Sample records for specially designed instruments

  1. Design, Fabrication and Evaluation of Prototype Wayside Brake Inspection Sensors

    DOT National Transportation Integrated Search

    1980-06-01

    Prototype Wayside instrumentation has been designed, developed, and tested that proves the feasibility of measuring braking system effectiveness on moving rail cars. The instrumentation system includes a specially designed short section of instrument...

  2. Linking Competencies in Educational Settings and Measuring Growth. Research Report. ETS RR-06-12

    ERIC Educational Resources Information Center

    von Davier, Alina A.; Carstensen, Claus H.; von Davier, Matthias

    2006-01-01

    Measuring and linking competencies require special instruments, special data collection designs, and special statistical models. The measurement instruments are tests or tests forms, which can be used in the following situations: The same test can be given repeatedly; two or more parallel tests forms (i.e., forms intended to be similar in…

  3. Design and evaluation of instrument approach procedure charts

    DOT National Transportation Integrated Search

    1993-01-01

    A new format for instrument approach procedure : charts has been designed. Special attention was paid to : improving the readability of communication frequencies, : approach course heading and missed approach instructions. : Selected components of th...

  4. An Analysis and Validation of Vocational Special Needs Inservice Issues.

    ERIC Educational Resources Information Center

    Brown, James M.; And Others

    This report presents the results of a four-year effort to develop a valid and reliable inservice needs assessment instrument. (The instrument was designed to identify competencies that should be the focus of inservice training for vocational educators who teach or provide services to special needs learners.) Chapter I is an introduction. Chapter…

  5. Instrument Systems Analysis and Verification Facility (ISAVF) users guide

    NASA Technical Reports Server (NTRS)

    Davis, J. F.; Thomason, J. O.; Wolfgang, J. L.

    1985-01-01

    The ISAVF facility is primarily an interconnected system of computers, special purpose real time hardware, and associated generalized software systems, which will permit the Instrument System Analysts, Design Engineers and Instrument Scientists, to perform trade off studies, specification development, instrument modeling, and verification of the instrument, hardware performance. It is not the intent of the ISAVF to duplicate or replace existing special purpose facilities such as the Code 710 Optical Laboratories or the Code 750 Test and Evaluation facilities. The ISAVF will provide data acquisition and control services for these facilities, as needed, using remote computer stations attached to the main ISAVF computers via dedicated communication lines.

  6. Instrument accurately measures weld angle and offset

    NASA Technical Reports Server (NTRS)

    Boyd, W. G.

    1967-01-01

    Weld angle is measured to the nearest arc minute and offset to one thousandth of an inch by an instrument designed to use a reference plane at two locations on a test coupon. A special table for computation has been prepared for use with the instrument.

  7. Special Needs Assessments for Linguistic Minority Students in the Brockton (Mass.) Public School System.

    ERIC Educational Resources Information Center

    Sennett, Kenneth H.

    The paper describes development of the Brockton Battery: A Special Needs Assessment for Minority Students, a collection of four independent instruments designed for special education assessment of minority students. Initial sections review demographic information on the city of Brockton, Massachusetts, and on special education in the city.…

  8. Instrument For Simulation Of Piezoelectric Transducers

    NASA Technical Reports Server (NTRS)

    Mcnichol, Randal S.

    1996-01-01

    Electronic instrument designed to simulate dynamic output of integrated-circuit piezoelectric acceleration or pressure transducer. Operates in conjunction with external signal-conditioning circuit, generating square-wave signal of known amplitude for use in calibrating signal-conditioning circuit. Instrument also useful as special-purpose square-wave generator in other applications.

  9. Examining Interrater Agreement Analyses of a Pilot Special Education Observation Tool

    ERIC Educational Resources Information Center

    Johnson, Evelyn S.; Semmelroth, Carrie L.

    2012-01-01

    This paper reports the results of interrater agreement analyses on a pilot special education teacher evaluation instrument, the Recognizing Effective Special Education Teachers (RESET) Observation Tool (OT). Using evidence-based instructional practices as the basis for the evaluation, the RESET OT is designed for the spectrum of different…

  10. Instrumentation for Aerosol and Gas Speciation

    NASA Technical Reports Server (NTRS)

    Coggiola, Michael J.

    1998-01-01

    Using support from NASA Grant No. NAG 2-963, SRI International successfully completed the project, entitled, 'Instrumentation for Aerosol and Gas Speciation.' This effort (SRI Project 7383) covered the design, fabrication, testing, and deployment of a real-time aerosol speciation instrument in NASA's DC-8 aircraft during the Spring 1996 SUbsonic aircraft: Contrail and Cloud Effects Special Study (SUCCESS) mission. This final technical report describes the pertinent details of the instrument design, its abilities, its deployment during SUCCESS and the data acquired from the mission, and the post-mission calibration, data reduction, and analysis.

  11. 26 CFR 1.1275-2 - Special rules relating to debt instruments.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... an arrangement that is designed to avoid the aggregation rule (e.g., debt instruments issued by or to... instruments issued separately to other purchasers. On January 1, 1995, Corporation M issues two series of bonds, Series A and Series B. The two series are sold for cash and have different terms. Although some...

  12. James Webb Space Telescope Integrated Science Instrument Module Thermal Vacuum Thermal Balance Test Campaign at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Glazer, Stuart; Comber, Brian (Inventor)

    2016-01-01

    The James Webb Space Telescope is a large infrared telescope with a 6.5-meter primary mirror, designed as a successor to the Hubble Space Telescope when launched in 2018. Three of the four science instruments contained within the Integrated Science Instrument Module (ISIM) are passively cooled to their operational temperature range of 36K to 40K with radiators, and the fourth instrument is actively cooled to its operational temperature of approximately 6K. Thermal-vacuum testing of the flight science instruments at the ISIM element level has taken place in three separate highly challenging and extremely complex thermal tests within a gaseous helium-cooled shroud inside Goddard Space Flight Centers Space Environment Simulator. Special data acquisition software was developed for these tests to monitor over 1700 flight and test sensor measurements, track over 50 gradients, component rates, and temperature limits in real time against defined constraints and limitations, and guide the complex transition from ambient to final cryogenic temperatures and back. This extremely flexible system has proven highly successful in safeguarding the nearly $2B science payload during the 3.5-month-long thermal tests. Heat flow measurement instrumentation, or Q-meters, were also specially developed for these tests. These devices provide thermal boundaries o the flight hardware while measuring instrument heat loads up to 600 mW with an estimated uncertainty of 2 mW in test, enabling accurate thermal model correlation, hardware design validation, and workmanship verification. The high accuracy heat load measurements provided first evidence of a potentially serious hardware design issue that was subsequently corrected. This paper provides an overview of the ISIM-level thermal-vacuum tests and thermal objectives; explains the thermal test configuration and thermal balances; describes special measurement instrumentation and monitoring and control software; presents key test thermal results; lists problems encountered during testing and lessons learned.

  13. Temperature Sensor

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Weed Instrument Inc. produces a line of thermocouples - temperature sensors - for a variety of industrial and research uses. One of the company's newer products is a thermocouple specially designed for high accuracy at extreme temperatures above 3,000 degrees Fahrenheit. Development of sensor brought substantial increases in Weed Instrument sales and employment.

  14. International Instrumentation Symposium, 34th, Albuquerque, NM, May 2-6, 1988, Proceedings

    NASA Astrophysics Data System (ADS)

    Various papers on aerospace instrumentation are presented. The general topics addressed include: blast and shock, wind tunnel instrumentations and controls, digital/optical sensors, software design/development, special test facilities, fiber optic techniques, electro/fiber optical measurement systems, measurement uncertainty, real time systems, pressure. Also discussed are: flight test and avionics instrumentation, data acquisition techniques, computer applications, thermal force and displacement, science and government, modeling techniques, reentry vehicle testing, strain and pressure.

  15. The optical design of a far infrared imaging FTS for SPICA

    NASA Astrophysics Data System (ADS)

    Pastor, Carmen; Zuluaga, Pablo; Jellema, Willem; González Fernández, Luis Miguel; Belenguer, Tomas; Torres Redondo, Josefina; Kooijman, Peter Paul; Najarro, Francisco; Eggens, Martin; Roelfsema, Peter; Nakagawa, Takao

    2014-08-01

    This paper describes the optical design of the far infrared imaging spectrometer for the JAXA's SPICA mission. The SAFARI instrument, is a cryogenic imaging Fourier transform spectrometer (iFTS), designed to perform backgroundlimited spectroscopic and photometric imaging in the band 34-210 μm. The all-reflective optical system is highly modular and consists of three main modules; input optics module, interferometer module (FTS) and camera bay optics. A special study has been dedicated to the spectroscopic performance of the instrument, in which the spectral response and interference of the instrument have been modeled, as the FTS mechanism scans over the total desired OPD range.

  16. Retention Issues: A Study of Alabama Special Education Teachers

    ERIC Educational Resources Information Center

    Plash, Shawn; Piotrowski, Chris

    2006-01-01

    This study investigated issues that impact attrition, migration and retention of special education teachers in Alabama. The sample comprised 70 teachers designated as "highly-qualified" who responded to a job satisfaction instrument, with a focus on retention issues, developed by Levine (2001). The results indicated that the major…

  17. The New Meteor Radar at Penn State: Design and First Observations

    NASA Technical Reports Server (NTRS)

    Urbina, J.; Seal, R.; Dyrud, L.

    2011-01-01

    In an effort to provide new and improved meteor radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future meteor radars, with primary objectives of making such instruments more capable and more cost effective in order to study the basic properties of the global meteor flux, such as average mass, velocity, and chemical composition. Using low-cost field programmable gate arrays (FPGAs), combined with open source software tools, we describe a design methodology enabling one to develop state-of-the art radar instrumentation, by developing a generalized instrumentation core that can be customized using specialized output stage hardware. Furthermore, using object-oriented programming (OOP) techniques and open-source tools, we illustrate a technique to provide a cost-effective, generalized software framework to uniquely define an instrument s functionality through a customizable interface, implemented by the designer. The new instrument is intended to provide instantaneous profiles of atmospheric parameters and climatology on a daily basis throughout the year. An overview of the instrument design concepts and some of the emerging technologies developed for this meteor radar are presented.

  18. Roving Vehicles for Lunar and Planetary Exploration

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This special bibliography includes the design, development, and application of lunar and Mars rovers; vehicle instrumentation and power supplies; navigation and control technologies; and site selection.

  19. Engineering the Lidar In-space Technology Experiment

    NASA Technical Reports Server (NTRS)

    Couch, Richard H.; Moore, Chris L.

    1992-01-01

    The Lidar In-space Technology Experiment (LITE) is being developed by NASA for flight on the Space Shuttle in early 1994. A discussion of the NASA four-phase design process is followed by a short history of the experiment heritage. The instrument is then described at the subsystem level from an engineering point of view, with special emphasis on the laser and the receiver. Some aspects of designing for the space environment are discussed, as well as the importance of contamination control, and product assurance. Finally, the instrument integration and test process is described and the current status of the instrument development is given.

  20. Instrumentation and Controls Division progress report for the period July 1, 1986 to June 30, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klobe, L.E.

    1988-12-01

    The Instrumentation and Controls (IandC) Division of Oak Ridge National Laboratory (ORNL) performs basic and applied instrumentation and controls research, development and design engineering, specialized instrument design and fabrication, and maintenance services for instruments, electronics, and computers. The IandC Division is one of the largest RandD organizations of its type among government laboratories, and it exists as the result of an organizational strategy to integrate ORNL's instrumentation and controls-related disciplines into one dedicated functional organization to increase the Laboratory's expertise and capabilities in these rapidly expanding, innovative areas of technology. The Division participates in the programs and projects of ORNLmore » by applying its expertise and capabilities in concert with other divisions to perform basic research and mission-oriented technology development. Many of the Division's RandD tasks that are a part of a larger ORNL program are of sufficient scope that the IandC effort constitutes a separate program element with direct funding and management responsibility within the Division. The activities of IandC include performance of an RandD task in IandC facilities, the participation of from one of many IandC engineers and scientists in a multidisciplinary team working in a specific research area or development project, design and fabrication of a special instrument or instrumentation system, or a few hours of maintenance service. In its support and maintenance work, the role of the IandC Division is to provide a level of expertise appropriate to complete a job successfully at minimum overall cost and time schedule---a role which involves IandC in almost all ORNL activities.« less

  1. Design of a Channel Error Simulator using Virtual Instrument Techniques for the Initial Testing of TCP/IP and SCPS Protocols

    NASA Technical Reports Server (NTRS)

    Horan, Stephen; Wang, Ru-Hai

    1999-01-01

    There exists a need for designers and developers to have a method to conveniently test a variety of communications parameters for an overall system design. This is no different when testing network protocols as when testing modulation formats. In this report, we discuss a means of providing a networking test device specifically designed to be used for space communications. This test device is a PC-based Virtual Instrument (VI) programmed using the LabVIEW(TM) version 5 software suite developed by National Instruments(TM)TM. This instrument was designed to be portable and usable by others without special, additional equipment. The programming was designed to replicate a VME-based hardware module developed earlier at New Mexico State University (NMSU) and to provide expanded capabilities exceeding the baseline configuration existing in that module. This report describes the design goals for the VI module in the next section and follows that with a description of the design of the VI instrument. This is followed with a description of the validation tests run on the VI. An application of the error-generating VI to networking protocols is then given.

  2. [Pars plana vitrectomy with the vitreous stripper].

    PubMed

    Klöti, R

    1975-01-01

    We report on the construction and the function of a new microsurgical instrument for vitrectomy. The instrument is introduced into the vitreous cavity through a small scleral incision in the pars plana area. Microscope observation with slit-lamp illumination and a specially designed contact lens are used for this surgical procedure. Our clinical experiences and the indications are discussed.

  3. Advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The program covered the design, construction, and test of a Breadboard Model, Engineering Model, Protoflight Model, Mechanical/Structural Model, and a Life Test Model. Special bench test and calibration equipment was also developed for use on the program. Initially, the instrument was to operate from a 906 n.mi. orbit and be thermally isolated from the spacecraft. The Breadboard Model and the Mechanical/Structural Model were designed and built to these requirements. The spacecraft altitude was changed to 450 n.mi., IFOVs and spectral characteristics were modified, and spacecraft interfaces were changed. The final spacecraft design provided a temperature-controlled Instrument Mounting Platform (IMP) to carry the AVHRR and other instruments. The design of the AVHRR was modified to these new requirements and the modifications were incorporated in the Engineering Model. The Protoflight Model and the Flight Models conform to this design.

  4. Practical Design Guidelines for Fugitive Gas Detection from Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Tandy, William D., Jr.

    Simulation, design, and analysis are combined in this effort to realize a UAV-scale instrument for fugitive gas detection. The contributing material to the industry begins by extending and correlating an integrated Gaussian plume model useful for instrument predictions and trade studies, regardless of the instrument type or molecule of interest. A variety of generally applicable plots are produced from this foundation, including receiver operator curves for leak rate detectability vs. wind speed, beam diameter vs. leak rate detectability, and plots for required scan densities. The atmospheric and instrument parameter trade studies are followed by hardware-specific analyses applicable to differential absorption lidar (DIAL) instruments. A synopsis of the lessons learned from hands-on experiences in the lab further define the design space for DIAL sensors. The dissertation culminates in the detailed design and analysis of two DIAL instrument concepts. The conclusion is that a DIAL instrument capable of reliably detecting a 50 SCFH plume in winds speeds up to 7 mph is on the threshold of being achievable on a quadcopter platform. Of special note is that the effort was funded by a Pipeline and Hazardous Materials Safety Administration grant and performed in collaboration with Ball Aerospace & Technologies.

  5. The Hydrologic Instrumentation Facility of the U.S. Geological Survey

    USGS Publications Warehouse

    Wagner, C.R.; Jeffers, Sharon

    1984-01-01

    The U.S. Geological Survey Water Resources Division has improved support to the agencies field offices by the consolidation of all instrumentation support services in a single facility. This facility known as the Hydrologic Instrumentation Facility (HIF) is located at the National Space Technology Laboratory, Mississippi, about 50 miles east of New Orleans, Louisiana. The HIF is responsible for design and development, testing, evaluation, procurement, warehousing, distribution and repair of a variety of specialized hydrologic instrumentation. The centralization has resulted in more efficient and effective support of the Survey 's hydrologic programs. (USGS)

  6. Instrumentation for submillimeter spectroscopy; Proceedings of the Meeting, Cannes, France, December 5, 6, 1985

    NASA Technical Reports Server (NTRS)

    Kollberg, Eric (Editor)

    1986-01-01

    The design and performance of spectroscopic instruments for submm-wave astronomy are discussed in reviews and reports. Topics examined include superconducting mixers, Schottky-diode mixers, local oscillators, antennas and quasi-optical components, spectrometry, and systems aspects. Special emphasis is given to candidate components for the 8-m heterodyne FIR and Submm Space Telescope being developed by ESA.

  7. Design and Implementation of Instructional Videos for Upper-Division Undergraduate Laboratory Courses

    ERIC Educational Resources Information Center

    Schmidt-McCormack, Jennifer A.; Muniz, Marc N.; Keuter, Ellie C.; Shaw, Scott K.; Cole, Renée S.

    2017-01-01

    Well-designed laboratories can help students master content and science practices by successfully completing the laboratory experiments. Upper-division chemistry laboratory courses often present special challenges for instruction due to the instrument intensive nature of the experiments. To address these challenges, particularly those associated…

  8. A specialized isotope mass spectrometer for noninvasive diagnostics of Helicobacter pylori infection in human beings

    NASA Astrophysics Data System (ADS)

    Blashenkov, N. M.; Sheshenya, E. S.; Solov'ev, S. M.; Sachenko, V. D.; Gall, L. N.; Zarutskii, I. V.; Gall, N. R.

    2013-05-01

    A specialized isotope mass spectrometer for noninvasive diagnostics of Helicobacter pylori infection in human beings based on the carbon-13 isotope breath test has been designed and constructed. Important stages of the work included (i) calculating a low-aberration mass analyzer, (ii) manufacturing and testing special gas inlet system, and (iii) creating a small-size collector of ions. The proposed instrument ensures 13C/12C isotopic ratio measurement to within 1.7‰ (pro mille) accuracy, which corresponds to requirements for a diagnostic tool. Preliminary medical testing showed that the mass spectrometer is applicable to practical diagnostics. The instrument is also capable of measuring isotopic ratios of other light elements, including N, O, B (for BF2+ ions), Ar, Cl, and S.

  9. Design of the laser acupuncture therapeutic instrument.

    PubMed

    Li, Chengwei; Zhen, Huang

    2006-01-01

    Laser acupuncture is defined as the stimulation of traditional acupuncture points with low-intensity, non-thermal laser irradiation. It has been well applied in clinic since the 1970s; however, some traditional acupuncture manipulating methods still cannot be implemented in the design of this kind of instruments, such as lifting and thrusting manipulating method, and twisting and twirling manipulating method, which are the essential acupuncture method in traditional acupuncture. The objective of this work was to design and build a low cost portable laser acupuncture therapeutic instrument, which can implement the two essential acupuncture manipulating methods. Digital PID control theory is used to control the power of laser diode (LD), and to implement the lifting and thrusting manipulating method. Special optical system is designed to implement twisting and twirling manipulating method. M5P430 microcontroller system is used as the control centre of the instrument. The realization of lifting and thrusting manipulating method and twisting and twirling manipulating method are technological innovations in traditional acupuncture coming true in engineering.

  10. Far ultraviolet wide field imaging with a SPARTAN /Experiment of Opportunity/ Payload

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.; Heckathorn, H. M.; Opal, C. B.

    1982-01-01

    A wide-field electrographic Schmidt camera, sensitive in the far UV (1230-2000 A), has been developed and utilized in three sounding rocket flights. It is now being prepared for Shuttle flight as an Experiment of Opportunity Payload (EOP) (recently renamed as the SPARTAN program). In this paper, we discuss (1) design of the instrument and payload, particularly as influenced by our experience in rocket flights; (2) special problems of EOP in comparison to sounding rocket missions; (3) relationship of this experiment to, and special capabilities in comparison to, other space astronomy instruments such as Space Telescope; and (4) a tentative observing plan for an EOP mission.

  11. Electromagnetic sensors for general lightning application

    NASA Technical Reports Server (NTRS)

    Baum, C. E.; Breen, E. L.; Onell, J. P.; Moore, C. B.; Sower, G. D.

    1980-01-01

    Electromagnetic sensors for general lightning applications in measuring environment are discussed as well as system response to the environment. This includes electric and magnetic fields, surface current and charge densities, and currents on conductors. Many EMP sensors are directly applicable to lightning measurements, but there are some special cases of lightning measurements involving direct strikes which require special design considerations for the sensors. The sensors and instrumentation used by NMIMT in collecting data on lightning at South Baldy peak in central New Mexico during the 1978 and 1979 lightning seasons are also discussed. The Langmuir Laboratory facilities and details of the underground shielded instrumentation room and recording equipment are presented.

  12. The Gem Infrasound Logger and Custom-Built Instrumentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Jacob F.; Johnson, Jeffrey B.; Bowman, Daniel C.

    Here, we designed, built, and recorded data with a custom infrasound logger (referred to as the Gem) that is inexpensive, portable, and easy to use. We also describe its design process, qualities, and applications in this article. Field instrumentation is a key element of geophysical data collection, and the quantity and quality of data that can be recorded is determined largely by the characteristics of the instruments used. Geophysicists tend to rely on commercially available instruments, which suffice for many important types of fieldwork. However, commercial instrumentation can fall short in certain roles, which motivates the development of custom sensorsmore » and data loggers. Particularly, we found existing data loggers to be expensive and inconvenient for infrasound campaigns, and developed the Gem infrasound logger in response. In this article, we discuss development of this infrasound logger and the various uses found for it, including projects on volcanoes, high-altitude balloons, and rivers. Further, we demonstrate that when needed, scientists can feasibly design and build their own specialized instruments, and that doing so can enable them to record more and better data at a lower cost.« less

  13. The Gem Infrasound Logger and Custom-Built Instrumentation

    DOE PAGES

    Anderson, Jacob F.; Johnson, Jeffrey B.; Bowman, Daniel C.; ...

    2017-11-22

    Here, we designed, built, and recorded data with a custom infrasound logger (referred to as the Gem) that is inexpensive, portable, and easy to use. We also describe its design process, qualities, and applications in this article. Field instrumentation is a key element of geophysical data collection, and the quantity and quality of data that can be recorded is determined largely by the characteristics of the instruments used. Geophysicists tend to rely on commercially available instruments, which suffice for many important types of fieldwork. However, commercial instrumentation can fall short in certain roles, which motivates the development of custom sensorsmore » and data loggers. Particularly, we found existing data loggers to be expensive and inconvenient for infrasound campaigns, and developed the Gem infrasound logger in response. In this article, we discuss development of this infrasound logger and the various uses found for it, including projects on volcanoes, high-altitude balloons, and rivers. Further, we demonstrate that when needed, scientists can feasibly design and build their own specialized instruments, and that doing so can enable them to record more and better data at a lower cost.« less

  14. Fabrication of capsule assemblies, phase 3

    NASA Technical Reports Server (NTRS)

    Keeton, A. R.; Stemann, L. G.

    1973-01-01

    Thirteen capsule assemblies were fabricated for evaluation of fuel pin design concepts for a fast spectrum lithium cooled compact space power reactor. These instrumented assemblies were designed for real time test of prototype fuel pins. Uranium mononitride fuel pins were encased in AISI 304L stainless steel capsules. Fabrication procedures were fully qualified by process development and assembly qualification tests. Instrumentation reliability was achieved utilizing specially processed and closely controlled thermocouple hot zone fabrication and by thermal screening tests. Overall capsule reliability was achieved with an all electron beam welded assembly.

  15. 75 FR 50688 - Special Conditions: Erickson Air-Crane Incorporated S-64E and S-64F Rotorcraft

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ...) model S-64E and S-64F rotorcraft. These rotorcraft have novel or unusual design features associated with being transport category rotorcraft designed only for use in heavy external-load operations. At the time...) Powerplant Instruments. At the time of original certification, the S-64 had a novel design of being powered...

  16. Problems affecting the fidelity of pressure measuring instruments for planetary probes

    NASA Technical Reports Server (NTRS)

    Hudson, J. B.

    1972-01-01

    Determination is made of the nature and magnitude of surface-related effects that cause errors in pressure measuring instruments, with special reference being made to instruments intended for use in planetary probes. The interaction of gases with clean surfaces of metals likely to be used as gage construction materials was studied. Special emphasis was placed on the adsorption, chemical reaction, and electron-induced desorption processes. The results indicated that all metals tested were subject to surface processes which would degrade gage fidelity. It was also found, however, that the formation of inert adsorbed layers on these metal surfaces, such as carbon on platinum, greatly reduced or eliminated these effects. This process, combined with a system design which avoids contact between reactive gases and hot filaments, appears to offer the most promising solution to the gage fidelity problem.

  17. Design of time interval generator based on hybrid counting method

    NASA Astrophysics Data System (ADS)

    Yao, Yuan; Wang, Zhaoqi; Lu, Houbing; Chen, Lian; Jin, Ge

    2016-10-01

    Time Interval Generators (TIGs) are frequently used for the characterizations or timing operations of instruments in particle physics experiments. Though some "off-the-shelf" TIGs can be employed, the necessity of a custom test system or control system makes the TIGs, being implemented in a programmable device desirable. Nowadays, the feasibility of using Field Programmable Gate Arrays (FPGAs) to implement particle physics instrumentation has been validated in the design of Time-to-Digital Converters (TDCs) for precise time measurement. The FPGA-TDC technique is based on the architectures of Tapped Delay Line (TDL), whose delay cells are down to few tens of picosecond. In this case, FPGA-based TIGs with high delay step are preferable allowing the implementation of customized particle physics instrumentations and other utilities on the same FPGA device. A hybrid counting method for designing TIGs with both high resolution and wide range is presented in this paper. The combination of two different counting methods realizing an integratable TIG is described in detail. A specially designed multiplexer for tap selection is emphatically introduced. The special structure of the multiplexer is devised for minimizing the different additional delays caused by the unpredictable routings from different taps to the output. A Kintex-7 FPGA is used for the hybrid counting-based implementation of a TIG, providing a resolution up to 11 ps and an interval range up to 8 s.

  18. PNIC - A near infrared camera for testing focal plane arrays

    NASA Astrophysics Data System (ADS)

    Hereld, Mark; Harper, D. A.; Pernic, R. J.; Rauscher, Bernard J.

    1990-07-01

    This paper describes the design and the performance of the Astrophysical Research Consortium prototype near-infrared camera (pNIC) designed to test focal plane arrays both on and off the telescope. Special attention is given to the detector in pNIC, the mechanical and optical designs, the electronics, and the instrument interface. Experiments performed to illustrate the most salient aspects of pNIC are described.

  19. International Instrumentation Symposium, 32nd, Seattle, WA, May 5-8, 1986, Proceedings

    NASA Astrophysics Data System (ADS)

    The conference presents papers on blast, shock, and vibration instrumentation; wind tunnel instrumentation and controls; electrooptic and fiber optic instrumentation; special test facilities; reentry vehicle testing; and nondestructive test and acoustic test instrumentation. Other topic include real time systems, flight test and avionics instrumentation, data aquisition and analysis systems, thermal measurements, and advances in measurement technology. Particular attention is given to an automated fringe counting laser interferometer for low frequency vibration measurements, dynamic pressure measurements in pneumatic lines, optically interfaced sensor system for aerospace applications, the picobalance for single microparticle measurements, ellipsometric film thickness, nanometer wear measurement by ultrathin surface layer activation, a rugged electronic scanner designed for turbine test, failure mechanism characterization of platinum alloy, and the thick film strain gage.

  20. Opto-mechanical design for transmission optics in cryogenic space instrumentation

    NASA Astrophysics Data System (ADS)

    Kroes, Gabby; Venema, Lars; Navarro, Ramón

    2017-11-01

    NOVA is involved in the development and realization of various optical astronomical instruments for groundbased as well as space telescopes, with a focus on nearand mid-infrared instrumentation. NOVA has developed a suite of scientific instruments with cryogenic optics for the ESO VLT and VLTI instruments: VISIR, MIDI, the SPIFFI 2Kcamera for SINFONI, X-shooter and MATISSE. Other projects include the cryogenic optics for MIRI for the James Webb Space Telescope and several E-ELT instruments. Mounting optics is always a compromise between firmly fixing the optics and preventing stresses within the optics. The fixing should ensure mechanical stability and thus accurate positioning in various gravity orientations, temperature ranges, during launch, transport or earthquake. On the other hand, the fixings can induce deformations and sometimes birefringence in the optics and thus cause optical errors. Even cracking or breaking of the optics is a risk, especially when using brittle infrared optical materials at the cryogenic temperatures required in instruments for infrared astronomy, where differential expansion of various materials amounts easily to several millimeters per meter. Special kinematic mounts are therefore needed to ensure both accurate positioning and low stress. This paper concentrates on the opto-mechanical design of optics mountings, especially for large transmission optics in cryogenic circumstances in space instruments. It describes the development of temperature-invariant ("a-thermal") kinematic designs, their implementation in ground based instrumentation and ways to make them suitable for space instruments.

  1. Development of low cost instrumentation for non-invasive detection of Helicobacter pylori

    NASA Astrophysics Data System (ADS)

    Kannath, A.; Rutt, H. N.

    2007-02-01

    A new clinical diagnostic instrument for urea breath test (UBT) based non-invasive detection of Helicobacter Pylori is presented here. Its compact and low cost design makes it an economical and commercial alternative for the more expensive Isotope Ratio Mass Spectrometer (IRMS). The instrument is essentially a two channel non-dispersive IR spectrometer that performs high precision ratio measurements of the two carbon isotopomers ( 12CO II and 13CO II) present in exhaled breath. A balanced absorption system configuration was designed where the two channel path lengths would roughly be in the ratio of their concentrations. Equilibrium between the transmitted channel intensities was maintained by using a novel feedback servo mechanism to adjust the length of the 13C channel cell. Extensive computational simulations were performed to study the effect of various possible interferents and their results were considered in the design of the instrument so as to achieve the desired measurement precision of 1%. Specially designed gas cells and a custom made gas filling rig were also developed. A complete virtual interface for both instrument control and data acquisition was implemented in LABVIEW. Initial tests were used to validate the theory and a basic working device was demonstrated.

  2. A Sphere-Scanning Radiometer for Rapid Directional Measurements of Sky and Ground Radiance: the PARABOLA Field Instrument

    NASA Technical Reports Server (NTRS)

    Deering, D. W.; Leone, P.

    1984-01-01

    A unique field instrument, called the PARABOLA, a collapsable support boom, which is self contained and easily transportable to remote sites to enable the acquisition of radiance data for almost the complete (4 pi) sky and ground-looking hemispheres in only 11 seconds was designed. The PARABOLA samples in 15 deg instantaneous field of view sectors in three narrow bandpass spectral channels simultaneously. Field measurement on a variety of earth surface cover types using a truck boom, a specially designed pickup truck mounting system, and a hot air balloon were studied. The PARABOLA instrument has potential for climatological and other studies which require characterization of the distribution of diffuse solar radiation within the sky hemisphere.

  3. A sphere-scanning radiometer for rapid directional measurements of sky and ground radiance: The PARABOLA field instrument

    NASA Astrophysics Data System (ADS)

    Deering, D. W.; Leone, P.

    1984-11-01

    A unique field instrument, called the PARABOLA, a collapsable support boom, which is self contained and easily transportable to remote sites to enable the acquisition of radiance data for almost the complete (4 pi) sky and ground-looking hemispheres in only 11 seconds was designed. The PARABOLA samples in 15 deg instantaneous field of view sectors in three narrow bandpass spectral channels simultaneously. Field measurement on a variety of earth surface cover types using a truck boom, a specially designed pickup truck mounting system, and a hot air balloon were studied. The PARABOLA instrument has potential for climatological and other studies which require characterization of the distribution of diffuse solar radiation within the sky hemisphere.

  4. [System design of small intellectualized ultrasound hyperthermia instrument in the LabVIEW environment].

    PubMed

    Jiang, Feng; Bai, Jingfeng; Chen, Yazhu

    2005-08-01

    Small-scale intellectualized medical instrument has attracted great attention in the field of biomedical engineering, and LabVIEW (Laboratory Virtual Instrument Engineering Workbench) provides a convenient environment for this application due to its inherent advantages. The principle and system structure of the hyperthermia instrument are presented. Type T thermocouples are employed as thermotransducers, whose amplifier consists of two stages, providing built-in ice point compensation and thus improving work stability over temperature. Control signals produced by specially designed circuit drive the programmable counter/timer 8254 chip to generate PWM (Pulse width modulation) wave, which is used as ultrasound radiation energy control signal. Subroutine design topics such as inner-tissue real time feedback temperature control algorithm, water temperature control in the ultrasound applicator are also described. In the cancer tissue temperature control subroutine, the authors exert new improvments to PID (Proportional Integral Differential) algorithm according to the specific demands of the system and achieve strict temperature control to the target tissue region. The system design and PID algorithm improvement have experimentally proved to be reliable and excellent, meeting the requirements of the hyperthermia system.

  5. Effects of Shuttle bay environment on UV sensitive photographic film - Instrumentation for Get-Away-Special

    NASA Technical Reports Server (NTRS)

    Kreplin, R. W.; Dohne, B.; Feldman, U.; Neupert, W. M.

    1984-01-01

    An account is given of a Get-Away-Special experiment flown on Space Shuttles 7 and 8 investigating the effect of the space environment on Shumann emulsions. Shumann emulsions, having low gelatin content and no protective gelatin overcoating, are useful detectors of ultraviolet radiation shorter than 2200 angstroms but are extremely sensitive to environmental conditions and handling. The instrument required no interface with the Shuttle. It was turned on by an aneroid switch at an altitude of 50,000 feet. After that, its operation was controlled completely by a CMOS digital controller. Each hour, two temperatures and one voltage were read and stored in a CMOS programmable read only memory. At intervals, valves were opened and closed to expose SO 652 film strips of three sensitivities to the cargo bay environment for various time periods. The design and operation of the instrument package is described.

  6. Embodied and Distributed Parallel DJing.

    PubMed

    Cappelen, Birgitta; Andersson, Anders-Petter

    2016-01-01

    Everyone has a right to take part in cultural events and activities, such as music performances and music making. Enforcing that right, within Universal Design, is often limited to a focus on physical access to public areas, hearing aids etc., or groups of persons with special needs performing in traditional ways. The latter might be people with disabilities, being musicians playing traditional instruments, or actors playing theatre. In this paper we focus on the innovative potential of including people with special needs, when creating new cultural activities. In our project RHYME our goal was to create health promoting activities for children with severe disabilities, by developing new musical and multimedia technologies. Because of the users' extreme demands and rich contribution, we ended up creating both a new genre of musical instruments and a new art form. We call this new art form Embodied and Distributed Parallel DJing, and the new genre of instruments for Empowering Multi-Sensorial Things.

  7. The Stable Solar Analyzer

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Appourchaux, T.

    1988-01-01

    Progress in the development of an instrument with very high (1:10 billion) wavelength stability designed to measure solar surface velocities and magnetic fields is reported. The instrument determines Doppler and Zeeman shifts in solar spectral lines by a 6-point weighted average. It is built around an electrically tunable solid lithium-niobate Fabry-Perot etalon that is stabilized against a diode laser which itself is locked to a resonance line of cesium 133. Key features are the etalon, which acts as a wide-angle 0.017-nm solar filter, the camera with a specially stabilized shutter, and the instrument control and data collection system. Use of the instrument in helioseismological research is emphasized.

  8. [Engine-driven preparation of curved root canals: a platform to assess physical parameters].

    PubMed

    Peters, O A; Kappeler, S; Bucher, W; Barbakow, F

    2001-01-01

    The number of engine-driven rotary instruments available on the market is steadily increasing. These instruments enable clinicians to prepare better shaped root canals, however, rotary instruments have a higher risk for fracture than hand instruments. Unfortunately, the stresses placed on engine-driven rotary instruments in curved canals are insufficiently studied. The aim of this study was to develop a device which could measure more accurately the physical parameters influencing rotary instruments in curved canals. For this purpose, a specially designed machine was constructed to measure the torque which develops between the rotary instrument and the motor. Apical forces and penetration depths could also be directly measured in real time. A variety of other measurements was also possible because of other special set-ups integrated into the device. In the current study torque was assessed for GT-Files, size 35 with a .12 and sizes 20 with a .12 to .06 taper. In additions to preparations in simulated canals in plastic blocks, the "ISO 3630-1 specification for fracture moment" and "number of cycles till fatigue fracture" was measured. The findings indicated that when instruments were used for preparations, torques up to 40 Nmm were present. This exceeded the static fracture load, which was less than than 13 Nmm for the size 20 with .12 taper. In contrast, the number of rotations were more than 10 times lower when shaping canals in plastic blocks with a 5 mm radius of curvature than the number of rotations to fracture in the "cyclic fatigue test". This suggests that a GT-instrument could be used in ten canals. The apical force was always greater than 1 N and occasionally, 8 N or more was recorded. Further studies on natural teeth with varying canal geometries are required using the specially developed torsional machine to reduce the incidence of instrument fracture. In this way an efficient clinical potential can be confirmed for engine-driven rotary instruments in canal preparation.

  9. USSR and Eastern Europe Scientific Abstracts, Physics and Mathematics, Number 40

    DTIC Science & Technology

    1978-01-25

    the meteorite material with cosmic muons , and due to instrument noise. This phenomenon is attributed to the presence of some spontaneously fissile...references 4: 2 Russian, 2 Western. USSR AN INSTRUMENT FOR VISUALIZING THE X- RAY TOPOGRAPHIC PATTERNS IN P-N STRUCTURES DURING THE FABRICATION PROCESS...Special Design and Engineering Office of Industrial Television [Abstract] The x- ray topographic method according to A. P. Lang or G. Borrman is

  10. A System Approach to Navy Medical Education and Training. Appendix 5. Neuropsychiatric Technician.

    DTIC Science & Technology

    1974-08-31

    phrased behavioral statements. Through the use of special programs, task inventories are prepared, printouts for special purposes are created following ...the Response Guide (p. xiii) at the perforation, and use the correct side to respond to each task or instrument found on the following white pages...response data. They can be processed and manipulated only by high speed computer capability using rigorously designed specialty programs. In addition to

  11. A Comprehensive Review of Sensors and Instrumentation Methods in Devices for Musical Expression

    PubMed Central

    Medeiros, Carolina Brum; Wanderley, Marcelo M.

    2014-01-01

    Digital Musical Instruments (DMIs) are musical instruments typically composed of a control surface where user interaction is measured by sensors whose values are mapped to sound synthesis algorithms. These instruments have gained interest among skilled musicians and performers in the last decades leading to artistic practices including musical performance, interactive installations and dance. The creation of DMIs typically involves several areas, among them: arts, design and engineering. The balance between these areas is an essential task in DMI design so that the resulting instruments are aesthetically appealing, robust, and allow responsive, accurate and repeatable sensing. In this paper, we review the use of sensors in the DMI community as manifested in the proceedings of the International Conference on New Interfaces for Musical Expression (NIME 2009–2013). Focusing on the sensor technologies and signal conditioning techniques used by the NIME community. Although it has been claimed that specifications for artistic tools are harder than those for military applications, this study raises a paradox showing that in most of the cases, DMIs are based on a few basic sensors types and unsophisticated engineering solutions, not taking advantage of more advanced sensing, instrumentation and signal processing techniques that could dramatically improve their response. We aim to raise awareness of limitations of any engineering solution and to assert the benefits of advanced electronics instrumentation design in DMIs. For this, we propose the use of specialized sensors such as strain gages, advanced conditioning circuits and signal processing tools such as sensor fusion. We believe that careful electronic instrumentation design may lead to more responsive instruments. PMID:25068865

  12. A comprehensive review of sensors and instrumentation methods in devices for musical expression.

    PubMed

    Medeiros, Carolina Brum; Wanderley, Marcelo M

    2014-07-25

    Digital Musical Instruments (DMIs) are musical instruments typically composed of a control surface where user interaction is measured by sensors whose values are mapped to sound synthesis algorithms. These instruments have gained interest among skilled musicians and performers in the last decades leading to artistic practices including musical performance, interactive installations and dance. The creation of DMIs typically involves several areas, among them: arts, design and engineering. The balance between these areas is an essential task in DMI design so that the resulting instruments are aesthetically appealing, robust, and allow responsive, accurate and repeatable sensing. In this paper, we review the use of sensors in the DMI community as manifested in the proceedings of the International Conference on New Interfaces for Musical Expression (NIME 2009-2013). Focusing on the sensor technologies and signal conditioning techniques used by the NIME community. Although it has been claimed that specifications for artistic tools are harder than those for military applications, this study raises a paradox showing that in most of the cases, DMIs are based on a few basic sensors types and unsophisticated engineering solutions, not taking advantage of more advanced sensing, instrumentation and signal processing techniques that could dramatically improve their response. We aim to raise awareness of limitations of any engineering solution and to assert the benefits of advanced electronics instrumentation design in DMIs. For this, we propose the use of specialized sensors such as strain gages, advanced conditioning circuits and signal processing tools such as sensor fusion. We believe that careful electronic instrumentation design may lead to more responsive instruments.

  13. The sun's spots and flares

    NASA Technical Reports Server (NTRS)

    Rust, David M.

    1987-01-01

    The Solar Maximum Mission (SMM), designed to study the solar activity, was launched on February 14, 1980, just before the 1980 peak of sunspot and flare activity. The seven instruments aboard the SMM, information received by each of the instruments, and the performance of these instruments are described, together with the repair mission carried out to replace the attitude control module and the defective electronics in the satellite's observatory. The highlights of the scientific results obtained by the SMM mission and the new discoveries made are discussed, with special attention given to the flare loops, flare loop interactions, and the mass ejection events recorded.

  14. A nanoliter volume nuclear magnetic resonance (NMR) system using tunneling magneto-resistive (TMR) sensors to recognize biomolecules

    NASA Astrophysics Data System (ADS)

    Gomez, Pablo

    The need to incorporate advanced engineering tools in biology, biochemistry and medicine is in great demand. Many of the existing instruments and tools are usually expensive and require special facilities. With the advent of nanotechnology in the past decade, new approaches to develop devices and tools have been generated by academia and industry. One such technology, NMR spectroscopy, has been used by biochemists for more than 2 decades to study the molecular structure of chemical compounds. However, NMR spectrometers are very expensive and require special laboratory rooms for their proper operation. High magnetic fields with strengths in the order of several Tesla make these instruments unaffordable to most research groups. This doctoral research proposes a new technology to develop NMR spectrometers that can operate at field strengths of less than 0.5 Tesla using an inexpensive permanent magnet and spin dependent nanoscale magnetic devices. This portable NMR system is intended to analyze samples as small as a few nanoliters. The main problem to resolve when downscaling the variables is to obtain an NMR signal with high Signal-To-Noise-Ratio (SNR). A special Tunneling Magneto-Resistive (TMR) sensor design was developed to achieve this goal. The minimum specifications for each component of the proposed NMR system were established. A complete NMR system was designed based on these minimum requirements. The goat was always to find cost effective realistic components. The novel design of the NMR system uses technologies such as Direct Digital Synthesis (DDS), Digital Signal Processing (DSP) and a special Backpropagation Neural Network that finds the best match of the NMR spectrum. The system was designed, calculated and simulated with excellent results. In addition, a general method to design TMR Sensors was developed. The technique was automated and a computer program was written to help the designer perform this task interactively.

  15. Translations on USSR Science and Technology, Biomedical Sciences, Number 4

    DTIC Science & Technology

    1977-07-11

    Bokser , one of the designers of the radioreflexometer and an assistant professor at the IGMI. "Various laws 34 have been discovered: We react more...reflexometers abroad), specially intended for research on human reaction time, instruments that could be called "human analyzers." O. Ya. Bokser received an...certificates have been granted and eight new instruments have been placed into series production. Of course 0. Ya. Bokser is not the only one that

  16. Design of shared instruments to utilize simulated gravities generated by a large-gradient, high-field superconducting magnet.

    PubMed

    Wang, Y; Yin, D C; Liu, Y M; Shi, J Z; Lu, H M; Shi, Z H; Qian, A R; Shang, P

    2011-03-01

    A high-field superconducting magnet can provide both high-magnetic fields and large-field gradients, which can be used as a special environment for research or practical applications in materials processing, life science studies, physical and chemical reactions, etc. To make full use of a superconducting magnet, shared instruments (the operating platform, sample holders, temperature controller, and observation system) must be prepared as prerequisites. This paper introduces the design of a set of sample holders and a temperature controller in detail with an emphasis on validating the performance of the force and temperature sensors in the high-magnetic field.

  17. Design of shared instruments to utilize simulated gravities generated by a large-gradient, high-field superconducting magnet

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Yin, D. C.; Liu, Y. M.; Shi, J. Z.; Lu, H. M.; Shi, Z. H.; Qian, A. R.; Shang, P.

    2011-03-01

    A high-field superconducting magnet can provide both high-magnetic fields and large-field gradients, which can be used as a special environment for research or practical applications in materials processing, life science studies, physical and chemical reactions, etc. To make full use of a superconducting magnet, shared instruments (the operating platform, sample holders, temperature controller, and observation system) must be prepared as prerequisites. This paper introduces the design of a set of sample holders and a temperature controller in detail with an emphasis on validating the performance of the force and temperature sensors in the high-magnetic field.

  18. Design and manufacturing methods for the integral field unit of the nirspec instrument on JWST

    NASA Astrophysics Data System (ADS)

    Lobb, Dan; Robertson, David

    2017-11-01

    An integral field unit, to be used with the near-IR spectrometer instrument of the James Webb Space Telescope (JWST), is currently under development by SSTL and CfAI. Special problems in design and manufacture of the optical system are outlined, and manufacturing methods for critical optical elements are discussed. The optical system is complex, requiring a total of 95 mirrors to produce 30 output channels. Emphasis is placed on the advantages of free-form machining in aluminium. These include: resistance to launch stress, insensitivity to temperature variations from ambient to cryogenic, and the possibility of relatively complex mirror surface shapes.

  19. Design, Specification and Construction of Specialized Measurement System in the Experimental Building

    NASA Astrophysics Data System (ADS)

    Fedorczak-Cisak, Malgorzata; Kwasnowski, Pawel; Furtak, Marcin; Hayduk, Grzegorz

    2017-10-01

    Experimental buildings for “in situ” research are a very important tool for collecting data on energy efficiency of the energy-saving technologies. One of the most advanced building of this type in Poland is the Maloposkie Laboratory of Energy-saving Buildings at Cracow University of Technology. The building itself is used by scientists as a research object and research tool to test energy-saving technologies. It is equipped with a specialized measuring system consisting of approx. 3 000 different sensors distributed in technical installations and structural elements of the building (walls, ceilings, cornices) and the ground. The authors of the paper will present the innovative design and technology of this specialized instrumentation. They will discuss issues arising during the implementation and use of the building.

  20. The Effectiveness of Worked Examples Associated with Presentation Format and Prior Knowledge: A Web-Based Experiment

    ERIC Educational Resources Information Center

    Hsiao, E-Ling

    2010-01-01

    The aim of this study is to explore whether presentation format and prior knowledge affect the effectiveness of worked examples. The experiment was conducted through a specially designed online instrument. A 2X2X3 factorial before-and-after design was conducted. Three-way ANOVA was employed for data analysis. The result showed first, that prior…

  1. Design and characterization of a novel multimodal fiber-optic probe and spectroscopy system for skin cancer applications

    PubMed Central

    Sharma, Manu; Marple, Eric; Reichenberg, Jason; Tunnell, James W.

    2014-01-01

    The design and characterization of an instrument combining Raman, fluorescence, and reflectance spectroscopic modalities is presented. Instrument development has targeted skin cancer applications as a novel fiber-optic probe has been specially designed to interrogate cutaneous lesions. The instrument is modular and both its software and hardware components are described in depth. Characterization of the fiber-optic probe is also presented, which details the probe's ability to measure diagnostically important parameters such as intrinsic fluorescence and absorption and reduced scattering coefficients along with critical performance metrics such as high Raman signal-to-noise ratios at clinically practical exposure times. Validation results using liquid phantoms show that the probe and system can extract absorption and scattering coefficients with less than 10% error. As the goal is to use the instrument for the clinical early detection of skin cancer, preliminary clinical data are also presented, which indicates our system's ability to measure physiological quantities such as relative collagen and nicotinamide adenine dinucleotide concentration, oxygen saturation, blood volume fraction, and mean vessel diameter. PMID:25173240

  2. Advising Adult Learners. NACADA Task Force Report.

    ERIC Educational Resources Information Center

    Polson, Cheryl; And Others

    A study examined the scope of existing services for adult learners attending universities and colleges. Survey instruments designed to gather data on institutional support for adult learner services, special target groups identified by individual institutions, and institutional barriers confronted by adult learners on campus were mailed to a…

  3. The Study of Programs of Instruction for Handicapped Children and Youth in Day and Residential Facilities. Volume IV. Survey Instruments and Materials for the Survey of Separate Facilities and the Survey of SEA Special Education Divisions.

    ERIC Educational Resources Information Center

    Stephens, Susan A.; Lakin, K. Charlie

    This document, the fourth of five volumes of a study of programs of instruction for handicapped children and youth in separate day and residential facilities throughout the United States, contains instruments and materials used in two surveys designed to gather data for the study: (1) a survey of separate facilities; and (2) a survey of State…

  4. NUCLEON Satellite Mission. Status and Plans

    NASA Technical Reports Server (NTRS)

    Bashindzhagyan, G.; Adams, J.; Bashindzhagyan, P.; Baranova, N.; Christl, M.; Chilingarian, A.; Chupin, I.; Derrickson, J.; Drury, L.; Egorov, N.

    2003-01-01

    The main objective of the NUCLEON satellite mission is direct measurements of the elemental energy spectra of high-energy (10(exp 11) - 10(exp 15) eV) cosmic rays with Kinematic Lightweight Energy Meter (KLEM) device. The design of the instrument has been corrected to increase geometry factor and improve charge resolution. The special mechanical and electronic systems have been developed for installation of the experimental apparatus in a regular Russian satellite. It is planned to launch the NUCLEON instrument in 2006.

  5. Development and application of a novel crop stress and quality instrument

    NASA Astrophysics Data System (ADS)

    Huang, Wengjiang; Sun, Gang; Wang, Jihua; Liu, Liangyun; Zheng, Wengang

    2005-12-01

    In this paper, a portable diagnostic instrument for crop quality analysis was designed and tested, which can measure the normalized difference vegetation index (PRI) and structure insensitive pigment index (NRI) of crop canopy in the field. The instrument have a valid survey area of 1m×1m when the height between instrument and the ground was fixed to 1.3 meter. The crop quality can be assessed based on their PRI and NRI values, so it will be very important for crop management to get these values. The instrument uses sunlight as its light source. There are six special different photoelectrical detectors within red, blue and near infrared bands, which are used for detecting incidence sunlight and reflex light from the canopy of crop. This optical instrument includes photoelectric detector module, signal process and A/D convert module, the data storing and transmission module and human-machine interface module. The detector is the core of the instrument which measures the spectrums at special bands. The microprocessor calculates the NDVI and SIPI value based on the A/D value. And the value can be displayed on the instrument's LCD, stored in the flash memory of instrument and can also be uploaded to PC through the PC's RS232 serial interface. The prototype was tested in the crop field at different view directions. It reveals the on-site and non-sampling mode of crop growth monitoring by fixed on the agricultural machine traveling in the field. Such simple instruments can diagnose the plant growth status by the acquired spectral response.

  6. Higs-instrument: design and demonstration of a high performance gas concentration imager

    NASA Astrophysics Data System (ADS)

    Verlaan, A. L.; Klop, W. A.; Visser, H.; van Brug, H.; Human, J.

    2017-09-01

    Climate change and environmental conditions are high on the political agenda of international governments. Laws and regulations are being setup all around the world to improve the air quality and to reduce the impact. The growth of a number of trace gasses, including CO2, Methane and NOx are especially interesting due to their environmental impact. The regulations made are being based on both models and measurements of the trend of those trace gases over the years. Now the regulations are in place also enforcement and therewith measurements become more and more important. Instruments enabling high spectral and spatial resolution as well as high accurate measurements of trace gases are required to deliver the necessary inputs. Nowadays those measurements are usually performed by space based spectrometers. The requirement for high spectral resolution and measurement accuracy significantly increases the size of the instruments. As a result the instrument and satellite becomes very expensive to develop and to launch. Specialized instruments with a small volume and the required performance will offer significant advantages in both cost and performance. Huib's Innovative Gas Sensor (HIGS, named after its inventor Huib Visser), currently being developed at TNO is an instrument that achieves exactly that. Designed to measure only a single gas concentration, opposed to deriving it from a spectrum, it achieves high performance within a small design volume. The instrument enables instantaneous imaging of the gas distribution of the selected gas. An instrument demonstrator has been developed for NO2 detection. Laboratory measurements proved the measurement technique to be successful. An on-sky measurement campaign is in preparation. This paper addresses both the instrument design as well as the demonstrated performances.

  7. The Design & Development of the Ocean Color Instrument Precision Superduplex Hybrid Bearing Cartridge

    NASA Technical Reports Server (NTRS)

    Schepis, Joseph; Woodard, Timothy; Hakun, Claef; Bergandy, Konrad; Church, Joseph; Ward, Peter; Lee, Michael; Conti, Alfred; Guzek, Jeffrey

    2018-01-01

    A high precision, high-resolution Ocean Color Imaging (OCI) instrument is under development for the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission which requires a pair of medium speed mechanisms to scan the ocean surface continuously. The design of the rotating telescope (RT) mechanism operating at 360 RPM and the half-angle mirror (HAM) mechanism synchronized at 180 RPM was concern for maintaining pointing precision over the required life and continuous operations. An effort was undertaken with the manufacturer to design and analyze a special bearing configuration to minimize axial and radial runout, minimize torque, and maintain nominal contact stresses and stiffness over the operating temperature range and to maximize life. The bearing design, development effort, analysis and testing will be discussed as will the technical challenges that this specific design imposed upon the mechanism engineers. Bearing performance, runout as achieved and verified during encoder installation and operating torque will be described.

  8. Using Web-Based Practice to Enhance Mathematics Learning and Achievement

    ERIC Educational Resources Information Center

    Nguyen, Diem M.; Kulm, Gerald

    2005-01-01

    This article describes 1) the special features and accessibility of an innovative web-based practice instrument (WebMA) designed with randomized short-answer, matching and multiple choice items incorporated with automatically adapted feedback for middle school students; and 2) an exploratory study that compares the effects and contributions of…

  9. Early Screening Inventory (ESI).

    ERIC Educational Resources Information Center

    Welge-Crow, Patricia; And Others

    1990-01-01

    The Early Screening Inventory is designed to identify English- or Spanish-speaking children, ages 4-6, who may need special education services. The instrument measures the ability to acquire new skills in the areas of visual-motor/adaptive, language/cognition, and gross-motor/body-awareness. This paper describes administration, summation of data,…

  10. PVDF flux/mass/velocity/trajectory systems and their applications in space

    NASA Technical Reports Server (NTRS)

    Tuzzolino, Anthony J.

    1994-01-01

    The current status of the University of Chicago Polyvinylidene Fluoride (PVDF) flux/mass/velocity/trajectory instrumentation is summarized. The particle response and thermal stability characteristics of pure PVDF and PVDF copolymer sensors are described, as well as the characteristics of specially constructed two-dimensional position-sensing PVDF sensors. The performance of high-flux systems and of velocity/trajectory systems using these sensors is discussed, and the objectives and designs of a PVDF velocity/trajectory dust instrument for launch on the Advanced Research and Global Observation Satellite (ARGOS) in 1995 and of a high-flux dust instrument for launch on the Cassini spacecraft to Saturn in 1997 are summarized.

  11. DIVA optical telescope

    NASA Astrophysics Data System (ADS)

    Graue, Roland; Kampf, Dirk; Röser, Siegfried; Bastian, Ulrich; Seifert, Walter

    2003-02-01

    The German Instrument for Multi-channel Photometry and Astrometry (DIVA), dedicated to the German (DLR) small extraterrestrial satellite program, is intended as a kind of technology precursor mission to GAIA. DIVA is scheduled for launch in 2004 and shall perform a sky survey to measure within 2 years life time the positions, parallaxes, magnitudes, etc. of about 35 million stars. The main instrument, covering the spectral range of 400-1000nm, observes 2 fields of view (0.6° x 0.77°) by a single Focal Plane Assembly (FPA). The focal length is 11200mm. The DIVA Optomechanics is based on a high precision Three Mirror Anastigmat (TMA) concept with 8 mirrors, 5 of them flat. An extremely high short term stability (torsion tolerance) of 0.3 mas over 10h only has to be realized only by passive means to achieve the astrometrical performance requirements. The paper describes the phase B2 design activities wrt. the optomechanical and thermal design of the main instrument. Special emphasis is given to an exhausting, but very pragmatic thermomechanical and optical performance trade off between a cost effective athermal design concept, applying mirrors and an optical bench made from a specially treated isotropic aluminum alloy, and a thermally stable hybrid material concept based on a Carbon Fiber Reinforced Plastics (CFRP) sandwich structure and Zerodur mirrors. The selection of the final baseline design solution shall be reported. According to the very high long and short scale surface properties of the candidate aluminum mirrors a sophisticated manufacturing procedure was established based on conventional and ion beam polishing techniques. The representative breadboard mirror test results will be given.

  12. Gastroenterology-Urology Devices; Manual Gastroenterology-Urology Surgical Instruments and Accessories. Final rule; technical amendment.

    PubMed

    2017-03-01

    The Food and Drug Administration (FDA) is amending the identification of manual gastroenterology-urology surgical instruments and accessories to reflect that the device does not include specialized surgical instrumentation for use with urogyencologic surgical mesh specifically intended for use as an aid in the insertion, placement, fixation, or anchoring of surgical mesh during urogynecologic procedures ("specialized surgical instrumentation for use with urogynecologic surgical mesh"). These amendments are being made to reflect changes made in the recently issued final reclassification order for specialized surgical instrumentation for use with urogynecologic surgical mesh.

  13. A novel X-ray diffractometer for studies of liquid-liquid interfaces.

    PubMed

    Murphy, Bridget M; Greve, Matthais; Runge, Benjamin; Koops, Christian T; Elsen, Annika; Stettner, Jochim; Seeck, Oliver H; Magnussen, Olaf M

    2014-01-01

    The study of liquid-liquid interfaces with X-ray scattering methods requires special instrumental considerations. A dedicated liquid surface diffractometer employing a tilting double-crystal monochromator in Bragg geometry has been designed. This diffractometer allows reflectivity and grazing-incidence scattering measurements of an immobile mechanically completely decoupled liquid sample, providing high mechanical stability. The available energy range is from 6.4 to 29.4 keV, covering many important absorption edges. The instrument provides access in momentum space out to 2.54 Å(-1) in the surface normal and out to 14.8 Å(-1) in the in-plane direction at 29.4 keV. Owing to its modular design the diffractometer is also suitable for heavy apparatus such as vacuum chambers. The instrument performance is described and examples of X-ray reflectivity studies performed under in situ electrochemical control and on biochemical model systems are given.

  14. Teaching Demands and Adaptive Curriculum Management.

    ERIC Educational Resources Information Center

    Flinders, David

    A qualitative case study was designed to explore the work experience of six high school English teachers. Teachers were observed over a five month period. No formal, systematic rating scale or observation instruments were used; the observer relied upon his experience as a high school teacher and on specialized training in curriculum theory and…

  15. 25 CFR 547.7 - What are the minimum technical hardware standards applicable to Class II gaming systems?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... or integrity of the game, and are specially manufactured or proprietary and not off-the-shelf, must... the potential to affect the outcome or integrity of any game, progressive award, financial instrument... of a robust construction designed to resist determined illegal entry. All protuberances and...

  16. 25 CFR 547.7 - What are the minimum technical hardware standards applicable to Class II gaming systems?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... or integrity of the game, and are specially manufactured or proprietary and not off-the-shelf, must... the potential to affect the outcome or integrity of any game, progressive award, financial instrument... of a robust construction designed to resist determined illegal entry. All protuberances and...

  17. 5 CFR 2634.408 - Special filing requirements for qualified trusts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... independent trustee of a qualified trust, and any other person designated in the trust instrument to perform... form prescribed by appendix B of this part. In addition, an independent trustee and other fiduciaries... filed under the requirements of paragraph (a) of this section by a public filer, nominee, or candidate...

  18. Integrating Theatre Arts Techniques into Your Curriculum

    ERIC Educational Resources Information Center

    McFadden, Lauren Bosworth

    2012-01-01

    The purpose of this study was to examine how the infusion of theatre arts into the language arts and social studies curricula in grades 4 and 5 impacted the cognitive and prosocial development of special populations, as well as the students' attitudes toward learning. An experimental/control group design was employed. Various instruments were used…

  19. Early Screening Inventory. Revised. Examiner's Manual.

    ERIC Educational Resources Information Center

    Meisels, Samuel J.; Marsden, Dorothea B.; Wiske, Martha Stone; Henderson, Laura W.

    The Early Screening Inventory-Revised (ESI-R) is a brief developmental screening instrument that is individually administered to children from 3 to 6 years of age. It is designed to identify children who may need special education services in order to perform successfully in school. The ESI-R is intended to assess the child's ability to acquire…

  20. Structural Safety of a Hubble Space Telescope Science Instrument

    NASA Technical Reports Server (NTRS)

    Lou, M. C.; Brent, D. N.

    1993-01-01

    This paper gives an overview of safety requirements related to structural design and verificationof payloads to be launched and/or retrieved by the Space Shuttle. To demonstrate the generalapproach used to implement these requirements in the development of a typical Shuttle payload, theWide Field/Planetary Camera II, a second generation science instrument currently being developed bythe Jet Propulsion Laboratory (JPL) for the Hubble Space Telescope is used as an example. Inaddition to verification of strength and dynamic characteristics, special emphasis is placed upon thefracture control implementation process, including parts classification and fracture controlacceptability.

  1. Mission description and in-flight operations of ERBE instruments on ERBS and NOAA 10 spacecraft, February 1987 - February 1990

    NASA Technical Reports Server (NTRS)

    Busch, Kathryn A.; Degnan, Keith T.

    1994-01-01

    Instruments of the Earth Radiation Budget Experiment (ERBE) are operating on three different Earth-orbiting spacecraft. The Earth Radiation Budget Satellite (ERBS) is operated by the National Aeronautics and Space Administration (NASA), and the NOAA 9 and NOAA 10 weather satellites are operated by the National Oceanic and Atmospheric Administration (NOAA). This paper is the third in a series that describes the ERBE mission in-orbit environments, instrument design and operational features, and data processing and validation procedures. This paper describes the in-flight operations for the ERBE instruments aboard the ERBS and NOAA 10 spacecraft for the period from February 1987 through February 1990. Validation and archival of radiation measurements made by ERBE instruments during this period were completed in May 1992. This paper covers normal and special operations of the spacecraft and instruments, operational anomalies, and the responses of the instruments to in-orbit and seasonal variations in the solar environment.

  2. Mission Description and In-Flight Operations of ERBE Instruments on ERBS, NOAA 9, and NOAA 10 Spacecraft

    NASA Technical Reports Server (NTRS)

    Snyder, Dianne; Bush, Kathryn; Lee, Kam-Pui; Summerville, Jessica

    1998-01-01

    Instruments of the Earth Radiation Budget Experiment (ERBE) have operated on three different Earth-orbiting spacecraft. The Earth Radiation Budget Satellite (ERBS) is operated by the National Aeronautics and Space Administration (NASA), and the NOAA 9 and NOAA 10 weather satellites are operated by the National Oceanic and Atmospheric Administration (NOAA). This paper is one of a series that describes the ERBE mission, in-orbit environments, instrument design and operational features, and data processing and validation procedures. This paper also describes the in-flight operations for the ERBE nonscanner instruments aboard the ERBS, NOAA 9, and NOAA 10 spacecraft from January 1990 through December 1990. Validation and archives of radiation measurements made by ERBE nonscanner instruments during this period were completed in August 1996. This paper covers normal and special operations of the spacecraft and instruments, operational anomalies, and the responses of the instruments to in-orbit and seasonal variations in the solar environment.

  3. Advanced Instrumentation for Transient Reactor Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corradini, Michael L.; Anderson, Mark; Imel, George

    Transient testing involves placing fuel or material into the core of specialized materials test reactors that are capable of simulating a range of design basis accidents, including reactivity insertion accidents, that require the reactor produce short bursts of intense highpower neutron flux and gamma radiation. Testing fuel behavior in a prototypic neutron environment under high-power, accident-simulation conditions is a key step in licensing nuclear fuels for use in existing and future nuclear power plants. Transient testing of nuclear fuels is needed to develop and prove the safety basis for advanced reactors and fuels. In addition, modern fuel development and designmore » increasingly relies on modeling and simulation efforts that must be informed and validated using specially designed material performance separate effects studies. These studies will require experimental facilities that are able to support variable scale, highly instrumented tests providing data that have appropriate spatial and temporal resolution. Finally, there are efforts now underway to develop advanced light water reactor (LWR) fuels with enhanced performance and accident tolerance. These advanced reactor designs will also require new fuel types. These new fuels need to be tested in a controlled environment in order to learn how they respond to accident conditions. For these applications, transient reactor testing is needed to help design fuels with improved performance. In order to maximize the value of transient testing, there is a need for in-situ transient realtime imaging technology (e.g., the neutron detection and imaging system like the hodoscope) to see fuel motion during rapid transient excursions with a higher degree of spatial and temporal resolution and accuracy. There also exists a need for new small, compact local sensors and instrumentation that are capable of collecting data during transients (e.g., local displacements, temperatures, thermal conductivity, neutron flux, etc.).« less

  4. IFR approval of differential global positioning system (DGPS) special category I instrument approaches using private ground facilities

    DOT National Transportation Integrated Search

    1994-08-14

    This order identifies specific criteria, not presently found in existing standards, which shall be satisfied before Instrument Flight Rules (IFR) operations can be authorized using differential global positioning systems (DGPS) Special Instrument App...

  5. SIG -- The Role of Human-Computer Interaction in Next-Generation Control Rooms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronald L. Boring; Jacques Hugo; Christian Richard

    2005-04-01

    The purpose of this CHI Special Interest Group (SIG) is to facilitate the convergence between human-computer interaction (HCI) and control room design. HCI researchers and practitioners actively need to infuse state-of-the-art interface technology into control rooms to meet usability, safety, and regulatory requirements. This SIG outlines potential HCI contributions to instrumentation and control (I&C) and automation in control rooms as well as to general control room design.

  6. DSN radio science system design and testing for Voyager-Neptune encounter

    NASA Technical Reports Server (NTRS)

    Ham, N. C.; Rebold, T. A.; Weese, J. F.

    1989-01-01

    The Deep Space Network (DSN) Radio Science System presently implemented within the Deep Space Network was designed to meet stringent requirements imposed by the demands of the Voyager-Neptune encounter and future missions. One of the initial parameters related to frequency stability is discussed. The requirement, specification, design, and methodology for measuring this parameter are described. A description of special instrumentation that was developed for the test measurements and initial test data resulting from the system tests performed at Canberra, Australia and Usuda, Japan are given.

  7. The Inclusive Classroom Profile (ICP) Preliminary Findings of Demonstration Study in North Carolina

    ERIC Educational Resources Information Center

    Soukakou, E.; Winton, P.; West, T.

    2012-01-01

    The Inclusive Classroom Profile (ICP) was developed in response to a lack of validated instruments designed specifically to measure the quality of inclusive practices, and it is based on research evidence on the effectiveness of specialized instructional strategies for meeting the individual needs of children in inclusive settings (Odom, 2004;…

  8. School Counseling and Student Outcomes: Summary of Six Statewide Studies

    ERIC Educational Resources Information Center

    Carey, John; Dimmitt, Carey

    2012-01-01

    The six statewide research studies presented in this special issue use a variety of designs, instrumentation, and measures. Nevertheless, they can be integrated at the level of results to shed light on some important questions related to effective practice in the field of school counseling. In fact, one can argue that, when separate studies that…

  9. Advanced LIGO

    NASA Astrophysics Data System (ADS)

    LIGO Scientific Collaboration; Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V.; Affeldt, C.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ashton, G.; Ast, S.; Aston, S. M.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barclay, S.; Barish, B. C.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Batch, J. C.; Baune, C.; Behnke, B.; Bell, A. S.; Bell, C.; Benacquista, M.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D.; Bock, O.; Bodiya, T. P.; Bojtos, P.; Bond, C.; Bork, R.; Born, M.; Bose, Sukanta; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchman, S.; Buikema, A.; Buonanno, A.; Cadonati, L.; Calderón Bustillo, J.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Caride, S.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chen, Y.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Collette, C.; Cominsky, L.; Constancio, M., Jr.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cutler, C.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; Danzmann, K.; Dartez, L.; Dave, I.; Daveloza, H.; Davies, G. S.; Daw, E. J.; DeBra, D.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; D´ıaz, M.; Di Palma, I.; Dojcinoski, G.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fairhurst, S.; Fan, X.; Fang, Q.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferreira, E. C.; Fisher, R. P.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fuentes-Tapia, S.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gaonkar, S.; Gehrels, N.; Gergely, L. Á.; Giaime, J. A.; Giardina, K. D.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gräf, C.; Graff, P. B.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grote, H.; Grunewald, S.; Guido, C. J.; Guo, X.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J.; Hall, E. D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harry, G. M.; Harry, I. W.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hee, S.; Heintze, M.; Heinzel, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hollitt, S. E.; Holt, K.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E.; Howell, E. J.; Hu, Y. M.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Islas, G.; Isler, J. C.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jawahar, S.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Ju, L.; Haris, K.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Korobko, M.; Korth, W. Z.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krueger, C.; Kuehn, G.; Kumar, A.; Kumar, P.; Kuo, L.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Le, J.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Logue, J.; Lombardi, A. L.; Lormand, M.; Lough, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R.; Mageswaran, M.; Maglione, C.; Mailand, K.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Martin, I. W.; Martin, R. M.; Martynov, D.; Marx, J. N.; Mason, K.; Massinger, T. J.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; McWilliams, S.; Meadors, G. D.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P. M.; Miao, H.; Middleton, H.; Mikhailov, E. E.; Miller, A.; Miller, J.; Millhouse, M.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moore, B.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Nayak, R. K.; Necula, V.; Nedkova, K.; Newton, G.; Nguyen, T.; Nielsen, A. B.; Nissanke, S.; Nitz, A. H.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Pai, S.; Palashov, O.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Papa, M. A.; Paris, H.; Patrick, Z.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Post, A.; Poteomkin, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S.; Prestegard, T.; Price, L. R.; Principe, M.; Privitera, S.; Prix, R.; Prokhorov, L.; Puncken, O.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramirez, K.; Raymond, V.; Reed, C. M.; Reid, S.; Reitze, D. H.; Reula, O.; Riles, K.; Robertson, N. A.; Robie, R.; Rollins, J. G.; Roma, V.; Romano, J. D.; Romanov, G.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Sawadsky, A.; Scheuer, J.; Schilling, R.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Strain, K. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sutton, P. J.; Szczepanczyk, M.; Szeifert, G.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Tellez, G.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tomlinson, C.; Torres, C. V.; Torrie, C. I.; Traylor, G.; Tse, M.; Tshilumba, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Vincent-Finley, R.; Vitale, S.; Vo, T.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Williams, L.; Williams, R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Xie, S.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yang, Q.; Zanolin, M.; Zhang, Fan; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.

    2015-04-01

    The Advanced LIGO gravitational wave detectors are second-generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA, USA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in Initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than Initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid and high frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.

  10. Fiber Optic Microswitch For Industrial Use

    NASA Astrophysics Data System (ADS)

    Desforges, F. X.; Jeunhomme, L. B.; Graindorge, Ph.; LeBoudec, G.

    1988-03-01

    Process control instrumentation is a large potential market for fiber optic sensors and particulary for fiber optic microswitches. Use of such devices brings a lot of advantages such as lighter cables, E.M. immunity, intrinsic security due to optical measurement, no grounding problems and so on. However, commercially available fiber optic microswitches exhibit high insertion losses as well as non optimal mechanical design. In fact, these drawbacks are due to operation principles which are based on a mobile shutter displaced between two fibers. The fiber optic microswitch we present here, has been specially designed for harsh environments (oil industry). The patented operation principle uses only one fiber placed in front of a retroreflecting material by the mean of a fiber optic connector. The use of this retroreflector material allows an important reduction of the position tolerances required in two fibers devices, as well as easier fabrication and potential mass production of the optical microswitch. Moreover, such a configuration yields good performances in term of reflection coefficient leading to large dynamic range and consequently large distances (up to 250 m) between the optical microswitch and its optoelectronic instrument. Optomechanical design of the microswitch as well as electronic design of the optoelectronic instrument will be examined and discussed.

  11. Pushability and frictional characteristics of medical instruments.

    PubMed

    Wünsche, P; Werner, C; Bloss, P

    2002-01-01

    A tensile testing equipment is combined with a torque module and a 3D force tranducer to characterize the pushability of catheter systems inside modular vessel phantoms. The modular construction of the phantom allows using two dimensional vessel shapes with different contours. Inside the phantom we put a tube or a guide catheter in which the instruments are pushed or redrawn in the presence of a liquid (water, blood, etc.) at body temperature. During pushing or redrawing we measure axial and rotational values. Additionally, friction forces and coefficients are separately determined by using a special designed friction module. First results are presented and discussed.

  12. Design Parameters and Objectives of a High-­Resolution X-­ray Imaging Crystal Spectrometer for the Large Helical Device (LHD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bitter, M; Gates, D; Neilson, H

    A high-resolution X-ray imaging crystal spectrometer, whose instrumental concept was thoroughly tested on NSTX and Alcator C-Mod, is presently being designed for LHD. The instrument will record spatially resolved spectra of helium-like Ar16+ and provide ion temperature profiles with spatial and temporal resolutions of 1 cm and > 10 ms which are obtained by a tomographic inversion of the spectral data, using the stellarator equilibrium reconstruction codes, STELLOPT and PIES. Since the spectrometer will be equipped with radiation hardened, high count rate, PILATUS detectors,, it is expected to be operational for all experimental conditions on LHD, which include plasmas ofmore » high density and plasmas with auxiliary RF and neutral beam heating. The special design features required by the magnetic field structure at LHD will be described.« less

  13. Instrumentation for remote sensing solar radiation from light aircraft.

    PubMed

    Howard, J A; Barton, I J

    1973-10-01

    The paper outlines the instrumentation needed to study, from a light aircraft, the solar radiation reflected by ground surfaces and the incoming solar radiation. A global shortwave radiometer was mounted on the roof of the aircraft and a specially designed mount was used to support a downward pointing 70-mm aerial camera, a downward pointing narrow-beam pyranometer, and, sometimes, a downward pointing global shortwave pyranometer. Calibration factors were determined for the three pyranometers by comparison with a standard Angstrom compensation pyrheliometer. Results have indicated trends in the albedos of major plant communities and have shown that the calculated albedo values vary according to whether the downward pointing instrument is narrow-beam or global. Comparisons were also made with albedos measured on the ground.

  14. Instrumentation for laser physics and spectroscopy using 32-bit microcontrollers with an Android tablet interface

    NASA Astrophysics Data System (ADS)

    Eyler, E. E.

    2013-10-01

    Several high-performance lab instruments suitable for manual assembly have been developed using low-pin-count 32-bit microcontrollers that communicate with an Android tablet via a USB interface. A single Android tablet app accommodates multiple interface needs by uploading parameter lists and graphical data from the microcontrollers, which are themselves programmed with easily modified C code. The hardware design of the instruments emphasizes low chip counts and is highly modular, relying on small "daughter boards" for special functions such as USB power management, waveform generation, and phase-sensitive signal detection. In one example, a daughter board provides a complete waveform generator and direct digital synthesizer that fits on a 1.5 in. × 0.8 in. circuit card.

  15. A portable, low-cost flight-data measurement and recording system

    NASA Technical Reports Server (NTRS)

    Miller, R. J.

    1982-01-01

    The design of and the experience with an inexpensive, hand-portable, onboard data system used to record four parameters in the final portion of the landing approach and touchdown of an airplane are described. The system utilized a high-quality audio tape recorder and amateur photographic equipment with accessory circuitry rather than specialized instrumentation to given satisfactory results.

  16. Test surfaces useful for calibration of surface profilometers

    DOEpatents

    Yashchuk, Valeriy V; McKinney, Wayne R; Takacs, Peter Z

    2013-12-31

    The present invention provides for test surfaces and methods for calibration of surface profilometers, including interferometric and atomic force microscopes. Calibration is performed using a specially designed test surface, or the Binary Pseudo-random (BPR) grating (array). Utilizing the BPR grating (array) to measure the power spectral density (PSD) spectrum, the profilometer is calibrated by determining the instrumental modulation transfer.

  17. Analysis of tracheid development in suppressed-growth Ponderosa Pine using the FPL ring profiler

    Treesearch

    C. Tim Scott; David W. Vahey

    2012-01-01

    The Ring Profiler was developed to examine the cross-sectional morphology of wood tracheids in a 12.5-mm core sample. The instrument integrates a specially designed staging apparatus with an optical imaging system to obtain high-contrast, high-resolution images containing about 200-500 tracheids. These images are further enhanced and analyzed to extract tracheid cross-...

  18. Methods and Instrumentation for Biomagnetism.

    DTIC Science & Technology

    1988-02-28

    at discrete frequencies from nearby machinery. High levels of radio frequency noise, as from communication systems, may also interfere with the...Buchanan et al., 1987). It depends on both a commercial Gifford-McMahon refrigerator and a specially designed Joule-Thomson refrigerator, where high ...magnetically shielded room. With such electronic noise cancellation, the noise level is essentially the intrinsic sensor noise from high frequencies

  19. Exploring Strategies of Teaching and Classroom Practices in Response to Challenges of Inclusion in a Thai School: A Case Study

    ERIC Educational Resources Information Center

    Kaur, Amrita; Noman, Mohammad; Awang-Hashim, Rosna

    2016-01-01

    The shift from special schools towards inclusive education is becoming increasingly prevalent across education systems around the world. However, the challenges this shift brings remain critical for developing nations where there is a huge chasm between policies and practices. This study used instrumental case study design to examine how a general…

  20. The Wide Field/Planetary Camera 2 (WFPC-2) molecular adsorber

    NASA Technical Reports Server (NTRS)

    Barengoltz, Jack; Moore, Sonya; Soules, David; Voecks, Gerald

    1995-01-01

    A device has been developed at the Jet Propulsion Laboratory, California Institute of Technology, for the adsorption of contaminants inside a space instrument during flight. The molecular adsorber was developed for use on the Wide Field Planetary Camera 2, and it has been shown to perform at its design specifications in the WFPC-2. The basic principle of the molecular adsorber is a zeolite-coated ceramic honeycomb. The arrangement is efficient for adsorption and also provides the needed rigidity to retain the special zeolite coating during the launch vibrational environment. The adsorber, on other forms, is expected to be useful for all flight instruments sensitive to internal sources of contamination. Typically, some internal contamination is unavoidable. A common design solution is to increase the venting to the exterior. However, for truly sensitive instruments, the external contamination environment is more severe. The molecular adsorber acts as a one-way vent to solve this problem. Continued development is planned for this device.

  1. An Isolator System for minimally invasive surgery: the new design

    PubMed Central

    Jansen, Frank-Willem; Dankelman, Jenny

    2010-01-01

    Background The risk of obtaining a postsurgical infection depends highly on the air quality surrounding the exposed tissue, surgical instruments, and materials. Many isolators for open surgery have been invented to create a contained sterile volume around the exposed tissue. With the use of an isolator, a surgical procedure can be performed outside sterile environments. The goal of this study was to design an Isolator System (IS) for standard laparoscopic instruments while instrument movements are not restricted. Methods The developed IS consists of a sleeve to protect the instrument shaft and tip and a special balloon to protect the incision and trocar tube. A coupling mechanism connected at the sleeve allows instrument changes without contamination of the isolated parts. Smoke tests were performed to show that outside air does not enter the new IS during a simulated laparoscopic procedure. Eight test runs and one baseline run inside a contained volume filled with thick smoke were performed to investigate whether smoke particles entered the Isolator System. Filters were used to identify smoke entering the Isolator System. Results Seven filters showed no trace of smoke particles. In one test run, a part of the IS loosened and a small brown spot was visible. The filter from the baseline run was completely covered with a thick layer of particles, proving the effectiveness of the test. During all test runs, the isolated instrument was successfully locked on and unlocked from the isolated trocar. Instrument movements gave no complications. After removal of the isolated instrument, it took three novices an average of 3.1 (standard deviation (SD), 0.7) seconds to replace it correctly on the isolated trocar. Conclusions The designed IS for laparoscopy can increase sterility in environments where sterility cannot be guaranteed. The current design is developed for laparoscopy, but it can easily be adapted for other fields in minimally invasive surgery. PMID:20108141

  2. Imaging IR spectrometer, phase 2

    NASA Technical Reports Server (NTRS)

    Gradie, Jonathan; Lewis, Ralph; Lundeen, Thomas; Wang, Shu-I

    1990-01-01

    The development is examined of a prototype multi-channel infrared imaging spectrometer. The design, construction and preliminary performance is described. This instrument is intended for use with JPL Table Mountain telescope as well as the 88 inch UH telescope on Mauna Kea. The instrument is capable of sampling simultaneously the spectral region of 0.9 to 2.6 um at an average spectral resolution of 1 percent using a cooled (77 K) optical bench, a concave holographic grating and a special order sorting filter to allow the acquisition of the full spectral range on a 128 x 128 HgCdTe infrared detector array. The field of view of the spectrometer is 0.5 arcsec/pixel in mapping mode and designed to be 5 arcsec/pixel in spot mode. The innovative optical design has resulted in a small, transportable spectrometer, capable of remote operation. Commercial applications of this spectrometer design include remote sensing from both space and aircraft platforms as well as groundbased astronomical observations.

  3. Building Resiliency: Introducing the Pre-Service Special Educator Efficacy Scale

    ERIC Educational Resources Information Center

    Lombardo-Graves, Mary M.

    2017-01-01

    The goal of this study was to examine existing teaching self-efficacy instruments for an appropriate measure for pre-service special education candidates. As the review of literature for this study revealed, there were very few self-efficacy instruments specific to special education, and these focused on specific populations and settings. During…

  4. Sonic depth sounder for laboratory and field use

    USGS Publications Warehouse

    Richardson, E.V.; Simons, Daryl B.; Posakony, G.J.

    1961-01-01

    The laboratory investigation of roughness in alluvial channels has led to the development of a special electronic device capable of mapping the streambed configuration under dynamic conditions. This electronic device employs an ultrasonic pulse-echo principle, similar to that of a fathometer, that utilizes microsecond techniques to give high accuracy in shallow depths. This instrument is known as the sonic depth sounder and was designed to cover a depth range of 0 to 4 feet with an accuracy of ? 0.5 percent. The sonic depth sounder is capable of operation at frequencies of 500, 1,000 and 2,000 kilocycles. The ultrasonic beam generated at the transducer is designed to give a minimum-diameter interrogating signal over the extended depth range. The information obtained from a sonic depth sounder is recorded on a strip-chart recorder. This permanent record allows an analysis to be made of the streambed configuration under different dynamic conditions. The model 1024 sonic depth sounder was designed principally as a research instrument to meet laboratory needs. As such, it is somewhat limited in its application as a field instrument on large streams and rivers. The principles employed in this instrument, however, have many potentials for field applications such as the indirect measurement of bed load when the bed roughness is ripples and (or) dunes, depth measurement, determination of bed configuration, and determination of depth of scour around bridge piers and abutments. For field application a modification of the present system into a battery-operated lightweight instrument designed to operate at a depth range of 0 to 30 feet is possible and desirable.

  5. Liquid crystalline fiber optic colorimeter for hydrostatic pressure measurement

    NASA Astrophysics Data System (ADS)

    Wolinski, Tomasz R.; Bajdecki, Waldemar K.; Domanski, Andrzej W.; Karpierz, Miroslaw A.; Konopka, Witold; Nasilowski, T.; Sierakowski, Marek W.; Swillo, Marcin; Dabrowski, Roman S.; Nowinowski-Kruszelnicki, Edward; Wasowski, Janusz

    2001-08-01

    This paper presents results of tests performed on a fiber optic system of liquid crystalline transducer for hydrostatic pressure monitoring based on properties of colorimetry. The system employs pressure-induced deformations occurring in liquid crystalline (LC) cells configured in a homogeneous Frederiks geometry. The sensor is compared of a round LC cell placed inside a specially designed pressure chamber. As a light source we used a typical diode operating at red wavelength and modulated using standard techniques. The pressure transducer was connected to a computer with a specially designed interface built on the bas of advanced ADAM modules. Results indicate that the system offers high response to pressure with reduced temperature sensitivity and, depending on the LC cell used, can be adjusted for monitoring of low hydrostatic pressures up to 6 MPa. These studies have demonstrated the feasibility of fiber optic liquid crystal colorimeter for hydrostatic pressure sensing specially dedicated to pipe- lines, mining instrumentation, and process-control technologies.

  6. Using XML and Java for Astronomical Instrumentation Control

    NASA Technical Reports Server (NTRS)

    Ames, Troy; Koons, Lisa; Sall, Ken; Warsaw, Craig

    2000-01-01

    Traditionally, instrument command and control systems have been highly specialized, consisting mostly of custom code that is difficult to develop, maintain, and extend. Such solutions are initially very costly and are inflexible to subsequent engineering change requests, increasing software maintenance costs. Instrument description is too tightly coupled with details of implementation. NASA Goddard Space Flight Center is developing a general and highly extensible framework that applies to any kind of instrument that can be controlled by a computer. The software architecture combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML), a human readable and machine understandable way to describe structured data. A key aspect of the object-oriented architecture is software that is driven by an instrument description, written using the Instrument Markup Language (IML). ]ML is used to describe graphical user interfaces to control and monitor the instrument, command sets and command formats, data streams, and communication mechanisms. Although the current effort is targeted for the High-resolution Airborne Wideband Camera, a first-light instrument of the Stratospheric Observatory for Infrared Astronomy, the framework is designed to be generic and extensible so that it can be applied to any instrument.

  7. Window Observational Rack Facility (WORF)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Developed by Boeing, at the Marshall Space Flight Center (MSFC) Space Station Manufacturing building, the Window Observational Rack Facility (WORF) will help Space Station crews take some of the best photographs ever snapped from an orbiting spacecraft by eliminating glare and allowing researchers to control their cameras and other equipment from the ground. The WORF is designed to make the best possible use of the high-quality research window in the Space Station's U.S. Destiny laboratory module. Engineers at the MSFC proposed a derivative of the EXPRESS (Expedite the Processing of Experiments to the Space Station) Rack already used on the Space Station and were given the go-ahead. The EXPRESS rack can hold a wide variety of experiments and provide them with power, communications, data, cooling, fluids, and other utilities - all the things that Earth-observing experiment instruments would need. WORF will supply payloads with power, data, cooling, video downlink, and stable, standardized interfaces for mounting imaging instruments. Similar to specialized orbital observatories, the interior of the rack is sealed against light and coated with a special low-reflectant black paint, so payloads will be able to observe low-light-level subjects such as the faint glow of auroras. Cameras and remote sensing instruments in the WORF can be preprogrammed, controlled from the ground, or operated by a Station crewmember by using a flexible shroud designed to cinch tightly around the crewmember's waist. The WORF is scheduled to be launched aboard the STS-114 Space Shuttle mission in the year 2003.

  8. The new neutron radiography/tomography/imaging station DINGO at OPAL

    NASA Astrophysics Data System (ADS)

    Garbe, U.; Randall, T.; Hughes, C.

    2011-09-01

    A new neutron imaging instrument will be built to support the area of neutron imaging research (neutron radiography/tomography) at ANSTO. The instrument will be designed for an international user community and for routine quality control for defence, industrial, mining, space and aircraft applications. It will also be a useful tool for assessing oil and water flow in sedimentary rock reservoirs (like the North West Shelf), assessing water damage in aircraft components, and the study of hydrogen distribution and cracking in steel. The instrument is planned to be completed by the end of June 2013 and is currently in the design stage. The usable neutron flux is mainly determined by the neutron source, but it also depends on the instrument position and the resolution. The designated instrument position for DINGO is the beam port HB-2 in the reactor hall. The estimated flux for an L/ D of approximately 250 at HB-2 is calculated by Mcstas simulation in a range of 4.75×10 7 n/cm 2 s, which is in the same range of other facilities like ANSTARES (FRM II; Schillinger et al., 2004 [1]) or BT2 (NIST; Hussey et al., 2005 [2]). A special feature of DINGO is the in-pile collimator place in front of the main shutter at HB-2. The collimator offers two pinholes with a possible L/ D of 250 and 1000. A secondary collimator will separate the two beams and block one. The whole instrument will operate in two different positions, one for high resolution and the other for high speed.

  9. 14 CFR Special Federal Aviation... - Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV) Operations using Global Positioning Systems (GPS) in... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL...

  10. 14 CFR Special Federal Aviation... - Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV) Operations using Global Positioning Systems (GPS) in... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL...

  11. 14 CFR Special Federal Aviation... - Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV) Operations using Global Positioning Systems (GPS) in... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL...

  12. 14 CFR Special Federal Aviation... - Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV) Operations using Global Positioning Systems (GPS) in... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL...

  13. 14 CFR Special Federal Aviation... - Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV) Operations using Global Positioning Systems (GPS) in... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL...

  14. Experimental performance and acoustic investigation of modern, counterrotating blade concepts

    NASA Technical Reports Server (NTRS)

    Hoff, G. E.

    1990-01-01

    The aerodynamic, acoustic, and aeromechanical performance of counterrotating blade concepts were evaluated both theoretically and experimentally. Analytical methods development and design are addressed. Utilizing the analytical methods which evolved during the conduct of this work, aerodynamic and aeroacoustic predictions were developed, which were compared to NASA and GE wind tunnel test results. The detailed mechanical design and fabrication of five different composite shell/titanium spar counterrotating blade set configurations are presented. Design philosophy, analyses methods, and material geometry are addressed, as well as the influence of aerodynamics, aeromechanics, and aeroacoustics on the design procedures. Blade fabrication and quality control procedures are detailed; bench testing procedures and results of blade integrity verification are presented; and instrumentation associated with the bench testing also is identified. Additional hardware to support specialized testing is described, as are operating blade instrumentation and the associated stress limits. The five counterrotating blade concepts were scaled to a tip diameter of 2 feet, so they could be incorporated into MPS (model propulsion simulators). Aerodynamic and aeroacoustic performance testing was conducted in the NASA Lewis 8 x 6 supersonic and 9 x 15 V/STOL (vertical or short takeoff and landing) wind tunnels and in the GE freejet anechoic test chamber (Cell 41) to generate an experimental data base for these counterrotating blade designs. Test facility and MPS vehicle matrices are provided, and test procedures are presented. Effects on performance of rotor-to-rotor spacing, angle-of-attack, pylon proximity, blade number, reduced-diameter aft blades, and mismatched rotor speeds are addressed. Counterrotating blade and specialized aeromechanical hub stability test results are also furnished.

  15. Experimental study of the response functions of direct-reading instruments measuring surface-area concentration of airborne nanostructured particles

    NASA Astrophysics Data System (ADS)

    Bau, Sébastien; Witschger, Olivier; Gensdarmes, François; Thomas, Dominique

    2009-05-01

    An increasing number of experimental and theoretical studies focus on airborne nanoparticles (NP) in relation with many aspects of risk assessment to move forward our understanding of the hazards, the actual exposures in the workplace, and the limits of engineering controls and personal protective equipment with regard to NP. As a consequence, generating airborne NP with controlled properties constitutes an important challenge. In parallel, toxicological studies have been carried out, and most of them support the concept that surface-area could be a relevant metric for characterizing exposure to airborne NP [1]. To provide NP surface-area concentration measurements, some direct-reading instruments have been designed, based on attachment rate of unipolar ions to NP by diffusion. However, very few information is available concerning the performances of these instruments and the parameters that could affect their responses. In this context, our work aims at characterizing the actual available instruments providing airborne NP surface-area concentration. The instruments (a- LQ1-DC, Matter Engineering; b-AeroTrak™ 9000, TSI; c- NSAM, TSI model 3550;) are thought to be relevant for further workplace exposure characterization and monitoring. To achieve our work, an experimental facility (named CAIMAN) was specially designed, built and characterized.

  16. Digital combined instrument transformer for automated electric power supply control systems of mining companies

    NASA Astrophysics Data System (ADS)

    Topolsky, D. V.; Gonenko, T. V.; Khatsevskiy, V. F.

    2017-10-01

    The present paper discusses ways to solve the problem of enhancing operating efficiency of automated electric power supply control systems of mining companies. According to the authors, one of the ways to solve this problem is intellectualization of the electric power supply control system equipment. To enhance efficiency of electric power supply control and electricity metering, it is proposed to use specially designed digital combined instrument current and voltage transformers. This equipment conforms to IEC 61850 international standard and is adapted for integration into the digital substation structure. Tests were performed to check conformity of an experimental prototype of the digital combined instrument current and voltage transformer with IEC 61850 standard. The test results have shown that the considered equipment meets the requirements of the standard.

  17. Increasing Cultural Sensitivity of the Addiction Severity Index (ASI): An Example with Native Americans in North Dakota. Special Report.

    ERIC Educational Resources Information Center

    Carise, Deni; McLellan, A. Thomas

    The Addiction Severity Index (ASI), used throughout the United States and other countries, is the most widely used assessment tool in the addictions field. It is a semi-structured assessment instrument designed for use with clients for substance abuse treatment. The ASI gathers information in seven important areas of a patient's life: medical,…

  18. Validation of the Noncommissioned Officer Special Assignment Battery

    DTIC Science & Technology

    2013-03-01

    scoring designed to reduce the effects of faking in personality assessment [ Doctoral Dissertation]. University of Illinois at Urbana-Champaign. Stark, S...conducted factor analyses to determine whether these scales could be reasonably combined to create a reduced number of criteria for examining WAI and NSAB...has been that previously validated instruments for this purpose required proctored testing. To make it easier for Soldiers to be tested, reduce

  19. 78 FR 11658 - National Institute of General Medical Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... Institute of General Medical Sciences Special Emphasis Panel; Biomedical Instrumentation 1. Date: March 12... Sciences Special Emphasis Panel; Biomedical Instrumentation 2. Date: March 13, 2013. Time: 8:30 a.m. to 5...

  20. RADIUM AND MESOTHORIUM POISONING AND DOSIMETRY AND INSTRUMENTATION TECHNIQUES IN APPLIED RADIOACTIVITY. Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The study of the toxicity of radium and radium decay products was continued. Special emphasis was placed on the acquisition of data on patients selected by record of exposure. Data are tabulated on the radium body burden of about 40 individuals. About half the measurements were made on living persons and about half on tooth or bone specimens. Case history summaries and all available medical data are summarized for persons under study. An investigation of the gamma shielding properties of dunite was continued. Design modifications and calibration of radiation detection instruments are discussed. (For preceding period see AECU-3504.) (C.H.)

  1. Thermoelectric converters for alternating current standards

    NASA Astrophysics Data System (ADS)

    Anatychuk, L. I.; Taschuk, D. D.

    2012-06-01

    Thermoelectric converters of alternating current remain priority instruments when creating standard equipment. This work presents the results of design and manufacture of alternating current converter for a military standard of alternating current in Ukraine. Results of simulation of temperature distribution in converter elements, ways of optimization to improve the accuracy of alternating current signal reproduction are presented. Results of metrological trials are given. The quality of thermoelectric material specially created for alternating current metrology is verified. The converter was used in alternating current standard for the frequency range from 10 Hz to 30 MHz. The efficiency of using thermoelectric signal converters in measuring instruments is confirmed.

  2. Evaluating the Quality of Learning Environments and Teaching Practice in Special Schools

    ERIC Educational Resources Information Center

    Hedegaard-Soerensen, Lotte; Tetler, Susan

    2016-01-01

    This article reports on findings of a study which objective is the development of an instrument for systematic evaluation and improvement of the quality of teaching in special schools. The article describes the research process which led to the construction of the instrument as well as the way teachers can use the instrument to improve the quality…

  3. Pre-bent instruments used in single-port laparoscopic surgery versus conventional laparoscopic surgery: comparative study of performance in a dry lab.

    PubMed

    Miernik, Arkadiusz; Schoenthaler, Martin; Lilienthal, Kerstin; Frankenschmidt, Alexander; Karcz, Wojciech Konrad; Kuesters, Simon

    2012-07-01

    Different types of single-incision laparoscopic surgery (SILS) have become increasingly popular. Although SILS is technically even more challenging than conventional laparoscopy, published data of first clinical series seem to demonstrate the feasibility of these approaches. Various attempts have been made to overcome restrictions due to loss of triangulation in SILS by specially designed SILS-specific instruments. This study involving novices in a dry lab compared task performances between conventional laparoscopic surgery (CLS) and single-port laparoscopic surgery (SPLS) using newly designed pre-bent instruments. In this study, 90 medical students without previous experience in laparoscopic techniques were randomly assigned to undergo one of three procedures: CLS, SPLS using two pre-bent instruments (SPLS-pp), or SPLS using one pre-bent and one straight laparoscopic instrument (SPLS-ps). In the dry lab, the participants performed four typical laparoscopic tasks of increasing difficulty. Evaluation included performance times or number of completed tasks within a given time frame. All performances were videotaped and evaluated for unsuccessful attempts and unwanted interactions of instruments. Using subjective questionnaires, the participants rated difficulties with two-dimensional vision and coordination of instruments. Task performances were significantly better in the CLS group than in either SPLS group. The SPLS-ps group showed a tendency toward better performances than the SPLS-pp group, but the difference was not significant. Video sequences and participants` questionnaires showed instrument interaction as the major problem in the single-incision surgery groups. Although SILS is feasible, as shown in clinical series published by laparoscopically experienced experts, SILS techniques are demanding due to restrictions that come with the loss of triangulation. These can be compensated only partially by currently available SILS-designed instruments. The future of SILS depends on further improvements in the available equipment or the development of new approaches such as needlescopically assisted or robotically assisted procedures.

  4. Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis

    NASA Astrophysics Data System (ADS)

    Gann, E.; Young, A. T.; Collins, B. A.; Yan, H.; Nasiatka, J.; Padmore, H. A.; Ade, H.; Hexemer, A.; Wang, C.

    2012-04-01

    We present the development and characterization of a dedicated resonant soft x-ray scattering facility. Capable of operation over a wide energy range, the beamline and endstation are primarily used for scattering from soft matter systems around the carbon K-edge (˜285 eV). We describe the specialized design of the instrument and characteristics of the beamline. Operational characteristics of immediate interest to users such as polarization control, degree of higher harmonic spectral contamination, and detector noise are delineated. Of special interest is the development of a higher harmonic rejection system that improves the spectral purity of the x-ray beam. Special software and a user-friendly interface have been implemented to allow real-time data processing and preliminary data analysis simultaneous with data acquisition.

  5. Measurement of vortex flow fields

    NASA Technical Reports Server (NTRS)

    Mcdevitt, T. Kevin; Ambur, Todd A.; Orngard, Gary M.; Owen, F. Kevin

    1992-01-01

    A 3-D laser fluorescence anemometer (LFA) was designed, built, and demonstrated for use in the Langley 16 x 24 inch Water Tunnel. Innovative optical design flexibility combined with compact and portable data acquisition and control systems were incorporated into the instrument. This will allow its use by NASA in other test facilities. A versatile fiber optic system facilities normal and off-axis laser beam alignment, removes mirror losses and improves laser safety. This added optical flexibility will also enable simple adaptation for use in the adjacent jet facility. New proprietary concepts in transmitting color separation, light collection, and novel prism separation of the scattered light was also designed and built into the system. Off-axis beam traverse and alignment complexity led to the requirement for a specialized, programmable transverse controller, and the inclusion of an additional traverse for the off-axis arm. To meet this challenge, an 'in-house' prototype unit was designed and built and traverse control software developed specifically for the water tunnel traverse applications. A specialized data acquisition interface was also required. This was designed and built for the LFA system.

  6. A Design of a Novel Airborne Aerosol Spectrometer for Remote Sensing Validation

    NASA Astrophysics Data System (ADS)

    Adler, G. A.; Brock, C. A.; Dube, W. P.; Erdesz, F.; Gordon, T.; Law, D. C.; Manfred, K.; Mason, B. J.; McLaughlin, R. J.; Richardson, M.; Wagner, N. L.; Washenfelder, R. A.; Murphy, D. M.

    2016-12-01

    Aerosols and their effect on the radiative properties of clouds contribute one of the largest sources of uncertainty to the Earth's energy budget. Many current global assessments, of atmospheric aerosol radiative forcing rely heavily on remote sensing observation; therefore, in situ aircraft and ground-based measurements are essential for validation of remote sensing measurements. Cavity ringdown spectrometers (CRD) measure aerosol extinction and are commonly used to validate remote sensing observations. These instruments have been deployed on aircraft based platforms over the years thus providing the opportunity to measure these properties over large areas in various conditions. However, deployment of the CRD on an aircraft platform has drawbacks. Typically, aircraft based CRDs draw sampled aerosol into a cabin based instrument through long lengths of tubing. This limits the ability of the instrument to measure: 1) Course mode aerosols (e.g. dust) 2) Aerosols at high relative humidity (above 90%) Here we describe the design of a novel aircraft based open path CRD. The open path CRD is intended to be mounted external to the cabin and has no sample tubing for aerosol delivery, thus measuring optical properties of all aerosol at the ambient conditions. However, the design of an open path CRD for operation on a wing-mounted aircraft platform has certain design complexities. The instrument's special design features include 2 CRD channels, 2 airfoils around the open Path CRD and a configuration which could be easily aligned and rigid at the same time. This novel implementation of cavity ringdown spectroscopy will provide a better assessment of the accuracy of remote sensing satellite measurements

  7. An SSM/I radiometer simulator for studies of microwave emission from soil. [Special Sensor Microwave/Imager

    NASA Technical Reports Server (NTRS)

    Galantowicz, J. F.; England, A. W.

    1992-01-01

    A ground-based simulator of the defense meterological satellite program special sensor microwave/imager (DMSP SSM/I) is described, and its integration with micrometeorological instrumentation for an investigation of microwave emission from moist and frozen soils is discussed. The simulator consists of three single polarization radiometers which are capable of both Dicke radiometer and total power radiometer modes of operation. The radiometers are designed for untended operation through a local computer and a daily telephone link to a laboratory. The functional characteristics of the radiometers are described, together with their field deployment configuration and an example of performance parameters.

  8. Modular and Adaptive Control of Sound Processing

    NASA Astrophysics Data System (ADS)

    van Nort, Douglas

    This dissertation presents research into the creation of systems for the control of sound synthesis and processing. The focus differs from much of the work related to digital musical instrument design, which has rightly concentrated on the physicality of the instrument and interface: sensor design, choice of controller, feedback to performer and so on. Often times a particular choice of sound processing is made, and the resultant parameters from the physical interface are conditioned and mapped to the available sound parameters in an exploratory fashion. The main goal of the work presented here is to demonstrate the importance of the space that lies between physical interface design and the choice of sound manipulation algorithm, and to present a new framework for instrument design that strongly considers this essential part of the design process. In particular, this research takes the viewpoint that instrument designs should be considered in a musical control context, and that both control and sound dynamics must be considered in tandem. In order to achieve this holistic approach, the work presented in this dissertation assumes complementary points of view. Instrument design is first seen as a function of musical context, focusing on electroacoustic music and leading to a view on gesture that relates perceived musical intent to the dynamics of an instrumental system. The important design concept of mapping is then discussed from a theoretical and conceptual point of view, relating perceptual, systems and mathematically-oriented ways of examining the subject. This theoretical framework gives rise to a mapping design space, functional analysis of pertinent existing literature, implementations of mapping tools, instrumental control designs and several perceptual studies that explore the influence of mapping structure. Each of these reflect a high-level approach in which control structures are imposed on top of a high-dimensional space of control and sound synthesis parameters. In this view, desired gestural dynamics and sonic response are achieved through modular construction of mapping layers that are themselves subject to parametric control. Complementing this view of the design process, the work concludes with an approach in which the creation of gestural control/sound dynamics are considered in the low-level of the underlying sound model. The result is an adaptive system that is specialized to noise-based transformations that are particularly relevant in an electroacoustic music context. Taken together, these different approaches to design and evaluation result in a unified framework for creation of an instrumental system. The key point is that this framework addresses the influence that mapping structure and control dynamics have on the perceived feel of the instrument. Each of the results illustrate this using either top-down or bottom-up approaches that consider musical control context, thereby pointing to the greater potential for refined sonic articulation that can be had by combining them in the design process.

  9. A new DOAS instrument on long-distance IAGOS-CARIBIC flights and airborne DOAS applications

    NASA Astrophysics Data System (ADS)

    Penth, Lara; Frieß, Udo; Pöhler, Denis; Platt, Ulrich; Zahn, Andreas

    2017-04-01

    Within the IAGOS-CARIBIC project airborne DOAS (Differential Optical Absorption Spectroscopy) measurements of atmospheric trace gases are performed aboard a commercial long range passenger aircraft from Lufthansa since 2005. They provide a unique dataset for episodic, long-term and seasonal observations. The DOAS instrument is the only remote sensing technique aboard. DOAS is a well-established remote sensing technique to retrieve trace gas columns in the atmosphere from scattered light spectra of the sun. A series of trace gas species can be observed simultaneously, including nitrogen dioxide (NO2), sulphur dioxide (SO2), bromine oxide (BrO), nitrous acid (HONO), formaldehyde (HCHO) and ozone (O3). Since DOAS is a contact-free measurement technique, it is specially well suited for measuring highly reactive trace gases. It is widely used on different platforms and the airborne DOAS measurements are filling the gap between ground-based measurements and satellite data. The CARIBIC DOAS instrument is divided into an instrument unit within the CARIBIC container in the cargo hold of the aircraft, a telescope unit, which is specially designed for the permanently mounted pylon underneath the aircraft, and fiber optics in between. The instrument unit consists of three temperature stabilized spectrometers and the readout and control electronics. The telescope unit contains three telescopes, which observe scattered sunlight to the right under the elevation angles of +10˚ , -10˚ and -82˚ (nadir) relative to the horizon. This measurement geometry allows the separation of boundary layer, free tropospheric and stratospheric trace gas columns along the flight track. A new DOAS instrument was designed and installed in 2016 (first flights expected from March 2017) to improve the detection limits of NO2, SO2, BrO, HCHO, HONO, O3 and O4. Furthermore, an extended wavelength range allows to measure in addition iodine monoxide (a potentially important oxidant in the free troposphere) and glyoxal (a tracer for VOCs). The IAGOS-CARIBIC project and the significant technical improvements of the new DOAS system will be presented. Also, selected examples for possible airborne measurement applications of the CARIBIC DOAS will be shown.

  10. Exploring the performance of large-N radio astronomical arrays

    NASA Astrophysics Data System (ADS)

    Lonsdale, Colin J.; Doeleman, Sheperd S.; Cappallo, Roger J.; Hewitt, Jacqueline N.; Whitney, Alan R.

    2000-07-01

    New radio telescope arrays are currently being contemplated which may be built using hundreds, or even thousands, of relatively small antennas. These include the One Hectare Telescope of the SETI Institute and UC Berkeley, the LOFAR telescope planned for the New Mexico desert surrounding the VLA, and possibly the ambitious international Square Kilometer Array (SKA) project. Recent and continuing advances in signal transmission and processing technology make it realistic to consider full cross-correlation of signals from such a large number of antennas, permitting the synthesis of an aperture with much greater fidelity than in the past. In principle, many advantages in instrumental performance are gained by this 'large-N' approach to the design, most of which require the development of new algorithms. Because new instruments of this type are expected to outstrip the performance of current instruments by wide margins, much of their scientific productivity is likely to come from the study of objects which are currently unknown. For this reason, instrumental flexibility is of special importance in design studies. A research effort has begun at Haystack Observatory to explore large-N performance benefits, and to determine what array design properties and data reduction algorithms are required to achieve them. The approach to these problems, involving a sophisticated data simulator, algorithm development, and exploration of array configuration parameter space, will be described, and progress to date will be summarized.

  11. Big Science, Small-Budget Space Experiment Package Aka MISSE-5: A Hardware And Software Perspective

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael; Greer, Lawrence; Flatico, Joseph; Jenkins, Phillip; Spina, Dan

    2007-01-01

    Conducting space experiments with small budgets is a fact of life for many design groups with low-visibility science programs. One major consequence is that specialized space grade electronic components are often too costly to incorporate into the design. Radiation mitigation now becomes more complex as a result of being restricted to the use of commercial off-the-shelf (COTS) parts. Unique hardware and software design techniques are required to succeed in producing a viable instrument suited for use in space. This paper highlights some of the design challenges and associated solutions encountered in the production of a highly capable, low cost space experiment package.

  12. A Hardware and Software Perspective of the Fifth Materials on the International Space Station Experiment (MISSE-5)

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael; Greer, Lawrence; Flatico, Joseph; Jenkins, Phillip; Spina, Dan

    2005-01-01

    Conducting space experiments with small budgets is a fact of life for many design groups with low-visibility science programs. One major consequence is that specialized space grade electronic components are often too costly to incorporate into the design. Radiation mitigation now becomes more complex as a result of being restricted to the use of commercial off-the-shelf (COTS) parts. Unique hardware and software design techniques are required to succeed in producing a viable instrument suited for use in space. This paper highlights some of the design challenges and associated solutions encountered in the production of a highly capable, low cost space experiment package.

  13. [Family doctor clinical aptitude confronting gestational diabetes patients].

    PubMed

    Pivaral, Carlos Enrique Cabrera; Clara, Elizabeth Rivera; Peña, Luz María Adriana Balderas; Centeno, Mayari Cabrera; Reynoso, Carlos Alonso

    2008-02-01

    Gestational diabetes mellitus complicates 7% of all pregnancies. Recognizing and treating this entity result in a diminished number of materno-fetal complications; this study explores the family physician clinical aptitude to identify risk factors, to diagnose and treat gestational diabetes. Identify clinical aptitude level of family physician to the treatment of diabetes gestational patients. Transversal study to describe the level of clinical aptitude in 85 family physicians working in Guadalajara. Were studied: speciality, genre, work condition, working years, working hours, and place of work. The evaluation instrument was designed to this specific purpose and validated by an expert group; were evaluated four indicators: 1) identification of risk factors, 2) diagnosis, 3) use of therapeutic resources and 4) use of paraclinic resources. Confidence coefficient to the assessment instrument was (21 formula from Kuder-Richardson) 0.92 in global evaluation. The global clinical aptitude in the four family medicine units studied was less than 21 points in 41% of physician population and very low (22 a 40 points) in 38% of the evaluated physicians. The clinical aptitude from family physician in gestational diabetes is low, this situation represents an urgent need to design a system to provide to these groups of health providers specialized continuous education to enhance the attention quality to this group of patients in family medicine units.

  14. Ultrasound Techniques for Space Applications

    NASA Technical Reports Server (NTRS)

    Rooney, James A.

    1985-01-01

    Ultrasound has proven to be a safe non-invasive technique for imaging organs and measuring cardiovascular function. It has unique advantages for application to problems with man in space including evaluation of cardiovascular function both in serial studies and during critical operations. In addition, specialized instrumentation may be capable of detecting the onset of decompression sickness during EVA activities. A spatial location and three-dimensional reconstruction system is being developed to improve the accuracy and reproducibility for serial comparative ultrasound studies of cardiovascular function. The three-dimensional method permits the acquisition of ultrasonic images from many views that can be recombined into a single reconstruction of the heart or vasculature. In addition to conventional imaging and monitoring systems, it is sometimes necessary or desirable to develop instrumentation for special purposes. One example of this type of development is the design of a pulsed-Doppler system to monitor cerebral blood flow during critical operations such as re-entry. A second example is the design of a swept-frequency ultrasound system for the detection of bubbles in the circulatory system and/or soft tissues as an early indication of the onset of decompression sickness during EVA activities. This system exploits the resonant properties of bubbles and can detect both fundamental and second harmonic emissions from the insonified region.

  15. Design of Rail Instrumentation for Wind Tunnel Sonic Boom Measurements and Computational-Experimental Comparisons

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Elmiligui, A.; Aftosmis, M.; Morgenstern, J.; Durston, D.; Thomas, S.

    2012-01-01

    An innovative pressure rail concept for wind tunnel sonic boom testing of modern aircraft configurations with very low overpressures was designed with an adjoint-based solution-adapted Cartesian grid method. The computational method requires accurate free-air calculations of a test article as well as solutions modeling the influence of rail and tunnel walls. Specialized grids for accurate Euler and Navier-Stokes sonic boom computations were used on several test articles including complete aircraft models with flow-through nacelles. The computed pressure signatures are compared with recent results from the NASA 9- x 7-foot Supersonic Wind Tunnel using the advanced rail design.

  16. Measuring Quality in Special Libraries: Lessons from Service Marketing.

    ERIC Educational Resources Information Center

    White, Marilyn Domas; Abels, Eileen G.

    1995-01-01

    Surveys the service marketing literature for models and data-gathering instruments measuring service quality, particularly the instruments SERVQUAL and SERVPERF, and assesses their applicability to special libraries and information centers. Topics include service characteristics and definitions of service; performance-minus-expectations and…

  17. IFR Approval of Differential Global Positioning System (DGPS) Special Category I Instrument Approaches Using Private Ground Facilities

    DOT National Transportation Integrated Search

    1994-08-19

    This order establishes interim procedures to approve special instrument approach : operations using privately owned DGPS installations at U.S. and foreign airports/ : runways. It identifies specific criteria, not presently found in existing : standar...

  18. Experimental study of visual accommodation

    NASA Technical Reports Server (NTRS)

    Cornsweet, T. N.; Crane, H. D.

    1972-01-01

    A summary report of a research effort related to the human visual accommodation system is presented. A theoretical study of the accommodation system was made. Subsequent effort was aimed at the development of specialized instrumentation for experiments designed to lead to understanding the nature of the control system in human accommodation. The necessary instrumentation consisted primarily of: (1) an automatic optometer to measure the state of eye focus, (2) a focus stimulator device to control the apparent optical distance to any target, and (3) a two-dimensional eye tracker. The concepts and designs of the first two instruments have been published in the open literature, but this report contains the first detailed treatment of the Purkinje eye tracker developed under this program. The report also discusses an accommodation lag model to explain the ability of the eye to apparently know the polarity of focus error even though the blur on the retina is to a first-approximation an even function. The interaction of the accommodation and eye movement systems is also discussed, as is the ability to train the visual accommodation system to a surprisingly responsive condition in only a few hours of training.

  19. Children with Disabilities Playing Musical Instruments: With the Right Adaptations and Help from Their Teachers and Parents, Students with Disabilities Can Play Musical Instruments

    ERIC Educational Resources Information Center

    McCord, Kimberly; Fitzgerald, Margaret

    2006-01-01

    In this article, the authors share the story of Stephanie, a dyslexic student who experiences problems reading music. The authors recommend for music teachers to share the list of students wanting to play an instrument with special educators to find out if there are students who are receiving special education services, what their strengths and…

  20. Development and Preliminary Testing of a High Precision Long Stroke Slit Change Mechanism for the SPICE Instrument

    NASA Technical Reports Server (NTRS)

    Paciotti, Gabriel; Humphries, Martin; Rottmeier, Fabrice; Blecha, Luc

    2014-01-01

    In the frame of ESA's Solar Orbiter scientific mission, Almatech has been selected to design, develop and test the Slit Change Mechanism of the SPICE (SPectral Imaging of the Coronal Environment) instrument. In order to guaranty optical cleanliness level while fulfilling stringent positioning accuracies and repeatability requirements for slit positioning in the optical path of the instrument, a linear guiding system based on a double flexible blade arrangement has been selected. The four different slits to be used for the SPICE instrument resulted in a total stroke of 16.5 mm in this linear slit changer arrangement. The combination of long stroke and high precision positioning requirements has been identified as the main design challenge to be validated through breadboard models testing. This paper presents the development of SPICE's Slit Change Mechanism (SCM) and the two-step validation tests successfully performed on breadboard models of its flexible blade support system. The validation test results have demonstrated the full adequacy of the flexible blade guiding system implemented in SPICE's Slit Change Mechanism in a stand-alone configuration. Further breadboard test results, studying the influence of the compliant connection to the SCM linear actuator on an enhanced flexible guiding system design have shown significant enhancements in the positioning accuracy and repeatability of the selected flexible guiding system. Preliminary evaluation of the linear actuator design, including a detailed tolerance analyses, has shown the suitability of this satellite roller screw based mechanism for the actuation of the tested flexible guiding system and compliant connection. The presented development and preliminary testing of the high-precision long-stroke Slit Change Mechanism for the SPICE Instrument are considered fully successful such that future tests considering the full Slit Change Mechanism can be performed, with the gained confidence, directly on a Qualification Model. The selected linear Slit Change Mechanism design concept, consisting of a flexible guiding system driven by a hermetically sealed linear drive mechanism, is considered validated for the specific application of the SPICE instrument, with great potential for other special applications where contamination and high precision positioning are dominant design drivers.

  1. Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis.

    PubMed

    Gann, E; Young, A T; Collins, B A; Yan, H; Nasiatka, J; Padmore, H A; Ade, H; Hexemer, A; Wang, C

    2012-04-01

    We present the development and characterization of a dedicated resonant soft x-ray scattering facility. Capable of operation over a wide energy range, the beamline and endstation are primarily used for scattering from soft matter systems around the carbon K-edge (∼285 eV). We describe the specialized design of the instrument and characteristics of the beamline. Operational characteristics of immediate interest to users such as polarization control, degree of higher harmonic spectral contamination, and detector noise are delineated. Of special interest is the development of a higher harmonic rejection system that improves the spectral purity of the x-ray beam. Special software and a user-friendly interface have been implemented to allow real-time data processing and preliminary data analysis simultaneous with data acquisition. © 2012 American Institute of Physics

  2. Landsat 9 OLI 2 focal plane subsystem: design, performance, and status

    NASA Astrophysics Data System (ADS)

    Malone, Kevin J.; Schrein, Ronald J.; Bradley, M. Scott; Irwin, Ronda; Berdanier, Barry; Donley, Eric

    2017-09-01

    The Landsat 9 mission will continue the legacy of Earth remote sensing that started in 1972. The Operational Land Imager 2 (OLI 2) is one of two instruments on the Landsat 9 satellite. The OLI 2 instrument is essentially a copy of the OLI instrument flying on Landsat 8. A key element of the OLI 2 instrument is the focal plane subsystem, or FPS, which consists of the focal plane array (FPA), the focal plane electronics (FPE) box, and low-thermal conductivity cables. This paper presents design details of the OLI 2 FPS. The FPA contains 14 critically-aligned focal plane modules (FPM). Each module contains 6 visible/near-IR (VNIR) detector arrays and three short-wave infrared (SWIR) arrays. A complex multi-spectral optical filter is contained in each module. Redundant pixels for each array provide exceptional operability. Spare detector modules from OLI were recharacterized after six years of storage. Radiometric test results are presented and compared with data recorded in 2010. Thermal, optical, mechanical and structural features of the FPA will be described. Special attention is paid to the thermal design of the FPA since thermal stability is crucial to ensuring low-noise and low-drift operation of the detectors which operate at -63°C. The OLI 2 FPE provides power, timing, and control to the focal plane modules. It also digitizes the video data and formats it for the solid-state recorder. Design improvements to the FPA-FPE cables will be discussed and characterization data will be presented. The paper will conclude with the status of the flight hardware assembly and testing.

  3. Rugged, Low Cost, Environmental Sensors for a Turbulent World

    NASA Astrophysics Data System (ADS)

    Schulz, B.; Sandell, C. T.; Wickert, A. D.

    2017-12-01

    Ongoing scientific research and resource management require a diverse range of high-quality and low-cost sensors to maximize the number and type of measurements that can be obtained. To accomplish this, we have developed a series of diversified sensors for common environmental applications. The TP-DownHole is an ultra-compact temperature and pressure sensor designed for use in CMT (Continuous Multi-channel Tubing) multi-level wells. Its 1 mm water depth resolution, 30 cm altitude resolution, and rugged design make it ideal for both water level measurements and monitoring barometric pressure and associated temperature changes. The TP-DownHole sensor has also been incorporated into a self-contained, fully independent data recorder for extreme and remote environments. This device (the TP-Solo) is based around the TP-DownHole design, but has self-contained power and data storage and is designed to collect data independently for up to 6 months (logging at once an hour), creating a specialized tool for extreme environment data collection. To gather spectral information, we have also developed a very low cost photodiode-based Lux sensor to measure spectral irradiance; while this does not measure the entire solar radiation spectrum, simple modeling to rescale the remainder of the solar spectrum makes this a cost-effective alternative to a thermopile pyranometer. Lastly, we have developed an instrumentation amplifier which is designed to interface a wide range of sensitive instruments to common data logging systems, such as thermopile pyranometers, thermocouples, and many other analog output sensors. These three instruments are the first in a diverse family aimed to give researchers a set of powerful and low-cost tools for environmental instrumentation.

  4. The U.S./IAEA Workshop on Software Sustainability for Safeguards Instrumentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pepper S. E.; .; Worrall, L.

    2014-08-08

    The U.S. National Nuclear Security Administration’s Next Generation Safeguards Initiative, the U.S. Department of State, and the International Atomic Energy Agency (IAEA) organized a a workshop on the subject of ”Software Sustainability for Safeguards Instrumentation.” The workshop was held at the Vienna International Centre in Vienna, Austria, May 6-8, 2014. The workshop participants included software and hardware experts from national laboratories, industry, government, and IAEA member states who were specially selected by the workshop organizers based on their experience with software that is developed for the control and operation of safeguards instrumentation. The workshop included presentations, to orient the participantsmore » to the IAEA Department of Safeguards software activities related to instrumentation data collection and processing, and case studies that were designed to inspire discussion of software development, use, maintenance, and upgrades in breakout sessions and to result in recommendations for effective software practices and management. This report summarizes the results of the workshop.« less

  5. Time-of-flight Extreme Environment Diffractometer at the Helmholtz-Zentrum Berlin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokhnenko, Oleksandr, E-mail: prokhnenko@helmholtz-berlin.de; Stein, Wolf-Dieter; Bleif, Hans-Jürgen

    2015-03-15

    The Extreme Environment Diffractometer (EXED) is a new neutron time-of-flight instrument at the BER II research reactor at the Helmholtz-Zentrum Berlin, Germany. Although EXED is a special-purpose instrument, its early construction made it available for users as a general-purpose diffractometer. In this respect, EXED became one of the rare examples, where the performance of a time-of-flight diffractometer at a continuous source can be characterized. In this paper, we report on the design and performance of EXED with an emphasis on the unique instrument capabilities. The latter comprise variable wavelength resolution and wavelength band, control of the incoming beam divergence, themore » possibility to change the angular positions of detectors and their distance to the sample, and use of event recording and offline histogramming. These features combined make EXED easily tunable to the requirements of a particular problem, from conventional diffraction to small angle neutron scattering. The instrument performance is demonstrated by several reference measurements and user experiments.« less

  6. Adaptation of microphysical and chemical instrumentation to the airborne measuring platform Iljushin I1-18 'Cyclone' and flight regime planning during the Arctic Haze investigation 1993-1995

    NASA Astrophysics Data System (ADS)

    Franke, H.; Maser, R.; Vinnichenko, N.; Dreiling, V.; Jaenicke, R.; Jaeschke, W.; Leiterer, U.

    In 1993 the joint Russian-German Research Project 'Arctic Haze' started (see the Introduction and editorial note of this issue, by Jaenicke, Khattatov, Jaeschke and Leiterer). Besides CAO, four German groups were involved. To the present three airborne measuring campaigns have been performed. In total 251 h of flight within altitudes up to 8.7 km were flown in the western and eastern part of the arctic leading to a comprehensive set of data of the northern arctic hemisphere. The measurements were conducted aboard the Russian research aircraft I1-18 'Cyclone' which was used by CAO in numerous scientific projects mainly in the former USSR. This 4 engined turboprop aircraft is well equipped with sensitive thermodynamical, optical and radiometric instrumentation. In consideration of the estimated aspects of 'Arctic Haze' additional microphysical, optical, and chemical instrumentation was adapted to the research aircraft. For co-ordinated measurements a detailed flight regime was planned taking into account the special requirements of the groups involved in the project. Main parts of the measurements were performed in box flights designed to get representative information of the investigated area. This allows the comparison of results gained in individual boxes at different locations or at different seasons. This contribution describes the basic equipment of the Russian research aircraft IL-18 as well as the adaptation of the special instrumentation for the 'Arctic Haze' investigations.

  7. Microwave/Sonic Apparatus Measures Flow and Density in Pipe

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Ngo, Phong; Carl, J. R.; Byerly, Kent A.

    2004-01-01

    An apparatus for measuring the rate of flow and the mass density of a liquid or slurry includes a special section of pipe instrumented with microwave and sonic sensors, and a computer that processes digitized readings taken by the sensors. The apparatus was conceived specifically for monitoring a flow of oil-well-drilling mud, but the basic principles of its design and operation are also applicable to monitoring flows of other liquids and slurries.

  8. A multichannel fiber optic photometer present performance and future developments

    NASA Technical Reports Server (NTRS)

    Barwig, H.; Schoembs, R.; Huber, G.

    1988-01-01

    A three channel photometer for simultaneous multicolor observations was designed with the aim of making possible highly efficient photometry of fast variable objects like cataclysmic variables. Experiences with this instrument over a period of three years are presented. Aspects of the special techniques applied are discussed with respect to high precision photometry. In particular, the use of fiber optics is critically analyzed. Finally, the development of a new photometer concept is discussed.

  9. Investigation of the thermophysical properties of high-melting materials with the aid of a complex of instruments

    NASA Technical Reports Server (NTRS)

    Bolgar, A. S.; Gordiyenko, S. P.; Guseva, Y. A.; Turchanin, A. G.; Fenochka, B. V.; Fesenko, V. V.

    1984-01-01

    The evaporation rate, vapor pressure, heats of evaporation reaction (sublimation, dissociation), enthalpy, electrical resistance, heat capacity, emissivity, and heat conductivity of various carbides, borides, sulfides, nitrides, selenides, and phosphides were investigated. A set of high temperature high vacuum devices, calorimeters (designed for operation at 400 to 1300 K and from 1200 K), and mass spectrometers, most of which were specially developed for these studies, is described.

  10. Development of a canopy Solar-induced chlorophyll fluorescence measurement instrument

    NASA Astrophysics Data System (ADS)

    Sun, G.; Wang, X.; Niu, Zh; Chen, F.

    2014-02-01

    A portable solar-induced chlorophyll fluorescence detecting instrument based on Fraunhofer line principle was designed and tested. The instrument has a valid survey area of 1.3 × 1.3 meter when the height was fixed to 1.3 meter. The instrument uses sunlight as its light source. The instrument is quipped with two sets of special photoelectrical detectors with the centre wavelength at 760 nm and 771 nm respectively and bandwidth less than 1nm. Both sets of detectors are composed of an upper detector which are used for detecting incidence sunlight and a bottom detector which are used for detecting reflex light from the canopy of crop. This instrument includes photoelectric detector module, signal process module, A/D convert module, the data storage and upload module and human-machine interface module. The microprocessor calculates solar-induced fluorescence value based on the A/D values get from detectors. And the value can be displayed on the instrument's LCD, stored in the flash memory of instrument and can also be uploaded to PC through the PC's serial interface. The prototype was tested in the crop field and the results demonstrate that the instrument can measure the solar-induced chlorophyll value exactly with the correlation coefficients was 0.9 compared to the values got from Analytical Spectral Devices FieldSpec Pro spectrometer. This instrument can diagnose the plant growth status by the acquired spectral response.

  11. Development of thermal control methods for specialized components and scientific instruments at very low temperatures (follow-on)

    NASA Technical Reports Server (NTRS)

    Wright, J. P.; Wilson, D. E.

    1976-01-01

    Many payloads currently proposed to be flown by the space shuttle system require long-duration cooling in the 3 to 200 K temperature range. Common requirements also exist for certain DOD payloads. Parametric design and optimization studies are reported for multistage and diode heat pipe radiator systems designed to operate in this temperature range. Also optimized are ground test systems for two long-life passive thermal control concepts operating under specified space environmental conditions. The ground test systems evaluated are ultimately intended to evolve into flight test qualification prototypes for early shuttle flights.

  12. Measuring Low Concentrations of Liquid Water in Soil

    NASA Technical Reports Server (NTRS)

    Buehler, Martin

    2009-01-01

    An apparatus has been developed for measuring the low concentrations of liquid water and ice in relatively dry soil samples. Designed as a prototype of instruments for measuring the liquidwater and ice contents of Lunar and Martian soils, the apparatus could also be applied similarly to terrestrial desert soils and sands. The apparatus is a special-purpose impedance spectrometer: Its design is based on the fact that the electrical behavior of a typical soil sample is well approximated by a network of resistors and capacitors in which resistances decrease and capacitances increase (and, hence, the magnitude of impedance decreases) with increasing water content.

  13. INERTIAL INSTRUMENT SYSTEM FOR AERIAL SURVEYING.

    USGS Publications Warehouse

    Brown, Russell H.; Chapman, William H.; Hanna, William F.; Mongan, Charles E.; Hursh, John W.

    1987-01-01

    The purpose of this report is to describe an inertial guidance or navigation system that will enable use of relatively light aircraft for efficient data-gathering in geologgy, hydrology, terrain mapping, and gravity-field mapping. The instrument system capitalizes not only on virtual state-of-the-art inertial guidance technology but also on similarly advanced technology for measuring distance with electromagnetic radiating devices. The distance measurement can be made with a transceiver beamed at either a cooperative taget, with a specially designed reflecting surface, or a noncooperative target, such as the Earth's surface. The instrument system features components that use both techniques. Thus, a laser tracker device, which updates the inertial guidance unit or navigator in flight, makes distance measurements to a retroreflector target mounted at a ground-control point; a laser profiler device, beamed vertically downward, makes distance measurements to the Earth's surface along a path that roughly mirrors the aircraft flight path.

  14. Calibration and operation of the Faint Object Spectrograph

    NASA Technical Reports Server (NTRS)

    Harms, R.; Beaver, E.; Burbidge, E.; Hier, R.; Allen, R.; Angel, R.; Bartko, F.; Bohlin, R.; Ford, H.; Davidson, A.

    1984-01-01

    The design and basic performance characteristics of the Faint Object Spectrograph (FOS), one of five instruments built for use on the Space Telescope observatory, is summarized briefly. The results of the recently completed instrument-level calibration are presented with special emphasis on issues affecting plans for FOS astronomical observations. Examples include such fundamental characteristics as: limiting magnitudes (system sensitivity and noise figures), spectral coverage and resolution, scattered light properties, and instrumental polarization and modulation efficiencies. Also gated toward intended users, a rather detailed description of FOS operating modes is given. The discussion begins with the difficulties anticipated during target acquisition and their hoped-for resolution. Both the 'normal' spectroscopic operating modes of the FOS and its 'exotic' features (e.g. spectropolarimetric, time-tagged, and time-resolved modes) are presented. The paper concludes with an overview of the activities to assure proper alignment and operation of the FOS within the entire Space Telescope system (orbital and ground-based).

  15. Irradiation Testing Vehicles for Fast Reactors from Open Test Assemblies to Closed Loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sienicki, James J.; Grandy, Christopher

    A review of irradiation testing vehicle approaches and designs that have been incorporated into past Sodium-Cooled Fast Reactors (SFRs) or envisioned for incorporation has been carried out. The objective is to understand the essential features of the approaches and designs so that they can inform test vehicle designs for a future U.S. Fast Test Reactor. Fast test reactor designs examined include EBR-II, FFTF, JOYO, BOR-60, PHÉNIX, JHR, and MBIR. Previous designers exhibited great ingenuity in overcoming design and operational challenges especially when the original reactor plant’s mission changed to an irradiation testing mission as in the EBRII reactor plant. Themore » various irradiation testing vehicles can be categorized as: Uninstrumented open assemblies that fit into core locations; Instrumented open test assemblies that fit into special core locations; Self-contained closed loops; and External closed loops. A special emphasis is devoted to closed loops as they are regarded as a very desirable feature of a future U.S. Fast Test Reactor. Closed loops are an important technology for irradiation of fuels and materials in separate controlled environments. The impact of closed loops on the design of fast reactors is also discussed in this report.« less

  16. Universal Design of Research: Inclusion of Persons with Disabilities in Mainstream Biomedical Studies

    PubMed Central

    Williams, Ann S.; Moore, Shirley M.

    2012-01-01

    Although persons with disabilities of all kinds have as wide a range of health conditions as the general population, they are profoundly underrepresented in mainstream health research. Such underrepresentation might contribute to the health disparities in this population. We propose the concept of Universal Design of Research (UDR), which would promote routine inclusion of persons with disabilities in mainstream biomedical studies, without the need for adaptation or specialized design. Elements of UDR include the use of multi-sensory formats for recruiting participants, presenting research instruments and interventions, and data gathering from participants, and should promote the inclusion of participants with a wide range of abilities, thus enhancing the generalizability of results. PMID:21562227

  17. Universal design of research: inclusion of persons with disabilities in mainstream biomedical studies.

    PubMed

    Williams, Ann S; Moore, Shirley M

    2011-05-11

    Although persons with disabilities of all kinds have as wide a range of health conditions as the general population, they are profoundly underrepresented in mainstream health research. Such underrepresentation might contribute to the health disparities in this population. We propose the concept of Universal Design of Research (UDR), which would promote routine inclusion of persons with disabilities in mainstream biomedical and psychosocial studies, without the need for adaptation or specialized design. Elements of UDR include the use of multisensory formats for recruiting participants, presenting research instruments and interventions, and data gathering from participants and should promote the inclusion of participants with a wide range of abilities, thus enhancing the generalizability of results.

  18. Comparison of different sets of instruments for laparoendoscopic single-site surgery in a surgical simulator with novices.

    PubMed

    Wang, Dong; Shi, Long-Qing; Wang, Jing-Min; Jiang, Xiao-Hua; Ji, Zhen-Ling

    2016-04-01

    Given the parallel entry of working instruments through a single incision in laparoendoscopic single-site surgery, loss of triangulation in the abdominal cavity and counteracting movements of the instruments are inevitable obstacles. Some specially designed devices have emerged to ameliorate these challenges. Twenty-four novice participants were randomized into four groups using assigned instruments, conventional straight instruments, single-curved instruments, double-curved instruments and articulating instruments, respectively, to perform two basic tasks (peg transferring and pattern cutting) 14 times in a modified simulator. A test of the tasks and a resection of the intestine segment of a rat were performed. The task scores and evaluation of intraoperative skills during the resection of the intestine segment were recorded. The instrument of modified National Aeronautics and Space Administration Task Load Index (NASA-TLX) was completed. The task scores of the groups using single-curved instruments and articulating instruments were better than the other two groups on the simulator tasks, consistent with the evaluation of intraoperative skills during the resection of intestine segment. As the proficiency with the instruments increased, the task scores improved, as demonstrated by the learning curve. The workload measured by the modified NASA-TLX tool demonstrated that the groups using articulating instruments and double-curved instruments had a heavier workload in most of the categories compared with the other two groups. Single-curved and articulating instruments are more effective than conventional straight and double-curved devices, and are favourable in laparoendoscopic single-site surgery for novice learners. © 2013 Royal Australasian College of Surgeons.

  19. 75 FR 50850 - Special Conditions: AeroMech, Incorporated; Hawker Beechcraft Corporation, Model B200 and Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... Lithium Ion Battery AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final special conditions... Instruments MD835 Lithium Ion (Li-ion) battery. The applicable airworthiness regulations do not contain... Mid-Continent Instruments MD835 Li-ion battery in the Hawker Beechcraft Corporation, B200 and other...

  20. An Examination of Current Assessment Practices in Northeastern School Districts

    ERIC Educational Resources Information Center

    Madaus, Joseph; Rinaldi, Claudia; Bigaj, Stephen; Chafouleas, Sandra M.

    2009-01-01

    Despite the central role of assessment in special education, there is a paucity of current research on instruments and methods used in schools. Special education directors (N = 164) in five northeastern states responded to an electronic survey related to the use of assessment instruments and methods in their districts. Data are presented regarding…

  1. KSC-05pd2488

    NASA Image and Video Library

    2005-11-10

    KENNEDY SPACE CENTER, FLA. - In NASA Kennedy Space Center’s Orbiter Processing Facility Bay 3, a remote manipulator system, or space shuttle arm, previously installed on the orbiter Atlantis, is being installed in Discovery’s payload bay. The arms were switched because the arm that was installed on Atlantis has special instrumentation to gather loads data from the second return-to-flight mission, STS-121. Discovery is the designated orbiter to fly on STS-121. scheduled to launch no earlier than May 2006.

  2. KSC-05pd2489

    NASA Image and Video Library

    2005-11-10

    KENNEDY SPACE CENTER, FLA. - In NASA Kennedy Space Center’s Orbiter Processing Facility Bay 3, a remote manipulator system, or space shuttle arm, previously installed on the orbiter Atlantis, is being installed in Discovery’s payload bay. The arms were switched because the arm that was installed on Atlantis has special instrumentation to gather loads data from the second return-to-flight mission, STS-121. Discovery is the designated orbiter to fly on STS-121. scheduled to launch no earlier than May 2006.

  3. KSC-05pd2491

    NASA Image and Video Library

    2005-11-10

    KENNEDY SPACE CENTER, FLA. - In NASA Kennedy Space Center’s Orbiter Processing Facility Bay 3, technicians install a remote manipulator system, or space shuttle arm, previously installed on the orbiter Atlantis, in Discovery’s payload bay. The arms were switched because the arm that was installed on Atlantis has special instrumentation to gather loads data from the second return-to-flight mission, STS-121. Discovery is the designated orbiter to fly on STS-121. scheduled to launch no earlier than May 2006.

  4. KSC-05pd2490

    NASA Image and Video Library

    2005-11-10

    KENNEDY SPACE CENTER, FLA. - In NASA Kennedy Space Center’s Orbiter Processing Facility Bay 3, technicians install a remote manipulator system, or space shuttle arm, previously installed on the orbiter Atlantis, in Discovery’s payload bay. The arms were switched because the arm that was installed on Atlantis has special instrumentation to gather loads data from the second return-to-flight mission, STS-121. Discovery is the designated orbiter to fly on STS-121. scheduled to launch no earlier than May 2006.

  5. Genetic influences on musical specialization: a twin study on choice of instrument and music genre.

    PubMed

    Mosing, Miriam A; Ullén, Fredrik

    2018-05-09

    Though several studies show that genetic factors influence individual differences in musical engagement, aptitude, and achievement, no study to date has investigated whether specialization among musically active individuals in terms of choice of instrument and genre is heritable. Using a large twin cohort, we explored whether individual differences in instrument choice, instrument category, and the type of music individuals engage in can entirely be explained by the environment or are partly due to genetic influences. About 10,000 Swedish twins answered an extensive questionnaire about music-related traits, including information on the instrument and genre they played. Of those, 1259 same-sex twin pairs reported to either play an instrument or sing. We calculated the odds ratios (ORs) for concordance in music choices (if both twins played) comparing identical and nonidentical twin pairs, with significant ORs indicating that identical twins are more likely to engage in the same type of music-related behavior than are nonidentical twins. The results showed that for almost all music-related variables, the odds were significantly higher for identical twins to play the same musical instrument or music genre, suggesting significant genetic influences on such music specialization. Possible interpretations and implications of the findings are discussed. © 2018 New York Academy of Sciences.

  6. [Contact allergies in musicians].

    PubMed

    Gasenzer, E R; Neugebauer, E A M

    2012-12-01

    During the last years, the problem of allergic diseases has increased. Allergies are errant immune responses to a normally harmless substance. In musicians the allergic contact dermatitis to exotic woods is a special problem. Exotic rosewood contains new flavonoids, which trigger an allergic reaction after permanent contact with the instrument. High quality woodwind instruments such as baroque flute or clarinets are made in ebony or palisander because of its great sound. Today instruments for non-professional players are also made in these exotic materials and non-professionals may have the risk to develop contact dermatitis, too. Brass-player has the risk of an allergic reaction to the different metals contained in the metal sheets of modern flutes and brass instruments. Specially nickel and brass alloys are used to product flute tubes or brass instruments. Special problem arises in children: patients who are allergic to plants or foods have a high risk to develop contact dermatitis. Parents don't know the materials of low-priced instruments for beginners. Often unknown cheap woods from exotic areas are used. Low-priced brass instruments contain high amount of brass and other cheap metals. Physicians should advice musician-patients or parents about the risks of the different materials and look for the reason of eczema on mouth, face, or hands. © Georg Thieme Verlag KG Stuttgart · New York.

  7. The unique challenge of managing an undergraduate Get-Away-Special experiment

    NASA Technical Reports Server (NTRS)

    Roming, Peter W. A.; Spute, Mark K.; Williams, Memorie K.

    1992-01-01

    A group of Bringham Young University (BYU) undergraduate students has undertaken an experiment to design and build a normal incidence soft x ray robotics telescope for solar observations. The design phase of this, GOLDHELOX project, has now been completed and final construction and modifications are in progress. The design and manufacture of the payload is under the direction of team leaders and a system's integrator. A goal of this project is educating and furnishing experiences in space engineering and physics for undergraduate students. Our main source of funding is NASA and the BYU Colleges of Physical and Mathematical Sciences and Engineering and Technology. This project is possible because of the NASA Get-Away Special (GAS) program. The only feasible alternative is using an expensive sounding rocket. We estimate the sun tracking and guidance package alone would cost upwards of a million dollars -- at least ten times our entire budget. Because of the GAS program, we simplified the construction, operation, and programming of the instruments with resulting savings in weight, cost, and time spent.

  8. Response deprivation, reinforcement, and economics

    PubMed Central

    Allison, James

    1993-01-01

    Reinforcement of an instrumental response results not from a special kind of response consequence known as a reinforcer, but from a special kind of schedule known as a response-deprivation schedule. Under the requirements of a response-deprivation schedule, the baseline rate of the instrumental response permits less than the baseline rate of the contingent response. Because reinforcement occurs only if the schedule deprives the organism of the contingent response, reinforcement cannot result from any intrinsic property of the contingent response or any property relative to the instrumental response. Two typical effects of response-deprivation schedules—facilitation of the instrumental response and suppression of the contingent response—are discussed in terms of economic concepts and models of instrumental performance. It is suggested that response deprivation makes the contingent response function as an economic good, the instrumental response as currency. PMID:16812695

  9. Safari: instrument design of the far-infrared imaging spectrometer for spica

    NASA Astrophysics Data System (ADS)

    Jellema, W.; Pastor, C.; Naylor, D.; Jackson, B.; Sibthorpe, B.; Roelfsema, P.

    2017-11-01

    The next great leap forward in space-based far-infrared astronomy will be made by the Japanese-led SPICA mission, which is anticipated to be launched late 2020's as the next large astrophysics mission of JAXA, in partnership with ESA and with key European contributions. Filling in the gap between JWST and ALMA, the SPICA mission will study the evolution of galaxies, stars and planetary systems. SPICA will utilize a deeply cooled 3m-class telescope, provided by European industry, to realize zodiacal background limited performance, high spatial resolution and large collecting area. Making full advantage of the deeply cooled telescope (<6K), the SAFARI instrument on SPICA is a highly sensitive wide-field imaging photometer and spectrometer operating in the 34-210 μm wavelength range. Utilizing Nyquist-sampled focal-plane arrays of very sensitive Transition Edge Sensors (TES), SAFARI will offer a photometric imaging (R ≍ 2), and a low (R = 100) and medium resolution (R = 2000 at 100 μm) imaging spectroscopy mode in three photometric bands within a 2'x2' instantaneous FoV by means of a cryogenic Mach-Zehnder Fourier Transform Spectrometer. In this paper we will provide an overview of the SAFARI instrument design and system architecture. We will describe the reference design of the SAFARI focal- plane unit, the implementation of the various optical instrument functions designed around the central large-stroke FTS system, the photometric band definition and out-of-band filtering by quasioptical elements, the control of straylight, diffraction and thermal emission in the long-wavelength limit, and how we interface to the large-format FPA arrays at one end and the SPICA telescope assembly at the other end. We will briefly discuss the key performance drivers with special emphasis on the optical techniques adopted to overcome issues related to very low background operation of SAFARI. A summary and discussion of the expected instrument performance and an overview of the astronomical capabilities finally conclude the paper.

  10. Neonatal and maternal outcomes of successful manual rotation to correct malposition of the fetal head; A retrospective and prospective observational study

    PubMed Central

    Tempest, Nicola; McGuinness, Naomi; Lane, Steven; Hapangama, Dharani K.

    2017-01-01

    Objective To evaluate the neonatal and maternal outcomes associated with successful operative vaginal births assisted by manual rotation. Design Prospective and retrospective observational study. Setting Delivery suite in a tertiary referral teaching hospital in England. Population A cohort of 2,426 consecutive operative births, in the second stage of labour, complicated with malposition of the fetal head during 2006–2013. Methods Outcomes of all births successfully assisted by manual rotation followed by direct traction instruments were compared with other methods of operative birth for fetal malposition in the second stage of labour (rotational ventouse, Kielland forceps and caesarean section). Main outcome measures Associated neonatal outcomes (admission to the special care baby unit, low cord pH, low Apgar and shoulder dystocia) and maternal outcomes (massive obstetric haemorrhage (blood loss of >1500ml) and obstetric anal sphincter injury). Results Births successfully assisted with manual rotation followed by direct traction instruments, resulted in 10% (36/346) of the babies being admitted to the Special Care Baby Unit, 4.9% (17/349) shoulder dystocia, 2% (7/349) massive obstetric haemorrhage and 1.7% (6/349) obstetric anal sphincter injury, similar to other methods of rotational births. Conclusions Adverse neonatal and maternal outcomes associated with successful manual rotations followed by direct traction instruments were comparable to traditional methods of operative births. There is an urgent need to standardise the practice (guidance, training) and documentation of manual rotation followed by direct traction instrumental deliveries that will enable assessment of its efficacy and the absolute safety in achieving a vaginal birth. PMID:28489924

  11. Utilization of the NASA Robonaut as a Surgical Avatar in Telemedicine

    NASA Technical Reports Server (NTRS)

    Dean, Marc; Diftler, Myron

    2015-01-01

    The concept of teleoperated robotic surgery is not new; however, most of the work to date has utilized specialized robots designed for specific set of surgeries. This activity explores the use of a humanoid robot to perform surgical procedures using the same hand held instruments that a human surgeon employs. For this effort, the tele-operated Robonaut (R2) was selected due to its dexterity, its ability to perform a wide range of tasks, and its adaptability to changing environments. To evaluate this concept, a series of challenges was designed with the goal of assessing the feasibility of utilizing Robonaut as a telemedicine based surgical avatar.

  12. Comparative laser Doppler measurement on tooth pulp blood flow at 632 and 750 nm

    NASA Astrophysics Data System (ADS)

    Oberg, P. Ake; Pettersson, Hans; Rohman, Hakan

    1993-12-01

    Laser-Doppler flowmetry has been used for the assessment of pulp blood flow in health and disease. General purpose laser Doppler instruments working at the Helium-Neon (632,8 nm) as well as IR (750 - 810 nm) wavelengths have been used in this application. Specially designed handheld equipment has also been used to assess blood supply to the tooth. A considerable difference in the measurement results have been noticed when using different wavelengths and probe designs. In this study some of the problems related to the use of various wavelengths and probe designs are studied in human teeth and in a physical model of a tooth. Our results support the early observation that measurements at different wavelengths and with different probe designs cannot be directly compared.

  13. The Cognition Battery of the NIH Toolbox for Assessment of Neurological and Behavioral Function: Validation in an Adult Sample

    PubMed Central

    Weintraub, Sandra; Dikmen, Sureyya S.; Heaton, Robert K.; Tulsky, David S.; Zelazo, Philip David; Slotkin, Jerry; Carlozzi, Noelle E.; Bauer, Patricia J.; Wallner-Allen, Kathleen; Fox, Nathan; Havlik, Richard; Beaumont, Jennifer L.; Mungas, Dan; Manly, Jennifer J.; Moy, Claudia; Conway, Kevin; Edwards, Emmeline; Nowinski, Cindy J.; Gershon, Richard

    2014-01-01

    This paper introduces a special series on validity studies of the Cognition Battery (CB) from the U.S. National Institutes of Health Toolbox for the Assessment of Neurological and Behavioral Function (NIHTB) (R. C. Gershon et al., 2013) in an adult sample. This first paper in the series describes the sample, each of the seven instruments in the NIHTB-CB briefly, and the general approach to data analysis. Data are provided on test-retest reliability and practice effects, and raw scores (mean, standard deviation, range) are presented for each instrument and the gold standard instruments used to measure construct validity. Accompanying papers provide details on each instrument, including information about instrument development, psychometric properties, age and education effects on performance, and convergent and discriminant construct validity. One paper in the series is devoted to a factor analysis of the NIHTB-CB in adults and another describes the psychometric properties of three composite scores derived from the individual measures representing fluid and crystallized abilities and their combination. The NIHTB-CB is designed to provide a brief, comprehensive, common set of measures to allow comparisons among disparate studies and to improve scientific communication. PMID:24959840

  14. The cognition battery of the NIH toolbox for assessment of neurological and behavioral function: validation in an adult sample.

    PubMed

    Weintraub, Sandra; Dikmen, Sureyya S; Heaton, Robert K; Tulsky, David S; Zelazo, Philip David; Slotkin, Jerry; Carlozzi, Noelle E; Bauer, Patricia J; Wallner-Allen, Kathleen; Fox, Nathan; Havlik, Richard; Beaumont, Jennifer L; Mungas, Dan; Manly, Jennifer J; Moy, Claudia; Conway, Kevin; Edwards, Emmeline; Nowinski, Cindy J; Gershon, Richard

    2014-07-01

    This study introduces a special series on validity studies of the Cognition Battery (CB) from the U.S. National Institutes of Health Toolbox for the Assessment of Neurological and Behavioral Function (NIHTB) (Gershon, Wagster et al., 2013) in an adult sample. This first study in the series describes the sample, each of the seven instruments in the NIHTB-CB briefly, and the general approach to data analysis. Data are provided on test-retest reliability and practice effects, and raw scores (mean, standard deviation, range) are presented for each instrument and the gold standard instruments used to measure construct validity. Accompanying papers provide details on each instrument, including information about instrument development, psychometric properties, age and education effects on performance, and convergent and discriminant construct validity. One study in the series is devoted to a factor analysis of the NIHTB-CB in adults and another describes the psychometric properties of three composite scores derived from the individual measures representing fluid and crystallized abilities and their combination. The NIHTB-CB is designed to provide a brief, comprehensive, common set of measures to allow comparisons among disparate studies and to improve scientific communication.

  15. New Platforms for Suborbital Astronomical Observations and In Situ Atmospheric Measurements: Spacecraft, Instruments, and Facilities

    NASA Astrophysics Data System (ADS)

    Rodway, K.; DeForest, C. E.; Diller, J.; Vilas, F.; Sollitt, L. S.; Reyes, M. F.; Filo, A. S.; Anderson, E.

    2014-12-01

    Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. The new commercial space industry is developing suborbital reusable launch vehicles (sRLV's) to provide low-cost, flexible, and frequent access to space at ~100 km altitude. In the case of XCOR Aerospace's Lynx spacecraft, the vehicle design and capabilities work well for hosting specially designed experiments that can be flown with a human-tended researcher or alone with the pilot on a customized mission. Some of the first-generation instruments and facilities that will conduct solar observations on dedicated Lynx science missions include the SwRI Solar Instrument Pointing Platform (SSIPP) and Atsa Suborbital Observatory, as well as KickSat sprites, which are picosatellites for in situ atmospheric and solar phenomena measurements. The SSIPP is a demonstration two-stage pointed solar observatory that operates inside the Lynx cockpit. The coarse pointing stage includes the pilot in the feedback loop, and the fine stage stabilizes the solar image to achieve arcsecond class pointing. SSIPP is a stepping-stone to future external instruments that can operate with larger apertures and shorter wavelengths in the solar atmosphere. The Planetary Science Institute's Atsa Suborbital Observatory combines the strengths of ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with either in-house facility instruments or user-provided instruments. The Atsa prototype is a proof of concept, hand-guided camera that mounts on the interior of the Lynx cockpit to test target acquisition and tracking for human-operated suborbital astronomy. KickSat sprites are mass-producible, one inch printed circuit boards (PCBs) populated by programmable off the shelf microprocessors and radios for real time data transmission. The sprite PCBs can integrate chip-based radiometers, magnetometers, accelerometers, etc. This low-cost, customizable platform provides researchers the ability to design immediately responsive, repeatable, high resolution experiments.

  16. Advancements in Magnetic Resonance–Guided Robotic Interventions in the Prostate

    PubMed Central

    Macura, Katarzyna J.; Stoianovici, Dan

    2011-01-01

    Magnetic resonance imaging (MRI) provides more detailed anatomical images of the prostate compared with the transrectal ultrasound imaging. Therefore, for the purpose of intervention in the prostate gland, diagnostic or therapeutic, MRI guidance offers a possibility of more precise targeting that may be crucial to the success of prostate interventions. However, access within the scanner is limited for manual instrument handling and the MR environment is most demanding among all imaging equipment with respect to the instrumentation used. A solution to this problem is the use of MR-compatible robots purposely designed to operate in the space and environmental restrictions inside the MR scanner allowing real-time interventions. Building an MRI-compatible robot is a very challenging engineering task because, in addition to the material restrictions that MRI instruments have, the robot requires actuators and sensors that limit the type of energies that can be used. Several important design problems have to be overcome before a successful MR-compatible robot application can be built. A number of MR-compatible robots, ranging from a simple manipulator to a fully automated system, have been developed, proposing ingenious solutions to the design challenge. Several systems have been already tested clinically for prostate biopsy and brachytherapy. As technology matures, precise image guidance for prostate interventions performed or assisted by specialized MR-compatible robotic devices may provide a uniquely accurate solution for guiding the intervention directly based on MR findings and feedback. Such an instrument would become a valuable clinical tool for biopsies directly targeting imaged tumor foci and delivering tumor-centered focal therapy. PMID:19512852

  17. A Multi-wavelength Ozone Lidar for the EASOE Experiment

    NASA Technical Reports Server (NTRS)

    Godin, S.; Ancellet, G.; David, C.; Porteneuve, J.; Leroy, C.; Mitev, V.; Emery, Y.; Flesia, C.; Rizi, V.; Visconti, G.

    1992-01-01

    The study of the ozone layer during winter and springtime in high latitude regions is a major issue in atmospheric research. For a better understanding of these problems, an important experimental campaign called EASOE (European Arctic Stratospheric Ozone Experiment) was organized by the European Community during the winter 1991-1992. Its main objective was to establish a budget of the ozone destruction processes on the whole northern hemisphere. This implied the simultaneous operation of different types of instruments located in both high and mid-latitude regions in order to study the destruction processes as well as the evolution of the ozone layer during the period of the campaign. A description will be given here of a mobile ozone lidar instrument specially designed for operation during the EASOE campaign. This system, which performs ozone measurements in the 5 to 40 km altitude range was located in Sodankyla, Finland as part of the ELSA experiment which also includes operation of another multi-wavelength lidar designed for polar stratospheric cloud measurements.

  18. Minerva-Red: Small Planets Orbiting Small Stars

    NASA Astrophysics Data System (ADS)

    Blake, Cullen

    2018-06-01

    Recent results from Kepler and ground-based exoplanet surveys suggest that low-mass stars are host to numerous small planets. Since low-mass stars are intrinsically faint at optical wavelengths, obtaining the Doppler precision necessary to detect these companions remains a challenge for existing instruments. I will describe MINERVA-Red, a project to use a robotic, near-infrared optimized 0.7-meter telescope and a specialized Doppler spectrometer to carry out an intensive, multi-year campaign designed to reveal the planetary systems orbiting some of the closest stars to the Sun. The MINERVA-Red cross-dispersed echelle spectrograph is optimized for the “deep red”, between 800 nm and 900 nm, where the stars that will be targeted are relatively bright. The instrument is very compact and designed for the ultimate in Doppler precision – it uses a single-mode fiber input. I will describe the spectrometer and the status of the MINERVA-Red project, which is expected to begin routine operations at Whipple Observatory on Mt Hopkins, Arizona, in 2018.

  19. Miniature atomic scalar magnetometer for space based on the rubidium isotope 87Rb.

    PubMed

    Korth, Haje; Strohbehn, Kim; Tejada, Francisco; Andreou, Andreas G; Kitching, John; Knappe, Svenja; Lehtonen, S John; London, Shaughn M; Kafel, Matiwos

    2016-08-01

    A miniature atomic scalar magnetometer based on the rubidium isotope 87 Rb was developed for operation in space. The instrument design implements both M x and M z mode operation and leverages a novel microelectromechanical system (MEMS) fabricated vapor cell and a custom silicon-on-sapphire (SOS) complementary metal-oxide-semiconductor (CMOS) integrated circuit. The vapor cell has a volume of only 1 mm 3 so that it can be efficiently heated to its operating temperature by a specially designed, low-magnetic-field-generating resistive heater implemented in multiple metal layers of the transparent sapphire substrate of the SOS-CMOS chips. The SOS-CMOS chip also hosts the Helmholtz coil and associated circuitry to stimulate the magnetically sensitive atomic resonance and temperature sensors. The prototype instrument has a total mass of fewer than 500 g and uses less than 1 W of power, while maintaining a sensitivity of 15 pT/√Hz at 1 Hz, comparable to present state-of-the-art absolute magnetometers.

  20. MINERVA-Red: A Census of Planets Orbiting the Nearest Low-mass Stars to the Sun

    NASA Astrophysics Data System (ADS)

    Blake, Cullen; Johnson, John; Plavchan, Peter; Sliski, David; Wittenmyer, Robert A.; Eastman, Jason D.; Barnes, Stuart

    2015-01-01

    Recent results from Kepler and ground-based exoplanet surveys suggest that low-mass stars host numerous small planets. Since low-mass stars are intrinsically faint at optical wavelengths, obtaining the Doppler precision necessary to detect these companions remains a challenge for existing instruments. We describe MINERVA-Red, a project to use a dedicated, robotic, near-infrared optimized 0.7 meter telescope and a specialized Doppler spectrometer to carry out an intensive, multi-year campaign designed to reveal the planetary systems orbiting some of the closest stars to the Sun. The MINERVA-Red cross-dispersed echelle spectrograph is optimized for the 'deep red', between 800 nm and 900 nm, where these stars are relatively bright. The instrument is very compact and designed for the ultimate in Doppler precision by using single-mode fiber input. We describe the spectrometer and the status of the MINERVA-Red project, which is expected to begin routine operations at Whipple Observatory on Mt Hopkins, Arizona, in 2015.

  1. MTRETR MAINTENANCE SHOP, TRA653. FLOOR PLAN FOR FIRST FLOOR: MACHINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR-ETR MAINTENANCE SHOP, TRA-653. FLOOR PLAN FOR FIRST FLOOR: MACHINE SHOP, ELECTRICAL AND INSTRUMENT SHOP, TOOL CRIB, ELECTRONIC SHOP, LOCKER ROOM, SPECIAL TEMPERATURE CONTROLLED ROOM, AND OFFICES. "NEW" ON DRAWING REFERS TO REVISION OF 11/1956 DRAWING ON WHICH AREAS WERE DESIGNATED AS "FUTURE." HUMMEL HUMMEL & JONES 810-MTR-ETR-653-A-7, 5/1957. INL INDEX NO. 532-0653-00-381-101839, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  2. The Second Annual International Space University Alumni Conference

    NASA Technical Reports Server (NTRS)

    Johnson, Les (Compiler); Robinson, Paul A. (Compiler)

    1994-01-01

    The papers presented at the conference reflect the multidisciplinary nature of the International Space University (ISU) and its alumni. The first papers presented hold special relevance to the design projects, and cover such topics as lunar-based astronomical instrumentation, solar lunar power generation, habitation on the moon, and the legal issues governing multinational astronauts conducting research in space. The next set of papers cover various technical issues such as project success assessment, satellite networks and space station dynamics, thus reflecting the diverse backgrounds of the ISU alumni.

  3. Design, Fabrication and Testing of a Satellite Electron Beam System.

    DTIC Science & Technology

    1980-05-16

    Oide , ft necessar and fdernuhv b blockr ... mber) Desiqn, Development, Fabrication and Test of Electron Beam System for use in a Satellite Vehicle. DD...1.6 Dscription oF SP:BS The SPIBS instrument was a two centimeter diameter ion source using Xenon gas as the expellant, having a hollow cathode with an...fully tested using dummy guns. Special gun opening tests using real guns were employed in vacuum tests to determine that there was no cathode poison

  4. In situ measurement of particulate number density and size distribution from an aircraft

    NASA Technical Reports Server (NTRS)

    Briehl, D.

    1974-01-01

    Commercial particulate measuring instruments were flown aboard the NASA Convair 990. A condensation nuclei monitor was utilized to measure particles larger than approximately 0.003 micrometers in diameter. A specially designed pressurization system was used with this counter so that the sample could be fed into the monitor at cabin altitude pressure. A near-forward light scattering counter was used to measure the number and size distribution particles in the size range from 0.5 to 5 micrometers and greater in diameter.

  5. Marine Seismic System Deployment (MSS). Phase 2. Investigation of Techniques and Deployment Scenarios for Installation of Triaxial Seismometer in a Borehole in the Deep Ocean

    DTIC Science & Technology

    1981-01-09

    CHALLENGER for an estimated period of six days. The design for the test Borehole Instrumentation Package (BIP) reentry-sub and associated handling...equipment has been completed ard hmi been submitted for vendor bid. Details of the specialized support equipment for installation on the GLOMAR CHALLENGER ...developed under the direction of the Deep Sea Drilling Project (DSDP) by the dynamically positioned drilling vessel GLOMAR CHALLENGER . Deployment of the

  6. Approaching the design of a failsafe turbine monitor with simple microcontroller blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapolin, R.E.

    1995-12-31

    The proper approach to early instrumentation design for tasks like failsafe turbine monitoring permits meeting requirements without resorting to traditional complex special-purpose electronics. Instead a small network of basic microcontroller building blocks can split the effort with each block optimized for its portion of the overall system. This paper discusses approaching design by partitioning intricate system specifications to permit each block to be optimized to the safety level appropriate for its portion of the overall task while retaining and production and reliability advantages of having common simple modules. It illustrates that approach with a modular microcontroller-based speed monitor which metmore » user needs for the latest in power plant monitoring equipment.« less

  7. 75 FR 6642 - Notice of Proposed Information Collection; Naval Special Warfare Recruiting Directorate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ... Information Collection; Naval Special Warfare Recruiting Directorate AGENCY: Department of the Navy, DoD. ACTION: Notice. SUMMARY: The Naval Special Warfare (NSW) Recruiting Directorate announces the submission... the proposal and associated collection instruments, write to the Director, Naval Special Warfare...

  8. Design of two-channel oscilloscope and basic circuit simulations in LabView

    NASA Astrophysics Data System (ADS)

    Balzhiev, Plamen; Makal, Jaroslaw

    2008-01-01

    The project is realized as a diploma thesis in Bialystok Technical University, Poland). The main aim is to develop a useful educational tool which presents the time and frequency characteristics in basic electrical circuits. It is designed as a helpful instrument for lectures and laboratory classes. The predominant audience will be students of electrical engineering from first semester of the higher education. Therefore the level of knowledge at this stage of education is not high enough and different techniques are necessary to increase the students' interest and the efficiency of teaching process. This educational instrument provides the needed knowledge concerning the basic circuits and its parameters. Graphics and animations of the general processes in the electrical circuits make the problems more interesting, comprehensive and easier to understand. For designing such an instrument the National Instruments' programming environment LabView is used. It is preferred to the other simulation software because of its simplicity flexibility and also availability (the free demo version is sufficient to make a simple virtual instrument). LabView uses graphical programming language and has powerful mathematical functions for analysis and simulations. The useful visualization tools for presenting different diagrams are worth recommending, too. It is also specialized in measurement and control and it supports a wide variety of hardware. Therefore this software is suitable for laboratory classes to present the dependencies between the simulated characteristics in basic electrical circuits and the real one measured with the hardware device. For this purpose a two-channel oscilloscope is designed as part of the described project. The main purpose of this instrument as part of the educational process is to present the desired characteristics of the electrical circuits and to become familiar with the general functions of the oscilloscope. This project combines several important features appropriate for teaching purposes: well presented information with graphics, easy to operate with and giving the necessary knowledge. This method of teaching is more interesting and attractive to the audience. Also the information is assimilated more quickly, with less effort.

  9. FMP study of pilot workload. Qualification of workload via instrument scan

    NASA Technical Reports Server (NTRS)

    Tolel, J. R.; Vivaudou, M.; Harris, R. L., Sr.; Ephrath, A.

    1982-01-01

    Various methods of measuring a pilot's mental workload are discussed. Scanning the various flight instruments with good scan pattern and other verbal tasks during instrument landings is given special attention for measuring pilot workload.

  10. Fabrication and Testing of a Modular Micro-Pocket Fission Detector Instrumentation System for Test Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Roberts, Jeremy A.; Unruh, Troy C.; McGregor, Douglas S.

    2018-01-01

    Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Measurement of the neutron-flux distribution within the reactor core provides a more complete understanding of the operating conditions in the reactor than typical ex-core sensors. Micro-Pocket Fission Detectors have been developed and tested previously but have been limited to single-node operation and have utilized highly specialized designs. The development of a widely deployable, multi-node Micro-Pocket Fission Detector assembly will enhance nuclear research capabilities. A modular, four-node Micro-Pocket Fission Detector array was designed, fabricated, and tested at Kansas State University. The array was constructed from materials that do not significantly perturb the neutron flux in the reactor core. All four sensor nodes were equally spaced axially in the array to span the fuel-region of the reactor core. The array was filled with neon gas, serving as an ionization medium in the small cavities of the Micro-Pocket Fission Detectors. The modular design of the instrument facilitates the testing and deployment of numerous sensor arrays. The unified design drastically improved device ruggedness and simplified construction from previous designs. Five 8-mm penetrations in the upper grid plate of the Kansas State University TRIGA Mk. II research nuclear reactor were utilized to deploy the array between fuel elements in the core. The Micro-Pocket Fission Detector array was coupled to an electronic support system which has been specially developed to support pulse-mode operation. The Micro-Pocket Fission Detector array composed of four sensors was used to monitor local neutron flux at a constant reactor power of 100 kWth at different axial locations simultaneously. The array was positioned at five different radial locations within the core to emulate the deployment of multiple arrays and develop a 2-dimensional measurement of neutron flux in the reactor core.

  11. Assessing the health care needs of women in rural British Columbia

    PubMed Central

    Guy, Meghan; Norman, Wendy V.; Malhotra, Unjali

    2013-01-01

    Objective To design reliable survey instruments to evaluate needs and expectations for provision of women's health services in rural communities in British Columbia (BC). These tools will aim to plan programming for, and evaluate effectiveness of, a women's health enhanced skills residency program at the University of British Columbia. Design A qualitative design that included administration of written surveys and on-site interviews in several rural communities. Setting Three communities participated in initial questionnaire and interview administration. A fourth community participated in the second interview iteration. Participating communities did not have obstetrician-gynecologists but did have hospitals capable of supporting outpatient specialized women's health procedural care. Participants Community physicians, leaders of community groups serving women, and allied health providers, in Vancouver Island, Southeast Interior BC, and Northern BC. Methods Two preliminary questionnaires were developed to assess local specialized women's health services based on the curriculum of the enhanced skills training program; one was designed for physicians and the other for women's community group leaders and aboriginal health and community group leaders. Interview questions were designed to ensure the survey could be understood and to identify important areas of women's health not included on the initial questionnaires. Results were analyzed using quantitative and qualitative methods, and a second draft of the questionnaires was developed for a second iteration of interviews. Main findings Clarity and comprehension of questionnaires were good; however, nonphysician participants answered that they were unsure on many questions pertaining to specific services. Topics identified as important and missing from questionnaires included violence and mental health. A second version of the questionnaires was shown to have addressed these concerns. Conclusion Through iterations of pilot testing, we created 2 validated survey instruments for implementation as a component of program evaluation. Testing in remote locations highlighted unique rural concerns, such that University of British Columbia health care professional training will now better serve BC community needs. PMID:23418251

  12. Microscope-integrated optical coherence tomography for image-aided positioning of glaucoma surgery

    NASA Astrophysics Data System (ADS)

    Li, Xiqi; Wei, Ling; Dong, Xuechuan; Huang, Ping; Zhang, Chun; He, Yi; Shi, Guohua; Zhang, Yudong

    2015-07-01

    Most glaucoma surgeries involve creating new aqueous outflow pathways with the use of a small surgical instrument. This article reported a microscope-integrated, real-time, high-speed, swept-source optical coherence tomography system (SS-OCT) with a 1310-nm light source for glaucoma surgery. A special mechanism was designed to produce an adjustable system suitable for use in surgery. A two-graphic processing unit architecture was used to speed up the data processing and real-time volumetric rendering. The position of the surgical instrument can be monitored and measured using the microscope and a grid-inserted image of the SS-OCT. Finally, experiments were simulated to assess the effectiveness of this integrated system. Experimental results show that this system is a suitable positioning tool for glaucoma surgery.

  13. An expert system/ion trap mass spectrometry approach for life support systems monitoring

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Wong, Carla M.; Yost, Richard A.; Johnson, Jodie V.; Yates, Nathan A.; Story, Michael

    1992-01-01

    Efforts to develop sensor and control system technology to monitor air quality for life support have resulted in the development and preliminary testing of a concept based on expert systems and ion trap mass spectrometry (ITMS). An ITMS instrument provides the capability to identify and quantitate a large number of suspected contaminants at trace levels through the use of a variety of multidimensional experiments. An expert system provides specialized knowledge for control, analysis, and decision making. The system is intended for real-time, on-line, autonomous monitoring of air quality. The key characteristics of the system, performance data and analytical capabilities of the ITMS instrument, the design and operation of the expert system, and results from preliminary testing of the system for trace contaminant monitoring are described.

  14. Spinoff from a Moon Tool

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Portable self-contained drill capable of extracting core samples as much as 10 feet below the surface was needed for the astronauts. Black & Decker used a specially developed computer program to optimize the design of the drill's motor and insure minimal power consumption. Refinement of the original technology led to the development of a cordless miniature vacuum cleaner called the Dustbuster. It has no hose, no cord, is 14 inches long, and also comes with a storage bracket that also serves as a recharger; plugs into a home outlet that charges the nickel cadmium batteries when not in use. Other home use cordless instruments include drills, shrub trimmers and grass shears. Company also manufactures a number of cordless tools used in the sheet metal automobile and construction industries, and a line of cordless orthopedic instruments.

  15. The Direct Measurement of Engine Power on an Airplane in Flight with a Hub Type Dynamometer

    NASA Technical Reports Server (NTRS)

    Gove, W D; Green, M W

    1927-01-01

    This report describes tests made to obtain direct measurements of engine power in flight. Tests were made with a Bendemann hub dynamometer installed on a modified DH-4 Airplane, Liberty 12 Engine, to determine the suitability of this apparatus. This dynamometer unit, which was designed specially for use with a liberty 12 engine, is a special propeller hub in which is incorporated a system of pistons and cylinders interposed between the propeller and the engine crankshaft. The torque and thrust forces are balanced by fluid pressures, which are recorded by instruments in the cockpit. These tests have shown the suitability of this type of hub dynamometer for measurement of power in flight and for the determination of the torque and power coefficients of the propeller. (author)

  16. Basic principles of flight test instrumentation engineering, volume 1, issue 2

    NASA Technical Reports Server (NTRS)

    Borek, Robert W., Sr. (Editor); Pool, A. (Editor)

    1994-01-01

    Volume 1 of the AG 300 series on 'Flight Test Instrumentation' gives a general introduction to the basic principles of flight test instrumentation. The other volumes in the series provide more detailed treatments of selected topics on flight test instrumentation. Volume 1, first published in 1974, has been used extensively as an introduction for instrumentation courses and symposia, as well as being a reference work on the desk of most flight test and instrumentation engineers. It is hoped that this second edition, fully revised, will be used with as much enthusiasm as the first edition. In this edition a flight test system is considered to include both the data collection and data processing systems. In order to obtain an optimal data flow, the overall design of these two subsystems must be carefully matched; the detail development and the operation may have to be done by separate groups of specialists. The main emphasis is on the large automated instrumentation systems used for the initial flight testing of modern military and civil aircraft. This is done because there, many of the problems, which are discussed here, are more critical. It does not imply, however, that smaller systems with manual data processing are no longer used. In general, the systems should be designed to provide the required results at the lowest possible cost. For many tests which require only a few parameters, relatively simple systems are justified, especially if no complex equipment is available to the user. Although many of the aspects discussed in this volume apply to both small and large systems, aspects of the smaller systems are mentioned only when they are of special interest. The volume has been divided into three main parts. Part 1 defines the main starting points for the design of a flight test instrumentation system, as seen from the points of view of the flight test engineer and the instrumentation engineer. In Part 2 the discussion is concentrated on those aspects which apply to each individual measuring channel, and in Part 3 the main emphasis is on the integration of the individual data channels into one data collection system and on those aspects of the data processing which apply to the complete system.

  17. Instrumentation in Developing Chlorophyll Fluorescence Biosensing: A Review

    PubMed Central

    Fernandez-Jaramillo, Arturo A.; Duarte-Galvan, Carlos; Contreras-Medina, Luis M.; Torres-Pacheco, Irineo; de J. Romero-Troncoso, Rene; Guevara-Gonzalez, Ramon G.; Millan-Almaraz, Jesus R.

    2012-01-01

    Chlorophyll fluorescence can be defined as the red and far-red light emitted by photosynthetic tissue when it is excited by a light source. This is an important phenomenon which permits investigators to obtain important information about the state of health of a photosynthetic sample. This article reviews the current state of the art knowledge regarding the design of new chlorophyll fluorescence sensing systems, providing appropriate information about processes, instrumentation and electronic devices. These types of systems and applications can be created to determine both comfort conditions and current problems within a given subject. The procedure to measure chlorophyll fluorescence is commonly split into two main parts; the first involves chlorophyll excitation, for which there are passive or active methods. The second part of the procedure is to closely measure the chlorophyll fluorescence response with specialized instrumentation systems. Such systems utilize several methods, each with different characteristics regarding to cost, resolution, ease of processing or portability. These methods for the most part include cameras, photodiodes and satellite images. PMID:23112686

  18. Analysis of electrical transients created by lightning

    NASA Technical Reports Server (NTRS)

    Nanevicz, J. E.; Vance, E. F.

    1980-01-01

    A series of flight tests was conducted using a specially-instrumented NASA Learjet to study the electrical transients created on an aircraft by nearby lightning. The instrumentation included provisions for the time-domain and frequency-domain recording of the electrical signals induced in sensors located both on the exterior and on the interior of the aircraft. The design and calibration of the sensors and associated measuring systems is described together with the results of the flight test measurements. The results indicate that the concept of providing instrumentation to follow the lightning signal from propagation field, to aircraft skin current, to current on interior wiring is basically sound. The results of the measurement indicate that the high frequency signals associated with lightning stroke precursor activity are important in generating electromagnetic noise on the interior of the aircraft. Indeed, the signals produced by the precursors are often of higher amplitude and of longer duration that the pulse produced by the main return stroke.

  19. Spanish participation in the development of HARMONI, the first light integral field spectrograph for the E-ELT.

    NASA Astrophysics Data System (ADS)

    García-Lorenzo, B.; HARMONI Consortium

    2015-05-01

    HARMONI is the visible and near infrared integral field spectrograph (IFS) selected as a first-light instrument for the European Extremely Large Telescope (E-ELT). With four spatial scales and a range of spectral resolving powers, astronomers will optimally configure the instrument to overtake a wide range of scientific programs and to address many of the E-ELT science cases. The Centro de Astrobiología del CSIC/INTA (CAB-CSIC) and the Instituto de Astrofísica de Canarias (IAC) form part of the international consortium developing HARMONI, participation that will constitute an unique scientific opportunity for the Spanish astronomical community, allowing the access to the E-ELT as soon as it were operative via the guaranteed time. We describe here the instrument and its capabilities with special attention to the Spanish contribution to HARMONI. At the current stage of the project, HARMONI design is being revised due to significant modifications of the Nasmyth platform affecting the interface with HARMONI.

  20. Novel Aspects of the DESI Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Beaufore, Lucas; Honscheid, Klaus; Elliott, Ann; Dark Energy Spectroscopic Instrument Collaboration

    2015-04-01

    The Dark Energy Spectroscopic Instrument (DESI) will measure the effect of dark energy on the expansion of the universe. It will obtain optical spectra for tens of millions of galaxies and quasars, constructing a 3-dimensional map spanning the nearby universe to 10 billion light years. The survey will be conducted on the Mayall 4-meter telescope at Kitt Peak National Observatory starting in 2018. In order to achieve these scientific goals the DESI collaboration is building a high throughput spectrograph capable of observing thousands of spectra simultaneously. In this presentation we discuss the DESI instrument control and data acquisition system that is currently being developed to operate the 5,000 fiber positioners in the focal plane, the 10 spectrographs each with three CDD cameras and every other aspect of the instrument. Special emphasis will be given to novel aspects of the design including the use of inexpensive Linux-based microcontrollers such as the Raspberry PI to control a number of DESI hardware components.

  1. 26 CFR 1.988-1 - Certain definitions and special rules.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... contract, futures contract, option, warrant, or similar financial instrument. (A) Limitation for certain derivative instruments. A forward contract, futures contract, option, warrant, or similar financial..., futures contract, option contract, or similar financial instrument. Except as otherwise provided in this...

  2. 21 CFR 884.4530 - Obstetric-gynecologic specialized manual instrument.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... This type of device consists of the following: (1) An amniotome is an instrument used to rupture the... cerclage needle is a looplike instrument used to suture the cervix. (10) A hook-type contraceptive... cervix or vagina. (14) A gynecological biopsy forceps is an instrument with two blades and handles used...

  3. EOS-Aura's Ozone Monitoring Instrument (OMI): Validation Requirements

    NASA Technical Reports Server (NTRS)

    Brinksma, E. J.; McPeters, R.; deHaan, J. F.; Levelt, P. F.; Hilsenrath, E.; Bhartia, P. K.

    2003-01-01

    OMI is an advanced hyperspectral instrument that measures backscattered radiation in the UV and visible. It will be flown as part of the EOS Aura mission and provide data on atmospheric chemistry that is highly synergistic with other Aura instruments HIRDLS, MLS, and TES. OMI is designed to measure total ozone, aerosols, cloud information, and UV irradiances, continuing the TOMS series of global mapped products but with higher spatial resolution. In addition its hyperspectral capability enables measurements of trace gases such as SO2, NO2, HCHO, BrO, and OClO. A plan for validation of the various OM1 products is now being formulated. Validation of the total column and UVB products will rely heavily on existing networks of instruments, like NDSC. NASA and its European partners are planning aircraft missions for the validation of Aura instruments. New instruments and techniques (DOAS systems for example) will need to be developed, both ground and aircraft based. Lidar systems are needed for validation of the vertical distributions of ozone, aerosols, NO2 and possibly SO2. The validation emphasis will be on the retrieval of these products under polluted conditions. This is challenging because they often depend on the tropospheric profiles of the product in question, and because of large spatial variations in the troposphere. Most existing ground stations are located in, and equipped for, pristine environments. This is also true for almost all NDSC stations. OMI validation will need ground based sites in polluted environments and specially developed instruments, complementing the existing instrumentation.

  4. Space Telescope Design to Directly Image the Habitable Zone of Alpha Centauri

    NASA Technical Reports Server (NTRS)

    Bendek, Eduardo A.; Belikov, Ruslan; Lozi, Julien; Thomas, Sandrine; Males, Jared; Weston, Sasha; McElwain, Michael

    2015-01-01

    The scientific interest in directly imaging and identifying Earth-like planets within the Habitable Zone (HZ) around nearby stars is driving the design of specialized direct imaging missions such as ACESAT, EXO-C, EXO-S and AFTA-C. The inner edge of Alpha Cen A&B Habitable Zone is found at exceptionally large angular separations of 0.7" and 0.4" respectively. This enables direct imaging of the system with a 0.3m class telescope. Contrast ratios on the order of 10(exp 10) are needed to image Earth-brightness planets. Low-resolution (5-band) spectra of all planets may allow establishing the presence and amount of an atmosphere. This star system configuration is optimal for a specialized small, and stable space telescope that can achieve high-contrast but has limited resolution. This paper describes an innovative instrument design and a mission concept based on a full Silicon Carbide off-axis telescope, which has a Phase Induced Amplitude Apodization coronagraph embedded in the telescope. This architecture maximizes stability and throughput. A Multi-Star Wave Front algorithm is implemented to drive a deformable mirror controlling simultaneously diffracted light from the on-axis and binary companion star. The instrument has a Focal Plane Occulter to reject starlight into a high precision pointing control camera. Finally we utilize a Orbital Differential Imaging (ODI) post-processing method that takes advantage of a highly stable environment (Earth-trailing orbit) and a continuous sequence of images spanning 2 years, to reduce the final noise floor in post processing to approximately 2e-11 levels, enabling high confidence and at least 90% completeness detections of Earth-like planets.

  5. STS-45 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W.

    1992-01-01

    The STS-45 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-sixth flight of the Space Shuttle Program and the eleventh flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-44 (LWT-37); three Space Shuttle main engines (SSME's), which were serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively; and two Solid Rocket Boosters (SRB's) designated as BI-049. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each of the SRB's were designated as 360L021A for the left SRM and 360W021B for the right SRM. The primary objective of this mission was to successfully perform the planned operations of the Atmospheric Laboratory for Applications and Science-1 (ATLAS-1) and the Shuttle Solar Backscatter Ultraviolet Instrument (SSBUV) payloads. The secondary objectives were to successfully perform all operations necessary to support the requirements of the following: the Space Tissue Loss-01 (STL-01) experiment; the Radiation Monitoring Equipment-3 (RME-3) experiment; the Visual Function Tester-2 (VFT-2) experiment; the Cloud Logic to Optimize use of Defense System (CLOUDS-1A) experiment; the Shuttle Amateur Radio Experiment 2 (SAREX-2) Configuration B; the Investigation into Polymer Membranes Processing experiment; and the Get-Away Special (GAS) payload G-229. The Ultraviolet Plume Instrument (UVPI) was a payload of opportunity that required no special maneuvers. In addition to the primary and secondary objectives, the crew was tasked to perform as many as 10 Development Test Objectives (DTO'S) and 14 Detailed Supplementary Objectives (DSO's).

  6. STS-45 Space Shuttle mission report

    NASA Astrophysics Data System (ADS)

    Fricke, Robert W.

    1992-05-01

    The STS-45 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem operations during the forty-sixth flight of the Space Shuttle Program and the eleventh flight of the Orbiter Vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of the following: an External Tank (ET) designated as ET-44 (LWT-37); three Space Shuttle main engines (SSME's), which were serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively; and two Solid Rocket Boosters (SRB's) designated as BI-049. The lightweight redesigned Solid Rocket Motors (RSRM's) installed in each of the SRB's were designated as 360L021A for the left SRM and 360W021B for the right SRM. The primary objective of this mission was to successfully perform the planned operations of the Atmospheric Laboratory for Applications and Science-1 (ATLAS-1) and the Shuttle Solar Backscatter Ultraviolet Instrument (SSBUV) payloads. The secondary objectives were to successfully perform all operations necessary to support the requirements of the following: the Space Tissue Loss-01 (STL-01) experiment; the Radiation Monitoring Equipment-3 (RME-3) experiment; the Visual Function Tester-2 (VFT-2) experiment; the Cloud Logic to Optimize use of Defense System (CLOUDS-1A) experiment; the Shuttle Amateur Radio Experiment 2 (SAREX-2) Configuration B; the Investigation into Polymer Membranes Processing experiment; and the Get-Away Special (GAS) payload G-229. The Ultraviolet Plume Instrument (UVPI) was a payload of opportunity that required no special maneuvers. In addition to the primary and secondary objectives, the crew was tasked to perform as many as 10 Development Test Objectives (DTO'S) and 14 Detailed Supplementary Objectives (DSO's).

  7. An Integrated Literature Review of the Knowledge Needs of Parents with Children with Special Health Care Needs and of Instruments to Assess These Needs

    ERIC Educational Resources Information Center

    Adler, Kristin; Salanterä, Sanna; Leino­-Kilpi, Helena; Grädel, Barbara

    2015-01-01

    The purpose of this integrative (including both quantitative and qualitative studies) literature review was to identify knowledge needs of parents of a child with special health care needs and to evaluate instruments to assess these needs. The content analysis of 48 publications revealed a vast amount of knowledge needs that were categorized into…

  8. The startup of the Dodewaard natural circulation boiling water reactor -- Experiences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nissen, W.H.M.; Van Der Voet, J.; Karuza, J.

    1994-07-01

    Because of its similarity to the simplified boiling water reactor (SBWR), the Dodewaard natural circulation boiling water reactor (BWR) is of special interest to further development of the SBWR design. It has become especially important to gain more insight into the Dodewaard BWR behavior during startup, paying special attention to its stability. Therefore, special instrumentation was used by means of which a series of measurements were taken during the two startups in February and June 1992. The results obtained from these measurements are used to deepen insight into the recirculation flow and the stability of the reactor during startup undermore » conditions with a normal pressure/power trajectory. They have already shown a very early recirculation flow onset during low-power operation and no indication of reactor instability. Furthermore, they will be used as a basis for the research program investigating the reactor behavior under different pressure/power conditions, which is scheduled for next year.« less

  9. Study of inducer load and stress, volume 2

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A program of analysis, design, fabrication and testing has been conducted to develop computer programs for predicting rocket engine turbopump inducer hydrodynamic loading, stress magnitude and distribution, and vibration characteristics. Methods of predicting blade loading, stress, and vibration characteristics were selected from a literature search and used as a basis for the computer programs. An inducer, representative of typical rocket engine inducers, was designed, fabricated, and tested with special instrumentation selected to provide measurements of blade surface pressures and stresses. Data from the tests were compared with predicted values and the computer programs were revised as required to improve correlation. For Volume 1 see N71-20403. For Volume 2 see N71-20404.

  10. Management software for a universal device communication controller: application to monitoring and computerized infusions.

    PubMed

    Coussaert, E J; Cantraine, F R

    1996-11-01

    We designed a virtual device for a local area network observing, operating and connecting devices to a personal computer. To keep the widest field of application, we proceeded by using abstraction and specification rules of software engineering in the design and implementation of the hardware and software for the Infusion Monitor. We specially built a box of hardware to interface multiple medical instruments with different communication protocols to a PC via a single serial port. We called that box the Universal Device Communication Controller (UDCC). The use of the virtual device driver is illustrated by the Infusion Monitor implemented for the anaesthesia and intensive care workstation.

  11. Spin test of turbine rotor

    NASA Technical Reports Server (NTRS)

    Vavra, M. H.; Hammer, J. E.; Bell, L. E.

    1972-01-01

    Experimental data are presented for the tangential and radial stresses in the disks of the 36,000 horsepower, 4000 rpm turbine for the M-1 engine oxidizer turbopump. The two-stage Curtis turbine is a special light-weight design utilizing thin conical disks with hollow sheet metal blades attached by electron-beam welding techniques. The turbine was fabricated from Inconel 718, a nickel-chromium alloy. The stresses were obtained by strain-gage measurements using a slip-ring assembly to transmit the electrical signals. Measurements were made at different rotative speeds and different thermal loads. In addition to presenting test data, the report describes test equipment, design of associated hardware, test procedures, instrumentation, and tests for the selection and calibration of strain gages.

  12. Rapid Measurement Of Asbestos Content Of Building Materials

    NASA Technical Reports Server (NTRS)

    Weiss, James R.; Grove, Cindy I.; Hoover, Gordon L.; Stephens, James B.

    1994-01-01

    Portable instrument measures asbestos content of construction materials in place. Helps building renovators determine, quickly and accurately, whether asbestos is present. Concept readily adapted to special-purpose, battery-powered instrument. Contractor using such instrument could obtain reliable information on asbestos content in minutes.

  13. Embedded Data Acquisition Tools for Rotorcraft Diagnostic Sensors

    NASA Technical Reports Server (NTRS)

    Wagoner, Robert

    2014-01-01

    Rotorcraft drive trains must withstand enormous pressure while operating continuously in extreme temperature and vibration environments. Captive components, such as planetary and spiral bevel gears, see enormous strain but are not accessible to fixed instrumentation, such as a piezoelectric transducer. Thus, it is difficult to directly monitor components that are most susceptible to damage. This innovation is a self-contained data processing unit within a specialized fixture that installs directly inside the rotating pinion gear in the gearbox. From this location, it detects and transmits high-resolution prognostic data to a fixed transceiver. The sensor is based on microelectromechanical systems (MEMS) technology and uses innovative circuit designs to capture high-bandwidth data and transmit it wirelessly from inside an operational helicopter transmission. With Ridgetop's advanced MEMS-based sensor, researchers have, for the first time, been able to extract high-resolution acoustic signatures wirelessly from sensors within the transmission that would otherwise be muffled by background gear noises. Ridgetop's innovative instrument will help researchers perform dynamic analysis of gear interaction and develop improved designs for gear components. In addition, data from this instrument can be used to validate new algorithms that detect and predict faults based on external acoustic signatures, for prognostic purposes. The result of this work will be an improvement in safety, performance, and cost for future generations of rotating components.

  14. Developmental long trace profiler using optimally aligned mirror based pentaprism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, Samuel K; Morrison, Gregory Y.; Yashchuk, Valeriy V.

    2010-07-21

    A low-budget surface slope measuring instrument, the Developmental Long Trace Profiler (DLTP), was recently brought into operation at the Advanced Light Source Optical Metrology Laboratory [Nucl. Instr. and Meth. A 616, 212-223 (2010)]. The instrument is based on a precisely calibrated autocollimator and a movable pentaprism. The capability of the DLTP to achieve sub-microradian surface slope metrology has been verified via cross-comparison measurements with other high-performance slope measuring instruments when measuring the same high-quality test optics. In the present work, a further improvement of the DLTP is achieved by replacing the existing bulk pentaprism with a specially designed mirror basedmore » pentaprism. A mirror based pentaprism offers the possibility to eliminate systematic errors introduced by inhomogeneity of the optical material and fabrication imperfections of a bulk pentaprism. We provide the details of the mirror based pentaprism design and describe an original experimental procedure for precision mutual alignment of the mirrors. The algorithm of the alignment procedure and its efficiency are verified with rigorous ray tracing simulations. Results of measurements of a spherically curved test mirror and a flat test mirror using the original bulk pentaprism are compared with measurements using the new mirror based pentaprism, demonstrating the improved performance.« less

  15. Manufacture of Cryoshroud Surfaces for Space Simulation Chambers

    NASA Technical Reports Server (NTRS)

    Ash, Gary S.

    2008-01-01

    Environmental test chambers for space applications use internal shrouds to simulate temperature conditions encountered in space. Shroud temperatures may range from +150 C to -253 C (20 K), and internal surfaces are coated with special high emissivity/absorptivity paints. To obtain temperature uniformity over large areas, detailed thermal design is required for placement of tubing for gaseous or liquid nitrogen and helium and other exotic heat exchange fluids. The recent increase in space simulation activity related to the James Webb Space Telescope has led to the design of new cryogenic shrouds to meet critical needs in instrument package testing. This paper will review the design and manufacturing of shroud surfaces for several of these programs, including fabrication methods and the selection and application of paints for simulation chambers.

  16. 77 FR 40638 - Alternative Staffing, Formerly Known as First Choice Staffing, Working On-Site at Ametek...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ..., Instrumentation and Speciality Controls Division, West Chicago, IL; Amended Certification Regarding Eligibility To... Nationals Controls Corporation, Instrumentation and Specialty Control Division, West Chicago, Illinois. The... Corporation, Instrumentation and Specialty Control Division, West Chicago, Illinois, separated from employment...

  17. Line drawing Scientific Instrument Module and lunar orbital science package

    NASA Technical Reports Server (NTRS)

    1970-01-01

    A line drawing of the Scientific Instrument Module (SIM) with its lunar orbital science package. The SIM will be mounted in a previously vacant sector of the Apollo Service Module. It will carry specialized cameras and instrumentation for gathering lunar orbit scientific data.

  18. 76 FR 14802 - Establishment of Class E Airspace; Lancaster, NH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... Standard Instrument Approach Procedure (SIAP) serving the Weeks Medical Center Heliport. This action enhances the safety and airspace management of Instrument Flight Rules (IFR) operations within the National... required to support the special standard instrument approach procedures developed for Weeks Medical Center...

  19. X-ray and gamma ray astronomy detectors

    NASA Technical Reports Server (NTRS)

    Decher, Rudolf; Ramsey, Brian D.; Austin, Robert

    1994-01-01

    X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.

  20. Development of a Mirror Pointing Mechanism for an Atmospheric Gas Measurement Instrument

    NASA Technical Reports Server (NTRS)

    Graham, Michael; Belous, Adel; Brown, Jeffrey; Podolske, James

    1998-01-01

    Development of the Open Path Tunable Infrared Monitor of the Atmosphere (OPTIMA) instrument involved designing a pair of motion systems that could maintain a precise alignment and spatial distance between two mirrors installed on the NASA DC-8 research laboratory aircraft. This is the first airborne optical instrument that allows direct measurement of the gases in the freestream airflow on the exterior of the aircraft. One mirror is mounted within a specially constructed open port cavity in the cabin of the aircraft and the second is mounted 6 meters away on top of the inboard port side (number 2) engine pylon. Three co-aligned laser beams are reflected between the two mirrors 64 times in a Herriott pattern. The resulting sample path length of 384 meters is used to perform a spectral absorption analysis of the airflow between the mirrors. To compensate for normal wing movement and engine oscillations both mirrors were designed as continuously driven mechanisms to maintain alignment within allowable limits. The motion systems of the two mirror assemblies provide five degrees of freedom and are designed to maintain a pointing accuracy within seven arc-sec with a response frequency in 6xcess of 10 Hz. The pylon motion system incorporates controlled pitch and yaw movement. The fuselage motion system compensates for pitch variation as well as linear translation for focal length and vertical aiming of the laser beam via a controlled beam guidance mechanism.

  1. Development of a computer-assisted system for model-based condylar position analysis (E-CPM).

    PubMed

    Ahlers, M O; Jakstat, H

    2009-01-01

    Condylar position analysis is a measuring method for the three-dimensional quantitative acquisition of the position of the mandible in different conditions or at different points in time. Originally, the measurement was done based on a model, using special mechanical condylar position measuring instruments, and on a research scale with mechanical-electronic measuring instruments. Today, as an alternative, it is possible to take measurements with electronic measuring instruments applied directly to the patient. The computerization of imaging has also facilitated condylar position measurement by means of three-dimensional data records obtained by imaging examination methods, which has been used in connection with the simulation and quantification of surgical operation results. However, the comparative measurement of the condylar position at different points in time has so far not been possible to the required degree. An electronic measuring instrument, allowing acquisition of the condylar position in clinical routine and facilitating later calibration with measurements from later examinations by data storage and use of precise equalizing systems, was therefore designed by the present authors. This measuring instrument was implemented on the basis of already existing components from the Reference CPM und Cadiax Compact articulator and registration systems (Gamma Dental, Klosterneuburg, Austria) as well as the matching CMD3D evaluation software (dentaConcept, Hamburg).

  2. Novel instrument for characterizing comprehensive physical properties under multi-mechanical loads and multi-physical field coupling conditions

    NASA Astrophysics Data System (ADS)

    Liu, Changyi; Zhao, Hongwei; Ma, Zhichao; Qiao, Yuansen; Hong, Kun; Ren, Zhuang; Zhang, Jianhai; Pei, Yongmao; Ren, Luquan

    2018-02-01

    Functional materials represented by ferromagnetics and ferroelectrics are widely used in advanced sensor and precision actuation due to their special characterization under coupling interactions of complex loads and external physical fields. However, the conventional devices for material characterization can only provide a limited type of loads and physical fields and cannot simulate the actual service conditions of materials. A multi-field coupling instrument for characterization has been designed and implemented to overcome this barrier and measure the comprehensive physical properties under complex service conditions. The testing forms include tension, compression, bending, torsion, and fatigue in mechanical loads, as well as different external physical fields, including electric, magnetic, and thermal fields. In order to offer a variety of information to reveal mechanical damage or deformation forms, a series of measurement methods at the microscale are integrated with the instrument including an indentation unit and in situ microimaging module. Finally, several coupling experiments which cover all the loading and measurement functions of the instrument have been implemented. The results illustrate the functions and characteristics of the instrument and then reveal the variety in mechanical and electromagnetic properties of the piezoelectric transducer ceramic, TbDyFe alloy, and carbon fiber reinforced polymer under coupling conditions.

  3. Interim-Night Integrated Goggle Head Tracking System (I-Nights). Volume 2. Flight Test, Pilot Survey Report

    DTIC Science & Technology

    1992-08-01

    instruments and the exterior environment with frequent shifts from one to the other. The design for future helmets should include the capability to switch...where and after how long? (20) I.A. 18 Did you experience any helmet temperature build-up? If YES, after how long? (21) I.A. 19 BATERY PACK (26) I.A. 19.a...three I-NIGHTS helmet mdels in the special .operations environment . 2. Critical Operational Issues for this 017T&H were: a. Do any of the I-NIGHTS

  4. First Results from the Jupiter Energetic Particle Detector Instrument (JEDI) Investigation Within the Magnetosphere and Over the Poles of Jupiter

    NASA Astrophysics Data System (ADS)

    Mauk, B.; Haggerty, D. K.; Paranicas, C.; Clark, G. B.; Kollmann, P.; Rymer, A. M.; Brown, L. E.; Jaskulek, S. E.; Schlemm, C. E.; Kim, C. K.; Nelson, K.; Bolton, S. J.; Bagenal, F.; Connerney, J. E. P.; Gladstone, R.; Kurth, W. S.; Levin, S.; McComas, D. J.; Valek, P. W.

    2016-12-01

    The Juno spacecraft first entered Jupiter's magnetosphere on 25 June 2016, but evidence for Jupiter's magnetospheric environment was first observed by the Jupiter Energetic Particle Detector Instrument (JEDI) as early as January 2016 in the form of leaking energetic particles observed over 1200 RJ away from Jupiter. JEDI is an energetic particle instrument designed to measure the energy, angular, and compositional distribution of energetic electrons ( 25 to > 700 keV) and ions (protons: 10 keV to > 1.5 MeV). A special set of channels for oxygen and sulfur extend up in energy to > 10 MeV. The JEDI instrument comprises three separate sensor heads, each with multiple (6) telescopes, in order to capture angular distributions of energetic particles over the poles of Jupiter as Juno rushes over auroral forms as narrow as < 80 km at a speed of up to 55 km/s. Since entering Jupiter's magnetosphere JEDI has observed both familiar, and some unfamiliar structures, including: 1) undulations along the dawn flank of Jupiter's magnetosphere possibly signaling the occurrence of Kelvin-Helmholz instability structures thought to play a role in coupling the solar wind energetics to the dynamics of Jupiter's magnetosphere, and 2) spiky electron transients with magnetic field-aligned angular distributions within the distant magnetodisc plasmas conjectured to be related to transient auroral forms observed at other times by the Hubble Space Telescope poleward of Jupiter's main aurora. A principal target of JEDI and other fields and particles instruments on Juno is the near-planet polar regions of Jupiter's space environment, never-before visited by spacecraft. These instruments were designed to determine the physics of auroral acceleration at Jupiter and the role that those processes play in enabling Jupiter to spin up and energize its vast magnetospheric space environment. The first polar pass is scheduled for 27 August 2016. In this report we present the first results from the JEDI instrument after making measurements in this novel polar environment.

  5. Dermatologic Surgical Instruments: A History and Review.

    PubMed

    Gandhi, Sumul A; Kampp, Jeremy T

    2017-01-01

    Dermatologic surgery requires precision and accuracy given the delicate nature of procedures performed. The use of the most appropriate instrument for each action helps optimize both functionality and cosmetic outcome. To review the history of surgical instruments used in dermatology, with a focus on mechanism and evolution to the instruments that are used in current practice. A comprehensive literature search was conducted via textbook and journal research for historic references while review of current references was conducted online using multiple search engines and PubMed. There are a number of articles that review instruments in dermatology, but this article adds a unique perspective in classifying their evolution, while also presenting them as levers that serve to increase human dexterity during the course of surgery. Surgical instruments allow fine manipulation of tissue, which in turn produces optimal outcomes. Surgical tools have been around since the dawn of man, and their evolution parallels the extent to which human civilization has specialized over time. This article describes the evolution of instruments from the general surgical armamentaria to the specialized tools that are used today.

  6. KSC-99pc52

    NASA Image and Video Library

    1999-01-11

    In a specially built clean room at Astrotech, Titusville, Fla., Loral technician Roberto Caballero checks the position of the GOES-L weather satellite before beginning deployment of the sounder instrument's cooler cover door. The sounder, one of two meteorological instruments on the satellite, measures temperature and moisture in a vertical column of air from the satellite to Earth. Its findings will help forecast weather. GOES-L, which is to be launched from Cape Canaveral Air Station aboard an Atlas II rocket in late March, is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures as well as perform the atmospheric sounding. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite

  7. Enhancements to High Temperature In-Pile Thermocouple Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.C. Crepeau; J.L. Rempe; J.E. Daw

    2008-03-31

    A joint University of Idaho (UI) and Idaho National Laboratory (INL) University Nuclear Research Initiative (UNERI) was to initiated to extend initial INL efforts to develop doped molybdenum/niobium alloy High Temperature Irradiation Resistant Thermocouples (HTIR-TCs). The overall objective of this UNERI was to develop recommendations for an optimized thermocouple design for high temperature, long duration, in-pile testing by expanding upon results from initial INL efforts. Tasks to quantify the impact of candidate enhancements, such as alternate alloys, alternate geometries, and alternate thermocouple fabrication techniques, on thermocouple performance were completed at INL's High Temperature Test Laboratory (HTTL), a state of themore » art facility equipped with specialized equipment and trained staff in the area of high temperature instrumentation development and evaluation. Key results of these evaluations, which are documented in this report, are as follows. The doped molybdenum and Nb-1%Zr, which were proposed in the initial INL HTIR-TC design, were found to retain ductility better than the developmental molybdenum-low niobium alloys and the niobium-low molybdenum alloys evaluated. Hence, the performance and lower cost of the commercially available KW-Mo makes a thermocouple containing KW-Mo and Nb-1%Zr the best option at this time. HTIR-TCs containing larger diameter wires offer the potential to increase HTIR-TC stability and reliability at higher temperatures. HTIR-TC heat treatment temperatures and times should be limited to not more than 100 C above the proposed operating temperatures and to durations of at least 4 to 5 hours. Preliminary investigations suggest that the performance of swaged and loose assembly HTIR-TC designs is similar. However, the swaged designs are less expensive and easier to construct. In addition to optimizing HTIR-TC performance, This UNERI project provided unique opportunities to several University of Idaho students, allowing them to become familiar with the techniques and equipment used for specialized high temperature instrumentation fabrication and evaluation and to author/coauthor several key conference papers and journal articles.« less

  8. Enhancements to High Temperature In-Pile Thermocouple Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. C. Crepeau; J. L. Rempe; J. E. Daw

    2008-03-01

    A joint University of Idaho (UI) and Idaho National Laboratory (INL) University Nuclear Research Initiative (UNERI) was to initiated to extend initial INL efforts to develop doped lybdenum/niobium alloy High Temperature Irradiation Resistant Thermocouples (HTIR-TCs). The overall objective of this UNERI was to develop recommendations for an optimized thermocouple design for high temperature, long duration, in-pile testing by expanding upon results from initial INL efforts. Tasks to quantify the impact of candidate enhancements, such as alternate alloys, alternate geometries, and alternate thermocouple fabrication techniques, on thermocouple performance were completed at INL's High Temperature Test Laboratory (HTTL), a state of themore » art facility equipped with specialized equipment and trained staff in the area of high temperature instrumentation development and evaluation. Key results of these evaluations, which are documented in this report, are as follows. The doped molybdenum and Nb-1%Zr, which were proposed in the initial INL HTIR-TC design, were found to retain ductility better than the developmental molybdenum-low niobium alloys and the niobium-low molybdenum alloys evaluated. Hence, the performance and lower cost of the commercially available KW-Mo makes a thermocouple containing KW-Mo and Nb-1%Zr the best option at this time. HTIR-TCs containing larger diameter wires offer the potential to increase HTIR-TC stability and reliability at higher temperatures. HTIR-TC heat treatment temperatures and times should be limited to not more than 100 °C above the proposed operating temperatures and to durations of at least 4 to 5 hours. Preliminary investigations suggest that the performance of swaged and loose assembly HTIR-TC designs is similar. However, the swaged designs are less expensive and easier to construct. In addition to optimizing HTIR-TC performance, This UNERI project provided unique opportunities to several University of Idaho students, allowing them to become familiar with the techniques and equipment used for specialized high temperature instrumentation fabrication and evaluation and to author/coauthor several key conference papers and journal articles.« less

  9. Assessing the health care needs of women in rural British Columbia: development and validation of a survey tool.

    PubMed

    Guy, Meghan; Norman, Wendy V; Malhotra, Unjali

    2013-02-01

    To design reliable survey instruments to evaluate needs and expectations for provision of women's health services in rural communities in British Columbia (BC). These tools will aim to plan programming for, and evaluate effectiveness of, a women's health enhanced skills residency program at the University of British Columbia. A qualitative design that included administration of written surveys and on-site interviews in several rural communities. Three communities participated in initial questionnaire and interview administration. A fourth community participated in the second interview iteration. Participating communities did not have obstetrician-gynecologists but did have hospitals capable of supporting outpatient specialized women's health procedural care. Community physicians, leaders of community groups serving women, and allied health providers, in Vancouver Island, Southeast Interior BC, and Northern BC. Two preliminary questionnaires were developed to assess local specialized women's health services based on the curriculum of the enhanced skills training program; one was designed for physicians and the other for women's community group leaders and aboriginal health and community group leaders. Interview questions were designed to ensure the survey could be understood and to identify important areas of women's health not included on the initial questionnaires. Results were analyzed using quantitative and qualitative methods, and a second draft of the questionnaires was developed for a second iteration of interviews. Clarity and comprehension of questionnaires were good; however, nonphysician participants answered that they were unsure on many questions pertaining to specific services. Topics identified as important and missing from questionnaires included violence and mental health. A second version of the questionnaires was shown to have addressed these concerns. Through iterations of pilot testing, we created 2 validated survey instruments for implementation as a component of program evaluation. Testing in remote locations highlighted unique rural concerns, such that University of British Columbia health care professional training will now better serve BC community needs.

  10. A new instrument for measuring optical transmission in the atmosphere

    NASA Astrophysics Data System (ADS)

    Kaurila, Timo A.

    2007-04-01

    It is an important task to measure optical transmission of the atmosphere when testing the performance of electro-optical systems such as thermal imagers. Only by knowing atmospheric transmission precisely enough, we will be able to eliminate effects of the atmosphere on test results. For this reason a new instrument that measures optical transmission in the atmosphere has been constructed. The transmissometer consists of a transmitter/receiver unit, a reflector and control software. The instrument measures atmospheric transmission at wavelength of 1 μm and 8-12 μm by comparing the intensity of the beam propagating through the atmosphere and the reference beam inside the transmitter/receiver unit. Calibration is carried out by the aid of a visibility meter and a special calibration algorithm. An important criterion for the design was to create an instrument which could be used flexibly in field measurements. The transmissometer was tested comprehensively in the field in March and June 2006. It can measure extinction coefficients up to 3 - 12 km -1 depending on the span between the transmitter/receiver unit and reflector with accuracy of 10 - 20 %. According to the test measurements the transmissometer also fulfills the other requirement specifications.

  11. Synthesis Polarimetry Calibration

    NASA Astrophysics Data System (ADS)

    Moellenbrock, George

    2017-10-01

    Synthesis instrumental polarization calibration fundamentals for both linear (ALMA) and circular (EVLA) feed bases are reviewed, with special attention to the calibration heuristics supported in CASA. Practical problems affecting modern instruments are also discussed.

  12. Comparison of a few recording current meters in San Francisco Bay, CA

    USGS Publications Warehouse

    Cheng, R.T.

    1978-01-01

    A team of research scientists in the U.S. Geological Survey uses San Francisco Bay, California, as an outdoor laboratory to study complicated interactions of physical, chemical, and biological processes which take place in an estuarine environment. A current meter comparison study was conceived because of the need to select a suitable current meter to meet field requirements for current measurements in the Bay. The study took place in south San Francisco Bay, California, in the spring of 1977. An instrument tower which was designed to support instruments free from the conventional mooring line motions was constructed and emplaced in south San Francisco Bay. During a period of two months, four types of recording current meters have been used in the tests. The four types were: (1) Aanderaa, (2) tethered shroud-impeller, (3) drag-inclinometer, and (4) electromagnetic current meters. With the exception of the electromagnetic current meter, one of each type was mounted on the instrument tower, and one of each type was deployed on moorings near the instrument tower. In addition, a wind anemometer and a recording tide gauge were also installed on the tower. This paper discusses the characteristics of each instrument and the accuracy that each instrument can provide when used in an estuarine environment. We pay special attention to our experiences in the field operation with respect to handling of the instruments and to our experiences working up the raw data in the post-deployment data analysis.

  13. Mars MetNet Mission - Martian Atmospheric Observational Post Network

    NASA Astrophysics Data System (ADS)

    Hari, Ari-Matti; Haukka, Harri; Aleksashkin, Sergey; Arruego, Ignacio; Schmidt, Walter; Genzer, Maria; Vazquez, Luis; Siikonen, Timo; Palin, Matti

    2017-04-01

    A new kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested. 1. MetNet Lander The MetNet landing vehicles are using an inflatable entry and descent system instead of rigid heat shields and parachutes as earlier semi-hard landing devices have used. This way the ratio of the payload mass to the overall mass is optimized. The landing impact will burrow the payload container into the Martian soil providing a more favorable thermal environment for the electronics and a suitable orientation of the telescopic boom with external sensors and the radio link antenna. It is planned to deploy several tens of MNLs on the Martian surface operating at least partly at the same time to allow meteorological network science. 2. Strawman Scientific Payload The strawman payload of the two MNL precursor models includes the following instruments: Atmospheric instruments: - MetBaro Pressure device - MetHumi Humidity device - MetTemp Temperature sensors Optical devices: - PanCam Panoramic - MetSIS Solar irradiance sensor with OWLS optical wireless system for data transfer - DS Dust sensor Composition and Structure Devices: Tri-axial magnetometer MOURA Tri-axial System Accelerometer The descent processes dynamic properties are monitored by a special 3-axis accelerometer combined with a 3-axis gyrometer. The data will be sent via auxiliary beacon antenna throughout the descent phase starting shortly after separation from the spacecraft. MetNet Mission payload instruments are specially designed to operate under very low power conditions. MNL flexible solar panels provides a total of approximately 0.7-0.8 W of electric power during the daylight time. As the provided power output is insufficient to operate all instruments simultaneously they are activated sequentially according to a specially designed cyclogram table which adapts itself to the different environmental constraints. 3. Mission Status he eventual goal is to create a network of atmospheric observational posts around the Martian surface. Even if the MetNet mission is focused on the atmospheric science, the mission payload will also include additional kinds of geophysical instrumentation. The next step is the MetNet Precursor Mission that will demonstrate the technical robustness and scientific capabilities of the MetNet type of landing vehicle. Definition of the Precursor Mission and discussions on launch opportunities are currently under way. The first MetNet Science Payload Precursors have already been successfully completed, e,g, the REMS/MSL and DREAMS/Exomars-2016. The next MetNet Payload Precursors will be METEO/Exomars-2018 and MEDA/Mars-2020. The baseline program development funding exists for the next seven years. Flight unit manufacture of the payload bay takes about 18 months, and it will be commenced after the Precursor Mission has been defined. References [1] http://metnet.fmi.fi

  14. Underwater Concrete Inspection Equipment

    DTIC Science & Technology

    1991-04-01

    nondestructive testing of con- crete waterfront structures. One instrument is a magnetic rebar locator that locates rebar in concrete structures and measures the...amount of con- crete cover over the rebar . Another instrument is a rebound hammer that measures the surface hardness of the concrete . The third...development of three specialized instruments for the underwater nondestructive testing or concrete waterfront structures. One instrument is a magnetic rebar

  15. Using XML and Java Technologies for Astronomical Instrument Control

    NASA Technical Reports Server (NTRS)

    Ames, Troy; Case, Lynne; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Traditionally, instrument command and control systems have been highly specialized, consisting mostly of custom code that is difficult to develop, maintain, and extend. Such solutions are initially very costly and are inflexible to subsequent engineering change requests, increasing software maintenance costs. Instrument description is too tightly coupled with details of implementation. NASA Goddard Space Flight Center, under the Instrument Remote Control (IRC) project, is developing a general and highly extensible framework that applies to any kind of instrument that can be controlled by a computer. The software architecture combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML), a human readable and machine understandable way to describe structured data. A key aspect of the object-oriented architecture is that the software is driven by an instrument description, written using the Instrument Markup Language (IML), a dialect of XML. IML is used to describe the command sets and command formats of the instrument, communication mechanisms, format of the data coming from the instrument, and characteristics of the graphical user interface to control and monitor the instrument. The IRC framework allows the users to define a data analysis pipeline which converts data coming out of the instrument. The data can be used in visualizations in order for the user to assess the data in real-time, if necessary. The data analysis pipeline algorithms can be supplied by the user in a variety of forms or programming languages. Although the current integration effort is targeted for the High-resolution Airborne Wideband Camera (HAWC) and the Submillimeter and Far Infrared Experiment (SAFIRE), first-light instruments of the Stratospheric Observatory for Infrared Astronomy (SOFIA), the framework is designed to be generic and extensible so that it can be applied to any instrument. Plans are underway to test the framework with other types of instruments, such as remote sensing earth science instruments.

  16. An Organizational Analysis of Special Education Reform.

    ERIC Educational Resources Information Center

    Skrtic, Thomas M.

    The paper identifies current special education practice and the current organization of schools as instrumental in actually creating the category of mildly handicapped students. A dichotomy between departments of special education and educational administration is noted. Only replacement of the system with an entirely different configuration and…

  17. 14 CFR 49.45 - Recording of releases, cancellations, discharges, and satisfactions: special requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., discharges, and satisfactions: special requirements. 49.45 Section 49.45 Aeronautics and Space FEDERAL... releases, cancellations, discharges, and satisfactions: special requirements. (a) A release, cancellation, discharge, or satisfaction of an encumbrance created by an instrument recorded under this subpart must be in...

  18. 14 CFR 49.55 - Recording of releases, cancellations, discharges, and satisfactions: special requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., discharges, and satisfactions: special requirements. 49.55 Section 49.55 Aeronautics and Space FEDERAL... Recording of releases, cancellations, discharges, and satisfactions: special requirements. (a) A release, cancellation, discharge, or satisfaction of an encumbrance on all of the collateral listed in an instrument...

  19. View of Scientific Instrument Module to be flown on Apollo 15

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Close-up view of the Scientific Instrument Module (SIM) to be flown for the first time on the Apollo 15 mission. Mounted in a previously vacant sector of the Apollo Service Module, the SIM carries specialized cameras and instrumentation for gathering lunar orbit scientific data.

  20. Present status, future prospects of domestic acoustical instruments

    NASA Astrophysics Data System (ADS)

    Guibin, L.

    1984-01-01

    The product lines, specifications, and special features of China's main acoustical instrument products are described. The methods of operation nd the main problems associated with these products are discussed. Examples of the application of acoustical instruments are given. The main features of a digital signal analyzer are enumerated.

  1. "Push back" technique: A simple method to remove broken drill bit from the proximal femur.

    PubMed

    Chouhan, Devendra K; Sharma, Siddhartha

    2015-11-18

    Broken drill bits can be difficult to remove from the proximal femur and may necessitate additional surgical exploration or special instrumentation. We present a simple technique to remove a broken drill bit that does not require any special instrumentation and can be accomplished through the existing incision. This technique is useful for those cases where the length of the broken drill bit is greater than the diameter of the bone.

  2. Qualification and cryogenic performance of cryomodule components at CEBAF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heckman, J.; Macha, K.; Fischer, J.

    1996-12-31

    At CEBAF an electron beam is accelerated by superconducting resonant niobium cavities which are operated submerged in superfluid helium. The accelerator has 42 1/4 cryomodules, each containing eight cavities. The qualification and design of components for the cryomodules under went stringent testing and evaluation for acceptance. Indium wire seals are used between the cavity and helium vessel interface to make a superfluid helium leak tight seal. Each cavity is equipped with a mechanical tuner assembly designed to stretch and compress the cavities. Two rotary feedthroughs are used to operate each mechanical tuner assembly. Ceramic feedthroughs not designed for super-fluid weremore » qualified for tuner and cryogenic instrumentation. To ensure long term integrity of the machine special attention is required for material specifications and machine processes. The following is to share the qualification methods, design and performance of the cryogenic cryomodule components.« less

  3. PHARAO laser source flight model: Design and performances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lévèque, T., E-mail: thomas.leveque@cnes.fr; Faure, B.; Esnault, F. X.

    2015-03-15

    In this paper, we describe the design and the main performances of the PHARAO laser source flight model. PHARAO is a laser cooled cesium clock specially designed for operation in space and the laser source is one of the main sub-systems. The flight model presented in this work is the first remote-controlled laser system designed for spaceborne cold atom manipulation. The main challenges arise from mechanical compatibility with space constraints, which impose a high level of compactness, a low electric power consumption, a wide range of operating temperature, and a vacuum environment. We describe the main functions of the lasermore » source and give an overview of the main technologies developed for this instrument. We present some results of the qualification process. The characteristics of the laser source flight model, and their impact on the clock performances, have been verified in operational conditions.« less

  4. Thermal design concept for a high resolution UV spectrometer

    NASA Technical Reports Server (NTRS)

    Caruso, P.; Stipandic, E.

    1979-01-01

    The thermal design concept described has been developed for the High Resolution UV Spectrometer/Polarimeter to be flown on the Solar Maximum Mission. Based on experience gained from a similar Orbiting Solar Observatory mission payload, it has been recognized that initial protection of the optical elements, contamination control, reduction of scattered light, tight bulk temperature, and gradient constraints are key elements that must be accommodated in any thermal control concept for this class of instrument. Salient features of the design include: (1) a telescope door providing contamination protection of an aplanatic Gregorian telescope; (2) a rastering system for the secondary mirror; (3) a unique solar heat absorbing device; (4) heat pipes and special radiators; (5) heaters for active temperature control and optics contamination protection; and (6) high precision platinum resistance thermometers. Viability of the design concept has been established by extensive thermal analysis and some subsystem testing. A summary of analytical and test results is included.

  5. 2 CFR 200.89 - Special purpose equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... equipment. Special purpose equipment means equipment which is used only for research, medical, scientific... machines, surgical instruments, and spectrometers. See also §§ 200.33 Equipment and 200.48 General purpose...

  6. Applied Research on Laparoscopic Simulator in the Resident Surgical Laparoscopic Operation Technical Training.

    PubMed

    Fu, Shangxi; Liu, Xiao; Zhou, Li; Zhou, Meisheng; Wang, Liming

    2017-08-01

    The purpose of this study was to estimate the effects of surgical laparoscopic operation course on laparoscopic operation skills after the simulated training for medical students with relatively objective results via data gained before and after the practice course of laparoscopic simulator of the resident standardized trainees. Experiment 1: 20 resident standardized trainees with no experience in laparoscopic surgery were included in the inexperienced group and finished simulated cholecystectomy according to simulator videos. Simulator data was collected (total operation time, path length, average speed of instrument movement, movement efficiency, number of perforations, the time cautery is applied without appropriate contact with adhesions, number of serious complications). Ten attending doctors were included in the experienced group and conducted the operation of simulated cholecystectomy directly. Data was collected with simulator. Data of two groups was compared. Experiment 2: Participants in inexperienced group were assigned to basic group (receiving 8 items of basic operation training) and special group (receiving 8 items of basic operation training and 4 items of specialized training), and 10 persons for each group. They received training course designed by us respectively. After training level had reached the expected target, simulated cholecystectomy was performed, and data was collected. Experimental data between basic group and special group was compared and then data between special group and experienced group was compared. Results of experiment 1 showed that there is significant difference between data in inexperienced group in which participants operated simulated cholecystectomy only according to instructors' teaching and operation video and data in experienced group. Result of experiment 2 suggested that, total operation time, number of perforations, number of serious complications, number of non-cauterized bleeding and the time cautery is applied without appropriate contact with adhesions in special group were all superior to those in basic group. There was no statistical difference on other data between special group and basic group. Comparing special group with experienced group, data of total operation time and the time cautery is applied without appropriate contact with adhesions in experienced group was superior to that in special group. There was no statistical difference on other data between special group and experienced group. Laparoscopic simulators are effective for surgical skills training. Basic courses could mainly improve operator's hand-eye coordination and perception of sense of the insertion depth for instruments. Specialized training courses could not only improve operator's familiarity with surgeries, but also reduce operation time and risk, and improve safety.

  7. Getting Better All the Time: Using Music Technology for Learners with Special Needs

    ERIC Educational Resources Information Center

    Swingler, Tim; Brockhouse, John

    2009-01-01

    This paper focuses on the category of electronic musical instruments described as "gestural controllers"--motion sensor technology and specially adapted switches--which are widely used in special education. The therapeutic benefits of this technology in emancipating children from their cognitive or physical limitations are increasingly…

  8. The Penguin: a Low Reynolds Number Powered Glider for Station Keeping Missions

    NASA Technical Reports Server (NTRS)

    Costello, J. K.; Greene, D. W.; Lee, T. T.; Matier, P. T.; Mccarthy, T. R.; Mcguire, R. J.; Schuette, M. J.

    1990-01-01

    The Penguin is a low Reynolds number (approx. 100,000) remotely piloted vehicle (RPV). It was designed to fly three laps indoors around two pylons in a figure-eight course while maximizing loiter time. The Penguin's low Reynolds number mission is an important one currently being studied for possible future flights in the atmospheres of other planets and for specialized military missions. Although the Penguin's mission seemed quite simple at first, the challenges of such low Reynolds number flight have proven to be quite unique. In addition to the constraint of low Reynolds number flight, the aircraft had to be robust in its control, highly durable, and it had to carry a small instrument package. The Penguin's flight plan, concept, performance, aerodynamic design, weight estimation, structural design, propulsion, stability and control, and cost estimate is detailed.

  9. Highly charged ion based time of flight emission microscope

    DOEpatents

    Barnes, Alan V.; Schenkel, Thomas; Hamza, Alex V.; Schneider, Dieter H.; Doyle, Barney

    2001-01-01

    A highly charged ion based time-of-flight emission microscope has been designed, which improves the surface sensitivity of static SIMS measurements because of the higher ionization probability of highly charged ions. Slow, highly charged ions are produced in an electron beam ion trap and are directed to the sample surface. The sputtered secondary ions and electrons pass through a specially designed objective lens to a microchannel plate detector. This new instrument permits high surface sensitivity (10.sup.10 atoms/cm.sup.2), high spatial resolution (100 nm), and chemical structural information due to the high molecular ion yields. The high secondary ion yield permits coincidence counting, which can be used to enhance determination of chemical and topological structure and to correlate specific molecular species.

  10. G-133: A soft x ray solar telescope

    NASA Technical Reports Server (NTRS)

    Williams, Memorie K.; Campbell, Branton; Roming, Peter W. A.; Spute, Mark K.; Moody, J. Ward

    1992-01-01

    The GOLDHELOX Project, NASA payload number G-133, is a robotic soft x ray solar telescope designed and built by an organization of undergraduate students. The telescope is designed to observe the sun at a wavelength of 171 to 181 A. Since we require observations free from atmospheric interference, the telescope will be launched in a NASA Get-Away-Special (GAS) canister with a Motorized Door Assembly (MDA). In this paper we primarily discuss the most important elements of the telescope itself. We also elaborate on some of the technical difficulties associated with doing good science in space on a small budget (about $100,000) and mention ways in which controlling the instrument environment has reduced the complexity of the system and thus saved us money.

  11. Development of a special-purpose test surface guided by uncertainty analysis - Introduction of a new uncertainty analysis step

    NASA Technical Reports Server (NTRS)

    Wang, T.; Simon, T. W.

    1988-01-01

    Development of a recent experimental program to investigate the effects of streamwise curvature on boundary layer transition required making a bendable, heated and instrumented test wall, a rather nonconventional surface. The present paper describes this surface, the design choices made in its development and how uncertainty analysis was used, beginning early in the test program, to make such design choices. Published uncertainty analysis techniques were found to be of great value; but, it became clear that another step, one herein called the pre-test analysis, would aid the program development. Finally, it is shown how the uncertainty analysis was used to determine whether the test surface was qualified for service.

  12. NBS (National Bureau of Standards) calibration services users guide: Fee schedule

    NASA Astrophysics Data System (ADS)

    1987-04-01

    The physical measurement services of the National Bureau of Standards are designed to help the makers and users of precision instruments achieve the highest possible levels of measurement quality and productivity. The hundreds of individual services found listed in the Fee Schedule constitute the highest-order calibration services available in the United States. These services directly link a customer's precision equipment or transfer standards to national measurement standards. These services are offered to public and private organizations and individuals alike. The Fee Schedule is a supplement to NBS Special Publication 250, Calibration Services Users Guide. These documents are designed to make the task of selecting and ordering an appropriate calibration service as quick and easy as possible.

  13. 26 CFR 1.1271-1 - Special rules applicable to amounts received on retirement, sale, or exchange of debt instruments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... retirement, sale, or exchange of debt instruments. 1.1271-1 Section 1.1271-1 Internal Revenue INTERNAL... retirement, sale, or exchange of debt instruments. (a) Intention to call before maturity—(1) In general. For... instrument to which section 1271 applies is treated as interest income if there was an intention to call the...

  14. AMLCD cockpit: promise and payoffs

    NASA Astrophysics Data System (ADS)

    Snow, Michael P.; Jackson, Timothy W.; Meyer, Frederick M.; Reising, John M.; Hopper, Darrel G.

    1999-08-01

    The active matrix liquid crystal display (AMLCD) has become the preferred flight instrument technology in avionics multifunction display applications. Current bubble canopy fighter cockpit applications involve sizes up to 7.8 X 7.8 in. active display. Dual use avionics versions of AMLCD technology are now as large as 6.7 X 6.7 in. active display area in the ARINC D sized color multifunction display (MFD). This is the standard instrument in all new Boeing transport aircraft and is being retrofitted into the C-17A. A special design of the ARINC D instrument is used in the Space Shuttle cockpit upgrade. Larger sizes of AMLCD were desired when decisions were made in the early 1990s for the F-22. Commercial AMLCD technology has now produced monitors at 1280 X 1024 resolution (1.3 megapixels) in sizes of 16 to 21 in. diagonal. Each of these larger AMLCDs has more information carrying capacity than the entire F-22A cockpit instrument panel shipset, comprising six separate smaller AMLCDs (1.2 megapixels total). The larger AMLCDs are being integrated into airborne mission crewstations for use in dim ambient lighting conditions. It is now time to identify and address the technology challenges of upgrading these larger AMLCDs for sunlight readable application and of developing concepts for their integration into advanced bubble canopy fighter cockpits. The overall goals are to significantly increase the informational carrying capacity to bring both sensor and information fusion into the cockpit and, thereby, to enable a significant increase in warfighter situational awareness and effectiveness. A research cockpit was built using specialized versions of the IBM 16.1 in and two smaller 10 in. AMLCDs to examine human factors and display design issues associated with these next-generation AMLCD cockpit displays. This cockpit was later upgraded to allow greater reconfigurability and flexibility in the display hardware used to conduct part- task mission simulations. The objective optical characterization of the AMLCDs used in this simulator and the cockpit design are described. Display formats under consideration for test in this cockpit are described together with some of the basic human factors engineering issues involved. Studies conducted in this cockpit will be part of an ongoing joint effort of the hardware-focused aerospace displays team and the pilot-focused human factors team in the Air Force Research Laboratory's Crew System Interface Division. The objective of these studies is to ascertain the payoffs of the large AMLCD promise in combat cockpits.

  15. Soho Ultraviolet Coronograph Spectrometer (UVCS) Mission Operations and Data Analysis

    NASA Technical Reports Server (NTRS)

    Kohl, John L.; Gurman, Joseph (Technical Monitor)

    2002-01-01

    The scientific goal of UVCS is to obtain detailed empirical descriptions of the extended solar corona as it evolves over the solar cycle and to use these descriptions to identify and understand the physical processes responsible for coronal heating, solar wind acceleration, coronal mass ejections (CMEs), and the phenomena that establish the plasma properties of the solar wind as measured by 'in situ' solar wind instruments. This report covers the period from 01 December 2000 to 31 January 2002. During that time, UVCS observations have consisted of three types: (1) standard synoptic observations comprising, primarily, the H I Ly(alpha) line profile and the O VI 103.2 and 103.7 nm intensity over a range of heights from 1.5 to about 3.0 solar radii and covering 360 degrees about the sun; (2) sit and stare watches for CMEs; and (3) special observations designed by the UVCS Lead Observer of the Week for a specific scientific purpose. The special observations are often coordinated with those of other space-based and ground-based instruments and they often are part of SOHO joint observation programs and campaigns. Lead observers have included UVCS Co-Investigators, scientists from the solar physics community and several graduate and undergraduate level students.

  16. Computer-assisted photogrammetric mapping systems for geologic studies-A progress report

    USGS Publications Warehouse

    Pillmore, C.L.; Dueholm, K.S.; Jepsen, H.S.; Schuch, C.H.

    1981-01-01

    Photogrammetry has played an important role in geologic mapping for many years; however, only recently have attempts been made to automate mapping functions for geology. Computer-assisted photogrammetric mapping systems for geologic studies have been developed and are currently in use in offices of the Geological Survey of Greenland at Copenhagen, Denmark, and the U.S. Geological Survey at Denver, Colorado. Though differing somewhat, the systems are similar in that they integrate Kern PG-2 photogrammetric plotting instruments and small desk-top computers that are programmed to perform special geologic functions and operate flat-bed plotters by means of specially designed hardware and software. A z-drive capability, in which stepping motors control the z-motions of the PG-2 plotters, is an integral part of both systems. This feature enables the computer to automatically position the floating mark on computer-calculated, previously defined geologic planes, such as contacts or the base of coal beds, throughout the stereoscopic model in order to improve the mapping capabilities of the instrument and to aid in correlation and tracing of geologic units. The common goal is to enhance the capabilities of the PG-2 plotter and provide a means by which geologists can make conventional geologic maps more efficiently and explore ways to apply computer technology to geologic studies. ?? 1981.

  17. View of model of Scientific Instrument Module to be flown on Apollo 15

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Close-up view of a scale model of the Scientific Instrument Module (SIM) to be flown for the first time on the Apollo 15 mission. Mounted in a previously vacant sector of the Apollo service module, the SIM carries specialized cameras and instrumentation for gathering lunar orbit scientific data.

  18. 21 CFR 884.4530 - Obstetric-gynecologic specialized manual instrument.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... cervix or vagina. (14) A gynecological biopsy forceps is an instrument with two blades and handles used... and hold the cervix or fundus. (16) An internal pelvimeter is an instrument used within the vagina to... used to expose the interior of the vagina. (18) A fiberoptic nonmetal vaginal speculum is a nonmetal...

  19. 21 CFR 884.4530 - Obstetric-gynecologic specialized manual instrument.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... cervix or vagina. (14) A gynecological biopsy forceps is an instrument with two blades and handles used... and hold the cervix or fundus. (16) An internal pelvimeter is an instrument used within the vagina to... used to expose the interior of the vagina. (18) A fiberoptic nonmetal vaginal speculum is a nonmetal...

  20. 21 CFR 884.4530 - Obstetric-gynecologic specialized manual instrument.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... cervix or vagina. (14) A gynecological biopsy forceps is an instrument with two blades and handles used... and hold the cervix or fundus. (16) An internal pelvimeter is an instrument used within the vagina to... used to expose the interior of the vagina. (18) A fiberoptic nonmetal vaginal speculum is a nonmetal...

  1. Physical Fitness of U.S. Navy Special Forces Team Members and Trainees

    DTIC Science & Technology

    1989-07-07

    Resting Heart Rate and Blood Pressure. At the completion of a 12-lead resting EKG (VS4S, Cambridge Instrument Co., Ossining , NY), heart rate (bpm) of...Cambridge Instrument Co., Ossining , NY). Instruments were interfaced with a MINC-23 computer (Digital Equipment Corp., Marlboro, MA) for on-line

  2. Current utilization, interpretation, and recommendations: the musculoskeletal function assessments (MFA/SMFA).

    PubMed

    Barei, David P; Agel, Julie; Swiontkowski, Marc F

    2007-01-01

    The development of patient-oriented health status measurements has resulted in the emergence of several generic condition-specific and anatomic-specific instruments. These instruments are generally designed to measure the function of the individual as a whole from the individual's own point of view. They are not intended to replace traditional physician-oriented clinical outcome measures, such as complication rates, ranges of motion, or time to fracture union; instead, they are an attempt to measure the results of a treatment or condition from the patient's perspective. Over the past decade, the Musculoskeletal Function Assessment (MFA) instrument has been developed and used as one of the primary generic musculoskeletal functional assessment tools, in part because of its validity, reliability, and responsiveness. Despite the numerous publications reporting the MFA/SMFA, we are unaware of any publications that have used those results to subsequently affect patient care. We hope that this special interest article highlights the current underutilization of the available data and encourages the orthopedic community to maximize the clinical and research potential of the MFA/SMFA (Short Musculoskeletal Function Assessment).

  3. Ground-based Observation System Development for the Moon Hyper-spectral Imaging

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Huang, Yu; Wang, Shurong; Li, Zhanfeng; Zhang, Zihui; Hu, Xiuqing; Zhang, Peng

    2017-05-01

    The Moon provides a suitable radiance source for on-orbit calibration of space-borne optical instruments. A ground-based observation system dedicated to the hyper-spectral radiometry of the Moon has been developed for improving and validating the current lunar model. The observation instrument using a dispersive imaging spectrometer is particularly designed for high-accuracy observations of the lunar radiance. The simulation and analysis of the push-broom mechanism is made in detail for lunar observations, and the automated tracking and scanning is well accomplished in different observational condition. A three-month series of hyper-spectral imaging experiments of the Moon have been performed in the wavelength range from 400 to 1000 nm near Lijiang Observatory (Yunnan, China) at phase angles -83°-87°. Preliminary results and data comparison are presented, and it shows the instrument performance and lunar observation capability of this system are well validated. Beyond previous measurements, this observation system provides the entire lunar disk images of continuous spectral coverage by adopting the push-broom mode with special scanning scheme and leads to the further research of lunar photometric model.

  4. Performance appraisal of VAS radiometry for GOES-4, -5 and -6

    NASA Technical Reports Server (NTRS)

    Chesters, D.; Robinson, W. D.

    1983-01-01

    The first three VISSR Atmospheric Sounders (VAS) were launched on GOES-4, -5, and -6 in 1980, 1981 and 1983. Postlaunch radiometric performance is assessed for noise, biases, registration and reliability, with special attention to calibration and problems in the data processing chain. The postlaunch performance of the VAS radiometer meets its prelaunch design specifications, particularly those related to image formation and noise reduction. The best instrument is carried on GOES-5, currently operational as GOES-EAST. Single sample noise is lower than expected, especially for the small longwave and large shortwave detectors. Detector to detector offsets are correctable to within the resolution limits of the instrument. Truncation, zero point and droop errors are insignificant. Absolute calibration errors, estimated from HIRS and from radiation transfer calculations, indicate moderate, but stable biases. Relative calibration errors from scanline to scanline are noticeable, but meet sounding requirements for temporarily and spatially averaged sounding fields of view. The VAS instrument is a potentially useful radiometer for mesoscale sounding operations. Image quality is very good. Soundings derived from quality controlled data meet prelaunch requirements when calculated with noise and bias resistant algorithms.

  5. Fine Pointing Of The Solar Optical Telescope In The Space Shuttle Environment

    NASA Astrophysics Data System (ADS)

    Gowrinathan, Sankaran

    1987-02-01

    Instruments attached to the payload bay of the Space Shuttle require special attention where fine pointing is involved. Fine pointing, for purposes of this discussion, is defined as sub-arc second pointing. Instruments requiring such fine pointing (Solar Optical Telescope and Shuttle Infrared Telescope, for example) will require two stages of pointing (coarse and fine). Coarse pointing will be performed by a gimbal system such as the Instrument Pointing System (IPS). Fine pointing will be provided by image motion compensation (IMC). Most forms of IMC involve adjustable optical elements in the optical system to compensate for fast transient disturbances. This paper describes work performed on the Solar Optical Telescope (SOT) concept design that illustrates IMC as applied to SOT. The fine pointing requirements on SOT dictate use of IMC at about 20 Hz. bandwidth. It will be shown that the need for this high bandwidth is related to shuttle-induced disturbances. Shuttle-induced disturbances are primarily due to two sources; man push-offs and vernier thruster firings. Both disturbance sources have high-frequency content that drive the IMC bandwidth.

  6. 21 CFR 884.4530 - Obstetric-gynecologic specialized manual instrument.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... measure the diameter and capacity of the pelvis. (17) A nonmetal vaginal speculum is a nonmetal instrument used to expose the interior of the vagina. (18) A fiberoptic nonmetal vaginal speculum is a nonmetal...

  7. Er:YAG laser dentistry in special needs patients

    PubMed Central

    Fornaini, Carlo; Clini, Fabio; Fontana, Matteo; Cella, Luigi; Oppici, Aldo

    2015-01-01

    Objective: Between a quarter and a third of adults with intellectual disability is estimated to have dental anxiety. Unpleasant stimuli, such as the injection of local anaesthesia or the noise and vibration of rotary instruments, may provoke anxiety and subsequent low compliance until the opposition to the treatment. The use of Er:YAG laser in conservative dentistry had a great development in these last years thank to new devices and also to their advantages when compared to the conventional instruments. The aim of this clinical study was to show the advantages of the Er:YAG laser in the conservative treatment of Special Care patients. Methods: Four cases are here described to show the Er:YAG laser use in our Unit on special needs patients. Results and conclusions: Based on the experience gained on conservative laser-assisted treatments performed in a time of 5 years at our Dentistry, Special Needs and Maxillo-Facial Surgery Unit we may affirm that Er:YAG laser may be considered as a good way to improve the cooperation, to reduce anxiety related to rotating instruments and to reach better results with equal or shorter operating times. PMID:26557733

  8. James Webb Space Telescope Integrated Science Instrument Module Calibration and Verification of High-Accuracy Instrumentation to Measure Heat Flow in Cryogenic Testing

    NASA Technical Reports Server (NTRS)

    Comber, Brian; Glazer, Stuart

    2012-01-01

    The James Webb Space Telescope (JWST) is an upcoming flagship observatory mission scheduled to be launched in 2018. Three of the four science instruments are passively cooled to their operational temperature range of 36K to 40K, and the fourth instrument is actively cooled to its operational temperature of approximately 6K. The requirement for multiple thermal zoned results in the instruments being thermally connected to five external radiators via individual high purity aluminum heat straps. Thermal-vacuum and thermal balance testing of the flight instruments at the Integrated Science Instrument Module (ISIM) element level will take place within a newly constructed shroud cooled by gaseous helium inside Goddard Space Flight Center's (GSFC) Space environment Simulator (SES). The flight external radiators are not available during ISIM-level thermal vacuum/thermal testing, so they will be replaced in test with stable and adjustable thermal boundaries with identical physical interfaces to the flight radiators. Those boundaries are provided by specially designed test hardware which also measures the heat flow within each of the five heat straps to an accuracy of less than 2 mW, which is less than 5% of the minimum predicted heat flow values. Measurement of the heat loads to this accuracy is essential to ISIM thermal model correlation, since thermal models are more accurately correlated when temperature data is supplemented by accurate knowledge of heat flows. It also provides direct verification by test of several high-level thermal requirements. Devices that measure heat flow in this manner have historically been referred to a "Q-meters". Perhaps the most important feature of the design of the JWST Q-meters is that it does not depend on the absolute accuracy of its temperature sensors, but rather on knowledge of precise heater power required to maintain a constant temperature difference between sensors on two stages, for which a table is empirically developed during a calibration campaign in a small chamber at GSFC. This paper provides a brief review of Q-meter design, and discusses the Q-meter calibration procedure including calibration chamber modifications and accommodations, handling of differing conditions between calibration and usage, the calibration process itself, and the results of the tests used to determine if the calibration is successful.

  9. The Geostationary Lightning Mapper: Its Performance and Calibration

    NASA Astrophysics Data System (ADS)

    Christian, H. J., Jr.

    2015-12-01

    The Geostationary Lightning Mapper (GLM) has been developed to be an operational instrument on the GOES-R series of spacecraft. The GLM is a unique instrument, unlike other meteorological instruments, both in how it operates and in the information content that it provides. Instrumentally, it is an event detector, rather than an imager. While processing almost a billion pixels per second with 14 bits of resolution, the event detection process reduces the required telemetry bandwidth by almost 105, thus keeping the telemetry requirements modest and enabling efficient ground processing that leads to rapid data distribution to operational users. The GLM was designed to detect about 90 percent of the total lightning flashes within its almost hemispherical field of view. Based on laboratory calibration, we expect the on-orbit detection efficiency to be closer to 85%, making it the highest performing, large area coverage total lightning detector. It has a number of unique design features that will enable it have near uniform special resolution over most of its field of view and to operate with minimal impact on performance during solar eclipses. The GLM has no dedicated on-orbit calibration system, thus the ground-based calibration provides the bases for the predicted radiometric performance. A number of problems were encountered during the calibration of Flight Model 1. The issues arouse from GLM design features including its wide field of view, fast lens, the narrow-band interference filters located in both object and collimated space and the fact that the GLM is inherently a event detector yet the calibration procedures required both calibration of images and events. The GLM calibration techniques were based on those developed for the Lightning Imaging Sensor calibration, but there are enough differences between the sensors that the initial GLM calibration suggested that it is significantly more sensitive than its design parameters. The calibration discrepancies have been resolved and will be discussed. Absolute calibration will be verified on-orbit using vicarious cloud reflections. In addition to details of the GLM calibration, the presentation will address the unique design of the GLM, its features, capabilities and performance.

  10. Schinus terebinthifolius countercurrent chromatography (Part II): Intra-apparatus scale-up and inter-apparatus method transfer.

    PubMed

    Costa, Fernanda das Neves; Vieira, Mariana Neves; Garrard, Ian; Hewitson, Peter; Jerz, Gerold; Leitão, Gilda Guimarães; Ignatova, Svetlana

    2016-09-30

    Countercurrent chromatography (CCC) is being widely used across the world for purification of various materials, especially in natural product research. The predictability of CCC scale-up has been successfully demonstrated using specially designed instruments of the same manufacturer. The reality is that the most of CCC users do not have access to such instruments and do not have enough experience to transfer methods from one CCC column to another. This unique study of three international teams is based on innovative approach to simplify the scale-up between different CCC machines using fractionation of Schinus terebinthifolius berries dichloromethane extract as a case study. The optimized separation methodology, recently developed by the authors (Part I), was repeatedly performed on CCC columns of different design available at most research laboratories across the world. Hexane - ethyl acetate - methanol - water (6:1:6:1, v/v/v/v) was used as solvent system with masticadienonic and 3β-masticadienolic acids as target compounds to monitor stationary phase retention and calculate peak resolution. It has been demonstrated that volumetric, linear and length scale-up transfer factors based on column characteristics can be directly applied to different i.d., volume and length columns independently on instrument make in an intra-apparatus scale-up and inter-apparatus method transfer. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. FULAS: Design and test results of a novel laser platform for future LIDAR missions

    NASA Astrophysics Data System (ADS)

    Luttmann, Jörg; Klein, Jürgen; Plum, Heinz-Dieter; Hoffmann, Hans-Dieter; Hahn, Sven; Bode, Markus

    2017-03-01

    Spaceborne atmospheric LIDAR instruments enable the global measurement of aerosols, wind and greenhouse gases like CO2, Methane and Water. These LIDAR instruments require a pulsed single frequency laser source with emission at a specific wavelength. Pulse energies in the 10 mJ or 100 mJ range are required at bandwidth limited pulse durations in the multi-10 ns range. Pulse repetition rate requirements are typically around 100 Hz but may range from 10 Hz to some kHz. High efficiency is mandatory. Building complex laser sources providing the performance, reliability and lifetime necessary to operate such instruments in space has been recognized to be still very challenging. To overcome this, in the frame of the FULAS technology development project - funded by ESA and supported by the German Aerospace Center DLR - a versatile platform for LIDAR sources has been developed. For demonstration the requirements of the laser source in the ATLID instrument have been chosen. The design is based on a single frequency seeded, actively Q-switched, diode pumped Nd:YAG laser oscillator and an InnoSlab power amplifier with frequency tripling. The laser architecture pays special attention on Laser Induced Contamination by avoiding critical organic and outgassing materials. Soldering technologies for mounting and alignment of optics provide high mechanical stability and superior reliability. The FULAS infrared section has been assembled and integrated into a pressurized housing. The optical performance at 1064 nm has been demonstrated and thermal vacuum tests have been carried out successfully providing relevant data for the French-German climate mission MERLIN.

  12. Science learning based on local potential: Overview of the nature of science (NoS) achieved

    NASA Astrophysics Data System (ADS)

    Wilujeng, Insih; Zuhdan Kun, P.; Suryadarma, IGP.

    2017-08-01

    The research concerned here examined the effectiveness of science learning conducted with local potential as basis from the point of a review of the NoS (nature of science) achieved. It used the non equivalent control group design and took place in the regions of Magelang and Pati, Province of Central Java, and the regions of Bantul and Sleman, Province of the Special Region of Yogyakarta. The research population consisted of students of the first and second grades at each junior high school chosen with research subjects sampled by means of cluster sampling. The instruments used included: a) an observation sheet, b) a written test, and c) a questionnaire. The learning and research instruments had been declared valid and reliable according to previous developmental research. In conclusion, the science learning based on local potential was effective in terms of all the NoS aspects.

  13. KSC-99pc50

    NASA Image and Video Library

    1999-01-11

    With the light casting a rosy glow in a specially built clean room at Astrotech, Titusville, Fla., Loral technician Roberto Caballero tests the deployment of the sounder instrument's cooler cover door on the GOES-L weather satellite. The sounder, one of two meteorological instruments on the satellite, measures temperature and moisture in a vertical column of air from the satellite to Earth. Its findings will help forecast weather. GOES-L, which is to be launched from Cape Canaveral Air Station aboard an Atlas II rocket in late March, is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures as well as perform the atmospheric sounding. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite

  14. Origins of eponymous orthopaedic equipment.

    PubMed

    Meals, Clifton; Wang, Jeffrey

    2010-06-01

    Orthopaedists make great use of eponymous equipment, however the origins of these tools are unknown to many users. This history enriches, enlightens, and enhances surgical education, and may inspire modern innovation. We explored the origins of common and eponymous orthopaedic equipment. We selected pieces of equipment named for their inventors and in the broadest use by modern orthopaedists. We do not describe specialized orthopaedic implants and instruments owing to the overwhelming number of these devices. The history of this equipment reflects the coevolution of orthopaedics and battlefield medicine. Additionally, these stories evidence the primacy of elegant design and suggest that innovation is often a process of revision and refinement rather than sudden inspiration. Their history exposes surgical innovators as brilliant, lucky, hardworking, and sometimes odd. These stories amuse, enlighten, and may inspire modern orthopaedists to develop creative solutions of their own. The rich history of the field's eponymous instruments informs an ongoing tradition of innovation in orthopaedics.

  15. Replacement Sequence of Events Generator

    NASA Technical Reports Server (NTRS)

    Fisher, Forest; Gladden, Daniel Wenkert Roy; Khanampompan, Teerpat

    2008-01-01

    The soeWINDOW program automates the generation of an ITAR (International Traffic in Arms Regulations)-compliant sub-RSOE (Replacement Sequence of Events) by extracting a specified temporal window from an RSOE while maintaining page header information. RSOEs contain a significant amount of information that is not ITAR-compliant, yet that foreign partners need to see for command details to their instrument, as well as the surrounding commands that provide context for validation. soeWINDOW can serve as an example of how command support products can be made ITAR-compliant for future missions. This software is a Perl script intended for use in the mission operations UNIX environment. It is designed for use to support the MRO (Mars Reconnaissance Orbiter) instrument team. The tool also provides automated DOM (Distributed Object Manager) storage into the special ITAR-okay DOM collection, and can be used for creating focused RSOEs for product review by any of the MRO teams.

  16. Quality of nursing diagnoses: evaluation of an educational intervention.

    PubMed

    Florin, Jan; Ehrenberg, Anna; Ehnfors, Margareta

    2005-01-01

    To investigate the effects on the quality of nursing diagnostic statements in patient records after education in the nursing process and implementation of new forms for recording. Quasi-experimental design. Randomly selected patient records reviewed before and after intervention from one experimental unit (n = 70) and three control units (n = 70). A scale with 14 characteristics pertaining to nursing diagnoses was developed and used together with the instrument (CAT-CH-ING) for record review. Quality of nursing diagnostic statements improved in the experimental unit, whereas no improvement was found in the control units. Serious flaws in the use of the etiology component were found. CONCLUSION. Nurses must be more concerned with the accuracy and quality of the nursing diagnoses and the etiology component needs to be given special attention. Education of RNs in nursing diagnostic statements and peer review using standardized evaluation instruments can be means to further enhance RNs' documentation practice.

  17. Application Of Interferometry To Optical Components And Systems Evaluation

    NASA Astrophysics Data System (ADS)

    Houston, Joseph B., Jr.

    1982-05-01

    Interferometry provides opticians and lens designers with the ability to evaluate optical components and systems quantitatively. A variety of interferometers and interferometric test procedures have evolved over the past several decades. This evolution has stimulated an ever-increasing amount of interest in using a new generation of instrumentation and computer software for solving cost and schedule problems both in the shop and at field test sites. Optical engineers and their customers continue to gain confidence in their abilities to perform several operations such as assure component quality, analyze and optimize lens assemblies, and accurately predict end-item performance. In this paper, a set of typical test situations are addressed and some standard instrumentation is described, as a means of illustrating the special advantages of interferometric testing. Emphasis will be placed on the proper application of currently available hardware and some of the latest proven techniques.

  18. The development of a multifunction lens test instrument by using computer aided variable test patterns

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Jen; Wu, Wen-Hong; Huang, Kuo-Cheng

    2009-08-01

    A multi-function lens test instrument is report in this paper. This system can evaluate the image resolution, image quality, depth of field, image distortion and light intensity distribution of the tested lens by changing the tested patterns. This system consists of a tested lens, a CCD camera, a linear motorized stage, a system fixture, an observer LCD monitor, and a notebook for pattern providing. The LCD monitor displays a serious of specified tested patterns sent by the notebook. Then each displayed pattern goes through the tested lens and images in the CCD camera sensor. Consequently, the system can evaluate the performance of the tested lens by analyzing the image of CCD camera with special designed software. The major advantage of this system is that it can complete whole test quickly without interruption due to part replacement, because the tested patterns are statically displayed on monitor and controlled by the notebook.

  19. IMAGE Project: Results of Laboratory Tests on Tracers for Supercritical Conditions.

    NASA Astrophysics Data System (ADS)

    Brandvoll, Øyvind; Opsahl Viig, Sissel; Nardini, Isabella; Muller, Jiri

    2016-04-01

    The use of tracers is a well-established technique for monitoring dynamic behaviour of water and gas through a reservoir. In geothermal reservoirs special challenges are encountered due to high temperatures and pressures. In this work, tracer candidates for monitoring water at supercritical conditions (temperature > 374°C, pressure ca 218 bar), are tested in laboratory experiments. Testing of tracers at supercritical water conditions requires experimental set-ups which tolerate harsh conditions with respect to high temperature and pressure. In addition stringent HES (health, environment and safety) factors have to be taken into consideration when designing and performing the experiments. The setup constructed in this project consists of a pressure vessel, high pressure pump, instrumentation for pressure and temperature control and instrumentation required for accurate sampling of tracers. In order to achieve accurate results, a special focus has been paid to the development of the tracer sampling technique. Perfluorinated cyclic hydrocarbons (PFCs) have been selected as tracer candidates. This group of compounds is today commonly used as gas tracers in oil reservoirs. According to the literature they are stable at temperatures up to 400°C. To start with, five PFCs have been tested for thermal stability in static experiments at 375°C and 108 bar in the experimental setup described above. The tracer candidates will be further tested for several months at the relevant conditions. Preliminary results indicate that some of the PFC compounds show stability after three months. However, in order to arrive at conclusive results, the experiments have to be repeated over a longer period and paying special attention to more accurate sampling procedures.

  20. Foreword to the special issue on intercalibration of satellite instruments

    USGS Publications Warehouse

    Chander, Gyanesh; Hewison, T.J.; Fox, Nigel; Wu, Xiangqian; Xiong, Xiaoxiong; Blackwell, William J.

    2013-01-01

    This forty papers in this special issue focus on how intercalibration and comparison between sensors can provide an effective and convenient means of verifying their postlaunch performance and correcting their measurement differences.

  1. 78 FR 50069 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... Special Emphasis Panel; Shared Instruments: Mass Spectrometers. Date: September 10-11, 2013. Time: 8:00 a... Scientific Review Special Emphasis Panel; Member Conflict: Cell Biology. Date: September 11-12, 2013. Time: 8...

  2. Measuring Customer Satisfaction and Quality of Service in Special Libraries.

    ERIC Educational Resources Information Center

    White, Marilyn Domas; Abels, Eileen G.; Nitecki, Danuta

    This project tested the appropriateness of SERVQUAL (i.e., an instrument widely used in the service industry for assessing service quality based on repeated service encounters rather than a particular service encounter) to measure service quality in special libraries and developed a modified version for special libraries. SERVQUAL is based on an…

  3. Propulsive Maneuver Design for the 2007 Mars Phoenix Lander Mission

    NASA Technical Reports Server (NTRS)

    Raofi, Behzad; Bhat, Ramachandra S.; Helfrich, Cliff

    2008-01-01

    On May 25, 2008, the Mars Phoenix Lander (PHX) successfully landed in the northern planes of Mars in order to continue and complement NASA's "follow the water" theme as its predecessor Mars missions, such as Mars Odyssey (ODY) and Mars Exploration Rovers, have done in recent years. Instruments on the lander, through a robotic arm able to deliver soil samples to the deck, will perform in-situ and remote-sensing investigations to characterize the chemistry of materials at the local surface, subsurface, and atmosphere. Lander instruments will also identify the potential history of key indicator elements of significance to the biological potential of Mars, including potential organics within any accessible water ice. Precise trajectory control and targeting were necessary in order to achieve the accurate atmospheric entry conditions required for arriving at the desired landing site. The challenge for the trajectory control maneuver design was to meet or exceed these requirements in the presence of spacecraft limitations as well as other mission constraints. This paper describes the strategies used, including the specialized targeting specifically developed for PHX, in order to design and successfully execute the propulsive maneuvers that delivered the spacecraft to its targeted landing site while satisfying the planetary protection requirements in the presence of flight system constraints.

  4. Qualification of Laser Diode Arrays for Mercury Laser Altimeter Mission

    NASA Technical Reports Server (NTRS)

    Stephen, Mark; Vasilyev, Aleksey; Schafer, John; Allan, Graham R.

    2004-01-01

    NASA's requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. The MESSENGER mission is flying the Mercury Laser Altimeter (MLA) which is a diode-pumped Nd:YAG laser instrument designed to map the topography of Mercury. The environment imposed on the instrument by the orbital dynamics places special requirements on the laser diode arrays. In order to limit the radiative heating of the satellite from the surface of Mercury, the satellite is designed to have a highly elliptical orbit. The satellite will heat near perigee and cool near apogee. The laser power is cycled during these orbits so that the laser is on for only 30 minutes (perigee) in a 12 hour orbit. The laser heats 10 C while powered up and cools while powered down. In order to simulate these operational conditions, we designed a test to measure the LDA performance while being temperature and power cycled. Though the mission requirements are specific to NASA and performance requirements are derived from unique operating conditions, the results are general and widely applicable. We present results on the performance of twelve LDAs operating for several hundred million pulses. The arrays are 100 watt, quasi-CW, conductively-cooled, 808 nm devices. Prior to testing, we fully characterize each device to establish a baseline for individual array performance and status. Details of this characterization can be found in reference. Arrays are divided into four groups and subjected to the temperature and power cycling matrix are shown.

  5. Prototype PBO Instrumentation of CALIPSO Project Captures World-Record Lava Dome Collapse on Montserrat Volcano

    NASA Astrophysics Data System (ADS)

    Mattioli, Glen S.; Young, Simon R.; Voight, Barry; Sparks, R. Steven J.; Shalev, Eylon; Selwyn, Sacks; Malin, Peter; Linde, Alan; Johnston, William; Hadayat, Dannie; Elsworth, Derek; Dunkley, Peter; Herd, Richard; Neuberg, Jurgen; Norton, Gillian; Widiwijayanti, Christina

    2004-08-01

    This article is an update on the status of an innovative new project designed to enhance generally our understanding of andesitic volcano eruption dynamics and, specifically, the monitoring and scientific infrastructure at the active Soufriàre Hills Volcano (SHV), Montserrat. The project has been designated as the Caribbean Andesite Lava Island Precision Seismo-geodetic Observatory, known as CALIPSO. Its purpose is to investigate the dynamics of the entire SHV magmatic system using an integrated array of specialized instruments in four strategically located ~200-m-deep boreholes in concert with several shallower holes and surface sites. The project is unique, as it represents the first, and only, such borehole volcano-monitoring array deployed at an andesitic stratovolcano. CALIPSO may be considered as a prototype for planned Plate Boundary Observatory (PBO) installations at several volcanic targets in the western United States. Scientific objectives of the EarthScope Integrated Science Plan (ES-ISP) relevant to magmatic systems are to investigate (1) melt generation in the mantle; (2) melt migration from the mantle to and through the crust to the surface; (3) melt residence times at various deep reservoirs; and (4) delineation of characteristic patterns of surface deformation and seismicity, which may prove useful in eruption forecasting. The CALIPSO project shares most of the same scientific goals and has, moreover, the benefit of a rich existing geophysical context in its deployment at SHV. Our experience during instrument design, planning, drilling and installation, systems integration, and early operation of CALIPSO, moreover, may prove valuable to EarthScope and PBO managers.

  6. Optomechanical Design and Analysis Considerations on the Lunar Orbiter Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Schmidt. Stephen; Mamakos, William; Matzinger, Elizabeth; Wall, Sheila

    2007-01-01

    This paper presents the mechanical design and analysis work completed on the Lunar Orbiter Laser Altimeter (LOLA). LOLA is one of six instruments on the Lunar Reconnaissance Orbiter (LRO), scheduled to launch in 2008. LOLA's main objective is to produce a high-resolution global lunar topographic model to aid in safe landings and enhance surface mobility in future exploration missions. LOLA will also look for evidence of ice water in the permanently shadowed regions around the lunar poles. Beryllium was chosen as the primary material for the LOLA Optical Transmitter Assembly to take advantage of the material's low mass density for light weight optical instrument design and for CTE matching of the refractive optical components. In addition, the thermal conductivity and specific heat of beryllium minimizes thermal gradients and thermal excursions. Special consideration must be made for the planning and preparation to fabricate beryllium components, as well as the preparation and cleaning of the components for gold plating. Assembly challenges include handling, precision cleaning and integration and testing. Structural analysis considerations include following General Environmental Verification Specification (GEVS) guidelines for GSFC payloads. The GEVS random environment for LOLA has an acceptance level of 10.0 Grms, which was analyzed for higher frequency transients. The low frequency transients were analyzed using a Mass Acceleration Curve to obtain an equivalent static loading. In addition, Structural-Thermal-Optical analysis, commonly referred to as STOP analysis, was completed to predict optical performance under the instrument's operational thermal environment. This included stress and distortion analysis on the receiver telescope lens.

  7. The 1995 North American Interagency Intercomparison of Ultraviolet Monitoring Spectroradiometers

    PubMed Central

    Early, Edward; Thompson, Ambler; Johnson, Carol; DeLuisi, John; Disterhoft, Patrick; Wardle, David; Wu, Edmund; Mou, Wanfeng; Sun, Yongchen; Lucas, Timothy; Mestechkina, Tanya; Harrison, Lee; Berndt, Jerry; Hayes, Douglas S.

    1998-01-01

    Concern over stratospheric ozone depletion has prompted several government agencies in North America to establish networks of spectroradiometers for monitoring solar ultraviolet irradiance at the surface of the Earth. To assess the ability of spectroradiometers to accurately measure solar ultraviolet irradiance, and to compare the results between instruments of different monitoring networks, the second North American Intercomparison of Ultraviolet Monitoring Spectroradiometers was held June 12 to 23, 1995 at Table Mountain outside Boulder, Colorado, USA. This Intercomparison was coordinated by the National Institute of Standards and Technology (NIST) and the National Oceanic and Atmospheric Administration (NOAA). Participating agencies were the Environmental Protection Agency; the National Science Foundation; the Smithsonian Environmental Research Center; the Department of Agriculture; and the Atmospheric Environment Service, Canada. Instruments were characterized for wavelength uncertainty, bandwidth, stray-light rejection, and spectral irradiance responsivity, the latter with a NIST standard lamp operating in a specially designed field calibration unit. The spectral irradiance responsivity, determined once indoors and twice outdoors, demonstrated that while the responsivities changed upon moving the instruments, they were relatively stable when the instruments remained outdoors. Synchronized spectral scans of the solar irradiance were performed over several days. Using the spectral irradiance responsivities determined with the NIST standard lamp and three different convolution functions to account for the different bandwidths of the instruments, the measured solar irradiances generally agreed to within 3 %. PMID:28009371

  8. The classification of explosion-proof protected induction motor into adequate temperature and efficiency class

    NASA Astrophysics Data System (ADS)

    Brinovar, Iztok; Srpčič, Gregor; Seme, Sebastijan; Štumberger, Bojan; Hadžiselimović, Miralem

    2017-07-01

    This article deals with the classification of explosion-proof protected induction motors, which are used in hazardous areas, into adequate temperature and efficiency class. Hazardous areas are defined as locations with a potentially explosive atmosphere where explosion may occur due to present of flammable gasses, liquids or combustible dusts (industrial plants, mines, etc.). Electric motors and electrical equipment used in such locations must be specially designed and tested to prevent electrical initiation of explosion due to high surface temperature and arcing contacts. This article presents the basic tests of three-phase explosion-proof protected induction motor with special emphasis on the measuring system and temperature rise test. All the measurements were performed with high-accuracy instrumentation and accessory equipment and carried out at the Institute of energy technology in the Electric machines and drives laboratory and Applied electrical engineering laboratory.

  9. Biomimetic approaches with smart interfaces for bone regeneration.

    PubMed

    Sailaja, G S; Ramesh, P; Vellappally, Sajith; Anil, Sukumaran; Varma, H K

    2016-11-05

    A 'smart tissue interface' is a host tissue-biomaterial interface capable of triggering favourable biochemical events inspired by stimuli responsive mechanisms. In other words, biomaterial surface is instrumental in dictating the interface functionality. This review aims to investigate the fundamental and favourable requirements of a 'smart tissue interface' that can positively influence the degree of healing and promote bone tissue regeneration. A biomaterial surface when interacts synergistically with the dynamic extracellular matrix, the healing process become accelerated through development of a smart interface. The interface functionality relies equally on bound functional groups and conjugated molecules belonging to the biomaterial and the biological milieu it interacts with. The essential conditions for such a special biomimetic environment are discussed. We highlight the impending prospects of smart interfaces and trying to relate the design approaches as well as critical factors that determine species-specific functionality with special reference to bone tissue regeneration.

  10. 75 FR 41505 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-16

    ... for Scientific Review Special Emphasis Panel; Mass Spectrometry Shared Instrumentation Study Section... Instrumentation: Mass Spectrometers. Date: August 5-6, 2010. Time: 8:30 a.m. to 5 p.m. Agenda: To review and...

  11. [Exploring Flow and Supervision of Medical Instruments by Standing on Frontier of the Reform of Free Trade Zone].

    PubMed

    Shen, Jianhua; Han, Meixian; Lu, Fei

    2017-11-30

    Shanghai Waigaoqiao Free Trade Zone as one of the special customs supervision areas of China (Shanghai) free trade pilot area, gathered a large number of general agent enterprises related to medical apparatus and instruments. This article analyzes the characteristics of special environment and medical equipment business in Shanghai Waigaoqiao Free Trade Zone in order to further implement the national administrative examination and approval reform. According to the latest requirement in laws and regulations of medical instruments, and trend of development in the industry of medical instruments, as well as research on the basis of practices of market supervision in countries around the world, this article also proposes measures about precision supervision, coordination of supervision, classification supervision and dynamic supervision to establish a new order of fair and standardized competition in market, and create conditions for establishment of allocation and transport hub of international medicine.

  12. WISPER: Wirless Space Power Experiment

    NASA Technical Reports Server (NTRS)

    Hawkins, Joseph

    1993-01-01

    The 1993 Advanced Design Project at the University of Alaska Fairbanks was to design a spacecraft as a technology demonstration of wireless power transmission (WPT). With cost effectiveness as a design constraint, a micro-satellite in low earth orbit (LEO) was chosen for the mission. Existing and near term technologies were analyzed and selected for the project. In addition to the conceptual design of the payload, support systems, and structure, the analysis included attention to safety, environmental impact, cost, and schedule for construction and operation. Wireless power beaming is not a new concept. Experimental demonstrations and study efforts have continued since the early 1960's. With the latest progress in transmitter and receiver technology, the next natural step is to beam power from earth to space. This proposed flight demonstration will advance the science of power beaming and prove the viability of various applications of WPT in space. Two methods of power beaming will be examined during the two separate phases of the spacecraft life. The first phase will demonstrate the technology and examine the theory of microwave power transmission at a high frequency. Special aspects of the first phase will include a highly accurate attitude control system and a 14 m inflatable parabolic antenna. The second phase will investigate the utilization of high intensity laser power using modified photovoltaic arrays. Special instrumentation on the spacecraft will measure the conversion efficiency from the received microwave or laser power to direct current power.

  13. Relativity effects for space-based coherent lidar experiments

    NASA Technical Reports Server (NTRS)

    Gudimetla, V. S. Rao

    1996-01-01

    An effort was initiated last year in the Astrionics Laboratory at Marshall Space Flight Center to examine and incorporate, if necessary, the effects of relativity in the design of space-based lidar systems. A space-based lidar system, named AEOLUS, is under development at Marshall Space Flight Center and it will be used to accurately measure atmospheric wind profiles. Effects of relativity were also observed in the performance of space-based systems, for example in case of global positioning systems, and corrections were incorporated into the design of instruments. During the last summer, the effects of special relativity on the design of space-based lidar systems were studied in detail, by analyzing the problem of laser scattering off a fixed target when the source and a co-located receiver are moving on a spacecraft. Since the proposed lidar system uses a coherent detection system, errors even in the order of a few microradians must be corrected to achieve a good signal-to-noise ratio. Previous analysis assumed that the ground is flat and the spacecraft is moving parallel to the ground, and developed analytical expressions for the location, direction and Doppler shift of the returning radiation. Because of the assumptions used in that analysis, only special relativity effects were involved. In this report, that analysis is extended to include general relativity and calculate its effects on the design.

  14. Design and development of progressive tool for manufacturing washer

    NASA Astrophysics Data System (ADS)

    Annigeri, Ulhas K.; Raghavendra Ravi Kiran, K.; Deepthi, Y. P.

    2017-07-01

    In a progressive tool the raw material is worked at different station to finally fabricate the component. A progressive tool is a lucrative tool for mass production of components. A lot of automobile and other transport industries develop progressive tool for the production of components. The design of tool involves lot of planning and the same amount of skill of process planning is required in the fabrication of the tool. The design also involves use of thumb rules and standard elements as per experience gained in practice. Manufacturing the press tool is a laborious task as special jigs and fixtures have to be designed for the purpose. Assembly of all the press tool elements is another task where use of accurate measuring instruments for alignment of various tool elements is important. In the present study, design and fabrication of progressive press tool for production of washer has been developed and the press tool has been tried out on a mechanical type of press. The components produced are to dimensions.

  15. The design of an adaptive predictive coder using a single-chip digital signal processor

    NASA Astrophysics Data System (ADS)

    Randolph, M. A.

    1985-01-01

    A speech coding processor architecture design study has been performed in which Texas Instruments TMS32010 has been selected from among three commercially available digital signal processing integrated circuits and evaluated in an implementation study of real-time Adaptive Predictive Coding (APC). The TMS32010 has been compared with AR&T Bell Laboratories DSP I and Nippon Electric Co. PD7720 and was found to be most suitable for a single chip implementation of APC. A preliminary design system based on TMS32010 has been performed, and several of the hardware and software design issues are discussed. Particular attention was paid to the design of an external memory controller which permits rapid sequential access of external RAM. As a result, it has been determined that a compact hardware implementation of the APC algorithm is feasible based of the TSM32010. Originator-supplied keywords include: vocoders, speech compression, adaptive predictive coding, digital signal processing microcomputers, speech processor architectures, and special purpose processor.

  16. Facile synthesis of porous Pt-Pd nanospheres supported on reduced graphene oxide nanosheets for enhanced methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Li, Shan-Shan; Lv, Jing-Jing; Hu, Yuan-Yuan; Zheng, Jie-Ning; Chen, Jian-Rong; Wang, Ai-Jun; Feng, Jiu-Ju

    2014-02-01

    In this study, a simple, facile, and effective wet-chemical strategy was developed in the synthesis of uniform porous Pt-Pd nanospheres (Pt-Pd NSs) supported on reduced graphene oxide nanosheets (RGOs) under ambient temperature, where octylphenoxypolye thoxyethanol (NP-40) is used as a soft template, without any seed, organic solvent or special instruments. The as-prepared nanocomposites display enhanced electrocatalytic activity and good stability toward methanol oxidation, compared with commercial Pd/C and Pt/C catalysts. This strategy may open a new route to design and prepare advanced electrocatalysts for fuel cells.

  17. Photometer Tracks The Sun

    NASA Technical Reports Server (NTRS)

    Matsumoto, Tak; Mina, Cesar; Russell, Philip; Van Ark, William

    1988-01-01

    Airborne Sun-tracking photometer enables observations of Sun during much greater portion of flights than previously possible, without special maneuvers of airplane. Instrument occupies dome atop airplane. Fiberglass dome protects photometer and rotates to aim photometer in azimuth and elevation to track Sun. Provides controlled environment for instrument, including mechanical and electronic parts. Instrument calibrated without removing it from airplane.

  18. 26 CFR 1.1275-2 - Special rules relating to debt instruments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... debt instrument that is traded on an established market is its fair market value. The issue price of a distributed debt instrument that is not traded on an established market is determined under section 1274 or... an issue a substantial portion of which is traded on an established market within the meaning of § 1...

  19. A Guide for the Identification of a Student Meriting Special Dropout Prevention Initiatives.

    ERIC Educational Resources Information Center

    Mizell, M. Hayes

    A risk assessment instrument for identifying potential dropouts at the middle and high school levels and an accompanying explanation of the instrument are provided in this document. The instrument provides a checklist of 21 criteria; the more criteria the student meets, the greater his risk of dropping out. Criteria include age in comparison to…

  20. 76 FR 53117 - Virginia Polytechnic Institute, et al.; Notice of Decision on Applications for Duty-Free Entry of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-25

    ... received. Decision: Approved. We know of no instruments of equivalent scientific value to the foreign... received. Decision: Approved. We know of no instruments of equivalent scientific value to the foreign... magnetic fields, which requires a special selection of non-magnetic materials the instrument has to be...

  1. Portable devices and mobile instruments for infectious diseases point-of-care testing.

    PubMed

    Bissonnette, Luc; Bergeron, Michel G

    2017-05-01

    Rapidity, simplicity, and portability are highly desirable characteristics of tests and devices designed for performing diagnostics at the point of care (POC), either near patients managed in healthcare facilities or to offer bioanalytical alternatives in external settings. By reducing the turnaround time of the diagnostic cycle, POC diagnostics can reduce the dissemination, morbidity, and mortality of infectious diseases and provide tools to control the global threat of antimicrobial resistance. Areas covered: A literature search of PubMed and Google Scholar, and extensive mining of specialized publications, Internet resources, and manufacturers' websites have been used to organize and write this overview of the challenges and requirements associated with the development of portable sample-to-answer diagnostics, and showcase relevant examples of handheld devices, portable instruments, and less mobile systems which may or could be operated at POC. Expert commentary: Rapid (<1 h) diagnostics can contribute to control infectious diseases and antimicrobial resistant pathogens. Portable devices or instruments enabling sample-to-answer bioanalysis can provide rapid, robust, and reproducible testing at the POC or close from it. Beyond testing, to realize some promises of personalized/precision medicine, it will be critical to connect instruments to healthcare data management systems, to efficiently link decentralized testing results to the electronic medical record of patients.

  2. Suppression of Systematic Errors of Electronic Distance Meters for Measurement of Short Distances

    PubMed Central

    Braun, Jaroslav; Štroner, Martin; Urban, Rudolf; Dvořáček, Filip

    2015-01-01

    In modern industrial geodesy, high demands are placed on the final accuracy, with expectations currently falling below 1 mm. The measurement methodology and surveying instruments used have to be adjusted to meet these stringent requirements, especially the total stations as the most often used instruments. A standard deviation of the measured distance is the accuracy parameter, commonly between 1 and 2 mm. This parameter is often discussed in conjunction with the determination of the real accuracy of measurements at very short distances (5–50 m) because it is generally known that this accuracy cannot be increased by simply repeating the measurement because a considerable part of the error is systematic. This article describes the detailed testing of electronic distance meters to determine the absolute size of their systematic errors, their stability over time, their repeatability and the real accuracy of their distance measurement. Twenty instruments (total stations) have been tested, and more than 60,000 distances in total were measured to determine the accuracy and precision parameters of the distance meters. Based on the experiments’ results, calibration procedures were designed, including a special correction function for each instrument, whose usage reduces the standard deviation of the measurement of distance by at least 50%. PMID:26258777

  3. Suppression of Systematic Errors of Electronic Distance Meters for Measurement of Short Distances.

    PubMed

    Braun, Jaroslav; Štroner, Martin; Urban, Rudolf; Dvoček, Filip

    2015-08-06

    In modern industrial geodesy, high demands are placed on the final accuracy, with expectations currently falling below 1 mm. The measurement methodology and surveying instruments used have to be adjusted to meet these stringent requirements, especially the total stations as the most often used instruments. A standard deviation of the measured distance is the accuracy parameter, commonly between 1 and 2 mm. This parameter is often discussed in conjunction with the determination of the real accuracy of measurements at very short distances (5-50 m) because it is generally known that this accuracy cannot be increased by simply repeating the measurement because a considerable part of the error is systematic. This article describes the detailed testing of electronic distance meters to determine the absolute size of their systematic errors, their stability over time, their repeatability and the real accuracy of their distance measurement. Twenty instruments (total stations) have been tested, and more than 60,000 distances in total were measured to determine the accuracy and precision parameters of the distance meters. Based on the experiments' results, calibration procedures were designed, including a special correction function for each instrument, whose usage reduces the standard deviation of the measurement of distance by at least 50%.

  4. The National Geoelectromagnetic Facility - an open access resource for ultra wideband electromagnetic geophysics (Invited)

    NASA Astrophysics Data System (ADS)

    Schultz, A.; Urquhart, S.; Slater, M.

    2010-12-01

    At present, the US academic community has access to two national electromagnetic (EM) instrument pools that support long-period magnetotelluric (MT) equipment suitable for crust-mantle scale studies. The requirements of near surface geophysics, hydrology, glaciology, as well as the full range of crust and mantle investigations require development of new capabilities in data acquisition with broader frequency bandwidth than these existing units, increased instrument numbers, and concomitant developments in 3D/4D data interpretation. NSF Major Research Instrumentation support has been obtained to meet these requirements by developing an initial set of next-generation instruments as a National Geoelectromagnetic Facility (NGF), available to all PIs on a cost recovery basis, and operated by Oregon State University (OSU). In contrast to existing instruments with data acquisition systems specialized to operate within specific frequency bands and for specific electromagnetic methods, the NGF model "Zen/5" instruments being co-developed by OSU and Zonge Research and Engineering Organization are based on modular receivers with a flexible number of digital and analog input channels, designed to acquire EM data at dc, and from frequencies ranging from micro-Hz to MHz. These systems can be deployed in a compact, low power configuration for extended deployments (e.g. for crust-mantle scale experiments), or in a high frequency sampling mode for near surface work. The NGF is also acquiring controlled source EM transmitters, so that investigators may carry out magnetotelluric, audio-MT, radiofrequency-MT, as well as time-domain/transient EM and DC resistivity studies. The instruments are designed to simultaneously accommodate multiple electric field dipole sensors, magnetic fluxgates and induction coil sensors. Sample rates as high as 2.5 MHz with resolution between 24 and 32 bits, depending on sample rate, are specified to allow for high fidelity recording of waveforms. The NGF is accepting instrument use requests from investigators planning electromagnetic surveys via webform submission on its web site ngf.coas.oregonstate.edu. The site is also a port of entry to request access to the 46 long period magnetotelluric instruments also operated by OSU as national instrument pools. Cyberinfrastructure support is available to investigators, including field computers, EM data processing software, and access to a hybrid CPU-GPU parallel computing environment, currently configured with dual Intel Westmere hexacore CPUs and 960 NVidia Tesla and 1792 Nvidia Fermi GPU cores. The capabilities of the Zen/5 receivers will be presented, with examples of data acquired from a recent shallow water marine controlled source experiment conducted in coastal Oregon as part of an effort to locate a buried submarine pipeline, using a 1.1 KW 256 Hz signal source imposed on the pipeline from shore. A Zen/5 prototype instrument, modified for marine use through support by the Oregon Wave Energy Trust, demonstrated the marine capabilities of the NGF instrument design.

  5. Software for biomedical engineering signal processing laboratory experiments.

    PubMed

    Tompkins, Willis J; Wilson, J

    2009-01-01

    In the early 1990's we developed a special computer program called UW DigiScope to provide a mechanism for anyone interested in biomedical digital signal processing to study the field without requiring any other instrument except a personal computer. There are many digital filtering and pattern recognition algorithms used in processing biomedical signals. In general, students have very limited opportunity to have hands-on access to the mechanisms of digital signal processing. In a typical course, the filters are designed non-interactively, which does not provide the student with significant understanding of the design constraints of such filters nor their actual performance characteristics. UW DigiScope 3.0 is the first major update since version 2.0 was released in 1994. This paper provides details on how the new version based on MATLAB! works with signals, including the filter design tool that is the programming interface between UW DigiScope and processing algorithms.

  6. Preliminary optical design of PANIC, a wide-field infrared camera for CAHA

    NASA Astrophysics Data System (ADS)

    Cárdenas, M. C.; Rodríguez Gómez, J.; Lenzen, R.; Sánchez-Blanco, E.

    2008-07-01

    In this paper, we present the preliminary optical design of PANIC (PAnoramic Near Infrared camera for Calar Alto), a wide-field infrared imager for the Calar Alto 2.2 m telescope. The camera optical design is a folded single optical train that images the sky onto the focal plane with a plate scale of 0.45 arcsec per 18 μm pixel. A mosaic of four Hawaii 2RG of 2k x 2k made by Teledyne is used as detector and will give a field of view of 31.9 arcmin x 31.9 arcmin. This cryogenic instrument has been optimized for the Y, J, H and K bands. Special care has been taken in the selection of the standard IR materials used for the optics in order to maximize the instrument throughput and to include the z band. The main challenges of this design are: to produce a well defined internal pupil which allows reducing the thermal background by a cryogenic pupil stop; the correction of off-axis aberrations due to the large field available; the correction of chromatic aberration because of the wide spectral coverage; and the capability of introduction of narrow band filters (~1%) in the system minimizing the degradation in the filter passband without a collimated stage in the camera. We show the optomechanical error budget and compensation strategy that allows our as built design to met the performances from an optical point of view. Finally, we demonstrate the flexibility of the design showing the performances of PANIC at the CAHA 3.5m telescope.

  7. Experimental investigation of combustor effects on rocket thrust chamber performance

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A design and experimental program to develop special instrumentation systems, design engine hardware, and conduct tests using LOX/GH2 propellants in which the propellant flow stratification was controlled is described. The mixture ratio was varied from 4.6 to 6 overall. The mixture ratios in the core and outer zone were varied from 3.5 to 6 and 5 to 8, respectively. The range in boundary layer coolant was from 0 to 10 percent of the fuel. The nominal chamber pressure and thrust were 225 psia and 7000 pounds, respectively. Pressure and heat flux profiles as well as gas sampling of the exhaust products were obtained. Specific impulse efficiencies of approximately 94 percent and characteristic velocity efficiencies of approximately 97 percent were obtained during the experiments.

  8. Feuerstein Instrumental Enrichment: From Theory to Practice in the Early Grades: The Effects of Feuerstein Instrumental Enrichment on Mathematics Achievement

    ERIC Educational Resources Information Center

    Schmidt, Elise A.

    2014-01-01

    Following identification as the school district with the highest special education population in Midwest County, the Midwest School District took bold measures to address the issue. In partnership with the Midwest Intermediate School District, educators trained all kindergarten and first grade teachers in Feuerstein Instrumental Enrichment (FIE)…

  9. Story of the patent intitulated (in translation from the French), ``Feature of wind instrument permitting the generation of special effects in real time.''

    NASA Astrophysics Data System (ADS)

    Causse, Rene

    2005-09-01

    This presentation will focus on the history of a patent taken out in 1996 by my colleagues F. Laloe, A. Ducoureau, F. Terrier, and myself (France Tlcom patent). This patent is related to a system that allows the wind instrument's pitch to be controlled by means of a mechanical device comprising a foot pedal for the musician and a cable connected to the embouchure of the instrument. There is no predefined semitone or quarter-tone position. The system extends the current musical range and performance capabilities of the instrument chosen for a realization, a clarinet, by inserting in the instrument an additional length. It is possible to change not only the pitch of tones but also to soften their timbre, producing a tone similar to that of early instruments. This type of special effect is well suited to contemporary, jazz, and popular music. The device is adapted to any type of clarinet and the principle can conceivably be extended to other wind instruments. In this presentation, the device and its derivatives shall be described, and its musical applications illustrated by sound examples. A critical approach to the different levels of reading of the patent will be presented.

  10. Initial Results of Instrument-Flying Trials Conducted In A Single-Rotor Helicopter

    NASA Technical Reports Server (NTRS)

    Crim, Almer D; Reeder, John P; Whitten, James B

    1953-01-01

    Instrument-flying trials have been conducted in a single-rotor helicopter, the maneuver stability of which could be changed from satisfactory to unsatisfactory. The results indicated that existing longitudinal flying-qualities requirements based on contact flight were adequate for instrument flight at speeds above that for minimum power. However, lateral-directional problems were encountered at low speeds and during precision maneuvers. The adequacy, for helicopter use, of standard airplane instruments was also investigated, and the conclusion was reached that special instruments would be desirable under all conditions, and necessary for sustained low-speed instrument flight.

  11. Modified Penile Augmentation by Dermal-Fat Graft in Post-Hypospadias Adults.

    PubMed

    Xu, Lisi; Zhao, Muxin; Yang, Zhe; Chen, Wen; Li, Yangqun; Ma, Ning; Wang, Weixin; Feng, Jun; Liu, Qiyu; Ma, Tong

    2016-02-01

    Although a considerable part of patients desire further improvement in penile size after hypospadias repairs, penile augmentation is only considered in patients with congenital penile hypoplasia or acquired penile retraction. Modified penile augmentation by free dermal-fat graft is introduced to satisfy these patients and improve surgical safety. From April 2012 to December 2014, a total of 15 male adults after hypospadias repairs, aged 18-24 years, underwent modified penile augmentation which involved girth enhancement by a free dermal-fat graft and penile elongation (suprapubic skin advancement-ligamentolysis). A specially designed tunneling instrument was introduced to facilitate pericavernous thickening without degloving. Outcome evaluation was mainly based on objective penile measurements and results of the Male Genital Image Scale. With 6 months' follow-up, all patients had achieved excellent cosmetic results, with a significant average dimensional increase of 1.53 ± 0.23 cm in flaccid girth and 1.67 ± 0.24 cm in flaccid length. No erection deficiencies or urinary fistula occurred. Patients' perception of male genitalia improved postoperatively, with the average MGIS score rising from 31.73 ± 4.86 to 40.20 ± 4.54. This modified technique is safe and effective in enlarging penile size. The use of the specially designed tunneling instrument simplifies penile girth enhancement, avoiding unnecessary trauma to the neo-urethra and neurovascular bundle. It is confirmed that physical dimensional enhancement does contribute to improving their underestimation of penile size. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinogeikin, Stanislav V., E-mail: ssinogeikin@carnegiescience.edu; Smith, Jesse S.; Rod, Eric

    The ability to remotely control pressure in diamond anvil cells (DACs) in accurate and consistent manner at room temperature, as well as at cryogenic and elevated temperatures, is crucial for effective and reliable operation of a high-pressure synchrotron facility such as High Pressure Collaborative Access Team (HPCAT). Over the last several years, a considerable effort has been made to develop instrumentation for remote and automated pressure control in DACs during synchrotron experiments. We have designed and implemented an array of modular pneumatic (double-diaphragm), mechanical (gearboxes), and piezoelectric devices and their combinations for controlling pressure and compression/decompression rate at various temperaturemore » conditions from 4 K in cryostats to several thousand Kelvin in laser-heated DACs. Because HPCAT is a user facility and diamond cells for user experiments are typically provided by users, our development effort has been focused on creating different loading mechanisms and frames for a variety of existing and commonly used diamond cells rather than designing specialized or dedicated diamond cells with various drives. In this paper, we review the available instrumentation for remote static and dynamic pressure control in DACs and show some examples of their applications to high pressure research.« less

  13. A new methodology for the measurement of the root canal curvature and its 3D modification after instrumentation.

    PubMed

    Christodoulou, Asterios; Mikrogeorgis, Georgios; Vouzara, Triantafillia; Papachristou, Konstantinos; Angelopoulos, Christos; Nikolaidis, Nikolaos; Pitas, Ioannis; Lyroudia, Kleoniki

    2018-02-15

    In this study, the three-dimensional (3D) modification of root canal curvature was measured, after the application of Reciproc instrumentation technique, by using cone beam computed tomography (CBCT) imaging and a special algorithm developed for the 3D measurement of the curvature of the root canal. Thirty extracted upper molars were selected. Digital radiographs for each tooth were taken. Root curvature was measured by using Schneider method and they were divided into three groups, each one consisting of 10 roots, according to their curvature: Group 1 (0°-20°), Group 2 (21°-40°), Group 3 (41°-60°). CBCT imaging was applied to each tooth before and after its instrumentation, and the data were examined by using a specially developed CBCT image analysis algorithm. The instrumentation with Reciproc led to a decrease of the curvature by 30.23% (on average) in all groups. The proposed methodology proved to be able to measure the curvature of the root canal and its 3D modification after the instrumentation.

  14. The Implementation of School Inclusion Practices for Students with Special Needs in Israel: Teachers' Perceptions

    ERIC Educational Resources Information Center

    Gavish, Bella

    2017-01-01

    The research examined how school inclusion practices for students with special needs in Israel are perceived by teachers. Participating in the study were 121 elementary and secondary teachers in 10 schools around the country. The instrument was the 50-item "Implementation of inclusion practices in schools for students with special needs"…

  15. Health and well-being in midlife parents of children with special health needs.

    PubMed

    Smith, Amy M; Grzywacz, Joseph G

    2014-09-01

    The objectives of this study were to delineate variation in mental and physical health outcomes over a 10-year period among parents with a child with special health needs as compared to parents of a typically developing child; and evaluate the possible protective effects of parental perceived control and social support. The sample consisted of 646 parents from the longitudinal Midlife Development in the United States (MIDUS) study. Nearly one-quarter of the sample (n = 128; 22.3%) reported having a child with a special health care need. Cross-sectional analyses indicated that parents of a child with special care needs reported poorer self-rated mental health, greater depressive symptoms, and more restrictions in instrumental activities of daily living (IADL). Parents of a child with special health care needs had greater increases in depressive symptoms over time and greater declines in instrumental activities of daily living than parents of typically developing children. Perceived control was a robust predictor of all health outcomes over time. The added stressors of parenting a child with special health needs may undermine the long-term health of parents. Behavioral interventions and clinical practices that facilitate parental perceived control may enable resilience and better health.

  16. 45 CFR 63.32 - Data collection instruments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION GRANT PROGRAMS ADMINISTERED BY THE OFFICE OF THE ASSISTANT SECRETARY FOR PLANNING AND EVALUATION Special Provisions § 63.32 Data... instruments which constitute invasion of personal privacy through inquiries regarding such matters as religion...

  17. 45 CFR 63.32 - Data collection instruments.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Public Welfare Department of Health and Human Services GENERAL ADMINISTRATION GRANT PROGRAMS ADMINISTERED BY THE OFFICE OF THE ASSISTANT SECRETARY FOR PLANNING AND EVALUATION Special Provisions § 63.32 Data... instruments which constitute invasion of personal privacy through inquiries regarding such matters as religion...

  18. 45 CFR 63.32 - Data collection instruments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION GRANT PROGRAMS ADMINISTERED BY THE OFFICE OF THE ASSISTANT SECRETARY FOR PLANNING AND EVALUATION Special Provisions § 63.32 Data... instruments which constitute invasion of personal privacy through inquiries regarding such matters as religion...

  19. 45 CFR 63.32 - Data collection instruments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION GRANT PROGRAMS ADMINISTERED BY THE OFFICE OF THE ASSISTANT SECRETARY FOR PLANNING AND EVALUATION Special Provisions § 63.32 Data... instruments which constitute invasion of personal privacy through inquiries regarding such matters as religion...

  20. Concept for a large master/slave-controlled robotic hand

    NASA Technical Reports Server (NTRS)

    Grissom, William A.; Abdallah, Mahmoud A.; White, Carl L.

    1988-01-01

    A strategy is presented for the design and construction of a large master/slave-controlled, five-finger robotic hand. Each of the five fingers will possess four independent axes each driven by a brushless DC servomotor and, thus, four degrees-of-freedom. It is proposed that commercially available components be utilized as much as possible to fabricate a working laboratory model of the device with an anticipated overall length of two-to-four feet (0.6 to 1.2 m). The fingers are to be designed so that proximity, tactile, or force/torque sensors can be imbedded in their structure. In order to provide for the simultaneous control of the twenty independent hand joints, a multilevel master/slave control strategy is proposed in which the operator wears a specially instrumented glove which produces control signals corresponding to the finger configurations and which is capable of conveying sensor feedback signals to the operator. Two dexterous hand master devices are currently commercially available for this application with both undergoing continuing development. A third approach to be investigated for the master control mode is the use of real-time image processing of a specially patterned master glove to provide the respective control signals for positioning the multiple finger joints.

  1. Survey of ultraviolet shuttle glow

    NASA Technical Reports Server (NTRS)

    Spear, K. A.; Uckler, G. J.; Tobiska, K.

    1985-01-01

    The University of Colorado Get Away Special (GAS) project utilizes the efforts of its students to place experiments on the shuttle. The objective of one experiment, the shuttle glow study, is to conduct a general survey of emissions in the ultraviolet near vehicle surfaces. An approximate wavelength range of 1900 to 3000 A will be scanned to observe predominant features. Special emphasis will be placed on studying the band structure of NO near 2000 A and the Mg+ line at 2800 A. The spectrometer, of Ebert-Faste 1/8-meter design, will perform the experiment during spacecraft night. It will be oriented such that the optical axis points to the cargo bay zenith. In order to direct the field-of-view of the instrument onto the shuttle vertical stabilizer (tail), a mirror assembly is employed. The mirror system has been designed to rotate through 7.5 degrees of arc using 10 positions resulting in a spatial resolution of 30 x 3 cm, with the larger dimension corresponding to the horizontal direction. Such a configuration can be attained from the forwardmost position in the cargo bay. Each spatial position will be subjected to a full spectral scan with a resolution on the order of 10 A.

  2. VST project: distributed control system overview

    NASA Astrophysics Data System (ADS)

    Mancini, Dario; Mazzola, Germana; Molfese, C.; Schipani, Pietro; Brescia, Massimo; Marty, Laurent; Rossi, Emilio

    2003-02-01

    The VLT Survey Telescope (VST) is a co-operative program between the European Southern Observatory (ESO) and the INAF Capodimonte Astronomical Observatory (OAC), Naples, for the study, design, and realization of a 2.6-m wide-field optical imaging telescope to be operated at the Paranal Observatory, Chile. The telescope design, manufacturing and integration are responsibility of OAC. The VST has been specifically designed to carry out stand-alone observations in the UV to I spectral range and to supply target databases for the ESO Very Large Telescope (VLT). The control hardware is based on a large utilization of distributed embedded specialized controllers specifically designed, prototyped and manufactured by the Technology Working Group for VST project. The use of a field bus improves the whole system reliability in terms of high level flexibility, control speed and allow to reduce drastically the plant distribution in the instrument. The paper describes the philosophy and the architecture of the VST control HW with particular reference to the advantages of this distributed solution for the VST project.

  3. Fabrication Division Staff in the Machine Shop

    NASA Image and Video Library

    1946-07-21

    Machine Shop technicians in the Technical Service Building at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The 260-person Fabrication Division, led by Dan White and John Dalgleish, created almost all of the equipment and models used at the laboratory. The Technical Services Building, referred to as the Fab Shop, contained a number of specialized shops in the 1940s and 1950s. These included a Machine Shop, Sheet Metal Shop, Wood and Pattern Shop, Instrument Shop, Thermocouple Shop, Heat Treating Shop, Metallurgical Laboratory, and Fabrication Office. The Machine Shop fabricated specialized research equipment not commercially available. During World War II these technicians produced high-speed cameras for combustion research, impellers and other supercharger components, and key equipment for the lab’s first supersonic wind tunnel. The Wood and Pattern Shop created everything from control panels and cabinets to aircraft model molds for sheet metal work. The Sheet Metal Shop had the ability to work with 0.01 to 4-inch thick steel plates. The Instrument Shop specialized in miniature parts and instrumentation, while the Thermocouple Shop standardized the installation of pitot tubes and thermocouples.

  4. Experimental and Metrological Basis for SI-Traceable Infrared Radiance Measurements From Space

    NASA Astrophysics Data System (ADS)

    Gero, P. J.; Dykema, J. A.; Anderson, J. G.; Leroy, S. S.

    2007-12-01

    In order to establish a climate benchmark record and to be useful in interdecadal climate forecast testing, satellite measurements of high spectral resolution infrared radiance must have uncertainty estimates that can be proven beyond a doubt. An uncertainty in radiance of about 1 part in 1000 is required for climate applications. This can be accomplished by appealing to the best measurement practices of the metrology community. The International System of Units (SI) are linked to fundamental physical properties of matter, and can be realized anywhere in the world without bias. By doing so, one can make an accurate observation to within a specified uncertainty. Achieving SI-traceable radiance measurements from space is a novel requirement, and requires specialized sensor design and a disciplined experimental approach. Infrared remote sensing satellite instruments typically employ blackbody calibration targets, which are tied to the SI through Planck's law and the definition of the Kelvin. The blackbody temperature and emissivity, however, must be determined accurately on- orbit, in order for the blackbody emission scale to be SI-traceable. We outline a methodology of instrument design, pre-flight calibration and on-orbit diagnostics for realizing SI- traceable infrared radiance measurements. This instrument is intended as a component of the Climate Absolute Radiance and Refractivity Earth Observatory (CLARREO), a high priority recommendation of the National Research Council decadal survey. Calibration blackbodies for remote sensing differ from a perfect Planckian blackbody; thus the component uncertainties must be evaluated in order to confer traceability. We have performed traceability experiments in the laboratory to verify blackbody temperature, emissivity and the end-to-end radiance scale. We discuss the design of the Harvard standard blackbody and an intercomparison campaign that will be conducted with the GIFTS blackbody (University of Wisconsin, Madison) and radiometric calibration facilities at NIST. The GIFTS blackbody is a high-performance space-qualified design with a new generation of on-orbit thermometer calibration via miniaturized fixed point cells. NIST facilities allow the step-by-step measurement of blackbody surface properties, thermal properties, on-axis emissivity, and end-to-end radiometric performance. These activities will lay the experimental groundwork for achieving SI-traceable infrared radiance measurements on a satellite instrument.

  5. Imaging Sensor Flight and Test Equipment Software

    NASA Technical Reports Server (NTRS)

    Freestone, Kathleen; Simeone, Louis; Robertson, Byran; Frankford, Maytha; Trice, David; Wallace, Kevin; Wilkerson, DeLisa

    2007-01-01

    The Lightning Imaging Sensor (LIS) is one of the components onboard the Tropical Rainfall Measuring Mission (TRMM) satellite, and was designed to detect and locate lightning over the tropics. The LIS flight code was developed to run on a single onboard digital signal processor, and has operated the LIS instrument since 1997 when the TRMM satellite was launched. The software provides controller functions to the LIS Real-Time Event Processor (RTEP) and onboard heaters, collects the lightning event data from the RTEP, compresses and formats the data for downlink to the satellite, collects housekeeping data and formats the data for downlink to the satellite, provides command processing and interface to the spacecraft communications and data bus, and provides watchdog functions for error detection. The Special Test Equipment (STE) software was designed to operate specific test equipment used to support the LIS hardware through development, calibration, qualification, and integration with the TRMM spacecraft. The STE software provides the capability to control instrument activation, commanding (including both data formatting and user interfacing), data collection, decompression, and display and image simulation. The LIS STE code was developed for the DOS operating system in the C programming language. Because of the many unique data formats implemented by the flight instrument, the STE software was required to comprehend the same formats, and translate them for the test operator. The hardware interfaces to the LIS instrument using both commercial and custom computer boards, requiring that the STE code integrate this variety into a working system. In addition, the requirement to provide RTEP test capability dictated the need to provide simulations of background image data with short-duration lightning transients superimposed. This led to the development of unique code used to control the location, intensity, and variation above background for simulated lightning strikes at user-selected locations.

  6. A gas sampling system for withdrawing humid gases from deep boreholes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousseau, J.P.; Thordarson, W.; Kurzmack, M.A.

    A gas sampling system, designed to withdraw nearly vapor-saturated gases (93 to 100% relative humidity) from deep, unsaturated zone boreholes, was developed by the U.S. Geological Survey for use in the unsaturated zone borehole instrumentation and monitoring program at Yucca Mountain, Nye County, Nevada. This gas sampling system will be used to: (1) sample formation rock gases in support of the unsaturated zone hydrochemical characterization program; and (2) verify downhole, thermocouple psychrometer measurements of water potential in support of the unsaturated zone borehole instrumentation and monitoring program. Using this sampling system, nearly vapor-saturated formation rock-gases can be withdrawn from deepmore » boreholes without condensing water vapor in the sampling tubes, and fractionating heavy isotopes of oxygen, hydrogen, and carbon. The sampling system described in this paper uses a dry carrier-gas (nitrogen) to lower the dew point temperature of the formation rock-gas at its source. Mixing of the dry carrier gas with the source gas takes place inside a specially designed downhole instrument station apparatus (DISA). Nitrogen inflow is regulated in a manner that lowers the dew point temperature of the source gas to a temperature that is colder than the coldest temperature that the mixed gas will experience in moving from warmer, deeper depths, to colder, shallower depths near the land surface. A test of this gas sampling system was conducted in December, 1992, in a 12.2 meter deep borehole that was instrumented in October, 1991. The water potential calculated using this system reproduced in-situ measurements of water potential to within five percent of the average value, as recorded by two thermocouple psychrometers that had been in operation for over 12 months.« less

  7. 34 CFR 668.149 - Special provisions for the approval of assessment procedures for special populations for whom no...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... procedure or instrument measures both basic verbal and quantitative skills at the secondary school level. (2... verbal and quantitative skills at the secondary school level; and (4) The passing scores and the methods...

  8. A SURVEY INSTRUMENT FOR IDENTIFYING CLUSTERS OF KNOWLEDGE AND COMPETENCIES ASSOCIATED WITH PERFORMANCE OF FOOD SERVICE WORK, REPORT NUMBER 9.

    ERIC Educational Resources Information Center

    RAHMLOW, HAROLD F.; AND OTHERS

    AS AN INITIAL STEP TOWARD IMPROVING VOCATIONAL CURRICULUMS IN FOOD SERVICING, A SPECIAL RESEARCH TEAM DEVELOPED AND FIELD TESTED A SURVEY INSTRUMENT FOR OBTAINING UP-TO-DATE INFORMATION ABOUT MAJOR TYPES AND COMBINATIONS OF TASKS PERFORMED BY FOOD SERVICE WORKERS. THE INSTRUMENT COVERED THE FOLLOWING BASIC TASKS OF FOOD SERVICING--(1) FOOD…

  9. Virtual Prototyping for Personal Protective Equipment and Workplaces

    DTIC Science & Technology

    1999-03-01

    Basket Weave Kevlar-29 Fabric Loosely Draped over 20% Ordnance Gelatin Block Subject to Non-Perforating Impact by .38 Special (130-grain FMJ...Fabric and fabric-like materials are very difficult to model because of the dynamic properties of folding, draping , and stretching. How these...Targets Bare Targets with Insitu Instrumentation V7 Instrumented Targets with Loosely Draped Clothing SL Instrumented Targets with Body Armor

  10. Emirates Mars Infrared Spectrometer (EMIRS) Overview from the Emirates Mars Mission

    NASA Astrophysics Data System (ADS)

    Altunaiji, Eman; Edwards, Christopher; Smith, Michael; Christensen, Philip; AlMheiri, Suhail; Reed, Heather

    2017-04-01

    Emirates Mars Infrared Spectrometer (EMIRS) instrument is one of three scientific instruments aboard the Emirate Mars Mission (EMM), with the name of "Hope". EMM is United Arab Emirates' (UAE) mission to be launched in 2020, with the aim of exploring the dynamics of the atmosphere of Mars on a global scale with sampling on a diurnal and sub-seasonal time-scales. EMM has three scientific instruments selected to provide an improved understanding of circulation and weather in the Martian lower atmosphere as well as the thermosphere and exosphere. The EMIRS instrument is an interferometric thermal infrared spectrometer that is jointly developed by Arizona State University (ASU) and Mohammed Bin Rashid Space Centre (MBRSC), Dubai, UAE. It builds on a long heritage of thermal infrared spectrometers designed, built, and managed, by ASU's Mars Space Flight Facility, including the Thermal Emission Spectrometer (TES), Miniature Thermal Emission Spectrometer (Mini-TES), and the OSIRIS-REx Thermal Emission Spectrometer (OTES). EMIRS operates in the 6-40+ μm range with 5 cm-1 spectral sampling, enabled by a Chemical Vapor-Deposited (CVD) diamond beam splitter and state of the art electronics. This instrument utilizes a 3×3 line array detector and a scan mirror to make high-precision infrared radiance measurements over most of the Martian hemisphere. The EMIRS instrument is optimized to capture the integrated, lower-middle atmosphere dynamics over a Martian hemisphere, using a scan-mirror to make 60 global images per week ( 20 images per orbit) at a resolution of 100-300 km/pixel while requiring no special spacecraft maneuvers.

  11. Partnership for the Revitalization of National Wind Tunnel Force Measurement Capability

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.; Skelley, Marcus L.; Woike, Mark R.; Bader, Jon B.; Marshall, Timothy J.

    2009-01-01

    Lack of funding and lack of focus on research over the past several years, coupled with force measurement capabilities being decentralized and distributed across the National Aeronautics and Space Administration (NASA) research centers, has resulted in a significant erosion of (1) capability and infrastructure to produce and calibrate force measurement systems; (2) NASA s working knowledge of those systems; and (3) the quantity of high-quality, full-capability force measurement systems available for use in aeronautics testing. Simultaneously, and at proportional rates, the capability of industry to design, manufacture, and calibrate these test instruments has been eroding primarily because of a lack of investment by the aeronautics community. Technical expertise in this technology area is a core competency in aeronautics testing; it is highly specialized and experience-based, and it represents a niche market for only a few small precision instrument shops in the United States. With this backdrop, NASA s Aeronautics Test Program (ATP) chartered a team to examine the issues and risks associated with the problem, focusing specifically on strain- gage balances. The team partnered with the U.S. Air Force s Arnold Engineering Development Center (AEDC) to exploit their combined capabilities and take a national level government view of the problem. This paper describes the team s approach, its findings, and its recommendations, and the current status for revitalizing the government s balance capability with respect to designing, fabricating, calibrating, and using the instruments.

  12. Aircraft Speed Instruments

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1933-01-01

    This report presents a concise survey of the measurement of air speed and ground speed on board aircraft. Special attention is paid to the pitot-static air-speed meter which is the standard in the United States for airplanes. Air-speed meters of the rotating vane type are also discussed in considerable detail on account of their value as flight test instruments and as service instruments for airships. Methods of ground-speed measurement are treated briefly, with reference to the more important instruments. A bibliography on air-speed measurement concludes the report.

  13. Aquarius Radiometer Status

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Piepmeier, J. R.; Dinnat, E. P.; de Matthaeis, P.; Utku, C.; Abraham, S.; Lagerloef, G.S.E.; Meissner, T.; Wentz, F.

    2014-01-01

    Aquarius was launched on June 10, 2011 as part of the Aquarius/SAC-D observatory and the instrument has been operating continuously since being turned on in August of the same year. The initial map of sea surface salinity was released one month later (September) and the quality of the retrieval has continuously improved since then. The Aquarius radiometers include several special features such as measurement of the third Stokes parameter, fast sampling, and careful thermal control, and a combined passive/active instrument. Aquarius is working well and in addition to helping measure salinity, the radiometer special features are generating new results.

  14. Industrial Application Experiments on the Neutron Imaging Instrument DINGO

    NASA Astrophysics Data System (ADS)

    Garbe, Ulf; Ahuja, Yogita; Ibrahim, Ralph; Li, Huijun; Aldridge, Laurie; Salvemini, Filomena; Paradowska, Anna Ziara

    The new neutron radiography / tomography / imaging instrument DINGO is operational since October 2014 to support the area of neutron imaging research at ANSTO. The instrument is designed for a diverse community in areas like defense, industrial, cultural heritage and archaeology applications. In the field of industrial application it provides a useful tool for studying cracking and defects in concrete or other structural material. Since being operational we gathered experience with industrial applications and commercial customers demanding beam time on DINGO. The instrument is a high flux facility with is 5.3 × 107 [n/(cm2s)] (confirmed by gold foil activation) for an L/D of approximately 500 at HB-2. A special feature of DINGO is the in-pile collimator position in front of the main shutter at HB-2. The collimator offers two pinholes with a possible L/D of 500 and 1000. A secondary collimator separates the two beams by blocking one and positions another aperture for the other beam. The neutron beam size can be adjusted to the sample size from 50 × 50 mm2 to 200 × 200 mm2 with a resulting pixel size from 27 μm to ∼100 μm. The whole instrument operates in two different positions, one for high resolution and one for high speed. We would like to present our first experience with commercial customers, scientific proposals with industrial applications and how to be customer ready.

  15. Next Generation Polar Seismic Instrumentation Challenges

    NASA Astrophysics Data System (ADS)

    Parker, T.; Beaudoin, B. C.; Gridley, J.; Anderson, K. R.

    2011-12-01

    Polar region logistics are the limiting factor for deploying deep field seismic arrays. The IRIS PASSCAL Instrument Center, in collaboration with UNAVCO, designed and deployed several systems that address some of the logistical constraints of polar deployments. However, continued logistics' pressures coupled with increasingly ambitious science projects require further reducing the logistics required for deploying both summer and over winter stations. Our focus is to reduce station power requirements and bulk, thereby minimizing the time and effort required to deploy these arrays. We will reduce the weight of the battery bank by incorporating the most applicable new high energy-density battery technology. Using these batteries will require a completely new power management system along with an appropriate smart enclosure. The other aspect will be to integrate the digitizing system with the sensor. Both of these technologies should reduce the install time and shipping volume plus weight while reducing some instrument costs. We will also continue work on an effective Iridium telemetry solution for automated data return. The costs and limitations of polar deep-field science easily justifies a specialized development effort but pays off doubly in that we will continue to leverage the advancements in reduced logistics and increased performance for the benefit of low-latitude seismic research.

  16. Unattended Multiplicity Shift Register

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newell, Matt; Jones, David C.

    2017-01-16

    The Unattended Multiplicity Shift Register (UMSR) is a specialized pulse counter used primarily to count neutron events originating in neutron detection instruments. While the counter can be used to count any TTL input pulses, its unique ability to record time correlated events and the multiplicity distributions of these events makes it an ideal instrument for counting neutron events in the nuclear fields of material safeguards, waste assay and process monitoring and control. The UMSR combines the Los Alamos National Laboratory (LANL) simple and robust shift register design with a Commercial-Off-The-Shelf (COTS) processor and Ethernet communications. The UMSR is fully compatiblemore » with existing International Atomic Energy Agency (IAEA) neutron data acquisition instruments such as the Advance Multiplicity Shift Register (AMSR) and JSR-15. The UMSR has three input channels: a multiplicity shift register input and two auxiliary inputs. The UMSR provides 0V to 2kV of programmable High Voltage (HV) bias and both a 12V and a 5V detector power supply output. A serial over USB communication line to the UMSR allows the use of existing versions of INCC or MIC software while the Ethernet port is compatible with the new IAEA RAINSTORM communication protocol.« less

  17. Live interactive computer music performance practice

    NASA Astrophysics Data System (ADS)

    Wessel, David

    2002-05-01

    A live-performance musical instrument can be assembled around current lap-top computer technology. One adds a controller such as a keyboard or other gestural input device, a sound diffusion system, some form of connectivity processor(s) providing for audio I/O and gestural controller input, and reactive real-time native signal processing software. A system consisting of a hand gesture controller; software for gesture analysis and mapping, machine listening, composition, and sound synthesis; and a controllable radiation pattern loudspeaker are described. Interactivity begins in the set up wherein the speaker-room combination is tuned with an LMS procedure. This system was designed for improvisation. It is argued that software suitable for carrying out an improvised musical dialog with another performer poses special challenges. The processes underlying the generation of musical material must be very adaptable, capable of rapid changes in musical direction. Machine listening techniques are used to help the performer adapt to new contexts. Machine learning can play an important role in the development of such systems. In the end, as with any musical instrument, human skill is essential. Practice is required not only for the development of musically appropriate human motor programs but for the adaptation of the computer-based instrument as well.

  18. Hypervelocity impact studies using a rotating mirror framing laser shadowgraph camera

    NASA Technical Reports Server (NTRS)

    Parker, Vance C.; Crews, Jeanne Lee

    1988-01-01

    The need to study the effects of the impact of micrometeorites and orbital debris on various space-based systems has brought together the technologies of several companies and individuals in order to provide a successful instrumentation package. A light gas gun was employed to accelerate small projectiles to speeds in excess of 7 km/sec. Their impact on various targets is being studied with the help of a specially designed continuous-access rotating-mirror framing camera. The camera provides 80 frames of data at up to 1 x 10 to the 6th frames/sec with exposure times of 20 nsec.

  19. Microgravity

    NASA Image and Video Library

    1996-06-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators

  20. Microgravity

    NASA Image and Video Library

    1988-07-14

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators.

  1. Advanced Deployable Structural Systems for Small Satellites

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Straubel, Marco; Wilkie, W. Keats; Zander, Martin E.; Fernandez, Juan M.; Hillebrandt, Martin F.

    2016-01-01

    One of the key challenges for small satellites is packaging and reliable deployment of structural booms and arrays used for power, communication, and scientific instruments. The lack of reliable and efficient boom and membrane deployment concepts for small satellites is addressed in this work through a collaborative project between NASA and DLR. The paper provides a state of the art overview on existing spacecraft deployable appendages, the special requirements for small satellites, and initial concepts for deployable booms and arrays needed for various small satellite applications. The goal is to enhance deployable boom predictability and ground testability, develop designs that are tolerant of manufacturing imperfections, and incorporate simple and reliable deployment systems.

  2. Full Service

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2004-01-01

    NASA is moving ahead with the sole-source procurement of a Canadian robot to service the Hubble Space Telescope, gaining confidence the International Space Station (ISS) technology can perform all of the tasks shuttle-launched astronauts were scheduled to do before the Columbia accident changed everything. The U.S. agency is negotiating with MD Robotics, a MacDonald Dettwiler unit located in Brampton, Ontario, for a version of the Special Purpose Dexterous Manipulator (SPDM) the company developed for the ISS. The SPDM would be the business end of a throwaway module designed to replace batteries and gyroscopes, pull old instruments and install new ones before plunging to a targeted reentry over the Pacific.

  3. Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators

  4. Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators.

  5. 36 CFR 223.234 - Determination of responsibility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER Special Forest Products Award of Contracts... Officer shall not award a contract, permit, or other instrument authorizing the sale of special forest... under all applicable laws and regulations; (6) The declared high bidder has a satisfactory performance...

  6. 31 CFR Appendix A to Chapter V - Alphabetical Listing of Blocked Persons, Blocked Vessels, Specially Designated Nationals...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Alphabetical Listing of Blocked Persons, Blocked Vessels, Specially Designated Nationals, Specially Designated Terrorists, Specially Designated Global Terrorists, Foreign Terrorist Organizations, and Specially Designated Narcotics Traffickers (as of May 13, 2010) A Appendix A to Chapte...

  7. [2000 year history of tonsillectomy. Images from the history of otorhinolaryngology, highlighted by instruments from the collection of the German Medical History Museum in Ingolstadt].

    PubMed

    Feldmann, H

    1997-12-01

    The etymology of the anatomical terms and their use in history are elucidated: "Tonsil" (from Latin tonsa = the oar) in use since Celsus (about 40 AD). The Greek terms of that time, "antiádes", "paristhmia", were not adopted in later medical terminology. "Amygdala" (Greek/Latin = the almond) was introduced by Vesalius in 1543. Vesalius was also the first to depict the tonsils in a specimen of the whole human body; Duverney (1761) gives the first exact depiction of the pharyngeal region. Special anatomical and histological studies of the tonsils were carried out in the 19 century. Cornelius Celsus in Rome (about 40 AD) described the blunt removal of the tonsils by use of the finger. This method was favoured anew by numerous laryngologists at the beginning of the 20th century when it had been realised that a gentle enucleation of the entire tonsil including its capsule was advisable against cutting off a slice, but before long this procedure was discarded again for hygienic reasons. Precursors of special instruments for tonsillectomy were instruments designed for shortening the uvula: uvulotomy. Paré (1564) and Scultetus (1655) devised instruments that permitted placing a thread shaped like a snare around the uvula and cutting it off by strangulation. Hildanus (1646), Scultetus (1655) and Heister (1763) presented an instrument of the guillotine-type for uvulotomy. This instrument was modified by P. S. Physick (USA 1828) and used for tonsillotomy. It became the prototype for a number of similar instruments which were to follow: W. M. F. Fahnestock (USA 1832). M. Mackenzie (London 1880), G. Sluder (USA 1911). Besides these guillotines snares were also perfected and used for tonsillotomy, e.g. by W. Brünings (1908). The concentration on tonsillotomy aimed at performing the operation as quickly as possible, especially in children, as it was not yet possible to sustain general anaesthesia for a longer period of time while doing surgery in the pharynx. The operation of the tonsils, that had been started by general surgeons, at the end of the 19th century became the domain of the otolaryngologists because they had the superior technique of illumination. Important steps of progress were later on mouth-gags combined with tongue-depressors, and placing the head in a suspended and reclined position. This position had already been advocated by Killian in 1920, but it could only be introduced after improved techniques of general anaesthesia were available. These stages of historical development are described and illustrated with many details.

  8. 78 FR 14473 - Proposed Establishment of Class E Airspace; Sanibel, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ...) Global Positioning System (GPS) special Standard Instrument Approach Procedure (SIAP) serving Sanibel Island Heliport. This action would enhance the safety and airspace management of Instrument Flight Rules...; Airspace Docket No. 12-ASO-18) and be submitted in triplicate to the Docket Management System (see...

  9. Development and exploratory analysis of the Neurorehabilitation Program Styles Survey.

    PubMed

    McCorkel, Beth A; Glueckauf, Robert L; Ecklund-Johnson, Eric P; Tomusk, Allison B; Trexler, Lance E; Diller, Leonard

    2003-01-01

    To develop a survey instrument that assesses implementation of key components of outpatient neurorehabilitation programs and test the capacity of this instrument to differentiate between rehabilitation approaches. The Neurorehabilitation Program Styles Survey (NPSS) was administered to 18 outpatient facilities: 10 specialized and 8 discipline-specific outpatient neurorehabilitation programs. Scores were compared between types of programs using independent samples t tests. The NPSS showed good reliability and contrasted groups validity, significantly differentiating between types of programs. The NPSS holds considerable promise as a tool for distinguishing among different types of brain injury programs, and for assessing the differential effectiveness of specialized versus discipline-specific outpatient brain rehabilitation programs. Future research on the NPSS will assess the stability of the instrument over time, its content validity, and capacity to differentiate the full continuum of neurorehabilitation programs.

  10. Visual tracking of da Vinci instruments for laparoscopic surgery

    NASA Astrophysics Data System (ADS)

    Speidel, S.; Kuhn, E.; Bodenstedt, S.; Röhl, S.; Kenngott, H.; Müller-Stich, B.; Dillmann, R.

    2014-03-01

    Intraoperative tracking of laparoscopic instruments is a prerequisite to realize further assistance functions. Since endoscopic images are always available, this sensor input can be used to localize the instruments without special devices or robot kinematics. In this paper, we present an image-based markerless 3D tracking of different da Vinci instruments in near real-time without an explicit model. The method is based on different visual cues to segment the instrument tip, calculates a tip point and uses a multiple object particle filter for tracking. The accuracy and robustness is evaluated with in vivo data.

  11. Musical Instrument Choice and Playing History in Post-Secondary Level Music Students: Some Descriptive Data, Some Causes and Some Background Factors

    ERIC Educational Resources Information Center

    Chen, Simy Meng-Yu; Howard, Robert W.

    2004-01-01

    Why do musicians specialize in the specific instruments that they do? Research has shown effects of such factors as the perceived masculinity/femininity of instruments and musician's personality but there are little background data on other factors. The present study had two major aims. The first aim was to gather some useful background data on…

  12. Results of qualification tests on water-level sensing instruments, 1987

    USGS Publications Warehouse

    Olive, T.E.

    1989-01-01

    The U.S. Geological Survey 's Hydrologic Instrumentation Facility at the Stennis Space Center, Mississippi, conducts qualification tests on water level sensing instruments. Instrument systems, which meet or exceed the Survey 's minimum performance requirements, are placed on the Survey 's Qualified Products List. The qualification tests conducted in 1987 added two instrument systems to the Survey 's Qualified Products List. One system met requirements for use at a daily-discharge station , and the other system met requirements for a special-case station. The report is prepared for users of hydrologic instruments. The report provides a list of instrument features, describes the instrument systems, summarizes test procedures, and presents test results for the two instrument systems that met the Survey 's minimum performance standards for the 1987 round of qualification tests. (USGS)

  13. Study of blade clearance effects on centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Hoshide, R. K.; Nielson, C. E.

    1972-01-01

    A program of analysis, design, fabrication, and testing has been conducted to develop and experimentally verify analytical models to predict the effects of impeller blade clearance on centrifugal pumps. The effect of tip clearance on pump efficiency, and the relationship between the head coefficient and torque loss with tip clearance was established. Analysis were performed to determine the cost variation in design, manufacture, and test that would occur between unshrouded and shrouded impellers. An impeller, representative of typical rocket engine impellers, was modified by removing its front shroud to permit variation of its blade clearances. It was tested in water with special instrumentation to provide measurements of blade surface pressures during operation. Pump performance data were obtained from tests at various impeller tip clearances. Blade pressure data were obtained at the nominal tip clearance. Comparisons of predicted and measured data are given.

  14. Mars MetNet Mission - Martian Atmospheric Observational Post Network

    NASA Astrophysics Data System (ADS)

    Harri, Ari-Matti; Aleksashkin, Sergey; Arruego, Ignacio; Schmidt, Walter; Ponomarenko, Andrey; Apestigue, Victor; Genzer, Maria; Vazquez, Luis; Uspensky, Mikhail; Haukka, Harri

    2016-04-01

    A new kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested. MetNet Lander The MetNet landing vehicles are using an inflatable entry and descent system instead of rigid heat shields and parachutes as earlier semi-hard landing devices have used. This way the ratio of the payload mass to the overall mass is optimized. The landing impact will burrow the payload container into the Martian soil providing a more favorable thermal environment for the electronics and a suitable orientation of the telescopic boom with external sensors and the radio link antenna. It is planned to deploy several tens of MNLs on the Martian surface operating at least partly at the same time to allow meteorological network science. Strawman Scientific Payload The strawman payload of the two MNL precursor models includes the following instruments: Atmospheric instruments: • MetBaro Pressure device • MetHumi Humidity device • MetTemp Temperature sensors Optical devices: • PanCam Panoramic • MetSIS Solar irradiance sensor with OWLS optical wireless system for data transfer • DS Dust sensor Composition and Structure Devices: • Tri-axial magnetometer MOURA • Tri-axial System Accelerometer The descent processes dynamic properties are monitored by a special 3-axis accelerometer combined with a 3-axis gyrometer. The data will be sent via auxiliary beacon antenna throughout the descent phase starting shortly after separation from the spacecraft. MetNet Mission payload instruments are specially designed to operate under very low power conditions. MNL flexible solar panels provides a total of approximately 0.7-0.8 W of electric power during the daylight time. As the provided power output is insufficient to operate all instruments simultaneously they are activated sequentially according to a specially designed cyclogram table which adapts itself to the different environmental constraints. Mission Status Full Qualification Model (QM) of the MetNet landing unit with the Precursor Mission payload is currently under functional tests. In the near future the QM unit will be exposed to environmental tests with qualification levels including vibrations, thermal balance, thermal cycling and mechanical impact shock. One complete flight unit of the entry, descent and landing systems (EDLS) has been manufactured and tested with acceptance levels. Another flight-like EDLS has been exposed to most of the qualification tests, and hence it may be used for flight after refurbishments. Accordingly two flight-capable EDLS systems exist. The eventual goal is to create a network of atmospheric observational posts around the Martian surface. Even if the MetNet mission is focused on the atmospheric science, the mission payload will also include additional kinds of geophysical instrumentation. The next step in the MetNet Precursor Mission is the demonstration of the technical robustness and scientific capabilities of the MetNet type of landing vehicle. Definition of the Precursor Mission and discussions on launch opportunities are currently under way. The baseline program development funding exists for the next five years. Flight unit manufacture of the payload bay takes about 18 months, and it will be commenced after the Precursor Mission has been defined. References [1] http://metnet.fmi.fi

  15. Mars MetNet Mission Status

    NASA Astrophysics Data System (ADS)

    Harri, Ari-Matti; Aleksashkin, Sergei; Arruego, Ignacio; Schmidt, Walter; Genzer, Maria; Vazquez, Luis; Haukka, Harri

    2015-04-01

    New kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested. 1. MetNet Lander The MetNet landing vehicles are using an inflatable entry and descent system instead of rigid heat shields and parachutes as earlier semi-hard landing devices have used. This way the ratio of the payload mass to the overall mass is optimized. The landing impact will burrow the payload container into the Martian soil providing a more favorable thermal environment for the electronics and a suitable orientation of the telescopic boom with external sensors and the radio link antenna. It is planned to deploy several tens of MNLs on the Martian surface operating at least partly at the same time to allow meteorological network science. 2. Scientific Payload The payload of the two MNL precursor models includes the following instruments: Atmospheric instruments: 1. MetBaro Pressure device 2. MetHumi Humidity device 3. MetTemp Temperature sensors Optical devices: 1. PanCam Panoramic 2. MetSIS Solar irradiance sensor with OWLS optical wireless system for data transfer 3. DS Dust sensor The descent processes dynamic properties are monitored by a special 3-axis accelerometer combined with a 3-axis gyrometer. The data will be sent via auxiliary beacon antenna throughout the descent phase starting shortly after separation from the spacecraft. MetNet Mission payload instruments are specially designed to operate in very low power conditions. MNL flexible solar panels provides a total of approximately 0.7-0.8 W of electric power during the daylight time. As the provided power output is insufficient to operate all instruments simultaneously they are activated sequentially according to a specially designed cyclogram table which adapts itself to the different environmental constraints. 3. Mission Status Full Qualification Model (QM) of the MetNet landing unit with the Precursor Mission payload is currently under functional tests. In near future the QM unit will be exposed to environmental tests with qualification levels including vibrations, thermal balance, thermal cycling and mechanical impact shock. One complete flight unit of the entry, descent and landing systems (EDLS) has been manufactured and tested with acceptance levels. Another flight-like EDLS has been exposed to most of the qualification tests, and hence it may be used for flight after refurbishments. Accordingly two flight-capable EDLS systems exist. The eventual goal is to create a network of atmospheric observational posts around the Martian surface. Even if the MetNet mission is focused on the atmospheric science, the mission payload will also include additional kinds of geophysical instrumentation. The next step in the MetNet Precursor Mission to demonstrate the technical robustness and scientific capabilities of the MetNet type of landing vehicle. Definition of the Precursor Mission and discussions on launch opportunities are currently under way. The baseline program development funding exists for the next five years. Flight unit manufacture of the payload bay takes about 18 months, and it will be commenced after the Precursor Mission has been defined. References [1] http://metnet.fmi.fi

  16. Precautions for Workers 1

    PubMed Central

    Guest, G. H.

    1948-01-01

    Radioactive isotopes are now available from Chalk River for use by Canadian biologists. Experience has shown that the handling of radioactive isotopes may involve health hazards unless adequate precautions are taken. The nature of these hazards and the type of precautions which must be taken when working with radioactive isotopes are considered. Successful work with radioactive isotopes other than in the smallest tracer amounts requires the use of laboratories and equipment especially designed for the purpose and this is dealt with briefly. The operation of a radioactive laboratory requires certain auxiliary equipment and services, such as health instruments, film monitoring, special laboratory clothing, special cleanable surfaces and disposal of radioactive waste materials. These topics are discussed briefly. Handling of radioactive isotopes involves certain special precautions and a few of these, such as protection of hands, cleaning of glassware, handling of solutions, etc. are reviewed. In addition to protecting all personnel in a laboratory from harmful amounts of radiation, it is necessary to keep the laboratory and the building in which it is housed as free as possible from radioactive substances and this important fact has been stressed. ImagesFig. 1.Fig. 4.Fig. 6. PMID:17648375

  17. 36 CFR 223.226 - Term adjustments for force majeure delay.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER, SPECIAL FOREST PRODUCTS, AND FOREST BOTANICAL... for force majeure delay. Contracts or other authorizing instruments for the sale of special forest... beyond the person's reasonable control delay performance. In determining whether such an extension is...

  18. Effects of Training in Functional Behavior Assessment

    ERIC Educational Resources Information Center

    Dukes, Charles; Rosenberg, Howard; Brady, Michael

    2008-01-01

    The purpose of this study was to investigate the effectiveness of training special education teachers in the process of functional behavioral assessment (FBA) and subsequent development of recommendations to promote behavior change. An original evaluation instrument was developed that included measures of special education teachers' knowledge of…

  19. Flight-test evaluation of STOL control and flight director concepts in a powered-lift aircraft flying curved decelerating approaches

    NASA Technical Reports Server (NTRS)

    Hindson, W. S.; Hardy, G. H.; Innis, R. C.

    1981-01-01

    Flight tests were carried out to assess the feasibility of piloted steep curved, and decelerating approach profiles in powered lift STOL aircraft. Several STOL control concepts representative of a variety of aircraft were evaluated in conjunction with suitably designed flight directions. The tests were carried out in a real navigation environment, employed special electronic cockpit displays, and included the development of the performance achieved and the control utilization involved in flying 180 deg turning, descending, and decelerating approach profiles to landing. The results suggest that such moderately complex piloted instrument approaches may indeed be feasible from a pilot acceptance point of view, given an acceptable navigation environment. Systems with the capability of those used in this experiment can provide the potential of achieving instrument operations on curved, descending, and decelerating landing approaches to weather minima corresponding to CTOL Category 2 criteria, while also providing a means of realizing more efficient operations during visual flight conditions.

  20. EARLY SCIENCE WITH SOFIA, THE STRATOSPHERIC OBSERVATORY FOR INFRARED ASTRONOMY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, E. T.; Becklin, E. E.; De Buizer, J. M.

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is an airborne observatory consisting of a specially modified Boeing 747SP with a 2.7 m telescope, flying at altitudes as high as 13.7 km (45,000 ft). Designed to observe at wavelengths from 0.3 {mu}m to 1.6 mm, SOFIA operates above 99.8% of the water vapor that obscures much of the infrared and submillimeter. SOFIA has seven science instruments under development, including an occultation photometer, near-, mid-, and far-infrared cameras, infrared spectrometers, and heterodyne receivers. SOFIA, a joint project between NASA and the German Aerospace Center Deutsches Zentrum fuer Luft und-Raumfahrt, began initial sciencemore » flights in 2010 December, and has conducted 30 science flights in the subsequent year. During this early science period three instruments have flown: the mid-infrared camera FORCAST, the heterodyne spectrometer GREAT, and the occultation photometer HIPO. This Letter provides an overview of the observatory and its early performance.« less

  1. The Small Angular Oscillations of Airplanes in Steady Flight

    NASA Technical Reports Server (NTRS)

    Norton, F H

    1924-01-01

    This investigation was carried out by the National Advisory Committee for Aeronautics at the request of the Army Air Service to provide data concerning the small angular oscillations of several types of airplanes in steady flight under various atmospheric conditions. The data are of use in the design of bomb sights and other aircraft instruments. The method used consisted in flying the airplane steadily in one direction for at least one minute, while recording the angle of the airplane with the sun by means of a kymograph. The results show that the oscillations differ but little for airplanes of various types, but that the condition of the atmosphere is an important factor. The average angular excursion from the mean in smooth air is 0.8 degrees in pitch, 1.4 degrees in roll, and 0.9 degrees in yaw, without special instruments to aid the pilot in holding steady conditions. In bumpy air the values given above are increased about 50 per cent. (author)

  2. Optical Fiber Protection

    NASA Technical Reports Server (NTRS)

    1999-01-01

    F&S Inc. developed and commercialized fiber optic and microelectromechanical systems- (MEMS) based instrumentation for harsh environments encountered in the aerospace industry. The NASA SBIR programs have provided F&S the funds and the technology to develop ruggedized coatings and coating techniques that are applied during the optical fiber draw process. The F&S optical fiber fabrication facility and developed coating methods enable F&S to manufacture specialty optical fiber with custom designed refractive index profiles and protective or active coatings. F&S has demonstrated sputtered coatings using metals and ceramics and combinations of each, and has also developed techniques to apply thin coatings of specialized polyimides formulated at NASA Langley Research Center. With these capabilities, F&S has produced cost-effective, reliable instrumentation and sensors capable of withstanding temperatures up to 800? C and continues building commercial sales with corporate partners and private funding. More recently, F&S has adapted the same sensing platforms to provide the rapid detection and identification of chemical and biological agents

  3. Nitromethane K-9 Detection Limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strobel, R; Kury, J

    2003-08-29

    The Bureau of Alcohol, Tobacco and Firearms (ATF) trains canine/handler teams to detect explosives for government and other agencies worldwide. After completing the training program the teams are tested on an array containing explosives and numerous other samples designed to distract a canine. Passing this test results in a team's certification. These teams can be considered as ''detection instruments'' freshly calibrated just before leaving the ''factory''. Using these teams to examine special experimental arrays immediately following certification can lead to a better understanding of a canine's detection capabilities. Forty-one of these ''detection instruments'' were used in four test series withmore » arrays containing dilute nitromethane-in-water solutions. (The canines had been trained on the amount of nitromethane vapor in equilibrium with the undiluted liquid explosive.) By diluting liquid nitromethane with water, the amount of explosive vapor can be reduced many orders of magnitude to test the lower limit of the canine's nitromethane vapor detection response. The results are presented in this paper.« less

  4. Preface: The Chang'e-3 lander and rover mission to the Moon

    NASA Astrophysics Data System (ADS)

    Ip, Wing-Huen; Yan, Jun; Li, Chun-Lai; Ouyang, Zi-Yuan

    2014-12-01

    The Chang'e-3 (CE-3) lander and rover mission to the Moon was an intermediate step in China's lunar exploration program, which will be followed by a sample return mission. The lander was equipped with a number of remote-sensing instruments including a pair of cameras (Landing Camera and Terrain Camera) for recording the landing process and surveying terrain, an extreme ultraviolet camera for monitoring activities in the Earth's plasmasphere, and a first-ever Moon-based ultraviolet telescope for astronomical observations. The Yutu rover successfully carried out close-up observations with the Panoramic Camera, mineralogical investigations with the VIS-NIR Imaging Spectrometer, study of elemental abundances with the Active Particle-induced X-ray Spectrometer, and pioneering measurements of the lunar subsurface with Lunar Penetrating Radar. This special issue provides a collection of key information on the instrumental designs, calibration methods and data processing procedures used by these experiments with a perspective of facilitating further analyses of scientific data from CE-3 in preparation for future missions.

  5. Testing experience with unheated stain-gage balances in the NTF. [National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Jacobs, Peter F.; Ferris, Alice T.

    1986-01-01

    A series of cryogenic (cryo) cycles was conducted in the cryo chamber at the National Transonic Facility (NTF) in order to identify the cause of apparent strain shifts in axial force with temperature for the Pathfinder I model and to minimize their effects. The results of the investigation indicated that the major cause of axial force end point shifts and thermal hysteresis loops was the thickness of the Teflon insulation on the instrumentation wires crossing the balance. By reducing the thickness of the insulation and the total number and size of the wires, apparent strain values were achieved for the model with instrumentation wires which were nearly identical to those for the model without wires. Because of the special design features used, the balance output was very accurate and repeatable over the entire NTF temperature range, even with balance thermal gradients as large as 64 F and transient conditions as large as 3 F/minute.

  6. Slush Hydrogen Technology Program

    NASA Technical Reports Server (NTRS)

    Cady, Edwin C.

    1994-01-01

    A slush hydrogen (SH2) technology facility (STF) was designed, fabricated, and assembled by a contractor team of McDonnell Douglas Aerospace (MDA), Martin Marietta Aerospace Group (MMAG), and Air Products and Chemicals, Inc. (APCI). The STF consists of a slush generator which uses the freeze-thaw production process, a vacuum subsystem, a test tank which simulates the NASP vehicle, a triple point hydrogen receiver tank, a transfer subsystem, a sample bottle, a pressurization system, and a complete instrumentation and control subsystem. The STF was fabricated, checked-out, and made ready for testing under this contract. The actual SH2 testing was performed under the NASP consortium following NASP teaming. Pre-STF testing verified SH2 production methods, validated special SH2 instrumentation, and performed limited SH2 pressurization and expulsion tests which demonstrated the need for gaseous helium pre-pressurized of SH2 to control pressure collapse. The STF represents cutting-edge technology development by an effective Government-Industry team under very tight cost and schedule constraints.

  7. Low-latitude ionospheric research using the CIRCE Mission: instrumentation overview

    NASA Astrophysics Data System (ADS)

    Dymond, K. F.; Nicholas, A. C.; Budzien, S. A.; Stephan, A. W.; Marquis, P.; Brown, C. M.; Finne, T.; Wolfram, K. D.

    2017-08-01

    The Coordinated Ionospheric Reconstruction Cubesat Experiment (CIRCE) is a dual-satellite mission consisting of two 6U CubeSats actively maintaining a lead-follow configuration in the same orbit with a launch planned for the 2018-2019 time-frame. These nanosatellites will each feature two 1U size ultraviolet photometers, observing the 135.6 nm emission of atomic oxygen at nighttime. The primary objective is to characterize the two-dimensional distribution of electrons in the orbital plane of the vehicles with special emphasis on studying the morphology of the Equatorial Ionization Anomaly (EIA). The methodology used to reconstruct the nighttime ionosphere employs continuous UV photometry from four distinct viewing angles in combination with an additional data source, such as in situ plasma density measurements or a wide-band beacon data, with advanced image space reconstruction algorithm tomography techniques. The COSMIC/FORMOSAT-3 (CF3) constellation featured six Tiny Ionospheric Photometers, compact UV sensors which served as the pathfinder for the CIRCE instruments. The TIP instruments on the CF3 satellites demonstrated detection of ionospheric bubbles before they had penetrated the peak of the F-region ionosphere, showed the temporal evolution of the EIA, and observed a Medium Scale Travelling Ionospheric Disturbance. We present our mission concept, some pertinent information regarding the instrument design, the results of simulations illustrating the imaging capability of the sensor suite, and a range of science questions addressable using such a system.

  8. Measurement of predictive validity in violence risk assessment studies: a second-order systematic review.

    PubMed

    Singh, Jay P; Desmarais, Sarah L; Van Dorn, Richard A

    2013-01-01

    The objective of the present review was to examine how predictive validity is analyzed and reported in studies of instruments used to assess violence risk. We reviewed 47 predictive validity studies published between 1990 and 2011 of 25 instruments that were included in two recent systematic reviews. Although all studies reported receiver operating characteristic curve analyses and the area under the curve (AUC) performance indicator, this methodology was defined inconsistently and findings often were misinterpreted. In addition, there was between-study variation in benchmarks used to determine whether AUCs were small, moderate, or large in magnitude. Though virtually all of the included instruments were designed to produce categorical estimates of risk - through the use of either actuarial risk bins or structured professional judgments - only a minority of studies calculated performance indicators for these categorical estimates. In addition to AUCs, other performance indicators, such as correlation coefficients, were reported in 60% of studies, but were infrequently defined or interpreted. An investigation of sources of heterogeneity did not reveal significant variation in reporting practices as a function of risk assessment approach (actuarial vs. structured professional judgment), study authorship, geographic location, type of journal (general vs. specialized audience), sample size, or year of publication. Findings suggest a need for standardization of predictive validity reporting to improve comparison across studies and instruments. Copyright © 2013 John Wiley & Sons, Ltd.

  9. International Instrumentation Symposium, 39th, Albuquerque, NM, May 2-6, 1993, Proceedings

    NASA Astrophysics Data System (ADS)

    Various papers on instrumentation are presented. The general topics addressed include: data acquisition and processing, wind tunnels, pressure measurements, thermal measurements, force measurements, aerospace, metrology, flow measurements, real-time systems, measurement uncertainty, data analysis and calibration, computer applications, special tests, reentry vehicle systems, and human engineering.

  10. Derivation of Design Loads and Random Vibration specifications for Spacecraft Instruments and Sub-Units

    NASA Astrophysics Data System (ADS)

    Fransen, S.; Yamawaki, T.; Akagi, H.; Eggens, M.; van Baren, C.

    2014-06-01

    After a first estimation based on statistics, the design loads for instruments are generally estimated by coupled spacecraft/instrument sine analysis once an FE-model of the spacecraft is available. When the design loads for the instrument have been derived, the next step in the process is to estimate the random vibration environment at the instrument base and to compute the RMS load at the centre of gravity of the instrument by means of vibro-acoustic analysis. Finally the design loads of the light-weight sub-units of the instrument can be estimated through random vibration analysis at instrument level, taking into account the notches required to protect the instrument interfaces in the hard- mounted random vibration test. This paper presents the aforementioned steps of instrument and sub-units loads derivation in the preliminary design phase of the spacecraft and identifies the problems that may be encountered in terms of design load consistency between low-frequency and high-frequency environments. The SpicA FAR-infrared Instrument (SAFARI) which is currently developed for the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) will be used as a guiding example.

  11. Detection for Nuclear Nonproliferation

    DOE PAGES

    Pozzi, Sara A.; Hamel, Michael C.; Polack, J. Kyle; ...

    2016-11-13

    The detection and characterization of special nuclear materials is a high priority area for applications in nuclear safeguards and nonproliferation. We are developing new instruments based on organic scintillators to detect and characterize the emissions from special nuclear materials. This paper describes some of the gaps and challenges in nuclear safeguards and proposed approaches.

  12. 36 CFR 223.224 - Performance bonds and security.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... instrument for the sale of special forest products may require the person to furnish a performance bond or... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Performance bonds and... AGRICULTURE SALE AND DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER Special Forest Products Contract and Permit...

  13. 5 CFR 334.102 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... United States, the Administrative Office of the United States Courts, the Library of Congress, the... eligible for the special programs and services provided by the United States to Indians because of their..., instrumentality, or authority of a State or States; and (2) Any general or special purpose agency of such a...

  14. Soccer: Special Olympics Sports Skills Instructional Program.

    ERIC Educational Resources Information Center

    Joseph P. Kennedy, Jr. Foundation, Washington, DC.

    One of five guides in the Sports Skills Instructional Program of the Special Olympics, the booklet describes an approach to teaching soccer skills to mentally retarded persons. An introductory section lists the goals, objectives, and benefits of the program and provides criterion referenced instruments to assess the individual's current…

  15. Social-Emotional Characteristics and Special Educational Needs

    ERIC Educational Resources Information Center

    Meijer, Joost; Fossen, Miriam W. E. B.; van Putten, Cornelis M.; van der Leij, Aryan

    2006-01-01

    The aim of the research described in this article was the development of an instrument to measure social emotional characteristics and special educational and pedagogical needs of students in the last grade of primary education. Questionnaires were developed for teachers as well as for students. Exploratory factor analyses showed that the factors…

  16. Sterilization System

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Cox Sterile Products, Inc.'s Rapid Heat Transfer Sterilizer employs a heat exchange process that induces rapid air movement; the air becomes the heat transfer medium, maintaining a uniform temperature of 375 degrees Fahrenheit. It features pushbutton controls for three timing cycles for different instrument loads, a six-minute cycle for standard unpackaged instruments, eight minutes for certain specialized dental/medical instruments and 12 minutes for packaged instruments which can then be stored in a drawer in sterile condition. System will stay at 375 degrees all day. Continuous operation is not expensive because of the sterilizer's very low power requirements.

  17. Neutron scatter camera

    DOEpatents

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  18. 78 FR 36084 - Special Conditions: Cirrus Design Corporation Model SF50 Airplane; Function and Reliability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ...; Special Conditions No. 23-248-SC] Special Conditions: Cirrus Design Corporation Model SF50 Airplane... granting special conditions for the Cirrus Design Corporation model SF50 airplane. We are withdrawing... Special Condition No. 23-248- SC for the Cirrus Design Corporation new model SF50 ``Vision'' Jet. The SF50...

  19. Can we see photosynthesis? Magnifying the tiny color changes of plant green leaves using Eulerian video magnification

    NASA Astrophysics Data System (ADS)

    Taj-Eddin, Islam A. T. F.; Afifi, Mahmoud; Korashy, Mostafa; Ahmed, Ali H.; Cheng, Ng Yoke; Hernandez, Evelyng; Abdel-Latif, Salma M.

    2017-11-01

    Plant aliveness is proven through laboratory experiments and special scientific instruments. We aim to detect the degree of animation of plants based on the magnification of the small color changes in the plant's green leaves using the Eulerian video magnification. Capturing the video under a controlled environment, e.g., using a tripod and direct current light sources, reduces camera movements and minimizes light fluctuations; we aim to reduce the external factors as much as possible. The acquired video is then stabilized and a proposed algorithm is used to reduce the illumination variations. Finally, the Euler magnification is utilized to magnify the color changes on the light invariant video. The proposed system does not require any special purpose instruments as it uses a digital camera with a regular frame rate. The results of magnified color changes on both natural and plastic leaves show that the live green leaves have color changes in contrast to the plastic leaves. Hence, we can argue that the color changes of the leaves are due to biological operations, such as photosynthesis. To date, this is possibly the first work that focuses on interpreting visually, some biological operations of plants without any special purpose instruments.

  20. ALR - Laser altimeter for the ASTER deep space mission. Simulated operation above a surface with crater

    NASA Astrophysics Data System (ADS)

    de Brum, A. G. V.; da Cruz, F. C.; Hetem, A., Jr.

    2015-10-01

    To assist in the investigation of the triple asteroid system 2001-SN263, the deep space mission ASTER will carry onboard a laser altimeter. The instrument was named ALR and its development is now in progress. In order to help in the instrument design, with a view to the creation of software to control the instrument, a package of computer programs was produced to simulate the operation of a pulsed laser altimeter with operating principle based on the measurement of the time of flight of the travelling pulse. This software Simulator was called ALR_Sim, and the results obtained with its use represent what should be expected as return signal when laser pulses are fired toward a target, reflect on it and return to be detected by the instrument. The program was successfully tested with regard to some of the most common situations expected. It constitutes now the main workbench dedicated to the creation and testing of control software to embark in the ALR. In addition, the Simulator constitutes also an important tool to assist the creation of software to be used on Earth, in the processing and analysis of the data received from the instrument. This work presents the results obtained in the special case which involves the modeling of a surface with crater, along with the simulation of the instrument operation above this type of terrain. This study points out that the comparison of the wave form obtained as return signal after reflection of the laser pulse on the surface of the crater with the expected return signal in the case of a flat and homogeneous surface is a useful method that can be applied for terrain details extraction.

  1. The evolution of violence risk assessment.

    PubMed

    Monahan, John; Skeem, Jennifer L

    2014-10-01

    Many instruments have been published in recent years to improve the ability of mental health clinicians to estimate the likelihood that an individual will behave violently toward others. Increasingly, these instruments are being applied in response to laws that require specialized risk assessments. In this review, we present a framework that goes beyond the "clinical" and "actuarial" dichotomy to describe a continuum of structured approaches to risk assessment. Despite differences among them, there is little evidence that one instrument predicts violence better than another. We believe that these group-based instruments are useful for assessing an individual's risk, and that the instrument should be chosen based on the purpose of the assessment.

  2. A Historical Perspective of Special Operations Forces as an Instrument of Strategy.

    DTIC Science & Technology

    1991-01-01

    government of Winston Churchill had ascended to power. For the special operations effort, fits and starts toward a more capable organization had occurred...therefore reasonable to conclude that this halting method of agent and organization development though time- consuming , eventually provided a cadre of...Command and General Staff College, Ft. Leavenworth, KS. July 21, 1999. THIS PAGE IS UNCLASSIFIED AD-B 158 452 A HISTORICAL PERSPECTIVE OF ’ SPECIAL

  3. Mars Science Laboratory Sample Acquisition, Sample Processing and Handling: Subsystem Design and Test Challenges

    NASA Technical Reports Server (NTRS)

    Jandura, Louise

    2010-01-01

    The Sample Acquisition/Sample Processing and Handling subsystem for the Mars Science Laboratory is a highly-mechanized, Rover-based sampling system that acquires powdered rock and regolith samples from the Martian surface, sorts the samples into fine particles through sieving, and delivers small portions of the powder into two science instruments inside the Rover. SA/SPaH utilizes 17 actuated degrees-of-freedom to perform the functions needed to produce 5 sample pathways in support of the scientific investigation on Mars. Both hardware redundancy and functional redundancy are employed in configuring this sampling system so some functionality is retained even with the loss of a degree-of-freedom. Intentional dynamic environments are created to move sample while vibration isolators attenuate this environment at the sensitive instruments located near the dynamic sources. In addition to the typical flight hardware qualification test program, two additional types of testing are essential for this kind of sampling system: characterization of the intentionally-created dynamic environment and testing of the sample acquisition and processing hardware functions using Mars analog materials in a low pressure environment. The overall subsystem design and configuration are discussed along with some of the challenges, tradeoffs, and lessons learned in the areas of fault tolerance, intentional dynamic environments, and special testing

  4. [Clinical practice guidelines (II): searching and critical evaluation].

    PubMed

    Alonso, P; Bonfill, X

    2007-01-01

    Clinical practice guidelines have unique characteristics of the Internet era in which they are starting to be increasingly popular. The fact that they are often elaborated by governmental agencies and are not published in conventional journals means that they may not be accessible using the usual search methods employed for other types of scientific studies and documents (clinical trials, reviews, etc.). The Internet has become an essential tool for locating clinical practice guidelines, and meta-search engines, specific databases, directories, and elaborating institutions are of special importance. The relative lack of indexing of clinical practice guides means that Medline and Embase are not as useful in this context as in searching for original studies. With the aim of evaluating the validity, reproducibility, and reliability of clinical practice guidelines, a series of European institutions designed a tool to evaluate clinical practice guidelines at the end of the 1990s. This instrument, named AGREE, aims to offer a framework for the evaluation of the quality of clinical practice guidelines. It can also be useful in the design of new clinical practice guidelines as well as in the evaluation of the validity of guidelines to be updated or adapted. The AGREE instrument has become the reference for those that use guidelines, those that elaborate them, and for healthcare providers.

  5. Drones for aerodynamic and structural testing /DAST/ - A status report

    NASA Technical Reports Server (NTRS)

    Murrow, H. N.; Eckstrom, C. V.

    1978-01-01

    A program for providing research data on aerodynamic loads and active control systems on wings with supercritical airfoils in the transonic speed range is described. Analytical development, wind tunnel tests, and flight tests are included. A Firebee II target drone vehicle has been modified for use as a flight test facility. The program currently includes flight experiments on two aeroelastic research wings. The primary purpose of the first flight experiment is to demonstrate an active control system for flutter suppression on a transport-type wing. Design and fabrication of the wing are complete and after installing research instrumentation and the flutter suppression system, flight testing is expected to begin in early 1979. The experiment on the second research wing - a fuel-conservative transport type - is to demonstrate multiple active control systems including flutter suppression, maneuver load alleviation, gust load alleviation, and reduce static stability. Of special importance for this second experiment is the development and validation of integrated design methods which include the benefits of active controls in the structural design.

  6. 26 CFR 1.171-3 - Special rules for certain bonds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... disbursements method of accounting, and E decides to use annual accrual periods ending on March 1 of each year... any bond premium among the accrual periods by reference to the equivalent fixed rate debt instrument... remaining term of the instrument. The holder also allocates any bond premium among the accrual periods by...

  7. 77 FR 52683 - UChicago Argonne, LLC, Notice of Decision on Applications for Duty-Free Entry of Scientific...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... science. This instrument is specialized for creating artificial nanoscale structures on an atom-by-atom basis using nascent atom manipulation techniques. The instrument will be used to investigate the amount of force required to move one atom on a materials surface while simultaneously measuring local...

  8. Formative Evaluation of the Early Development Instrument: Progress and Prospects

    ERIC Educational Resources Information Center

    Keating, Daniel P.

    2007-01-01

    This article is a commentary for the special issue on the Early Development Instrument (EDI), a community tool to assess children's school readiness and developmental outcomes at a group level. The EDI is administered by kindergarten teachers, who assess their kindergarten students on 5 developmental domains: physical health and well-being, social…

  9. Including Exceptional Students in Your Instrumental Music Program

    ERIC Educational Resources Information Center

    Mixon, Kevin

    2005-01-01

    This article describes the method and adaptations used by the author in including students with special needs in an instrumental music program. To ensure success in the program, the author shares the method he uses to include exceptional students and enumerates some possible adaptations. There are certainly other methods and modifications that…

  10. The Fabrications and Travels of a Knowledge-Policy Instrument

    ERIC Educational Resources Information Center

    Carvalho, Luis Miguel

    2012-01-01

    This article sets forth the main elements of the conceptual framework for the overall approach to the Programme for International Student Assessment (PISA) taken in this special issue. PISA is here examined as a (knowledge for policy) regulatory instrument made by intertwined cognitive and social practices, and involving multidirectional flows of…

  11. Identification of a killer by a definitive sneaker pattern and his beating instruments by their distinctive patterns.

    PubMed

    Zugibe, F T; Costello, J; Breithaupt, M

    1996-03-01

    A 39-year-old male service station attendant was found murdered on the floor of a gasoline service area by a passing motorist who had stopped for gas. The victim had been brutally beaten all over his entire body. After carefully examining the body and scene and taking selective photographs, special procedures were implemented in an attempt to preserve and transport the body without disturbing any items of evidence. In addition, specific evidentiary items were noted and collected for processing. The victim was meticulously examined externally at autopsy using a special protocol to locate clues that might assist in identifying a suspect or instrument of injury or death. Patterned impressions and subsequent DNA analysis proved successful in identifying the perpetrator of the crime and the instruments used in inflicting the beating. It is the purpose of this paper to show how a meticulous examination of the body for the presence of patterned injuries and critical studies of these patterns and impressions led to the identification of a killer and the instruments he used in a brutal beating.

  12. Enabling Planetary Geodesy With the Deep Space Network

    NASA Astrophysics Data System (ADS)

    Park, R. S.; Asmar, S. W.; Armstrong, J. W.; Buccino, D.; Folkner, W. M.; Iess, L.; Konopliv, A. S.; Lazio, J.

    2015-12-01

    For five decades of planetary exploration, missions have carried out Radio Science experiments that led to numerous discoveries in planetary geodesy. The interior structures of many planets, large moons, asteroids and comet nuclei have been modeled based on their gravitational fields and dynamical parameters derived from precision Doppler and range measurements, often called radio metrics. Advanced instrumentation has resulted in the high level of data quality that enabled scientific breakthroughs. This instrumentation scheme, however, is distributed between elements on the spacecraft and others at the stations of the Deep Space Network (DSN), making the DSN a world-class science instrument. The design and performance of the DSN stations directly determines the quality of the science observables and radio link-based planetary geodesy observations are established by methodologies and capabilities of the DSN. In this paper, we summarize major recent discoveries in planetary geodesy at the rocky planets and the Moon, Saturnian and Jovian satellites, Phobos, and Vesta; experiments and analysis in progress at Ceres and Pluto; upcoming experiments at Jupiter, Saturn and Mars (InSight), and the long-term outlook for approved future missions with geodesy objectives. The DSN's role will be described along the technical advancements in DSN transmitters, receivers, atomic clocks, and other specialized instrumentation, such as the Advanced Water Vapor Radiometer, Advanced Ranging Instrument, as well as relevant mechanical and electrical components. Advanced techniques for calibrations of known noise sources and Earth's troposphere, ionosphere, and interplanetary plasma are also presented. A typical error budget will be presented to aid future investigations in carrying out trade-off studies in the end-to-end system performance.

  13. Perceptions and Attitudes of General and Special Education Teachers toward Collaborative Teaching

    ERIC Educational Resources Information Center

    Robinson, Garletta

    2017-01-01

    In a Georgia middle school, general and special education teachers expressed concerns about the challenges of working collaboratively in the inclusive classroom. Effective teacher collaboration is pivotal to ensure academic success of all students. The purpose of this qualitative bounded instrumental case study was to explore middle school…

  14. Leveraging Human Assets: Interpersonal Skill Development Program

    DTIC Science & Technology

    2006-11-01

    workforce. Washington, DC: American Psychological Association. Vroom , V . (1964). Work and motivation . New York: John Wiley. ...considering the impact of motivation on interpersonal skills. Expectancy theory ( Vroom , 1964) includes expectancy and instrumentality. Expectancy is...important for success in special operations areas such as Civil Affairs (CA) or Special Forces (SF) that work closely with indigenous populations

  15. Finding Kids with Special Needs: the Background, Development, Field Test and Validation.

    ERIC Educational Resources Information Center

    Resource Management Systems, Inc., Carmel, CA.

    Described are the development of "Findings Kids with Special Needs" (FKSN), a instrument to identify children's learning problems and gifted students; results of field testing with 24,825 children, kindergarten through grade 8, in 110 schools; and validation procedures. Discussed is test construction, including incorporation of 12…

  16. Investigations of the Mars Upper Atmosphere with ExoMars Trace Gas Orbiter

    NASA Astrophysics Data System (ADS)

    López-Valverde, Miguel A.; Gerard, Jean-Claude; González-Galindo, Francisco; Vandaele, Ann-Carine; Thomas, Ian; Korablev, Oleg; Ignatiev, Nikolai; Fedorova, Anna; Montmessin, Franck; Määttänen, Anni; Guilbon, Sabrina; Lefevre, Franck; Patel, Manish R.; Jiménez-Monferrer, Sergio; García-Comas, Maya; Cardesin, Alejandro; Wilson, Colin F.; Clancy, R. T.; Kleinböhl, Armin; McCleese, Daniel J.; Kass, David M.; Schneider, Nick M.; Chaffin, Michael S.; López-Moreno, José Juan; Rodríguez, Julio

    2018-02-01

    The Martian mesosphere and thermosphere, the region above about 60 km, is not the primary target of the ExoMars 2016 mission but its Trace Gas Orbiter (TGO) can explore it and address many interesting issues, either in-situ during the aerobraking period or remotely during the regular mission. In the aerobraking phase TGO peeks into thermospheric densities and temperatures, in a broad range of latitudes and during a long continuous period. TGO carries two instruments designed for the detection of trace species, NOMAD and ACS, which will use the solar occultation technique. Their regular sounding at the terminator up to very high altitudes in many different molecular bands will represent the first time that an extensive and precise dataset of densities and hopefully temperatures are obtained at those altitudes and local times on Mars. But there are additional capabilities in TGO for studying the upper atmosphere of Mars, and we review them briefly. Our simulations suggest that airglow emissions from the UV to the IR might be observed outside the terminator. If eventually confirmed from orbit, they would supply new information about atmospheric dynamics and variability. However, their optimal exploitation requires a special spacecraft pointing, currently not considered in the regular operations but feasible in our opinion. We discuss the synergy between the TGO instruments, specially the wide spectral range achieved by combining them. We also encourage coordinated operations with other Mars-observing missions capable of supplying simultaneous measurements of its upper atmosphere.

  17. High-resolution flying-PIV with optical fiber laser delivery

    NASA Astrophysics Data System (ADS)

    Weichselbaum, Noah A.; André, Matthieu A.; Rahimi-Abkenar, Morteza; Manzari, Majid T.; Bardet, Philippe M.

    2016-05-01

    Implementation of non-intrusive optical measurement techniques, such as particle image velocimetry (PIV), in harsh environments requires specialized techniques for introducing controlled laser sheets to the region of interest. Large earthquake shake tables are a particularly challenging environment. Lasers must be mounted away from the table, and the laser sheet has to be delivered precisely and stably to the measurement station. Here, high-power multi-mode step-index fiber optics enable introduction of light from an Nd:YLF pulsed laser to a remote test section. Such lasers are suitable for coupling to optical fibers, which presents a portable, flexible, and safe manner to deliver a PIV light sheet. Best practices for their implementation are reviewed. Particular attention is focused on obtaining a collimated beam of acceptable quality at the output of the fiber. To achieve high spatial resolution, the PIV camera is directly mounted on the moving shake table with care to minimize its vibrations. A special arrangement of PIV planes is deployed for precise in-situ PIV alignment and to monitor and account for residual structure vibrations and beam wandering. The design of the instruments is detailed. Here, an experimental facility for the study of nuclear fuel bundle response to seismic forcing near prototypical conditions is instrumented. Only through integration of a high-resolution flying-PIV system can velocity fields be acquired. Data indicate that in the presence of a mean axial flow, a secondary oscillatory flow develops as the bundle oscillates. Instantaneous, phase-averaged, and fluctuating velocity fields illustrate this phenomenon.

  18. [The recent news in endoscopic surgery: a review of the literature and meta-analysis].

    PubMed

    Klimenko, K É

    2012-01-01

    During a few recent years, endonasal surgery has become the principal tool for the operative treatment of many pathologies affecting the base of the skull. The present work was designed to estimate the possibilities of using endoscopic endonasal surgery to treat sinus and skull base lesions and illustrate the recent progress in the development of endoscopic equipment and instrumentation. The meta-analysis of the results of on-going research on the application of the endonasal endoscopic technology is described with the special emphasis on the plastic treatment of liquor fistulas, removal of juvenile nasopharyngeal angiofibromas, treatment of pathological changes in the clivial region and odontoid cervicomedullary junction.

  19. The principles of Health Technology Assessment in laboratory medicine.

    PubMed

    Liguori, Giorgio; Belfiore, Patrizia; D'Amora, Maurizio; Liguori, Renato; Plebani, Mario

    2017-01-01

    The Health Technology Assessment (HTA) is a multi-professional and multidisciplinary evaluation approach designed to assess health technology in the broadest sense of the term, from its instruments to the rearranging of its organizational structures. It is by now an established methodology at national and international levels that involves several medical disciplines thanks to its versatility. Laboratory medicine is one of these disciplines. Such specialization was subjected, in recent years, to deep changes even from an organizational standpoint, in order to meet the health needs of the population, making them as effective and cost-effective as possible. In this regard, HTA was the tool used to assess implications in different areas.

  20. HEB spool pieces design description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D.; Strube, D.

    1994-02-01

    The many varied types of spool pieces for the High Energy Booster (HEB) of the Superconducting Super Collider (SSC) Laboratory are presented. Each type of spool piece is discussed, and the specific components are identified. The spool piece components allow each spool piece to perform as a unique electromechanical device positioned in series with large superconducting magnets to provide electrical and mechanical support for each superconducting magnet in areas of cryogenics, electrical power, instrumentation, diagnostics, and vacuum. A specialized HEB superspool is identified that perhaps has the potential to aid in the overall configuration management of the HEB lattice bymore » combining HEB superconducting quadrupole magnets and spool pieces within a common cryostat.« less

  1. Modification of os calcis bone mineral profiles during bedrest

    NASA Technical Reports Server (NTRS)

    Vogel, J. M.

    1977-01-01

    The mineral content of the left central os calcis was determined using the photon absorptiometric technique modified for the space missions to permit area scanning, and was compared with total body calcium balance changes. The instrument consists of a rectilinear scanner that is programmed by a specially designed control module to move a low energy X-ray emitting radionuclide placed in opposition to a detector to scan the foot which is places between them. The foot is placed in a plexiglas box filled with water to provide tissue equivalence and to compensate for irregularities in thickness of tissue cover that surrounds the bone. The mineral content is obtained from basic attenuation equation.

  2. Slice&Dice: Recognizing Food Preparation Activities Using Embedded Accelerometers

    NASA Astrophysics Data System (ADS)

    Pham, Cuong; Olivier, Patrick

    Within the context of an endeavor to provide situated support for people with cognitive impairments in the kitchen, we developed and evaluated classifiers for recognizing 11 actions involved in food preparation. Data was collected from 20 lay subjects using four specially designed kitchen utensils incorporating embedded 3-axis accelerometers. Subjects were asked to prepare a mixed salad in our laboratory-based instrumented kitchen environment. Video of each subject's food preparation activities were independently annotated by three different coders. Several classifiers were trained and tested using these features. With an overall accuracy of 82.9% our investigation demonstrated that a broad set of food preparation actions can be reliably recognized using sensors embedded in kitchen utensils.

  3. Design of the MESUR/pathfinder microrover

    NASA Technical Reports Server (NTRS)

    Stone, Henry W.

    1994-01-01

    The use of unmanned robotic vehicles to assist in the exploration of Mars and other planets has been of interest to the National Aeronautics and Space Administration (NASA) for several decades and has been the focus of an ongoing research program at the Jet Propulsion Laboratory (JPL) for a similar period of time. As a result of these research activities, JPL is in the process of designing and building a small (7-9 kg) microrover to be flown aboard the Mars Environmental Survey Mission (MESUR)/Pathfinder spacecraft, which is tentatively to be launched to Mars in late 1997. The microrover will perform a variety of technology experiments designed to provide information critical to the design of future planetary rovers. In addition, the microrover will perform several science and lander related experiments using specialized onboard instruments. To enable the microrover to perform these experiments at selected target areas and at the same time deal with the long time delays (and limited communications bandwidth), a control/navigation approach combining the use of operator-designated waypoints and onboard behavior control has been adopted. The design of the MESUR/Pathfinder microrover and the overall manner in which it is controlled are described herein.

  4. Training Early Career Scientists in Flight Instrument Design Through Experiential Learning: NASA Goddard's Planetary Science Winter School.

    NASA Technical Reports Server (NTRS)

    Bleacher, L. V.; Lakew, B.; Bracken, J.; Brown, T.; Rivera, R.

    2017-01-01

    The NASA Goddard Planetary Science Winter School (PSWS) is a Goddard Space Flight Center-sponsored training program, managed by Goddard's Solar System Exploration Division (SSED), for Goddard-based postdoctoral fellows and early career planetary scientists. Currently in its third year, the PSWS is an experiential training program for scientists interested in participating on future planetary science instrument teams. Inspired by the NASA Planetary Science Summer School, Goddard's PSWS is unique in that participants learn the flight instrument lifecycle by designing a planetary flight instrument under actual consideration by Goddard for proposal and development. They work alongside the instrument Principal Investigator (PI) and engineers in Goddard's Instrument Design Laboratory (IDL; idc.nasa.gov), to develop a science traceability matrix and design the instrument, culminating in a conceptual design and presentation to the PI, the IDL team and Goddard management. By shadowing and working alongside IDL discipline engineers, participants experience firsthand the science and cost constraints, trade-offs, and teamwork that are required for optimal instrument design. Each PSWS is collaboratively designed with representatives from SSED, IDL, and the instrument PI, to ensure value added for all stakeholders. The pilot PSWS was held in early 2015, with a second implementation in early 2016. Feedback from past participants was used to design the 2017 PSWS, which is underway as of the writing of this abstract.

  5. LST and instrument considerations. [modular design

    NASA Technical Reports Server (NTRS)

    Levin, G. M.

    1974-01-01

    In order that the LST meet its scientific objectives and also be a National Astronomical Space Facility during the 1980's and 1990's, broad requirements have been levied by the scientific community. These scientific requirements can be directly translated into design requirements and specifications for the scientific instruments. The instrument ensemble design must be consistent with a 15-year operational lifetime. Downtime for major repair/refurbishment or instrument updating must be minimized. The overall efficiency and performance of the instruments should be maximized. Modularization of instruments and instrument subsystems, some degree of on-orbit servicing (both repair and replacement), on-axis location, minimizing the number of reflections within instruments, minimizing polarization effects, and simultaneous operation of the F/24 camera with other instruments, are just a few of the design guidelines and specifications which can and will be met in order that these broader scientific requirements be satisfied.-

  6. Design and validation of instruments to measure knowledge.

    PubMed

    Elliott, T E; Regal, R R; Elliott, B A; Renier, C M

    2001-01-01

    Measuring health care providers' learning after they have participated in educational interventions that use experimental designs requires valid, reliable, and practical instruments. A literature review was conducted. In addition, experience gained from designing and validating instruments for measuring the effect of an educational intervention informed this process. The eight main steps for designing, validating, and testing the reliability of instruments for measuring learning outcomes are presented. The key considerations and rationale for this process are discussed. Methods for critiquing and adapting existent instruments and creating new ones are offered. This study may help other investigators in developing valid, reliable, and practical instruments for measuring the outcomes of educational activities.

  7. Relating Fresh Concrete Viscosity Measurements from Different Rheometers

    PubMed Central

    Ferraris, Chiara F.; Martys, Nicos S.

    2003-01-01

    Concrete rheological properties need to be properly measured and predicted in order to characterize the workability of fresh concrete, including special concretes such as self-consolidating concrete (SCC). It was shown by a round-robin test held in 2000 [1,2] that different rheometer designs gave different values of viscosity for the same concrete. While empirical correlation between different rheometers was possible, for a procedure that is supposed to “scientifically” improve on the empirical slump tests, this situation is unsatisfactory. To remedy this situation, a new interpretation of the data was developed. In this paper, it is shown that all instruments tested could be directly and quantitatively compared in terms of relative plastic viscosity instead of the plastic viscosity alone. This should eventually allow the measurements from various rheometer designs to be directly calibrated against known standards of plastic viscosity, putting concrete rheometry and concrete workability on a sounder materials science basis. PMID:27413607

  8. A versatile atomic force microscope integrated with a scanning electron microscope.

    PubMed

    Kreith, J; Strunz, T; Fantner, E J; Fantner, G E; Cordill, M J

    2017-05-01

    A versatile atomic force microscope (AFM), which can be installed in a scanning electron microscope (SEM), is introduced. The flexible design of the instrument enables correlated analysis for different experimental configurations, such as AFM imaging directly after nanoindentation in vacuum. In order to demonstrate the capabilities of the specially designed AFM installed inside a SEM, slip steps emanating around nanoindents in single crystalline brass were examined. This example showcases how the combination of AFM and SEM imaging can be utilized for quantitative dislocation analysis through the measurement of the slip step heights without the hindrance of oxide formation. Finally, an in situ nanoindentation technique is introduced, illustrating the use of AFM imaging during indentation experiments to examine plastic deformation occurring under the indenter tip. The mechanical indentation data are correlated to the SEM and AFM images to estimate the number of dislocations emitted to the surface.

  9. Terra Mission Operations: Launch to the Present (and Beyond)

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita; Moyer, Eric; Mantziaras, Dimitrios; Case, Warren

    2014-01-01

    The Terra satellite, flagship of NASA's long-term Earth Observing System (EOS) Program, continues to provide useful earth science observations well past its 5-year design lifetime. This paper describes the evolution of Terra operations, including challenges and successes and the steps taken to preserve science requirements and prolong spacecraft life. Working cooperatively with the Terra science and instrument teams, including NASA's international partners, the mission operations team has successfully kept the Terra operating continuously, resolving challenges and adjusting operations as needed. Terra retains all of its observing capabilities (except Short Wave Infrared) despite its age. The paper also describes concepts for future operations. This paper will review the Terra spacecraft mission successes and unique spacecraft component designs that provided significant benefits extending mission life and science. In addition, it discusses special activities as well as anomalies and corresponding recovery efforts. Lastly, it discusses future plans for continued operations.

  10. Optimization of acidic extraction of astaxanthin from Phaffia rhodozyma *

    PubMed Central

    Ni, Hui; Chen, Qi-he; He, Guo-qing; Wu, Guang-bin; Yang, Yuan-fan

    2008-01-01

    Optimization of a process for extracting astaxanthin from Phaffia rhodozyma by acidic method was investigated, regarding several extraction factors such as acids, organic solvents, temperature and time. Fractional factorial design, central composite design and response surface methodology were used to derive a statistically optimal model, which corresponded to the following optimal condition: concentration of lactic acid at 5.55 mol/L, ratio of ethanol to yeast dry weight at 20.25 ml/g, temperature for cell-disruption at 30 °C, and extraction time for 3 min. Under this condition, astaxanthin and the total carotenoids could be extracted in amounts of 1294.7 μg/g and 1516.0 μg/g, respectively. This acidic method has advantages such as high extraction efficiency, low chemical toxicity and no special requirement of instruments. Therefore, it might be a more feasible and practical method for industrial practice. PMID:18196613

  11. Means of storage and automated monitoring of versions of text technical documentation

    NASA Astrophysics Data System (ADS)

    Leonovets, S. A.; Shukalov, A. V.; Zharinov, I. O.

    2018-03-01

    The paper presents automation of the process of preparation, storage and monitoring of version control of a text designer, and program documentation by means of the specialized software is considered. Automation of preparation of documentation is based on processing of the engineering data which are contained in the specifications and technical documentation or in the specification. Data handling assumes existence of strictly structured electronic documents prepared in widespread formats according to templates on the basis of industry standards and generation by an automated method of the program or designer text document. Further life cycle of the document and engineering data entering it are controlled. At each stage of life cycle, archive data storage is carried out. Studies of high-speed performance of use of different widespread document formats in case of automated monitoring and storage are given. The new developed software and the work benches available to the developer of the instrumental equipment are described.

  12. Kepler Archive Manual

    NASA Technical Reports Server (NTRS)

    Thompson, Susan E.; Fraquelli, Dorothy; Van Cleve, Jeffrey E.; Caldwell, Douglas A.

    2016-01-01

    A description of Kepler, its design, performance and operational constraints may be found in the Kepler Instrument Handbook (KIH, Van Cleve Caldwell 2016). A description of Kepler calibration and data processing is described in the Kepler Data Processing Handbook (KDPH, Jenkins et al. 2016; Fanelli et al. 2011). Science users should also consult the special ApJ Letters devoted to early Kepler results and mission design (April 2010, ApJL, Vol. 713 L79-L207). Additional technical details regarding the data processing and data qualities can be found in the Kepler Data Characteristics Handbook (KDCH, Christiansen et al. 2013) and the Data Release Notes (DRN). This archive manual specifically documents the file formats, as they exist for the last data release of Kepler, Data Release 25(KSCI-19065-002). The earlier versions of the archive manual and data release notes act as documentation for the earlier versions of the data files.

  13. Continuous water sampling and water analysis in estuaries

    USGS Publications Warehouse

    Schemel, L.E.; Dedini, L.A.

    1982-01-01

    Salinity, temperature, light transmission, oxygen saturation, pH, pCO2, chlorophyll a fluorescence, and the concentrations of nitrate, nitrite, dissolved silica, orthophosphate, and ammonia are continuously measured with a system designed primarily for estuarine studies. Near-surface water (2-m depth) is sampled continuously while the vessel is underway; on station, water to depths of 100 m is sampled with a submersible pump. The system is comprised of commercially available instruments, equipment, and components, and of specialized items designed and fabricated by the authors. Data are read from digital displays, analog strip-chart recorders, and a teletype printout, and can be logged in disc storage for subsequent plotting. Data records made in San Francisco Bay illustrate physical, biological, and chemical estuarine processes, such as mixing and phytoplankton net production. The system resolves large- and small-scale events, which contributes to its reliability and usefulness.

  14. A tracked robot with novel bio-inspired passive "legs".

    PubMed

    Sun, Bo; Jing, Xingjian

    2017-01-01

    For track-based robots, an important aspect is the suppression design, which determines the trafficability and comfort of the whole system. The trafficability limits the robot's working capability, and the riding comfort limits the robot's working effectiveness, especially with some sensitive instruments mounted on or operated. To these aims, a track-based robot equipped with a novel passive bio-inspired suspension is designed and studied systematically in this paper. Animal or insects have very special leg or limb structures which are good for motion control and adaptable to different environments. Inspired by this, a new track-based robot is designed with novel "legs" for connecting the loading wheels to the robot body. Each leg is designed with passive structures and can achieve very high loading capacity but low dynamic stiffness such that the robot can move on rough ground similar to a multi-leg animal or insect. Therefore, the trafficability and riding comfort can be significantly improved without losing loading capacity. The new track-based robot can be well applied to various engineering tasks for providing a stable moving platform of high mobility, better trafficability and excellent loading capacity.

  15. Students' Initial Knowledge State and Test Design: Towards a Valid and Reliable Test Instrument

    ERIC Educational Resources Information Center

    CoPo, Antonio Roland I.

    2015-01-01

    Designing a good test instrument involves specifications, test construction, validation, try-out, analysis and revision. The initial knowledge state of forty (40) tertiary students enrolled in Business Statistics course was determined and the same test instrument undergoes validation. The designed test instrument did not only reveal the baseline…

  16. Musician's and physicist's view on tuning keyboard instruments

    NASA Astrophysics Data System (ADS)

    Lubenow, Martin; Meyn, Jan-Peter

    2007-01-01

    The simultaneous sound of several voices or instruments requires proper tuning to achieve consonance for certain intervals and chords. Most instruments allow enough frequency variation to enable pure tuning while being played. Keyboard instruments such as organ and piano have given frequencies for individual notes and the tuning must be based on a compromise. The equal temperament is not the only solution, but a special choice. Unequal temperaments produce better results in many cases, because important major thirds and triads are improved. Equal temperament was not propagated by Johann Sebastian Bach, as is often stated in introductory literature on this topic.

  17. Advanced In-Pile Instrumentation for Materials Testing Reactors

    NASA Astrophysics Data System (ADS)

    Rempe, J. L.; Knudson, D. L.; Daw, J. E.; Unruh, T. C.; Chase, B. M.; Davis, K. L.; Palmer, A. J.; Schley, R. S.

    2014-08-01

    The U.S. Department of Energy sponsors the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program to promote U.S. research in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, advancing U.S. energy security needs. A key component of the ATR NSUF effort is to design, develop, and deploy new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. This paper describes the strategy developed by the Idaho National Laboratory (INL) for identifying instrumentation needed for ATR irradiation tests and the program initiated to obtain these sensors. New sensors developed from this effort are identified, and the progress of other development efforts is summarized. As reported in this paper, INL researchers are currently involved in several tasks to deploy real-time length and flux detection sensors, and efforts have been initiated to develop a crack growth test rig. Tasks evaluating `advanced' technologies, such as fiber-optics based length detection and ultrasonic thermometers, are also underway. In addition, specialized sensors for real-time detection of temperature and thermal conductivity are not only being provided to NSUF reactors, but are also being provided to several international test reactors.

  18. Observations of supersaturation in the presence of cirrus at the tropical and sub-tropical tropopause

    NASA Astrophysics Data System (ADS)

    Smith, J. B.; Weinstock, E. M.; Pittman, J. V.; Sayres, D.; Moyer, E. J.; Anderson, J. G.; Herman, R. L.; Bui, T. P.; Thompson, T. L.

    2003-04-01

    We present in situ observations of water vapor and total water in the tropical and sub-tropical upper troposphere obtained aboard the WB-57 aircraft on flights out of Costa Rica during the Clouds and Water Vapor in the Climate System mission in August of 2001, and out of Key West, Florida during the CRYSTAL-FACE mission in July of 2002. The recently developed Harvard total water instrument merges the established Lyman-alpha photo-fragment fluorescence detection technique with a specially designed sampling inlet and heater, to make accurate and precise measurements of water in both the vapor and condensed phase. The combination of the Harvard total water and water vapor instruments allows for simultaneous measurement of water vapor, total water, and the net ice water content of cirrus. Data from the two instruments agree in dry air and demonstrate sufficient sensitivity to detect thin cirrus. Further analysis indicates frequent ice-supersaturation both in clear air and in cirrus. These data present a substantial contribution to in situ observations of ice-supersaturation, particularly in the presence of cirrus near the cold tropical tropopause. We will discuss the implications of high ice-supersaturation in the context of cloud microphysics, and the processes controlling water vapor in the upper troposphere and lower stratosphere.

  19. Versatile common instrumentation for optical detection of pH and dissolved oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sardesai, Neha; Rao, Govind; Kostov, Yordan, E-mail: kostov@umbc.edu

    2015-07-15

    The recent trend toward use of disposable and miniature bioreactors requires the use of appropriate sensors. pH and dissolved oxygen (DO) are often measured using optical chemical sensors due to their small form factor and convenience in use. These sensors are often interrogated using a specialized opto-electronic transducer that is designed around the optical sensor. In this contribution, we are presenting a new class of opto-electronic transducers that are usable with several different chemical sensors without the need to switch the optics or hardware when changing the type of the chemical sensor. This allows flexibility closer to the lab-grade devicesmore » while the size is closer to a dedicated sensor. This versatile instrumentation is capable of seamlessly switching between the pH and DO measurement modes and is capable of auto recognition of the sensor type. The principle of ratiometric fluorescence is used for pH measurements, and that of fluorescence lifetime for DO measurements. An approach to obtain identical calibrations between several devices is also presented. The described hardware constitutes common instrumentation for measuring either pH or DO and has been tested in actual bioprocesses. It has been found adequate for continuous bioprocess monitoring.« less

  20. Foreword to the Special Issue on the 11th Specialist Meeting on Microwave Radiometry and Remote Sensing Applications (MicroRad 2010)

    NASA Technical Reports Server (NTRS)

    Le Vine, David M; Jackson, Thomas J.; Kim, Edward J.; Lang, Roger H.

    2011-01-01

    The Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad 2010) was held in Washington, DC from March 1 to 4, 2010. The objective of MicroRad 2010 was to provide an open forum to report and discuss recent advances in the field of microwave radiometry, particularly with application to remote sensing of the environment. The meeting was highly successful, with more than 200 registrations representing 48 countries. There were 80 oral presentations and more than 100 posters. MicroRad has become a venue for the microwave radiometry community to present new research results, instrument designs, and applications to an audience that is conversant in these issues. The meeting was divided into 16 sessions (listed in order of presentation): 1) SMOS Mission; 2) Future Passive Microwave Remote Sensing Missions; 3) Theory and Physical Principles of Electromagnetic Models; 4) Field Experiment Results; 5) Soil Moisture and Vegetation; 6) Snow and Cryosphere; 7) Passive/Active Microwave Remote Sensing Synergy; 8) Oceans; 9) Atmospheric Sounding and Assimilation; 10) Clouds and Precipitation; 11) Instruments and Advanced Techniques I; 12) Instruments and Advanced Techniques II; 13) Cross Calibration of Satellite Radiometers; 14) Calibration Theory and Methodology; 15) New Technologies for Microwave Radiometry; 16) Radio Frequency Interference.

  1. Cloud and Radiation Mission with Active and Passive Sensing from the Space Station

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.

    1998-01-01

    A cloud and aerosol radiative forcing and physical process study involving active laser and radar profiling with a combination of passive radiometric sounders and imagers would use the space station as an observation platform. The objectives are to observe the full three dimensional cloud and aerosol structure and the associated physical parameters leading to a complete measurement of radiation forcing processes. The instruments would include specialized radar and lidar for cloud and aerosol profiling, visible, infrared and microwave imaging radiometers with comprehensive channels for cloud and aerosol observation and specialized sounders. The low altitude,. available power and servicing capability of the space station are significant advantages for the active sensors and multiple passive instruments.

  2. Mariner Jupiter/Saturn infrared instrument study

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Mariner Jupiter/Saturn infrared instrumentation conceptual design study was conducted to determine the physical and operational characteristics of the instruments needed to satisfy the experiment science requirements. The design of the instruments is based on using as many proven concepts as possible. Many design features are taken from current developments such as the Mariner, Pioneer 10, Viking Orbiter radiometers, and Nimbus D spectrometer. Calibration techniques and error analysis for the instrument system are discussed.

  3. The Early Development Instrument: Translating School Readiness Assessment into Community Actions and Policy Planning

    ERIC Educational Resources Information Center

    Guhn, Martin; Janus, Magdalena; Hertzman, Clyde

    2007-01-01

    This invited special issue of "Early Education and Development" presents research related to the Early Development Instrument (EDI; Janus & Offord, 2007), a community tool to assess children's school readiness at a population level. In this editorial introduction, we first sketch out recent trends in school readiness research that call for a…

  4. Teacher Evaluation Project. The Beginning Teacher Program, Intellectual Skills Development, Validity Studies of the Evaluation System, Special Instrument Development. Report for 1984-1985.

    ERIC Educational Resources Information Center

    Florida Coalition for the Development of a Performance Measurement System, Tallahassee.

    Reports, summaries, and recommendations are presented on the following research studies: (1) Beginning Teacher Studies; (2) Instructional Skills for Teaching Higher Order Thinking; (3) Development of the Conferential Observation Instrument; (4) Predictive Validity Studies Conducted to Test the Relationship Between Teacher Performance as Measured…

  5. Analysis of fine-mode aerosol retrieval capabilities by different passive remote sensing instrument designs.

    PubMed

    Knobelspiesse, Kirk; Cairns, Brian; Mishchenko, Michael; Chowdhary, Jacek; Tsigaridis, Kostas; van Diedenhoven, Bastiaan; Martin, William; Ottaviani, Matteo; Alexandrov, Mikhail

    2012-09-10

    Remote sensing of aerosol optical properties is difficult, but multi-angle, multi-spectral, polarimetric instruments have the potential to retrieve sufficient information about aerosols that they can be used to improve global climate models. However, the complexity of these instruments means that it is difficult to intuitively understand the relationship between instrument design and retrieval success. We apply a Bayesian statistical technique that relates instrument characteristics to the information contained in an observation. Using realistic simulations of fine size mode dominated spherical aerosols, we investigate three instrument designs. Two of these represent instruments currently in orbit: the Multiangle Imaging SpectroRadiometer (MISR) and the POLarization and Directionality of the Earths Reflectances (POLDER). The third is the Aerosol Polarimetry Sensor (APS), which failed to reach orbit during recent launch, but represents a viable design for future instruments. The results show fundamental differences between the three, and offer suggestions for future instrument design and the optimal retrieval strategy for current instruments. Generally, our results agree with previous validation efforts of POLDER and airborne prototypes of APS, but show that the MISR aerosol optical thickness uncertainty characterization is possibly underestimated.

  6. Application of type synthesis theory to the redesign of a complex surgical instrument.

    PubMed

    Lim, Jonas J B; Erdman, Arthur G

    2002-06-01

    Surgical instruments consist of basic mechanical components such as gears, links, pivots, sliders, etc., which are common in mechanical design. This paper describes the application of a method in the analysis and design of complex surgical instruments such as those employed in laparoscopic surgery. This is believed to be the first application of type synthesis theory to a complex medical instrument. Type synthesis is a methodology that can be applied during the conceptual phase of mechanical design. A handle assembly from a patented laparoscopic surgical stapler is used to illustrate the application of the design method developed. Type synthesis is applied on specific subsystems of the mechanism within the handle assembly where alternative design concepts are generated. Chosen concepts are then combined to form a new conceptual design for the handle assembly. The new handle assembly is improved because it has fewer number of parts, is a simpler design and is easier to assemble. Surgical instrument designers may use the methodology presented here to analyze the mechanical subsystems within complex instruments and to create new options that may offer improvements to the original design.

  7. Artist concept of STS-34 SSBUV in orbit calibration

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Artist concept titled SSBUV IN ORBIT CALIBRATION shows how the shuttle solar backscatter ultraviolet (UV) (SSBUV) instrument will calibrate ozone measuring space-based instruments on the National Oceanic and Atmospheric Administration's (NOAA's) TIROS satellites NOAA-9 and NOAA-11. During STS-34, SSBUV instruments mounted in get away special (GAS) canisters in Atlantis', Orbiter Vehicle (OV) 104's, payload bay will use the Space Shuttle's orbital flight path to assess instrument performance by directly comparing data from identical instruments aboard the TIROS satellite, as OV-104 and the satellite pass over the same Earth location within a one-hour window. SSBUV is managed by NASA's Goddard Space Flight Center (GSFC). Alternate number on image is E66.001.

  8. Acoustic Characteristics of Various Treatment Panel Designs for HSCT Ejector Liner Acoustic Technology Development Program

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Kraft, R. E.; Syed, A. a.; Vu, D. D.; Mungur, P.; Langenbrunner, L. E.; Majjigi, R. K.

    2006-01-01

    The objectives of the initial effort (Phase I) of HSR Liner Technology Program, the selection of promising liner concepts, design and fabrication of these concepts for laboratory tests, testing these liners in the laboratory by using impedance tube and flow ducts, and developing empirical impedance/suppression correlation, are successfully completed. Acoustic and aerodynamic criteria for the liner design are established. Based on these criteria several liners are designed. The liner concepts designed and fabricated include Single-Degree-of-Freedom (SDOF), Two-Degree-of-Freedom (2DOF), and Bulk Absorber. Two types of SDOF treatment are fabricated, one with a perforated type face plate and the other with a wiremesh (woven) type faceplate. In addition, special configurations of these concepts are also included in the design. Several treatment panels are designed for parametric study. In these panels the facesheets of different porosity, hole diameter, and sheet thickness are utilized. Several deep panels (i.e., 1 in. deep) are designed and instrumented to measure DC flow resistance and insitu impedance in the presence of grazing flow. Basic components of these panels (i.e., facesheets, bulk materials, etc.) are also procured and tested. The results include DC flow resistance, normal impedance, and insertion loss.

  9. 77 FR 36419 - Feasibility of Enumerating “Specially Designed” Components

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-19

    ... feasibility of positively identifying ``specially designed'' ``components'' on the Commerce Control List (CCL... exhaustive lists of the ``specially designed'' ``components'' referred to in certain Export Control... project involving minimizing the use of the term ``specially designed'' on the current Commerce Control...

  10. The 1996 North American Interagency Intercomparison of Ultraviolet Monitoring Spectroradiometers

    PubMed Central

    Early, Edward; Thompson, Ambler; Johnson, Carol; DeLuisi, John; Disterhoft, Patrick; Wardle, David; Wu, Edmund; Mou, Wanfeng; Ehramjian, James; Tusson, John; Mestechkina, Tanya; Beaubian, Mark; Gibson, James; Hayes, Douglass

    1998-01-01

    Concern over stratospheric ozone depletion has prompted several government agencies in North America to establish networks of spectroradiometers for monitoring solar ultraviolet irradiance at the surface of the Earth. To assess the ability of spectroradiometers to accurately measure solar ultraviolet irradiance, and to compare the results between instruments of different monitoring networks, the third North American Interagency Intercomparison of Ultraviolet Monitoring Spectroradiometers was held June 17–25, 1996 at Table Mountain outside Boulder, Colorado, USA. This Intercomparison was coordinated by the National Institute of Standards and Technology (NIST) and the National Oceanic and Atmospheric Administration (NOAA). Participating agencies were the Environmental Protection Agency; the National Science Foundation; the Smithsonian Environmental Research Center; the Department of Agriculture; and the Atmospheric Environment Service, Canada. The spectral irradiances of participants’ calibrated standard lamps were measured at NIST prior to the Intercomparison. The spectral irradiance scales used by the participants agreed with the NIST scale within the combined uncertainties, and for all lamps the spectral irradiance in the horizontal position was lower than that in the vertical position. Instruments were characterized for wavelength uncertainty, bandwidth, stray-light rejection, and spectral irradiance responsivity, the latter with NIST standard lamps operating in specially designed field calibration units. The spectral irradiance responsivity demonstrated instabilities for some instruments. Synchronized spectral scans of the solar irradiance were performed over several days. Using the spectral irradiance responsivities determined with the NIST standard lamps, the measured solar irradiances had some unexplained systematic differences between instruments. PMID:28009358

  11. Advanced sampling techniques for hand-held FT-IR instrumentation

    NASA Astrophysics Data System (ADS)

    Arnó, Josep; Frunzi, Michael; Weber, Chris; Levy, Dustin

    2013-05-01

    FT-IR spectroscopy is the technology of choice to identify solid and liquid phase unknown samples. The challenging ConOps in emergency response and military field applications require a significant redesign of the stationary FT-IR bench-top instruments typically used in laboratories. Specifically, field portable units require high levels of resistance against mechanical shock and chemical attack, ease of use in restrictive gear, extreme reliability, quick and easy interpretation of results, and reduced size. In the last 20 years, FT-IR instruments have been re-engineered to fit in small suitcases for field portable use and recently further miniaturized for handheld operation. This article introduces the HazMatID™ Elite, a FT-IR instrument designed to balance the portability advantages of a handheld device with the performance challenges associated with miniaturization. In this paper, special focus will be given to the HazMatID Elite's sampling interfaces optimized to collect and interrogate different types of samples: accumulated material using the on-board ATR press, dispersed powders using the ClearSampler™ tool, and the touch-to-sample sensor for direct liquid sampling. The application of the novel sample swipe accessory (ClearSampler) to collect material from surfaces will be discussed in some detail. The accessory was tested and evaluated for the detection of explosive residues before and after detonation. Experimental results derived from these investigations will be described in an effort to outline the advantages of this technology over existing sampling methods.

  12. Scientists View Battery Under Microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-04-10

    PNNL researchers use a special microscope setup that shows the inside of a battery as it charges and discharges. This battery-watching microscope is located at EMSL, DOE's Environmental Molecular Sciences Laboratory that resides at PNNL. Researchers the world over can visit EMSL and use special instruments like this, many of which are the only one of their kind available to scientists.

  13. Social Status and Social Perceptual Abilities of Mildly Handicapped Learners: Methodological and Substantive Implications.

    ERIC Educational Resources Information Center

    Morrison, Gale M.

    In an examination of the notion of person-environment fit as it applies to the socioempathy-social status for mildly handicapped children in mainstreamed and special class settings, 38 mildly learning handicapped (LH) and 234 nonhandicapped students were administered social status instruments. Results revealed that LH Ss in special placements were…

  14. A Report on the Surveying Process Undertaken for the Vocational Assessment for Special Needs Project.

    ERIC Educational Resources Information Center

    Petzy, Vic

    During April and May, 1980, a comprehensive survey of special needs, as related to the delivery of vocational assessment services, was carried out in the Assabet and Blackstone Valley (MA) regional school districts. Information was collected through a systematic procedure and with the use of structured survey instrumentation as described. All data…

  15. Special Education Supervision: Perceptions of Roles and Responsibilities in Pennsylvania Charter Schools

    ERIC Educational Resources Information Center

    Hermann, David Laurence

    2011-01-01

    In this study of Pennsylvania Charter Schools; the focus was on the qualifications, duties, and role perceptions of the special education supervisors. Using role theory as a theoretical lens, an interpretational framework was developed in order to both form a survey instrument and to assist in interpreting the participant responses. This case…

  16. An Oral Language Based Reading Remedial Program for Special Education Children.

    ERIC Educational Resources Information Center

    Langdon, Tom

    A problem was addressed within the context of the action based research practicum model. The problem was junior high school special education students who read at or below the 10th percentile when compared to age appropriate peers on standardized achievement instruments; and who have had all manner of reading interventions and yet continue to fall…

  17. Scientists View Battery Under Microscope

    ScienceCinema

    None

    2018-01-16

    PNNL researchers use a special microscope setup that shows the inside of a battery as it charges and discharges. This battery-watching microscope is located at EMSL, DOE's Environmental Molecular Sciences Laboratory that resides at PNNL. Researchers the world over can visit EMSL and use special instruments like this, many of which are the only one of their kind available to scientists.

  18. Team-Reflection: The Missing Link in Co-Teaching Teams

    ERIC Educational Resources Information Center

    Fluijt, D.; Bakker, C.; Struyf, E.

    2016-01-01

    In literature, co-teaching is mostly defined as an instrumental and pedagogical means delivered by collaborating special and regular teachers, from which students with and without special educational needs benefit in regular schools. The importance of a shared vision on the part of members of co-teaching teams as to what they consider as good…

  19. 31 CFR 594.310 - Specially designated global terrorist; SDGT.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Specially designated global terrorist... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY GLOBAL TERRORISM SANCTIONS REGULATIONS General Definitions § 594.310 Specially designated global terrorist; SDGT. The term specially...

  20. 31 CFR 594.310 - Specially designated global terrorist; SDGT.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Specially designated global terrorist... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY GLOBAL TERRORISM SANCTIONS REGULATIONS General Definitions § 594.310 Specially designated global terrorist; SDGT. The term specially...

  1. 31 CFR 594.310 - Specially designated global terrorist; SDGT.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Specially designated global terrorist... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY GLOBAL TERRORISM SANCTIONS REGULATIONS General Definitions § 594.310 Specially designated global terrorist; SDGT. The term specially...

  2. 31 CFR 594.310 - Specially designated global terrorist; SDGT.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Specially designated global terrorist... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY GLOBAL TERRORISM SANCTIONS REGULATIONS General Definitions § 594.310 Specially designated global terrorist; SDGT. The term specially...

  3. 31 CFR 594.310 - Specially designated global terrorist; SDGT.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Specially designated global terrorist... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY GLOBAL TERRORISM SANCTIONS REGULATIONS General Definitions § 594.310 Specially designated global terrorist; SDGT. The term specially...

  4. Instrumentation progress at the Giant Magellan Telescope project

    NASA Astrophysics Data System (ADS)

    Jacoby, George H.; Bernstein, R.; Bouchez, A.; Colless, M.; Crane, Jeff; DePoy, D.; Espeland, B.; Hare, Tyson; Jaffe, D.; Lawrence, J.; Marshall, J.; McGregor, P.; Shectman, Stephen; Sharp, R.; Szentgyorgyi, A.; Uomoto, Alan; Walls, B.

    2016-08-01

    Instrument development for the 24m Giant Magellan Telescope (GMT) is described: current activities, progress, status, and schedule. One instrument team has completed its preliminary design and is currently beginning its final design (GCLEF, an optical 350-950 nm, high-resolution and precision radial velocity echelle spectrograph). A second instrument team is in its conceptual design phase (GMACS, an optical 350-950 nm, medium resolution, 6-10 arcmin field, multi-object spectrograph). A third instrument team is midway through its preliminary design phase (GMTIFS, a near-IR YJHK diffraction-limited imager/integral-field-spectrograph), focused on risk reduction prototyping and design optimization. A fourth instrument team is currently fabricating the 5 silicon immersion gratings needed to begin its preliminary design phase (GMTNIRS, a simultaneous JHKLM high-resolution, AO-fed, echelle spectrograph). And, another instrument team is focusing on technical development and prototyping (MANIFEST, a facility robotic, multifiber feed, with a 20 arcmin field of view). In addition, a medium-field (6 arcmin, 0.06 arcsec/pix) optical imager will support telescope and AO commissioning activities, and will excel at narrow-band imaging. In the spirit of advancing synergies with other groups, the challenges of running an ELT instrument program and opportunities for cross-ELT collaborations are discussed.

  5. Special Supplement Introduction: Hallucinations

    PubMed Central

    Fernyhough, Charles; Waters, Flavie

    2014-01-01

    This Special Supplement presents reports from 11 working groups of the interdisciplinary International Consortium on Hallucination Research meeting in Durham, UK, September 2013. Topics include psychological therapies for auditory hallucinations, culture and hallucinations, hallucinations in children and adolescents, visual hallucinations, interdisciplinary approaches to the phenomenology of auditory verbal hallucinations (AVHs), AVHs in persons without need for care, a multisite study of the PSYRATS instrument, subtypes of AVHs, the Hearing Voices Movement, Research Domain Criteria for hallucinations, and cortical specialization as a route to understanding hallucinations. PMID:24936079

  6. New Worlds Observer Telescope and Instrument Optical Design Concepts

    NASA Technical Reports Server (NTRS)

    Howard, Joseph M.; Noecker, Charlie; Kendrick, Steve; Woodgate, Bruce; Kilstron, Steve; Cash, Webster

    2008-01-01

    Optical design concepts for the telescope and instrumentation for NASA s New Worlds Observer program are presented. A four-meter multiple channel telescope is discussed, as well as a suite of science instrument concepts. Wide field instrumentation (imager and spectrograph) would be accommodated by a three-mirror-anastigmat telescope design. Planet finding and characterization, and a UV instrument would use a separate channel that is picked off after the first two mirrors (primary and secondary). Guiding concepts are also discussed.

  7. Design and Requirements Creep In A Build-To-Print Mission

    NASA Technical Reports Server (NTRS)

    Peabody, Sharon A.; Otero, Veronica

    2017-01-01

    Build-to-Print designs, or rebuilds of flight proven designs, are attractive to mission stakeholders, as they give the appearance of minimal engineering development cost, risk, and schedule. The reality is that seldom is a project an exact duplicate of a predecessor. Mission reclassification, improvements in hardware, and science objective changes can all serve as a source of requirements and design creep and have ramifications often not fully anticipated during initial proposals. The Thermal Infrared Sensor Instrument (TIRS) was a late addition to the LandSat-8 program to provide infrared imaging to measure evapotranspiration for water cycle management. To meet the launch requirements for LandSat-8, instrument design life requirements were relaxed, the sensor development expedited, and technology development was minimized. Consequently, TIRS was designed as a higher risk instrument, with less redundancy than an instrument critical to mission success. After the successful LandSat-8 launch in 2013 and instrument performance, a rebuild of the instrument for the next LandSat spacecraft was included in the baseline mission success criteria. This paper discusses the technical challenges encountered during the rebuild of the TIRS-2 (Thermal Infrared Sensor 2) instrument and the resultant impacts on the thermal system design.

  8. Design principles in telescope development: invariance, innocence, and the costs

    NASA Astrophysics Data System (ADS)

    Steinbach, Manfred

    1997-03-01

    Instrument design is, for the most part, a battle against errors and costs. Passive methods of error damping are in many cases effective and inexpensive. This paper shows examples of error minimization in our design of telescopes, instrumentation and evaluation instruments.

  9. Design tradeoffs for a Multispectral Linear Array (MLA) instrument

    NASA Technical Reports Server (NTRS)

    Mika, A. M.

    1982-01-01

    The heart of the multispectral linear array (MLA) design problem is to develop an instrument concept which concurrently provides a wide field-of-view with high resolution, spectral separation with precise band-to band registration, and excellent radiometric accuracy. Often, these requirements have conflicting design implications which can only be resolved by careful tradeoffs that consider performance, cost, fabrication feasibility and development risk. The key design tradeoffs for an MLA instrument are addressed, and elements of a baseline instrument concept are presented.

  10. Department of Defense In-House RDT and E Activities

    DTIC Science & Technology

    1976-10-30

    BALLISTIC TESTS.FAC AVAL FCR TESIS OF SP ELELTRONIC’ FIl’ CON EQUIP 4 RELATED SYSTEMS E COMPONFNTZ, 35 INSTALLATION: MEDICAL BIOENGINEERINC- R&D LABORATORY...ANALYSIS OF CHEMICAL AND METALLOGRAPHIC EFFECTS, MICROBIOLOGICAL EFFECTS, CLIMATIC ENVIRONMENTAL EFFECTS. TEST AND EVALUATE WARHEADS AND SPECIAL...CCMMUNICATI’N SYST:M INSTRUMENTED DROP ZONES ENGINEERING TEST FACILITY INSTRUMENTATION CALIBRATICN FACILITY SCIENTIFIC COMPUTER CENTER ENVIRONMENTAL TESY

  11. Optical scanning tests of complex CMOS microcircuits

    NASA Technical Reports Server (NTRS)

    Levy, M. E.; Erickson, J. J.

    1977-01-01

    The new test method was based on the use of a raster-scanned optical stimulus in combination with special electrical test procedures. The raster-scanned optical stimulus was provided by an optical spot scanner, an instrument that combines a scanning optical microscope with electronic instrumentation to process and display the electric photoresponse signal induced in a device that is being tested.

  12. Do Two or More Multicomponent Instruments Measure the Same Construct? Testing Construct Congruence Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.; Tong, Bing

    2016-01-01

    A latent variable modeling procedure is discussed that can be used to test if two or more homogeneous multicomponent instruments with distinct components are measuring the same underlying construct. The method is widely applicable in scale construction and development research and can also be of special interest in construct validation studies.…

  13. 75 FR 33553 - Special Conditions: AeroMech, Incorporated; Hawker Beechcraft Corporation, Model B200 and Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-14

    ... Instruments MD835 Lithium Ion (Li-ion) battery. The applicable airworthiness regulations do not contain... B200 and Other Aircraft Listed in Table 1, Approved Model List (AML); Installation of MD835 Lithium Ion... installation of the Mid-Continent Instruments MD835 Li-ion battery in the Hawker Beechcraft Corporation, B200...

  14. Endoscopic neurosurgery "around the corner" with a rigid endoscope. Technical note.

    PubMed

    Hopf, N J

    1999-03-01

    Endoscopically "working around the corner" is presently restricted to the use of flexible endoscopes or an endoscope-assisted microneurosurgical (EAM) technique. In order to overcome the limitations of these solutions, endoscopic equipment and techniques were developed for "working around the corner" with rigid endoscopes. A steering insert with a 5 French working channel is capable of steering instruments around the corner by actively bending the guiding track and consecutively the instrument. A special fixation device enables strict axial rotation of the endoscope in the operating field. Endoscopic procedures "around the corner", including aqueductal stenting, pellucidotomy, third ventriculostomy and biopsy were performed in human cadavers. Special features of the used pediatric neuroendoscope system, i.e., reliable fixation, axial rotation, and controlled steering of instruments, increase the safety and reduce the surgical traumatization in selected cases, such as obstructive hydrocephalus due to a mass lesion in the posterior third ventricle, since endoscopic third ventriculostomy and biopsy can be performed through the same burr hole trephination. Limitations of this technique are given by the size of the foramen of Monro and the height of the third ventricle as well as by the bending angle of the instruments (40-50 degrees).

  15. 14 CFR Special Federal Aviation... - 5-Flightcrew Compartment Access and Door Designs

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Designs Federal Special Federal Aviation Regulation 92 Aeronautics and Space FEDERAL AVIATION... No. 92-5 Special Federal Aviation Regulation 92-5—Flightcrew Compartment Access and Door Designs 1. Applicability. This Special Federal Aviation Regulation (SFAR) applies to all operators that hold an air carrier...

  16. 14 CFR Special Federal Aviation... - 5-Flightcrew Compartment Access and Door Designs

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Designs Federal Special Federal Aviation Regulation 92 Aeronautics and Space FEDERAL AVIATION... No. 92-5 Special Federal Aviation Regulation 92-5—Flightcrew Compartment Access and Door Designs 1. Applicability. This Special Federal Aviation Regulation (SFAR) applies to all operators that hold an air carrier...

  17. Seismic Endoscopy: Design of New Instruments

    NASA Astrophysics Data System (ADS)

    Conil, F.; Nicollin, F.; Gibert, D.

    2003-04-01

    In order to perform 3D images around shallow-depth boreholes, in conditions in the field and within reasonable times of data acquisitions, several instrumental developments have been performed. The first development concerns the design of a directional probe working in the 20-100 kHz frequency range; the idea is to create a tool composed of multiple elementary piezoelectric entities able to cover the whole space to explore; made of special polyurethane rigid foam with excellent attenuation performances, the prototypes are covered by flexible polyurethane electric resin. By multiplying the number of elementary receptors around the vertical axes and piling up each elementary sensor, a complete design of multi-azimuth and multi-offset has been concepted. In addition to this, a test site has been built in order to obtain a controlled medium at typical scales of interest for seismic endoscopy and dedicated to experiment near the conditions in the field. Various reflectors are placed in well known positions and filled in an homogeneous cement medium; the whole edifice (2.2 m in diameter and 8 metres in depth) also contains 4 PVC tubes to simulate boreholes. The second part of this instrumental developments concern the synthesis of input signals; indeed, many modern devices used in ultrasonic experiment have non linear output response outside their nominal range: this is especially true in geophysical acoustical experiments when high acoustical power is necessary to insonify deep geological targets. Thanks to the high speed electronic and computerised devices now available, it is possible to plug in experimental set-ups into non linear inversions algorithms like simulated annealing. First experiments showed the robustness of the method in case of non linear analogic architecture. Large wavelet families have or example been constructed thanks to the method and multiscale Non Destructive Testing Method have been performed as an efficient method to detect and characterise discontinuities or velocities variations of a material.

  18. Variations on a theme: novel immersed grating based spectrometer designs for space

    NASA Astrophysics Data System (ADS)

    Agócs, T.; Navarro, R.; Venema, L.

    2017-11-01

    We present novel immersed grating (IG) based spectrometer designs that can be used in space instrumentation. They are based on the design approach that aims to optimize the optical design using the expanded parameter space that the IG technology offers. In principle the wavefront error (WFE) of any optical system the most conveniently can be corrected in the pupil, where in the case of the IG based spectrometer, the IG itself is positioned. By modifying existing three-mirror based optical systems, which can form the main part of double pass spectrometer designs, a large portion of the WFE of the optical system can be transferred to the pupil and to the IG. In these cases the IG can compensate simple low order aberrations of the system and consequently the main benefit is that the mirrors that tend to be off-axis conical sections can be substituted by spherical mirrors. The WFE budget of such designs has only a minor contribution from the very high quality spherical mirrors and the majority of the WFE can be then allocated to the most complex part of the system, the IG. The latter can be designed so that the errors are compensated by a special grating pattern that in turn can be manufactured using the expertise and experience of the semiconductor industry.

  19. New technology for ultrasensitive detection and isolation of rare cells for clinical diagnostics and therapeutics

    NASA Astrophysics Data System (ADS)

    Leary, James F.; McLaughlin, Scott R.

    1995-04-01

    A high-speed, 11-parameter, 6-color fluorescence, laser flow cytometer/cell sorter with a number of special and unique features has been built for ultrasensitive detection and isolation of rare cells for clinical diagnostics and therapeutics. The software for real-time data acquisition and sort control, written as C++ programming language modules with a WindowsTM graphical user interface, runs on a 66-MHz 80486 computer joined by an extended bus to 23 sophisticated multi-layered boards of special data acquisition and sorting electronics. Special features include: high-speed (> 100,000 cells/sec) real-time data classification module (U.S. Patent 5,204,884 (1993)); real-time principal component cell sorting; multi-queue signal-processing system with multiple hardware and software event buffers to reduce instrument dead time, LUT charge-pulse definition, high-resolution `flexible' sorting for optimal yield/purity sort strategies (U.S. Patent 5,199,576); pre-focusing optical wavelength correction for a second laser beam; and two trains of three fluorescence detectors-- each adjustable for spatial separation to interrogate only one of two laser beams, syringe- driven or pressure-driven fluidics, and time-windowed parameters. The system has been built to be both expandable and versatile through the use of LUT's and a modular hardware and software design. The instrument is especially useful at detection and isolation of rare cell subpopulations for which our laboratory is well-known. Cell subpopulations at frequencies as small as 10-7 have been successfully studied with this system. Current applications in clinical diagnostics and therapeutics include detection and isolation of (1) fetal cells from material blood for prenatal diagnosis of birth defects, (2) hematopoietic stem and precursor cells for autologous bone marrow transplantation, (3) metastatic breast cancer cells for molecular characterization, and (4) HIV-infected maternal cells in newborn blood to study mother-to-infant vertical transmission of AIDS.

  20. Development of an automated high temperature valveless injection system for on-line gas chromatography

    NASA Astrophysics Data System (ADS)

    Kreisberg, N. M.; Worton, D. R.; Zhao, Y.; Isaacman, G.; Goldstein, A. H.; Hering, S. V.

    2014-07-01

    A reliable method of sample introduction is presented for on-line gas chromatography with a special application to in-situ field portable atmospheric sampling instruments. A traditional multi-port valve is replaced with a controlled pressure switching device that offers the advantage of long term reliability and stable sample transfer efficiency. An engineering design model is presented and tested that allows customizing the interface for other applications. Flow model accuracy is within measurement accuracy (1%) when parameters are tuned for an ambient detector and 15% accurate when applied to a vacuum based detector. Laboratory comparisons made between the two methods of sample introduction using a thermal desorption aerosol gas chromatograph (TAG) show approximately three times greater reproducibility maintained over the equivalent of a week of continuous sampling. Field performance results for two versions of the valveless interface used in the in-situ instrument demonstrate minimal trending and a zero failure rate during field deployments ranging up to four weeks of continuous sampling. Extension of the VLI to dual collection cells is presented with less than 3% cell-to-cell carry-over.

  1. Solid state neutron dosimeter for space applications

    NASA Technical Reports Server (NTRS)

    Entine, Gerald; Nagargar, Vivek; Sharif, Daud

    1990-01-01

    Personnel engaged in space flight are exposed to significant flux of high energy neutrons arising from both primary and secondary sources of ionizing radiation. Presently, there exist no compact neutron sensor capable of being integrated in a flight instrument to provide real time measurement of this radiation flux. A proposal was made to construct such an instrument using special PIN silicon diode which has the property of being insensitive to the other forms of ionizing radiation. Studies were performed to determine the design and construction of a better reading system to allow the PIN diode to be read with high precision. The physics of the device was studied, especially with respect to those factors which affect the sensitivity and reproducibility of the neutron response. This information was then used to develop methods to achieve high sensitivity at low neutron doses. The feasibility was shown of enhancing the PIN diode sensitivity to make possible the measurement of the low doses of neutrons encountered in space flights. The new PIN diode will make possible the development of a very compact, accurate, personal neutron dosimeter.

  2. Protein crystal growth in microgravity review of large scale temperature induction method: Bovine insulin, human insulin and human α-interferon

    NASA Astrophysics Data System (ADS)

    Long, Marianna M.; Bishop, John Bradford; Delucas, Lawrence J.; Nagabhushan, Tattanhalli L.; Reichert, Paul; Smith, G. David

    1997-01-01

    The Protein Crystal Growth Facility (PCF) is space-flight hardware that accommodates large scale protein crystal growth experiments using temperature change as the inductive step. Recent modifications include specialized instrumentation for monitoring crystal nucleation with laser light scattering. This paper reviews results from its first seven flights on the Space Shuttle, the last with laser light scattering instrumentation in place. The PCF's objective is twofold: (1) the production of high quality protein crystals for x-ray analysis and subsequent structure-based drug design and (2) preparation of a large quantity of relatively contaminant free crystals for use as time-release protein pharmaceuticals. The first three Shuttle flights with bovine insulin constituted the PCF's proof of concept, demonstrating that the space-grown crystals were larger and diffracted to higher resolution than their earth-grown counterparts. The later four PCF missions were used to grow recombinant human insulin crystals for x-ray analysis and continue productions trials aimed at the development of a processing facility for crystalline recombinant a-interferon.

  3. Developing automated analytical methods for scientific environments using LabVIEW.

    PubMed

    Wagner, Christoph; Armenta, Sergio; Lendl, Bernhard

    2010-01-15

    The development of new analytical techniques often requires the building of specially designed devices, each requiring its own dedicated control software. Especially in the research and development phase, LabVIEW has proven to be one highly useful tool for developing this software. Yet, it is still common practice to develop individual solutions for different instruments. In contrast to this, we present here a single LabVIEW-based program that can be directly applied to various analytical tasks without having to change the program code. Driven by a set of simple script commands, it can control a whole range of instruments, from valves and pumps to full-scale spectrometers. Fluid sample (pre-)treatment and separation procedures can thus be flexibly coupled to a wide range of analytical detection methods. Here, the capabilities of the program have been demonstrated by using it for the control of both a sequential injection analysis - capillary electrophoresis (SIA-CE) system with UV detection, and an analytical setup for studying the inhibition of enzymatic reactions using a SIA system with FTIR detection.

  4. Data Albums: An Event Driven Search, Aggregation and Curation Tool for Earth Science

    NASA Technical Reports Server (NTRS)

    Ramachandran, Rahul; Kulkarni, Ajinkya; Maskey, Manil; Bakare, Rohan; Basyal, Sabin; Li, Xiang; Flynn, Shannon

    2014-01-01

    Approaches used in Earth science research such as case study analysis and climatology studies involve discovering and gathering diverse data sets and information to support the research goals. To gather relevant data and information for case studies and climatology analysis is both tedious and time consuming. Current Earth science data systems are designed with the assumption that researchers access data primarily by instrument or geophysical parameter. In cases where researchers are interested in studying a significant event, they have to manually assemble a variety of datasets relevant to it by searching the different distributed data systems. This paper presents a specialized search, aggregation and curation tool for Earth science to address these challenges. The search rool automatically creates curated 'Data Albums', aggregated collections of information related to a specific event, containing links to relevant data files [granules] from different instruments, tools and services for visualization and analysis, and information about the event contained in news reports, images or videos to supplement research analysis. Curation in the tool is driven via an ontology based relevancy ranking algorithm to filter out non relevant information and data.

  5. Designing communication and remote controlling of virtual instrument network system

    NASA Astrophysics Data System (ADS)

    Lei, Lin; Wang, Houjun; Zhou, Xue; Zhou, Wenjian

    2005-01-01

    In this paper, a virtual instrument network through the LAN and finally remote control of virtual instruments is realized based on virtual instrument and LabWindows/CVI software platform. The virtual instrument network system is made up of three subsystems. There are server subsystem, telnet client subsystem and local instrument control subsystem. This paper introduced virtual instrument network structure in detail based on LabWindows. Application procedure design of virtual instrument network communication, the Client/the programming mode of the server, remote PC and server communication far realizing, the control power of the workstation is transmitted, server program and so on essential technical were introduced. And virtual instruments network may connect to entire Internet on. Above-mentioned technology, through measuring the application in the electronic measurement virtual instrument network that is already built up, has verified the actual using value of the technology. Experiment and application validate that this design is resultful.

  6. Harvard ER-2 OH laser-induced fluorescence instrument

    NASA Technical Reports Server (NTRS)

    Wennberg, Paul O.; Anderson, James G.

    1994-01-01

    The Harvard ER-2 OH instrument is scheduled to be integrated into the NASA ER-2 high altitude aircraft ozone payload in August 1992. Design and fabrication is presently underway. This experiment is a descendant of a balloon borne instrument designed and built in the mid-1980s. The ER-2 instrument is being designed to measure OH and HO2 as part of the NASA ozone payload for the investigation of processes controlling the concentration of stratospheric ozone. Although not specifically designed to do so, it is hoped that valid measurements of OH and HO2 can be made in the remote free troposphere with this instrument.

  7. 77 FR 36409 - ``Specially Designed'' Definition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-19

    ... Regulations (ITAR). The term ``specially designed'' is used widely in the Commerce Control List (CCL) and...) controls ``[c]omponents, parts, accessories, attachments and associated equipment specifically designed or... and, in order to avoid a definitional loop, do not use ``specially designed'' as a control criterion...

  8. Assessment of dentally related functional competency for older adults with cognitive impairment--a survey for special-care dental professionals.

    PubMed

    Chen, Xi; Clark, Jennifer J J

    2013-01-01

    This survey was to study whether and how dental professional assess dental-related function in older adults with cognitive impairment (OACI). An invitation was sent to 525 special-care dental professionals, followed by a reminder in 2 weeks. Thirteen percent of the targeted participants completed the survey. Among them, 88% completed a hospital dentistry, geriatric dentistry, or other postgraduate training program. Nearly 70% of the respondents considered somewhat to very difficult to assess dentally related function; 45% did not ever or did not regularly assess dental-related function for OACI. Dental-related functional assessments were often based on a subjective, unstructured approach. Only 6% of the respondents routinely used standard instruments to assess the patients' function. These results indicate that an objective functional assessment based on a standardized instrument has not been routinely incorporated into dental care for OACI, raising concerns for quality of care in this vulnerable population. ©2012 Special Care Dentistry Association and Wiley Periodicals, Inc.

  9. Optomecatronic design and integration of a high resolution equipment Berkut to the 1-meter class telescopes

    NASA Astrophysics Data System (ADS)

    Granados, R.; López, R.; Farah, Alejandro

    2014-07-01

    It is proposed the development and implementation of a High Speed Resolution Camera instrument. The basic principle of this technique is to take several pictures of short exposure using different filters of an astronomical object of interest . These images are subsequently processed using specialized software to remove aberrations from atmosphere and from the instrument itself such as blur and scintillation among others. In this paper are described electronic and control systems implemented for BERKUT instrument based on FPGA (Field Programmable Gate Array) generated with VHDL description. An UART communication, using serial protocol, is used with a friendly User Interface providing an easy way for the astronomer to choose between different lenses and different filters for capturing the images. All the movements are produced by stepper motors that are driven by a circuit that powers all the electronics. The camera and the lenses are placed into a linear positioner with the help of a stepper motor which give us repeatable movements for positioning these optical components. Besides it is planned to integrate in the same system a pipeline for image data reduction to have one sturdy system that could fulfill any astronomer needs in the usage of this technique. With this instrument we pretend to confirm the Hipparcos catalogue of binary stars besides finding exoplanets. This technique requires more simple optical equipment and it is less sensitive to environmental noise, making it cheaper and provides good quality and great resolution images for scientific purposes. This equipment will be installed on different 1-m class telescopes in Mexico1 and probably other countries which makes it a wide application instrument.

  10. Long open-path TDL based system for monitoring background concentration for deployment at Jungfraujoch High Altitude Research Station- Switzerland

    NASA Astrophysics Data System (ADS)

    Simeonov, Valentin; van den Bergh, Hubert; Parlange, Marc

    2010-05-01

    A new, long open-path instrument for monitoring of path-averaged methane and water vapor concentrations will be presented. The instrument is built on the monostatic scheme (transceiver - distant retroreflector). A VCSEL tunable diode laser (TDL) with a central wavelength of 1654 nm is used as a light source. A specially designed, single-cell, hollow-cube retroreflector with 150 mm aperture will be installed at 1200 m from the transceiver in the final deployment at Jungfraujjoch and 100 mm retroreflectors will be used in the other applications. The receiver is built around a 20 cm Newtonian telescope. To avoid distortions in the shape of a methane line, caused by atmospheric turbulences, the line is scanned within 1 µs. Fast InGaAs photodiodes and 200 MHz are used to achieve this scanning rate. The expected concentration resolution for the above mentioned path lengths is of the order of 2 ppb. The instrument is developed at the Swiss Federal Institute of Technology - Lausanne (EPFL) Switzerland and will be used within the GAW+ CH program for long-term monitoring of background methane concentration in the Swiss Alps. After completing the initial tests at EPFL the instrument will be installed in 2012 at the High Altitude Research Station Jungfraujoch (HARSJ) located at 3580 m ASL. The HARSJ is one of the 24 global GAW stations and carries on continuous observations of a number of trace gasses, including methane. One of the goals of the project is to compare path-averaged to ongoing point measurements of methane in order to identify possible influence of the station. Future deployments of a copy of the instrument include the Colombian part of Amazonia and Siberian wetlands.

  11. Gas Chromatography.

    ERIC Educational Resources Information Center

    Cram, Stuart P.; And Others

    1980-01-01

    Selects fundamental developments in theory, methodology, and instrumentation in gas chromatography (GC). A special section reviews GC in the People's Republic of China. Over 1,000 references are cited. (CS)

  12. Resources for Shaping Collective Bargaining Laws to Meet the Special Needs of Higher Education. Special Report No. 18.

    ERIC Educational Resources Information Center

    Academic Collective Bargaining Information Service, Washington, DC.

    At least 10 additional states, as of Febraury 1975, and the Congress of the United States are shaping bills that, should they become law, will enable teachers and other professionals employed by public colleges and universities to utilize collective bargaining as an instrument for determining wages, hours, and other conditions of employment. Many…

  13. The Development and Field Test of an Employment Interview Instrument for School Paraprofessionals

    ERIC Educational Resources Information Center

    Dillon, Amy; Ebmeier, Howard

    2009-01-01

    In recent years, U.S. schools have seen a growth in the number of special education paraprofessionals employed to serve special education students as well as a growth in the roles these individuals are expected to play in schools. In addition, with passage of the No Child Left Behind Act of 2001 (NCLB) and the Individuals with Disabilities…

  14. Fluorescence Lyman-Alpha Stratospheric Hygrometer (FLASH): application on meteorological balloons, long duration balloons and unmanned aerial vehicles.

    NASA Astrophysics Data System (ADS)

    Lykov, Alexey; Khaykin, Sergey; Yushkov, Vladimir; Efremov, Denis; Formanyuk, Ivan; Astakhov, Valeriy

    The FLASH instrument is based on the fluorescent method, which uses H2O molecules photodissociation at a wavelength lambda=121.6 nm (Lalpha - hydrogen emission) followed by the measurement of the fluorescence of excited OH radicals. The source of Lyman-alpha radiation is a hydrogen discharge lamp while the detector of OH fluorescence at 308 -316 nm is a photomultiplier run in photon counting mode. The intensity of the fluorescent light as well as the instrument readings is directly proportional to the water vapor mixing ratio under stratospheric conditions with negligible oxygen absorption. Initially designed for rocket-borne application, FLASH has evolved into a light-weight balloon sonde (FLASH-B) for measurements in the upper troposphere and stratosphere on board meteorological and small plastic balloons. This configuration has been used in over 100 soundings at numerous tropical mid-latitude and polar locations within various international field campaigns. An airborne version of FLASH instrument is successfully utilized onboard stratospheric M55-Geophysica aircraft and tropospheric airborne laboratory YAK42-Roshydromet. The hygrometer was modified for application onboard stratospheric long-duration balloons (FLASH-LDB version). This version was successfully used onboard CNES super-pressure balloon launched from SSC Esrange in March 2007 and flown during 10 days. Special design for polar long duration balloon PoGOLite was created for testing work during polar day in June 2013. Installation and measurement peculiarities as well as observational results are presented. Observations of water vapour using FLASH-B instrument, being of high quality are rather costly as the payload recovery is often complicated and most of the time impossible. Following the goal to find a cost-efficient solution, FLASH was adapted for use onboard Unmanned Aerial Vehicles (UAV). This solution was only possible thanks to compactness and light-weight (0.5 kg) of FLASH instrument. The hygrometer was installed at the nose of a small GPS-controlled glider, which was lifted by a meteorological balloon into the stratosphere and released by a remote command. GPS-based flight control guides and lands the UAV at the launch point thereby allowing multiple usage of its payload. Another sounding platform allowing for multiple usage of the FLASH instrument is a GPS-guided paraglide. The results of measurements acquired in the test flights using different types of balloon-lifted UAVs are presented.

  15. Investigation of Space Based Solid State Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    2002-01-01

    This report describes the work performed over the period of October 1, 1997 through March 31, 2001. Under this contract, UAH/CAO participated in defining and designing the SPAce Readiness Coherent Lidar Experiment (SPARCLE) mission, and developed the instrument's optical subsystem. This work was performed in collaborative fashion with NASA/MSFC engineers at both UAH/CAO and NASA/MSFC facilities. Earlier work by the UAH/CAO had produced a preliminary top-level system design for the Shuttle lidar instrument meeting the proposed mission performance requirements and the Space Shuttle Hitchhiker canister volume constraints. The UAH/CAO system design efforts had concentrated on the optical and mechanical designs of the instrument. The instrument electronics were also addressed, and the major electronic components and their interfaces defined. The instrument design concept was mainly based on the state of the transmitter and local oscillator laser development at NASA Langley Research Center and Jet Propulsion Laboratory, and utilized several lidar-related technologies that were either developed or evaluated by the NASA/MSFC and UAH/CAO scientists. UAH/CAO has developed a comprehensive coherent lidar numerical model capable of analyzing the performance of different instrument and mission concepts. This model uses the instrument configuration, atmospheric conditions and current velocity estimation theory to provide prediction of instrument performance during different phases of operation. This model can also optimize the design parameters of the instrument.

  16. Collaborative engineering and design management for the Hobby-Eberly Telescope tracker upgrade

    NASA Astrophysics Data System (ADS)

    Mollison, Nicholas T.; Hayes, Richard J.; Good, John M.; Booth, John A.; Savage, Richard D.; Jackson, John R.; Rafal, Marc D.; Beno, Joseph H.

    2010-07-01

    The engineering and design of systems as complex as the Hobby-Eberly Telescope's* new tracker require that multiple tasks be executed in parallel and overlapping efforts. When the design of individual subsystems is distributed among multiple organizations, teams, and individuals, challenges can arise with respect to managing design productivity and coordinating successful collaborative exchanges. This paper focuses on design management issues and current practices for the tracker design portion of the Hobby-Eberly Telescope Wide Field Upgrade project. The scope of the tracker upgrade requires engineering contributions and input from numerous fields including optics, instrumentation, electromechanics, software controls engineering, and site-operations. Successful system-level integration of tracker subsystems and interfaces is critical to the telescope's ultimate performance in astronomical observation. Software and process controls for design information and workflow management have been implemented to assist the collaborative transfer of tracker design data. The tracker system architecture and selection of subsystem interfaces has also proven to be a determining factor in design task formulation and team communication needs. Interface controls and requirements change controls will be discussed, and critical team interactions are recounted (a group-participation Failure Modes and Effects Analysis [FMEA] is one of special interest). This paper will be of interest to engineers, designers, and managers engaging in multi-disciplinary and parallel engineering projects that require coordination among multiple individuals, teams, and organizations.

  17. The Planned Soil Moisture Active Passive (SMAP) Mission L-Band Radar/Radiometer Instrument

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Wheeler, Kevin; Chan, Samuel; Piepmeier, Jeffrey; Hudson, Derek; Medeiros, James

    2011-01-01

    The Soil Moisture Active/Passive (SMAP) mission is a NASA mission identified by the NRC 'decadal survey' to measure both soil moisture and freeze/thaw state from space. The mission will use both active radar and passive radiometer instruments at L-Band. In order to achieve a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. The instrument system has completed the preliminary design review (PDR) stage, and detailed instrument design has begun. In addition to providing an overview of the instrument design, two recent design modifications are discussed: 1) The addition of active thermal control to the instrument spun side to provide a more stable, settable thermal environment for the radiometer electronics, and 2) A 'sequential transmit' strategy for the two radar polarization channels which allows a single high-power amplifier to be used.

  18. Mothership - Affordable Exploration of Planetary Bodies through Individual Nano-Sats and Swarms

    NASA Astrophysics Data System (ADS)

    DiCorcia, James D.; Ernst, Sebastian M.; Grace, J. Mike; Gump, David P.; Lewis, John S.; Foulds, Craig F.; Faber, Daniel R.

    2015-04-01

    One concept to enable broad participation in the scientific exploration of small bodies is the Mothership mission architecture which delivers third-party nano-sats, experiments, and sensors to a near Earth asteroid or comet. Deep Space Industries' Mothership service includes delivery of nano-sats, communication to Earth, and visuals of the asteroid surface and surrounding area. It allows researchers to house their instruments in a low-cost nano-sat platform that does not require the high-performance propulsion or deep space communication capabilities that otherwise would be required for a solo asteroid mission. This enables organizations with relatively low operating budgets to closely examine an asteroid with highly specialized sensors of their own choosing, while the nano-sats can be built or commissioned by a variety of smaller institutions, companies, or agencies. In addition, the Mothership and its deployed nano-sats can offer a platform for instruments which need to be distributed over multiple spacecraft. The Mothership is designed to carry 10 to 12 nano-sats, based upon a variation of the Cubesat standard, with some flexibility on the specific geometry. The Deep Space Nano-Sat reference design is a 14.5 cm cube, which accomodates the same volume as a traditional 3U Cubesat. This design was found to be more favorable for deep space due to its thermal characteristics. The CubeSat standard was originally designed with operations in low Earth orbit in mind. By deliberately breaking the standard, Deep Space Nano-Sats offer better performance with less chance of a critical malfunction in the more hostile deep space environment. The first mission can launch as early as Q4 2017, with subsequent, regular launches through the 2020's.

  19. 43 CFR 423.60 - How special use areas are designated.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false How special use areas are designated. 423... Use Areas § 423.60 How special use areas are designated. (a) After making a determination under paragraph (b) of this section, an authorized official may: (1) Establish special use areas within...

  20. 43 CFR 423.60 - How special use areas are designated.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false How special use areas are designated. 423... Use Areas § 423.60 How special use areas are designated. (a) After making a determination under paragraph (b) of this section, an authorized official may: (1) Establish special use areas within...

  1. [Methods in health services research. The example of the evaluation of the German disease management programmes].

    PubMed

    Morfeld, M; Wirtz, M

    2006-02-01

    According to the established definition of Pfaff, health services research analyses patients' path through the institutions of the health care system. The focus is on development, evaluation and implementation of innovative measures of health care. By increasing its quality health services research strives for an improvement of efficacy and efficiency of the health care system. In order to allow for an appropriate evaluation it is essential to differentiate between structure, process and outcome quality referring to (1) the health care system in its entirety, (2) specific health care units as well as (3) processes of communication in different settings. Health services research comprises a large array of scientific disciplines like public health, medicine, social sciences and social care. For the purpose of managing its tasks adequately a special combination of instruments and methodological procedures is needed. Thus, diverse techniques of evaluation research as well as special requirements for study designs and assessment procedures are of vital importance. The example of the German disease management programmes illustrates the methodical requirements for a scientific evaluation.

  2. Applications of remote sensing to stream discharge predictions

    NASA Technical Reports Server (NTRS)

    Krause, F. R.; Winn, C. B.

    1972-01-01

    A feasibility study has been initiated on the use of remote earth observations for augmenting stream discharge prediction for the design and/or operation of major reservoir systems, pumping systems and irrigation systems. The near-term objectives are the interpolation of sparsely instrumented precipitation surveillance networks and the direct measurement of water loss by evaporation. The first steps of the study covered a survey of existing reservoir systems, stream discharge prediction methods, gage networks and the development of a self-adaptive variation of the Kentucky Watershed model, SNOPSET, that includes snowmelt. As a result of these studies, a special three channel scanner is being built for a small aircraft, which should provide snow, temperature and water vapor maps for the spatial and temporal interpolation of stream gages.

  3. Antenna-Coupled Bolometer Arrays for Astrophysics

    NASA Astrophysics Data System (ADS)

    Bock, James

    Bolometers offer the best sensitivity in the far-infrared to millimeter-wave region of the electromagnetic spectrum. We are developing arrays of feedhorn-coupled bolometers for the ESA/NASA Planck Surveyor and Herschel Space Observatory. Advances in the format and sensitivity of bolometric focal plane array enables future astrophysics mission opportunities, such as CMB polarimetry and far-infrared/submillimeter spectral line surveys. Compared to bolometers with extended area radiation absorbers, antenna-coupled bolometers offer active volumes that are orders of magnitude smaller. Coupled to lithographed micro-strip filters and antennas, antenna-coupled bolometer arrays allow flexible focal plane architectures specialized for imaging, polarimetry, and spectroscopy. These architectures greatly reduce the mass of sub-Kelvin bolometer focal planes that drive the design of bolometric instrumentation.

  4. Measurement of Electromagnetic Energy Flow Through a Sparse Particulate Medium: A Perspective

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.

    2013-01-01

    First-principle analysis of the functional design of a well-collimated radiometer (WCR) reveals that in general, this instrument does not record the instantaneous directional flow of electromagnetic energy. Only in special cases can a sequence of measurements with a WCR yield the magnitude and direction of the local time-averaged Poynting vector. Our analysis demonstrates that it is imperative to clearly formulate the physical nature of the actual measurement afforded by a directional radiometer rather than presume desirable measurement capabilities. Only then can the directional radiometer be considered a legitimate part of physically based remote sensing and radiation-budget applications. We also emphasize the need for a better understanding of the nature of measurements with panoramic radiometers.

  5. System definition phase and acquisition phase project plan for Small Astronomy Satellite SAS-D

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The objective of the SAS-D project is to conduct spectral distribution studies of celestial ultraviolet sources using an Explorer-class spacecraft launched by a Delta vehicle into a geosynchronous orbit in the last half of 1975. The telescope system is intended for use by guest astronomers for a major portion of the total observing time. The concept of the overall system, designed to resemble functionally the operation of a ground-based observatory, should maximize the usefulness of the instrument to the astronomical community by limiting the amount of special instruction needed to use the spaceborne telescope. The SAS-D mission will obtain information on what stars, nebulae, and galaxies are and how they develop.

  6. Accelerating the Rate of Astronomical Discovery

    NASA Astrophysics Data System (ADS)

    Norris, Ray P. Ruggles, Clive L. N.

    2010-05-01

    Special Session 5 on Accelerating the Rate of Astronomical Discovery addressed a range of potential limits to progress - paradigmatic, technological, organisational, and political - examining each issue both from modern and historical perspectives, and drawing lessons to guide future progress. A number of issues were identified which potentially regulate the flow of discoveries, such as the balance between large strongly-focussed projects and instruments, designed to answer the most fundamental questions confronting us, and the need to maintain a creative environment with room for unorthodox thinkers and bold, high risk, projects. Also important is the need to maintain historical and cultural perspectives, and the need to engage the minds of the most brilliant young people on the planet, regardless of their background, ethnicity, gender, or geography.

  7. SpS5: Accelerating the Rate of Astronomical Discovery

    NASA Astrophysics Data System (ADS)

    Norris, Ray P.

    2010-11-01

    Special Session 5 on Accelerating the Rate of Astronomical Discovery addressed a range of potential limits to progress: paradigmatic, technological, organizational, and political. It examined each issue both from modern and historical perspectives, and drew lessons to guide future progress. A number of issues were identified which may regulate the flow of discoveries, such as the balance between large strongly-focussed projects and instruments, designed to answer the most fundamental questions confronting us, and the need to maintain a creative environment with room for unorthodox thinkers and bold, high risk, projects. Also important is the need to maintain historical and cultural perspectives, and the need to engage the minds of the most brilliant young people on the planet, regardless of their background, ethnicity, gender, or geography.

  8. 1981 LTA technology assessment - Past and present

    NASA Technical Reports Server (NTRS)

    Ashford, R. L.; Levitt, B. B.; Mayer, N. J.; Vocar, J. M.; Woodward, D. E.

    1981-01-01

    A four-part presentation is made of (1) lessons learned from the design and operation of the 'classic' airships of the 1920s and 30s, with respect to such issues as construction, propulsion, control, instrumentation, ground handling, habitability, aerodynamics, and structure and construction; (2) lessons learned from the development of such specialized lighter-than-air (LTA) concepts as metal-clad airships, semi-buoyant lifting bodies, experimental, sport and commercial free balloons, high-altitude platforms, and tethered aerostats; (3) the current status of LTA technology in various countries, with emphasis on significant developments in configuration, dynamics, control, structures, materials, and propulsion; and (4) a projection of future trends. It is concluded that socio-economic factors will strongly influence and encourage LTA development in the 1990s.

  9. Investigation of steady and fluctuating pressures associated with the transonic buffeting and wing rock of a one-seventh scale model of the F-5A aircraft

    NASA Technical Reports Server (NTRS)

    Hwang, C.; Pi, W. S.

    1978-01-01

    A wind tunnel test of a 1/7 scale F-5A model is described. The pressure, force, and dynamic response measurements during buffet and wing rock are evaluated. Effects of Mach number, angle of attack, sideslip angle, and control surface settings were investigated. The mean and fluctuating static pressure data are presented and correlated with some corresponding flight test data of a F-5A aircraft. Details of the instrumentation and the specially designed support system which allowed the model to oscillate in roll to simulate wing rock are also described. A limit cycle mechanism causing wing rock was identified from this study, and this mechanism is presented.

  10. Silica aerogel for capturing intact interplanetary dust particles for the Tanpopo experiment.

    PubMed

    Tabata, Makoto; Yano, Hajime; Kawai, Hideyuki; Imai, Eiichi; Kawaguchi, Yuko; Hashimoto, Hirofumi; Yamagishi, Akihiko

    2015-06-01

    In this paper, we report the progress in developing a silica-aerogel-based cosmic dust capture panel for use in the Tanpopo experiment on the International Space Station (ISS). Previous studies revealed that ultralow-density silica aerogel tiles, comprising two layers with densities of 0.01 and 0.03 g/cm(3) developed using our production technique, were suitable for achieving the scientific objectives of the astrobiological mission. A special density configuration (i.e., box framing) aerogel with a holder was designed to construct the capture panels. Qualification tests for an engineering model of the capture panel as an instrument aboard the ISS were successful. Sixty box-framing aerogel tiles were manufactured in a contamination-controlled environment.

  11. The Scientific Uplink and User Support System for SIRTF

    NASA Astrophysics Data System (ADS)

    Heinrichsen, I.; Chavez, J.; Hartley, B.; Mei, Y.; Potts, S.; Roby, T.; Turek, G.; Valjavec, E.; Wu, X.

    The Space Infrared Telescope Facility (SIRTF) is one of NASA's Great Observatory missions, scheduled for launch in 2001. As such its ground segment design is driven by the requirement to provide strong support for the entire astronomical community starting with the call for Legacy Proposals in early 2000. In this contribution, we present the astronomical user interface and the design of the server software that comprises the Scientific Uplink System for SIRTF. The software architecture is split into three major parts: A front-end Java application deployed to the astronomical community providing the capabilities to visualize and edit proposals and the associated lists of observations. This observer toolkit provides templates to define all parameters necessary to carry out the required observations. A specialized version of this software, based on the same overall architecture, is used internal to the SIRTF Science Center to prepare calibration and engineering observations. A Weblogic (TM) based middleware component brokers the transactions with the servers, astronomical image and catalog sources as well as the SIRTF operational databases. Several server systems perform the necessary computations, to obtain resource estimates, target visibilities and to access the instrument models for signal to noise calculations. The same server software is used internally at a later stage to derive the detailed command sequences needed by the SIRTF instruments and spacecraft to execute a given observation.

  12. Evaluating noise performance of the IUCAA sidecar drive electronics controller (ISDEC) based system for TMT on-instrument wavefront sensing (OIWFS) application

    NASA Astrophysics Data System (ADS)

    Burse, Mahesh; Chattopadhyay, Sabyasachi; Ramaprakash, A. N.; Sinha, Sakya; Prabhudesai, Swapnil; Punnadi, Sujit; Chordia, Pravin; Kohok, Abhay

    2016-07-01

    As a part of a design study for the On-Instrument Low Order Wave-front Sensor (OIWFS) for the TMT Infra-Red Imaging Spectrograph (IRIS), we recently evaluated the noise performance of a detector control system consisting of IUCAA SIDECAR DRIVE ELECRONICS CONTROLLER (ISDEC), SIDECAR ASIC and HAWAII-2RG (H2RG) MUX. To understand and improve the performance of this system to serve as a near infrared wavefront sensor, we implemented new read out modes like multiple regions of interest with differential multi-accumulate readout schemes for the HAWAII-2RG (H2RG) detector. In this system, the firmware running in SIDECAR ASIC programs the detector for ROI readout, reads the detector, processes the detector output and writes the digitized data into its internal memory. ISDEC reads the digitized data from ASIC, performs the differential multi-accumulate operations and then sends the processed data to a PC over a USB interface. A special loopback board was designed and used to measure and reduce the noise from SIDECAR ASIC DC biases2. We were able to reduce the mean r.m.s read noise of this system down to 1-2 e. for any arbitrary window frame of 4x4 size at frame rates below about 200 Hz.

  13. Realization and performance of cryogenic selection mechanisms

    NASA Astrophysics Data System (ADS)

    Aitink-Kroes, Gabby; Bettonvil, Felix; Kragt, Jan; Elswijk, Eddy; Tromp, Niels

    2014-07-01

    Within Infra-Red large wavelength bandwidth instruments the use of mechanisms for selection of observation modes, filters, dispersing elements, pinholes or slits is inevitable. The cryogenic operating environment poses several challenges to these cryogenic mechanisms; like differential thermal shrinkage, physical property change of materials, limited use of lubrication, high feature density, limited space etc. MATISSE the mid-infrared interferometric spectrograph and imager for ESO's VLT interferometer (VLTI) at Paranal in Chile coherently combines the light from 4 telescopes. Within the Cold Optics Bench (COB) of MATISSE two concepts of selection mechanisms can be distinguished based on the same design principles: linear selection mechanisms (sliders) and rotating selection mechanisms (wheels).Both sliders and wheels are used at a temperature of 38 Kelvin. The selection mechanisms have to provide high accuracy and repeatability. The sliders/wheels have integrated tracks that run on small, accurately located, spring loaded precision bearings. Special indents are used for selection of the slider/wheel position. For maximum accuracy/repeatability the guiding/selection system is separated from the actuation in this case a cryogenic actuator inside the cryostat. The paper discusses the detailed design of the mechanisms and the final realization for the MATISSE COB. Limited lifetime and performance tests determine accuracy, warm and cold and the reliability/wear during life of the instrument. The test results and further improvements to the mechanisms are discussed.

  14. Determination of balloon gas mass and revised estimates of drag and virtual mass coefficients

    NASA Technical Reports Server (NTRS)

    Robbins, E.; Martone, M.

    1993-01-01

    In support of the NASA Balloon Program, small-scale balloons were flown with varying lifting gas and total system mass. Instrument packages were developed to measure and record acceleration and temperature data during these tests. Top fitting and instrument payload accelerations were measured from launch to steady state ascent and through ballast drop transients. The development of the small lightweight self-powered Stowaway Special instrument packages is discussed along with mathematical models developed to determine gas mass, drag and virtual mass coefficients.

  15. Microlens Array/Pinhole Mask to Suppress Starlight for Direct Exoplanet Detection

    NASA Astrophysics Data System (ADS)

    Zimmerman, Neil

    Direct imaging of habitable exoplanets is a key priority of NASA’s Astrophysics roadmap, “Enduring Quests, Daring Visions.” A coronagraphic starlight suppression system situated on a large space telescope offers a viable path to achieving this goal. This type of instrument is central to both the LUVOIR and HabEx mission concepts currently under study for the 2020 Decadal Survey. To directly image an Earth-like exoplanet, an instrument must be sensitive to objects ten billion times dimmer than their parent star. Advanced coronagraphs are designed to modify the shape of the star’s image so that it does not overwhelm the planet's light. Coronagraphs are complex to design and fabricate, tend to sacrifice a significant portion of the exoplanet light entering the telescope, and are highly sensitive to errors in the telescope. The proposed work reduces the demands on the coronagraph and its sensitivity to errors in the telescope, by changing how we implement optics in the spectrograph following the coronagraph. Through optical analysis and modeling, we have found that a microlens array with a specially arranged pattern of pinholes can suppress residual starlight in the scientific image after the coronagraph by more than two orders of magnitude. This added layer of starlight rejection could be used to relax the extreme observatory stability requirements for exo-Earth imaging applications, for example shifting the wavefront stability requirement from a few picometers to a few nanometers. Ultimately this translates to the instrument detecting and spectrally characterizing more exoplanets than a conventional coronagraph system. This microlens/pinhole concept is also compatible with starshadebased starlight suppression systems. The proposed microlens/pinhole device is entirely passive and augments the performance of existing coronagraph designs, while potentially reducing their cost and risk for mission implementation. Our APRA proposal would support a testbed demonstration of this novel concept. Our plan is to design and procure the combined microlens-pinhole array, verify its fundamental optical properties on a breadboard at Goddard Space Flight Center, integrate the device onto an existing coronagraph testbed at Space Telescope Science Institute, and test its performance.

  16. Construction Of Critical Thinking Skills Test Instrument Related The Concept On Sound Wave

    NASA Astrophysics Data System (ADS)

    Mabruroh, F.; Suhandi, A.

    2017-02-01

    This study aimed to construct test instrument of critical thinking skills of high school students related the concept on sound wave. This research using a mixed methods with sequential exploratory design, consists of: 1) a preliminary study; 2) design and review of test instruments. The form of test instruments in essay questions, consist of 18 questions that was divided into 5 indicators and 8 sub-indicators of the critical thinking skills expressed by Ennis, with questions that are qualitative and contextual. Phases of preliminary study include: a) policy studies; b) survey to the school; c) and literature studies. Phases of the design and review of test instruments consist of two steps, namely a draft design of test instruments include: a) analysis of the depth of teaching materials; b) the selection of indicators and sub-indicators of critical thinking skills; c) analysis of indicators and sub-indicators of critical thinking skills; d) implementation of indicators and sub-indicators of critical thinking skills; and e) making the descriptions about the test instrument. In the next phase of the review test instruments, consist of: a) writing about the test instrument; b) validity test by experts; and c) revision of test instruments based on the validator.

  17. Observations and Operational Products from the Special Sensor Ultraviolet Limb Imager (SSULI)

    NASA Astrophysics Data System (ADS)

    Dandenault, Patrick; Nicholas, Andrew C.; Coker, Clayton; Budzien, Scott A.; Chua, Damien H.; Finne, Ted T.; Metzler, Christopher A.; Dymond, Kenneth F.

    The Naval Research Laboratory (NRL) has developed five ultraviolet remote sensing instru-ments for the Air Force Defense Meteorological Satellite Program (DMSP). These instruments known as SSULI (Special Sensor Ultraviolet Limb Imager) are on the DMSP block of 5D3 satellites, which first launched in 2003. The DMSP satellites are launched in a near-polar, sun-synchronous orbit at an altitude of approximately 830 km. SSULI measures vertical profiles of the natural airglow radiation from atoms, molecules and ions in the upper atmosphere and ionosphere by viewing the earth's limb at a tangent altitude of approximately 50 km to 750 km. Limb observations are made from the extreme ultraviolet (EUV) to the far ultraviolet (FUV) over the wavelength range of 80 nm to 170 nm, with 1.8 nm resolution. An extensive operational data processing system, the SSULI Ground Data Analysis Software (GDAS), has been developed to generate environmental data products from SSULI spectral data in near-real time for use at the Air Force Weather Agency (AFWA). The operational software uses advanced science algorithms developed at NRL and was designed to calibrate data from USAF Raw Sensor Data Records (RSDR) and generate Environmental Data Records (EDRs). Data products from SSULI observations include vertical profiles of electron (Ne) densities, N2, O2, O, O+, Temperature and also vertical Total Electron Content (TEC). On October 18, 2009, the third SSULI sensor launched from Vandenberg Air Force Base, aboard the DMSP F18 spacecraft. An overview of the SSULI operational program and the status of the F18 sensor will be discussed.

  18. Combined raman spectrometer/laser-induced breakdown spectrometer design concept

    NASA Astrophysics Data System (ADS)

    Bazalgette Courrèges-Lacoste, Gregory; Ahlers, Berit; Boslooper, Erik; Rull-Perez, Fernando; Maurice, Sylvestre

    2017-11-01

    Amongst the different instruments that have been preselected to be on-board the Pasteur payload on ExoMars is the Raman/ Laser Induced Breakdown Spectroscopy (LIBS) instrument. Raman spectroscopy and LIBS will be integrated into a single instrument sharing many hardware commonalities. An international team under the lead of TNO has been gathered to produce a design concept for a combined Raman Spectrometer/ LIBS Elegant Bread-Board (EBB). The instrument is based on a specifically designed extremely compact spectrometer with high resolution over a large wavelength range, suitable for both Raman spectroscopy and LIBS measurements. Low mass, size and resources are the main drivers of the instrument's design concept. The proposed design concept, realization and testing programme for the combined Raman/ LIBS EBB is presented as well as background information on Raman and LIBS.

  19. Comparison of economic and environmental impacts between disposable and reusable instruments used for laparoscopic cholecystectomy.

    PubMed

    Adler, S; Scherrer, M; Rückauer, K D; Daschner, F D

    2005-02-01

    The economic and environmental effects were compared between disposable and reusable instruments used for laparoscopic cholecystectomy. Special consideration was given to the processing of reusable instruments in the Miele G 7736 CD MCU washer disinfector and the resultant cost of sterilization. The instruments frequently used in their disposable form were identified with the help of surgeons. Thus, of all the instruments used for laparoscopic cholecystectomy, the disposable and reusable versions of trocars, scissors, and Veress cannula were compared. For the case examined in this study, the performance of laparoscopic cholecystectomy with disposable instruments was 19 times more expensive that for reusable instruments. The higher cost of using disposable instruments is primarily attributable to the purchase price of the instruments. The processing of reusable instruments has little significance in terms of cost, whereas the cost for disposing of disposable instruments is the least significant factor. The number of laparoscopic cholecystectomies performed per year does not substantially influence cost. In the authors' opinion, assessment of the environmental consequences shows that reusable instruments are environmentally advantageous. Considering the upward pressure of costs in hospitals, disposable instruments should be used for laparoscopic cholecystectomy only if they offer clear advantages over reusable instruments.

  20. Advanced instrumentation for QELS experiments

    NASA Technical Reports Server (NTRS)

    Tscharnuter, Walther; Weiner, Bruce; Thomas, John

    1989-01-01

    Quasi Elastic Light Scattering (QELS) experiments have become an important tool in both research and quality control applications during the past 25 years. From the crude beginnings employing mechanically driven spectrum analyzers, an impressive array of general purpose digital correlators and special purpose particle sizers is now commercially available. The principles of QELS experiments are reviewed, their advantages and disadvantages are discussed and new instrumentation is described.

Top