasite or healthy. Applying the automatic identification of malaria on provided database showed a sensitivity of 82.28% and specificity of 98.02%. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  15. Walkaway-VSP survey using distributed optical fiber in China oilfield

    NASA Astrophysics Data System (ADS)

    Wu, Junjun; Yu, Gang; Zhang, Qinghong; Li, Yanpeng; Cai, Zhidong; Chen, Yuanzhong; Liu, Congwei; Zhao, Haiying; Li, Fei

    2017-10-01

    Distributed acoustic sensing (DAS) is a new type of replacement technology for geophysical geophone. DAS system is similar to high-density surface seismic geophone array. In the stage of acquisition, DAS can obtain the full well data with one shot. And it can provide enhanced vertical seismic profile (VSP) imaging and monitor fluids and pressures changes in the hydrocarbon production reservoir. Walkaway VSP data acquired over a former producing well in north eastern China provided a rich set of very high quality data. A standard VSP data pre-processing workflow was applied, followed by pre-stack Kirchhoff time migration. In the DAS pre-processing step we were faced with additional and special challenges: strong coherent noise due to cable slapping and ringing along the borehole casing. The single well DAS Walkaway VSP images provide a good result with higher vertical and lateral resolution than the surface seismic in the objective area. This paper reports on lessons learned in the handling of the wireline cable and subsequent special DAS data processing steps developed to remediate some of the practical wireline deployment issues. Optical wireline cable as a conveyance of fiber optic cables for VSP in vertical wells will open the use of the DAS system to much wider applications.

  16. Comparative Pedagogical Studies on Models of Education Systems Management in the EU and Ukraine

    ERIC Educational Resources Information Center

    Desiatov, Tymofii

    2017-01-01

    The article highlights the peculiarities of models of education systems management in the EU and Ukraine. It has been proved that effectiveness of the education process is determined by managerial culture, which characterizes a manager's professional image. Special attention has been paid to finding the right balance between centralization and…

  17. Resource Management

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Summit Envirosolutions of Minneapolis, Minnesota, used remote sensing images as a source for groundwater resource management. Summit is a full-service environmental consulting service specializing in hydrogeologic, environmental management, engineering and remediation services. CRSP collected, processed and analyzed multispectral/thermal imagery and aerial photography to compare remote sensing and Geographic Information System approaches to more traditional methods of environmental impact assessments and monitoring.

  18. Artificial Satellites Observations Using the Complex of Telescopes of RI "MAO"

    NASA Astrophysics Data System (ADS)

    Sybiryakova, Ye. S.; Shulga, O. V.; Vovk, V. S.; Kaliuzny, M. P.; Bushuev, F. I.; Kulichenko, M. O.; Haloley, M. I.; Chernozub, V. M.

    2017-02-01

    Special methods, means and software for cosmic objects' observation and processing of obtained results were developed. Combined method, which consists in separated accumulation of images of reference stars and artificial objects, is the main method used in observations of artificial cosmic objects. It is used for observations of artificial objects at all types of orbits.

  19. Analysis of ERTS imagery using special electronic viewing/measuring equipment

    NASA Technical Reports Server (NTRS)

    Evans, W. E.; Serebreny, S. M.

    1973-01-01

    An electronic satellite image analysis console (ESIAC) is being employed to process imagery for use by USGS investigators in several different disciplines studying dynamic hydrologic conditions. The ESIAC provides facilities for storing registered image sequences in a magnetic video disc memory for subsequent recall, enhancement, and animated display in monochrome or color. Quantitative measurements of distances, areas, and brightness profiles can be extracted digitally under operator supervision. Initial results are presented for the display and measurement of snowfield extent, glacier development, sediment plumes from estuary discharge, playa inventory, phreatophyte and other vegetative changes.

  20. 3D shape recovery of smooth surfaces: dropping the fixed-viewpoint assumption.

    PubMed

    Moses, Yael; Shimshoni, Ilan

    2009-07-01

    We present a new method for recovering the 3D shape of a featureless smooth surface from three or more calibrated images illuminated by different light sources (three of them are independent). This method is unique in its ability to handle images taken from unconstrained perspective viewpoints and unconstrained illumination directions. The correspondence between such images is hard to compute and no other known method can handle this problem locally from a small number of images. Our method combines geometric and photometric information in order to recover dense correspondence between the images and accurately computes the 3D shape. Only a single pass starting at one point and local computation are used. This is in contrast to methods that use the occluding contours recovered from many images to initialize and constrain an optimization process. The output of our method can be used to initialize such processes. In the special case of fixed viewpoint, the proposed method becomes a new perspective photometric stereo algorithm. Nevertheless, the introduction of the multiview setup, self-occlusions, and regions close to the occluding boundaries are better handled, and the method is more robust to noise than photometric stereo. Experimental results are presented for simulated and real images.

  1. The artificial object detection and current velocity measurement using SAR ocean surface images

    NASA Astrophysics Data System (ADS)

    Alpatov, Boris; Strotov, Valery; Ershov, Maksim; Muraviev, Vadim; Feldman, Alexander; Smirnov, Sergey

    2017-10-01

    Due to the fact that water surface covers wide areas, remote sensing is the most appropriate way of getting information about ocean environment for vessel tracking, security purposes, ecological studies and others. Processing of synthetic aperture radar (SAR) images is extensively used for control and monitoring of the ocean surface. Image data can be acquired from Earth observation satellites, such as TerraSAR-X, ERS, and COSMO-SkyMed. Thus, SAR image processing can be used to solve many problems arising in this field of research. This paper discusses some of them including ship detection, oil pollution control and ocean currents mapping. Due to complexity of the problem several specialized algorithm are necessary to develop. The oil spill detection algorithm consists of the following main steps: image preprocessing, detection of dark areas, parameter extraction and classification. The ship detection algorithm consists of the following main steps: prescreening, land masking, image segmentation combined with parameter measurement, ship orientation estimation and object discrimination. The proposed approach to ocean currents mapping is based on Doppler's law. The results of computer modeling on real SAR images are presented. Based on these results it is concluded that the proposed approaches can be used in maritime applications.

  2. Project-oriented teaching model about specialized courses in the information age

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Wang, Jinjiang; Tian, Qingguo; Wang, Yi; Cai, Huaiyu

    2017-08-01

    Specialized courses play a significant role in the usage of basic knowledge in the practical application for engineering college students. The engineering data available has sharply increased since the beginning of the information age in the 20th century, providing much more approaches to study and practice. Therefore, how to guide students to make full use of resources for active engineering practice learning has become one of the key problems for specialized courses. This paper took the digital image processing course for opto-electronic information science and technology major as an example, discussed the teaching model of specialized course in the information age, put forward the "engineering resource oriented model", and fostered the ability of engineering students to use the basic knowledge to innovate and deal with specific project objectives. The fusion of engineering examples into practical training and teaching encourages students to practice independent engineering thinking.

  3. A low-frequency near-field interferometric-TOA 3-D Lightning Mapping Array

    NASA Astrophysics Data System (ADS)

    Lyu, Fanchao; Cummer, Steven A.; Solanki, Rahulkumar; Weinert, Joel; McTague, Lindsay; Katko, Alex; Barrett, John; Zigoneanu, Lucian; Xie, Yangbo; Wang, Wenqi

    2014-11-01

    We report on the development of an easily deployable LF near-field interferometric-time of arrival (TOA) 3-D Lightning Mapping Array applied to imaging of entire lightning flashes. An interferometric cross-correlation technique is applied in our system to compute windowed two-sensor time differences with submicrosecond time resolution before TOA is used for source location. Compared to previously reported LF lightning location systems, our system captures many more LF sources. This is due mainly to the improved mapping of continuous lightning processes by using this type of hybrid interferometry/TOA processing method. We show with five station measurements that the array detects and maps different lightning processes, such as stepped and dart leaders, during both in-cloud and cloud-to-ground flashes. Lightning images mapped by our LF system are remarkably similar to those created by VHF mapping systems, which may suggest some special links between LF and VHF emission during lightning processes.

  4. Theory and applications of structured light single pixel imaging

    NASA Astrophysics Data System (ADS)

    Stokoe, Robert J.; Stockton, Patrick A.; Pezeshki, Ali; Bartels, Randy A.

    2018-02-01

    Many single-pixel imaging techniques have been developed in recent years. Though the methods of image acquisition vary considerably, the methods share unifying features that make general analysis possible. Furthermore, the methods developed thus far are based on intuitive processes that enable simple and physically-motivated reconstruction algorithms, however, this approach may not leverage the full potential of single-pixel imaging. We present a general theoretical framework of single-pixel imaging based on frame theory, which enables general, mathematically rigorous analysis. We apply our theoretical framework to existing single-pixel imaging techniques, as well as provide a foundation for developing more-advanced methods of image acquisition and reconstruction. The proposed frame theoretic framework for single-pixel imaging results in improved noise robustness, decrease in acquisition time, and can take advantage of special properties of the specimen under study. By building on this framework, new methods of imaging with a single element detector can be developed to realize the full potential associated with single-pixel imaging.

  5. Improvement of passive THz camera images

    NASA Astrophysics Data System (ADS)

    Kowalski, Marcin; Piszczek, Marek; Palka, Norbert; Szustakowski, Mieczyslaw

    2012-10-01

    Terahertz technology is one of emerging technologies that has a potential to change our life. There are a lot of attractive applications in fields like security, astronomy, biology and medicine. Until recent years, terahertz (THz) waves were an undiscovered, or most importantly, an unexploited area of electromagnetic spectrum. The reasons of this fact were difficulties in generation and detection of THz waves. Recent advances in hardware technology have started to open up the field to new applications such as THz imaging. The THz waves can penetrate through various materials. However, automated processing of THz images can be challenging. The THz frequency band is specially suited for clothes penetration because this radiation does not point any harmful ionizing effects thus it is safe for human beings. Strong technology development in this band have sparked with few interesting devices. Even if the development of THz cameras is an emerging topic, commercially available passive cameras still offer images of poor quality mainly because of its low resolution and low detectors sensitivity. Therefore, THz image processing is very challenging and urgent topic. Digital THz image processing is a really promising and cost-effective way for demanding security and defense applications. In the article we demonstrate the results of image quality enhancement and image fusion of images captured by a commercially available passive THz camera by means of various combined methods. Our research is focused on dangerous objects detection - guns, knives and bombs hidden under some popular types of clothing.

  6. Change of the image of the city in process of using traffic infrastructure

    NASA Astrophysics Data System (ADS)

    Alihodžić, Rifat; Vasiljević Tomić, Dragana; Iablonskii, Leonid

    2017-10-01

    Unique urban image cannot be experienced without moving within its structure. This paper deals with phenomenology considering changes of images of the city and influential factors closely related to it. Infrastructure gives basic structural scheme of every city, so its planning requires a high level proficiency. Some changes in these images can be observed during longer period of time. Sometimes it includes rapid changes of temporal layers, generated by building new urban elements on the exact same place where the old ones existed; while lighter change during the time passing is a regular occurrence. Creating completely new urban frames, caused by expanding the city, represents its dynamical variant. Topography is a significant factor, giving distinctive feature to the urbanity. This paper considers factors identified as generators of the change of the urban image, based on research so far. The structural elements are considered with the utmost attention. The importance of the city landmark, monumental complexes not possessing these features but having the importance in image of the city stability (as well as the inhabitants’ memory) are crucial elements of identifying its picture. Another significant factor is related to individual personal experience. However, there are also certain factors of significance features, but not considered within this paper. One such factor is change in coloring, being the special topic itself. The purpose of this work is to indicate that urban planning requires special attention in order to keep continuous nature of the urban image for the city to preserve its visual identity.

  7. New machining method of high precision infrared window part

    NASA Astrophysics Data System (ADS)

    Yang, Haicheng; Su, Ying; Xu, Zengqi; Guo, Rui; Li, Wenting; Zhang, Feng; Liu, Xuanmin

    2016-10-01

    Most of the spherical shell of the photoelectric multifunctional instrument was designed as multi optical channel mode to adapt to the different band of the sensor, there were mainly TV, laser and infrared channels. Without affecting the optical diameter, wind resistance and pneumatic performance of the optical system, the overall layout of the spherical shell was optimized to save space and reduce weight. Most of the shape of the optical windows were special-shaped, each optical window directly participated in the high resolution imaging of the corresponding sensor system, and the optical axis parallelism of each sensor needed to meet the accuracy requirement of 0.05mrad.Therefore precision machining of optical window parts quality will directly affect the photoelectric system's pointing accuracy and interchangeability. Processing and testing of the TV and laser window had been very mature, while because of the special nature of the material, transparent and high refractive rate, infrared window parts had the problems of imaging quality and the control of the minimum focal length and second level parallel in the processing. Based on years of practical experience, this paper was focused on how to control the shape and parallel difference precision of infrared window parts in the processing. Single pass rate was increased from 40% to more than 95%, the processing efficiency was significantly enhanced, an effective solution to the bottleneck problem in the actual processing, which effectively solve the bottlenecks in research and production.

  8. Video Mosaicking for Inspection of Gas Pipelines

    NASA Technical Reports Server (NTRS)

    Magruder, Darby; Chien, Chiun-Hong

    2005-01-01

    A vision system that includes a specially designed video camera and an image-data-processing computer is under development as a prototype of robotic systems for visual inspection of the interior surfaces of pipes and especially of gas pipelines. The system is capable of providing both forward views and mosaicked radial views that can be displayed in real time or after inspection. To avoid the complexities associated with moving parts and to provide simultaneous forward and radial views, the video camera is equipped with a wide-angle (>165 ) fish-eye lens aimed along the axis of a pipe to be inspected. Nine white-light-emitting diodes (LEDs) placed just outside the field of view of the lens (see Figure 1) provide ample diffuse illumination for a high-contrast image of the interior pipe wall. The video camera contains a 2/3-in. (1.7-cm) charge-coupled-device (CCD) photodetector array and functions according to the National Television Standards Committee (NTSC) standard. The video output of the camera is sent to an off-the-shelf video capture board (frame grabber) by use of a peripheral component interconnect (PCI) interface in the computer, which is of the 400-MHz, Pentium II (or equivalent) class. Prior video-mosaicking techniques are applicable to narrow-field-of-view (low-distortion) images of evenly illuminated, relatively flat surfaces viewed along approximately perpendicular lines by cameras that do not rotate and that move approximately parallel to the viewed surfaces. One such technique for real-time creation of mosaic images of the ocean floor involves the use of visual correspondences based on area correlation, during both the acquisition of separate images of adjacent areas and the consolidation (equivalently, integration) of the separate images into a mosaic image, in order to insure that there are no gaps in the mosaic image. The data-processing technique used for mosaicking in the present system also involves area correlation, but with several notable differences: Because the wide-angle lens introduces considerable distortion, the image data must be processed to effectively unwarp the images (see Figure 2). The computer executes special software that includes an unwarping algorithm that takes explicit account of the cylindrical pipe geometry. To reduce the processing time needed for unwarping, parameters of the geometric mapping between the circular view of a fisheye lens and pipe wall are determined in advance from calibration images and compiled into an electronic lookup table. The software incorporates the assumption that the optical axis of the camera is parallel (rather than perpendicular) to the direction of motion of the camera. The software also compensates for the decrease in illumination with distance from the ring of LEDs.

  9. Development of a UAV system for VNIR-TIR acquisitions in precision agriculture

    NASA Astrophysics Data System (ADS)

    Misopolinos, L.; Zalidis, Ch.; Liakopoulos, V.; Stavridou, D.; Katsigiannis, P.; Alexandridis, T. K.; Zalidis, G.

    2015-06-01

    Adoption of precision agriculture techniques requires the development of specialized tools that provide spatially distributed information. Both flying platforms and airborne sensors are being continuously evolved to cover the needs of plant and soil sensing at affordable costs. Due to restrictions in payload, flying platforms are usually limited to carry a single sensor on board. The aim of this work is to present the development of a vertical take-off and landing autonomous unmanned aerial vehicle (VTOL UAV) system for the simultaneous acquisition of high resolution vertical images at the visible, near infrared (VNIR) and thermal infrared (TIR) wavelengths. A system was developed that has the ability to trigger two cameras simultaneously with a fully automated process and no pilot intervention. A commercial unmanned hexacopter UAV platform was optimized to increase reliability, ease of operation and automation. The designed systems communication platform is based on a reduced instruction set computing (RISC) processor running Linux OS with custom developed drivers in an efficient way, while keeping the cost and weight to a minimum. Special software was also developed for the automated image capture, data processing and on board data and metadata storage. The system was tested over a kiwifruit field in northern Greece, at flying heights of 70 and 100m above the ground. The acquired images were mosaicked and geo-corrected. Images from both flying heights were of good quality and revealed unprecedented detail within the field. The normalized difference vegetation index (NDVI) was calculated along with the thermal image in order to provide information on the accurate location of stressors and other parameters related to the crop productivity. Compared to other available sources of data, this system can provide low cost, high resolution and easily repeatable information to cover the requirements of precision agriculture.

  10. Landsat 8 on-orbit characterization and calibration system

    USGS Publications Warehouse

    Micijevic, Esad; Morfitt, Ron; Choate, Michael J.

    2011-01-01

    The Landsat Data Continuity Mission (LDCM) is planning to launch the Landsat 8 satellite in December 2012, which continues an uninterrupted record of consistently calibrated globally acquired multispectral images of the Earth started in 1972. The satellite will carry two imaging sensors: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The OLI will provide visible, near-infrared and short-wave infrared data in nine spectral bands while the TIRS will acquire thermal infrared data in two bands. Both sensors have a pushbroom design and consequently, each has a large number of detectors to be characterized. Image and calibration data downlinked from the satellite will be processed by the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center using the Landsat 8 Image Assessment System (IAS), a component of the Ground System. In addition to extracting statistics from all Earth images acquired, the IAS will process and trend results from analysis of special calibration acquisitions, such as solar diffuser, lunar, shutter, night, lamp and blackbody data, and preselected calibration sites. The trended data will be systematically processed and analyzed, and calibration and characterization parameters will be updated using both automatic and customized manual tools. This paper describes the analysis tools and the system developed to monitor and characterize on-orbit performance and calibrate the Landsat 8 sensors and image data products.

  11. Fabrication of monodisperse magnetic nanoparticles released in solution using a block copolymer template

    NASA Astrophysics Data System (ADS)

    Morcrette, Mélissa; Ortiz, Guillermo; Tallegas, Salomé; Joisten, Hélène; Tiron, Raluca; Baron, Thierry; Hou, Yanxia; Lequien, Stéphane; Bsiesy, Ahmad; Dieny, Bernard

    2017-07-01

    This paper describes a fabrication process of monodisperse magnetic nanoparticles released in solution, based on combined ‘top-down’ and ‘bottom-up’ approaches. The process involves the use of a self-assembled PS-PMMA block copolymer formed on a sacrificial layer. Such an approach was so far mostly explored for the preparation of patterned magnetic media for ultrahigh density magnetic storage. It is here extended to the preparation of released monodisperse nanoparticles for biomedical applications. A special sacrificial layer had to be developed compatible with the copolymer self-organization. The resulting nanoparticles exhibit very narrow size dispersion (≈7%) and can be good candidates as contrast agents for medical imaging i.e. magnetic resonance imaging or magnetic particle imaging. The approach provides a great freedom in the choice of the particles shapes and compositions. In particular, they can be made of biocompatible magnetic material.

  12. Segmentation-free image processing and analysis of precipitate shapes in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Bales, Ben; Pollock, Tresa; Petzold, Linda

    2017-06-01

    Segmentation based image analysis techniques are routinely employed for quantitative analysis of complex microstructures containing two or more phases. The primary advantage of these approaches is that spatial information on the distribution of phases is retained, enabling subjective judgements of the quality of the segmentation and subsequent analysis process. The downside is that computing micrograph segmentations with data from morphologically complex microstructures gathered with error-prone detectors is challenging and, if no special care is taken, the artifacts of the segmentation will make any subsequent analysis and conclusions uncertain. In this paper we demonstrate, using a two phase nickel-base superalloy microstructure as a model system, a new methodology for analysis of precipitate shapes using a segmentation-free approach based on the histogram of oriented gradients feature descriptor, a classic tool in image analysis. The benefits of this methodology for analysis of microstructure in two and three-dimensions are demonstrated.

  13. Horizontal tuning for faces originates in high-level Fusiform Face Area.

    PubMed

    Goffaux, Valerie; Duecker, Felix; Hausfeld, Lars; Schiltz, Christine; Goebel, Rainer

    2016-01-29

    Recent work indicates that the specialization of face visual perception relies on the privileged processing of horizontal angles of facial information. This suggests that stimulus properties assumed to be fully resolved in primary visual cortex (V1; e.g., orientation) in fact determine human vision until high-level stages of processing. To address this hypothesis, the present fMRI study explored the orientation sensitivity of V1 and high-level face-specialized ventral regions such as the Occipital Face Area (OFA) and Fusiform Face Area (FFA) to different angles of face information. Participants viewed face images filtered to retain information at horizontal, vertical or oblique angles. Filtered images were viewed upright, inverted and (phase-)scrambled. FFA responded most strongly to the horizontal range of upright face information; its activation pattern reliably separated horizontal from oblique ranges, but only when faces were upright. Moreover, activation patterns induced in the right FFA and the OFA by upright and inverted faces could only be separated based on horizontal information. This indicates that the specialized processing of upright face information in the OFA and FFA essentially relies on the encoding of horizontal facial cues. This pattern was not passively inherited from V1, which was found to respond less strongly to horizontal than other orientations likely due to adaptive whitening. Moreover, we found that orientation decoding accuracy in V1 was impaired for stimuli containing no meaningful shape. By showing that primary coding in V1 is influenced by high-order stimulus structure and that high-level processing is tuned to selective ranges of primary information, the present work suggests that primary and high-level levels of the visual system interact in order to modulate the processing of certain ranges of primary information depending on their relevance with respect to the stimulus and task at hand. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Improved accuracy of markerless motion tracking on bone suppression images: preliminary study for image-guided radiation therapy (IGRT)

    NASA Astrophysics Data System (ADS)

    Tanaka, Rie; Sanada, Shigeru; Sakuta, Keita; Kawashima, Hiroki

    2015-05-01

    The bone suppression technique based on advanced image processing can suppress the conspicuity of bones on chest radiographs, creating soft tissue images obtained by the dual-energy subtraction technique. This study was performed to evaluate the usefulness of bone suppression image processing in image-guided radiation therapy. We demonstrated the improved accuracy of markerless motion tracking on bone suppression images. Chest fluoroscopic images of nine patients with lung nodules during respiration were obtained using a flat-panel detector system (120 kV, 0.1 mAs/pulse, 5 fps). Commercial bone suppression image processing software was applied to the fluoroscopic images to create corresponding bone suppression images. Regions of interest were manually located on lung nodules and automatic target tracking was conducted based on the template matching technique. To evaluate the accuracy of target tracking, the maximum tracking error in the resulting images was compared with that of conventional fluoroscopic images. The tracking errors were decreased by half in eight of nine cases. The average maximum tracking errors in bone suppression and conventional fluoroscopic images were 1.3   ±   1.0 and 3.3   ±   3.3 mm, respectively. The bone suppression technique was especially effective in the lower lung area where pulmonary vessels, bronchi, and ribs showed complex movements. The bone suppression technique improved tracking accuracy without special equipment and implantation of fiducial markers, and with only additional small dose to the patient. Bone suppression fluoroscopy is a potential measure for respiratory displacement of the target. This paper was presented at RSNA 2013 and was carried out at Kanazawa University, JAPAN.

  15. Looking back to inform the future: The role of cognition in forest disturbance characterization from remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Bianchetti, Raechel Anne

    Remotely sensed images have become a ubiquitous part of our daily lives. From novice users, aiding in search and rescue missions using tools such as TomNod, to trained analysts, synthesizing disparate data to address complex problems like climate change, imagery has become central to geospatial problem solving. Expert image analysts are continually faced with rapidly developing sensor technologies and software systems. In response to these cognitively demanding environments, expert analysts develop specialized knowledge and analytic skills to address increasingly complex problems. This study identifies the knowledge, skills, and analytic goals of expert image analysts tasked with identification of land cover and land use change. Analysts participating in this research are currently working as part of a national level analysis of land use change, and are well versed with the use of TimeSync, forest science, and image analysis. The results of this study benefit current analysts as it improves their awareness of their mental processes used during the image interpretation process. The study also can be generalized to understand the types of knowledge and visual cues that analysts use when reasoning with imagery for purposes beyond land use change studies. Here a Cognitive Task Analysis framework is used to organize evidence from qualitative knowledge elicitation methods for characterizing the cognitive aspects of the TimeSync image analysis process. Using a combination of content analysis, diagramming, semi-structured interviews, and observation, the study highlights the perceptual and cognitive elements of expert remote sensing interpretation. Results show that image analysts perform several standard cognitive processes, but flexibly employ these processes in response to various contextual cues. Expert image analysts' ability to think flexibly during their analysis process was directly related to their amount of image analysis experience. Additionally, results show that the basic Image Interpretation Elements continue to be important despite technological augmentation of the interpretation process. These results are used to derive a set of design guidelines for developing geovisual analytic tools and training to support image analysis.

  16. Detecting Phase Boundaries in Hard-Sphere Suspensions

    NASA Technical Reports Server (NTRS)

    McDowell, Mark; Rogers, Richard B.; Gray, Elizabeth

    2009-01-01

    A special image-data-processing technique has been developed for use in experiments that involve observation, via optical microscopes equipped with electronic cameras, of moving boundaries between the colloidal-solid and colloidal-liquid phases of colloidal suspensions of monodisperse hard spheres. During an experiment, it is necessary to adjust the position of a microscope to keep the phase boundary within view. A boundary typically moves at a speed of the order of microns per hour. Because an experiment can last days or even weeks, it is impractical to require human intervention to keep the phase boundary in view. The present image-data-processing technique yields results within a computation time short enough to enable generation of automated-microscope-positioning commands to track the moving phase boundary

  17. Pulse-coupled neural network implementation in FPGA

    NASA Astrophysics Data System (ADS)

    Waldemark, Joakim T. A.; Lindblad, Thomas; Lindsey, Clark S.; Waldemark, Karina E.; Oberg, Johnny; Millberg, Mikael

    1998-03-01

    Pulse Coupled Neural Networks (PCNN) are biologically inspired neural networks, mainly based on studies of the visual cortex of small mammals. The PCNN is very well suited as a pre- processor for image processing, particularly in connection with object isolation, edge detection and segmentation. Several implementations of PCNN on von Neumann computers, as well as on special parallel processing hardware devices (e.g. SIMD), exist. However, these implementations are not as flexible as required for many applications. Here we present an implementation in Field Programmable Gate Arrays (FPGA) together with a performance analysis. The FPGA hardware implementation may be considered a platform for further, extended implementations and easily expanded into various applications. The latter may include advanced on-line image analysis with close to real-time performance.

  18. Methodological considerations in conducting an olfactory fMRI study.

    PubMed

    Vedaei, Faezeh; Fakhri, Mohammad; Harirchian, Mohammad Hossein; Firouznia, Kavous; Lotfi, Yones; Ali Oghabian, Mohammad

    2013-01-01

    The sense of smell is a complex chemosensory processing in human and animals that allows them to connect with the environment as one of their chief sensory systems. In the field of functional brain imaging, many studies have focused on locating brain regions that are involved during olfactory processing. Despite wealth of literature about brain network in different olfactory tasks, there is a paucity of data regarding task design. Moreover, considering importance of olfactory tasks for patients with variety of neurological diseases, special contemplations should be addressed for patients. In this article, we review current olfaction tasks for behavioral studies and functional neuroimaging assessments, as well as technical principles regarding utilization of these tasks in functional magnetic resonance imaging studies.

  19. Application of LANDSAT data to the study of urban development in Brasilia

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Deoliveira, M. D. L. N.; Foresti, C.; Niero, M.; Parreira, E. M. D. M. F.

    1984-01-01

    The urban growth of Brasilia within the last ten years is analyzed with special emphasis on the utilization of remote sensing orbital data and automatic image processing. The urban spatial structure and the monitoring of its temporal changes were examined in a whole and dynamic way by the utilization of MSS-LANDSAT images for June (1973, 1978 and 1983). In order to aid data interpretation, a registration algorithm implemented in the Interactive Multispectral Image Analysis System (IMAGE-100) was utilized aiming at the overlap of multitemporal images. The utilization of suitable digital filters, combined with the images overlap, allowed a rapid identification of areas of possible urban growth and oriented the field work. The results obtained in this work permitted an evaluation of the urban growth of Brasilia, taking as reference the proposal stated for the construction of the city in the Pilot Plan elaborated by Lucio Costa.

  20. Forensic detection of noise addition in digital images

    NASA Astrophysics Data System (ADS)

    Cao, Gang; Zhao, Yao; Ni, Rongrong; Ou, Bo; Wang, Yongbin

    2014-03-01

    We proposed a technique to detect the global addition of noise to a digital image. As an anti-forensics tool, noise addition is typically used to disguise the visual traces of image tampering or to remove the statistical artifacts left behind by other operations. As such, the blind detection of noise addition has become imperative as well as beneficial to authenticate the image content and recover the image processing history, which is the goal of general forensics techniques. Specifically, the special image blocks, including constant and strip ones, are used to construct the features for identifying noise addition manipulation. The influence of noising on blockwise pixel value distribution is formulated and analyzed formally. The methodology of detectability recognition followed by binary decision is proposed to ensure the applicability and reliability of noising detection. Extensive experimental results demonstrate the efficacy of our proposed noising detector.

  1. MR imaging of hand and wrist with a dedicated 0.1-T low-field imaging system.

    PubMed

    Gries, P; Constantinesco, A; Brunot, B; Facello, A

    1991-01-01

    We describe the first results of a new magnetic resonance imaging (MRI) system specially developed for hand and wrist imaging. The system uses a small resistive water-cooled magnet with a vertical magnetic field of 0.1 T in an air gap of 15 cm. The console is based on a microcomputer with a vector signal processor and an image-processing board. There is actually no Faraday cage. For the whole hand, the in-plane spatial resolution is less than 1 mm in the 128 x 128-pixels format for typical slice thicknesses of 3 to 5 mm. Solenoidal volume coils for fingers were developed, giving, in the same matrix format, an in-plane high spatial resolution of 0.22 mm for a typical slice thickness of 3 mm.

  2. [One decade of functional imaging in schizophrenia research. From visualisation of basic information processing steps to molecular-genetic oriented imaging].

    PubMed

    Tost, H; Meyer-Lindenberg, A; Ruf, M; Demirakça, T; Grimm, O; Henn, F A; Ende, G

    2005-02-01

    Modern neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have contributed tremendously to our current understanding of psychiatric disorders in the context of functional, biochemical and microstructural alterations of the brain. Since the mid-nineties, functional MRI has provided major insights into the neurobiological correlates of signs and symptoms in schizophrenia. The current paper reviews important fMRI studies of the past decade in the domains of motor, visual, auditory, attentional and working memory function. Special emphasis is given to new methodological approaches, such as the visualisation of medication effects and the functional characterisation of risk genes.

  3. Science and Technology Review June 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aufderheide, M

    2005-05-03

    This is the articles in this month's issue: (1) Close Collaborations Advance Progress in Genomic Research--Commentary by Elbert Branscomb; (2) Mining Genomes--Livermore computer programs help locate the stretches of DNA in gene deserts that regulate protein-making genes; (3) Shedding Light on Quantum Physics--Laboratory laser research builds from the foundation of Einstein's description of the quantization of light. (4) The Sharper Image for Surveillance--Speckle imaging-an image-processing technique used in astronomy is bringing long-distance surveillance into sharper focus. (5) Keeping Cool Close to the Sun--The specially coated gamma-ray spectrometer aboard the MESSENGER spacecraft will help scientists determine the abundance of elements inmore » Mercury's crust.« less

  4. Early development in synthetic aperture lidar sensing and processing for on-demand high resolution imaging

    NASA Astrophysics Data System (ADS)

    Bergeron, Alain; Turbide, Simon; Terroux, Marc; Marchese, Linda; Harnisch, Bernd

    2017-11-01

    The quest for real-time high resolution is of prime importance for surveillance applications specially in disaster management and rescue mission. Synthetic aperture radar provides meter-range resolution images in all weather conditions. Often installed on satellites the revisit time can be too long to support real-time operations on the ground. Synthetic aperture lidar can be lightweight and offers centimeter-range resolution. Onboard airplane or unmanned air vehicle this technology would allow for timelier reconnaissance. INO has developed a synthetic aperture radar table prototype and further used a real-time optronic processor to fulfill image generation on-demand. The early positive results using both technologies are presented in this paper.

  5. Basic radiological assessment of synovial diseases: a pictorial essay

    PubMed Central

    Turan, Aynur; Çeltikçi, Pınar; Tufan, Abdurrahman; Öztürk, Mehmet Akif

    2017-01-01

    The synovium is a specialized tissue lining the synovial joints, bursae, and tendon sheaths of the body. It is affected by various localized or systemic disorders. Synovial diseases can be classified as inflammatory, infectious, degenerative, traumatic, hemorrhagic, and neoplastic. Damage in other intraarticular structures, particularly cartilages, generally occurs as a part of pathologic processes involving the synovium, leading to irreversible joint destruction. Imaging has an essential role in the early detection of synovial diseases prior to irreversible joint damage. Obtaining and understanding characteristic imaging findings of synovial diseases enables a proper diagnosis for early treatment. This article focuses on the recent literature that is related with the role of imaging in synovial disease. PMID:28638696

  6. Multisensory Integration of Sounds and Vibrotactile Stimuli in Processing Streams for “What” and “Where”

    PubMed Central

    Renier, Laurent A.; Anurova, Irina; De Volder, Anne G.; Carlson, Synnöve; VanMeter, John; Rauschecker, Josef P.

    2012-01-01

    The segregation between cortical pathways for the identification and localization of objects is thought of as a general organizational principle in the brain. Yet, little is known about the unimodal versus multimodal nature of these processing streams. The main purpose of the present study was to test whether the auditory and tactile dual pathways converged into specialized multisensory brain areas. We used functional magnetic resonance imaging (fMRI) to compare directly in the same subjects the brain activation related to localization and identification of comparable auditory and vibrotactile stimuli. Results indicate that the right inferior frontal gyrus (IFG) and both left and right insula were more activated during identification conditions than during localization in both touch and audition. The reverse dissociation was found for the left and right inferior parietal lobules (IPL), the left superior parietal lobule (SPL) and the right precuneus-SPL, which were all more activated during localization conditions in the two modalities. We propose that specialized areas in the right IFG and the left and right insula are multisensory operators for the processing of stimulus identity whereas parts of the left and right IPL and SPL are specialized for the processing of spatial attributes independently of sensory modality. PMID:19726653

  7. Information Extraction of High Resolution Remote Sensing Images Based on the Calculation of Optimal Segmentation Parameters

    PubMed Central

    Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei

    2016-01-01

    Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme. PMID:27362762

  8. Information Extraction of High Resolution Remote Sensing Images Based on the Calculation of Optimal Segmentation Parameters.

    PubMed

    Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei

    2016-01-01

    Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme.

  9. Platform for Postprocessing Waveform-Based NDE

    NASA Technical Reports Server (NTRS)

    Roth, Don

    2008-01-01

    Taking advantage of the similarities that exist among all waveform-based non-destructive evaluation (NDE) methods, a common software platform has been developed containing multiple- signal and image-processing techniques for waveforms and images. The NASA NDE Signal and Image Processing software has been developed using the latest versions of LabVIEW, and its associated Advanced Signal Processing and Vision Toolkits. The software is useable on a PC with Windows XP and Windows Vista. The software has been designed with a commercial grade interface in which two main windows, Waveform Window and Image Window, are displayed if the user chooses a waveform file to display. Within these two main windows, most actions are chosen through logically conceived run-time menus. The Waveform Window has plots for both the raw time-domain waves and their frequency- domain transformations (fast Fourier transform and power spectral density). The Image Window shows the C-scan image formed from information of the time-domain waveform (such as peak amplitude) or its frequency-domain transformation at each scan location. The user also has the ability to open an image, or series of images, or a simple set of X-Y paired data set in text format. Each of the Waveform and Image Windows contains menus from which to perform many user actions. An option exists to use raw waves obtained directly from scan, or waves after deconvolution if system wave response is provided. Two types of deconvolution, time-based subtraction or inverse-filter, can be performed to arrive at a deconvolved wave set. Additionally, the menu on the Waveform Window allows preprocessing of waveforms prior to image formation, scaling and display of waveforms, formation of different types of images (including non-standard types such as velocity), gating of portions of waves prior to image formation, and several other miscellaneous and specialized operations. The menu available on the Image Window allows many further image processing and analysis operations, some of which are found in commercially-available image-processing software programs (such as Adobe Photoshop), and some that are not (removing outliers, Bscan information, region-of-interest analysis, line profiles, and precision feature measurements).

  10. Word or Word-Like? Dissociating Orthographic Typicality from Lexicality in the Left Occipito-Temporal Cortex

    ERIC Educational Resources Information Center

    Woollams, Anna M.; Silani, Giorgia; Okada, Kayoko; Patterson, Karalyn; Price, Cathy J.

    2011-01-01

    Prior lesion and functional imaging studies have highlighted the importance of the left ventral occipito-temporal (LvOT) cortex for visual word recognition. Within this area, there is a posterior-anterior hierarchy of subregions that are specialized for different stages of orthographic processing. The aim of the present fMRI study was to…

  11. A comparative study of metabolic state of stem cells during osteogenic and adipogenic differentiations via fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sandeep; Ou, Meng-Hsin; Kuo, Jean-Cheng; Chiou, Arthur

    2016-10-01

    Cellular metabolic state can serve as a biomarker to indicate the differentiation potential of stem cells into other specialized cell lineages. In this study, two-photon fluorescence lifetime imaging microscopy (2P-FLIM) was applied to determine the fluorescence lifetime and the amounts of the auto-fluorescent metabolic co-factor reduced nicotinamide adenine dinucleotide (NADH) to elucidate the cellular metabolism of human mesenchymal stem cells (hMSCs) in osteogenic and adipogenic differentiation processes. 2P-FLIM provides the free to protein-bound NADH ratio which can serve as the indicator of cellular metabolic state. We measured NADH fluorescence lifetime at 0, 7, and 14 days after hMSCs were induced for either osteogenesis or adipogenesis. In both cases, the average fluorescence lifetime increased significantly at day 14 (P < 0.001), while the ratio of free to protein-bound NADH ratio decreased significantly in 7- days (P < 0.001) and 14-days (P < 0.001). Thus, our results indicated a higher metabolic rate in both osteogenic and adipogenic differentiation processes when compared with undifferentiated hMSCs. This approach may be further utilized to study proliferation efficiency and differentiation potential of stem cells into other specialized cell lineages.

  12. Differential Shift Estimation in the Absence of Coherence: Performance Analysis and Benefits of Polarimetry

    NASA Astrophysics Data System (ADS)

    Villano, Michelangelo; Papathanassiou, Konstantinos P.

    2011-03-01

    The estimation of the local differential shift between synthetic aperture radar (SAR) images has proven to be an effective technique for monitoring glacier surface motion. As images acquired over glaciers by short wavelength SAR systems, such as TerraSAR-X, often suffer from a lack of coherence, image features have to be exploited for the shift estimation (feature-tracking).The present paper addresses feature-tracking with special attention to the feasibility requirements and the achievable accuracy of the shift estimation. In particular, the dependence of the performance on image characteristics, such as texture parameters, signal-to-noise ratio (SNR) and resolution, as well as on processing techniques (despeckling, normalised cross-correlation versus maximum likelihood estimation) is analysed by means of Monte-Carlo simulations. TerraSAR-X data acquired over the Helheim glacier, Greenland, and the Aletsch glacier, Switzerland, have been processed to validate the simulation results.Feature-tracking can benefit of the availability of fully-polarimetric data. As some image characteristics, in fact, are polarisation-dependent, the selection of an optimum polarisation leads to improved performance. Furthermore, fully-polarimetric SAR images can be despeckled without degrading the resolution, so that additional (smaller-scale) features can be exploited.

  13. Thermographic measurements of high-speed metal cutting

    NASA Astrophysics Data System (ADS)

    Mueller, Bernhard; Renz, Ulrich

    2002-03-01

    Thermographic measurements of a high-speed cutting process have been performed with an infrared camera. To realize images without motion blur the integration times were reduced to a few microseconds. Since the high tool wear influences the measured temperatures a set-up has been realized which enables small cutting lengths. Only single images have been recorded because the process is too fast to acquire a sequence of images even with the frame rate of the very fast infrared camera which has been used. To expose the camera when the rotating tool is in the middle of the camera image an experimental set-up with a light barrier and a digital delay generator with a time resolution of 1 ns has been realized. This enables a very exact triggering of the camera at the desired position of the tool in the image. Since the cutting depth is between 0.1 and 0.2 mm a high spatial resolution was also necessary which was obtained by a special close-up lens allowing a resolution of app. 45 microns. The experimental set-up will be described and infrared images and evaluated temperatures of a titanium alloy and a carbon steel will be presented for cutting speeds up to 42 m/s.

  14. Translation-aware semantic segmentation via conditional least-square generative adversarial networks

    NASA Astrophysics Data System (ADS)

    Zhang, Mi; Hu, Xiangyun; Zhao, Like; Pang, Shiyan; Gong, Jinqi; Luo, Min

    2017-10-01

    Semantic segmentation has recently made rapid progress in the field of remote sensing and computer vision. However, many leading approaches cannot simultaneously translate label maps to possible source images with a limited number of training images. The core issue is insufficient adversarial information to interpret the inverse process and proper objective loss function to overcome the vanishing gradient problem. We propose the use of conditional least squares generative adversarial networks (CLS-GAN) to delineate visual objects and solve these problems. We trained the CLS-GAN network for semantic segmentation to discriminate dense prediction information either from training images or generative networks. We show that the optimal objective function of CLS-GAN is a special class of f-divergence and yields a generator that lies on the decision boundary of discriminator that reduces possible vanished gradient. We also demonstrate the effectiveness of the proposed architecture at translating images from label maps in the learning process. Experiments on a limited number of high resolution images, including close-range and remote sensing datasets, indicate that the proposed method leads to the improved semantic segmentation accuracy and can simultaneously generate high quality images from label maps.

  15. Concurrent Image Processing Executive (CIPE). Volume 1: Design overview

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Groom, Steven L.; Mazer, Alan S.; Williams, Winifred I.

    1990-01-01

    The design and implementation of a Concurrent Image Processing Executive (CIPE), which is intended to become the support system software for a prototype high performance science analysis workstation are described. The target machine for this software is a JPL/Caltech Mark 3fp Hypercube hosted by either a MASSCOMP 5600 or a Sun-3, Sun-4 workstation; however, the design will accommodate other concurrent machines of similar architecture, i.e., local memory, multiple-instruction-multiple-data (MIMD) machines. The CIPE system provides both a multimode user interface and an applications programmer interface, and has been designed around four loosely coupled modules: user interface, host-resident executive, hypercube-resident executive, and application functions. The loose coupling between modules allows modification of a particular module without significantly affecting the other modules in the system. In order to enhance hypercube memory utilization and to allow expansion of image processing capabilities, a specialized program management method, incremental loading, was devised. To minimize data transfer between host and hypercube, a data management method which distributes, redistributes, and tracks data set information was implemented. The data management also allows data sharing among application programs. The CIPE software architecture provides a flexible environment for scientific analysis of complex remote sensing image data, such as planetary data and imaging spectrometry, utilizing state-of-the-art concurrent computation capabilities.

  16. Diffusion and perfusion weighted magnetic resonance imaging for tumor volume definition in radiotherapy of brain tumors.

    PubMed

    Guo, Lu; Wang, Gang; Feng, Yuanming; Yu, Tonggang; Guo, Yu; Bai, Xu; Ye, Zhaoxiang

    2016-09-21

    Accurate target volume delineation is crucial for the radiotherapy of tumors. Diffusion and perfusion magnetic resonance imaging (MRI) can provide functional information about brain tumors, and they are able to detect tumor volume and physiological changes beyond the lesions shown on conventional MRI. This review examines recent studies that utilized diffusion and perfusion MRI for tumor volume definition in radiotherapy of brain tumors, and it presents the opportunities and challenges in the integration of multimodal functional MRI into clinical practice. The results indicate that specialized and robust post-processing algorithms and tools are needed for the precise alignment of targets on the images, and comprehensive validations with more clinical data are important for the improvement of the correlation between histopathologic results and MRI parameter images.

  17. PREFACE: Anti-counterfeit Image Analysis Methods (A Special Session of ICSXII)

    NASA Astrophysics Data System (ADS)

    Javidi, B.; Fournel, T.

    2007-06-01

    The International Congress for Stereology is dedicated to theoretical and applied aspects of stochastic tools, image analysis and mathematical morphology. A special emphasis on `anti-counterfeit image analysis methods' has been given this year for the XIIth edition (ICSXII). Facing the economic and social threat of counterfeiting, this devoted session presents recent advances and original solutions in the field. A first group of methods are related to marks located either on the product (physical marks) or on the data (hidden information) to be protected. These methods concern laser fs 3D encoding and source separation for machine-readable identification, moiré and `guilloche' engraving for visual verification and watermarking. Machine-readable travel documents are well-suited examples introducing the second group of methods which are related to cryptography. Used in passports for data authentication and identification (of people), cryptography provides some powerful tools. Opto-digital processing allows some efficient implementations described in the papers and promising applications. We would like to thank the reviewers who have contributed to a session of high quality, and the authors for their fine and hard work. We would like to address some special thanks to the invited lecturers, namely Professor Roger Hersch and Dr Isaac Amidror for their survey of moiré methods, Prof. Serge Vaudenay for his survey of existing protocols concerning machine-readable travel documents, and Dr Elisabet Pérez-Cabré for her presentation on optical encryption for multifactor authentication. We also thank Professor Dominique Jeulin, President of the International Society for Stereology, Professor Michel Jourlin, President of the organizing committee of ICSXII, for their help and advice, and Mr Graham Douglas, the Publisher of Journal of Physics: Conference Series at IOP Publishing, for his efficiency. We hope that this collection of papers will be useful as a tool to further develop a very important field. Bahram Javidi University of Connecticut (USA) Thierry Fournel University of Saint-Etienne (France) Chairs of the special session on `Anti-counterfeit image analysis methods', July 2007

  18. Spaceborne electronic imaging systems

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Criteria and recommended practices for the design of the spaceborne elements of electronic imaging systems are presented. A spaceborne electronic imaging system is defined as a device that collects energy in some portion of the electromagnetic spectrum with detector(s) whose direct output is an electrical signal that can be processed (using direct transmission or delayed transmission after recording) to form a pictorial image. This definition encompasses both image tube systems and scanning point-detector systems. The intent was to collect the design experience and recommended practice of the several systems possessing the common denominator of acquiring images from space electronically and to maintain the system viewpoint rather than pursuing specialization in devices. The devices may be markedly different physically, but each was designed to provide a particular type of image within particular limitations. Performance parameters which determine the type of system selected for a given mission and which influence the design include: Sensitivity, Resolution, Dynamic range, Spectral response, Frame rate/bandwidth, Optics compatibility, Image motion, Radiation resistance, Size, Weight, Power, and Reliability.

  19. Image Processing of Porous Silicon Microarray in Refractive Index Change Detection.

    PubMed

    Guo, Zhiqing; Jia, Zhenhong; Yang, Jie; Kasabov, Nikola; Li, Chuanxi

    2017-06-08

    A new method for extracting the dots is proposed by the reflected light image of porous silicon (PSi) microarray utilization in this paper. The method consists of three parts: pretreatment, tilt correction and spot segmentation. First, based on the characteristics of different components in HSV (Hue, Saturation, Value) space, a special pretreatment is proposed for the reflected light image to obtain the contour edges of the array cells in the image. Second, through the geometric relationship of the target object between the initial external rectangle and the minimum bounding rectangle (MBR), a new tilt correction algorithm based on the MBR is proposed to adjust the image. Third, based on the specific requirements of the reflected light image segmentation, the array cells are segmented into dots as large as possible and the distance between the dots is equal in the corrected image. Experimental results show that the pretreatment part of this method can effectively avoid the influence of complex background and complete the binarization processing of the image. The tilt correction algorithm has a shorter computation time, which makes it highly suitable for tilt correction of reflected light images. The segmentation algorithm makes the dots in a regular arrangement, excludes the edges and the bright spots. This method could be utilized in the fast, accurate and automatic dots extraction of the PSi microarray reflected light image.

  20. Image Processing of Porous Silicon Microarray in Refractive Index Change Detection

    PubMed Central

    Guo, Zhiqing; Jia, Zhenhong; Yang, Jie; Kasabov, Nikola; Li, Chuanxi

    2017-01-01

    A new method for extracting the dots is proposed by the reflected light image of porous silicon (PSi) microarray utilization in this paper. The method consists of three parts: pretreatment, tilt correction and spot segmentation. First, based on the characteristics of different components in HSV (Hue, Saturation, Value) space, a special pretreatment is proposed for the reflected light image to obtain the contour edges of the array cells in the image. Second, through the geometric relationship of the target object between the initial external rectangle and the minimum bounding rectangle (MBR), a new tilt correction algorithm based on the MBR is proposed to adjust the image. Third, based on the specific requirements of the reflected light image segmentation, the array cells are segmented into dots as large as possible and the distance between the dots is equal in the corrected image. Experimental results show that the pretreatment part of this method can effectively avoid the influence of complex background and complete the binarization processing of the image. The tilt correction algorithm has a shorter computation time, which makes it highly suitable for tilt correction of reflected light images. The segmentation algorithm makes the dots in a regular arrangement, excludes the edges and the bright spots. This method could be utilized in the fast, accurate and automatic dots extraction of the PSi microarray reflected light image. PMID:28594383

  1. An Attempt to Observe Debris from the Breakup of a Titan 3C-4 Transtage

    NASA Technical Reports Server (NTRS)

    Barker, E. S.; Matney, M. J.; Yanagisawa, T.; Liou, J.-C.; Abercromby, K. J.; Rodriquez, H. M.; Horstman, M. F.; Seitzer, P.

    2007-01-01

    In February 2007 dedicated observations were made of the orbital space predicted to contain debris from the breakup of the Titan 3C-4 transtage back on February 21, 1992. These observations were carried out on the Michigan Orbital DEbris Survey Telescope (MODEST) in Chile with its 1.3deg field of view. The search region or orbital space (inclination and right ascension of the ascending node (RAAN) was predicted using NASA#s LEGEND (LEO-to-GEO Environment Debris) code to generate a Titan debris cloud. Breakup fragments are created based on the NASA Standard Breakup Model (including fragment size, area-to-mass (A/M), and delta-V distributions). Once fragments are created, they are propagated forward in time with a subroutine GEOPROP. Perturbations included in GEOPROP are those due to solar/lunar gravity, radiation pressure, and major geopotential terms. Barker, et. al, (AMOS Conference Proceedings, 2006, pp. 596-604) used similar LEGEND predictions to correlate survey observations made by MODEST (February 2002) and found several possible night-to-night correlations in the limited survey dataset. One conc lusion of the survey search was to dedicate a MODEST run to observing a GEO region predicted to contain debris fragments and actual Titan debris objects (SSN 25000, 25001 and 30000). Such a dedicated run was undertaken with MODEST between February 17 and 23, 2007 (UT dates). MODEST#s limiting magnitude of 18.0 (S\\N approx.10) corresponds to a size of 22cm assuming a diffuse Lambertian albedo of 0.2. However, based on observed break-up data, we expect most debris fragments to be smaller than 22cm which implies a need to increase the effective sensitivity of MODEST for smaller objects. MODEST#s limiting size can be lowered by increasing the exposure time (20 instead of 5 seconds) and applying special image processing. The special processing combines individual CCD images to detect faint objects that are invisible on a single CCD image. Sub-images are cropped from six consecutive CCD images with pixel shifts between images being consistent with the predicted movement of a Titan object. A median image of all the sub-images is then created leaving only those objects with the proper Titan motion. Limiting the median image in this manner brings the needed computer time to process all images taken on one night down to about 50 hours of CPU time.

  2. Abnormalities in hemispheric specialization of caudate nucleus connectivity in schizophrenia.

    PubMed

    Mueller, Sophia; Wang, Danhong; Pan, Ruiqi; Holt, Daphne J; Liu, Hesheng

    2015-06-01

    Hemispheric specialization of the human brain is a marker of successful neurodevelopment. Altered brain asymmetry that has been repeatedly reported in schizophrenia may represent consequences of disrupted neurodevelopment in the disorder. However, a complete picture of functional specialization in the schizophrenic brain and its connectional substrates is yet to be unveiled. To quantify intrinsic hemispheric specialization at cortical and subcortical levels and to reveal potential disease effects in schizophrenia. Resting-state functional connectivity magnetic resonance imaging has been previously used to quantitatively measure hemispheric specialization in healthy individuals in a reliable manner. We quantified the intrinsic hemispheric specialization at the whole brain level in 31 patients with schizophrenia and 37 demographically matched healthy controls from November 28, 2007, through June 29, 2010, using resting-state functional magnetic resonance imaging. The caudate nucleus and cortical regions with connections to the caudate nucleus had markedly abnormal hemispheric specialization in schizophrenia. Compared with healthy controls, patients exhibited weaker specialization in the left, but the opposite pattern in the right, caudate nucleus (P < .001). Patients with schizophrenia also had a disruption of the interhemispheric coordination among the cortical regions with connections to the caudate nucleus. A linear classifier based on the specialization of the caudate nucleus distinguished patients from controls with a classification accuracy of 74% (with a sensitivity of 68% and a specificity of 78%). These data suggest that hemispheric specialization could serve as a potential imaging biomarker of schizophrenia that, compared with task-based functional magnetic resonance imaging measures, is less prone to the confounding effects of variation in task compliance, cognitive ability, and command of language.

  3. Digital mapping of the Mars Pathfinder landing site: Design, acquisition, and derivation of cartographic products for science applications

    USGS Publications Warehouse

    Gaddis, L.R.; Kirk, R.L.; Johnson, J. R.; Soderblom, L.A.; Ward, A.W.; Barrett, J.; Becker, K.; Decker, T.; Blue, J.; Cook, D.; Eliason, E.; Hare, T.; Howington-Kraus, E.; Isbell, C.; Lee, E.M.; Redding, B.; Sucharski, R.; Sucharski, T.; Smith, P.H.; Britt, D.T.

    1999-01-01

    The Imager for Mars Pathfinder (IMP) acquired more than 16,000 images and provided panoramic views of the surface of Mars at the Mars Pathfinder landing site in Ares Vallis. This paper describes the stereoscopic, multispectral IMP imaging sequences and focuses on their use for digital mapping of the landing site and for deriving cartographic products to support science applications of these data. Two-dimensional cartographic processing of IMP data, as performed via techniques and specialized software developed for ISIS (the U.S.Geological Survey image processing software package), is emphasized. Cartographic processing of IMP data includes ingestion, radiometric correction, establishment of geometric control, coregistration of multiple bands, reprojection, and mosaicking. Photogrammetric processing, an integral part of this cartographic work which utilizes the three-dimensional character of the IMP data, supplements standard processing with geometric control and topographic information [Kirk et al., this issue]. Both cartographic and photogrammetric processing are required for producing seamless image mosaics and for coregistering the multispectral IMP data. Final, controlled IMP cartographic products include spectral cubes, panoramic (360?? azimuthal coverage) and planimetric (top view) maps, and topographic data, to be archived on four CD-ROM volumes. Uncontrolled and semicontrolled versions of these products were used to support geologic characterization of the landing site during the nominal and extended missions. Controlled products have allowed determination of the topography of the landing site and environs out to ???60 m, and these data have been used to unravel the history of large- and small-scale geologic processes which shaped the observed landing site. We conclude by summarizing several lessons learned from cartographic processing of IMP data. Copyright 1999 by the American Geophysical Union.

  4. An Underwater Color Image Quality Evaluation Metric.

    PubMed

    Yang, Miao; Sowmya, Arcot

    2015-12-01

    Quality evaluation of underwater images is a key goal of underwater video image retrieval and intelligent processing. To date, no metric has been proposed for underwater color image quality evaluation (UCIQE). The special absorption and scattering characteristics of the water medium do not allow direct application of natural color image quality metrics especially to different underwater environments. In this paper, subjective testing for underwater image quality has been organized. The statistical distribution of the underwater image pixels in the CIELab color space related to subjective evaluation indicates the sharpness and colorful factors correlate well with subjective image quality perception. Based on these, a new UCIQE metric, which is a linear combination of chroma, saturation, and contrast, is proposed to quantify the non-uniform color cast, blurring, and low-contrast that characterize underwater engineering and monitoring images. Experiments are conducted to illustrate the performance of the proposed UCIQE metric and its capability to measure the underwater image enhancement results. They show that the proposed metric has comparable performance to the leading natural color image quality metrics and the underwater grayscale image quality metrics available in the literature, and can predict with higher accuracy the relative amount of degradation with similar image content in underwater environments. Importantly, UCIQE is a simple and fast solution for real-time underwater video processing. The effectiveness of the presented measure is also demonstrated by subjective evaluation. The results show better correlation between the UCIQE and the subjective mean opinion score.

  5. Voyager Special Cargo: The Golden Record

    NASA Image and Video Library

    2011-04-29

    This image highlights the special cargo onboard NASA Voyager spacecraft: the Golden Record. Each of the two Voyager spacecraft launched in 1977 carry a 12-inch gold-plated phonograph record with images and sounds from Earth.

  6. Optical data processing and projected applications of the ERTS-1 imagery covering the 1973 Mississippi River Valley floods

    USGS Publications Warehouse

    Deutsch, Morris; Ruggles, Fred

    1974-01-01

    Flooding along the Mississippi River and some of its tributaries was detected by the multispectral scanner (MSS) on the Earth Resources Technology Satellite (ERTS-1) on at least three orbits during the spring of 1973. The ERTS data provided the first opportunity for mapping the regional extent of flooding at the time of the imagery. Special optical data processing techniques were used to produce a variety of multispectral color composites enhancing flood-plain details. One of these, a 2-color composite of near infrared bands 6 and 7, was enlarged and registered to 1:250,000-scale topographic maps and used as the basis for preparation of flood image maps. Two specially filtered 3-color composites of MSS bands 5, 6, and 7 and 4, 5, and 7 were prepared to aid in the interpretation of the data. The extent of the flooding was vividly depicted on a single image by 2-color temporal composites produced on the additive-color viewer using band 7 flood data superimposed on pre-flood band 7 images. On May 24, when the floodwaters at St. Louis receded to bankfull stage, imagery was again obtained by ERTS. Analysis of temporal data composites of the pre-flood and post-flood band 7 images indicate that changes in surface reflectance characteristics caused by the flooding can be delineated, thus making it possible to map the overall area flooded without the necessity of a real-time system to track and image the peak flood waves. Regional planning and disaster relief agencies such as the Corps of Engineers, Office of Emergency Preparedness, Soil Conservation Service, interstate river basin commissions and state agencies, as well as private lending and insurance institutions, have indicated strong potential applications for ERTS image-maps of flood-prone areas.

  7. Automatic tracking of cells for video microscopy in patch clamp experiments

    PubMed Central

    2014-01-01

    Background Visualisation of neurons labeled with fluorescent proteins or compounds generally require exposure to intense light for a relatively long period of time, often leading to bleaching of the fluorescent probe and photodamage of the tissue. Here we created a technique to drastically shorten light exposure and improve the targeting of fluorescent labeled cells that is specially useful for patch-clamp recordings. We applied image tracking and mask overlay to reduce the time of fluorescence exposure and minimise mistakes when identifying neurons. Methods Neurons are first identified according to visual criteria (e.g. fluorescence protein expression, shape, viability etc.) and a transmission microscopy image Differential Interference Contrast (DIC) or Dodt contrast containing the cell used as a reference for the tracking algorithm. A fluorescence image can also be acquired later to be used as a mask (that can be overlaid on the target during live transmission video). As patch-clamp experiments require translating the microscope stage, we used pattern matching to track reference neurons in order to move the fluorescence mask to match the new position of the objective in relation to the sample. For the image processing we used the Open Source Computer Vision (OpenCV) library, including the Speeded-Up Robust Features (SURF) for tracking cells. The dataset of images (n = 720) was analyzed under normal conditions of acquisition and with influence of noise (defocusing and brightness). Results We validated the method in dissociated neuronal cultures and fresh brain slices expressing Enhanced Yellow Fluorescent Protein (eYFP) or Tandem Dimer Tomato (tdTomato) proteins, which considerably decreased the exposure to fluorescence excitation, thereby minimising photodamage. We also show that the neuron tracking can be used in differential interference contrast or Dodt contrast microscopy. Conclusion The techniques of digital image processing used in this work are an important addition to the set of microscopy tools used in modern electrophysiology, specially in experiments with neuron cultures and brain slices. PMID:24946774

  8. Automatic tracking of cells for video microscopy in patch clamp experiments.

    PubMed

    Peixoto, Helton M; Munguba, Hermany; Cruz, Rossana M S; Guerreiro, Ana M G; Leao, Richardson N

    2014-06-20

    Visualisation of neurons labeled with fluorescent proteins or compounds generally require exposure to intense light for a relatively long period of time, often leading to bleaching of the fluorescent probe and photodamage of the tissue. Here we created a technique to drastically shorten light exposure and improve the targeting of fluorescent labeled cells that is specially useful for patch-clamp recordings. We applied image tracking and mask overlay to reduce the time of fluorescence exposure and minimise mistakes when identifying neurons. Neurons are first identified according to visual criteria (e.g. fluorescence protein expression, shape, viability etc.) and a transmission microscopy image Differential Interference Contrast (DIC) or Dodt contrast containing the cell used as a reference for the tracking algorithm. A fluorescence image can also be acquired later to be used as a mask (that can be overlaid on the target during live transmission video). As patch-clamp experiments require translating the microscope stage, we used pattern matching to track reference neurons in order to move the fluorescence mask to match the new position of the objective in relation to the sample. For the image processing we used the Open Source Computer Vision (OpenCV) library, including the Speeded-Up Robust Features (SURF) for tracking cells. The dataset of images (n = 720) was analyzed under normal conditions of acquisition and with influence of noise (defocusing and brightness). We validated the method in dissociated neuronal cultures and fresh brain slices expressing Enhanced Yellow Fluorescent Protein (eYFP) or Tandem Dimer Tomato (tdTomato) proteins, which considerably decreased the exposure to fluorescence excitation, thereby minimising photodamage. We also show that the neuron tracking can be used in differential interference contrast or Dodt contrast microscopy. The techniques of digital image processing used in this work are an important addition to the set of microscopy tools used in modern electrophysiology, specially in experiments with neuron cultures and brain slices.

  9. An Image Processing Approach to Linguistic Translation

    NASA Astrophysics Data System (ADS)

    Kubatur, Shruthi; Sreehari, Suhas; Hegde, Rajeshwari

    2011-12-01

    The art of translation is as old as written literature. Developments since the Industrial Revolution have influenced the practice of translation, nurturing schools, professional associations, and standard. In this paper, we propose a method of translation of typed Kannada text (taken as an image) into its equivalent English text. The National Instruments (NI) Vision Assistant (version 8.5) has been used for Optical character Recognition (OCR). We developed a new way of transliteration (which we call NIV transliteration) to simplify the training of characters. Also, we build a special type of dictionary for the purpose of translation.

  10. Real-time Enhancement, Registration, and Fusion for an Enhanced Vision System

    NASA Technical Reports Server (NTRS)

    Hines, Glenn D.; Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.

    2006-01-01

    Over the last few years NASA Langley Research Center (LaRC) has been developing an Enhanced Vision System (EVS) to aid pilots while flying in poor visibility conditions. The EVS captures imagery using two infrared video cameras. The cameras are placed in an enclosure that is mounted and flown forward-looking underneath the NASA LaRC ARIES 757 aircraft. The data streams from the cameras are processed in real-time and displayed on monitors on-board the aircraft. With proper processing the camera system can provide better-than-human-observed imagery particularly during poor visibility conditions. However, to obtain this goal requires several different stages of processing including enhancement, registration, and fusion, and specialized processing hardware for real-time performance. We are using a real-time implementation of the Retinex algorithm for image enhancement, affine transformations for registration, and weighted sums to perform fusion. All of the algorithms are executed on a single TI DM642 digital signal processor (DSP) clocked at 720 MHz. The image processing components were added to the EVS system, tested, and demonstrated during flight tests in August and September of 2005. In this paper we briefly discuss the EVS image processing hardware and algorithms. We then discuss implementation issues and show examples of the results obtained during flight tests.

  11. Development of a diaphragmatic motion-based elastography framework for assessment of liver stiffness

    NASA Astrophysics Data System (ADS)

    Weis, Jared A.; Johnsen, Allison M.; Wile, Geoffrey E.; Yankeelov, Thomas E.; Abramson, Richard G.; Miga, Michael I.

    2015-03-01

    Evaluation of mechanical stiffness imaging biomarkers, through magnetic resonance elastography (MRE), has shown considerable promise for non-invasive assessment of liver stiffness to monitor hepatic fibrosis. MRE typically requires specialized externally-applied vibratory excitation and scanner-specific motion-sensitive pulse sequences. In this work, we have developed an elasticity imaging approach that utilizes natural diaphragmatic respiratory motion to induce deformation and eliminates the need for external deformation excitation hardware and specialized pulse sequences. Our approach uses clinically-available standard of care volumetric imaging acquisitions, combined with offline model-based post-processing to generate volumetric estimates of stiffness within the liver and surrounding tissue structures. We have previously developed a novel methodology for non-invasive elasticity imaging which utilizes a model-based elasticity reconstruction algorithm and MR image volumes acquired under different states of deformation. In prior work, deformation was external applied through inflation of an air bladder placed within the MR radiofrequency coil. In this work, we extend the methodology with the goal of determining the feasibility of assessing liver mechanical stiffness using diaphragmatic respiratory motion between end-inspiration and end-expiration breath-holds as a source of deformation. We present initial investigations towards applying this methodology to assess liver stiffness in healthy volunteers and cirrhotic patients. Our preliminary results suggest that this method is capable of non-invasive image-based assessment of liver stiffness using natural diaphragmatic respiratory motion and provides considerable enthusiasm for extension of our approach towards monitoring liver stiffness in cirrhotic patients with limited impact to standard-of-care clinical imaging acquisition workflow.

  12. Left hemispheric dominance of vestibular processing indicates lateralization of cortical functions in rats.

    PubMed

    Best, Christoph; Lange, Elena; Buchholz, Hans-Georg; Schreckenberger, Mathias; Reuss, Stefan; Dieterich, Marianne

    2014-11-01

    Lateralization of cortical functions such as speech dominance, handedness and processing of vestibular information are present not only in humans but also in ontogenetic older species, e.g. rats. In human functional imaging studies, the processing of vestibular information was found to be correlated with the hemispherical dominance as determined by the handedness. It is located mainly within the right hemisphere in right handers and within the left hemisphere in left handers. Since dominance of vestibular processing is unknown in animals, our aim was to study the lateralization of cortical processing in a functional imaging study applying small-animal positron emission tomography (microPET) and galvanic vestibular stimulation in an in vivo rat model. The cortical and subcortical network processing vestibular information could be demonstrated and correlated with data from other animal studies. By calculating a lateralization index as well as flipped region of interest analyses, we found that the vestibular processing in rats follows a strong left hemispheric dominance independent from the "handedness" of the animals. These findings support the idea of an early hemispheric specialization of vestibular cortical functions in ontogenetic older species.

  13. Measurements and analysis in imaging for biomedical applications

    NASA Astrophysics Data System (ADS)

    Hoeller, Timothy L.

    2009-02-01

    A Total Quality Management (TQM) approach can be used to analyze data from biomedical optical and imaging platforms of tissues. A shift from individuals to teams, partnerships, and total participation are necessary from health care groups for improved prognostics using measurement analysis. Proprietary measurement analysis software is available for calibrated, pixel-to-pixel measurements of angles and distances in digital images. Feature size, count, and color are determinable on an absolute and comparative basis. Although changes in images of histomics are based on complex and numerous factors, the variation of changes in imaging analysis to correlations of time, extent, and progression of illness can be derived. Statistical methods are preferred. Applications of the proprietary measurement software are available for any imaging platform. Quantification of results provides improved categorization of illness towards better health. As health care practitioners try to use quantified measurement data for patient diagnosis, the techniques reported can be used to track and isolate causes better. Comparisons, norms, and trends are available from processing of measurement data which is obtained easily and quickly from Scientific Software and methods. Example results for the class actions of Preventative and Corrective Care in Ophthalmology and Dermatology, respectively, are provided. Improved and quantified diagnosis can lead to better health and lower costs associated with health care. Systems support improvements towards Lean and Six Sigma affecting all branches of biology and medicine. As an example for use of statistics, the major types of variation involving a study of Bone Mineral Density (BMD) are examined. Typically, special causes in medicine relate to illness and activities; whereas, common causes are known to be associated with gender, race, size, and genetic make-up. Such a strategy of Continuous Process Improvement (CPI) involves comparison of patient results to baseline data using F-statistics. Self-parings over time are also useful. Special and common causes are identified apart from aging in applying the statistical methods. In the future, implementation of imaging measurement methods by research staff, doctors, and concerned patient partners result in improved health diagnosis, reporting, and cause determination. The long-term prospects for quantified measurements are better quality in imaging analysis with applications of higher utility for heath care providers.

  14. Age-related changes in the activation of the intraparietal sulcus during nonsymbolic magnitude processing: an event-related functional magnetic resonance imaging study.

    PubMed

    Ansari, Daniel; Dhital, Bibek

    2006-11-01

    Numerical magnitude processing is an essential everyday skill. Functional brain imaging studies with human adults have repeatedly revealed that bilateral regions of the intraparietal sulcus are correlated with various numerical and mathematical skills. Surprisingly little, however, is known about the development of these brain representations. In the present study, we used functional neuroimaging to compare the neural correlates of nonsymbolic magnitude judgments between children and adults. Although behavioral performance was similar across groups, in comparison to the group of children the adult participants exhibited greater effects of numerical distance on the left intraparietal sulcus. Our findings are the first to reveal that even the most basic aspects of numerical cognition are subject to age-related changes in functional neuroanatomy. We propose that developmental impairments of number may be associated with atypical specialization of cortical regions underlying magnitude processing.

  15. Geometric Constructions for Image Formation by a Converging Lens

    ERIC Educational Resources Information Center

    Zurcher, Ulrich

    2012-01-01

    Light rays emerge from an object in all directions. In introductory texts, three "special" rays are selected to draw the image produced by lenses and mirrors. This presentation may suggest to students that these three rays are necessary for the formation of an image. We discuss that the three rays attain their "special status" from the geometric…

  16. Image-Based Single Cell Profiling: High-Throughput Processing of Mother Machine Experiments

    PubMed Central

    Sachs, Christian Carsten; Grünberger, Alexander; Helfrich, Stefan; Probst, Christopher; Wiechert, Wolfgang; Kohlheyer, Dietrich; Nöh, Katharina

    2016-01-01

    Background Microfluidic lab-on-chip technology combined with live-cell imaging has enabled the observation of single cells in their spatio-temporal context. The mother machine (MM) cultivation system is particularly attractive for the long-term investigation of rod-shaped bacteria since it facilitates continuous cultivation and observation of individual cells over many generations in a highly parallelized manner. To date, the lack of fully automated image analysis software limits the practical applicability of the MM as a phenotypic screening tool. Results We present an image analysis pipeline for the automated processing of MM time lapse image stacks. The pipeline supports all analysis steps, i.e., image registration, orientation correction, channel/cell detection, cell tracking, and result visualization. Tailored algorithms account for the specialized MM layout to enable a robust automated analysis. Image data generated in a two-day growth study (≈ 90 GB) is analyzed in ≈ 30 min with negligible differences in growth rate between automated and manual evaluation quality. The proposed methods are implemented in the software molyso (MOther machine AnaLYsis SOftware) that provides a new profiling tool to analyze unbiasedly hitherto inaccessible large-scale MM image stacks. Conclusion Presented is the software molyso, a ready-to-use open source software (BSD-licensed) for the unsupervised analysis of MM time-lapse image stacks. molyso source code and user manual are available at https://github.com/modsim/molyso. PMID:27661996

  17. A New Digital Holographic Instrument for Measuring Microphysical Properties of Contrails in the SASS (Subsonic Assessment) Program

    NASA Technical Reports Server (NTRS)

    Lawson, R. Paul

    2000-01-01

    SPEC incorporated designed, built and operated a new instrument, called a pi-Nephelometer, on the NASA DC-8 for the SUCCESS field project. The pi-Nephelometer casts an image of a particle on a 400,000 pixel solid-state camera by freezing the motion of the particle using a 25 ns pulsed, high-power (60 W) laser diode. Unique optical imaging and particle detection systems precisely detect particles and define the depth-of-field so that at least one particle in the image is almost always in focus. A powerful image processing engine processes frames from the solid-state camera, identifies and records regions of interest (i.e. particle images) in real time. Images of ice crystals are displayed and recorded with 5 micron pixel resolution. In addition, a scattered light system simultaneously measures the scattering phase function of the imaged particle. The system consists of twenty-eight 1-mm optical fibers connected to microlenses bonded on the surface of avalanche photo diodes (APDs). Data collected with the pi-Nephelometer during the SUCCESS field project was reported in a special issue of Geophysical Research Letters. The pi-Nephelometer provided the basis for development of a commercial imaging probe, called the cloud particle imager (CPI), which has been installed on several research aircraft and used in More than a dozen field programs.

  18. Indoor navigation by image recognition

    NASA Astrophysics Data System (ADS)

    Choi, Io Teng; Leong, Chi Chong; Hong, Ka Wo; Pun, Chi-Man

    2017-07-01

    With the progress of smartphones hardware, it is simple on smartphone using image recognition technique such as face detection. In addition, indoor navigation system development is much slower than outdoor navigation system. Hence, this research proves a usage of image recognition technique for navigation in indoor environment. In this paper, we introduced an indoor navigation application that uses the indoor environment features to locate user's location and a route calculating algorithm to generate an appropriate path for user. The application is implemented on Android smartphone rather than iPhone. Yet, the application design can also be applied on iOS because the design is implemented without using special features only for Android. We found that digital navigation system provides better and clearer location information than paper map. Also, the indoor environment is ideal for Image recognition processing. Hence, the results motivate us to design an indoor navigation system using image recognition.

  19. Transport and installation of the Dark Energy Survey CCD imager

    NASA Astrophysics Data System (ADS)

    Derylo, Greg; Chi, Edward; Diehl, H. Thomas; Estrada, Juan; Flaugher, Brenna; Schultz, Ken

    2012-09-01

    The Dark Energy Survey CCD imager was constructed at the Fermi National Accelerator Laboratory and delivered to the Cerro Tololo Inter-American Observatory in Chile for installation onto the Blanco 4m telescope. Several efforts are described relating to preparation of the instrument for transport, development and testing of a shipping crate designed to minimize transportation loads transmitted to the camera, and inspection of the imager upon arrival at the observatory. Transportation loads were monitored and are described. For installation of the imager at the telescope prime focus, where it mates with its previously-installed optical corrector, specialized tooling was developed to safely lift, support, and position the vessel. The installation and removal processes were tested on the Telescope Simulator mockup at FNAL, thus minimizing technical and schedule risk for the work performed at CTIO. Final installation of the imager is scheduled for August 2012.

  20. Tutte polynomial in functional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    García-Castillón, Marlly V.

    2015-09-01

    Methods of graph theory are applied to the processing of functional magnetic resonance images. Specifically the Tutte polynomial is used to analyze such kind of images. Functional Magnetic Resonance Imaging provide us connectivity networks in the brain which are represented by graphs and the Tutte polynomial will be applied. The problem of computing the Tutte polynomial for a given graph is #P-hard even for planar graphs. For a practical application the maple packages "GraphTheory" and "SpecialGraphs" will be used. We will consider certain diagram which is depicting functional connectivity, specifically between frontal and posterior areas, in autism during an inferential text comprehension task. The Tutte polynomial for the resulting neural networks will be computed and some numerical invariants for such network will be obtained. Our results show that the Tutte polynomial is a powerful tool to analyze and characterize the networks obtained from functional magnetic resonance imaging.

  1. Fast image interpolation for motion estimation using graphics hardware

    NASA Astrophysics Data System (ADS)

    Kelly, Francis; Kokaram, Anil

    2004-05-01

    Motion estimation and compensation is the key to high quality video coding. Block matching motion estimation is used in most video codecs, including MPEG-2, MPEG-4, H.263 and H.26L. Motion estimation is also a key component in the digital restoration of archived video and for post-production and special effects in the movie industry. Sub-pixel accurate motion vectors can improve the quality of the vector field and lead to more efficient video coding. However sub-pixel accuracy requires interpolation of the image data. Image interpolation is a key requirement of many image processing algorithms. Often interpolation can be a bottleneck in these applications, especially in motion estimation due to the large number pixels involved. In this paper we propose using commodity computer graphics hardware for fast image interpolation. We use the full search block matching algorithm to illustrate the problems and limitations of using graphics hardware in this way.

  2. Hemispheric specialization in affective responses, cerebral dominance for language, and handedness: Lateralization of emotion, language, and dexterity.

    PubMed

    Costanzo, Elsa Yolanda; Villarreal, Mirta; Drucaroff, Lucas Javier; Ortiz-Villafañe, Manuel; Castro, Mariana Nair; Goldschmidt, Micaela; Wainsztein, Agustina Edith; Ladrón-de-Guevara, María Soledad; Romero, Carlos; Brusco, Luis Ignacio; Camprodon, Joan A; Nemeroff, Charles; Guinjoan, Salvador Martín

    2015-07-15

    Hemispheric specialization in affective responses has received little attention in the literature. This is a fundamental variable to understand circuit dynamics of networks subserving emotion. In this study we put to test a modified "valence" hypothesis of emotion processing, considering that sadness and happiness are processed by each hemisphere in relation to dominance for language and handedness. Mood induction and language activation during functional magnetic resonance imaging (fMRI) were used in 20 right-handed and 20 nonright-handed subjects, focusing on interconnected regions known to play critical roles in affective responses: subgenual cingulate cortex, amygdala, and anterior insular cortex. We observed a consistent relationship between lateralization of affective processing, motor dexterity, and language in individuals with clear right-handedness. Sadness induces a greater activation of right-hemisphere cortical structures in right-handed, left-dominant individuals, which is not evident in nonright-handed subjects who show no consistent hemispheric dominance for language. In anterior insula, right-handed individuals displayed reciprocal activation of either hemisphere depending upon mood valence, whereas amygdala activation was predominantly left-sided regardless of mood valence. Nonright-handed individuals exhibited less consistent brain lateralization of affective processing regardless of language and motor dexterity lateralization. In contrast with traditional views on emotion processing lateralization, hemispheric specialization in affective responses is not a unitary process but is specific to the brain structure being activated. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. FIVQ algorithm for interference hyper-spectral image compression

    NASA Astrophysics Data System (ADS)

    Wen, Jia; Ma, Caiwen; Zhao, Junsuo

    2014-07-01

    Based on the improved vector quantization (IVQ) algorithm [1] which was proposed in 2012, this paper proposes a further improved vector quantization (FIVQ) algorithm for LASIS (Large Aperture Static Imaging Spectrometer) interference hyper-spectral image compression. To get better image quality, IVQ algorithm takes both the mean values and the VQ indices as the encoding rules. Although IVQ algorithm can improve both the bit rate and the image quality, it still can be further improved in order to get much lower bit rate for the LASIS interference pattern with the special optical characteristics based on the pushing and sweeping in LASIS imaging principle. In the proposed algorithm FIVQ, the neighborhood of the encoding blocks of the interference pattern image, which are using the mean value rules, will be checked whether they have the same mean value as the current processing block. Experiments show the proposed algorithm FIVQ can get lower bit rate compared to that of the IVQ algorithm for the LASIS interference hyper-spectral sequences.

  4. Novel SPECT Technologies and Approaches in Cardiac Imaging

    PubMed Central

    Slomka, Piotr; Hung, Guang-Uei; Germano, Guido; Berman, Daniel S.

    2017-01-01

    Recent novel approaches in myocardial perfusion single photon emission CT (SPECT) have been facilitated by new dedicated high-efficiency hardware with solid-state detectors and optimized collimators. New protocols include very low-dose (1 mSv) stress-only, two-position imaging to mitigate attenuation artifacts, and simultaneous dual-isotope imaging. Attenuation correction can be performed by specialized low-dose systems or by previously obtained CT coronary calcium scans. Hybrid protocols using CT angiography have been proposed. Image quality improvements have been demonstrated by novel reconstructions and motion correction. Fast SPECT acquisition facilitates dynamic flow and early function measurements. Image processing algorithms have become automated with virtually unsupervised extraction of quantitative imaging variables. This automation facilitates integration with clinical variables derived by machine learning to predict patient outcome or diagnosis. In this review, we describe new imaging protocols made possible by the new hardware developments. We also discuss several novel software approaches for the quantification and interpretation of myocardial perfusion SPECT scans. PMID:29034066

  5. Pitfalls in classical nuclear medicine: myocardial perfusion imaging

    NASA Astrophysics Data System (ADS)

    Fragkaki, C.; Giannopoulou, Ch

    2011-09-01

    Scintigraphic imaging is a complex functional procedure subject to a variety of artefacts and pitfalls that may limit its clinical and diagnostic accuracy. It is important to be aware of and to recognize them when present and to eliminate them whenever possible. Pitfalls may occur at any stage of the imaging procedure and can be related with the γ-camera or other equipment, personnel handling, patient preparation, image processing or the procedure itself. Often, potential causes of artefacts and pitfalls may overlap. In this short review, special interest will be given to cardiac scintigraphic imaging. Most common causes of artefact in myocardial perfusion imaging are soft tissue attenuation as well as motion and gating errors. Additionally, clinical problems like cardiac abnormalities may cause interpretation pitfalls and nuclear medicine physicians should be familiar with these in order to ensure the correct evaluation of the study. Artefacts or suboptimal image quality can also result from infiltrated injections, misalignment in patient positioning, power instability or interruption, flood field non-uniformities, cracked crystal and several other technical reasons.

  6. Geometric Calibration and Validation of Ultracam Aerial Sensors

    NASA Astrophysics Data System (ADS)

    Gruber, Michael; Schachinger, Bernhard; Muick, Marc; Neuner, Christian; Tschemmernegg, Helfried

    2016-03-01

    We present details of the calibration and validation procedure of UltraCam Aerial Camera systems. Results from the laboratory calibration and from validation flights are presented for both, the large format nadir cameras and the oblique cameras as well. Thus in this contribution we show results from the UltraCam Eagle and the UltraCam Falcon, both nadir mapping cameras, and the UltraCam Osprey, our oblique camera system. This sensor offers a mapping grade nadir component together with the four oblique camera heads. The geometric processing after the flight mission is being covered by the UltraMap software product. Thus we present details about the workflow as well. The first part consists of the initial post-processing which combines image information as well as camera parameters derived from the laboratory calibration. The second part, the traditional automated aerial triangulation (AAT) is the step from single images to blocks and enables an additional optimization process. We also present some special features of our software, which are designed to better support the operator to analyze large blocks of aerial images and to judge the quality of the photogrammetric set-up.

  7. Concurrent Image Processing Executive (CIPE)

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Cooper, Gregory T.; Groom, Steven L.; Mazer, Alan S.; Williams, Winifred I.

    1988-01-01

    The design and implementation of a Concurrent Image Processing Executive (CIPE), which is intended to become the support system software for a prototype high performance science analysis workstation are discussed. The target machine for this software is a JPL/Caltech Mark IIIfp Hypercube hosted by either a MASSCOMP 5600 or a Sun-3, Sun-4 workstation; however, the design will accommodate other concurrent machines of similar architecture, i.e., local memory, multiple-instruction-multiple-data (MIMD) machines. The CIPE system provides both a multimode user interface and an applications programmer interface, and has been designed around four loosely coupled modules; (1) user interface, (2) host-resident executive, (3) hypercube-resident executive, and (4) application functions. The loose coupling between modules allows modification of a particular module without significantly affecting the other modules in the system. In order to enhance hypercube memory utilization and to allow expansion of image processing capabilities, a specialized program management method, incremental loading, was devised. To minimize data transfer between host and hypercube a data management method which distributes, redistributes, and tracks data set information was implemented.

  8. Microscope-integrated optical coherence tomography for image-aided positioning of glaucoma surgery

    NASA Astrophysics Data System (ADS)

    Li, Xiqi; Wei, Ling; Dong, Xuechuan; Huang, Ping; Zhang, Chun; He, Yi; Shi, Guohua; Zhang, Yudong

    2015-07-01

    Most glaucoma surgeries involve creating new aqueous outflow pathways with the use of a small surgical instrument. This article reported a microscope-integrated, real-time, high-speed, swept-source optical coherence tomography system (SS-OCT) with a 1310-nm light source for glaucoma surgery. A special mechanism was designed to produce an adjustable system suitable for use in surgery. A two-graphic processing unit architecture was used to speed up the data processing and real-time volumetric rendering. The position of the surgical instrument can be monitored and measured using the microscope and a grid-inserted image of the SS-OCT. Finally, experiments were simulated to assess the effectiveness of this integrated system. Experimental results show that this system is a suitable positioning tool for glaucoma surgery.

  9. Micro-Slit Collimators for X-Ray/Gamma-Ray Imaging

    NASA Technical Reports Server (NTRS)

    Appleby, Michael; Fraser, Iain; Klinger, Jill

    2011-01-01

    A hybrid photochemical-machining process is coupled with precision stack lamination to allow for the fabrication of multiple ultra-high-resolution grids on a single array substrate. In addition, special fixturing and etching techniques have been developed that allow higher-resolution multi-grid collimators to be fabricated. Building on past work of developing a manufacturing technique for fabricating multi-grid, high-resolution coating modulation collimators for arcsecond and subarcsecond x-ray and gamma-ray imaging, the current work reduces the grid pitch by almost a factor of two, down to 22 microns. Additionally, a process was developed for reducing thin, high-Z (tungsten or molybdenum) from the thinnest commercially available foil (25 microns thick) down to approximately equal to 10 microns thick using precisely controlled chemical etching

  10. A 3D ultrasound scanner: real time filtering and rendering algorithms.

    PubMed

    Cifarelli, D; Ruggiero, C; Brusacà, M; Mazzarella, M

    1997-01-01

    The work described here has been carried out within a collaborative project between DIST and ESAOTE BIOMEDICA aiming to set up a new ultrasonic scanner performing 3D reconstruction. A system is being set up to process and display 3D ultrasonic data in a fast, economical and user friendly way to help the physician during diagnosis. A comparison is presented among several algorithms for digital filtering, data segmentation and rendering for real time, PC based, three-dimensional reconstruction from B-mode ultrasonic biomedical images. Several algorithms for digital filtering have been compared as relates to processing time and to final image quality. Three-dimensional data segmentation techniques and rendering has been carried out with special reference to user friendly features for foreseeable applications and reconstruction speed.

  11. Uav Photgrammetric Workflows: a best Practice Guideline

    NASA Astrophysics Data System (ADS)

    Federman, A.; Santana Quintero, M.; Kretz, S.; Gregg, J.; Lengies, M.; Ouimet, C.; Laliberte, J.

    2017-08-01

    The increasing commercialization of unmanned aerial vehicles (UAVs) has opened the possibility of performing low-cost aerial image acquisition for the documentation of cultural heritage sites through UAV photogrammetry. The flying of UAVs in Canada is regulated through Transport Canada and requires a Special Flight Operations Certificate (SFOC) in order to fly. Various image acquisition techniques have been explored in this review, as well as well software used to register the data. A general workflow procedure has been formulated based off of the literature reviewed. A case study example of using UAV photogrammetry at Prince of Wales Fort is discussed, specifically in relation to the data acquisition and processing. Some gaps in the literature reviewed highlight the need for streamlining the SFOC application process, and incorporating UAVs into cultural heritage documentation courses.

  12. Albedo boundaries on Mars in 1972: Results from Mariner 9

    USGS Publications Warehouse

    Batson, R.M.; Inge, J.L.

    1976-01-01

    A map of "albedo" boundaries (light and dark markings) on Mars was prepared from Mariner 9 images. After special digital processing, these pictures provide detailed locations of albedo boundaries, which is significant in interpreting recent eolian activity. Derivation of absolute albedo values from the spacecraft data was not attempted. The map correlates well with telescopic observations of Mars after the 1971 dust storm. ?? 1976.

  13. Radioisotope studies in cardiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biersack, H.J.; Cox, P.H.

    1985-01-01

    In this text, reviews of all available techniques in this field have been collected, including methods that are still in the developmental stage. After a discussion of the pathophysiology of myocardial perfusion, metabolism, and recent developments in instrumentation, particular chapters are devoted to data processing, radipharmaceuticals, and labelled metabolites. Special references are made to cardiac blood-pool imaging, including evaluations of global and regional ventricular functions and reguritation volumes.

  14. Sentence processing in the cerebral cortex.

    PubMed

    Sakai, K L; Hashimoto, R; Homae, F

    2001-01-01

    Human language is a unique faculty of the mind. It has been the ultimate mystery throughout the history of neuroscience. Despite many aphasia and functional imaging studies, the exact correlation between cortical language areas and subcomponents of the linguistic system has not been established. One notable drawback is that most functional imaging studies have tested language tasks at the word level, such as lexical decision and word generation tasks, thereby neglecting the syntactic aspects of the language faculty. As proposed by Chomsky, the critical knowledge of language involves universal grammar (UG), which governs the syntactic structure of sentences. In this article, we will review recent advances made by functional neuroimaging studies of language, focusing especially on sentence processing in the cerebral cortex. We also present the recent results of our functional magnetic resonance imaging (fMRI) study intended to identify cortical areas specifically involved in syntactic processing. A study of sentence processing that employs a newly developed technique, optical topography (OT), is also presented. Based on these findings, we propose a modular specialization of Broca's area, Wernicke's area, and the angular gyrus/supramarginal gyrus. The current direction of research in neuroscience is beginning to establish the existence of distinct modules responsible for our knowledge of language.

  15. Development and evaluation of a vision based poultry debone line monitoring system

    NASA Astrophysics Data System (ADS)

    Usher, Colin T.; Daley, W. D. R.

    2013-05-01

    Efficient deboning is key to optimizing production yield (maximizing the amount of meat removed from a chicken frame while reducing the presence of bones). Many processors evaluate the efficiency of their deboning lines through manual yield measurements, which involves using a special knife to scrape the chicken frame for any remaining meat after it has been deboned. Researchers with the Georgia Tech Research Institute (GTRI) have developed an automated vision system for estimating this yield loss by correlating image characteristics with the amount of meat left on a skeleton. The yield loss estimation is accomplished by the system's image processing algorithms, which correlates image intensity with meat thickness and calculates the total volume of meat remaining. The team has established a correlation between transmitted light intensity and meat thickness with an R2 of 0.94. Employing a special illuminated cone and targeted software algorithms, the system can make measurements in under a second and has up to a 90-percent correlation with yield measurements performed manually. This same system is also able to determine the probability of bone chips remaining in the output product. The system is able to determine the presence/absence of clavicle bones with an accuracy of approximately 95 percent and fan bones with an accuracy of approximately 80%. This paper describes in detail the approach and design of the system, results from field testing, and highlights the potential benefits that such a system can provide to the poultry processing industry.

  16. EDITORIAL: Imaging systems and techniques Imaging systems and techniques

    NASA Astrophysics Data System (ADS)

    Yang, Wuqiang; Giakos, George; Nikita, Konstantina; Pastorino, Matteo; Karras, Dimitrios

    2009-10-01

    The papers in this special issue focus on providing the state-of-the-art approaches and solutions to some of the most challenging imaging areas, such as the design, development, evaluation and applications of imaging systems, measuring techniques, image processing algorithms and instrumentation, with an ultimate aim of enhancing the measurement accuracy and image quality. This special issue explores the principles, engineering developments and applications of new imaging systems and techniques, and encourages broad discussion of imaging methodologies, shaping the future and identifying emerging trends. The multi-faceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment and technological evolution. There is an urgent need to address new problems, which tend to be either static but complex, or dynamic, e.g. rapidly evolving with time, with many unknowns, and to propose innovative solutions. For instance, the battles against cancer and terror, monitoring of space resources and enhanced awareness, management of natural resources and environmental monitoring are some of the areas that need to be addressed. The complexity of the involved imaging scenarios and demanding design parameters, e.g. speed, signal-to-noise ratio (SNR), specificity, contrast, spatial resolution, scatter rejection, complex background and harsh environments, necessitate the development of a multi-functional, scalable and efficient imaging suite of sensors, solutions driven by innovation, and operation on diverse detection and imaging principles. Efficient medical imaging techniques capable of providing physiological information at the molecular level present another important research area. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, and using high-resolution, high-selectivity nano-imaging methods, quantum dots, nanoparticles, biomarkers, nanostructures, nanosensors, micro-array imaging chips and nano-clinics for optical diagnostics and targeted therapy, can play an important role in the diagnosis and treatment of cancer. These techniques can also be used to provide efficient drug delivery for treatment of other diseases, with increased sensitivity and specificity. Similarly, enhanced stand-off detection, classification, identification and surveillance techniques, for comprehensive civilian and military target protection and enhanced space situational awareness can open new frontiers of research and applications in the defence arena and homeland security. For instance, the development of potential imaging sensor architectures, enhanced remote sensing systems, ladars, lidars and radars can provide data capable of ensuring continuous monitoring of various imaging/physical/chemical parameters under different operating conditions, using both active and passive detection principles, reconfigurable and scalable focal plane array architectures, reliable systems for stand-off detection of explosives, and enhanced airport security. The above areas pose challenging problems to the technical community and indicate an ever-growing need for innovative and auspicious solutions. We would like to thank all authors for their valuable contributions, without which this special issue would not have become reality.

  17. Application of automatic threshold in dynamic target recognition with low contrast

    NASA Astrophysics Data System (ADS)

    Miao, Hua; Guo, Xiaoming; Chen, Yu

    2014-11-01

    Hybrid photoelectric joint transform correlator can realize automatic real-time recognition with high precision through the combination of optical devices and electronic devices. When recognizing targets with low contrast using photoelectric joint transform correlator, because of the difference of attitude, brightness and grayscale between target and template, only four to five frames of dynamic targets can be recognized without any processing. CCD camera is used to capture the dynamic target images and the capturing speed of CCD is 25 frames per second. Automatic threshold has many advantages like fast processing speed, effectively shielding noise interference, enhancing diffraction energy of useful information and better reserving outline of target and template, so this method plays a very important role in target recognition with optical correlation method. However, the automatic obtained threshold by program can not achieve the best recognition results for dynamic targets. The reason is that outline information is broken to some extent. Optimal threshold is obtained by manual intervention in most cases. Aiming at the characteristics of dynamic targets, the processing program of improved automatic threshold is finished by multiplying OTSU threshold of target and template by scale coefficient of the processed image, and combining with mathematical morphology. The optimal threshold can be achieved automatically by improved automatic threshold processing for dynamic low contrast target images. The recognition rate of dynamic targets is improved through decreased background noise effect and increased correlation information. A series of dynamic tank images with the speed about 70 km/h are adapted as target images. The 1st frame of this series of tanks can correlate only with the 3rd frame without any processing. Through OTSU threshold, the 80th frame can be recognized. By automatic threshold processing of the joint images, this number can be increased to 89 frames. Experimental results show that the improved automatic threshold processing has special application value for the recognition of dynamic target with low contrast.

  18. An independent software system for the analysis of dynamic MR images.

    PubMed

    Torheim, G; Lombardi, M; Rinck, P A

    1997-01-01

    A computer system for the manual, semi-automatic, and automatic analysis of dynamic MR images was to be developed on UNIX and personal computer platforms. The system was to offer an integrated and standardized way of performing both image processing and analysis that was independent of the MR unit used. The system consists of modules that are easily adaptable to special needs. Data from MR units or other diagnostic imaging equipment in techniques such as CT, ultrasonography, or nuclear medicine can be processed through the ACR-NEMA/DICOM standard file formats. A full set of functions is available, among them cine-loop visual analysis, and generation of time-intensity curves. Parameters such as cross-correlation coefficients, area under the curve, peak/maximum intensity, wash-in and wash-out slopes, time to peak, and relative signal intensity/contrast enhancement can be calculated. Other parameters can be extracted by fitting functions like the gamma-variate function. Region-of-interest data and parametric values can easily be exported. The system has been successfully tested in animal and patient examinations.

  19. A Scalable Distributed Approach to Mobile Robot Vision

    NASA Technical Reports Server (NTRS)

    Kuipers, Benjamin; Browning, Robert L.; Gribble, William S.

    1997-01-01

    This paper documents our progress during the first year of work on our original proposal entitled 'A Scalable Distributed Approach to Mobile Robot Vision'. We are pursuing a strategy for real-time visual identification and tracking of complex objects which does not rely on specialized image-processing hardware. In this system perceptual schemas represent objects as a graph of primitive features. Distributed software agents identify and track these features, using variable-geometry image subwindows of limited size. Active control of imaging parameters and selective processing makes simultaneous real-time tracking of many primitive features tractable. Perceptual schemas operate independently from the tracking of primitive features, so that real-time tracking of a set of image features is not hurt by latency in recognition of the object that those features make up. The architecture allows semantically significant features to be tracked with limited expenditure of computational resources, and allows the visual computation to be distributed across a network of processors. Early experiments are described which demonstrate the usefulness of this formulation, followed by a brief overview of our more recent progress (after the first year).

  20. Modes of Visual Recognition and Perceptually Relevant Sketch-based Coding for Images

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.

    1991-01-01

    A review of visual recognition studies is used to define two levels of information requirements. These two levels are related to two primary subdivisions of the spatial frequency domain of images and reflect two distinct different physical properties of arbitrary scenes. In particular, pathologies in recognition due to cerebral dysfunction point to a more complete split into two major types of processing: high spatial frequency edge based recognition vs. low spatial frequency lightness (and color) based recognition. The former is more central and general while the latter is more specific and is necessary for certain special tasks. The two modes of recognition can also be distinguished on the basis of physical scene properties: the highly localized edges associated with reflectance and sharp topographic transitions vs. smooth topographic undulation. The extreme case of heavily abstracted images is pursued to gain an understanding of the minimal information required to support both modes of recognition. Here the intention is to define the semantic core of transmission. This central core of processing can then be fleshed out with additional image information and coding and rendering techniques.

  1. Testing the quality of images for permanent magnet desktop MRI systems using specially designed phantoms.

    PubMed

    Qiu, Jianfeng; Wang, Guozhu; Min, Jiao; Wang, Xiaoyan; Wang, Pengcheng

    2013-12-21

    Our aim was to measure the performance of desktop magnetic resonance imaging (MRI) systems using specially designed phantoms, by testing imaging parameters and analysing the imaging quality. We designed multifunction phantoms with diameters of 18 and 60 mm for desktop MRI scanners in accordance with the American Association of Physicists in Medicine (AAPM) report no. 28. We scanned the phantoms with three permanent magnet 0.5 T desktop MRI systems, measured the MRI image parameters, and analysed imaging quality by comparing the data with the AAPM criteria and Chinese national standards. Image parameters included: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, signal-to-noise ratio (SNR), and image uniformity. The image parameters of three desktop MRI machines could be measured using our specially designed phantoms, and most parameters were in line with MRI quality control criterion, including: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, image uniformity and slice position accuracy. However, SNR was significantly lower than in some references. The imaging test and quality control are necessary for desktop MRI systems, and should be performed with the applicable phantom and corresponding standards.

  2. The Quanta Image Sensor: Every Photon Counts

    PubMed Central

    Fossum, Eric R.; Ma, Jiaju; Masoodian, Saleh; Anzagira, Leo; Zizza, Rachel

    2016-01-01

    The Quanta Image Sensor (QIS) was conceived when contemplating shrinking pixel sizes and storage capacities, and the steady increase in digital processing power. In the single-bit QIS, the output of each field is a binary bit plane, where each bit represents the presence or absence of at least one photoelectron in a photodetector. A series of bit planes is generated through high-speed readout, and a kernel or “cubicle” of bits (x, y, t) is used to create a single output image pixel. The size of the cubicle can be adjusted post-acquisition to optimize image quality. The specialized sub-diffraction-limit photodetectors in the QIS are referred to as “jots” and a QIS may have a gigajot or more, read out at 1000 fps, for a data rate exceeding 1 Tb/s. Basically, we are trying to count photons as they arrive at the sensor. This paper reviews the QIS concept and its imaging characteristics. Recent progress towards realizing the QIS for commercial and scientific purposes is discussed. This includes implementation of a pump-gate jot device in a 65 nm CIS BSI process yielding read noise as low as 0.22 e− r.m.s. and conversion gain as high as 420 µV/e−, power efficient readout electronics, currently as low as 0.4 pJ/b in the same process, creating high dynamic range images from jot data, and understanding the imaging characteristics of single-bit and multi-bit QIS devices. The QIS represents a possible major paradigm shift in image capture. PMID:27517926

  3. Systematic Parameterization, Storage, and Representation of Volumetric DICOM Data.

    PubMed

    Fischer, Felix; Selver, M Alper; Gezer, Sinem; Dicle, Oğuz; Hillen, Walter

    Tomographic medical imaging systems produce hundreds to thousands of slices, enabling three-dimensional (3D) analysis. Radiologists process these images through various tools and techniques in order to generate 3D renderings for various applications, such as surgical planning, medical education, and volumetric measurements. To save and store these visualizations, current systems use snapshots or video exporting, which prevents further optimizations and requires the storage of significant additional data. The Grayscale Softcopy Presentation State extension of the Digital Imaging and Communications in Medicine (DICOM) standard resolves this issue for two-dimensional (2D) data by introducing an extensive set of parameters, namely 2D Presentation States (2DPR), that describe how an image should be displayed. 2DPR allows storing these parameters instead of storing parameter applied images, which cause unnecessary duplication of the image data. Since there is currently no corresponding extension for 3D data, in this study, a DICOM-compliant object called 3D presentation states (3DPR) is proposed for the parameterization and storage of 3D medical volumes. To accomplish this, the 3D medical visualization process is divided into four tasks, namely pre-processing, segmentation, post-processing, and rendering. The important parameters of each task are determined. Special focus is given to the compression of segmented data, parameterization of the rendering process, and DICOM-compliant implementation of the 3DPR object. The use of 3DPR was tested in a radiology department on three clinical cases, which require multiple segmentations and visualizations during the workflow of radiologists. The results show that 3DPR can effectively simplify the workload of physicians by directly regenerating 3D renderings without repeating intermediate tasks, increase efficiency by preserving all user interactions, and provide efficient storage as well as transfer of visualized data.

  4. Special conference of the American Association for Cancer Research on molecular imaging in cancer: linking biology, function, and clinical applications in vivo.

    PubMed

    Luker, Gary D

    2002-04-01

    The AACR Special Conference on Molecular Imaging in Cancer: Linking Biology, Function, and Clinical Applications In Vivo, was held January 23-27, 2002, at the Contemporary Hotel, Walt Disney World, Orlando, FL. Co-Chairs David Piwnica-Worms, Patricia Price and Thomas Meade brought together researchers with diverse expertise in molecular biology, gene therapy, chemistry, engineering, pharmacology, and imaging to accelerate progress in developing and applying technologies for imaging specific cellular and molecular signals in living animals and humans. The format of the conference was the presentation of research that focused on basic and translational biology of cancer and current state-of-the-art techniques for molecular imaging in animal models and humans. This report summarizes the special conference on molecular imaging, highlighting the interfaces of molecular biology with animal models, instrumentation, chemistry, and pharmacology that are essential to convert the dreams and promise of molecular imaging into improved understanding, diagnosis, and management of cancer.

  5. Near real-time stereo vision system

    NASA Technical Reports Server (NTRS)

    Anderson, Charles H. (Inventor); Matthies, Larry H. (Inventor)

    1993-01-01

    The apparatus for a near real-time stereo vision system for use with a robotic vehicle is described. The system is comprised of two cameras mounted on three-axis rotation platforms, image-processing boards, a CPU, and specialized stereo vision algorithms. Bandpass-filtered image pyramids are computed, stereo matching is performed by least-squares correlation, and confidence ranges are estimated by means of Bayes' theorem. In particular, Laplacian image pyramids are built and disparity maps are produced from the 60 x 64 level of the pyramids at rates of up to 2 seconds per image pair. The first autonomous cross-country robotic traverses (of up to 100 meters) have been achieved using the stereo vision system of the present invention with all computing done onboard the vehicle. The overall approach disclosed herein provides a unifying paradigm for practical domain-independent stereo ranging.

  6. Hybrid Feature Extraction-based Approach for Facial Parts Representation and Recognition

    NASA Astrophysics Data System (ADS)

    Rouabhia, C.; Tebbikh, H.

    2008-06-01

    Face recognition is a specialized image processing which has attracted a considerable attention in computer vision. In this article, we develop a new facial recognition system from video sequences images dedicated to person identification whose face is partly occulted. This system is based on a hybrid image feature extraction technique called ACPDL2D (Rouabhia et al. 2007), it combines two-dimensional principal component analysis and two-dimensional linear discriminant analysis with neural network. We performed the feature extraction task on the eyes and the nose images separately then a Multi-Layers Perceptron classifier is used. Compared to the whole face, the results of simulation are in favor of the facial parts in terms of memory capacity and recognition (99.41% for the eyes part, 98.16% for the nose part and 97.25 % for the whole face).

  7. Practical issues of hyperspectral imaging analysis of solid dosage forms.

    PubMed

    Amigo, José Manuel

    2010-09-01

    Hyperspectral imaging techniques have widely demonstrated their usefulness in different areas of interest in pharmaceutical research during the last decade. In particular, middle infrared, near infrared, and Raman methods have gained special relevance. This rapid increase has been promoted by the capability of hyperspectral techniques to provide robust and reliable chemical and spatial information on the distribution of components in pharmaceutical solid dosage forms. Furthermore, the valuable combination of hyperspectral imaging devices with adequate data processing techniques offers the perfect landscape for developing new methods for scanning and analyzing surfaces. Nevertheless, the instrumentation and subsequent data analysis are not exempt from issues that must be thoughtfully considered. This paper describes and discusses the main advantages and drawbacks of the measurements and data analysis of hyperspectral imaging techniques in the development of solid dosage forms.

  8. Daylight coloring for monochrome infrared imagery

    NASA Astrophysics Data System (ADS)

    Gabura, James

    2015-05-01

    The effectiveness of infrared imagery in poor visibility situations is well established and the range of applications is expanding as we enter a new era of inexpensive thermal imagers for mobile phones. However there is a problem in that the counterintuitive reflectance characteristics of various common scene elements can cause slowed reaction times and impaired situational awareness-consequences that can be especially detrimental in emergency situations. While multiband infrared sensors can be used, they are inherently more costly. Here we propose a technique for adding a daylight color appearance to single band infrared images, using the normally overlooked property of local image texture. The simple method described here is illustrated with colorized images from the visible red and long wave infrared bands. Our colorizing process not only imparts a natural daylight appearance to infrared images but also enhances the contrast and visibility of otherwise obscure detail. We anticipate that this colorizing method will lead to a better user experience, faster reaction times and improved situational awareness for a growing community of infrared camera users. A natural extension of our process could expand upon its texture discerning feature by adding specialized filters for discriminating specific targets.

  9. Review of free software tools for image analysis of fluorescence cell micrographs.

    PubMed

    Wiesmann, V; Franz, D; Held, C; Münzenmayer, C; Palmisano, R; Wittenberg, T

    2015-01-01

    An increasing number of free software tools have been made available for the evaluation of fluorescence cell micrographs. The main users are biologists and related life scientists with no or little knowledge of image processing. In this review, we give an overview of available tools and guidelines about which tools the users should use to segment fluorescence micrographs. We selected 15 free tools and divided them into stand-alone, Matlab-based, ImageJ-based, free demo versions of commercial tools and data sharing tools. The review consists of two parts: First, we developed a criteria catalogue and rated the tools regarding structural requirements, functionality (flexibility, segmentation and image processing filters) and usability (documentation, data management, usability and visualization). Second, we performed an image processing case study with four representative fluorescence micrograph segmentation tasks with figure-ground and cell separation. The tools display a wide range of functionality and usability. In the image processing case study, we were able to perform figure-ground separation in all micrographs using mainly thresholding. Cell separation was not possible with most of the tools, because cell separation methods are provided only by a subset of the tools and are difficult to parametrize and to use. Most important is that the usability matches the functionality of a tool. To be usable, specialized tools with less functionality need to fulfill less usability criteria, whereas multipurpose tools need a well-structured menu and intuitive graphical user interface. © 2014 Fraunhofer-Institute for Integrated Circuits IIS Journal of Microscopy © 2014 Royal Microscopical Society.

  10. Specialized Computer Systems for Environment Visualization

    NASA Astrophysics Data System (ADS)

    Al-Oraiqat, Anas M.; Bashkov, Evgeniy A.; Zori, Sergii A.

    2018-06-01

    The need for real time image generation of landscapes arises in various fields as part of tasks solved by virtual and augmented reality systems, as well as geographic information systems. Such systems provide opportunities for collecting, storing, analyzing and graphically visualizing geographic data. Algorithmic and hardware software tools for increasing the realism and efficiency of the environment visualization in 3D visualization systems are proposed. This paper discusses a modified path tracing algorithm with a two-level hierarchy of bounding volumes and finding intersections with Axis-Aligned Bounding Box. The proposed algorithm eliminates the branching and hence makes the algorithm more suitable to be implemented on the multi-threaded CPU and GPU. A modified ROAM algorithm is used to solve the qualitative visualization of reliefs' problems and landscapes. The algorithm is implemented on parallel systems—cluster and Compute Unified Device Architecture-networks. Results show that the implementation on MPI clusters is more efficient than Graphics Processing Unit/Graphics Processing Clusters and allows real-time synthesis. The organization and algorithms of the parallel GPU system for the 3D pseudo stereo image/video synthesis are proposed. With realizing possibility analysis on a parallel GPU-architecture of each stage, 3D pseudo stereo synthesis is performed. An experimental prototype of a specialized hardware-software system 3D pseudo stereo imaging and video was developed on the CPU/GPU. The experimental results show that the proposed adaptation of 3D pseudo stereo imaging to the architecture of GPU-systems is efficient. Also it accelerates the computational procedures of 3D pseudo-stereo synthesis for the anaglyph and anamorphic formats of the 3D stereo frame without performing optimization procedures. The acceleration is on average 11 and 54 times for test GPUs.

  11. Central and Divided Visual Field Presentation of Emotional Images to Measure Hemispheric Differences in Motivated Attention.

    PubMed

    O'Hare, Aminda J; Atchley, Ruth Ann; Young, Keith M

    2017-11-16

    Two dominant theories on lateralized processing of emotional information exist in the literature. One theory posits that unpleasant emotions are processed by right frontal regions, while pleasant emotions are processed by left frontal regions. The other theory posits that the right hemisphere is more specialized for the processing of emotional information overall, particularly in posterior regions. Assessing the different roles of the cerebral hemispheres in processing emotional information can be difficult without the use of neuroimaging methodologies, which are not accessible or affordable to all scientists. Divided visual field presentation of stimuli can allow for the investigation of lateralized processing of information without the use of neuroimaging technology. This study compared central versus divided visual field presentations of emotional images to assess differences in motivated attention between the two hemispheres. The late positive potential (LPP) was recorded using electroencephalography (EEG) and event-related potentials (ERPs) methodologies to assess motivated attention. Future work will pair this paradigm with a more active behavioral task to explore the behavioral impacts on the attentional differences found.

  12. Electronic workflow for imaging in clinical research.

    PubMed

    Hedges, Rebecca A; Goodman, Danielle; Sachs, Peter B

    2014-08-01

    In the transition from paper to electronic workflow, the University of Colorado Health System's implementation of a new electronic health record system (EHR) forced all clinical groups to reevaluate their practices including the infrastructure surrounding clinical trials. Radiological imaging is an important piece of many clinical trials and requires a high level of consistency and standardization. With EHR implementation, paper orders were manually transcribed into the EHR, digitizing an inefficient work flow. A team of schedulers, radiologists, technologists, research personnel, and EHR analysts worked together to optimize the EHR to accommodate the needs of research imaging protocols. The transition to electronic workflow posed several problems: (1) there needed to be effective communication throughout the imaging process from scheduling to radiologist interpretation. (2) The exam ordering process needed to be automated to allow scheduling of specific research studies on specific equipment. (3) The billing process needed to be controlled to accommodate radiologists already supported by grants. (4) There needed to be functionality allowing exams to finalize automatically skipping the PACS and interpretation process. (5) There needed to be a way to alert radiologists that a specialized research interpretation was needed on a given exam. These issues were resolved through the optimization of the "visit type," allowing a high-level control of an exam at the time of scheduling. Additionally, we added columns and fields to work queues displaying grant identification numbers. The build solutions we implemented reduced the mistakes made and increased imaging quality and compliance.

  13. MULTI: a shared memory approach to cooperative molecular modeling.

    PubMed

    Darden, T; Johnson, P; Smith, H

    1991-03-01

    A general purpose molecular modeling system, MULTI, based on the UNIX shared memory and semaphore facilities for interprocess communication is described. In addition to the normal querying or monitoring of geometric data, MULTI also provides processes for manipulating conformations, and for displaying peptide or nucleic acid ribbons, Connolly surfaces, close nonbonded contacts, crystal-symmetry related images, least-squares superpositions, and so forth. This paper outlines the basic techniques used in MULTI to ensure cooperation among these specialized processes, and then describes how they can work together to provide a flexible modeling environment.

  14. Low Temperature Performance of High-Speed Neural Network Circuits

    NASA Technical Reports Server (NTRS)

    Duong, T.; Tran, M.; Daud, T.; Thakoor, A.

    1995-01-01

    Artificial neural networks, derived from their biological counterparts, offer a new and enabling computing paradigm specially suitable for such tasks as image and signal processing with feature classification/object recognition, global optimization, and adaptive control. When implemented in fully parallel electronic hardware, it offers orders of magnitude speed advantage. Basic building blocks of the new architecture are the processing elements called neurons implemented as nonlinear operational amplifiers with sigmoidal transfer function, interconnected through weighted connections called synapses implemented using circuitry for weight storage and multiply functions either in an analog, digital, or hybrid scheme.

  15. Synthesis of Water-Dispersible Mn2+ Functionalized Silicon Nanoparticles under Room Temperature and Atmospheric Pressure for Fluorescence and Magnetic Resonance Dual-Modality Imaging.

    PubMed

    Dou, Ya-Kun; Chen, Yang; He, Xi-Wen; Li, Wen-You; Li, Yu-Hao; Zhang, Yu-Kui

    2017-11-07

    Silicon nanoparticles (Si NPs) have been widely used in fluorescence imaging. However, rigorous synthesis conditions and the single modality imaging limit the further development of Si NPs in the field of biomedical imaging. Here, we reported a method for synthesizing water-dispersible Mn 2+ functionalized Si NPs (Mn-Si NPs) under mild experimental conditions for fluorescence and magnetic resonance dual-modality imaging. The whole synthesis process was completed under room temperature and atmospheric pressure, and no special and expensive equipment was required. The synthetic nanoparticles, with favorable pH stability, NaCl stability, photostability, and low toxicity, emitted green fluorescence (512 nm). At the same time, the nanoparticles also demonstrated excellent magnetic resonance imaging ability. In vitro, their T 1 -weighted magnetic resonance imaging effect was obvious, and the value of longitudinal relaxation degree r 1 reached 4.25 mM -1 s -1 . On the basis of their good biocompatibility, Mn-Si NPs were successfully used for the fluorescence imaging as well as magnetic resonance imaging in vivo.

  16. Quantitative assessment of the impact of biomedical image acquisition on the results obtained from image analysis and processing.

    PubMed

    Koprowski, Robert

    2014-07-04

    Dedicated, automatic algorithms for image analysis and processing are becoming more and more common in medical diagnosis. When creating dedicated algorithms, many factors must be taken into consideration. They are associated with selecting the appropriate algorithm parameters and taking into account the impact of data acquisition on the results obtained. An important feature of algorithms is the possibility of their use in other medical units by other operators. This problem, namely operator's (acquisition) impact on the results obtained from image analysis and processing, has been shown on a few examples. The analysed images were obtained from a variety of medical devices such as thermal imaging, tomography devices and those working in visible light. The objects of imaging were cellular elements, the anterior segment and fundus of the eye, postural defects and others. In total, almost 200'000 images coming from 8 different medical units were analysed. All image analysis algorithms were implemented in C and Matlab. For various algorithms and methods of medical imaging, the impact of image acquisition on the results obtained is different. There are different levels of algorithm sensitivity to changes in the parameters, for example: (1) for microscope settings and the brightness assessment of cellular elements there is a difference of 8%; (2) for the thyroid ultrasound images there is a difference in marking the thyroid lobe area which results in a brightness assessment difference of 2%. The method of image acquisition in image analysis and processing also affects: (3) the accuracy of determining the temperature in the characteristic areas on the patient's back for the thermal method - error of 31%; (4) the accuracy of finding characteristic points in photogrammetric images when evaluating postural defects - error of 11%; (5) the accuracy of performing ablative and non-ablative treatments in cosmetology - error of 18% for the nose, 10% for the cheeks, and 7% for the forehead. Similarly, when: (7) measuring the anterior eye chamber - there is an error of 20%; (8) measuring the tooth enamel thickness - error of 15%; (9) evaluating the mechanical properties of the cornea during pressure measurement - error of 47%. The paper presents vital, selected issues occurring when assessing the accuracy of designed automatic algorithms for image analysis and processing in bioengineering. The impact of acquisition of images on the problems arising in their analysis has been shown on selected examples. It has also been indicated to which elements of image analysis and processing special attention should be paid in their design.

  17. [Music and neurology].

    PubMed

    Arias Gómez, M

    2007-01-01

    Music perception and output are special functions of the human brain. Investigation in this field is growing with the support of modern neuroimaging techniques (functional magnetic resonance imaging, positron emission tomography). Interest in the music phenomenon and the disorders regarding its processing has been limited. Music is not just an artistic activity but a language to communicate, evoke and reinforce several emotions. Although the subject is still under debate, processing of music is independent of common language and each one uses independent circuits. One may be seriously affected and the other practically unharmed. On the other hand, there may be separate channels within the processing of music for the temporary elements (rhythm), melodic elements (pitch, timbre, and melody), memory and emotional response. The study of subjects with absolute pitch, congenital and acquired amusias, musicogenic epilepsy and musical hallucinations has greatly contributed to the knowledge of how the brain processes music. Music training involves some changes in morphology and physiology of professional musicians' brains. Stress, chronic pain and professional dystonias constitute a special field of musicians' disturbances that concerns neurological practice. Listening to and playing music may have some educational and therapeutic benefits.

  18. NeuronMetrics: Software for Semi-Automated Processing of Cultured-Neuron Images

    PubMed Central

    Narro, Martha L.; Yang, Fan; Kraft, Robert; Wenk, Carola; Efrat, Alon; Restifo, Linda L.

    2007-01-01

    Using primary cell culture to screen for changes in neuronal morphology requires specialized analysis software. We developed NeuronMetrics™ for semi-automated, quantitative analysis of two-dimensional (2D) images of fluorescently labeled cultured neurons. It skeletonizes the neuron image using two complementary image-processing techniques, capturing fine terminal neurites with high fidelity. An algorithm was devised to span wide gaps in the skeleton. NeuronMetrics uses a novel strategy based on geometric features called faces to extract a branch-number estimate from complex arbors with numerous neurite-to-neurite contacts, without creating a precise, contact-free representation of the neurite arbor. It estimates total neurite length, branch number, primary neurite number, territory (the area of the convex polygon bounding the skeleton and cell body), and Polarity Index (a measure of neuronal polarity). These parameters provide fundamental information about the size and shape of neurite arbors, which are critical factors for neuronal function. NeuronMetrics streamlines optional manual tasks such as removing noise, isolating the largest primary neurite, and correcting length for self-fasciculating neurites. Numeric data are output in a single text file, readily imported into other applications for further analysis. Written as modules for ImageJ, NeuronMetrics provides practical analysis tools that are easy to use and support batch processing. Depending on the need for manual intervention, processing time for a batch of ~60 2D images is 1.0–2.5 hours, from a folder of images to a table of numeric data. NeuronMetrics’ output accelerates the quantitative detection of mutations and chemical compounds that alter neurite morphology in vitro, and will contribute to the use of cultured neurons for drug discovery. PMID:17270152

  19. NeuronMetrics: software for semi-automated processing of cultured neuron images.

    PubMed

    Narro, Martha L; Yang, Fan; Kraft, Robert; Wenk, Carola; Efrat, Alon; Restifo, Linda L

    2007-03-23

    Using primary cell culture to screen for changes in neuronal morphology requires specialized analysis software. We developed NeuronMetrics for semi-automated, quantitative analysis of two-dimensional (2D) images of fluorescently labeled cultured neurons. It skeletonizes the neuron image using two complementary image-processing techniques, capturing fine terminal neurites with high fidelity. An algorithm was devised to span wide gaps in the skeleton. NeuronMetrics uses a novel strategy based on geometric features called faces to extract a branch number estimate from complex arbors with numerous neurite-to-neurite contacts, without creating a precise, contact-free representation of the neurite arbor. It estimates total neurite length, branch number, primary neurite number, territory (the area of the convex polygon bounding the skeleton and cell body), and Polarity Index (a measure of neuronal polarity). These parameters provide fundamental information about the size and shape of neurite arbors, which are critical factors for neuronal function. NeuronMetrics streamlines optional manual tasks such as removing noise, isolating the largest primary neurite, and correcting length for self-fasciculating neurites. Numeric data are output in a single text file, readily imported into other applications for further analysis. Written as modules for ImageJ, NeuronMetrics provides practical analysis tools that are easy to use and support batch processing. Depending on the need for manual intervention, processing time for a batch of approximately 60 2D images is 1.0-2.5 h, from a folder of images to a table of numeric data. NeuronMetrics' output accelerates the quantitative detection of mutations and chemical compounds that alter neurite morphology in vitro, and will contribute to the use of cultured neurons for drug discovery.

  20. Designing a stable feedback control system for blind image deconvolution.

    PubMed

    Cheng, Shichao; Liu, Risheng; Fan, Xin; Luo, Zhongxuan

    2018-05-01

    Blind image deconvolution is one of the main low-level vision problems with wide applications. Many previous works manually design regularization to simultaneously estimate the latent sharp image and the blur kernel under maximum a posterior framework. However, it has been demonstrated that such joint estimation strategies may lead to the undesired trivial solution. In this paper, we present a novel perspective, using a stable feedback control system, to simulate the latent sharp image propagation. The controller of our system consists of regularization and guidance, which decide the sparsity and sharp features of latent image, respectively. Furthermore, the formational model of blind image is introduced into the feedback process to avoid the image restoration deviating from the stable point. The stability analysis of the system indicates the latent image propagation in blind deconvolution task can be efficiently estimated and controlled by cues and priors. Thus the kernel estimation used for image restoration becomes more precision. Experimental results show that our system is effective on image propagation, and can perform favorably against the state-of-the-art blind image deconvolution methods on different benchmark image sets and special blurred images. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Real-time simulation of the retina allowing visualization of each processing stage

    NASA Astrophysics Data System (ADS)

    Teeters, Jeffrey L.; Werblin, Frank S.

    1991-08-01

    The retina computes to let us see, but can we see the retina compute? Until now, the answer has been no, because the unconscious nature of the processing hides it from our view. Here the authors describe a method of seeing computations performed throughout the retina. This is achieved by using neurophysiological data to construct a model of the retina, and using a special-purpose image processing computer (PIPE) to implement the model in real time. Processing in the model is organized into stages corresponding to computations performed by each retinal cell type. The final stage is the transient (change detecting) ganglion cell. A CCD camera forms the input image, and the activity of a selected retinal cell type is the output which is displayed on a TV monitor. By changing the retina cell driving the monitor, the progressive transformations of the image by the retina can be observed. These simulations demonstrate the ubiquitous presence of temporal and spatial variations in the patterns of activity generated by the retina which are fed into the brain. The dynamical aspects make these patterns very different from those generated by the common DOG (Difference of Gaussian) model of receptive field. Because the retina is so successful in biological vision systems, the processing described here may be useful in machine vision.

  2. Applications of LC-MS in PET Radioligand Development and Metabolic Elucidation

    PubMed Central

    Ma, Ying; Kiesewetter, Dale O.; Lang, Lixin; Gu, Dongyu; Chen, Xiaoyuan

    2013-01-01

    Positron emission tomography (PET) is a very sensitive molecular imaging technique that when employed with an appropriate radioligand has the ability to quantititate physiological processes in a non-invasive manner. Since the imaging technique detects all radioactive emissions in the field of view, the presence and biological activity of radiolabeled metabolites must be determined for each radioligand in order to validate the utility of the radiotracer for measuring the desired physiological process. Thus, the identification of metabolic profiles of radiolabeled compounds is an important aspect of design, development, and validation of new radiopharmaceuticals and their applications in drug development and molecular imaging. Metabolite identification for different chemical classes of radiopharmaceuticals allows rational design to minimize the formation and accumulation of metabolites in the target tissue, either through enhanced excretion or minimized metabolism. This review will discuss methods for identifying and quantitating metabolites during the pre-clinical development of radiopharmaceuticals with special emphasis on the application of LC/MS. PMID:20540692

  3. Study of time-lapse processing for dynamic hydrologic conditions. [electronic satellite image analysis console for Earth Resources Technology Satellites imagery

    NASA Technical Reports Server (NTRS)

    Serebreny, S. M.; Evans, W. E.; Wiegman, E. J.

    1974-01-01

    The usefulness of dynamic display techniques in exploiting the repetitive nature of ERTS imagery was investigated. A specially designed Electronic Satellite Image Analysis Console (ESIAC) was developed and employed to process data for seven ERTS principal investigators studying dynamic hydrological conditions for diverse applications. These applications include measurement of snowfield extent and sediment plumes from estuary discharge, Playa Lake inventory, and monitoring of phreatophyte and other vegetation changes. The ESIAC provides facilities for storing registered image sequences in a magnetic video disc memory for subsequent recall, enhancement, and animated display in monochrome or color. The most unique feature of the system is the capability to time lapse the imagery and analytic displays of the imagery. Data products included quantitative measurements of distances and areas, binary thematic maps based on monospectral or multispectral decisions, radiance profiles, and movie loops. Applications of animation for uses other than creating time-lapse sequences are identified. Input to the ESIAC can be either digital or via photographic transparencies.

  4. SSUSI-Lite: a far-ultraviolet hyper-spectral imager for space weather remote sensing

    NASA Astrophysics Data System (ADS)

    Ogorzalek, Bernard; Osterman, Steven; Carlsson, Uno; Grey, Matthew; Hicks, John; Hourani, Ramsey; Kerem, Samuel; Marcotte, Kathryn; Parker, Charles; Paxton, Larry J.

    2015-09-01

    SSUSI-Lite is a far-ultraviolet (115-180nm) hyperspectral imager for monitoring space weather. The SSUSI and GUVI sensors, its predecessors, have demonstrated their value as space weather monitors. SSUSI-Lite is a refresh of the Special Sensor Ultraviolet Spectrographic Imager (SSUSI) design that has flown on the Defense Meteorological Satellite Program (DMSP) spacecraft F16 through F19. The refresh updates the 25-year-old design and insures that the next generation of SSUSI/GUVI sensors can be accommodated on any number of potential platforms. SSUSI-Lite maintains the same optical layout as SSUSI, includes updates to key functional elements, and reduces the sensor volume, mass, and power requirements. SSUSI-Lite contains an improved scanner design that results in precise mirror pointing and allows for variable scan profiles. The detector electronics have been redesigned to employ all digital pulse processing. The largest decrease in volume, mass, and power has been obtained by consolidating all control and power electronics into one data processing unit.

  5. Neural image analysis in the process of quality assessment: domestic pig oocytes

    NASA Astrophysics Data System (ADS)

    Boniecki, P.; Przybył, J.; Kuzimska, T.; Mueller, W.; Raba, B.; Lewicki, A.; Przybył, K.; Zaborowicz, M.; Koszela, K.

    2014-04-01

    The questions related to quality classification of animal oocytes are explored by numerous scientific and research centres. This research is important, particularly in the context of improving the breeding value of farm animals. The methods leading to the stimulation of normal development of a larger number of fertilised animal oocytes in extracorporeal conditions are of special importance. Growing interest in the techniques of supported reproduction resulted in searching for new, increasingly effective methods for quality assessment of mammalian gametes and embryos. Progress in the production of in vitro animal embryos in fact depends on proper classification of obtained oocytes. The aim of this paper was the development of an original method for quality assessment of oocytes, performed on the basis of their graphical presentation in the form of microscopic digital images. The classification process was implemented on the basis of the information coded in the form of microphotographic pictures of the oocytes of domestic pig, using the modern methods of neural image analysis.

  6. Image denoising by a direct variational minimization

    NASA Astrophysics Data System (ADS)

    Janev, Marko; Atanacković, Teodor; Pilipović, Stevan; Obradović, Radovan

    2011-12-01

    In this article we introduce a novel method for the image de-noising which combines a mathematically well-posdenes of the variational modeling with the efficiency of a patch-based approach in the field of image processing. It based on a direct minimization of an energy functional containing a minimal surface regularizer that uses fractional gradient. The minimization is obtained on every predefined patch of the image, independently. By doing so, we avoid the use of an artificial time PDE model with its inherent problems of finding optimal stopping time, as well as the optimal time step. Moreover, we control the level of image smoothing on each patch (and thus on the whole image) by adapting the Lagrange multiplier using the information on the level of discontinuities on a particular patch, which we obtain by pre-processing. In order to reduce the average number of vectors in the approximation generator and still to obtain the minimal degradation, we combine a Ritz variational method for the actual minimization on a patch, and a complementary fractional variational principle. Thus, the proposed method becomes computationally feasible and applicable for practical purposes. We confirm our claims with experimental results, by comparing the proposed method with a couple of PDE-based methods, where we get significantly better denoising results specially on the oscillatory regions.

  7. Algorithms for Image Analysis and Combination of Pattern Classifiers with Application to Medical Diagnosis

    NASA Astrophysics Data System (ADS)

    Georgiou, Harris

    2009-10-01

    Medical Informatics and the application of modern signal processing in the assistance of the diagnostic process in medical imaging is one of the more recent and active research areas today. This thesis addresses a variety of issues related to the general problem of medical image analysis, specifically in mammography, and presents a series of algorithms and design approaches for all the intermediate levels of a modern system for computer-aided diagnosis (CAD). The diagnostic problem is analyzed with a systematic approach, first defining the imaging characteristics and features that are relevant to probable pathology in mammo-grams. Next, these features are quantified and fused into new, integrated radio-logical systems that exhibit embedded digital signal processing, in order to improve the final result and minimize the radiological dose for the patient. In a higher level, special algorithms are designed for detecting and encoding these clinically interest-ing imaging features, in order to be used as input to advanced pattern classifiers and machine learning models. Finally, these approaches are extended in multi-classifier models under the scope of Game Theory and optimum collective deci-sion, in order to produce efficient solutions for combining classifiers with minimum computational costs for advanced diagnostic systems. The material covered in this thesis is related to a total of 18 published papers, 6 in scientific journals and 12 in international conferences.

  8. Imaging Metals in Brain Tissue by Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry (LA-ICP-MS)

    PubMed Central

    Hare, Dominic J.; Kysenius, Kai; Paul, Bence; Knauer, Beate; Hutchinson, Robert W.; O'Connor, Ciaran; Fryer, Fred; Hennessey, Tom P.; Bush, Ashley I.; Crouch, Peter J.; Doble, Philip A.

    2017-01-01

    Metals are found ubiquitously throughout an organism, with their biological role dictated by both their chemical reactivity and abundance within a specific anatomical region. Within the brain, metals have a highly compartmentalized distribution, depending on the primary function they play within the central nervous system. Imaging the spatial distribution of metals has provided unique insight into the biochemical architecture of the brain, allowing direct correlation between neuroanatomical regions and their known function with regard to metal-dependent processes. In addition, several age-related neurological disorders feature disrupted metal homeostasis, which is often confined to small regions of the brain that are otherwise difficult to analyze. Here, we describe a comprehensive method for quantitatively imaging metals in the mouse brain, using laser ablation - inductively coupled plasma - mass spectrometry (LA-ICP-MS) and specially designed image processing software. Focusing on iron, copper and zinc, which are three of the most abundant and disease-relevant metals within the brain, we describe the essential steps in sample preparation, analysis, quantitative measurements and image processing to produce maps of metal distribution within the low micrometer resolution range. This technique, applicable to any cut tissue section, is capable of demonstrating the highly variable distribution of metals within an organ or system, and can be used to identify changes in metal homeostasis and absolute levels within fine anatomical structures. PMID:28190025

  9. Effective and efficient analysis of spatio-temporal data

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongnan

    Spatio-temporal data mining, i.e., mining knowledge from large amount of spatio-temporal data, is a highly demanding field because huge amounts of spatio-temporal data have been collected in various applications, ranging from remote sensing, to geographical information systems (GIS), computer cartography, environmental assessment and planning, etc. The collection data far exceeded human's ability to analyze which make it crucial to develop analysis tools. Recent studies on data mining have extended to the scope of data mining from relational and transactional datasets to spatial and temporal datasets. Among the various forms of spatio-temporal data, remote sensing images play an important role, due to the growing wide-spreading of outer space satellites. In this dissertation, we proposed two approaches to analyze the remote sensing data. The first one is about applying association rules mining onto images processing. Each image was divided into a number of image blocks. We built a spatial relationship for these blocks during the dividing process. This made a large number of images into a spatio-temporal dataset since each image was shot in time-series. The second one implemented co-occurrence patterns discovery from these images. The generated patterns represent subsets of spatial features that are located together in space and time. A weather analysis is composed of individual analysis of several meteorological variables. These variables include temperature, pressure, dew point, wind, clouds, visibility and so on. Local-scale models provide detailed analysis and forecasts of meteorological phenomena ranging from a few kilometers to about 100 kilometers in size. When some of above meteorological variables have some special change tendency, some kind of severe weather will happen in most cases. Using the discovery of association rules, we found that some special meteorological variables' changing has tight relation with some severe weather situation that will happen very soon. This dissertation is composed of three parts: an introduction, some basic knowledges and relative works, and my own three contributions to the development of approaches for spatio-temporal data mining: DYSTAL algorithm, STARSI algorithm, and COSTCOP+ algorithm.

  10. Span graphics display utilities handbook, first edition

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Green, J. L.; Newman, R.

    1985-01-01

    The Space Physics Analysis Network (SPAN) is a computer network connecting scientific institutions throughout the United States. This network provides an avenue for timely, correlative research between investigators, in a multidisciplinary approach to space physics studies. An objective in the development of SPAN is to make available direct and simplified procedures that scientists can use, without specialized training, to exchange information over the network. Information exchanges include raw and processes data, analysis programs, correspondence, documents, and graphite images. This handbook details procedures that can be used to exchange graphic images over SPAN. The intent is to periodically update this handbook to reflect the constantly changing facilities available on SPAN. The utilities described within reflect an earnest attempt to provide useful descriptions of working utilities that can be used to transfer graphic images across the network. Whether graphic images are representative of satellite servations or theoretical modeling and whether graphics images are of device dependent or independent type, the SPAN graphics display utilities handbook will be the users guide to graphic image exchange.

  11. Photorefractive Polymers for Updateable 3D Displays

    DTIC Science & Technology

    2010-02-24

    Holographic 3D displays provide highly realistic images without the need for special eyewear , making them valuable tools for applications that require...situational awareness” such as medical, industrial , and military imaging. A considerable amount of research has been dedicated to the development of...imaging techniques that rely on special eyewear such as polarizing goggles have unwanted side-effects such as eye fatigue and motion sickness and

  12. Image acquisition system for traffic monitoring applications

    NASA Astrophysics Data System (ADS)

    Auty, Glen; Corke, Peter I.; Dunn, Paul; Jensen, Murray; Macintyre, Ian B.; Mills, Dennis C.; Nguyen, Hao; Simons, Ben

    1995-03-01

    An imaging system for monitoring traffic on multilane highways is discussed. The system, named Safe-T-Cam, is capable of operating 24 hours per day in all but extreme weather conditions and can capture still images of vehicles traveling up to 160 km/hr. Systems operating at different remote locations are networked to allow transmission of images and data to a control center. A remote site facility comprises a vehicle detection and classification module (VCDM), an image acquisition module (IAM) and a license plate recognition module (LPRM). The remote site is connected to the central site by an ISDN communications network. The remote site system is discussed in this paper. The VCDM consists of a video camera, a specialized exposure control unit to maintain consistent image characteristics, and a 'real-time' image processing system that processes 50 images per second. The VCDM can detect and classify vehicles (e.g. cars from trucks). The vehicle class is used to determine what data should be recorded. The VCDM uses a vehicle tracking technique to allow optimum triggering of the high resolution camera of the IAM. The IAM camera combines the features necessary to operate consistently in the harsh environment encountered when imaging a vehicle 'head-on' in both day and night conditions. The image clarity obtained is ideally suited for automatic location and recognition of the vehicle license plate. This paper discusses the camera geometry, sensor characteristics and the image processing methods which permit consistent vehicle segmentation from a cluttered background allowing object oriented pattern recognition to be used for vehicle classification. The image capture of high resolution images and the image characteristics required for the LPRMs automatic reading of vehicle license plates, is also discussed. The results of field tests presented demonstrate that the vision based Safe-T-Cam system, currently installed on open highways, is capable of producing automatic classification of vehicle class and recording of vehicle numberplates with a success rate around 90 percent in a period of 24 hours.

  13. Regional specialization within the human striatum for diverse psychological functions.

    PubMed

    Pauli, Wolfgang M; O'Reilly, Randall C; Yarkoni, Tal; Wager, Tor D

    2016-02-16

    Decades of animal and human neuroimaging research have identified distinct, but overlapping, striatal zones, which are interconnected with separable corticostriatal circuits, and are crucial for the organization of functional systems. Despite continuous efforts to subdivide the human striatum based on anatomical and resting-state functional connectivity, characterizing the different psychological processes related to each zone remains a work in progress. Using an unbiased, data-driven approach, we analyzed large-scale coactivation data from 5,809 human imaging studies. We (i) identified five distinct striatal zones that exhibited discrete patterns of coactivation with cortical brain regions across distinct psychological processes and (ii) identified the different psychological processes associated with each zone. We found that the reported pattern of cortical activation reliably predicted which striatal zone was most strongly activated. Critically, activation in each functional zone could be associated with distinct psychological processes directly, rather than inferred indirectly from psychological functions attributed to associated cortices. Consistent with well-established findings, we found an association of the ventral striatum (VS) with reward processing. Confirming less well-established findings, the VS and adjacent anterior caudate were associated with evaluating the value of rewards and actions, respectively. Furthermore, our results confirmed a sometimes overlooked specialization of the posterior caudate nucleus for executive functions, often considered the exclusive domain of frontoparietal cortical circuits. Our findings provide a precise functional map of regional specialization within the human striatum, both in terms of the differential cortical regions and psychological functions associated with each striatal zone.

  14. Regional specialization within the human striatum for diverse psychological functions

    PubMed Central

    Pauli, Wolfgang M.; O’Reilly, Randall C.; Wager, Tor D.

    2016-01-01

    Decades of animal and human neuroimaging research have identified distinct, but overlapping, striatal zones, which are interconnected with separable corticostriatal circuits, and are crucial for the organization of functional systems. Despite continuous efforts to subdivide the human striatum based on anatomical and resting-state functional connectivity, characterizing the different psychological processes related to each zone remains a work in progress. Using an unbiased, data-driven approach, we analyzed large-scale coactivation data from 5,809 human imaging studies. We (i) identified five distinct striatal zones that exhibited discrete patterns of coactivation with cortical brain regions across distinct psychological processes and (ii) identified the different psychological processes associated with each zone. We found that the reported pattern of cortical activation reliably predicted which striatal zone was most strongly activated. Critically, activation in each functional zone could be associated with distinct psychological processes directly, rather than inferred indirectly from psychological functions attributed to associated cortices. Consistent with well-established findings, we found an association of the ventral striatum (VS) with reward processing. Confirming less well-established findings, the VS and adjacent anterior caudate were associated with evaluating the value of rewards and actions, respectively. Furthermore, our results confirmed a sometimes overlooked specialization of the posterior caudate nucleus for executive functions, often considered the exclusive domain of frontoparietal cortical circuits. Our findings provide a precise functional map of regional specialization within the human striatum, both in terms of the differential cortical regions and psychological functions associated with each striatal zone. PMID:26831091

  15. Surface conversion techniques for low energy neutral atom imagers

    NASA Technical Reports Server (NTRS)

    Quinn, J. M.

    1995-01-01

    This investigation has focused on development of key technology elements for low energy neutral atom imaging. More specifically, we have investigated the conversion of low energy neutral atoms to negatively charged ions upon reflection from specially prepared surfaces. This 'surface conversion' technique appears to offer a unique capability of detecting, and thus imaging, neutral atoms at energies of 0.01 - 1 keV with high enough efficiencies to make practical its application to low energy neutral atom imaging in space. Such imaging offers the opportunity to obtain the first instantaneous global maps of macroscopic plasma features and their temporal variation. Through previous in situ plasma measurements, we have a statistical picture of large scale morphology and local measurements of dynamic processes. However, with in situ techniques it is impossible to characterize or understand many of the global plasma transport and energization processes. A series of global plasma images would greatly advance our understanding of these processes and would provide the context for interpreting previous and future in situ measurements. Fast neutral atoms, created from ions that are neutralized in collisions with exospheric neutrals, offer the means for remotely imaging plasma populations. Energy and mass analysis of these neutrals provides critical information about the source plasma distribution. The flux of neutral atoms available for imaging depends upon a convolution of the ambient plasma distribution with the charge exchange cross section for the background neutral population. Some of the highest signals are at relatively low energies (well below 1 keV). This energy range also includes some of the most important plasma populations to be imaged, for example the base of the cleft ion fountain.

  16. Dynamic single photon emission computed tomography—basic principles and cardiac applications

    PubMed Central

    Gullberg, Grant T; Reutter, Bryan W; Sitek, Arkadiusz; Maltz, Jonathan S; Budinger, Thomas F

    2011-01-01

    The very nature of nuclear medicine, the visual representation of injected radiopharmaceuticals, implies imaging of dynamic processes such as the uptake and wash-out of radiotracers from body organs. For years, nuclear medicine has been touted as the modality of choice for evaluating function in health and disease. This evaluation is greatly enhanced using single photon emission computed tomography (SPECT), which permits three-dimensional (3D) visualization of tracer distributions in the body. However, to fully realize the potential of the technique requires the imaging of in vivo dynamic processes of flow and metabolism. Tissue motion and deformation must also be addressed. Absolute quantification of these dynamic processes in the body has the potential to improve diagnosis. This paper presents a review of advancements toward the realization of the potential of dynamic SPECT imaging and a brief history of the development of the instrumentation. A major portion of the paper is devoted to the review of special data processing methods that have been developed for extracting kinetics from dynamic cardiac SPECT data acquired using rotating detector heads that move as radiopharmaceuticals exchange between biological compartments. Recent developments in multi-resolution spatiotemporal methods enable one to estimate kinetic parameters of compartment models of dynamic processes using data acquired from a single camera head with slow gantry rotation. The estimation of kinetic parameters directly from projection measurements improves bias and variance over the conventional method of first reconstructing 3D dynamic images, generating time–activity curves from selected regions of interest and then estimating the kinetic parameters from the generated time–activity curves. Although the potential applications of SPECT for imaging dynamic processes have not been fully realized in the clinic, it is hoped that this review illuminates the potential of SPECT for dynamic imaging, especially in light of new developments that enable measurement of dynamic processes directly from projection measurements. PMID:20858925

  17. TOPICAL REVIEW: Dynamic single photon emission computed tomography—basic principles and cardiac applications

    NASA Astrophysics Data System (ADS)

    Gullberg, Grant T.; Reutter, Bryan W.; Sitek, Arkadiusz; Maltz, Jonathan S.; Budinger, Thomas F.

    2010-10-01

    The very nature of nuclear medicine, the visual representation of injected radiopharmaceuticals, implies imaging of dynamic processes such as the uptake and wash-out of radiotracers from body organs. For years, nuclear medicine has been touted as the modality of choice for evaluating function in health and disease. This evaluation is greatly enhanced using single photon emission computed tomography (SPECT), which permits three-dimensional (3D) visualization of tracer distributions in the body. However, to fully realize the potential of the technique requires the imaging of in vivo dynamic processes of flow and metabolism. Tissue motion and deformation must also be addressed. Absolute quantification of these dynamic processes in the body has the potential to improve diagnosis. This paper presents a review of advancements toward the realization of the potential of dynamic SPECT imaging and a brief history of the development of the instrumentation. A major portion of the paper is devoted to the review of special data processing methods that have been developed for extracting kinetics from dynamic cardiac SPECT data acquired using rotating detector heads that move as radiopharmaceuticals exchange between biological compartments. Recent developments in multi-resolution spatiotemporal methods enable one to estimate kinetic parameters of compartment models of dynamic processes using data acquired from a single camera head with slow gantry rotation. The estimation of kinetic parameters directly from projection measurements improves bias and variance over the conventional method of first reconstructing 3D dynamic images, generating time-activity curves from selected regions of interest and then estimating the kinetic parameters from the generated time-activity curves. Although the potential applications of SPECT for imaging dynamic processes have not been fully realized in the clinic, it is hoped that this review illuminates the potential of SPECT for dynamic imaging, especially in light of new developments that enable measurement of dynamic processes directly from projection measurements.

  18. Enhanced visualization of inner ear structures

    NASA Astrophysics Data System (ADS)

    Niemczyk, Kazimierz; Kucharski, Tomasz; Kujawinska, Malgorzata; Bruzgielewicz, Antoni

    2004-07-01

    Recently surgery requires extensive support from imaging technologies in order to increase effectiveness and safety of operations. One of important tasks is to enhance visualisation of quasi-phase (transparent) 3d structures. Those structures are characterized by very low contrast. It makes differentiation of tissues in field of view very difficult. For that reason the surgeon may be extremly uncertain during operation. This problem is connected with supporting operations of inner ear during which physician has to perform cuts at specific places of quasi-transparent velums. Conventionally during such operations medical doctor views the operating field through stereoscopic microscope. In the paper we propose a 3D visualisation system based on Helmet Mounted Display. Two CCD cameras placed at the output of microscope perform acquisition of stereo pairs of images. The images are processed in real-time with the goal of enhancement of quasi-phased structures. The main task is to create algorithm that is not sensitive to changes in intensity distribution. The disadvantages of existing algorithms is their lack of adaptation to occuring reflexes and shadows in field of view. The processed images from both left and right channels are overlaid on the actual images exported and displayed at LCD's of Helmet Mounted Display. A physician observes by HMD (Helmet Mounted Display) a stereoscopic operating scene with indication of the places of special interest. The authors present the hardware ,procedures applied and initial results of inner ear structure visualisation. Several problems connected with processing of stereo-pair images are discussed.

  19. Autonomous spacecraft rendezvous and docking

    NASA Technical Reports Server (NTRS)

    Tietz, J. C.; Almand, B. J.

    1985-01-01

    A storyboard display is presented which summarizes work done recently in design and simulation of autonomous video rendezvous and docking systems for spacecraft. This display includes: photographs of the simulation hardware, plots of chase vehicle trajectories from simulations, pictures of the docking aid including image processing interpretations, and drawings of the control system strategy. Viewgraph-style sheets on the display bulletin board summarize the simulation objectives, benefits, special considerations, approach, and results.

  20. Autonomous spacecraft rendezvous and docking

    NASA Astrophysics Data System (ADS)

    Tietz, J. C.; Almand, B. J.

    A storyboard display is presented which summarizes work done recently in design and simulation of autonomous video rendezvous and docking systems for spacecraft. This display includes: photographs of the simulation hardware, plots of chase vehicle trajectories from simulations, pictures of the docking aid including image processing interpretations, and drawings of the control system strategy. Viewgraph-style sheets on the display bulletin board summarize the simulation objectives, benefits, special considerations, approach, and results.

  1. Command and Control: Toward Arctic Unity of Command and Unity of Effort

    DTIC Science & Technology

    2011-05-19

    Russia, Norway, and Denmark) are in the process of preparing or have submitted territorial claims in the Arctic by way of this convention.58... longitude . The Unified Command Plan divides the Arctic region geographically among three GCCs. U.S. Northern Command (USNORTHCOM), U.S. European...2008, http://www.defense.gov/specials/unifiedcommand/ images /unified-command_world-map.jpg (accessed November 22, 2010). While the Department of

  2. Teachers and the Education of the People: Elementary School Teachers and Images of Citizenship in Scandinavia during the 19th and 20th Centuries.

    ERIC Educational Resources Information Center

    Kivinen, Osmo; Rinne, Risto

    This paper explores the historical formation of the teaching profession in Scandinavia in the 19th and 20th centuries, with special reference to developments in Finland. It focuses on the process by which mass education has assigned teachers a crucial role in the initiation ceremonies characteristic of modern society in relation to changing models…

  3. Advancements of labelled radio-pharmaceutics imaging with the PIM-MPGD

    NASA Astrophysics Data System (ADS)

    Donnard, J.; Arlicot, N.; Berny, R.; Carduner, H.; Leray, P.; Morteau, E.; Servagent, N.; Thers, D.

    2009-11-01

    The Beta autoradiography is widely used in pharmacology or in biological fields to study the response of an organism to a certain kind of molecule. The image of the distribution is processed by studying the concentration of the radioactivity into different organs. We report on the development of an integrated apparatus based on a PIM device (Parallel Ionization Multiplier) able to process the image of 10 microscope slides at the same time over an area of 18*18 cm2. Thanks to a vacuum pump and a regulation gas circuit, 5 minutes is sufficient to begin an acquisition. All the electronics and the gas distribution are included in the structure leading to a transportable device. Special software has been developed to process data in real time with image visualization. Biological samples can be labelled with β emitters of low energy like 3H/14C or Auger electrons of 125I/99mTc. The measured spatial resolution is 30 μm in 3H and the trigger and the charge rate are constant over more than 6 days of acquisition showing good stability of the device. Moreover, collaboration with doctors and biologists of INSERM (National Institute for Medical Research in France) has started in order to demonstrate that MPGD's can be easily proposed outside a physics laboratory.

  4. Integrative Approaches for the Identification and Localization of Specialized Metabolites in Tripterygium Roots.

    PubMed

    Lange, B Markus; Fischedick, Justin T; Lange, Malte F; Srividya, Narayanan; Šamec, Dunja; Poirier, Brenton C

    2017-01-01

    Members of the genus Tripterygium are known to contain an astonishing diversity of specialized metabolites. The lack of authentic standards has been an impediment to the rapid identification of such metabolites in extracts. We employed an approach that involves the searching of multiple, complementary chromatographic and spectroscopic data sets against the Spektraris database to speed up the metabolite identification process. Mass spectrometry-based imaging indicated a differential localization of triterpenoids to the periderm and sesquiterpene alkaloids to the cortex layer of Tripterygium roots. We further provide evidence that triterpenoids are accumulated to high levels in cells that contain suberized cell walls, which might indicate a mechanism for storage. To our knowledge, our data provide first insights into the cell type specificity of metabolite accumulation in Tripterygium and set the stage for furthering our understanding of the biological implications of specialized metabolites in this genus. © 2017 American Society of Plant Biologists. All Rights Reserved.

  5. Integrative Approaches for the Identification and Localization of Specialized Metabolites in Tripterygium Roots1[OPEN

    PubMed Central

    Fischedick, Justin T.; Lange, Malte F.; Poirier, Brenton C.

    2017-01-01

    Members of the genus Tripterygium are known to contain an astonishing diversity of specialized metabolites. The lack of authentic standards has been an impediment to the rapid identification of such metabolites in extracts. We employed an approach that involves the searching of multiple, complementary chromatographic and spectroscopic data sets against the Spektraris database to speed up the metabolite identification process. Mass spectrometry-based imaging indicated a differential localization of triterpenoids to the periderm and sesquiterpene alkaloids to the cortex layer of Tripterygium roots. We further provide evidence that triterpenoids are accumulated to high levels in cells that contain suberized cell walls, which might indicate a mechanism for storage. To our knowledge, our data provide first insights into the cell type specificity of metabolite accumulation in Tripterygium and set the stage for furthering our understanding of the biological implications of specialized metabolites in this genus. PMID:27864443

  6. Quality Control by Artificial Vision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Edmond Y.; Gleason, Shaun Scott; Niel, Kurt S.

    2010-01-01

    Computational technology has fundamentally changed many aspects of our lives. One clear evidence is the development of artificial-vision systems, which have effectively automated many manual tasks ranging from quality inspection to quantitative assessment. In many cases, these machine-vision systems are even preferred over manual ones due to their repeatability and high precision. Such advantages come from significant research efforts in advancing sensor technology, illumination, computational hardware, and image-processing algorithms. Similar to the Special Section on Quality Control by Artificial Vision published two years ago in Volume 17, Issue 3 of the Journal of Electronic Imaging, the present one invited papersmore » relevant to fundamental technology improvements to foster quality control by artificial vision, and fine-tuned the technology for specific applications. We aim to balance both theoretical and applied work pertinent to this special section theme. Consequently, we have seven high-quality papers resulting from the stringent peer-reviewing process in place at the Journal of Electronic Imaging. Some of the papers contain extended treatment of the authors work presented at the SPIE Image Processing: Machine Vision Applications conference and the International Conference on Quality Control by Artificial Vision. On the broad application side, Liu et al. propose an unsupervised texture image segmentation scheme. Using a multilayer data condensation spectral clustering algorithm together with wavelet transform, they demonstrate the effectiveness of their approach on both texture and synthetic aperture radar images. A problem related to image segmentation is image extraction. For this, O'Leary et al. investigate the theory of polynomial moments and show how these moments can be compared to classical filters. They also show how to use the discrete polynomial-basis functions for the extraction of 3-D embossed digits, demonstrating superiority over Fourier-basis functions for this task. Image registration is another important task for machine vision. Bingham and Arrowood investigate the implementation and results in applying Fourier phase matching for projection registration, with a particular focus on nondestructive testing using computed tomography. Readers interested in enriching their arsenal of image-processing algorithms for machine-vision tasks should find these papers enriching. Meanwhile, we have four papers dealing with more specific machine-vision tasks. The first one, Yahiaoui et al., is quantitative in nature, using machine vision for real-time passenger counting. Occulsion is a common problem in counting objects and people, and they circumvent this issue with a dense stereovision system, achieving 97 to 99% accuracy in their tests. On the other hand, the second paper by Oswald-Tranta et al. focuses on thermographic crack detection. An infrared camera is used to detect inhomogeneities, which may indicate surface cracks. They describe the various steps in developing fully automated testing equipment aimed at a high throughput. Another paper describing an inspection system is Molleda et al., which handles flatness inspection of rolled products. They employ optical-laser triangulation and 3-D surface reconstruction for this task, showing how these can be achieved in real time. Last but not least, Presles et al. propose a way to monitor the particle-size distribution of batch crystallization processes. This is achieved through a new in situ imaging probe and image-analysis methods. While it is unlikely any reader may be working on these four specific problems at the same time, we are confident that readers will find these papers inspiring and potentially helpful to their own machine-vision system developments.« less

  7. Vision Screening

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Visi Screen OSS-C, marketed by Vision Research Corporation, incorporates image processing technology originally developed by Marshall Space Flight Center. Its advantage in eye screening is speed. Because it requires no response from a subject, it can be used to detect eye problems in very young children. An electronic flash from a 35 millimeter camera sends light into a child's eyes, which is reflected back to the camera lens. The photorefractor then analyzes the retinal reflexes generated and produces an image of the child's eyes, which enables a trained observer to identify any defects. The device is used by pediatricians, day care centers and civic organizations that concentrate on children with special needs.

  8. Fabricating High-Resolution X-Ray Collimators

    NASA Technical Reports Server (NTRS)

    Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill

    2008-01-01

    A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.

  9. Reading a radiologist's mind: monitoring rising and falling interest levels while scanning chest x-rays

    NASA Astrophysics Data System (ADS)

    Alzubaidi, Mohammad; Patel, Ameet; Panchanathan, Sethuraman; Black, John A., Jr.

    2010-02-01

    Radiological images constitute a special class of images that are captured (or computed) specifically for the purpose of diagnosing patients. However, because these are not "natural" images, radiologists must be trained to interpret them through a process called "perceptual learning". However, because perceptual learning is implicit, experienced radiologists may sometimes find it difficult to explicitly (i.e. verbally) train less experienced colleagues. As a result, current methods of training can take years before a new radiologist is fully competent to independently interpret medical images. We hypothesize that eye tracking technology (coupled with multimedia technology) can be used to accelerate the process of perceptual training, through a Hebbian learning process. This would be accomplished by providing a radiologist-in-training with real-time feedback as he/she is fixating on important regions of an image. Of course this requires that the training system have information about what regions of an image are important - information that could presumably be solicited from experienced radiologists. However, our previous work has suggested that experienced radiologists are not always aware of those regions of an image that attract their attention, but are not clinically significant - information that is very important to a radiologist in training. This paper discusses a study in which local entropy computations were done on scan path data, and were found to provide a quantitative measure of the moment-by-moment interest level of radiologists as they scanned chest x-rays. The results also showed a striking contrast between the moment-by-moment deployment of attention between experienced radiologists and radiologists in training.

  10. Medical Devices; Hematology and Pathology Devices; Classification of the Whole Slide Imaging System. Final order.

    PubMed

    2018-01-02

    The Food and Drug Administration (FDA or we) is classifying the whole slide imaging system into class II (special controls). The special controls that apply to the device type are identified in this order and will be part of the codified language for the whole slide imaging system's classification. We are taking this action because we have determined that classifying the device into class II (special controls) will provide a reasonable assurance of safety and effectiveness of the device. We believe this action will also enhance patients' access to beneficial innovative devices, in part by reducing regulatory burdens.

  11. A specialized face-processing model inspired by the organization of monkey face patches explains several face-specific phenomena observed in humans.

    PubMed

    Farzmahdi, Amirhossein; Rajaei, Karim; Ghodrati, Masoud; Ebrahimpour, Reza; Khaligh-Razavi, Seyed-Mahdi

    2016-04-26

    Converging reports indicate that face images are processed through specialized neural networks in the brain -i.e. face patches in monkeys and the fusiform face area (FFA) in humans. These studies were designed to find out how faces are processed in visual system compared to other objects. Yet, the underlying mechanism of face processing is not completely revealed. Here, we show that a hierarchical computational model, inspired by electrophysiological evidence on face processing in primates, is able to generate representational properties similar to those observed in monkey face patches (posterior, middle and anterior patches). Since the most important goal of sensory neuroscience is linking the neural responses with behavioral outputs, we test whether the proposed model, which is designed to account for neural responses in monkey face patches, is also able to predict well-documented behavioral face phenomena observed in humans. We show that the proposed model satisfies several cognitive face effects such as: composite face effect and the idea of canonical face views. Our model provides insights about the underlying computations that transfer visual information from posterior to anterior face patches.

  12. A specialized face-processing model inspired by the organization of monkey face patches explains several face-specific phenomena observed in humans

    PubMed Central

    Farzmahdi, Amirhossein; Rajaei, Karim; Ghodrati, Masoud; Ebrahimpour, Reza; Khaligh-Razavi, Seyed-Mahdi

    2016-01-01

    Converging reports indicate that face images are processed through specialized neural networks in the brain –i.e. face patches in monkeys and the fusiform face area (FFA) in humans. These studies were designed to find out how faces are processed in visual system compared to other objects. Yet, the underlying mechanism of face processing is not completely revealed. Here, we show that a hierarchical computational model, inspired by electrophysiological evidence on face processing in primates, is able to generate representational properties similar to those observed in monkey face patches (posterior, middle and anterior patches). Since the most important goal of sensory neuroscience is linking the neural responses with behavioral outputs, we test whether the proposed model, which is designed to account for neural responses in monkey face patches, is also able to predict well-documented behavioral face phenomena observed in humans. We show that the proposed model satisfies several cognitive face effects such as: composite face effect and the idea of canonical face views. Our model provides insights about the underlying computations that transfer visual information from posterior to anterior face patches. PMID:27113635

  13. Using an image-extended relational database to support content-based image retrieval in a PACS.

    PubMed

    Traina, Caetano; Traina, Agma J M; Araújo, Myrian R B; Bueno, Josiane M; Chino, Fabio J T; Razente, Humberto; Azevedo-Marques, Paulo M

    2005-12-01

    This paper presents a new Picture Archiving and Communication System (PACS), called cbPACS, which has content-based image retrieval capabilities. The cbPACS answers range and k-nearest- neighbor similarity queries, employing a relational database manager extended to support images. The images are compared through their features, which are extracted by an image-processing module and stored in the extended relational database. The database extensions were developed aiming at efficiently answering similarity queries by taking advantage of specialized indexing methods. The main concept supporting the extensions is the definition, inside the relational manager, of distance functions based on features extracted from the images. An extension to the SQL language enables the construction of an interpreter that intercepts the extended commands and translates them to standard SQL, allowing any relational database server to be used. By now, the system implemented works on features based on color distribution of the images through normalized histograms as well as metric histograms. Metric histograms are invariant regarding scale, translation and rotation of images and also to brightness transformations. The cbPACS is prepared to integrate new image features, based on texture and shape of the main objects in the image.

  14. Retinal imaging and image analysis.

    PubMed

    Abràmoff, Michael D; Garvin, Mona K; Sonka, Milan

    2010-01-01

    Many important eye diseases as well as systemic diseases manifest themselves in the retina. While a number of other anatomical structures contribute to the process of vision, this review focuses on retinal imaging and image analysis. Following a brief overview of the most prevalent causes of blindness in the industrialized world that includes age-related macular degeneration, diabetic retinopathy, and glaucoma, the review is devoted to retinal imaging and image analysis methods and their clinical implications. Methods for 2-D fundus imaging and techniques for 3-D optical coherence tomography (OCT) imaging are reviewed. Special attention is given to quantitative techniques for analysis of fundus photographs with a focus on clinically relevant assessment of retinal vasculature, identification of retinal lesions, assessment of optic nerve head (ONH) shape, building retinal atlases, and to automated methods for population screening for retinal diseases. A separate section is devoted to 3-D analysis of OCT images, describing methods for segmentation and analysis of retinal layers, retinal vasculature, and 2-D/3-D detection of symptomatic exudate-associated derangements, as well as to OCT-based analysis of ONH morphology and shape. Throughout the paper, aspects of image acquisition, image analysis, and clinical relevance are treated together considering their mutually interlinked relationships.

  15. Retinal Imaging and Image Analysis

    PubMed Central

    Abràmoff, Michael D.; Garvin, Mona K.; Sonka, Milan

    2011-01-01

    Many important eye diseases as well as systemic diseases manifest themselves in the retina. While a number of other anatomical structures contribute to the process of vision, this review focuses on retinal imaging and image analysis. Following a brief overview of the most prevalent causes of blindness in the industrialized world that includes age-related macular degeneration, diabetic retinopathy, and glaucoma, the review is devoted to retinal imaging and image analysis methods and their clinical implications. Methods for 2-D fundus imaging and techniques for 3-D optical coherence tomography (OCT) imaging are reviewed. Special attention is given to quantitative techniques for analysis of fundus photographs with a focus on clinically relevant assessment of retinal vasculature, identification of retinal lesions, assessment of optic nerve head (ONH) shape, building retinal atlases, and to automated methods for population screening for retinal diseases. A separate section is devoted to 3-D analysis of OCT images, describing methods for segmentation and analysis of retinal layers, retinal vasculature, and 2-D/3-D detection of symptomatic exudate-associated derangements, as well as to OCT-based analysis of ONH morphology and shape. Throughout the paper, aspects of image acquisition, image analysis, and clinical relevance are treated together considering their mutually interlinked relationships. PMID:22275207

  16. Slope activity in Gale crater, Mars

    USGS Publications Warehouse

    Dundas, Colin M.; McEwen, Alfred S.

    2015-01-01

    High-resolution repeat imaging of Aeolis Mons, the central mound in Gale crater, reveals active slope processes within tens of kilometers of the Curiosity rover. At one location near the base of northeastern Aeolis Mons, dozens of transient narrow lineae were observed, resembling features (Recurring Slope Lineae) that are potentially due to liquid water. However, the lineae faded and have not recurred in subsequent Mars years. Other small-scale slope activity is common, but has different spatial and temporal characteristics. We have not identified confirmed RSL, which Rummel et al. (Rummel, J.D. et al. [2014]. Astrobiology 14, 887–968) recommended be treated as potential special regions for planetary protection. Repeat images acquired as Curiosity approaches the base of Aeolis Mons could detect changes due to active slope processes, which could enable the rover to examine recently exposed material.

  17. Grid point extraction and coding for structured light system

    NASA Astrophysics Data System (ADS)

    Song, Zhan; Chung, Ronald

    2011-09-01

    A structured light system simplifies three-dimensional reconstruction by illuminating a specially designed pattern to the target object, thereby generating a distinct texture on it for imaging and further processing. Success of the system hinges upon what features are to be coded in the projected pattern, extracted in the captured image, and matched between the projector's display panel and the camera's image plane. The codes have to be such that they are largely preserved in the image data upon illumination from the projector, reflection from the target object, and projective distortion in the imaging process. The features also need to be reliably extracted in the image domain. In this article, a two-dimensional pseudorandom pattern consisting of rhombic color elements is proposed, and the grid points between the pattern elements are chosen as the feature points. We describe how a type classification of the grid points plus the pseudorandomness of the projected pattern can equip each grid point with a unique label that is preserved in the captured image. We also present a grid point detector that extracts the grid points without the need of segmenting the pattern elements, and that localizes the grid points in subpixel accuracy. Extensive experiments are presented to illustrate that, with the proposed pattern feature definition and feature detector, more features points in higher accuracy can be reconstructed in comparison with the existing pseudorandomly encoded structured light systems.

  18. Optical phase plates as a creative medium for special effects in images

    NASA Astrophysics Data System (ADS)

    Shaoulov, Vesselin I.; Meyer, Catherine; Argotti, Yann; Rolland, Jannick P.

    2001-12-01

    A new paradigm and methods for special effects in images were recently proposed by artist and movie producer Steven Hylen. Based on these methods, images resembling painting may be formed using optical phase plates. The role of the mathematical and optical properties of the phase plates is studied in the development of these new art forms. Results of custom software as well as ASAP simulations are presented.

  19. MO-PIS-Exhibit Hall-01: Tools for TG-142 Linac Imaging QA I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clements, M; Wiesmeyer, M

    2014-06-15

    Partners in Solutions is an exciting new program in which AAPM partners with our vendors to present practical “hands-on” information about the equipment and software systems that we use in our clinics. The therapy topic this year is solutions for TG-142 recommendations for linear accelerator imaging QA. Note that the sessions are being held in a special purpose room built on the Exhibit Hall Floor, to encourage further interaction with the vendors. Automated Imaging QA for TG-142 with RIT Presentation Time: 2:45 – 3:15 PM This presentation will discuss software tools for automated imaging QA and phantom analysis for TG-142.more » All modalities used in radiation oncology will be discussed, including CBCT, planar kV imaging, planar MV imaging, and imaging and treatment coordinate coincidence. Vendor supplied phantoms as well as a variety of third-party phantoms will be shown, along with appropriate analyses, proper phantom setup procedures and scanning settings, and a discussion of image quality metrics. Tools for process automation will be discussed which include: RIT Cognition (machine learning for phantom image identification), RIT Cerberus (automated file system monitoring and searching), and RunQueueC (batch processing of multiple images). In addition to phantom analysis, tools for statistical tracking, trending, and reporting will be discussed. This discussion will include an introduction to statistical process control, a valuable tool in analyzing data and determining appropriate tolerances. An Introduction to TG-142 Imaging QA Using Standard Imaging Products Presentation Time: 3:15 – 3:45 PM Medical Physicists want to understand the logic behind TG-142 Imaging QA. What is often missing is a firm understanding of the connections between the EPID and OBI phantom imaging, the software “algorithms” that calculate the QA metrics, the establishment of baselines, and the analysis and interpretation of the results. The goal of our brief presentation will be to establish and solidify these connections. Our talk will be motivated by the Standard Imaging, Inc. phantom and software solutions. We will present and explain each of the image quality metrics in TG-142 in terms of the theory, mathematics, and algorithms used to implement them in the Standard Imaging PIPSpro software. In the process, we will identify the regions of phantom images that are analyzed by each algorithm. We then will discuss the process of the creation of baselines and typical ranges of acceptable values for each imaging quality metric.« less

  20. MR findings in athletes with pubalgia.

    PubMed

    Albers, S L; Spritzer, C E; Garrett, W E; Meyers, W C

    2001-05-01

    To describe the MR findings in athletes with pubalgia. Pelvic MR images of 32 athletes (30 men, 2 women) with pubalgia were studied. T1-weighted and T2-weighted (SE and FSE) and STIR images in the axial and coronal planes were obtained on a 1.5-T system. Images were reviewed for general pelvic pathology. Special attention was given to the pubic symphysis, groin and pelvic musculature, and to the abdominal wall musculature. Thirty surgically confirmed cases comprise the study group. Abnormalities in the following were found: pubic symphysis (21/30), abdominal wall (27/30), groin musculature, including rectus abdominis (21/30), pectineus (6/30), and adductor muscle group (18/30). Pubalgia is a complex process which is frequently multifactorial. The MRI findings can alter the surgical approach.

  1. On-orbit Performance and Calibration of the HMI Instrument

    NASA Astrophysics Data System (ADS)

    Hoeksema, J. Todd; Bush, Rock; HMI Calibration Team

    2016-10-01

    The Helioseismic and Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) has observed the Sun almost continuously since the completion of commissioning in May 2010, returning more than 100,000,000 filtergrams from geosynchronous orbit. Diligent and exhaustive monitoring of the instrument's performance ensures that HMI functions properly and allows proper calibration of the full-disk images and processing of the HMI observables. We constantly monitor trends in temperature, pointing, mechanism behavior, and software errors. Cosmic ray contamination is detected and bad pixels are removed from each image. Routine calibration sequences and occasional special observing programs are used to measure the instrument focus, distortion, scattered light, filter profiles, throughput, and detector characteristics. That information is used to optimize instrument performance and adjust calibration of filtergrams and observables.

  2. Fast optical detecting media based on semiconductor nanostructures for recording images obtained using charges of free photocarriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasherininov, P. G., E-mail: peter.kasherininov@mail.ioffe.ru; Tomasov, A. A.; Beregulin, E. V.

    2011-01-15

    Available published data on the properties of optical recording media based on semiconductor structures are reviewed. The principles of operation, structure, parameters, and the range of application for optical recording media based on MIS structures formed of photorefractive crystals with a thick layer of insulator and MIS structures with a liquid crystal as the insulator (the MIS LC modulators), as well as the effect of optical bistability in semiconductor structures (semiconductor MIS structures with nanodimensionally thin insulator (TI) layer, M(TI)S nanostructures). Special attention is paid to recording media based on the M(TI)S nanostructures promising for fast processing of highly informativemore » images and to fabrication of optoelectronic correlators of images for noncoherent light.« less

  3. Scaled Heavy-Ball Acceleration of the Richardson-Lucy Algorithm for 3D Microscopy Image Restoration.

    PubMed

    Wang, Hongbin; Miller, Paul C

    2014-02-01

    The Richardson-Lucy algorithm is one of the most important in image deconvolution. However, a drawback is its slow convergence. A significant acceleration was obtained using the technique proposed by Biggs and Andrews (BA), which is implemented in the deconvlucy function of the image processing MATLAB toolbox. The BA method was developed heuristically with no proof of convergence. In this paper, we introduce the heavy-ball (H-B) method for Poisson data optimization and extend it to a scaled H-B method, which includes the BA method as a special case. The method has a proof of the convergence rate of O(K(-2)), where k is the number of iterations. We demonstrate the superior convergence performance, by a speedup factor of five, of the scaled H-B method on both synthetic and real 3D images.

  4. Monocular correspondence detection for symmetrical objects by template matching

    NASA Astrophysics Data System (ADS)

    Vilmar, G.; Besslich, Philipp W., Jr.

    1990-09-01

    We describe a possibility to reconstruct 3-D information from a single view of an 3-D bilateral symmetric object. The symmetry assumption allows us to obtain a " second view" from a different viewpoint by a simple reflection of the monocular image. Therefore we have to solve the correspondence problem in a special case where known feature-based or area-based binocular approaches fail. In principle our approach is based on a frequency domain template matching of the features on the epipolar lines. During a training period our system " learns" the assignment of correspondence models to image features. The object shape is interpolated when no template matches to the image features. This fact is an important advantage of this methodology because no " real world" image holds the symmetry assumption perfectly. To simplify the training process we used single views on human faces (e. g. passport photos) but our system is trainable on any other kind of objects.

  5. An infrared-visible image fusion scheme based on NSCT and compressed sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Qiong; Maldague, Xavier

    2015-05-01

    Image fusion, as a research hot point nowadays in the field of infrared computer vision, has been developed utilizing different varieties of methods. Traditional image fusion algorithms are inclined to bring problems, such as data storage shortage and computational complexity increase, etc. Compressed sensing (CS) uses sparse sampling without knowing the priori knowledge and greatly reconstructs the image, which reduces the cost and complexity of image processing. In this paper, an advanced compressed sensing image fusion algorithm based on non-subsampled contourlet transform (NSCT) is proposed. NSCT provides better sparsity than the wavelet transform in image representation. Throughout the NSCT decomposition, the low-frequency and high-frequency coefficients can be obtained respectively. For the fusion processing of low-frequency coefficients of infrared and visible images , the adaptive regional energy weighting rule is utilized. Thus only the high-frequency coefficients are specially measured. Here we use sparse representation and random projection to obtain the required values of high-frequency coefficients, afterwards, the coefficients of each image block can be fused via the absolute maximum selection rule and/or the regional standard deviation rule. In the reconstruction of the compressive sampling results, a gradient-based iterative algorithm and the total variation (TV) method are employed to recover the high-frequency coefficients. Eventually, the fused image is recovered by inverse NSCT. Both the visual effects and the numerical computation results after experiments indicate that the presented approach achieves much higher quality of image fusion, accelerates the calculations, enhances various targets and extracts more useful information.

  6. Adaptation of in-situ microscopy for crystallization processes

    NASA Astrophysics Data System (ADS)

    Bluma, A.; Höpfner, T.; Rudolph, G.; Lindner, P.; Beutel, S.; Hitzmann, B.; Scheper, T.

    2009-08-01

    In biotechnological and pharmaceutical engineering, the study of crystallization processes gains importance. An efficient analytical inline sensor could help to improve the knowledge about these processes in order to increase efficiency and yields. The in-situ microscope (ISM) is an optical sensor developed for the monitoring of bioprocesses. A new application for this sensor is the monitoring in downstream processes, e.g. the crystallization of proteins and other organic compounds. This contribution shows new aspects of using in-situ microscopy to monitor crystallization processes. Crystals of different chemical compounds were precipitated from supersaturated solutions and the crystal growth was monitored. Exemplified morphological properties and different forms of crystals could be distinguished on the basis of offline experiments. For inline monitoring of crystallization processes, a special 0.5 L stirred tank reactor was developed and equipped with the in-situ microscope. This reactor was utilized to carry out batch experiments for crystallizations of O-acetylsalicyclic acid (ASS) and hen egg white lysozyme (HEWL). During the whole crystallization process, the in-situ microscope system acquired images directly from the crystallization broth. For the data evaluation, an image analysis algorithm was developed and implemented in the microscope analysis software.

  7. yourSky: Custom Sky-Image Mosaics via the Internet

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph

    2003-01-01

    yourSky (http://yourSky.jpl.nasa.gov) is a computer program that supplies custom astronomical image mosaics of sky regions specified by requesters using client computers connected to the Internet. [yourSky is an upgraded version of the software reported in Software for Generating Mosaics of Astronomical Images (NPO-21121), NASA Tech Briefs, Vol. 25, No. 4 (April 2001), page 16a.] A requester no longer has to engage in the tedious process of determining what subset of images is needed, nor even to know how the images are indexed in image archives. Instead, in response to a requester s specification of the size and location of the sky area, (and optionally of the desired set and type of data, resolution, coordinate system, projection, and image format), yourSky automatically retrieves the component image data from archives totaling tens of terabytes stored on computer tape and disk drives at multiple sites and assembles the component images into a mosaic image by use of a high-performance parallel code. yourSky runs on the server computer where the mosaics are assembled. Because yourSky includes a Web-interface component, no special client software is needed: ordinary Web browser software is sufficient.

  8. Geographical topic learning for social images with a deep neural network

    NASA Astrophysics Data System (ADS)

    Feng, Jiangfan; Xu, Xin

    2017-03-01

    The use of geographical tagging in social-media images is becoming a part of image metadata and a great interest for geographical information science. It is well recognized that geographical topic learning is crucial for geographical annotation. Existing methods usually exploit geographical characteristics using image preprocessing, pixel-based classification, and feature recognition. How to effectively exploit the high-level semantic feature and underlying correlation among different types of contents is a crucial task for geographical topic learning. Deep learning (DL) has recently demonstrated robust capabilities for image tagging and has been introduced into geoscience. It extracts high-level features computed from a whole image component, where the cluttered background may dominate spatial features in the deep representation. Therefore, a method of spatial-attentional DL for geographical topic learning is provided and we can regard it as a special case of DL combined with various deep networks and tuning tricks. Results demonstrated that the method is discriminative for different types of geographical topic learning. In addition, it outperforms other sequential processing models in a tagging task for a geographical image dataset.

  9. Particle detection, number estimation, and feature measurement in gene transfer studies: optical fractionator stereology integrated with digital image processing and analysis.

    PubMed

    King, Michael A; Scotty, Nicole; Klein, Ronald L; Meyer, Edwin M

    2002-10-01

    Assessing the efficacy of in vivo gene transfer often requires a quantitative determination of the number, size, shape, or histological visualization characteristics of biological objects. The optical fractionator has become a choice stereological method for estimating the number of objects, such as neurons, in a structure, such as a brain subregion. Digital image processing and analytic methods can increase detection sensitivity and quantify structural and/or spectral features located in histological specimens. We describe a hardware and software system that we have developed for conducting the optical fractionator process. A microscope equipped with a video camera and motorized stage and focus controls is interfaced with a desktop computer. The computer contains a combination live video/computer graphics adapter with a video frame grabber and controls the stage, focus, and video via a commercial imaging software package. Specialized macro programs have been constructed with this software to execute command sequences requisite to the optical fractionator method: defining regions of interest, positioning specimens in a systematic uniform random manner, and stepping through known volumes of tissue for interactive object identification (optical dissectors). The system affords the flexibility to work with count regions that exceed the microscope image field size at low magnifications and to adjust the parameters of the fractionator sampling to best match the demands of particular specimens and object types. Digital image processing can be used to facilitate object detection and identification, and objects that meet criteria for counting can be analyzed for a variety of morphometric and optical properties. Copyright 2002 Elsevier Science (USA)

  10. Comparison of imaging characteristics of multiple-beam equalization and storage phosphor direct digitizer radiographic systems

    NASA Astrophysics Data System (ADS)

    Sankaran, A.; Chuang, Keh-Shih; Yonekawa, Hisashi; Huang, H. K.

    1992-06-01

    The imaging characteristics of two chest radiographic equipment, Advanced Multiple Beam Equalization Radiography (AMBER) and Konica Direct Digitizer [using a storage phosphor (SP) plate] systems have been compared. The variables affecting image quality and the computer display/reading systems used are detailed. Utilizing specially designed wedge, geometric, and anthropomorphic phantoms, studies were conducted on: exposure and energy response of detectors; nodule detectability; different exposure techniques; various look- up tables (LUTs), gray scale displays and laser printers. Methods for scatter estimation and reduction were investigated. It is concluded that AMBER with screen-film and equalization techniques provides better nodule detectability than SP plates. However, SP plates have other advantages such as flexibility in the selection of exposure techniques, image processing features, and excellent sensitivity when combined with optimum reader operating modes. The equalization feature of AMBER provides better nodule detectability under the denser regions of the chest. Results of diagnostic accuracy are demonstrated with nodule detectability plots and analysis of images obtained with phantoms.

  11. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations

    PubMed Central

    Gustafsson, Nils; Culley, Siân; Ashdown, George; Owen, Dylan M.; Pereira, Pedro Matos; Henriques, Ricardo

    2016-01-01

    Despite significant progress, high-speed live-cell super-resolution studies remain limited to specialized optical setups, generally requiring intense phototoxic illumination. Here, we describe a new analytical approach, super-resolution radial fluctuations (SRRF), provided as a fast graphics processing unit-enabled ImageJ plugin. In the most challenging data sets for super-resolution, such as those obtained in low-illumination live-cell imaging with GFP, we show that SRRF is generally capable of achieving resolutions better than 150 nm. Meanwhile, for data sets similar to those obtained in PALM or STORM imaging, SRRF achieves resolutions approaching those of standard single-molecule localization analysis. The broad applicability of SRRF and its performance at low signal-to-noise ratios allows super-resolution using modern widefield, confocal or TIRF microscopes with illumination orders of magnitude lower than methods such as PALM, STORM or STED. We demonstrate this by super-resolution live-cell imaging over timescales ranging from minutes to hours. PMID:27514992

  12. Isolating contour information from arbitrary images

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.

    1989-01-01

    Aspects of natural vision (physiological and perceptual) serve as a basis for attempting the development of a general processing scheme for contour extraction. Contour information is assumed to be central to visual recognition skills. While the scheme must be regarded as highly preliminary, initial results do compare favorably with the visual perception of structure. The scheme pays special attention to the construction of a smallest scale circular difference-of-Gaussian (DOG) convolution, calibration of multiscale edge detection thresholds with the visual perception of grayscale boundaries, and contour/texture discrimination methods derived from fundamental assumptions of connectivity and the characteristics of printed text. Contour information is required to fall between a minimum connectivity limit and maximum regional spatial density limit at each scale. Results support the idea that contour information, in images possessing good image quality, is (centered at about 10 cyc/deg and 30 cyc/deg). Further, lower spatial frequency channels appear to play a major role only in contour extraction from images with serious global image defects.

  13. Design Application Translates 2-D Graphics to 3-D Surfaces

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Fabric Images Inc., specializing in the printing and manufacturing of fabric tension architecture for the retail, museum, and exhibit/tradeshow communities, designed software to translate 2-D graphics for 3-D surfaces prior to print production. Fabric Images' fabric-flattening design process models a 3-D surface based on computer-aided design (CAD) specifications. The surface geometry of the model is used to form a 2-D template, similar to a flattening process developed by NASA's Glenn Research Center. This template or pattern is then applied in the development of a 2-D graphic layout. Benefits of this process include 11.5 percent time savings per project, less material wasted, and the ability to improve upon graphic techniques and offer new design services. Partners include Exhibitgroup/Giltspur (end-user client: TAC Air, a division of Truman Arnold Companies Inc.), Jack Morton Worldwide (end-user client: Nickelodeon), as well as 3D Exhibits Inc., and MG Design Associates Corp.

  14. Automated quantitative histology reveals vascular morphodynamics during Arabidopsis hypocotyl secondary growth.

    PubMed

    Sankar, Martial; Nieminen, Kaisa; Ragni, Laura; Xenarios, Ioannis; Hardtke, Christian S

    2014-02-11

    Among various advantages, their small size makes model organisms preferred subjects of investigation. Yet, even in model systems detailed analysis of numerous developmental processes at cellular level is severely hampered by their scale. For instance, secondary growth of Arabidopsis hypocotyls creates a radial pattern of highly specialized tissues that comprises several thousand cells starting from a few dozen. This dynamic process is difficult to follow because of its scale and because it can only be investigated invasively, precluding comprehensive understanding of the cell proliferation, differentiation, and patterning events involved. To overcome such limitation, we established an automated quantitative histology approach. We acquired hypocotyl cross-sections from tiled high-resolution images and extracted their information content using custom high-throughput image processing and segmentation. Coupled with automated cell type recognition through machine learning, we could establish a cellular resolution atlas that reveals vascular morphodynamics during secondary growth, for example equidistant phloem pole formation. DOI: http://dx.doi.org/10.7554/eLife.01567.001.

  15. Discrete magic angle turning system, apparatus, and process for in situ magnetic resonance spectroscopy and imaging

    DOEpatents

    Hu, Jian Zhi [Richland, WA; Sears, Jr., Jesse A.; Hoyt, David W [Richland, WA; Wind, Robert A [Kennewick, WA

    2009-05-19

    Described are a "Discrete Magic Angle Turning" (DMAT) system, devices, and processes that combine advantages of both magic angle turning (MAT) and magic angle hopping (MAH) suitable, e.g., for in situ magnetic resonance spectroscopy and/or imaging. In an exemplary system, device, and process, samples are rotated in a clockwise direction followed by an anticlockwise direction of exactly the same amount. Rotation proceeds through an angle that is typically greater than about 240 degrees but less than or equal to about 360 degrees at constant speed for a time applicable to the evolution dimension. Back and forth rotation can be synchronized and repeated with a special radio frequency (RF) pulse sequence to produce an isotropic-anisotropic shift 2D correlation spectrum. The design permits tubes to be inserted into the sample container without introducing plumbing interferences, further allowing control over such conditions as temperature, pressure, flow conditions, and feed compositions, thus permitting true in-situ investigations to be carried out.

  16. Automated quantitative histology reveals vascular morphodynamics during Arabidopsis hypocotyl secondary growth

    PubMed Central

    Sankar, Martial; Nieminen, Kaisa; Ragni, Laura; Xenarios, Ioannis; Hardtke, Christian S

    2014-01-01

    Among various advantages, their small size makes model organisms preferred subjects of investigation. Yet, even in model systems detailed analysis of numerous developmental processes at cellular level is severely hampered by their scale. For instance, secondary growth of Arabidopsis hypocotyls creates a radial pattern of highly specialized tissues that comprises several thousand cells starting from a few dozen. This dynamic process is difficult to follow because of its scale and because it can only be investigated invasively, precluding comprehensive understanding of the cell proliferation, differentiation, and patterning events involved. To overcome such limitation, we established an automated quantitative histology approach. We acquired hypocotyl cross-sections from tiled high-resolution images and extracted their information content using custom high-throughput image processing and segmentation. Coupled with automated cell type recognition through machine learning, we could establish a cellular resolution atlas that reveals vascular morphodynamics during secondary growth, for example equidistant phloem pole formation. DOI: http://dx.doi.org/10.7554/eLife.01567.001 PMID:24520159

  17. Imaging and applied optics: introduction to the feature issue.

    PubMed

    Zalevsky, Zeev; Arnison, Matthew R; Javidi, Bahram; Testorf, Markus

    2018-03-01

    This special issue of Applied Optics contains selected papers from OSA's Imaging Congress with particular emphasis on work from mathematics in imaging, computational optical sensing and imaging, imaging systems and applications, and 3D image acquisition and display.

  18. The GAMCIT gamma ray burst detector

    NASA Technical Reports Server (NTRS)

    Mccall, Benjamin J.; Grunsfeld, John M.; Sobajic, Srdjan D.; Chang, Chinley Leonard; Krum, David M.; Ratner, Albert; Trittschuh, Jennifer E.

    1993-01-01

    The GAMCIT payload is a Get-Away-Special payload designed to search for high-energy gamma-ray bursts and any associated optical transients. This paper presents details on the design of the GAMCIT payload, in the areas of battery selection, power processing, electronics design, gamma-ray detection systems, and the optical imaging of the transients. The paper discusses the progress of the construction, testing, and specific design details of the payload. In addition, this paper discusses the unique challenges involved in bringing this payload to completion, as the project has been designed, constructed, and managed entirely by undergraduate students. Our experience will certainly be valuable to other student groups interested in taking on a challenging project such as a Get-Away-Special payload.

  19. New concept high-speed and high-resolution color scanner

    NASA Astrophysics Data System (ADS)

    Nakashima, Keisuke; Shinoda, Shin'ichi; Konishi, Yoshiharu; Sugiyama, Kenji; Hori, Tetsuya

    2003-05-01

    We have developed a new concept high-speed and high-resolution color scanner (Blinkscan) using digital camera technology. With our most advanced sub-pixel image processing technology, approximately 12 million pixel image data can be captured. High resolution imaging capability allows various uses such as OCR, color document read, and document camera. The scan time is only about 3 seconds for a letter size sheet. Blinkscan scans documents placed "face up" on its scan stage and without any special illumination lights. Using Blinkscan, a high-resolution color document can be easily inputted into a PC at high speed, a paperless system can be built easily. It is small, and since the occupancy area is also small, setting it on an individual desk is possible. Blinkscan offers the usability of a digital camera and accuracy of a flatbed scanner with high-speed processing. Now, about several hundred of Blinkscan are mainly shipping for the receptionist operation in a bank and a security. We will show the high-speed and high-resolution architecture of Blinkscan. Comparing operation-time with conventional image capture device, the advantage of Blinkscan will make clear. And image evaluation for variety of environment, such as geometric distortions or non-uniformity of brightness, will be made.

  20. Active pixel sensors: the sensor of choice for future space applications?

    NASA Astrophysics Data System (ADS)

    Leijtens, Johan; Theuwissen, Albert; Rao, Padmakumar R.; Wang, Xinyang; Xie, Ning

    2007-10-01

    It is generally known that active pixel sensors (APS) have a number of advantages over CCD detectors if it comes to cost for mass production, power consumption and ease of integration. Nevertheless, most space applications still use CCD detectors because they tend to give better performance and have a successful heritage. To this respect a change may be at hand with the advent of deep sub-micron processed APS imagers (< 0.25-micron feature size). Measurements performed on test structures at the University of Delft have shown that the imagers are very radiation tolerant even if made in a standard process without the use of special design rules. Furthermore it was shown that the 1/f noise associated with deep sub-micron imagers is reduced as compared to previous generations APS imagers due to the improved quality of the gate oxides. Considering that end of life performance will have to be guaranteed, limited budget for adding shielding metal will be available for most applications and lower power operations is always seen as a positive characteristic in space applications, deep sub-micron APS imagers seem to have a number of advantages over CCD's that will probably cause them to replace CCD's in those applications where radiation tolerance and low power operation are important

  1. Real-time interactive virtual tour on the World Wide Web (WWW)

    NASA Astrophysics Data System (ADS)

    Yoon, Sanghyuk; Chen, Hai-jung; Hsu, Tom; Yoon, Ilmi

    2003-12-01

    Web-based Virtual Tour has become a desirable and demanded application, yet challenging due to the nature of web application's running environment such as limited bandwidth and no guarantee of high computation power on the client side. Image-based rendering approach has attractive advantages over traditional 3D rendering approach in such Web Applications. Traditional approach, such as VRML, requires labor-intensive 3D modeling process, high bandwidth and computation power especially for photo-realistic virtual scenes. QuickTime VR and IPIX as examples of image-based approach, use panoramic photos and the virtual scenes that can be generated from photos directly skipping the modeling process. But, these image-based approaches may require special cameras or effort to take panoramic views and provide only one fixed-point look-around and zooming in-out rather than 'walk around', that is a very important feature to provide immersive experience to virtual tourists. The Web-based Virtual Tour using Tour into the Picture employs pseudo 3D geometry with image-based rendering approach to provide viewers with immersive experience of walking around the virtual space with several snap shots of conventional photos.

  2. Multigeneration data migration from legacy systems

    NASA Astrophysics Data System (ADS)

    Ratib, Osman M.; Liu, Brent J.; Kho, Hwa T.; Tao, Wenchao; Wang, Cun; McCoy, J. Michael

    2003-05-01

    The migration of image data from different generations of legacy archive systems represents a technical challenge and in incremental cost in transitions to newer generations of PACS. UCLA medical center has elected to completely replace the existing PACS infrastructure encompassing several generations of legacy systems by a new commercial system providing enterprise-wide image management and communication. One of the most challenging parts of the project was the migration of large volumes of legacy images into the new system. Planning of the migration required the development of specialized software and hardware, and included different phases of data mediation from existing databases to the new PACS database prior to the migration of the image data. The project plan included a detailed analysis of resources and cost of data migration to optimize the process and minimize the delay of a hybrid operation where the legacy systems need to remain operational. Our analysis and project planning showed that the data migration represents the most critical path in the process of PACS renewal. Careful planning and optimization of the project timeline and resources allocated is critical to minimize the financial impact and the time delays that such migrations can impose on the implementation plan.

  3. Hyperspectral Imaging Using Flexible Endoscopy for Laryngeal Cancer Detection

    PubMed Central

    Regeling, Bianca; Thies, Boris; Gerstner, Andreas O. H.; Westermann, Stephan; Müller, Nina A.; Bendix, Jörg; Laffers, Wiebke

    2016-01-01

    Hyperspectral imaging (HSI) is increasingly gaining acceptance in the medical field. Up until now, HSI has been used in conjunction with rigid endoscopy to detect cancer in vivo. The logical next step is to pair HSI with flexible endoscopy, since it improves access to hard-to-reach areas. While the flexible endoscope’s fiber optic cables provide the advantage of flexibility, they also introduce an interfering honeycomb-like pattern onto images. Due to the substantial impact this pattern has on locating cancerous tissue, it must be removed before the HS data can be further processed. Thereby, the loss of information is to minimize avoiding the suppression of small-area variations of pixel values. We have developed a system that uses flexible endoscopy to record HS cubes of the larynx and designed a special filtering technique to remove the honeycomb-like pattern with minimal loss of information. We have confirmed its feasibility by comparing it to conventional filtering techniques using an objective metric and by applying unsupervised and supervised classifications to raw and pre-processed HS cubes. Compared to conventional techniques, our method successfully removes the honeycomb-like pattern and considerably improves classification performance, while preserving image details. PMID:27529255

  4. Optical sectioning and 3D reconstructions as an alternative to scanning electron microscopy for analysis of cell shape.

    PubMed

    Landis, Jacob B; Ventura, Kayla L; Soltis, Douglas E; Soltis, Pamela S; Oppenheimer, David G

    2015-04-01

    Visualizing flower epidermal cells is often desirable for investigating the interaction between flowers and their pollinators, in addition to the broader range of ecological interactions in which flowers are involved. We developed a protocol for visualizing petal epidermal cells without the limitations of the commonly used method of scanning electron microscopy (SEM). Flower material was collected and fixed in glutaraldehyde, followed by dehydration in an ethanol series. Flowers were dissected to collect petals, and subjected to a Histo-Clear series to remove the cuticle. Material was then stained with aniline blue, mounted on microscope slides, and imaged using a compound fluorescence microscope to obtain optical sections that were reconstructed into a 3D image. This optical sectioning method yielded high-quality images of the petal epidermal cells with virtually no damage to cells. Flowers were processed in larger batches than are possible using common SEM methods. Also, flower size was not a limiting factor as often observed in SEM studies. Flowers up to 5 cm in length were processed and mounted for visualization. This method requires no special equipment for sample preparation prior to imaging and should be seen as an alternative method to SEM.

  5. Hyperspectral Imaging Using Flexible Endoscopy for Laryngeal Cancer Detection.

    PubMed

    Regeling, Bianca; Thies, Boris; Gerstner, Andreas O H; Westermann, Stephan; Müller, Nina A; Bendix, Jörg; Laffers, Wiebke

    2016-08-13

    Hyperspectral imaging (HSI) is increasingly gaining acceptance in the medical field. Up until now, HSI has been used in conjunction with rigid endoscopy to detect cancer in vivo. The logical next step is to pair HSI with flexible endoscopy, since it improves access to hard-to-reach areas. While the flexible endoscope's fiber optic cables provide the advantage of flexibility, they also introduce an interfering honeycomb-like pattern onto images. Due to the substantial impact this pattern has on locating cancerous tissue, it must be removed before the HS data can be further processed. Thereby, the loss of information is to minimize avoiding the suppression of small-area variations of pixel values. We have developed a system that uses flexible endoscopy to record HS cubes of the larynx and designed a special filtering technique to remove the honeycomb-like pattern with minimal loss of information. We have confirmed its feasibility by comparing it to conventional filtering techniques using an objective metric and by applying unsupervised and supervised classifications to raw and pre-processed HS cubes. Compared to conventional techniques, our method successfully removes the honeycomb-like pattern and considerably improves classification performance, while preserving image details.

  6. A New Dusts Sensor for Cultural Heritage Applications Based on Image Processing

    PubMed Central

    Proietti, Andrea; Leccese, Fabio; Caciotta, Maurizio; Morresi, Fabio; Santamaria, Ulderico; Malomo, Carmela

    2014-01-01

    In this paper, we propose a new sensor for the detection and analysis of dusts (seen as powders and fibers) in indoor environments, especially designed for applications in the field of Cultural Heritage or in other contexts where the presence of dust requires special care (surgery, clean rooms, etc.). The presented system relies on image processing techniques (enhancement, noise reduction, segmentation, metrics analysis) and it allows obtaining both qualitative and quantitative information on the accumulation of dust. This information aims to identify the geometric and topological features of the elements of the deposit. The curators can use this information in order to design suitable prevention and maintenance actions for objects and environments. The sensor consists of simple and relatively cheap tools, based on a high-resolution image acquisition system, a preprocessing software to improve the captured image and an analysis algorithm for the feature extraction and the classification of the elements of the dust deposit. We carried out some tests in order to validate the system operation. These tests were performed within the Sistine Chapel in the Vatican Museums, showing the good performance of the proposed sensor in terms of execution time and classification accuracy. PMID:24901977

  7. Panoramic optical-servoing for industrial inspection and repair

    NASA Astrophysics Data System (ADS)

    Sallinger, Christian; O'Leary, Paul; Retschnig, Alexander; Kammerhofer, Martin

    2004-05-01

    Recently specialized robots were introduced to perform the task of inspection and repair in large cylindrical structures such as ladles, melting furnaces and converters. This paper reports on the image processing system and optical servoing for one such a robot. A panoramic image of the vessels inner surface is produced by performing a coordinated robot motion and image acquisition. The level of projective distortion is minimized by acquiring a high density of images. Normalized phase correlation calculated via the 2D Fourier transform is used to calculate the shift between the single images. The narrow strips from the dense image map are then stitched together to build the panorama. The mapping between the panoramic image and the positioning of the robot is established during the stitching of the images. This enables optical feedback. The robots operator can locate a defect on the surface by selecting the area of the image. Calculation of the forward and inverse kinematics enable the robot to automatically move to the location on the surface requiring repair. Experimental results using a standard 6R industrial robot have shown the full functionality of the system concept. Finally, were test measurements carried out successfully, in a ladle at a temperature of 1100° C.

  8. Social Development: Individuation. A Performance-Based Early Childhood-Special Education Teacher Preparation Program. Monograph 14.

    ERIC Educational Resources Information Center

    Castle, Kathryn

    This monograph describes the individuation module (concerning the perceptions, cognitions, feelings, attitudes and beliefs a person develops towards himself), which is part of the Early Childhood-Special Education Teacher Preparation Program. This module deals with six aspects of the emerging self: body image, self-image, self-concept,…

  9. Addendum to Site Assessment and Feasibility of a New Operations Base on the Greenland Ice Sheet: Addendum to Preliminary Report

    DTIC Science & Technology

    2015-11-01

    National Guard PLR Division of Polar Programs SMM /I Special Sensor Microwave/Imager SMMR Scanning Multi-channel Microwave Radiometer ERDC/CRREL...and the Special Sensor Microwave/Imager ( SMM /I). The satellite-based technique uses a difference in the passive microwave brightness temperatures

  10. A fast CT reconstruction scheme for a general multi-core PC.

    PubMed

    Zeng, Kai; Bai, Erwei; Wang, Ge

    2007-01-01

    Expensive computational cost is a severe limitation in CT reconstruction for clinical applications that need real-time feedback. A primary example is bolus-chasing computed tomography (CT) angiography (BCA) that we have been developing for the past several years. To accelerate the reconstruction process using the filtered backprojection (FBP) method, specialized hardware or graphics cards can be used. However, specialized hardware is expensive and not flexible. The graphics processing unit (GPU) in a current graphic card can only reconstruct images in a reduced precision and is not easy to program. In this paper, an acceleration scheme is proposed based on a multi-core PC. In the proposed scheme, several techniques are integrated, including utilization of geometric symmetry, optimization of data structures, single-instruction multiple-data (SIMD) processing, multithreaded computation, and an Intel C++ compilier. Our scheme maintains the original precision and involves no data exchange between the GPU and CPU. The merits of our scheme are demonstrated in numerical experiments against the traditional implementation. Our scheme achieves a speedup of about 40, which can be further improved by several folds using the latest quad-core processors.

  11. Contrasting Specializations for Facial Motion Within the Macaque Face-Processing System

    PubMed Central

    Fisher, Clark; Freiwald, Winrich A.

    2014-01-01

    SUMMARY Facial motion transmits rich and ethologically vital information [1, 2], but how the brain interprets this complex signal is poorly understood. Facial form is analyzed by anatomically distinct face patches in the macaque brain [3, 4], and facial motion activates these patches and surrounding areas [5, 6]. Yet it is not known whether facial motion is processed by its own distinct and specialized neural machinery, and if so, what that machinery’s organization might be. To address these questions, we used functional magnetic resonance imaging (fMRI) to monitor the brain activity of macaque monkeys while they viewed low- and high-level motion and form stimuli. We found that, beyond classical motion areas and the known face patch system, moving faces recruited a heretofore-unrecognized face patch. Although all face patches displayed distinctive selectivity for face motion over object motion, only two face patches preferred naturally moving faces, while three others preferred randomized, rapidly varying sequences of facial form. This functional divide was anatomically specific, segregating dorsal from ventral face patches, thereby revealing a new organizational principle of the macaque face-processing system. PMID:25578903

  12. A Fast CT Reconstruction Scheme for a General Multi-Core PC

    PubMed Central

    Zeng, Kai; Bai, Erwei; Wang, Ge

    2007-01-01

    Expensive computational cost is a severe limitation in CT reconstruction for clinical applications that need real-time feedback. A primary example is bolus-chasing computed tomography (CT) angiography (BCA) that we have been developing for the past several years. To accelerate the reconstruction process using the filtered backprojection (FBP) method, specialized hardware or graphics cards can be used. However, specialized hardware is expensive and not flexible. The graphics processing unit (GPU) in a current graphic card can only reconstruct images in a reduced precision and is not easy to program. In this paper, an acceleration scheme is proposed based on a multi-core PC. In the proposed scheme, several techniques are integrated, including utilization of geometric symmetry, optimization of data structures, single-instruction multiple-data (SIMD) processing, multithreaded computation, and an Intel C++ compilier. Our scheme maintains the original precision and involves no data exchange between the GPU and CPU. The merits of our scheme are demonstrated in numerical experiments against the traditional implementation. Our scheme achieves a speedup of about 40, which can be further improved by several folds using the latest quad-core processors. PMID:18256731

  13. Distinct Contributions of the Magnocellular and Parvocellular Visual Streams to Perceptual Selection

    PubMed Central

    Denison, Rachel N.; Silver, Michael A.

    2014-01-01

    During binocular rivalry, conflicting images presented to the two eyes compete for perceptual dominance, but the neural basis of this competition is disputed. In interocular switch (IOS) rivalry, rival images periodically exchanged between the two eyes generate one of two types of perceptual alternation: 1) a fast, regular alternation between the images that is time-locked to the stimulus switches and has been proposed to arise from competition at lower levels of the visual processing hierarchy, or 2) a slow, irregular alternation spanning multiple stimulus switches that has been associated with higher levels of the visual system. The existence of these two types of perceptual alternation has been influential in establishing the view that rivalry may be resolved at multiple hierarchical levels of the visual system. We varied the spatial, temporal, and luminance properties of IOS rivalry gratings and found, instead, an association between fast, regular perceptual alternations and processing by the magnocellular stream and between slow, irregular alternations and processing by the parvocellular stream. The magnocellular and parvocellular streams are two early visual pathways that are specialized for the processing of motion and form, respectively. These results provide a new framework for understanding the neural substrates of binocular rivalry that emphasizes the importance of parallel visual processing streams, and not only hierarchical organization, in the perceptual resolution of ambiguities in the visual environment. PMID:21861685

  14. A fast double shutter for CCD-based metrology

    NASA Astrophysics Data System (ADS)

    Geisler, R.

    2017-02-01

    Image based metrology such as Particle Image Velocimetry (PIV) depends on the comparison of two images of an object taken in fast succession. Cameras for these applications provide the so-called `double shutter' mode: One frame is captured with a short exposure time and in direct succession a second frame with a long exposure time can be recorded. The difference in the exposure times is typically no problem since illumination is provided by a pulsed light source such as a laser and the measurements are performed in a darkened environment to prevent ambient light from accumulating in the long second exposure time. However, measurements of self-luminous processes (e.g. plasma, combustion ...) as well as experiments in ambient light are difficult to perform and require special equipment (external shutters, highspeed image sensors, multi-sensor systems ...). Unfortunately, all these methods incorporate different drawbacks such as reduced resolution, degraded image quality, decreased light sensitivity or increased susceptibility to decalibration. In the solution presented here, off-the-shelf CCD sensors are used with a special timing to combine neighbouring pixels in a binning-like way. As a result, two frames of short exposure time can be captured in fast succession. They are stored in the on-chip vertical register in a line-interleaved pattern, read out in the common way and separated again by software. The two resultant frames are completely congruent; they expose no insensitive lines or line shifts and thus enable sub-pixel accurate measurements. A third frame can be captured at the full resolution analogue to the double shutter technique. Image based measurement techniques such as PIV can benefit from this mode when applied in bright environments. The third frame is useful e.g. for acceleration measurements or for particle tracking applications.

  15. Comparing the Accuracy of AMSRE, AMSR2, SSMI and SSMIS Satellite Radiometer Ice Concentration Products with One-Meter Resolution Visible Imagery in the Arctic

    NASA Astrophysics Data System (ADS)

    Peterson, E. R.; Stanton, T. P.

    2016-12-01

    Determining ice concentration in the Arctic is necessary to track significant changes in sea ice edge extent. Sea ice concentrations are also needed to interpret data collected by in-situ instruments like buoys, as the amount of ice versus water in a given area determines local solar heating. Ice concentration products are now routinely derived from satellite radiometers including the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), the Advanced Microwave Scanning Radiometer 2 (AMSR2), the Special Sensor Microwave Imager (SSMI), and the Special Sensor Microwave Imager/Sounder (SSMIS). While these radiometers are viewed as reliable to monitor long-term changes in sea ice extent, their accuracy should be analyzed, and compared to determine which radiometer performs best over smaller features such as melt ponds, and how seasonal conditions affect accuracy. Knowledge of the accuracy of radiometers at high resolution can help future researchers determine which radiometer to use, and be aware of radiometer shortcomings in different ice conditions. This will be especially useful when interpreting data from in-situ instruments which deal with small scale measurements. In order to compare these passive microwave radiometers, selected high spatial resolution one-meter resolution Medea images, archived at the Unites States Geological Survey, are used for ground truth comparison. Sea ice concentrations are derived from these images in an interactive process, although estimates are not perfect ground truth due to exposure of images, shadowing and cloud cover. 68 images are retrieved from the USGS website and compared with 9 useable, collocated SSMI, 33 SSMIS, 36 AMSRE, and 14 AMSR2 ice concentrations in the Arctic Ocean. We analyze and compare the accuracy of radiometer instrumentation in differing ice conditions.

  16. “Pretty Pictures” with the HDI

    NASA Astrophysics Data System (ADS)

    Buckner, Spencer L.

    2017-01-01

    The Half-Degree Imager (HDI) has been in use on the 0.9-m WIYN telescope since October 2013. The instrument has well served the consortium as evidenced by the posters in this session and presentations at the concurrent special session held at this meeting. One thing that has been missing from the mix are aesthetically pleasing images for use in publicity and public outreach. Making “pretty pictures” with a scientific instrument such as HDI presents a number of challenges and opportunities. The chief challenge is finding the time to do the basic imaging given the limited telescope time available to users. Most users are understandably reluctant to take time away from imaging for their scientific research to take images whose primary purpose is to make a pretty picture. Fortunately, imaging of some objects to make pretty pictures can be done under sky conditions that are less than ideal when photometric studies would have limited usefulness. Another challenge is the raw HDI images must be converted from an extended FITS format into a normal FITS and a filter line added to the header to make the images usable by most commercially available image processing software. On the plus side, pretty picture images can serve to inspire prospective students into astronomy. Austin Peay State University has a popular astrophotography class that makes use of images taken with the HDI camera to introduce students to basic image processing techniques. The course is taken by both physics majors on the astrophysics track and non-science majors completing the astronomy minor. Pretty pictures can also be used as a recruitment tool to bring students into astronomy. APSU houses physics, biology, chemistry, agriculture and medical technology in the same building and displaying astronomical pictures at strategic locations around the building serves to recruit non-science majors to take more astronomy courses. Finally, the images can be used in publicity and outreach efforts by the university. This poster presents some of the techniques used in processing the images tor aesthetic value and how those images are used in recruitment, publicity and outreach. Several of the finished images in poster-sized prints will be available for viewing.

  17. Deep machine learning based Image classification in hard disk drive manufacturing (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rana, Narender; Chien, Chester

    2018-03-01

    A key sensor element in a Hard Disk Drive (HDD) is the read-write head device. The device is complex 3D shape and its fabrication requires over thousand process steps with many of them being various types of image inspection and critical dimension (CD) metrology steps. In order to have high yield of devices across a wafer, very tight inspection and metrology specifications are implemented. Many images are collected on a wafer and inspected for various types of defects and in CD metrology the quality of image impacts the CD measurements. Metrology noise need to be minimized in CD metrology to get better estimate of the process related variations for implementing robust process controls. Though there are specialized tools available for defect inspection and review allowing classification and statistics. However, due to unavailability of such advanced tools or other reasons, many times images need to be manually inspected. SEM Image inspection and CD-SEM metrology tools are different tools differing in software as well. SEM Image inspection and CD-SEM metrology tools are separate tools differing in software and purpose. There have been cases where a significant numbers of CD-SEM images are blurred or have some artefact and there is a need for image inspection along with the CD measurement. Tool may not report a practical metric highlighting the quality of image. Not filtering CD from these blurred images will add metrology noise to the CD measurement. An image classifier can be helpful here for filtering such data. This paper presents the use of artificial intelligence in classifying the SEM images. Deep machine learning is used to train a neural network which is then used to classify the new images as blurred and not blurred. Figure 1 shows the image blur artefact and contingency table of classification results from the trained deep neural network. Prediction accuracy of 94.9 % was achieved in the first model. Paper covers other such applications of the deep neural network in image classification for inspection, review and metrology.

  18. HYMOSS signal processing for pushbroom spectral imaging

    NASA Technical Reports Server (NTRS)

    Ludwig, David E.

    1991-01-01

    The objective of the Pushbroom Spectral Imaging Program was to develop on-focal plane electronics which compensate for detector array non-uniformities. The approach taken was to implement a simple two point calibration algorithm on focal plane which allows for offset and linear gain correction. The key on focal plane features which made this technique feasible was the use of a high quality transimpedance amplifier (TIA) and an analog-to-digital converter for each detector channel. Gain compensation is accomplished by varying the feedback capacitance of the integrate and dump TIA. Offset correction is performed by storing offsets in a special on focal plane offset register and digitally subtracting the offsets from the readout data during the multiplexing operation. A custom integrated circuit was designed, fabricated, and tested on this program which proved that nonuniformity compensated, analog-to-digital converting circuits may be used to read out infrared detectors. Irvine Sensors Corporation (ISC) successfully demonstrated the following innovative on-focal-plane functions that allow for correction of detector non-uniformities. Most of the circuit functions demonstrated on this program are finding their way onto future IC's because of their impact on reduced downstream processing, increased focal plane performance, simplified focal plane control, reduced number of dewar connections, as well as the noise immunity of a digital interface dewar. The potential commercial applications for this integrated circuit are primarily in imaging systems. These imaging systems may be used for: security monitoring systems, manufacturing process monitoring, robotics, and for spectral imaging when used in analytical instrumentation.

  19. Seeing Jesus in toast: Neural and behavioral correlates of face pareidolia

    PubMed Central

    Liu, Jiangang; Li, Jun; Feng, Lu; Li, Ling; Tian, Jie; Lee, Kang

    2014-01-01

    Face pareidolia is the illusory perception of non-existent faces. The present study, for the first time, contrasted behavioral and neural responses of face pareidolia with those of letter pareidolia to explore face-specific behavioral and neural responses during illusory face processing. Participants were shown pure-noise images but were led to believe that 50% of them contained either faces or letters; they reported seeing faces or letters illusorily 34% and 38% of the time, respectively. The right fusiform face area (rFFA) showed a specific response when participants “saw” faces as opposed to letters in the pure-noise images. Behavioral responses during face pareidolia produced a classification image that resembled a face, whereas those during letter pareidolia produced a classification image that was letter-like. Further, the extent to which such behavioral classification images resembled faces was directly related to the level of face-specific activations in the right FFA. This finding suggests that the right FFA plays a specific role not only in processing of real faces but also in illusory face perception, perhaps serving to facilitate the interaction between bottom-up information from the primary visual cortex and top-down signals from the prefrontal cortex (PFC). Whole brain analyses revealed a network specialized in face pareidolia, including both the frontal and occipito-temporal regions. Our findings suggest that human face processing has a strong top-down component whereby sensory input with even the slightest suggestion of a face can result in the interpretation of a face. PMID:24583223

  20. HYMOSS signal processing for pushbroom spectral imaging

    NASA Astrophysics Data System (ADS)

    Ludwig, David E.

    1991-06-01

    The objective of the Pushbroom Spectral Imaging Program was to develop on-focal plane electronics which compensate for detector array non-uniformities. The approach taken was to implement a simple two point calibration algorithm on focal plane which allows for offset and linear gain correction. The key on focal plane features which made this technique feasible was the use of a high quality transimpedance amplifier (TIA) and an analog-to-digital converter for each detector channel. Gain compensation is accomplished by varying the feedback capacitance of the integrate and dump TIA. Offset correction is performed by storing offsets in a special on focal plane offset register and digitally subtracting the offsets from the readout data during the multiplexing operation. A custom integrated circuit was designed, fabricated, and tested on this program which proved that nonuniformity compensated, analog-to-digital converting circuits may be used to read out infrared detectors. Irvine Sensors Corporation (ISC) successfully demonstrated the following innovative on-focal-plane functions that allow for correction of detector non-uniformities. Most of the circuit functions demonstrated on this program are finding their way onto future IC's because of their impact on reduced downstream processing, increased focal plane performance, simplified focal plane control, reduced number of dewar connections, as well as the noise immunity of a digital interface dewar. The potential commercial applications for this integrated circuit are primarily in imaging systems. These imaging systems may be used for: security monitoring systems, manufacturing process monitoring, robotics, and for spectral imaging when used in analytical instrumentation.

  1. Three-dimensional reconstruction of teeth and jaws based on segmentation of CT images using watershed transformation.

    PubMed

    Naumovich, S S; Naumovich, S A; Goncharenko, V G

    2015-01-01

    The objective of the present study was the development and clinical testing of a three-dimensional (3D) reconstruction method of teeth and a bone tissue of the jaw on the basis of CT images of the maxillofacial region. 3D reconstruction was performed using the specially designed original software based on watershed transformation. Computed tomograms in digital imaging and communications in medicine format obtained on multispiral CT and CBCT scanners were used for creation of 3D models of teeth and the jaws. The processing algorithm is realized in the stepwise threshold image segmentation with the placement of markers in the mode of a multiplanar projection in areas relating to the teeth and a bone tissue. The developed software initially creates coarse 3D models of the entire dentition and the jaw. Then, certain procedures specify the model of the jaw and cut the dentition into separate teeth. The proper selection of the segmentation threshold is very important for CBCT images having a low contrast and high noise level. The developed semi-automatic algorithm of multispiral and cone beam computed tomogram processing allows 3D models of teeth to be created separating them from a bone tissue of the jaws. The software is easy to install in a dentist's workplace, has an intuitive interface and takes little time in processing. The obtained 3D models can be used for solving a wide range of scientific and clinical tasks.

  2. New solutions and technologies for uncooled infrared imaging

    NASA Astrophysics Data System (ADS)

    Rollin, Joël.; Diaz, Frédéric; Fontaine, Christophe; Loiseaux, Brigitte; Lee, Mane-Si Laure; Clienti, Christophe; Lemonnier, Fabrice; Zhang, Xianghua; Calvez, Laurent

    2013-06-01

    The military uncooled infrared market is driven by the continued cost reduction of the focal plane arrays whilst maintaining high standards of sensitivity and steering towards smaller pixel sizes. As a consequence, new optical solutions are called for. Two approaches can come into play: the bottom up option consists in allocating improvements to each contributor and the top down process rather relies on an overall optimization of the complete image channel. The University of Rennes I with Thales Angénieux alongside has been working over the past decade through French MOD funding's, on low cost alternatives of infrared materials based upon chalcogenide glasses. A special care has been laid on the enhancement of their mechanical properties and their ability to be moulded according to complex shapes. New manufacturing means developments capable of better yields for the raw materials will be addressed, too. Beyond the mere lenses budget cuts, a wave front coding process can ease a global optimization. This technic gives a way of relaxing optical constraints or upgrading thermal device performances through an increase of the focus depths and desensitization against temperature drifts: it combines image processing and the use of smart optical components. Thales achievements in such topics will be enlightened and the trade-off between image quality correction levels and low consumption/ real time processing, as might be required in hand-free night vision devices, will be emphasized. It is worth mentioning that both approaches are deeply leaning on each other.

  3. Fourier power spectrum characteristics of face photographs: attractiveness perception depends on low-level image properties.

    PubMed

    Menzel, Claudia; Hayn-Leichsenring, Gregor U; Langner, Oliver; Wiese, Holger; Redies, Christoph

    2015-01-01

    We investigated whether low-level processed image properties that are shared by natural scenes and artworks - but not veridical face photographs - affect the perception of facial attractiveness and age. Specifically, we considered the slope of the radially averaged Fourier power spectrum in a log-log plot. This slope is a measure of the distribution of special frequency power in an image. Images of natural scenes and artworks possess - compared to face images - a relatively shallow slope (i.e., increased high spatial frequency power). Since aesthetic perception might be based on the efficient processing of images with natural scene statistics, we assumed that the perception of facial attractiveness might also be affected by these properties. We calculated Fourier slope and other beauty-associated measurements in face images and correlated them with ratings of attractiveness and age of the depicted persons (Study 1). We found that Fourier slope - in contrast to the other tested image properties - did not predict attractiveness ratings when we controlled for age. In Study 2A, we overlaid face images with random-phase patterns with different statistics. Patterns with a slope similar to those in natural scenes and artworks resulted in lower attractiveness and higher age ratings. In Studies 2B and 2C, we directly manipulated the Fourier slope of face images and found that images with shallower slopes were rated as more attractive. Additionally, attractiveness of unaltered faces was affected by the Fourier slope of a random-phase background (Study 3). Faces in front of backgrounds with statistics similar to natural scenes and faces were rated as more attractive. We conclude that facial attractiveness ratings are affected by specific image properties. An explanation might be the efficient coding hypothesis.

  4. Fourier Power Spectrum Characteristics of Face Photographs: Attractiveness Perception Depends on Low-Level Image Properties

    PubMed Central

    Langner, Oliver; Wiese, Holger; Redies, Christoph

    2015-01-01

    We investigated whether low-level processed image properties that are shared by natural scenes and artworks – but not veridical face photographs – affect the perception of facial attractiveness and age. Specifically, we considered the slope of the radially averaged Fourier power spectrum in a log-log plot. This slope is a measure of the distribution of special frequency power in an image. Images of natural scenes and artworks possess – compared to face images – a relatively shallow slope (i.e., increased high spatial frequency power). Since aesthetic perception might be based on the efficient processing of images with natural scene statistics, we assumed that the perception of facial attractiveness might also be affected by these properties. We calculated Fourier slope and other beauty-associated measurements in face images and correlated them with ratings of attractiveness and age of the depicted persons (Study 1). We found that Fourier slope – in contrast to the other tested image properties – did not predict attractiveness ratings when we controlled for age. In Study 2A, we overlaid face images with random-phase patterns with different statistics. Patterns with a slope similar to those in natural scenes and artworks resulted in lower attractiveness and higher age ratings. In Studies 2B and 2C, we directly manipulated the Fourier slope of face images and found that images with shallower slopes were rated as more attractive. Additionally, attractiveness of unaltered faces was affected by the Fourier slope of a random-phase background (Study 3). Faces in front of backgrounds with statistics similar to natural scenes and faces were rated as more attractive. We conclude that facial attractiveness ratings are affected by specific image properties. An explanation might be the efficient coding hypothesis. PMID:25835539

  5. DSP Implementation of the Retinex Image Enhancement Algorithm

    NASA Technical Reports Server (NTRS)

    Hines, Glenn; Rahman, Zia-Ur; Jobson, Daniel; Woodell, Glenn

    2004-01-01

    The Retinex is a general-purpose image enhancement algorithm that is used to produce good visual representations of scenes. It performs a non-linear spatial/spectral transform that synthesizes strong local contrast enhancement and color constancy. A real-time, video frame rate implementation of the Retinex is required to meet the needs of various potential users. Retinex processing contains a relatively large number of complex computations, thus to achieve real-time performance using current technologies requires specialized hardware and software. In this paper we discuss the design and development of a digital signal processor (DSP) implementation of the Retinex. The target processor is a Texas Instruments TMS320C6711 floating point DSP. NTSC video is captured using a dedicated frame-grabber card, Retinex processed, and displayed on a standard monitor. We discuss the optimizations used to achieve real-time performance of the Retinex and also describe our future plans on using alternative architectures.

  6. KSC-99pp0925

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, a crane lowers the Shuttle Radar Topography Mission (SRTM) toward the opening of the payload bay canister below. The canister will then be moved to the Orbiter Processing Facility and placed in the bay of the orbiter Endeavour. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  7. Atomic force microscopy and spectroscopy to probe single membrane proteins in lipid bilayers.

    PubMed

    Sapra, K Tanuj

    2013-01-01

    The atomic force microscope (AFM) has opened vast avenues hitherto inaccessible to the biological scientist. The high temporal (millisecond) and spatial (nanometer) resolutions of the AFM are suited for studying many biological processes in their native conditions. The AFM cantilever stylus is aptly termed as a "lab on a tip" owing to its versatility as an imaging tool as well as a handle to manipulate single bonds and proteins. Recent examples assert that the AFM can be used to study the mechanical properties and monitor processes of single proteins and single cells, thus affording insight into important mechanistic details. This chapter specifically focuses on practical and analytical protocols of single-molecule AFM methodologies related to high-resolution imaging and single-molecule force spectroscopy of membrane proteins. Both these techniques are operator oriented, and require specialized working knowledge of the instrument, theoretical, and practical skills.

  8. The particular use of PIV methods for the modelling of heat and hydrophysical processes in the nuclear power plants

    NASA Astrophysics Data System (ADS)

    Sergeev, D. A.; Kandaurov, A. A.; Troitskaya, Yu I.

    2017-11-01

    In this paper we describe PIV-system specially designed for the study of the hydrophysical processes in large-scale benchmark setup of promising fast reactor. The system allows the PIV-measurements for the conditions of complicated configuration of the reactor benchmark, reflections and distortions section of the laser sheet, blackout, in the closed volume. The use of filtering techniques and method of masks images enabled us to reduce the number of incorrect measurement of flow velocity vectors by an order. The method of conversion of image coordinates and velocity field in the reference model of the reactor using a virtual 3D simulation targets, without loss of accuracy in comparison with a method of using physical objects in filming area was released. The results of measurements of velocity fields in various modes, both stationary (workers), as well as in non-stationary (emergency).

  9. FPGA implementation of Santos-Victor optical flow algorithm for real-time image processing: an useful attempt

    NASA Astrophysics Data System (ADS)

    Cobos Arribas, Pedro; Monasterio Huelin Macia, Felix

    2003-04-01

    A FPGA based hardware implementation of the Santos-Victor optical flow algorithm, useful in robot guidance applications, is described in this paper. The system used to do contains an ALTERA FPGA (20K100), an interface with a digital camera, three VRAM memories to contain the data input and some output memories (a VRAM and a EDO) to contain the results. The system have been used previously to develop and test other vision algorithms, such as image compression, optical flow calculation with differential and correlation methods. The designed system let connect the digital camera, or the FPGA output (results of algorithms) to a PC, throw its Firewire or USB port. The problems take place in this occasion have motivated to adopt another hardware structure for certain vision algorithms with special requirements, that need a very hard code intensive processing.

  10. KSC-99pp0923

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the Shuttle Radar Topography Mission (SRTM) is lifted for its move to a payload bay canister on the floor. The canister will then be moved to the Orbiter Processing Facility and placed in the bay of the orbiter Endeavour. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  11. KSC-99pp0969

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- A payload transporter, carrying a payload canister with the Shuttle Radar Topography Mission (SRTM) inside, pulls into Orbiter Processing Facility (OPF) bay 2. The SRTM, the primary payload on STS-99, will soon be installed into the payload bay of the orbiter Endeavour already undergoing processing in bay 2. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation. The SRTM hardware includes one radar antenna in the Shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  12. KSC-99pp0968

    NASA Image and Video Library

    1999-07-21

    KENNEDY SPACE CENTER, FLA. -- A payload canister containing the Shuttle Radar Topography Mission (SRTM), riding atop a payload transporter, is moved from the Space Station Processing Facility to Orbiter Processing Facility (OPF) bay 2. Once there, the SRTM, the primary payload on STS-99, will be installed into the payload bay of the orbiter Endeavour. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation. The SRTM hardware includes one radar antenna in the Shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A

  13. Holography and optical information processing; Proceedings of the Soviet-Chinese Joint Seminar, Bishkek, Kyrgyzstan, Sept. 21-26, 1991

    NASA Astrophysics Data System (ADS)

    Mikaelian, Andrei L.

    Attention is given to data storage, devices, architectures, and implementations of optical memory and neural networks; holographic optical elements and computer-generated holograms; holographic display and materials; systems, pattern recognition, interferometry, and applications in optical information processing; and special measurements and devices. Topics discussed include optical immersion as a new way to increase information recording density, systems for data reading from optical disks on the basis of diffractive lenses, a new real-time optical associative memory system, an optical pattern recognition system based on a WTA model of neural networks, phase diffraction grating for the integral transforms of coherent light fields, holographic recording with operated sensitivity and stability in chalcogenide glass layers, a compact optical logic processor, a hybrid optical system for computing invariant moments of images, optical fiber holographic inteferometry, and image transmission through random media in single pass via optical phase conjugation.

  14. Software Reuse in the Planetary Context: The JPL/MIPL Mars Program Suite

    NASA Technical Reports Server (NTRS)

    Deen, Robert

    2012-01-01

    Reuse greatly reduces development costs. Savings can be invested in new/improved capabilities Or returned to sponsor Worth the extra time to "do it right" Operator training greatly reduced. MIPL MER personnel can step into MSL easily because the programs are familiar. Application programs much easier to write. Can assume core capabilities exist already. Multimission Instrument (Image) Processing Lab at MIPL Responsible for the ground-based instrument data processing for (among other things) all recent in-situ Mars missions: Mars Pathfinder Mars Polar Lander (MPL) Mars Exploration Rovers (MER) Phoenix Mars Science Lab (MSL) Responsibilities for in-situ missions Reconstruction of instrument data from telemetry Systematic creation of Reduced Data Records (RDRs) for images Creation of special products for operations, science, and public outreach In the critical path for operations MIPL products required for planning the next Sol s activities

  15. The Direct Lighting Computation in Global Illumination Methods

    NASA Astrophysics Data System (ADS)

    Wang, Changyaw Allen

    1994-01-01

    Creating realistic images is a computationally expensive process, but it is very important for applications such as interior design, product design, education, virtual reality, and movie special effects. To generate realistic images, state-of-art rendering techniques are employed to simulate global illumination, which accounts for the interreflection of light among objects. In this document, we formalize the global illumination problem into a eight -dimensional integral and discuss various methods that can accelerate the process of approximating this integral. We focus on the direct lighting computation, which accounts for the light reaching the viewer from the emitting sources after exactly one reflection, Monte Carlo sampling methods, and light source simplification. Results include a new sample generation method, a framework for the prediction of the total number of samples used in a solution, and a generalized Monte Carlo approach for computing the direct lighting from an environment which for the first time makes ray tracing feasible for highly complex environments.

  16. Present status of the 4-m ILMT data reduction pipeline: application to space debris detection and characterization

    NASA Astrophysics Data System (ADS)

    Pradhan, Bikram; Delchambre, Ludovic; Hickson, Paul; Akhunov, Talat; Bartczak, Przemyslaw; Kumar, Brajesh; Surdej, Jean

    2018-04-01

    The 4-m International Liquid Mirror Telescope (ILMT) located at the ARIES Observatory (Devasthal, India) has been designed to scan at a latitude of +29° 22' 26" a band of sky having a width of about half a degree in the Time Delayed Integration (TDI) mode. Therefore, a special data-reduction and analysis pipeline to process online the large amount of optical data being produced has been dedicated to it. This requirement has led to the development of the 4-m ILMT data reduction pipeline, a new software package built with Python in order to simplify a large number of tasks aimed at the reduction of the acquired TDI images. This software provides astronomers with specially designed data reduction functions, astrometry and photometry calibration tools. In this paper we discuss the various reduction and calibration steps followed to reduce TDI images obtained in May 2015 with the Devasthal 1.3m telescope. We report here the detection and characterization of nine space debris present in the TDI frames.

  17. A New Vegetation Segmentation Approach for Cropped Fields Based on Threshold Detection from Hue Histograms

    PubMed Central

    Hassanein, Mohamed; El-Sheimy, Naser

    2018-01-01

    Over the last decade, the use of unmanned aerial vehicle (UAV) technology has evolved significantly in different applications as it provides a special platform capable of combining the benefits of terrestrial and aerial remote sensing. Therefore, such technology has been established as an important source of data collection for different precision agriculture (PA) applications such as crop health monitoring and weed management. Generally, these PA applications depend on performing a vegetation segmentation process as an initial step, which aims to detect the vegetation objects in collected agriculture fields’ images. The main result of the vegetation segmentation process is a binary image, where vegetations are presented in white color and the remaining objects are presented in black. Such process could easily be performed using different vegetation indexes derived from multispectral imagery. Recently, to expand the use of UAV imagery systems for PA applications, it was important to reduce the cost of such systems through using low-cost RGB cameras Thus, developing vegetation segmentation techniques for RGB images is a challenging problem. The proposed paper introduces a new vegetation segmentation methodology for low-cost UAV RGB images, which depends on using Hue color channel. The proposed methodology follows the assumption that the colors in any agriculture field image can be distributed into vegetation and non-vegetations colors. Therefore, four main steps are developed to detect five different threshold values using the hue histogram of the RGB image, these thresholds are capable to discriminate the dominant color, either vegetation or non-vegetation, within the agriculture field image. The achieved results for implementing the proposed methodology showed its ability to generate accurate and stable vegetation segmentation performance with mean accuracy equal to 87.29% and standard deviation as 12.5%. PMID:29670055

  18. Display conditions and lesion detectability: effect of background light

    NASA Astrophysics Data System (ADS)

    Razavi, Mahmood; Hall, Theodore R.; Aberle, Denise R.; Hayrapetian, Alek S.; Loloyan, Mansur; Eldredge, Sandra L.

    1990-08-01

    We assessed the effect of high background light on observer performance for the detection of a variety of chest radiographic abnormalities. Five observers reviewed 66 digital hard copy chest images formatted to 1 1 x 14 inch size under two display conditions: 1) on a specially prepared 1 1 x 14 inch illuminated panel with no peripheral light and 2) on a standard viewing panel designed for 14 x 17 inch radiographs. The images contained one - or more of the following conditions: pneumothorax, interstitial disease, nodules, alveolar process, or no abnormality. The results of receiver operator characteristic analysis show that extraneous light does reduce observer performance and the detectability of nodules, interstitial disease.

  19. Plasmonic computing of spatial differentiation

    NASA Astrophysics Data System (ADS)

    Zhu, Tengfeng; Zhou, Yihan; Lou, Yijie; Ye, Hui; Qiu, Min; Ruan, Zhichao; Fan, Shanhui

    2017-05-01

    Optical analog computing offers high-throughput low-power-consumption operation for specialized computational tasks. Traditionally, optical analog computing in the spatial domain uses a bulky system of lenses and filters. Recent developments in metamaterials enable the miniaturization of such computing elements down to a subwavelength scale. However, the required metamaterial consists of a complex array of meta-atoms, and direct demonstration of image processing is challenging. Here, we show that the interference effects associated with surface plasmon excitations at a single metal-dielectric interface can perform spatial differentiation. And we experimentally demonstrate edge detection of an image without any Fourier lens. This work points to a simple yet powerful mechanism for optical analog computing at the nanoscale.

  20. The ``False Colour'' Problem

    NASA Astrophysics Data System (ADS)

    Serra, Jean

    The emergence of new data in multidimensional function lattices is studied. A typical example is the apparition of false colours when (R,G,B) images are processed. Two lattice models are specially analysed. Firstly, one considers a mixture of total and marginal orderings where the variations of some components are governed by other ones. This constraint yields the “pilot lattices”. The second model is a cylindrical polar representation in n dimensions. In this model, data that are distributed on the unit sphere of n - 1 dimensions need to be ordered. The proposed orders, and lattices are specific to each image. They are obtained from Voronoi tesselation of the unit sphere The case of four dimensions is treated in detail and illustrated.

  1. Recovery and normalization of triple coincidences in PET.

    PubMed

    Lage, Eduardo; Parot, Vicente; Moore, Stephen C; Sitek, Arkadiusz; Udías, Jose M; Dave, Shivang R; Park, Mi-Ae; Vaquero, Juan J; Herraiz, Joaquin L

    2015-03-01

    Triple coincidences in positron emission tomography (PET) are events in which three γ-rays are detected simultaneously. These events, though potentially useful for enhancing the sensitivity of PET scanners, are discarded or processed without special consideration in current systems, because there is not a clear criterion for assigning them to a unique line-of-response (LOR). Methods proposed for recovering such events usually rely on the use of highly specialized detection systems, hampering general adoption, and/or are based on Compton-scatter kinematics and, consequently, are limited in accuracy by the energy resolution of standard PET detectors. In this work, the authors propose a simple and general solution for recovering triple coincidences, which does not require specialized detectors or additional energy resolution requirements. To recover triple coincidences, the authors' method distributes such events among their possible LORs using the relative proportions of double coincidences in these LORs. The authors show analytically that this assignment scheme represents the maximum-likelihood solution for the triple-coincidence distribution problem. The PET component of a preclinical PET/CT scanner was adapted to enable the acquisition and processing of triple coincidences. Since the efficiencies for detecting double and triple events were found to be different throughout the scanner field-of-view, a normalization procedure specific for triple coincidences was also developed. The effect of including triple coincidences using their method was compared against the cases of equally weighting the triples among their possible LORs and discarding all the triple events. The authors used as figures of merit for this comparison sensitivity, noise-equivalent count (NEC) rates and image quality calculated as described in the NEMA NU-4 protocol for the assessment of preclinical PET scanners. The addition of triple-coincidence events with the authors' method increased peak NEC rates of the scanner by 26.6% and 32% for mouse- and rat-sized objects, respectively. This increase in NEC-rate performance was also reflected in the image-quality metrics. Images reconstructed using double and triple coincidences recovered using their method had better signal-to-noise ratio than those obtained using only double coincidences, while preserving spatial resolution and contrast. Distribution of triple coincidences using an equal-weighting scheme increased apparent system sensitivity but degraded image quality. The performance boost provided by the inclusion of triple coincidences using their method allowed to reduce the acquisition time of standard imaging procedures by up to ∼25%. Recovering triple coincidences with the proposed method can effectively increase the sensitivity of current clinical and preclinical PET systems without compromising other parameters like spatial resolution or contrast.

  2. Surface recombination velocity imaging of wet-cleaned silicon wafers using quantitative heterodyne lock-in carrierography

    NASA Astrophysics Data System (ADS)

    Sun, Qiming; Melnikov, Alexander; Mandelis, Andreas; Pagliaro, Robert H.

    2018-01-01

    InGaAs-camera based heterodyne lock-in carrierography (HeLIC) is developed for surface recombination velocity (SRV) imaging characterization of bare (oxide-free) hydrogen passivated Si wafer surfaces. Samples prepared using four different hydrofluoric special-solution etching conditions were tested, and a quantitative assessment of their surface quality vs. queue-time after the hydrogen passivation process was made. The data acquisition time for an SRV image was about 3 min. A "round-trip" frequency-scan mode was introduced to minimize the effects of signal transients on data self-consistency. Simultaneous best fitting of HeLIC amplitude-frequency dependencies at various queue-times was used to guarantee the reliability of resolving surface and bulk carrier recombination/transport properties. The dynamic range of the measured SRV values was established from 0.1 to 100 m/s.

  3. Reproducibility of Mammography Units, Film Processing and Quality Imaging

    NASA Astrophysics Data System (ADS)

    Gaona, Enrique

    2003-09-01

    The purpose of this study was to carry out an exploratory survey of the problems of quality control in mammography and processors units as a diagnosis of the current situation of mammography facilities. Measurements of reproducibility, optical density, optical difference and gamma index are included. Breast cancer is the most frequently diagnosed cancer and is the second leading cause of cancer death among women in the Mexican Republic. Mammography is a radiographic examination specially designed for detecting breast pathology. We found that the problems of reproducibility of AEC are smaller than the problems of processors units because almost all processors fall outside of the acceptable variation limits and they can affect the mammography quality image and the dose to breast. Only four mammography units agree with the minimum score established by ACR and FDA for the phantom image.

  4. Sentinel-2: State of the Image Quality Calibration at the End of the Commissioning

    NASA Astrophysics Data System (ADS)

    Tremas, Thierry; Lonjou, Vincent; Lacherade, Sophie; Gaudel-Vacaresse, Angelique; Languille, Florie

    2016-08-01

    This article summarizes the activity of CNES during the In Orbit Calibration Phase of Sentinel 2A as well as the transfer of production of GIPP (Ground Image Processing Parameters) from CNES to ESRIN. The state of the main calibration parameters and performances, few months before PDGS is declared fully operational, are listed and explained.In radiometry a special attention is paid to the absolute calibration using the on-board diffuser, and the vicarious calibration methods using instrumented or statistically well characterized sites and inter- comparisons with other sensors. Regarding geometry, the presentation focuses on the performances of absolute location with and without reference points. The requirements of multi-band and multi-temporal registration are exposed. Finally, the construction and the rule of the GRI (Ground Reference Images) in the future are explained.

  5. Electrophysiological brain dynamics during the esthetic judgment of human bodies and faces.

    PubMed

    Muñoz, Francisco; Martín-Loeches, Manuel

    2015-01-12

    This experiment investigated how the esthetic judgment of human body and face modulates cognitive and affective processes. We hypothesized that judgments on ugliness and beauty would elicit separable event-related brain potentials (ERP) patterns, depending on the esthetic value of body and faces in both genders. In a pretest session, participants evaluated images in a range from very ugly to very beautiful, what generated three sets of beautiful, ugly and neutral faces and bodies. In the recording session, they performed a task consisting in a beautiful-neutral-ugly judgment. Cognitive and affective effects were observed on a differential pattern of ERP components (P200, P300 and LPC). Main findings revealed a P200 amplitude increase to ugly images, probably the result of a negativity bias in attentional processes. A P300 increase was found mostly to beautiful images, particularly to female bodies, consistent with the salience of these stimuli, particularly for stimulus categorization. LPC appeared significantly larger to both ugly and beautiful images, probably reflecting later, decision processes linked to keeping information in working memory. This finding was especially remarkable for ugly male faces. Our findings are discussed on the ground of evolutionary and adaptive value of esthetics in person evaluation. This article is part of a Special Issue entitled Hold Item. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Fast automatic correction of motion artifacts in shoulder MRI

    NASA Astrophysics Data System (ADS)

    Manduca, Armando; McGee, Kiaran P.; Welch, Edward B.; Felmlee, Joel P.; Ehman, Richard L.

    2001-07-01

    The ability to correct certain types of MR images for motion artifacts from the raw data alone by iterative optimization of an image quality measure has recently been demonstrated. In the first study on a large data set of clinical images, we showed that such an autocorrection technique significantly improved the quality of clinical rotator cuff images, and performed almost as well as navigator echo correction while never degrading an image. One major criticism of such techniques is that they are computationally intensive, and reports of the processing time required have ranged form a few minutes to tens of minutes per slice. In this paper we describe a variety of improvements to our algorithm as well as approaches to correct sets of adjacent slices efficiently. The resulting algorithm is able to correct 256x256x20 clinical shoulder data sets for motion at an effective rate of 1 second/image on a standard commercial workstation. Future improvements in processor speeds and/or the use of specialized hardware will translate directly to corresponding reductions in this calculation time.

  7. Neural Networks for the Classification of Building Use from Street-View Imagery

    NASA Astrophysics Data System (ADS)

    Laupheimer, D.; Tutzauer, P.; Haala, N.; Spicker, M.

    2018-05-01

    Within this paper we propose an end-to-end approach for classifying terrestrial images of building facades into five different utility classes (commercial, hybrid, residential, specialUse, underConstruction) by using Convolutional Neural Networks (CNNs). For our examples we use images provided by Google Street View. These images are automatically linked to a coarse city model, including the outlines of the buildings as well as their respective use classes. By these means an extensive dataset is available for training and evaluation of our Deep Learning pipeline. The paper describes the implemented end-to-end approach for classifying street-level images of building facades and discusses our experiments with various CNNs. In addition to the classification results, so-called Class Activation Maps (CAMs) are evaluated. These maps give further insights into decisive facade parts that are learned as features during the training process. Furthermore, they can be used for the generation of abstract presentations which facilitate the comprehension of semantic image content. The abstract representations are a result of the stippling method, an importance-based image rendering.

  8. A discussion on the use of X-band SAR images in marine applications

    NASA Astrophysics Data System (ADS)

    Schiavulli, D.; Sorrentino, A.; Migliaccio, M.

    2012-10-01

    The Synthetic Aperture Radar (SAR) is able to generate images of the sea surface that can be exploited to extract geophysical information of environmental interest. In order to enhance the operational use of these data in the marine applications the revisit time is to be improved. This goal can be achieved by using SAR virtual or real constellations and/or exploiting new antenna technologies that allow huge swath and fine resolution. Within this framework, the presence of the Italian and German X-band SAR constellations is of special interest while the new SAR technologies are not nowadays operated. Although SAR images are considered to be independent of weather conditions, this is only partially true at higher frequencies, e.g. X-band. In fact, observations can present signature corresponding to high intensity precipitating clouds, i.e. rain cells. Further, ScanSAR images may be characterized by the presence of processing artifacts, called scalloping, that corrupt image interpretation. In this paper we review these key facts that are at the basis of an effective use of X-band SAR images for marine applications.

  9. Multimodal computational microscopy based on transport of intensity equation

    NASA Astrophysics Data System (ADS)

    Li, Jiaji; Chen, Qian; Sun, Jiasong; Zhang, Jialin; Zuo, Chao

    2016-12-01

    Transport of intensity equation (TIE) is a powerful tool for phase retrieval and quantitative phase imaging, which requires intensity measurements only at axially closely spaced planes without a separate reference beam. It does not require coherent illumination and works well on conventional bright-field microscopes. The quantitative phase reconstructed by TIE gives valuable information that has been encoded in the complex wave field by passage through a sample of interest. Such information may provide tremendous flexibility to emulate various microscopy modalities computationally without requiring specialized hardware components. We develop a requisite theory to describe such a hybrid computational multimodal imaging system, which yields quantitative phase, Zernike phase contrast, differential interference contrast, and light field moment imaging, simultaneously. It makes the various observations for biomedical samples easy. Then we give the experimental demonstration of these ideas by time-lapse imaging of live HeLa cell mitosis. Experimental results verify that a tunable lens-based TIE system, combined with the appropriate postprocessing algorithm, can achieve a variety of promising imaging modalities in parallel with the quantitative phase images for the dynamic study of cellular processes.

  10. Optical Navigation Image of Ganymede

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's Galileo spacecraft, now in orbit around Jupiter, returned this optical navigation image June 3, 1996, showing that the spacecraft is accurately targeted for its first flyby of the giant moon Ganymede on June 27. The missing data in the frame is the result of a special editing feature recently added to the spacecraft's computer to transmit navigation images more quickly. This is first in a series of optical navigation frames, highly edited onboard the spacecraft, that will be used to fine-tune the spacecraft's trajectory as Galileo approaches Ganymede. The image, used for navigation purposes only, is the product of new computer processing capabilities on the spacecraft that allow Galileo to send back only the information required to show the spacecraft is properly targeted and that Ganymede is where navigators calculate it to be. 'This navigation image is totally different from the pictures we'll be taking for scientific study of Ganymede when we get close to it later this month,' said Galileo Project Scientist Dr. Torrence Johnson. On June 27, Galileo will fly just 844 kilometers (524 miles) above Ganymede and return the most detailed, full-frame, high-resolution images and other measurements of the satellite ever obtained. Icy Ganymede is the largest moon in the solar system and three-quarters the size of Mars. It is one of the four large Jovian moons that are special targets of study for the Galileo mission. Of the more than 5 million bits contained in a single image, Galileo performed on-board editing to send back a mere 24,000 bits containing the essential information needed to assure proper targeting. Only the light-to-dark transitions of the crescent Ganymede and reference star locations were transmitted to Earth. The navigation image was taken from a distance of 9.8 million kilometers (6.1 million miles). On June 27th, the spacecraft will be 10,000 times closer to Ganymede.

  11. MISR Instrument Data Visualization

    NASA Technical Reports Server (NTRS)

    Nelson, David; Garay, Michael; Diner, David; Thompson, Charles; Hall, Jeffrey; Rheingans, Brian; Mazzoni, Dominic

    2008-01-01

    The MISR Interactive eXplorer (MINX) software functions both as a general-purpose tool to visualize Multiangle Imaging SpectroRadiometer (MISR) instrument data, and as a specialized tool to analyze properties of smoke, dust, and volcanic plumes. It includes high-level options to create map views of MISR orbit locations; scrollable, single-camera RGB (red-greenblue) images of MISR level 1B2 (L1B2) radiance data; and animations of the nine MISR camera images that provide a 3D perspective of the scenes that MISR has acquired. NASA Tech Briefs, September 2008 55 The plume height capability provides an accurate estimate of the injection height of plumes that is needed by air quality and climate modelers. MISR provides global high-quality stereo height information, and this program uses that information to perform detailed height retrievals of aerosol plumes. Users can interactively digitize smoke, dust, or volcanic plumes and automatically retrieve heights and winds, and can also archive MISR albedos and aerosol properties, as well as fire power and brightness temperatures associated with smoke plumes derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data. Some of the specialized options in MINX enable the user to do other tasks. Users can display plots of top-of-atmosphere bidirectional reflectance factors (BRFs) versus camera-angle for selected pixels. Images and animations can be saved to disk in various formats. Also, users can apply a geometric registration correction to warp camera images when the standard processing correction is inadequate. It is possible to difference the images of two MISR orbits that share a path (identical ground track), as well as to construct pseudo-color images by assigning different combinations of MISR channels (angle or spectral band) to the RGB display channels. This software is an interactive application written in IDL and compiled into an IDL Virtual Machine (VM) ".sav" file.

  12. Implementation of Remote 3-Dimensional Image Guided Radiation Therapy Quality Assurance for Radiation Therapy Oncology Group Clinical Trials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui Yunfeng; Galvin, James M.; Radiation Therapy Oncology Group, American College of Radiology, Philadelphia, Pennsylvania

    2013-01-01

    Purpose: To report the process and initial experience of remote credentialing of three-dimensional (3D) image guided radiation therapy (IGRT) as part of the quality assurance (QA) of submitted data for Radiation Therapy Oncology Group (RTOG) clinical trials; and to identify major issues resulting from this process and analyze the review results on patient positioning shifts. Methods and Materials: Image guided radiation therapy datasets including in-room positioning CT scans and daily shifts applied were submitted through the Image Guided Therapy QA Center from institutions for the IGRT credentialing process, as required by various RTOG trials. A centralized virtual environment is establishedmore » at the RTOG Core Laboratory, containing analysis tools and database infrastructure for remote review by the Physics Principal Investigators of each protocol. The appropriateness of IGRT technique and volumetric image registration accuracy were evaluated. Registration accuracy was verified by repeat registration with a third-party registration software system. With the accumulated review results, registration differences between those obtained by the Physics Principal Investigators and from the institutions were analyzed for different imaging sites, shift directions, and imaging modalities. Results: The remote review process was successfully carried out for 87 3D cases (out of 137 total cases, including 2-dimensional and 3D) during 2010. Frequent errors in submitted IGRT data and challenges in the review of image registration for some special cases were identified. Workarounds for these issues were developed. The average differences of registration results between reviewers and institutions ranged between 2 mm and 3 mm. Large discrepancies in the superior-inferior direction were found for megavoltage CT cases, owing to low spatial resolution in this direction for most megavoltage CT cases. Conclusion: This first experience indicated that remote review for 3D IGRT as part of QA for RTOG clinical trials is feasible and effective. The magnitude of registration discrepancy between institution and reviewer was presented, and the major issues were investigated to further improve this remote evaluation process.« less

  13. Imaging of DNA and Protein by SFM and Combined SFM-TIRF Microscopy.

    PubMed

    Grosbart, Małgorzata; Ristić, Dejan; Sánchez, Humberto; Wyman, Claire

    2018-01-01

    Direct imaging is invaluable for understanding the mechanism of complex genome transactions where proteins work together to organize, transcribe, replicate and repair DNA. Scanning (or atomic) force microscopy is an ideal tool for this, providing 3D information on molecular structure at nm resolution from defined components. This is a convenient and practical addition to in vitro studies as readily obtainable amounts of purified proteins and DNA are required. The images reveal structural details on the size and location of DNA bound proteins as well as protein-induced arrangement of the DNA, which are directly correlated in the same complexes. In addition, even from static images, the different forms observed and their relative distributions can be used to deduce the variety and stability of different complexes that are necessarily involved in dynamic processes. Recently available instruments that combine fluorescence with topographic imaging allow the identification of specific molecular components in complex assemblies, which broadens the applications and increases the information obtained from direct imaging of molecular complexes. We describe here basic methods for preparing samples of proteins, DNA and complexes of the two for topographic imaging and quantitative analysis. We also describe special considerations for combined fluorescence and topographic imaging of molecular complexes.

  14. Blind multirigid retrospective motion correction of MR images.

    PubMed

    Loktyushin, Alexander; Nickisch, Hannes; Pohmann, Rolf; Schölkopf, Bernhard

    2015-04-01

    Physiological nonrigid motion is inevitable when imaging, e.g., abdominal viscera, and can lead to serious deterioration of the image quality. Prospective techniques for motion correction can handle only special types of nonrigid motion, as they only allow global correction. Retrospective methods developed so far need guidance from navigator sequences or external sensors. We propose a fully retrospective nonrigid motion correction scheme that only needs raw data as an input. Our method is based on a forward model that describes the effects of nonrigid motion by partitioning the image into patches with locally rigid motion. Using this forward model, we construct an objective function that we can optimize with respect to both unknown motion parameters per patch and the underlying sharp image. We evaluate our method on both synthetic and real data in 2D and 3D. In vivo data was acquired using standard imaging sequences. The correction algorithm significantly improves the image quality. Our compute unified device architecture (CUDA)-enabled graphic processing unit implementation ensures feasible computation times. The presented technique is the first computationally feasible retrospective method that uses the raw data of standard imaging sequences, and allows to correct for nonrigid motion without guidance from external motion sensors. © 2014 Wiley Periodicals, Inc.

  15. Cardiovascular imaging environment: will the future be cloud-based?

    PubMed

    Kawel-Boehm, Nadine; Bluemke, David A

    2017-07-01

    In cardiovascular CT and MR imaging large datasets have to be stored, post-processed, analyzed and distributed. Beside basic assessment of volume and function in cardiac magnetic resonance imaging e.g., more sophisticated quantitative analysis is requested requiring specific software. Several institutions cannot afford various types of software and provide expertise to perform sophisticated analysis. Areas covered: Various cloud services exist related to data storage and analysis specifically for cardiovascular CT and MR imaging. Instead of on-site data storage, cloud providers offer flexible storage services on a pay-per-use basis. To avoid purchase and maintenance of specialized software for cardiovascular image analysis, e.g. to assess myocardial iron overload, MR 4D flow and fractional flow reserve, evaluation can be performed with cloud based software by the consumer or complete analysis is performed by the cloud provider. However, challenges to widespread implementation of cloud services include regulatory issues regarding patient privacy and data security. Expert commentary: If patient privacy and data security is guaranteed cloud imaging is a valuable option to cope with storage of large image datasets and offer sophisticated cardiovascular image analysis for institutions of all sizes.

  16. Sample preparation for SFM imaging of DNA, proteins, and DNA-protein complexes.

    PubMed

    Ristic, Dejan; Sanchez, Humberto; Wyman, Claire

    2011-01-01

    Direct imaging is invaluable for understanding the mechanism of complex genome transactions where proteins work together to organize, transcribe, replicate, and repair DNA. Scanning (or atomic) force microscopy is an ideal tool for this, providing 3D information on molecular structure at nanometer resolution from defined components. This is a convenient and practical addition to in vitro studies as readily obtainable amounts of purified proteins and DNA are required. The images reveal structural details on the size and location of DNA-bound proteins as well as protein-induced arrangement of the DNA, which are directly correlated in the same complexes. In addition, even from static images, the different forms observed and their relative distributions can be used to deduce the variety and stability of different complexes that are necessarily involved in dynamic processes. Recently available instruments that combine fluorescence with topographic imaging allow the identification of specific molecular components in complex assemblies, which broadens the applications and increases the information obtained from direct imaging of molecular complexes. We describe here basic methods for preparing samples of proteins, DNA, and complexes of the two for topographic imaging and quantitative analysis. We also describe special considerations for combined fluorescence and topographic imaging of molecular complexes.

  17. Study Methods to Standardize Thermography NDE

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Workman, Gary L.

    1998-01-01

    The purpose of this work is to develop thermographic inspection methods and standards for use in evaluating structural composites and aerospace hardware. Qualification techniques and calibration methods are investigated to standardize the thermographic method for use in the field. Along with the inspections of test standards structural hardware, support hardware is designed and fabricated to aid in the thermographic process. Also, a standard operating procedure is developed for performing inspections with the Bales Thermal Image Processor (TIP). Inspections are performed on a broad range of structural composites. These materials include various graphite/epoxies, graphite/cyanide-ester, graphite/silicon-carbide, graphite phenolic and Keviar/epoxy. Also metal honeycomb (titanium and aluminum faceplates over an aluminum honeycomb core) structures are investigated. Various structural shapes are investigated and the thickness of the structures vary from as few as 3 plies to as many as 80 plies. Special emphasis is placed on characterizing defects in attachment holes and bondlines, in addition to those resulting from impact damage and the inclusion of foreign matter. Image processing through statistical analysis and digital filtering is investigated to enhance the quality and quantify the NDE thermal images when necessary.

  18. Study Methods to Standardize Thermography NDE

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Workman, Gary L.

    1998-01-01

    The purpose of this work is to develop thermographic inspection methods and standards for use in evaluating structural composites and aerospace hardware. Qualification techniques and calibration methods are investigated to standardize the thermographic method for use in the field. Along with the inspections of test standards structural hardware, support hardware is designed and fabricated to aid in the thermographic process. Also, a standard operating procedure is developed for performing inspections with the Bales Thermal Image Processor (TIP). Inspections are performed on a broad range of structural composites. These materials include graphite/epoxies, graphite/cyanide-ester, graphite/silicon-carbide, graphite phenolic and Kevlar/epoxy. Also metal honeycomb (titanium and aluminum faceplates over an aluminum honeycomb core) structures are investigated. Various structural shapes are investigated and the thickness of the structures vary from as few as 3 plies to as many as 80 plies. Special emphasis is placed on characterizing defects in attachment holes and bondlines, in addition to those resulting from impact damage and the inclusion of foreign matter. Image processing through statistical analysis and digital filtering is investigated to enhance the quality and quantify the NDE thermal images when necessary.

  19. Pluto Haze

    NASA Image and Video Library

    2015-09-10

    Two different versions of an image of Pluto's haze layers, taken by New Horizons as it looked back at Pluto's dark side nearly 16 hours after close approach, from a distance of 480,000 miles (770,000 kilometers), at a phase angle of 166 degrees. Pluto's north is at the top, and the sun illuminates Pluto from the upper right. These images are much higher quality than the digitally compressed images of Pluto's haze downlinked and released shortly after the July 14 encounter, and allow many new details to be seen. The left version has had only minor processing, while the right version has been specially processed to reveal a large number of discrete haze layers in the atmosphere. In the left version, faint surface details on the narrow sunlit crescent are seen through the haze in the upper right of Pluto's disk, and subtle parallel streaks in the haze may be crepuscular rays- shadows cast on the haze by topography such as mountain ranges on Pluto, similar to the rays sometimes seen in the sky after the sun sets behind mountains on Earth. http://photojournal.jpl.nasa.gov/catalog/PIA19880

  20. Design of a web portal for interdisciplinary image retrieval from multiple online image resources.

    PubMed

    Kammerer, F J; Frankewitsch, T; Prokosch, H-U

    2009-01-01

    Images play an important role in medicine. Finding the desired images within the multitude of online image databases is a time-consuming and frustrating process. Existing websites do not meet all the requirements for an ideal learning environment for medical students. This work intends to establish a new web portal providing a centralized access point to a selected number of online image databases. A back-end system locates images on given websites and extracts relevant metadata. The images are indexed using UMLS and the MetaMap system provided by the US National Library of Medicine. Specially developed functions allow to create individual navigation structures. The front-end system suits the specific needs of medical students. A navigation structure consisting of several medical fields, university curricula and the ICD-10 was created. The images may be accessed via the given navigation structure or using different search functions. Cross-references are provided by the semantic relations of the UMLS. Over 25,000 images were identified and indexed. A pilot evaluation among medical students showed good first results concerning the acceptance of the developed navigation structures and search features. The integration of the images from different sources into the UMLS semantic network offers a quick and an easy-to-use learning environment.

  1. LWIR hyperspectral imager based on a diffractive optics lens

    NASA Astrophysics Data System (ADS)

    Gupta, Neelam

    2009-05-01

    A diffractive optics lens based longwave infrared hyperspectral imager has been used to collect laboratory and outdoor field test data. The imager uses a specially designed diffractive optics Ge lens with a 320×256 HgCdTe focal plane array (FPA) cooled with a Sterling-cooler. The imager operates in 8-10.5 μm (long wave IR, LWIR) spectral region and an image cube with 50 to 200 bands can be acquired rapidly. Spectral images at different wavelengths are obtained by moving the lens along its optical axis. An f/2.38 diffractive lens is used with a focal length of 70 mm at 8 μm. The IFOV is 0.57 mrad which corresponds to an FOV of 10.48°. The spectral resolution of the imager is 0.034 μm at 9 μm. The pixel size is 40×40 μm2 in the FPA. In post processing of image cube data contributions due to wavelengths other than the focused one are removed and a correction to account for the change in magnification due to the motion of the lens is applied to each spectral image. A brief description of the imager, data collection and analysis to characterize the performance of the imager will be presented in this paper.

  2. Handwriting Identification, Matching, and Indexing in Noisy Document Images

    DTIC Science & Technology

    2006-01-01

    algorithm to detect all parallel lines simultaneously. Our method can detect 96.8% of the severely broken rule lines in the Arabic database we collected...in the database to guide later processing. It is widely used in banks, post offices, and tax offices where the types of forms are most often pre...be used for different fields), and output the recognition results to a database . Although special anchors may be avail- able to facilitate form

  3. Demonstration of brain noise on human EEG signals in perception of bistable images

    NASA Astrophysics Data System (ADS)

    Grubov, Vadim V.; Runnova, Anastasiya E.; Kurovskaya, Maria K.; Pavlov, Alexey N.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2016-03-01

    In this report we studied human brain activity in the case of bistable visual perception. We proposed a new approach for quantitative characterization of this activity based on analysis of EEG oscillatory patterns and evoked potentials. Accordingly to theoretical background, obtained experimental EEG data and results of its analysis we studied a characteristics of brain activity during decision-making. Also we have shown that decisionmaking process has the special patterns on the EEG data.

  4. Summary of SAR (Synthetic Aperture Radar) Ocean Wave Data Archived at ERIM (Environmental Research Institute of Michigan).

    DTIC Science & Technology

    1984-05-01

    transform (FFT) techniques achieve the required azi- muthal compression of the SAR Doppler history (Ausherman, 1980). Specially- designed digital...processors have also been designed for 3 -[RIM RADAR DIVISION real-time processing of SAR data aboard the aircraft for display or transmission to a ground...included a multi-sided box pattern designed to image the dominant waves from various directions. Figure 2 presents the results obtained as a function of

  5. Dynamic goal states: adjusting cognitive control without conflict monitoring.

    PubMed

    Scherbaum, Stefan; Dshemuchadse, Maja; Ruge, Hannes; Goschke, Thomas

    2012-10-15

    A central topic in the cognitive sciences is how cognitive control is adjusted flexibly to changing environmental demands at different time scales to produce goal-oriented behavior. According to an influential account, the context-sensitive recruitment of cognitive control is mediated by a specialized conflict monitoring process that registers current conflict and signals the demand for enhanced control in subsequent trials. This view has been immensely successful not least due to supporting evidence from neuroimaging studies suggesting that the conflict monitoring function is localized within the anterior cingulate cortex (ACC) which, in turn, signals the demand for enhanced control to the prefrontal cortex (PFC). In this article, we propose an alternative model of the adaptive regulation of cognitive control based on multistable goal attractor network dynamics and adjustments of cognitive control within a conflict trial. Without incorporation of an explicit conflict monitoring module, the model mirrors behavior in conflict tasks accounting for effects of response congruency, sequential conflict adaptation, and proportion of incongruent trials. Importantly, the model also mirrors frequency tagged EEG data indicating continuous conflict adaptation and suggests a reinterpretation of the correlation between ACC and the PFC BOLD data reported in previous imaging studies. Together, our simulation data propose an alternative interpretation of both behavioral data as well as imaging data that have previously been interpreted in favor of a specialized conflict monitoring process in the ACC. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Image analysis of skin color heterogeneity focusing on skin chromophores and the age-related changes in facial skin.

    PubMed

    Kikuchi, Kumiko; Masuda, Yuji; Yamashita, Toyonobu; Kawai, Eriko; Hirao, Tetsuji

    2015-05-01

    Heterogeneity with respect to skin color tone is one of the key factors in visual perception of facial attractiveness and age. However, there have been few studies on quantitative analyses of the color heterogeneity of facial skin. The purpose of this study was to develop image evaluation methods for skin color heterogeneity focusing on skin chromophores and then characterize ethnic differences and age-related changes. A facial imaging system equipped with an illumination unit and a high-resolution digital camera was used to develop image evaluation methods for skin color heterogeneity. First, melanin and/or hemoglobin images were obtained using pigment-specific image-processing techniques, which involved conversion from Commission Internationale de l'Eclairage XYZ color values to melanin and/or hemoglobin indexes as measures of their contents. Second, a spatial frequency analysis with threshold settings was applied to the individual images. Cheek skin images of 194 healthy Asian and Caucasian female subjects were acquired using the imaging system. Applying this methodology, the skin color heterogeneity of Asian and Caucasian faces was characterized. The proposed pigment-specific image-processing techniques allowed visual discrimination of skin redness from skin pigmentation. In the heterogeneity analyses of cheek skin color, age-related changes in melanin were clearly detected in Asian and Caucasian skin. Furthermore, it was found that the heterogeneity indexes of hemoglobin were significantly higher in Caucasian skin than in Asian skin. We have developed evaluation methods for skin color heterogeneity by image analyses based on the major chromophores, melanin and hemoglobin, with special reference to their size. This methodology focusing on skin color heterogeneity should be useful for better understanding of aging and ethnic differences. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Around Marshall

    NASA Image and Video Library

    2003-12-01

    Helen Cole, the project manager for the Lab-on-a-Chip Applications Development program, and Lisa Monaco, the project scientist for the program, insert a lab on a chip into the Caliper 42 which is specialized equipment that controls processes on commercial chips to support development of lab-on-a-chip applications. The system has special microscopes and imaging systems, so scientists can process and study different types of fluid, chemical, and medical tests conducted on chips. For example, researchers have examined fluorescent bacteria as it flows through the chips' fluid channels or microfluidic capillaries. Researchers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, have been studying how the lab-on-a-chip technology can be used for microbial detection, water quality monitoring, and detecting biosignatures of past or present life on Mars. The Marshall Center team is also collaborating with scientists at other NASA centers and at universities to develop custom chip designs for not only space applications, but for many Earth applications, such as for detecting deadly microbes in heating and air systems. (NASA/MSFC/D.Stoffer)

  8. Digital image film generation: from the photoscientist's perspective

    USGS Publications Warehouse

    Boyd, John E.

    1982-01-01

    The technical sophistication of photoelectronic transducers, integrated circuits, and laser-beam film recorders has made digital imagery an alternative to traditional analog imagery for remote sensing. Because a digital image is stored in discrete digital values, image enhancement is possible before the data are converted to a photographic image. To create a special film-reproduction curve - which can simulate any desired gamma, relative film speed, and toe/shoulder response - the digital-to-analog transfer function of the film recorder is uniquely defined and implemented by a lookup table in the film recorder. Because the image data are acquired in spectral bands, false-color composites also can be given special characteristics by selecting a reproduction curve tailored for each band.

  9. Development and Application of a Low Frequency Near-Field Interferometric-TOA 3D Lightning Mapping Array

    NASA Astrophysics Data System (ADS)

    Lyu, F.; Cummer, S. A.; Weinert, J. L.; McTague, L. E.; Solanki, R.; Barrett, J.

    2014-12-01

    Lightning processes radiated extremely wideband electromagnetic signals. Lightning images mapped by VHF interferometry and VHF time of arrival lightning mapping arrays enable us to understand the lightning in-cloud detail development during the extent of flash that can not always be captured by cameras because of the shield of cloud. Lightning processes radiate electromagnetically over an extremely wide bandwidth, offering the possibility of multispectral lightning radio imaging. Low frequency signals are often used for lightning detection, but usually only for ground point location or thunderstorm tracking. Some recent results have demonstrated lightning LF 3D mapping of discrete lightning pulses, but imaging of continuous LF emissions have not been shown. In this work, we report a GPS-synchronized LF near field interferometric-TOA 3D lightning mapping array applied to image the development of lightning flashes on second time scale. Cross-correlation, as used in broadband interferometry, is applied in our system to find windowed arrival time differences with sub-microsecond time resolution. However, because the sources are in the near field of the array, time of arrival processing is used to find the source locations with a typical precision of 100 meters. We show that this system images the complete lightning flash structure with thousands of LF sources for extensive flashes. Importantly, this system is able to map both continuous emissions like dart leaders, and bursty or discrete emissions. Lightning stepped leader and dart leader propagation speeds are estimated to 0.56-2.5x105 m/s and 0.8-2.0x106 m/s respectively, which are consistent with previous reports. In many aspects our LF images are remarkably similar to VHF lightning mapping array images, despite the 1000 times difference in frequency, which may suggest some special links between the LF and VHF emission during lightning processes.

  10. Hyperspectral processing in graphical processing units

    NASA Astrophysics Data System (ADS)

    Winter, Michael E.; Winter, Edwin M.

    2011-06-01

    With the advent of the commercial 3D video card in the mid 1990s, we have seen an order of magnitude performance increase with each generation of new video cards. While these cards were designed primarily for visualization and video games, it became apparent after a short while that they could be used for scientific purposes. These Graphical Processing Units (GPUs) are rapidly being incorporated into data processing tasks usually reserved for general purpose computers. It has been found that many image processing problems scale well to modern GPU systems. We have implemented four popular hyperspectral processing algorithms (N-FINDR, linear unmixing, Principal Components, and the RX anomaly detection algorithm). These algorithms show an across the board speedup of at least a factor of 10, with some special cases showing extreme speedups of a hundred times or more.

  11. Monocular display unit for 3D display with correct depth perception

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kunio; Hosomi, Takashi

    2009-11-01

    A study of virtual-reality system has been popular and its technology has been applied to medical engineering, educational engineering, a CAD/CAM system and so on. The 3D imaging display system has two types in the presentation method; one is a 3-D display system using a special glasses and the other is the monitor system requiring no special glasses. A liquid crystal display (LCD) recently comes into common use. It is possible for this display unit to provide the same size of displaying area as the image screen on the panel. A display system requiring no special glasses is useful for a 3D TV monitor, but this system has demerit such that the size of a monitor restricts the visual field for displaying images. Thus the conventional display can show only one screen, but it is impossible to enlarge the size of a screen, for example twice. To enlarge the display area, the authors have developed an enlarging method of display area using a mirror. Our extension method enables the observers to show the virtual image plane and to enlarge a screen area twice. In the developed display unit, we made use of an image separating technique using polarized glasses, a parallax barrier or a lenticular lens screen for 3D imaging. The mirror can generate the virtual image plane and it enlarges a screen area twice. Meanwhile the 3D display system using special glasses can also display virtual images over a wide area. In this paper, we present a monocular 3D vision system with accommodation mechanism, which is useful function for perceiving depth.

  12. Sci-Fri PM: Radiation Therapy, Planning, Imaging, and Special Techniques - 08: Retrospective Dose Accumulation Workflow in Head and Neck Cancer Patients Using RayStation 4.5.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Olive; Chan, Biu; Moseley, Joanne

    Purpose: We have developed a semi-automated dose accumulation workflow for Head and Neck Cancer (HNC) patients to evaluate volumetric and dosimetric changes that take place during radiotherapy. This work will be used to assess how dosimetric changes affect both toxicity and disease control, hence inform the feasibility and design of a prospective HNC adaptive trial. Methods: RayStation 4.5.2 features deformable image registration (DIR), where structures already defined on the planning CT image set can be deformably mapped onto cone-beam computed tomography (CBCT) images, accounting for daily treatment set-up shifts and changes in patient anatomy. The daily delivered dose can bemore » calculated on each CBCT and mapped back to the planning CT to allow dose accumulation. The process is partially automated using Python scripts developed in collaboration with RaySearch. Results: To date we have performed dose accumulation on 18 HNC patients treated at our institution during 2013–2015 under REB approval. Our semi-automated process establishes clinical feasibility. Generally, dose accumulation for the entire treatment course of one case takes 60–120 minutes: importing all CBCTs requires 20–30 minutes as each patient has 30 to 40 treated fractions; image registration and dose accumulation require 60–90 minutes. This is in contrast to the process without automated scripts where dose accumulation alone would take 3–5 hours. Conclusions: We have developed a reliable workflow for retrospective dose tracking in HNC using RayStation. The process has been validated for HNC patients treated on both Elekta and Varian linacs with CBCTs acquired on XVI and OBI platforms respectively.« less

  13. The design of wavefront coded imaging system

    NASA Astrophysics Data System (ADS)

    Lan, Shun; Cen, Zhaofeng; Li, Xiaotong

    2016-10-01

    Wavefront Coding is a new method to extend the depth of field, which combines optical design and signal processing together. By using optical design software ZEMAX ,we designed a practical wavefront coded imaging system based on a conventional Cooke triplet system .Unlike conventional optical system, the wavefront of this new system is modulated by a specially designed phase mask, which makes the point spread function (PSF)of optical system not sensitive to defocus. Therefore, a series of same blurred images obtained at the image plane. In addition, the optical transfer function (OTF) of the wavefront coded imaging system is independent of focus, which is nearly constant with misfocus and has no regions of zeros. All object information can be completely recovered through digital filtering at different defocus positions. The focus invariance of MTF is selected as merit function in this design. And the coefficients of phase mask are set as optimization goals. Compared to conventional optical system, wavefront coded imaging system obtains better quality images under different object distances. Some deficiencies appear in the restored images due to the influence of digital filtering algorithm, which are also analyzed in this paper. The depth of field of the designed wavefront coded imaging system is about 28 times larger than initial optical system, while keeping higher optical power and resolution at the image plane.

  14. TeraStitcher - A tool for fast automatic 3D-stitching of teravoxel-sized microscopy images

    PubMed Central

    2012-01-01

    Background Further advances in modern microscopy are leading to teravoxel-sized tiled 3D images at high resolution, thus increasing the dimension of the stitching problem of at least two orders of magnitude. The existing software solutions do not seem adequate to address the additional requirements arising from these datasets, such as the minimization of memory usage and the need to process just a small portion of data. Results We propose a free and fully automated 3D Stitching tool designed to match the special requirements coming out of teravoxel-sized tiled microscopy images that is able to stitch them in a reasonable time even on workstations with limited resources. The tool was tested on teravoxel-sized whole mouse brain images with micrometer resolution and it was also compared with the state-of-the-art stitching tools on megavoxel-sized publicy available datasets. This comparison confirmed that the solutions we adopted are suited for stitching very large images and also perform well on datasets with different characteristics. Indeed, some of the algorithms embedded in other stitching tools could be easily integrated in our framework if they turned out to be more effective on other classes of images. To this purpose, we designed a software architecture which separates the strategies that use efficiently memory resources from the algorithms which may depend on the characteristics of the acquired images. Conclusions TeraStitcher is a free tool that enables the stitching of Teravoxel-sized tiled microscopy images even on workstations with relatively limited resources of memory (<8 GB) and processing power. It exploits the knowledge of approximate tile positions and uses ad-hoc strategies and algorithms designed for such very large datasets. The produced images can be saved into a multiresolution representation to be efficiently retrieved and processed. We provide TeraStitcher both as standalone application and as plugin of the free software Vaa3D. PMID:23181553

  15. The Far Ultra-Violet Imager on the Icon Mission

    NASA Astrophysics Data System (ADS)

    Mende, S. B.; Frey, H. U.; Rider, K.; Chou, C.; Harris, S. E.; Siegmund, O. H. W.; England, S. L.; Wilkins, C.; Craig, W.; Immel, T. J.; Turin, P.; Darling, N.; Loicq, J.; Blain, P.; Syrstad, E.; Thompson, B.; Burt, R.; Champagne, J.; Sevilla, P.; Ellis, S.

    2017-10-01

    ICON Far UltraViolet (FUV) imager contributes to the ICON science objectives by providing remote sensing measurements of the daytime and nighttime atmosphere/ionosphere. During sunlit atmospheric conditions, ICON FUV images the limb altitude profile in the shortwave (SW) band at 135.6 nm and the longwave (LW) band at 157 nm perpendicular to the satellite motion to retrieve the atmospheric O/N2 ratio. In conditions of atmospheric darkness, ICON FUV measures the 135.6 nm recombination emission of O+ ions used to compute the nighttime ionospheric altitude distribution. ICON Far UltraViolet (FUV) imager is a Czerny-Turner design Spectrographic Imager with two exit slits and corresponding back imager cameras that produce two independent images in separate wavelength bands on two detectors. All observations will be processed as limb altitude profiles. In addition, the ionospheric 135.6 nm data will be processed as longitude and latitude spatial maps to obtain images of ion distributions around regions of equatorial spread F. The ICON FUV optic axis is pointed 20 degrees below local horizontal and has a steering mirror that allows the field of view to be steered up to 30 degrees forward and aft, to keep the local magnetic meridian in the field of view. The detectors are micro channel plate (MCP) intensified FUV tubes with the phosphor fiber-optically coupled to Charge Coupled Devices (CCDs). The dual stack MCP-s amplify the photoelectron signals to overcome the CCD noise and the rapidly scanned frames are co-added to digitally create 12-second integrated images. Digital on-board signal processing is used to compensate for geometric distortion and satellite motion and to achieve data compression. The instrument was originally aligned in visible light by using a special grating and visible cameras. Final alignment, functional and environmental testing and calibration were performed in a large vacuum chamber with a UV source. The test and calibration program showed that ICON FUV meets its design requirements and is ready to be launched on the ICON spacecraft.

  16. Real-time calibration-free C-scan images of the eye fundus using Master Slave swept source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Bradu, Adrian; Kapinchev, Konstantin; Barnes, Fred; Garway-Heath, David F.; Rajendram, Ranjan; Keane, Pearce; Podoleanu, Adrian G.

    2015-03-01

    Recently, we introduced a novel Optical Coherence Tomography (OCT) method, termed as Master Slave OCT (MS-OCT), specialized for delivering en-face images. This method uses principles of spectral domain interfereometry in two stages. MS-OCT operates like a time domain OCT, selecting only signals from a chosen depth only while scanning the laser beam across the eye. Time domain OCT allows real time production of an en-face image, although relatively slowly. As a major advance, the Master Slave method allows collection of signals from any number of depths, as required by the user. The tremendous advantage in terms of parallel provision of data from numerous depths could not be fully employed by using multi core processors only. The data processing required to generate images at multiple depths simultaneously is not achievable with commodity multicore processors only. We compare here the major improvement in processing and display, brought about by using graphic cards. We demonstrate images obtained with a swept source at 100 kHz (which determines an acquisition time [Ta] for a frame of 200×200 pixels2 of Ta =1.6 s). By the end of the acquired frame being scanned, using our computing capacity, 4 simultaneous en-face images could be created in T = 0.8 s. We demonstrate that by using graphic cards, 32 en-face images can be displayed in Td 0.3 s. Other faster swept source engines can be used with no difference in terms of Td. With 32 images (or more), volumes can be created for 3D display, using en-face images, as opposed to the current technology where volumes are created using cross section OCT images.

  17. The determination of high-resolution spatio-temporal glacier motion fields from time-lapse sequences

    NASA Astrophysics Data System (ADS)

    Schwalbe, Ellen; Maas, Hans-Gerd

    2017-12-01

    This paper presents a comprehensive method for the determination of glacier surface motion vector fields at high spatial and temporal resolution. These vector fields can be derived from monocular terrestrial camera image sequences and are a valuable data source for glaciological analysis of the motion behaviour of glaciers. The measurement concepts for the acquisition of image sequences are presented, and an automated monoscopic image sequence processing chain is developed. Motion vector fields can be derived with high precision by applying automatic subpixel-accuracy image matching techniques on grey value patterns in the image sequences. Well-established matching techniques have been adapted to the special characteristics of the glacier data in order to achieve high reliability in automatic image sequence processing, including the handling of moving shadows as well as motion effects induced by small instabilities in the camera set-up. Suitable geo-referencing techniques were developed to transform image measurements into a reference coordinate system.The result of monoscopic image sequence analysis is a dense raster of glacier surface point trajectories for each image sequence. Each translation vector component in these trajectories can be determined with an accuracy of a few centimetres for points at a distance of several kilometres from the camera. Extensive practical validation experiments have shown that motion vector and trajectory fields derived from monocular image sequences can be used for the determination of high-resolution velocity fields of glaciers, including the analysis of tidal effects on glacier movement, the investigation of a glacier's motion behaviour during calving events, the determination of the position and migration of the grounding line and the detection of subglacial channels during glacier lake outburst floods.

  18. Segmentation and Image Analysis of Abnormal Lungs at CT: Current Approaches, Challenges, and Future Trends

    PubMed Central

    Mansoor, Awais; Foster, Brent; Xu, Ziyue; Papadakis, Georgios Z.; Folio, Les R.; Udupa, Jayaram K.; Mollura, Daniel J.

    2015-01-01

    The computer-based process of identifying the boundaries of lung from surrounding thoracic tissue on computed tomographic (CT) images, which is called segmentation, is a vital first step in radiologic pulmonary image analysis. Many algorithms and software platforms provide image segmentation routines for quantification of lung abnormalities; however, nearly all of the current image segmentation approaches apply well only if the lungs exhibit minimal or no pathologic conditions. When moderate to high amounts of disease or abnormalities with a challenging shape or appearance exist in the lungs, computer-aided detection systems may be highly likely to fail to depict those abnormal regions because of inaccurate segmentation methods. In particular, abnormalities such as pleural effusions, consolidations, and masses often cause inaccurate lung segmentation, which greatly limits the use of image processing methods in clinical and research contexts. In this review, a critical summary of the current methods for lung segmentation on CT images is provided, with special emphasis on the accuracy and performance of the methods in cases with abnormalities and cases with exemplary pathologic findings. The currently available segmentation methods can be divided into five major classes: (a) thresholding-based, (b) region-based, (c) shape-based, (d) neighboring anatomy–guided, and (e) machine learning–based methods. The feasibility of each class and its shortcomings are explained and illustrated with the most common lung abnormalities observed on CT images. In an overview, practical applications and evolving technologies combining the presented approaches for the practicing radiologist are detailed. ©RSNA, 2015 PMID:26172351

  19. Image/video understanding systems based on network-symbolic models

    NASA Astrophysics Data System (ADS)

    Kuvich, Gary

    2004-03-01

    Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolve ambiguity and uncertainty via feedback projections, and provide image understanding that is an interpretation of visual information in terms of such knowledge models. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/network models is found. Symbols, predicates and grammars naturally emerge in such networks, and logic is simply a way of restructuring such models. Brain analyzes an image as a graph-type relational structure created via multilevel hierarchical compression of visual information. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. Spatial logic and topology naturally present in such structures. Mid-level vision processes like perceptual grouping, separation of figure from ground, are special kinds of network transformations. They convert primary image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena are results of such analysis. Composition of network-symbolic models combines learning, classification, and analogy together with higher-level model-based reasoning into a single framework, and it works similar to frames and agents. Computational intelligence methods transform images into model-based knowledge representation. Based on such principles, an Image/Video Understanding system can convert images into the knowledge models, and resolve uncertainty and ambiguity. This allows creating intelligent computer vision systems for design and manufacturing.

  20. An optimized two-photon method for in vivo lung imaging reveals intimate cell collaborations during infection

    NASA Astrophysics Data System (ADS)

    Fiole, Daniel; Deman, Pierre; Trescos, Yannick; Douady, Julien; Tournier, Jean-Nicolas

    2013-02-01

    Lung tissue motion arising from breathing and heart beating has been described as the largest annoyance of in vivo imaging. Consequently, infected lung tissue has never been imaged in vivo thus far, and little is known concerning the kinetics of the mucosal immune system at the cellular level. We have developed an optimized post-processing strategy to overcome tissue motion, based upon two-photon and second harmonic generation (SHG) microscopy. In contrast to previously published data, we have freed the lung parenchyma from any strain and depression in order to maintain the lungs under optimal physiological parameters. Excitation beams swept the sample throughout normal breathing and heart movements, allowing the collection of many images. Given that tissue motion is unpredictably, it was essential to sort images of interest. This step was enhanced by using SHG signal from collagen as a reference for sampling and realignment phases. A normalized cross-correlation criterion was used between a manually chosen reference image and rigid transformations of all others. Using CX3CR1+/gfp mice this process allowed the collection of high resolution images of pulmonary dendritic cells (DCs) interacting with Bacillus anthracis spores, a Gram-positive bacteria responsible for anthrax disease. We imaged lung tissue for up to one hour, without interrupting normal lung physiology. Interestingly, our data revealed unexpected interactions between DCs and macrophages, two specialized phagocytes. These contacts may participate in a better coordinate immune response. Our results not only demonstrate the phagocytizing task of lung DCs but also infer a cooperative role of alveolar macrophages and DCs.

  1. The artificial retina processor for track reconstruction at the LHC crossing rate

    DOE PAGES

    Abba, A.; Bedeschi, F.; Citterio, M.; ...

    2015-03-16

    We present results of an R&D study for a specialized processor capable of precisely reconstructing, in pixel detectors, hundreds of charged-particle tracks from high-energy collisions at 40 MHz rate. We apply a highly parallel pattern-recognition algorithm, inspired by studies of the processing of visual images by the brain as it happens in nature, and describe in detail an efficient hardware implementation in high-speed, high-bandwidth FPGA devices. This is the first detailed demonstration of reconstruction of offline-quality tracks at 40 MHz and makes the device suitable for processing Large Hadron Collider events at the full crossing frequency.

  2. Content based image retrieval for matching images of improvised explosive devices in which snake initialization is viewed as an inverse problem

    NASA Astrophysics Data System (ADS)

    Acton, Scott T.; Gilliam, Andrew D.; Li, Bing; Rossi, Adam

    2008-02-01

    Improvised explosive devices (IEDs) are common and lethal instruments of terrorism, and linking a terrorist entity to a specific device remains a difficult task. In the effort to identify persons associated with a given IED, we have implemented a specialized content based image retrieval system to search and classify IED imagery. The system makes two contributions to the art. First, we introduce a shape-based matching technique exploiting shape, color, and texture (wavelet) information, based on novel vector field convolution active contours and a novel active contour initialization method which treats coarse segmentation as an inverse problem. Second, we introduce a unique graph theoretic approach to match annotated printed circuit board images for which no schematic or connectivity information is available. The shape-based image retrieval method, in conjunction with the graph theoretic tool, provides an efficacious system for matching IED images. For circuit imagery, the basic retrieval mechanism has a precision of 82.1% and the graph based method has a precision of 98.1%. As of the fall of 2007, the working system has processed over 400,000 case images.

  3. Design of embedded endoscopic ultrasonic imaging system

    NASA Astrophysics Data System (ADS)

    Li, Ming; Zhou, Hao; Wen, Shijie; Chen, Xiodong; Yu, Daoyin

    2008-12-01

    Endoscopic ultrasonic imaging system is an important component in the endoscopic ultrasonography system (EUS). Through the ultrasonic probe, the characteristics of the fault histology features of digestive organs is detected by EUS, and then received by the reception circuit which making up of amplifying, gain compensation, filtering and A/D converter circuit, in the form of ultrasonic echo. Endoscopic ultrasonic imaging system is the back-end processing system of the EUS, with the function of receiving digital ultrasonic echo modulated by the digestive tract wall from the reception circuit, acquiring and showing the fault histology features in the form of image and characteristic data after digital signal processing, such as demodulation, etc. Traditional endoscopic ultrasonic imaging systems are mainly based on image acquisition and processing chips, which connecting to personal computer with USB2.0 circuit, with the faults of expensive, complicated structure, poor portability, and difficult to popularize. To against the shortcomings above, this paper presents the methods of digital signal acquisition and processing specially based on embedded technology with the core hardware structure of ARM and FPGA for substituting the traditional design with USB2.0 and personal computer. With built-in FIFO and dual-buffer, FPGA implement the ping-pong operation of data storage, simultaneously transferring the image data into ARM through the EBI bus by DMA function, which is controlled by ARM to carry out the purpose of high-speed transmission. The ARM system is being chosen to implement the responsibility of image display every time DMA transmission over and actualizing system control with the drivers and applications running on the embedded operating system Windows CE, which could provide a stable, safe and reliable running platform for the embedded device software. Profiting from the excellent graphical user interface (GUI) and good performance of Windows CE, we can not only clearly show 511×511 pixels ultrasonic echo images through application program, but also provide a simple and friendly operating interface with mouse and touch screen which is more convenient than the traditional endoscopic ultrasonic imaging system. Including core and peripheral circuits of FPGA and ARM, power network circuit and LCD display circuit, we designed the whole embedded system, achieving the desired purpose by implementing ultrasonic image display properly after the experimental verification, solving the problem of hugeness and complexity of the traditional endoscopic ultrasonic imaging system.

  4. Rotation invariants of vector fields from orthogonal moments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bo; Kostková, Jitka; Flusser, Jan

    Vector field images are a type of new multidimensional data that appear in many engineering areas. Although the vector fields can be visualized as images, they differ from graylevel and color images in several aspects. In order to analyze them, special methods and algorithms must be originally developed or substantially adapted from the traditional image processing area. Here, we propose a method for the description and matching of vector field patterns under an unknown rotation of the field. Rotation of a vector field is so-called total rotation, where the action is applied not only on the spatial coordinates but alsomore » on the field values. Invariants of vector fields with respect to total rotation constructed from orthogonal Gaussian–Hermite moments and Zernike moments are introduced. Their numerical stability is shown to be better than that of the invariants published so far. We demonstrate their usefulness in a real world template matching application of rotated vector fields.« less

  5. Evaluation of dental enamel caries assessment using Quantitative Light Induced Fluorescence and Optical Coherence Tomography.

    PubMed

    Maia, Ana Marly Araújo; de Freitas, Anderson Zanardi; de L Campello, Sergio; Gomes, Anderson Stevens Leônidas; Karlsson, Lena

    2016-06-01

    An in vitro study of morphological alterations between sound dental structure and artificially induced white spot lesions in human teeth, was performed through the loss of fluorescence by Quantitative Light-Induced Fluorescence (QLF) and the alterations of the light attenuation coefficient by Optical Coherence Tomography (OCT). To analyze the OCT images using a commercially available system, a special algorithm was applied, whereas the QLF images were analyzed using the software available in the commercial system employed. When analyzing the sound region against white spot lesions region by QLF, a reduction in the fluorescence intensity was observed, whilst an increase of light attenuation by the OCT system occurred. Comparison of the percentage of alteration between optical properties of sound and artificial enamel caries regions showed that OCT processed images through the attenuation of light enhanced the tooth optical alterations more than fluorescence detected by QLF System. QLF versus OCT imaging of enamel caries: a photonics assessment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Influence of physical parameters on radiation protection and image quality in intra-oral radiology

    NASA Astrophysics Data System (ADS)

    Belinato, W.; Souza, D. N.

    2011-10-01

    In the world of diagnostic imaging, radiography is an important supplementary method for dental diagnosis. In radiology, special attention must be paid to the radiological protection of patients and health professionals, and also to image quality for correct diagnosis. In Brazil, the national rules governing the operation of medical and dental radiology were specified in 1998 by the National Sanitary Surveillance Agency, complemented in 2005 by the guide "Medical radiology: security and performance of equipment." In this study, quality control tests were performed in public clinics with dental X-ray equipment in the State of Sergipe, Brazil, with consideration of the physical parameters that influence radiological protection and also the quality of images taken in intra-oral radiography. The accuracy of the exposure time was considered acceptable for equipment with digital timers. Exposure times and focal-spot size variations can lead to increased entrance dose. Increased dose has also been associated with visual processing of radiographic film, which often requires repeating the radiographic examination.

  7. Three-dimensional optical topography of brain activity in infants watching videos of human movement

    NASA Astrophysics Data System (ADS)

    Correia, Teresa; Lloyd-Fox, Sarah; Everdell, Nick; Blasi, Anna; Elwell, Clare; Hebden, Jeremy C.; Gibson, Adam

    2012-03-01

    We present 3D optical topography images reconstructed from data obtained previously while infants observed videos of adults making natural movements of their eyes and hands. The optical topography probe was placed over the temporal cortex, which in adults is responsible for cognitive processing of similar stimuli. Increases in oxyhaemoglobin were measured and reconstructed using a multispectral imaging algorithm with spatially variant regularization to optimize depth discrimination. The 3D optical topography images suggest that similar brain regions are activated in infants and adults. Images were presented showing the distribution of activation in a plane parallel to the surface, as well as changes in activation with depth. The time-course of activation was followed in the pixel which demonstrated the largest change, showing that changes could be measured with high temporal resolution. These results suggest that infants a few months old have regions which are specialized for reacting to human activity, and that these subtle changes can be effectively analysed using 3D optical topography.

  8. Measurement of Flat Slab Deformations by the Multi-Image Photogrammetry Method

    NASA Astrophysics Data System (ADS)

    Marčiš, Marián; Fraštia, Marek; Augustín, Tomáš

    2017-12-01

    The use of photogrammetry during load tests of building components is a common practise all over the world. It is very effective thanks to its contactless approach, 3D measurement, fast data collection, and partial or full automation of image processing; it can deliver very accurate results. Multi-image convergent photogrammetry supported by artificial coded targets is the most accurate photogrammetric method when the targets are detected in an image with a higher degree of accuracy than a 0.1 pixel. It is possible to achieve an accuracy of 0.03 mm for all the points measured on the object observed if the camera is close enough to the object, and the positions of the camera and the number of shots are precisely planned. This contribution deals with the design of a special hanging frame for a DSLR camera used during the photogrammetric measurement of the deformation of flat concrete slab. The results of the photogrammetric measurements are compared to the results from traditional contact measurement techniques during load tests.

  9. Rotation invariants of vector fields from orthogonal moments

    DOE PAGES

    Yang, Bo; Kostková, Jitka; Flusser, Jan; ...

    2017-09-11

    Vector field images are a type of new multidimensional data that appear in many engineering areas. Although the vector fields can be visualized as images, they differ from graylevel and color images in several aspects. In order to analyze them, special methods and algorithms must be originally developed or substantially adapted from the traditional image processing area. Here, we propose a method for the description and matching of vector field patterns under an unknown rotation of the field. Rotation of a vector field is so-called total rotation, where the action is applied not only on the spatial coordinates but alsomore » on the field values. Invariants of vector fields with respect to total rotation constructed from orthogonal Gaussian–Hermite moments and Zernike moments are introduced. Their numerical stability is shown to be better than that of the invariants published so far. We demonstrate their usefulness in a real world template matching application of rotated vector fields.« less

  10. Twenty five years of medical informatics education at Heidelberg/Heilbronn: discussion of a specialized curriculum for medical informatics.

    PubMed

    Leven, F J; Haux, R

    1998-06-01

    The specialized university curriculum for medical informatics (MI) at the University of Heidelberg/School of Technology Heilbronn is one of the oldest educational approaches in the field of MI and has been successful now for 25 years with about 1000 graduates (Diplom-Informatikerin der Medizin or Diplom-Informatiker der Medizin). It belongs to the category of dedicated master's programs for MI and is based on the concept of MI as a medical discipline of its own. It is oriented towards the total spectrum of MI ranging from health care economics, biosignal and medical image processing, medical documentation, to information and knowledge processing in medicine. It is a 4.5 years program with a strong emphasis on the methodological foundations of MI and on practical education in a number of specific laboratories. A total of 35 students are admitted each semester and in total about 440 students are enrolled. The faculty consists of 17 full-time members and about 25 part-time lecturers. The authors report on characteristics, structure and contents of the new fifth version of the curriculum and discuss the features of a specialized curriculum for MI with respect to the challenges for MI in the 21st century.

  11. CD-ROM publication of the Mars digital cartographic data base

    NASA Technical Reports Server (NTRS)

    Batson, R. M.; Eliason, E. M.; Soderblom, L. A.; Edwards, Kathleen; Wu, Sherman S. C.

    1991-01-01

    The recently completed Mars mosaicked digital image model (MDIM) and the soon-to-be-completed Mars digital terrain model (DTM) are being transcribed to optical disks to simplify distribution to planetary investigators. These models, completed in FY 1991, provide a cartographic base to which all existing Mars data can be registered. The digital image map of Mars is a cartographic extension of a set of compact disk read-only memory (CD-ROM) volumes containing individual Viking Orbiter images now being released. The data in these volumes are pristine in the sense that they were processed only to the extent required to view them as images. They contain the artifacts and the radiometric, geometric, and photometric characteristics of the raw data transmitted by the spacecraft. This new set of volumes, on the other hand, contains cartographic compilations made by processing the raw images to reduce radiometric and geometric distortions and to form geodetically controlled MDIM's. It also contains digitized versions of an airbrushed map of Mars as well as a listing of all feature names approved by the International Astronomical Union. In addition, special geodetic and photogrammetric processing has been performed to derive rasters of topographic data, or DTM's. The latter have a format similar to that of MDIM, except that elevation values are used in the array instead of image brightness values. The set consists of seven volumes: (1) Vastitas Borealis Region of Mars; (2) Xanthe Terra of Mars; (3) Amazonis Planitia Region of Mars; (4) Elysium Planitia Region of Mars; (5) Arabia Terra of Mars; (6) Planum Australe Region of Mars; and (7) a digital topographic map of Mars.

  12. FANTOM: Algorithm-Architecture Codesign for High-Performance Embedded Signal and Image Processing Systems

    DTIC Science & Technology

    2013-05-25

    graphics processors by IBM, AMD, and nVIDIA . They are between general-purpose pro- cessors and special-purpose processors. In Phase II. 3.10 Measure of...particular, Dr. Kevin Irick started a company Silicon Scapes and he has been the CEO. 5 Implications for Related/Future Research We speculate that...final project report in Jan. 2011. At the test and validation stage of the project. FANTOM’s partner at Raytheon quit from his company and hence from

  13. Computer vision system: a tool for evaluating the quality of wheat in a grain tank

    NASA Astrophysics Data System (ADS)

    Minkin, Uryi Igorevish; Panchenko, Aleksei Vladimirovich; Shkanaev, Aleksandr Yurievich; Konovalenko, Ivan Andreevich; Putintsev, Dmitry Nikolaevich; Sadekov, Rinat Nailevish

    2018-04-01

    The paper describes a technology that allows for automatizing the process of evaluating the grain quality in a grain tank of a combine harvester. Special recognition algorithm analyzes photographic images taken by the camera, and that provides automatic estimates of the total mass fraction of broken grains and the presence of non-grains. The paper also presents the operating details of the tank prototype as well as it defines the accuracy of the algorithms designed.

  14. Exploring pain pathophysiology in patients.

    PubMed

    Sommer, Claudia

    2016-11-04

    Although animal models of pain have brought invaluable information on basic processes underlying pain pathophysiology, translation to humans is a problem. This Review will summarize what information has been gained by the direct study of patients with chronic pain. The techniques discussed range from patient phenotyping using quantitative sensory testing to specialized nociceptor neurophysiology, imaging methods of peripheral nociceptors, analyses of body fluids, genetics and epigenetics, and the generation of sensory neurons from patients via inducible pluripotent stem cells. Copyright © 2016, American Association for the Advancement of Science.

  15. Two-Stage Processing of Aesthetic Information in the Human Brain Revealed by Neural Adaptation Paradigm.

    PubMed

    Iwasaki, Miho; Noguchi, Yasuki; Kakigi, Ryusuke

    2018-06-07

    Some researchers in aesthetics assume visual features related to aesthetic perception (e.g. golden ratio and symmetry) commonly embedded in masterpieces. If this is true, an intriguing hypothesis is that the human brain has neural circuitry specialized for the processing of visual beauty. We presently tested this hypothesis by combining a neuroimaging technique with the repetition suppression (RS) paradigm. Subjects (non-experts in art) viewed two images of sculptures sequentially presented. Some sculptures obeyed the golden ratio (canonical images), while the golden proportion were impaired in other sculptures (deformed images). We found that the occipito-temporal cortex in the right hemisphere showed the RS when a canonical sculpture (e.g. Venus de Milo) was repeatedly presented, but not when its deformed version was repeated. Furthermore, the right parietal cortex showed the RS to the canonical proportion even when two sculptures had different identities (e.g. Venus de Milo as the first stimulus and David di Michelangelo as the second), indicating that this region encodes the golden ratio as an abstract rule shared by different sculptures. Those results suggest two separate stages of neural processing for aesthetic information (one in the occipito-temporal and another in the parietal regions) that are hierarchically arranged in the human brain.

  16. Automated science target selection for future Mars rovers: A machine vision approach for the future ESA ExoMars 2018 rover mission

    NASA Astrophysics Data System (ADS)

    Tao, Yu; Muller, Jan-Peter

    2013-04-01

    The ESA ExoMars 2018 rover is planned to perform autonomous science target selection (ASTS) using the approaches described in [1]. However, the approaches shown to date have focused on coarse features rather than the identification of specific geomorphological units. These higher-level "geoobjects" can later be employed to perform intelligent reasoning or machine learning. In this work, we show the next stage in the ASTS through examples displaying the identification of bedding planes (not just linear features in rock-face images) and the identification and discrimination of rocks in a rock-strewn landscape (not just rocks). We initially detect the layers and rocks in 2D processing via morphological gradient detection [1] and graph cuts based segmentation [2] respectively. To take this further requires the retrieval of 3D point clouds and the combined processing of point clouds and images for reasoning about the scene. An example is the differentiation of rocks in rover images. This will depend on knowledge of range and range-order of features. We show demonstrations of these "geo-objects" using MER and MSL (released through the PDS) as well as data collected within the EU-PRoViScout project (http://proviscout.eu). An initial assessment will be performed of the automated "geo-objects" using the OpenSource StereoViewer developed within the EU-PRoViSG project (http://provisg.eu) which is released in sourceforge. In future, additional 3D measurement tools will be developed within the EU-FP7 PRoViDE2 project, which started on 1.1.13. References: [1] M. Woods, A. Shaw, D. Barnes, D. Price, D. Long, D. Pullan, (2009) "Autonomous Science for an ExoMars Rover-Like Mission", Journal of Field Robotics Special Issue: Special Issue on Space Robotics, Part II, Volume 26, Issue 4, pages 358-390. [2] J. Shi, J. Malik, (2000) "Normalized Cuts and Image Segmentation", IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 22. [3] D. Shin, and J.-P. Muller (2009), Stereo workstation for Mars rover image analysis, in EPSC (Europlanets), Potsdam, Germany, EPSC2009-390

  17. Glioblastoma Presenting with Pure Alexia and Palinopsia Involving the Left Inferior Occipital Gyrus and Visual Word Form Area Evaluated with Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging Tractography.

    PubMed

    Huang, Meng; Baskin, David S; Fung, Steve

    2016-05-01

    Rapid word recognition and reading fluency is a specialized cortical process governed by the visual word form area (VWFA), which is localized to the dominant posterior lateral occipitotemporal sulcus/fusiform gyrus. A lesion of the VWFA results in pure alexia without agraphia characterized by letter-by-letter reading. Palinopsia is a visual processing distortion characterized by persistent afterimages and has been reported in lesions involving the nondominant occipitotemporal cortex. A 67-year-old right-handed woman with no neurologic history presented to our emergency department with acute cortical ischemic symptoms that began with a transient episode of receptive aphasia. She also reported inability to read, albeit with retained writing ability. She also saw afterimages of objects. During her stroke workup, an intra-axial circumscribed enhancing mass lesion was discovered involving her dominant posterolateral occipitotemporal lobe. Given the eloquent brain involvement, she underwent preoperative functional magnetic resonance imaging with diffusion tensor imaging tractography and awake craniotomy to maximize resection and preserve function. Many organic lesions involving these regions have been reported in the literature, but to the best of our knowledge, glioblastoma involving the VWFA resulting in both clinical syndromes of pure alexia and palinopsia with superimposed functional magnetic resonance imaging and fiber tract mapping has never been reported before. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Single-Image Distance Measurement by a Smart Mobile Device.

    PubMed

    Chen, Shangwen; Fang, Xianyong; Shen, Jianbing; Wang, Linbo; Shao, Ling

    2017-12-01

    Existing distance measurement methods either require multiple images and special photographing poses or only measure the height with a special view configuration. We propose a novel image-based method that can measure various types of distance from single image captured by a smart mobile device. The embedded accelerometer is used to determine the view orientation of the device. Consequently, pixels can be back-projected to the ground, thanks to the efficient calibration method using two known distances. Then the distance in pixel is transformed to a real distance in centimeter with a linear model parameterized by the magnification ratio. Various types of distance specified in the image can be computed accordingly. Experimental results demonstrate the effectiveness of the proposed method.

  19. Super-resolution imaging based on the temperature-dependent electron-phonon collision frequency effect of metal thin films

    NASA Astrophysics Data System (ADS)

    Ding, Chenliang; Wei, Jingsong; Xiao, Mufei

    2018-05-01

    We herein propose a far-field super-resolution imaging with metal thin films based on the temperature-dependent electron-phonon collision frequency effect. In the proposed method, neither fluorescence labeling nor any special properties are required for the samples. The 100 nm lands and 200 nm grooves on the Blu-ray disk substrates were clearly resolved and imaged through a laser scanning microscope of wavelength 405 nm. The spot size was approximately 0.80 μm , and the imaging resolution of 1/8 of the laser spot size was experimentally obtained. This work can be applied to the far-field super-resolution imaging of samples with neither fluorescence labeling nor any special properties.

  20. Costless Platform for High Resolution Stereoscopic Images of a High Gothic Facade

    NASA Astrophysics Data System (ADS)

    Héno, R.; Chandelier, L.; Schelstraete, D.

    2012-07-01

    In October 2011, the PPMD specialized master's degree students (Photogrammetry, Positionning and Deformation Measurement) of the French ENSG (IGN's School of Geomatics, the Ecole Nationale des Sciences Géographiques) were asked to come and survey the main facade of the cathedral of Amiens, which is very complex as far as size and decoration are concerned. Although it was first planned to use a lift truck for the image survey, budget considerations and taste for experimentation led the project to other perspectives: images shot from the ground level with a long focal camera will be combined to complementary images shot from what higher galleries are available on the main facade with a wide angle camera fixed on a horizontal 2.5 meter long pole. This heteroclite image survey is being processed by the PPMD master's degree students during this academic year. Among other type of products, 3D point clouds will be calculated on specific parts of the facade with both sources of images. If the proposed device and methodology to get full image coverage of the main facade happen to be fruitful, the image acquisition phase will be completed later by another team. This article focuses on the production of 3D point clouds with wide angle images on the rose of the main facade.

  1. Putting Automated Visual Inspection Systems To Work On The Factory Floor: What's Missing?

    NASA Astrophysics Data System (ADS)

    Waltz, Frederick M.; Snyder, Michael A.; Batchelor, Bruce G.

    1990-02-01

    Machine vision systems and other automated visual inspection (AVI) systems have been proving their usefulness in factories for more than a decade. In spite of this, the number of installed systems is far below the number that could profitably be employed. In the opinion of the authors, the primary reason for this is the high cost of customizing vision systems to meet applications requirements. A three-part approach to this problem has proven to be useful: 1. A multi-phase paradigm for customer interaction, system specification, system development, and system installation; 2. A powerful and easy-to-use system development environment, including a a flexible laboratory lighting setup, plus software-based tools to assist in the design of image acquisition systems, b. an image processing environment with a very large repertoire of image processing and feature extraction operations and an easy-to-use command interpreter having macro capabilities, and c. an image analysis environment with high-level constructs, a flexible and powerful syntax, and a "seamless" interface to the image processing level; and 3. A moderately-priced high-speed "target" system fully compatible with the development environment, so that algorithms developed thereon can be transferred directly to the factory environment without further development costs or reprogramming. Items 1 and 2 are covered in other papers1,23,4,5 and are touched on here only briefly. Item 3 is the main subject of this paper. Our major motivation in presenting this paper is to offer suggestions to vendors developing commercial boards and systems, in hopes that the special needs of industrial inspection can be met.

  2. A novel method for surface defect inspection of optic cable with short-wave infrared illuminance

    NASA Astrophysics Data System (ADS)

    Chen, Xiaohong; Liu, Ning; You, Bo; Xiao, Bin

    2016-07-01

    Intelligent on-line detection of cable quality is a crucial issue in optic cable factory, and defects on the surface of optic cable can dramatically depress cable grade. Manual inspection in optic cable quality cannot catch up with the development of optic cable industry due to its low detection efficiency and huge human cost. Therefore, real-time is highly demanded by industry in order to replace the subjective and repetitive process of manual inspection. For this reason, automatic cable defect inspection has been a trend. In this paper, a novel method for surface defect inspection of optic cable with short-wave infrared illuminance is presented. The special condition of short-wave infrared cannot only provide illumination compensation for the weak illumination environment, but also can avoid the problem of exposure when using visible light illuminance, which affects the accuracy of inspection algorithm. A series of image processing algorithms are set up to analyze cable image for the verification of real-time and veracity of the detection method. Unlike some existing detection algorithms which concentrate on the characteristics of defects with an active search way, the proposed method removes the non-defective areas of the image passively at the same time of image processing, which reduces a large amount of computation. OTSU algorithm is used to convert the gray image to the binary image. Furthermore, a threshold window is designed to eliminate the fake defects, and the threshold represents the considered minimum size of defects ε . Besides, a new regional suppression method is proposed to deal with the edge burrs of the cable, which shows the superior performance compared with that of Open-Close operation of mathematical morphological in the boundary processing. Experimental results of 10,000 samples show that the rates of miss detection and false detection are 2.35% and 0.78% respectively when ε equals to 0.5 mm, and the average processing period of one frame image is 2.39 ms. All the improvements have been verified in the paper to show the ability of our inspection method for optic cable.

  3. 1975 Memorial Award Paper. Image generation and display techniques for CT scan data. Thin transverse and reconstructed coronal and sagittal planes.

    PubMed

    Glenn, W V; Johnston, R J; Morton, P E; Dwyer, S J

    1975-01-01

    The various limitations to computerized axial tomographic (CT) interpretation are due in part to the 8-13 mm standard tissue plane thickness and in part to the absence of alternative planes of view, such as coronal or sagittal images. This paper describes a method for gathering multiple overlapped 8 mm transverse sections, subjecting these data to a deconvolution process, and then displaying thin (1 mm) transverse as well as reconstructed coronal and sagittal CT images. Verification of the deconvolution technique with phantom experiments is described. Application of the phantom results to human post mortem CT scan data illustrates this method's faithful reconstruction of coronal and sagittal tissue densities when correlated with actual specimen photographs of a sectioned brain. A special CT procedure, limited basal overlap scanning, is proposed for use on current first generation CT scanners without hardware modification.

  4. The hippocampus and memory of verbal and pictorial material.

    PubMed

    Papanicolaou, Andrew C; Simos, Panagiotis G; Castillo, Eduardo M; Breier, Joshua I; Katz, Jeffrey S; Wright, Anthony A

    2002-01-01

    Recognition of words and kaleidoscope pictures showed a double dissociation of left and right hippocampal activity using magnetic source imaging (MSI). MSI has advantages over alternative imaging techniques that measure hemodynamic changes for identifying regional changes in brain activity in real time and on an individual subject basis without the need for image subtraction. In this study, lists of words or kaleidoscope pictures were presented for memorization followed by tests of list items and foils during which brain activity was recorded. There was greater activation in the left than the right hippocampus with abstract nouns (e.g., relief) and greater activation in the right than the left hippocampus with kaleidoscope pictures. This dissociation was evident on a case by case basis. This study demonstrates the specialization of the two medial temporal lobe (MTL) regions, including the hippocampi, for mnemonic processing of verbal and pictorial items that are difficult to encode verbally.

  5. Centroid Detector Assembly for the AXAF-I Alignment Test System

    NASA Technical Reports Server (NTRS)

    Glenn, Paul

    1995-01-01

    The High Resolution Mirror Assembly (HRMA) of the Advanced X-ray Astrophysics Facility (imaging) (AXAF-I) consists of four nested paraboloids and four nested hyperboloids, all of meter-class size, and all of which are to be assembled and aligned in a special 15 meter tower at Eastman Kodak Company in Rochester, NY. The goals of the alignment are (1) to make the images of the four telescopes coincident; (2) to remove coma from each image individually; and (3) to control and determine the final position of the composite focus. This will be accomplished by the HRMA Aligment Test System (HATS) which is essentially a scanning Hartmann test system. The scanning laser source and the focal plane of the HATS are part of the Centroid Detector Assembly (CDA) which also includes processing electronics and software. In this paper we discuss the design and the measured performance of the CDA.

  6. Production and characterization of pure cryogenic inertial fusion targets

    NASA Astrophysics Data System (ADS)

    Boyd, B. A.; Kamerman, G. W.

    An experimental cryogenic inertial fusion target generator and two optical techniques for automated target inspection are described. The generator produces 100 microns diameter solid hydrogen spheres at a rate compatible with fueling requirements of conceptual inertial fusion power plants. A jet of liquified hydrogen is disrupted into droplets by an ultrasonically excited nozzle. The droplets solidify into microspheres while falling through a chamber maintained below the hydrogen triple point pressure. Stable operation of the generator has been demonstrated for up to three hours. The optical inspection techniques are computer aided photomicrography and coarse diffraction pattern analysis (CDPA). The photomicrography system uses a conventional microscope coupled to a computer by a solid state camera and digital image memory. The computer enhances the stored image and performs feature extraction to determine pellet parameters. The CDPA technique uses Fourier transform optics and a special detector array to perform optical processing of a target image.

  7. Rewritable phosphorescent paper by the control of competing kinetic and thermodynamic self-assembling events

    NASA Astrophysics Data System (ADS)

    Kishimura, Akihiro; Yamashita, Takashi; Yamaguchi, Kentaro; Aida, Takuzo

    2005-07-01

    Security inks have become of increasing importance. They are composed of invisible substances that provide printed images that are not able to be photocopied, and are readable only under special environments. Here we report a novel photoluminescent ink for rewritable media that dichroically emits phosphorescence due to a structural bistability of the self-assembled luminophor. Long-lasting images have been developed by using conventional thermal printers, which are readable only on exposure to ultraviolet light, and more importantly, are thermally erasable for rewriting. Although thermally rewritable printing media have already been developed using visible dyes and cholesteric liquid crystals, security inks that allow rewriting of invisible printed images are unprecedented. We realized this unique feature by the control of kinetic and thermodynamic processes that compete with one another in the self-assembly of the luminophor. This strategy can provide an important step towards the next-generation security technology for information handling.

  8. Analyzing Protein Clusters on the Plasma Membrane: Application of Spatial Statistical Analysis Methods on Super-Resolution Microscopy Images.

    PubMed

    Paparelli, Laura; Corthout, Nikky; Pavie, Benjamin; Annaert, Wim; Munck, Sebastian

    2016-01-01

    The spatial distribution of proteins within the cell affects their capability to interact with other molecules and directly influences cellular processes and signaling. At the plasma membrane, multiple factors drive protein compartmentalization into specialized functional domains, leading to the formation of clusters in which intermolecule interactions are facilitated. Therefore, quantifying protein distributions is a necessity for understanding their regulation and function. The recent advent of super-resolution microscopy has opened up the possibility of imaging protein distributions at the nanometer scale. In parallel, new spatial analysis methods have been developed to quantify distribution patterns in super-resolution images. In this chapter, we provide an overview of super-resolution microscopy and summarize the factors influencing protein arrangements on the plasma membrane. Finally, we highlight methods for analyzing clusterization of plasma membrane proteins, including examples of their applications.

  9. Hybrid imaging: Instrumentation and Data Processing

    NASA Astrophysics Data System (ADS)

    Cal-Gonzalez, Jacobo; Rausch, Ivo; Shiyam Sundar, Lalith K.; Lassen, Martin L.; Muzik, Otto; Moser, Ewald; Papp, Laszlo; Beyer, Thomas

    2018-05-01

    State-of-the-art patient management frequently requires the use of non-invasive imaging methods to assess the anatomy, function or molecular-biological conditions of patients or study subjects. Such imaging methods can be singular, providing either anatomical or molecular information, or they can be combined, thus, providing "anato-metabolic" information. Hybrid imaging denotes image acquisitions on systems that physically combine complementary imaging modalities for an improved diagnostic accuracy and confidence as well as for increased patient comfort. The physical combination of formerly independent imaging modalities was driven by leading innovators in the field of clinical research and benefited from technological advances that permitted the operation of PET and MR in close physical proximity, for example. This review covers milestones of the development of various hybrid imaging systems for use in clinical practice and small-animal research. Special attention is given to technological advances that helped the adoption of hybrid imaging, as well as to introducing methodological concepts that benefit from the availability of complementary anatomical and biological information, such as new types of image reconstruction and data correction schemes. The ultimate goal of hybrid imaging is to provide useful, complementary and quantitative information during patient work-up. Hybrid imaging also opens the door to multi-parametric assessment of diseases, which will help us better understand the causes of various diseases that currently contribute to a large fraction of healthcare costs.

  10. Optical diffraction tomography with fully and partially coherent illumination in high numerical aperture label-free microscopy [Invited].

    PubMed

    Soto, Juan M; Rodrigo, José A; Alieva, Tatiana

    2018-01-01

    Quantitative label-free imaging is an important tool for the study of living microorganisms that, during the last decade, has attracted wide attention from the optical community. Optical diffraction tomography (ODT) is probably the most relevant technique for quantitative label-free 3D imaging applied in wide-field microscopy in the visible range. The ODT is usually performed using spatially coherent light illumination and specially designed holographic microscopes. Nevertheless, the ODT is also compatible with partially coherent illumination and can be realized in conventional wide-field microscopes by applying refocusing techniques, as it has been recently demonstrated. Here, we compare these two ODT modalities, underlining their pros and cons and discussing the optical setups for their implementation. In particular, we pay special attention to a system that is compatible with a conventional wide-field microscope that can be used for both ODT modalities. It consists of two easily attachable modules: the first for sample illumination engineering based on digital light processing technology; the other for focus scanning by using an electrically driven tunable lens. This hardware allows for a programmable selection of the wavelength and the illumination design, and provides fast data acquisition as well. Its performance is experimentally demonstrated in the case of ODT with partially coherent illumination providing speckle-free 3D quantitative imaging.

  11. Detection and display of acoustic window for guiding and training cardiac ultrasound users

    NASA Astrophysics Data System (ADS)

    Huang, Sheng-Wen; Radulescu, Emil; Wang, Shougang; Thiele, Karl; Prater, David; Maxwell, Douglas; Rafter, Patrick; Dupuy, Clement; Drysdale, Jeremy; Erkamp, Ramon

    2014-03-01

    Successful ultrasound data collection strongly relies on the skills of the operator. Among different scans, echocardiography is especially challenging as the heart is surrounded by ribs and lung tissue. Less experienced users might acquire compromised images because of suboptimal hand-eye coordination and less awareness of artifacts. Clearly, there is a need for a tool that can guide and train less experienced users to position the probe optimally. We propose to help users with hand-eye coordination by displaying lines overlaid on B-mode images. The lines indicate the edges of blockages (e.g., ribs) and are updated in real time according to movement of the probe relative to the blockages. They provide information about how probe positioning can be improved. To distinguish between blockage and acoustic window, we use coherence, an indicator of channel data similarity after applying focusing delays. Specialized beamforming was developed to estimate coherence. Image processing is applied to coherence maps to detect unblocked beams and the angle of the lines for display. We built a demonstrator based on a Philips iE33 scanner, from which beamsummed RF data and video output are transferred to a workstation for processing. The detected lines are overlaid on B-mode images and fed back to the scanner display to provide users real-time guidance. Using such information in addition to B-mode images, users will be able to quickly find a suitable acoustic window for optimal image quality, and improve their skill.

  12. Impact of defective pixels in AMLCDs on the perception of medical images

    NASA Astrophysics Data System (ADS)

    Kimpe, Tom; Sneyders, Yuri

    2006-03-01

    With LCD displays, each pixel has its own individual transistor that controls the transmittance of that pixel. Occasionally, these individual transistors will short or alternatively malfunction, resulting in a defective pixel that always shows the same brightness. With ever increasing resolution of displays the number of defect pixels per display increases accordingly. State of the art processes are capable of producing displays with no more than one faulty transistor out of 3 million. A five Mega Pixel medical LCD panel contains 15 million individual sub pixels (3 sub pixels per pixel), each having an individual transistor. This means that a five Mega Pixel display on average will have 5 failing pixels. This paper investigates the visibility of defective pixels and analyzes the possible impact of defective pixels on the perception of medical images. JND simulations were done to study the effect of defective pixels on medical images. Our results indicate that defective LCD pixels can mask subtle features in medical images in an unexpectedly broad area around the defect and therefore may reduce the quality of diagnosis for specific high-demanding areas such as mammography. As a second contribution an innovative solution is proposed. A specialized image processing algorithm can make defective pixels completely invisible and moreover can also recover the information of the defect so that the radiologist perceives the medical image correctly. This correction algorithm has been validated with both JND simulations and psycho visual tests.

  13. The Control Point Library Building System. [for Landsat MSS and RBV geometric image correction

    NASA Technical Reports Server (NTRS)

    Niblack, W.

    1981-01-01

    The Earth Resources Observation System (EROS) Data Center in Sioux Falls, South Dakota distributes precision corrected Landsat MSS and RBV data. These data are derived from master data tapes produced by the Master Data Processor (MDP), NASA's system for computing and applying corrections to the data. Included in the MDP is the Control Point Library Building System (CPLBS), an interactive, menu-driven system which permits a user to build and maintain libraries of control points. The control points are required to achieve the high geometric accuracy desired in the output MSS and RBV data. This paper describes the processing performed by CPLBS, the accuracy of the system, and the host computer and special image viewing equipment employed.

  14. Fabrication of a grazing incidence telescope by grinding and polishing techniques on aluminum

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis; Cash, Webster; Green, James

    1991-01-01

    The paper describes the fabrication processes, by grinding and polishing, used in making the mirrors for a f/2.8 Wolter type-I grazing incidence telescope at Boulder (Colorado), together with testing procedure used to determine the quality of the images. All grinding and polishing is done on specially designed machine that consists of a horizontal spindle to hold and rotate the mirror and a stroke arm machine to push the various tools back and forth along the mirrors length. The progress is checked by means of the ronchi test during all grinding and polishing stages. Current measurements of the telescope's image quality give a FWHM measurement of 44 arcsec, with the goal set at 5-10 arcsec quality.

  15. Computer image processing of up-draft flow motion and severe storm formation observed from satellite

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Smith, R. E.

    1985-01-01

    Special rapid-scan satellite visible and infrared observations have been used to study the life cycle of the clouds from the initiation of updraft flow motion in the atmosphere, the condensation of humid air, the formation of clouds, the development of towering cumulus, the penetration of the tropopause, the collapsing of an overshooting turret, and the dissipation of cloud. The infrared image provides an indication of the equivalent blackbody temperature of the observed cloud tops. By referencing the temperature, height and humidity profiles from rawinsonde observations as the background meteorological data for the instability of the air mass to the satellite infrared data sets at different time periods, the development of convective clouds can be studied in detail.

  16. The Newport Button: The Large Scale Replication Of Combined Three-And Two-Dimensional Holographic Images

    NASA Astrophysics Data System (ADS)

    Cowan, James J.

    1984-05-01

    A unique type of holographic imagery and its large scale replication are described. The "Newport Button", which was designed as an advertising premium item for the Newport Corporation, incorporates a complex overlay of holographic diffraction gratings surrounding a three-dimensional holographic image of a real object. The combined pattern is recorded onto a photosensitive medium from which a metal master is made. The master is subsequently used to repeatedly emboss the pattern into a thin plastic sheet. Individual patterns are then die cut from the metallized plastic and mounted onto buttons. A discussion is given of the diffraction efficiencies of holograms made in this particular fashion and of the special requirements of the replication process.

  17. Design considerations for the beam-waveguide retrofit of a ground antenna station

    NASA Technical Reports Server (NTRS)

    Veruttipong, T.; Withington, J.; Galindo-Israel, V.; Imbriale, W.; Bathker, D.

    1986-01-01

    Retrofitting an antenna that was originally designed without a beam waveguide introduces special difficulties because it is desirable to minimize alteration of the original mechanical truss work and to image the actual feed without distortion at the focal point of the dual-shaped reflector. To obtain an acceptable image, certain Geometrical Optics (GO) design criteria are followed as closely as possible. The problems associated with applying these design criteria to a 34-meter dual-shaped DSN (Deep Space Network) antenna are discussed. The use of various diffraction analysis techniques in the design process is also discussed. GTD and FFT algorithms are particularly necessary at the higher frequencies, while Physical Optics and Spherical Wave Expansions proved necessary at the lower frequencies.

  18. Symmetric nonnegative matrix factorization: algorithms and applications to probabilistic clustering.

    PubMed

    He, Zhaoshui; Xie, Shengli; Zdunek, Rafal; Zhou, Guoxu; Cichocki, Andrzej

    2011-12-01

    Nonnegative matrix factorization (NMF) is an unsupervised learning method useful in various applications including image processing and semantic analysis of documents. This paper focuses on symmetric NMF (SNMF), which is a special case of NMF decomposition. Three parallel multiplicative update algorithms using level 3 basic linear algebra subprograms directly are developed for this problem. First, by minimizing the Euclidean distance, a multiplicative update algorithm is proposed, and its convergence under mild conditions is proved. Based on it, we further propose another two fast parallel methods: α-SNMF and β -SNMF algorithms. All of them are easy to implement. These algorithms are applied to probabilistic clustering. We demonstrate their effectiveness for facial image clustering, document categorization, and pattern clustering in gene expression.

  19. Target recognition and scene interpretation in image/video understanding systems based on network-symbolic models

    NASA Astrophysics Data System (ADS)

    Kuvich, Gary

    2004-08-01

    Vision is only a part of a system that converts visual information into knowledge structures. These structures drive the vision process, resolving ambiguity and uncertainty via feedback, and provide image understanding, which is an interpretation of visual information in terms of these knowledge models. These mechanisms provide a reliable recognition if the object is occluded or cannot be recognized as a whole. It is hard to split the entire system apart, and reliable solutions to the target recognition problems are possible only within the solution of a more generic Image Understanding Problem. Brain reduces informational and computational complexities, using implicit symbolic coding of features, hierarchical compression, and selective processing of visual information. Biologically inspired Network-Symbolic representation, where both systematic structural/logical methods and neural/statistical methods are parts of a single mechanism, is the most feasible for such models. It converts visual information into relational Network-Symbolic structures, avoiding artificial precise computations of 3-dimensional models. Network-Symbolic Transformations derive abstract structures, which allows for invariant recognition of an object as exemplar of a class. Active vision helps creating consistent models. Attention, separation of figure from ground and perceptual grouping are special kinds of network-symbolic transformations. Such Image/Video Understanding Systems will be reliably recognizing targets.

  20. A PC-based multispectral scanner data evaluation workstation: Application to Daedalus scanners

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; James, Mark W.; Smith, Matthew R.; Atkinson, Robert J.

    1991-01-01

    In late 1989, a personal computer (PC)-based data evaluation workstation was developed to support post flight processing of Multispectral Atmospheric Mapping Sensor (MAMS) data. The MAMS Quick View System (QVS) is an image analysis and display system designed to provide the capability to evaluate Daedalus scanner data immediately after an aircraft flight. Even in its original form, the QVS offered the portability of a personal computer with the advanced analysis and display features of a mainframe image analysis system. It was recognized, however, that the original QVS had its limitations, both in speed and processing of MAMS data. Recent efforts are presented that focus on overcoming earlier limitations and adapting the system to a new data tape structure. In doing so, the enhanced Quick View System (QVS2) will accommodate data from any of the four spectrometers used with the Daedalus scanner on the NASA ER2 platform. The QVS2 is designed around the AST 486/33 MHz CPU personal computer and comes with 10 EISA expansion slots, keyboard, and 4.0 mbytes of memory. Specialized PC-McIDAS software provides the main image analysis and display capability for the system. Image analysis and display of the digital scanner data is accomplished with PC-McIDAS software.

Top