Sample records for speciation chemical

  1. Chemical Speciation and Metallomics.

    PubMed

    de Jesus, Jemmyson Romário; da Costa, Luana Ferreira; Lehmann, Eraldo Luiz; Galazzi, Rodrigo Moretto; Madrid, Katherine Chacón; Arruda, Marco Aurélio Zezzi

    2018-01-01

    Chemical speciation approaches is an inherent part of metallomics, once metals/metalloids and organic structures need to be currently evaluated for attaining metallomics studies. Then, this chapter focuses on the applications of the chemical speciation applied to the human health risk, food and human diet, drugs, forensic, nanoscience, and geological metallomics, also pointing out the advances in such area. Some aspects regarding sample preparation is commented along this chapter, and some strategies for maintaining the integrity of the metallomics information are also emphasized.

  2. Chemical Speciation - General Information

    EPA Pesticide Factsheets

    This page includes general information about the Chemical Speciation Network that is not covered on the main page. Commonly visited documents, including calendars, site lists, and historical files for the program are listed here

  3. Aerosol Chemical Speciation Monitor (ACSM) Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Thomas B.

    The Aerodyne Aerosol Chemical Speciation Monitor (ACSM) measures particle mass loading and chemical composition in real time for non-refractory sub-micron aerosol particles. The ACSM is designed for long-term unattended deployment and routine monitoring applications.

  4. A STUDY OF GAS-PHASE MERCURY SPECIATION USING DETAILED CHEMICAL KINETICS

    EPA Science Inventory

    Mercury (Hg) speciation in combustion-generated flue gas is modeled using a detailed chemical mechanism consisting of 60 reactions and 21 species. This speciation model accounts for chlorination and oxidation of key flue-gas components, including elemental mercury. Results indica...

  5. Prediction of chemical speciation in stabilized/solidified wastes using a general chemical equilibrium model. Part 1: Chemical representation of cementitious binders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.Y.; Batchelor, B.

    1999-03-01

    Chemical equilibrium models are useful to evaluate stabilized/solidified waste. A general equilibrium model, SOLTEQ, a modified version of MINTEQA2 for S/S, was applied to predict the chemical speciations in the stabilized/solidified waste form. A method was developed to prepare SOLTEQ input data that can chemically represent various stabilized/solidified binders. Taylor`s empirical model was used to describe partitioning of alkali ions. As a result, SOLTEQ could represent chemical speciation in pure binder systems such as ordinary Portland cement and ordinary Portland cement + fly ash. Moreover, SOLTEQ could reasonably describe the effects on the chemical speciation due to variations in water-to-cement,more » fly ash contents, and hydration times of various binder systems. However, this application of SOLTEQ was not accurate in predicting concentrations of Ca, Si, and SO{sub 4} ions, due to uncertainties in the CSH solubility model and K{sub sp} values of cement hydrates at high pH values.« less

  6. Mercury Speciation by X-ray Absorption Fine Structure Spectroscopy and Sequential Chemical Extractions: A Comparison of Speciation Methods

    USGS Publications Warehouse

    Kim, C.S.; Bloom, N.S.; Rytuba, J.J.; Brown, Gordon E.

    2003-01-01

    Determining the chemical speciation of mercury in contaminated mining and industrial environments is essential for predicting its solubility, transport behavior, and potential bioavailability as well as for designing effective remediation strategies. In this study, two techniques for determining Hg speciation-X-ray absorption fine structure (XAFS) spectroscopy and sequential chemical extractions (SCE)-are independently applied to a set of samples with Hg concentrations ranging from 132 to 7539 mg/kg to determine if the two techniques provide comparable Hg speciation results. Generally, the proportions of insoluble HgS (cinnabar, metacinnabar) and HgSe identified by XAFS correlate well with the proportion of Hg removed in the aqua regia extraction demonstrated to remove HgS and HgSe. Statistically significant (> 10%) differences are observed however in samples containing more soluble Hg-containing phases (HgCl2, HgO, Hg3S2O 4). Such differences may be related to matrix, particle size, or crystallinity effects, which could affect the apparent solubility of Hg phases present. In more highly concentrated samples, microscopy techniques can help characterize the Hg-bearing species in complex multiphase natural samples.

  7. SPECIATE and using the Speciation Tool to prepare VOC and PM chemical speciation profiles for air quality modeling

    EPA Science Inventory

    This product provides training to air pollution inventory and modeling professionals to understand the US EPA's SPECIATE database base and Speciation Tool and their use to develop speciated emission inventories.

  8. METHODS INTERCOMPARISON OF SAMPLERS FOR EPA'S NATIONAL PM 2.5 CHEMICAL SPECIATION NETWORK

    EPA Science Inventory

    The objective of this sampler intercomparison field study is to determine the performance characteristics for the collection of the chemical components of PM2.5 by the chemical speciation monitors developed for the national PM2.5 network relative to each other, to the Federal R...

  9. Carbon speciation in ash, residual waste and contaminated soil by thermal and chemical analyses.

    PubMed

    Kumpiene, Jurate; Robinson, Ryan; Brännvall, Evelina; Nordmark, Désirée; Bjurström, Henrik; Andreas, Lale; Lagerkvist, Anders; Ecke, Holger

    2011-01-01

    Carbon in waste can occur as inorganic (IC), organic (OC) and elemental carbon (EC) each having distinct chemical properties and possible environmental effects. In this study, carbon speciation was performed using thermogravimetric analysis (TGA), chemical degradation tests and the standard total organic carbon (TOC) measurement procedures in three types of waste materials (bottom ash, residual waste and contaminated soil). Over 50% of the total carbon (TC) in all studied materials (72% in ash and residual waste, and 59% in soil) was biologically non-reactive or EC as determined by thermogravimetric analyses. The speciation of TOC by chemical degradation also showed a presence of a non-degradable C fraction in all materials (60% of TOC in ash, 30% in residual waste and 13% in soil), though in smaller amounts than those determined by TGA. In principle, chemical degradation method can give an indication of the presence of potentially inert C in various waste materials, while TGA is a more precise technique for C speciation, given that waste-specific method adjustments are made. The standard TOC measurement yields exaggerated estimates of organic carbon and may therefore overestimate the potential environmental impacts (e.g. landfill gas generation) of waste materials in a landfill environment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. SPECIATE's VOC and PM Speciation Profiles and Their use to Prepare for Air quality Modeling (2017 EIC)

    EPA Pesticide Factsheets

    This training provides general concepts on chemical speciation, the SPECIATE database and browser, and how to use the Speciation Tool to create model ready speciation inputs for a photochemical air quality model.

  11. PM 2.5 CHEMICAL SPECIATION SAMPLER EVALUATION FIELD PROGRAM: RESULTS FROM THE FOUR CITY STUDY

    EPA Science Inventory

    The objective of this sampler intercomparison field study is to determine the performance characteristics for the collection of the chemical components of PM2.5 by the chemical speciation monitors developed for the national network relative to each other, to the Federal Referen...

  12. Beryllium chemical speciation in elemental human biological fluids.

    PubMed

    Sutton, Mark; Burastero, Stephen R

    2003-09-01

    The understanding of beryllium chemistry in human body fluids is important for understanding the prevention and treatment of chronic beryllium disease. Thermodynamic modeling has traditionally been used to study environmental contaminant migration and rarely in the examination of metal (particularly beryllium) toxicology. In this work, a chemical thermodynamic speciation code (MINTEQA2) has been used to model and understand the chemistry of beryllium in simulated human biological fluids such as intracellular, interstitial, and plasma fluids, a number of airway surface fluids for patients with lung conditions, saliva, sweat, urine, bile, gastric juice, and pancreatic fluid. The results show that predicted beryllium solubility and speciation vary markedly between each simulated biological fluid. Formation of beryllium hydroxide and/or phosphate was observed in most of the modeled fluids, and results support the postulation that beryllium absorption in the gastrointestinal tract may be limited by the formation of beryllium phosphate solids. It is also postulated that beryllium is potentially 13% less soluble in the airway surface fluid of a patient with asthma when compared to a "normal" case. The results of this work, supported by experimental validation, can aid in the understanding of beryllium toxicology. Our results can potentially be applied to assessing the feasibility of biological monitoring or chelation treatment of beryllium body burden.

  13. Arsenic Speciation in Groundwater: Role of Thioanions

    EPA Science Inventory

    The behavior of arsenic in groundwater environments is fundamentally linked to its speciation. Understanding arsenic speciation is important because chemical speciation impacts reactivity, bioavailability, toxicity, and transport and fate processes. In aerobic environments arsen...

  14. A multi-technique approach to assess chemical speciation of phosphate in soils

    NASA Astrophysics Data System (ADS)

    Belchior Abdala, Dalton; Rodrigues, Marcos; Herrera, Wilfrand; Pavinato, Paulo Sergio

    2017-04-01

    Soil scientists see chemical characterization of phosphorus (e.g., chemical speciation) as a winning strategy to increase phosphorus use efficiency in agriculture, to understand the fate of applied P fertilizer in soils and to devise strategies to minimize P losses to the environment. Phosphorus (P) is majorly presented in soils as phosphate, bound to mineral components of soils such as Al-, Ca- and Fe-(hydr)oxides or associated with organic molecules, being thus generally referred to as organic phosphates. In addition, because of the turnover of P between plants and microbes, it delivers P back to soils as a mixture of species with high spatial and chemical heterogeneity, adding complexity to the determination of the P species contained in environmental samples. Therefore, due to the variety of forms that phosphate can present in soils, its precise chemical characterization can only be achieved using a set of analytical techniques. Although established methodologies (e. g., soil test P, sequential chemical fractionation, P isotherms) have been useful to subsidize information for the establishment of policies and guidelines for soil management and P fertilizers use, they have failed to provide detailed information on P chemistry and reactivity in soils in a more satisfactory manner, which are critical to predict P bioavailability to plants and loss potential to the environment. More recently, the association of wet chemistry analysis with spectroscopy and microscopy techniques has arguably represented the most successful means to chemically speciate phosphate in soils. This is because using qualitative (chemical speciation), quantitative (chemical fractionation) and spatial (microscopy) data allows for triangulation of information, thereby reducing bias and increasing validity of the results. The analysis framework that we propose in this study includes the use of (i) sequential chemical fractionation of soil P to determine the partitioning of P within the

  15. Trace metal speciation in natural waters: Computational vs. analytical

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    1996-01-01

    Improvements in the field sampling, preservation, and determination of trace metals in natural waters have made many analyses more reliable and less affected by contamination. The speciation of trace metals, however, remains controversial. Chemical model speciation calculations do not necessarily agree with voltammetric, ion exchange, potentiometric, or other analytical speciation techniques. When metal-organic complexes are important, model calculations are not usually helpful and on-site analytical separations are essential. Many analytical speciation techniques have serious interferences and only work well for a limited subset of water types and compositions. A combined approach to the evaluation of speciation could greatly reduce these uncertainties. The approach proposed would be to (1) compare and contrast different analytical techniques with each other and with computed speciation, (2) compare computed trace metal speciation with reliable measurements of solubility, potentiometry, and mean activity coefficients, and (3) compare different model calculations with each other for the same set of water analyses, especially where supplementary data on speciation already exist. A comparison and critique of analytical with chemical model speciation for a range of water samples would delineate the useful range and limitations of these different approaches to speciation. Both model calculations and analytical determinations have useful and different constraints on the range of possible speciation such that they can provide much better insight into speciation when used together. Major discrepancies in the thermodynamic databases of speciation models can be evaluated with the aid of analytical speciation, and when the thermodynamic models are highly consistent and reliable, the sources of error in the analytical speciation can be evaluated. Major thermodynamic discrepancies also can be evaluated by simulating solubility and activity coefficient data and testing various

  16. Examination of Arsenic Speciation in Sulfidic Solutions Using X-ray Absorption Spectroscopy

    EPA Science Inventory

    The chemical speciation of arsenic in sulfidic waters is complicated by the existence of thioarsenic species. The purpose of this research was to use advanced spectroscopy techniques along with speciation modeling and chromatography to elucidate the chemical speciation of As in ...

  17. Arsenic speciation and sorption in natural environments

    USGS Publications Warehouse

    Campbell, Kate M.; Nordstrom, D. Kirk

    2014-01-01

    Aqueous arsenic speciation, or the chemical forms in which arsenic exists in water, is a challenging, interesting, and complicated aspect of environmental arsenic geochemistry. Arsenic has the ability to form a wide range of chemical bonds with carbon, oxygen, hydrogen, and sulfur, resulting in a large variety of compounds that exhibit a host of chemical and biochemical properties. Besides the intriguing chemical diversity, arsenic also has the rare capacity to capture our imaginations in a way that few elements can duplicate: it invokes images of foul play that range from sinister to comedic (e.g., “inheritance powder” and arsenic-spiked elderberry wine). However, the emergence of serious large-scale human health problems from chronic arsenic exposure in drinking water has placed a high priority on understanding environmental arsenic mobility, toxicity, and bioavailability, and chemical speciation is key to these important questions. Ultimately, the purpose of arsenic speciation research is to predict future occurrences, mitigate contamination, and provide successful management of water resources.

  18. Chemical Speciation and Quantitative Evaluation of Heavy Metal Pollution Hazards in Two Army Shooting Range Backstop Soils.

    PubMed

    Islam, Mohammad Nazrul; Nguyen, Xuan Phuc; Jung, Ho-Young; Park, Jeong-Hun

    2016-02-01

    The chemical speciation and ecological risk assessment of heavy metals in two shooting range backstop soils in Korea were studied. Both soils were highly contaminated with Cd, Cu, Pb, and Sb. The chemical speciation of heavy metals reflected the present status of contamination, which could help in promoting management practices. We-rye soil had a higher proportion of exchangeable and carbonate bound metals and water-extractable Cd and Sb than the Cho-do soil. Bioavailable Pb represented 42 % of the total Pb content in both soils. A significant amount of Sb was found in the two most bioavailable fractions, amounting to ~32 % in the soil samples, in good agreement with the batch leaching test using water. Based on the values of ecological risk indices, both soils showed extremely high potential risk and may represent serious environmental problems.

  19. BIOCHEM-ORCHESTRA: a tool for evaluating chemical speciation and ecotoxicological impacts of heavy metals on river flood plain systems.

    PubMed

    Vink, J P M; Meeussen, J C L

    2007-08-01

    The chemical speciation model BIOCHEM was extended with ecotoxicological transfer functions for uptake of metals (As, Cd, Cu, Ni, Pb, and Zn) by plants and soil invertebrates. It was coupled to the object-oriented framework ORCHESTRA to achieve a flexible and dynamic decision support system (DSS) to analyse natural or anthropogenic changes that occur in river systems. The DSS uses the chemical characteristics of soils and sediments as input, and calculates speciation and subsequent uptake by biota at various scenarios. Biotic transfer functions were field-validated, and actual hydrological conditions were derived from long-term monitoring data. The DSS was tested for several scenarios that occur in the Meuse catchment areas, such as flooding and sedimentation of riverine sediments on flood plains. Risks are expressed in terms of changes in chemical mobility, and uptake by flood plain key species (flora and fauna).

  20. Chemical speciation using high energy resolution PIXE spectroscopy in the tender X-ray range

    NASA Astrophysics Data System (ADS)

    Kavčič, Matjaž; Petric, Marko; Vogel-Mikuš, Katarina

    2018-02-01

    High energy resolution X-ray emission spectroscopy employing wavelength dispersive (WDS) crystal spectrometers can provide energy resolution on the level of core-hole lifetime broadening of the characteristic emission lines. While crystal spectrometers have been traditionally used in combination with electron excitation for major and minor element analysis, they have been rarely considered in proton induced X-ray emission (PIXE) trace element analysis mainly due to low detection efficiency. Compared to the simplest flat crystal WDS spectrometer the efficiency can be improved by employing cylindrically or even spherically curved crystals in combination with position sensitive X-ray detectors. When such spectrometer is coupled to MeV proton excitation, chemical bonding effects are revealed in the high energy resolution spectra yielding opportunity to extend the analytical capabilities of PIXE technique also towards chemical state analysis. In this contribution we will focus on the high energy resolution PIXE (HR-PIXE) spectroscopy in the tender X-ray range performed in our laboratory with our home-built tender X-ray emission spectrometer. Some general properties of high energy resolution PIXE spectroscopy in the tender X-ray range are presented followed by an example of sulfur speciation in biological tissue illustrating the capabilities as well as limitations of HR-PIXE method used for chemical speciation in the tender X-ray range.

  1. Chemical speciation of heavy metals by surface-enhanced Raman scattering spectroscopy: identification and quantification of inorganic- and methyl-mercury in water

    NASA Astrophysics Data System (ADS)

    Guerrini, Luca; Rodriguez-Loureiro, Ignacio; Correa-Duarte, Miguel A.; Lee, Yih Hong; Ling, Xing Yi; García de Abajo, F. Javier; Alvarez-Puebla, Ramon A.

    2014-06-01

    Chemical speciation of heavy metals has become extremely important in environmental and analytical research because of the strong dependence that toxicity, environmental mobility, persistence and bioavailability of these pollutants have on their specific chemical forms. Novel nano-optical-based detection strategies, capable of overcoming the intrinsic limitations of well-established analytic methods for the quantification of total metal ion content, have been reported, but the speciation of different chemical forms has not yet been achieved. Here, we report the first example of a SERS-based sensor for chemical speciation of toxic metal ions in water at trace levels. Specifically, the inorganic Hg2+ and the more toxicologically relevant methylmercury (CH3Hg+) are selected as analytical targets. The sensing platform consists of a self-assembled monolayer of 4-mercaptopyridine (MPY) on highly SERS-active and robust hybrid plasmonic materials formed by a dense layer of interacting gold nanoparticles anchored onto polystyrene microbeads. The co-ordination of Hg2+ and CH3Hg+ to the nitrogen atom of the MPY ring yields characteristic changes in the vibrational SERS spectra of the organic chemoreceptor that can be qualitatively and quantitatively correlated to the presence of the two different mercury forms.Chemical speciation of heavy metals has become extremely important in environmental and analytical research because of the strong dependence that toxicity, environmental mobility, persistence and bioavailability of these pollutants have on their specific chemical forms. Novel nano-optical-based detection strategies, capable of overcoming the intrinsic limitations of well-established analytic methods for the quantification of total metal ion content, have been reported, but the speciation of different chemical forms has not yet been achieved. Here, we report the first example of a SERS-based sensor for chemical speciation of toxic metal ions in water at trace levels

  2. U.S. National PM2.5 Chemical Speciation Monitoring Networks – CSN and IMPROVE: Description of Networks

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) initiated the national PM2.5 Chemical Speciation Monitoring Network (CSN) in 2000 to support evaluation of long-term trends and to better quantify the impact of sources on particulate matter (PM) concentrations in the size range belo...

  3. Chemical speciation and bioavailability of rare earth elements (REEs) in the ecosystem: a review.

    PubMed

    Khan, Aysha Masood; Bakar, Nor Kartini Abu; Bakar, Ahmad Farid Abu; Ashraf, Muhammad Aqeel

    2017-10-01

    Rare earths (RE), chemically uniform group of elements due to similar physicochemical behavior, are termed as lanthanides. Natural occurrence depends on the geological circumstances and has been of long interest for geologist as tools for further scientific research into the region of ores, rocks, and oceanic water. The review paper mainly focuses to provide scientific literature about rare earth elements (REEs) with potential environmental and health effects in understanding the research. This is the initial review of RE speciation and bioavailability with current initiative toward development needs and research perceptive. In this paper, we have also discussed mineralogy, extraction, geochemistry, analytical methods of rare earth elements. In this study, REEs with their transformation and vertical distribution in different environments such as fresh and seawater, sediments, soil, weathering, transport, and solubility have been reported with most recent literature along key methods of findings. Speciation and bioavailability have been discussed in detail with special emphasis on soil, plant, and aquatic ecosystems and their impacts on the environment. This review shows that REE gained more importance in last few years due to their detrimental effects on living organisms, so their speciation, bioavailability, and composition are much more important to evaluate their health risks and are discussed thoroughly as well.

  4. Spatio-temporal Distribution and Chemical Speciation of Iron and Manganese in Sediments from Lake Aha, China

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Hu, Jiwei; Qin, Fanxin; Jiang, Cuihong; Huang, Xianfei; Deng, Jiajun; Li, Cunxiong

    2010-11-01

    This paper reports an investigation on pollution and potential risk on elements of iron (Fe) and manganese (Mn) in sediments from Lake Aha, which is a drinking-water source for Guiyang City, the capital of Guizhou Province in southwestern China. In the present research, chemical speciation of Fe and Mn in sediments from the lake was studied based on the sequential extraction procedure developed by Tessier et al.. The results obtained from the study are as follows. The average values of total Fe were 47617 mg/kg and 70325 mg/kg in sediments from the lake in summer and winter respectively, and its speciation consisted mainly of residual and Fe-Mn oxides fractions. The amounts of total Fe and the distribution of its speciation in the sediments should be affected by effluents from a large quantity of deserted coal mines in the lake basin in summer and winter. The average values of total Mn were 7996 mg/kg and 1753 mg/kg in summer and winter respectively, and its speciation is primarily comprised of carbonate and Fe-Mn oxides fractions. The amounts of total Mn and its distribution in different fractions in the sediments were believed to be primarily influenced by effluents from those deserted coal mines in summer and by the condition of redox interface in winter.

  5. The Development and Uses of EPA's SPECIATE Database

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of volatile organic compounds (VOC) and particulate matter (PM) speciation profiles of air pollution sources. These source profiles can be used to (l) provide input to chemical mass balance (CMB) receptor mod...

  6. Chemical speciation of trace metals emitted from Indonesian peat fires for health risk assessment

    NASA Astrophysics Data System (ADS)

    Betha, Raghu; Pradani, Maharani; Lestari, Puji; Joshi, Umid Man; Reid, Jeffrey S.; Balasubramanian, Rajasekhar

    2013-03-01

    Regional smoke-induced haze in Southeast Asia, caused by uncontrolled forest and peat fires in Indonesia, is of major environmental and health concern. In this study, we estimated carcinogenic and non-carcinogenic health risk due to exposure to fine particles (PM2.5) as emitted from peat fires at Kalimantan, Indonesia. For the health risk analysis, chemical speciation (exchangeable, reducible, oxidizable, and residual fractions) of 12 trace metals (Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Ti, V and Zn) in PM2.5 was studied. Results indicate that Al, Fe and Ti together accounted for a major fraction of total metal concentrations (~ 83%) in PM2.5 emissions in the immediate vicinity of peat fires. Chemical speciation reveals that a major proportion of most of the metals, with the exception of Cr, Mn, Fe, Ni and Cd, was present in the residual fraction. The exchangeable fraction of metals, which represents their bioavailability, could play a major role in inducing human health effects of PM2.5. This fraction contained carcinogenic metals such as Cd (39.2 ng m- 3) and Ni (249.3 ng m- 3) that exceeded their WHO guideline values by several factors. Health risk estimates suggest that exposure to PM2.5 emissions in the vicinity of peat fires poses serious health threats.

  7. Metals, Health and the Environment – Emergence of Correlations Between Speciation and Effects

    PubMed Central

    Williams, David R.

    2004-01-01

    Over the last half-century both the identification of the causes of diseases and the use of inorganic compounds to treat such conditions have been considerably enlightened through our emerging capabilities to identify the pivotal chemical species involved. The ‘duty of care’ placed upon scientists to protect the environment from manufactured chemicals and to limit their effects upon humans therefrom is best realised from a speciation knowledge database. This paper discusses categorising chemicals in terms of their persistence, bioaccumulation, and toxicities and uses speciation information to optimise desirable effects of chemicals in several applications such as the manufacture of pulp for paper and in the foliar nutrition of crops. Simultaneously, the chemical wasting side effects of industrial overdosing is easily avoided if speciation approaches are used. The move towards new environmentally friendly ligand agents is described and methods of finding substitute agents (often combinations of two or more chemicals) to replace nonbiodegradable EDTA. The geosphere migration of metals through the environment is discussed in terms of speciation. Future objectives discussed include improved means of communicating speciation-based recommendations to decision makers. PMID:18365083

  8. SPECIATE 4.3: Addendum to SPECIATE 4.2--Speciation database development documentation

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Among the many uses of speciation data, these source profiles are used to: (1) create speciated emissions inve...

  9. An expert system for chemical speciation of individual particles using low-Z particle electron probe X-ray microanalysis data.

    PubMed

    Ro, Chul-Un; Kim, HyeKyeong; Van Grieken, René

    2004-03-01

    An electron probe X-ray microanalysis (EPMA) technique, using an energy-dispersive X-ray detector with an ultrathin window, designated a low-Z particle EPMA, has been developed. The low-Z particle EPMA allows the quantitative determination of concentrations of low-Z elements, such as C, N, and O, as well as chemical elements that can be analyzed by conventional energy-dispersive EPMA, in individual particles. Since a data set is usually composed of data for several thousands of particles in order to make environmentally meaningful observations of real atmospheric aerosol samples, the development of a method that fully extracts chemical information contained in the low-Z particle EPMA data is important. An expert system that can rapidly and reliably perform chemical speciation from the low-Z particle EPMA data is presented. This expert system tries to mimic the logic used by experts and is implemented by applying macroprogramming available in MS Excel software. Its feasibility is confirmed by applying the expert system to data for various types of standard particles and a real atmospheric aerosol sample. By applying the expert system, the time necessary for chemical speciation becomes shortened very much and detailed information on particle data can be saved and extracted later if more information is needed for further analysis.

  10. The importance of trace element speciation in biomedical science.

    PubMed

    Templeton, Douglas M

    2003-04-01

    According to IUPAC terminology, trace element speciation reflects differences in chemical composition at multiple levels from nuclear and electronic structure to macromolecular complexation. In the medical sciences, all levels of composition are important in various circumstances, and each can affect the bioavailability, distribution, physiological function, toxicity, diagnostic utility, and therapeutic potential of an element. Here we discuss, with specific examples, three biological principles in the intimate relation between speciation and biological behavior: i) the kinetics of interconversion of species determines distribution within the organism, ii) speciation governs transport across various biological barriers, and iii) speciation can limit potentially undesirable interactions between physiologically essential elements. We will also describe differences in the speciation of iron in states of iron overload, to illustrate how speciation analysis can provide insight into cellular processes in human disease.

  11. SPECIATE 4.2: speciation Database Development Documentation

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Among the many uses of speciation data, these source profiles are used to: (1) create speciated emissions inve...

  12. Heavy metals and its chemical speciation in sewage sludge at different stages of processing.

    PubMed

    Tytła, Malwina; Widziewicz, Kamila; Zielewicz, Ewa

    2016-01-01

    The analysis of heavy metal concentrations and forms in sewage sludge constitutes an important issue in terms of both health and environmental hazards the metals pose. The total heavy metals concentration enables only the assessment of its contamination. Hence the knowledge of chemical forms is required to determine their environmental mobility and sludge final disposal. Heavy metals speciation was studied by using four-stage sequential extraction BCR (Community Bureau of Reference). This study was aimed at determining the total concentration of selected heavy metals (Zn, Cu, Ni, Pb, Cd, Cr and Hg) and their chemical forms (except for Hg) in sludge collected at different stages of its processing at two municipal Wastewater Treatment Plants in southern Poland. Metals contents in sludge samples were determined by using flame atomic absorption spectrometry (FAAS) and electrothermal atomic absorption spectrometry (ETAAS). This study shows that Zn and Cu appeared to be the most abundant in sludge, while Cd and Hg were in the lowest concentrations. The sewage sludge revealed the domination of immobile fractions over the mobile ones. The oxidizable and residual forms were dominant for all the heavy metals. There was also a significant difference in metals speciation between sludges of different origin which was probably due to differences in wastewater composition and processes occurring in biological stage of wastewater treatment. The results indicate a negligible capability of metals to migrate from sludge into the environment. Our research revealed a significant impact of thickening, stabilization and hygienization on the distribution of heavy metals in sludge and their mobility.

  13. SPECIATE 4.0: SPECIATION DATABASE DEVELOPMENT DOCUMENTATION--FINAL REPORT

    EPA Science Inventory

    SPECIATE is the U.S. EPA's repository of total organic compounds (TOC) and particulate matter (PM) speciation profiles of air pollution sources. This report documents how EPA developed the SPECIATE 4.0 database that replaces the prior version, SPECIATE 3.2. SPECIATE 4.0 includes ...

  14. Speciation of the trivalent f-elements Eu(III) and Cm(III) in digestive media.

    PubMed

    Wilke, Claudia; Barkleit, Astrid; Stumpf, Thorsten; Ikeda-Ohno, Atsushi

    2017-10-01

    In case radioactive materials are released into the environment, their incorporation into our digestive system would be a significant concern. Trivalent f-elements, i.e., trivalent actinides and lanthanides, could potentially represent a serious health risk due to their chemo- and radiotoxicity, nevertheless the biochemical behavior of these elements are mostly unknown even to date. This study, therefore, focuses on the chemical speciation of trivalent f-elements in the human gastrointestinal tract. To simulate the digestive system artificial digestive juices (saliva, gastric juice, pancreatic juice and bile fluid) were prepared. The chemical speciation of lanthanides (as Eu(III)) and actinides (as Cm(III)) was determined experimentally by time-resolved laser-induced fluorescence spectroscopy (TRLFS) and the results were compared with thermodynamic modeling. The results indicate a dominant inorganic species with phosphate/carbonate in the mouth, while the aquo ion is predominantly formed with a minor contribution of the enzyme pepsin in the stomach. In the intestinal tract the most significant species are with the protein mucin. We demonstrated the first experimental results on the chemical speciation of trivalent f-elements in the digestive media by TRLFS. The results highlight a significant gap in chemical speciation between experiments and thermodynamic modeling due to the limited availability of thermodynamic stability constants particularly for organic species. Chemical speciation strongly influences the in vivo behavior of metal ions. Therefore, the results of this speciation study will help to enhance the assessment of health risks and to improve decorporation strategies after ingestion of these (radio-)toxic heavy metal ions. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A PERSONAL PARTICLE SPECIATION SAMPLER

    EPA Science Inventory

    Dr. Susanne Hering of Aerosol Dynamics Inc and her colleagues expect to design and validate a personal monitoring sampler for particles smaller than 2.5 µm (PM2.5) that is suitable for subsequent chemical speciation work. The investigators believe the result will be a...

  16. Speciated Chemical Composition of Biomass Burning Aerosol from Various Fuels during FIREX

    NASA Astrophysics Data System (ADS)

    Jen, C.; Hatch, L. E.; Kreisberg, N. M.; Selimovic, V.; Yokelson, R. J.; Barsanti, K.; Goldstein, A. H.

    2017-12-01

    Biomass burning is the largest global source of atmospheric primary carbonaceous aerosols and the second largest global source of non-methane organic compounds, including volatile and semi-volatile organic compounds that are now understood to be major contributors to secondary particle formation in the atmosphere. As wildfires in forested regions such as the western United States become larger and more frequent, understanding the chemical composition of biomass burning organic aerosol is needed to better predict their increasing impact on human health, air quality, and climate. This study presents emission profiles of chemically speciated intermediate and semi-volatile organic compounds present in biomass burning aerosol particles ≤1.0 μm. Biomass burning organic aerosol (BBOA) samples from a variety of fuel types and burning conditions were collected during the FIREX campaign at the USDA Fire Lab (Missoula, MT). Fuels were primarily selected from vegetation commonly found in the western United States, such as ponderosa pine, lodgepole pine, ceanothus, and chaparral. Collected BBOA was thermally desorbed from the filters and analyzed using online derivatization and 2-dimensional gas chromatography with an electron impact (70 eV) and vacuum ultra violet light (10.5 eV) high resolution time of flight mass spectrometer for compound identification. Emission profiles for specific compounds (e.g., levoglucosan) and families of compounds (e.g., sugars and methoxyphenols) show distinct variations between different fuel types, with major differences between fresh and partially decomposed fuels. Results also illustrate the variability in chemical species between burns conducted under similar conditions. Furthermore, chemical fingerprints, representing ratios of normalized emissions for key chemical compounds, were measured for specific fuels/conditions and could be used in future field studies to help identify contributions of various vegetation to total BBOA and in

  17. Monoterpene chemical speciation in a tropical rainforest:variation with season, height, and time of dayat the Amazon Tall Tower Observatory (ATTO)

    NASA Astrophysics Data System (ADS)

    María Yáñez-Serrano, Ana; Nölscher, Anke Christine; Bourtsoukidis, Efstratios; Gomes Alves, Eliane; Ganzeveld, Laurens; Bonn, Boris; Wolff, Stefan; Sa, Marta; Yamasoe, Marcia; Williams, Jonathan; Andreae, Meinrat O.; Kesselmeier, Jürgen

    2018-03-01

    Speciated monoterpene measurements in rainforest air are scarce, but they are essential for understanding the contribution of these compounds to the overall reactivity of volatile organic compound (VOC) emissions towards the main atmospheric oxidants, such as hydroxyl radicals (OH), ozone (O3) and nitrate radicals (NO3). In this study, we present the chemical speciation of gas-phase monoterpenes measured in the tropical rainforest at the Amazon Tall Tower Observatory (ATTO, Amazonas, Brazil). Samples of VOCs were collected by two automated sampling systems positioned on a tower at 12 and 24 m height and analysed using gas chromatography-flame ionization detection. The samples were collected in October 2015, representing the dry season, and compared with previous wet and dry season studies at the site. In addition, vertical profile measurements (at 12 and 24 m) of total monoterpene mixing ratios were made using proton-transfer-reaction mass spectrometry. The results showed a distinctly different chemical speciation between day and night. For instance, α-pinene was more abundant during the day, whereas limonene was more abundant at night. Reactivity calculations showed that higher abundance does not generally imply higher reactivity. Furthermore, inter- and intra-annual results demonstrate similar chemodiversity during the dry seasons analysed. Simulations with a canopy exchange modelling system show simulated monoterpene mixing ratios that compare relatively well with the observed mixing ratios but also indicate the necessity of more experiments to enhance our understanding of in-canopy sinks of these compounds.

  18. Comparing WHAM 6 and MINEQL+ 4.5 for the chemical speciation of Cu2+ in the rhizosphere of forest soils.

    PubMed

    Cloutier-Hurteau, Benoît; Sauvé, Sébastien; Courchesne, François

    2007-12-01

    Metal speciation data calculated by modeling could give useful information regarding the fate of metals in the rhizospheric environment. However, no comparative study has evaluated the relative accuracy of speciation models in this microenvironment. Consequently, the present study evaluates the reliability of free Cu ion (Cu2+) activity modeled by WHAM 6 and MINEQL+ 4.5 for 18 bulk and 18 rhizospheric soil samples collected in two Canadian forested areas located near industrial facilities. The modeling of Cu speciation was performed on water extracts using pH, dissolved organic carbon (DOC), major ions, and total dissolved Al, Ca, Cu, Mg, and Zn concentrations as input data. Four scenarios representing the composition of dissolved organic substances using fulvic, humic, and acetic acids were derived from the literature and used in the modeling exercise. Different scenarios were used to contrast soil components (rhizosphere vs bulk) and soil pH levels (acidic vs neutral to alkaline). Reference Cu2+ activity values measured by an ion-selective electrode varied between 0.39 and 41 nM. The model MINEQL+ 4.5 provided good predictions of Cu2+ activities [root-mean-square residual (RMSR)= 0.37], while predictions from WHAM 6 were poor (RMSR = 1.74) because they overestimated Cu complexation with DOC. Modeling with WHAM 6 could be improved by adjusting the proportion of inert DOC and the composition of DOC (RMSR = 0.94), but it remained weaker than predictions with MINEQL+ 4.5. These results suggested that the discrepancies between speciation models were attributed to differences in the binding capacity of humic substances with Cu, where WHAM 6 appeared to be too aggressive. Therefore, we concluded that chemical interactions occurring between Cu and DOC were key factors for an accurate simulation of Cu speciation, especially in rhizospheric forest soils, where high variation of the DOC concentration and composition are observed.

  19. Application Of Synchrotron Techniques To Investigate In-Situ Arsenic Speciation

    EPA Science Inventory

    The speciation, or chemical form of elements governs their fate, toxicity, mobility, and bioavailability in contaminated soils, sediments and water as well as food chain transfer mechanisms. To assess these chemical properties and to accurately gauge contaminant impact on human h...

  20. Testing the Underlying Chemical Principles of the Biotic Ligand Model (BLM) to Marine Copper Systems: Measuring Copper Speciation Using Fluorescence Quenching.

    PubMed

    Tait, Tara N; McGeer, James C; Smith, D Scott

    2018-01-01

    Speciation of copper in marine systems strongly influences the ability of copper to cause toxicity. Natural organic matter (NOM) contains many binding sites which provides a protective effect on copper toxicity. The purpose of this study was to characterize copper binding with NOM using fluorescence quenching techniques. Fluorescence quenching of NOM with copper was performed on nine sea water samples. The resulting stability constants and binding capacities were consistent with literature values of marine NOM, showing strong binding with [Formula: see text] values from 7.64 to 10.2 and binding capacities ranging from 15 to 3110 nmol mg [Formula: see text] Free copper concentrations estimated at total dissolved copper concentrations corresponding to previously published rotifer effect concentrations, in the same nine samples, were statistically the same as the range of free copper calculated for the effect concentration in NOM-free artificial seawater. These data confirms the applicability of fluorescence spectroscopy techniques for NOM and copper speciation characterization in sea water and demonstrates that such measured speciation is consistent with the chemical principles underlying the biotic ligand model approach for bioavailability-based metals risk assessment.

  1. Variation of the NMVOC speciation in the solvent sector and the sensitivity of modelled tropospheric ozone

    NASA Astrophysics Data System (ADS)

    von Schneidemesser, E.; Coates, J.; Denier van der Gon, H. A. C.; Visschedijk, A. J. H.; Butler, T. M.

    2016-06-01

    Non-methane volatile organic compounds (NMVOCs) are detrimental to human health owing to the toxicity of many of the NMVOC species, as well as their role in the formation of secondary air pollutants such as tropospheric ozone (O3) and secondary organic aerosol. The speciation and amount of NMVOCs emitted into the troposphere are represented in emission inventories (EIs) for input to chemical transport models that predict air pollutant levels. Much of the information in EIs pertaining to speciation of NMVOCs is likely outdated, but before taking on the task of providing an up-to-date and highly speciated EI, a better understanding of the sensitivity of models to the change in NMVOC input would be highly beneficial. According to the EIs, the solvent sector is the most important sector for NMVOC emissions. Here, the sensitivity of modelled tropospheric O3 to NMVOC emission inventory speciation was investigated by comparing the maximum potential difference in O3 produced using a variety of reported solvent sector EI speciations in an idealized study using a box model. The sensitivity was tested using three chemical mechanisms that describe O3 production chemistry, typically employed for different types of modelling scales - point (MCM v3.2), regional (RADM2), and global (MOZART-4). In the box model simulations, a maximum difference of 15 ppbv (ca. 22% of the mean O3 mixing ratio of 69 ppbv) between the different EI speciations of the solvent sector was calculated. In comparison, for the same EI speciation, but comparing the three different mechanisms, a maximum difference of 6.7 ppbv was observed. Relationships were found between the relative contribution of NMVOC compound classes (alkanes and oxygenated species) in the speciations to the amount of Ox produced in the box model. These results indicate that modelled tropospheric O3 is sensitive to the speciation of NMVOCs as specified by emission inventories, suggesting that detailed updates to the EI speciation

  2. ELEMENTAL SPECIATION IN ENVIRONMENTAL EXPOSURE ASSESSMENT MATRICES

    EPA Science Inventory

    Arsenic and tin are two trace metals where exposure assessments have moved towards a speciation based approach because the toxicity is very chemical form dependent. This toxicity difference can be one of many factors which influence the formulation of certain regulations. For a...

  3. Indian emissions of technology-linked NMVOCs with chemical speciation: An evaluation of the SAPRC99 mechanism with WRF-CAMx simulations

    NASA Astrophysics Data System (ADS)

    Sarkar, M.; Venkataraman, C.; Guttikunda, S.; Sadavarte, P.

    2016-06-01

    Non-methane volatile organic compounds (NMVOCs) are important precursors to reactions producing tropospheric ozone and secondary organic aerosols. The present work uses a detailed technology-linked NMVOC emission database for India, along with a standard mapping method to measured NMVOC profiles, to develop speciated NMVOC emissions, which are aggregated into multiple chemical mechanisms used in chemical transport models. The fully speciated NMVOC emissions inventory with 423 constituent species, was regrouped into model-ready reactivity classes of the RADM2, SAPRC99 and CB-IV chemical mechanisms, and spatially distributed at 25 × 25 km2 resolution, using source-specific spatial proxies. Emissions were considered from four major sectors, i.e. industry, transport, agriculture and residential and from non-combustion activities (use of solvents and paints). It was found that residential cooking with biomass fuels, followed by agricultural residue burning in fields and on-road transport, were largest contributors to the highest reactivity group of NMVOC emissions from India. The emissions were evaluated using WRF-CAMx simulations, using the SAPRC99 photochemical mechanism, over India for contrasting months of April, July and October 2010. Modelled columnar abundance of NO2, CO and O3 agreed well with satellite observations both in magnitude and spatial distribution, in the three contrasting months. Evaluation of monthly and spatial differences between model predictions and observations indicates the need for further refinement of the spatial distribution of NOX emissions, spatio-temporal distribution of agricultural residue burning emissions.

  4. XAS Studies of Se Speciation in Selenite-Fed Rats

    PubMed Central

    Weekley, Claire M.; Aitken, Jade B.; Witting, Paul K.; Harris, Hugh H.

    2014-01-01

    The biological activity of selenium is dependent on its chemical form. Therefore, knowledge of Se chemistry in vivo is required for efficacious use of selenium compounds in disease prevention and treatment. Using X-ray absorption spectroscopy, Se speciation in the kidney, liver, heart, spleen, testis and red blood cells of rats fed control (~0.3 ppm Se) or selenite-supplemented (1 ppm or 5 ppm Se) diets for 3 or 6 weeks, was investigated. X-ray absorption spectroscopy revealed the presence of Se–Se and Se–C species in the kidney and liver, and Se–S species in the kidney, but not the liver. X-ray absorption near edge structure (XANES) spectra showed that there was variation in speciation in the liver and kidneys, but Se speciation was much more uniform in the remaining organs. Using principal component analysis (PCA) to interpret the Se K-edge X-ray absorption spectra, we were able to directly compare the speciation of Se in two different models of selenite metabolism – human lung cancer cells and rat tissues. The effects of Se dose, tissue type and duration of diet on selenium speciation in rat tissues were investigated, and a relationship between the duration of the diet (3 weeks versus 6 weeks) and selenium speciation was observed. PMID:25363824

  5. Arsenic Speciation of Terrestrial Invertebrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriarty, M.M.; Koch, I.; Gordon, R.A.

    2009-07-01

    The distribution and chemical form (speciation) of arsenic in terrestrial food chains determines both the amount of arsenic available to higher organisms, and the toxicity of this metalloid in affected ecosystems. Invertebrates are part of complex terrestrial food webs. This paper provides arsenic concentrations and arsenic speciation profiles for eight orders of terrestrial invertebrates collected at three historical gold mine sites and one background site in Nova Scotia, Canada. Total arsenic concentrations, determined by inductively coupled plasma mass spectrometry (ICP-MS), were dependent upon the classification of invertebrate. Arsenic species were determined by high-performance liquid chromatography (HPLC) ICP-MS and X-ray absorptionmore » spectroscopy (XAS). Invertebrates were found by HPLC ICP-MS to contain predominantly arsenite and arsenate in methanol/water extracts, while XAS revealed that most arsenic is bound to sulfur in vivo. Examination of the spatial distribution of arsenic within an ant tissue highlighted the differences between exogenous and endogenous arsenic, as well as the extent to which arsenic is transformed upon ingestion. Similar arsenic speciation patterns for invertebrate groups were observed across sites. Trace amounts of arsenobetaine and arsenocholine were identified in slugs, ants, and spiders.« less

  6. SPECIATE--EPA'S DATABASE OF SPECIATED EMISSION PROFILES

    EPA Science Inventory

    SPECIATE is EPA's repository of Total Organic Compound and Particulate Matter speciated profiles for a wide variety of sources. The profiles in this system are provided for air quality dispersion modeling and as a library for source-receptor and source apportionment type models. ...

  7. SPECIATE - EPA'S DATABASE OF SPECIATED EMISSION PROFILES

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of total organic compound (TOC) and particulate matter (PM) speciation profiles for emissions from air pollution sources. The data base has recently been updated and an associated report has recently been re...

  8. Arsenic, Antimony, Chromium, and Thallium Speciation in Water and Sediment Samples with the LC-ICP-MS Technique

    PubMed Central

    Jabłońska-Czapla, Magdalena

    2015-01-01

    Chemical speciation is a very important subject in the environmental protection, toxicology, and chemical analytics due to the fact that toxicity, availability, and reactivity of trace elements depend on the chemical forms in which these elements occur. Research on low analyte levels, particularly in complex matrix samples, requires more and more advanced and sophisticated analytical methods and techniques. The latest trends in this field concern the so-called hyphenated techniques. Arsenic, antimony, chromium, and (underestimated) thallium attract the closest attention of toxicologists and analysts. The properties of those elements depend on the oxidation state in which they occur. The aim of the following paper is to answer the question why the speciation analytics is so important. The paper also provides numerous examples of the hyphenated technique usage (e.g., the LC-ICP-MS application in the speciation analysis of chromium, antimony, arsenic, or thallium in water and bottom sediment samples). An important issue addressed is the preparation of environmental samples for speciation analysis. PMID:25873962

  9. The concentration and chemical speciation of arsenic in the Nanpan River, the upstream of the Pearl River, China.

    PubMed

    Yang, Silin; Zhao, Ning; Zhou, Dequn; Wei, Rong; Yang, Bin; Pan, Bo

    2016-04-01

    The concentration and chemical speciation of arsenic (As) in different environmental matrixes (water, sediment, agricultural soils, and non-agricultural soils) were investigated in the Nanpan River area, the upstream of Pearl River, China. The results did not show any obvious transport of As along the flow direction of the river (from upstream to downstream). Total As concentrations in sediment were significantly different from those in agricultural soil. According to the comparison to quality standards, the As in sediments of the studied area have potential ecological risks and a minority of the sampling sites of agricultural soils in the studied area were polluted with As. As speciations were analyzed using sequential extraction and the percentage of non-residual fraction in sediment predominated over residual fraction. We thus believe that As in the studied area was with low mobility and bioavailability in sediment, agricultural soils, and non-agricultural soils. However, the bioavailability and mobility of As in sediment were higher than in both agricultural and non-agricultural soils, and thus, special attention should be paid for the risk assessment of As in the river in future studies.

  10. Speciation of heavy metals in landfill leachate: a review.

    PubMed

    Baun, Dorthe L; Christensen, Thomas H

    2004-02-01

    The literature was reviewed with respect to metal speciation methods in aquatic samples specifically emphasizing speciation of heavy metals in landfill leachate. Speciation here refers to physical fractionation (particulate, colloidal, dissolved), chemical fractionation (organic complexes, inorganic complexes, free metal ions), as well as computer-based thermodynamic models. Relatively few landfill leachate samples have been speciated in detail (less than 30) representing only a few landfills (less than 15). This suggests that our knowledge about metal species in landfill leachate still is indicative. In spite of the limited database and the different definitions of the dissolved fraction (< 0.45 microm or < 0.001 microm) the studies consistently show that colloids as well as organic and inorganic complexes are important for all heavy metals in landfill leachate. The free metal ion constitutes less than 30%, typically less than 10%, of the total metal concentration. This has significant implications for sampling, since no standardized procedures exist, and for assessing the content of metals in leachate in the context of its treatment, toxicity and migration in aquifers.

  11. Chemical fractionation and speciation modelling for optimization of ion-exchange processes to recover palladium from industrial wastewater.

    PubMed

    Folens, K; Van Hulle, S; Vanhaecke, F; Du Laing, G

    2016-01-01

    Palladium is used in several industrial applications and, given its high intrinsic value, intense efforts are made to recover the element. In this hydrometallurgic perspective, ion-exchange (IEX) technologies are principal means. Yet, without incorporating the chemical and physical properties of the Pd present in real, plant-specific conditions, the recovery cannot reach its technical nor economic optimum. This study characterized a relevant Pd-containing waste stream of a mirror manufacturer to provide input for a speciation model, predicting the Pd speciation as a function of pH and chloride concentration. Besides the administered neutral PdCl2 form, both positively and negatively charged [PdCln](2-n) species occur depending on the chloride concentration in solution. Purolite C100 and Relite 2AS IEX resins were selected and applied in combination with other treatment steps to optimize the Pd recovery. A combination of the cation and anion exchange resins was found successful to quantitatively recover Pd. Given the fact that Pd was also primarily associated with particles, laboratory-scale experiments focused on physical removal of the Pd-containing flow were conducted, which showed that particle-bound Pd can already be removed by physical pre-treatment prior to IEX, while the ionic fraction remains fully susceptible to the IEX mechanism.

  12. First ARM Aerosol Chemical Speciation Monitor Users’ Meeting Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Thomas; Aiken, Allison; Zhang, Qi

    The first U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) user facility aerosol chemical speciation monitor (ACSM) users’ meeting was held on April 11-13, 2017, at Aerodyne Research, Inc. in Billerica, Massachusetts, to discuss the Southern Great Plains (SGP) atmospheric observatory ACSM data quality and establish best practices for data collection and processing. The participants examined six years of calibration and processed data. Specific issues raised by data users were addressed and case studies from two field experiments were examined. The most recent data from the ACSM installed in the newly commissioned SGP ARM Mobile Facility 7 (AMF7) weremore » also evaluated. The participants recommended that the SGP ACSM data be reprocessed using calibration values averaged over the history of SGP ACSM calibrations. They also recommended that the data quality be evaluated by comparing (1) observed versus predicted particulate ammonium (NH4+) mass loadings, and (2) ACSM mass loadings versus mass loadings calculated from particle size and light scattering data. The contents of the datastreams from the ACSM were defined based on ARM requirements and the necessary tasks to implement these recommendations were assigned to the mentor and the instrument manufacturer. Some of the recommendations were implemented for the SGP data and are presented in this report. Data from two ARM sites located in marine environments were also analyzed. These analyses as well as instrument intercomparisons have led to further questions about data treatment. These will be addresses in the second users’ meeting scheduled for the summer of 2018.« less

  13. Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in downtown Atlanta, Georgia

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Canagaratna, M. R.; Croteau, P. L.; Baumann, K.; Edgerton, E. S.; Kollman, M. S.; Ng, N. L.; Verma, V.; Shaw, S. L.; Knipping, E. M.; Worsnop, D. R.; Jayne, J. T.; Weber, R. J.; Surratt, J. D.

    2014-07-01

    Currently, there are a limited number of field studies that evaluate the long-term performance of the Aerodyne Aerosol Chemical Speciation Monitor (ACSM) against established monitoring networks. In this study, we present seasonal intercomparisons of the ACSM with collocated fine aerosol (PM2.5) measurements at the Southeastern Aerosol Research and Characterization (SEARCH) Jefferson Street (JST) site near downtown Atlanta, GA, during 2011-2012. Intercomparison of two collocated ACSMs resulted in strong correlations (r2 > 0.8) for all chemical species, except chloride (r2 = 0.21) indicating that ACSM instruments are capable of stable and reproducible operation. In general, speciated ACSM mass concentrations correlate well (r2 > 0.7) with the filter-adjusted continuous measurements from JST, although the correlation for nitrate is weaker (r2 = 0.55) in summer. Correlations of the ACSM NR-PM1 (non-refractory particulate matter with aerodynamic diameter less than or equal to 1 μm) plus elemental carbon (EC) with tapered element oscillating microbalance (TEOM) PM2.5 and Federal Reference Method (FRM) PM1 mass are strong with r2 > 0.7 and r2 > 0.8, respectively. Discrepancies might be attributed to evaporative losses of semi-volatile species from the filter measurements used to adjust the collocated continuous measurements. This suggests that adjusting the ambient aerosol continuous measurements with results from filter analysis introduced additional bias to the measurements. We also recommend to calibrate the ambient aerosol monitoring instruments using aerosol standards rather than gas-phase standards. The fitting approach for ACSM relative ionization for sulfate was shown to improve the comparisons between ACSM and collocated measurements in the absence of calibrated values, suggesting the importance of adding sulfate calibration into the ACSM calibration routine.

  14. SPECIATION OF GAS-PHASE AND FINE PARTICLE EMISSIONS FROM BURNING OF FOLIAR FUELS

    EPA Science Inventory

    Particle size distributions (10-1000 nm aerodynamic diameter), physical and chemical properties of fine particle matter (PM2.5) with aerodynamic diameter <2.5 micrometers, and gas-phase emissions from controlled open burning of assorted taxa were measured. Chemical speciation of ...

  15. Bio-metals imaging and speciation in cells using proton and synchrotron radiation X-ray microspectroscopy

    PubMed Central

    Ortega, Richard; Devès, Guillaume; Carmona, Asunción

    2009-01-01

    The direct detection of biologically relevant metals in single cells and of their speciation is a challenging task that requires sophisticated analytical developments. The aim of this article is to present the recent achievements in the field of cellular chemical element imaging, and direct speciation analysis, using proton and synchrotron radiation X-ray micro- and nano-analysis. The recent improvements in focusing optics for MeV-accelerated particles and keV X-rays allow application to chemical element analysis in subcellular compartments. The imaging and quantification of trace elements in single cells can be obtained using particle-induced X-ray emission (PIXE). The combination of PIXE with backscattering spectrometry and scanning transmission ion microscopy provides a high accuracy in elemental quantification of cellular organelles. On the other hand, synchrotron radiation X-ray fluorescence provides chemical element imaging with less than 100 nm spatial resolution. Moreover, synchrotron radiation offers the unique capability of spatially resolved chemical speciation using micro-X-ray absorption spectroscopy. The potential of these methods in biomedical investigations will be illustrated with examples of application in the fields of cellular toxicology, and pharmacology, bio-metals and metal-based nano-particles. PMID:19605403

  16. Chemical behavior of Cu, Zn, Cd, and Pb in a eutrophic reservoir: speciation and complexation capacity.

    PubMed

    Tonietto, Alessandra Emanuele; Lombardi, Ana Teresa; Choueri, Rodrigo Brasil; Vieira, Armando Augusto Henriques

    2015-10-01

    This research aimed at evaluating cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) speciation in water samples as well as determining water quality parameters (alkalinity, chlorophyll a, chloride, conductivity, dissolved organic carbon, dissolved oxygen, inorganic carbon, nitrate, pH, total suspended solids, and water temperature) in a eutrophic reservoir. This was performed through calculation of free metal ions using the chemical equilibrium software MINEQL+ 4.61, determination of labile, dissolved, and total metal concentrations via differential pulse anodic stripping voltammetry, and determination of complexed metal by the difference between the total concentration of dissolved and labile metal. Additionally, ligand complexation capacities (CC), such as the strength of the association of metals-ligands (logK'ML) and ligand concentrations (C L) were calculated via Ruzic's linearization method. Water samples were taken in winter and summer, and the results showed that for total and dissolved metals, Zn > Cu > Pb > Cd concentration. In general, higher concentrations of Cu and Zn remained complexed with the dissolved fraction, while Pb was mostly complexed with particulate materials. Chemical equilibrium modeling (MINEQL+) showed that Zn(2+) and Cd(2+) dominated the labile species, while Cu and Pb were complexed with carbonates. Zinc was a unique metal for which a direct relation between dissolved species with labile and complexed forms was obtained. The CC for ligands indicated a higher C L for Cu, followed by Pb, Zn, and Cd in decreasing amounts. Nevertheless, the strength of the association of all metals and their respective ligands was similar. Factor analysis with principal component analysis as the extraction procedure confirmed seasonal effects on water quality parameters and metal speciation. Total, dissolved, and complexed Cu and total, dissolved, complexed, and labile Pb species were all higher in winter, whereas in summer, Zn was mostly present in the

  17. Impact of Environmentally Based Chemical Hardness on Uranium Speciation and Toxicity in Six Aquatic Species

    PubMed Central

    Goulet, Richard R; Thompson, Patsy A; Serben, Kerrie C; Eickhoff, Curtis V

    2015-01-01

    Treated effluent discharge from uranium (U) mines and mills elevates the concentrations of U, calcium (Ca), magnesium (Mg), and sulfate (SO42–) above natural levels in receiving waters. Many investigations on the effect of hardness on U toxicity have been experiments on the combined effects of changes in hardness, pH, and alkalinity, which do not represent water chemistry downstream of U mines and mills. Therefore, more toxicity studies with water chemistry encountered downstream of U mines and mills are necessary to support predictive assessments of impacts of U discharge to the environment. Acute and chronic U toxicity laboratory bioassays were realized with 6 freshwater species in waters of low alkalinity, circumneutral pH, and a range of chemical hardness as found in field samples collected downstream of U mines and mills. In laboratory-tested waters, speciation calculations suggested that free uranyl ion concentrations remained constant despite increasing chemical hardness. When hardness increased while pH remained circumneutral and alkalinity low, U toxicity decreased only to Hyalella azteca and Pseudokirchneriella subcapitata. Also, Ca and Mg did not compete with U for the same uptake sites. The present study confirms that the majority of studies concluding that hardness affected U toxicity were in fact studies in which alkalinity and pH were the stronger influence. The results thus confirm that studies predicting impacts of U downstream of mines and mills should not consider chemical hardness. PMID:25475484

  18. Adding to the Mercury Speciation Toolbox

    NASA Astrophysics Data System (ADS)

    Fitts, J. P.; Northrup, P. A.; Chidambaram, D.; Kalb, P. D.

    2007-12-01

    Mercury was used to separate lithium-6 isotope for weapons production at the Y-12 Plant in Oak Ridge, TN in the 1950s and 1960s. A large portion of the waste Hg entered the environment and continues to move throughout the sub-surface and surface waters in the area. Environmental management of Hg contamination within this complex hydrologic system, where Hg speciation and the mobile fraction have been found to vary widely, will require ongoing characterization and predictive modeling of Hg speciation. State-of-the-art spectroscopic tools that can directly probe Hg speciation in preserved aqueous and sediment samples with greater sensitivity, however, are required to determine rates and mechanisms of biogeochemical reactions. We will present the first results demonstrating the use of x-ray absorption spectroscopy (XAS) at the Hg M5 edge (2295 eV) to fingerprint Hg species. Heavy-metal M5 absorption edges can have very sharp features due to local electron transitions, and therefore, we are developing this edge as a tool for quantitative measurement of Hg species. In addition, sulfur speciation using the sulfur K absorption edge, which is at a similar energy (2472 eV), can be measured in the same scan as the Hg M5 edge. Potentially important organic and inorganic sulfur species (sulfide, disulfide, elemental sulfur, sulfite and sulfate) are readily differentiated, and thereby, provides an independent method for monitoring the redox state of the system along with changes in S-Hg bonding. We will also present x-ray microprobe 2-D concentration maps of Hg and other elements at the grain and pore scales to identify its microscopic distribution and chemical associations. When used in combination with established sequential extraction and direct spectroscopic methods, the addition of XAS at the Hg M5 edge should provide a significant advancement in the determination of Hg speciation in complex biogeochemical environments.

  19. The long term tsunami impact: Evolution of iron speciation and major elements concentration in tsunami deposits from Thailand.

    PubMed

    Kozak, Lidia; Niedzielski, Przemyslaw

    2017-08-01

    The article describes the unique studies of the chemical composition changes of new geological object (tsunami deposits in south Thailand - Andaman Sea Coast) during four years (2005-2008) from the beginning of formation of it (deposition of tsunami transported material, 26 December 2004). The chemical composition of the acid leachable fraction of the tsunami deposits has been studied in the scope of concentration macrocompounds - concentration of calcium, magnesium, iron, manganese and iron speciation - the occurrence of Fe(II), Fe(III) and non-ionic iron species described as complexed iron (Fe complex). The changes of chemical composition and iron speciation in the acid leachable fraction of tsunami deposits have been observed with not clear tendencies of changes direction. For iron speciation changes the transformation of the Fe complex to Fe(III) has been recorded with no significant changes of the level of Fe(II). Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Chemical speciation and enzymatic impact of silver in antimicrobial fabric buried in soil.

    PubMed

    Takeuchi, Satoshi; Hashimoto, Yohey; Yamaguchi, Noriko; Toyota, Koki

    2016-11-05

    This study investigated the impact of Ag in antibacterial fabric on soil enzymes in relation to solubility and speciation of Ag. Sections of Ag-containing sock fabric (1.0-1.5cm(2)) were incubated in soils with aerobic and anaerobic conditions and periodically determined activity of arylsulfatase, dehydrogenase and urease. Microscale distribution and speciation of Ag at the interface between socks and soil particles were investigated using micro-focused X-ray fluorescence (μ-XRF), and Ag speciation was determined using micro-focused X-ray absorption near edge structure (μ-XANES) spectroscopy. Results showed that the sock fabric consisted of elemental Ag and Ag2S. After 60-day exposure to soil, majority (50-90%) of Ag in sock did not undergo phase transformation and present as elemental Ag and Ag2S in aerobic and anaerobic conditions. A part of Ag in sock fabric was bound with soil colloids (<15%), depending on the distance from the edge of sock fabric. Soil enzyme activities were overall unaffected by Ag in sock textile after 60days of incubation, although a significant decrease in arylsulfatase activity was found only in the initial stage of soil incubation. Silver in the sock fabric is relatively stable and has little detrimental impacts on enzyme activity in ordinary soil conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Speciation evolution of zinc and copper during pyrolysis and hydrothermal carbonization treatments of sewage sludges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Rixiang; Zhang, Bei; Saad, Emily M.

    Thermal and hydrothermal treatments are promising techniques for sewage sludge management that can potentially facilitate safe waste disposal, energy recovery, and nutrient recovery/recycling. Content and speciation of heavy metals in the treatment products affect the potential environmental risks upon sludge disposal and/or application of the treatment products. Therefore, it is important to study the speciation transformation of heavy metals and the effects of treatment conditions. By combining synchrotron X-ray spectroscopy/microscopy analysis and sequential chemical extraction, this study systematically characterized the speciation of Zn and Cu in municipal sewage sludges and their chars derived from pyrolysis (a representative thermal treatment technique)more » and hydrothermal carbonization (HTC; a representative hydrothermal treatment technique). Spectroscopy analysis revealed enhanced sulfidation of Zn and Cu by anaerobic digestion and HTC treatments, as compared to desulfidation by pyrolysis. Overall, changes in the chemical speciation and matrix properties led to reduced mobility of Zn and Cu in the treatment products. These results provide insights into the reaction mechanisms during pyrolysis and HTC treatments of sludges and can help evaluate the environmental/health risks associated with the metals in the treatment products.« less

  2. Distribution of Cd, Pb, Zn and Cu and their chemical speciations in soils from a peri-smelter area in northeast China

    NASA Astrophysics Data System (ADS)

    Du, Ping; Xue, Nandong; Liu, Li; Li, Fasheng

    2008-07-01

    An exploratory study on soil contamination of heavy metals was carried out surrounding Huludao zinc smelter in Liaoning province, China. The distribution of total heavy metals and their chemical speciations were investigated. The correlations between heavy metal speciations and soil pH values in corresponding sites were also analyzed. In general, Cd, Zn, Pb, Cu and As presented a significant contamination in the area near the smelter, comparied with Environmental Quality Standards for Soils in China. The geoaccumulation index showed the degree of contamination: Cd > Zn > Pb > Cu > As. There was no obvious pollution of Cr and Ni in the studied area. The speciation analysis showed that the dominant fraction of Cd and Zn was the acid soluble fraction, and the second was the residual fraction. Pb was mostly associated with the residual fraction, which constituted more than 50% of total concentration in all samples. Cu in residual fraction accounted for a high percentage (40-80%) of total concentration, and the proportion of Cu in the oxidizable fraction is higher than that of other metals. The distribution pattern of Pb and Zn was obviously affected by soil pH. It seemed that Pb and Zn content in acid solution fraction increased with increasing soil pH values, while Cd content in acid soluble fraction accounted for more proportion in neutral and alkaline groups than acidic one. The fraction distribution patterns of Cu in three pH groups were very similar and independent of soil pH values. And the residual fraction of Cu took a predominant part (50%) of the total content.

  3. Visualizing speciation in artificial cichlid fish.

    PubMed

    Clement, Ross

    2006-01-01

    The Cichlid Speciation Project (CSP) is an ALife simulation system for investigating open problems in the speciation of African cichlid fish. The CSP can be used to perform a wide range of experiments that show that speciation is a natural consequence of certain biological systems. A visualization system capable of extracting the history of speciation from low-level trace data and creating a phylogenetic tree has been implemented. Unlike previous approaches, this visualization system presents a concrete trace of speciation, rather than a summary of low-level information from which the viewer can make subjective decisions on how speciation progressed. The phylogenetic trees are a more objective visualization of speciation, and enable automated collection and summarization of the results of experiments. The visualization system is used to create a phylogenetic tree from an experiment that models sympatric speciation.

  4. Host shift and speciation in a coral-feeding nudibranch

    PubMed Central

    Faucci, Anuschka; Toonen, Robert J; Hadfield, Michael G

    2006-01-01

    While the role of host preference in ecological speciation has been investigated extensively in terrestrial systems, very little is known in marine environments. Host preference combined with mate choice on the preferred host can lead to population subdivision and adaptation leading to host shifts. We use a phylogenetic approach based on two mitochondrial genetic markers to disentangle the taxonomic status and to investigate the role of host specificity in the speciation of the nudibranch genus Phestilla (Gastropoda, Opisthobranchia) from Guam, Palau and Hawaii. Species of the genus Phestilla complete their life cycle almost entirely on their specific host coral (species of Porites, Goniopora and Tubastrea). They reproduce on their host coral and their planktonic larvae require a host-specific chemical cue to metamorphose and settle onto their host. The phylogenetic trees of the combined cytochrome oxidase I and ribosomal 16S gene sequences clarify the relationship among species of Phestilla identifying most of the nominal species as monophyletic clades. We found a possible case of host shift from Porites to Goniopora and Tubastrea in sympatric Phestilla spp. This represents one of the first documented cases of host shift as a mechanism underlying speciation in a marine invertebrate. Furthermore, we found highly divergent clades within Phestilla sp. 1 and Phestilla minor (8.1–11.1%), suggesting cryptic speciation. The presence of a strong phylogenetic signal for the coral host confirms that the tight link between species of Phestilla and their host coral probably played an important role in speciation within this genus. PMID:17134995

  5. Organic Nitrogen in Atmospheric Drops and Particles: Concentrations, (Limited) Speciation, and Chemical Transformations

    NASA Astrophysics Data System (ADS)

    Anastasio, C.; Zhang, Q.

    2003-12-01

    While quite a bit is known of the concentrations, speciation, and chemistry of inorganic forms of nitrogen in the atmosphere, the same cannot be said for organic forms. Despite this, there is growing evidence that organic N (ON) is ubiquitous in the atmosphere, especially in atmospheric condensed phases such as fog/cloud drops and aerosol particles. Although the major compounds that make up organic N are generally unknown, as are the sources of these compounds, it is clear that there are significant fluxes of ON between the atmosphere and ecosystems. It also appears that organic N can have significant effects in both spheres. The goal of our recent work in this area has been to better describe the atmospheric component of the biogeochemistry of organic nitrogen. Based on particle, gas, and fogwater samples from Northern California we have made three major findings: 1) Organic N represents a significant component, approximately 20%, of the total atmospheric N loading in these samples. This is broadly consistent with studies from other locations. 2) Amino compounds, primarily as combined amino acids, account for approximately 20% of the measured ON in our condensed phase samples. Given the properties of amino acids, these compounds could significantly affect the chemical and physical properties of atmospheric particles. 3) Organic nitrogen in atmospheric particles and drops is transformed to inorganic forms - primarily ammonium, nitrate, and nitrogen oxides (NOx) - during exposure to sunlight and/or ozone. These chemical reactions likely increase the bioavailability of the condensed phase nitrogen pool and enhance its biological effects after deposition to ecosystems.

  6. Role of natural nanoparticles on the speciation of Ni in andosols of la Reunion

    NASA Astrophysics Data System (ADS)

    Levard, Clément; Doelsch, Emmanuel; Rose, Jérôme; Masion, Armand; Basile-Doelsch, Isabelle; Proux, Olivier; Hazemann, Jean-Louis; Borschneck, Daniel; Bottero, Jean-Yves

    2009-08-01

    Andosols on the island of Réunion have high nickel (Ni) concentrations due to the natural pedo-geochemical background. Enhanced knowledge of Ni speciation is necessary to predict the bioavailability and potential toxicity of this element. Ni speciation in these andosols, marked by the presence of high amounts of natural aluminosilicate nanoparticles, was investigated in two complementary systems: (i) In a soil sample—densimetric fractionation was first performed in order to separate the potential bearing phases, prior to Ni speciation characterization. (ii) In a synthetic sample—Ni reactivity with synthetic aluminosilicate nanoparticle analogs were studied. In both cases, Ni speciation was determined using X-ray absorption spectroscopy (XAS). The results revealed that Ni had the same local environment in both systems (natural and synthetic systems), and Ni was chemically linked to natural short-range ordered aluminosilicates or analogs. This complex represented about 75% of the total Ni in the studied soil.

  7. Chemical Speciation and Health Risk Assessment of Fine Particulate Bound Trace Metals Emitted from Ota Industrial Estate, Nigeria

    NASA Astrophysics Data System (ADS)

    Anake, Winifred U.; Ana, Godson R. E. E.; Williams, Akan B.; Fred-Ahmadu, Omowunmi H.; Benson, Nsikak U.

    2017-05-01

    In this study carcinogenic and non-carcinogenic health risk due to exposure to PM2.5-bound trace metals from an industrial area in Southwestern Nigeria was estimated. A four-step chemical sequential extraction procedure was employed for the chemical extraction of arsenic (As), cadmium (Cd), chromium (Cr) copper (Cu), manganese (Mn), nickel (Ni), and zinc (Zn). Samples were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). Results reveal Cr and Cu as the most dominant exchangeable fraction metals, indicating possibility of their being readily soluble once PM2.5 is inhaled. Cd and Cr record the highest bioavailability index of 0.7. The cumulative lifetime cancer risks due to inhalation exposure for adults (4.25×10-2), children 1-6 years old (4.87×10-3), and children 6-18 years old (1.46×10-2) were found above Environmental Protection Agency’s acceptable range of 1×10-6 to 1×10-4. The hazard index values for all studied trace metals suggest significant potential for non-carcinogenic health risks to adults and children. The choice of chemical speciation as an essential tool in facilitating a better predictive insight on metal bioavailability and toxicity for immediate remediation action has been highlighted.

  8. MODELING MONOMETHYLMERCURY AND TRIBUTYLTIN SPECIATION WITH EPA'S GEOCHEMICAL SPECIATION MODEL MINTEQA2

    EPA Science Inventory

    Given the complexity of the various, simultaneous (and competing) equilibrium reactions governing the speciation of ionic species in aquatic systems, EPA has developed and distributed the geochemical speciation model MINTEQA2 (Brown and Allison, 1987, Allison et al., 1991; Hydrog...

  9. Impact of environmentally based chemical hardness on uranium speciation and toxicity in six aquatic species.

    PubMed

    Goulet, Richard R; Thompson, Patsy A; Serben, Kerrie C; Eickhoff, Curtis V

    2015-03-01

    Treated effluent discharge from uranium (U) mines and mills elevates the concentrations of U, calcium (Ca), magnesium (Mg), and sulfate (SO4 (2-) ) above natural levels in receiving waters. Many investigations on the effect of hardness on U toxicity have been experiments on the combined effects of changes in hardness, pH, and alkalinity, which do not represent water chemistry downstream of U mines and mills. Therefore, more toxicity studies with water chemistry encountered downstream of U mines and mills are necessary to support predictive assessments of impacts of U discharge to the environment. Acute and chronic U toxicity laboratory bioassays were realized with 6 freshwater species in waters of low alkalinity, circumneutral pH, and a range of chemical hardness as found in field samples collected downstream of U mines and mills. In laboratory-tested waters, speciation calculations suggested that free uranyl ion concentrations remained constant despite increasing chemical hardness. When hardness increased while pH remained circumneutral and alkalinity low, U toxicity decreased only to Hyalella azteca and Pseudokirchneriella subcapitata. Also, Ca and Mg did not compete with U for the same uptake sites. The present study confirms that the majority of studies concluding that hardness affected U toxicity were in fact studies in which alkalinity and pH were the stronger influence. The results thus confirm that studies predicting impacts of U downstream of mines and mills should not consider chemical hardness. Environ Toxicol Chem 2015;34:562-574. © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of SETAC. © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of SETAC.

  10. Using Visible Spectrophotometers and pH Measurements to Study Speciation in a Guided-Inquiry Laboratory

    ERIC Educational Resources Information Center

    Otto, William H.; Larive, Cynthia K.; Mason, Susan L.; Robinson, Janet B.; Heppert Joseph A.; Ellis, James D.

    2005-01-01

    An experiment to perform a simple initial investigation that illustrates concepts of speciation and equilibrium, using the instrument and chemical resources in the laboratory is presented. The investigation showed that the presence of multiple chemical species in a reaction mixture (phenol red solution) reflects the acid and base conditions…

  11. A new approach to chemically-speciated submicron aerosol fluxes over tropical and temperate forests.

    NASA Astrophysics Data System (ADS)

    Farmer, D. K.; Kimmel, J. R.; Nemitz, E.; Phillips, G.; Docherty, K.; Chen, Q.; Martin, S.; Cubison, M.; Jimenez, J.

    2008-12-01

    Aerosols play an important role in the planet's radiation balance; however, their sources and sinks remain highly uncertain. In particular, due to instrumental limitations, there are few measurements of particle fluxes over the Earth's surface. Particles are expected to deposit over forests, leading not only to an aerosol sink, but also to an ecosystem source of nutrients and acids. However, forests emit volatile organic compounds (VOCs) that are known to produce secondary organic aerosol, thus also acting as aerosol sources. We have developed a new approach to measure biosphere-atmosphere exchange of chemically-speciated aerosol using a High Resolution-Time of Flight-Aerosol Mass Spectrometer (HR-ToF-AMS; DeCarlo et al., Anal. Chem., 2006) in a new Eddy Covariance Flux mode (10 Hz). This approach allows us to directly measure fluxes of non-refractory organic, sulphate, nitrate and ammonium in submicron particles. Measurements have been carried out over two forests: a temperate ponderosa pine plantation at Blodgett Forest (BEARPEX-I campaign, 2007) and a tropical rain forest in the Brazilian Amazon during the wet season (AMAZE campaign, 2008). Data collected at these sites allows us to demonstrate that the flux mode of the HR-ToF-AMS meets the rigorous instrumental requirements of the eddy covariance approach and that fluxes of different chemical species can be quantified. Aerosol fluxes under clean and anthropogenically-impacted conditions are compared. These measurements allow us to better constrain dry deposition over forested environments and to understand the potential of flux measurements to constrain the biogenic SOA budget.

  12. Antimony leaching and chemical species analyses in an industrial solid waste: Surface and bulk speciation using ToF-SIMS and XANES.

    PubMed

    Kappen, P; Ferrando-Miguel, G; Reichman, S M; Innes, L; Welter, E; Pigram, P J

    2017-05-05

    The surface chemistry and bulk chemical speciation of solid industrial wastes containing 8wt-% antimony (Sb) were investigated using synchrotron X-ray Absorption Near Edge Structure (XANES) and Time-of-Flight Ion Secondary Mass Spectrometry (ToF-SIMS). Leaching experiments were conducted in order to better understand the behavior of Sb in waste streams and to inform regulatory management of antimony-containing wastes. The experiments also demonstrate how a combination of XANES and ToF-SIMS adds value to the field of waste investigations. Leaching treatments (acid and base) were performed at a synchrotron over 24h time periods. Surface analyses of the wastes before leaching showed the presence of Sb associated with S and O. Bulk analyses revealed Sb to be present, primarily, as trivalent sulfide species. Both acid and base leaching did not change the antimony speciation on the solid. Leaching transferred about 1% of the total Sb into solution where Sb was found to be present as Sb(V). XANES data showed similarities between leachate and FeSbO 4 . During base leaching, the Sb content in solution gradually increased over time, and potential desorption mechanisms are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Sample preparation and storage can change arsenic speciation in human urine.

    PubMed

    Feldmann, J; Lai, V W; Cullen, W R; Ma, M; Lu, X; Le, X C

    1999-11-01

    Stability of chemical speciation during sample handling and storage is a prerequisite to obtaining reliable results of trace element speciation analysis. There is no comprehensive information on the stability of common arsenic species, such as inorganic arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid, dimethylarsinic acid, and arsenobetaine, in human urine. We compared the effects of the following storage conditions on the stability of these arsenic species: temperature (25, 4, and -20 degrees C), storage time (1, 2, 4, and 8 months), and the use of additives (HCl, sodium azide, benzoic acid, benzyltrimethylammonium chloride, and cetylpyridinium chloride). HPLC with both inductively coupled plasma mass spectrometry and hydride generation atomic fluorescence detection techniques were used for the speciation of arsenic. We found that all five of the arsenic species were stable for up to 2 months when urine samples were stored at 4 and -20 degrees C without any additives. For longer period of storage (4 and 8 months), the stability of arsenic species was dependent on urine matrices. Whereas the arsenic speciation in some urine samples was stable for the entire 8 months at both 4 and -20 degrees C, other urine samples stored under identical conditions showed substantial changes in the concentration of As(III), As(V), monomethylarsonic acid, and dimethylarsinic acid. The use of additives did not improve the stability of arsenic speciation in urine. The addition of 0.1 mol/L HCl (final concentration) to urine samples produced relative changes in inorganic As(III) and As(V) concentrations. Low temperature (4 and -20 degrees C) conditions are suitable for the storage of urine samples for up to 2 months. Untreated samples maintain their concentration of arsenic species, and additives have no particular benefit. Strong acidification is not appropriate for speciation analysis.

  14. Pollinator specificity, floral odour chemistry and the phylogeny of Australian sexually deceptive Chiloglottis orchids: implications for pollinator-driven speciation.

    PubMed

    Peakall, Rod; Ebert, Daniel; Poldy, Jacqueline; Barrow, Russell A; Francke, Wittko; Bower, Colin C; Schiestl, Florian P

    2010-10-01

    • Sexually deceptive orchids are predicted to represent a special case of plant speciation where strong reproductive isolation may be achieved by differences in floral scent. • In this study of Australian sexually deceptive Chiloglottis orchids, we performed choice experiments to test for wasp pollinator specificity in the field; identified the compounds involved in pollinator attraction by gas chromatography with electroantennographic detection (GC-EAD), gas chromatography with mass selective detection (GC-MS), chemical synthesis and behavioural bioassays; and mapped our chemical findings on to a phylogeny of the orchids. • Field experiments confirmed pollination is a highly specific interaction, but also revealed a pool of nonpollinating 'minor responder' wasps. Six novel compounds, all 2,5-dialkylcyclohexan-1,3-diones, called 'chiloglottones', were discovered to be involved in pollinator attraction. Bioassays confirmed that pollinator specificity has a strong chemical basis, with specificity among sympatric orchids maintained by either different single compounds or a variation in a blend of two compounds. The phylogenetic overlay confirmed that speciation is always associated with pollinator switching and usually underpinned by chemical change. • If the chemical differences that control reproductive isolation in Chiloglottis have a strong genetic basis, and given the confirmed pool of potential pollinators, we conclude that pollinator-driven speciation appears highly plausible in this system. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  15. Speciation genes in plants

    PubMed Central

    Rieseberg, Loren H.; Blackman, Benjamin K.

    2010-01-01

    Background Analyses of speciation genes – genes that contribute to the cessation of gene flow between populations – can offer clues regarding the ecological settings, evolutionary forces and molecular mechanisms that drive the divergence of populations and species. This review discusses the identities and attributes of genes that contribute to reproductive isolation (RI) in plants, compares them with animal speciation genes and investigates what these genes can tell us about speciation. Scope Forty-one candidate speciation genes were identified in the plant literature. Of these, seven contributed to pre-pollination RI, one to post-pollination, prezygotic RI, eight to hybrid inviability, and 25 to hybrid sterility. Genes, gene families and genetic pathways that were frequently found to underlie the evolution of RI in different plant groups include the anthocyanin pathway and its regulators (pollinator isolation), S RNase-SI genes (unilateral incompatibility), disease resistance genes (hybrid necrosis), chimeric mitochondrial genes (cytoplasmic male sterility), and pentatricopeptide repeat family genes (cytoplasmic male sterility). Conclusions The most surprising conclusion from this review is that identities of genes underlying both prezygotic and postzygotic RI are often predictable in a broad sense from the phenotype of the reproductive barrier. Regulatory changes (both cis and trans) dominate the evolution of pre-pollination RI in plants, whereas a mix of regulatory mutations and changes in protein-coding genes underlie intrinsic postzygotic barriers. Also, loss-of-function mutations and copy number variation frequently contribute to RI. Although direct evidence of positive selection on speciation genes is surprisingly scarce in plants, analyses of gene family evolution, along with theoretical considerations, imply an important role for diversifying selection and genetic conflict in the evolution of RI. Unlike in animals, however, most candidate speciation

  16. Chemical speciation and mobilization of copper and zinc in naturally contaminated mine soils with citric and tartaric acids.

    PubMed

    Pérez-Esteban, Javier; Escolástico, Consuelo; Moliner, Ana; Masaguer, Alberto

    2013-01-01

    A one-step extraction procedure and a leaching column experiment were performed to assess the effects of citric and tartaric acids on Cu and Zn mobilization in naturally contaminated mine soils to facilitate assisted phytoextraction. A speciation modeling of the soil solution and the metal fractionation of soils were performed to elucidate the chemical processes that affected metal desorption by organic acids. Different extracting solutions were prepared, all of which contained 0.01 M KNO(3) and different concentrations of organic acids: control without organic acids, 0.5 mM citric, 0.5 mM tartaric, 10 mM citric, 10 mM tartaric, and 5 mM citric +5 mM tartaric. The results of the extraction procedure showed that higher concentrations of organic acids increased metal desorption, and citric acid was more effective at facilitating metal desorption than tartaric acid. Metal desorption was mainly influenced by the decreasing pH and the dissolution of Fe and Mn oxides, not by the formation of soluble metal-organic complexes as was predicted by the speciation modeling. The results of the column study reported that low concentrations of organic acids did not significantly increase metal mobilization and that higher doses were also not able to mobilize Zn. However, 5-10 mM citric acid significantly promoted Cu mobilization (from 1 mg kg(-1) in the control to 42 mg kg(-1) with 10 mM citric acid) and reduced the exchangeable (from 21 to 3 mg kg(-1)) and the Fe and Mn oxides (from 443 to 277 mg kg(-1)) fractions. Citric acid could efficiently facilitate assisted phytoextraction techniques. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Extraordinarily rapid speciation in a marine fish

    PubMed Central

    Momigliano, Paolo; Jokinen, Henri; Fraimout, Antoine; Florin, Ann-Britt; Norkko, Alf; Merilä, Juha

    2017-01-01

    Divergent selection may initiate ecological speciation extremely rapidly. How often and at what pace ecological speciation proceeds to yield strong reproductive isolation is more uncertain. Here, we document a case of extraordinarily rapid speciation associated with ecological selection in the postglacial Baltic Sea. European flounders (Platichthys flesus) in the Baltic exhibit two contrasting reproductive behaviors: pelagic and demersal spawning. Demersal spawning enables flounders to thrive in the low salinity of the Northern Baltic, where eggs cannot achieve neutral buoyancy. We show that demersal and pelagic flounders are a species pair arising from a recent event of speciation. Despite having a parapatric distribution with extensive overlap, the two species are reciprocally monophyletic and show strongly bimodal genotypic clustering and no evidence of contemporary migration, suggesting strong reproductive isolation. Divergence across the genome is weak but shows strong signatures of selection, a pattern suggestive of a recent ecological speciation event. We propose that spawning behavior in Baltic flounders is the trait under ecologically based selection causing reproductive isolation, directly implicating a process of ecological speciation. We evaluated different possible evolutionary scenarios under the approximate Bayesian computation framework and estimate that the speciation process started in allopatry ∼2,400 generations ago, following the colonization of the Baltic by the demersal lineage. This is faster than most known cases of ecological speciation and represents the most rapid event of speciation ever reported for any marine vertebrate. PMID:28533412

  18. Speciation genetics: current status and evolving approaches

    PubMed Central

    Wolf, Jochen B. W.; Lindell, Johan; Backström, Niclas

    2010-01-01

    The view of species as entities subjected to natural selection and amenable to change put forth by Charles Darwin and Alfred Wallace laid the conceptual foundation for understanding speciation. Initially marred by a rudimental understanding of hereditary principles, evolutionists gained appreciation of the mechanistic underpinnings of speciation following the merger of Mendelian genetic principles with Darwinian evolution. Only recently have we entered an era where deciphering the molecular basis of speciation is within reach. Much focus has been devoted to the genetic basis of intrinsic postzygotic isolation in model organisms and several hybrid incompatibility genes have been successfully identified. However, concomitant with the recent technological advancements in genome analysis and a newfound interest in the role of ecology in the differentiation process, speciation genetic research is becoming increasingly open to non-model organisms. This development will expand speciation research beyond the traditional boundaries and unveil the genetic basis of speciation from manifold perspectives and at various stages of the splitting process. This review aims at providing an extensive overview of speciation genetics. Starting from key historical developments and core concepts of speciation genetics, we focus much of our attention on evolving approaches and introduce promising methodological approaches for future research venues. PMID:20439277

  19. Estimating particle speciation concentrations using MISR retrieved aerosol properties in southern California

    NASA Astrophysics Data System (ADS)

    Meng, X.; Liu, Y.; Diner, D. J.; Garay, M. J.

    2016-12-01

    Ambient fine particle (PM2.5) has been positively associated with increased mortality and morbidity worldwide. Recent studies highlight the characteristics and differential toxicity of PM2.5 chemical components, which are important for identifying sources, developing targeted particulate matter (PM) control strategies, and protecting public health. Modelling with satellite retrieved data has been proved as the most cost-effective way to estimate ground PM2.5 levels; however, limited studies have predict PM2.5 chemical components with this method. In this study, the experimental MISR 4.4 km aerosol retrievals were used to predict ground-level particle sulfate, nitrite, organic carbon and element carbon concentrations in 16 counties of southern California. The PM2.5 chemical components concentrations were obtained from the National Chemical Speciation Network (CSN) and the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. A generalized additive model (GAM) was developed based on 16-years data (2000-2015) by combining the MISR aerosol retrievals, meteorological variables and geographical indicators together. Model performance was assessed by model fitted R2 and root-mean-square error (RMSE) and 10-fold cross validation. Spatial patterns of sulfate, nitrate, OC and EC concentrations were also examined with 2-D prediction surfaces. This is the first attempt to develop high-resolution spatial models to predict PM2.5 chemical component concentrations with MISR retrieved aerosol properties, which will provide valuable population exposure estimates for future studies on the characteristics and differential toxicity of PM2.5 speciation.

  20. EFFECTS OF IRON CONTENT IN COAL COMBUSTION FLY ASHES ON SPECIATION OF MERCURY

    EPA Science Inventory

    The paper discusses the effects of iron content in coal combustion fly ashes on speciation of mercury. (NOTE: The chemical form of mercury species in combustion flue gases is an important influence on the control of mercury emissions from coal combustion). The study focused on th...

  1. Selective determination of heavy metals (Cd, Pb, Cr) speciation forms from hortic anthrosols

    NASA Astrophysics Data System (ADS)

    Bulgariu, Dumitru; Bulgariu, Laura; Filipov, Feodor; Astefanei, Dan; Stoleru, Vasile

    2010-05-01

    In soils from glass houses, the speciation and inter-phases distribution processes of heavy metals have a particular dynamic, different in comparison with those from non-protected soils. The predominant distribution forms of heavy metals in such soils types are: complexes with low mass organic molecules, organic-mineral complexes, complexes with inorganic ligands (hydroxide-complexes, carbonate-complexes, sulphate-complexes, etc.) and basic salts. All of these have high stabilities in conditions of soils from glass houses, and in consequence, the separation and determination of speciation forms (which is directly connected with biodisponibility of heavy metals) by usual methods id very difficult and has a high uncertain degree. In this study is presented an original method for the selective separation and differentiation of speciation forms of heavy metals from glass houses soils, which is based by the combination of solid-liquid sequential extraction (SPE) with the extraction in aqueous polymer-inorganic salt two-phase systems (ABS). The soil samples used for this study have been sampled from three different locations (glass houses from Iasi, Barlad and Bacau - Romania) where the vegetables cultivation have been performed by three different technologies. In this way was estimated the applicability and the analytical limits of method proposed by as, in function of the chemical-mineralogical and physical-chemical characteristics of soils. As heavy metals have been studied cadmium, lead and chromium, all being known for their high toxicity. The procedure used for the selective separation and differentiation of speciation forms of heavy metals from glass houses soils has two main steps: (i) non-destructive separation of chemical-mineralogical associations and aggregates from soils samples - for this the separation method with heavy liquids (bromophorme) and isodynamic magnetic method have been used; (ii) sequential extraction of heavy metals from soil fractions

  2. SPECIATE Version 4.4 Database Development Documentation

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Some of the many uses of these source profiles include: (1) creating speciated emissions inventories for regi...

  3. Selective Separation and Determination of Heavy Metals (Cd, Pb, Cr) Speciation Forms from Hortic Antrosols

    NASA Astrophysics Data System (ADS)

    Bulgariu, D.; Bulgariu, L.

    2009-04-01

    The speciation, inter-phases distribution and biodisponibility of heavy metals in soils represent one of main problem of environmental geochemistry and agro-chemistry. This problem is very important in case of hortic antrosols (soils from glasshouses) for the elimination of agricultural products (fruits, vegetables) contamination with heavy metals. In soils from glass houses, the speciation and inter-phases distribution processes of heavy metals have a particular dynamic, different in comparison with those from non-protected soils. The predominant distribution forms of heavy metals in such soils types are: complexes with low mass organic molecules, organic-mineral complexes, complexes with inorganic ligands (hydroxide-complexes, carbonate-complexes, sulphate-complexes, etc.) and basic salts. All of these have high stabilities in conditions of soils from glass houses, and in consequence, the separation and determination of speciation forms (which is directly connected with biodisponibility of heavy metals) by usual methods id very difficult and has a high uncertain degree. In this study is presented an original method for the selective separation and differentiation of speciation forms of heavy metals from glass houses soils, which is based by the combination of solid-liquid sequential extraction (SPE) with the extraction in aqueous polymer-inorganic salt two-phase systems (ABS). The soil samples used for this study have been sampled from three different locations (glass houses from Iasi, Barlad and Bacau - Romania) where the vegetables cultivation have bee performed by three different technologies. In this way was estimated the applicability and the analytical limits of method proposed by as, in function of the chemical-mineralogical and physical-chemical characteristics of soils. As heavy metals have been studied cadmium, lead and chromium, all being known for their high toxicity. The procedure used for the selective separation and differentiation of speciation

  4. Phosphorous Speciation in WTR-treated Biosolids Using XANES

    NASA Astrophysics Data System (ADS)

    Zhang, T. Q.; Huff, D.; Lin, Z.-Q.

    2009-04-01

    The concept of co-application of biosolids and drinking water treatment residues (DWTRs) represents an environmentally sustainable and economically sound strategy for the management of municipal solid wastes. This study demonstrated the effectiveness of reducing water-soluble P in biosolids-amended agricultural soil by the addition of DWTRs. Results showed that total P in soil leachate was significantly reduced during the initial 42-days of a 200-day greenhouse study when biosolids (50 g kg-1) were applied along with DWTRs (40 g kg-1). Particulate P was the dominant fraction of P in the soil leachate, which decreases with increasing DWTR application rate. The application of DWTRs does not significantly decrease the growth and yield of wheat (Triticum aestivum L.). The primary P chemical composition in biosolids include cupper phytate [Cu(IP6)6], barium phytate [Ba6IP6], and cupper phosphate [Cu3(PO4)2]. The addition of DWTRs to biosolids alternated the P speciation, and the P speciation change became significant with increasing the incubation time of the mixture of biosolids and DWTRs. The chemical component of Cu3(PO4)2 became non significant (<5%) with the addition of DWTRs. During the 14-day incubation time period, the proportion of P that was adsorbed on amorphous Fe(OH)3 increased substantially from 8 to 46% and Ba6IP6 increased steadily from 30 to 50%, while the proportion of Cu(IP6)6 decreased significantly from 53 to 5%. The amorphous Fe(OH)3-adsorbed P and Ba6IP6 formed the dominant P chemical components in the mixture of biosolids and DWTRs.

  5. Sulfur K-edge XANES and acid volatile sulfide analyses of changes in chemical speciation of S and Fe during sequential extraction of trace metals in anoxic sludge from biogas reactors.

    PubMed

    Shakeri Yekta, Sepehr; Gustavsson, Jenny; Svensson, Bo H; Skyllberg, Ulf

    2012-01-30

    The effect of sequential extraction of trace metals on sulfur (S) speciation in anoxic sludge samples from two lab-scale biogas reactors augmented with Fe was investigated. Analyses of sulfur K-edge X-ray absorption near edge structure (S XANES) spectroscopy and acid volatile sulfide (AVS) were conducted on the residues from each step of the sequential extraction. The S speciation in sludge samples after AVS analysis was also determined by S XANES. Sulfur was mainly present as FeS (≈ 60% of total S) and reduced organic S (≈ 30% of total S), such as organic sulfide and thiol groups, in the anoxic solid phase. Sulfur XANES and AVS analyses showed that during first step of the extraction procedure (the removal of exchangeable cations), a part of the FeS fraction corresponding to 20% of total S was transformed to zero-valent S, whereas Fe was not released into the solution during this transformation. After the last extraction step (organic/sulfide fraction) a secondary Fe phase was formed. The change in chemical speciation of S and Fe occurring during sequential extraction procedure suggests indirect effects on trace metals associated to the FeS fraction that may lead to incorrect results. Furthermore, by S XANES it was verified that the AVS analysis effectively removed the FeS fraction. The present results identified critical limitations for the application of sequential extraction for trace metal speciation analysis outside the framework for which the methods were developed. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Solid-phase arsenic speciation in aquifer sediments: A micro-X-ray absorption spectroscopy approach for quantifying trace-level speciation

    USGS Publications Warehouse

    Nicholas, Sarah L.; Erickson, Melinda L.; Woodruff, Laurel G.; Knaeble, Alan R.; Marcus, Matthew A.; Lynch, Joshua K.; Toner, Brandy M.

    2017-01-01

    e of this research is to identify the solid-phase sources and geochemical mechanisms of release of As in aquifers of the Des Moines Lobe glacial advance. The overarching concept is that conditions present at the aquifer-aquitard interfaces promote a suite of geochemical reactions leading to mineral alteration and release of As to groundwater. A microprobe X-ray absorption spectroscopy (lXAS) approach is developed and applied to rotosonic drill core samples to identify the solid-phase speciation of As in aquifer, aquitard, and aquifer-aquitard interface sediments. This approach addresses the low solid-phase As concentrations, as well as the fine-scale physical and chemical heterogeneity of the sediments. The spectroscopy data are analyzed using novel cosine-distance and correlation-distance hierarchical clustering for Fe 1s and As 1s lXAS datasets. The solid-phase Fe and As speciation is then interpreted using sediment and well-water chemical data to propose solid-phase As reservoirs and release mechanisms. The results confirm that in two of the three locations studied, the glacial sediment forming the aquitard is the source of As to the aquifer sediments. The results are consistent with three different As release mechanisms: (1) desorption from Fe (oxyhydr)oxides, (2) reductive dissolution of Fe (oxyhydr)oxides, and (3) oxidative dissolution of Fe sulfides. The findings confirm that glacial sediments at the interface between aquifer and aquitard are geochemically active zones for As. The diversity of As release mechanisms is consistent with the geographic heterogeneity observed in the distribution of elevated-As wells.

  7. US EPA's SPECIATE 4.4 Database: Development and Uses

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, volatile o...

  8. EPA’s SPECIATE 4.4 Database:Development and Uses

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA)repository of volatile organic gas and particulate matter (PM) speciation profiles for air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, VOC, total...

  9. EPA’s SPECIATE 4.4 Database: Development and Uses

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA)repository of volatile organic gas and particulate matter (PM) speciation profiles for air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, VOC, total...

  10. Plant absorption of trace elements in sludge amended soils and correlation with soil chemical speciation.

    PubMed

    Torri, Silvana; Lavado, Raúl

    2009-07-30

    The aim of the present study was to investigate the relationship between Lolium perenne L. uptake of Cd, Cu, Pb, and Zn in sludge amended soils and soil availability of these elements assessed by soil sequential extraction. A greenhouse experiment was set with three representative soils of the Pampas Region, Argentina, amended with sewage sludge and sewage sludge enriched with its own incinerated ash. After the stabilization period of 60 days, half of the pots were sampled for soil analysis; the rest of the pots were sown with L. perenne and harvested 8, 12, 16 and 20 weeks after sowing, by cutting just above the soil surface. Cadmium and Pb concentrations in aerial tissues of L. perenne were below detection limits, in good agreement with the soil fractionation study. Copper and Zn concentration in the first harvest were significantly higher in the coarse textured soil compared to the fine textured soil, in contrast with soil chemical speciation. In the third harvest, there was a positive correlation between Cu and Zn concentration in aerial biomass and soil fractions usually considered of low availability. We conclude that the most available fractions obtained by soil sequential extraction did not provide the best indicator of Cu and Zn availability to L. perenne.

  11. Chemical speciation and potential mobility of heavy metals in the soil of former tin mining catchment.

    PubMed

    Ashraf, M A; Maah, M J; Yusoff, I

    2012-01-01

    This study describes the chemical speciation of Pb, Zn, Cu, Cr, As, and Sn in soil of former tin mining catchment. Total five sites were selected for sampling and subsequent subsamples were collected from each site in order to create a composite sample for analysis. Samples were analysed by the sequential extraction procedure using optical emission spectrometry (ICP OES). Small amounts of Cu, Cr, and As retrieved from the exchangeable phase, the ready available for biogeochemical cycles in the ecosystem. Low quantities of Cu and As could be taken up by plants in these kind of acidic soils. Zn not detected in the bioavailable forms while Pb is only present in negligible amounts in very few samples. The absence of mobile forms of Pb eliminates the toxic risk both in the trophic chain and its migration downwards the soil profile. The results also indicate that most of the metals have high abundance in residual fraction indicating lithogenic origin and low bioavailability of the metals in the studied soil. The average potential mobility for the metals giving the following order: Sn > Cu > Zn > Pb > Cr > As.

  12. Chemical Speciation and Potential Mobility of Heavy Metals in the Soil of Former Tin Mining Catchment

    PubMed Central

    Ashraf, M. A.; Maah, M. J.; Yusoff, I.

    2012-01-01

    This study describes the chemical speciation of Pb, Zn, Cu, Cr, As, and Sn in soil of former tin mining catchment. Total five sites were selected for sampling and subsequent subsamples were collected from each site in order to create a composite sample for analysis. Samples were analysed by the sequential extraction procedure using optical emission spectrometry (ICP OES). Small amounts of Cu, Cr, and As retrieved from the exchangeable phase, the ready available for biogeochemical cycles in the ecosystem. Low quantities of Cu and As could be taken up by plants in these kind of acidic soils. Zn not detected in the bioavailable forms while Pb is only present in negligible amounts in very few samples. The absence of mobile forms of Pb eliminates the toxic risk both in the trophic chain and its migration downwards the soil profile. The results also indicate that most of the metals have high abundance in residual fraction indicating lithogenic origin and low bioavailability of the metals in the studied soil. The average potential mobility for the metals giving the following order: Sn > Cu > Zn > Pb > Cr > As. PMID:22566758

  13. Storm water runoff measurements of copper from a naturally patinated roof and from a parking space. Aspects on environmental fate and chemical speciation.

    PubMed

    Odnevall Wallinder, I; Hedberg, Y; Dromberg, P

    2009-12-01

    Release of copper from a naturally aged copper roof on a shopping centre building in a suburban site of Stockholm has been measured during different rain events after its interaction with the internal drainage system and storm drains made of cast iron and concrete. Concentrations of copper removed by means of urban storm water from a nearby parking space have been determined for comparison. Predictions and measurements of the chemical speciation of released copper are discussed compared to the total concentration, and to threshold values for freshwater and drinking water. The results clearly illustrate that the major part of the released copper from the roof is readily retained already during transport through the internal drainage system of the building, a pathway that also changes the chemical speciation of released copper and its bioavailable fraction. Most copper, not retained by cast iron and concrete surfaces, was strongly complexed to organic matter. The median concentration of free cupric ions and weak copper complexes was less than, or within the range of reported no effect concentrations, NOECs, of copper in surface waters. The parking space contributed with significantly higher and time-dependent concentrations of total copper compared to measured concentrations of copper from the roof after the interaction with the drainage system. Most copper in the surface runoff water was strongly complexed with organic matter, hence reducing the bioavailable fraction significantly to concentrations within the NOEC range. Dilution with other sources of urban storm water will reduce the released concentration of copper even further. The results illustrate that already the internal drainage system and the storm drains made of cast iron and concrete act as efficient sinks for released copper which means that any installation of additional infiltration devices is redundant.

  14. EPAs SPECIATE 4.4 Database: Development and Uses

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of source category-specific particulate matter (PM), volatile organic gas, and other gas speciation profiles of air pollutant emissions. Abt Associates, Inc. developed SPECIATE 4.4 through a collaborat...

  15. Cadmium chemical speciation and absorption in plant in a polluted soil

    NASA Astrophysics Data System (ADS)

    Gigliotti, Giovanni; Massaccesi, Luisa

    2013-04-01

    speciation results showed that a significant amount of Cd (45%), before plant seeding, was associated with the metal oxide fraction (typically Fe-Mn oxides and hydroxides) followed to Cd bound to soil organic matter (39%), despite the content of organic matter in the soil was very low. Instead the amount of Cd bound to carbonates (13%), exchangeable phase (1%) and residue fraction (2.5%) were negligible. After six weeks of plant seeding the Cd fractionation was slightly different, with a decrease of metal bound to oxide and hydroxide from 45% to 29% and an increase of fraction bound to carbonate from 13% to 19% and exchangeable fraction from 1% to 8%. The roots system of Festuca had colonized all pot and the fractionation of metal was disturbed by plants growth. Roots may induce changes in the biochemical, chemical and physical properties of the rhizosphere increasing potentially toxic elements diffusion through the production of roots exudates. The soil environment immediately adjacent to the root can be strongly influenced by root exudates, so that chemical process of dissolution, chelation and precipitation outside the root also occur. Cd was absorbed by plant root in a great concentration, but not translocation to leafs was noticed.

  16. Rates of speciation in the fossil record

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1998-01-01

    Data from palaeontology and biodiversity suggest that the global biota should produce an average of three new species per year. However, the fossil record shows large variation around this mean. Rates of origination have declined through the Phanerozoic. This appears to have been largely a function of sorting among higher taxa (especially classes), which exhibit characteristic rates of speciation (and extinction) that differ among them by nearly an order of magnitude. Secular decline of origination rates is hardly constant, however; many positive deviations reflect accelerated speciation during rebounds from mass extinctions. There has also been general decline in rates of speciation within major taxa through their histories, although rates have tended to remain higher among members in tropical regions. Finally, pulses of speciation appear sometimes to be associated with climate change, although moderate oscillations of climate do not necessarily promote speciation despite forcing changes in species' geographical ranges.

  17. Macro- and microscale investigation of selenium speciation in Blackfoot river, Idaho sediments.

    PubMed

    Oram, Libbie L; Strawn, Daniel G; Marcus, Matthew A; Fakra, Sirine C; Möller, Gregory

    2008-09-15

    The transport and bioavailability of selenium in the environment is controlled by its chemical speciation. However, knowledge of the biogeochemistry and speciation of Se in streambed sediment is limited. We investigated the speciation of Se in sediment cores from the Blackfoot River (BFR), Idaho using sequential extractions and synchrotron-based micro-X-ray fluorescence (micro-SXRF). We collected micro-SXRF oxidation state maps of Se in sediments, which had not been done on natural sediment samples. Selective extractions showed that most Se in the sediments is present as either (1) nonextractable Se or (2) base extractable Se. Results from micro-SXRF showed three defined species of Se were present in all four samples: Se(-II,O), Se(IV), and Se(VI). Se(-II,O) was the predominant species in samples from one location, and Se(IV) was the predominant species in samples from a second location. Results from both techniques were consistent, and suggested that the predominant species were Se(-II) species associated with recalcitrant organic matter, and Se(IV) species tightly bound to organic materials. This information can be used to predict the biogeochemical cycling and bioavailability of Se in streambed sediment environments.

  18. Chemical Mass Balance (CMB) Model

    EPA Pesticide Factsheets

    The EPA-CMB Version 8.2 uses source profiles and speciated ambient data to quantify source contributions. Contributions are quantified from chemically distinct source-types rather than from individual emitters.

  19. Speciated Elemental and Isotopic Characterization of Atmospheric Aerosols - Recent Advances

    NASA Astrophysics Data System (ADS)

    Shafer, M.; Majestic, B.; Schauer, J.

    2007-12-01

    Detailed elemental, isotopic, and chemical speciation analysis of aerosol particulate matter (PM) can provide valuable information on PM sources, atmospheric processing, and climate forcing. Certain PM sources may best be resolved using trace metal signatures, and elemental and isotopic fingerprints can supplement and enhance molecular maker analysis of PM for source apportionment modeling. In the search for toxicologically relevant components of PM, health studies are increasingly demanding more comprehensive characterization schemes. It is also clear that total metal analysis is at best a poor surrogate for the bioavailable component, and analytical techniques that address the labile component or specific chemical species are needed. Recent sampling and analytical developments advanced by the project team have facilitated comprehensive characterization of even very small masses of atmospheric PM. Historically; this level of detail was rarely achieved due to limitations in analytical sensitivity and a lack of awareness concerning the potential for contamination. These advances have enabled the coupling of advanced chemical characterization to vital field sampling approaches that typically supply only very limited PM mass; e.g. (1) particle size-resolved sampling; (2) personal sampler collections; and (3) fine temporal scale sampling. The analytical tools that our research group is applying include: (1) sector field (high-resolution-HR) ICP-MS, (2) liquid waveguide long-path spectrophotometry (LWG-LPS), and (3) synchrotron x-ray absorption spectroscopy (sXAS). When coupled with an efficient and validated solubilization method, the HR-ICP-MS can provide quantitative elemental information on over 50 elements in microgram quantities of PM. The high mass resolution and enhanced signal-to-noise of HR-ICP-MS significantly advance data quality and quantity over that possible with traditional quadrupole ICP-MS. The LWG-LPS system enables an assessment of the soluble

  20. X exceptionalism in Caenorhabditis speciation.

    PubMed

    Cutter, Asher D

    2017-11-13

    Speciation genetics research in diverse organisms shows the X-chromosome to be exceptional in how it contributes to "rules" of speciation. Until recently, however, the nematode phylum has been nearly silent on this issue, despite the model organism Caenorhabditis elegans having touched most other topics in biology. Studies of speciation with Caenorhabditis accelerated with the recent discovery of species pairs showing partial interfertility. The resulting genetic analyses of reproductive isolation in nematodes demonstrate key roles for the X-chromosome in hybrid male sterility and inviability, opening up new understanding of the genetic causes of Haldane's rule, Darwin's corollary to Haldane's rule, and enabling tests of the large-X effect hypothesis. Studies to date implicate improper chromatin regulation of the X-chromosome by small RNA pathways as integral to hybrid male dysfunction. Sexual transitions in reproductive mode to self-fertilizing hermaphroditism inject distinctive molecular evolutionary features into the speciation process for some species. Caenorhabditis also provides unique opportunities for analysis in a system with XO sex determination that lacks a Y-chromosome, sex chromosome-dependent sperm competition differences and mechanisms of gametic isolation, exceptional accessibility to the development process and rapid experimental evolution. As genetic analysis of reproductive isolation matures with investigation of multiple pairs of Caenorhabditis species and new species discovery, nematodes will provide a powerful complement to more established study organisms for deciphering the genetic basis of and rules to speciation. © 2017 John Wiley & Sons Ltd.

  1. Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in Downtown Atlanta, Georgia

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Canagaratna, M. R.; Croteau, P. L.; Baumann, K.; Edgerton, E. S.; Kollman, M. S.; Ng, N. L.; Verma, V.; Shaw, S. L.; Knipping, E. M.; Worsnop, D. R.; Jayne, J. T.; Weber, R. J.; Surratt, J. D.

    2013-12-01

    The Aerodyne Aerosol Chemical Speciation Monitor (ACSM) was recently developed to provide long-term real-time continuous measurements of ambient non-refractory (i.e., organic, sulfate, ammonium, nitrate, and chloride) submicron particulate matter (NR-PM1). Currently, there are a limited number of field studies that evaluate the long-term performance of the ACSM against established monitoring networks. In this study, we present seasonal intercomparisons of the ACSM with collocated fine aerosol (PM2.5) measurements at the Southeastern Aerosol Research and Characterization (SEARCH) Jefferson Street (JST) site near downtown Atlanta, GA, during 2011-2012. The collocated measurements included a second ACSM, continuous and integrated sulfate, nitrate, and ammonium measurements, as well as a semi-continuous Sunset organic carbon/elemental carbon (OC/EC) analyzer, continuous tapered element oscillating microbalance (TEOM), 24 h integrated Federal Reference Method (FRM) filters, and continuous scanning electrical mobility system-mixing condensation particle counter (SEMS-MCPC). Intercomparison of the two collocated ACSMs resulted in strong correlations (r2 > 0.8) for all chemical species, except chloride (r2 = 0.21); mass concentration for all chemical species agreed within ±27%, indicating that ACSM instruments are capable of stable and reproducible operation. Chemical constituents measured by the ACSM are also compared with those obtained from the continuous measurements from JST. Since the continuous measurement concentrations are adjusted to match the integrated filter measurements, these comparisons reflect the combined uncertainties of the ACSM, continuous, and filter measurements. In general, speciated ACSM mass concentrations correlate well (r2 > 0.7) with the continuous measurements from JST, although the correlation for nitrate is weaker (r2 = 0.55) in summer. Differences between ACSM mass concentrations and the filter-adjusted JST continuous data are 5-27%, 4

  2. Speciation by Symbiosis: the Microbiome and Behavior

    PubMed Central

    Shropshire, J. Dylan

    2016-01-01

    ABSTRACT Species are fundamental units of comparison in biology. The newly discovered importance and ubiquity of host-associated microorganisms are now stimulating work on the roles that microbes can play in animal speciation. We previously synthesized the literature and advanced concepts of speciation by symbiosis with notable attention to hybrid sterility and lethality. Here, we review recent studies and relevant data on microbes as players in host behavior and behavioral isolation, emphasizing the patterns seen in these analyses and highlighting areas worthy of additional exploration. We conclude that the role of microbial symbionts in behavior and speciation is gaining exciting traction and that the holobiont and hologenome concepts afford an evolving intellectual framework to promote research and intellectual exchange between disciplines such as behavior, microbiology, genetics, symbiosis, and speciation. Given the increasing centrality of microbiology in macroscopic life, microbial symbiosis is arguably the most neglected aspect of animal and plant speciation, and studying it should yield a better understanding of the origin of species. PMID:27034284

  3. Chemical Speciation of Chromium in Drilling Muds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taguchi, Takeyoshi; Yoshii, Mitsuru; Shinoda, Kohzo

    2007-02-02

    Drilling muds are made of bentonite and other clays, and/or polymers, mixed with water to the desired viscosity. Without the drilling muds, corporations could not drill for oil and gas and we would have hardly any of the fuels and lubricants considered essential for modern industrial civilization. There are hundreds of drilling muds used and some kinds of drilling muds contain chromium. The chemical states of chromium in muds have been studied carefully due to concerns about the environmental influence. However it is difficult to determine the chemical state of chromium in drilling muds directly by conventional analytical methods. Wemore » have studied the chemical form of chromium in drilling muds by using a laboratory XAFS system and a synchrotron facility.« less

  4. Experimental study of brucite dissolution and precipitation in aqueous solutions: surface speciation and chemical affinity control

    NASA Astrophysics Data System (ADS)

    Pokrovsky, Oleg S.; Schott, Jacques

    2004-01-01

    Dissolution and precipitation rates of brucite (Mg(OH) 2) were measured at 25°C in a mixed-flow reactor as a function of pH (2.5 to 12), ionic strength (10 -4 to 3 M), saturation index (-12 < log Ω < 0.4) and aqueous magnesium concentrations (10 -6 to 5·10 -4 M). Brucite surface charge and isoelectric point (pH IEP) were determined by surface titrations in a limited residence time reactor and electrophoretic measurements, respectively. The pH of zero charge and pH IEP were close to 11. A two-pK, one site surface speciation model which assumes a constant capacitance of the electric double layer (5 F/m 2) and lack of dependence on ionic strength predicts the dominance of >MgOH 2+ species at pH < 8 and their progressive replacement by >MgOH° and >MgO - as pH increases to 10-12. Rates are proportional to the square of >MgOH 2+ surface concentration at pH from 2.5 to 12. In accord with surface speciation predictions, dissolution rates do not depend on ionic strength at pH 6.5 to 11. Brucite dissolution and precipitation rates at close to equilibrium conditions obeyed TST-derived rate laws. At constant saturation indices, brucite precipitation rates were proportional to the square of >MgOH 2+ concentration. The following rate equation, consistent with transition state theory, describes brucite dissolution and precipitation kinetics over a wide range of solution composition and chemical affinity: R=k Mg+ · {>MgOH 2+} 2 · (1-Ω 2) where kMg+ is the dissolution rate constant, {> i} is surface species concentration (mol/m 2), and Ω is the solution saturation index with respect to brucite. Measurements of nonsteady state brucite dissolution rates, in response to cycling the pH from 12 to 2 (pH-jump experiments), indicate the important role of surface hydroxylation — that leads to the formation of Mg oxo or -hydroxo complexes — in the formation of dissolution-active sites. Replacement of water molecules by these oxygen donor complexes in the Mg coordination sphere

  5. Speciation in Drosophila: from phenotypes to molecules.

    PubMed

    Orr, H Allen; Masly, J P; Phadnis, Nitin

    2007-01-01

    Study of the genetics of speciation--and especially of the genetics of intrinsic postzygotic isolation-has enjoyed remarkable progress over the last 2 decades. Indeed progress has been so rapid that one might be tempted to ask if the genetics of postzygotic isolation is now wrapped up. Here we argue that the genetics of speciation is far from complete. In particular, we review 2 topics where recent work has revealed major surprises: 1) the role of meiotic drive in hybrid sterility and 2) the role of gene transposition in speciation. These surprises, and others like them, suggest that evolutionary biologists may understand less about the genetic basis of speciation than seemed likely a few years ago.

  6. A new paradigm for constraining PM2.5 speciation by combining multiangular and polarimetric remote sensing with chemical transport model information

    NASA Astrophysics Data System (ADS)

    Kalashnikova, O.; Xu, F.; Ge, C.; Wang, J.; Garay, M. J.; Diner, D. J.

    2014-12-01

    Exposure to ambient particulate matter (PM) has been consistently linked to cardiovascular and respiratory health effects. Although PM is currently monitored by a network of surface stations, these are too sparsely distributed to provide the level of spatial detail needed to link different aerosol species to given health effects, and expansion to denser coverage is impractical and cost prohibitive. We present a methodology for combining Chemical Transport Model (CTM) aerosol type information and multiangular spectropolarimetric data to establish the signature of specific aerosol types in top-of-atmosphere measurements, and relate it to speciated surface PM2.5 loadings. In particular, we employ the WRF-Chem model run at the University of Nebraska, and remote sensing data from the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) to explore the feasibility of this approach. We demonstrate that the CTM does well in predicting the types of aerosols present at a given location and time, however large uncertainties currently exist in CTM estimates of the concentration of the various aerosol species (e.g., black carbon, sulfate, dust, etc.) leading to large uncertainties to model-derived speciated PM 2.5. In order to constrain CTM aerosol surface concentrations we use AirMSPI UV-VIS-NIR observations of intensity, and blue, red, and NIR observations of the Q and U Stokes parameters. We select specific scenes observed by AirMSPI and use WRF-Chem to generate an initial distribution of aerosol composition. The relevant optical properties for each aerosol species are used to calculate aerosol light scattering information. This is then used in a vector (polarized) 1-D radiative transfer model to determine at-instrument Stokes parameters for the specific AirMSPI viewing geometries. As a first step, a match is sought between the CTM-predicted radiances and the AirMSPI observations. Then, the total aerosol optical depth and fractions of various aerosol species are modified

  7. Development of a database for chemical mechanism assignments for volatile organic emissions.

    PubMed

    Carter, William P L

    2015-10-01

    The development of a database for making model species assignments when preparing total organic gas (TOG) emissions input for atmospheric models is described. This database currently has assignments of model species for 12 different gas-phase chemical mechanisms for over 1700 chemical compounds and covers over 3000 chemical categories used in five different anthropogenic TOG profile databases or output by two different biogenic emissions models. This involved developing a unified chemical classification system, assigning compounds to mixtures, assigning model species for the mechanisms to the compounds, and making assignments for unknown, unassigned, and nonvolatile mass. The comprehensiveness of the assignments, the contributions of various types of speciation categories to current profile and total emissions data, inconsistencies with existing undocumented model species assignments, and remaining speciation issues and areas of needed work are also discussed. The use of the system to prepare input for SMOKE, the Speciation Tool, and for biogenic models is described in the supplementary materials. The database, associated programs and files, and a users manual are available online at http://www.cert.ucr.edu/~carter/emitdb . Assigning air quality model species to the hundreds of emitted chemicals is a necessary link between emissions data and modeling effects of emissions on air quality. This is not easy and makes it difficult to implement new and more chemically detailed mechanisms in models. If done incorrectly, it is similar to errors in emissions speciation or the chemical mechanism used. Nevertheless, making such assignments is often an afterthought in chemical mechanism development and emissions processing, and existing assignments are usually undocumented and have errors and inconsistencies. This work is designed to address some of these problems.

  8. The Role of Arsenic Speciation in Dietary Exposure Assessment and the Need to Include Bioaccessibility and Biotransformation

    EPA Science Inventory

    Chemical form specific exposure assessment for arsenic has long been identified as a source of uncertainty in estimating the risk associated with the aggregate exposure for a population. Some speciation based assessments document occurrence within an exposure route; however, the...

  9. Sympatric speciation by sexual selection alone is unlikely.

    PubMed

    Arnegard, Matthew E; Kondrashov, Alexey S

    2004-02-01

    According to Darwin, sympatric speciation is driven by disruptive, frequency-dependent natural selection caused by competition for diverse resources. Recently, several authors have argued that disruptive sexual selection can also cause sympatric speciation. Here, we use hypergeometric phenotypic and individual-based genotypic models to explore sympatric speciation by sexual selection under a broad range of conditions. If variabilities of preference and display traits are each caused by more than one or two polymorphic loci, sympatric speciation requires rather strong sexual selection when females exert preferences for extreme male phenotypes. Under this kind of mate choice, speciation can occur only if initial distributions of preference and display are close to symmetric. Otherwise, the population rapidly loses variability. Thus, unless allele replacements at very few loci are enough for reproductive isolation, female preferences for extreme male displays are unlikely to drive sympatric speciation. By contrast, similarity-based female preferences that do not cause sexual selection are less destabilizing to the maintenance of genetic variability and may result in sympatric speciation across a broader range of initial conditions. Certain groups of African cichlids have served as the exclusive motivation for the hypothesis of sympatric speciation by sexual selection. Mate choice in these fishes appears to be driven by female preferences for extreme male phenotypes rather than similarity-based preferences, and the evolution of premating reproductive isolation commonly involves at least several genes. Therefore, differences in female preferences and male display in cichlids and other species of sympatric origin are more likely to have evolved as isolating mechanisms under disruptive natural selection.

  10. Speciation by Symbiosis: the Microbiome and Behavior.

    PubMed

    Shropshire, J Dylan; Bordenstein, Seth R

    2016-03-31

    Species are fundamental units of comparison in biology. The newly discovered importance and ubiquity of host-associated microorganisms are now stimulating work on the roles that microbes can play in animal speciation. We previously synthesized the literature and advanced concepts of speciation by symbiosis with notable attention to hybrid sterility and lethality. Here, we review recent studies and relevant data on microbes as players in host behavior and behavioral isolation, emphasizing the patterns seen in these analyses and highlighting areas worthy of additional exploration. We conclude that the role of microbial symbionts in behavior and speciation is gaining exciting traction and that the holobiont and hologenome concepts afford an evolving intellectual framework to promote research and intellectual exchange between disciplines such as behavior, microbiology, genetics, symbiosis, and speciation. Given the increasing centrality of microbiology in macroscopic life, microbial symbiosis is arguably the most neglected aspect of animal and plant speciation, and studying it should yield a better understanding of the origin of species. Copyright © 2016 Shropshire and Bordenstein.

  11. Chromosomes, conflict, and epigenetics: chromosomal speciation revisited.

    PubMed

    Brown, Judith D; O'Neill, Rachel J

    2010-01-01

    Since Darwin first noted that the process of speciation was indeed the "mystery of mysteries," scientists have tried to develop testable models for the development of reproductive incompatibilities-the first step in the formation of a new species. Early theorists proposed that chromosome rearrangements were implicated in the process of reproductive isolation; however, the chromosomal speciation model has recently been questioned. In addition, recent data from hybrid model systems indicates that simple epistatic interactions, the Dobzhansky-Muller incompatibilities, are more complex. In fact, incompatibilities are quite broad, including interactions among heterochromatin, small RNAs, and distinct, epigenetically defined genomic regions such as the centromere. In this review, we will examine both classical and current models of chromosomal speciation and describe the "evolving" theory of genetic conflict, epigenetics, and chromosomal speciation.

  12. Speciation distribution and mass balance of copper and zinc in urban rain, sediments, and road runoff.

    PubMed

    Zuo, Xiaojun; Fu, Dafang; Li, He

    2012-11-01

    Heavy metal pollution in road runoff had caused widespread concern since the last century. However, there are little references on metal speciation in multiple environmental media (e.g., rain, road sediments, and road runoff). Our research targeted the investigation of metal speciation in rain, road sediments, and runoff; the analysis of speciation variation and mass balance of metals among rain, road sediments, and runoff; the selection of main factors by principal component analysis (PCA); and the establishment of equation to evaluate the impact of rain and road sediments to metals in road runoff. Sequential extraction procedure contains five steps for the chemical fractionation of metals. Flame atomic absorption spectrometry (Shimadzu, AA-6800) was used to determine metal speciation concentration, as well as the total and dissolved fractions. The dissolved fractions for both Cu and Zn were dominant in rain. The speciation distribution of Zn was different from that of Cu in road sediments, while speciation distribution of Zn is similar to that of Cu in runoff. The bound to carbonates for both Cu and Zn in road sediments were prone to be dissolved by rain. The levels of Cu and Zn in runoff were not obviously influenced by rain, but significantly influenced by road sediments. The masses for both Cu and Zn among rain, road sediments, and road runoff approximately meet the mass balance equation for all rainfall patterns. Five principal factors were selected for metal regression equation based on PCA, including rainfall, average rainfall intensity, antecedent dry periods, total suspended particles, and temperature. The established regression equations could be used to predict the effect of road runoff on receiving environments.

  13. The Effects of Soil Type and Chemical Treatment on Nickel Speciation in Refinery Enriched Soils: A Multi-Technique Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNear, Jr.,D.; Chaney, R.; Sparks, D.

    2007-01-01

    Aerial deposition of Ni from a refinery in Port Colborne, Ontario, Canada has resulted in the enrichment of 29 km{sup 2} of land with Ni concentrations exceeding the Canadian Ministry of the Environment's remedial action level of 200 mg kg{sup -1}. Several studies on these soils have shown that making the soils calcareous was effective at reducing chemically extractable Ni, as well as alleviating Ni phytotoxicity symptoms in vegetable crops grown in the vicinity of the refinery. Conversely, dolomitic limestone additions resulted in increased uptake of Ni in the Ni hyperaccumulator Alyssum murale 'Kotodesh', a plant whose use was proposedmore » as a remediation strategy for this area. In this paper we use multiple techniques to directly assess the role soil type and lime treatments play in altering the speciation of Ni in the Welland loam and Quarry muck soils around the refinery and relate these findings to Ni mobility and bioavailability. Stirred-flow dissolution experiments using pH 4 HNO{sub 3} showed that Ni release from the limed Quarry muck and Welland loam soils was reduced ({approx}0.10%) relative to the unlimed soils ({approx}2.0%). Electron microprobe analysis (EMPA) identified approximately spherical NiO and Ni metal particles, which are associated with no other metals, and range from 5 to 50 {mu}m in diameter. Synchrotron micro-X-ray absorption fine structure and X-ray fluorescence spectroscopies showed that Ni and Al layered double hydroxide (Ni-Al LDH) phases were present in both the limed and unlimed mineral soils, with a tendency towards more stable (e.g., aged-LDH and phyllosilicate) Ni species in the limed soil, possibly aided by the solubilization of Si with increasing pH. In the muck soils, Ni-organic complexes (namely fulvic acid) dominated the speciation in both limed and unlimed soils. The results reported herein show that both soil type and treatment have a pronounced effect on the speciation of Ni in the soils surrounding the Port

  14. The effects of soil type and chemical treatment on nickel speciation in refinery enriched soils: A multi-technique investigation

    NASA Astrophysics Data System (ADS)

    McNear, David H.; Chaney, Rufus L.; Sparks, Donald L.

    2007-05-01

    Aerial deposition of Ni from a refinery in Port Colborne, Ontario, Canada has resulted in the enrichment of 29 km 2 of land with Ni concentrations exceeding the Canadian Ministry of the Environment's remedial action level of 200 mg kg -1. Several studies on these soils have shown that making the soils calcareous was effective at reducing chemically extractable Ni, as well as alleviating Ni phytotoxicity symptoms in vegetable crops grown in the vicinity of the refinery. Conversely, dolomitic limestone additions resulted in increased uptake of Ni in the Ni hyperaccumulator Alyssum murale 'Kotodesh', a plant whose use was proposed as a remediation strategy for this area. In this paper we use multiple techniques to directly assess the role soil type and lime treatments play in altering the speciation of Ni in the Welland loam and Quarry muck soils around the refinery and relate these findings to Ni mobility and bioavailability. Stirred-flow dissolution experiments using pH 4 HNO 3 showed that Ni release from the limed Quarry muck and Welland loam soils was reduced (˜0.10%) relative to the unlimed soils (˜2.0%). Electron microprobe analysis (EMPA) identified approximately spherical NiO and Ni metal particles, which are associated with no other metals, and range from 5 to 50 μm in diameter. Synchrotron micro-X-ray absorption fine structure and X-ray fluorescence spectroscopies showed that Ni and Al layered double hydroxide (Ni-Al LDH) phases were present in both the limed and unlimed mineral soils, with a tendency towards more stable (e.g., aged-LDH and phyllosilicate) Ni species in the limed soil, possibly aided by the solubilization of Si with increasing pH. In the muck soils, Ni-organic complexes (namely fulvic acid) dominated the speciation in both limed and unlimed soils. The results reported herein show that both soil type and treatment have a pronounced effect on the speciation of Ni in the soils surrounding the Port Colborne refinery. We provide the first

  15. Special Speciation

    ERIC Educational Resources Information Center

    Countryman, Lyn L.; Maroo, Jill D.

    2015-01-01

    Considerable anecdotal evidence indicates that some of the most difficult concepts that both high school and undergraduate elementary-education students struggle with are those surrounding evolutionary principles, especially speciation. It's no wonder that entry-level biology students are confused, when biologists have multiple definitions of…

  16. Application of Hyphenated Techniques in Speciation Analysis of Arsenic, Antimony, and Thallium

    PubMed Central

    Michalski, Rajmund; Szopa, Sebastian; Jabłońska, Magdalena; Łyko, Aleksandra

    2012-01-01

    Due to the fact that metals and metalloids have a strong impact on the environment, the methods of their determination and speciation have received special attention in recent years. Arsenic, antimony, and thallium are important examples of such toxic elements. Their speciation is especially important in the environmental and biomedical fields because of their toxicity, bioavailability, and reactivity. Recently, speciation analytics has been playing a unique role in the studies of biogeochemical cycles of chemical compounds, determination of toxicity and ecotoxicity of selected elements, quality control of food products, control of medicines and pharmaceutical products, technological process control, research on the impact of technological installation on the environment, examination of occupational exposure, and clinical analysis. Conventional methods are usually labor intensive, time consuming, and susceptible to interferences. The hyphenated techniques, in which separation method is coupled with multidimensional detectors, have become useful alternatives. The main advantages of those techniques consist in extremely low detection and quantification limits, insignificant interference, influence as well as high precision and repeatability of the determinations. In view of their importance, the present work overviews and discusses different hyphenated techniques used for arsenic, antimony, and thallium species analysis, in different clinical, environmental and food matrices. PMID:22654649

  17. Characterization and speciation of mercury-bearing mine wastes using X-ray absorption spectroscopy

    USGS Publications Warehouse

    Kim, C.S.; Brown, Gordon E.; Rytuba, J.J.

    2000-01-01

    Mining of mercury deposits located in the California Coast Range has resulted in the release of mercury to the local environment and water supplies. The solubility, transport, and potential bioavailability of mercury are controlled by its chemical speciation, which can be directly determined for samples with total mercury concentrations greater than 100 mg kg-1 (ppm) using X-ray absorption spectroscopy (XAS). This technique has the additional benefits of being non-destructive to the sample, element-specific, relatively sensitive at low concentrations, and requiring minimal sample preparation. In this study, Hg L(III)-edge extended X-ray absorption fine structure (EXAFS) spectra were collected for several mercury mine tailings (calcines) in the California Coast Range. Total mercury concentrations of samples analyzed ranged from 230 to 1060 ppm. Speciation data (mercury phases present and relative abundances) were obtained by comparing the spectra from heterogeneous, roasted (calcined) mine tailings samples with a spectral database of mercury minerals and sorbed mercury complexes. Speciation analyses were also conducted on known mixtures of pure mercury minerals in order to assess the quantitative accuracy of the technique. While some calcine samples were found to consist exclusively of mercuric sulfide, others contain additional, more soluble mercury phases, indicating a greater potential for the release of mercury into solution. Also, a correlation was observed between samples from hot-spring mercury deposits, in which chloride levels are elevated, and the presence of mercury-chloride species as detected by the speciation analysis. The speciation results demonstrate the ability of XAS to identify multiple mercury phases in a heterogeneous sample, with a quantitative accuracy of ??25% for the mercury-containing phases considered. Use of this technique, in conjunction with standard microanalytical techniques such as X-ray diffraction and electron probe microanalysis

  18. Speciation in birds: genes, geography, and sexual selection.

    PubMed

    Edwards, Scott V; Kingan, Sarah B; Calkins, Jennifer D; Balakrishnan, Christopher N; Jennings, W Bryan; Swanson, Willie J; Sorenson, Michael D

    2005-05-03

    Molecular studies of speciation in birds over the last three decades have been dominated by a focus on the geography, ecology, and timing of speciation, a tradition traceable to Mayr's Systematics and the Origin of Species. However, in the recent years, interest in the behavioral and molecular mechanisms of speciation in birds has increased, building in part on the older traditions and observations from domesticated species. The result is that many of the same mechanisms proffered for model lineages such as Drosophila--mechanisms such as genetic incompatibilities, reinforcement, and sexual selection--are now being seriously entertained for birds, albeit with much lower resolution. The recent completion of a draft sequence of the chicken genome, and an abundance of single-nucleotide polymorphisms on the autosomes and sex chromosomes, will dramatically accelerate research on the molecular mechanisms of avian speciation over the next few years. The challenge for ornithologists is now to inform well studied examples of speciation in nature with increased molecular resolution-to clone speciation genes if they exist--and thereby evaluate the relative roles of extrinsic, intrinsic, deterministic, and stochastic causes for avian diversification.

  19. Speciation of Mercury in Selected Areas of the Petroleum Value Chain.

    PubMed

    Avellan, Astrid; Stegemeier, John P; Gai, Ke; Dale, James; Hsu-Kim, Heileen; Levard, Clément; O'Rear, Dennis; Hoelen, Thomas P; Lowry, Gregory V

    2018-02-06

    Petroleum, natural gas, and natural gas condensate can contain low levels of mercury (Hg). The speciation of Hg can affect its behavior during processing, transport, and storage so efficient and safe management of Hg requires an understanding of its chemical form in oil, gas and byproducts. Here, X-ray absorption spectroscopy was used to determine the Hg speciation in samples of solid residues collected throughout the petroleum value chain including stabilized crude oil residues, sediments from separation tanks and condensate glycol dehydrators, distillation column pipe scale, and biosludge from wastewater treatment. In all samples except glycol dehydrators, metacinnabar (β-HgS) was the primary form of Hg. Electron microscopy on particles from a crude sediment showed nanosized (<100 nm) particles forming larger aggregates, and confirmed the colocalization of Hg and sulfur. In sediments from glycol dehydrators, organic Hg(SR) 2 accounted for ∼60% of the Hg, with ∼20% present as β-HgS and/or Hg(SR) 4 species. β-HgS was the predominant Hg species in refinery biosludge and pipe scale samples. However, the balance of Hg species present in these samples depended on the nature of the crude oil being processed, i.e. sweet (low sulfur crudes) vs sour (higher sulfur crudes). This information on Hg speciation in the petroleum value chain will inform development of better engineering controls and management practices for Hg.

  20. Application of an online ion chromatography-based instrument for gradient flux measurements of speciated nitrogen and sulfur

    EPA Science Inventory

    In North America, the dry component of total nitrogen and sulfur deposition remains uncertain due to a lack of measurements of sufficient chemical speciation and temporal extent to develop complete annual mass budgets or of sufficient process level detail to improve current air-s...

  1. Solid-phase arsenic speciation in aquifer sediments: A micro-X-ray absorption spectroscopy approach for quantifying trace-level speciation

    DOE PAGES

    Nicholas, Sarah L.; Erickson, Melinda L.; Woodruff, Laurel G.; ...

    2017-05-19

    Arsenic (As) is a geogenic contaminant affecting groundwater in geologically diverse systems globally. Arsenic release from aquifer sediments to groundwater is favored when biogeochemical conditions, especially oxidation-reduction (redox) potential, in aquifers fluctuate. The specific objective of this research is to identify the solid-phase sources and geochemical mechanisms of release of As in aquifers of the Des Moines Lobe glacial advance. The overarching concept is that conditions present at the aquifer-aquitard interfaces promote a suite of geochemical reactions leading to mineral alteration and release of As to groundwater. A microprobe X-ray absorption spectroscopy (μXAS) approach is developed and applied to rotosonicmore » drill core samples to identify the solid-phase speciation of As in aquifer, aquitard, and aquifer-aquitard interface sediments. This approach addresses the low solid-phase As concentrations, as well as the fine-scale physical and chemical heterogeneity of the sediments. The spectroscopy data are analyzed using novel cosine-distance and correlation-distance hierarchical clustering for Fe 1s and As 1s μXAS datasets. The solid-phase Fe and As speciation is then interpreted using sediment and well-water chemical data to propose solid-phase As reservoirs and release mechanisms. The results confirm that in two of the three locations studied, the glacial sediment forming the aquitard is the source of As to the aquifer sediments. The results are consistent with three different As release mechanisms: (1) desorption from Fe (oxyhydr)oxides, (2) reductive dissolution of Fe (oxyhydr)oxides, and (3) oxidative dissolution of Fe sulfides. The findings confirm that glacial sediments at the interface between aquifer and aquitard are geochemically active zones for As. The diversity of As release mechanisms is consistent with the geographic heterogeneity seen in the distribution of elevated-As wells.« less

  2. Solid-phase arsenic speciation in aquifer sediments: A micro-X-ray absorption spectroscopy approach for quantifying trace-level speciation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholas, Sarah L.; Erickson, Melinda L.; Woodruff, Laurel G.

    Arsenic (As) is a geogenic contaminant affecting groundwater in geologically diverse systems globally. Arsenic release from aquifer sediments to groundwater is favored when biogeochemical conditions, especially oxidation-reduction (redox) potential, in aquifers fluctuate. The specific objective of this research is to identify the solid-phase sources and geochemical mechanisms of release of As in aquifers of the Des Moines Lobe glacial advance. The overarching concept is that conditions present at the aquifer-aquitard interfaces promote a suite of geochemical reactions leading to mineral alteration and release of As to groundwater. A microprobe X-ray absorption spectroscopy (μXAS) approach is developed and applied to rotosonicmore » drill core samples to identify the solid-phase speciation of As in aquifer, aquitard, and aquifer-aquitard interface sediments. This approach addresses the low solid-phase As concentrations, as well as the fine-scale physical and chemical heterogeneity of the sediments. The spectroscopy data are analyzed using novel cosine-distance and correlation-distance hierarchical clustering for Fe 1s and As 1s μXAS datasets. The solid-phase Fe and As speciation is then interpreted using sediment and well-water chemical data to propose solid-phase As reservoirs and release mechanisms. The results confirm that in two of the three locations studied, the glacial sediment forming the aquitard is the source of As to the aquifer sediments. The results are consistent with three different As release mechanisms: (1) desorption from Fe (oxyhydr)oxides, (2) reductive dissolution of Fe (oxyhydr)oxides, and (3) oxidative dissolution of Fe sulfides. The findings confirm that glacial sediments at the interface between aquifer and aquitard are geochemically active zones for As. The diversity of As release mechanisms is consistent with the geographic heterogeneity seen in the distribution of elevated-As wells.« less

  3. Refining the conditions for sympatric ecological speciation.

    PubMed

    Débarre, F

    2012-12-01

    Can speciation occur in a single population when different types of resources are available, in the absence of any geographical isolation, or any spatial or temporal variation in selection? The controversial topics of sympatric speciation and ecological speciation have already stimulated many theoretical studies, most of them agreeing on the fact that mechanisms generating disruptive selection, some level of assortment, and enough heterogeneity in the available resources, are critical for sympatric speciation to occur. Few studies, however, have combined the three factors and investigated their interactions. In this article, I analytically derive conditions for sympatric speciation in a general model where the distribution of resources can be uni- or bimodal, and where a parameter controls the range of resources that an individual can exploit. This approach bridges the gap between models of a unimodal continuum of resources and Levene-type models with discrete resources. I then test these conditions against simulation results from a recently published article (Thibert-Plante & Hendry, 2011, J. Evol. Biol. 24: 2186-2196) and confirm that sympatric ecological speciation is favoured when (i) selection is disruptive (i.e. individuals with an intermediate trait are at a local fitness minimum), (ii) resources are differentiated enough and (iii) mating is assortative. I also discuss the role of mating preference functions and the need (or lack thereof) for bimodality in resource distributions for diversification. © 2012 The Author. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  4. Influence of population density on the concentration and speciation of metals in the soil and street dust from urban areas.

    PubMed

    Acosta, J A; Gabarrón, M; Faz, A; Martínez-Martínez, S; Zornoza, R; Arocena, J M

    2015-09-01

    Street dust and soil from high, medium and low populated cities and natural area were analysed for selected physical-chemical properties, total and chemical speciation of Zn, Pb, Cu, Cr, Cd, Co, Ni to understand the influence of human activities on metal accumulation and mobility in the environment. The pH, salinity, carbonates and organic carbon contents were similar between soil and dust from the same city. Population density increases dust/soil salinity but has no influence on metals concentrations in soils. Increases in metal concentrations with population density were observed in dusts. Cu, Zn, Pb, Cr can be mobilized more easily from dust compared to the soil. In addition, population density increase the percentage of Pb and Zn associated to reducible and carbonate phase in the dust. The behaviour of metals except Cd in soil is mainly affected by physico-chemical properties, while total metal influenced the speciation except Cr and Ni in dusts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Monte Carlo simulations of parapatric speciation

    NASA Astrophysics Data System (ADS)

    Schwämmle, V.; Sousa, A. O.; de Oliveira, S. M.

    2006-06-01

    Parapatric speciation is studied using an individual-based model with sexual reproduction. We combine the theory of mutation accumulation for biological ageing with an environmental selection pressure that varies according to the individuals geographical positions and phenotypic traits. Fluctuations and genetic diversity of large populations are crucial ingredients to model the features of evolutionary branching and are intrinsic properties of the model. Its implementation on a spatial lattice gives interesting insights into the population dynamics of speciation on a geographical landscape and the disruptive selection that leads to the divergence of phenotypes. Our results suggest that assortative mating is not an obligatory ingredient to obtain speciation in large populations at low gene flow.

  6. Anagenesis, Cladogenesis, and Speciation on Islands.

    PubMed

    Emerson, Brent C; Patiño, Jairo

    2018-05-03

    Anagenesis and cladogenesis are fundamental evolutionary concepts, but are increasingly being adopted as speciation models in the field of island biogeography. Here, we review the origin of the terms 'anagenetic' and 'cladogenetic' speciation, critique their utility, and finally suggest alternative terminology that better describes the geographical relationships of insular sister species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Ecology, sexual selection and speciation.

    PubMed

    Maan, Martine E; Seehausen, Ole

    2011-06-01

    The spectacular diversity in sexually selected traits among animal taxa has inspired the hypothesis that divergent sexual selection can drive speciation. Unfortunately, speciation biologists often consider sexual selection in isolation from natural selection, even though sexually selected traits evolve in an ecological context: both preferences and traits are often subject to natural selection. Conversely, while behavioural ecologists may address ecological effects on sexual communication, they rarely measure the consequences for population divergence. Herein, we review the empirical literature addressing the mechanisms by which natural selection and sexual selection can interact during speciation. We find that convincing evidence for any of these scenarios is thin. However, the available data strongly support various diversifying effects that emerge from interactions between sexual selection and environmental heterogeneity. We suggest that evaluating the evolutionary consequences of these effects requires a better integration of behavioural, ecological and evolutionary research. © 2011 Blackwell Publishing Ltd/CNRS.

  8. Recent Advances in On-Line Methods Based on Extraction for Speciation Analysis of Chromium in Environmental Matrices.

    PubMed

    Trzonkowska, Laura; Leśniewska, Barbara; Godlewska-Żyłkiewicz, Beata

    2016-07-03

    The biological activity of Cr(III) and Cr(VI) species, their chemical behavior, and toxic effects are dissimilar. The speciation analysis of Cr(III) and Cr(VI) in environmental matrices is then of great importance and much research has been devoted to this area. This review presents recent developments in on-line speciation analysis of chromium in such samples. Flow systems have proved to be excellent tools for automation of sample pretreatment, separation/preconcentration of chromium species, and their detection by various instrumental techniques. Analytical strategies used in chromium speciation analysis discussed in this review are divided into categories based on selective extraction/separation of chromium species on solid sorbents and liquid-liquid extraction of chromium species. The most popular strategy is that based on solid-phase extraction. Therefore, this review shows the potential of novel materials designed and used for selective binding of chromium species. The progress in miniaturization of measurement systems is also presented.

  9. Selenium speciation in seleniferous agricultural soils under different cropping systems using sequential extraction and X-ray absorption spectroscopy.

    PubMed

    Qin, Hai-Bo; Zhu, Jian-Ming; Lin, Zhi-Qing; Xu, Wen-Po; Tan, De-Can; Zheng, Li-Rong; Takahashi, Yoshio

    2017-06-01

    Selenium (Se) speciation in soil is critically important for understanding the solubility, mobility, bioavailability, and toxicity of Se in the environment. In this study, Se fractionation and chemical speciation in agricultural soils from seleniferous areas were investigated using the elaborate sequential extraction and X-ray absorption near-edge structure (XANES) spectroscopy. The speciation results quantified by XANES technique generally agreed with those obtained by sequential extraction, and the combination of both approaches can reliably characterize Se speciation in soils. Results showed that dominant organic Se (56-81% of the total Se) and lesser Se(IV) (19-44%) were observed in seleniferous agricultural soils. A significant decrease in the proportion of organic Se to the total Se was found in different types of soil, i.e., paddy soil (81%) > uncultivated soil (69-73%) > upland soil (56-63%), while that of Se(IV) presented an inverse tendency. This suggests that Se speciation in agricultural soils can be significantly influenced by different cropping systems. Organic Se in seleniferous agricultural soils was probably derived from plant litter, which provides a significant insight for phytoremediation in Se-laden ecosystems and biofortification in Se-deficient areas. Furthermore, elevated organic Se in soils could result in higher Se accumulation in crops and further potential chronic Se toxicity to local residents in seleniferous areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. How humans drive speciation as well as extinction

    PubMed Central

    Maron, M.

    2016-01-01

    A central topic for conservation science is evaluating how human activities influence global species diversity. Humanity exacerbates extinction rates. But by what mechanisms does humanity drive the emergence of new species? We review human-mediated speciation, compare speciation and known extinctions, and discuss the challenges of using net species diversity as a conservation objective. Humans drive rapid evolution through relocation, domestication, hunting and novel ecosystem creation—and emerging technologies could eventually provide additional mechanisms. The number of species relocated, domesticated and hunted during the Holocene is of comparable magnitude to the number of observed extinctions. While instances of human-mediated speciation are known, the overall effect these mechanisms have upon speciation rates has not yet been quantified. We also explore the importance of anthropogenic influence upon divergence in microorganisms. Even if human activities resulted in no net loss of species diversity by balancing speciation and extinction rates, this would probably be deemed unacceptable. We discuss why, based upon ‘no net loss’ conservation literature—considering phylogenetic diversity and other metrics, risk aversion, taboo trade-offs and spatial heterogeneity. We conclude that evaluating speciation alongside extinction could result in more nuanced understanding of biosphere trends, clarifying what it is we actually value about biodiversity. PMID:27358365

  11. How humans drive speciation as well as extinction.

    PubMed

    Bull, J W; Maron, M

    2016-06-29

    A central topic for conservation science is evaluating how human activities influence global species diversity. Humanity exacerbates extinction rates. But by what mechanisms does humanity drive the emergence of new species? We review human-mediated speciation, compare speciation and known extinctions, and discuss the challenges of using net species diversity as a conservation objective. Humans drive rapid evolution through relocation, domestication, hunting and novel ecosystem creation-and emerging technologies could eventually provide additional mechanisms. The number of species relocated, domesticated and hunted during the Holocene is of comparable magnitude to the number of observed extinctions. While instances of human-mediated speciation are known, the overall effect these mechanisms have upon speciation rates has not yet been quantified. We also explore the importance of anthropogenic influence upon divergence in microorganisms. Even if human activities resulted in no net loss of species diversity by balancing speciation and extinction rates, this would probably be deemed unacceptable. We discuss why, based upon 'no net loss' conservation literature-considering phylogenetic diversity and other metrics, risk aversion, taboo trade-offs and spatial heterogeneity. We conclude that evaluating speciation alongside extinction could result in more nuanced understanding of biosphere trends, clarifying what it is we actually value about biodiversity. © 2016 The Author(s).

  12. Speciation in fungal and oomycete plant pathogens

    USDA-ARS?s Scientific Manuscript database

    The process of speciation by definition involves evolution of one or more reproductive isolating mechanisms that split a single species into two that can no longer interbreed. Determination of which processes are responsible for speciation is important yet challenging. Several studies have proposed ...

  13. Uptake of elements from seawater by ferromanganese crusts: Solid-phase associations and seawater speciation

    USGS Publications Warehouse

    Koschinsky, A.; Hein, J.R.

    2003-01-01

    Marine Fe-Mn oxyhydroxide crusts form by precipitation of dissolved components from seawater. Three hydrogenetic crust samples (one phosphatized) and two hydrothermal Mn-oxide samples were subjected to a sequential-leaching procedure in order to determine the host phases of 40 elements. Those host-phase associations are discussed with respect to element speciation in seawater. The partitioning of elements between the two major phases, Mn oxide and Fe oxyhydroxide, can in a first-order approximation be explained by a simple sorption model related to the inorganic speciation of the elements in seawater, as has been proposed in earlier models. Free and weakly complexed cations, such as alkali and alkaline earth metals, Mn, Co, Ni, Zn, T1(I), and partly Y, are sorbed preferentially on the negatively charged surface of the MnO2 in hydrogenetic crusts. The driving force is a strong coulombic interaction. All neutral or negatively charged chloro (Cd, Hg, T1), carbonate (Cu, Y, Pb, and U), and hydroxide (Be, Sc, Ti, Fe, Zr, Nb, In, Sn, Sb, Te, Hf, Ta, Bi, Th, and T1(III)) complexes and oxyanions (V, Cr, As, Se, Mo, and W) bind to the slightly positively charged surface of the amorphous FeOOH phase. While coulombic interaction can explain the sorption of the negatively charged species, the binding of neutral species is based on specific chemical interaction. Organic complexation of elements in deep-ocean water seems to be at most of minor importance. Surface oxidation can explain some strong metal associations, e.g. of Co and T1 with the MnO2 and Te with the FeOOH. Sorption reactions initially driven by coulombic forces are often followed by the formation of specific bonds between the adsorbate and the atoms of the oxide surface. Differences in the associations of some metals between the non-phosphatized and phosphatized hydrogenetic crusts and between the hydrogenetic and the hydrothermal samples reflect the different physico-chemical environments of formation and

  14. Speciation of Soil Phosphorus Assessed by XANES Spectroscopy at Different Spatial Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hesterberg, Dean; McNulty, Ian; Thieme, Juergen

    Precise management of soil phosphorus (P) to meet competing demands of agriculture and environmental protection can benefit from more comprehensive characterization of P speciation in soils. Our objectives were to provide spatial context for spectroscopic analyses of soil P speciation in relation to molecular-scale species and landscape-scale management of P, and to compare soil P-species diversity from spectroscopic measurements at submicron and millimeter scales. The spatial range of ~26 orders of magnitude between atomic and field scales presents a challenge to upscaling and downscaling information from spectroscopic analyses of soils. Scanning fluorescence X-ray microscopy images of a 50-mm ´ 45-mmmore » area of an organic soil sample showed heterogeneous distributions of P, Al, and Si. Microscale X-ray absorption near edge structure (μ-XANES) spectra collected at the P K-edge from 12 spots on the soil sample exhibited diverse features that indicated variations in highly localized P speciation. Linear combination fitting analysis of the μ-XANES spectra included various proportions of three standards that appeared in fits for most spots and five standards that appeared in fits for one spot each. The fit to a bulk-soil spectrum was dominated by two of the common standards in the μ-XANES fits, and a fit to the sum of m-XANES spectra included four of the standards. Lastly, these results illustrate a gain in P species sensitivity from spatially resolved XANES analysis. Integrating spectroscopic analyses from multiple scales determines soil P species diversity and will ultimately help connect speciation to the chemical reactivity and mobility of P in soils.« less

  15. Speciation of Soil Phosphorus Assessed by XANES Spectroscopy at Different Spatial Scales

    DOE PAGES

    Hesterberg, Dean; McNulty, Ian; Thieme, Juergen

    2017-07-27

    Precise management of soil phosphorus (P) to meet competing demands of agriculture and environmental protection can benefit from more comprehensive characterization of P speciation in soils. Our objectives were to provide spatial context for spectroscopic analyses of soil P speciation in relation to molecular-scale species and landscape-scale management of P, and to compare soil P-species diversity from spectroscopic measurements at submicron and millimeter scales. The spatial range of ~26 orders of magnitude between atomic and field scales presents a challenge to upscaling and downscaling information from spectroscopic analyses of soils. Scanning fluorescence X-ray microscopy images of a 50-mm ´ 45-mmmore » area of an organic soil sample showed heterogeneous distributions of P, Al, and Si. Microscale X-ray absorption near edge structure (μ-XANES) spectra collected at the P K-edge from 12 spots on the soil sample exhibited diverse features that indicated variations in highly localized P speciation. Linear combination fitting analysis of the μ-XANES spectra included various proportions of three standards that appeared in fits for most spots and five standards that appeared in fits for one spot each. The fit to a bulk-soil spectrum was dominated by two of the common standards in the μ-XANES fits, and a fit to the sum of m-XANES spectra included four of the standards. Lastly, these results illustrate a gain in P species sensitivity from spatially resolved XANES analysis. Integrating spectroscopic analyses from multiple scales determines soil P species diversity and will ultimately help connect speciation to the chemical reactivity and mobility of P in soils.« less

  16. Considerations in As analysis and speciation

    USGS Publications Warehouse

    Edwards, M.; Patel, S.; McNeil, L.; Chen, H.W.; Frey, M.; Eaton, A.D.; Antweiler, Ronald C.; Taylor, Howard E.

    1998-01-01

    This article summarizes recent experiences in arsenic (As) quantification, preservation, and speciation developed during AWWA Research Foundation (AWWARF) and Water Industry Technical Action Fund (WITAF) projects. The goal of this article is to alert analysts and decision-makers to potential problems in As analysis and speciation, because there appear to be several unresolved problems with routine analytical approaches. In true split drinking water samples As was quantified by three accepted analytical methods in three laboratories. The techniques used were graphite furnace atomic absorption spectrometry (GFAAS), inductively coupled plasma mass spectrometry (ICP-MS), and hydride generation inductively coupled plasma-emission spectrometry (HG-ICP-AES). Experimental findings are organized into sections on As analysis, particulate As in water supplies, and examination of As speciation methods.

  17. Self-consistent approach for neutral community models with speciation

    NASA Astrophysics Data System (ADS)

    Haegeman, Bart; Etienne, Rampal S.

    2010-03-01

    Hubbell’s neutral model provides a rich theoretical framework to study ecological communities. By incorporating both ecological and evolutionary time scales, it allows us to investigate how communities are shaped by speciation processes. The speciation model in the basic neutral model is particularly simple, describing speciation as a point-mutation event in a birth of a single individual. The stationary species abundance distribution of the basic model, which can be solved exactly, fits empirical data of distributions of species’ abundances surprisingly well. More realistic speciation models have been proposed such as the random-fission model in which new species appear by splitting up existing species. However, no analytical solution is available for these models, impeding quantitative comparison with data. Here, we present a self-consistent approximation method for neutral community models with various speciation modes, including random fission. We derive explicit formulas for the stationary species abundance distribution, which agree very well with simulations. We expect that our approximation method will be useful to study other speciation processes in neutral community models as well.

  18. The reality and importance of founder speciation in evolution.

    PubMed

    Templeton, Alan R

    2008-05-01

    A founder event occurs when a new population is established from a small number of individuals drawn from a large ancestral population. Mayr proposed that genetic drift in an isolated founder population could alter the selective forces in an epistatic system, an observation supported by recent studies. Carson argued that a period of relaxed selection could occur when a founder population is in an open ecological niche, allowing rapid population growth after the founder event. Selectable genetic variation can actually increase during this founder-flush phase due to recombination, enhanced survival of advantageous mutations, and the conversion of non-additive genetic variance into additive variance in an epistatic system, another empirically confirmed prediction. Templeton combined the theories of Mayr and Carson with population genetic models to predict the conditions under which founder events can contribute to speciation, and these predictions are strongly confirmed by the empirical literature. Much of the criticism of founder speciation is based upon equating founder speciation to an adaptive peak shift opposed by selection. However, Mayr, Carson and Templeton all modeled a positive interaction of selection and drift, and Templeton showed that founder speciation is incompatible with peak-shift conditions. Although rare, founder speciation can have a disproportionate importance in adaptive innovation and radiation, and examples are given to show that "rare" does not mean "unimportant" in evolution. Founder speciation also interacts with other speciation mechanisms such that a speciation event is not a one-dimensional process due to either selection alone or drift alone. (c) 2008 Wiley Periodicals, Inc.

  19. SPECIATE 4.4: The Bridge Between Emissions Characterization and Modeling

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Some of the many uses of these source profiles include: (1) creating speciated emissions inventories for...

  20. Ephemeral ecological speciation and the latitudinal biodiversity gradient.

    PubMed

    Cutter, Asher D; Gray, Jeremy C

    2016-10-01

    The richness of biodiversity in the tropics compared to high-latitude parts of the world forms one of the most globally conspicuous patterns in biology, and yet few hypotheses aim to explain this phenomenon in terms of explicit microevolutionary mechanisms of speciation and extinction. We link population genetic processes of selection and adaptation to speciation and extinction by way of their interaction with environmental factors to drive global scale macroecological patterns. High-latitude regions are both cradle and grave with respect to species diversification. In particular, we point to a conceptual equivalence of "environmental harshness" and "hard selection" as eco-evolutionary drivers of local adaptation and ecological speciation. By describing how ecological speciation likely occurs more readily at high latitudes, with such nascent species especially prone to extinction by fusion, we derive the ephemeral ecological speciation hypothesis as an integrative mechanistic explanation for latitudinal gradients in species turnover and the net accumulation of biodiversity. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  1. Comparative tests of the role of dewlap size in Anolis lizard speciation

    PubMed Central

    Harrison, Alexis; Mahler, D. Luke; Castañeda, María del Rosario; Glor, Richard E.; Herrel, Anthony; Stuart, Yoel E.; Losos, Jonathan B.

    2016-01-01

    Phenotypic traits may be linked to speciation in two distinct ways: character values may influence the rate of speciation or diversification in the trait may be associated with speciation events. Traits involved in signal transmission, such as the dewlap of Anolis lizards, are often involved in the speciation process. The dewlap is an important visual signal with roles in species recognition and sexual selection, and dewlaps vary among species in relative size as well as colour and pattern. We compile a dataset of relative dewlap size digitized from photographs of 184 anole species from across the genus' geographical range. We use phylogenetic comparative methods to test two hypotheses: that larger dewlaps are associated with higher speciation rates, and that relative dewlap area diversifies according to a speciational model of evolution. We find no evidence of trait-dependent speciation, indicating that larger signals do not enhance any role the dewlap has in promoting speciation. Instead, we find a signal of mixed speciational and gradual trait evolution, with a particularly strong signal of speciational change in the dewlaps of mainland lineages. This indicates that dewlap size diversifies in association with the speciation process, suggesting that divergent selection may play a role in the macroevolution of this signalling trait. PMID:28003450

  2. Ecological Impacts of Reverse Speciation in Threespine Stickleback.

    PubMed

    Rudman, Seth M; Schluter, Dolph

    2016-02-22

    Young species are highly prone to extinction via increased gene flow after human-caused environmental changes. This mechanism of biodiversity loss, often termed reverse speciation or introgressive extinction, is of exceptional interest because the parent species are typically highly differentiated ecologically. Reverse speciation events are potentially powerful case studies for the role of evolution in driving ecological changes, as the phenotypic shifts associated with introgressive extinction can be large and they occur over particularly short timescales. Furthermore, reverse speciation can lead to novel phenotypes, which may in turn produce novel ecological effects. Here we investigate the ecological shift associated with reverse speciation in threespine stickleback fish using a field study and a replicated experiment. We find that an instance of introgressive extinction had cascading ecological consequences that altered the abundance of both aquatic prey and the pupating aquatic insects that emerged into the terrestrial ecosystem. The community and ecosystem impacts of reverse speciation were novel, and yet they were also predictable based on ecological and morphological considerations. The study suggests that knowledge about the community ecology and changes in functional morphology of a dominant species may lead to some predictive power for the ecological effects of evolutionary change. Moreover, the rapid nature and resultant ecological impacts associated with reverse speciation demonstrates the interplay between biodiversity, evolutionary change, and ecosystem function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Particulate matter speciation profiles for light-duty gasoline vehicles in the United States.

    PubMed

    Sonntag, Darrell B; Baldauf, Richard W; Yanca, Catherine A; Fulper, Carl R

    2014-05-01

    developed from a large sample of light-duty gasoline vehicles tested in the Kansas City area. Separate PM2.5 profiles represent cold start and hot stabilized running emission processes to distinguish important differences in chemical composition. Statistical analysis was used to construct profiles that represent PM2.5 emissions from the U.S. vehicle fleet based on vehicles tested from the 2005 calendar year Kansas City metropolitan area. The profiles have been incorporated into the EPA MOVES emissions model, as well as the EPA SPECIATE database, to improve emission inventories and provide the PM2.5 chemical characterization needed by CMAQv5.0 for atmospheric chemistry modeling.

  4. Microcolumn-based speciation analysis of thallium in soil and green cabbage.

    PubMed

    Jia, Yanlong; Xiao, Tangfu; Sun, Jialong; Yang, Fei; Baveye, Philippe C

    2018-07-15

    Thallium (Tl) is a toxic trace metal, whose geochemical behavior and biological effects are closely controlled by its chemical speciation in the environment. However, little tends to be known about this speciation of Tl in soil and plant systems that directly affect the safety of food supplies. In this context, the objective of the present study was to elaborate an efficient method to separate and detect Tl(I) and Tl(III) species for soil and plant samples. This method involves the selective adsorption of Tl(I) on microcolumns filled with immobilized oxine, in the presence of DTPA (diethylenetriaminepentaacetic acid), followed by DTPA-enhanced ultrasonic and heating-induced extraction, coupled with ICP-MS detection. The method was characterized by a LOD of 0.037 μg/L for Tl(I) and 0.18 μg/L for Tl(III) in 10  mL samples. With this method, a second objective of the research was to assess the speciation of Tl in pot and field soils and in green cabbage crops. Experimental results suggest that DTPA extracted Tl was mainly present as Tl(I) in soils (>95%). Tl in hyperaccumulator plant green cabbage was also mainly present as Tl(I) (>90%). With respect to Tl uptake in plants, this study provides direct evidence that green cabbage mainly takes up Tl(I) from soil, and transports it into the aboveground organs. In soils, Tl(III) is reduced to Tl(I) even at the surface where the chemical environment promotes oxidation. This observation is conducive to understanding the mechanisms of Tl isotope fractionation in the soil-plant system. Based on geochemical fraction studies, the reducible fraction was the main source of Tl getting accumulated by plants. These results indicate that the improved analytical method presented in this study offers an economical, simple, fast, and sensitive approach for the separation of Tl species present in soils at trace levels. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Speciation gradients and the distribution of biodiversity.

    PubMed

    Schluter, Dolph; Pennell, Matthew W

    2017-05-31

    Global patterns of biodiversity are influenced by spatial and environmental variations in the rate at which new species form. We relate variations in speciation rates to six key patterns of biodiversity worldwide, including the species-area relationship, latitudinal gradients in species and genetic diversity, and between-habitat differences in species richness. Although they sometimes mirror biodiversity patterns, recent rates of speciation, at the tip of the tree of life, are often highest where species richness is low. Speciation gradients therefore shape, but are also shaped by, biodiversity gradients and are often more useful for predicting future patterns of biodiversity than for interpreting the past.

  6. Synchrotron speciation of silver and zinc oxide nanoparticles aged in a kaolin suspension.

    PubMed

    Scheckel, Kirk G; Luxton, Todd P; El Badawy, Amro M; Impellitteri, Christopher A; Tolaymat, Thabet M

    2010-02-15

    Assessments of the environmental fate and mobility of nanoparticles must consider the behavior of nanoparticles in relevant environmental systems that may result in speciation changes over time. Environmental conditions may act on nanoparticles to change their size, shape, and surface chemistry. Changing these basic characteristics of nanoparticles may result in a final reaction product that is significantly different than the initial nanomaterial. As such, basing long-term risk and toxicity on the initial properties of a nanomaterial may lead to erroneous conclusions if nanoparticles change upon release to the environment. The influence of aging on the speciation and chemical stability of silver and zinc oxide nanoparticles in kaolin suspensions was examined in batch reactors for up to 18 months. Silver nanoparticles remained unchanged in sodium nitrate suspensions; however, silver chloride was identified with the metallic silver nanoparticles in sodium chloride suspensions and may be attributed to an in situ silver chloride surface coating. Zinc oxide nanoparticles were rapidly converted via destabilization/dissolution mechanisms to Zn(2+) inner-sphere sorption complexes within 1 day of reaction and these sorption complexes were maintained through the 12 month aging processes. Chemical and physical alteration of nanomaterials in the environment must be examined to understand fate, mobility, and toxicology.

  7. Speciation and Health Risks of Atmospheric Nanoparticulates

    NASA Astrophysics Data System (ADS)

    Nguyen, Kennedy

    Exposure to air pollution causes several adverse health effects such as asthma, respiratory disease, cardiovascular disease, cancer, and premature death; and the San Joaquin Valley is one of the most heavily polluted regions in the US. The mountains that surround the valley allow air pollution, including particulate matter, to remain stagnant, prolonging the exposure of valley populations to it. The primary sources of particulate matter for this region are aluminosilicate dust from agricultural activities, and soot emissions from diesel trucks and vehicular traffic. A substantial fraction of emitted material is nanoparticulate matter (<100 nm), which contains trace iron and polycyclic aromatic hydrocarbons that can traverse into human organs via the lungs, initiate inflammation, and lead to disease. The traditional approach of reducing the total mass of emitted material is beginning to reach its limit of effectiveness for mitigating the negative health impacts of particulate matter. There is a need for chemical speciation of particulate matter that will allow the identification of the chemical and physical properties of particulates by source, the creation of well-controlled proxy particles with those properties for testing in cell culture studies, and correlation of particulate properties and sources with their negative health impacts. These results can help identify the sources of air pollution to prioritize for mitigation for the greatest health benefit. In addition, further chemical speciation can help monitor the results of such mitigation efforts. Here, natural particulate matter samples from Merced and Fresno, two cities in the San Joaquin Valley, were analyzed. Ultrafine particles present were 40 to 50 nm in diameter and mostly composed of aluminum, silicon, oxygen, and iron hydroxide. XAS data confirmed the presence of the aluminosilicate as smectite clay and the iron hydroxide as ferrihydrite. Furthermore, a chemical speciation study investigated

  8. Dynamics of aluminum speciation in forest-well drainage waters from the Rhode River watershed, Maryland.

    PubMed

    Bi, S P; An, S Q; Yang, M; Chen, T

    2001-05-01

    This paper reports an investigation of the dynamics of aluminum (Al) speciation in the forest-well waters from study site 110 of the Rhode River watershed, a representative sub-unit of Chesapeake Bay. Seasonal changes of Al speciation are evaluated by a modified MINEQL computer model using chemical equilibrium calculation. It was found that Al-F and Al-Org complexes were the dominate forms, whereas toxic forms of Al3+ and Al-OH were not significant. This indicates that Al toxicity is not very serious in the Rhode River area due to the high concentrations of fluoride and organic materials, even though sometimes pH is very low (approximately 4). Increased H+ or some other associated factors may be responsible for the decline in fish and amphibian population on the watershed.

  9. Research on chromium and arsenic speciation in atmospheric particulate matter: short review

    NASA Astrophysics Data System (ADS)

    Nocoń, Katarzyna; Rogula-Kozłowska, Wioletta; Widziewicz, Kamila

    2018-01-01

    Atmospheric particulate matter (PM) plays an important role in the distribution of elements in the environment. The PM-bound elements penetrates into the other elements of the environment, in two basic forms - those dissolved in the atmospheric precipitation and those permanently bound to PM particles. Those forms differs greatly in their mobility, thus posing a potential threat to living organisms. They can also be an immediate threat, while being inhaled. Chromium (Cr) and arsenic (As) belong to the group of elements whose certain chemical states exhibit toxic properties, that is Cr(VI) and As(III). Thus, recognition of the actual threat posed by Cr and As in the environment, including those present in PM, is possible only through the in depth speciation analysis. Research on the Cr and As speciation in PM, more than the analogous studies of their presence in other compartments of the environment, have been undertaken quite rarely. Hence the knowledge on the speciation of PM-bound As and Cr is still limited. The state of knowledge in the field of PM-bound Cr and As is presented in the paper. The issues related to the characterization and occurrence of Cr and As species in PM, the share of Cr and As species mass in different PM size fractions, and in PM of different origin is also summarized. The analytical techniques used in the speciation analysis of PM-bound Cr and As are also discussed. In the existing literature there is no data on the physical characteristics of Cr and As (bound to a different PM size fractions), and thus it still lack of data needed for a comprehensive assessment of the actual environmental and health threat posed by airborne Cr and As.

  10. Sexual selection drives speciation in an Amazonian frog

    USGS Publications Warehouse

    Boul, K.E.; Funk, W.C.; Darst, C.R.; Cannatella, D.C.; Ryan, M.J.

    2007-01-01

    One proposed mechanism of speciation is divergent sexual selection, whereby divergence in female preferences and male signals results in behavioural isolation. Despite the appeal of this hypothesis, evidence for it remains inconclusive. Here, we present several lines of evidence that sexual selection is driving behavioural isolation and speciation among populations of an Amazonian frog (Physalaemus petersi). First, sexual selection has promoted divergence in male mating calls and female preferences for calls between neighbouring populations, resulting in strong behavioural isolation. Second, phylogenetic analysis indicates that populations have become fixed for alternative call types several times throughout the species' range, and coalescent analysis rejects genetic drift as a cause for this pattern, suggesting that this divergence is due to selection. Finally, gene flow estimated with microsatellite loci is an average of 30 times lower between populations with different call types than between populations separated by a similar geographical distance with the same call type, demonstrating genetic divergence and incipient speciation. Taken together, these data provide strong evidence that sexual selection is driving behavioural isolation and speciation, supporting sexual selection as a cause for speciation in the wild. ?? 2006 The Royal Society.

  11. Chromosome speciation: Humans, Drosophila, and mosquitoes

    PubMed Central

    Ayala, Francisco J.; Coluzzi, Mario

    2005-01-01

    Chromosome rearrangements (such as inversions, fusions, and fissions) may play significant roles in the speciation between parapatric (contiguous) or partly sympatric (geographically overlapping) populations. According to the “hybrid-dysfunction” model, speciation occurs because hybrids with heterozygous chromosome rearrangements produce dysfunctional gametes and thus have low reproductive fitness. Natural selection will, therefore, promote mutations that reduce the probability of intercrossing between populations carrying different rearrangements and thus promote their reproductive isolation. This model encounters a disabling difficulty: namely, how to account for the spread in a population of a chromosome rearrangement after it first arises as a mutation in a single individual. The “suppressed-recombination” model of speciation points out that chromosome rearrangements act as a genetic filter between populations. Mutations associated with the rearranged chromosomes cannot flow from one to another population, whereas genetic exchange will freely occur between colinear chromosomes. Mutations adaptive to local conditions will, therefore, accumulate differentially in the protected chromosome regions so that parapatric or partially sympatric populations will genetically differentiate, eventually evolving into different species. The speciation model of suppressed recombination has recently been tested by gene and DNA sequence comparisons between humans and chimpanzees, between Drosophila species, and between species related to Anopheles gambiae, the vector of malignant malaria in Africa. PMID:15851677

  12. EPA’s SPECIATE 4.4 Database: Bridging Data Sources and Data Users

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA)repository of volatile organic gas and particulate matter (PM) speciation profiles for air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, VOC, total...

  13. Assessment of occupational exposure to inorganic arsenic based on urinary concentrations and speciation of arsenic.

    PubMed Central

    Farmer, J G; Johnson, L R

    1990-01-01

    An analytical speciation method, capable of separating inorganic arsenic (As (V), As (III] and its methylated metabolites (MMAA, DMAA) from common, inert, dietary organoarsenicals, was applied to the determination of arsenic in urine from a variety of workers occupationally exposed to inorganic arsenic compounds. Mean urinary arsenic (As (V) + As (III) + MMAA + DMAA) concentrations ranged from 4.4 micrograms/g creatinine for controls to less than 10 micrograms/g for those in the electronics industry, 47.9 micrograms/g for timber treatment workers applying arsenical wood preservatives, 79.4 micrograms/g for a group of glassworkers using arsenic trioxide, and 245 micrograms/g for chemical workers engaged in manufacturing and handling inorganic arsenicals. The maximum recorded concentration was 956 micrograms/g. For the most exposed groups, the ranges in the average urinary arsenic speciation pattern were 1-6% As (V), 11-14% As (III), 14-18% MMAA, and 63-70% DMAA. The highly raised urinary arsenic concentrations for the chemical workers, in particular, and some glassworkers are shown to correspond to possible atmospheric concentrations in the workplace and intakes in excess of, or close to, recommended and statutory limits and those associated with inorganic arsenic related diseases. PMID:2357455

  14. Speciation and distribution of cadmium and lead in salinized horizons of antrosols

    NASA Astrophysics Data System (ADS)

    Bulgariu, D.; Bulgariu, L.; Astefanei, D.

    2009-04-01

    The utilization of intensive technologies for the vegetable cultivation in glass houses by the administration of high doses of organic fertilizes, the supra-dimensional irrigation and the maintaining of soil at high humidity state, in special in case of vicious drainage have as result the rapid degradation of morphological, chemical and physical characteristics of soils, concretized by: (i) decrease of structural aggregates stability; (ii) more dense packing of soil; (iii) accumulation of easy soluble salts (in special at superior horizons level); (iv) limitation of organic compounds and micro-elements biodisponibility. All these determined a significant reduction of productivity and of exploitation duration of soils from glass houses. These phenomena modified continuously the dynamic of speciation processes and inter-phases distribution, of heavy metals in soils from glass houses, and can determined a non-controlled accumulation of heavy metals, in special as mobile forms with high biodisponibility. Ours studied have been performed using soil profiles drawing from Copou-glass house, Iasi (Romania). Has been followed the modification of distribution for speciation forms of cadmium and lead (two heavy metals with high toxicity degree), between hortic antrosol horizons, and between chemical-mineralogical components of this, with the progressive salinization of superior horizons, in 2007-2008 period. The separation, differentiation and determination of cadmium and lead speciation forms was done by combined solid-liquid sequential extraction (SPE) and extraction in aqueous polymer-inorganic salt two-phase systems (ABS) procedure, presented in some of ours previous studies. After extraction, the total contents of the two heavy metals and fractions from these differential bonded by mineral and organic components of hortic antrosol have been determined by atomic absorption spectrometry. The specific interaction mechanisms of Cd and Pb with organic-mineral components of

  15. Metal Speciation in Landfill Leachates with a Focus on the Influence of Organic Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F Claret; C Tournassat; C Crouzet

    This study characterizes the heavy-metal content in leachates collected from eight landfills in France. In order to identify heavy metal occurrence in the different size fractions of leachates, a cascade filtration protocol was applied directly in the field, under a nitrogen gas atmosphere to avoid metal oxidation. The results of analyses performed on the leachates suggest that most of the metals are concentrated in the <30 kDa fraction, while lead, copper and cadmium show an association with larger particles. Initial speciation calculations, without considering metal association with organic matter, suggest that leachate concentrations in lead, copper, nickel and zinc aremore » super-saturated with respect to sulphur phases. Speciation calculations that account for metal complexation with organic matter, considered as fulvic acids based on C1(s) NEXAFS spectroscopy, show that this mechanism is not sufficient to explain such deviation from equilibrium conditions. It is therefore hypothesized that the deviation results also from the influence of biological activity on the kinetics of mineral phase precipitation and dissolution, thus providing a dynamic system. The results of chemical analyses of sampled fluids are compared with speciation calculations and some implications for the assessment of metal mobility and natural attenuation in a context of landfill risk assessment are discussed.« less

  16. Molybdenum X-Ray Absorption Edges from 200 – 20,000 eV, The Benefits of Soft X-Ray Spectroscopy for Chemical Speciation

    PubMed Central

    George, Simon J.; Drury, Owen B.; Fu, Juxia; Friedrich, Stephan; Doonan, Christian J.; George, Graham N.; White, Jonathan M.; Young, Charles G.; Cramer, Stephen P.

    2009-01-01

    We have surveyed the chemical utility of the near-edge structure of molybdenum x-ray absorption edges from the hard x-ray K-edge at 20,000 eV down to the soft x-ray M4,5-edges at ~230 eV. We compared, for each edge, the spectra of two tetrahedral anions, MoO4 and MoS42-. We used three criteria for assessing near-edge structure of each edge: (i) the ratio of the observed chemical shift between MoO42- and MoS42- and the linewidth, (ii) the chemical information from analysis of the near-edge structure and (iii) the ease of measurement using fluorescence detection. Not surprisingly, the K-edge was by far the easiest to measure, but it contained the least information. The L2,3-edges, although harder to measure, had benefits with regard to selection rules and chemical speciation in that they had both a greater chemical shift as well as detailed lineshapes which could be theoretically analyzed in terms of Mo ligand field, symmetry, and covalency. The soft x-ray M2,3-edges were perhaps the least useful, in that they were difficult to measure using fluorescence detection and had very similar information content to the corresponding L2,3-edges. Interestingly, the soft x-ray, low energy (~230 eV) M4,5-edges had greatest potential chemical sensitivity and using our high resolution superconducting tunnel junction (STJ) fluorescence detector they appear to be straightforward to measure. The spectra were amenable to analysis using both the TT-multiplet approach and FEFF. The results using FEFF indicate that the sharp near-edge peaks arise from 3d → 5p transitions, while the broad edge structure has predominately 3d → 4f character. A proper understanding of the dependence of these soft x-ray spectra on ligand field and site geometry is necessary before a complete assessment of the utility of the Mo M4,5-edges can be made. This work includes crystallographic characterization of sodium tetrathiomolybdate. PMID:19041140

  17. Cesium Speciation in Dust from Municipal Solid Waste and Sewage Sludge Incineration by Synchrotron Radiation Micro-X-ray Analysis.

    PubMed

    Shiota, Kenji; Takaoka, Masaki; Fujimori, Takashi; Oshita, Kazuyuki; Terada, Yasuko

    2015-11-17

    The chemical behavior of Cs in waste incineration processes is important to consider when disposing of radionuclide-contaminated waste from the Fukushima Daiichi nuclear power plant accident in Japan. To determine the speciation of Cs, we attempted the direct speciation of trace amounts of stable Cs in the dust from municipal solid waste incineration (MSWI) and sewage sludge incineration (SSI) by micro-X-ray fluorescence (μ-XRF) and micro-X-ray absorption fine structure (μ-XAFS) at the SPring-8 facility. The μ-XRF results revealed that locally produced Cs was present in MSWI and SSI dust within the cluster size range of 2-10 μm. The μ-XAFS analysis confirmed that the speciation of Cs in MSWI dust was similar to that of CsCl, while in SSI dusts it was similar to pollucite. The solubility of Cs was considered to be influenced by the exact Cs species present in incineration residue.

  18. Optimization and application of atmospheric pressure chemical and photoionization hydrogen-deuterium exchange mass spectrometry for speciation of oxygen-containing compounds.

    PubMed

    Acter, Thamina; Kim, Donghwi; Ahmed, Arif; Jin, Jang Mi; Yim, Un Hyuk; Shim, Won Joon; Kim, Young Hwan; Kim, Sunghwan

    2016-05-01

    This paper presents a detailed investigation of the feasibility of optimized positive and negative atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) and atmospheric pressure photoionization (APPI) MS coupled to hydrogen-deuterium exchange (HDX) for structural assignment of diverse oxygen-containing compounds. The important parameters for optimization of HDX MS were characterized. The optimized techniques employed in the positive and negative modes showed satisfactory HDX product ions for the model compounds when dichloromethane and toluene were employed as a co-solvent in APCI- and APPI-HDX, respectively. The evaluation of the mass spectra obtained from 38 oxygen-containing compounds demonstrated that the extent of the HDX of the ions was structure-dependent. The combination of information provided by different ionization techniques could be used for better speciation of oxygen-containing compounds. For example, (+) APPI-HDX is sensitive to compounds with alcohol, ketone, or aldehyde substituents, while (-) APPI-HDX is sensitive to compounds with carboxylic functional groups. In addition, the compounds with alcohol can be distinguished from other compounds by the presence of exchanged peaks. The combined information was applied to study chemical compositions of degraded oils. The HDX pattern, double bond equivalent (DBE) distribution, and previously reported oxidation products were combined to predict structures of the compounds produced from oxidation of oil. Overall, this study shows that APCI- and APPI-HDX MS are useful experimental techniques that can be applied for the structural analysis of oxygen-containing compounds.

  19. Temporal assessment of copper speciation, bioavailability and toxicity in UK freshwaters using chemical equilibrium and biotic ligand models: Implications for compliance with copper environmental quality standards.

    PubMed

    Lathouri, Maria; Korre, Anna

    2015-12-15

    Although significant progress has been made in understanding how environmental factors modify the speciation, bioavailability and toxicity of metals such as copper in aquatic environments, the current methods used to establish water quality standards do not necessarily consider the different geological and geochemical characteristics of a given site and the factors that affect copper fate, bioavailability potential and toxicity. In addition, the temporal variation in the concentration and bioavailable metal fraction is also important in freshwater systems. The work presented in this paper illustrates the temporal and seasonal variability of a range of water quality parameters, and Cu speciation, bioavailability and toxicity at four freshwaters sites in the UK. Rivers Coquet, Cree, Lower Clyde and Eden (Kent) were selected to cover a broad range of different geochemical environments and site characteristics. The monitoring data used covered a period of around six years at almost monthly intervals. Chemical equilibrium modelling was used to study temporal variations in Cu speciation and was combined with acute toxicity modelling to assess Cu bioavailability for two aquatic species, Daphnia magna and Daphnia pulex. The estimated copper bioavailability, toxicity levels and the corresponding ecosystem risks were analysed in relation to key water quality parameters (alkalinity, pH and DOC). Although copper concentrations did not vary much during the sampling period or between the seasons at the different sites; copper bioavailability varied markedly. In addition, through the chronic-Cu BLM-based on the voluntary risk assessment approach, the potential environmental risk in terms of the chronic toxicity was assessed. A much higher likelihood of toxicity effects was found during the cold period at all sites. It is suggested that besides the metal (copper) concentration in the surface water environment, the variability and seasonality of other important water quality

  20. Bioleaching of vanadium from barren stone coal and its effect on the transition of vanadium speciation and mineral phase

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Lin, Hai; Dong, Ying-bo; Li, Gan-yu

    2018-03-01

    This study determined the optimal conditions required to obtain maximum vanadium extraction and examined the transition of mineral phases and vanadium speciation during the bioleaching process. Parameters including the initial pH value, initial Fe2+ concentration, solid load, and inoculum quantity were examined. The results revealed that 48.92wt% of the vanadium was extracted through bioleaching under optimal conditions. Comparatively, the chemical leaching yield (H2SO4, pH 2.0) showed a slower and milder increase in vanadium yield. The vanadium bioleaching yield was 35.11wt% greater than the chemical leaching yield. The Community Bureau of Reference (BCR) sequential extraction results revealed that 88.62wt% of vanadium existed in the residual fraction. The bacteria substantially changed the distribution of the vanadium speciation during the leaching process, and the residual fraction decreased to 48.44wt%. The X-ray diffraction (XRD) and Fourier transform infrared (FTIR) results provided evidence that the crystal lattice structure of muscovite was destroyed by the bacteria.

  1. Speciation has a spatial scale that depends on levels of gene flow.

    PubMed

    Kisel, Yael; Barraclough, Timothy G

    2010-03-01

    Area is generally assumed to affect speciation rates, but work on the spatial context of speciation has focused mostly on patterns of range overlap between emerging species rather than on questions of geographical scale. A variety of geographical theories of speciation predict that the probability of speciation occurring within a given region should (1) increase with the size of the region and (2) increase as the spatial extent of intraspecific gene flow becomes smaller. Using a survey of speciation events on isolated oceanic islands for a broad range of taxa, we find evidence for both predictions. The probability of in situ speciation scales with island area in bats, carnivorous mammals, birds, flowering plants, lizards, butterflies and moths, and snails. Ferns are an exception to these findings, but they exhibit high frequencies of polyploid and hybrid speciation, which are expected to be scale independent. Furthermore, the minimum island size for speciation correlates across groups with the strength of intraspecific gene flow, as is estimated from a meta-analysis of published population genetic studies. These results indicate a general geographical model of speciation rates that are dependent on both area and gene flow. The spatial scale of population divergence is an important but neglected determinant of broad-scale diversity patterns.

  2. Divergence with gene flow across a speciation continuum of Heliconius butterflies.

    PubMed

    Supple, Megan A; Papa, Riccardo; Hines, Heather M; McMillan, W Owen; Counterman, Brian A

    2015-09-24

    A key to understanding the origins of species is determining the evolutionary processes that drive the patterns of genomic divergence during speciation. New genomic technologies enable the study of high-resolution genomic patterns of divergence across natural speciation continua, where taxa pairs with different levels of reproductive isolation can be used as proxies for different stages of speciation. Empirical studies of these speciation continua can provide valuable insights into how genomes diverge during speciation. We examine variation across a handful of genomic regions in parapatric and allopatric populations of Heliconius butterflies with varying levels of reproductive isolation. Genome sequences were mapped to 2.2-Mb of the H. erato genome, including 1-Mb across the red color pattern locus and multiple regions unlinked to color pattern variation. Phylogenetic analyses reveal a speciation continuum of pairs of hybridizing races and incipient species in the Heliconius erato clade. Comparisons of hybridizing pairs of divergently colored races and incipient species reveal that genomic divergence increases with ecological and reproductive isolation, not only across the locus responsible for adaptive variation in red wing coloration, but also at genomic regions unlinked to color pattern. We observe high levels of divergence between the incipient species H. erato and H. himera, suggesting that divergence may accumulate early in the speciation process. Comparisons of genomic divergence between the incipient species and allopatric races suggest that limited gene flow cannot account for the observed high levels of divergence between the incipient species. Our results provide a reconstruction of the speciation continuum across the H. erato clade and provide insights into the processes that drive genomic divergence during speciation, establishing the H. erato clade as a powerful framework for the study of speciation.

  3. Speciation of phosphorus in the continental shelf sediments in the Eastern Arabian Sea

    NASA Astrophysics Data System (ADS)

    Acharya, Shiba Shankar; Panigrahi, Mruganka Kumar; Kurian, John; Gupta, Anil Kumar; Tripathy, Subhasish

    2016-03-01

    The distributions of various forms of phosphorus (P) and their relation with sediment geochemistry in two core sediments near Karwar and Mangalore offshore have been studied through the modified SEDEX procedure (Ruttenberg et al., 2009) and bulk chemical analysis. The present study provides the first quantitative analysis of complete phosphorus speciation in the core sediments of the Eastern Arabian shelf. The chemical index of alteration (CIA), chemical Index of Weathering (CIW) and Al-Ti-Zr ternary diagram suggest low to moderate source area weathering of granodioritic to tonalitic source rock composition, despite the intense orographic rainfall in the source area. Due to the presence of same source rock and identical oxic depositional environment, the studied sediments show the same range of variation of total phosphorus (24 to 83 μmol/g) with a down-depth depleting trend. Organic bound P and detrital P are the two major chemical forms followed by iron-bound P, exchangeable/loosely bound P and authigenic P. The authigenic P content in the sediments near Mangalore coast varies linearly with calcium (r=0.88) unlike that of Karwar coast. The different reactive-phosphorus pools exhibit identical depleting trend with depth. This indicates that the phosphorus released from the organic matter and Fe bound fractions are prevented from precipitating as authigenic phosphates in the deeper parts of the sediment column. The low concentration of total P, dominance of detrital non-reactive fraction of P and inhibition of formation of authigenic phosphate result in the absence of active phosphatization in the Eastern Arabian Shelf in the studied region. High sedimentation rate (35-58 cm/kyr) and absence of winnowing effect appear to be the dominant factor controlling the P-speciation in the studied sediments.

  4. Microanalytical X-ray imaging of depleted uranium speciation in environmentally aged munitions residues.

    PubMed

    Crean, Daniel E; Livens, Francis R; Stennett, Martin C; Grolimund, Daniel; Borca, Camelia N; Hyatt, Neil C

    2014-01-01

    Use of depleted uranium (DU) munitions has resulted in contamination of the near-surface environment with penetrator residues. Uncertainty in the long-term environmental fate of particles produced by impact of DU penetrators with hard targets is a specific concern. In this study DU particles produced in this way and exposed to the surface terrestrial environment for longer than 30 years at a U.K. firing range were characterized using synchrotron X-ray chemical imaging. Two sites were sampled: a surface soil and a disposal area for DU-contaminated wood, and the U speciation was different between the two areas. Surface soil particles showed little extent of alteration, with U speciated as oxides U3O7 and U3O8. Uranium oxidation state and crystalline phase mapping revealed these oxides occur as separate particles, reflecting heterogeneous formation conditions. Particles recovered from the disposal area were substantially weathered, and U(VI) phosphate phases such as meta-ankoleite (K(UO2)(PO4) · 3H2O) were dominant. Chemical imaging revealed domains of contrasting U oxidation state linked to the presence of both U3O7 and meta-ankoleite, indicating growth of a particle alteration layer. This study demonstrates that substantial alteration of DU residues can occur, which directly influences the health and environmental hazards posed by this contamination.

  5. Sympatric speciation as a consequence of male pregnancy in seahorses

    PubMed Central

    Jones, Adam G.; Moore, Glenn I.; Kvarnemo, Charlotta; Walker, DeEtte; Avise, John C.

    2003-01-01

    The phenomenon of male pregnancy in the family Syngnathidae (seahorses, pipefishes, and sea dragons) undeniably has sculpted the course of behavioral evolution in these fishes. Here we explore another potentially important but previously unrecognized consequence of male pregnancy: a predisposition for sympatric speciation. We present microsatellite data on genetic parentage that show that seahorses mate size-assortatively in nature. We then develop a quantitative genetic model based on these empirical findings to demonstrate that sympatric speciation indeed can occur under this mating regime in response to weak disruptive selection on body size. We also evaluate phylogenetic evidence bearing on sympatric speciation by asking whether tiny seahorse species are sister taxa to large sympatric relatives. Overall, our results indicate that sympatric speciation is a plausible mechanism for the diversification of seahorses, and that assortative mating (in this case as a result of male parental care) may warrant broader attention in the speciation process for some other taxonomic groups as well. PMID:12732712

  6. New analytic results for speciation times in neutral models.

    PubMed

    Gernhard, Tanja

    2008-05-01

    In this paper, we investigate the standard Yule model, and a recently studied model of speciation and extinction, the "critical branching process." We develop an analytic way-as opposed to the common simulation approach-for calculating the speciation times in a reconstructed phylogenetic tree. Simple expressions for the density and the moments of the speciation times are obtained. Methods for dating a speciation event become valuable, if for the reconstructed phylogenetic trees, no time scale is available. A missing time scale could be due to supertree methods, morphological data, or molecular data which violates the molecular clock. Our analytic approach is, in particular, useful for the model with extinction, since simulations of birth-death processes which are conditioned on obtaining n extant species today are quite delicate. Further, simulations are very time consuming for big n under both models.

  7. One year online chemical speciation of submicron particulate matter (PM1) sampled at a French industrial and coastal site

    NASA Astrophysics Data System (ADS)

    Zhang, Shouwen; Riffault, Véronique; Dusanter, Sébastien; Augustin, Patrick; Fourmentin, Marc; Delbarre, Hervé

    2015-04-01

    The harbor of Dunkirk (Northern France) is surrounded by different industrial plants (metallurgy, petrochemistry, food processing, power plant, etc.), which emit gaseous and particulate pollutants such as Volatile Organic Compounds (VOCs), oxides of nitrogen (NOx) and sulfur (SO2), and submicron particles (PM1). These emissions are poorly characterized and their impact on neighboring urban areas has yet to be assessed. Studies are particularly needed in this type of complex environments to get a better understanding of PM1sources, especially from the industrial sector, their temporal variability, and their transformation. Several instruments, capable of real-time measurements (temporal resolution ≤ 30 min), were deployed at a site located downwind from the industrial area of Dunkirk for a one-year duration (July 2013-September 2014). An Aerosol Chemical Speciation Monitor (ACSM) and an Aethalometer monitored the main chemical species in the non-refractory submicron particles and black carbon, respectively. Concomitant measurements of trace gases and wind speed and direction were also performed. This dataset was analyzed considering four wind sectors, characteristics of marine, industrial, industrial-urban, and urban influences, and the different seasons. We will present a descriptive analysis of PM1, showing strong variations of ambient concentrations, as well as evidences of SO2 to SO4 gas-particle conversion when industrial plumes reached the monitoring site. The organic fraction measured by ACSM (37% of the total mass on average) was analyzed using a source-receptor model based on Positive Matrix Factorization (PMF) to identify chemical signatures of main emission sources and to quantify the contribution of each source to the PM1 budget given the wind sector. Four main factors were identified: hydrocarbon organic aerosol (HOA), oxygenated organic aerosol (OOA), biomass burning organic aerosol (BBOA) and cooking-like organic aerosol (COA). Overall, the total PM

  8. Instrumentation for Aerosol and Gas Speciation

    NASA Technical Reports Server (NTRS)

    Coggiola, Michael J.

    1998-01-01

    Using support from NASA Grant No. NAG 2-963, SRI International successfully completed the project, entitled, 'Instrumentation for Aerosol and Gas Speciation.' This effort (SRI Project 7383) covered the design, fabrication, testing, and deployment of a real-time aerosol speciation instrument in NASA's DC-8 aircraft during the Spring 1996 SUbsonic aircraft: Contrail and Cloud Effects Special Study (SUCCESS) mission. This final technical report describes the pertinent details of the instrument design, its abilities, its deployment during SUCCESS and the data acquired from the mission, and the post-mission calibration, data reduction, and analysis.

  9. Population Genomics Reveals Speciation and Introgression between Brown Norway Rats and Their Sibling Species

    PubMed Central

    Teng, Huajing; Zhang, Yaohua; Shi, Chengmin; Mao, Fengbiao; Cai, Wanshi; Lu, Liang; Zhao, Fangqing; Sun, Zhongsheng; Zhang, Jianxu

    2017-01-01

    Abstract Murine rodents are excellent models for study of adaptive radiations and speciation. Brown Norway rats (Rattus norvegicus) are successful global colonizers and the contributions of their domesticated laboratory strains to biomedical research are well established. To identify nucleotide-based speciation timing of the rat and genomic information contributing to its colonization capabilities, we analyzed 51 whole-genome sequences of wild-derived Brown Norway rats and their sibling species, R. nitidus, and identified over 20 million genetic variants in the wild Brown Norway rats that were absent in the laboratory strains, which substantially expand the reservoir of rat genetic diversity. We showed that divergence of the rat and its siblings coincided with drastic climatic changes that occurred during the Middle Pleistocene. Further, we revealed that there was a geographically widespread influx of genes between Brown Norway rats and the sibling species following the divergence, resulting in numerous introgressed regions in the genomes of admixed Brown Norway rats. Intriguing, genes related to chemical communications among these introgressed regions appeared to contribute to the population-specific adaptations of the admixed Brown Norway rats. Our data reveals evolutionary history of the Brown Norway rat, and offers new insights into the role of climatic changes in speciation of animals and the effect of interspecies introgression on animal adaptation. PMID:28482038

  10. Living organisms as an alternative to hyphenated techniques for metal speciation. Evaluation of baker's yeast immobilized on silica gel for Hg speciation*1

    NASA Astrophysics Data System (ADS)

    Pérez-Corona, Teresa; Madrid-Albarrán, Yolanda; Cámara, Carmen; Beceiro, Elisa

    1998-02-01

    The use of living organisms for metal preconcentration and speciation is discussed. Among substrates, Saccharomyces cerevisiae baker's yeast has been successfully used for the speciation of mercury [Hg(II) and CH 3Hg +], selenium [Se(IV) and Se(VI)] and antimony [Sb(III) and Sb(V)]. To illustrate the capabilities of these organisms, the analytical performance of baker's yeast immobilized on silica gel for on-line preconcentration and speciation of Hg(II) and methylmercury is reported. The immobilized cells were packed in a PTFE microcolumn, through which mixtures of organic and inorganic mercury solutions were passed. Retention of inorganic and organic mercury solutions took place simultaneously, with the former retained in the silica and the latter on the yeast. The efficiency uptake for both species was higher than 95% over a wide pH range. The speciation was carried out by selective and sequential elution with 0.02 mol L -1 HCl for methylmercury and 0.8 mol L -1 CN - for Hg(II). This method allows both preconcentration and speciation of mercury. The preconcentration factors were around 15 and 100 for methylmercury and mercury(II), respectively. The method has been successfully applied to spiked sea water samples.

  11. Quantitative Zn speciation in a contaminated dredged sediment by μ-PIXE, μ-SXRF, EXAFS spectroscopy and principal component analysis

    NASA Astrophysics Data System (ADS)

    Isaure, Marie-Pierre; Laboudigue, Agnès; Manceau, Alain; Sarret, Géraldine; Tiffreau, Christophe; Trocellier, Patrick; Lamble, Géraldine; Hazemann, Jean-Louis; Chateigner, Daniel

    2002-05-01

    Dredging and disposal of sediments onto agricultural soils is a common practice in industrial and urban areas that can be hazardous to the environment when the sediments contain heavy metals. This chemical hazard can be assessed by evaluating the mobility and speciation of metals after sediment deposition. In this study, the speciation of Zn in the coarse (500 to 2000 μm) and fine (<2 μm) fractions of a contaminated sediment dredged from a ship canal in northern France and deposited on an agricultural soil was determined by physical analytical techniques on raw and chemically treated samples. Zn partitioning between coexisting mineral phases and its chemical associations were first determined by micro-particle-induced X-ray emission and micro-synchrotron-based X-ray radiation fluorescence. Zn-containing mineral species were then identified by X-ray diffraction and powder and polarized extended X-ray absorption fine structure spectroscopy (EXAFS). The number, nature, and proportion of Zn species were obtained by a coupled principal component analysis (PCA) and least squares fitting (LSF) procedure, applied herein for the first time to qualitatively (number and nature of species) and quantitatively (relative proportion of species) speciate a metal in a natural system. The coarse fraction consists of slag grains originating from nearby Zn smelters. In this fraction, Zn is primarily present as sphalerite (ZnS) and to a lesser extent as willemite (Zn 2SiO 4), Zn-containing ferric (oxyhydr)oxides, and zincite (ZnO). In the fine fraction, ZnS and Zn-containing Fe (oxyhydr)oxides are the major forms, and Zn-containing phyllosilicate is the minor species. Weathering of ZnS, Zn 2SiO 4, and ZnO under oxidizing conditions after the sediment disposal accounts for the uptake of Zn by Fe (oxyhydr)oxides and phyllosilicates. Two geochemical processes can explain the retention of Zn by secondary minerals: uptake on preexisting minerals and precipitation with dissolved Fe and Si

  12. Characterization of Technetium Speciation in Cast Stone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Um, Wooyong; Jung, Hun Bok; Wang, Guohui

    2013-11-11

    This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE) EM-31 Support Program (EMSP) subtask, “Production and Long-Term Performance of Low Temperature Waste Forms” to provide additional information on technetium (Tc) speciation characterization in the Cast Stone waste form. To support the use of Cast Stone as an alternative to vitrification for solidifying low-activity waste (LAW) and as the current baseline waste form for secondary waste streams at the Hanford Site, additional understanding of Tc speciation in Cast Stone is needed to predict the long-term Tc leachability frommore » Cast Stone and to meet the regulatory disposal-facility performance requirements for the Integrated Disposal Facility (IDF). Characterizations of the Tc speciation within the Cast Stone after leaching under various conditions provide insights into how the Tc is retained and released. The data generated by the laboratory tests described in this report provide both empirical and more scientific information to increase our understanding of Tc speciation in Cast Stone and its release mechanism under relevant leaching processes for the purpose of filling data gaps and to support the long-term risk and performance assessments of Cast Stone in the IDF at the Hanford Site.« less

  13. Anaerobic Digestion Alters Copper and Zinc Speciation.

    PubMed

    Legros, Samuel; Levard, Clément; Marcato-Romain, Claire-Emmanuelle; Guiresse, Maritxu; Doelsch, Emmanuel

    2017-09-19

    Anaerobic digestion is a widely used organic waste treatment process. However, little is known on how it could alter the speciation of contaminants in organic waste. This study was focused on determining the influence of anaerobic digestion on the speciation of copper and zinc, two metals that generally occur at high concentration in organic waste. Copper and zinc speciation was investigated by X-ray absorption spectroscopy in four different raw organic wastes (predigestion) and their digested counterparts (postdigestion, i.e., digestates). The results highlighted an increase in the digestates of the proportion of amorphous or nanostructured copper sulfides as well as amorphous or nanostructured zinc sulfides and zinc phosphate as compared to raw waste. We therefore suggest that the environmental fate of these elements would be different when spreading either digestates or raw waste on cropland.

  14. The value of metals bioavailability and speciation information for ecological risk assessment in arid soils.

    PubMed

    Suedel, Burton C; Nicholson, Andrew; Day, Christopher H; Spicer, James

    2006-10-01

    When evaluating the risk chemicals may pose to mammals and birds in ecological risk assessments (ERAs), it is common practice to conservatively assume that all (100%) of a chemical in an environmental medium is bioavailable to receptors. This assumption often leads to overestimating ecological risk and may ultimately result in costly and unnecessary risk management actions. While effects of bioavailability and speciation of metals such as arsenic (As) and lead (Pb) have been considered in human health risk assessment, these effects are rarely taken into consideration when assessing risks to mammals and birds. An ERA was conducted at the former Col-Tex refinery site in Colorado City, Texas, USA, to characterize risks to select wildlife species from exposure to chromium (Cr) and Pb found in soils. The focus on these metals was based on results of a screening-level ERA that found that Cr and Pb were posing ecological risks at the site. Soils were analyzed for total Cr and Pb, trivalent Cr (CrIII), hexavalent Cr (CrVI), organic Pb, and the bioavailability and speciation of Pb. Results for Pb and Cr indicated that >94% of the Cr was present as the less toxic and immobile Cr(III) and that >99% of the Pb in soils was present as inorganic Pb. Lead bioaccessibility measured by in vitro testing ranged from 8% to 77.8%, depending on location of individual soil samples. Results demonstrated that Pb and Cr bioavailability and speciation information can raise soil cleanup concentrations while being protective of ecological receptors. The costs of performing the ERA were de minimus compared to the reduction in remediation costs at the site. The refined hazard estimates allowed informed decision making in the management and segregation of soils, allowing for effective risk management at the site.

  15. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review.

    PubMed

    Shahid, Muhammad; Shamshad, Saliha; Rafiq, Marina; Khalid, Sana; Bibi, Irshad; Niazi, Nabeel Khan; Dumat, Camille; Rashid, Muhammad Imtiaz

    2017-07-01

    Chromium (Cr) is a potentially toxic heavy metal which does not have any essential metabolic function in plants. Various past and recent studies highlight the biogeochemistry of Cr in the soil-plant system. This review traces a plausible link among Cr speciation, bioavailability, phytouptake, phytotoxicity and detoxification based on available data, especially published from 2010 to 2016. Chromium occurs in different chemical forms (primarily as chromite (Cr(III)) and chromate (Cr(VI)) in soil which vary markedly in term of their biogeochemical behavior. Chromium behavior in soil, its soil-plant transfer and accumulation in different plant parts vary with its chemical form, plant type and soil physico-chemical properties. Soil microbial community plays a key role in governing Cr speciation and behavior in soil. Chromium does not have any specific transporter for its uptake by plants and it primarily enters the plants through specific and non-specific channels of essential ions. Chromium accumulates predominantly in plant root tissues with very limited translocation to shoots. Inside plants, Cr provokes numerous deleterious effects to several physiological, morphological, and biochemical processes. Chromium induces phytotoxicity by interfering plant growth, nutrient uptake and photosynthesis, inducing enhanced generation of reactive oxygen species, causing lipid peroxidation and altering the antioxidant activities. Plants tolerate Cr toxicity via various defense mechanisms such as complexation by organic ligands, compartmentation into the vacuole, and scavenging ROS via antioxidative enzymes. Consumption of Cr-contaminated-food can cause human health risks by inducing severe clinical conditions. Therefore, there is a dire need to monitor biogeochemical behavior of Cr in soil-plant system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Chemical composition and speciation of particulate organic matter from modern residential small-scale wood combustion appliances.

    PubMed

    Czech, Hendryk; Miersch, Toni; Orasche, Jürgen; Abbaszade, Gülcin; Sippula, Olli; Tissari, Jarkko; Michalke, Bernhard; Schnelle-Kreis, Jürgen; Streibel, Thorsten; Jokiniemi, Jorma; Zimmermann, Ralf

    2018-01-15

    Combustion technologies of small-scale wood combustion appliances are continuously developed decrease emissions of various pollutants and increase energy conversion. One strategy to reduce emissions is the implementation of air staging technology in secondary air supply, which became an established technique for modern wood combustion appliances. On that account, emissions from a modern masonry heater fuelled with three types of common logwood (beech, birch and spruce) and a modern pellet boiler fuelled with commercial softwood pellets were investigated, which refer to representative combustion appliances in northern Europe In particular, emphasis was put on the organic constituents of PM2.5, including polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs) and phenolic species, by targeted and non-targeted mass spectrometric analysis techniques. Compared to conventional wood stoves and pellet boilers, organic emissions from the modern appliances were reduced by at least one order of magnitude, but to a different extent for single species. Hence, characteristic ratios of emission constituents and emission profiles for wood combustion identification and speciation do not hold for this type of advanced combustion technology. Additionally, an overall substantial reduction of typical wood combustion markers, such as phenolic species and anhydrous sugars, were observed. Finally, it was found that slow ignition of log woods changes the distribution of characteristic resin acids and phytosterols as well as their thermal alteration products, which are used as markers for specific wood types. Our results should be considered for wood combustion identification in positive matrix factorisation or chemical mass balance in northern Europe. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. EPA’s SPECIATE 4.4 Database - Development and Uses

    EPA Science Inventory

    SPECIATE is the EPA's repository of TOG, PM, and Other Gases speciation profiles of air pollution sources. It includes weight fractions of both organic species and PM and provides data in consistent units. Species include metals, ions, elements, and organic and inorganic compound...

  18. Cloud iron speciation: Experimental simulations

    NASA Astrophysics Data System (ADS)

    Sofikitis, A. M.; Colin, J. L.; Desboeufs, K. V.; Losno, R.

    2003-04-01

    The aim of our contribution is to identify major processes controlling iron speciation in the atmospheric aqueous phase. Fe is known to participate in a variety of redox reactions in cloud chemistry, as well as controlling free radical production in the troposphere. Iron cycling is slower than cycles with other catalytic transition metals (Cu, Mn). The residence time of each iron species is around ten minutes, this allows analytical separation and determination of each iron redox species and therefore its ratio. As the only source of trace metals in aqueous atmospheric phase is due to the solubilization of aerosols, we present here dissolution rate measurements obtained by laboratory experiments with an open flow reactor. This reactor enables us to reproduce the dissolution of a particle in aqueous atmospheric water. The dissolution rate and the speciation of iron are dependent on the mineralogy of the solid phase. Our experiments included Goethite, hematite and vermiculite, which are typical mineral constituents of dust particles. Comparisons were made with natural loess which is a blend of various crystalline and amorphous phases. We will present results of crustal origin particles dissolution experiments where kinetic parameters are determined, including iron speciation. Major functions of variation are pH and photochemistry in the aqueous weathering solution.

  19. Selenium analysis in waters. Part 2: Speciation methods.

    PubMed

    LeBlanc, Kelly L; Kumkrong, Paramee; Mercier, Patrick H J; Mester, Zoltán

    2018-06-21

    In aquatic ecosystems, there is often no correlation between the total concentration of selenium present in the water column and the toxic effects observed in that environment. This is due, in part, to the variation in the bioavailability of different selenium species to organisms at the base of the aquatic food chain. The first part of this review (Kumkrong et al., 2018) discusses regulatory framework and standard methodologies for selenium analysis in waters. In this second article, we are reviewing the state of speciation analysis and importance of speciation data for decision makers in industry and regulators. We look in detail at fractionation methods for speciation, including the popular selective sequential hydride generation. We examine advantages and limitations of these methods, in terms of achievable detection limits and interferences from other matrix species, as well as the potential to over- or under-estimate operationally-defined fractions based on the various conversion steps involved in fractionation processes. Additionally, we discuss methods of discrete speciation (through separation methods), their importance in analyzing individual selenium species, difficulties associated with their implementation, as well as ways to overcome these difficulties. We also provide a brief overview of biological treatment methods for the remediation of selenium-contaminated waters. We discuss the importance of selenium speciation in the application of these methods and their potential to actually increase the bioavailability of selenium despite decreasing its total waterborne concentration. Copyright © 2018. Published by Elsevier B.V.

  20. Source apportionment of PM2.5 chemically speciated mass and particle number concentrations in New York City

    NASA Astrophysics Data System (ADS)

    Masiol, M.; Hopke, P. K.; Felton, H. D.; Frank, B. P.; Rattigan, O. V.; Wurth, M. J.; LaDuke, G. H.

    2017-01-01

    The major sources of fine particulate matter (PM2.5) in New York City (NYC) were apportioned by applying positive matrix factorization (PMF) to two different sets of particle characteristics: mass concentrations using chemical speciation data and particle number concentrations (PNC) using number size distribution, continuously monitored gases, and PM2.5 data. Post-processing was applied to the PMF results to: (i) match with meteorological data, (ii) use wind data to detect the likely locations of the local sources, and (iii) use concentration weighted trajectory models to assess the strength of potential regional/transboundary sources. Nine sources of PM2.5 mass were apportioned and identified as: secondary ammonium sulfate, secondary ammonium nitrate, road traffic exhaust, crustal dust, fresh sea-salt, aged sea-salt, biomass burning, residual oil/domestic heating and zinc. The sources of PNC were investigated using hourly average number concentrations in six size bins, gaseous air pollutants, mass concentrations of PM2.5, particulate sulfate, OC, and EC. These data were divided into 3 periods indicative of different seasonal conditions. Five sources were resolved for each period: secondary particles, road traffic, NYC background pollution (traffic and oil heating largely in Manhattan), nucleation and O3-rich aerosol. Although traffic does not account for large amounts of PM2.5 mass, it was the main source of particles advected from heavily trafficked zones. The use of residual oil had limited impacts on PM2.5 mass but dominates PNC in cold periods.

  1. Song evolution, speciation, and vocal learning in passerine birds.

    PubMed

    Mason, Nicholas A; Burns, Kevin J; Tobias, Joseph A; Claramunt, Santiago; Seddon, Nathalie; Derryberry, Elizabeth P

    2017-03-01

    Phenotypic divergence can promote reproductive isolation and speciation, suggesting a possible link between rates of phenotypic evolution and the tempo of speciation at multiple evolutionary scales. To date, most macroevolutionary studies of diversification have focused on morphological traits, whereas behavioral traits─including vocal signals─are rarely considered. Thus, although behavioral traits often mediate mate choice and gene flow, we have a limited understanding of how behavioral evolution contributes to diversification. Furthermore, the developmental mode by which behavioral traits are acquired may affect rates of behavioral evolution, although this hypothesis is seldom tested in a phylogenetic framework. Here, we examine evidence for rate shifts in vocal evolution and speciation across two major radiations of codistributed passerines: one oscine clade with learned songs (Thraupidae) and one suboscine clade with innate songs (Furnariidae). We find that evolutionary bursts in rates of speciation and song evolution are coincident in both thraupids and furnariids. Further, overall rates of vocal evolution are higher among taxa with learned rather than innate songs. Taken together, these findings suggest an association between macroevolutionary bursts in speciation and vocal evolution, and that the tempo of behavioral evolution can be influenced by variation in developmental modes among lineages. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  2. Solving mercury (Hg) speciation in soil samples by synchrotron X-ray microspectroscopic techniques.

    PubMed

    Terzano, Roberto; Santoro, Anna; Spagnuolo, Matteo; Vekemans, Bart; Medici, Luca; Janssens, Koen; Göttlicher, Jörg; Denecke, Melissa A; Mangold, Stefan; Ruggiero, Pacifico

    2010-08-01

    Direct mercury (Hg) speciation was assessed for soil samples with a Hg concentration ranging from 7 up to 240 mg kg(-1). Hg chemical forms were identified and quantified by sequential extractions and bulk- and micro-analytical techniques exploiting synchrotron generated X-rays. In particular, microspectroscopic techniques such as mu-XRF, mu-XRD and mu-XANES were necessary to solve bulk Hg speciation, in both soil fractions <2 mm and <2 microm. The main Hg-species found in the soil samples were metacinnabar (beta-HgS), cinnabar (alpha-HgS), corderoite (Hg(3)S(2)Cl(2)), and an amorphous phase containing Hg bound to chlorine and sulfur. The amount of metacinnabar and amorphous phases increased in the fraction <2 microm. No interaction among Hg-species and soil components was observed. All the observed Hg-species originated from the slow weathering of an inert Hg-containing waste material (K106, U.S. EPA) dumped in the area several years ago, which is changing into a relatively more dangerous source of pollution. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. [XANES study of lead speciation in duckweed].

    PubMed

    Chu, Bin-Bin; Luo, Li-Qiang; Xu, Tao; Yuan, Jing; Sun, Jian-Ling; Zeng, Yuan; Ma, Yan-Hong; Yi, Shan

    2012-07-01

    Qixiashan lead-zinc mine of Nanjing was one of the largest lead zinc deposits in East China Its exploitation has been over 50 years, and the environmental pollution has also been increasing. The lead concentration in the local environment was high, but lead migration and toxic mechanism has not been clear. Therefore, biogeochemistry research of the lead zinc mine was carried out. Using ICP-MS and Pb-L III edge XANES, lead concentration and speciation were analyzed respectively, and duckweed which can tolerate and enriched heavy metals was found in the pollution area. The results showed that the lead concentration of duckweed was 39.4 mg x kg(-1). XANES analysis and linear combination fit indicated that lead stearate and lead sulfide accounted for 65% and 36.9% respectively in the lead speciation of duckweed, suggesting that the main lead speciation of duckweed was sulfur-containing lead-organic acid.

  4. Arsenic speciation in manufactured seafood products.

    PubMed

    Vélez, D; Montoro, R

    1998-09-01

    The literature on the speciation of arsenic (As) in seafoods was critically reviewed. Most research has been directed toward fresh seafood products with few papers dealing with As speciation in manufactured seafoods. Predictions concerning As species made on the basis of fresh seafood products cannot be extrapolated to manufactured seafoods. Therefore, due to the numerous species of As, the scarcity of data concerning their presence in foods, the transformations each species may undergo during industrial processing and cooking, and the lack of legislation on permitted As levels in seafood products, As species in manufactured seafood products need to be determined and quantified.

  5. Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms

    NASA Astrophysics Data System (ADS)

    Li, M.; Zhang, Q.; Streets, D. G.; He, K. B.; Cheng, Y. F.; Emmons, L. K.; Huo, H.; Kang, S. C.; Lu, Z.; Shao, M.; Su, H.; Yu, X.; Zhang, Y.

    2014-06-01

    An accurate speciation mapping of non-methane volatile organic compounds (NMVOC) emissions has an important impact on the performance of chemical transport models (CTMs) in simulating ozone mixing ratios and secondary organic aerosols. Taking the INTEX-B Asian NMVOC emission inventory as the case, we developed an improved speciation framework to generate model-ready anthropogenic NMVOC emissions for various gas-phase chemical mechanisms commonly used in CTMs in this work, by using an explicit assignment approach and updated NMVOC profiles. NMVOC profiles were selected and aggregated from a wide range of new measurements and the SPECIATE database v.4.2. To reduce potential uncertainty from individual measurements, composite profiles were developed by grouping and averaging source profiles from the same category. The fractions of oxygenated volatile organic compounds (OVOC) were corrected during the compositing process for those profiles which used improper sampling and analyzing methods. Emissions of individual species were then lumped into species in different chemical mechanisms used in CTMs by applying mechanism-dependent species mapping tables, which overcomes the weakness of inaccurate mapping in previous studies. Emission estimates for individual NMVOC species differ between one and three orders of magnitude for some species when different sets of profiles are used, indicating that source profile is the most important source of uncertainties of individual species emissions. However, those differences are diminished in lumped species as a result of the lumping in the chemical mechanisms. Gridded emissions for eight chemical mechanisms at 30 min × 30 min resolution as well as the auxiliary data are available at http://mic.greenresource.cn/intex-b2006. The framework proposed in this work can be also used to develop speciated NMVOC emissions for other regions.

  6. Speciation and Bioavailability Measurements of Environmental Plutonium Using Diffusion in Thin Films.

    PubMed

    Cusnir, Ruslan; Steinmann, Philipp; Christl, Marcus; Bochud, François; Froidevaux, Pascal

    2015-11-09

    The biological uptake of plutonium (Pu) in aquatic ecosystems is of particular concern since it is an alpha-particle emitter with long half-life which can potentially contribute to the exposure of biota and humans. The diffusive gradients in thin films technique is introduced here for in-situ measurements of Pu bioavailability and speciation. A diffusion cell constructed for laboratory experiments with Pu and the newly developed protocol make it possible to simulate the environmental behavior of Pu in model solutions of various chemical compositions. Adjustment of the oxidation states to Pu(IV) and Pu(V) described in this protocol is essential in order to investigate the complex redox chemistry of plutonium in the environment. The calibration of this technique and the results obtained in the laboratory experiments enable to develop a specific DGT device for in-situ Pu measurements in freshwaters. Accelerator-based mass-spectrometry measurements of Pu accumulated by DGTs in a karst spring allowed determining the bioavailability of Pu in a mineral freshwater environment. Application of this protocol for Pu measurements using DGT devices has a large potential to improve our understanding of the speciation and the biological transfer of Pu in aquatic ecosystems.

  7. Speciation driven by hybridization and chromosomal plasticity in a wild yeast.

    PubMed

    Leducq, Jean-Baptiste; Nielly-Thibault, Lou; Charron, Guillaume; Eberlein, Chris; Verta, Jukka-Pekka; Samani, Pedram; Sylvester, Kayla; Hittinger, Chris Todd; Bell, Graham; Landry, Christian R

    2016-01-11

    Hybridization is recognized as a powerful mechanism of speciation and a driving force in generating biodiversity. However, only few multicellular species, limited to a handful of plants and animals, have been shown to fulfil all the criteria of homoploid hybrid speciation. This lack of evidence could lead to the interpretation that speciation by hybridization has a limited role in eukaryotes, particularly in single-celled organisms. Laboratory experiments have revealed that fungi such as budding yeasts can rapidly develop reproductive isolation and novel phenotypes through hybridization, showing that in principle homoploid speciation could occur in nature. Here, we report a case of homoploid hybrid speciation in natural populations of the budding yeast Saccharomyces paradoxus inhabiting the North American forests. We show that the rapid evolution of chromosome architecture and an ecological context that led to secondary contact between nascent species drove the formation of an incipient hybrid species with a potentially unique ecological niche.

  8. Application of chemometric analysis and self Organizing Map-Artificial Neural Network as source receptor modeling for metal speciation in river sediment.

    PubMed

    Pandey, Mayank; Pandey, Ashutosh Kumar; Mishra, Ashutosh; Tripathi, B D

    2015-09-01

    Present study deals with the river Ganga water quality and its impact on metal speciation in its sediments. Concentration of physico-chemical parameters was highest in summer season followed by winter and lowest in rainy season. Metal speciation study in river sediments revealed that exchangeable, reducible and oxidizable fractions were dominant in all the studied metals (Cr, Ni, Cu, Zn, Cd, Pb) except Mn and Fe. High pollution load index (1.64-3.89) recommends urgent need of mitigation measures. Self-organizing Map-Artificial Neural Network (SOM-ANN) was applied to the data set for the prediction of major point sources of pollution in the river Ganga. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Pleistocene phylogeographic effects on avian populations and the speciation process.

    PubMed Central

    Avise, J C; Walker, D

    1998-01-01

    Pleistocene biogeographic events have traditionally been ascribed a major role in promoting speciations and in sculpting the present-day diversity and distributions of vertebrate taxa. However, this paradigm has recently come under challenge from a review of interspecific mtDNA genetic distances in birds: most sister-species separations dated to the Pliocene. Here we summarize the literature on intraspecific mtDNA phylogeographic patterns in birds and reinterpret the molecular evidence bearing on Pleistocene influences. At least 37 of the 63 avian species surveyed (59%) are sundered into recognizable phylogeographic units, and 28 of these separations (76%) trace to the Pleistocene. Furthermore, use of phylogroup separation times within species as minimum estimates of 'speciation durations' also indicates that many protracted speciations, considered individually, probably extended through time from Pliocene origins to Pleistocene completions. When avian speciation is viewed properly as an extended temporal process rather than as a point event, Pleistocene conditions appear to have played an active role both in initiating major phylogeographic separations within species, and in completing speciations that had been inaugurated earlier. Whether the Pleistocene was exceptional in these regards compared with other geological times remains to be determined. PMID:9569664

  10. Population Genomics Reveals Speciation and Introgression between Brown Norway Rats and Their Sibling Species.

    PubMed

    Teng, Huajing; Zhang, Yaohua; Shi, Chengmin; Mao, Fengbiao; Cai, Wanshi; Lu, Liang; Zhao, Fangqing; Sun, Zhongsheng; Zhang, Jianxu

    2017-09-01

    Murine rodents are excellent models for study of adaptive radiations and speciation. Brown Norway rats (Rattus norvegicus) are successful global colonizers and the contributions of their domesticated laboratory strains to biomedical research are well established. To identify nucleotide-based speciation timing of the rat and genomic information contributing to its colonization capabilities, we analyzed 51 whole-genome sequences of wild-derived Brown Norway rats and their sibling species, R. nitidus, and identified over 20 million genetic variants in the wild Brown Norway rats that were absent in the laboratory strains, which substantially expand the reservoir of rat genetic diversity. We showed that divergence of the rat and its siblings coincided with drastic climatic changes that occurred during the Middle Pleistocene. Further, we revealed that there was a geographically widespread influx of genes between Brown Norway rats and the sibling species following the divergence, resulting in numerous introgressed regions in the genomes of admixed Brown Norway rats. Intriguing, genes related to chemical communications among these introgressed regions appeared to contribute to the population-specific adaptations of the admixed Brown Norway rats. Our data reveals evolutionary history of the Brown Norway rat, and offers new insights into the role of climatic changes in speciation of animals and the effect of interspecies introgression on animal adaptation. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Influence of chemical speciation and biofilm composition on mercury accumulation by freshwater biofilms.

    PubMed

    Dranguet, P; Le Faucheur, S; Cosio, C; Slaveykova, V I

    2017-01-25

    Mercury (Hg) is a pollutant of high concern for aquatic systems due to the biomagnification of its methylated form along the food chain. However, in contrast to other metals, gaining knowledge of its bioavailable forms for aquatic microorganisms remains challenging, making Hg risk assessment difficult. Ubiquitous and sessile freshwater biofilms are well known to accumulate and to transform Hg present in their ambient environment. The present study thus aims to evaluate whether non-extractable (proxy of intracellular) Hg accumulated by biofilms could be a good indicator of Hg bioavailability for microorganisms in freshwater. To that end, the link between Hg concentration and speciation, as well as biofilm composition (percentage of abiotic, biotic, chlorophyll and phycocyanin-fractions and abundance of dsrA, gcs, merA and hgcA bacterial genes) and biofilm Hg accumulation was examined. The studied biofilms were grown on artificial substrata in four reservoirs along the Olt River (Romania), which was contaminated by Hg coming from chlor-alkali plant effluents. The 0.45 μm-filterable Hg concentrations in ambient waters were measured and inorganic IHg speciation was modelled. Biofilms were analyzed for their non-extractable IHg and methylmercury (MeHg) contents as well as for their composition. The non-extractable IHg content was related, but not significantly, to the concentration of total IHg (r 2 = 0.88, p = 0.061) whereas a significant correlation was found with the predicted IHg concentration that is not bound to dissolved organic matter (r 2 = 0.95, p = 0.027), despite its extremely low concentrations (10 -25 M), showing a limitation of the thermodynamic Hg modelling to predict Hg bioavailability. The studied biofilms were different in biomass and composition and a principal component analysis showed that the non-extractable IHg content correlated with the abundance of the merA and hgcA genes, while MeHg accumulation was only linked with the abundance of the r

  12. XANES Spectroscopic Analysis of Phosphorus Speciation in Alum-Amended Poultry Litter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiter,J.; Staats-Borda, K.; Ginder-Vogel, M.

    2008-01-01

    Aluminum sulfate (alum; Al2(SO4)3{center_dot}14H2O) is used as a chemical treatment of poultry litter to reduce the solubility and release of phosphate, thereby minimizing the impacts on adjacent aquatic ecosystems when poultry litter is land applied as a crop fertilizer. The objective of this study was to determine, through the use of X-ray absorption near edge structure (XANES) spectroscopy and sequential extraction, how alum amendments alter P distribution and solid-state speciation within the poultry litter system. Our results indicate that traditional sequential fractionation procedures may not account for variability in P speciation in heterogeneous animal manures. Analysis shows that NaOH-extracted Pmore » in alum amended litters is predominantly organic ({approx}80%), whereas in the control samples, >60% of NaOH-extracted P was inorganic P. Linear least squares fitting (LLSF) analysis of spectra collected of sequentially extracted litters showed that the P is present in inorganic (P sorbed on Al oxides, calcium phosphates) and organic forms (phytic acid, polyphosphates, and monoesters) in alum- and non-alum-amended poultry litter. When determining land application rates of poultry litter, all of these compounds must be considered, especially organic P. Results of the sequential extractions in conjunction with LLSF suggest that no P species is completely removed by a single extractant. Rather, there is a continuum of removal as extractant strength increases. Overall, alum-amended litters exhibited higher proportions of Al-bound P species and phytic acid, whereas untreated samples contained Ca-P minerals and organic P compounds. This study provides in situ information about P speciation in the poultry litter solid and about P availability in alum- and non-alum-treated poultry litter that will dictate P losses to ground and surface water systems.« less

  13. Extensive range overlap between heliconiine sister species: evidence for sympatric speciation in butterflies?

    PubMed

    Rosser, Neil; Kozak, Krzysztof M; Phillimore, Albert B; Mallet, James

    2015-06-30

    Sympatric speciation is today generally viewed as plausible, and some well-supported examples exist, but its relative contribution to biodiversity remains to be established. We here quantify geographic overlap of sister species of heliconiine butterflies, and use age-range correlations and spatial simulations of the geography of speciation to infer the frequency of sympatric speciation. We also test whether shifts in mimetic wing colour pattern, host plant use and climate niche play a role in speciation, and whether such shifts are associated with sympatry. Approximately a third of all heliconiine sister species pairs exhibit near complete range overlap, and analyses of the observed patterns of range overlap suggest that sympatric speciation contributes 32%-95% of speciation events. Müllerian mimicry colour patterns and host plant choice are highly labile traits that seem to be associated with speciation, but we find no association between shifts in these traits and range overlap. In contrast, climatic niches of sister species are more conserved. Unlike birds and mammals, sister species of heliconiines are often sympatric and our inferences using the most recent comparative methods suggest that sympatric speciation is common. However, if sister species spread rapidly into sympatry (e.g. due to their similar climatic niches), then assumptions underlying our methods would be violated. Furthermore, although we find some evidence for the role of ecology in speciation, ecological shifts did not show the associations with range overlap expected under sympatric speciation. We delimit species of heliconiines in three different ways, based on "strict and " "relaxed" biological species concepts (BSC), as well as on a surrogate for the widely-used "diagnostic" version of the phylogenetic species concept (PSC). We show that one reason why more sympatric speciation is inferred in heliconiines than in birds may be due to a different culture of species delimitation in the two

  14. Ruminant-specific multiple duplication events of PRDM9 before speciation

    USDA-ARS?s Scientific Manuscript database

    Understanding the genetic and evolutionary mechanisms of speciation genes in sexually reproducing organisms would provide important insights into mammalian reproduction and fitness. PRDM9, a widely known speciation gene, has recently gained attention for its important role in meiotic recombination a...

  15. Great Salt Lake Composition and Rare Earth Speciation Analysis

    DOE Data Explorer

    Jiao, Yongqin; Lammers, Laura; Brewer, Aaron

    2017-04-19

    We have conducted aqueous speciation analyses of the Great Salt Lake (GSL) brine sample (Table 1) and a mock geo sample (Table 2) spiked with 1 ppb Tb and 100 ppb Tb. The GSL speciation (Figure 1) aligns with our basic speciation expectations that strong carbonate complexes would form at mid to higher pH's. Although we expected strong aqueous complexes with fluorides at neutral pH and with chlorides, and hydroxides at low pH, we observe that the dominant species in the low to mid pH range to be Tb3+ as a free ion. Still, we do see the presence of fluoride and chloride complexes within the expected low to mid pH range.

  16. Solution speciation of plutonium and Americium at an Australian legacy radioactive waste disposal site.

    PubMed

    Ikeda-Ohno, Atsushi; Harrison, Jennifer J; Thiruvoth, Sangeeth; Wilsher, Kerry; Wong, Henri K Y; Johansen, Mathew P; Waite, T David; Payne, Timothy E

    2014-09-02

    During the 1960s, radioactive waste containing small amounts of plutonium (Pu) and americium (Am) was disposed in shallow trenches at the Little Forest Burial Ground (LFBG), located near the southern suburbs of Sydney, Australia. Because of periodic saturation and overflowing of the former disposal trenches, Pu and Am have been transferred from the buried wastes into the surrounding surface soils. The presence of readily detected amounts of Pu and Am in the trench waters provides a unique opportunity to study their aqueous speciation under environmentally relevant conditions. This study aims to comprehensively investigate the chemical speciation of Pu and Am in the trench water by combining fluoride coprecipitation, solvent extraction, particle size fractionation, and thermochemical modeling. The predominant oxidation states of dissolved Pu and Am species were found to be Pu(IV) and Am(III), and large proportions of both actinides (Pu, 97.7%; Am, 86.8%) were associated with mobile colloids in the submicron size range. On the basis of this information, possible management options are assessed.

  17. The development of exhaust speciation profiles for commercial jet engines.

    DOT National Transportation Integrated Search

    2007-10-01

    This study reports the emissions of CO, CO2, NOx, Particulate Matter (PM) mass, : speciated PM and speciated hydrocarbons at six thrust settings: 4%, 7%, 30%, 40%, 65% : and 85%, measured from both engines on four parked 737 aircraft at the Oakland :...

  18. Pollinator-driven ecological speciation in plants: new evidence and future perspectives

    PubMed Central

    Van der Niet, Timotheüs; Peakall, Rod; Johnson, Steven D.

    2014-01-01

    Background The hypothesis that pollinators have been important drivers of angiosperm diversity dates back to Darwin, and remains an important research topic today. Mounting evidence indicates that pollinators have the potential to drive diversification at several different stages of the evolutionary process. Microevolutionary studies have provided evidence for pollinator-mediated floral adaptation, while macroevolutionary evidence supports a general pattern of pollinator-driven diversification of angiosperms. However, the overarching issue of whether, and how, shifts in pollination system drive plant speciation represents a critical gap in knowledge. Bridging this gap is crucial to fully understand whether pollinator-driven microevolution accounts for the observed macroevolutionary patterns. Testable predictions about pollinator-driven speciation can be derived from the theory of ecological speciation, according to which adaptation (microevolution) and speciation (macroevolution) are directly linked. This theory is a particularly suitable framework for evaluating evidence for the processes underlying shifts in pollination systems and their potential consequences for the evolution of reproductive isolation and speciation. Scope This Viewpoint paper focuses on evidence for the four components of ecological speciation in the context of plant-pollinator interactions, namely (1) the role of pollinators as selective agents, (2) floral trait divergence, including the evolution of ‘pollination ecotypes‘, (3) the geographical context of selection on floral traits, and (4) the role of pollinators in the evolution of reproductive isolation. This Viewpoint also serves as the introduction to a Special Issue on Pollinator-Driven Speciation in Plants. The 13 papers in this Special Issue range from microevolutionary studies of ecotypes to macroevolutionary studies of historical ecological shifts, and span a wide range of geographical areas and plant families. These studies

  19. A comparative analysis of island floras challenges taxonomy-based biogeographical models of speciation.

    PubMed

    Igea, Javier; Bogarín, Diego; Papadopulos, Alexander S T; Savolainen, Vincent

    2015-02-01

    Speciation on islands, and particularly the divergence of species in situ, has long been debated. Here, we present one of the first, complete assessments of the geographic modes of speciation for the flora of a small oceanic island. Cocos Island (Costa Rica) is pristine; it is located 550 km off the Pacific coast of Central America. It harbors 189 native plant species, 33 of which are endemic. Using phylogenetic data from insular and mainland congeneric species, we show that all of the endemic species are derived from independent colonization events rather than in situ speciation. This is in sharp contrast to the results of a study carried out in a comparable system, Lord Howe Island (Australia), where as much as 8.2% of the plant species were the product of sympatric speciation. Differences in physiography and age between the islands may be responsible for the contrasting patterns of speciation observed. Importantly, comparing phylogenetic assessments of the modes of speciation with taxonomy-based measures shows that widely used island biogeography approaches overestimate rates of in situ speciation. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  20. Speciation and leachability of copper in mine tailings from porphyry copper mining: influence of particle size.

    PubMed

    Hansen, Henrik K; Yianatos, Juan B; Ottosen, Lisbeth M

    2005-09-01

    Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150 mg kg (-1) dry matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212 microm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order to evaluate the speciation of copper. It was found that the particles of smallest size contained 50-60% weak acid leachable copper, whereas only 32% of the copper found in largest particles could be leached in weak acid. Copper oxides and carbonates were the dominating species in the smaller particles, and the larger particles contained considerable amounts of sulphides.

  1. Cellular processing of gold nanoparticles: CE-ICP-MS evidence for the speciation changes in human cytosol.

    PubMed

    Legat, Joanna; Matczuk, Magdalena; Timerbaev, Andrei R; Jarosz, Maciej

    2018-01-01

    The cellular uptake of gold nanoparticles (AuNPs) may (or may not) affect their speciation, but information on the chemical forms in which the particles exist in the cell remains obscure. An analytical method based on the use of capillary electrophoresis hyphenated with inductively coupled plasma mass spectrometry (ICP-MS) has been proposed to shed light on the intracellular processing of AuNPs. It was observed that when being introduced into normal cytosol, the conjugates of 10-50 nm AuNPs with albumin evolved in human serum stayed intact. On the contrary, under simulated cancer cytosol conditions, the nanoconjugates underwent decomposition, the rate of which and the resulting metal speciation patterns were strongly influenced by particle size. The new peaks that appeared in ICP-MS electropherograms could be ascribed to nanosized species, as upon ultracentrifugation, they quantitatively precipitated whereas the supernatant showed only trace Au signals. Our present study is the first step to unravel a mystery of the cellular chemistry for metal-based nanomedicines.

  2. Carbon speciation and surface tension of fog

    USGS Publications Warehouse

    Capel, P.D.; Gunde, R.; Zurcher, F.; Giger, W.

    1990-01-01

    The speciation of carbon (dissolved/particulate, organic/inorganic) and surface tension of a number of radiation fogs from the urban area of Zurich, Switzerland, were measured. The carbon species were dominated by "dissolved" organic carbon (DOC; i.e., the fraction that passes through a filter), which was typically present at levels of 40-200 mg/L. Less than 10% of the DOC was identified as specific individual organic compounds. Particulate organic carbon (POC) accounted for 26-41% of the mass of the particles, but usually less than 10% of the total organic carbon mass. Inorganic carbon species were relatively minor. The surface tensions of all the measured samples were less than pure water and were correlated with their DOC concentrations. The combination of high DOC and POC and low surface tension suggests a mechanism for the concentration of hydrophobic organic contaminants in the fog droplet, which have been observed by numerous investigators. ?? 1990 American Chemical Society.

  3. Mercury speciation in the Mt. Amiata mining district (Italy): interplay between urban activities and mercury contamination

    USGS Publications Warehouse

    Rimondi, Valentina; Bardelli, Fabrizio; Benvenuti, Marco; Costagliola, Pilario; Gray, John E.; Lattanzi, Pierfranco

    2014-01-01

    A fundamental step to evaluate the biogeochemical and eco-toxicological significance of Hg dispersion in the environment is to determine speciation of Hg in solid matrices. In this study, several analytical techniques such as scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), sequential chemical extractions (SCEs), and X-ray absorption spectroscopy (XANES) were used to identify Hg compounds and Hg speciation in samples collected from the Mt. Amiata Hg mining district, southern Tuscany, Italy. Different geological materials, such as mine waste calcine (retorted ore), soil, stream sediment, and stream water suspended particulate matter were analyzed. Results show that the samples were generally composed of highly insoluble Hg compounds such as sulphides (HgS, cinnabar and metacinnabar), and more soluble Hg halides such as those associated with the mosesite group. Other moderately soluble Hg compounds, HgCl2, HgO and Hg0, were also identified in stream sediments draining the mining area. The presence of these minerals suggests active and continuous runoff of soluble Hg compounds from calcines, where such Hg compounds form during retorting, or later in secondary processes. Specifically, we suggest that, due to the proximity of Hg mines to the urban center of Abbadia San Salvatore, the influence of other anthropogenic activities was a key factor for Hg speciation, resulting in the formation of unusual Hg-minerals such as mosesite.

  4. Al Speciation in Silicate Melts: AlV a new Network Former?

    NASA Astrophysics Data System (ADS)

    Neuville, D. R.; Florian, P.; de Ligny, D.; Montouillout, V.; Massiot, D.

    2009-05-01

    The first human glasses were made 3500 BC. It was essentially sodo-lime silicate glass. To improve the chemical resistance, the thermal properties and increase the viscosity it is interesting to add aluminum in these silicates. But what is the speciation of the aluminum and how it varies according to the chemical composition and to the temperature? The aluminum appears essentially in four or five fold coordination in glasses and melts melted. The proportion of [5]Al varies according to the alkaline or to the earth-alkaline content and to the temperature. We shall present in a first part the influence of the network-modifier on the proportion of [5]Al and then we shall present some new results of absorption of high-temperature using NMR and XANES spectroscopy at the Al K-edge. Finally, from glass transition temperature measurements we propose to explain that [5]Al can be a new network former.

  5. Biology and toxicology of tellurium explored by speciation analysis.

    PubMed

    Ogra, Yasumitsu

    2017-05-24

    Tellurium (Te) is widely used in industry because it has unique physicochemical properties. Although Te is a non-essential element in animals and plants, it is expected to be metabolized to organometallic compounds having a carbon-Te bond in living organisms exposed to inorganic Te compounds. Thus, the speciation and identification of tellurometabolites are expected to contribute to the depiction of the metabolic chart of Te. Speciation by elemental mass spectrometry and identification by molecular mass spectrometry coupled with separation techniques have significantly contributed to the discovery of tellurometabolites in animals and plants. The aim of this mini review is to present recent advances in the biology and toxicology of tellurium as revealed by speciation and identification by molecular mass spectrometry.

  6. Speciation at the Mogollon Rim in the Arizona Mountain Kingsnake (Lampropeltis pyromelana).

    PubMed

    Burbrink, Frank T; Yao, Helen; Ingrasci, Matthew; Bryson, Robert W; Guiher, Timothy J; Ruane, Sara

    2011-09-01

    Studies of speciation and taxon delimitation are usually decoupled. Combining these methods provides a stronger theoretical ground for recognizing new taxa and understanding processes of speciation. Using coalescent methods, we examine speciation, post-speciation population demographics, and taxon delimitation in the Arizona Mountain Kingsnake (Lampropeltis pyromelana), a species restricted to high elevations in southwestern United States and northern Mexico (SW). These methods provide a solid foundation for understanding how biogeographic barriers operate at the regional scale in the SW. Bayesian species delimitation methods, using three loci from samples of L. pyromelana taken throughout their range, show strong support for the existence of two species that are separated by low elevation habitats found between the Colorado Plateau/ Mogollon Rim and the Sierra Madre Occidental. Our results suggest an allopatric mode of speciation given the near absence of gene flow over time, which resulted in two lineages of unequal population sizes. Speciation likely occurred prior to the Pleistocene, during the aridification of the SW and/or the uplift of the Colorado Plateau, and while these species occupy similar high-elevation niches, they are isolated by xeric conditions found in the intervening low deserts. Furthermore, post-speciation demographics suggest that populations of both lineages were not negatively impacted by climate change throughout the Pleistocene. Finally, our results suggest that at least for this group, where divergence is old and gene flow is low, Bayesian species delimitation performs well. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Concentrations and speciation of heavy metals in sludge from nine textile dyeing plants.

    PubMed

    Liang, Xin; Ning, Xun-an; Chen, Guoxin; Lin, Meiqing; Liu, Jingyong; Wang, Yujie

    2013-12-01

    The safe disposal of sludge from textile dyeing industry requires research on bioavailability and concentration of heavy metals. In this study, concentrations and chemical speciation of heavy metals (Cd, Cr, Cu, Ni, Zn, Pb) in sludge from nine different textile dyeing plants were examined. Some physiochemical features of sludge from textile dyeing industry were determined, and a sequential extraction procedure recommended by the Community Bureau of Reference (BCR) was used to study the metal speciation. Cluster analysis (CA) and principal component analysis (PCA) were applied to provide additional information regarding differences in sludge composition. The results showed that Zn and Cu contents were the highest, followed by Ni, Cr, Cd and Pb. The concentration of Cd and Ni in some sludge samples exceeded the standard suggested for acidic soils in China (GB18918-2002). In sludge from textile dyeing plants, Pb, Cd and Cr were principally distributed in the oxidizable and residual fraction, Cu in the oxidizable fraction, Ni in all four fractions and Zn in the acid soluble/exchangeable and reducible fractions. The pH and heat-drying method affected the fractionation of heavy metals in sludge. © 2013 Elsevier Inc. All rights reserved.

  8. Lead toxicity to Lemna minor predicted using a metal speciation chemistry approach.

    PubMed

    Antunes, Paula M C; Kreager, Nancy J

    2014-10-01

    In the present study, predictive measures for Pb toxicity and Lemna minor were developed from bioassays with 7 surface waters having varied chemistries (0.5-12.5 mg/L dissolved organic carbon, pH of 5.4-8.3, and water hardness of 8-266 mg/L CaCO3 ). As expected based on water quality, 10%, 20%, and 50% inhibitory concentration (IC10, IC20, and IC50, respectively) values expressed as percent net root elongation (%NRE) varied widely (e.g., IC20s ranging from 306 nM to >6920 nM total dissolved Pb), with unbounded values limited by Pb solubility. In considering chemical speciation, %NRE variability was better explained when both Pb hydroxides and the free lead ion were defined as bioavailable (i.e., f{OH} ) and colloidal Fe(III)(OH)3 precipitates were permitted to form and sorb metals (using FeOx as the binding phase). Although cause and effect could not be established because of covariance with alkalinity (p = 0.08), water hardness correlated strongly (r(2)  = 0.998, p < 0.0001) with the concentration of total Pb in true solution ([Pb]T_True solution ). Using these correlations as the basis for predictions (i.e., [Pb]T_True solution vs water hardness and %NRE vs f{OH} ), IC20 and IC50 values produced were within a factor of 2.9 times and 2.2 times those measured, respectively. The results provide much needed effect data for L. minor and highlight the importance of chemical speciation in Pb-based risk assessments for aquatic macrophytes. © 2014 SETAC.

  9. What initiates speciation in passion-vine butterflies?

    PubMed Central

    McMillan, W. Owen; Jiggins, Chris D.; Mallet, James

    1997-01-01

    Studies of the continuum between geographic races and species provide the clearest insights into the causes of speciation. Here we report on mate choice and hybrid viability experiments in a pair of warningly colored butterflies, Heliconius erato and Heliconius himera, that maintain their genetic integrity in the face of hybridization. Hybrid sterility and inviability have been unimportant in the early stages of speciation of these two Heliconius. We find no evidence of reduced fecundity, egg hatch, or larval survival nor increases in developmental time in three generations of hybrid crosses. Instead, speciation in this pair appears to have been catalyzed by the association of strong mating preferences with divergence in warning coloration and ecology. In mate choice experiments, matings between the two species are a tenth as likely as matings within species. F1 hybrids of both sexes mate frequently with both pure forms. However, male F1 progeny from crosses between H. himera mothers and H. erato fathers have somewhat reduced mating success. The strong barrier to gene flow provided by divergence in mate preference is probably enhanced by frequency-dependent predation against hybrids similar to the type known to occur across interracial hybrid zones of H. erato. In addition, the transition between this pair falls at the boundary between wet and dry forest, and rare hybrids may also be selected against because they are poorly adapted to either biotope. These results add to a growing body of evidence that challenge the importance of genomic incompatibilities in the earliest stages of speciation. PMID:9238028

  10. The shape and temporal dynamics of phylogenetic trees arising from geographic speciation.

    PubMed

    Pigot, Alex L; Phillimore, Albert B; Owens, Ian P F; Orme, C David L

    2010-12-01

    Phylogenetic trees often depart from the expectations of stochastic models, exhibiting imbalance in diversification among lineages and slowdowns in the rate of lineage accumulation through time. Such departures have led to a widespread perception that ecological differences among species or adaptation and subsequent niche filling are required to explain patterns of diversification. However, a key element missing from models of diversification is the geographical context of speciation and extinction. In this study, we develop a spatially explicit model of geographic range evolution and cladogenesis, where speciation arises via vicariance or peripatry, and explore the effects of these processes on patterns of diversification. We compare the results with those observed in 41 reconstructed avian trees. Our model shows that nonconstant rates of speciation and extinction are emergent properties of the apportioning of geographic ranges that accompanies speciation. The dynamics of diversification exhibit wide variation, depending on the mode of speciation, tendency for range expansion, and rate of range evolution. By varying these parameters, the model is able to capture many, but not all, of the features exhibited by birth-death trees and extant bird clades. Under scenarios with relatively stable geographic ranges, strong slowdowns in diversification rates are produced, with faster rates of range dynamics leading to constant or accelerating rates of apparent diversification. A peripatric model of speciation with stable ranges also generates highly unbalanced trees typical of bird phylogenies but fails to produce realistic range size distributions among the extant species. Results most similar to those of a birth-death process are reached under a peripatric speciation scenario with highly volatile range dynamics. Taken together, our results demonstrate that considering the geographical context of speciation and extinction provides a more conservative null model of

  11. CORRELATING METAL SPECIATION IN SOILS

    EPA Science Inventory

    Understanding bioavailability of metals from exposure to contaminated soils is a challenging aspect of environmental research. This presentation will examine three areas of research with respect to metal speciation in soils as it relates to bioavailability: 1) Pb immobilization a...

  12. Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM)

    DOE PAGES

    Parworth, Caroline; Tilp, Alison; Fast, Jerome; ...

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ~30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations ofmore » the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.« less

  13. Polysulfide Speciation in the Bulk Electrolyte of a Lithium Sulfur Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBrayer, Josefine D.; Beechem, Thomas E.; Perdue, Brian R.

    In situ Raman microscopy was used to study polysulfide speciation in the bulk ether electrolyte during the discharge and charge of a Li-S electrochemical cell to assess the complex interplay between chemical and electrochemical reactions in solution. During discharge, long chain polysulfides and the S 3 - radical appear in the electrolyte at 2.4 V indicating a rapid equilibrium of the dissociation reaction to form S 3 -. When charging, however, an increase in the concentration of all polysulfide species was observed. This highlights the importance of the electrolyte to sulfur ratio and suggests a loss in the useful sulfurmore » inventory from the cathode to the electrolyte.« less

  14. Polysulfide Speciation in the Bulk Electrolyte of a Lithium Sulfur Battery

    DOE PAGES

    McBrayer, Josefine D.; Beechem, Thomas E.; Perdue, Brian R.; ...

    2018-03-23

    In situ Raman microscopy was used to study polysulfide speciation in the bulk ether electrolyte during the discharge and charge of a Li-S electrochemical cell to assess the complex interplay between chemical and electrochemical reactions in solution. During discharge, long chain polysulfides and the S 3 - radical appear in the electrolyte at 2.4 V indicating a rapid equilibrium of the dissociation reaction to form S 3 -. When charging, however, an increase in the concentration of all polysulfide species was observed. This highlights the importance of the electrolyte to sulfur ratio and suggests a loss in the useful sulfurmore » inventory from the cathode to the electrolyte.« less

  15. XPS Investigation on Changes in UO 2 Speciation following Exposure to Humidity

    DOE PAGES

    Donald, Scott B.; Davisson, M. Lee; Nelson, Art J.

    2016-04-27

    High purity UO 2powder samples were subjected to accelerated aging under controlled conditions with relative humidity ranging from 34% to 98%. Characterization of the chemical speciation of the products was accomplished using X-ray photoelectron spectroscopy (XPS). A shift to higher uranium oxidation states was found to be directly correlated to increased relative humidity exposure. In addition, the relative abundance of O 2-, OH -, and H 2O was found to vary with exposure time. Therefore, it is expected that uranium oxide materials exposed to high relative humidity conditions during processing and storage would display a similar increase in average uraniummore » valence.« less

  16. Determining the speciation of Zn in soils around the sediment ponds of chemical plants by XRD and XAFS spectroscopy and sequential extraction.

    PubMed

    Minkina, Tatiana; Nevidomskaya, Dina; Bauer, Tatiana; Shuvaeva, Victoria; Soldatov, Alexander; Mandzhieva, Saglara; Zubavichus, Yan; Trigub, Alexander

    2018-09-01

    For a correct assessment of risk of polluted soil, it is crucial to establish the speciation and mobility of the contaminants. The aim of this study was to investigate the speciation and transformation of Zn in strongly technogenically transformed contaminated Spolic Technosols for a long time in territory of sludge collectors by combining analytical techniques and synchrotron techniques. Sequential fractionation of Zn compounds in studied soils revealed increasing metal mobility. Phyllosilicates and Fe and Mn hydroxides were the main stabilizers of Zn mobility. A high degree of transformation was identified for the composition of the mineral phase in Spolic Technosols by X-ray powder diffraction. Technogenic phases (Zn-containing authigenic minerals) were revealed in Spolic Technosols samples through the analysis of their Zn K-edge EXAFS and XANES spectra. In one of the samples Zn local environment was formed by predominantly oxygen atoms, and in the other one mixed ZnS and ZnO bonding was found. Zn speciation in the studied technogenically transformed soils was due to the composition of pollutants contaminating the floodplain landscapes for a long time, and, second, this is the combination of physicochemical properties controlling the buffer properties of investigated soils. X-ray spectroscopic and X-ray powder diffraction analyses combined with sequential extraction assays is an effective tool to check the affinity of the soil components for heavy metal cations. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Bromine speciation in hydrous haplogranitic melts up to 7 GPa

    NASA Astrophysics Data System (ADS)

    Cochain, B.; de Grouchy, C.; Crepisson, C.; Kantor, I.; Irifune, T.; Sanloup, C.

    2013-12-01

    Halogens are minor volatiles in the Earth's mantle and crust, but they have significant and specific influences on magmatic and degassing processes. They also provide insights about subsurface magma movement and eruption likelihood in subduction-related volcanism. Their speciation in silicate melts affects volatile exsolution, rheology, and the thermodynamic properties of the melts but still remains relatively unknown. A few studies have explored halogen speciation at room conditions, i.e. in glasses but no firm conclusion has yet been reached. Furthermore, halogen speciation remains unexplored at high pressures and temperatures. In this work we investigate the speciation of Br in subduction-related melt (hydrous haplogranite melt) up to 1200°C and 7 GPa using X-ray absorption spectroscopy (XANES and EXAFS) at the Br K-edge. High P-T conditions were generated by the Paris-Edinburgh press. The use of nanocrystalline diamond capsules enabled us to avoid glitches in the EXAFS spectra. The results provide valuable information on Br speciation and its evolution with pressure. It gives insights into solubility mechanisms for halogens in magmas at depth and on their degassing from the melt. In addition, we were able to identify quench effects on the atomic environment of Br by comparison of high P-T in-situ spectra and ex-situ spectra recorded on quenched samples.

  18. Quantification of trace elements and speciation of iron in atmospheric particulate matter

    NASA Astrophysics Data System (ADS)

    Upadhyay, Nabin

    Trace metal species play important roles in atmospheric redox processes and in the generation of oxidants in cloud systems. The chemical impact of these elements on atmospheric and cloud chemistry is dependent on their occurrence, solubility and speciation. First, analytical protocols have been developed to determine trace elements in particulate matter samples collected for carbonaceous analysis. The validated novel protocols were applied to the determination of trace elements in particulate samples collected in the remote marine atmosphere and urban areas in Arizona to study air pollution issues. The second part of this work investigates on solubility and speciation in environmental samples. A detailed study on the impact of the nature and strength of buffer solutions on solubility and speciation of iron lead to a robust protocol, allowing for comparative measurements in matrices representative of cloud water conditions. Application of this protocol to samples from different environments showed low iron solubility (less than 1%) in dust-impacted events and higher solubility (5%) in anthropogenically impacted urban samples. In most cases, Fe(II) was the dominant oxidation state in the soluble fraction of iron. The analytical protocol was then applied to investigate iron processing by fogs. Field observations showed that only a small fraction (1%) of iron was scavenged by fog droplets for which each of the soluble and insoluble fraction were similar. A coarse time resolution limited detailed insights into redox cycling within fog system. Overall results suggested that the major iron species in the droplets was Fe(1I) (80% of soluble iron). Finally, the occurrence and sources of emerging organic pollutants in the urban atmosphere were investigated. Synthetic musk species are ubiquitous in the urban environment (less than 5 ng m-3) and investigations at wastewater treatment plants showed that wastewater aeration basins emit a substantial amount of these species to

  19. Non-refractory PM1 in SE Asia: Chemically speciated aerosol fluxes and concentrations above contrasting land-uses in SE Asia.

    NASA Astrophysics Data System (ADS)

    Phillips, Gavin; Farmer, Delphine; di Marco, Chiara; Misztal, Pawel; Sueper, Donna; Kimmel, Joel; Jimenez, Jose; Fowler, David; Nemitz, Eiko

    2010-05-01

    New measurements of VOC emissions (measured with leaf cuvettes, and ecosystem fluxes obtained from eddy covariance measurements) suggest that oil palm (Elaeis guineensis Jacq) is a significantly larger source of isoprene than tropical forest, in Borneo. These larger sources of isoprene measured over oil palm, allied with a larger anthropogenic component of local emissions, contrasts with the composition of the atmosphere in the semi-remote tropical forest environment. The difference in the atmospheric composition above different land-uses has the potential to lead to contrasting chemistry and physics controlling the formation and processing of particulate matter. Thus land use changes, driven by the economics of biofuels, could give rise to rapidly changing chemical and aerosol regimes in the tropics. It is therefore important to understand the current emissions, chemical processing and composition of organic aerosol over both (semi-)natural and anthropogenic land uses in the tropical environment. Ecosystem flux measurements of chemically-speciated non-refractory PM1 were made over two contrasting land uses in the Malaysian state of Sabah, on the island of Borneo during 2008. A high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed at the Global Atmospheric Watch (GAW) site at a tropical rain forest location as well as the Sabahmas (PPB OIL) oil palm plantation near Lahad Datu, in Eastern Sabah, as a collaboration between three UK NERC funded projects (OP3, APPRAISE/ACES and DIASPORA). Recent technical developments using ToF detectors allow us to record 10 Hz full mass spectra at both high resolution (HR) and unit-mass resolution (UMR), suitable for the calculation of local eddy-covariance fluxes. The measurements provide information on the deposition rate of anthropogenic aerosol components (e.g. sulphate, nitrate, ammonium and hydrocarbon-like aerosol) to tropical forest and oil palm. At the same time, any biogenic secondary organic

  20. Environmental controls on the speciation and distribution of mercury in surface sediments of a tropical estuary, India.

    PubMed

    Chakraborty, Parthasarathi; Babu, P V Raghunadh

    2015-06-15

    Distribution and speciation of mercury (Hg) in the sediments from a tropical estuary (Godavari estuary) was influenced by the changing physico-chemical parameters of the overlying water column. The sediments from the upstream and downstream of the estuary were uncontaminated but the sediments from the middle of the estuary were contaminated by Hg. The concentrations of Hg became considerably less during the monsoon and post monsoon period. Total Hg concentrations and its speciation (at the middle of the estuary) were dependent on the salinity of the overlying water column. However, salinity had little or no effect on Hg association with organic phases in the sediments at downstream. Increasing pH of the overlying water column corresponded with an increase in the total Hg content in the sediments. Total organic carbon in the sediments played an important role in controlling Hg partitioning in the system. Uncomplexed Hg binding ligands were available in the sediments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Arsenic speciation in edible mushrooms.

    PubMed

    Nearing, Michelle M; Koch, Iris; Reimer, Kenneth J

    2014-12-16

    The fruiting bodies, or mushrooms, of terrestrial fungi have been found to contain a high proportion of the nontoxic arsenic compound arsenobetaine (AB), but data gaps include a limited phylogenetic diversity of the fungi for which arsenic speciation is available, a focus on mushrooms with higher total arsenic concentrations, and the unknown formation and role of AB in mushrooms. To address these, the mushrooms of 46 different fungus species (73 samples) over a diverse range of phylogenetic groups were collected from Canadian grocery stores and background and arsenic-contaminated areas. Total arsenic was determined using ICP-MS, and arsenic speciation was determined using HPLC-ICP-MS and complementary X-ray absorption spectroscopy (XAS). The major arsenic compounds in mushrooms were found to be similar among phylogenetic groups, and AB was found to be the major compound in the Lycoperdaceae and Agaricaceae families but generally absent in log-growing mushrooms, suggesting the microbial community may influence arsenic speciation in mushrooms. The high proportion of AB in mushrooms with puffball or gilled morphologies may suggest that AB acts as an osmolyte in certain mushrooms to help maintain fruiting body structure. The presence of an As(III)-sulfur compound, for the first time in mushrooms, was identified in the XAS analysis. Except for Agaricus sp. (with predominantly AB), inorganic arsenic predominated in most of the store-bought mushrooms (albeit with low total arsenic concentrations). Should inorganic arsenic predominate in these mushrooms from contaminated areas, the risk to consumers under these circumstances should be considered.

  2. Multiscale Speciation of U and Pu at Chernobyl, Hanford, Los Alamos, McGuire AFB, Mayak, and Rocky Flats.

    PubMed

    Batuk, Olga N; Conradson, Steven D; Aleksandrova, Olga N; Boukhalfa, Hakim; Burakov, Boris E; Clark, David L; Czerwinski, Ken R; Felmy, Andrew R; Lezama-Pacheco, Juan S; Kalmykov, Stepan N; Moore, Dean A; Myasoedov, Boris F; Reed, Donald T; Reilly, Dallas D; Roback, Robert C; Vlasova, Irina E; Webb, Samuel M; Wilkerson, Marianne P

    2015-06-02

    The speciation of U and Pu in soil and concrete from Rocky Flats and in particles from soils from Chernobyl, Hanford, Los Alamos, and McGuire Air Force Base and bottom sediments from Mayak was determined by a combination of X-ray absorption fine structure (XAFS) spectroscopy and X-ray fluorescence (XRF) element maps. These experiments identify four types of speciation that sometimes may and other times do not exhibit an association with the source terms and histories of these samples: relatively well ordered PuO2+x and UO2+x that had equilibrated with O2 and H2O under both ambient conditions and in fires or explosions; instances of small, isolated particles of U as UO2+x, U3O8, and U(VI) species coexisting in close proximity after decades in the environment; alteration phases of uranyl with other elements including ones that would not have come from soils; and mononuclear Pu-O species and novel PuO2+x-type compounds incorporating additional elements that may have occurred because the Pu was exposed to extreme chemical conditions such as acidic solutions released directly into soil or concrete. Our results therefore directly demonstrate instances of novel complexity in the Å and μm-scale chemical speciation and reactivity of U and Pu in their initial formation and after environmental exposure as well as occasions of unexpected behavior in the reaction pathways over short geological but significant sociological times. They also show that incorporating the actual disposal and site conditions and resultant novel materials such as those reported here may be necessary to develop the most accurate predictive models for Pu and U in the environment.

  3. Concentration, Complexation and Chemical Speciation of Zinc and Cadmium in the Western North Pacific Ocean : Exploring Sources and Transport of Trace Metals and Complexing Ligands.

    NASA Astrophysics Data System (ADS)

    Carrasco, G. G.; Morton, P. L.; Donat, J. R.

    2008-12-01

    We determined Zn and Cd total dissolved (0.45 µm-filtered) concentrations, organic complexation and chemical speciation in surface water samples collected along the transect of the 2002 IOC Baseline Contaminant Survey expedition in the Western North Pacific and in vertical profile water samples at nine stations. The goals of this work were (1) to compare and contrast various trace metal sources, including both natural and anthropogenic atmospheric deposition, upwelling, marginal seas and others; (2) to study the organic ligand sources, generally thought to be phytoplankton; and (3) to investigate metal and ligand transport mechanisms, residence times and eventual upwelling in the Eastern North Pacific. Total dissolved (TD) Zn and Cd values were obtained using a combination of differential pulse stripping anodic voltammetry (DPASV), preconcentration with 8-HQ or APDC/DDC and quantification at ICPMS or AA. Organic complexation and chemical speciation of Zn and Cd were determined simultaneously using DPASV at a thin-mercury-film, glassy-carbon-disk-electrode. Surface transect TDZn and TDCd concentrations were low in the Subtropical Gyre (STG), in contrast with high values in the Western Subarctic Gyre (WSG). Zn and Cd were organically complexed in most surface samples: at least one ligand class was detected for Zn and Cd, whose conditional stability constants (log K') averaged 10.2 and 10.5, respectively. These ligands were found in excess of the total dissolved metal throughout the region of study except in the WSG for Cd. Vertical distributions of TDZn and TDCd exhibited nutrient-type profiles for all the STG stations. While constant Zn/Si and Cd/P values were observed throughout the water column in the WSG, some deviations were observed within the STG. In addition, the mode and intermediate water masses of the STG displayed very high concentrations of a Zn-complexing ligand (log K' 10.0) in excess of TDZn. As these water masses moved eastward, we observed that the

  4. Transformation of heavy metal speciation during sludge drying: mechanistic insights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weng, Huanxin; Ma, Xue-Wen; Fu, Feng-Xia

    2014-01-30

    Speciation can fundamentally affect on the stability and toxicity of heavy metals in sludge from wastewater treatment plants. This research investigated the speciation of heavy metals in sludge from both municipal and industrial sources, and metal speciation change as a result of drying process to reduce sludge volume. The changes in sludge properties including sludge moisture content, temperature, density, and electrical conductivity were also monitored to provide insights into the mechanisms causing the change in heavy metal speciation. The results show that the drying process generally stabilized the Cr, Cu, Cd and Pb in sludge by transforming acid-soluble, reducible andmore » oxidizable species into structurally stable forms. Such transformation and stabilization occurred regardless of the sludge source and type, and were primarily caused by the changes in sludge properties associated with decomposition of organic matter and sulfide. The results enhanced our understanding of the geochemical behavior of heavy metals in municipal sludge, and are useful for designing a treatment system for environment-friendly disposal of sludge.« less

  5. Transformation of heavy metal speciation during sludge drying: mechanistic insights.

    PubMed

    Weng, Huan-Xin; Ma, Xue-Wen; Fu, Feng-Xia; Zhang, Jin-Jun; Liu, Zan; Tian, Li-Xun; Liu, Chongxuan

    2014-01-30

    Speciation can fundamentally affect on the stability and toxicity of heavy metals in sludge from wastewater treatment plants. This research investigated the speciation of heavy metals in sludge from both municipal and industrial sources, and metal speciation change as a result of drying process to reduce sludge volume. The changes in sludge properties including sludge moisture content, temperature, density, and electrical conductivity were also monitored to provide insights into the mechanisms causing the change in heavy metal speciation. The results show that the drying process generally stabilized Cr, Cu, Cd, and Pb in sludge by transforming acid-soluble, reducible, and oxidizable species into structurally stable forms. Such transformation and stabilization occurred regardless of the sludge source and type, and were primarily caused by the changes in sludge properties associated with decomposition of organic matter and sulfide. The results enhanced our understanding of the geochemical behavior of heavy metals in municipal sludge, and are useful for designing a treatment system for environment-friendly disposal of sludge. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Interaction between Digestive Strategy and Niche Specialization Predicts Speciation Rates across Herbivorous Mammals.

    PubMed

    Tran, Lucy A P

    2016-04-01

    Biotic and abiotic factors often are treated as mutually exclusive drivers of diversification processes. In this framework, ecological specialists are expected to have higher speciation rates than generalists if abiotic factors are the primary controls on species diversity but lower rates if biotic interactions are more important. Speciation rate is therefore predicted to positively correlate with ecological specialization in the purely abiotic model but negatively correlate in the biotic model. In this study, I show that the positive relationship between ecological specialization and speciation expected from the purely abiotic model is recovered only when a species-specific trait, digestive strategy, is modeled in the terrestrial, herbivorous mammals (Mammalia). This result suggests a more nuanced model in which the response of specialized lineages to abiotic factors is dependent on a biological trait. I also demonstrate that the effect of digestive strategy on the ecological specialization-speciation rate relationship is not due to a difference in either the degree of ecological specialization or the speciation rate between foregut- and hindgut-fermenting mammals. Together, these findings suggest that a biological trait, alongside historical abiotic events, played an important role in shaping mammal speciation at long temporal and large geographic scales.

  7. Speciation dynamics and biogeography of Neotropical spiral gingers (Costaceae).

    PubMed

    André, Thiago; Salzman, Shayla; Wendt, Tânia; Specht, Chelsea D

    2016-10-01

    Species can arise via the divisive effects of allopatry as well as due to ecological and/or reproductive character displacement within sympatric populations. Two separate lineages of Costaceae are native to the Neotropics; an early-diverging clade endemic to South America (consisting of ca. 16 species in the genera Monocostus, Dimerocostus and Chamaecostus); and the Neotropical Costus clade (ca. 50 species), a diverse assemblage of understory herbs comprising nearly half of total familial species richness. We use a robust dated molecular phylogeny containing most of currently known species to inform macroevolutionary reconstructions, enabling us to examine the context of speciation in Neotropical lineages. Analyses of speciation rate revealed a significant variation among clades, with a rate shift at the most recent common ancestor of the Neotropical Costus clade. There is an overall predominance of allopatric speciation in the South American clade, as most species display little range overlap. In contrast, sympatry is much higher within the Neotropical Costus clade, independent of node age. Our results show that speciation dynamics during the history of Costaceae is strongly heterogeneous, and we suggest that the Costus radiation in the Neotropics arose at varied geographic contexts. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Mercury speciation with fluorescent gold nanocluster as a probe.

    PubMed

    Yang, Jian-Yu; Yang, Ting; Wang, Xiao-Yan; Chen, Ming-Li; Yu, Yong-Liang; Wang, Jian-Hua

    2018-05-11

    Fluorescent nanoparticles are widely used for sensing biologically significant species. However, it is rarely reported for the discrimination or speciation of metal species. In this work, we report for the first time the speciation of mercury (Hg 2+ ) and methylmercury (CH 3 Hg + ) by taking advantage of the fluorescence feature of folic acid-capped gold nanoclusters (FA-AuNCs). FA-Au NCs exhibit an average size of 2.08±0.15 nm and a maximum emission at λ ex /λ em = 280/440 nm with a quantum yield of 27.3%. It is interesting that Hg 2+ causes a significant quench on the fluorescence of FA-Au NCs, whereas CH 3 Hg + leads to a remarkable fluorescence enhancement. Based on this discriminative fluorescent response between Hg 2+ and CH 3 Hg + , a novel nanosensor for the speciation of CH 3 Hg + and Hg 2+ was developed, providing limits of detection (LOD) of 28 nM for Hg 2+ and 25 nM for CH 3 Hg + within 100-1000 nM. This sensing system is highly selective to mercury. Its practical applications were further demonstrated by the analysis of CH 3 Hg + and the speciation of mercury (CH 3 Hg + and Hg 2+ ) in environmental water and fish samples.

  9. Mitochondrial Recombination and Introgression during Speciation by Hybridization.

    PubMed

    Leducq, Jean-Baptiste; Henault, Mathieu; Charron, Guillaume; Nielly-Thibault, Lou; Terrat, Yves; Fiumera, Heather L; Shapiro, B Jesse; Landry, Christian R

    2017-08-01

    Genome recombination is a major source of genotypic diversity and contributes to adaptation and speciation following interspecies hybridization. The contribution of recombination in these processes has been thought to be largely limited to the nuclear genome because organelles are mostly uniparentally inherited in animals and plants, which prevents recombination. Unicellular eukaryotes such as budding yeasts do, however, transmit mitochondria biparentally, suggesting that during hybridization, both parents could provide alleles that contribute to mitochondrial functions such as respiration and metabolism in hybrid populations or hybrid species. We examined the dynamics of mitochondrial genome transmission and evolution during speciation by hybridization in the natural budding yeast Saccharomyces paradoxus. Using population-scale mitochondrial genome sequencing in two endemic North American incipient species SpB and SpC and their hybrid species SpC*, we found that both parental species contributed to the hybrid mitochondrial genome through recombination. We support our findings by showing that mitochondrial recombination between parental types is frequent in experimental crosses that recreate the early step of this speciation event. In these artificial hybrids, we observed that mitochondrial genome recombination enhances phenotypic variation among diploid hybrids, suggesting that it could play a role in the phenotypic differentiation of hybrid species. Like the nuclear genome, the mitochondrial genome can, therefore, also play a role in hybrid speciation. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Combining Textural Techniques to Explore Effects of Diagenesis and Low-grade Metamorphism on Iron Mineralogy and Iron Speciation

    NASA Astrophysics Data System (ADS)

    Slotznick, S. P.; Webb, S.; Eiler, J. M.; Kirschvink, J. L.; Fischer, W. W.

    2016-12-01

    Iron chemistry and mineralogy in the sedimentary rocks provide a valuable tool for studying paleoenvironmental conditions due to the fact that iron atoms can take on either the +II or +III valence state under geological redox conditions. One method utilizing this redox chemistry is `iron speciation', a bulk chemical sequential extraction technique that maps proportions of iron species to redox conditions empirically calibrated from modern sediments. However, all Precambrian and many Phanerozoic rocks have experienced post-depositional processes; it is vital to explore their effects on iron mineralogy and speciation. We combined light and electron microscopy, magnetic microscopy, (synchrotron-based) microprobe x-ray spectroscopy, and rock magnetic measurements in order to deconvolve secondary overprints from primary phases and provide quantitative measurement of iron minerals. These techniques were applied to excellently-preserved shale and siltstone samples of the 1.4 Ga lower Belt Supergroup, Montana and Idaho, USA, spanning a metamorphic gradient from sub-biotite to garnet zone. Previously measured Silurian-Devonian shales, sandstones, and carbonates in Maine and Vermont, USA spanning from the chlorite to kyanite zone provided additional well-constrained, quantitative data for comparison and to extend our analysis. In all of the studied samples, pyrrhotite formation occurred at the sub-biotite or sub-chlorite zone. Pyrrhotite was interpreted to form from pyrite and/or other iron phases based on lithology; these reactions can affect the paleoredox proxy. Iron carbonates can also severely influence iron speciation results since they often form in anoxic pore fluids during diagenesis; textural analyses of the Belt Supergroup samples highlighted that iron-bearing carbonates were early diagenetic cements or later diagenetic overprints. The inclusion of iron from diagenetic minerals during iron speciation analyses will skew results by providing a view of pore

  11. Ecological speciation in the tropics: insights from comparative genetic studies in Amazonia

    PubMed Central

    Beheregaray, Luciano B.; Cooke, Georgina M.; Chao, Ning L.; Landguth, Erin L.

    2015-01-01

    Evolution creates and sustains biodiversity via adaptive changes in ecologically relevant traits. Ecologically mediated selection contributes to genetic divergence both in the presence or absence of geographic isolation between populations, and is considered an important driver of speciation. Indeed, the genetics of ecological speciation is becoming increasingly studied across a variety of taxa and environments. In this paper we review the literature of ecological speciation in the tropics. We report on low research productivity in tropical ecosystems and discuss reasons accounting for the rarity of studies. We argue for research programs that simultaneously address biogeographical and taxonomic questions in the tropics, while effectively assessing relationships between reproductive isolation and ecological divergence. To contribute toward this goal, we propose a new framework for ecological speciation that integrates information from phylogenetics, phylogeography, population genomics, and simulations in evolutionary landscape genetics (ELG). We introduce components of the framework, describe ELG simulations (a largely unexplored approach in ecological speciation), and discuss design and experimental feasibility within the context of tropical research. We then use published genetic datasets from populations of five codistributed Amazonian fish species to assess the performance of the framework in studies of tropical speciation. We suggest that these approaches can assist in distinguishing the relative contribution of natural selection from biogeographic history in the origin of biodiversity, even in complex ecosystems such as Amazonia. We also discuss on how to assess ecological speciation using ELG simulations that include selection. These integrative frameworks have considerable potential to enhance conservation management in biodiversity rich ecosystems and to complement historical biogeographic and evolutionary studies of tropical biotas. PMID:25653668

  12. Speciation of arsenic in biological samples.

    PubMed

    Mandal, Badal Kumar; Ogra, Yasumitsu; Anzai, Kazunori; Suzuki, Kazuo T

    2004-08-01

    Speciation of arsenicals in biological samples is an essential tool to gain insight into its distribution in tissues and its species-specific toxicity to target organs. Biological samples (urine, hair, fingernail) examined in the present study were collected from 41 people of West Bengal, India, who were drinking arsenic (As)-contaminated water, whereas 25 blood and urine samples were collected from a population who stopped drinking As contaminated water 2 years before the blood collection. Speciation of arsenicals in urine, water-methanol extract of freeze-dried red blood cells (RBCs), trichloroacetic acid treated plasma, and water extract of hair and fingernail was carried out by high-performance liquid chromatography (HPLC)-inductively coupled argon plasma mass spectrometry (ICP MS). Urine contained arsenobetaine (AsB, 1.0%), arsenite (iAs(III), 11.3), arsenate (iAs(V), 10.1), monomethylarsonous acid (MMA(III), 6.6), monomethylarsonic acid (MMA(V), 10.5), dimethylarsinous acid (DMA(III), 13.0), and dimethylarsinic acid (DMA(V), 47.5); fingernail contained iAs(III) (62.4%), iAs(V) (20.2), MMA(V) (5.7), DMA(III) (8.9), and DMA(V) (2.8); hair contained iAs(III) (58.9%), iAs(V) (34.8), MMA(V) (2.9), and DMA(V) (3.4); RBCs contained AsB (22.5%) and DMA(V) (77.5); and blood plasma contained AsB (16.7%), iAs(III) (21.1), MMA(V) (27.1), and DMA(V) (35.1). MMA(III), DMA(III), and iAs(V) were not found in any plasma and RBCs samples, but urine contained all of them. Arsenic in urine, fingernails, and hair are positively correlated with water As, suggesting that any of these measurements could be considered as a biomarker to As exposure. Status of urine and exogenous contamination of hair urgently need speciation of As in these samples, but speciation of As in nail is related to its total As (tAs) concentration. Therefore, total As concentrations of nails could be considered as biomarker to As exposure in the endemic areas.

  13. Selenium Speciation and Management in Wet FGD Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Searcy, K; Richardson, M; Blythe, G

    2012-02-29

    This report discusses results from bench- and pilot-scale simulation tests conducted to determine the factors that impact selenium speciation and phase partitioning in wet FGD systems. The selenium chemistry in wet FGD systems is highly complex and not completely understood, thus extrapolation and scale-up of these results may be uncertain. Control of operating parameters and application of scrubber additives have successfully demonstrated the avoidance or decrease of selenite oxidation at the bench and pilot scale. Ongoing efforts to improve sample handling methods for selenium speciation measurements are also discussed. Bench-scale scrubber tests explored the impacts of oxidation air rate, tracemore » metals, scrubber additives, and natural limestone on selenium speciation in synthetic and field-generated full-scale FGD liquors. The presence and concentration of redox-active chemical species as well as the oxidation air rate contribute to the oxidation-reduction potential (ORP) conditions in FGD scrubbers. Selenite oxidation to the undesirable selenate form increases with increasing ORP conditions, and decreases with decreasing ORP conditions. Solid-phase manganese [Mn(IV)] appeared to be the significant metal impacting the oxidation of selenite to selenate. Scrubber additives were tested for their ability to inhibit selenite oxidation. Although dibasic acid and other scrubber additives showed promise in early clear liquor (sodium based and without calcium solids) bench-scale tests, these additives did not show strong inhibition of selenite oxidation in tests with higher manganese concentrations and with slurries from full-scale wet FGD systems. In bench-tests with field liquors, addition of ferric chloride at a 250:1 iron-to-selenium mass ratio sorbed all incoming selenite to the solid phase, although addition of ferric salts had no impact on native selenate that already existed in the field slurry liquor sample. As ORP increases, selenite may oxidize to

  14. Assessment of Important SPECIATE Profiles in EPA’s Emissions Modeling Platform and Current Data Gaps

    EPA Science Inventory

    The US Environmental Protection Agency (EPA)’s SPECIATE database contains speciation profiles for both particulate matter (PM) and volatile organic compounds (VOCs) that are key inputs for creating speciated emission inventories for air quality modeling. The objective of th...

  15. Minimal effects of latitude on present-day speciation rates in New World birds

    PubMed Central

    Rabosky, Daniel L.; Title, Pascal O.; Huang, Huateng

    2015-01-01

    The tropics contain far greater numbers of species than temperate regions, suggesting that rates of species formation might differ systematically between tropical and non-tropical areas. We tested this hypothesis by reconstructing the history of speciation in New World (NW) land birds using BAMM, a Bayesian framework for modelling complex evolutionary dynamics on phylogenetic trees. We estimated marginal distributions of present-day speciation rates for each of 2571 species of birds. The present-day rate of speciation varies approximately 30-fold across NW birds, but there is no difference in the rate distributions for tropical and temperate taxa. Using macroevolutionary cohort analysis, we demonstrate that clades with high tropical membership do not produce species more rapidly than temperate clades. For nearly any value of present-day speciation rate, there are far more species in the tropics than the temperate zone. Any effects of latitude on speciation rate are marginal in comparison to the dramatic variation in rates among clades. PMID:26019156

  16. Metal Ion Speciation and Dissolved Organic Matter Composition in Soil Solutions

    NASA Astrophysics Data System (ADS)

    Benedetti, M. F.; Ren, Z. L.; Bravin, M.; Tella, M.; Dai, J.

    2014-12-01

    Knowledge of the speciation of heavy metals and the role of dissolved organic matter (DOM) in soil solution is a key to understand metal mobility and ecotoxicity. In this study, soil column-Donnan membrane technique (SC-DMT) was used to measure metal speciation of Cd, Cu, Ni, Pb, and Zn in eighteen soil solutions, covering a wide range of metal sources and concentrations. DOM composition in these soil solutions was also determined. Our results show that in soil solution Pb and Cu are dominant in complex form, whereas Cd, Ni and Zn mainly exist as free ions; for the whole range of soil solutions, only 26.2% of DOM is reactive and consists mainly of fulvic acid (FA). The metal speciation measured by SC-DMT was compared to the predicted ones obtained via the NICA-Donnan model using the measured FA concentrations. The free ion concentrations predicted by speciation modelling were in good agreement with the measurements. Diffusive gradients in thin-films gels (DGT) were also performed to quantify the labile metal species in the fluxes from solid phase to solution in fourteen soils. The concentrations of metal species detected by DGT were compared with the free ion concentrations measured by DMT and the maximum concentrations calculated based on the predicted metal speciation in SC-DMT soil solutions. It is concluded that both inorganic species and a fraction of FA bound species account for the amount of labile metals measured by DGT, consistent with the dynamic features of this technique. The comparisons between measurements using analytical techniques and mechanistic model predictions provided mutual validation in their performance. Moreover, we show that to make accurate modelling of metal speciation in soil solutions, the knowledge of DOM composition is the crucial information, especially for Cu; like in previous studies the modelling of Pb speciation is not optimal and an updated of Pb generic binding parameters is required to reduce model prediction uncertainties.

  17. Chemical speciation of polyurethane polymers by soft-x-ray spectromicroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rightor, E.G.; Hitchcock, A.P.; Urquhart, S.G.

    1997-04-01

    Polyurethane polymers are a versatile class of materials which have numerous applications in modern life, from automotive body panels, to insulation, to household furnishings. Phase segregation helps to determine the physical properties of several types of polyurethanes. Polymer scientists believe that understanding the connections between formulation chemistry, the chemical nature of the segregated phases, and the physical properties of the resulting polymer, would greatly advance development of improved polyurethane materials. However, the sub-micron size of segregated features precludes their chemical analysis by existing methods, leaving only indirect means of characterizing these features. For the past several years the authors havemore » been developing near edge X-ray absorption spectromicroscopy to study the chemical nature of individual segregated phases. Part of this work has involved studies of molecular analogues and model polymers, in conjunction with quantum calculations, in order to identify the characteristic near edge spectral transitions of important chemical groups. This spectroscopic base is allowing the authors to study phase segregation in polyurethanes by taking advantage of several unique capabilities of scanning transmission x-ray microscopy (STXM) - high spatial resolution ({approximately} 0.1 {mu}m), high spectral resolution ({approximately}0.1 eV at the C 1s edge), and the ability to record images and spectra with relatively low radiation damage. The beamline 7.0 STXM at ALS is being used to study microtomed sections or cast films of polyurethanes. Based on the pioneering work of Ade, Kirz and collaborators at the NSLS X-1A STXM, it is clear that scanning X-ray transmission microscopy using soft X-rays can provide information about the chemical origin of phase segregation in radiation-sensitive materials on a sub-micron scale. This information is difficult or impossible to obtain by other means.« less

  18. Metal speciation in landfill leachates with a focus on the influence of organic matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claret, Francis, E-mail: f.claret@brgm.fr; Tournassat, Christophe; Crouzet, Catherine

    Highlights: > This study characterises the heavy-metal content in leachates collected from eight landfills in France. > Most of the metals are concentrated in the <30 kDa fraction, while Pb, Cu and Cd are associated with larger particles. > Metal complexation with OM is not sufficient to explain apparent supersaturation of metals with sulphide minerals. - Abstract: This study characterises the heavy-metal content in leachates collected from eight landfills in France. In order to identify heavy metal occurrence in the different size fractions of leachates, a cascade filtration protocol was applied directly in the field, under a nitrogen gas atmospheremore » to avoid metal oxidation. The results of analyses performed on the leachates suggest that most of the metals are concentrated in the <30 kDa fraction, while lead, copper and cadmium show an association with larger particles. Initial speciation calculations, without considering metal association with organic matter, suggest that leachate concentrations in lead, copper, nickel and zinc are super-saturated with respect to sulphur phases. Speciation calculations that account for metal complexation with organic matter, considered as fulvic acids based on C1(s) NEXAFS spectroscopy, show that this mechanism is not sufficient to explain such deviation from equilibrium conditions. It is therefore hypothesized that the deviation results also from the influence of biological activity on the kinetics of mineral phase precipitation and dissolution, thus providing a dynamic system. The results of chemical analyses of sampled fluids are compared with speciation calculations and some implications for the assessment of metal mobility and natural attenuation in a context of landfill risk assessment are discussed.« less

  19. Changes in zinc speciation with mine tailings acidification in a semiarid weathering environment.

    PubMed

    Hayes, Sarah M; O'Day, Peggy A; Webb, Sam M; Maier, Raina M; Chorover, Jon

    2011-09-01

    High concentrations of residual metal contaminants in mine tailings can be transported easily by wind and water, particularly when tailings remain unvegetated for decades following mining cessation, as is the case in semiarid landscapes. Understanding the speciation and mobility of contaminant metal(loid)s, particularly in surficial tailings, is essential to controlling their phytotoxicities and to revegetating impacted sites. In prior work, we showed that surficial tailings samples from the Klondyke State Superfund Site (AZ, USA), ranging in pH from 5.4 to 2.6, represent a weathering series, with acidification resulting from sulfide mineral oxidation, long-term Fe hydrolysis, and a concurrent decrease in total (6000 to 450 mg kg(-1)) and plant-available (590 to 75 mg kg(-1)) Zn due to leaching losses and changes in Zn speciation. Here, we used bulk and microfocused Zn K-edge X-ray absorption spectroscopy (XAS) data and a six-step sequential extraction procedure to determine tailings solid phase Zn speciation. Bulk sample spectra were fit by linear combination using three references: Zn-rich phyllosilicate (Zn(0.8)talc), Zn sorbed to ferrihydrite (Zn(adsFeOx)), and zinc sulfate (ZnSO(4) · 7H(2)O). Analyses indicate that Zn sorbed in tetrahedral coordination to poorly crystalline Fe and Mn (oxyhydr)oxides decreases with acidification in the weathering sequence, whereas octahedral zinc in sulfate minerals and crystalline Fe oxides undergoes a relative accumulation. Microscale analyses identified hetaerolite (ZnMn(2)O(4)), hemimorphite (Zn(4)Si(2)O(7)(OH)(2) · H(2)O) and sphalerite (ZnS) as minor phases. Bulk and microfocused spectroscopy complement the chemical extraction results and highlight the importance of using a multimethod approach to interrogate complex tailings systems.

  20. Field Deployable Method for Arsenic Speciation in Water.

    PubMed

    Voice, Thomas C; Flores Del Pino, Lisveth V; Havezov, Ivan; Long, David T

    2011-01-01

    Contamination of drinking water supplies by arsenic is a world-wide problem. Total arsenic measurements are commonly used to investigate and regulate arsenic in water, but it is well understood that arsenic occurs in several chemical forms, and these exhibit different toxicities. It is problematic to use laboratory-based speciation techniques to assess exposure as it has been suggested that the distribution of species is not stable during transport in some types of samples. A method was developed in this study for the on-site speciation of the most toxic dissolved arsenic species: As (III), As (V), monomethylarsonic acid (MMA) and dimethylarsenic acid (DMA). Development criteria included ease of use under field conditions, applicable at levels of concern for drinking water, and analytical performance.The approach is based on selective retention of arsenic species on specific ion-exchange chromatography cartridges followed by selective elution and quantification using graphite furnace atomic absorption spectroscopy. Water samples can be delivered to a set of three cartridges using either syringes or peristaltic pumps. Species distribution is stable at this point, and the cartridges can be transported to the laboratory for elution and quantitative analysis. A set of ten replicate spiked samples of each compound, having concentrations between 1 and 60 µg/L, were analyzed. Arsenic recoveries ranged from 78-112 % and relative standard deviations were generally below 10%. Resolution between species was shown to be outstanding, with the only limitation being that the capacity for As (V) was limited to approximately 50 µg/L. This could be easily remedied by changes in either cartridge design, or the extraction procedure. Recoveries were similar for two spiked hard groundwater samples indicating that dissolved minerals are not likely to be problematic. These results suggest that this methodology can be use for analysis of the four primary arsenic species of concern in

  1. Field Deployable Method for Arsenic Speciation in Water

    PubMed Central

    Voice, Thomas C.; Flores del Pino, Lisveth V.; Havezov, Ivan; Long, David T.

    2010-01-01

    Contamination of drinking water supplies by arsenic is a world-wide problem. Total arsenic measurements are commonly used to investigate and regulate arsenic in water, but it is well understood that arsenic occurs in several chemical forms, and these exhibit different toxicities. It is problematic to use laboratory-based speciation techniques to assess exposure as it has been suggested that the distribution of species is not stable during transport in some types of samples. A method was developed in this study for the on-site speciation of the most toxic dissolved arsenic species: As (III), As (V), monomethylarsonic acid (MMA) and dimethylarsenic acid (DMA). Development criteria included ease of use under field conditions, applicable at levels of concern for drinking water, and analytical performance. The approach is based on selective retention of arsenic species on specific ion-exchange chromatography cartridges followed by selective elution and quantification using graphite furnace atomic absorption spectroscopy. Water samples can be delivered to a set of three cartridges using either syringes or peristaltic pumps. Species distribution is stable at this point, and the cartridges can be transported to the laboratory for elution and quantitative analysis. A set of ten replicate spiked samples of each compound, having concentrations between 1 and 60 µg/L, were analyzed. Arsenic recoveries ranged from 78–112 % and relative standard deviations were generally below 10%. Resolution between species was shown to be outstanding, with the only limitation being that the capacity for As (V) was limited to approximately 50 µg/L. This could be easily remedied by changes in either cartridge design, or the extraction procedure. Recoveries were similar for two spiked hard groundwater samples indicating that dissolved minerals are not likely to be problematic. These results suggest that this methodology can be use for analysis of the four primary arsenic species of concern in

  2. Modeling Non-Steady Isotopologue and Isotopomer Speciation and Fractionation during Denitrification in Soils

    NASA Astrophysics Data System (ADS)

    Maggi, F.; Riley, W. J.

    2009-12-01

    The composition and location of 15N atoms on N2O isotopomers and isotopologues during isotope speciation has been used to characterize soil biological N cycling and N2O surface emissions. Although there exist few experimental observations, no attempt has been made to model N2O isotopomer speciation. The mathematical treatment of biological kinetic reactions in isotopic applications normally makes use of first-order and quasi steady-state complexation assumptions without taking into account changes in enzyme concentration, reaction stoichiometry, and isotopologue and isotopomer speciation. When multiatomic isotopically-labeled reactants are used in a multi-molecurar reaction, these assumptions may fail since they always lead to a constant fractionation factor and cannot describe speciation of isotopologues and isotopomers. We have developed a mathematical framework that is capable of describing isotopologue and isotopmer speciation and fractionation under the assumption of non-steady complexation during biological kinetic reactions that overcome the limitations mentioned above. This framework was applied to a case study of non-steady (variable and inverse) isotopic effects observed during N2O production and consumption in soils. Our mathematical treatment has led to generalized kinetic equations which replicate experimental observations with high accuracy and help interpret non-steady isotopic effects and isotopologue and isotopomer speciation. The kinetic equations introduced and applied here have general validity in describing isotopic effects in any biochemical reactions by considering: changing enzyme concentrations, mass and isotope conservation, and reaction stoichiometry. The equations also describe speciation of any isotopologue and isotopomer product from any isotopologue and isotopmer reactant.

  3. Sex chromosomes and speciation in birds and other ZW systems.

    PubMed

    Irwin, Darren E

    2018-02-14

    Theory and empirical patterns suggest a disproportionate role for sex chromosomes in evolution and speciation. Focusing on ZW sex determination (females ZW, males ZZ; the system in birds, many snakes, and lepidopterans), I review how evolutionary dynamics are expected to differ between the Z, W and the autosomes, discuss how these differences may lead to a greater role of the sex chromosomes in speciation and use data from birds to compare relative evolutionary rates of sex chromosomes and autosomes. Neutral mutations, partially or completely recessive beneficial mutations, and deleterious mutations under many conditions are expected to accumulate faster on the Z than on autosomes. Sexually antagonistic polymorphisms are expected to arise on the Z, raising the possibility of the spread of preference alleles. The faster accumulation of many types of mutations and the potential for complex evolutionary dynamics of sexually antagonistic traits and preferences contribute to a role for the Z chromosome in speciation. A quantitative comparison among a wide variety of bird species shows that the Z tends to have less within-population diversity and greater between-species differentiation than the autosomes, likely due to both adaptive evolution and a greater rate of fixation of deleterious alleles. The W chromosome also shows strong potential to be involved in speciation, in part because of its co-inheritance with the mitochondrial genome. While theory and empirical evidence suggest a disproportionate role for sex chromosomes in speciation, the importance of sex chromosomes is moderated by their small size compared to the whole genome. © 2018 John Wiley & Sons Ltd.

  4. Hybrid Speciation in a Marine Mammal: The Clymene Dolphin (Stenella clymene)

    PubMed Central

    Amaral, Ana R.; Lovewell, Gretchen; Coelho, Maria M.; Amato, George; Rosenbaum, Howard C.

    2014-01-01

    Natural hybridization may result in the exchange of genetic material between divergent lineages and even the formation of new taxa. Many of the Neo-Darwinian architects argued that, particularly for animal clades, natural hybridization was maladaptive. Recent evidence, however, has falsified this hypothesis, instead indicating that this process may lead to increased biodiversity through the formation of new species. Although such cases of hybrid speciation have been described in plants, fish and insects, they are considered exceptionally rare in mammals. Here we present evidence for a marine mammal, Stenella clymene, arising through natural hybridization. We found phylogenetic discordance between mitochondrial and nuclear markers, which, coupled with a pattern of transgressive segregation seen in the morphometric variation of some characters, support a case of hybrid speciation. S. clymene is currently genetically differentiated from its putative parental species, Stenella coerueloalba and Stenella longisrostris, although low levels of introgressive hybridization may be occurring. Although non-reticulate forms of evolution, such as incomplete lineage sorting, could explain our genetic results, we consider that the genetic and morphological evidence taken together argue more convincingly towards a case of hybrid speciation. We anticipate that our study will bring attention to this important aspect of reticulate evolution in non-model mammal species. The study of speciation through hybridization is an excellent opportunity to understand the mechanisms leading to speciation in the context of gene flow. PMID:24421898

  5. Hybrid speciation in a marine mammal: the clymene dolphin (Stenella clymene).

    PubMed

    Amaral, Ana R; Lovewell, Gretchen; Coelho, Maria M; Amato, George; Rosenbaum, Howard C

    2014-01-01

    Natural hybridization may result in the exchange of genetic material between divergent lineages and even the formation of new taxa. Many of the Neo-Darwinian architects argued that, particularly for animal clades, natural hybridization was maladaptive. Recent evidence, however, has falsified this hypothesis, instead indicating that this process may lead to increased biodiversity through the formation of new species. Although such cases of hybrid speciation have been described in plants, fish and insects, they are considered exceptionally rare in mammals. Here we present evidence for a marine mammal, Stenella clymene, arising through natural hybridization. We found phylogenetic discordance between mitochondrial and nuclear markers, which, coupled with a pattern of transgressive segregation seen in the morphometric variation of some characters, support a case of hybrid speciation. S. clymene is currently genetically differentiated from its putative parental species, Stenella coerueloalba and Stenella longisrostris, although low levels of introgressive hybridization may be occurring. Although non-reticulate forms of evolution, such as incomplete lineage sorting, could explain our genetic results, we consider that the genetic and morphological evidence taken together argue more convincingly towards a case of hybrid speciation. We anticipate that our study will bring attention to this important aspect of reticulate evolution in non-model mammal species. The study of speciation through hybridization is an excellent opportunity to understand the mechanisms leading to speciation in the context of gene flow.

  6. Accumulation route and chemical form of mercury in mushroom species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minagawa, K.; Sasaki, T.; Takizawa, Y.

    1980-09-01

    Some papers were published on several species of fungi having more accumulating abilities of mercury than other land plants and a relatively small part of mercury being present as methylmercury in most species (Stegnar et al. 1973, Stijve and Roschnik 1974). But, little information is available regarding the routes of mercury in fungi, and also no report on mercury speciation (chemical form and complexation) in them have been published, apart from methylmercury. In order to evaluate accurately their biological characteristics such as absorption, excretion, accumulation and toxicity (The Task Group on Metal Interaction 1978), the mercury speciation present in mushrooms,more » regardless of edible or nonedible, should be identified. In this report, we present (1) contents of total and methylmercury in mushrooms near the acetaldehyde factory which had the mounds of sludge containing mercury, (2) data or exposure experiment of mercury vapor to raw mushrooms (Shiitake) on the market, and (3) data on mercury speciation of mercury other than methylmercury.« less

  7. The potential of organic (electrospray- and atmospheric pressure chemical ionisation) mass spectrometric techniques coupled to liquid-phase separation for speciation analysis.

    PubMed

    Rosenberg, Erwin

    2003-06-06

    The use of mass spectrometry based on atmospheric pressure ionisation techniques (atmospheric pressure chemical ionisation, APCI, and electrospray ionisation, ESI) for speciation analysis is reviewed with emphasis on the literature published in and after 1999. This report accounts for the increasing interest that atmospheric pressure ionisation techniques, and in particular ESI, have found in the past years for qualitative and quantitative speciation analysis. In contrast to element-selective detectors, organic mass spectrometric techniques provide information on the intact metal species which can be used for the identification of unknown species (particularly with MS-MS detection) or the confirmation of the actual presence of species in a given sample. Due to the complexity of real samples, it is inevitable in all but the simplest cases to couple atmospheric pressure MS detection to a separation technique. Separation in the liquid phase (capillary electrophoresis or liquid chromatography in reversed phase, ion chromatographic or size-exclusion mode) is particularly suitable since the available techniques cover a very wide range of analyte polarities and molecular mass. Moreover, derivatisation can normally be avoided in liquid-phase separation. Particularly in complex environmental or biological samples, separation in one dimension is not sufficient for obtaining adequate resolution for all relevant species. In this case, multi-dimensional separation, based on orthogonal separation techniques, has proven successful. ESI-MS is also often used in parallel with inductively coupled plasma MS detection. This review is structured in two parts. In the first, the fundamentals of atmospheric pressure ionisation techniques are briefly reviewed. The second part of the review discusses recent applications including redox species, use of ESI-MS for structural elucidation of metal complexes, characterisation and quantification of small organometallic species with relevance to

  8. In situ speciation of uranium in treated acid mine drainage using the diffusion gradients in thin films technique (DGT).

    PubMed

    Pedrobom, Jorge Henrique; Eismann, Carlos Eduardo; Menegário, Amauri A; Galhardi, Juliana Aparecida; Luko, Karen Silva; Dourado, Thiago de Araujo; Kiang, Chang Hung

    2017-02-01

    The exchange membranes P81 and DE81 and Chelex-100 resin were used to perform in situ speciation of uranium in treated acid mine drainage at the Osamu Utsumi mining site, Poços de Caldas city, Southeast Brazil. To investigate possible chemical modifications in the samples during analysis, the three ligands were deployed in situ and in a laboratory (in lab). The results obtained in situ were also compared to a speciation performed using Visual MINTEQ software. Chelex-100 retained total labile U for a period of up to 48 h. The labile U fraction determined by Chelex 100 ranged from 107 ± 6% to 147 ± 44% in situ and from 115 ± 22% to 191 ± 5% in lab. DE81 retained anionic U species up to 8 h, with labile fractions ranging from 37 ± 2% to 76 ± 3% in situ and 34 ± 12% to 180 ± 17% in lab. P81 exhibited a lower efficiency in retaining U species, with concentrations ranging from 6± 2% to 19± 2% in situ and 3± 2% to 18± 2% in lab. The speciation obtained from MINTEQ suggests that the major U species were UO 2 OH + , UO 2 (OH) 3- , UO 2 (OH) 2(aq) , Ca 2 UO 2 (CO 3 ) 3(aq) , CaUO 2 (CO 3 ) 3 2- , UO 2 (CO 3 ) 2 2- , and UO 2 (CO 3 ) 3 4- . This result is in accordance with the results obtained in situ. Differences concerning speciation and the total and soluble U concentrations were observed between the deployments performed in situ and in the laboratory, indicating that U speciation must be performed in situ. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. XANES Identification of Plutonium Speciation in RFETS Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LoPresti, V.; Conradson, S.D.; Clark, D.L.

    2009-06-03

    Using primarily X-ray absorption near edge spectroscopy (XANES) with standards run in tandem with samples, probable plutonium speciation was determined for 13 samples from contaminated soil, acid-splash or fire-deposition building interior surfaces, or asphalt pads from the Rocky Flats Environmental Technology Site (RFETS). Save for extreme oxidizing situations, all other samples were found to be of Pu(IV) speciation, supporting the supposition that such contamination is less likely to show mobility off site. EXAFS analysis conducted on two of the 13 samples supported the validity of the XANES features employed as determinants of the plutonium valence.

  10. Two years of near real-time chemical composition of submicron aerosols in the region of Paris using an Aerosol Chemical Speciation Monitor (ACSM) and a multi-wavelength Aethalometer

    NASA Astrophysics Data System (ADS)

    Petit, J.-E.; Favez, O.; Sciare, J.; Crenn, V.; Sarda-Estève, R.; Bonnaire, N.; Močnik, G.; Dupont, J.-C.; Haeffelin, M.; Leoz-Garziandia, E.

    2015-03-01

    Aerosol mass spectrometer (AMS) measurements have been successfully used towards a better understanding of non-refractory submicron (PM1) aerosol chemical properties based on short-term campaigns. The recently developed Aerosol Chemical Speciation Monitor (ACSM) has been designed to deliver quite similar artifact-free chemical information but for low cost, and to perform robust monitoring over long-term periods. When deployed in parallel with real-time black carbon (BC) measurements, the combined data set allows for a quasi-comprehensive description of the whole PM1 fraction in near real time. Here we present 2-year long ACSM and BC data sets, between mid-2011 and mid-2013, obtained at the French atmospheric SIRTA supersite that is representative of background PM levels of the region of Paris. This large data set shows intense and time-limited (a few hours) pollution events observed during wintertime in the region of Paris, pointing to local carbonaceous emissions (mainly combustion sources). A non-parametric wind regression analysis was performed on this 2-year data set for the major PM1 constituents (organic matter, nitrate, sulfate and source apportioned BC) and ammonia in order to better refine their geographical origins and assess local/regional/advected contributions whose information is mandatory for efficient mitigation strategies. While ammonium sulfate typically shows a clear advected pattern, ammonium nitrate partially displays a similar feature, but, less expectedly, it also exhibits a significant contribution of regional and local emissions. The contribution of regional background organic aerosols (OA) is significant in spring and summer, while a more pronounced local origin is evidenced during wintertime, whose pattern is also observed for BC originating from domestic wood burning. Using time-resolved ACSM and BC information, seasonally differentiated weekly diurnal profiles of these constituents were investigated and helped to identify the main

  11. Kinetics of heavy metal adsorption and desorption in soil: Developing a unified model based on chemical speciation

    NASA Astrophysics Data System (ADS)

    Peng, Lanfang; Liu, Paiyu; Feng, Xionghan; Wang, Zimeng; Cheng, Tao; Liang, Yuzhen; Lin, Zhang; Shi, Zhenqing

    2018-03-01

    Predicting the kinetics of heavy metal adsorption and desorption in soil requires consideration of multiple heterogeneous soil binding sites and variations of reaction chemistry conditions. Although chemical speciation models have been developed for predicting the equilibrium of metal adsorption on soil organic matter (SOM) and important mineral phases (e.g. Fe and Al (hydr)oxides), there is still a lack of modeling tools for predicting the kinetics of metal adsorption and desorption reactions in soil. In this study, we developed a unified model for the kinetics of heavy metal adsorption and desorption in soil based on the equilibrium models WHAM 7 and CD-MUSIC, which specifically consider metal kinetic reactions with multiple binding sites of SOM and soil minerals simultaneously. For each specific binding site, metal adsorption and desorption rate coefficients were constrained by the local equilibrium partition coefficients predicted by WHAM 7 or CD-MUSIC, and, for each metal, the desorption rate coefficients of various binding sites were constrained by their metal binding constants with those sites. The model had only one fitting parameter for each soil binding phase, and all other parameters were derived from WHAM 7 and CD-MUSIC. A stirred-flow method was used to study the kinetics of Cd, Cu, Ni, Pb, and Zn adsorption and desorption in multiple soils under various pH and metal concentrations, and the model successfully reproduced most of the kinetic data. We quantitatively elucidated the significance of different soil components and important soil binding sites during the adsorption and desorption kinetic processes. Our model has provided a theoretical framework to predict metal adsorption and desorption kinetics, which can be further used to predict the dynamic behavior of heavy metals in soil under various natural conditions by coupling other important soil processes.

  12. Chemical speciation and source apportionment of Non-Methane Volatile Organic Compounds (NMVOCs) in a Middle Eastern country

    NASA Astrophysics Data System (ADS)

    Salameh, Therese; Sauvage, Stéphane; Afif, Charbel; Borbon, Agnès; Locoge, Nadine

    2014-05-01

    NMVOCs, emitted from various sources, are of particular interest since they contribute to the formation of tropospheric ozone, PAN and secondary organic aerosols resulting in negative impacts on human health, climate and on the environment. To identify abatement measures, a profound knowledge of emission sources and their composition is a prerequisite. Air pollution in the Middle East region remains difficult to assess and understand because of a lack of ground-based measurements and the limited information on NMVOC chemical speciation and source apportionment. Based on a large database of NMVOC observations obtained in Beirut, the capital of Lebanon (a developing country in the Middle East region, located in Western Asia on the eastern shore of the Mediterranean Sea), the overall objective of this work is to apportion the sources of NMVOCs encountered in Lebanon. First, source profiles were determined with field measurements close to the main potential emitters namely the road transport, gasoline vapour, power generation and solvent uses. The results obtained are compared to other studies held in other regions and are used to assess the emission inventory developed for Lebanon. Secondly, two intensive field campaigns were held in a receptor site in Beirut during summer 2011 and winter 2012 in order to obtain a large time resolved dataset. The PMF analysis of this dataset was applied to apportion anthropogenic sources in this area. In both seasons, combustion (road transport and power generation) and gasoline evaporation, especially in winter, were the main sources contributing to the NMVOCs in Beirut. The results will support model implementation especially by completing the emission inventory established for the year 2010 by Waked et al. 2012 according to the EEA/EMEP guidelines because of the lack of Lebanon-specific emission factor.

  13. Spatial and seasonal patterns in urban influence on regional concentrations of speciated aerosols across the United States

    NASA Astrophysics Data System (ADS)

    Hand, J. L.; Schichtel, B. A.; Malm, W. C.; Pitchford, M.; Frank, N. H.

    2014-11-01

    Monthly, seasonal, and annual mean estimates of urban influence on regional concentrations of major aerosol species were computed using speciated aerosol data from the rural IMPROVE network (Interagency Monitoring of Protected Visual Environments) and the United States Environmental Protection Agency's urban Chemical Speciation Network for the 2008 through 2011 period. Aggregated for sites across the continental United States, the annual mean and one standard error in urban excess (defined as the ratio of urban to nearby rural concentrations) was highest for elemental carbon (3.3 ± 0.2), followed by ammonium nitrate (2.5 ± 0.2), particulate organic matter (1.78 ± 0.08), and ammonium sulfate (1.23 ± 0.03). The seasonal variability in urban excess was significant for carbonaceous aerosols and ammonium nitrate in the West, in contrast to the low seasonal variability in the urban influence of ammonium sulfate. Generally for all species, higher excess values in the West were associated with localized urban sources while in the East excess was more regional in extent. In addition, higher excess values in the western United States in winter were likely influenced not only by differences in sources but also by combined meteorological and topographic effects. This work has implications for understanding the spatial heterogeneity of major aerosol species near the interface of urban and rural regions and therefore for designing appropriate air quality management strategies. In addition, the spatial patterns in speciated mass concentrations provide constraints for regional and global models.

  14. NICKEL SPECIATION OF RESIDUAL OIL ASH

    EPA Science Inventory

    EPA GRANT NUMBER: R827649C002
    Title: Nickel Speciation Of Residual Oil Ash
    Investigators: Kevin C. Galbreath, John Won, Frank E. Huggins, Gerald P. Huffman, Christopher J. Zygarlicke, Donald L. Toman
    Institution: University of North Dakota<...

  15. ARSENIC SPECIATION ANALYSIS IN HUMAN SALIVA

    EPA Science Inventory

    Background: Determination of arsenic species in human saliva is potentially useful for biomonitoring of human exposure to arsenic and for studying arsenic metabolism. However, there is no report on the speciation analysis of arsenic in saliva. Methods: Arsenic species in saliva ...

  16. The importance of ligand speciation in environmental research: a case study.

    PubMed

    Sillanpää, M; Orama, M; Rämö, J; Oikari, A

    2001-02-21

    The speciations of EDTA and DTPA in process, waste and river waters are modelled and simulated, specifically to the mode of occurrence in the pulp and paper mill effluents and subsequently in receiving waters. Due to relatively short residence times in bleaching process and waste water treatment and slow exchange kinetics, it is expected that the thermodynamic equilibrium is not necessarily reached. Therefore, the initial speciation plays a key role. As such, the simulations have been extended to the process waters of the pulp and paper industry taking into account estimated average conditions. The results reveal that the main species are; Mn and Ca complexes of EDTA and DTPA in pulp mill process waters; Fe(III) and Mn complexes of EDTA and DTPA in waste waters; Fe(III) and Zn complexes of EDTA and DTPA in receiving waters. It is also shown how the increasing concentration of complexing agents effects the speciation. Alkaline earth metal chelation plays a significant role in the speciation of EDTA and DTPA when there is a noticeable molar excess of complexing agents compared with transition metals.

  17. 250 years of hybridization between two biennial herb species without speciation.

    PubMed

    Matthews, Andrew; Emelianova, Katie; Hatimy, Abubakar A; Chester, Michael; Pellicer, Jaume; Ahmad, Khawaja Shafique; Guignard, Maité S; Rouhan, Germinal; Soltis, Douglas E; Soltis, Pamela S; Leitch, Ilia J; Leitch, Andrew R; Mavrodiev, Evgeny V; Buggs, Richard J A

    2015-07-17

    Hybridization between plant species can generate novel morphological diversity and lead to speciation at homoploid or polyploid levels. Hybrids between biennial herbs Tragopogon pratensis and T. porrifolius have been studied in experimental and natural populations for over 250 years. Here we examine their current status in natural populations in southeast England. All hybrids found were diploid; they tended to grow taller and with more buds than their parental species; many showed partial fertility; a few showed evidence of backcrossing. However, we found no evidence to suggest that the hybrids are establishing as a new species, nor can we find literature documenting speciation of these hybrids elsewhere. This lack of speciation despite at least 250 years of hybridization contrasts with the fact that both parental species have formed new allopolyploid species through hybridization with another diploid, T. dubius. Understanding why hybrids often do not speciate, despite repeated opportunities, would enhance our understanding of both the evolutionary process and risk assessments of invasive species. Published by Oxford University Press on behalf of the Annals of Botany Company.

  18. Complete genomes of Hairstreak butterflies, their speciation, and nucleo-mitochondrial incongruence

    PubMed Central

    Cong, Qian; Shen, Jinhui; Borek, Dominika; Robbins, Robert K.; Otwinowski, Zbyszek; Grishin, Nick V.

    2016-01-01

    Comparison of complete genomes of closely related species enables research on speciation and how phenotype is determined by genotype. Lepidoptera, an insect order of 150,000 species with diverse phenotypes, is well-suited for such comparative genomics studies if new genomes, which cover additional Lepidoptera families are acquired. We report a 729 Mbp genome assembly of the Calycopis cecrops, the first genome from the family Lycaenidae and the largest available Lepidoptera genome. As detritivore, Calycopis shows expansion in detoxification and digestion enzymes. We further obtained complete genomes of 8 Calycopis specimens: 3 C. cecrops and 5 C. isobeon, including a dry specimen stored in the museum for 30 years. The two species differ subtly in phenotype and cannot be differentiated by mitochondrial DNA. However, nuclear genomes revealed a deep split between them. Genes that can clearly separate the two species (speciation hotspots) mostly pertain to circadian clock, mating behavior, transcription regulation, development and cytoskeleton. The speciation hotspots and their function significantly overlap with those we previously found in Pterourus, suggesting common speciation mechanisms in these butterflies. PMID:27120974

  19. Complete genomes of Hairstreak butterflies, their speciation, and nucleo-mitochondrial incongruence.

    PubMed

    Cong, Qian; Shen, Jinhui; Borek, Dominika; Robbins, Robert K; Otwinowski, Zbyszek; Grishin, Nick V

    2016-04-28

    Comparison of complete genomes of closely related species enables research on speciation and how phenotype is determined by genotype. Lepidoptera, an insect order of 150,000 species with diverse phenotypes, is well-suited for such comparative genomics studies if new genomes, which cover additional Lepidoptera families are acquired. We report a 729 Mbp genome assembly of the Calycopis cecrops, the first genome from the family Lycaenidae and the largest available Lepidoptera genome. As detritivore, Calycopis shows expansion in detoxification and digestion enzymes. We further obtained complete genomes of 8 Calycopis specimens: 3 C. cecrops and 5 C. isobeon, including a dry specimen stored in the museum for 30 years. The two species differ subtly in phenotype and cannot be differentiated by mitochondrial DNA. However, nuclear genomes revealed a deep split between them. Genes that can clearly separate the two species (speciation hotspots) mostly pertain to circadian clock, mating behavior, transcription regulation, development and cytoskeleton. The speciation hotspots and their function significantly overlap with those we previously found in Pterourus, suggesting common speciation mechanisms in these butterflies.

  20. Speciation and Oxidative Stability of Alkaline Soluble, Non-Pertechnetate Technetium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitskaia, Tatiana G.; Rapko, Brian M.; Anderson, Amity

    2014-09-30

    The long half-life, complex chemical behavior in tank waste, limited incorporation in mid- to high-temperature immobilization processes, and high mobility in subsurface environments make technetium (Tc) one of the most difficult contaminants to dispose of and/or remediate. Technetium exists predominantly in the liquid tank waste phase as the relatively mobile form of pertechnetate, TcO 4 -. However, based on experimentation to date a significant fraction of the soluble Tc cannot be effectively separated from the wastes and may be present as a non- pertechnetate species. The presence of a non-pertechnetate species significantly complicates disposition of low-activity waste (LAW), and themore » development of methods to either convert them to pertechnetate or to separate directly is needed. The challenge is the uncertainty regarding the chemical form of the alkaline-soluble low-valent non-pertechnetate species in the liquid tank waste. This report summarizes work done in fiscal year (FY) 2014 exploring the chemistry of a low-valence technetium(I) species, [(CO) 3Tc(H 2O) 3] +, a compound of interest due to its implication in the speciation of alkaline-soluble technetium in several Hanford tank waste supernatants.« less

  1. Phytoextraction of cadmium by Ipomoea aquatica (water spinach) in hydroponic solution: effects of cadmium speciation.

    PubMed

    Wang, Kai-Sung; Huang, Lung-Chiu; Lee, Hong-Shen; Chen, Pai-Ye; Chang, Shih-Hsien

    2008-06-01

    Phytoextraction is a promising technique to remediate heavy metals from contaminated wastewater. However, the interactions of multi-contaminants are not fully clear. This study employed cadmium, Triton X-100 (TX-100), and EDTA to investigate their interactions on phytotoxicity and Cd phytoextraction of Ipomoea aquatica (water spinach) in simulated wastewater. The Cd speciation was estimated by a chemical equilibrium model and MINEQL+. Statistic regression was applied to evaluate Cd speciation on Cd uptake in shoots and stems of I. aquatica. Results indicated that the root length was a more sensitive parameter than root weight and shoot weight. Root elongation was affected by Cd in the Cd-EDTA solution and TX-100 in the Cd-TX-100 solution. Both the root length and the root biomass were negatively correlated with the total soluble Cd ions. In contrast, Cd phytoextraction of I. aquatic was correlated with the aqueous Cd ions in the free and complex forms rather than in the chelating form. Additionally, the high Cd bioconcentration factors of I. aquatica (375-2227 l kg(-1) for roots, 45-144 l kg(-1) for shoots) imply that I. aquatica is a potential aquatic plant to remediate Cd-contaminated wastewater.

  2. Time-dependent changes of zinc speciation in four soils contaminated with zincite or sphalerite.

    PubMed

    Voegelin, Andreas; Jacquat, Olivier; Pfister, Sabina; Barmettler, Kurt; Scheinost, Andreas C; Kretzschmar, Ruben

    2011-01-01

    The long-term speciation of Zn in contaminated soils is strongly influenced by soil pH, clay, and organic matter content as well as Zn loading. In addition, the type of Zn-bearing contaminant entering the soil may influence the subsequent formation of pedogenic Zn species, but systematic studies on such effects are currently lacking. We therefore conducted a soil incubation study in which four soils, ranging from strongly acidic to calcareous, were spiked with 2000 mg/kg Zn using either ZnO (zincite) or ZnS (sphalerite) as the contamination source. The soils were incubated under aerated conditions in moist state for up to four years. The extractability and speciation of Zn were assessed after one, two, and four years using extractions with 0.01 M CaCl(2) and Zn K-edge X-ray absorption fine structure (XAFS) spectroscopy, respectively. After four years, more than 90% of the added ZnO were dissolved in all soils, with the fastest dissolution occurring in the acidic soils. Contamination with ZnO favored the formation of Zn-bearing layered double hydroxides (LDH), even in acidic soils, and to a lesser degree Zn-phyllosilicates and adsorbed Zn species. This was explained by locally elevated pH and high Zn concentrations around dissolving ZnO particles. Except for the calcareous soil, ZnS dissolved more slowly than ZnO, reaching only 26 to 75% of the added ZnS after four years. ZnS dissolved more slowly in the two acidic soils than in the near-neutral and the calcareous soil. Also, the resulting Zn speciation was markedly different between these two pairs of soils: Whereas Zn bound to hydroxy-interlayered clay minerals (HIM) and octahedrally coordinated Zn sorption complexes prevailed in the two acidic soils, Zn speciation in the neutral and the calcareous soil was dominated by Zn-LDH and tetrahedrally coordinated inner-sphere Zn complexes. Our results show that the type of Zn-bearing contaminant phase can have a significant influence on the formation of pedogenic Zn

  3. Speciation of Mg in biogenic calcium carbonates

    NASA Astrophysics Data System (ADS)

    Farges, F.; Meibom, A.; Flank, A.-M.; Lagarde, P.; Janousch, M.; Stolarski, J.

    2009-11-01

    A selection of marine biominerals, mostly aragonitic coral skeletons were probed at the Mg K-edge by XANES spectroscopy coupled to μXRF methods and compared to an extensive set of relevant model compounds (silicates, carbonates, oxides and organic). Extensive methodologies are required to better describe the speciation of Mg in those minerals. A combination of ab-initio XANES calculations for defective clusters around Mg in aragonite together with wavelets analyzes of the XANES region are required to robustly interpret the spectra. When using those methodologies, the speciation of Mg ranges from a magnesite-type environment in some scleractinian corals to an organic-type environment. In all environments, the Mg-domains probed appear to be less than 1 nm in size.

  4. Arsenic speciation and trace element analysis of the volcanic río Agrio and the geothermal waters of Copahue, Argentina.

    PubMed

    Farnfield, Hannah R; Marcilla, Andrea L; Ward, Neil I

    2012-09-01

    Surface water originating from the Copahue volcano crater-lake was analysed for total arsenic and four arsenic species: arsenite (iAs(III)), arsenate (iAs(V)), monomethylarsonic acid (MA(V)) and dimethylarsinic acid (DMA(V)) and other trace elements (Fe, Mn, V, Cr, Ni, Zn). A novel in-field technique for the preconcentration and separation of four arsenic species was, for the first time, used for the analysis of geothermal and volcanic waters. Total arsenic levels along the río Agrio ranged from <0.2-3783 μg/l As(T). The highest arsenic levels were recorded in the el Vertedero spring (3783 μg/l As(T)) on the flank of the Copahue volcano, which feeds the acidic río Agrio. Arsenite (H(3)AsO(3)) predominated along the upper río Agrio (78.9-81.2% iAs(III)) but the species distribution changed at lago Caviahue and arsenate (H(2)AsO(4)(-)) became the main species (51.4-61.4% iAs(V)) up until Salto del Agrio. The change in arsenic species is potentially a result of an increase in redox potential and the formation of iron-based precipitates. Arsenic speciation showed a statistically significant correlation with redox potential (r=0.9697, P=0.01). Both total arsenic and arsenic speciation displayed a statistically significant correlation with vanadium levels along the river (r=0.9961, P=0.01 and r=0.8488, P=0.05, respectively). This study highlights that chemical speciation analysis of volcanic waters is important in providing ideas on potential chemical toxicity. Furthermore there is a need for further work evaluating how arsenic (and other trace elements), released in volcanic and geothermal streams/vents, impacts on both biota and humans (via exposure in thermal pools or consuming commercial drinking water). Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Predicting Metal Speciation & Bioavailability via Estimation of Metal-Organic Thermodynamic Properties

    NASA Astrophysics Data System (ADS)

    Prasad, A.; Howells, A. E.; Shock, E.

    2017-12-01

    The biological fate of any metal depends on its chemical form in the environment. Arsenic for example, is extremely toxic in the form of inorganic As+3 but completely benign in the organic form of arsenobetaine. Thus, given an exhaustive set of reactions and their equilibrium constants (logK), the bioavailability of any metal can be obtained for blood plasma, hydrothermal fluids or any system of interest. While many data exist for metal-inorganic ligands, logK data covering the temperature range of life for metal-organic complexes are sparse. Hence, we decided to estimate metal-organic logK values from correlations with the commonly available values of ligand pKa. Metal ion specific correlations were made with ligands classified according to their electron donor atoms, denticity and other chemical factors. While this approach has been employed before (Carbonaro et al. 2007, GCA 71, 3958-3968), new correlations were developed that provide estimates even when no metal-organic logK is available. In addition, we have used the same methods to make estimates of metal-organic entropy of association (ΔaS), which can provide logK for any temperature of biological relevance. Our current correlations employ logK and ΔaS data from 30 metal ions (like the biologically relevant Fe+3 & Zn+2) and 74 ligands (like formate and ethylenediamine), which can be expanded to estimate the metal-ligand reaction properties for these 30 metal ions with a possibly limitless number of ligands that may belong to our categories of ligands. With the help of such data, copper speciation was obtained for a defined growth medium for methanotrophs employed by Morton et al. (2000, AEM 66, 1730-1733) that agrees with experimental measurements showing that the free metal ion may not be the bioavailable form in all conditions. These results encourage us to keep filling the gaps in metal-organic logK data and continue finding relationships between biological responses (like metal-accumulation ratios

  6. Foliar or root exposures to smelter particles: consequences for lead compartmentalization and speciation in plant leaves.

    PubMed

    Schreck, Eva; Dappe, Vincent; Sarret, Géraldine; Sobanska, Sophie; Nowak, Dorota; Nowak, Jakub; Stefaniak, Elżbieta Anna; Magnin, Valérie; Ranieri, Vincent; Dumat, Camille

    2014-04-01

    In urban areas with high fallout of airborne particles, metal uptake by plants mainly occurs by foliar pathways and can strongly impact crop quality. However, there is a lack of knowledge on metal localization and speciation in plants after pollution exposure, especially in the case of foliar uptake. In this study, two contrasting crops, lettuce (Lactuca sativa L.) and rye-grass (Lolium perenne L.), were exposed to Pb-rich particles emitted by a Pb-recycling factory via either atmospheric or soil application. Pb accumulation in plant leaves was observed for both ways of exposure. The mechanisms involved in Pb uptake were investigated using a combination of microscopic and spectroscopic techniques (electron microscopy, laser ablation, Raman microspectroscopy, and X-ray absorption spectroscopy). The results show that Pb localization and speciation are strongly influenced by the type of exposure (root or shoot pathway) and the plant species. Foliar exposure is the main pathway of uptake, involving the highest concentrations in plant tissues. Under atmospheric fallouts, Pb-rich particles were strongly adsorbed on the leaf surface of both plant species. In lettuce, stomata contained Pb-rich particles in their apertures, with some deformations of guard cells. In addition to PbO and PbSO4, chemical forms that were also observed in pristine particles, new species were identified: organic compounds (minimum 20%) and hexagonal platy crystals of PbCO3. In rye-grass, the changes in Pb speciation were even more egregious: Pb-cell wall and Pb-organic acid complexes were the major species observed. For root exposure, identified here as a minor pathway of Pb transfer compared to foliar uptake, another secondary species, pyromorphite, was identified in rye-grass leaves. Finally, combining bulk and spatially resolved spectroscopic techniques permitted both the overall speciation and the minor but possibly highly reactive lead species to be determined in order to better assess the

  7. Sorption and speciation of selenium in boreal forest soil.

    PubMed

    Söderlund, Mervi; Virkanen, Juhani; Holgersson, Stellan; Lehto, Jukka

    2016-11-01

    Sorption and speciation of selenium in the initial chemical forms of selenite and selenate were investigated in batch experiments on humus and mineral soil samples taken from a 4-m deep boreal forest soil excavator pit on Olkiluoto Island, on the Baltic Sea coast in southwestern Finland. The HPLC-ICP-MS technique was used to monitor any possible transformations in the selenium liquid phase speciation and to determine the concentrations of selenite and selenate in the samples for calculation of the mass distribution coefficient, K d , for both species. Both SeO 3 2- and SeO 4 2- proved to be resistant forms in the prevailing soil conditions and no changes in selenium liquid phase speciation were seen in the sorption experiments in spite of variations in the initial selenium species, incubation time or conditions, pH, temperature or microbial activity. Selenite sorption on the mineral soil increased with time in aerobic conditions whilst the opposite trend was seen for the anaerobic soil samples. Selenite retention correlated with the contents of organic matter and weakly crystalline oxides of aluminum and iron, solution pH and the specific surface area. Selenate exhibited poorer sorption on soil than selenite and on average the K d values were 27-times lower. Mineral soil was more efficient in retaining selenite and selenate than humus, implicating the possible importance of weakly crystalline aluminum and iron oxides for the retention of oxyanions in Olkiluoto soil. Sterilization of the soil samples decreased the retention of selenite, thus implying some involvement of soil microbes in the sorption processes or a change in sample composition, but it produced no effect for selenate. There was no sorption of selenite by quartz, potassium feldspar, hornblende or muscovite. Biotite showed the best retentive properties for selenite in the model soil solution at about pH 8, followed by hematite, plagioclase and chlorite. The K d values for these minerals were 18, 14, 8

  8. Geography, assortative mating, and the effects of sexual selection on speciation with gene flow.

    PubMed

    Servedio, Maria R

    2016-01-01

    Theoretical and empirical research on the evolution of reproductive isolation have both indicated that the effects of sexual selection on speciation with gene flow are quite complex. As part of this special issue on the contributions of women to basic and applied evolutionary biology, I discuss my work on this question in the context of a broader assessment of the patterns of sexual selection that lead to, versus inhibit, the speciation process, as derived from theoretical research. In particular, I focus on how two factors, the geographic context of speciation and the mechanism leading to assortative mating, interact to alter the effect that sexual selection through mate choice has on speciation. I concentrate on two geographic contexts: sympatry and secondary contact between two geographically separated populations that are exchanging migrants and two mechanisms of assortative mating: phenotype matching and separate preferences and traits. I show that both of these factors must be considered for the effects of sexual selection on speciation to be inferred.

  9. In Vitro Model To Assess Arsenic Bioaccessibility and Speciation in Cooked Shrimp.

    PubMed

    Chi, Haifeng; Zhang, Youchi; Williams, Paul N; Lin, Shanna; Hou, Yanwei; Cai, Chao

    2018-05-09

    Shrimp, a popular and readily consumed seafood, contains high concentrations of arsenic. However, few studies have focused on whether arsenic in the shrimp could be transformed during the cooking process and gastrointestinal digestion. In this study, a combined in vitro model [Unified Bioaccessibility Research Group of Europe (BARGE) Method-Simulator of Human Intestinal Microbial Ecosystem (UBM-SHIME)] was used to investigate arsenic bioaccessibility and its speciation in raw and cooked shrimps. The results showed that the cooking practices had little effect on the arsenic content and speciation. Bioaccessibility of arsenic in raw shrimp was at a high level, averaging 76.9 ± 4.28 and 86.7 ± 3.74% in gastric and small intestinal phases, respectively. Arsenic speciation was stable in all of the shrimp digestions, with nontoxic arsenobetaine (AsB) being the dominated speciation. The cooking practice significantly increased the bioaccessibility of arsenate ( p < 0.05) in shrimp digests, indicating the increase of the potential health risks.

  10. Multielemental speciation analysis by advanced hyphenated technique - HPLC/ICP-MS: A review.

    PubMed

    Marcinkowska, Monika; Barałkiewicz, Danuta

    2016-12-01

    Speciation analysis has become an invaluable tool in human health risk assessment, environmental monitoring or food quality control. Another step is to develop reliable multielemental speciation methodologies, to reduce costs, waste and time needed for the analysis. Separation and detection of species of several elements in a single analytical run can be accomplished by high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC/ICP-MS). Our review assembles articles concerning multielemental speciation determination of: As, Se, Cr, Sb, I, Br, Pb, Hg, V, Mo, Te, Tl, Cd and W in environmental, biological, food and clinical samples analyzed with HPLC/ICP-MS. It addresses the procedures in terms of following issues: sample collection and pretreatment, selection of optimal conditions for elements species separation by HPLC and determination using ICP-MS as well as metrological approach. The presented work is the first review article concerning multielemental speciation analysis by advanced hyphenated technique HPLC/ICP-MS. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A Novel Permeable Reactive Barrier (PRB) for Simultaneous and Rapid Removal of Heavy Metal and Organic Matter - A Systematic Chemical Speciation Approach on Sustainable Technique for Pallikarani Marshland Remediation

    NASA Astrophysics Data System (ADS)

    Selvaraj, A.; Nambi, I. M.

    2014-12-01

    In this study, an innovative technique of ZVI mediated 'coupling of Fenton like oxidation of phenol and Cr(VI) reduction technique' was attempted. The hypothesis is that Fe3+ generated from Cr(VI) reduction process acts as electron acceptor and catalyst for Fenton's Phenol oxidation process. The Fe2+ formed from Fenton reactions can be reused for Cr(VI) reduction. Thus iron can be made to recycle between two reactions, changing back and forth between Fe2+ and Fe3+ forms, makes treatment sustainable.(Fig 1) This approach advances current Fenton like oxidation process by (i)single system removal of heavy metal and organic matter (ii)recycling of iron species; hence no additional iron required (iii)more contaminant removal to ZVI ratio (iv)eliminating sludge related issues. Preliminary batch studies were conducted at different modes i) concurrent removal ii) sequential removal. The sequential removal was found better for in-situ PRB applications. PRB was designed based on kinetic rate slope and half-life time, obtained from primary column study. This PRB has two segments (i)ZVI segment[Cr(VI)] (ii)iron species segment[phenol]. This makes treatment sustainable by (i) having no iron ions in outlet stream (ii)meeting hypothesis and elongates the life span of PRB. Sequential removal of contaminates were tested in pilot scale PRB(Fig 2) and its life span was calculated based on the exhaustion of filling material. Aqueous, sand and iron aliquots were collected at various segments of PRB and analyzed for precipitation and chemical speciation thoroughly (UV spectrometer, XRD, FTIR, electron microscope). Chemical speciation profile eliminates the uncertainties over in-situ PRB's long term performance. Based on the pilot scale PRB study, 'field level PRB wall construction' was suggested to remove heavy metal and organic compounds from Pallikaranai marshland(Fig 3)., which is contaminated with leachate coming from nearby Perungudi dumpsite. This research provides (i

  12. How Does Boiling in the Earth's Crust Influence Metal Speciation and Transport?

    NASA Astrophysics Data System (ADS)

    Kam, K.; Lemke, K.

    2014-12-01

    The presence of large quantities of precious metals, such as gold and copper, near the Earth's surface (upper crust) is commonly attributed to transport in aqueous solution and precipitation upon variations in temperature and pressure. As a consequence, gold exploration is closely linked to solution chemistry, i.e. hydrothermal processes involving aqueous fluids with densities of around unity. However, as crustal fluids buoyantly ascend, boiling produces a coexisting low-density aqueous liquid with fundamentally different physical and chemical properties, and a, most importantly, a high affinity for coinage metals (Heinrich et al., Econ Geol., 1992, 87, 1566). From recent experimental studies of Au (Hurtig and Williams-Jones, 2014, Geochim. Cosmochim. Acta,, 127, 304), we know that metal speciation in this low-density phase differs fundamentally from that observed in bulk solution, clearly, with important implications for Au, and metal speciation in general, transport and ore concentrations processes (these processes would also be operable in industrial geothermal plants given the quite special solvent properties of steam). In brief, this study focuses on the speciation of select metal halides in bulk solution as well as in water vapor, and is driven by our need to understand the solvent properties of around 2.0x109 cubic kilometers of free water (or 2,500 times as much water as stored in all lakes and rivers) present in the Earth's crust. The scope of this study has particular applications in the geothermal and oil industries, as both deal with high temperature low-density aqueous fluids. Understanding how metal halide species behave upon boiling can also provide insight into how metals, such as copper and silver, coat turbine equipment and steam piping in geothermal plants, ultimately rendering these components inoperable. This study will also provide preliminary results from mass spectrometric experiments of transition metal halides, and will be augmented with

  13. Selenium speciation in phosphate mine soils and evaluation of a sequential extraction procedure using XAFS.

    PubMed

    Favorito, Jessica E; Luxton, Todd P; Eick, Matthew J; Grossl, Paul R

    2017-10-01

    Selenium is a trace element found in western US soils, where ingestion of Se-accumulating plants has resulted in livestock fatalities. Therefore, a reliable understanding of Se speciation and bioavailability is critical for effective mitigation. Sequential extraction procedures (SEP) are often employed to examine Se phases and speciation in contaminated soils but may be limited by experimental conditions. We examined the validity of a SEP using X-ray absorption spectroscopy (XAS) for both whole and a sequence of extracted soils. The sequence included removal of soluble, PO 4 -extractable, carbonate, amorphous Fe-oxide, crystalline Fe-oxide, organic, and residual Se forms. For whole soils, XANES analyses indicated Se(0) and Se(-II) predominated, with lower amounts of Se(IV) present, related to carbonates and Fe-oxides. Oxidized Se species were more elevated and residual/elemental Se was lower than previous SEP results from ICP-AES suggested. For soils from the SEP sequence, XANES results indicated only partial recovery of carbonate, Fe-oxide and organic Se. This suggests Se was incompletely removed during designated extractions, possibly due to lack of mineral solubilization or reagent specificity. Selenium fractions associated with Fe-oxides were reduced in amount or removed after using hydroxylamine HCl for most soils examined. XANES results indicate partial dissolution of solid-phases may occur during extraction processes. This study demonstrates why precautions should be taken to improve the validity of SEPs. Mineralogical and chemical characterizations should be completed prior to SEP implementation to identify extractable phases or mineral components that may influence extraction effectiveness. Sequential extraction procedures can be appropriately tailored for reliable quantification of speciation in contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Inter-comparison of Speciated Aerosol Loading over India for Global and Regional Emission Inventory using a Chemical Transport Model

    NASA Astrophysics Data System (ADS)

    Upadhyay, Abhishek; Dey, Sagnik; Goyal, Pramila

    2017-04-01

    Air quality of a region directly affects health of entire biotic and abiotic components of ecosystem. Exposure to particulate matter smaller than 2.5 µm (PM2.5) in atmosphere has been directly related to mortality and mobility in various studies. India is one of the aerosol hotspots globally with 0.8 million premature death attributed to exposure to ambient PM2.5. Robust long-term in-situ data of speciated PM2.5 is lacking in India. The problem cannot be resolved by utilizing satellite data as inferring composition is difficult. Therefore a modelling approach is required. We examine spatial and temporal distribution of PM2.5 and its constituent species with a regional and global inventory through chemical transport model (WRF-Chem) over India. The simulation is conducted with RADM2 chemistry and GOCART aerosol module for 8 years (2007-2014). Emissions are interpolated for domain from global anthropogenic emission inventory RETRO and EDGAR for species other than BC, OC and Sulfate. Results from GOCART global inventory are compared with results from a regional inventory for species OC, BC and Sulfate. Validation of CTM simulations against observations (ground based monitoring stations and satellite observations) demonstrates the capability of the CTM to represent space-time variation of aerosols in this region. For example, the build-up of aerosols over the eastern part of the Indo-Gangetic Basin (IGB) during winter (as observed by space-borne sensors) due to the meteorological influence is well captured by the CTM. A correlation of 0.51 and 0.52 has been observed between monitored and model simulated PM2.5 at the two big cities of India, New Delhi and Mumbai respectively. Distribution of PM2.5 is high in the Indo-Gangetic Basin (IGB) and distribution of OC and BC is also more in IGB region with both emission inventories. In the IGB region OC and BC contribute 8 - 20 % and 2.5 - 5 % to total PM2.5. Global and regional emission inventories are showing similar

  15. Sources, spatial variation, and speciation of heavy metals in sediments of the Tamagawa River in Central Japan.

    PubMed

    Shikazono, N; Tatewaki, K; Mohiuddin, K M; Nakano, T; Zakir, H M

    2012-01-01

    Sediments of the Tamagawa River in central Japan were studied to explain the spatial variation, to identify the sources of heavy metals, and to evaluate the anthropogenic influence on these pollutants in the river. Sediment samples were collected from 20 sites along the river (five upstream, four midstream, and 11 downstream). Heavy metal concentrations, viz. chromium, nickel, copper, zinc, lead, cadmium, and molybdenum, in the samples were measured using inductively coupled plasma-mass spectroscopy. The chemical speciations of heavy metals in the sediments were identified by the widely used five-step Hall method. Lead isotopes were analyzed to identify what portion is contributed by anthropogenic sources. The total heavy metal concentrations were compared with global averages for continental crust (shale) and average values for Japanese river sediments. The mean heavy metal concentrations were higher in downstream sediments than in upstream and midstream samples, and the concentrations in the silt samples were higher than those in the sand samples. Speciation results demonstrate that, for chromium and nickel, the residual fractions were dominant. These findings imply that the influence of anthropogenic chromium and nickel contamination is negligible, while copper, zinc, and lead were mostly extracted in the non-residual fraction (metals in adsorbed/exchangeable/carbonate forms or bound to amorphous Fe oxyhydroxides, crystalline Fe oxides, or organic matter), indicating that these elements have high chemical mobility. The proportion of lead (Pb) isotopes in the downstream silt samples indicates that Pb accumulation is primarily derived from anthropogenic sources.

  16. Tellurium Distribution and Speciation in Contaminated Soils from Abandoned Mine Tailings: Comparison with Selenium.

    PubMed

    Qin, Hai-Bo; Takeichi, Yasuo; Nitani, Hiroaki; Terada, Yasuko; Takahashi, Yoshio

    2017-06-06

    The distribution and chemical species of tellurium (Te) in contaminated soil were determined by a combination of microfocused X-ray fluorescence (μ-XRF), X-ray diffraction (μ-XRD), and X-ray absorption fine structure (μ-XAFS) techniques. Results showed that Te was present as a mixture of Te(VI) and Te(IV) species, while selenium (Se) was predominantly present in the form of Se(IV) in the soil contaminated by abandoned mine tailings. In the contaminated soil, Fe(III) hydroxides were the host phases for Se(IV), Te(IV), and Te(VI), but Te(IV) could be also retained by illite. The difference in speciation and solubility of Se and Te in soil can result from different structures of surface complexes for Se and Te onto Fe(III) hydroxides. Furthermore, our results suggest that the retention of Te(IV) in soil could be relatively weaker than that of Te(VI) due to structural incorporation of Te(VI) into Fe(III) hydroxides. These findings are of geochemical and environmental significance for better understanding the solubility, mobility, and bioavailability of Te in the surface environment. To the best of our knowledge, this is the first study reporting the speciation and host phases of Te in field soil by the μ-XRF-XRD-XAFS techniques.

  17. Changes in zinc speciation with mine tailings acidification in a semi-arid weathering environment

    PubMed Central

    Hayes, Sarah M.; O’Day, Peggy A.; Webb, Sam M.; Maier, Raina M.; Chorover, Jon

    2011-01-01

    High concentrations of residual metal contaminants in mine tailings can be transported easily by wind and water, particularly when tailings remain unvegetated for decades following mining cessation, as is the case in semi-arid landscapes. Understanding the speciation and mobility of contaminant metal(loid)s, particularly in surficial tailings, is essential to controlling their phytotoxicities and to revegetating impacted sites. In prior work, we showed that surficial tailings samples from the Klondyke State Superfund Site (AZ, USA), ranging in pH from 5.4 to 2.6, represent a weathering series, with acidification resulting from sulfide mineral oxidation, long-term Fe hydrolysis, and a concurrent decrease in total (6,000 to 450 mg kg−1) and plant-available (590 to 75 mg kg−1) Zn due to leaching losses and changes in Zn speciation. Here, we used bulk and micro-focused Zn K-edge X-ray absorption spectroscopy (XAS) data and a six-step sequential extraction procedure to determine tailings solid phase Zn speciation. Bulk sample spectra were fit by linear combination using three references: Zn-rich phyllosilicate (Zn0.8talc), Zn sorbed to ferrihydrite (ZnadsFeOx), and zinc sulfate (ZnSO4·7H2O). Analyses indicate that Zn sorbed in tetrahedral coordination to poorly-crystalline Fe and Mn (oxyhydr)oxides decreases with acidification in the weathering sequence, whereas octahedral zinc in sulfate minerals and crystalline Fe oxides undergoes a relative accumulation. Micro-scale analyses identified hetaerolite (ZnMn2O4), hemimorphite (Zn4Si2O7(OH)2·H2O) and sphalerite (ZnS) as minor phases. Bulk and micro-focused spectroscopy complement the chemical extraction results and highlight the importance of using a multi-method approach to interrogate complex tailings systems. PMID:21761897

  18. SOURCE APPORTIONMENT OF PM 2.5 AND CARBON IN SEATTLE USING CHEMICAL MASS BALANCE AND POSITIVE MATRIX FACTORIZATION

    EPA Science Inventory

    Three years of PM2.5 speciated data were collected and chemically analyzed using the IMPROVE protocol at the Beacon Hill site in Seattle. The data were analyzed by the Chemical Mass Balance Version 8 (CMB8) and Positive Matrix Factorization (PMF) source apportionment models. T...

  19. Assessing when chromosomal rearrangements affect the dynamics of speciation: implications from computer simulations

    PubMed Central

    Feder, Jeffrey L.; Nosil, Patrik; Flaxman, Samuel M.

    2014-01-01

    Many hypotheses have been put forth to explain the origin and spread of inversions, and their significance for speciation. Several recent genic models have proposed that inversions promote speciation with gene flow due to the adaptive significance of the genes contained within them and because of the effects inversions have on suppressing recombination. However, the consequences of inversions for the dynamics of genome wide divergence across the speciation continuum remain unclear, an issue we examine here. We review a framework for the genomics of speciation involving the congealing of the genome into alternate adaptive states representing species (“genome wide congealing”). We then place inversions in this context as examples of how genetic hitchhiking can potentially hasten genome wide congealing. Specifically, we use simulation models to (i) examine the conditions under which inversions may speed genome congealing and (ii) quantify predicted magnitudes of these effects. Effects of inversions on promoting speciation were most common and pronounced when inversions were initially fixed between populations before secondary contact and adaptation involved many genes with small fitness effects. Further work is required on the role of underdominance and epistasis between a few loci of major effect within inversions. The results highlight five important aspects of the roles of inversions in speciation: (i) the geographic context of the origins and spread of inversions, (ii) the conditions under which inversions can facilitate divergence, (iii) the magnitude of that facilitation, (iv) the extent to which the buildup of divergence is likely to be biased within vs. outside of inversions, and (v) the dynamics of the appearance and disappearance of exceptional divergence within inversions. We conclude by discussing the empirical challenges in showing that inversions play a central role in facilitating speciation with gene flow. PMID:25206365

  20. Chromosomal Speciation in the Genomics Era: Disentangling Phylogenetic Evolution of Rock-wallabies.

    PubMed

    Potter, Sally; Bragg, Jason G; Blom, Mozes P K; Deakin, Janine E; Kirkpatrick, Mark; Eldridge, Mark D B; Moritz, Craig

    2017-01-01

    The association of chromosome rearrangements (CRs) with speciation is well established, and there is a long history of theory and evidence relating to "chromosomal speciation." Genomic sequencing has the potential to provide new insights into how reorganization of genome structure promotes divergence, and in model systems has demonstrated reduced gene flow in rearranged segments. However, there are limits to what we can understand from a small number of model systems, which each only tell us about one episode of chromosomal speciation. Progressing from patterns of association between chromosome (and genic) change, to understanding processes of speciation requires both comparative studies across diverse systems and integration of genome-scale sequence comparisons with other lines of evidence. Here, we showcase a promising example of chromosomal speciation in a non-model organism, the endemic Australian marsupial genus Petrogale . We present initial phylogenetic results from exon-capture that resolve a history of divergence associated with extensive and repeated CRs. Yet it remains challenging to disentangle gene tree heterogeneity caused by recent divergence and gene flow in this and other such recent radiations. We outline a way forward for better integration of comparative genomic sequence data with evidence from molecular cytogenetics, and analyses of shifts in the recombination landscape and potential disruption of meiotic segregation and epigenetic programming. In all likelihood, CRs impact multiple cellular processes and these effects need to be considered together, along with effects of genic divergence. Understanding the effects of CRs together with genic divergence will require development of more integrative theory and inference methods. Together, new data and analysis tools will combine to shed light on long standing questions of how chromosome and genic divergence promote speciation.

  1. Selected heavy metals speciation in chemically stabilised sewage sludge

    NASA Astrophysics Data System (ADS)

    Wiśniowska, Ewa; Włodarczyk-Makuła, Marła

    2017-11-01

    Selected heavy metals (Pb, Ni, Cd) were analysed in soil, digested sewage sludge as well as in the sludge stabilised with CaO or Fenton's reagent. The dose of Fenton's reagent was as follows: Fe2+ = 1g.L-1, Fe2+/H2O2=1:100; stabilisation lasted for 2 h. Dose of CaO was equal to 1 g CaO.g d.m.-1 Total concentration of all metals in the digested sewage sludge was higher than in the soil. Chemical stabilisation of sludge with Fenton's reagent increased total metal content in the sludge as a result of total solids removal. Opposite effect was stated when the sludge was mixed with CaO. Also chemical fractions of heavy metals were identified (exchangeable, carbonate bound, iron oxides bound, organic and residual). The results indicate that stabilisation of the sludge with Fenton's reagent increased mobility of heavy metals compared to the digested sludge. Amendment of CaO increased percent share of examined metals in residual fraction, thus immobilised them and decreased their bioavailability.

  2. SPECIATE Version 4.5 Database Development Documentation

    EPA Science Inventory

    This product updated SPECIATE 4.4 with new emission profiles to address high priority Agency data gaps and to included new, more accurate emission profiles generated by research underway within and outside the Agency.

  3. Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms

    NASA Astrophysics Data System (ADS)

    Li, M.; Zhang, Q.; Streets, D. G.; He, K. B.; Cheng, Y. F.; Emmons, L. K.; Huo, H.; Kang, S. C.; Lu, Z.; Shao, M.; Su, H.; Yu, X.; Zhang, Y.

    2013-12-01

    An accurate speciation mapping of non-methane volatile organic compounds (NMVOC) emissions has an important impact on the performance of chemical transport models (CTMs) in simulating ozone mixing ratios and secondary organic aerosols. In this work, we developed an improved speciation framework to generate model-ready anthropogenic Asian NMVOC emissions for various gas-phase chemical mechanisms commonly used in CTMs by using an explicit assignment approach and updated NMVOC profiles, based on the total NMVOC emissions in the INTEX-B Asian inventory for the year 2006. NMVOC profiles were selected and aggregated from a wide range of new measurements and the SPECIATE database. To reduce potential uncertainty from individual measurements, composite profiles were developed by grouping and averaging source profiles from the same category. The fractions of oxygenated volatile organic compounds (OVOC) were corrected during the compositing process for those profiles which used improper sampling and analyzing methods. Emissions of individual species were then lumped into species in different chemical mechanisms used in CTMs by applying mechanism-dependent species mapping tables, which overcomes the weakness of inaccurate mapping in previous studies. Gridded emissions for eight chemical mechanisms are developed at 30 min × 30 min resolution using various spatial proxies and are provided through the website: http://mic.greenresource.cn/intex-b2006. Emission estimates for individual NMVOC species differ between one and three orders of magnitude for some species when different sets of profiles are used, indicating that source profile is the most important source of uncertainties of individual species emissions. However, those differences are diminished in lumped species as a result of the lumping in the chemical mechanisms.

  4. Cold Temperature Effects on Speciated VOC Emissions from modern GDI Light Duty Truck

    EPA Science Inventory

    Although gasoline direct injection (GDI) vehicles represent nearly half of the light-duty vehicle market share, few studies have reported speciated volatile organic compounds (VOCs) in GDI vehicle exhaust emissions. In this study, speciated VOC emissions were characterized from t...

  5. SPECIATION OF ORGANICS IN WATER WITH RAMAN SPECTROSCOPY: UTILITY OF IONIC STRENGTH VARIATION

    EPA Science Inventory

    We have developed and are applying an experimental and mathematical method for describing the micro-speciation of complex organic contaminants in aqueous media. For our case, micro-speciation can be defined as qualitative and quantitative identification of all discrete forms of ...

  6. Molecular evolutionary rates predict both extinction and speciation in temperate angiosperm lineages

    PubMed Central

    2010-01-01

    Background A positive relationship between diversification (i.e., speciation) and nucleotide substitution rates is commonly reported for angiosperm clades. However, the underlying cause of this relationship is often unknown because multiple intrinsic and extrinsic factors can affect the relationship, and these have confounded previous attempts infer causation. Determining which factor drives this oft-reported correlation can lend insight into the macroevolutionary process. Results Using a new database of 13 time-calibrated angiosperm phylogenies based on internal transcribed spacer (ITS) sequences, and controlling for extrinsic variables of life history and habitat, I evaluated several potential intrinsic causes of this correlation. Speciation rates (λ) and relative extinction rates (ε) were positively correlated with mean substitution rates, but were uncorrelated with substitution rate heterogeneity. It is unlikely that the positive diversification-substitution correlation is due to accelerated molecular evolution during speciation (e.g., via enhanced selection or drift), because punctuated increases in ITS rate (i.e., greater mean and variation in ITS rate for rapidly speciating clades) were not observed. Instead, fast molecular evolution likely increases speciation rate (via increased mutational variation as a substrate for selection and reproductive isolation) but also increases extinction (via mutational genetic load). Conclusions In general, these results predict that clades with higher background substitution rates may undergo successful diversification under new conditions while clades with lower substitution rates may experience decreased extinction during environmental stasis. PMID:20515493

  7. Effect of Ocean Acidification on Organic and Inorganic Speciation of Trace Metals.

    PubMed

    Stockdale, Anthony; Tipping, Edward; Lofts, Stephen; Mortimer, Robert J G

    2016-02-16

    Rising concentrations of atmospheric carbon dioxide are causing acidification of the oceans. This results in changes to the concentrations of key chemical species such as hydroxide, carbonate and bicarbonate ions. These changes will affect the distribution of different forms of trace metals. Using IPCC data for pCO2 and pH under four future emissions scenarios (to the year 2100) we use a chemical speciation model to predict changes in the distribution of organic and inorganic forms of trace metals. Under a scenario where emissions peak after the year 2100, predicted free ion Al, Fe, Cu, and Pb concentrations increase by factors of up to approximately 21, 2.4, 1.5, and 2.0 respectively. Concentrations of organically complexed metal typically have a lower sensitivity to ocean acidification induced changes. Concentrations of organically complexed Mn, Cu, Zn, and Cd fall by up to 10%, while those of organically complexed Fe, Co, and Ni rise by up to 14%. Although modest, these changes may have significance for the biological availability of metals given the close adaptation of marine microorganisms to their environment.

  8. Speciation analysis of aluminium in plant parts of Betula pendula and in soil.

    PubMed

    Zioła-Frankowska, Anetta; Frankowski, Marcin

    2018-03-01

    The research presents the first results of aluminium speciation analysis in aqueous extracts of individual plant parts of Betula pendula and soil samples, using High Performance Ion Chromatography with Diode Array Detection (HPIC-DAD). The applied method allowed us to carry out a full speciation analysis of aluminium in the form of predominant aluminium-fluoride complexes: AlF (x=2,3,4) (3-x) (first analytical signal), AlF 2+ (second analytical signal) and Al 3+ (third analytical signal) in samples of lateral roots, tap roots, twigs, stem, leaf and soil collected under roots of B. pendula. Concentrations of aluminium and its complexes were determined for two types of environment characterised by different degree of human impact: contaminated site of the Chemical Plant in Luboń and protected area of the Wielkopolski National Park. For all the analysed samples of B. pendula and soil, AlF (x=2,3,4) (3-x) had the largest contribution, followed by Al 3+ and AlF 2+ . Significant differences in concentration and contribution of Al-F complexes and Al 3+ form, depending on the place of sampling (different anthropogenic pressure) and plant part of B. pendula were observed. Based on the obtained results, it was found that transport of aluminium is "blocked" by lateral roots, and is closely related to Al content of soil. Copyright © 2017. Published by Elsevier B.V.

  9. New mitochondrial DNA data affirm the importance of Pleistocene speciation in North American birds.

    PubMed

    Johnson, Ned K; Cicero, Carla

    2004-05-01

    The timing of origin of modern North American bird species in relation to Pleistocene glaciations has long been the topic of significant discussion and disagreement. Recently, Klicka and Zink (1997) and Avise and Walker (1998) enlivened this debate by using calibrated molecular distance values to estimate timing of speciations. Here we use new molecular studies to test their conclusions. Molecular distance values for 39 pairs of proven sister species, 27 of which are based on new data, alter the currently perceived pattern that avian species splits occurred mainly in the Pliocene and early-mid-Pleistocene. Mitochondrial DNA divergence values for this set of taxa showed a skewed distribution pointing toward relatively young speciation times, in contrast to the pattern presented by Klicka and Zink (1997) for 35 sister plus non-sister species pairs. Our pattern was not significantly different from that of Avise and Walker (1998) for "intraspecific phylogroups," some of which are species. We conclude that the entire Pleistocene, including the last two glacial cycles (<250,000 years ago), was important in speciations of modern North American birds. A substantial number of speciations were both initiated and completed in the last 250,000 years. Simultaneously, many taxa began to diverge in the Pleistocene but their speciations are not yet complete (per Avise and Walker 1998). The suggestion that durations of speciations average two million years is probably a substantial overestimate.

  10. Detecting Hidden Diversification Shifts in Models of Trait-Dependent Speciation and Extinction.

    PubMed

    Beaulieu, Jeremy M; O'Meara, Brian C

    2016-07-01

    The distribution of diversity can vary considerably from clade to clade. Attempts to understand these patterns often employ state-dependent speciation and extinction models to determine whether the evolution of a particular novel trait has increased speciation rates and/or decreased extinction rates. It is still unclear, however, whether these models are uncovering important drivers of diversification, or whether they are simply pointing to more complex patterns involving many unmeasured and co-distributed factors. Here we describe an extension to the popular state-dependent speciation and extinction models that specifically accounts for the presence of unmeasured factors that could impact diversification rates estimated for the states of any observed trait, addressing at least one major criticism of BiSSE (Binary State Speciation and Extinction) methods. Specifically, our model, which we refer to as HiSSE (Hidden State Speciation and Extinction), assumes that related to each observed state in the model are "hidden" states that exhibit potentially distinct diversification dynamics and transition rates than the observed states in isolation. We also demonstrate how our model can be used as character-independent diversification models that allow for a complex diversification process that is independent of the evolution of a character. Under rigorous simulation tests and when applied to empirical data, we find that HiSSE performs reasonably well, and can at least detect net diversification rate differences between observed and hidden states and detect when diversification rate differences do not correlate with the observed states. We discuss the remaining issues with state-dependent speciation and extinction models in general, and the important ways in which HiSSE provides a more nuanced understanding of trait-dependent diversification. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved

  11. Parapatric speciation in three islands: dynamics of geographical configuration of allele sharing

    PubMed Central

    Iwasa, Yoh

    2017-01-01

    We studied the time to speciation by geographical isolation for a species living on three islands connected by rare migration. We assumed that incompatibility was controlled by a number of quantitative loci and that individuals differing in loci by more than a threshold did not mix genetically with each other. For each locus, we defined the geographical configuration (GC), which specifies islands with common alleles, and traced the stochastic transitions between different GCs. From these results, we calculated the changes in genetic distances. As a single migration event provides an opportunity for transitions in multiple loci, the GCs of different loci are correlated, which can be evaluated by constructing the stochastic differential equations of the number of loci with different GCs. Our model showed that the low number of incompatibility loci facilitates parapatric speciation and that migrants arriving as a group shorten the waiting time to speciation compared with the same number of migrants arriving individually. We also discuss how speciation rate changes with geographical structure. PMID:28386439

  12. Speciation through the lens of biomechanics: locomotion, prey capture and reproductive isolation

    PubMed Central

    Rogers, Sean M.; Langerhans, R. Brian; Jamniczky, Heather A.; Lauder, George V.; Stewart, William J.; Martin, Christopher H.; Reznick, David N.

    2016-01-01

    Speciation is a multifaceted process that involves numerous aspects of the biological sciences and occurs for multiple reasons. Ecology plays a major role, including both abiotic and biotic factors. Whether populations experience similar or divergent ecological environments, they often adapt to local conditions through divergence in biomechanical traits. We investigate the role of biomechanics in speciation using fish predator–prey interactions, a primary driver of fitness for both predators and prey. We highlight specific groups of fishes, or specific species, that have been particularly valuable for understanding these dynamic interactions and offer the best opportunities for future studies that link genetic architecture to biomechanics and reproductive isolation (RI). In addition to emphasizing the key biomechanical techniques that will be instrumental, we also propose that the movement towards linking biomechanics and speciation will include (i) establishing the genetic basis of biomechanical traits, (ii) testing whether similar and divergent selection lead to biomechanical divergence, and (iii) testing whether/how biomechanical traits affect RI. Future investigations that examine speciation through the lens of biomechanics will propel our understanding of this key process. PMID:27629033

  13. REE speciation in low-temperature acidic waters and the competitive effects of aluminum

    USGS Publications Warehouse

    Gimeno, Serrano M.J.; Auque, Sanz L.F.; Nordstrom, D. Kirk

    2000-01-01

    The effect of simultaneous competitive speciation of dissolved rare earth elements (REEs) in acidic waters (pH 3.3 to 5.2) has been evaluated by applying the PHREEQE code to the speciation of water analyses from Spain, Brazil, USA, and Canada. The main ions that might affect REE are Al3+, F-, SO42-, and PO43-. Fluoride, normally a significant complexer of REEs, is strongly associated with Al3+ in acid waters and consequently has little influence on REEs. The inclusion of aluminum concentrations in speciation calculations for acidic waters is essential for reliable speciation of REEs. Phosphate concentrations are too low (10-4 to 10-7 m) to affect REE speciation. Consequently, SO42- is the only important complexing ligand for REEs under these conditions. According to Millero [Millero, F.J., 1992. Stability constants for the formation of rare earth inorganic complexes as a function of ionic strength. Geochim. Cosmochim. Acta, 56, 3123-3132], the lanthanide sulfate stability constants are nearly constant with increasing atomic number so that no REE fractionation would be anticipated from aqueous complexation in acidic waters. Hence, REE enrichments or depletions must arise from mass transfer reactions. (C) 2000 Elsevier Science B.V. All rights reserved.

  14. Early events in speciation: Cryptic species of Drosophila aldrichi.

    PubMed

    Castro Vargas, Cynthia; Richmond, Maxi Polihronakis; Ramirez Loustalot Laclette, Mariana; Markow, Therese Ann

    2017-06-01

    Understanding the earliest events in speciation remains a major challenge in evolutionary biology. Thus identifying species whose populations are beginning to diverge can provide useful systems to study the process of speciation. Drosophila aldrichi , a cactophilic fruit fly species with a broad distribution in North America, has long been assumed to be a single species owing to its morphological uniformity. While previous reports either of genetic divergence or reproductive isolation among different D. aldrichi strains have hinted at the existence of cryptic species, the evolutionary relationships of this species across its range have not been thoroughly investigated. Here we show that D. aldrichi actually is paraphyletic with respect to its closest relative, Drosophila wheeleri , and that divergent D. aldrichi lineages show complete hybrid male sterility when crossed. Our data support the interpretation that there are at least two species of D. aldrichi, making these flies particularly attractive for studies of speciation in an ecological and geographical context.

  15. Computer simulations of sympatric speciation in a simple food web

    NASA Astrophysics Data System (ADS)

    Luz-Burgoa, K.; Dell, Tony; de Oliveira, S. Moss

    2005-07-01

    Galapagos finches, have motivated much theoretical research aimed at understanding the processes associated with the formation of the species. Inspired by them, in this paper we investigate the process of sympatric speciation in a simple food web model. For that we modify the individual-based Penna model that has been widely used to study aging as well as other evolutionary processes. Initially, our web consists of a primary food source and a single herbivore species that feeds on this resource. Subsequently we introduce a predator that feeds on the herbivore. In both instances we manipulate directly a basal resource distribution and monitor the changes in the populations. Sympatric speciation is obtained for the top species in both cases, and our results suggest that the speciation velocity depends on how far up, in the food chain, the focus population is feeding. Simulations are done with three different sexual imprintinglike mechanisms, in order to discuss adaptation by natural selection.

  16. A test of the chromosomal theory of ecotypic speciation in Anopheles gambiae

    PubMed Central

    Manoukis, Nicholas C.; Powell, Jeffrey R.; Touré, Mahamoudou B.; Sacko, Adama; Edillo, Frances E.; Coulibaly, Mamadou B.; Traoré, Sekou F.; Taylor, Charles E.; Besansky, Nora J.

    2008-01-01

    The role of chromosomal inversions in speciation has long been of interest to evolutionists. Recent quantitative modeling has stimulated reconsideration of previous conceptual models for chromosomal speciation. Anopheles gambiae, the most important vector of human malaria, carries abundant chromosomal inversion polymorphism nonrandomly associated with ecotypes that mate assortatively. Here, we consider the potential role of paracentric inversions in promoting speciation in A. gambiae via “ecotypification,” a term that refers to differentiation arising from local adaptation. In particular, we focus on the Bamako form, an ecotype characterized by low inversion polymorphism and fixation of an inversion, 2Rj, that is very rare or absent in all other forms of A. gambiae. The Bamako form has a restricted distribution by the upper Niger River and its tributaries that is associated with a distinctive type of larval habitat, laterite rock pools, hypothesized to be its optimal breeding site. We first present computer simulations to investigate whether the population dynamics of A. gambiae are consistent with chromosomal speciation by ecotypification. The models are parameterized using field observations on the various forms of A. gambiae that exist in Mali, West Africa. We then report on the distribution of larvae of this species collected from rock pools and more characteristic breeding sites nearby. Both the simulations and field observations support the thesis that speciation by ecotypification is occurring, or has occurred, prompting consideration of Bamako as an independent species. PMID:18287019

  17. Genomic islands of divergence are not affected by geography of speciation in sunflowers.

    PubMed

    Renaut, S; Grassa, C J; Yeaman, S; Moyers, B T; Lai, Z; Kane, N C; Bowers, J E; Burke, J M; Rieseberg, L H

    2013-01-01

    Genomic studies of speciation often report the presence of highly differentiated genomic regions interspersed within a milieu of weakly diverged loci. The formation of these speciation islands is generally attributed to reduced inter-population gene flow near loci under divergent selection, but few studies have critically evaluated this hypothesis. Here, we report on transcriptome scans among four recently diverged pairs of sunflower (Helianthus) species that vary in the geographical context of speciation. We find that genetic divergence is lower in sympatric and parapatric comparisons, consistent with a role for gene flow in eroding neutral differences. However, genomic islands of divergence are numerous and small in all comparisons, and contrary to expectations, island number and size are not significantly affected by levels of interspecific gene flow. Rather, island formation is strongly associated with reduced recombination rates. Overall, our results indicate that the functional architecture of genomes plays a larger role in shaping genomic divergence than does the geography of speciation.

  18. Speciation and quantification of vapor phases in soy biodiesel and waste cooking oil biodiesel.

    PubMed

    Peng, Chiung-Yu; Lan, Cheng-Hang; Dai, Yu-Tung

    2006-12-01

    This study characterizes the compositions of two biodiesel vapors, soy biodiesel and waste cooking oil biodiesel, to provide a comprehensive understanding of biodiesels. Vapor phases were sampled by purging oil vapors through thermal desorption tubes which were then analyzed by the thermal desorption/GC/MS system. The results show that the compounds of biodiesel vapors can be divided into four groups. They include methyl esters (the main biodiesel components), oxygenated chemicals, alkanes and alkenes, and aromatics. The first two chemical groups are only found in biodiesel vapors, not in the diesel vapor emissions. The percentages of mean concentrations for methyl esters, oxygenated chemicals, alkanes and alkenes, and aromatics are 66.1%, 22.8%, 4.8% and 6.4%, respectively for soy biodiesel, and 35.8%, 35.9%, 27.9% and 0.3%, respectively for waste cooking oil biodiesel at a temperature of 25+/-2 degrees C. These results show that biodiesels have fewer chemicals and lower concentrations in vapor phase than petroleum diesel, and the total emission rates are between one-sixteenth and one-sixth of that of diesel emission, corresponding to fuel evaporative emissions of loading losses of between 106 microg l(-1) and 283 microg l(-1). Although diesels generate more vapor phase emissions, biodiesels still generate considerable amount of vapor emissions, particularly the emissions from methyl esters and oxygenated chemicals. These two chemical groups are more reactive than alkanes and aromatics. Therefore, speciation and quantification of biodiesel vapor phases are important.

  19. Iron solubility driven by speciation in dust sources to the ocean

    USGS Publications Warehouse

    Schroth, A.W.; Crusius, John; Sholkovitz, E.R.; Bostick, B.C.

    2009-01-01

    Although abundant in the Earths crust, iron is present at trace concentrations in sea water and is a limiting nutrient for phytoplankton in approximately 40% of the ocean. Current literature suggests that aerosols are the primary external source of iron to offshore waters, yet controls on iron aerosol solubility remain unclear. Here we demonstrate that iron speciation (oxidation state and bonding environment) drives iron solubility in arid region soils, glacial weathering products (flour) and oil combustion products (oil fly ash). Iron speciation varies by aerosol source, with soils in arid regions dominated by ferric (oxy)hydroxides, glacial flour by primary and secondary ferrous silicates and oil fly ash by ferric sulphate salts. Variation in iron speciation produces systematic differences in iron solubility: less than 1% of the iron in arid soils was soluble, compared with 2-3% in glacial products and 77-81% in oil combustion products, which is directly linked to fractions of more soluble phases. We conclude that spatial and temporal variations in aerosol iron speciation, driven by the distribution of deserts, glaciers and fossil-fuel combustion, could have a pronounced effect on aerosol iron solubility and therefore on biological productivity and the carbon cycle in the ocean. ?? 2009 Macmillan Publishers Limited.

  20. CORRELATING METAL SPECIATION IN SOILS TO RISK

    EPA Science Inventory

    Understanding bioavailability of metals from exposure to contaminated soils is a challenging aspect of environmental research. This presentation will examine three areas of research with respect to metal speciation in soils as it relates to bioavailability: 1) Pb immobilization a...

  1. Demonstrated Potential of Ion Mobility Spectrometry for Detection of Adulterated Perfumes and Plant Speciation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Jared Matthew; Daum, Keith Alvin; Kalival, J. H.

    2003-01-01

    This initial study evaluates the use of ion mobility spectrometry (IMS) as a rapid test procedure for potential detection of adulterated perfumes and speciation of plant life. Sample types measured consist of five genuine perfumes, two species of sagebrush, and four species of flowers. Each sample type is treated as a separate classification problem. It is shown that discrimination using principal component analysis with K-nearest neighbors can distinguish one class from another. Discriminatory models generated using principal component regressions are not as effective. Results from this examination are encouraging and represent an initial phase demonstrating that perfumes and plants possessmore » characteristic chemical signatures that can be used for reliable identification.« less

  2. Biosensor for metal analysis and speciation

    DOEpatents

    Aiken, Abigail M.; Peyton, Brent M.; Apel, William A.; Petersen, James N.

    2007-01-30

    A biosensor for metal analysis and speciation is disclosed. The biosensor comprises an electron carrier immobilized to a surface of an electrode and a layer of an immobilized enzyme adjacent to the electrode. The immobilized enzyme comprises an enzyme having biological activity inhibited by a metal to be detected by the biosensor.

  3. Geological and climatic forces driving speciation in the continentally distributed trilling chorus frogs (Pseudacris).

    PubMed

    Lemmon, Emily Moriarty; Lemmon, Alan R; Cannatella, David C

    2007-09-01

    Tertiary geological events and Quaternary climatic fluctuations have been proposed as important factors of speciation in the North American flora and fauna. Few studies, however, have rigorously tested hypotheses regarding the specific factors driving divergence of taxa. Here, we test explicit speciation hypotheses by correlating geologic events with divergence times among species in the continentally distributed trilling chorus frogs (Pseudacris). In particular, we ask whether marine inundation of the Mississippi Embayment, uplift of the Appalachian Mountains, or modification of the ancient Teays-Mahomet River system contributed to speciation. To examine the plausibility of ancient rivers causing divergence, we tested whether modern river systems inhibit gene flow. Additionally, we compared the effects of Quaternary climatic factors (glaciation and aridification) on levels of genetic variation. Divergence time estimates using penalized likelihood and coalescent approaches indicate that the major lineages of chorus frogs diversified during the Tertiary, and also exclude Quaternary climate change as a factor in speciation of chorus frogs. We show the first evidence that inundation of the Mississippi Embayment contributed to speciation. We reject the hypotheses that Cenozoic uplift of the Appalachians and that diversion of the Teays-Mahomet River contributed to speciation in this clade. We find that by reducing gene flow, rivers have the potential to cause divergence of lineages. Finally, we demonstrate that populations in areas affected by Quaternary glaciation and aridification have reduced levels of genetic variation compared to those from more equable regions, suggesting recent colonization.

  4. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure.

    PubMed

    Meng, Jun; Tao, Mengming; Wang, Lili; Liu, Xingmei; Xu, Jianming

    2018-08-15

    Biochar has been utilized as a good amendment to immobilize heavy metals in contaminated soils. However, the effectiveness of biochar in metal immobilization depends on biochar properties and metal species. In this study, the biochars produced from co-pyrolysis of rice straw with swine manure at 400°C were investigated to evaluate their effects on bioavailability and chemical speciation of four heavy metals (Cd, Cu, Pb and Zn) in a Pb-Zn contaminated soil through incubation experiment. Results showed that co-pyrolysis process significantly change the yield, ash content, pH, and electrical conductivity (EC) of the blended biochars compared with the single straw/manure biochar. The addition of these biochars significantly increased the soil pH, EC, and dissolved organic carbon (DOC) concentrations. The addition of biochars at a rate of 3% significantly reduced the CaCl 2 -extractable metal concentrations in the order of Pb>Cu>Zn>Cd. The exchangeable heavy metals decreased in all the biochar-amended soils whereas the carbonate-bound metal speciation increased. The increase in soil pH and the decrease in the CaCl 2 extractable metals indicated that these amendments can directly transform the highly availability metal speciation to the stable speciation in soils. In conclusion, biochar derived from co-pyrolysis of rice straw with swine manure at a mass ratio of 3:1 could most effectively immobilize the heavy metals in the soil. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Speciation of Iberian diving beetles in Pleistocene refugia (Coleoptera, Dytiscidae).

    PubMed

    Ribera, Ignacio; Vogler, Alfried P

    2004-01-01

    The Mediterranean basin is an area of high diversity and endemicity, but the age and origin of its fauna are still largely unknown. Here we use species-level phylogenies based on approximately 1300 base pairs of the genes 16S rRNA and cytochrome oxidase I to establish the relationships of 27 of the 34 endemic Iberian species of diving beetles in the family Dytiscidae, and to investigate their level of divergence. Using a molecular clock approach, 18-19 of these species were estimated to be of Pleistocene origin, with four to six of them from the Late Pleistocene ( approximately 100 000 years). A second, lower speciation frequency peak was assigned to Late Miocene or Early Pliocene. Analysis of the distributional ranges showed that endemic species placed in the tip nodes of the trees are significantly more likely to be allopatric with their sisters than endemic species at lower node levels. Allopatric sister species are also significantly younger than sympatric clades, in agreement with an allopatric mode of speciation and limited subsequent range movement. These results strongly suggest that for some taxa Iberian populations were isolated during the Pleistocene long enough to speciate, and apparently did not expand their ranges to recolonize areas north of the Pyrenees. This is in contradiction to observations from fossil beetles in areas further north, which document large range movements associated with the Pleistocene glacial cycles hypothesized to suppress population isolation and allopatric speciation.

  6. Chemical speciation of Fe and Ni in residual oil fly ash fine particulate matter using X-ray absorption spectroscopy.

    PubMed

    Pattanaik, Sidhartha; Huggins, Frank E; Huffman, Gerald P

    2012-12-04

    Epidemiological studies have linked residual oil fly ash fine particulate matter with aerodynamic diameter <2.5 μm (ROFA PM(2.5)) to morbidity and mortality from cardiovascular and respiratory illnesses. Bioavailable transition metals within PM have been cited as one of the components that induce such illnesses. By combining synchrotron-based X-ray absorption spectroscopy with leaching experiment, we studied the effect of residual oil compositions and combustion conditions on the speciation of Fe and Ni in ROFA PM(2.5) and the implication of these species for human health and environment. PM(2.5) samples were obtained from two types of combustors, a fire tube boiler (FTB) and a refractory line combustor (RLC). The study reveals that only Fe(2)(SO(4))(3)·nH(2)O is present in RLC PM(2.5) while Fe(2)(SO(4))(3)·nH(2)O predominates in FTB PM(2.5) with inclusion of varying amounts of nickel ferrite. The finding that RLC PM(2.5) is more bioavailable and hence more toxic than FTB PM(2.5) is significant. The reduction of toxicity of FTB PM(2.5) is due to the immobilization of a portion of Fe and Ni in the formation of an insoluble NiFe(2)O(4). This may explain the variation of toxicity from exposure to different ROFA PM(2.5). Additionally, the speciation data are sought for developing emission inventories for source apportionment study and understanding the mechanism of PM formation.

  7. PM 2.5 ORGANIC SPECIATION INTERCOMPARISON RESULTS

    EPA Science Inventory

    This abstract describes a poster on results to a laboratory intercomparison of organic aerosol speciation analysis to be presented at the 2006 International Aerosol Conference sponsored by the American Association for Aerosol Research in St. Paul, Minnesota on September 10-15. T...

  8. Erosive processes after tectonic uplift stimulate vicariant and adaptive speciation: evolution in an Afrotemperate-endemic paper daisy genus

    PubMed Central

    2014-01-01

    Background The role of tectonic uplift in stimulating speciation in South Africa’s only alpine zone, the Drakensberg, has not been explicitly examined. Tectonic processes may influence speciation both through the creation of novel habitats and by physically isolating plant populations. We use the Afrotemperate endemic daisy genus Macowania to explore the timing and mode (geographic versus adaptive) of speciation in this region. Between sister species pairs we expect high morphological divergence where speciation has happened in sympatry (adaptive) while with geographic (vicariant) speciation we may expect to find less morphological divergence and a greater degree of allopatry. A dated molecular phylogenetic hypothesis for Macowania elucidates species’ relationships and is used to address the potential impact of uplift on diversification. Morphological divergence of a small sample of reproductive and vegetative characters, used as a proxy for adaptive divergence, is measured against species’ range distributions to estimate mode of speciation across two subclades in the genus. Results The Macowania crown age is consistent with the hypothesis of post-uplift diversification, and we find evidence for both vicariant and adaptive speciation between the two subclades within Macowania. Both subclades exhibit strong signals of range allopatry, suggesting that geographic isolation was important in speciation. One subclade, associated with dry, rocky environments at high altitudes, shows very little morphological and ecological differentiation but high range allopatry. The other subclade occupies a greater variety of habitats and exhibits far greater morphological differentiation, but contains species with overlapping distribution ranges. Conclusions Species in Macowania are likely to have diversified in response to tectonic uplift, and we invoke uplift and uplift-mediated erosion as the main drivers of speciation. The greater relative morphological divergence in

  9. Speciation through the lens of biomechanics: locomotion, prey capture and reproductive isolation.

    PubMed

    Higham, Timothy E; Rogers, Sean M; Langerhans, R Brian; Jamniczky, Heather A; Lauder, George V; Stewart, William J; Martin, Christopher H; Reznick, David N

    2016-09-14

    Speciation is a multifaceted process that involves numerous aspects of the biological sciences and occurs for multiple reasons. Ecology plays a major role, including both abiotic and biotic factors. Whether populations experience similar or divergent ecological environments, they often adapt to local conditions through divergence in biomechanical traits. We investigate the role of biomechanics in speciation using fish predator-prey interactions, a primary driver of fitness for both predators and prey. We highlight specific groups of fishes, or specific species, that have been particularly valuable for understanding these dynamic interactions and offer the best opportunities for future studies that link genetic architecture to biomechanics and reproductive isolation (RI). In addition to emphasizing the key biomechanical techniques that will be instrumental, we also propose that the movement towards linking biomechanics and speciation will include (i) establishing the genetic basis of biomechanical traits, (ii) testing whether similar and divergent selection lead to biomechanical divergence, and (iii) testing whether/how biomechanical traits affect RI. Future investigations that examine speciation through the lens of biomechanics will propel our understanding of this key process. © 2016 The Author(s).

  10. Speciation of adsorbates on surface of solids by infrared spectroscopy and chemometrics.

    PubMed

    Vilmin, Franck; Bazin, Philippe; Thibault-Starzyk, Frédéric; Travert, Arnaud

    2015-09-03

    Speciation, i.e. identification and quantification, of surface species on heterogeneous surfaces by infrared spectroscopy is important in many fields but remains a challenging task when facing strongly overlapped spectra of multiple adspecies. Here, we propose a new methodology, combining state of the art instrumental developments for quantitative infrared spectroscopy of adspecies and chemometrics tools, mainly a novel data processing algorithm, called SORB-MCR (SOft modeling by Recursive Based-Multivariate Curve Resolution) and multivariate calibration. After formal transposition of the general linear mixture model to adsorption spectral data, the main issues, i.e. validity of Beer-Lambert law and rank deficiency problems, are theoretically discussed. Then, the methodology is exposed through application to two case studies, each of them characterized by a specific type of rank deficiency: (i) speciation of physisorbed water species over a hydrated silica surface, and (ii) speciation (chemisorption and physisorption) of a silane probe molecule over a dehydrated silica surface. In both cases, we demonstrate the relevance of this approach which leads to a thorough surface speciation based on comprehensive and fully interpretable multivariate quantitative models. Limitations and drawbacks of the methodology are also underlined. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Atmospheric speciation of mercury in two contrasting Southeastern US airsheds

    NASA Astrophysics Data System (ADS)

    Gabriel, Mark C.; Williamson, Derek G.; Brooks, Steve; Lindberg, Steve

    Simultaneous measurement of gaseous elemental, reactive gaseous, and fine particulate mercury took place in Tuscaloosa AL, (urban airshed) and Cove Mountain, TN (non-urban airshed) during the summers of 2002 and 2003. The objective of this research was to (1) summarize the temporal distribution of each mercury specie at each site and compare to other speciation data sets developed by other researchers and (2) provide insight into urban and non-urban mercury speciation effects using various statistical methods. Average specie concentrations were as follows: 4.05 ng m -3 (GEM), 13.6 pg m -3 (RGM), 16.4 pg m -3 (Hg-p) for Tuscaloosa; 3.20 ng m -3 (GEM), 13.6 pg m -3 (RGM), 9.73 pg m -3 (Hg-p) for Cove Mountain. As a result of urban airshed impacts, short periods of high concentration for all mercury species was common in Tuscaloosa. At Cove Mountain a consistent mid-day rise and evening drop for mercury species was found. This pattern was primarily the result of un-impacted physical boundary layer movement, although, other potential impacts were ambient photochemistry and air-surface exchange of mercury. Meteorological parameters that are known to heavily impact mercury speciation were similar for the study period for Tuscaloosa and Cove Mountain except for wind speed (m s -1), which was higher at Cove Mountain. For both sites statistically significant ( p<0.0001), inverse relationships existed between wind speed and Hg 0 concentration. A weaker windspeed-Hg 0 correlation existed for Tuscaloosa. By analyzing Hg concentration—wind speed magnitude change at both sites it was found that wind speed at Cove Mountain had a greater influence on Hg 0 concentration variability than Tuscaloosa by a factor of 3. Using various statistical tests, we concluded that the nature of Tuscaloosa's atmospheric mercury speciation was the result of typical urban airshed impacts. Cove Mountain showed atmospheric mercury speciation characteristics indicative of a non-urban area along with

  12. Habitat preference and the marine-speciation paradox.

    PubMed Central

    Bierne, Nicolas; Bonhomme, François; David, Patrice

    2003-01-01

    Marine organisms challenge the classical theories of local adaptation and speciation because their planktonic larvae have the potential to maintain high gene flow. The marine-speciation paradox is illustrated by contact zones between incipient species that are so large that allopatric divergence seems unlikely. For this reason any mechanism preventing sympatric larvae of two incipient species from coexisting in the same habitats can be a powerful promoter of speciation. The contact zone between two hybridizing taxa of mussel, Mytilus edulis and M. galloprovincialis, in Europe provides an excellent example. Although the zone itself extends over thousands of kilometres, the opportunities for interbreeding are considerably reduced by the small-scale mosaic structure of the zone, where local patches of each taxon alternate at scales of kilometres or less, in response to locally variable ecological factors. Habitat choice by settling larvae would be a less costly mechanism than post-settlement selection to maintain such a mosaic structure. Unfortunately the role of selective settlement has remained hypothetical because larvae could not be scored by classical genetic markers. PCR markers allowed us to study larvae and settlement in ecologically contrasting sites within the zone. We show that only a subset of the genotypes present in the plankton settle in some sites, and that the adults on these sites show the same genetic bias. Genetically based variation in pre-settlement processes therefore accounts for the ecological segregation observed, though it is not the only factor involved in limiting successful interbreeding. The present dataset also supports previous reports of partial spawning asynchrony. PMID:12965032

  13. Field Evaluation Of Arsenic Speciation In Sediments At The Ground Water/Surface Water Interface

    EPA Science Inventory

    The speciation and mineralogy of sediments contaminated with arsenic at the ground water/surface water interface of the Ft. Devens Super Fund Site in Ft. Devens, MA were determined using X-ray absorption fine structure and X-ray diffraction spectroscopy. Speciation and mineralog...

  14. Spaceborne Remote Sensing of Aerosol Type: Global Distribution, Model Evaluation and Translation into Chemical Speciation

    NASA Astrophysics Data System (ADS)

    Kacenelenbogen, M. S.; Tan, Q.; Johnson, M. S.; Burton, S. P.; Redemann, J.; Hasekamp, O. P.; Dawson, K. W.; Hair, J. W.; Ferrare, R. A.; Butler, C. F.; Holben, B. N.; Beyersdorf, A. J.; Ziemba, L. D.; Froyd, K. D.; Dibb, J. E.; Shingler, T.; Sorooshian, A.; Jimenez, J. L.; Campuzano Jost, P.; Jacob, D.; Kim, P. S.; Travis, K.; Lacagnina, C.

    2016-12-01

    It is essential to evaluate and refine aerosol classification methods applied to passive satellite remote sensing. We have developed an aerosol classification algorithm (called Specified Clustering and Mahalanobis Classification, SCMC) that assigns an aerosol type to multi-parameter retrievals by spaceborne, airborne or ground-based passive remote sensing instruments [1]. The aerosol types identified by our scheme are pure dust, polluted dust, urban-industrial/developed economy, urban-industrial/developing economy, dark biomass smoke, light biomass smoke and pure marine. We apply the SCMC method to inversions from the ground-based AErosol RObotic NETwork (AERONET [2]) and retrievals from the space-borne Polarization and Directionality of Earth's Reflectances instrument (POLDER, [3]). The POLDER retrievals that we use differ from the standard POLDER retrievals [4] as they make full use of multi-angle, multispectral polarimetric data [5]. We analyze agreement in the aerosol types inferred from both AERONET and POLDER and evaluate GEOS-Chem [6] simulations over the globe. Finally, we use in-situ observations from the SEAC4RS airborne field experiment to bridge the gap between remote sensing-inferred qualitative SCMC aerosol types and their corresponding quantitative chemical speciation. We apply the SCMC method to airborne in-situ observations from the NASA Langley Aerosol Research Group Experiment (LARGE, [7]) and the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe (DASH-SP, [8]) instruments; we then relate each coarsely defined SCMC type to a sum of percentage of individual aerosol species, using in-situ observations from the Particle Analysis by Laser Mass Spectrometry (PALMS, [9]), the Soluble Acidic Gases and Aerosol (SAGA, [10]), and the High - Resolution Time - of - Flight Aerosol Mass Spectrometer (HR ToF AMS, [11]). [1] Russell P. B., et al., JGR, 119.16 (2014) [2] Holben B. N., et al., RSE, 66.1 (1998) [3] Tanré D., et al., AMT, 4.7 (2011

  15. Analytical methodologies for aluminium speciation in environmental and biological samples--a review.

    PubMed

    Bi, S P; Yang, X D; Zhang, F P; Wang, X L; Zou, G W

    2001-08-01

    It is recognized that aluminium (Al) is a potential environmental hazard. Acidic deposition has been linked to increased Al concentrations in natural waters. Elevated levels of Al might have serious consequences for biological communities. Of particular interest is the speciation of Al in aquatic environments, because Al toxicity depends on its forms and concentrations. In this paper, advances in analytical methodologies for Al speciation in environmental and biological samples during the past five years are reviewed. Concerns about the specific problems of Al speciation and highlights of some important methods are elucidated in sections devoted to hybrid techniques (HPLC or FPLC coupled with ET-AAS, ICP-AES, or ICP-MS), flow-injection analysis (FIA), nuclear magnetic resonance (27Al NMR), electrochemical analysis, and computer simulation. More than 130 references are cited.

  16. Major 20th century changes of the content and chemical speciation of organic carbon archived in Alpine ice cores: Implications for the long-term change of organic aerosol over Europe

    NASA Astrophysics Data System (ADS)

    Legrand, M.; Preunkert, S.; May, B.; Guilhermet, J.; Hoffman, H.; Wagenbach, D.

    2013-05-01

    Dissolved organic carbon (DOC) and an extended array of organic compounds were investigated in an Alpine ice core covering the 1920-1988 time period. Based on this, a reconstruction was made of the long-term trends of water-soluble organic carbon (WSOC) aerosol in the European atmosphere. It is shown that light mono- and dicarboxylates, humic-like substances, and formaldehyde account together for more than half of the DOC content of ice. This extended chemical speciation of DOC is used to estimate the DOC fraction present in ice that is related to WSOC aerosol and its change over the past. It is suggested that after World War II, the WSOC levels have been enhanced by a factor of 2 and 3 in winter and summer, respectively. In summer, the fossil fuel contribution to the enhancement is estimated to be rather small, suggesting that it arises mainly from an increase in biogenic sources of WSOC.

  17. Arsenic speciation and reactivity in poultry litter

    USGS Publications Warehouse

    Arai, Y.; Lanzirotti, A.; Sutton, S.; Davis, J.A.; Sparks, D.L.

    2003-01-01

    Recent U.S. government action to lower the maximum concentration levels (MCL) of total arsenic (As) (10 ppb) in drinking water has raised serious concerns about the agricultural use of As-containing biosolids such as poultry litter (PL). In this study, solid-state chemical speciation, desorbability, and total levels of As in PL and long-term amended soils were investigated using novel synchrotronbased probing techniques (microfocused (??) synchrotron X-ray fluorescence (SXRF) and ??-X-ray absorption near-edge structure (XANES) spectroscopies) coupled with chemical digestion and batch experiments. The total As levels in the PL were as high as ???50 mg kg-1, and As(II/III and V) was always concentrated in abundant needle-shaped microscopic particles (???20/ ??m x 850 ??m) associated with Ca, Cu, and Fe and to a lesser extent with S, CI, and Zn. Postedge XANES features of litter particles are dissimilar to those of the organo-As(V) compound in poultry feed (i.e., roxarsone), suggesting possible degradation/transformation of roxarsone in the litter and/or in poultry digestive tracts. The extent of As desorption from the litter increased with increasing time and pH from 4.5 to 7, but at most 15% of the total As was released after 5 d at pH 7, indicating the presence of insoluble phases and/or strongly retained soluble compounds. No significant As accumulation (< 15 mg kg-1) was found in long-term PL-a mended agricultural surface soils. This suggests that As in the PL may have undergone surface and subsurface transport processes. Our research results raise concerns about long-term PL amendment effects on As contamination in surrounding soilwater environments.

  18. Latitude, elevational climatic zonation and speciation in New World vertebrates

    PubMed Central

    Cadena, Carlos Daniel; Kozak, Kenneth H.; Gómez, Juan Pablo; Parra, Juan Luis; McCain, Christy M.; Bowie, Rauri C. K.; Carnaval, Ana C.; Moritz, Craig; Rahbek, Carsten; Roberts, Trina E.; Sanders, Nathan J.; Schneider, Christopher J.; VanDerWal, Jeremy; Zamudio, Kelly R.; Graham, Catherine H.

    2012-01-01

    Many biodiversity hotspots are located in montane regions, especially in the tropics. A possible explanation for this pattern is that the narrow thermal tolerances of tropical species and greater climatic stratification of tropical mountains create more opportunities for climate-associated parapatric or allopatric speciation in the tropics relative to the temperate zone. However, it is unclear whether a general relationship exists among latitude, climatic zonation and the ecology of speciation. Recent taxon-specific studies obtained different results regarding the role of climate in speciation in tropical versus temperate areas. Here, we quantify overlap in the climatic distributions of 93 pairs of sister species of mammals, birds, amphibians and reptiles restricted to either the New World tropics or to the Northern temperate zone. We show that elevational ranges of tropical- and temperate-zone species do not differ from one another, yet the temperature range experienced by species in the temperate zone is greater than for those in the tropics. Moreover, tropical sister species tend to exhibit greater similarity in their climatic distributions than temperate sister species. This pattern suggests that evolutionary conservatism in the thermal niches of tropical taxa, coupled with the greater thermal zonation of tropical mountains, may result in increased opportunities for allopatric isolation, speciation and the accumulation of species in tropical montane regions. Our study exemplifies the power of combining phylogenetic and spatial datasets of global climatic variation to explore evolutionary (rather than purely ecological) explanations for the high biodiversity of tropical montane regions. PMID:21632626

  19. Recent Developments in the Speciation and Determination of Mercury Using Various Analytical Techniques

    PubMed Central

    Suvarapu, Lakshmi Narayana; Baek, Sung-Ok

    2015-01-01

    This paper reviews the speciation and determination of mercury by various analytical techniques such as atomic absorption spectrometry, voltammetry, inductively coupled plasma techniques, spectrophotometry, spectrofluorometry, high performance liquid chromatography, and gas chromatography. Approximately 126 research papers on the speciation and determination of mercury by various analytical techniques published in international journals since 2013 are reviewed. PMID:26236539

  20. Rapid neo-sex chromosome evolution and incipient speciation in a major forest pest

    Treesearch

    Ryan R. Bracewell; Barbara J. Bentz; Brian T. Sullivan; Jeffrey M. Good

    2017-01-01

    Genome evolution is predicted to be rapid following the establishment of new (neo) sex chromosomes, but it is not known if neo-sex chromosome evolution plays an important role in speciation. Here we combine extensive crossing experiments with population and functional genomic data to examine neo-XY chromosome evolution and incipient speciation in the mountain pine...

  1. Internal iron biomineralization in Imperata cylindrica, a perennial grass: chemical composition, speciation and plant localization.

    PubMed

    Rodríguez, N; Menéndez, N; Tornero, J; Amils, R; de la Fuente, V

    2005-03-01

    * The analysis of metal distribution in Imperata cylindrica, a perennial grass isolated from the banks of Tinto River (Iberian Pyritic Belt), an extreme acidic environment with high content in metals, has shown a remarkable accumulation of iron. This property has been used to study iron speciation and its distribution among different tissues and structures of the plant. * Mossbauer (MS) and X-ray diffraction (XRD) were used to determine the iron species, scanning electron microscopy (SEM) to locate iron biominerals among plant tissue structures, and energy-dispersive X-ray microanalysis (EDAX), X-ray fluorescence (TXRF) and inductively coupled plasma emission spectroscopy (ICP-MS) to confirm their elemental composition. * The MS spectral analysis indicated that iron accumulated in this plant mainly as jarosite and ferritin. The presence of jarosite was confirmed by XRD and the distribution of both minerals in structures of different tissues was ascertained by SEM-EDAX analysis. * The convergent results obtained by complementary techniques suggest a complex iron management system in I. cylindrica, probably as a consequence of the environmental conditions of its habitat.

  2. Chromium fractionation and speciation in natural waters.

    PubMed

    Pereira, Catarinie Diniz; Techy, João Gabriel; Ganzarolli, Edgard Moreira; Quináia, Sueli Pércio

    2012-05-01

    It is common for leather industries to dump chromium-contaminated effluent into rivers and other bodies of water. Thus, it is crucial to know the impacts caused by this practice to the environment. A study on chromium partitioning and speciation, with determination at trace levels, was carried out in a potentially contaminated creek. Chromium fractionation and speciation was performed using a flow-injection preconcentration system and detection by flame atomic absorption spectrometry. High levels of this element were found in the particulate material (449-9320 mg kg(-1)), which indicates its compatibility with this fraction. The concentration of Cr(iii) in the water samples collected ranged from 5.2-105.2 μg L(-1). Cr(vi) was always below of the DL (0.3 μg L(-1)). Chromium accumulation observed in the sediment (873-1691 mg kg(-1)) may confirm contamination due to the long term release of contaminated effluents in the creek.

  3. [The progress in speciation analysis of trace elements by atomic spectrometry].

    PubMed

    Wang, Zeng-Huan; Wang, Xu-Nuo; Ke, Chang-Liang; Lin, Qin

    2013-12-01

    The main purpose of the present work is to review the different non-chromatographic methods for the speciation analysis of trace elements in geological, environmental, biological and medical areas. In this paper, the sample processing methods in speciation analysis were summarized, and the main strategies for non-chromatographic technique were evaluated. The basic principles of the liquid extractions proposed in the published literatures recently and their advantages and disadvantages were discussed, such as conventional solvent extraction, cloud point extraction, single droplet microextraction, and dispersive liquid-liquid microextraction. Solid phase extraction, as a non-chromatographic technique for speciation analysis, can be used in batch or in flow detection, and especially suitable for the online connection to atomic spectrometric detector. The developments and applications of sorbent materials filled in the columns of solid phase extraction were reviewed. The sorbents include chelating resins, nanometer materials, molecular and ion imprinted materials, and bio-sorbents. Other techniques, e. g. hydride generation technique and coprecipitation, were also reviewed together with their main applications.

  4. Tree of Life Reveals Clock-Like Speciation and Diversification

    PubMed Central

    Hedges, S. Blair; Marin, Julie; Suleski, Michael; Paymer, Madeline; Kumar, Sudhir

    2015-01-01

    Genomic data are rapidly resolving the tree of living species calibrated to time, the timetree of life, which will provide a framework for research in diverse fields of science. Previous analyses of taxonomically restricted timetrees have found a decline in the rate of diversification in many groups of organisms, often attributed to ecological interactions among species. Here, we have synthesized a global timetree of life from 2,274 studies representing 50,632 species and examined the pattern and rate of diversification as well as the timing of speciation. We found that species diversity has been mostly expanding overall and in many smaller groups of species, and that the rate of diversification in eukaryotes has been mostly constant. We also identified, and avoided, potential biases that may have influenced previous analyses of diversification including low levels of taxon sampling, small clade size, and the inclusion of stem branches in clade analyses. We found consistency in time-to-speciation among plants and animals, ∼2 My, as measured by intervals of crown and stem species times. Together, this clock-like change at different levels suggests that speciation and diversification are processes dominated by random events and that adaptive change is largely a separate process. PMID:25739733

  5. Distribution and solid-phase speciation of toxic heavy metals of bed sediments of Bharali tributary of Brahmaputra River.

    PubMed

    Hoque, Raza Rafiqul; Goswami, K G; Kusre, B C; Sarma, K P

    2011-06-01

    Heavy metal (Fe, Mn, Zn, Cu, Ni, Pb, and Cd) concentrations and their chemical speciations were investigated for the first time in bed sediments of Bharali River, a major tributary of the Brahmaputra River of the Eastern Himalayas. Levels of Fe, Mn, Pb, and Cd in the bed sediments were much below the average Indian rivers; however, Cu and Zn exhibit levels on the higher side. Enrichment factors (EF) of all metals was greater than 1 and a higher trend of EF was seen in the abandoned channel for most metals. Pb showed maximum EF of 32 at site near an urban center. The geoaccumulation indices indicate that Bharali river is moderately polluted. The metals speciations, done by a sequential extraction regime, show that Cd, Cu, and Pb exhibit considerable presence in the exchangeable and carbonate fraction, thereby showing higher mobility and bioavailability. On the other hand, Ni, Mn, and Fe exhibit greater presence in the residual fraction and Zn was dominant in the Fe-Mn oxide phase. Inter-species correlations at three sites did not show similar trends for metal pairs indicating potential variations in the contributing sources.

  6. Speciation and distribution of arsenic and localization of nutrients in rice grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombi, E.; Scheckel, K.G.; Pallon, J.

    2012-09-05

    Arsenic (As) contamination of rice grains and the generally low concentration of micronutrients in rice have been recognized as a major concern for human health. Here, we investigated the speciation and localization of As and the distribution of (micro)nutrients in rice grains because these are key factors controlling bioavailability of nutrients and contaminants. Bulk total and speciation analyses using high-pressure liquid chromatography (HPLC)-inductively coupled plasma mass spectrometry (ICP-MS) and X-ray absorption near-edge spectroscopy (XANES) was complemented by spatially resolved microspectroscopic techniques ({mu}-XANES, {mu}-X-ray fluorescence ({mu}-XRF) and particle induced X-ray emission (PIXE)) to investigate both speciation and distribution of As andmore » localization of nutrients in situ. The distribution of As and micronutrients varied between the various parts of the grains (husk, bran and endosperm) and was characterized by element-specific distribution patterns. The speciation of As in bran and endosperm was dominated by As(III)-thiol complexes. The results indicate that the translocation from the maternal to filial tissues may be a bottleneck for As accumulation in the grain. Strong similarities between the distribution of iron (Fe), manganese (Mn) and phosphorus (P) and between zinc (Zn) and sulphur (S) may be indicative of complexation mechanisms in rice grains.« less

  7. Speciation: more likely through a genetic or through a learned habitat preference?

    PubMed Central

    Beltman, J.B; Metz, J.A.J

    2005-01-01

    A problem in understanding sympatric speciation is establishing how reproductive isolation can arise when there is disruptive selection on an ecological trait. One of the solutions that has been proposed is that a habitat preference evolves, and that mates are chosen within the preferred habitat. We present a model where the habitat preference can evolve either by means of a genetic mechanism or by means of learning. Employing an adaptive-dynamical analysis, we show that evolution proceeds either to a single population of specialists with a genetic preference for their optimal habitat, or to a population of generalists without a habitat preference. The generalist population subsequently experiences disruptive selection. Learning promotes speciation because it increases the intensity of disruptive selection. An individual-based version of the model shows that, when loci are completely unlinked and learning confers little cost, the presence of disruptive selection most probably leads to speciation via the simultaneous evolution of a learned habitat preference. For high costs of learning, speciation is most likely to occur via the evolution of a genetic habitat preference. However, the latter only happens when the effect of mutations is large, or when there is linkage between genes coding for the different traits. PMID:16011920

  8. Postcopulatory sexual selection generates speciation phenotypes in Drosophila.

    PubMed

    Manier, Mollie K; Lüpold, Stefan; Belote, John M; Starmer, William T; Berben, Kirstin S; Ala-Honkola, Outi; Collins, William F; Pitnick, Scott

    2013-10-07

    Identifying traits that reproductively isolate species, and the selective forces underlying their divergence, is a central goal of evolutionary biology and speciation research. There is growing recognition that postcopulatory sexual selection, which can drive rapid diversification of interacting ejaculate and female reproductive tract traits that mediate sperm competition, may be an engine of speciation. Conspecific sperm precedence (CSP) is a taxonomically widespread form of reproductive isolation, but the selective causes and divergent traits responsible for CSP are poorly understood. To test the hypothesis that postcopulatory sexual selection can generate reproductive isolation, we expressed GFP or RFP in sperm heads of recently diverged sister species, Drosophila simulans and D. mauritiana, to enable detailed resolution of species-specific sperm precedence mechanisms. Between-species divergence in sperm competition traits and mechanisms prompted six a priori predictions regarding mechanisms of CSP and degree of cross asymmetry in reproductive isolation. We resolved four distinct mechanisms of CSP that were highly consistent with predictions. These comprise interactions between multiple sex-specific traits, including two independent mechanisms by which females exert sophisticated control over sperm fate to favor the conspecific male. Our results confirm that reproductive isolation can quickly arise from diversifying (allopatric) postcopulatory sexual selection. This experimental approach to "speciation phenotypes" illustrates how knowledge of sperm precedence mechanisms can be used to predict the mechanisms and extent of reproductive isolation between populations and species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Iron Speciation in the Subtropical Waters East of New Zealand using Multi Detection Window CLE-AdCSV Titrations.

    NASA Astrophysics Data System (ADS)

    Chandrasekhar, Anoop; Sander, Sylvia; Milnes, Angie; Boyd, Philip

    2015-04-01

    ). "Chemical speciation of iron in seawater using catalytic cathodic stripping voltammetry with ligand competition against salicylaldoxime." Marine Chemistry 164(0): 60-74. Buck, K. N., J. Moffett, K. A. Barbeau, R. M. Bundy, Y. Kondo and J. Wu (2012). "The organic complexation of iron and copper: an intercomparison of competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV) techniques " Limnology and Oceanography: Methods 10: 496-515. Hudson, R. J. M., E. L. Rue and K. W. Bruland (2003). "Modeling Complexometric Titrations of Natural Water Samples." Environ. Sci. Tech. 37: 1553-1562. Pizeta, I., S. G. Sander, O. Baars, K. Buck, R. Bundy, G. Carrasco, P. Croot, C. Garnier, L. Gerringa, M. Gledhill, K. Hirose, D. R. Hudson, Y. Kondo-Jacquot, L. Laglera, D. Omanovic, M. Rijkenberg, B. Twining and M. Wells (in preparation). "Intercomparison of estimating metal binding ligand parameters from simulated titration data using different fitting approaches." for Limnology and Oceanography: Methods. Sander, S. G., K. A. Hunter, H. Harms and M. Wells (2011). "Numerical approach to speciation and estimation of parameters used in modeling trace metal bioavailability." Environmental Science and Technology 45(15): 6388-6395.

  10. pH-Specific structural speciation of the ternary V(V)-peroxido-betaine system: a chemical reactivity-structure correlation.

    PubMed

    Gabriel, C; Kioseoglou, E; Venetis, J; Psycharis, V; Raptopoulou, C P; Terzis, A; Voyiatzis, G; Bertmer, M; Mateescu, C; Salifoglou, A

    2012-06-04

    Vanadium involvement in cellular processes requires deep understanding of the nature and properties of its soluble and bioavailable forms arising in aqueous speciations of binary and ternary systems. In an effort to understand the ternary vanadium-H(2)O(2)-ligand interactions relevant to that metal ion's biological role, synthetic efforts were launched involving the physiological ligands betaine (Me(3)N(+)CH(2)CO(2)(-)) and H(2)O(2). In a pH-specific fashion, V(2)O(5), betaine, and H(2)O(2) reacted and afforded three new, unusual, and unique compounds, consistent with the molecular formulation K(2)[V(2)O(2)(O(2))(4){(CH(3))(3)NCH(2)CO(2))}]·H(2)O (1), (NH(4))(2)[V(2)O(2)(O(2))(4){(CH(3))(3)NCH(2)CO(2))}]·0.75H(2)O (2), and {Na(2)[V(2)O(2)(O(2))(4){(CH(3))(3)NCH(2)CO(2))}(2)]}(n)·4nH(2)O (3). All complexes 1-3 were characterized by elemental analysis; UV/visible, FT-IR, Raman, and NMR spectroscopy in solution and the solid state; cyclic voltammetry; TGA-DTG; and X-ray crystallography. The structures of 1 and 2 reveal the presence of unusual ternary dinuclear vanadium-tetraperoxido-betaine complexes containing [(V(V)═O)(O(2))(2)] units interacting through long V-O bonds. The two V(V) ions are bridged through the oxygen terminal of one of the peroxide groups bound to the vanadium centers. The betaine ligand binds only one of the two V(V) ions. In the case of the third complex 3, the two vanadium centers are not immediate neighbors, with Na(+) ions (a) acting as efficient oxygen anchors and through Na-O bonds holding the two vanadium ions in place and (b) providing for oxygen-containing ligand binding leading to a polymeric lattice. In 1 and 3, interesting 2D (honeycomb) and 1D (zigzag chains) topologies of potassium nine-coordinate polyhedra (1) and sodium octahedra (3), respectively, form. The collective physicochemical properties of the three ternary species 1-3 project the chemical role of the low molecular mass biosubstrate betaine in binding V

  11. [Primary speciation analysis of iron in edible flowers].

    PubMed

    Peng, Shan-shan; Huang, Guo-qing

    2003-02-01

    In this paper seven primary speciations of iron in three edible flowers, i.e. chrysanthemum, cottonrose hibiscus and honeysucker have been studied by atomic absorption spectrometry. Speciation parameters of iron such as extractive rate, residue rate, immerse-residue ratio in the samples were calculated. It was found that the first extractive rates of Fe were higher than the second ones in all three edible flowers, and the immerse-residue ratios of Fe were similar to the extractive rates. But the extraction of iron in all three edible flowers were no more than fifty percent. It is showed that the iron isn't easy to extract by water in the three edible flowers. The recovery was in the range of 96.5%-103.2% and RSD was in the range of 1.2%-3.1%. The results were satisfactory.

  12. Detailed Characterization and Profiles of Crankcase and Diesel Particular Matter Exhaust Emissions Using Speciated Organics

    PubMed Central

    Zielinska, Barbara; Campbell, David; Lawson, Douglas R.; Ireson, Robert G.; Weaver, Christopher S.; Hesterberg, Thomas W.; Larson, Timothy; Davey, Mark; Liu, L.-J. Sally

    2008-01-01

    A monitoring campaign was conducted in August-September 2005 to compare different experimental approaches quantifying school bus self-pollution. As part of this monitoring campaign, a detailed characterization of PM2.5 diesel engine emissions from the tailpipe and crankcase emissions from the road draft tubes was performed. To distinguish between tailpipe and crankcase vent emissions, a deuterated alkane, n-hexatriacontane-d74 (n-C36D74) was added to the engine oil to serve as intentional quantitative tracers for lubricating oil PM emissions. This paper focuses on the detailed chemical speciation of crankcase and tailpipe PM emissions from two school buses used in this study. We found that organic carbon emission rates were generally higher from the crankcase than from the tailpipe for these two school buses, while elemental carbon contributed significantly only in the tailpipe emissions. The n-C36D74 that was added to the engine oil was emitted at higher rates from the crankcase than the tailpipe. Tracers of engine oil (hopanes, and steranes) were present in much higher proportion in crankcase emissions. Particle-associated PAH emission rates were generally very low (< 1 μg/km), but more PAH species were present in crankcase than in tailpipe emissions. The speciation of samples collected in the bus cabins was consistent with most of the bus self-pollution originating from crankcase emissions. PMID:18754490

  13. Detailed characterization and profiles of crankcase and diesel particulate matter exhaust emissions using speciated organics.

    PubMed

    Zielinska, Barbara; Campbell, David; Lawson, Douglas R; Ireson, Robert G; Weaver, Christopher S; Hesterberg, Thomas W; Larson, Timothy; Davey, Mark; Liu, L J Sally

    2008-08-01

    A monitoring campaign was conducted in August-September 2005 to compare different experimental approaches quantifying school bus self-pollution. As part of this monitoring campaign, a detailed characterization of PM2.5 diesel engine emissions from the tailpipe and crankcase emissions from the road draft tubes was performed. To distinguish between tailpipe and crankcase vent emissions, a deuterated alkane, n-hexatriacontane-d74 (n-C36D74) was added to the engine oil to serve as an intentional quantitative tracer for lubricating oil PM emissions. This paper focuses on the detailed chemical speciation of crankcase and tailpipe PM emissions from two school buses used in this study. We found that organic carbon emission rates were generally higher from the crankcase than from the tailpipe for these two school buses, while elemental carbon contributed significantly only in the tailpipe emissions. The n-C36D74 that was added to the engine oil was emitted at higher rates from the crankcase than the tailpipe. Tracers of engine oil (hopanes and steranes) were present in much higher proportion in crankcase emissions. Particle-associated PAH emission rates were generally very low (< 1 microg/km), but more PAH species were present in crankcase than in tailpipe emissions. The speciation of samples collected in the bus cabins was consistent with most of the bus self-pollution originating from crankcase emissions.

  14. Evidence for nonallopatric speciation among closely related sympatric Heliotropium species in the Atacama Desert

    PubMed Central

    Luebert, Federico; Jacobs, Pit; Hilger, Hartmut H; Muller, Ludo A H

    2014-01-01

    The genetic structure of populations of closely related, sympatric species may hold the signature of the geographical mode of the speciation process. In fully allopatric speciation, it is expected that genetic differentiation between species is homogeneously distributed across the genome. In nonallopatric speciation, the genomes may remain undifferentiated to a large extent. In this article, we analyzed the genetic structure of five sympatric species from the plant genus Heliotropium in the Atacama Desert. We used amplified fragment length polymorphisms (AFLPs) to characterize the genetic structure of these species and evaluate their genetic differentiation as well as the number of loci subject to positive selection using divergence outlier analysis (DOA). The five species form distinguishable groups in the genetic space, with zones of overlap, indicating that they are possibly not completely isolated. Among-species differentiation accounts for 35% of the total genetic differentiation (FST = 0.35), and FST between species pairs is positively correlated with phylogenetic distance. DOA suggests that few loci are subject to positive selection, which is in line with a scenario of nonallopatric speciation. These results support the idea that sympatric species of Heliotropium sect. Cochranea are under an ongoing speciation process, characterized by a fluctuation of population ranges in response to pulses of arid and humid periods during Quaternary times. PMID:24558582

  15. Evidence for nonallopatric speciation among closely related sympatric Heliotropium species in the Atacama Desert.

    PubMed

    Luebert, Federico; Jacobs, Pit; Hilger, Hartmut H; Muller, Ludo A H

    2014-02-01

    The genetic structure of populations of closely related, sympatric species may hold the signature of the geographical mode of the speciation process. In fully allopatric speciation, it is expected that genetic differentiation between species is homogeneously distributed across the genome. In nonallopatric speciation, the genomes may remain undifferentiated to a large extent. In this article, we analyzed the genetic structure of five sympatric species from the plant genus Heliotropium in the Atacama Desert. We used amplified fragment length polymorphisms (AFLPs) to characterize the genetic structure of these species and evaluate their genetic differentiation as well as the number of loci subject to positive selection using divergence outlier analysis (DOA). The five species form distinguishable groups in the genetic space, with zones of overlap, indicating that they are possibly not completely isolated. Among-species differentiation accounts for 35% of the total genetic differentiation (F ST = 0.35), and F ST between species pairs is positively correlated with phylogenetic distance. DOA suggests that few loci are subject to positive selection, which is in line with a scenario of nonallopatric speciation. These results support the idea that sympatric species of Heliotropium sect. Cochranea are under an ongoing speciation process, characterized by a fluctuation of population ranges in response to pulses of arid and humid periods during Quaternary times.

  16. Moran model as a dynamical process on networks and its implications for neutral speciation.

    PubMed

    de Aguiar, Marcus A M; Bar-Yam, Yaneer

    2011-09-01

    In population genetics, the Moran model describes the neutral evolution of a biallelic gene in a population of haploid individuals subjected to mutations. We show in this paper that this model can be mapped into an influence dynamical process on networks subjected to external influences. The panmictic case considered by Moran corresponds to fully connected networks and can be completely solved in terms of hypergeometric functions. Other types of networks correspond to structured populations, for which approximate solutions are also available. This approach to the classic Moran model leads to a relation between regular networks based on spatial grids and the mechanism of isolation by distance. We discuss the consequences of this connection for topopatric speciation and the theory of neutral speciation and biodiversity. We show that the effect of mutations in structured populations, where individuals can mate only with neighbors, is greatly enhanced with respect to the panmictic case. If mating is further constrained by genetic proximity between individuals, a balance of opposing tendencies takes place: increasing diversity promoted by enhanced effective mutations versus decreasing diversity promoted by similarity between mates. Resolution of large enough opposing tendencies occurs through speciation via pattern formation. We derive an explicit expression that indicates when speciation is possible involving the parameters characterizing the population. We also show that the time to speciation is greatly reduced in comparison with the panmictic case.

  17. Hybridization masks speciation in the evolutionary history of the Galápagos marine iguana

    PubMed Central

    MacLeod, Amy; Rodríguez, Ariel; Vences, Miguel; Orozco-terWengel, Pablo; García, Carolina; Trillmich, Fritz; Gentile, Gabriele; Caccone, Adalgisa; Quezada, Galo; Steinfartz, Sebastian

    2015-01-01

    The effects of the direct interaction between hybridization and speciation—two major contrasting evolutionary processes—are poorly understood. We present here the evolutionary history of the Galápagos marine iguana (Amblyrhynchus cristatus) and reveal a case of incipient within-island speciation, which is paralleled by between-island hybridization. In-depth genome-wide analyses suggest that Amblyrhynchus diverged from its sister group, the Galápagos land iguanas, around 4.5 million years ago (Ma), but divergence among extant populations is exceedingly young (less than 50 000 years). Despite Amblyrhynchus appearing as a single long-branch species phylogenetically, we find strong population structure between islands, and one case of incipient speciation of sister lineages within the same island—ostensibly initiated by volcanic events. Hybridization between both lineages is exceedingly rare, yet frequent hybridization with migrants from nearby islands is evident. The contemporary snapshot provided by highly variable markers indicates that speciation events may have occurred throughout the evolutionary history of marine iguanas, though these events are not visible in the deeper phylogenetic trees. We hypothesize that the observed interplay of speciation and hybridization might be a mechanism by which local adaptations, generated by incipient speciation, can be absorbed into a common gene pool, thereby enhancing the evolutionary potential of the species as a whole. PMID:26041359

  18. Moran model as a dynamical process on networks and its implications for neutral speciation

    NASA Astrophysics Data System (ADS)

    de Aguiar, Marcus A. M.; Bar-Yam, Yaneer

    2011-03-01

    In population genetics, the Moran model describes the neutral evolution of a biallelic gene in a population of haploid individuals subjected to mutations. We show in this paper that this model can be mapped into an influence dynamical process on networks subjected to external influences. The panmictic case considered by Moran corresponds to fully connected networks and can be completely solved in terms of hypergeometric functions. Other types of networks correspond to structured populations, for which approximate solutions are also available. This approach to the classic Moran model leads to a relation between regular networks based on spatial grids and the mechanism of isolation by distance. We discuss the consequences of this connection for topopatric speciation and the theory of neutral speciation and biodiversity. We show that the effect of mutations in structured populations, where individuals can mate only with neighbors, is greatly enhanced with respect to the panmictic case. If mating is further constrained by genetic proximity between individuals, a balance of opposing tendencies takes place: increasing diversity promoted by enhanced effective mutations versus decreasing diversity promoted by similarity between mates. Resolution of large enough opposing tendencies occurs through speciation via pattern formation. We derive an explicit expression that indicates when speciation is possible involving the parameters characterizing the population. We also show that the time to speciation is greatly reduced in comparison with the panmictic case.

  19. Speciation And Bioavailability Of Zinc In Amended Sediments

    EPA Science Inventory

    The speciation and bioavailability of zinc (Zn) in smelter-contaminated sediments was investigated as a function of phosphate (apatite) and organic amendment loading rate. Zinc species identified in preamendment sediment were zinc hydroxide-like phases, sphalerite, and zinc sorbe...

  20. Solid-Phase Speciation of Arsenic As the Primary Control on Dissolved As Concentrations in a Glacial Aquifer System: Quantifying Speciation of Arsenic in Glacial Aquifer Solids with μXAS Mapping.

    NASA Astrophysics Data System (ADS)

    Nicholas, S. L.; Gowan, A. S.; Knaeble, A. R.; Erickson, M. L.; Woodruff, L. G.; Marcus, M.; Toner, B. M.

    2014-12-01

    Western Minnesota, USA, is a regional locus of drinking-water wells with high arsenic (As) (As>10µgL-1). Arsenic concentrations vary widely among neighboring wells with otherwise similar water chemistry [1,2]. As(III) should be the most mobile As species in Minnesota well waters (median Eh in As affected wells is -50mV). This As is geogenic, sourced from glacial deposits derived from Cretaceous sedimentary bedrock (dolostone, limestone, shale). Our hypothesis is that As speciation in the solid phase is the important factor controlling the introduction of As to groundwater—more significant in this region than absolute As concentrations or landscape variability. Our previous research used micro-X-ray absorption spectroscopy (µXAS) speciation mapping [3] on archived glacial tills (stored dry at room temperature in air). µXAS results from this material showed that As in a reduced chemical state within the till aquitard is spatially correlated with iron sulfide at the micron scale. Conversley, As in aquifer sediments was mainly oxidized As(V). At the aquifer-aquitard contact As was observed as a mixture of both reduced and oxidized forms. This suggests that the aquifer-aquitard contact is a geochemically active zone in which reduced As species present within glacial till are converted to As(V) through complex redox processes, and subsequently release into aquifer sediments. Our current research applies the same methods to describe As speciation in samples collected from fresh cores of glacial sediment and frozen under argon in the field. Preliminary results are similar to our previous work in that As is, in general, more reduced in aquitard sediments, and more oxidized at the contact and in aquifer sediments. Arsenic(III) was preserved as a minor consitutent in ambient archived cores but is a more significant constituent in fresh, anaerobically preserved cores. Results will be presented comparing anaerobic samples with ambient-air aliquots of the same sample to

  1. Alleviation of environmental risks associated with severely contaminated mine tailings using amendments: Modeling of trace element speciation, solubility, and plant accumulation.

    PubMed

    Pardo, Tania; Bes, Cleménce; Bernal, Maria Pilar; Clemente, Rafael

    2016-11-01

    Tailings are considered one of the most relevant sources of contamination associated with mining activities. Phytostabilization of mine spoils may need the application of the adequate combination of amendments to facilitate plant establishment and reduce their environmental impact. Two pot experiments were set up to assess the capability of 2 inorganic materials (calcium carbonate and a red mud derivate, ViroBind TM ), alone or in combination with organic amendments, for the stabilization of highly acidic trace element-contaminated mine tailings using Atriplex halimus. The effects of the treatments on tailings and porewater physico-chemical properties and trace-element accumulation by the plants, as well as the processes governing trace elements speciation and solubility in soil solution and their bioavailability were modeled. The application of the amendments increased tailings pH and decreased (>99%) trace elements solubility in porewater, but also changed the speciation of soluble Cd, Cu, and Pb. All the treatments made A. halimus growth in the tailings possible; organic amendments increased plant biomass and nutritional status, and reduced trace-element accumulation in the plants. Tailings amendments modified trace-element speciation in porewater (favoring the formation of chlorides and/or organo-metallic forms) and their solubility and plant uptake, which were found to be mainly governed by tailing/porewater pH, electrical conductivity, and organic carbon content, as well as soluble/available trace-element concentrations. Environ Toxicol Chem 2016;35:2874-2884. © 2016 SETAC. © 2016 SETAC.

  2. Speciation and amphotericin B sensitivity studies on blood isolates of Candida from burned patients

    PubMed Central

    Stieritz, Donald D.; Law, Edward J.; Holder, Ian Alan

    1973-01-01

    Methods of speciating Candida isolates from clinical specimens are described and the necessity of speciation is emphasized. Differences in susceptibility of C. albicans and C. tropicalis to amphotericin B were observed and the implications of this in relation to treatment with amphotericin B and the development of resistance are discussed. PMID:4578160

  3. Chemically and geographically distinct solid-phase iron pools in the Southern Ocean.

    PubMed

    von der Heyden, B P; Roychoudhury, A N; Mtshali, T N; Tyliszczak, T; Myneni, S C B

    2012-11-30

    Iron is a limiting nutrient in many parts of the oceans, including the unproductive regions of the Southern Ocean. Although the dominant fraction of the marine iron pool occurs in the form of solid-phase particles, its chemical speciation and mineralogy are challenging to characterize on a regional scale. We describe a diverse array of iron particles, ranging from 20 to 700 nanometers in diameter, in the waters of the Southern Ocean euphotic zone. Distinct variations in the oxidation state and composition of these iron particles exist between the coasts of South Africa and Antarctica, with different iron pools occurring in different frontal zones. These speciation variations can result in solubility differences that may affect the production of bioavailable dissolved iron.

  4. A role for a neo-sex chromosome in stickleback speciation

    PubMed Central

    Kitano, Jun; Ross, Joseph A.; Mori, Seiichi; Kume, Manabu; Jones, Felicity C.; Chan, Yingguang F.; Absher, Devin M.; Grimwood, Jane; Schmutz, Jeremy; Myers, Richard M.; Kingsley, David M.; Peichel, Catherine L.

    2009-01-01

    Sexual antagonism, or conflict between the sexes, has been proposed as a driving force in both sex chromosome turnover and speciation. Although closely related species often have different sex chromosome systems, it is unknown whether sex chromosome turnover contributes to the evolution of reproductive isolation between species. In this study, we show that a newly evolved sex chromosome harbours genes that contribute to speciation in threespine stickleback fish (Gasterosteus aculeatus). We first identified a neo-sex chromosome system found only in one member of a sympatric species pair in Japan. We then performed genetic linkage mapping of male-specific traits important for reproductive isolation between the Japanese species pair. The neo-X chromosome harbours loci for male courtship display traits that contribute to behavioural isolation, while the ancestral X chromosome contains loci for both behavioural isolation and hybrid male sterility. Our work not only provides strong evidence for a large-X effect on reproductive isolation in a vertebrate system, but also provides direct evidence that a young neo-X chromosome contributes to reproductive isolation between closely related species. Our data suggest that sex chromosome turnover might play a greater role in speciation than previously appreciated. PMID:19783981

  5. A role for a neo-sex chromosome in stickleback speciation.

    PubMed

    Kitano, Jun; Ross, Joseph A; Mori, Seiichi; Kume, Manabu; Jones, Felicity C; Chan, Yingguang F; Absher, Devin M; Grimwood, Jane; Schmutz, Jeremy; Myers, Richard M; Kingsley, David M; Peichel, Catherine L

    2009-10-22

    Sexual antagonism, or conflict between the sexes, has been proposed as a driving force in both sex-chromosome turnover and speciation. Although closely related species often have different sex-chromosome systems, it is unknown whether sex-chromosome turnover contributes to the evolution of reproductive isolation between species. Here we show that a newly evolved sex chromosome contains genes that contribute to speciation in threespine stickleback fish (Gasterosteus aculeatus). We first identified a neo-sex chromosome system found only in one member of a sympatric species pair in Japan. We then performed genetic linkage mapping of male-specific traits important for reproductive isolation between the Japanese species pair. The neo-X chromosome contains loci for male courtship display traits that contribute to behavioural isolation, whereas the ancestral X chromosome contains loci for both behavioural isolation and hybrid male sterility. Our work not only provides strong evidence for a large X-effect on reproductive isolation in a vertebrate system, but also provides direct evidence that a young neo-X chromosome contributes to reproductive isolation between closely related species. Our data indicate that sex-chromosome turnover might have a greater role in speciation than was previously appreciated.

  6. Sulfur speciation and sulfide oxidation in the water column of the Black Sea

    NASA Astrophysics Data System (ADS)

    Luther, George W., III; Church, Thomas M.; Powell, David

    We have applied sulfur speciation techniques to understand the chemistry and cycling of sulfur in Black Sea waters. The only reduced dissolved inorganic sulfur species detected (above the low minimum detection limits of the voltammetric methods employed) in the water column was hydrogen sulfide. The maximum concentration of sulfide (423 μM) is similar to previous reports. Using a cathodic stripping square wave voltammetry (CSSWV) method for nanomolar levels of sulfide, we determined the precise boundary between the "free" hydrogen sulfide (sulfidic) zone and the upper (oxic/suboxic) water column at the two stations studied. This boundary has apparently moved up by about 50 m in the past 20 years. Our results help demonstrate three chemically distinct zones of water in the central basin of the Black Sea: (1) the oxic [0-65 m], (2) the anoxic/nonsulfidic [65-100 m] and (3) the sulfidic [>100 m]. Sulfide bound to metals ("complexed" sulfide) is observed in both the oxic and anoxic/nonsulfidic zones of the water column. This supports previous studies on metal sulfide forms. From the electrochemical data, it is possible to estimate the strength of the complexation of sulfide to metals (log K = 10 to 11). Thiosulfate and sulfite were below our minimum detectable limit (MDL) of 50 nM using CSSWV. Elemental sulfur (MDL 5 nM) was detected below the onset of the hydrogen sulfide zone (90-100 m) with a maximum of 30-60 nM near 120 m. The sulfur speciation results for the Black Sea are lower by one order of magnitude or more than other marine systems such as the Cariaco Trench and salt marshes. New HPLC techniques were applied to detect thiols at submicromolar levels. The presence of thiols (2-mercaptoethylamine, 2-mercaptoethanol, N-acetylcysteine and glutathione) is correlated with the remineralization of organic matter at the oxic and anoxic/nonsulfidic interface. Water samples collected from the upper 50 m of the sulfidic zone showed significant sulfide oxidation on

  7. Continuous measurements at the urban roadside in an Asian megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong

    NASA Astrophysics Data System (ADS)

    Sun, C.; Lee, B. P.; Huang, D.; Jie Li, Y.; Schurman, M. I.; Louie, P. K. K.; Luk, C.; Chan, C. K.

    2016-02-01

    Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM) in the fall and winter seasons of 2013 on the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA), characterized by application of Positive Matrix Factorization (PMF), and sulfate are found to be dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear mealtime concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during mealtimes, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and the influence of continental air masses.

  8. Continuous measurements at the urban roadside in an Asian Megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong

    NASA Astrophysics Data System (ADS)

    Sun, C.; Lee, B. P.; Huang, D.; Li, Y. J.; Schurman, M. I.; Louie, P. K. K.; Luk, C.; Chan, C. K.

    2015-07-01

    Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM) in the fall and winter seasons of 2013 at the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA), characterized by application of Positive Matrix Factorization (PMF), and sulfate are found dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear meal-time concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during meal times, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a~lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and influence of continental air masses.

  9. Characterizing Zinc Speciation in Soils from a Smelter-Affected Boreal Forest Ecosystem.

    PubMed

    Hamilton, Jordan G; Farrell, Richard E; Chen, Ning; Feng, Renfei; Reid, Joel; Peak, Derek

    2016-03-01

    HudBay Minerals, Inc., has mined and/or processed Zn and Cu ore in Flin Flon, MB, Canada, since the 1930s. The boreal forest ecosystem and soil surrounding these facilities have been severely impacted by mixed metal contamination and HSO deposition. Zinc is one of the most prevalent smelter-derived contaminants and has been identified as a key factor that may be limiting revegetation. Metal toxicity is related to both total concentrations and speciation; therefore, X-ray absorption spectroscopy and X-ray fluorescence mapping were used to characterize Zn speciation in soils throughout the most heavily contaminated areas of the landscape. Zinc speciation was linked to two distinct soil types. Group I soils consist of exposed soils in weathered positions of bedrock outcrops with Zn present primarily as franklinite, a (ZnFeO) spinel mineral. Group II soils are stabilized by an invasive metal-tolerant grass species, with Zn found as a mixture of octahedral (Fe oxides) and tetrahedral Mn oxides) adsorption complexes with a franklinite component. Soil erosion influences Zn speciation through the redistribution of Zn and soil particulates from Group I landscape positions to Group II soils. Despite Group II soils having the highest concentrations of CaCl-extractable Zn, they support metal-tolerant plant growth. The metal-tolerant plants are probably preferentially colonizing these areas due to better soil and nutrient conditions as a result of soil deposition from upslope Group I areas. Zinc concentration and speciation appears to not influence the colonization by metal-tolerant grasses, but the overall soil properties and erosion effects prevent the revegetation by native boreal forest species. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Iodine-129 and iodine-127 speciation in groundwater at the Hanford site, US: iodate incorporation into calcite.

    PubMed

    Zhang, Saijin; Xu, Chen; Creeley, Danielle; Ho, Yi-Fang; Li, Hsiu-Ping; Grandbois, Russell; Schwehr, Kathleen A; Kaplan, Daniel I; Yeager, Chris M; Wellman, Dawn; Santschi, Peter H

    2013-09-03

    The geochemical transport and fate of radioiodine depends largely on its chemical speciation that is greatly affected by environmental factors. This study reports, for the first time, the speciation of stable and radioactive iodine in the groundwater from the Hanford Site. Iodate was the dominant species and accounted for up to 84% of the total iodine present. The alkaline pH (pH ∼ 8) and predominantly oxidizing environment may have prevented reduction of the iodate. In addition, groundwater samples were found to have large amounts of calcite precipitate which were likely formed as a result of CO2 degassing during removal from the deep subsurface (>70m depth). Further analyses indicated that between 7 and 40% of the dissolved (127)I and (129)I that was originally in the groundwater had coprecipitated in the calcite. Iodate was the main species incorporated into calcite and this incorporation process could be impeded by elevating the pH and decreasing ionic strength in groundwater. This study provides critical information for predicting the long-term fate and transport of (129)I. Furthermore, the common sampling artifact resulting in the precipitation of calcite by degassing CO2, had the unintended consequence of providing insight into a potential solution for the in situ remediation of groundwater (129)I.

  11. Distribution and speciation of metals (Cu, Zn, Cd, and Pb) in agricultural and non-agricultural soils near a stream upriver from the Pearl River, China.

    PubMed

    Yang, Silin; Zhou, Dequn; Yu, Huayong; Wei, Rong; Pan, Bo

    2013-06-01

    The distribution and chemical speciation of typical metals (Cu, Zn, Cd and Pb) in agricultural and non-agricultural soils were investigated in the area of Nanpan River, upstream of the Pearl River. The investigated four metals showed higher concentrations in agricultural soils than in non-agricultural soils, and the site located in factory district contained metals much higher than the other sampling sites. These observations suggested that human activities, such as water irrigation, fertilizer and pesticide applications might have a major impact on the distribution of metals. Metal speciation analysis presented that Cu, Zn and Cd were dominated by the residual fraction, while Pb was dominated by the reducible fraction. Because of the low mobility of the metals in the investigated area, no remarkable difference could be observed between upstream and downstream separated by the factory site. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) in a pine forest during BEACHON-RoMBAS 2011

    DOE PAGES

    Chan, A. W. H.; Kreisberg, N. M.; Hohaus, T.; ...

    2016-02-02

    Understanding organic composition of gases and particles is essential to identifying sources and atmospheric processing leading to organic aerosols (OA), but atmospheric chemical complexity and the analytical techniques available often limit such analysis. Here we present speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) using a novel dual-use instrument (SV-TAG-AMS) deployed at Manitou Forest, CO, during the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H 2O, Organics & Nitrogen – Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) 2011 campaign. This instrument provides on-line speciation of ambient organic compounds with 2 h time resolution. The species in this volatility range aremore » complex in composition, but their chemical identities reveal potential sources. Observed compounds of biogenic origin include sesquiterpenes with molecular formula C 15H 24 (e.g., β-caryophyllene and longifolene), which were most abundant at night. A variety of other biogenic compounds were observed, including sesquiterpenoids with molecular formula C 15H 22, abietatriene and other terpenoid compounds. Many of these compounds have been identified in essential oils and branch enclosure studies but were observed in ambient air for the first time in our study. Semivolatile polycyclic aromatic hydrocarbons (PAHs) and alkanes were observed with highest concentrations during the day and the dependence on temperature suggests the role of an evaporative source. Using statistical analysis by positive matrix factorization (PMF), we classify observed S/IVOCs by their likely sources and processes, and characterize them based on chemical composition. The total mass concentration of elutable S/IVOCs was estimated to be on the order of 0.7 µg m –3 and their volatility distributions are estimated for modeling aerosol formation chemistry.« less

  13. Speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) in a pine forest during BEACHON-RoMBAS 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, A. W. H.; Kreisberg, N. M.; Hohaus, T.

    Understanding organic composition of gases and particles is essential to identifying sources and atmospheric processing leading to organic aerosols (OA), but atmospheric chemical complexity and the analytical techniques available often limit such analysis. Here we present speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) using a novel dual-use instrument (SV-TAG-AMS) deployed at Manitou Forest, CO, during the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H 2O, Organics & Nitrogen – Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) 2011 campaign. This instrument provides on-line speciation of ambient organic compounds with 2 h time resolution. The species in this volatility range aremore » complex in composition, but their chemical identities reveal potential sources. Observed compounds of biogenic origin include sesquiterpenes with molecular formula C 15H 24 (e.g., β-caryophyllene and longifolene), which were most abundant at night. A variety of other biogenic compounds were observed, including sesquiterpenoids with molecular formula C 15H 22, abietatriene and other terpenoid compounds. Many of these compounds have been identified in essential oils and branch enclosure studies but were observed in ambient air for the first time in our study. Semivolatile polycyclic aromatic hydrocarbons (PAHs) and alkanes were observed with highest concentrations during the day and the dependence on temperature suggests the role of an evaporative source. Using statistical analysis by positive matrix factorization (PMF), we classify observed S/IVOCs by their likely sources and processes, and characterize them based on chemical composition. The total mass concentration of elutable S/IVOCs was estimated to be on the order of 0.7 µg m –3 and their volatility distributions are estimated for modeling aerosol formation chemistry.« less

  14. Fluoride geochemistry of thermal waters in Yellowstone National Park: I. Aqueous fluoride speciation

    USGS Publications Warehouse

    Deng, Y.; Nordstrom, D. Kirk; McCleskey, R. Blaine

    2011-01-01

    Thermal water samples from Yellowstone National Park (YNP) have a wide range of pH (1–10), temperature, and high concentrations of fluoride (up to 50 mg/l). High fluoride concentrations are found in waters with field pH higher than 6 (except those in Crater Hills) and temperatures higher than 50 °C based on data from more than 750 water samples covering most thermal areas in YNP from 1975 to 2008. In this study, more than 140 water samples from YNP collected in 2006–2009 were analyzed for free-fluoride activity by ion-selective electrode (ISE) method as an independent check on the reliability of fluoride speciation calculations. The free to total fluoride concentration ratio ranged from <1% at low pH values to >99% at high pH. The wide range in fluoride activity can be explained by strong complexing with H+ and Al3+ under acidic conditions and lack of complexing under basic conditions. Differences between the free-fluoride activities calculated with the WATEQ4F code and those measured by ISE were within 0.3–30% for more than 90% of samples at or above 10−6 molar, providing corroboration for chemical speciation models for a wide range of pH and chemistry of YNP thermal waters. Calculated speciation results show that free fluoride, F−, and major complexes (HF(aq)0">HF(aq)0, AlF2+, AlF2+">AlF2+and AlF30">AlF30) account for more than 95% of total fluoride. Occasionally, some complex species like AlF4-">AlF4-, FeF2+, FeF2+">FeF2+, MgF+ and BF2(OH)2-">BF2(OH)2- may comprise 1–10% when the concentrations of the appropriate components are high. According to the simulation results by PHREEQC and calculated results, the ratio of main fluoride species to total fluoride varies as a function of pH and the concentrations and ratios of F and Al.

  15. Lead Speciation And Bioavailability In Apatite-Amended Sediments

    EPA Science Inventory

    The in situ sequestration of lead (Pb) in sediment with a phosphate amendment was investigated by Pb speciation and bioavailability. Sediment Pb in preamendment samples was identified as galena (PbS) with trace amounts of absorbed Pb. Sediment exposed to atmospheric conditions ...

  16. LINKING WATERFOWL WITH CONTAMINANT SPECIATION IN RIPARIAN SOILS

    EPA Science Inventory

    This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 38, Linking Waterfowl with Contaminant Speciation in Riparian Soils, implemented and funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U...

  17. Arsenic Speciation and Cadmium Determination in Tobacco Leaves, Ash and Smoke.

    PubMed

    Iwai, Takahiro; Chiba, Koichi; Narukawa, Tomohiro

    2016-01-01

    The concentrations of arsenic (As) and cadmium (Cd) in the tobacco leaves, ash and smoke of 10 kinds of cigarettes collected from different countries worldwide were determined by ICP-MS after microwave-assisted digestion. Total As and Cd concentrations in the tobacco leaves ranged from 0.20 to 0.63 and 1.8 to 9.9 mg kg(-1), respectively. By the speciation analysis of As in tobacco leaves and ash by HPLC-ICP-MS following acid extraction, arsenite [As(III)] and arsenate [As(V)] were determined and trace amounts of monomethylarsonic acid (MMAA), dimethylarsinic acid (DMAA), trimethylarsine oxide (TMAO), tetramethylarsonium (TeMA) and some unidentified As species were also found. Arsenic speciation for smoke absorbed in an aqueous solution was carried out. The sum of the As species in tobacco leaves, ash and smoke was in good agreement with the result of total As determination in each sample, and the recoveries of speciation were 100 ± 10%. The distributions and the behaviors of As species were clarified.

  18. Hybridization Reveals the Evolving Genomic Architecture of Speciation

    PubMed Central

    Kronforst, Marcus R.; Hansen, Matthew E.B.; Crawford, Nicholas G.; Gallant, Jason R.; Zhang, Wei; Kulathinal, Rob J.; Kapan, Durrell D.; Mullen, Sean P.

    2014-01-01

    SUMMARY The rate at which genomes diverge during speciation is unknown, as are the physical dynamics of the process. Here, we compare full genome sequences of 32 butterflies, representing five species from a hybridizing Heliconius butterfly community, to examine genome-wide patterns of introgression and infer how divergence evolves during the speciation process. Our analyses reveal that initial divergence is restricted to a small fraction of the genome, largely clustered around known wing-patterning genes. Over time, divergence evolves rapidly, due primarily to the origin of new divergent regions. Furthermore, divergent genomic regions display signatures of both selection and adaptive introgression, demonstrating the link between microevolutionary processes acting within species and the origin of species across macroevolutionary timescales. Our results provide a uniquely comprehensive portrait of the evolving species boundary due to the role that hybridization plays in reducing the background accumulation of divergence at neutral sites. PMID:24183670

  19. The Role of Transposable Elements in Speciation

    PubMed Central

    Serrato-Capuchina, Antonio; Matute, Daniel R.

    2018-01-01

    Understanding the phenotypic and molecular mechanisms that contribute to genetic diversity between and within species is fundamental in studying the evolution of species. In particular, identifying the interspecific differences that lead to the reduction or even cessation of gene flow between nascent species is one of the main goals of speciation genetic research. Transposable elements (TEs) are DNA sequences with the ability to move within genomes. TEs are ubiquitous throughout eukaryotic genomes and have been shown to alter regulatory networks, gene expression, and to rearrange genomes as a result of their transposition. However, no systematic effort has evaluated the role of TEs in speciation. We compiled the evidence for TEs as potential causes of reproductive isolation across a diversity of taxa. We find that TEs are often associated with hybrid defects that might preclude the fusion between species, but that the involvement of TEs in other barriers to gene flow different from postzygotic isolation is still relatively unknown. Finally, we list a series of guides and research avenues to disentangle the effects of TEs on the origin of new species. PMID:29762547

  20. Shedding Light on the Grey Zone of Speciation along a Continuum of Genomic Divergence.

    PubMed

    Roux, Camille; Fraïsse, Christelle; Romiguier, Jonathan; Anciaux, Yoann; Galtier, Nicolas; Bierne, Nicolas

    2016-12-01

    Speciation results from the progressive accumulation of mutations that decrease the probability of mating between parental populations or reduce the fitness of hybrids-the so-called species barriers. The speciation genomic literature, however, is mainly a collection of case studies, each with its own approach and specificities, such that a global view of the gradual process of evolution from one to two species is currently lacking. Of primary importance is the prevalence of gene flow between diverging entities, which is central in most species concepts and has been widely discussed in recent years. Here, we explore the continuum of speciation thanks to a comparative analysis of genomic data from 61 pairs of populations/species of animals with variable levels of divergence. Gene flow between diverging gene pools is assessed under an approximate Bayesian computation (ABC) framework. We show that the intermediate "grey zone" of speciation, in which taxonomy is often controversial, spans from 0.5% to 2% of net synonymous divergence, irrespective of species life history traits or ecology. Thanks to appropriate modeling of among-locus variation in genetic drift and introgression rate, we clarify the status of the majority of ambiguous cases and uncover a number of cryptic species. Our analysis also reveals the high incidence in animals of semi-isolated species (when some but not all loci are affected by barriers to gene flow) and highlights the intrinsic difficulty, both statistical and conceptual, of delineating species in the grey zone of speciation.

  1. Colonization and speciation of cave animals in the Philippines

    NASA Astrophysics Data System (ADS)

    Husana, D.; Yamamuro, M.; Kase, T.

    2012-12-01

    Island-like situation of caves resulted to species isolation while organism's phenotypic plasticity allows the animal to cope with the cave's environment. These conditions eventually lead to organism's speciation through genetic differentiation. Combined morphological and molecular analyses provided insights on the speciation events and colonization of the subterranean ecosystem. Morphological analysis of hypogean species, known as troglobite, and its epigean congeners showed the interesting differences in their characters. Troglobite exhibited cave adaptations such as degenerated eyesight, enlargement or elongation of ambulatory organs, loss of pigmentation and development of other useful organs that favors their survival in the dark cave environment. Molecular clock estimation based on the substitution rate of 0.88% per million years established for 16S rRNA for the grapsid crab genus Sesarma suggested that the troglobitic Sundathelphusa species colonized the cave habitat in Samar Island in the late Miocene epoch and started to diverge from its epigean ancestor ca. 5.92 mya. Interestingly, the five species of the genus Sundathelphusa from Bohol Island comprising of both hypogean and epigean species (S. cavernicola, S. sottoae, S. vediniki, S. urichi and S. boex) occupy a single clade with divergence time from its sister clade ca. 2.58 mya. This phenomenon suggests two possible interpretations of the existence of Bohol species: (1) they belong to a single species with regular genetic flow from their surface relative and that their character differences can be best interpreted as ecophenotypic, or, (2) the speciation event was very rapid and quite recent. Mitochondrial DNA sequences of 430 base pairs of the large subunit rRNA (16S rRNA) revealed the phylogenetic relationships of the genus Sundathelphusa suggesting a multiple colonizations of caves. The speciation events coincided with the timing of the eustatic sea level fluctuation and geologic changes in the

  2. Iron speciation in peats: Chemical and spectroscopic evidence for the co-occurrence of ferric and ferrous iron in organic complexes and mineral precipitates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, Amrita; Schmidt, Michael P.; Stavitski, Eli

    The speciation of iron (Fe) in organic matter (OM)-rich environments under in situ variable redox conditions is largely unresolved. Peatlands provide a natural setting to study Fe–OM interactions. Utilizing chemical, spectroscopic and theoretical modeling approaches, we report the chemical forms, oxidation states and local coordination environment of naturally occurring Fe in the vertically redox-stratified Manning peatlands of western New York. In addition, we report dominant carbon, sulfur and nitrogen species that can potentially stabilize the various Fe species present in these peatlands. Our results provide clear direct and indirect evidence for the co-occurrence of ferrous (Fe 2+) and ferric (Femore » 3+) iron species in peats under both oxic and anoxic conditions. Iron is mostly present within the operationally defined organic and amorphous (i.e., short range ordered, SRO) fractions; ferric iron primarily as magnetically isolated paramagnetic Fe 3+ in Fe(III)-organic complexes, but also in mineral forms such as ferrihydrite; ferrous iron in tetrahedral coordination in Fe(II)-organic complexes with minor contribution from pyrite. All of the Fe species identified stabilize Fe(III) and/or Fe(II) in anoxic and oxic peats. Fundamental differences are also observed in the relative proportion of C, S and N functionalities of OM in oxic and anoxic peats. Aromatic C=C, ester, phenol and anomeric C (R-O-C-O-R), as well as thiol, sulfide and heterocyclic N functionalities are more prevalent in anoxic peats. Collectively, our experimental evidence suggests iron forms coordination complexes with O-, S- and N-containing functional groups of OM. We posit the co-occurrence of organic and mineral forms of Fe(II) and Fe(III) in both oxic and anoxic peat layers results from dynamic complexation and hydrolysis-precipitation reactions that occur under variable redox conditions. In conclusion, our findings aid in understanding the crucial role OM plays in determining Fe

  3. Iron speciation in peats: Chemical and spectroscopic evidence for the co-occurrence of ferric and ferrous iron in organic complexes and mineral precipitates

    DOE PAGES

    Bhattacharyya, Amrita; Schmidt, Michael P.; Stavitski, Eli; ...

    2017-10-31

    The speciation of iron (Fe) in organic matter (OM)-rich environments under in situ variable redox conditions is largely unresolved. Peatlands provide a natural setting to study Fe–OM interactions. Utilizing chemical, spectroscopic and theoretical modeling approaches, we report the chemical forms, oxidation states and local coordination environment of naturally occurring Fe in the vertically redox-stratified Manning peatlands of western New York. In addition, we report dominant carbon, sulfur and nitrogen species that can potentially stabilize the various Fe species present in these peatlands. Our results provide clear direct and indirect evidence for the co-occurrence of ferrous (Fe 2+) and ferric (Femore » 3+) iron species in peats under both oxic and anoxic conditions. Iron is mostly present within the operationally defined organic and amorphous (i.e., short range ordered, SRO) fractions; ferric iron primarily as magnetically isolated paramagnetic Fe 3+ in Fe(III)-organic complexes, but also in mineral forms such as ferrihydrite; ferrous iron in tetrahedral coordination in Fe(II)-organic complexes with minor contribution from pyrite. All of the Fe species identified stabilize Fe(III) and/or Fe(II) in anoxic and oxic peats. Fundamental differences are also observed in the relative proportion of C, S and N functionalities of OM in oxic and anoxic peats. Aromatic C=C, ester, phenol and anomeric C (R-O-C-O-R), as well as thiol, sulfide and heterocyclic N functionalities are more prevalent in anoxic peats. Collectively, our experimental evidence suggests iron forms coordination complexes with O-, S- and N-containing functional groups of OM. We posit the co-occurrence of organic and mineral forms of Fe(II) and Fe(III) in both oxic and anoxic peat layers results from dynamic complexation and hydrolysis-precipitation reactions that occur under variable redox conditions. In conclusion, our findings aid in understanding the crucial role OM plays in determining Fe

  4. Speciation in the Derrida-Higgs model with finite genomes and spatial populations

    NASA Astrophysics Data System (ADS)

    de Aguiar, Marcus A. M.

    2017-02-01

    The speciation model proposed by Derrida and Higgs demonstrated that a sexually reproducing population can split into different species in the absence of natural selection or any type of geographic isolation, provided that mating is assortative and the number of genes involved in the process is infinite. Here we revisit this model and simulate it for finite genomes, focusing on the question of how many genes it actually takes to trigger neutral sympatric speciation. We find that, for typical parameters used in the original model, it takes the order of 105 genes. We compare the results with a similar spatially explicit model where about 100 genes suffice for speciation. We show that when the number of genes is small the species that emerge are strongly segregated in space. For a larger number of genes, on the other hand, the spatial structure of the population is less important and the species distribution overlap considerably.

  5. Polymorphic butterfly reveals the missing link in ecological speciation.

    PubMed

    Chamberlain, Nicola L; Hill, Ryan I; Kapan, Durrell D; Gilbert, Lawrence E; Kronforst, Marcus R

    2009-11-06

    Ecological speciation occurs when ecologically based, divergent selection causes the evolution of reproductive isolation. There are many empirical examples of this process; however, there exists a poorly characterized stage during which the traits that distinguish species ecologically and reproductively segregate in a single population. By using a combination of genetic mapping, mate-choice experiments, field observations, and population genetics, we studied a butterfly population with a mimetic wing color polymorphism and found that the butterflies exhibited partial, color-based, assortative mate preference. These traits represent the divergent, ecologically based signal and preference components of sexual isolation that usually distinguish incipient and sibling species. The association between behavior and recognition trait in a single population may enhance the probability of speciation and provides an example of the missing link between an interbreeding population and isolated species.

  6. Bioconcentration and arsenic speciation analysis in ragworm, Hediste diversicolor (Muller 1776).

    PubMed

    Gaion, Andrea; Scuderi, Alice; Pellegrini, David; Sartori, Davide

    2013-01-01

    This study focused on bioconcentrations of arsenic in Hediste diversicolor (Müller 1776) after exposure to three different molecule solutions: arsenate, dimethyl-arsinate and arsenobetaine. Speciation analysis was carried out after exposing the organisms to these solutions in order to investigate their arsenic biotransformation capacity. Arsenic reached to the maximum level in these tissues after 15 days' exposure to a solution of 100 μg L(-1) of arsenobetaine, although a significant increase was obtained in worms exposed to arsenate. Speciation analysis shows that trimethyl-arsine oxide is the slowest detoxification phase recorded in experiment.

  7. Element speciation during nuclear glass alteration

    NASA Astrophysics Data System (ADS)

    Galoisy, L.; Calas, G.; Bergeron, B.; Jollivet, P.; Pelegrin, E.

    2011-12-01

    Assessing the long-term behavior of nuclear glasses implies the prediction of their long-term performance. An important controlling parameter is their evolution during interaction with water under conditions simulating geological repositories. After briefly recalling the major characteristics of the local and medium-range structure of borosilicate glasses of nuclear interest, we will present some structural features of this evolution. Specific structural tools used to determine the local structure of glass surfaces include synchrotron-radiation x-ray absorption spectroscopy with total electron yield detection. The evolution of the structure of glass surface has been determined at the Zr-, Fe-, Si- and Al-K edges and U-LIII edge. During alteration in near- or under-saturated conditions, some elements such as Fe change coordination, as other elements such as Zr only suffer structural modifications in under-saturated conditions. Uranium exhibits a modification of its speciation from an hexa-coordinated U(VI) in the borosilicate glass to an uranyl group in the gel. These structural modifications may explain the chemical dependence of the initial alteration rate and the transition to the residual regime. They also illustrate the molecular-scale origin of the processes at the origin of the glass-to-gel transformation. Eventually, they explain the provisional trapping of U by the alteration gel: the uranium retention factors in the gel depend on the alteration conditions, and thus on the nature of the resulting gel and on the trapping conditions.

  8. Non-chromatographic speciation analysis of mercury by flow injection on-line preconcentration in combination with chemical vapor generation atomic fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Wu, Hong; Jin, Yan; Han, Weiying; Miao, Qiang; Bi, Shuping

    2006-07-01

    A novel non-chromatographic approach for direct speciation of mercury, based on the selective retention inorganic mercury and methylmercury on the inner wall of a knotted reactor by using ammonium diethyl dithiophosphate and dithizone as complexing agents respectively, was developed for flow injection on-line sorption preconcentration coupled with chemical vapor generation non-dispersive atomic fluorescence spectrometry. With the sample pH kept at 2.0, the preconcentration of inorganic mercury on the inner walls of the knotted reactor was carried out based on the exclusive retention of Hg-DDP complex in the presence of methylmercury via on-line merging the sample solution with ammonium diethyl dithiophosphate solution, and selective preconcentration methylmercury was achieved with dithizone instead of ammonium diethyl dithiophosphate. A 15% (v/v) HCl was introduced to elute the retained mercury species and merge with KBH 4 solution for atomic fluorescence spectrometry detection. Under the optimal experimental conditions, the sample throughputs of inorganic mercury and methylmercury were 30 and 20 h - 1 with the enhancement factors of 13 and 24. The detection limits were found to be 3.6 ng l - 1 for Hg 2+ and 2.0 ng l - 1 for CH 3Hg +. The precisions (RSD) for the 11 replicate measurements of each 0.2 μg l - 1 of Hg 2+ and CH 3Hg + were 2.2% and 2.8%, respectively. The developed method was validated by the analysis of certified reference materials (simulated natural water, rice flour and pork) and by recovery measurements on spiked samples, and was applied to the determination of inorganic mercury and methylmercury in biological and environmental water samples.

  9. Lead Speciation in Microorganisms.

    PubMed

    Stewart, Theodora J

    2017-04-10

    The biogeochemical cycles of lead (Pb) have been largely affected by anthropogenic activities as a result of its high natural abundance and use over the centuries [1]. At sites more strongly impacted by urbanization [2] and mining [3], Pb is found at high nano to low micromolar concentrations in surface waters, and can be significantly higher in soil and sediment [4]. Microorganisms are found everywhere and their responses to Pb exposure can range from resistant to highly sensitive [5, 6]. These varying levels of toxicity can be attributed to the cellular handling of Pb, making it important to understand the role of intracellular Pb speciation for more accurate toxicity predictions.

  10. Integrative analyses unveil speciation linked to host plant shift in Spialia butterflies.

    PubMed

    Hernández-Roldán, Juan L; Dapporto, Leonardo; Dincă, Vlad; Vicente, Juan C; Hornett, Emily A; Šíchová, Jindra; Lukhtanov, Vladimir A; Talavera, Gerard; Vila, Roger

    2016-09-01

    Discovering cryptic species in well-studied areas and taxonomic groups can have profound implications in understanding eco-evolutionary processes and in nature conservation because such groups often involve research models and act as flagship taxa for nature management. In this study, we use an array of techniques to study the butterflies in the Spialia sertorius species group (Lepidoptera, Hesperiidae). The integration of genetic, chemical, cytogenetic, morphological, ecological and microbiological data indicates that the sertorius species complex includes at least five species that differentiated during the last three million years. As a result, we propose the restitution of the species status for two taxa often treated as subspecies, Spialia ali (Oberthür, 1881) stat. rest. and Spialia therapne (Rambur, 1832) stat. rest., and describe a new cryptic species Spialia rosae Hernández-Roldán, Dapporto, Dincă, Vicente & Vila sp. nov. Spialia sertorius (Hoffmannsegg, 1804) and S. rosae are sympatric and synmorphic, but show constant differences in mitochondrial DNA, chemical profiles and ecology, suggesting that S. rosae represents a case of ecological speciation involving larval host plant and altitudinal shift, and apparently associated with Wolbachia infection. This study exemplifies how a multidisciplinary approach can reveal elusive cases of hidden diversity. © 2016 John Wiley & Sons Ltd.

  11. Na, Mg, Ni and Cs distribution and speciation after long-term alteration of a simulated nuclear waste glass: A micro-XAS/XRF/XRD and wet chemical study

    NASA Astrophysics Data System (ADS)

    Curti, Enzo; Dähn, Rainer; Farges, François; Vespa, Marika

    2009-04-01

    trioctahedral Mg-clay minerals. Alternative models assuming other elements (Ni, Al, Fe) in addition to Mg in the second shell could not be fitted successfully. Aqueous concentration data were used to calculate the speciation of the leaching solutions. Saturation index (SI) calculations indicate undersaturation with respect to NiCO 3 and NiSO 4·7H 2O, but oversaturation with respect to β-Ni(OH) 2. The latter result is probably due to the omission of Ni borate and Ni silicate complexes in the speciation calculations, for which formation constants are not available. With the help of estimation techniques, we could infer that such complexes would dominate the Ni speciation and consequently reduce the SI below the saturation of β-Ni(OH) 2. The μ-XRF maps show that Cs is uniformly distributed in the MW glass, since no region with high Cs concentration could be detected. The Cs L III-edge μ-XAS spectra were all very similar independently of the degree of alteration, indicating similar coordination environments of Cs in the core regions of the glass as well as in the secondary clays. These spectra largely differ from that measured for pollucite (a potential secondary Cs-phase in altered glasses) implying that the coordination environments of Cs in the MW glass and in pollucite are fundamentally different. The present study shows that μ-XRF and μ-XAS are essential tools in determining the fate and the retention mechanisms of radionuclides released from nuclear waste during aqueous alteration. Our spectroscopic analyses allowed us to exclude formation of specific Ni and Cs secondary solids (e.g. nepouite, β-Ni(OH) 2, pollucite) during the aqueous alteration. Ni and Cs are instead distributed as trace elements in the alteration phases formed by major elements during the leaching process. Our results imply that solid solution and/or adsorption equilibria, rather than pure phase solubility equilibria, are the adequate chemical models to determine Ni and Cs aqueous concentrations in

  12. Testing founder effect speciation: Divergence population genetics of the Spoonbills Platalea regia and Pl. minor (Threskiornithidae, Aves)

    USGS Publications Warehouse

    Yeung, Carol K.L.; Tsai, Pi-Wen; Chesser, R. Terry; Lin, Rong-Chien; Yao, Cheng-Te; Tian, Xiu-Hua; Li, Shou-Hsien

    2011-01-01

    Although founder effect speciation has been a popular theoretical model for the speciation of geographically isolated taxa, its empirical importance has remained difficult to evaluate due to the intractability of past demography, which in a founder effect speciation scenario would involve a speciational bottleneck in the emergent species and the complete cessation of gene flow following divergence. Using regression-weighted approximate Bayesian computation, we tested the validity of these two fundamental conditions of founder effect speciation in a pair of sister species with disjunct distributions: the royal spoonbill Platalea regia in Australasia and the black-faced spoonbill Pl. minor in eastern Asia. When compared with genetic polymorphism observed at 20 nuclear loci in the two species, simulations showed that the founder effect speciation model had an extremely low posterior probability (1.55 × 10-8) of producing the extant genetic pattern. In contrast, speciation models that allowed for postdivergence gene flow were much more probable (posterior probabilities were 0.37 and 0.50 for the bottleneck with gene flow and the gene flow models, respectively) and postdivergence gene flow persisted for a considerable period of time (more than 80% of the divergence history in both models) following initial divergence (median = 197,000 generations, 95% credible interval [CI]: 50,000-478,000, for the bottleneck with gene flow model; and 186,000 generations, 95% CI: 45,000-477,000, for the gene flow model). Furthermore, the estimated population size reduction in Pl. regia to 7,000 individuals (median, 95% CI: 487-12,000, according to the bottleneck with gene flow model) was unlikely to have been severe enough to be considered a bottleneck. Therefore, these results do not support founder effect speciation in Pl. regia but indicate instead that the divergence between Pl. regia and Pl. minor was probably driven by selection despite continuous gene flow. In this light, we

  13. Synchrotron-based P K-edge XANES spectroscopy reveals rapid changes of phosphorus speciation in the topsoil of two glacier foreland chronosequences

    NASA Astrophysics Data System (ADS)

    Prietzel, Jörg; Dümig, Alexander; Wu, Yanhong; Zhou, Jun; Klysubun, Wantana

    2013-05-01

    Phosphorus (P) is a crucial element for life on Earth, and the bioavailability of P in terrestrial ecosystems, which is dependent on the soil P stock and its speciation, may limit ecosystem productivity and succession. In our study, for the first time a direct speciation of soil P in two glacier foreland chronosequences has been conducted using synchrotron-based X-ray Absorption Near-Edge Structure (XANES) spectroscopy. The chronosequences are located in the forefields of Hailuogou Glacier (Gongga Shan, China) and Damma Glacier (Swiss Alps). The age since deglaciation of the investigated soils ranges from 0 to 120 years at Hailuogou, and from 15 to >700 years at Damma. Differences in climate conditions (cooler at Damma, in contrast to Hailuogou precluding the establishment of forest in advanced ecosystem succession stages) and in the chemical composition of the parent material result in different soil contents of total P and Fe/Al oxyhydroxides, which are much smaller at Damma than at Hailuogou. Nevertheless, both chronosequences show similar trends of their topsoil P status with increasing soil age. Our study reveals a rapid change of topsoil P speciation in glacier retreat areas already during initial stages of pedogenesis: Initially dominating bedrock-derived apatite-P and Al-bound P is depleted; Fe-bound P and particularly organically-bound P is accumulated. Organic P strongly dominates in the topsoil of the mature soils outside the proglacial area of Damma Glacier (age 700-3000 years), and already 50 years after deglacation in the topsoil of the retreat area of Hailuogou Glacier. A key factor for the change in topsoil P speciation is the establishment of vegetation, resulting in soil organic matter (SOM) accumulation as well as accelerated soil acidification and apatite dissolution by organic acids, which are produced by SOM-degrading micro-organisms, mykorrhiza fungi, and plant roots. Particularly the succession of grassland to forest seems to accelerate the

  14. Speciation analysis of inorganic arsenic by magnetic solid phase extraction on-line with inductively coupled mass spectrometry determination.

    PubMed

    Montoro Leal, P; Vereda Alonso, E; López Guerrero, M M; Cordero, M T Siles; Cano Pavón, J M; García de Torres, A

    2018-07-01

    Arsenic, one of the main environmental pollutants and potent natural poison, is a chemical element that is spread throughout the Earth's crust. It is well known that the toxicity of arsenic is highly dependent on its chemical forms. Generally, the inorganic species are more toxic than its organics forms, and As(III) is 60 times more toxic than As(V). In environmental waters, arsenic exists predominantly in two chemical forms: As(III) and As(V). In view of these facts, fast, sensitive, accurate and simple analytical methods for the speciation of inorganic arsenic in environmental waters are required. In this work, a new magnetic solid phase extraction with a hydride generation system was coupled on line with inductively coupled plasma mass spectrometry (MSPE-HG-ICP-MS). The new system was based on the retention of As(III) and As(V) in two knotted reactors filled with (Fe 3 O 4 ) magnetic nanoparticles functionalized with [1,5-bis (2-pyridyl) 3-sulfophenylmethylene] thiocarbonohydrazide (PSTH-MNPs). As(III) and total inorganic As were sequentially eluted in different reduction conditions. The concentration of As(V) was obtained by subtracting As(III) from total As. The system runs in a fully automated way and the method has proved to have a wide linear range and to be precise, sensitive and fast. The detection limits found were 2.7 and 3.2 ng/L for As(III) and total As, respectively; with relative standard deviations (RSDs) of 2.5% and 2.7% and a sample throughput of 14.4 h -1 . In order to validate the developed method, several certified reference samples of environmental waters including sea water, were analyzed and the determined values were in good agreement with the certified values. The proposed method was successfully applied to the speciation analysis of inorganic arsenic in well-water and sea water. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Speciation Mapping of Environmental Samples Using XANES Imaging

    EPA Science Inventory

    Fast X-ray detectors with large solid angles and high dynamic ranges open the door to XANES imaging, in which millions of spectra are collected to image the speciation of metals at micrometre resolution, over areas up to several square centimetres. This paper explores how such mu...

  16. Determining and dating recent rodent speciation events by using L1 (LINE-1) retrotransposons

    PubMed Central

    Verneau, Olivier; Catzeflis, François; Furano, Anthony V.

    1998-01-01

    Phylogenies based on the inheritance of shared derived characters will be ambiguous when the shared characters are not the result of common ancestry. Such characters are called homoplasies. Phylogenetic analysis also can be problematic if the characters have not changed sufficiently, as might be the case for rapid or recent speciations. The latter are of particular interest because evolutionary processes may be more accessible the more recent the speciation. The repeated DNA subfamilies generated by the mammalian L1 (LINE-1) retrotransposon are apparently homoplasy-free phylogenetic characters. L1 retrotransposons are transmitted only by inheritance and rapidly generate novel variants that produce distinct subfamilies of mostly defective copies, which then “age” as they diverge. Here we show that the L1 character can both resolve and date recent speciation events within the large group of very closely related rats known as Rattus sensu stricto. This lineage arose 5–6 million years ago (Mya) and subsequently underwent two episodes of speciation: an intense one, ≈2.7 Mya, produced at least five lineages in <0.3 My; a second began ≈1.2 Mya and may still be continuing. PMID:9736728

  17. Determining and dating recent rodent speciation events by using L1 (LINE-1) retrotransposons.

    PubMed

    Verneau, O; Catzeflis, F; Furano, A V

    1998-09-15

    Phylogenies based on the inheritance of shared derived characters will be ambiguous when the shared characters are not the result of common ancestry. Such characters are called homoplasies. Phylogenetic analysis also can be problematic if the characters have not changed sufficiently, as might be the case for rapid or recent speciations. The latter are of particular interest because evolutionary processes may be more accessible the more recent the speciation. The repeated DNA subfamilies generated by the mammalian L1 (LINE-1) retrotransposon are apparently homoplasy-free phylogenetic characters. L1 retrotransposons are transmitted only by inheritance and rapidly generate novel variants that produce distinct subfamilies of mostly defective copies, which then "age" as they diverge. Here we show that the L1 character can both resolve and date recent speciation events within the large group of very closely related rats known as Rattus sensu stricto. This lineage arose 5-6 million years ago (Mya) and subsequently underwent two episodes of speciation: an intense one, approximately 2.7 Mya, produced at least five lineages in <0.3 My; a second began approximately 1.2 Mya and may still be continuing.

  18. Speciation on a local geographic scale: the evolution of a rare rock outcrop specialist in Mimulus.

    PubMed

    Ferris, Kathleen G; Sexton, Jason P; Willis, John H

    2014-08-05

    Speciation can occur on both large and small geographical scales. In plants, local speciation, where small populations split off from a large-ranged progenitor species, is thought to be the dominant mode, yet there are still few examples to verify speciation has occurred in this manner. A recently described morphological species in the yellow monkey flowers, Mimulus filicifolius, is an excellent candidate for local speciation because of its highly restricted geographical range. Mimulus filicifolius was formerly identified as a population of M. laciniatus due to similar lobed leaf morphology and rocky outcrop habitat. To investigate whether M. filicifolius is genetically divergent and reproductively isolated from M. laciniatus, we examined patterns of genetic diversity in ten nuclear and eight microsatellite loci, and hybrid fertility in M. filicifolius and its purported close relatives: M. laciniatus, M. guttatus and M. nasutus. We found that M. filicifolius is genetically divergent from the other species and strongly reproductively isolated from M. laciniatus. We conclude that M. filicifolius is an independent rock outcrop specialist despite being morphologically and ecologically similar to M. laciniatus, and that its small geographical range nested within other wide-ranging members of the M. guttatus species complex is consistent with local speciation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Speciation of platinum(IV) in nitric acid solutions.

    PubMed

    Vasilchenko, Danila; Tkachev, Sergey; Baidina, Iraida; Korenev, Sergey

    2013-09-16

    The speciation of platinum(IV) ions in nitric acid (6-15.8 M) solutions of H2[Pt(OH)6] has been studied by (195)Pt NMR and Raman spectroscopy. Series of aqua-hydroxo-nitrato complexes [Pt(L)(x)(NO3)(6-x)] (L = H2O or OH(-); x = 0, ..., 6) were found to exist in such solutions. The pair additivity model of chemical shifts and statistical theory were used to assign signals in NMR spectra to particular [Pt(L)(x)(NO3)(6-x)] species. Mononuclear hexanitratoplatinates(IV) have been isolated in solid state in substantial yield as pyridinium salt (PyH)2[Pt(NO3)6] and characterized by single-crystal X-ray diffraction. Aging of the platinum nitric acid solutions for more than 5-6 h results in oligomerization of [Pt(L)(x)(NO3)(6-x)] species and the formation of oligonuclear aqua-hydroxo-nitrato complexes with OH(-) and NO3(-) bridging ligands. Oligomeric platinum(IV) complexes with two and four nuclei were unambiguously detected by NMR on (195)Pt -enriched samples. Oligomers with even higher nuclearity were also detected. Dimeric anions [Pt2(μ-OH)2(NO3)8](2-) have been isolated as single crystals of tetramethylammonium salt and characterized by X-ray diffraction.

  20. SPECIATED VOC EMISSIONS FROM MODERN GDI LIGHT DUTY VEHICLES

    EPA Science Inventory

    Chassis dynamometer emissions testing was conducted to characterize speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs) and ozone precursors, in exhaust emissions from three modern gasoline direct injection (GDI) light-duty vehicles. Each GDI v...

  1. Chemical speciation and recovery of gold(I, III) from wastewater and silver by liquid-liquid extraction with the ion-pair reagent amiloride mono hydrochloride and AAS determination.

    PubMed

    El-Shahawi, M S; Bashammakh, A S; Bahaffi, S O

    2007-06-15

    A novel and low cost liquid-liquid extraction procedure for the separation of gold(III) at trace level from aqueous medium of pH 5-9 has been developed. The method has been based upon the formation of a yellow colored ternary complex ion associate of tetrachloro gold(III) complex anion, AuCl(4)(-) with the ion-pair reagent 1-(3,5-diamino-6-chloropyrazinecarboxyl) guanidine hydrochloride monohydrate, namely amiloride, DPG(+).Cl(-). The effect of various parameters, e.g. pH, organic solvent, shaking time, etc. on the preconcentration of gold(III) from the aqueous media by the DPG(+).Cl(-) reagent has been investigated. The colored gold species was quantitatively extracted into 4-methyl pentan-2-one. The chemical composition of the ion associate of DPG(+).Cl(-) with AuCl(4)(-) in the organic solvent has been determined by the Job's method. The molar absorptivity (2.19x10(4)Lmol(-1)cm(-1)) of the associate DPG(+).AuCl(4)(-) at 362nm enabled a convenient application of the developed extraction procedure for the separation and AAS determination of traces of aurate ions. Mono-valence gold ions after oxidation to gold(III) with bromine water in HCl (1.0molL(-1)) media have been also extracted quantitatively from the aqueous media by the developed procedure. The chemical speciation of mono- and/or tri-valence gold species spiked to fresh and industrial wastewater samples has been achieved. The method has been also applied successfully from the separation of gold(I) and gold(III) species from metallic ions and silver. The developed method has also the advantage of freedom from most diverse ions.

  2. Biodegradation and speciation of residual SS-ethylenediaminedisuccinic acid (EDDS) in soil solution left after soil washing.

    PubMed

    Tandy, Susan; Ammann, Adrian; Schulin, Rainer; Nowack, Bernd

    2006-07-01

    This paper aims to investigate the degradation and speciation of EDDS-complexes (SS-ethylenediaminedisuccinic acid) in soil following soil washing. The changes in soil solution metal and EDDS concentrations were investigated for three polluted soils. EDDS was degraded after a lag phase of 7-11 days with a half-life of 4.18-5.60 days. No influence of EDDS-speciation on the reaction was observed. The decrease in EDDS resulted in a corresponding decrease in solubilized metals. Changes in EDDS speciation can be related to (1) initial composition of the soil, (2) temporarily anoxic conditions in the soil slurry after soil washing, (3) exchange of EDDS complexes with Cu even in soils without elevated Cu and (4) formation of NiEDDS. Dissolved organic matter is important for metal speciation at low EDDS concentrations. Our results show that even in polluted soils EDDS is degraded from a level of several hundred micromoles to below 1 microM within 50 days.

  3. Equilibrium Speciation of Select Lanthanides in the Presence of Acidic Ligands in Homo- and Heterogeneous Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Troy A

    2011-08-01

    This dissertation explores lanthanide speciation in liquid solution systems related to separation schemes involving the acidic ligands: bis(2-ethylhexyl) phosphoric acid (HDEHP), lactate, and 8-hydroxyquinoline. Equilibrium speciation of neodymium (Nd 3+), sodium (Na+), HDEHP, water, and lactate in the TALSPEAK liquid-liquid extraction system was explored under varied Nd 3+ loading of HDEHP in the organic phase and through extraction from aqueous HCl and lactate media. System speciation was probed through vapor pressure osmometry, visible and Fourier Transform Infrared (FTIR) spectroscopy, 22Na and 13C labeled lactate radiotracer distribution measurements, Karl Fischer titrations, and equilibrium pH measurements. Distribution of Nd 3+, Na +,more » lactate, and equilibrium pH were modeled using the SXLSQI software to obtain logKNd and logKNa extraction constants under selected conditions. Results showed that high Nd 3+ loading of the HDEHP led to Nd 3+ speciation that departs from the ion exchange mechanism and includes formation of highly aggregated, polynuclear [NdLactate(DEHP) 2] x; (with x > 1). By substituting lanthanum (La 3+) for Nd 3+ in this system, NMR scoping experiments using 23Na, 31P nuclei and 13C labeled lactate were performed. Results indicated that this technique is sensitive to changes in system speciation, and that further experiments are warranted. In a homogeneous system representing the TALSPEAK aqueous phase, Lactate protonation behavior at various temperatures was characterized using a combination of potentiometric titration and modeling with the Hyperquad computer program. The temperature dependent deprotonation behavior of lactate showed little change with temperature at 2.0 M NaCl ionic strength. Cloud point extraction is a non-traditional separation technique that starts with a homogeneous phase that becomes heterogeneous by the micellization of surfactants through the increase of temperature. To better understand the behavior of

  4. Long-term evolution of the Luteoviridae: time scale and mode of virus speciation.

    PubMed

    Pagán, Israel; Holmes, Edward C

    2010-06-01

    Despite their importance as agents of emerging disease, the time scale and evolutionary processes that shape the appearance of new viral species are largely unknown. To address these issues, we analyzed intra- and interspecific evolutionary processes in the Luteoviridae family of plant RNA viruses. Using the coat protein gene of 12 members of the family, we determined their phylogenetic relationships, rates of nucleotide substitution, times to common ancestry, and patterns of speciation. An associated multigene analysis enabled us to infer the nature of selection pressures and the genomic distribution of recombination events. Although rates of evolutionary change and selection pressures varied among genes and species and were lower in some overlapping gene regions, all fell within the range of those seen in animal RNA viruses. Recombination breakpoints were commonly observed at gene boundaries but less so within genes. Our molecular clock analysis suggested that the origin of the currently circulating Luteoviridae species occurred within the last 4 millennia, with intraspecific genetic diversity arising within the last few hundred years. Speciation within the Luteoviridae may therefore be associated with the expansion of agricultural systems. Finally, our phylogenetic analysis suggested that viral speciation events tended to occur within the same plant host species and country of origin, as expected if speciation is largely sympatric, rather than allopatric, in nature.

  5. Polynuclear Speciation of Trivalent Cations near the Surface of an Electrolyte Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bera, Mrinal K.; Antonio, Mark R.

    Despite long-standing efforts, there is no agreed upon structural model for electrolyte solutions at air-liquid interfaces. We report the simultaneous detection of the near-surface and bulk coordination environments of a trivalent metal cation (europium) in an aqueous solution by use of X-ray absorption spectroscopy. Within the first few nanometers of the liquid surface, the cations exhibit oxygen coordination typical of inner-sphere hydration of an aquated Eu3+ cation. Beyond that, outer-sphere ion-ion correlations are observed that are otherwise not present in the bulk electrolyte. The combination of near-surface and bulk sensitivities to probe metal ion speciation in electrolyte solutions is achievedmore » by detecting electron-yield and X-ray fluorescence signals from an inverted pendant drop. The results provide new knowledge about the near-surface chemistry of aqueous solutions of relevance to aerosols and ion transport processes in chemical separations and biological systems.« less

  6. Utility of EXAFS in characterization and speciation of mercury-bearing mine wastes

    USGS Publications Warehouse

    Kim, C.S.; Rytuba, J.J.; Brown, Gordon E.

    1999-01-01

    Extensive mining of large mercury deposits located in the California Coast Range has resulted in mercury contamination of both the local environment and water supplies. The solubility, dispersal, and ultimate fate of mercury are all affected by its chemical speciation, which can be most readily determined in a direct fashion using EXAFS spectroscopy. EXAFS spectra of mine wastes collected from several mercury mines in the California Coast Range with mercury concentrations ranging from 230 to 1060 mg/kg (ppm) have been analyzed using a spectral database of mercury minerals and sorbed mercury complexes. While some calcines have been found to consist almost exclusively of mercuric sulfide, HgS, others contain additional, more soluble mercury phases, indicating a greater potential for the release of mercury into solution. This experimental approach can provide a quantitative measurement of the mercury compounds present and may serve as an indicator of the bioavailability and toxicity levels of mercury mine wastes.

  7. EXAMINATION OF CHANGES IN AS SPECIATION IN SULFIDIC SOLUTIONS

    EPA Science Inventory

    The fate of arsenic (As) in the environment, its bioavailability and toxicity is fundamentally linked to its speciation. As in aerobic environments is predominantly arsenate (As(V)), however under reducing conditions arsenite (As(III)) species dominate. In sulfidic environments t...

  8. [Remediation efficiency of lead-contaminated soil at an industrial site by ultrasonic-assisted chemical extraction].

    PubMed

    Wang, Xin-jie; Huang, Jin-lou; Liu, Zhi-qiang; Yue, Xi

    2013-09-01

    This research chose five lead-contaminated sites of a lead-acid battery factory to analyze the speciation distribution and concentration of lead. Under the same conditions (0.1 mol x L(-1) EDTA,30 min, 25 degrees C), the removal effect of heavy metal was compared between ultrasonic-assisted chemical extraction (UCE) and conventional chemical extraction ( CCE), and the variation of lead speciation was further explored. The results showed that the lead removal efficiency of UCE was significantly better than CCE. The lead removal efficiency of WS, A, B, C and BZ was 10.06%, 48.29%, 48.69%, 53.28% and 36.26% under CCE. While the removal efficiency of the UCE was 22.42%, 69.31%, 71.00%, 74.49% and 71.58%, with the average efficiency higher by 22%. By comparing the speciation distribution of the two washing methods, it was found that the acid extractable content maintained or decreased after UCE, whereas it showed an increasing trend after CCE. The reduction effect of the reducible was as high as 98% by UCE. UCE also showed a more efficient reduction effect of the organic matter-sulfite bounded form and the residual form. Hence, it is feasible to improve the washing efficiency of heavy metal contained in soil by conducting the cleaning process with the help of ultrasonic wave, which is a simple and fast mean to remove lead from contaminated sites.

  9. Learning to speciate: The biased learning of mate preferences promotes adaptive radiation

    PubMed Central

    Gilman, R. Tucker; Kozak, Genevieve M.

    2015-01-01

    Bursts of rapid repeated speciation called adaptive radiations have generated much of Earth's biodiversity and fascinated biologists since Darwin, but we still do not know why some lineages radiate and others do not. Understanding what causes assortative mating to evolve rapidly and repeatedly in the same lineage is key to understanding adaptive radiation. Many species that have undergone adaptive radiations exhibit mate preference learning, where individuals acquire mate preferences by observing the phenotypes of other members of their populations. Mate preference learning can be biased if individuals also learn phenotypes to avoid in mates, and shift their preferences away from these avoided phenotypes. We used individual‐based computational simulations to study whether biased and unbiased mate preference learning promotes ecological speciation and adaptive radiation. We found that ecological speciation can be rapid and repeated when mate preferences are biased, but is inhibited when mate preferences are learned without bias. Our results suggest that biased mate preference learning may play an important role in generating animal biodiversity through adaptive radiation. PMID:26459795

  10. Thermodynamic behavior of a phase transition in a model for sympatric speciation

    NASA Astrophysics Data System (ADS)

    Luz-Burgoa, K.; Moss de Oliveira, S.; Schwämmle, Veit; Sá Martins, J. S.

    2006-08-01

    We investigate the macroscopic effects of the ingredients that drive the origin of species through sympatric speciation. In our model, sympatric speciation is obtained as we tune up the strength of competition between individuals with different phenotypes. As a function of this control parameter, we can characterize, through the behavior of a macroscopic order parameter, a phase transition from a nonspeciation to a speciation state of the system. The behavior of the first derivative of the order parameter with respect to the control parameter is consistent with a phase transition and exhibits a sharp peak at the transition point. For different resources distribution, the transition point is shifted, an effect similar to pressure in a PVT system. The inverse of the parameter related to a sexual selection strength behaves like an external field in the system and, as thus, is also a control parameter. The macroscopic effects of the biological parameters used in our model are a reminiscent of the behavior of thermodynamic quantities in a phase transition of an equilibrium physical system.

  11. Mayr, Dobzhansky, and Bush and the complexities of sympatric speciation in Rhagoletis

    PubMed Central

    Feder, Jeffrey L.; Xie, Xianfa; Rull, Juan; Velez, Sebastian; Forbes, Andrew; Leung, Brian; Dambroski, Hattie; Filchak, Kenneth E.; Aluja, Martin

    2005-01-01

    The Rhagoletis pomonella sibling species complex is a model for sympatric speciation by means of host plant shifting. However, genetic variation aiding the sympatric radiation of the group in the United States may have geographic roots. Inversions on chromosomes 1-3 affecting diapause traits adapting flies to differences in host fruiting phenology appear to exist in the United States because of a series of secondary introgression events from Mexico. Here, we investigate whether these inverted regions of the genome may have subsequently evolved to become more recalcitrant to introgression relative to collinear regions, consistent with new models for chromosomal speciation. As predicted by the models, gene trees for six nuclear loci mapping to chromosomes other than 1-3 tended to have shallower node depths separating Mexican and U.S. haplotypes relative to an outgroup sequence than nine genes residing on chromosomes 1-3. We discuss the implications of secondary contact and differential introgression with respect to sympatric host race formation and speciation in Rhagoletis, reconciling some of the seemingly dichotomous views of Mayr, Dobzhansky, and Bush concerning modes of divergence. PMID:15851672

  12. Nickel speciation in several serpentine (ultramafic) topsoils via bulk synchrotron-based techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siebecker, Matthew G.; Chaney, Rufus L.; Sparks, Donald L.

    2017-07-01

    Serpentine soils have elevated concentrations of trace metals including nickel, cobalt, and chromium compared to non-serpentine soils. Identifying the nickel bearing minerals allows for prediction of potential mobility of nickel. Synchrotron-based techniques can identify the solid-phase chemical forms of nickel with minimal sample treatment. Element concentrations are known to vary among soil particle sizes in serpentine soils. Sonication is a useful method to physically disperse sand, silt and clay particles in soils. Synchrotron-based techniques and sonication were employed to identify nickel species in discrete particle size fractions in several serpentine (ultramafic) topsoils to better understand solid-phase nickel geochemistry. Nickel commonlymore » resided in primary serpentine parent material such as layered-phyllosilicate and chain-inosilicate minerals and was associated with iron oxides. In the clay fractions, nickel was associated with iron oxides and primary serpentine minerals, such as lizardite. Linear combination fitting (LCF) was used to characterize nickel species. Total metal concentration did not correlate with nickel speciation and is not an indicator of the major nickel species in the soil. Differences in soil texture were related to different nickel speciation for several particle size fractionated samples. A discussion on LCF illustrates the importance of choosing standards based not only on statistical methods such as Target Transformation but also on sample mineralogy and particle size. Results from the F-test (Hamilton test), which is an underutilized tool in the literature for LCF in soils, highlight its usefulness to determine the appropriate number of standards to for LCF. EXAFS shell fitting illustrates that destructive interference commonly found for light and heavy elements in layered double hydroxides and in phyllosilicates also can occur in inosilicate minerals, causing similar structural features and leading to false positive

  13. Assessment of important SPECIATE Profiles in EPA’s Emissions Modeling Platform and Current Data Gaps (US EPA 2017 International Emissions Inventory Conference)

    EPA Science Inventory

    The US Environmental Protection Agency (EPA)’s SPECIATE database contains speciation profiles for both particulate matter (PM) and volatile organic compounds (VOCs) that are key inputs for creating speciated emission inventories for air quality modeling. The objective of th...

  14. Prediction of the bioavailability of potentially toxic elements in freshwaters. Comparison between speciation models and passive samplers.

    PubMed

    Sierra, Jordi; Roig, Neus; Giménez Papiol, Gemma; Pérez-Gallego, Elena; Schuhmacher, Marta

    2017-12-15

    The aim of this work is to predict the bioavailability of the Potentially Toxic Elements (PTEs) Cd, Pb, Hg, Ni, Cu, Zn, As, Cr and Se in 6 sites within the Ebro River basin. In situ Diffusive gradient in thin-films (DGTs) and classical sampling have been used and compared. The potentially bioavailable fractions of each PTE was estimated by modelling their chemical speciation using three programs (WHAM 7.0, Visual MINTEQ 3.1 and Bio-met), following the suggestions published in recent European regulations. Results of the equilibrium-based models WHAM 7.0 and Visual MINTEQ 3.1 indicate that As, Cd, Ni, Se and Zn, predominate as free metals ions or forming inorganic soluble complexes. Copper, Pb and Hg bioavailability is conditioned by their affinity to dissolved humic substances. According to Visual MINTEQ 3.1, Cr is subjected to redox reactions, being Cr (VI) present (at low concentrations) in the studied rivers. According to Bio-met model, the bioavailability of Cu and Zn is highly influenced by soluble organic matter and water hardness, respectively. For most PTEs, the bioavailability estimated by deploying DGTs in river waters tends to be slightly lower than the estimation obtained with speciation models, since in real conditions more environmental factors take place comparing to the finite number of parameters considered in models. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Elucidating the Chemical Complexity of Organic Aerosol Constituents Measured During the Southeastern Oxidant and Aerosol Study (SOAS)

    NASA Astrophysics Data System (ADS)

    Yee, L.; Isaacman, G. A.; Spielman, S. R.; Worton, D. R.; Zhang, H.; Kreisberg, N. M.; Wilson, K. R.; Hering, S. V.; Goldstein, A. H.

    2013-12-01

    Thousands of volatile organic compounds are uniquely created in the atmosphere, many of which undergo chemical transformations that result in more highly-oxidized and often lower vapor pressure species. These species can contribute to secondary organic aerosol, a complex mixture of organic compounds that is still not chemically well-resolved. Organic aerosol collected on filters taken during the Southeastern Oxidant and Aerosol Study (SOAS) constitute hundreds of unique chemical compounds. Some of these include known anthropogenic and biogenic tracers characterized using standardized analytical techniques (e.g. GC-MS, UPLC, LC-MS), but the majority of the chemical diversity has yet to be explored. By employing analytical techniques involving sample derivatization and comprehensive two-dimensional gas chromatography (GC x GC) with high-resolution-time-of-flight mass spectrometry (HR-ToF-MS), we elucidate the chemical complexity of the organic aerosol matrix along the volatility and polarity grids. Further, by utilizing both electron impact (EI) and novel soft vacuum ultraviolet (VUV) ionization mass spectrometry, a greater fraction of the organic mass is fully speciated. The GC x GC-HR-ToF-MS with EI/VUV technique efficiently provides an unprecedented level of speciation for complex ambient samples. We present an extensive chemical characterization and quantification of organic species that goes beyond typical atmospheric tracers in the SOAS samples. We further demonstrate that complex organic mixtures can be chemically deconvoluted by elucidation of chemical formulae, volatility, functionality, and polarity. These parameters provide insight into the sources (anthropogenic vs. biogenic), chemical processes (oxidation pathways), and environmental factors (temperature, humidity), controlling organic aerosol growth in the Southeastern United States.

  16. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation.

    PubMed

    Rabosky, Daniel L; Santini, Francesco; Eastman, Jonathan; Smith, Stephen A; Sidlauskas, Brian; Chang, Jonathan; Alfaro, Michael E

    2013-01-01

    Several evolutionary theories predict that rates of morphological change should be positively associated with the rate at which new species arise. For example, the theory of punctuated equilibrium proposes that phenotypic change typically occurs in rapid bursts associated with speciation events. However, recent phylogenetic studies have found little evidence linking these processes in nature. Here we demonstrate that rates of species diversification are highly correlated with the rate of body size evolution across the 30,000+ living species of ray-finned fishes that comprise the majority of vertebrate biological diversity. This coupling is a general feature of fish evolution and transcends vast differences in ecology and body-plan organization. Our results may reflect a widespread speciational mode of character change in living fishes. Alternatively, these findings are consistent with the hypothesis that phenotypic 'evolvability'-the capacity of organisms to evolve-shapes the dynamics of speciation through time at the largest phylogenetic scales.

  17. Arsenic speciation in rice and risk assessment of inorganic arsenic in Taiwan population.

    PubMed

    Chen, Hsiu-Ling; Lee, Ching-Chang; Huang, Winn-Jung; Huang, Han-Ting; Wu, Yi-Chen; Hsu, Ya-Chen; Kao, Yi-Ting

    2016-03-01

    This study assessed the total arsenic content and arsenic speciation in rice to determine the health risks associated with rice consumption in various age-gender subgroups in Taiwan. The average total arsenic levels in white rice and brown rice were 116.6 ± 39.2 and 215.5 ± 63.5 ng/g weight (n = 51 and 13), respectively. The cumulative cancer risk among males was 10.4/100,000. The highest fraction of inorganic/total arsenic content in white rice ranged from 76.9 to 88.2 % and from 81.0 to 96.5 % in brown rice. The current study found different arsenic speciation of rice in southern Taiwan, where the famous blackfoot disease has been reported compared with arsenic speciation from other Taiwan areas. Therefore, rice and other grains should be further monitored in southern Taiwan to evaluate whether arsenic contamination is well controlled in this area.

  18. Capillary electrophoresis application in metal speciation and complexation characterization

    USDA-ARS?s Scientific Manuscript database

    Capillary electrophoresis is amenable to the separation of metal ionic species and the characterization of metal-ligand interactions. This book chapter reviews and discusses three representative case studies in applications of CE technology in speciation and reactions of metal with organic molecules...

  19. Periphyton and abiotic factors influencing arsenic speciation in aquatic environments: Periphyton alters arsenic speciation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Adeline R.; Silva, Silmara Costa; Webb, Samuel M.

    Benthic periphytic biofilms are important food sources at the base of aquatic ecosystems. These biofilms also sit at the interface of oxic waters and hypoxic sediments, and can be influenced by or influence trace element speciation. In the present study, we compared arsenic (As) enrichment in periphyton exposed to arsenate (As[V]) or arsenite (As[III]) (20 μg/L, static renewal, 7 d), and we found similar accumulation patterns of total As (101 ± 27 and 88 ± 22mgkg -1 dry wt, respectively). Periphyton As was 6281- and 6684-fold higher than their aqueous exposures and occurred primarily as As(V). When these biofilms weremore » fed to larval mayflies, similar total As tissue concentrations (13.9 and 14.6mgkg -1 dry wt, respectively) were observed, revealing significant biodilution (~10% of their dietary concentrations). Finally, we investigated the influence of aeration and periphyton presence on As speciation in solutions and solid phases treated with As(III). Predominantly As(III) solutions were slowly oxidized over a 7-d time period, in the absence of periphyton, and aeration did not strongly affect oxidation rates. However, in the presence of periphyton, solution and solid-phase analyses (by microscale x-ray absorption spectroscopy) showed rapid As(III) oxidation to As(V) and an increasing proportion of organo-As forming over time. Thus periphyton plays several roles in As environmental behavior: 1) decreasing total dissolved As concentrations via abiotic and biotic accumulation, 2) rapidly oxidizing As(III) to As(V), 3) effluxing organo-As forms into solution, and 4) limiting trophic transfer to aquatic grazers.« less

  20. Periphyton and abiotic factors influencing arsenic speciation in aquatic environments: Periphyton alters arsenic speciation

    DOE PAGES

    Lopez, Adeline R.; Silva, Silmara Costa; Webb, Samuel M.; ...

    2017-11-02

    Benthic periphytic biofilms are important food sources at the base of aquatic ecosystems. These biofilms also sit at the interface of oxic waters and hypoxic sediments, and can be influenced by or influence trace element speciation. In the present study, we compared arsenic (As) enrichment in periphyton exposed to arsenate (As[V]) or arsenite (As[III]) (20 μg/L, static renewal, 7 d), and we found similar accumulation patterns of total As (101 ± 27 and 88 ± 22mgkg -1 dry wt, respectively). Periphyton As was 6281- and 6684-fold higher than their aqueous exposures and occurred primarily as As(V). When these biofilms weremore » fed to larval mayflies, similar total As tissue concentrations (13.9 and 14.6mgkg -1 dry wt, respectively) were observed, revealing significant biodilution (~10% of their dietary concentrations). Finally, we investigated the influence of aeration and periphyton presence on As speciation in solutions and solid phases treated with As(III). Predominantly As(III) solutions were slowly oxidized over a 7-d time period, in the absence of periphyton, and aeration did not strongly affect oxidation rates. However, in the presence of periphyton, solution and solid-phase analyses (by microscale x-ray absorption spectroscopy) showed rapid As(III) oxidation to As(V) and an increasing proportion of organo-As forming over time. Thus periphyton plays several roles in As environmental behavior: 1) decreasing total dissolved As concentrations via abiotic and biotic accumulation, 2) rapidly oxidizing As(III) to As(V), 3) effluxing organo-As forms into solution, and 4) limiting trophic transfer to aquatic grazers.« less

  1. SPECIATION IN MAMMALS AND THE GENETIC SPECIES CONCEPT

    PubMed Central

    Baker, Robert J.; Bradley, Robert D.

    2009-01-01

    We define a genetic species as a group of genetically compatible interbreeding natural populations that is genetically isolated from other such groups. This focus on genetic isolation rather than reproductive isolation distinguishes the Genetic Species Concept from the Biological Species Concept. Recognition of species that are genetically isolated (but not reproductively isolated) results in an enhanced understanding of biodiversity and the nature of speciation as well as speciation-based issues and evolution of mammals. We review criteria and methods for recognizing species of mammals and explore a theoretical scenario, the Bateson–Dobzhansky–Muller (BDM) model, for understanding and predicting genetic diversity and speciation in mammals. If the BDM model is operating in mammals, then genetically defined phylogroups would be predicted to occur within species defined by morphology, and phylogroups experiencing stabilizing selection will evolve genetic isolation without concomitant morphological diversification. Such species will be undetectable using classical skin and skull morphology (Morphological Species Concept). Using cytochrome-b data from sister species of mammals recognized by classical morphological studies, we estimated the number of phylogroups that exist within mammalian species and hypothesize that there will be >2,000 currently unrecognized species of mammals. Such an underestimation significantly affects conclusions on the nature of speciation in mammals, barriers associated with evolution of genetic isolation, estimates of biodiversity, design of conservation initiatives, zoonoses, and so on. A paradigm shift relative to this and other speciation-based issues will be needed. Data that will be effective in detecting these “morphologically cryptic genetic species” are genetic, especially DNA-sequence data. Application of the Genetic Species Concept uses genetic data from mitochondrial and nuclear genomes to identify species and species

  2. Selenium Metabolism in Cancer Cells: The Combined Application of XAS and XFM Techniques to the Problem of Selenium Speciation in Biological Systems

    PubMed Central

    Weekley, Claire M.; Aitken, Jade B.; Finney, Lydia; Vogt, Stefan; Witting, Paul K.; Harris, Hugh H.

    2013-01-01

    Determining the speciation of selenium in vivo is crucial to understanding the biological activity of this essential element, which is a popular dietary supplement due to its anti-cancer properties. Hyphenated techniques that combine separation and detection methods are traditionally and effectively used in selenium speciation analysis, but require extensive sample preparation that may affect speciation. Synchrotron-based X-ray absorption and fluorescence techniques offer an alternative approach to selenium speciation analysis that requires minimal sample preparation. We present a brief summary of some key HPLC-ICP-MS and ESI-MS/MS studies of the speciation of selenium in cells and rat tissues. We review the results of a top-down approach to selenium speciation in human lung cancer cells that aims to link the speciation and distribution of selenium to its biological activity using a combination of X-ray absorption spectroscopy (XAS) and X-ray fluorescence microscopy (XFM). The results of this approach highlight the distinct fates of selenomethionine, methylselenocysteine and selenite in terms of their speciation and distribution within cells: organic selenium metabolites were widely distributed throughout the cells, whereas inorganic selenium metabolites were compartmentalized and associated with copper. New data from the XFM mapping of electrophoretically-separated cell lysates show the distribution of selenium in the proteins of selenomethionine-treated cells. Future applications of this top-down approach are discussed. PMID:23698165

  3. Speciation of mercury compounds by differential atomization - atomic absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, J.W.; Skelly, E.M.

    This paper describes the dual stage atomization technique which allows speciation of several mercury-containing compounds in aqueous solution and in biological fluids. The technique holds great promise for further speciation studies. Accurate temperature control, expecially at temperatures less than 200/sup 0/C, is needed to separate the extremely volatile mercury halides and simple organomercurials from each other. Studies with mercury salts and EDTA, L-cysteine and dithioxamide demonstrate that this technique may be used to study the extent of complex formation. Investigations of biological fluids indicate that there is a single predominant form of mercury in sweat and a single predominant formmore » of mercury in urine. The mercury compound in urine is more volatile than that in sweat. Both quantitative and qualitative analyses are possible with this technique.« less

  4. Interpreting the genomic landscape of speciation: a road map for finding barriers to gene flow.

    PubMed

    Ravinet, M; Faria, R; Butlin, R K; Galindo, J; Bierne, N; Rafajlović, M; Noor, M A F; Mehlig, B; Westram, A M

    2017-08-01

    Speciation, the evolution of reproductive isolation among populations, is continuous, complex, and involves multiple, interacting barriers. Until it is complete, the effects of this process vary along the genome and can lead to a heterogeneous genomic landscape with peaks and troughs of differentiation and divergence. When gene flow occurs during speciation, barriers restricting gene flow locally in the genome lead to patterns of heterogeneity. However, genomic heterogeneity can also be produced or modified by variation in factors such as background selection and selective sweeps, recombination and mutation rate variation, and heterogeneous gene density. Extracting the effects of gene flow, divergent selection and reproductive isolation from such modifying factors presents a major challenge to speciation genomics. We argue one of the principal aims of the field is to identify the barrier loci involved in limiting gene flow. We first summarize the expected signatures of selection at barrier loci, at the genomic regions linked to them and across the entire genome. We then discuss the modifying factors that complicate the interpretation of the observed genomic landscape. Finally, we end with a road map for future speciation research: a proposal for how to account for these modifying factors and to progress towards understanding the nature of barrier loci. Despite the difficulties of interpreting empirical data, we argue that the availability of promising technical and analytical methods will shed further light on the important roles that gene flow and divergent selection have in shaping the genomic landscape of speciation. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  5. Influence of soil pH on the sorption of ionizable chemicals: modeling advances.

    PubMed

    Franco, Antonio; Fu, Wenjing; Trapp, Stefan

    2009-03-01

    The soil-water distribution coefficient of ionizable chemicals (K(d)) depends on the soil acidity, mainly because the pH governs speciation. Using pH-specific K(d) values normalized to organic carbon (K(OC)) from the literature, a method was developed to estimate the K(OC) of monovalent organic acids and bases. The regression considers pH-dependent speciation and species-specific partition coefficients, calculated from the dissociation constant (pK(a)) and the octanol-water partition coefficient of the neutral molecule (log P(n)). Probably because of the lower pH near the organic colloid-water interface, the optimal pH to model dissociation was lower than the bulk soil pH. The knowledge of the soil pH allows calculation of the fractions of neutral and ionic molecules in the system, thus improving the existing regression for acids. The same approach was not successful with bases, for which the impact of pH on the total sorption is contrasting. In fact, the shortcomings of the model assumptions affect the predictive power for acids and for bases differently. We evaluated accuracy and limitations of the regressions for their use in the environmental fate assessment of ionizable chemicals.

  6. A robust framework to predict mercury speciation in combustion flue gases.

    PubMed

    Ticknor, Jonathan L; Hsu-Kim, Heileen; Deshusses, Marc A

    2014-01-15

    Mercury emissions from coal combustion have become a global concern as growing energy demands have increased the consumption of coal. The effective implementation of treatment technologies requires knowledge of mercury speciation in the flue gas, namely concentrations of elemental, oxidized and particulate mercury at the exit of the boiler. A model that can accurately predict mercury species in flue gas would be very useful in that context. Here, a Bayesian regularized artificial neural network (BRANN) that uses five coal properties and combustion temperature was developed to predict mercury speciation in flue gases before treatment technology implementation. The results of the model show that up to 97 percent of the variation in mercury species concentration is captured through the use of BRANNs. The BRANN model was used to conduct a parametric sensitivity which revealed that the coal chlorine content and coal calorific value were the most sensitive parameters, followed by the combustion temperature. The coal sulfur content was the least important parameter. The results demonstrate the applicability of BRANNs for predicting mercury concentration and speciation in combustion flue gas and provide a more efficient and effective technique when compared to other advanced non-mechanistic modeling strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. The evolution of recombination rates in finite populations during ecological speciation.

    PubMed

    Reeve, James; Ortiz-Barrientos, Daniel; Engelstädter, Jan

    2016-10-26

    Recombination can impede ecological speciation with gene flow by mixing locally adapted genotypes with maladapted migrant genotypes from a divergent population. In such a scenario, suppression of recombination can be selectively favoured. However, in finite populations evolving under the influence of random genetic drift, recombination can also facilitate adaptation by reducing Hill-Robertson interference between loci under selection. In this case, increased recombination rates can be favoured. Although these two major effects on recombination have been studied individually, their joint effect on ecological speciation with gene flow remains unexplored. Using a mathematical model, we investigated the evolution of recombination rates in two finite populations that exchange migrants while adapting to contrasting environments. Our results indicate a two-step dynamic where increased recombination is first favoured (in response to the Hill-Robertson effect), and then disfavoured, as the cost of recombining locally with maladapted migrant genotypes increases over time (the maladaptive gene flow effect). In larger populations, a stronger initial benefit for recombination was observed, whereas high migration rates intensify the long-term cost of recombination. These dynamics may have important implications for our understanding of the conditions that facilitate incipient speciation with gene flow and the evolution of recombination in finite populations. © 2016 The Author(s).

  8. Application of ESI-HRMS for molybdenum speciation in natural waters: An investigation of molybdate-halide reactions.

    PubMed

    Dang, Duc Huy; Evans, R Douglas

    2018-03-01

    High resolution electrospray ionization mass spectrometry (ESI-HRMS) was used to study the speciation of molybdate in interaction with halides (Cl, F, Br). Desolvation during electrospray ionization induced alteration of aqueous species but method optimization successfully suppressed artefact compounds. At low Mo concentrations, chloro(oxo)molybdate and fluoro(oxo)molybdate species were found and in natural samples, MoO 3 Cl was detected for the first time, to the best of our knowledge. Apparent equilibrium constants for Cl substitution on molybdate were calculated for a range of pH values from 4.5 to 8.5. A minor alteration in speciation during the gas phase (conversion of doubly charged MoO 4 2- to HMoO 4 - ) did not allow investigation of the molybdate acid-base properties; however this could be determined by speciation modeling. This study provides further evidence that ESI-HRMS is a fast and suitable tool to Deceasedassess the speciation of inorganic compounds such as Mo. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Dynamic coupled metal transport-speciation model: application to assess a zinc-contaminated lake.

    PubMed

    Bhavsar, Satyendra P; Diamond, Miriam L; Gandhi, Nilima; Nilsen, Joel

    2004-10-01

    A coupled metal transport and speciation/complexation model (TRANSPEC) has been developed to estimate the speciation and fate of multiple interconverting species in surface aquatic systems. Dynamic-TRANSPEC loosely, sequentially couples the speciation/complexation and fate modules that, for the unsteady state formulation, run alternatively at every time step. The speciation module first estimates species abundance using, in this version, MINEQL+ considering time-dependent changes in water and pore-water chemistry. The fate module is based on the quantitative water air sediment interaction (QWASI) model and fugacity/aquivalence formulation, with the option of using a pseudo-steady state solution to account for past discharges. Similarly to the QWASI model for organic contaminants, TRANSPEC assumes the instantaneous equilibrium distribution of metal species among dissolved, colloidal, and particulate phases based on ambient chemistry parameters that can be collected through conventional field methods. The model is illustrated with its application to Ross Lake (Manitoba, Canada) that has elevated Zn concentrations due to discharges over 70 years from a mining operation. Using measurements from field studies, the model reproduces year-round variations in Zn water concentrations. A 10-year projection for current conditions suggests decreasing Zn remobilization and export from the lake. Decreasing Zn loadings increases sediment-to-water transport but decreases water concentrations, and vice versa. Species distribution is affected by pH such that a decrease in pH increases metal export from the lake and vice versa.

  10. Gas and liquid chromatography with inductively coupled plasma mass spectrometry detection for environmental speciation analysis — advances and limitations

    NASA Astrophysics Data System (ADS)

    Szpunar, Joanna; McSheehy, Shona; Połeć, Kasia; Vacchina, Véronique; Mounicou, Sandra; Rodriguez, Isaac; Łobiński, Ryszard

    2000-07-01

    Recent advances in the coupling of gas chromatography (GC) and high performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICP MS) and their role in trace element speciation analysis of environmental materials are presented. The discussion is illustrated with three research examples concerning the following topics: (i) development and coupling of multicapillary microcolumn GC with ICP MS for speciation of organotin in sediment and biological tissue samples; (ii) speciation of arsenic in marine algae by size-exclusion-anion-exchange HPLC-ICP MS; and (iii) speciation of cadmium in plant cell cultures by size-exclusion HPLC-ICP MS. Particular attention is paid to the problem of signal identification in ICP MS chromatograms; the potential of electrospray MS/MS for this purpose is highlighted.

  11. Layer speciation and electronic structure investigation of freestanding hexagonal boron nitride nanosheets

    NASA Astrophysics Data System (ADS)

    WangEqual Contribution To This Work., Jian; Wang, Zhiqiang; Cho, Hyunjin; Kim, Myung Jong; Sham, T. K.; Sun, Xuhui

    2015-01-01

    Chemical imaging, thickness mapping, layer speciation and polarization dependence have been performed on single and multilayered (up to three layers and trilayered nanosheets overlapping to form 6 and 9 layers) hexagonal boron nitride (hBN) nanosheets by scanning transmission X-ray microscopy. Spatially-resolved XANES directly from freestanding regions of different layers has been extracted and compared with sample normal and 30° tilted configurations. Notably a double feature σ* excitonic state and a stable high energy σ* state were observed at the boron site in addition to the intense π* excitonic state. The boron projected σ* DOS, especially the first σ* exciton, is sensitive to surface modification, particularly in the single layered hBN nanosheet which shows more significant detectable contaminants and defects such as tri-coordinated boron/nitrogen oxide. The nitrogen site has shown very weak or no excitonic character. The distinct excitonic effect on boron and nitrogen was interpreted to the partly ionic state of hBN. Bulk XANES of hBN nanosheets was also measured to confirm the spectro-microscopic STXM result. Finally, the unoccupied electronic structures of hBN and graphene were compared.Chemical imaging, thickness mapping, layer speciation and polarization dependence have been performed on single and multilayered (up to three layers and trilayered nanosheets overlapping to form 6 and 9 layers) hexagonal boron nitride (hBN) nanosheets by scanning transmission X-ray microscopy. Spatially-resolved XANES directly from freestanding regions of different layers has been extracted and compared with sample normal and 30° tilted configurations. Notably a double feature σ* excitonic state and a stable high energy σ* state were observed at the boron site in addition to the intense π* excitonic state. The boron projected σ* DOS, especially the first σ* exciton, is sensitive to surface modification, particularly in the single layered hBN nanosheet which

  12. Mercury transformations in resuspended contaminated sediment controlled by redox conditions, chemical speciation and sources of organic matter

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Song, Yu; Adediran, Gbotemi A.; Jiang, Tao; Reis, Ana T.; Pereira, Eduarda; Skyllberg, Ulf; Björn, Erik

    2018-01-01

    Mercury (Hg) contaminated sediments can be significant sources of Hg in aquatic ecosystems and, through re-emission processes, to the atmosphere. Transformation and release of Hg may be enhanced by various sediment perturbation processes, and controlling biogeochemical factors largely remain unclear. We investigated how rates of Hg transformations in pulp-fiber enriched sediment contaminated by Hg from chlor-alkali industry were controlled by (i) transient redox-changes in sulfur and iron chemistry, (ii) the chemical speciation and solubility of Hg, and (iii) the sources and characteristics of organic matter (OM). Sediment-bottom water microcosm systems were exposed to four combinations of air and nitrogen gas for a total time of 24 h. The treatments were: 24 h N2, 0.5 h air + 23.5 h N2, 4 h air + 20 h N2 and 24 h of air exposure. As a result of these treatments, microcosms spanned a wide range of redox potential, as reflected by the dissolved sulfide concentration range of ≤0.3-97 μM. Four different chemical species of inorganic divalent Hg (HgII) and methyl mercury (MeHg), enriched in different Hg isotope tracers, were added to the microcosms: 201Hg(NO3)2(aq), 202HgII adsorbed to OM (202HgII-OM(ads)), 198HgII as microcrystalline metacinnabar (β-198HgS(s)) and Me204HgCl(aq). Microcosm systems were composed of bottom water mixed with sediment taken at 0-2, 0-5 and 0-10 cm depth intervals. The composition of OM varied with sediment depth such that compared to deeper sediment, the 0-2 cm depth-interval had a 2-fold higher contribution of labile OM originating from algal and terrestrial inputs, serving as metabolic electron-donors for microorganisms. The potential methylation rate constant (kmeth) of Hg tracers and net formation of ambient MeHg (MeHg/THg molar ratio) increased up to 50% and 400%, respectively at intermediate oxidative conditions, likely because of an observed 2-fold increase in sulfate concentration stimulating the activity of sulfate reducing

  13. Speciation of iron in ambient aerosol and cloudwater

    NASA Astrophysics Data System (ADS)

    Siefert, Ronald Lyn

    1997-03-01

    Atmospheric iron (Fe) is thought to play an important role in cloudwater chemistry (e.g., S(IV) oxidation, oxidant production, etc.), and is also an important source of Fe to certain regions of the world's oceans where Fe is believed to be a rate-limiting nutrient for primary productivity. This thesis focuses on understanding the chemistry, speciation and abundance of Fe in cloudwater and aerosol in the troposphere, through observations of Fe speciation in the cloudwater and aerosol samples collected over the continental United States and the Arabian Sea. Different chemical species of atmospheric Fe were measured in aerosol and cloudwater samples to help assess the role of Fe in cloudwater chemistry. Chapter 2 presents a set of experiments which used ambient aerosol samples suspended in aqueous solution and then irradiated with uv-light to simulate cloudwater conditions. These experiments found Fe to be a critical component for the production of H2O2. Chapter 3 discusses the development and application of a novel photochemical extraction method for the determination of photochemically-available Fe in ambient aerosol samples. Photochemically-available Fe ranged from <4 ng m-3 to 308 ng m-3, and accounted for 2.8% to 100% of the total Fe in aerosol samples collected in California and New York. Calculations based on the results of these experiments predicted that redox reactions of Fe in cloudwater could be an important in situ source of oxidants (ċOH, HO2ċ/O2/cdot/sb- ). Chapter 4 presents results of several field studies which measured the redox states of Fe and other transition metals (Mn, Cu and Cr) in cloudwater. These measurements were then used in thermodynamic models which predicted Fe(III) to be either as Fe(III)-hydroxy species or Fe(III)-oxalate species. However, an unidentified strong chelating ligand with Fe(III) was also suggested by the thermodynamic model results. Chapter 5 presents results of a field study conducted on the Arabian Sea. Total

  14. Presumptive speciation of Streptococcus bovis and other group D streptococci from human sources by using arginine and pyruvate tests.

    PubMed Central

    Gross, K C; Houghton, M P; Senterfit, L B

    1975-01-01

    A simplified method for speciation of group D streptococci is described. A total of 4,156 streptococcal isolates from human clinical material was tested for ability to hydrolyze esculin in the presence of 40% bile, ferment pyruvate, hydrolyze arginine, and grow in media containing 40% bile or 6.5% NaCl. Streptococci which hydrolyzed esculin in 40% bile, but which did not hydrolyze arginine, were also tested for their ability to ferment raffinose or sorbose. Sixty percent (2,503) of the isolates hydrolyzed esculin in the presence of 40% bile and were thus presumptively identified as group D. By application of the other criteria, 84% of these were speciated as Streptococcus faecalis, 7% were speciated as S. faecium, 6% were speciated as S. bovis, 2% were speciated as S. avium, and 1% were not identified. This scheme was shown to be both reliable and practical for use in the diagnostic laboratory. S. avium and S. bovis isolates were characterized, and 18 S. bovis isolates from patients with bacterial endocarditis were compared physiologically with 151 isolates of this species from other sources. PMID:1176592

  15. Sexual selection accelerates signal evolution during speciation in birds.

    PubMed

    Seddon, Nathalie; Botero, Carlos A; Tobias, Joseph A; Dunn, Peter O; Macgregor, Hannah E A; Rubenstein, Dustin R; Uy, J Albert C; Weir, Jason T; Whittingham, Linda A; Safran, Rebecca J

    2013-09-07

    Sexual selection is proposed to be an important driver of diversification in animal systems, yet previous tests of this hypothesis have produced mixed results and the mechanisms involved remain unclear. Here, we use a novel phylogenetic approach to assess the influence of sexual selection on patterns of evolutionary change during 84 recent speciation events across 23 passerine bird families. We show that elevated levels of sexual selection are associated with more rapid phenotypic divergence between related lineages, and that this effect is restricted to male plumage traits proposed to function in mate choice and species recognition. Conversely, we found no evidence that sexual selection promoted divergence in female plumage traits, or in male traits related to foraging and locomotion. These results provide strong evidence that female choice and male-male competition are dominant mechanisms driving divergence during speciation in birds, potentially linking sexual selection to the accelerated evolution of pre-mating reproductive isolation.

  16. Speciation of selenium in stream insects using X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruwandi Andrahennadi; Mark Wayland; Ingrid J. Pickering

    2007-11-15

    Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Seleniummore » K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.« less

  17. Speciation of Selenium in Stream Insects Using X-Ray Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrahennadi, R.; Wayland, M.; Pickering, I.J.

    2009-05-28

    Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Seleniummore » K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.« less

  18. Lead Speciation and In Vitro Bioaccessibility of Compost-Amended Urban Garden Soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attanayake, Chammi P.; Hettiarachchi, Ganga M.; Ma, Qing

    In situ soil amendments can modify the Pb bioavailability by changing soil Pb speciation. Urban soils from three vegetable gardens containing different total Pb concentrations were used. The study evaluated how compost amendment and aging of soil-compost mixture in situ affected the following: (i) soil Pb speciation in the field and (ii) change of soil Pb speciation during an in vitro bioaccessibility extraction mimicking gastric phase dissolution at pH 2.5. X-ray absorption fine structure spectroscopy was used to determine Pb speciation in amended and nonamended soils and residues left after in vitro bioaccessibility extraction of those soils. Compost amendment andmore » aging of compost in the field had a negligible effect on Pb bioaccessibility in the soils. Major Pb species in the soils were Pb sorbed to Fe oxy(hydr)oxide (Pb-Fh) and to soil organic C (Pb-Org). The fraction of Pb-Org was increased as soil-compost mixture aged in the field. During the in vitro extraction, the fraction of Pb-Fh was decreased, the fraction of Pb-Org was increased, and hydroxypyromorphite was formed in both amended and nonamended soils. Freshly incorporated compost enhanced the dissolution of Pb-Fh during the extraction. As soil-compost mixture aged in the field, the dissolution of Pb-Fh was low, demonstrating more stability of the Pb-Fh during the extraction. Compost amendment showed potential to contribute to reduced bioaccessibility of Pb as compost aged in the soil by increasing Pb-Org fraction in the field and stability of Pb-Fh during the in vitro bioaccessibility extraction.« less

  19. Selenium speciation in acidic environmental samples: application to acid rain-soil interaction at Mount Etna volcano.

    PubMed

    Floor, Geerke H; Iglesías, Mònica; Román-Ross, Gabriela; Corvini, Philippe F X; Lenz, Markus

    2011-09-01

    Speciation plays a crucial role in elemental mobility. However, trace level selenium (Se) speciation analyses in aqueous samples from acidic environments are hampered due to adsorption of the analytes (i.e. selenate, selenite) on precipitates. Such solid phases can form during pH adaptation up till now necessary for chromatographic separation. Thermodynamic calculations in this study predicted that a pH<4 is needed to prevent precipitation of Al and Fe phases. Therefore, a speciation method with a low pH eluent that matches the natural sample pH of acid rain-soil interaction samples from Etna volcano was developed. With a mobile phase containing 20mM ammonium citrate at pH 3, selenate and selenite could be separated in different acidic media (spiked water, rain, soil leachates) in <10 min with a LOQ of 0.2 μg L(-1) using (78)Se for detection. Applying this speciation analysis to study acid rain-soil interaction using synthetic rain based on H(2)SO(4) and soil samples collected at the flanks of Etna volcano demonstrated the dominance of selenate over selenite in leachates from samples collected close to the volcanic craters. This suggests that competitive behavior with sulfate present in acid rain might be a key factor in Se mobilization. The developed speciation method can significantly contribute to understand Se cycling in acidic, Al/Fe rich environments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Supercritical fluid chromatography coupled with in-source atmospheric pressure ionization hydrogen/deuterium exchange mass spectrometry for compound speciation.

    PubMed

    Cho, Yunju; Choi, Man-Ho; Kim, Byungjoo; Kim, Sunghwan

    2016-04-29

    An experimental setup for the speciation of compounds by hydrogen/deuterium exchange (HDX) with atmospheric pressure ionization while performing chromatographic separation is presented. The proposed experimental setup combines the high performance supercritical fluid chromatography (SFC) system that can be readily used as an inlet for mass spectrometry (MS) and atmospheric pressure photo ionization (APPI) or atmospheric pressure chemical ionization (APCI) HDX. This combination overcomes the limitation of an approach using conventional liquid chromatography (LC) by minimizing the amount of deuterium solvents used for separation. In the SFC separation, supercritical CO2 was used as a major component of the mobile phase, and methanol was used as a minor co-solvent. By using deuterated methanol (CH3OD), AP HDX was achieved during SFC separation. To prove the concept, thirty one nitrogen- and/or oxygen-containing standard compounds were analyzed by SFC-AP HDX MS. The compounds were successfully speciated from the obtained SFC-MS spectra. The exchange ions were observed with as low as 1% of CH3OD in the mobile phase, and separation could be performed within approximately 20min using approximately 0.24 mL of CH3OD. The results showed that SFC separation and APPI/APCI HDX could be successfully performed using the suggested method. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The genetic signature of recent speciation in manta rays (Manta alfredi and M. birostris).

    PubMed

    Kashiwagi, Tom; Marshall, Andrea D; Bennett, Michael B; Ovenden, Jennifer R

    2012-07-01

    Manta rays have been taxonomically revised as two species, Manta alfredi and M. birostris, on the basis of morphological and meristic data, yet the two species occur in extensive mosaic sympatry. We analysed the genetic signatures of the species boundary using a portion of the nuclear RAG1 (681 base pairs), mitochondrial CO1 (574 bp) and ND5 genes (1188 bp). The assay with CO1 sequences, widely used in DNA barcoding, failed to distinguish the two species. The two species were clearly distinguishable, however, with no shared RAG1 or ND5 haplotypes. The species were reciprocally monophyletic for RAG1, but paraphyletic for ND5 sequences. Qualitative evidence and statistical inferences using the 'Isolation-with-Migration models' indicated that these results were better explained with post-divergence gene flow in the recent past rather than incomplete lineage sorting with zero gene flow since speciation. An estimate of divergence time was less than 0.5 Ma with an upper confidence limit of within 1 Ma. Recent speciation of highly mobile species in the marine environment is of great interest, as it suggests that speciation may have occurred in the absence of long-term physical barriers to gene flow. We propose that the ecologically driven forces such as habitat choice played a significant role in speciation in manta rays. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Relative Bioavailability and Bioaccessability and Speciation of ...

    EPA Pesticide Factsheets

    Background: Assessment of soil arsenic (As) bioavailability may profoundly affect the extent of remediation required at contaminated sites by improving human exposure estimates. Because small adjustments in soil As bioavailability estimates can significantly alter risk assessments and remediation goals, convenient, rapid, reliable, and inexpensive tools are needed to determine soil As bioavailability. Objectives: We evaluated inexpensive methods for assessing As bioavailability in soil as a means to improve human exposure estimates and potentially reduce remediation costs. Methods: Nine soils from residential sites affected by mining or smelting activity and two National Institute of Standards and Technology standard reference materials were evaluated for As bioavailability, bioaccessibility, and speciation. Arsenic bioavailability was determined using an in vivo mouse model, and As bioaccessibility was determined using the Solubility/Bioavailability Research Consortium in vitro assay. Arsenic speciation in soil and selected soil physicochemical properties were also evaluated to determine whether these parameters could be used as predictors of As bio¬availability and bioaccessibility. Results: In the mouse assay, we compared bioavailabilities of As in soils with that for sodium arsenate. Relative bioavailabilities (RBAs) of soil As ranged from 11% to 53% (mean, 33%). In vitro soil As bioaccessibility values were strongly correlated with soil As RBAs (R

  3. Speciation of animal fat: Needs and challenges.

    PubMed

    Hsieh, Yun-Hwa Peggy; Ofori, Jack Appiah

    2017-05-24

    The use of pork fat is a concern for Muslims and Jews, who for religious reasons avoid consuming anything that is pig-derived. The use of bovine materials, including beef fat, is prohibited in Hinduism and may also pose a risk of carrying the infectious agent for bovine spongiform encephalopathy. Vegetable oils are sometimes adulterated with animal fat or pork fat with beef fat for economic gain. The development of methods to determine the species origin of fat has therefore become a priority due to the complex and global nature of the food trade, which creates opportunities for the fraudulent use of these animal fats as food ingredients. However, determining the species origin of fats in processed foods or composite blends is an arduous task as the adulterant has a composition that is very similar to that of the original fat or oil. This review examines some of the methods that have been developed for fat speciation, including both fat-based and DNA-based methods, their shortcomings, and the need for additional alternatives. Protein-based methods, specifically immunoassays targeting residual proteins in adipose tissue, that are being explored by researchers as a new tool for fat speciation will also be discussed.

  4. Arsenic toxicity and accumulation in radish as affected by arsenic chemical speciation.

    PubMed

    Carbonell-Barrachina, A A; Burló, F; López, E; Martínez-Sánchez, F

    1999-07-01

    Arsenic (As) uptake by Rhapanus sativus L. (radish), cv. Nueva Orleans, growing in soil-less culture conditions was studied in relation to the chemical form and concentration of As. A 4 x 3 factorial experiment was conducted with treatments consisting of four As chemical forms [As(III), As(V), MMAA, DMAA] and three As concentrations (1.0, 2.0, and 5.0 mg As L-1). None of the As treatments were clearly phytotoxic to this radish cultivar. Arsenic phytoavailability was primarily determined by the As chemical form present in the nutrient solution and followed the trend DMAA < or = As(V) < or = As(III) < MMAA. Root and shoot As concentrations significantly increased with increasing As application rates. Monomethyl arsonic acid treatments caused the highest As accumulation in both roots and shoots, and this organic arsenical showed a higher uptake rate than the other As compounds. Inner root As concentrations were, in general, within the normal range for As contents in food crops but root skin As levels were close or above the maximum threshold set for As content in edible fruit, crops and vegetables. The statement that toxicity limits plant As uptake to safe levels was not confirmed in our study. If radish plants are exposed to a large pulse of As, as growth on contaminated nutrient solutions, they may accumulate residues which are unacceptable for animal and human consumption without exhibiting symptoms of phytotoxicity.

  5. Leaching for recovery of copper from municipal solid waste incineration fly ash: influence of ash properties and metal speciation.

    PubMed

    Lassesson, Henric; Fedje, Karin Karlfeldt; Steenari, Britt-Marie

    2014-08-01

    Recovery of metals occurring in significant amounts in municipal solid waste incineration fly ash, such as copper, could offer several advantages: a decreased amount of potentially mobile metal compounds going to landfill, saving of natural resources and a monetary value. A combination of leaching and solvent extraction may constitute a feasible recovery path for metals from municipal solid waste incineration fly ash. However, it has been shown that the initial dissolution and leaching is a limiting step in such a recovery process. The work described in this article was focused on elucidating physical and chemical differences between two ash samples with the aim of explaining the differences in copper release from these samples in two leaching methods. The results showed that the chemical speciation is an important factor affecting the release of copper. The occurrence of copper as phosphate or silicate will hinder leaching, while sulphate and chloride will facilitate leaching. © The Author(s) 2014.

  6. Solubility and Speciation in the Water-Carbon Dioxide System

    NASA Astrophysics Data System (ADS)

    Abramson, E.; Bollengier, O.; Brown, J. M.

    2016-12-01

    The fluid-fluid miscibility surface of the water-carbon dioxide system contains broad regions (in pressure-composition space) exhibiting gradual variations in the temperature of miscibility; this is as expected. However, there is additionally a line of pressure, extending from roughly 2 GPa and 20 mole% CO2 to 6 GPa and 40 mole%, above which the temperature necessary to complete miscibility falls precipitously. This line, which closely approximates a hard limit, is hypothesized to demark a shift in speciation of dissolved CO2. In the same region of pressure the equilibrium limits of a new solid phase, composed of both water and CO2, have been determined. This new phase, the IR and Raman spectra of which led Wang et al.* to ascribe it to carbonic acid, has an observed associated aqueous form which must, in addition to the well-known bicarbonate and carbonate ions, affect the miscibilities of the system. Since zones of rapid subduction are expected to experience the regions of temperatures and pressures at which these equilibria are observed to shift, the chemical nature of these fluids is expected to undergo significant changes during the subduction process. * Wang H., Zeuschner J., Eremets M., Troyan I. and Willams J. (2016) Sci. Rep. 6, 19902-1-8

  7. Application of aerosol speciation data as an in situ dust proxy for validation of the Dust Regional Atmospheric Model (DREAM)

    NASA Astrophysics Data System (ADS)

    Shaw, Patrick

    The Dust REgional Atmospheric Model (DREAM) predicts concentrations of mineral dust aerosols in time and space, but validation is challenging with current in situ particulate matter (PM) concentration measurements. Measured levels of ambient PM often contain anthropogenic components as well as windblown mineral dust. In this study, two approaches to model validation were performed with data from preexisting air quality monitoring networks: using hourly concentrations of total PM with aerodynamic diameter less than 2.5 μm (PM 2.5); and using a daily averaged speciation-derived soil component. Validation analyses were performed for point locations within the cities of El Paso (TX), Austin (TX), Phoenix (AZ), Salt Lake City (UT) and Bakersfield (CA) for most of 2006. Hourly modeled PM 2.5 did not validate at all with hourly observations among the sites (combined R < 0.00, N = 24,302 hourly values). Aerosol chemical speciation data distinguished between mineral (soil) dust from anthropogenic ambient PM. As expected, statistically significant improvements in correlation among all stations (combined R = 0.16, N = 343 daily values) were found when the soil component alone was used to validate DREAM. The validation biases that result from anthropogenic aerosols were also reduced using the soil component. This is seen in the reduction of the root mean square error between hourly in situ versus hourly modeled (RMSE hourly = 18.6 μg m -3) and 24-h in situ speciation values versus daily averaged observed (RMSE soil = 12.0 μg m -3). However, the lack of a total reduction in RMSE indicates there is still room for improvement in the model. While the soil component is the theoretical proxy of choice for a dust transport model, the current sparse and infrequent sampling is not ideal for routine hourly air quality forecast validation.

  8. A Multivariate Dynamic Spatial Factor Model for Speciated Pollutants and Adverse Birth Outcomes

    DOE PAGES

    Kaufeld, Kimberly Ann; Fuentes, Montse; Reich, Brian J.; ...

    2017-09-11

    Evidence suggests that exposure to elevated concentrations of air pollution during pregnancy is associated with increased risks of birth defects and other adverse birth outcomes. While current regulations put limits on total PM2.5 concentrations, there are many speciated pollutants within this size class that likely have distinct effects on perinatal health. However, due to correlations between these speciated pollutants, it can be difficult to decipher their effects in a model for birth outcomes. To combat this difficulty, we develop a multivariate spatio-temporal Bayesian model for speciated particulate matter using dynamic spatial factors. These spatial factors can then be interpolated tomore » the pregnant women’s homes to be used to model birth defects. The birth defect model allows the impact of pollutants to vary across different weeks of the pregnancy in order to identify susceptible periods. Here, the proposed methodology is illustrated using pollutant monitoring data from the Environmental Protection Agency and birth records from the National Birth Defect Prevention Study.« less

  9. A Multivariate Dynamic Spatial Factor Model for Speciated Pollutants and Adverse Birth Outcomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufeld, Kimberly Ann; Fuentes, Montse; Reich, Brian J.

    Evidence suggests that exposure to elevated concentrations of air pollution during pregnancy is associated with increased risks of birth defects and other adverse birth outcomes. While current regulations put limits on total PM2.5 concentrations, there are many speciated pollutants within this size class that likely have distinct effects on perinatal health. However, due to correlations between these speciated pollutants, it can be difficult to decipher their effects in a model for birth outcomes. To combat this difficulty, we develop a multivariate spatio-temporal Bayesian model for speciated particulate matter using dynamic spatial factors. These spatial factors can then be interpolated tomore » the pregnant women’s homes to be used to model birth defects. The birth defect model allows the impact of pollutants to vary across different weeks of the pregnancy in order to identify susceptible periods. Here, the proposed methodology is illustrated using pollutant monitoring data from the Environmental Protection Agency and birth records from the National Birth Defect Prevention Study.« less

  10. Speciation network in Laurasiatheria: retrophylogenomic signals

    PubMed Central

    Doronina, Liliya; Churakov, Gennady; Kuritzin, Andrej; Shi, Jingjing; Baertsch, Robert; Clawson, Hiram; Schmitz, Jürgen

    2017-01-01

    Rapid species radiation due to adaptive changes or occupation of new ecospaces challenges our understanding of ancestral speciation and the relationships of modern species. At the molecular level, rapid radiation with successive speciations over short time periods—too short to fix polymorphic alleles—is described as incomplete lineage sorting. Incomplete lineage sorting leads to random fixation of genetic markers and hence, random signals of relationships in phylogenetic reconstructions. The situation is further complicated when you consider that the genome is a mosaic of ancestral and modern incompletely sorted sequence blocks that leads to reconstructed affiliations to one or the other relative, depending on the fixation of their shared ancestral polymorphic alleles. The laurasiatherian relationships among Chiroptera, Perissodactyla, Cetartiodactyla, and Carnivora present a prime example for such enigmatic affiliations. We performed whole-genome screenings for phylogenetically diagnostic retrotransposon insertions involving the representatives bat (Chiroptera), horse (Perissodactyla), cow (Cetartiodactyla), and dog (Carnivora), and extracted among 162,000 preselected cases 102 virtually homoplasy-free, phylogenetically informative retroelements to draw a complete picture of the highly complex evolutionary relations within Laurasiatheria. All possible evolutionary scenarios received considerable retrotransposon support, leaving us with a network of affiliations. However, the Cetartiodactyla–Carnivora relationship as well as the basal position of Chiroptera and an ancestral laurasiatherian hybridization process did exhibit some very clear, distinct signals. The significant accordance of retrotransposon presence/absence patterns and flanking nucleotide changes suggest an important influence of mosaic genome structures in the reconstruction of species histories. PMID:28298429

  11. Detecting cryptic speciation in the widespread and morphologically conservative carpet chameleon (Furcifer lateralis) of Madagascar.

    PubMed

    Florio, A M; Ingram, C M; Rakotondravony, H A; Louis, E E; Raxworthy, C J

    2012-07-01

    Species delimitation within recently evolved groups can be challenging because species may be difficult to distinguish morphologically. Following the General Lineage Concept, we apply a multiple evidence approach to assess species limits within the carpet chameleon Furcifer lateralis, which is endemic to Madagascar and exported in large numbers for the pet trade. Cryptic speciation within F. lateralis was considered likely because this species (1) has a vast distribution, (2) occupies exceptionally diverse habitats and (3) exhibits subtle regional differences in morphology. Phylogenetic trees reconstructed using nuclear and mitochondrial genes recovered three well-supported clades corresponding with geography. Morphological results based on canonical variates analysis show that these clades exhibit subtle differences in head casque morphology. Ecological niche modelling results found that these phylogenetic groups also occupy unique environmental space and exhibit patterns of regional endemism typical of other endemic reptiles. Combined, our findings provide diverse yet consistent evidence for the existence of three species. Consequently, we elevate the subspecies F. lateralis major to species rank and name a new species distributed in northern and western Madagascar. Initial ecological divergence, associated with speciation of F. lateralis in humid eastern habitat, fits the Ecographic Constraint model for species diversification in Madagascar. By contrast, the second speciation event provides some support for the Riverine Barrier model, with the Mangoky River possibly causing initial isolation between species. These findings thus support two contrasting models of speciation within closely related species and demonstrate the utility of applying a combined-evidence approach for detecting cryptic speciation. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  12. Distribution and speciation of trace elements in iron and manganese oxide cave deposits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frierdich, Andrew J.; Catalano, Jeffrey G.

    2012-10-24

    Fe and Mn oxide minerals control the distribution and speciation of heavy metals and trace elements in soils and aquatic systems through chemical mechanisms involving adsorption, incorporation, and electron transfer. The Pautler Cave System in Southwest Illinois, an analog to other temperate carbonate-hosted karst systems, contains Fe and Mn oxide minerals that form in multiple depositional environments and have high concentrations of associated trace elements. Synchrotron-based micro-scanning X-ray fluorescence ({mu}-SXRF) shows unique spatial distributions of Fe, Mn, and trace elements in mineral samples. Profile maps of Mn oxide cave stream pebble coatings show Fe- and As-rich laminations, indicating dynamic redoxmore » conditions in the cave stream. {mu}-SXRF maps demonstrate that Ni, Cu, and Zn correlate primarily with Mn whereas As correlates with both Mn and Fe; As is more enriched in the Fe phase. Zn is concentrated in the periphery of Mn oxide stream pebble coatings, and may be an indication of recent anthropogenic surface activity. X-ray absorption fine structure spectroscopy measurements reveal that As(V) occurs as surface complexes on Mn and Fe oxides whereas Zn(II) associated with Mn oxides is adsorbed to the basal planes of phyllomanganates in a tetrahedral coordination. Co(III) and Se(IV) are also observed to be associated with Mn oxides. The observation of Fe, Mn, and trace element banding in Mn oxide cave stream pebble coatings suggests that these materials are sensitive to and document aqueous redox conditions, similar to ferromanganese nodules in soils and in marine and freshwater sediments. Furthermore, speciation and distribution measurements indicate that these minerals scavenge trace elements and limit the transport of micronutrients and contaminants in karst aquifer systems while also potentially recording changes in anthropogenic surface activity and land-use.« less

  13. Arsenic distribution and valence state variation studied by fast hierarchical length-scale morphological, compositional, and speciation imaging at the Nanoscopium, Synchrotron Soleil

    NASA Astrophysics Data System (ADS)

    Somogyi, Andrea; Medjoubi, Kadda; Sancho-Tomas, Maria; Visscher, P. T.; Baranton, Gil; Philippot, Pascal

    2017-09-01

    The understanding of real complex geological, environmental and geo-biological processes depends increasingly on in-depth non-invasive study of chemical composition and morphology. In this paper we used scanning hard X-ray nanoprobe techniques in order to study the elemental composition, morphology and As speciation in complex highly heterogeneous geological samples. Multivariate statistical analytical techniques, such as principal component analysis and clustering were used for data interpretation. These measurements revealed the quantitative and valance state inhomogeneity of As and its relation to the total compositional and morphological variation of the sample at sub-μm scales.

  14. PARTICLE SPECIATION AND EMISSION PROFILES OF SMALL 2-STROKE ENGINES

    EPA Science Inventory

    The Human Exposure and Atmospheric Sciences Division (HEASD) conducts studies designed to acquire information from emission sources for use in source apportionment studies. The objective of this work is to characterize a complete, speciated emission profile (PM and air toxics) ...

  15. Source apportionment of submicron organic aerosol collected from Atlanta, Georgia, during 2014-2015 using the aerosol chemical speciation monitor (ACSM)

    NASA Astrophysics Data System (ADS)

    Rattanavaraha, Weruka; Canagaratna, Manjula R.; Budisulistiorini, Sri Hapsari; Croteau, Philip L.; Baumann, Karsten; Canonaco, Francesco; Prevot, Andre S. H.; Edgerton, Eric S.; Zhang, Zhenfa; Jayne, John T.; Worsnop, Douglas R.; Gold, Avram; Shaw, Stephanie L.; Surratt, Jason D.

    2017-10-01

    The Aerodyne Aerosol Chemical Speciation Monitor (ACSM) was redeployed at the Jefferson Street (JST) site in downtown Atlanta, Georgia (GA) for 1 year (March 20, 2014-February 08, 2015) to chemically characterize non-refractory submicron particulate matter (NR-PM1) in near real-time and to assess whether organic aerosol (OA) types and amounts change from year-to-year. Submicron organic aerosol (OA) mass spectra were analyzed by season using multilinear engine (ME-2) to apportion OA subtypes to potential sources and chemical processes. A suite of real-time collocated measurements from the Southeastern Aerosol Research and Characterization (SEARCH) network was compared with ME-2 factor solutions to aid in the interpretation of OA subtypes during each season. OA tracers measured from high-volume filter samples using gas chromatography interfaced with electron ionization-mass spectrometry (GC/EI-MS) also aided in identifying OA sources. The initial application of ME-2 to the yearlong ACSM dataset revealed that OA source apportionment by season was required to better resolve sporadic OA types. Spring and fall OA mass spectral datasets were separated into finer periods to capture potential OA sources resulting from non-homogeneous emissions during transitioning periods. NR-PM1 was highest in summer (16.7 ± 8.4 μg m-3) and lowest in winter (8.0 ± 5.7 μg m-3), consistent with prior studies. OA dominated NR-PM1 mass (56-74% on average) in all seasons. Hydrocarbon-like OA (HOA) from primary emissions was observed in all seasons, averaging 5-22% of total OA mass. Strong correlations of HOA with carbon monoxide (CO) (R = 0.71-0.88) and oxides of nitrogen (NOx) (R = 0.55-0.79) indicated that vehicular traffic was the likely source. Biomass burning OA (BBOA) was observed in all seasons, with lower contributions (2%) in summer and higher in colder seasons (averaging 8-20% of total OA mass). BBOA correlated strongly with levoglucosan (R = 0.78-0.95) during colder seasons

  16. A review of recent developments in the speciation and location of arsenic and selenium in rice grain

    PubMed Central

    Carey, Anne-Marie; Lombi, Enzo; Donner, Erica; de Jonge, Martin D.; Punshon, Tracy; Jackson, Brian P.; Guerinot, Mary Lou; Price, Adam H.; Meharg, Andrew A.

    2014-01-01

    Rice is a staple food yet is a significant dietary source of inorganic arsenic, a class 1, nonthreshold carcinogen. Establishing the location and speciation of arsenic within the edible rice grain is essential for understanding the risk and for developing effective strategies to reduce grain arsenic concentrations. Conversely, selenium is an essential micronutrient and up to 1 billion people worldwide are selenium-deficient. Several studies have suggested that selenium supplementation can reduce the risk of some cancers, generating substantial interest in biofortifying rice. Knowledge of selenium location and speciation is important, because the anti-cancer effects of selenium depend on its speciation. Germanic acid is an arsenite/silicic acid analogue, and location of germanium may help elucidate the mechanisms of arsenite transport into grain. This review summarises recent discoveries in the location and speciation of arsenic, germanium, and selenium in rice grain using state-of-the-art mass spectrometry and synchrotron techniques, and illustrates both the importance of high-sensitivity and high-resolution techniques and the advantages of combining techniques in an integrated quantitative and spatial approach. PMID:22159463

  17. ISSUES IN SIMULATING ELEMENTAL MERCURY AIR/WATER EXCHANGE AND AQUEOUS MONOMETHYLMERCURY SPECIATION

    EPA Science Inventory

    This presentation focuses on two areas relevant to assessing the global fate and bioavailability of mercury: elemental mercury air/water exchange and aqueous environmental monomethylmercury speciation.

  18. Optimisation of the storage of natural freshwaters before organotin speciation.

    PubMed

    Bancon-Montigny, C; Lespes, G; Potin-Gautier, M

    2001-01-01

    The speciation of organotin compounds is essential due to the species-dependent toxicity, especially in natural waters. Precautions have to be taken during sampling and storage of waters in order to prevent degradations and losses. Experimental design methodology has been used to study the conditions of stability of organotins after water sampling in rivers. The modelling of results allows the determination of optimal conditions of preservation. After acidification at pH = 4 with nitric acid, the storage in polyethylene containers at 4 degrees C in the dark is suitable to preserve the most degradable trisubstituted (butyl- and phenyl-) species over 1 month. These conditions of sampling and storage are applied to two different freshwaters. The rate of species decomposition appears to be only dependent on the water nature, whatever the organotin concentrations in the sample. Speciation could be so preserved between 1 and 3 months.

  19. A speciation solver for cement paste modeling and the semismooth Newton method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georget, Fabien, E-mail: fabieng@princeton.edu; Prévost, Jean H., E-mail: prevost@princeton.edu; Vanderbei, Robert J., E-mail: rvdb@princeton.edu

    2015-02-15

    The mineral assemblage of a cement paste may vary considerably with its environment. In addition, the water content of a cement paste is relatively low and the ionic strength of the interstitial solution is often high. These conditions are extreme conditions with respect to the common assumptions made in speciation problem. Furthermore the common trial and error algorithm to find the phase assemblage does not provide any guarantee of convergence. We propose a speciation solver based on a semismooth Newton method adapted to the thermodynamic modeling of cement paste. The strong theoretical properties associated with these methods offer practical advantages.more » Results of numerical experiments indicate that the algorithm is reliable, robust, and efficient.« less

  20. [Speciation and Risk Characteristics of Heavy Metals in the Sediments of the Yangtze Estuary].

    PubMed

    Yin, Su; Feng, Cheng-hong; Li, Yang-yang; Yin, Li-feng; Shen, Zhen-yao

    2016-03-15

    Based on the investigation on the distribution of total contents and speciation of 8 heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) in the surface sediments at 14 typical sites of the Yangtze Estuary during three hydrological seasons ( wet, normal, and dry seasons) , this study applied equilibrium partitioning approach to build the sediment quality guidelines (SQGs) of the Yangtze Estuary, and assessed ecological risks of the heavy metals. The relationship between ecological risk and speciation of heavy metals was also revealed. The results showed that, except for Cd, the residual fraction was the main speciation of heavy metals, especially for As, Cr and Hg, their residual fraction proportions were all over 90%. The sediment quality guidelines of the Yangtze Estuary for As, Cd, Cr, Cu, Hg, Ni, Pb, Zn were 43.29, 0.672, 79.65, 19.08, 0.569, 339.09, 30.87, 411.36 µg · g⁻¹, respectively. Cu had the highest ecological risk to aquatic organisms. The upstream of Yangtze Estuary was mainly affected by Yangtze River runoff, where the risks were relatively high in wet season and relatively low in normal and dry seasons. However, the downstream of the estuary was mainly affected by municipal sewage of cities like Shanghai, where the risks were relatively high, especially in normal and dry seasons. There were three different relationships between the ecological risks and speciation of the eight heavy metals.

  1. Evaluation of speciated VOC emission factors for Air Force hush houses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, P.D.; Stevens, D.K.

    1997-12-31

    Data published in: ``Engine and Hush House Emissions from a TF30-P109 Jet Engine Tested at Cannon Air Force Base, NM`` by Radian Corporation and ``Aircraft Emissions. Characterization: TF41-A2, TF30-P103 , and TF30-P109 Engines`` by Battelle are reviewed and compared. Specifically CO, NO{sub x}, and VOC emission factors using EPA Method 19 are addressed, with comparisons between JP-4 and JP-8 jet fuels. CO and NO{sub x} emissions for JP-4 and JP-8 jet fuels were found to be essentially the same. VOC emission data exhibited high variability. Problems inherent in speciated VOC emission testing are discussed. A limiting of speciated VOC emissionmore » testing, with emission factor estimation based on fuel content is proposed.« less

  2. Moving Speciation Genetics Forward: Modern Techniques Build on Foundational Studies in Drosophila.

    PubMed

    Castillo, Dean M; Barbash, Daniel A

    2017-11-01

    The question of how new species evolve has been examined at every level, from macroevolutionary patterns of diversification to molecular population genetic analyses of specific genomic regions between species pairs. Drosophila has been at the center of many of these research efforts. Though our understanding of the speciation process has grown considerably over the past few decades, very few genes have been identified that contribute to barriers to reproduction. The development of advanced molecular genetic and genomic methods provides promising avenues for the rapid discovery of more genes that contribute to speciation, particularly those involving prezygotic isolation. The continued expansion of tools and resources, especially for species other than Drosophila melanogaster , will be most effective when coupled with comparative approaches that reveal the genetic basis of reproductive isolation across a range of divergence times. Future research programs in Drosophila have high potential to answer long-standing questions in speciation. These include identifying the selective forces that contribute to divergence between populations and the genetic basis of traits that cause reproductive isolation. The latter can be expanded upon to understand how the genetic basis of reproductive isolation changes over time and whether certain pathways and genes are more commonly involved. Copyright © 2017 by the Genetics Society of America.

  3. Evolution, biogeography, and systematics of Puriana: evolution and speciation in Ostracoda, III.

    USGS Publications Warehouse

    Cronin, T. M.

    1987-01-01

    Three types of geographic isolation - land barriers, deep water barriers, and climatic barriers - resulted in three distinct evolutionary responses in Neogene and Quaternary species of the epineritic ostracode genus Puriana. Through systematic, paleobiogeographic, and morphologic study of several hundred fossil and Recent populations from the eastern Pacific, western Atlantic, Gulf of Mexico, and the Caribbean, the phylogeny of the genus and the geography of speciation events were determined. Isolation of large populations by the Isthumus of Panama during the Pliocene did not lead to lineage splitting in species known to have existed before the Isthmus formed. Conversely, the establishment of small isolated populations on Caribbean islands by passive dispersal mechanisms frequently led to the evolution of new species or subspecies. Climatic changes along the southeastern United States during the Pliocene also catalyzed possible parapatric speciation as populations that immigrated to the northeastern periphery of the genus' range split to form new species. The results provide evidence that evolutionary models describing the influence of abiotic events on patterns of evolution and speciation can be tested using properly selected tectonic and climatic events and fossil groups amenable to species-level analysis. Two new species, P. bajaensis and P. paikensis, are described. -Author

  4. FUNDAMENTALS OF MERCURY SPECIATION AND CONTROL IN COAL-FIRED BOILERS

    EPA Science Inventory

    The report describes the progress of an experimental investigation of the speciation of mercury in simulated coal combustion flue gasses. The effects of flue gas parameters and coal fly ash on the oxidation of elemental mercury (Hgo) in the presence of hydrogen chloride (HCl) in ...

  5. Uptake, localization, and speciation of cobalt in Triticum aestivum L. (wheat) and Lycopersicon esculentum M. (tomato).

    PubMed

    Collins, Richard N; Bakkaus, Estelle; Carrière, Marie; Khodja, Hicham; Proux, Olivier; Morel, Jean-Louis; Gouget, Barbara

    2010-04-15

    The root-to-shoot transfer, localization, and chemical speciation of Co were investigated in a monocotyledon (Triticum aestivum L., wheat) and a dicotyledon (Lycopersicon esculentum M., tomato) plant species grown in nutrient solution at low (5 muM) and high (20 muM) Co(II) concentrations. Cobalt was measured in the roots and shoots by inductively coupled plasma-mass spectrometry. X-ray absorption spectroscopy measurements were used to identify the chemical structure of Co within the plants and Co distribution in the leaves was determined by micro-PIXE (particle induced X-ray emission). Although the root-to-shoot transport was higher for tomato plants exposed to excess Co, both plants appeared as excluders. The oxidation state of Co(II) was not transformed by either plant in the roots or shoots and Co appeared to be present as Co(II) in a complex with carboxylate containing organic acids. Cobalt was also essentially located in the vascular system of both plant species indicating that neither responded to Co toxicity via sequestration in epidermal or trichome tissues as has been observed for other metals in metal hyperaccumulating plants.

  6. Sympatric ecological speciation meets pyrosequencing: sampling the transcriptome of the apple maggot Rhagoletis pomonella

    PubMed Central

    2009-01-01

    Background The full power of modern genetics has been applied to the study of speciation in only a small handful of genetic model species - all of which speciated allopatrically. Here we report the first large expressed sequence tag (EST) study of a candidate for ecological sympatric speciation, the apple maggot Rhagoletis pomonella, using massively parallel pyrosequencing on the Roche 454-FLX platform. To maximize transcript diversity we created and sequenced separate libraries from larvae, pupae, adult heads, and headless adult bodies. Results We obtained 239,531 sequences which assembled into 24,373 contigs. A total of 6810 unique protein coding genes were identified among the contigs and long singletons, corresponding to 48% of all known Drosophila melanogaster protein-coding genes. Their distribution across GO classes suggests that we have obtained a representative sample of the transcriptome. Among these sequences are many candidates for potential R. pomonella "speciation genes" (or "barrier genes") such as those controlling chemosensory and life-history timing processes. Furthermore, we identified important marker loci including more than 40,000 single nucleotide polymorphisms (SNPs) and over 100 microsatellites. An initial search for SNPs at which the apple and hawthorn host races differ suggested at least 75 loci warranting further work. We also determined that developmental expression differences remained even after normalization; transcripts expected to show different expression levels between larvae and pupae in D. melanogaster also did so in R. pomonella. Preliminary comparative analysis of transcript presences and absences revealed evidence of gene loss in Drosophila and gain in the higher dipteran clade Schizophora. Conclusions These data provide a much needed resource for exploring mechanisms of divergence in this important model for sympatric ecological speciation. Our description of ESTs from a substantial portion of the R. pomonella transcriptome

  7. The phosphorus speciations in the sediments up- and down-stream of cascade dams along the middle Lancang River.

    PubMed

    Liu, Qi; Liu, Shiliang; Zhao, Haidi; Deng, Li; Wang, Cong; Zhao, Qinghe; Dong, Shikui

    2015-02-01

    We detected the longitudinal variability of phosphorus speciations and its relation to metals and grain size distribution of sediments in three cascade canyon reservoirs (Xiaowan, Manwan and Dachaoshan) along Lancang River, China. Five phosphorus speciations including loosely bound P (ex-P), reductant soluble P (BD-P), metal oxide-bound P (NaOH-P) calcium-bound P (HCl-P) and residual-P were extracted and quantified. Results showed that in Manwan Reservoir HCl-P accounted for the largest part of total phosphorus (TP) (49.69%), while in Xiaowan and Dachaoshan reservoirs, NaOH-P was the most abundant speciation which accounted for 57.21% and 55.19% of total phosphorus respectively. Higher contents of bio-available phosphorus in Xiaowan and Dachaoshan reservoirs suggested a high rate of P releasing from sediments. Results also showed ex-P and HCl-P had positive correlation with Ca. Total phosphorus was positively correlated with Fe. The silt/clay contents of the sediments had close relationship with ex-P (r=0.413, p<0.05), NaOH-P (r=0.428, p<0.05) and BAP (r=0.458, p<0.05). The concentration of Ca, Mn and silt/clay speciation in the sediments explained 40%, 10% and 4% of the spatial variation of phosphorus speciations, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Speciation network in Laurasiatheria: retrophylogenomic signals.

    PubMed

    Doronina, Liliya; Churakov, Gennady; Kuritzin, Andrej; Shi, Jingjing; Baertsch, Robert; Clawson, Hiram; Schmitz, Jürgen

    2017-06-01

    Rapid species radiation due to adaptive changes or occupation of new ecospaces challenges our understanding of ancestral speciation and the relationships of modern species. At the molecular level, rapid radiation with successive speciations over short time periods-too short to fix polymorphic alleles-is described as incomplete lineage sorting. Incomplete lineage sorting leads to random fixation of genetic markers and hence, random signals of relationships in phylogenetic reconstructions. The situation is further complicated when you consider that the genome is a mosaic of ancestral and modern incompletely sorted sequence blocks that leads to reconstructed affiliations to one or the other relative, depending on the fixation of their shared ancestral polymorphic alleles. The laurasiatherian relationships among Chiroptera, Perissodactyla, Cetartiodactyla, and Carnivora present a prime example for such enigmatic affiliations. We performed whole-genome screenings for phylogenetically diagnostic retrotransposon insertions involving the representatives bat (Chiroptera), horse (Perissodactyla), cow (Cetartiodactyla), and dog (Carnivora), and extracted among 162,000 preselected cases 102 virtually homoplasy-free, phylogenetically informative retroelements to draw a complete picture of the highly complex evolutionary relations within Laurasiatheria. All possible evolutionary scenarios received considerable retrotransposon support, leaving us with a network of affiliations. However, the Cetartiodactyla-Carnivora relationship as well as the basal position of Chiroptera and an ancestral laurasiatherian hybridization process did exhibit some very clear, distinct signals. The significant accordance of retrotransposon presence/absence patterns and flanking nucleotide changes suggest an important influence of mosaic genome structures in the reconstruction of species histories. © 2017 Doronina et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Combined EXAFS Spectroscopic and Quantum Chemical Study on the Complex Formation of Am(III) with Formate.

    PubMed

    Fröhlich, Daniel R; Kremleva, Alena; Rossberg, André; Skerencak-Frech, Andrej; Koke, Carsten; Krüger, Sven; Rösch, Notker; Panak, Petra J

    2017-06-19

    The complexation of Am(III) with formate in aqueous solution is studied as a function of the pH value using a combination of extended X-ray absorption fine structure (EXAFS) spectroscopy, iterative transformation factor analysis (ITFA), and quantum chemical calculations. The Am L III -edge EXAFS spectra are analyzed to determine the molecular structure (coordination numbers; Am-O and Am-C distances) of the formed Am(III)-formate species and to track the shift of the Am(III) speciation with increasing pH. The experimental data are compared to predictions from density functional calculations. The results indicate that formate binds to Am(III) in a monodentate fashion, in agreement with crystal structures of lanthanide formates. Furthermore, the investigations are complemented by thermodynamic speciation calculations to verify further the results obtained.

  10. Something's Fishy in Paxton Lake: A Case on Speciation in Sticklebacks.

    ERIC Educational Resources Information Center

    Sharp, Joan

    2002-01-01

    Introduces a case study on speciation and evolutionary mechanisms. Teaches science process skills as well as natural selection, biological species concepts, basic genetic terminology, and classification. Includes teaching notes and classroom management strategies. (Contains 14 references.) (YDS)

  11. Influence of gene flow on divergence dating - implications for the speciation history of Takydromus grass lizards.

    PubMed

    Tseng, Shu-Ping; Li, Shou-Hsien; Hsieh, Chia-Hung; Wang, Hurng-Yi; Lin, Si-Min

    2014-10-01

    Dating the time of divergence and understanding speciation processes are central to the study of the evolutionary history of organisms but are notoriously difficult. The difficulty is largely rooted in variations in the ancestral population size or in the genealogy variation across loci. To depict the speciation processes and divergence histories of three monophyletic Takydromus species endemic to Taiwan, we sequenced 20 nuclear loci and combined with one mitochondrial locus published in GenBank. They were analysed by a multispecies coalescent approach within a Bayesian framework. Divergence dating based on the gene tree approach showed high variation among loci, and the divergence was estimated at an earlier date than when derived by the species-tree approach. To test whether variations in the ancestral population size accounted for the majority of this variation, we conducted computer inferences using isolation-with-migration (IM) and approximate Bayesian computation (ABC) frameworks. The results revealed that gene flow during the early stage of speciation was strongly favoured over the isolation model, and the initiation of the speciation process was far earlier than the dates estimated by gene- and species-based divergence dating. Due to their limited dispersal ability, it is suggested that geographical isolation may have played a major role in the divergence of these Takydromus species. Nevertheless, this study reveals a more complex situation and demonstrates that gene flow during the speciation process cannot be overlooked and may have a great impact on divergence dating. By using multilocus data and incorporating Bayesian coalescence approaches, we provide a more biologically realistic framework for delineating the divergence history of Takydromus. © 2014 John Wiley & Sons Ltd.

  12. FINE PARTICULATE MATTER (PM) AND ORGANIC SPECIATION OF FIREPLACE EMISSIONS

    EPA Science Inventory

    This paper presents a summary of fireplace particle size and organic speciation data gathered to date in an on-going project. Tests are being conducted in a residential wood combustion (RWC) laboratory on three factory-built fireplaces. RWC wood smoke particles <10?m (PM10) con...

  13. Mechanisms of rapid sympatric speciation by sex reversal and sexual selection in cichlid fish.

    PubMed

    Lande, R; Seehausen, O; van Alphen, J J

    2001-01-01

    Mechanisms of speciation in cichlid fish were investigated by analyzing population genetic models of sexual selection on sex-determining genes associated with color polymorphisms. The models are based on a combination of laboratory experiments and field observations on the ecology, male and female mating behavior, and inheritance of sex-determination and color polymorphisms. The models explain why sex-reversal genes that change males into females tend to be X-linked and associated with novel colors, using the hypothesis of restricted recombination on the sex chromosomes, as suggested by previous theory on the evolution of recombination. The models reveal multiple pathways for rapid sympatric speciation through the origin of novel color morphs with strong assortative mating that incorporate both sex-reversal and suppressor genes. Despite the lack of geographic isolation or ecological differentiation, the new species coexists with the ancestral species either temporarily or indefinitely. These results may help to explain different patterns and rates of speciation among groups of cichlids, in particular the explosive diversification of rock-dwelling haplochromine cichlids.

  14. Speciation reversal and biodiversity dynamics with hybridization in changing environments.

    PubMed

    Seehausen, Ole; Takimoto, Gaku; Roy, Denis; Jokela, Jukka

    2008-01-01

    A considerable fraction of the world's biodiversity is of recent evolutionary origin and has evolved as a by-product of, and is maintained by, divergent adaptation in heterogeneous environments. Conservationists have paid attention to genetic homogenization caused by human-induced translocations (e.g. biological invasions and stocking), and to the importance of environmental heterogeneity for the ecological coexistence of species. However, far less attention has been paid to the consequences of loss of environmental heterogeneity to the genetic coexistence of sympatric species. Our review of empirical observations and our theoretical considerations on the causes and consequences of interspecific hybridization suggest that a loss of environmental heterogeneity causes a loss of biodiversity through increased genetic admixture, effectively reversing speciation. Loss of heterogeneity relaxes divergent selection and removes ecological barriers to gene flow between divergently adapted species, promoting interspecific introgressive hybridization. Since heterogeneity of natural environments is rapidly deteriorating in most biomes, the evolutionary ecology of speciation reversal ought to be fully integrated into conservation biology.

  15. Quantifying variation in speciation and extinction rates with clade data.

    PubMed

    Paradis, Emmanuel; Tedesco, Pablo A; Hugueny, Bernard

    2013-12-01

    High-level phylogenies are very common in evolutionary analyses, although they are often treated as incomplete data. Here, we provide statistical tools to analyze what we name "clade data," which are the ages of clades together with their numbers of species. We develop a general approach for the statistical modeling of variation in speciation and extinction rates, including temporal variation, unknown variation, and linear and nonlinear modeling. We show how this approach can be generalized to a wide range of situations, including testing the effects of life-history traits and environmental variables on diversification rates. We report the results of an extensive simulation study to assess the performance of some statistical tests presented here as well as of the estimators of speciation and extinction rates. These latter results suggest the possibility to estimate correctly extinction rate in the absence of fossils. An example with data on fish is presented. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  16. Speciation of arsenic, selenium, and chromium in wildfire impacted soils and ashes

    USGS Publications Warehouse

    Wolf, Ruth E.; Hoefen, Todd M.; Hageman, Philip L.; Morman, Suzette A.; Plumlee, Geoffrey S.

    2010-01-01

    In 2007-09, California experienced several large wildfires that damaged large areas of forest and destroyed many homes and buildings. The U.S. Geological Survey collected samples from the Harris, Witch, Grass Valley, Ammo, Santiago, Canyon, Jesusita, and Station fires for testing to identify any possible characteristics of the ashes and soils from burned areas that may be of concern for their impact on water quality, human health, and endangered species. The samples were subjected to analysis for bulk chemical composition for 44 elements by inductively coupled plasma mass spectrometry (ICP-MS) after acid digestion and de-ionized water leach tests for pH, alkalinity, conductivity, and anions. Water leach tests generated solutions ranging from pH 10-12, suggesting that ashes can generate caustic alkalinity in contact with rainwater or body fluids (for example, sweat and fluids in the respiratory tract). Samples from burned residential areas in the 2007 fires had elevated levels for several metals, including: As, Pb, Sb, Cu, Zn, and Cr. In some cases, the levels found were above the U.S. Environmental Protection Agency (USEPA) preliminary remediation goals (PRG) for soils. Speciation analyses were conducted on de-ionized water and simulated lung fluid leachates for As(III), As(V), Se(IV), Se(VI), Cr(III), and Cr(VI). All species were determined in the same analytical run using an ion-pairing HPLC-ICP-MS method. For leachates containing high levels of total Cr, the majority of the chromium was present in the hexavalent, Cr(VI), form. Higher total and hexavalent chromium levels were observed for samples collected from burned residential areas. Arsenic was also generally present in the more oxidized, As(V), form. Selenium (IV) and (VI) were present, but typically at levels below 2 ppb for most samples. Stability studies of leachate solutions under different storage conditions were performed and the suitability of different sample preservation methods for speciation

  17. Arsenic speciation for the phytoremediation by the Chinese brake fern, Pteris vittata.

    PubMed

    Shoji, R; Yajima, R; Yano, Y

    2008-01-01

    Arsenic (As) speciation for the phytoremediation by the Chinese brake fern was studied. In particular, the mechanism of how plants induce compounds containing thiol (SH) and proteins by As exposure in terms of the relationship between As and phosphate uptaken into plant cells was examined. Pteris vittata callus could efficiently reduce As(V) to As(III) by the rapid introduction of reductase and synthesize thiols leading to phytochelatins production. Furthermore, Pteris vittata could control phosphate concentration in the cells corresponding to the concentration of arsenite and arsenate. To our best knowledge, this is the first report to show the mechanisms of such high As tolerance of Pteris vittata using their callus in terms of in vitro approach for the analysis of As speciation and metabolism route.

  18. Speciation, Divergence, and the Origin of Gryllus rubens: Behavior, Morphology, and Molecules

    PubMed Central

    Gray, David A.

    2011-01-01

    The last 25 years or so has seen a huge resurgence of interest in speciation research. This has coincided with the development and widespread use of new tools in molecular genetics, especially DNA sequencing, to inform ecological and evolutionary questions. Here I review about a decade of work on the sister species of field crickets Gryllus texensis and G. rubens. This work has included analysis of morphology, behavior, and the mitochondrial DNA molecule. The molecular work in particular has dramatically re-shaped my interpretation of the speciational history of these taxa, suggesting that rather than ‘sister’ species we should consider these taxa as ‘mother-daughter’ species with G. rubens derived from within a subset of ancestral G. texensis. PMID:26467622

  19. Copper speciation in variably toxic sediments at the Ely Copper Mine, Vermont, United States

    USGS Publications Warehouse

    Kimball, Bryn E.; Foster, Andrea L.; Seal, Robert R.; Piatak, Nadine M.; Webb, Samuel M.; Hammarstrom, Jane M.

    2016-01-01

    At the Ely Copper Mine Superfund site, Cu concentrations exceed background values in both streamwater (160–1200 times) and sediments (15–79 times). Previously, these sediment samples were incubated with laboratory test organisms, and they exhibited variable toxicity for different stream sites. In this study we combined bulk- and microscale techniques to determine Cu speciation and distribution in these contaminated sediments on the basis of evidence from previous work that Cu was the most important stressor in this environment and that variable observed toxicity could have resulted from differences in Cu speciation. Copper speciation results were similar at microscopic and bulk scales. The major Cu species in the more toxic samples were sorbed or coprecipitated with secondary Mn (birnessite) and Fe minerals (jarosite and goethite), which together accounted for nearly 80% of the total Cu. The major Cu species in the less toxic samples were Cu sulfides (chalcopyrite and a covellite-like phase), making up about 80–95% of the total Cu, with minor amounts of Cu associated with jarosite or goethite. These Cu speciation results are consistent with the toxicity results, considering that Cu sorbed or coprecipitated with secondary phases at near-neutral pH is relatively less stable than Cu bound to sulfide at lower pH. The more toxic stream sediment sites were those that contained fewer detrital sulfides and were upstream of the major mine waste pile, suggesting that removal and consolidation of sulfide-bearing waste piles on site may not eliminate all sources of bioaccessible Cu.

  20. Speciation in Metal Toxicity and Metal-Based Therapeutics

    PubMed Central

    Templeton, Douglas M.

    2015-01-01

    Metallic elements, ions and compounds produce varying degrees of toxicity in organisms with which they come into contact. Metal speciation is critical to understanding these adverse effects; the adjectives “heavy” and “toxic” are not helpful in describing the biological properties of individual elements, but detailed chemical structures are. As a broad generalization, the metallic form of an element is inert, and the ionic salts are the species that show more significant bioavailability. Yet the salts and other chelates of a metal ion can give rise to quite different toxicities, as exemplified by a range of carcinogenic potential for various nickel species. Another important distinction comes when a metallic element is organified, increasing its lipophilicity and hence its ability to penetrate the blood brain barrier, as is seen, for example, with organic mercury and tin species. Some metallic elements, such as gold and platinum, are themselves useful therapeutic agents in some forms, while other species of the same element can be toxic, thus focusing attention on species interconversions in evaluating metal-based drugs. The therapeutic use of metal-chelating agents introduces new species of the target metal in vivo, and this can affect not only its desired detoxification, but also introduce a potential for further mechanisms of toxicity. Examples of therapeutic iron chelator species are discussed in this context, as well as the more recent aspects of development of chelation therapy for uranium exposure. PMID:29056656

  1. SPECIATION OF ARSENIC IN SULFIDIC SOLUTIONS USING X-RAY ABSORPTION SPECTROSCOPY

    EPA Science Inventory

    The fate of arsenic in the environment is fundamentally linked to its speciation. Arsenic in aerobic environments is predominantly arsenate, however under reducing conditions arsenite species dominate. In sulfidic environments, thioarsenic species are known to exist and play key...

  2. Mercury speciation and selenium in toothed-whale muscles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamoto, Mineshi, E-mail: sakamoto@nimd.go.jp; Itai, Takaaki; Yasutake, Akira

    2015-11-15

    Mercury accumulates at high levels in marine mammal tissues. However, its speciation is poorly understood. The main goal of this investigation was to establish the relationships among mercury species and selenium (Se) concentrations in toothed-whale muscles at different mercury levels. The concentrations of total mercury (T-Hg), methylmercury (MeHg), inorganic mercury (I-Hg) and Se were determined in the muscles of four toothed-whale species: bottlenose dolphins (n=31), Risso's dolphins (n=30), striped dolphins (n=29), and short-finned pilot whales (n=30). In each species, the MeHg concentration increased with increasing T-Hg concentration, tending to reach a plateau. In contrast, the proportion of MeHg in T-Hgmore » decreased from 90–100% to 20–40%. The levels of T-Hg and Se showed strong positive correlations. Se/I-Hg molar ratios rapidly decreased with the increase of I-Hg and reached almost 1 in all species. These results suggested that the demethylated MeHg immediately formed Se/I-Hg equimolar complex of mercury selenide (HgSe) in their muscles. In addition, an X-ray absorption fine structure analysis (XAFS) of a bottlenose dolphin muscle confirmed that the dominant chemical form of the Se/I-Hg equimolar complex was HgSe. HgSe was mainly localized in cells near the endomysium using electron probe microanalysis (EPMA). These results suggested that the demethylated MeHg finally deposits within muscle cells of bottlenose dolphin as an inert HgSe. - Highlights: • T-Hg, MeHg, I-Hg and Se were determined in the muscles of four toothed-whales. • MeHg increased with increasing T-Hg and tended to reach a plateau in all species. • Se/I-Hg molar ratios rapidly decreased with increase of I-Hg and reached almost 1. • XAFS of bottlenose dolphin muscle confirmed that HgSe was dominant chemical form. • EPMA of bottlenose dolphin muscle showed that HgSe deposited in muscle cells.« less

  3. Potential application of SERS for arsenic speciation in biological matrices.

    PubMed

    Yang, Mingwei; Matulis, Shannon; Boise, Lawrence H; McGoron, Anthony J; Cai, Yong

    2017-08-01

    Speciation of arsenic is usually carried out using chromatography-based methods coupled with spectroscopic determination; however, the inevitable procedures involving sample preparation and separation could potentially alter the integrity of the arsenic metabolites present in biological samples. Surface-enhanced Raman spectroscopy (SERS) could be a promising alternative for providing a reliable arsenic analysis under the influence of a cellular matrix. A method for arsenic speciation using SERS in cellular matrix was developed in this study and four arsenicals were selected, including arsenite (As III ), arsenate (As V ), monomethylarsonic acid (MMA V ) and dimethylarsinic acid (DMA V ). Silver nanoparticles in the form of colliodal suspension with different surface charges, i.e., coated with citrate (AgNPs-Citrate) and spermine (AgNPs-Spermine) were employed as SERS substrates. Adsorption of arsenicals on nanoparticles in colloidal suspensions and the cellular matrix and the pH, size, and zeta potential of the colloidal suspensions were investigated for a better understanding of the SERS signal response of arsenicals in the colloidal suspensions or under the influence of cellular matrix. Arsenicals showed substantially different SERS responses in the two colloidal suspensions, mainly because of the distinct difference in the interaction between the arsenicals and the nanoparticles. Arsenic speciation in cell lysate could be successfully carried out in AgNPs-Spermine suspension, while AgNPs-Citrate could not yield significant SERS signals under the experimental conditions. This study proved that AgNPs-Spermine colloidal suspension could be a promising SERS substrate for studying arsenic metabolism in a biological matrix, reducing the bias caused by traditional techniques that involve sample extraction and pretreatment.

  4. Speciation of heavy metals Cu, Ni and Zn by modified BCR sequential extraction procedure in sediments from Banten Bay, Banten Province, Indonesia

    NASA Astrophysics Data System (ADS)

    Lestari; Budiyanto, F.; Hindarti, D.

    2018-02-01

    Banten Bay is categorized as a marine area that is busy with marine tourism activities, settlements and also industries. One potential impact of the condition is the occurrence of pollution from both industrial and domestic sources, erosion and sedimentation in the coastal environment. Samples were collected from 25 representative stations in April 2016. Chemical speciation of three heavy metals (Cu, Ni, and Zn) was studied using a modified sequential extraction procedure proposed by the European Standard, Measurements and Testing (SM&T) program, formerly the Community Bureau of Reference (BCR). The aims of this study are to determine geochemical speciation of 4 bounds of metal: acid-soluble, reducible, oxidizable and residual, and to assess their impacts in the sediments of Banten Bay, Indonesia. The result shows that the percentage of Copper (45.90-83.75%), Nickel (18.28-65.66%), and Zinc (30.45-79.51%) were mostly accumulated in residual fraction of the total concentrations. The Risk Assessment Code (RAC) reveals that about 0-7.07% of Copper and 1.11-24.35 % of Zinc at sites exist in exchangeable fraction and therefore, they are in low risk category. While 7.34-34.90 of Ni at sites exists in exchangeable fraction and therefore, it is in medium risk category to aquatic environment.

  5. Organochlorines in surface soil at electronic-waste wire burning sites and metal contribution evaluated using quantitative X-ray speciation

    NASA Astrophysics Data System (ADS)

    Fujimori, Takashi; Takigami, Hidetaka; Takaoka, Masaki

    2013-04-01

    Heavy metals and toxic chlorinated aromatic compounds (aromatic-Cls) such as dioxins and polychlorinated biphenyls (PCBs) are found at high concentrations and persist in surface soil at wire burning sites (WBSs) in developing countries in which various wire cables are recycled to yield pure metals. Chlorine K-edge near-edge X-ray absorption fine structure (NEXAFS) is used to detect the specific chemical form of Cl and estimate its amount using a spectrum jump in the solid phase. Quantitative X-ray speciation of Cl was applied to study the mechanisms of aromatic-Cls formation in surface soil at WBSs in Southeast Asia. Relationships between aromatic-Cls and chlorides of heavy metals were evaluated because heavy metals are promoters of the thermochemical solid-phase formation of aromatic-Cls.

  6. Allochronic speciation, secondary contact, and reproductive character displacement in periodical cicadas (Hemiptera: Magicicada spp.): genetic, morphological, and behavioural evidence.

    PubMed

    Cooley, J R; Simon, C; Marshall, D C; Slon, K; Ehrhardt, C

    2001-03-01

    Periodical cicadas have proven useful in testing a variety of ecological and evolutionary hypotheses because of their unusual life history, extraordinary abundance, and wide geographical range. Periodical cicadas provide the best examples of synchronous periodicity and predator satiation in the animal kingdom, and are excellent illustrations of habitat partitioning (by the three morphologically distinct species groups), incipient species (the year classes or broods), and cryptic species (a newly discovered 13-year species, Magicicada neotredecim). They are particularly useful for exploring questions regarding speciation via temporal isolation, or allochronic speciation. Recently, data were presented that provided strong support for an instance of allochronic speciation by life-cycle switching. This speciation event resulted in the formation of a new 13-year species from a 17-year species and led to secondary contact between two formerly separated lineages, one represented by the new 13-year cicadas (and their 17-year ancestors), and the other represented by the pre-existing 13-year cicadas. Allozyme frequency data, mitochondrial DNA (mtDNA), and abdominal colour were shown to be correlated genetic markers supporting the life-cycle switching/allochronic speciation hypothesis. In addition, a striking pattern of reproductive character displacement in male call pitch and female pitch preference between the two 13-year species was discovered. In this paper we report a strong association between calling song pitch and mtDNA haplotype for 101 individuals from a single locality within the M. tredecim/M. neotredecim contact zone and a strong association between abdomen colour and mtDNA haplotype. We conclude by reviewing proposed mechanisms for allochronic speciation and reproductive character displacement.

  7. Geological and anthropogenic factors influencing mercury speciation in mine wastes: An EXAFS spectroscopy study

    USGS Publications Warehouse

    Kim, C.S.; Rytuba, J.J.; Brown, Gordon E.

    2004-01-01

    The speciation of Hg is a critical determinant of its mobility, reactivity, and potential bioavailability in mine-impacted regions. Furthermore, Hg speciation in these complex natural systems is influenced by a number of physical, geological, and anthropogenic variables. In order to investigate the degree to which several of these variables may affect Hg speciation, extended X-ray absorption fine structure (EXAFS) spectroscopy was used to determine the Hg phases and relative proportions of these phases present in Hg-bearing wastes from selected mine-impacted regions in California and Nevada. The geological origin of Hg ore has a significant effect on Hg speciation in mine wastes. Specifically, samples collected from hot-spring Hg deposits were found to contain soluble Hg-chloride phases, while such phases were largely absent in samples from silica-carbonate Hg deposits; in both deposit types, however, Hg-sulfides in the form of cinnabar (HgS, hex.) and metacinnabar (HgS, cub.) dominate. Calcined wastes in which Hg ore was crushed and roasted in excess of 600??C, contain high proportions of metacinnabar while the main Hg-containing phase in unroasted waste rock samples from the same mines is cinnabar. The calcining process is thought to promote the reconstructive phase transformation of cinnabar to metacinnabar, which typically occurs at 345??C. The total Hg concentration in calcines is strongly correlated with particle size, with increases of nearly an order of magnitude in total Hg concentration between the 500-2000 ??m and <45 ??m size fractions (e.g., from 97-810 mg/kg Hg in calcines from the Sulphur Bank Mine, CA). The proportion of Hg-sulfides present also increased by 8-18% as particle size decreased over the same size range. This finding suggests that insoluble yet soft Hg-sulfides are subject to preferential mechanical weathering and become enriched in the fine-grained fraction, while soluble Hg phases are leached out more readily as particle size decreases

  8. THE ONTARIO HYDRO METHOD FOR SPECIATED MERCURY MEASUREMENTS: ISSUES AND CONSIDERATIONS

    EPA Science Inventory

    The Ontario Hydro (OH) method has been developed for the measurement of total and speciated mercury emissions from coal-fired combustion sources. The OH method was initially developed to support EPA's information collection request to characterize and inventory mercury emissions ...

  9. Speciated VOC Emissions from an Outdoor Residential Pellet burning Hydronic Heater

    EPA Science Inventory

    Outdoor hydronic heaters used for residential heating emit air pollutants such as particulate matter and volatile organic compounds (VOCs), which can lead to deleterious impacts on local air quality and human health. Detailed speciated emissions measurements are required to accur...

  10. Using SINEs to probe ancient explosive speciation: "hidden" radiation of African cichlids?

    PubMed

    Terai, Yohey; Takahashi, Kazuhiko; Nishida, Mutsumi; Sato, Tetsu; Okada, Norihiro

    2003-06-01

    Cichlid fishes of the east African Great Lakes represent a paradigm of adaptive radiation. We conducted a phylogenetic analysis of cichlids including pan-African and west African species by using insertion patterns of short interspersed elements (SINEs) at orthologous loci. The monophyly of the east African cichlids was consistently supported by seven independent insertions of SINE sequences that are uniquely shared by these species. In addition, data from four other loci indicated that the genera Tilapia (pan-African) and Steatocranus (west African) are the closest relatives to east African cichlids. However, relationships among Tilapia, Steatocranus, and the east African clade were ambiguous because of incongruencies among topologies suggested by insertion patterns of SINEs at six other loci. One plausible explanation for this phenomenon is incomplete lineage sorting of alleles containing or missing a SINE insertion at these loci during ancestral speciation. Such incomplete sorting may have taken place earlier than 14 MYA, followed by random and stochastic fixation of the alleles in subsequent lineages. These observations prompted us to consider the possibility that cichlid speciation occurred at an accelerated rate during this period when the African Great Lakes did not exist. The SINE method could be useful for detecting ancient exclusive speciation events that tend to remain hidden during conventional sequence analyses because of accumulated point mutations.

  11. Aqueous Speciation and Electrochemical Properties of a Water-Soluble Manganese Phthalocyanine Complex#

    PubMed Central

    Blakemore, James D.; Hull, Jonathan F.

    2012-01-01

    The speciation behavior of a water-soluble manganese(III) tetrasulfonated phthalocyanine complex was investigated with UV-visible and electron paramagnetic resonance (EPR) spectroscopies, as well as cyclic voltammetry. Parallel-mode EPR (in dimethylformamide:pyridine solvent mix) reveals a six-line hyperfine signal, centered at a g-value of 8.8, for the manganese(III) monomer, characteristic of the d4 S=2 system. The color of an aqueous solution containing the complex is dependent upon the pH of the solution; the phthalocyanine complex can exist as a water-bound monomer, a hydroxide-bound monomer, or an oxo-bridged dimer. Addition of coordinating bases such as borate or pyridine changes the speciation behavior by coordinating the manganese center. From the UV-visible spectra, complete speciation diagrams are plotted by global analysis of the pH-dependent UV-visible spectra, and a complete set of pKa values is obtained by fitting the data to a standard pKa model. Electrochemical studies reveal a pH-independent quasi-reversible oxidation event for the monomeric species, which likely involves oxidation of the organic ligand to the radical cation species. Adsorption of the phthalocyanine complex on the carbon working electrode was sometimes observed. The pKa values and electrochemistry data are discussed in the context of the development of mononuclear water-oxidation catalysts. PMID:22585306

  12. AQUATIC PLANT SPECIATION AFFECTED BY DIVERSIFYING SELECTION OF ORGANELLE DNA REGIONS(1).

    PubMed

    Kato, Syou; Misawa, Kazuharu; Takahashi, Fumio; Sakayama, Hidetoshi; Sano, Satomi; Kosuge, Keiko; Kasai, Fumie; Watanabe, Makoto M; Tanaka, Jiro; Nozaki, Hisayoshi

    2011-10-01

    Many of the genes that control photosynthesis are carried in the chloroplast. These genes differ among species. However, evidence has yet to be reported revealing the involvement of organelle genes in the initial stages of plant speciation. To elucidate the molecular basis of aquatic plant speciation, we focused on the unique plant species Chara braunii C. C. Gmel. that inhabits both shallow and deep freshwater habitats and exhibits habitat-based dimorphism of chloroplast DNA (cpDNA). Here, we examined the "shallow" and "deep" subpopulations of C. braunii using two nuclear DNA (nDNA) markers and cpDNA. Genetic differentiation between the two subpopulations was measured in both nDNA and cpDNA regions, although phylogenetic analyses suggested nuclear gene flow between subpopulations. Neutrality tests based on Tajima's D demonstrated diversifying selection acting on organelle DNA regions. Furthermore, both "shallow" and "deep" haplotypes of cpDNA detected in cultures originating from bottom soils of three deep environments suggested that migration of oospores (dormant zygotes) between the two habitats occurs irrespective of the complete habitat-based dimorphism of cpDNA from field-collected vegetative thalli. Therefore, the two subpopulations are highly selected by their different aquatic habitats and show prezygotic isolation, which represents an initial process of speciation affected by ecologically based divergent selection of organelle genes. © 2011 Phycological Society of America.

  13. Sympatric speciation revealed by genome-wide divergence in the blind mole rat Spalax.

    PubMed

    Li, Kexin; Hong, Wei; Jiao, Hengwu; Wang, Guo-Dong; Rodriguez, Karl A; Buffenstein, Rochelle; Zhao, Yang; Nevo, Eviatar; Zhao, Huabin

    2015-09-22

    Sympatric speciation (SS), i.e., speciation within a freely breeding population or in contiguous populations, was first proposed by Darwin [Darwin C (1859) On the Origins of Species by Means of Natural Selection] and is still controversial despite theoretical support [Gavrilets S (2004) Fitness Landscapes and the Origin of Species (MPB-41)] and mounting empirical evidence. Speciation of subterranean mammals generally, including the genus Spalax, was considered hitherto allopatric, whereby new species arise primarily through geographic isolation. Here we show in Spalax a case of genome-wide divergence analysis in mammals, demonstrating that SS in continuous populations, with gene flow, encompasses multiple widespread genomic adaptive complexes, associated with the sharply divergent ecologies. The two abutting soil populations of S. galili in northern Israel habituate the ancestral Senonian chalk population and abutting derivative Plio-Pleistocene basalt population. Population divergence originated ∼0.2-0.4 Mya based on both nuclear and mitochondrial genome analyses. Population structure analysis displayed two distinctly divergent clusters of chalk and basalt populations. Natural selection has acted on 300+ genes across the genome, diverging Spalax chalk and basalt soil populations. Gene ontology enrichment analysis highlights strong but differential soil population adaptive complexes: in basalt, sensory perception, musculature, metabolism, and energetics, and in chalk, nutrition and neurogenetics are outstanding. Population differentiation of chemoreceptor genes suggests intersoil population's mate and habitat choice substantiating SS. Importantly, distinctions in protein degradation may also contribute to SS. Natural selection and natural genetic engineering [Shapiro JA (2011) Evolution: A View From the 21st Century] overrule gene flow, evolving divergent ecological adaptive complexes. Sharp ecological divergences abound in nature; therefore, SS appears to be an

  14. Biotic immigration events, speciation, and the accumulation of biodiversity in the fossil record

    NASA Astrophysics Data System (ADS)

    Stigall, Alycia L.; Bauer, Jennifer E.; Lam, Adriane R.; Wright, David F.

    2017-01-01

    Biotic Immigration Events (BIMEs) record the large-scale dispersal of taxa from one biogeographic area to another and have significantly impacted biodiversity throughout geologic time. BIMEs associated with biodiversity increases have been linked to ecologic and evolutionary processes including niche partitioning, species packing, and higher speciation rates. Yet substantial biodiversity decline has also been documented following BIMEs due to elevated extinction and/or reduced speciation rates. In this review, we develop a conceptual model for biodiversity accumulation that links BIMEs and geographic isolation with local (α) diversity, regional (β) diversity, and global (γ) diversity metrics. Within the model, BIME intervals are characterized by colonization of existing species within new geographic regions and a lack of successful speciation events. Thus, there is no change in γ-diversity, and α-diversity increases at the cost of β-diversity. An interval of regional isolation follows in which lineage splitting results in successful speciation events and diversity increases across all three metrics. Alternation of these two regimes can result in substantial biodiversity accumulation. We tested this conceptual model using a series of case studies from the paleontological record. We primarily focus on two intervals during the Middle through Late Ordovician Period (470-458 Ma): the globally pervasive BIMEs during the Great Ordovician Biodiversification Event (GOBE) and a regional BIME, the Richmondian Invasion. We further test the conceptual model by examining the Great Devonian Interchange, Neogene mollusk migrations and diversification, and the Great American Biotic Interchange. Paleontological data accord well with model predictions. Constraining the mechanisms of biodiversity accumulation provides context for conservation biology. Because α-, β-, and γ-diversity are semi-independent, different techniques should be considered for sustaining various

  15. Cadmium accumulation is enhanced by ammonium compared to nitrate in two hyperaccumulators, without affecting speciation

    PubMed Central

    Cheng, Miaomiao; Wang, Peng; Kopittke, Peter M.; Wang, Anan; Sale, Peter W.G.

    2016-01-01

    Nitrogen fertilization could improve the efficiency of Cd phytoextraction in contaminated soil and thus shorten the remediation time. However, limited information is available on the effect of N form on Cd phytoextraction and associated mechanisms in plants. This study examined the effect of N form on Cd accumulation, translocation, and speciation in Carpobrotus rossii and Solanum nigrum. Plants were grown in nutrient solution with 5–15 μM Cd in the presence of 1000 µM NH4 + or NO3 −. Plant growth and Cd uptake were measured, and Cd speciation was analyzed using synchrotron-based X-ray absorption spectroscopy. Shoot Cd accumulation was 30% greater with NH4 + than NO3 − supply. Carpobrotus rossii accumulated three times more Cd than S. nigrum. However, Cd speciation in the plants was not influenced by N form, but it did vary with species and tissues. In C. rossii, up to 91% of Cd was bound to S-containing ligands in all tissues except the xylem sap where 87–95% were Cd-OH complexes. Furthermore, the proportion of Cd-S in shoots was substantially lower in S. nigrum (44–69%) than in C. rossii (60–91%). It is concluded that the application of NH4 + (instead of NO3 −) increased shoot Cd accumulation by increasing uptake and translocation, rather than changing Cd speciation, and is potentially an effective approach for increasing Cd phytoextraction. PMID:27385767

  16. How does male–male competition generate negative frequency-dependent selection and disruptive selection during speciation?

    PubMed Central

    Border, Shana E

    2018-01-01

    Abstract Natural selection has been shown to drive population differentiation and speciation. The role of sexual selection in this process is controversial; however, most of the work has centered on mate choice while the role of male–male competition in speciation is relatively understudied. Here, we outline how male–male competition can be a source of diversifying selection on male competitive phenotypes, and how this can contribute to the evolution of reproductive isolation. We highlight how negative frequency-dependent selection (advantage of rare phenotype arising from stronger male–male competition between similar male phenotypes compared with dissimilar male phenotypes) and disruptive selection (advantage of extreme phenotypes) drives the evolution of diversity in competitive traits such as weapon size, nuptial coloration, or aggressiveness. We underscore that male–male competition interacts with other life-history functions and that variable male competitive phenotypes may represent alternative adaptive options. In addition to competition for mates, aggressive interference competition for ecological resources can exert selection on competitor signals. We call for a better integration of male–male competition with ecological interference competition since both can influence the process of speciation via comparable but distinct mechanisms. Altogether, we present a more comprehensive framework for studying the role of male–male competition in speciation, and emphasize the need for better integration of insights gained from other fields studying the evolutionary, behavioral, and physiological consequences of agonistic interactions. PMID:29492042

  17. Speciation of sulfur in biochar produced from pyrolysis and gasification of oak and corn stover.

    PubMed

    Cheah, Singfoong; Malone, Shealyn C; Feik, Calvin J

    2014-01-01

    The effects of feedstock type and biomass conversion conditions on the speciation of sulfur in biochars are not well-known. In this study, the sulfur content and speciation in biochars generated from pyrolysis and gasification of oak and corn stover were determined. We found the primary determinant of the total sulfur content of biomass to be the feedstock from which the biochar is generated, with oak and corn stover biochars containing 160 and 600-800 ppm sulfur, respectively. In contrast, for sulfur speciation, we found the primary determinant to be the temperature combined with the thermochemical conversion method. The speciation of sulfur in biochars was determined using X-ray absorption near-edge structure (XANES), ASTM method D2492, and scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS). Biochars produced under pyrolysis conditions at 500-600 °C contain sulfate, organosulfur, and sulfide. In some cases, the sulfate contents are up to 77-100%. Biochars produced in gasification conditions at 850 °C contain 73-100% organosulfur. The increase of the organosulfur content as the temperature of biochar production increases suggests a similar sulfur transformation mechanism as that in coal, where inorganic sulfur reacts with hydrocarbon and/or H2 to form organosulfur when the coal is heated. EDS mapping of a biochar produced from corn stover pyrolysis shows individual sulfur-containing mineral particles in addition to the sulfur that is distributed throughout the organic matrix.

  18. Speciation of Sulfur in Biochar Produced from Pyrolysis and Gasification of Oak and Corn Stover

    PubMed Central

    2015-01-01

    The effects of feedstock type and biomass conversion conditions on the speciation of sulfur in biochars are not well-known. In this study, the sulfur content and speciation in biochars generated from pyrolysis and gasification of oak and corn stover were determined. We found the primary determinant of the total sulfur content of biomass to be the feedstock from which the biochar is generated, with oak and corn stover biochars containing 160 and 600–800 ppm sulfur, respectively. In contrast, for sulfur speciation, we found the primary determinant to be the temperature combined with the thermochemical conversion method. The speciation of sulfur in biochars was determined using X-ray absorption near-edge structure (XANES), ASTM method D2492, and scanning electron microscopy–energy-dispersive spectroscopy (SEM–EDS). Biochars produced under pyrolysis conditions at 500–600 °C contain sulfate, organosulfur, and sulfide. In some cases, the sulfate contents are up to 77–100%. Biochars produced in gasification conditions at 850 °C contain 73–100% organosulfur. The increase of the organosulfur content as the temperature of biochar production increases suggests a similar sulfur transformation mechanism as that in coal, where inorganic sulfur reacts with hydrocarbon and/or H2 to form organosulfur when the coal is heated. EDS mapping of a biochar produced from corn stover pyrolysis shows individual sulfur-containing mineral particles in addition to the sulfur that is distributed throughout the organic matrix. PMID:25003702

  19. Combustion Chemistry of Fuels: Quantitative Speciation Data Obtained from an Atmospheric High-temperature Flow Reactor with Coupled Molecular-beam Mass Spectrometer.

    PubMed

    Köhler, Markus; Oßwald, Patrick; Krueger, Dominik; Whitside, Ryan

    2018-02-19

    This manuscript describes a high-temperature flow reactor experiment coupled to the powerful molecular beam mass spectrometry (MBMS) technique. This flexible tool offers a detailed observation of chemical gas-phase kinetics in reacting flows under well-controlled conditions. The vast range of operating conditions available in a laminar flow reactor enables access to extraordinary combustion applications that are typically not achievable by flame experiments. These include rich conditions at high temperatures relevant for gasification processes, the peroxy chemistry governing the low temperature oxidation regime or investigations of complex technical fuels. The presented setup allows measurements of quantitative speciation data for reaction model validation of combustion, gasification and pyrolysis processes, while enabling a systematic general understanding of the reaction chemistry. Validation of kinetic reaction models is generally performed by investigating combustion processes of pure compounds. The flow reactor has been enhanced to be suitable for technical fuels (e.g. multi-component mixtures like Jet A-1) to allow for phenomenological analysis of occurring combustion intermediates like soot precursors or pollutants. The controlled and comparable boundary conditions provided by the experimental design allow for predictions of pollutant formation tendencies. Cold reactants are fed premixed into the reactor that are highly diluted (in around 99 vol% in Ar) in order to suppress self-sustaining combustion reactions. The laminar flowing reactant mixture passes through a known temperature field, while the gas composition is determined at the reactors exhaust as a function of the oven temperature. The flow reactor is operated at atmospheric pressures with temperatures up to 1,800 K. The measurements themselves are performed by decreasing the temperature monotonically at a rate of -200 K/h. With the sensitive MBMS technique, detailed speciation data is acquired and

  20. Speciation and chemical evolution of nitrogen oxides in aircraft exhaust near airports.

    PubMed

    Wood, Ezra C; Herndon, Scott C; Timko, Michael T; Yelvington, Paul E; Miake-Lye, Richard C

    2008-03-15

    Measurements of nitrogen oxides from a variety of commercial aircraft engines as part of the JETS-APEX2 and APEX3 campaigns show that NOx (NOx [triple bond] NO + NO2) is emitted primarily in the form of NO2 at idle thrust and NO at high thrust. A chemical kinetics combustion model reproduces the observed NO2 and NOx trends with engine power and sheds light on the relevant chemical mechanisms. Experimental evidence is presented of rapid conversion of NO to NO2 in the exhaust plume from engines at low thrust. The rapid conversion and the high NO2/NOx emission ratios observed are unrelated to ozone chemistry. NO2 emissions from a CFM56-3B1 engine account for approximately 25% of the NOx emitted below 3000 feet (916 m) and 50% of NOx emitted below 500 feet (153 m) during a standard ICAO (International Civil Aviation Organization) landing-takeoff cycle. Nitrous acid (HONO) accounts for 0.5% to 7% of NOy emissions from aircraft exhaust depending on thrust and engine type. Implications for photochemistry near airports resulting from aircraft emissions are discussed.

  1. The influence of metal speciation in combustion waste on the efficiency of Cu, Pb, Zn, Cd, Ni and Cr bioleaching in a mixed culture of sulfur-oxidizing and biosurfactant-producing bacteria.

    PubMed

    Karwowska, Ewa; Wojtkowska, Małgorzata; Andrzejewska, Dorota

    2015-12-15

    Metal leachability from ash and combustion slag is related to the physico-chemical properties, including their speciation in the waste. Metals speciation is an important factor that influences the efficiency of metal bioleaching from combustion wastes in a mixed culture of acidophilic and biosurfactant-producing bacteria. It was observed that individual metals tended to occur in different fractions, which reflects their susceptibility to bioleaching. Cr and Ni were readily removed from wastes when present with a high fraction bound to carbonates. Cd and Pb where not effectively bioleached when present in high amounts in a fraction bound to organic matter. The best bioleaching results were obtained for power plant slag, which had a high metal content in the exchangeable, bound to carbonates and bound to Fe and Mg oxides fractions- the metal recovery percentage for Zn, Cu and Ni from this waste exceeded 90%. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Influence of uranyl speciation and iron oxides on uranium biogeochemical redox reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, B.D.; Amos, R.T.; Nico, P.S.

    2010-03-15

    Uranium is a pollutant of concern to both human and ecosystem health. Uranium's redox state often dictates its partitioning between the aqueous- and solid-phases, and thus controls its dissolved concentration and, coupled with groundwater flow, its migration within the environment. In anaerobic environments, the more oxidized and mobile form of uranium (UO{sub 2}{sup 2+} and associated species) may be reduced, directly or indirectly, by microorganisms to U(IV) with subsequent precipitation of UO{sub 2}. However, various factors within soils and sediments may limit biological reduction of U(VI), inclusive of alterations in U(VI) speciation and competitive electron acceptors. Here we elucidate themore » impact of U(VI) speciation on the extent and rate of reduction with specific emphasis on speciation changes induced by dissolved Ca, and we examine the impact of Fe(III) (hydr)oxides (ferrihydrite, goethite and hematite) varying in free energies of formation on U reduction. The amount of uranium removed from solution during 100 h of incubation with S. putrefaciens was 77% with no Ca or ferrihydrite present but only 24% (with ferrihydrite) and 14% (no ferrihydrite) were removed for systems with 0.8 mM Ca. Imparting an important criterion on uranium reduction, goethite and hematite decrease the dissolved concentration of calcium through adsorption and thus tend to diminish the effect of calcium on uranium reduction. Dissimilatory reduction of Fe(III) and U(VI) can proceed through different enzyme pathways, even within a single organism, thus providing a potential second means by which Fe(III) bearing minerals may impact U(VI) reduction. We quantify rate coefficients for simultaneous dissimilatory reduction of Fe(III) and U(VI) in systems varying in Ca concentration (0 to 0.8 mM), and using a mathematical construct implemented with the reactive transport code MIN3P, we reveal the predominant influence of uranyl speciation, specifically the formation of uranyl

  3. Characterizing phosphorus speciation of Chesapeake Bay sediments using chemical extraction, 31P NMR, and X-ray absorption fine structure spectroscopy.

    PubMed

    Li, Wei; Joshi, Sunendra R; Hou, Guangjin; Burdige, David J; Sparks, Donald L; Jaisi, Deb P

    2015-01-06

    Nutrient contamination has been one of the lingering issues in the Chesapeake Bay because the bay restoration is complicated by temporally and seasonally variable nutrient sources and complex interaction between imported and regenerated nutrients. Differential reactivity of sedimentary phosphorus (P) pools in response to imposed biogeochemical conditions can record past sediment history and therefore a detailed sediment P speciation may provide information on P cycling particularly the stability of a P pool and the formation of one pool at the expense of another. This study examined sediment P speciation from three sites in the Chesapeake Bay: (i) a North site in the upstream bay, (ii) a middle site in the central bay dominated by seasonally hypoxic bottom water, and (iii) a South site at the bay-ocean boundary using a combination of sequential P extraction (SEDEX) and spectroscopic techniques, including (31)P NMR, P X-ray absorption near edge structure spectroscopy (XANES), and Fe extended X-ray absorption fine structure (EXAFS). Results from sequential P extraction reveal that sediment P is composed predominantly of ferric Fe-bound P and authigenic P, which was further confirmed by solid-state (31)P NMR, XANES, and EXAFS analyses. Additionally, solution (31)P NMR results show that the sediments from the middle site contain high amounts of organic P such as monoesters and diesters, compared to the other two sites, but that these compounds rapidly decrease with sediment depth indicating remineralized P could have precipitated as authigenic P. Fe EXAFS enabled to identify the changes in Fe mineral composition and P sinks in response to imposed redox condition in the middle site sediments. The presence of lepidocrocite, vermiculite, and Fe smectite in the middle site sediments indicates that some ferric Fe minerals can still be present along with pyrite and vivianite, and that ferric Fe-bound P pool can be a major P sink in anoxic sediments. These results provide

  4. SPECIATED VOC EMISSIONS FROM MODERN GDI LIGHT ...

    EPA Pesticide Factsheets

    Chassis dynamometer emissions testing was conducted to characterize speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs) and ozone precursors, in exhaust emissions from three modern gasoline direct injection (GDI) light-duty vehicles. Each GDI vehicle tested in this study utilized slightly different fuel injection technology: Vehicle 1 used a 2.4 liter, naturally aspirated, wall-guided GDI; Vehicle 2 used a 1.8 liter, turbocharged GDI engine; Vehicle 3 used a 1.5 liter, turbocharged, spray-guided GDI engine. Vehicle testing was conducted in a temperature controlled chassis dynamometer test cell at 22 °C over the EPA Federal Test Procedure (FTP) and a portion of the Supplemental FTP (SFTP). The FTP was conducted as a three phase cycle with a cold start, hot transient, and warm start phase (also known as the FTP-75 driving cycle). The SFTP consisted of the US06 driving cycle (conducted without the vehicle’s air conditioning on), which provides a more aggressive driving pattern than the FTP. The vehicles operated on 10 percent ethanol blended gasoline (E10). VOC emissions from diluted vehicle exhaust were sampled over each FTP phase and over the Supplemental FTP with SUMMA canisters for EPA Method TO-15 analysis and with DNPH cartridges for carbonyl analysis by EPA Method TO-11A. This presentation will report the impact of driving cycle and GDI technology on speciated MSAT emissions. MSAT emission rates will be compared

  5. Sulfur Speciation in Biochars by Very High Resolution Benchtop Kα X-ray Emission Spectroscopy.

    PubMed

    Holden, William M; Seidler, Gerald T; Cheah, Singfoong

    2018-05-30

    The analytical chemistry of sulfur-containing materials poses substantial technical challenges, especially due to the limitations of 33 S NMR and the time-intensive preparations required for wet-chemistry analyses. A number of prior studies have found that synchrotron-based X-ray absorption near edge structure (XANES) measurements can give detailed speciation of sulfur chemistry in such cases. However, due to the obvious access limitations, synchrotron XANES of sulfur cannot be part of routine analytical practice across the chemical sciences community. Here, in a study of the sulfur chemistry in biochars, we compare and contrast the chemical inferences available from synchrotron XANES with that given by benchtop, extremely high resolution wavelength-dispersive X-ray fluorescence (WD-XRF) spectroscopy, also often called X-ray emission spectroscopy (XES). While the XANES spectra have higher total information content, often giving differentiation between different moieties having the same oxidation state, the lower sensitivity of the S Kα XES to coordination and local structure provides pragmatic benefit for the more limited goal of quantifying the S oxidation state distribution. Within that constrained metric, we find good agreement between the two methods. As the sulfur concentrations were as low as 150 ppm, these measurements provide proof-of-principle for characterization of the sulfur chemistry of biochars and potential applications to other areas such as soils, batteries, catalysts, and fossil fuels and their combustion products.

  6. Fate of metals before and after chemical extraction of incinerated sewage sludge ash.

    PubMed

    Li, Jiang-Shan; Tsang, Daniel C W; Wang, Qi-Ming; Fang, Le; Xue, Qiang; Poon, Chi Sun

    2017-11-01

    Chemical extraction of incinerated sewage sludge ash (ISSA) can effectively recycle P, but it may change the speciation and mobility of the remaining metals. This study investigated the changes of the leaching potential and distribution of metals in the chemically extracted ISSA. Batch extraction experiments with different extractants, including inorganic acids, organic acids, and chelating agents, were conducted on the ISSA collected from a local sewage sludge incinerator. The extraction of Zn, Cu, Pb, Ni, Cd, Ba, Cr and As from the ISSA and the corresponding changes of the mobility and speciation were examined. The results showed that the metals in ISSA were naturally stable because large portions of metals were associated with the residual fraction. The inorganic (HNO 3 and H 2 SO 4 ) and organic acids (citric acid and oxalic acid) significantly co-dissolved the metals through acid dissolution, but the reduction in the total concentrations did not tally the leaching potential of the residual metals. The increase in the exchangeable fraction due to destabilization by the extractants significantly enhanced the mobility and leachability of the metals in the residual ISSA. Chelating agents (EDTA and EDTMP) only extracted a small quantity of metals and had a marginal effect on the fate of the residual metals, but they significantly reduced the Fe/Mn oxide-bound fraction. In comparison, the bioaccessibility of residual metals were reduced to varying extent. Therefore, the disposal or reuse of chemically extracted ISSA should be carefully evaluated in view of possible increase in mobility of residual metals in the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Composition of COH fluids at 1 GPa: an experimental study on speciation and solubility

    NASA Astrophysics Data System (ADS)

    Tiraboschi, Carla; Tumiati, Simone; Recchia, Sandro; Ulmer, Peter; Pettke, Thomas; Fumagalli, Patrizia; Poli, Stefano

    2014-05-01

    COH fluids play a fundamental role in many geological processes, controlling the location of melting in subduction zones and promoting mass transfer from the subducting litosphere to the overlying mantle wedge. The properties of COH fluids are strictly dependent on the composition of the fluid in subduction systems, i.e., the speciation of the volatile components of the fluid itself and the presence of solutes deriving from the dissolution of rock-forming minerals. In the scientific literature, the speciation of COH fluids has been generally determined through thermodynamic calculations using equations of state of simple H2O-non-polar gas systems (e.g., H2O-CO2-CH4), equations that do not consider the complexity related to dissolution processes, which are substantially unexplored in COH fluids and limited so far to aqueous fluids (Newton & Manning, 2002). The aim of this work is to investigate experimentally the speciation and the dissolution of mantle minerals in carbon-saturated COH fluids at buffered fO2 conditions. Our experimental approach relies on two different techniques: 1) analysis by means of quadrupole mass spectrometer (QMS) of the fluids from pierced run capsules to retrieve speciation of volatile components and 2) analysis of frozen COH fluid with laser-ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) to measure the amount of solutes. Experiments were conducted at pressure of 1 GPa and temperatures from 800 to 900° C using a rocking piston cylinder apparatus. Mantle minerals in equilibrium with COH fluid are represented by synthetic forsterite. fO2 conditions were controlled using the double capsule technique and NNO buffer (ΔFMQ=-0.61 at 800° C; ΔFMQ =-0.98 at 900° C). For the speciation experiments, oxalic acid dihydrate and graphite have been used to generate carbon-saturated COH fluid. The speciation was determined by analyzing the quenched COH fluid, retrieved by piercing the capsule in a gas-tight vessel at T =80° C and

  8. Uranium speciation in biofilms studied by laser fluorescence techniques.

    PubMed

    Arnold, Thuro; Grossmann, Kay; Baumann, Nils

    2010-03-01

    Biofilms may immobilize toxic heavy metals in the environment and thereby influence their migration behaviour. The mechanisms of these processes are currently not understood, because the complexity of such biofilms creates many discrete geochemical microenvironments which may differ from the surrounding bulk solution in their bacterial diversity, their prevailing geochemical properties, e.g. pH and dissolved oxygen concentration, the presence of organic molecules, e.g. metabolites, and many more, all of which may affect metal speciation. To obtain such information, which is necessary for performance assessment studies or the development of new cost-effective strategies for cleaning waste waters, it is very important to develop new non-invasive methods applicable to study the interactions of metals within biofilm systems. Laser fluorescence techniques have some superior features, above all very high sensitivity for fluorescent heavy metals. An approach combining confocal laser scanning microscopy and laser-induced fluorescence spectroscopy for study of the interactions of biofilms with uranium is presented. It was found that coupling these techniques furnishes a promising tool for in-situ non-invasive study of fluorescent heavy metals within biofilm systems. Information on uranium speciation and uranium redox states can be obtained.

  9. A coevolutionary arms race causes ecological speciation in crossbills.

    PubMed

    Smith, Julie W; Benkman, Craig W

    2007-04-01

    We examined three ecological factors potentially causing premating reproductive isolation to determine whether divergent selection as a result of coevolution between South Hills crossbills (Loxia curvirostra complex) and Rocky Mountain lodgepole pine (Pinus contorta latifolia) promotes ecological speciation. One factor was habitat isolation arising because of enhanced seed defenses of lodgepole pine in the South Hills. This caused the crossbill call types (morphologically and vocally differentiated forms) adapted to alternative resources to be rare. Another occurred when crossbills of other call types moved into the South Hills late in the breeding season and feeding conditions were deteriorating so that relatively few non-South Hills crossbills bred ("immigrant infecundity"). Finally, among those crossbills that bred, pairing was strongly assortative by call type (behavioral isolation). Total reproductive isolation between South Hills crossbills and the two other crossbills most common in the South Hills (call types 2 and 5) summed to .9975 and .9998, respectively, on a scale of 0 (no reproductive isolation) to 1 (complete reproductive isolation). These extremely high levels of reproductive isolation indicate that the divergent selection resulting from the coevolutionary arms race between crossbills and lodgepole pine is causing the South Hills crossbill to speciate.

  10. Determination of the distribution and speciation of selenium in an argillaceous sample using chemical extractions and post-extractions analyses: application to the hydrogeological experimental site of Poitiers.

    PubMed

    Bassil, Joseph; Naveau, Aude; Bueno, Maïté; Di Tullo, Pamela; Grasset, Laurent; Kazpard, Véronique; Razack, Moumtaz

    2016-05-01

    To better understand selenium's dynamics in environmental systems, the present study aims to investigate selenium speciation and distribution in black argillaceous sediments, partially fulfilling karstic cavities into the Hydrogeological Experimental Site of Poitiers. These sediments are suspected to be responsible for selenium concentrations exceeding the European Framework Directive's drinking water limit value (10 μg L(-1)) in some specific wells. A combination of a sequential extractions scheme and single parallel extractions was thus applied on a representative argillaceous sample. Impacts of the extractions on mineral dissolution and organic matter mobilization were followed by quantifying major cations and total organic carbon (TOC) in the aqueous extracts. The nature of the released organic matter was characterized using thermochemolysis coupled with gas chromatography-mass spectrometry (GC-MS). About 10 % of selenium from the black argillaceous studied matrix could be defined as 'easily mobilizable' when the majority (around 70 %) revealed associated with the aliphatic and alkaline-soluble organic matter's fraction (about 20 %). In these fractions, selenium speciation was moreover dominated by oxidized species including a mixture of Se(VI) (20-30 %) and Se(IV) (70-80 %) in the 'easily mobilizable' fraction, while only Se(IV) was detected in alkaline-soluble organic matter fraction.

  11. Chemical characterization of organic aerosol above a mid-latitude forest reveals a complex mixture of highly-functionalized chemical species and diverse structural features with temporal variability

    NASA Astrophysics Data System (ADS)

    Gentner, D. R.; Ditto, J.; Barnes, E.; Khare, P.

    2017-12-01

    Highly-functionalized organic compounds are known to be a major component of the complex mixture of the particle-phase compounds that comprise organic aerosol, yet little is known about the identity of many of these compounds, and their formation pathways and roles in atmospheric processes are poorly understood. We present results from the comprehensive chemical speciation of PM10 organic aerosols collected in July 2016 at the remote mid-latitude forest field site during PROPHET. Samples were analyzed via liquid and gas chromatography coupled with a quadrupole time-of-flight tandem mass spectrometry (MS×MS) following electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). 8 hr samples were collected during day- and night-time sampling periods rather than more typical 24-hour samples. This analysis of the organic aerosol yielded over 12,000 unique compounds for which we have high accuracy molecular masses, formulas, and additional information on structural features using MS×MS. O:C ratios were 0.3 on average, yet the top 10% of compounds ranged 0.7-2.3. 70% and 69% of day- and night-time samples were nitrogen-containing, whereas 26% and 24% contained sulfur, respectively. Within these broader molecular categories, we observed a wide variety of molecular features that reveal a diversity of functional groups and moieties. In this presentation, we present the results of our speciation, temporal variability, connections to air parcel back trajectories and other bulk properties, and potential formation pathways.

  12. Radiating on oceanic islands: patterns and processes of speciation in the land snail genus Theba (Risso 1826).

    PubMed

    Greve, Carola; Gimnich, France; Hutterer, Rainer; Misof, Bernhard; Haase, Martin

    2012-01-01

    Island radiations have played a major role in shaping our current understanding of allopatric, sympatric and parapatric speciation. However, the fact that species divergence correlates with island size emphasizes the importance of geographic isolation (allopatry) in speciation. Based on molecular and morphological data, we investigated the diversification of the land snail genus Theba on the two Canary Islands of Lanzarote and Fuerteventura. Due to the geological history of both islands, this study system provides ideal conditions to investigate the interplay of biogeography, dispersal ability and differentiation in generating species diversity. Our analyses demonstrated extensive cryptic diversification of Theba on these islands, probably driven mainly by non-adaptive allopatric differentiation and secondary gene flow. In a few cases, we observed a complete absence of gene flow among sympatrically distributed forms suggesting an advanced stage of speciation. On the Jandía peninsula genome scans suggested genotype-environment associations and potentially adaptive diversification of two closely related Theba species to different ecological environments. We found support for the idea that genetic differentiation was enhanced by divergent selection in different environments. The diversification of Theba on both islands is therefore best explained by a mixture of non-adaptive and adaptive speciation, promoted by ecological and geomorphological factors.

  13. Radiating on Oceanic Islands: Patterns and Processes of Speciation in the Land Snail Genus Theba (Risso 1826)

    PubMed Central

    Greve, Carola; Gimnich, France; Hutterer, Rainer; Misof, Bernhard; Haase, Martin

    2012-01-01

    Island radiations have played a major role in shaping our current understanding of allopatric, sympatric and parapatric speciation. However, the fact that species divergence correlates with island size emphasizes the importance of geographic isolation (allopatry) in speciation. Based on molecular and morphological data, we investigated the diversification of the land snail genus Theba on the two Canary Islands of Lanzarote and Fuerteventura. Due to the geological history of both islands, this study system provides ideal conditions to investigate the interplay of biogeography, dispersal ability and differentiation in generating species diversity. Our analyses demonstrated extensive cryptic diversification of Theba on these islands, probably driven mainly by non-adaptive allopatric differentiation and secondary gene flow. In a few cases, we observed a complete absence of gene flow among sympatrically distributed forms suggesting an advanced stage of speciation. On the Jandía peninsula genome scans suggested genotype-environment associations and potentially adaptive diversification of two closely related Theba species to different ecological environments. We found support for the idea that genetic differentiation was enhanced by divergent selection in different environments. The diversification of Theba on both islands is therefore best explained by a mixture of non-adaptive and adaptive speciation, promoted by ecological and geomorphological factors. PMID:22493687

  14. Influence of dissolved organic matter and manganese oxides on metal speciation in soil solution: A modelling approach.

    PubMed

    Schneider, Arnaud R; Ponthieu, Marie; Cancès, Benjamin; Conreux, Alexandra; Morvan, Xavier; Gommeaux, Maxime; Marin, Béatrice; Benedetti, Marc F

    2016-06-01

    Trace element (TE) speciation modelling in soil solution is controlled by the assumptions made about the soil solution composition. To evaluate this influence, different assumptions using Visual MINTEQ were tested and compared to measurements of free TE concentrations. The soil column Donnan membrane technique (SC-DMT) was used to estimate the free TE (Cd, Cu, Ni, Pb and Zn) concentrations in six acidic soil solutions. A batch technique using DAX-8 resin was used to fractionate the dissolved organic matter (DOM) into four fractions: humic acids (HA), fulvic acids (FA), hydrophilic acids (Hy) and hydrophobic neutral organic matter (HON). To model TE speciation, particular attention was focused on the hydrous manganese oxides (HMO) and the Hy fraction, ligands not considered in most of the TE speciation modelling studies in soil solution. In this work, the model predictions of free ion activities agree with the experimental results. The knowledge of the FA fraction seems to be very useful, especially in the case of high DOM content, for more accurately representing experimental data. Finally, the role of the manganese oxides and of the Hy fraction on TE speciation was identified and, depending on the physicochemical conditions of the soil solution, should be considered in future studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution.

    PubMed

    Cerozi, Brunno da Silva; Fitzsimmons, Kevin

    2016-11-01

    The interaction between the main ions in aquaponics nutrient solutions affects chemical composition and availability of nutrients, and nutrient uptake by plant roots. This study determined the effect of pH on phosphorus (P) speciation and availability in an aquaponics nutrient solution and used Visual MINTEQ to simulate P species and P activity. In both experimental and simulated results, P availability decreased with increase in pH of aquaponics nutrient solutions. According to simulations, P binds to several cations leaving less free phosphate ions available in solution. High pH values resulted in the formation of insoluble calcium phosphate species. The study also demonstrated the importance of organic matter and alkalinity in keeping free phosphate ions in solution at high pH ranges. It is recommended though that pH in aquaponics systems is maintained at a 5.5-7.2 range for optimal availability and uptake by plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Migration and speciation of heavy metal in salinized mine tailings affected by iron mining.

    PubMed

    Zhang, Xu; Yang, Huanhuan; Cui, Zhaojie

    2017-10-01

    The negative effects of heavy metals have aroused much attention due to their high toxicity to human beings. Migration and transformation trend of heavy metals have a close relationship with soil safety. Researching on migration and transformation of heavy metals in tailings can provide a reliable basis for pollution management and ecosystem restoration. Heavy metal speciation plays an important role in risk assessment. We chose Anshan tailings for our study, including field investigations and laboratory research. Four typical heavy metal elements of mine tailings {Fe (373.89 g/kg), Mn (2,303.80 mg/kg), Pb (40.99 mg/kg) and Cr (199.92 mg/kg)} were studied via Tessier test in vertical and horizontal direction. The main speciation of heavy metals in Anshan tailings was the residual. However, heavy metals have a strong ability for migration and transformation in vertical and horizontal directions. Its tendency to change from stable to unstable speciation results in increasing bioavailability and potential bioavailability. Fe, Mn, Pb and Cr showed different ability in the migration and transformation process (Mn > Pb > Fe > Cr) depending on the characteristics of heavy metals and physicochemical properties of the environment.

  17. Presumable incipient hybrid speciation of door snails in previously glaciated areas in the Caucasus.

    PubMed

    Koch, Eva L; Neiber, Marco T; Walther, Frank; Hausdorf, Bernhard

    2016-04-01

    Homoploid hybrid speciation, speciation by hybridization without a change in chromosome number, may be the result of an encounter of closely related species in a habitat that is different from that usually occupied by these species. In the northwestern Caucasus the land snail species Micropontica caucasica and M. circassica form two distinct entities with little admixture at low and intermediate altitudes. However, at higher altitudes in the Lagonaki plateau, which were repeatedly glaciated, Micropontica populations with intermediate characters occur. Admixture analyses based on AFLP data demonstrated that the populations from the Lagonaki plateau are homoploid hybrids that now form a cluster separate from the parental species. The Lagonaki populations are characterized by a mtDNA haplotype clade that has been found in the parental species only once. The fixation of this haplotype clade in most hybrid populations suggests that these haplotypes are better adapted to the cooler conditions in high altitude habitats and have replaced the haplotypes of the parental species in a selective sweep. The fixation of a presumably adaptive mitochondrial haplotype clade in the Lagonaki populations is an important step towards speciation under the differential fitness species concept. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Ecological speciation in an island snail: evidence for the parallel evolution of a novel ecotype and maintenance by ecologically dependent postzygotic isolation.

    PubMed

    Stankowski, Sean

    2013-05-01

    Speciation is the process by which reproductive isolation evolves between populations. Two general models of speciation have been proposed: ecological speciation, where reproductive barriers evolve due to ecologically based divergent selection, and mutation-order speciation, where populations fix different mutations as they adapt to similar selection pressures. I evaluate these alternative models and determine the progress of speciation in a diverse group of land snails, genus Rhagada, inhabiting Rosemary Island. A recently derived keeled-flat morphotype occupies two isolated rocky hills, while globose-shelled snails inhabit the surrounding plains. The study of one hill reveals that they are separated by a narrow hybrid zone. As predicted by ecological speciation theory, there are local and landscape level associations between shell shape and habitat, and the morphological transition coincides with a narrow ecotone between the two distinct environments. Microsatellite DNA revealed a cline of hybrid index scores much wider than the morphological cline, further supporting the ecological maintenance of the morphotypes. The hybrid zone does not run through an area of low population density, as is expected for mutation-order hybrid zones, and there is a unimodal distribution of phenotypes at the centre, suggesting that there is little or no prezygotic isolation. Instead, these data suggest that the ecotypes are maintained by ecologically dependent postzygotic isolation (i.e. ecological selection against hybrids). Mitochondrial and Microsatellite DNA indicate that the keeled-flat form evolved recently, and without major historical disruptions to gene flow. The data also suggest that the two keeled-flat populations, inhabiting similar rocky hills, have evolved in parallel. These snails provide a complex example of ecological speciation in its early stages. © 2013 Blackwell Publishing Ltd.

  19. EVALUATION OF THE EFFECT OF SCR ON MERCURY SPECIATION AND EMISSIONS

    EPA Science Inventory

    The paper presents the results of an investigation on the impact that selective catalytic reduction (SCR) has on both the total emissions and the speciation of mercury (Hg). SCR systems can be used as multipollutant technologies if they enhance Hg conversion/capture. Previous pil...

  20. VARIATION OF ELEMENT SPECIATION IN COAL COMBUSTION AEROSOLS WITH PARTICLE SIZE

    EPA Science Inventory

    The speciation of sulfur, iron and key trace elements (Cr, As, Se, Zn) in combustion ash aerosols has been examined as a function of size from experimental combustion units burning Utah and Illinois bituminous coals. Although predominantly present as sulfate, sulfur was also pre...