Dinucleotide Composition in Animal RNA Viruses Is Shaped More by Virus Family than by Host Species
Di Giallonardo, Francesca; Schlub, Timothy E.; Shi, Mang
2017-01-01
ABSTRACT Viruses use the cellular machinery of their hosts for replication. It has therefore been proposed that the nucleotide and dinucleotide compositions of viruses should match those of their host species. If this is upheld, it may then be possible to use dinucleotide composition to predict the true host species of viruses sampled in metagenomic surveys. However, it is also clear that different taxonomic groups of viruses tend to have distinctive patterns of dinucleotide composition that may be independent of host species. To determine the relative strength of the effect of host versus virus family in shaping dinucleotide composition, we performed a comparative analysis of 20 RNA virus families from 15 host groupings, spanning two animal phyla and more than 900 virus species. In particular, we determined the odds ratios for the 16 possible dinucleotides and performed a discriminant analysis to evaluate the capability of virus dinucleotide composition to predict the correct virus family or host taxon from which it was isolated. Notably, while 81% of the data analyzed here were predicted to the correct virus family, only 62% of these data were predicted to their correct subphylum/class host and a mere 32% to their correct mammalian order. Similarly, dinucleotide composition has a weak predictive power for different hosts within individual virus families. We therefore conclude that dinucleotide composition is generally uniform within a virus family but less well reflects that of its host species. This has obvious implications for attempts to accurately predict host species from virus genome sequences alone. IMPORTANCE Determining the processes that shape virus genomes is central to understanding virus evolution and emergence. One question of particular importance is why nucleotide and dinucleotide frequencies differ so markedly between viruses. In particular, it is currently unclear whether host species or virus family has the biggest impact on dinucleotide frequencies and whether dinucleotide composition can be used to accurately predict host species. Using a comparative analysis, we show that dinucleotide composition has a strong phylogenetic association across different RNA virus families, such that dinucleotide composition can predict the family from which a virus sequence has been isolated. Conversely, dinucleotide composition has a poorer predictive power for the different host species within a virus family and across different virus families, indicating that the host has a relatively small impact on the dinucleotide composition of a virus genome. PMID:28148785
Heym, Eva C; Kampen, Helge; Walther, Doreen
2018-06-01
Due to their large diversity of potential blood hosts, breeding habitats, and resting sites, zoological gardens represent highly interesting places to study mosquito ecology. In order to better assess the risk of mosquito-borne disease-agent transmission in zoos, potential vector species must be known, as well as the communities in which they occur. For this reason, species composition and dynamics were examined in 2016 in two zoological gardens in Germany. Using different methods for mosquito sampling, a total of 2,257 specimens belonging to 20 taxa were collected. Species spectra depended on the collection method but generally differed between the two zoos, while species compositions and relative abundances varied seasonally in both of them. As both sampled zoos were located in the same climatic region and potential breeding sites within the zoos were similar, the differences in mosquito compositions are attributed to immigration of specimens from surrounding landscapes, although the different sizes of the zoos and the different blood host populations available probably also have an impact. Based on the differences in species composition and the various biological characteristics of the species, the risk of certain pathogens to be transmitted must also be expected to differ between the zoos. © 2018 The Society for Vector Ecology.
Beccacece, Hernán Mario; Zeballos, Sebastián Rodolfo; Zapata, Adriana Inés
Paraná, Yungas and Chaco Serrano ecoregions are among the most species-rich terrestrial habitats at higher latitude. However, the information for tiger moths, one of the most speciose groups of moths, is unknown in these ecoregions. In this study, we assess their species richness and composition in all three of these ecoregions. Also we investigated whether the species composition of tiger moths is influenced by climatic factors and altitude. Tiger moth species were obtained with samples from 71 sites using standardized protocols (21 sites were in Yungas, 19 in Paraná and 31 in Chaco Serrano). Rarefaction-extrapolation curves, non-parametric estimators for incidence and sample coverage indices were performed to assess species richness in the ecoregions studied. Non metric multidimensional scaling and adonis tests were performed to compare the species composition of tiger moths among ecoregions. Permutest analysis and Pearson correlation were used to evaluate the relationship among species composition and annual mean temperature, annual temperature range, annual precipitation, precipitation seasonality and altitude. Among ecoregions Paraná was the richest with 125 species, followed by Yungas with 63 species and Chaco Serrano with 24 species. Species composition differed among these ecoregions, although Yungas and Chaco Serrano were more similar than Paraná. Species composition was significantly influenced by climatic factors and altitude. This study showed that species richness and species composition of tiger moths differed among the three ecoregions assessed. Furthermore, not only climatic factors and altitude influence the species composition of tiger moths among ecoregions, but also climatic seasonality at higher latitude in Neotropical South America becomes an important factor.
Philpott, Stacy M; Serber, Zachary; De la Mora, Aldo
2018-04-05
Ant community assembly is driven by many factors including species interactions (e.g., competition, predation, parasitism), habitat filtering (e.g., vegetation differences, microclimate, food and nesting resources), and dispersal. Canopy ant communities, including dominant and twig-nesting ants, are structured by all these different factors, but we know less about the impacts of species interactions and habitat filters acting at the colonization or recruitment stage. We examined occupation of artificial twig nests placed in shade trees in coffee agroecosystems. We asked whether species interactions-aggression from the dominant canopy ant, Azteca sericeasur Longino (Hymenoptera: Formicidae)-or habitat filtering-species of tree where nests were placed or surrounding vegetation-influence colonization, species richness, and community composition of twig-nesting ants. We found 20 species of ants occupying artificial nests. Nest occupation was lower on trees with A. sericeasur, but did not differ depending on tree species or surrounding vegetation. Yet, there were species-specific differences in occupation depending on A. sericeasur presence and tree species. Ant species richness did not vary with A. sericeasur presence or tree species. Community composition varied with A. sericeasur presence and surrounding vegetation. Our results suggest that species interactions with dominant ants are important determinants of colonization and community composition of twig-nesting ants. Habitat filtering at the level of tree species did not have strong effects on twig-nesting ants, but changes in coffee management may contribute to differences in community composition with important implications for ant conservation in agricultural landscapes, as well as biological control of coffee pests.
Araújo, Maria Aparecida de Moura; da Rocha, Antônio Elielson Sousa; Miranda, Izildinha de Souza; Barbosa, Reinaldo Imbrozio
2017-01-01
Studies on plant communities in the Amazon have reported that different hydro-edaphic conditions can affect the richness and the species composition of different ecosystems. However, this aspect is poorly known in the different savanna habitats. Understanding how populations and plant communities are distributed in these open vegetation areas is important to improve the knowledge about which environmental variables influence the occurrence and diversity of plants in this type of regional ecosystem. Thus, this study investigated the richness and composition of plant species in two savanna areas of the northern Brazilian Amazonia, using the coverage (%) of the different life forms observed under different hydro-edaphic conditions as a structural reference. We report 128 plant species classified in 34 botanical families distributed in three savanna habitats with different levels of hydro-edaphic restrictions. In this study, the habitats are conceptually presented and they integrate environmental information (edaphic factors and drainage type), which determines differences between floristic composition, species richness and coverage (%) of plant life forms.
Dinucleotide Composition in Animal RNA Viruses Is Shaped More by Virus Family than by Host Species.
Di Giallonardo, Francesca; Schlub, Timothy E; Shi, Mang; Holmes, Edward C
2017-04-15
Viruses use the cellular machinery of their hosts for replication. It has therefore been proposed that the nucleotide and dinucleotide compositions of viruses should match those of their host species. If this is upheld, it may then be possible to use dinucleotide composition to predict the true host species of viruses sampled in metagenomic surveys. However, it is also clear that different taxonomic groups of viruses tend to have distinctive patterns of dinucleotide composition that may be independent of host species. To determine the relative strength of the effect of host versus virus family in shaping dinucleotide composition, we performed a comparative analysis of 20 RNA virus families from 15 host groupings, spanning two animal phyla and more than 900 virus species. In particular, we determined the odds ratios for the 16 possible dinucleotides and performed a discriminant analysis to evaluate the capability of virus dinucleotide composition to predict the correct virus family or host taxon from which it was isolated. Notably, while 81% of the data analyzed here were predicted to the correct virus family, only 62% of these data were predicted to their correct subphylum/class host and a mere 32% to their correct mammalian order. Similarly, dinucleotide composition has a weak predictive power for different hosts within individual virus families. We therefore conclude that dinucleotide composition is generally uniform within a virus family but less well reflects that of its host species. This has obvious implications for attempts to accurately predict host species from virus genome sequences alone. IMPORTANCE Determining the processes that shape virus genomes is central to understanding virus evolution and emergence. One question of particular importance is why nucleotide and dinucleotide frequencies differ so markedly between viruses. In particular, it is currently unclear whether host species or virus family has the biggest impact on dinucleotide frequencies and whether dinucleotide composition can be used to accurately predict host species. Using a comparative analysis, we show that dinucleotide composition has a strong phylogenetic association across different RNA virus families, such that dinucleotide composition can predict the family from which a virus sequence has been isolated. Conversely, dinucleotide composition has a poorer predictive power for the different host species within a virus family and across different virus families, indicating that the host has a relatively small impact on the dinucleotide composition of a virus genome. Copyright © 2017 American Society for Microbiology.
Grassland vegetation and bird communities in the southern Great Plains of North America
Chapman, R.N.; Engle, David M.; Masters, R.E.; Leslie, David M.
2004-01-01
Structure and composition of vegetation and abundance of breeding birds in grasslands seeded to Old World bluestem (Bothriochloa ischmaeum) were compared to native mixed prairie in the southern Great Plains of North America. Abundance of birds was determined using fixed-radius point counts. Detrended correspondence analysis was used to compare plant community composition and canonical correspondence analysis was used to examine the relationships between plant species composition and vegetation structure with the bird community. Plant species composition differed distinctly between seeded grassland and native mixed prairie, but the differences were not reflected in habitat structure, bird community composition, or abundance of bird species. Seeded grassland was inferior to native mixed prairie in terms of diversity of plant species, but that difference did not translate into meaningful differences in structure that drove habitat selection by breeding birds. Conservation programs that promote establishment of seeded grassland and do not allow for suitable disturbance regimes will selectively benefit a narrow suite of birds regardless of plant species composition. ?? 2004 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Yongfu; Chen, Na; Harmon, Mark E.; Li, Yuan; Cao, Xiaoyan; Chappell, Mark A.; Mao, Jingdong
2015-10-01
A feedback between decomposition and litter chemical composition occurs with decomposition altering composition that in turn influences the decomposition rate. Elucidating the temporal pattern of chemical composition is vital to understand this feedback, but the effects of plant species and climate on chemical changes remain poorly understood, especially over multiple years. In a 10-year decomposition experiment with litter of four species (Acer saccharum, Drypetes glauca, Pinus resinosa, and Thuja plicata) from four sites that range from the arctic to tropics, we determined the abundance of 11 litter chemical constituents that were grouped into waxes, carbohydrates, lignin/tannins, and proteins/peptides using advanced 13C solid-state NMR techniques. Decomposition generally led to an enrichment of waxes and a depletion of carbohydrates, whereas the changes of other chemical constituents were inconsistent. Inconsistent convergence in chemical compositions during decomposition was observed among different litter species across a range of site conditions, whereas one litter species converged under different climate conditions. Our data clearly demonstrate that plant species rather than climate greatly alters the temporal pattern of litter chemical composition, suggesting the decomposition-chemistry feedback varies among different plant species.
Li, Yongfu; Chen, Na; Harmon, Mark E.; Li, Yuan; Cao, Xiaoyan; Chappell, Mark A.; Mao, Jingdong
2015-01-01
A feedback between decomposition and litter chemical composition occurs with decomposition altering composition that in turn influences the decomposition rate. Elucidating the temporal pattern of chemical composition is vital to understand this feedback, but the effects of plant species and climate on chemical changes remain poorly understood, especially over multiple years. In a 10-year decomposition experiment with litter of four species (Acer saccharum, Drypetes glauca, Pinus resinosa, and Thuja plicata) from four sites that range from the arctic to tropics, we determined the abundance of 11 litter chemical constituents that were grouped into waxes, carbohydrates, lignin/tannins, and proteins/peptides using advanced 13C solid-state NMR techniques. Decomposition generally led to an enrichment of waxes and a depletion of carbohydrates, whereas the changes of other chemical constituents were inconsistent. Inconsistent convergence in chemical compositions during decomposition was observed among different litter species across a range of site conditions, whereas one litter species converged under different climate conditions. Our data clearly demonstrate that plant species rather than climate greatly alters the temporal pattern of litter chemical composition, suggesting the decomposition-chemistry feedback varies among different plant species. PMID:26515033
Beccacece, Hernán Mario; Zeballos, Sebastián Rodolfo; Zapata, Adriana Inés
2016-01-01
Paraná, Yungas and Chaco Serrano ecoregions are among the most species-rich terrestrial habitats at higher latitude. However, the information for tiger moths, one of the most speciose groups of moths, is unknown in these ecoregions. In this study, we assess their species richness and composition in all three of these ecoregions. Also we investigated whether the species composition of tiger moths is influenced by climatic factors and altitude. Tiger moth species were obtained with samples from 71 sites using standardized protocols (21 sites were in Yungas, 19 in Paraná and 31 in Chaco Serrano). Rarefaction-extrapolation curves, non-parametric estimators for incidence and sample coverage indices were performed to assess species richness in the ecoregions studied. Non metric multidimensional scaling and adonis tests were performed to compare the species composition of tiger moths among ecoregions. Permutest analysis and Pearson correlation were used to evaluate the relationship among species composition and annual mean temperature, annual temperature range, annual precipitation, precipitation seasonality and altitude. Among ecoregions Paraná was the richest with 125 species, followed by Yungas with 63 species and Chaco Serrano with 24 species. Species composition differed among these ecoregions, although Yungas and Chaco Serrano were more similar than Paraná. Species composition was significantly influenced by climatic factors and altitude. This study showed that species richness and species composition of tiger moths differed among the three ecoregions assessed. Furthermore, not only climatic factors and altitude influence the species composition of tiger moths among ecoregions, but also climatic seasonality at higher latitude in Neotropical South America becomes an important factor. PMID:27681478
Species composition of regeneration after clearcutting Southern Appalachian hardwoods
David L. Loftis
1989-01-01
Regeneration after clearcutting of Southern Appalachian hardwood stands varies substantially in species composition not only among sites of different quality and previous-stand composition, but also among sites of similar quality and similar previous-stand composition. Severe competition from less desirable species for available growing space is cOllDlon in regenerated...
Araújo, Maria Aparecida de Moura; da Rocha, Antônio Elielson Sousa; Miranda, Izildinha de Souza
2017-01-01
Abstract Background Studies on plant communities in the Amazon have reported that different hydro-edaphic conditions can affect the richness and the species composition of different ecosystems. However, this aspect is poorly known in the different savanna habitats. Understanding how populations and plant communities are distributed in these open vegetation areas is important to improve the knowledge about which environmental variables influence the occurrence and diversity of plants in this type of regional ecosystem. Thus, this study investigated the richness and composition of plant species in two savanna areas of the northern Brazilian Amazonia, using the coverage (%) of the different life forms observed under different hydro-edaphic conditions as a structural reference. New information We report 128 plant species classified in 34 botanical families distributed in three savanna habitats with different levels of hydro-edaphic restrictions. In this study, the habitats are conceptually presented and they integrate environmental information (edaphic factors and drainage type), which determines differences between floristic composition, species richness and coverage (%) of plant life forms. PMID:28848372
The specificity of host-bat fly interaction networks across vegetation and seasonal variation.
Zarazúa-Carbajal, Mariana; Saldaña-Vázquez, Romeo A; Sandoval-Ruiz, César A; Stoner, Kathryn E; Benitez-Malvido, Julieta
2016-10-01
Vegetation type and seasonality promote changes in the species composition and abundance of parasite hosts. However, it is poorly known how these variables affect host-parasite interaction networks. This information is important to understand the dynamics of parasite-host relationships according to biotic and abiotic changes. We compared the specialization of host-bat fly interaction networks, as well as bat fly and host species composition between upland dry forest and riparian forest and between dry and rainy seasons in a tropical dry forest in Jalisco, Mexico. Bat flies were surveyed by direct collection from bats. Our results showed that host-bat fly interaction networks were more specialized in upland dry forest compared to riparian forest. Bat fly species composition was different between the dry and rainy seasons, while host species composition was different between upland dry forest and riparian forest. The higher specialization in upland dry forest could be related to the differences in bat host species composition and their respective roosting habits. Variation in the composition of bat fly species between dry and rainy seasons coincides with the seasonal shifts in their species richness. Our study confirms the high specialization of host-bat fly interactions and shows the importance of biotic and abiotic factors to understand the dynamics of parasite-host interactions.
Iturrate-Garcia, Maitane; O'Brien, Michael J; Khitun, Olga; Abiven, Samuel; Niklaus, Pascal A; Schaepman-Strub, Gabriela
2016-11-01
Plant communities are coupled with abiotic factors, as species diversity and community composition both respond to and influence climate and soil characteristics. Interactions between vegetation and abiotic factors depend on plant functional types (PFT) as different growth forms will have differential responses to and effects on site characteristics. However, despite the importance of different PFT for community assembly and ecosystem functioning, research has mainly focused on vascular plants. Here, we established a set of observational plots in two contrasting habitats in northeastern Siberia in order to assess the relationship between species diversity and community composition with soil variables, as well as the relationship between vegetation cover and species diversity for two PFT (nonvascular and vascular). We found that nonvascular species diversity decreased with soil acidity and moisture and, to a lesser extent, with soil temperature and active layer thickness. In contrast, no such correlation was found for vascular species diversity. Differences in community composition were found mainly along soil acidity and moisture gradients. However, the proportion of variation in composition explained by the measured soil variables was much lower for nonvascular than for vascular species when considering the PFT separately. We also found different relationships between vegetation cover and species diversity according the PFT and habitat. In support of niche differentiation theory, species diversity and community composition were related to edaphic factors. The distinct relationships found for nonvascular and vascular species suggest the importance of considering multiple PFT when assessing species diversity and composition and their interaction with edaphic factors. Synthesis : Identifying vegetation responses to edaphic factors is a first step toward a better understanding of vegetation-soil feedbacks under climate change. Our results suggest that incorporating differential responses of PFT is important for predicting vegetation shifts, primary productivity, and in turn, ecosystem functioning in a changing climate.
The effects of seasonality on host-bat fly ecological networks in a temperate mountain cave.
Rivera-García, Karina D; Sandoval-Ruiz, César A; Saldaña-Vázquez, Romeo A; Schondube, Jorge E
2017-04-01
Changes in the specialization of parasite-host interactions will be influenced by variations in host species composition. We evaluated this hypothesis by comparing the composition of bats and bat flies within a roost cave over one annual. Five bat and five bat fly species occupied the cave over the course of the study. Bat species composition was 40% different in the rainy season compared with the dry-cold and dry-warm seasons. Despite the incorporation of three new bat species into the cave during the rainy season, bat fly species composition was not affected by seasonality, since the bats that arrived in the rainy season only contributed one new bat fly species at a low prevalence. Bat-bat fly ecological networks were less specialized in the rainy season compared with the dry-cold and dry-warm seasons because of the increase of host overlap among bat fly species during this season. This study suggests that seasonality promote: (1) differences in host species composition, and (2) a reduction in the specialization of host-parasite ecological networks.
Chemical similarity and local community assembly in the species rich tropical genus Piper.
Salazar, Diego; Jaramillo, M Alejandra; Marquis, Robert J
2016-11-01
Community ecologists have strived to find mechanisms that mediate the assembly of natural communities. Recent evidence suggests that natural enemies could play an important role in the assembly of hyper-diverse tropical plant systems. Classic ecological theory predicts that in order for coexistence to occur, species differences must be maximized across biologically important niche dimensions. For plant-herbivore interactions, it has been recently suggested that, within a particular community, plant species that maximize the difference in chemical defense profiles compared to neighboring taxa will have a relative competitive advantage. Here we tested the hypothesis that plant chemical diversity can affect local community composition in the hyper-diverse genus Piper at a lowland wet forest location in Costa Rica. We first characterized the chemical composition of 27 of the most locally abundant species of Piper. We then tested whether species with different chemical compositions were more likely to coexist. Finally, we assessed the degree to which Piper phylogenetic relationships are related to differences in secondary chemical composition and community assembly. We found that, on average, co-occurring species were more likely to differ in chemical composition than expected by chance. Contrary to expectations, there was no phylogenetic signal for overall secondary chemical composition. In addition we found that species in local communities were, on average, more phylogenetically closely related than expected by chance, suggesting that functional traits other than those measured here also influence local assembly. We propose that selection by herbivores for divergent chemistries between closely related species facilitates the coexistence of a high diversity of congeneric taxa via apparent competition. © 2016 by the Ecological Society of America.
Modern tree species composition reflects ancient Maya "forest gardens" in northwest Belize.
Ross, Nanci J
2011-01-01
Ecology and ethnobotany were integrated to assess the impact of ancient Maya tree-dominated home gardens (i.e., "forest gardens"), which contained a diversity of tree species used for daily household needs, on the modern tree species composition of a Mesoamerican forest. Researchers have argued that the ubiquity of these ancient gardens throughout Mesoamerica led to the dominance of species useful to Maya in the contemporary forest, but this pattern may be localized depending on ancient land use. The tested hypothesis was that species composition would be significantly different between areas of dense ancient residential structures (high density) and areas of little or no ancient settlement (low density). Sixty-three 400-m2 plots (31 high density and 32 low density) were censused around the El Pilar Archaeological Reserve in northwestern Belize. Species composition was significantly different, with higher abundances of commonly utilized "forest garden" species still persisting in high-density forest areas despite centuries of abandonment. Subsequent edaphic analyses only explained 5% of the species composition differences. This research provides data on the long-term impacts of Maya forests gardens for use in development of future conservation models. For Mesoamerican conservation programs to work, we must understand the complex ecological and social interactions within an ecosystem that developed in intimate association with humans.
Evidences of the inheritance of turpentine composition in slash pine
A.E. Squillace; Gordon S. Fisher
1966-01-01
Within-species variation in turpentine composition has promise of great utility in pine genetics. Most of the early work on turpentine composition dealt with species differences, and the utility of such variation in the taxonomy of pines is well known (Mirov 1961). With the development of gas chromatographic techniques, intensive study of individual tree differences...
Aszalós, Réka; Lengyel, Attila
2017-01-01
Climate change and land use change are two major elements of human-induced global environmental change. In temperate grasslands and woodlands, increasing frequency of extreme weather events like droughts and increasing severity of wildfires has altered the structure and dynamics of vegetation. In this paper, we studied the impact of wildfires and the year-to-year differences in precipitation on species composition changes in semi-arid grasslands of a forest-steppe complex ecosystem which has been partially disturbed by wildfires. Particularly, we investigated both how long-term compositional dissimilarity changes and species richness are affected by year-to-year precipitation differences on burnt and unburnt areas. Study sites were located in central Hungary, in protected areas characterized by partially-burnt, juniper-poplar forest-steppe complexes of high biodiversity. Data were used from two long-term monitoring sites in the Kiskunság National Park, both characterized by the same habitat complex. We investigated the variation in species composition as a function of time using distance decay methodology. In each sampling area, compositional dissimilarity increased with the time elapsed between the sampling events, and species richness differences increased with increasing precipitation differences between consecutive years. We found that both the long-term compositional dissimilarity, and the year-to-year changes in species richness were higher in the burnt areas than in the unburnt ones. The long-term compositional dissimilarities were mostly caused by perennial species, while the year-to-year changes of species richness were driven by annual and biennial species. As the effect of the year-to-year variation in precipitation was more pronounced in the burnt areas, we conclude that canopy removal by wildfires and extreme inter-annual variability of precipitation, two components of global environmental change, act in a synergistic way. They enhance the effect of one another, resulting in greater long-term and year-to-year changes in the composition of grasslands. PMID:29149208
Kertész, Miklós; Aszalós, Réka; Lengyel, Attila; Ónodi, Gábor
2017-01-01
Climate change and land use change are two major elements of human-induced global environmental change. In temperate grasslands and woodlands, increasing frequency of extreme weather events like droughts and increasing severity of wildfires has altered the structure and dynamics of vegetation. In this paper, we studied the impact of wildfires and the year-to-year differences in precipitation on species composition changes in semi-arid grasslands of a forest-steppe complex ecosystem which has been partially disturbed by wildfires. Particularly, we investigated both how long-term compositional dissimilarity changes and species richness are affected by year-to-year precipitation differences on burnt and unburnt areas. Study sites were located in central Hungary, in protected areas characterized by partially-burnt, juniper-poplar forest-steppe complexes of high biodiversity. Data were used from two long-term monitoring sites in the Kiskunság National Park, both characterized by the same habitat complex. We investigated the variation in species composition as a function of time using distance decay methodology. In each sampling area, compositional dissimilarity increased with the time elapsed between the sampling events, and species richness differences increased with increasing precipitation differences between consecutive years. We found that both the long-term compositional dissimilarity, and the year-to-year changes in species richness were higher in the burnt areas than in the unburnt ones. The long-term compositional dissimilarities were mostly caused by perennial species, while the year-to-year changes of species richness were driven by annual and biennial species. As the effect of the year-to-year variation in precipitation was more pronounced in the burnt areas, we conclude that canopy removal by wildfires and extreme inter-annual variability of precipitation, two components of global environmental change, act in a synergistic way. They enhance the effect of one another, resulting in greater long-term and year-to-year changes in the composition of grasslands.
LaManna, Joseph A.; Martin, Thomas E.
2017-01-01
Understanding the causes underlying changes in species diversity is a fundamental pursuit of ecology. Animal species richness and composition often change with decreased forest structural complexity associated with logging. Yet differences in latitude and forest type may strongly influence how species diversity responds to logging. We performed a meta-analysis of logging effects on local species richness and composition of birds across the world and assessed responses by different guilds (nesting strata, foraging strata, diet, and body size). This approach allowed identification of species attributes that might underlie responses to this anthropogenic disturbance. We only examined studies that allowed forests to regrow naturally following logging, and accounted for logging intensity, spatial extent, successional regrowth after logging, and the change in species composition expected due to random assembly from regional species pools. Selective logging in the tropics and clearcut logging in temperate latitudes caused loss of species from nearly all forest strata (ground to canopy), leading to substantial declines in species richness (up to 27% of species). Few species were lost or gained following any intensity of logging in lower-latitude temperate forests, but the relative abundances of these species changed substantially. Selective logging at higher-temperate latitudes generally replaced late-successional specialists with early-successional specialists, leading to no net changes in species richness but large changes in species composition. Removing less basal area during logging mitigated the loss of avian species from all forests and, in some cases, increased diversity in temperate forests. This meta-analysis provides insights into the important role of habitat specialization in determining differential responses of animal communities to logging across tropical and temperate latitudes.
LaManna, Joseph A; Martin, Thomas E
2017-08-01
Understanding the causes underlying changes in species diversity is a fundamental pursuit of ecology. Animal species richness and composition often change with decreased forest structural complexity associated with logging. Yet differences in latitude and forest type may strongly influence how species diversity responds to logging. We performed a meta-analysis of logging effects on local species richness and composition of birds across the world and assessed responses by different guilds (nesting strata, foraging strata, diet, and body size). This approach allowed identification of species attributes that might underlie responses to this anthropogenic disturbance. We only examined studies that allowed forests to regrow naturally following logging, and accounted for logging intensity, spatial extent, successional regrowth after logging, and the change in species composition expected due to random assembly from regional species pools. Selective logging in the tropics and clearcut logging in temperate latitudes caused loss of species from nearly all forest strata (ground to canopy), leading to substantial declines in species richness (up to 27% of species). Few species were lost or gained following any intensity of logging in lower-latitude temperate forests, but the relative abundances of these species changed substantially. Selective logging at higher-temperate latitudes generally replaced late-successional specialists with early-successional specialists, leading to no net changes in species richness but large changes in species composition. Removing less basal area during logging mitigated the loss of avian species from all forests and, in some cases, increased diversity in temperate forests. This meta-analysis provides insights into the important role of habitat specialization in determining differential responses of animal communities to logging across tropical and temperate latitudes. © 2016 Cambridge Philosophical Society.
Medina, Anderson Matos; Lopes, Priscila Paixão
2014-01-01
Dung beetle (Coleoptera: Scarabaeoidea: Scarabaeinae) activity is influenced by rainfall seasonality. We hypothesized that rainfall might also play a major role in regulating the community structure of this group. In this study, we describe seasonal changes in the richness, composition, and structure of the Scarabaeinae community in a Brazilian tropical dry forest. A fragment of arboreal Caatinga was sampled using baited pitfall traps during the early dry season (EDS), late dry season (LDS), early wet season (EWS), and middle wet season (MWS). We compared the dung beetle community in each season in relationship to species richness, rank-dominance, curves, and composition. We collected 1352 Scarabaeinae individuals , belonging to 15 species. Dichotomius aff. laevicollis Felsche (Coleoptera: Scarabaeidae) was the dominant species, representing 73.89% of the individuals. There were no seasonal changes in the rank dominance curves; all had a single dominant species and a few species with low abundance, typical for arid areas. Estimated richness was highest in MWS, followed by EWS. Dry-season samples (EDS and LDS) had lower richness, with no significant difference between the dry seasons. Although species richness increased as the habitat became wetter, the difference between the wet and dry seasons was small, which differs completely from the findings of other studies in Neotropical dry forests, where almost all species cease activities in the dry season. Species composition changes were found in non-metric multidimensional scaling and sustained by analysis of similarity. All the seasons had pairwise differences in composition, with the exception of EDS and MWS, which indicates that the dung beetle community in this fragment requires more than three months of drought to trigger changes in species composition; this is probably due to small changes in the forest canopy. There was no difference in composition between EDS and MWS. As in other tropical dry forests, although to a lesser extent, the dung beetle community of this fragment responded to rainfall seasonality with changes in species composition and reduced species richness. Such responses, even to this lesser extent, may occur because of small changes in tree cover and minor microclimate changes. This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.
Cerqueira, Gabriela R; Ilkiu-Borges, Anna Luiza; Ferreira, Leandro V
2017-01-01
This study aimed to compare the richness and composition of the epiphytic bryoflora between várzea and igapó forests in Caxiuanã National Forest, Brazilian Amazon. Bryophytes were collected on 502 phorophytes of Virola surinamensis. Average richness per phorophyte and composition between forests and between dry and rainy periods was tested by two-way analysis and by cluster analysis, respectively. In total, 54 species of 13 families were identified. Richness was greater in igapó forest (44 species) compared to várzea forest (38 species). There was no significant difference in the number of species between the studied periods. Cluster analysis showed the bryoflora composition was different between várzea and igapó, but not between dry and rainy periods. Results did not corroborate the hypothesis that várzea forests harbor higher species richness than igapó forests.
Stork, N E; Srivastava, D S; Eggleton, P; Hodda, M; Lawson, G; Leakey, R R B; Watt, A D
2017-08-01
Lawton et al. (1998) found, in a highly cited study, that the species richness of 8 taxa each responds differently to anthropogenic disturbance in Cameroon forests. Recent developments in conservation science suggest that net number of species is an insensitive measure of change and that understanding which species are affected by disturbance is more important. It is also recognized that all disturbance types are not equal in their effect on species and that grouping species according to function rather than taxonomy is more informative of responses of biodiversity to change. In a reanalysis of most of the original Cameroon data set (canopy and ground ants, termites, canopy beetles, nematodes, and butterflies), we focused on changes in species and functional composition rather than richness and used a more inclusive measure of forest disturbance based on 4 component drivers of change: years since disturbance, tree cover, soil compaction, and degree of tree removal. Effects of disturbance on compositional change were largely concordant between taxa. Contrary to Lawton et al.'s findings, species richness for most groups did not decline with disturbance level, providing support for the view that trends in species richness at local scales do not reflect the resilience of ecosystems to disturbance. Disturbance affected species composition more strongly than species richness for butterflies, canopy beetles, and litter ants. For these groups, disturbance caused species replacements rather than just species loss. Only termites showed effects of disturbance on species richness but not composition, indicating species loss without replacement. Although disturbance generally caused changes in composition, the strength of this relationship depended on the disturbance driver. Butterflies, litter ants, and nematodes were correlated with amount of tree cover, canopy beetles were most strongly correlated with time since disturbance, and termites were most strongly correlated with degree of soil disturbance. There were moderately divergent responses to disturbance between functional feeding groups. Disturbance was most strongly correlated with compositional differences of herbivores within beetles and nematodes and humus feeders within termites. Our results suggest that consideration of the impact of different forms of disturbance on species and functional composition, rather than on net numbers of species, is important when assessing the impacts of disturbance on biodiversity. © 2016 Society for Conservation Biology.
Ray, Brandon R.; Johnson, Matthew W.; Cammarata, Kirk; Smee, Delbert L.
2014-01-01
The objective of this study was to measure the communities associated with different seagrass species to predict how shifts in seagrass species composition may affect associated fauna. In the northwestern Gulf of Mexico, coverage of the historically dominant shoal grass (Halodule wrightii) is decreasing, while coverage of manatee grass (Syringodium filiforme) and turtle grass (Thalassia testudinum) is increasing. We conducted a survey of fishes, crabs, and shrimp in monospecific beds of shoal, manatee, and turtle grass habitats of South Texas, USA to assess how changes in sea grass species composition would affect associated fauna. We measured seagrass parameters including shoot density, above ground biomass, epiphyte type, and epiphyte abundance to investigate relationships between faunal abundance and these seagrass parameters. We observed significant differences in communities among three seagrass species, even though these organisms are highly motile and could easily travel among the different seagrasses. Results showed species specific relationships among several different characteristics of the seagrass community and individual species abundance. More work is needed to discern the drivers of the complex relationships between individual seagrass species and their associated fauna. PMID:25229897
Demographic controls of aboveground forest biomass across North America.
Vanderwel, Mark C; Zeng, Hongcheng; Caspersen, John P; Kunstler, Georges; Lichstein, Jeremy W
2016-04-01
Ecologists have limited understanding of how geographic variation in forest biomass arises from differences in growth and mortality at continental to global scales. Using forest inventories from across North America, we partitioned continental-scale variation in biomass growth and mortality rates of 49 tree species groups into (1) species-independent spatial effects and (2) inherent differences in demographic performance among species. Spatial factors that were separable from species composition explained 83% and 51% of the respective variation in growth and mortality. Moderate additional variation in mortality (26%) was attributable to differences in species composition. Age-dependent biomass models showed that variation in forest biomass can be explained primarily by spatial gradients in growth that were unrelated to species composition. Species-dependent patterns of mortality explained additional variation in biomass, with forests supporting less biomass when dominated by species that are highly susceptible to competition (e.g. Populus spp.) or to biotic disturbances (e.g. Abies balsamea). © 2016 John Wiley & Sons Ltd/CNRS.
Es'kov, A K
2013-01-01
Species composition of epiphytic communities within different formations of Phú Quôc Island (Southern Vietnam) is studied. The dependence of species composition and structural complexity of epiphytic communities on formation quality is demonstrated. Representatives of different families differ notably in their sensitivity to disturbances. Most vulnerable are Orchidaceae which represent the dominant group in epiphytic community of rain forest and which drop out almost completely under anthropogenic impacts. In less disturbed forests, epiphyte species diversity increases mainly at the expense of "lower" synusias and directly depends on the formation layering. Diminishing of layering numbers leads to dropping out of species belonging to "lower" synusias. Among epiphytes, the indicators of disturbed communities can be detected, namely species of ruderal strategy (explerents). In primal rain forest, they are absent or barely noticeable. An index is proposed for estimation of epiphytic communitiy complexity.
NASA Astrophysics Data System (ADS)
Blaber, S. J. M.; Brewer, D. T.; Salini, J. P.; Kerr, J. D.; Conacher, C.
1992-12-01
The species composition and biomasses of fishes in the tropical seagrasses of Groote Eylandt, northern Australia, were studied in 1989 and 1990. A total of 156 species was recorded. Tall dense seagrass, short seagrass and control (no seagrass) sites in different depths were compared. Shallow (<1 m) sites were dominated by small resident species and juveniles of non-resident species, while deeper waters (to 7 m) were dominated by larger species. Species composition was not significantly different between sites, but species diversity ( H) and evenness ( E) were higher in non-vegetated areas. In slightly deeper water (<2 m) species composition was different between habitats and species diversity was highest in tall seagrass and least in open areas. Most species were more abundant in tall seagrass and least abundant in open areas. Most of the larger fishes, including 11 species of sharks, are piscivores, and most move into shallow sea-grass areas at night, irrespective of tide height. Only five species showed abundance patterns related to tide height and there were no significant seasonal patterns of abundance in any of the communities. The biomasses for all sites and sampling methods were mostly from 1 to 2 g m -2, which is low relative to other inshore tropical areas. The possible causes—the characteristics of adjacent habitats (coral reefs and mangroves) and the role of seagrasses in the life cycle of fishes are discussed. It is suggested that habitat structure is a major determinant of the species composition of fish in tropical seagrass areas, primarily because it affects food availability, both for small residents and juveniles, and for visiting predators.
NASA Astrophysics Data System (ADS)
Reichart, G. J.; Nooijer, L. D.; Geerken, E.; Mezger, E.; van Dijk, I. V.; Daemmer, L. K.
2017-12-01
Reconstructions of past climate and environments are largely based on stable isotopes and trace element concentrations measured on fossil foraminiferal calcite. Their element and isotope composition roughly reflects seawater composition and physical conditions, which in turn, are related to paleoceanographic parameters. More recently, attempts are being made to infer ranges in environmental parameters using the observed differences in the composition within individual tests. Remarkably, inter-species differences in trace element incorporation are well-correlated over a wide range of environmental conditions. This is particularly remarkable knowing that different environmental factors influence incorporation of these elements at various magnitudes. Most likely the complex biomineralization of foraminifera potentially offsets trace elements similarly at all these scales and also between different species. This suggests that at least parts of the mechanisms underlying foraminiferal biomineralization are similar for all species, which in turn provides important clues on the cellular mechanisms operating during calcification. Moreover, the systematics in trace element partitioning between species could potentially provide important clues for unravelling past changes in trace element composition of the ancient ocean.
Toppe, Jogeir; Albrektsen, Sissel; Hope, Britt; Aksnes, Anders
2007-03-01
The chemical composition, content of minerals and the profiles of amino acids and fatty acids were analyzed in fish bones from eight different species of fish. Fish bones varied significantly in chemical composition. The main difference was lipid content ranging from 23 g/kg in cod (Gadus morhua) to 509 g/kg in mackerel (Scomber scombrus). In general fatty fish species showed higher lipid levels in the bones compared to lean fish species. Similarly, lower levels of protein and ash were observed in bones from fatty fish species. Protein levels differed from 363 g/kg lipid free dry matter (dm) to 568 g/kg lipid free dm with a concomitant inverse difference in ash content. Ash to protein ratio differed from 0.78 to 1.71 with the lowest level in fish that naturally have highest swimming and physical activity. Saithe (Pollachius virens) and salmon (Salmo salar) were found to be significantly different in the levels of lipid, protein and ash, and ash/protein ratio in the bones. Only small differences were observed in the level of amino acids although species specific differences were observed. The levels of Ca and P in lipid free fish bones were about the same in all species analyzed. Fatty acid profile differed in relation to total lipid levels in the fish bones, but some minor differences between fish species were observed.
Proximate composition and mineral content of two edible species of Cnidoscolus (tree spinach).
Kuti, J O; Kuti, H O
1999-01-01
Proximate composition and mineral content of raw and cooked leaves of two edible tree spinach species (Cnidoscolus chayamansa and C. aconitifolius), known locally as 'chaya', were determined and compared with that of a traditional green vegetable, spinach (Spinicia oleraceae). Results of the study indicated that the edible leafy parts of the two chaya species contained significantly (p<0.05) greater amounts of crude protein, crude fiber, Ca, K, Fe, ascorbic acid and beta-carotene than the spinach leaf. However, no significant (p>0.05) differences were found in nutritional composition and mineral content between the chaya species, except minor differences in the relative composition of fatty acids, protein and amino acids. Cooking of chaya leaves slightly reduced nutritional composition of both chaya species. Cooking is essential prior to consumption to inactivate the toxic hydrocyanic glycosides present in chaya leaves. Based on the results of this study, the edible chaya leaves may be good dietary sources of minerals (Ca, K and Fe) and vitamins (ascorbic acid and beta-carotene).
Nichols, J.D.; Boulinier, T.; Hines, J.E.; Pollock, K.H.; Sauer, J.R.
1998-01-01
Inferences about spatial variation in species richness and community composition are important both to ecological hypotheses about the structure and function of communities and to community-level conservation and management. Few sampling programs for animal communities provide censuses, and usually some species present. We present estimators useful for drawing inferences about comparative species richness and composition between different sampling locations when not all species are detected in sampling efforts. Based on capture-recapture models using the robust design, our methods estimate relative species richness, proportion of species in one location that are also found in another, and number of species found in one location but not in another. The methods use data on the presence or absence of each species at different sampling occasions (or locations) to estimate the number of species not detected at any occasions (or locations). This approach permits estimation of the number of species in the sampled community and in subsets of the community useful for estimating the fraction of species shared by two communities. We provide an illustration of our estimation methods by comparing bird species richness and composition in two locations sampled by routes of the North American Breeding Bird Survey. In this example analysis, the two locations (an associated bird communities) represented different levels of urbanization. Estimates of relative richness, proportion of shared species, and number of species present on one route but not the other indicated that the route with the smaller fraction of urban area had greater richness and a larer number of species that were not found on the more urban route than vice versa. We developed a software package, COMDYN, for computing estimates based on the methods. Because these estimation methods explicitly deal with sampling in which not all species are detected, we recommend their use for addressing questions about species richness and community composition.
NASA Astrophysics Data System (ADS)
Lu, Bing; He, Yuhong
2017-06-01
Investigating spatio-temporal variations of species composition in grassland is an essential step in evaluating grassland health conditions, understanding the evolutionary processes of the local ecosystem, and developing grassland management strategies. Space-borne remote sensing images (e.g., MODIS, Landsat, and Quickbird) with spatial resolutions varying from less than 1 m to 500 m have been widely applied for vegetation species classification at spatial scales from community to regional levels. However, the spatial resolutions of these images are not fine enough to investigate grassland species composition, since grass species are generally small in size and highly mixed, and vegetation cover is greatly heterogeneous. Unmanned Aerial Vehicle (UAV) as an emerging remote sensing platform offers a unique ability to acquire imagery at very high spatial resolution (centimetres). Compared to satellites or airplanes, UAVs can be deployed quickly and repeatedly, and are less limited by weather conditions, facilitating advantageous temporal studies. In this study, we utilize an octocopter, on which we mounted a modified digital camera (with near-infrared (NIR), green, and blue bands), to investigate species composition in a tall grassland in Ontario, Canada. Seven flight missions were conducted during the growing season (April to December) in 2015 to detect seasonal variations, and four of them were selected in this study to investigate the spatio-temporal variations of species composition. To quantitatively compare images acquired at different times, we establish a processing flow of UAV-acquired imagery, focusing on imagery quality evaluation and radiometric correction. The corrected imagery is then applied to an object-based species classification. Maps of species distribution are subsequently used for a spatio-temporal change analysis. Results indicate that UAV-acquired imagery is an incomparable data source for studying fine-scale grassland species composition, owing to its high spatial resolution. The overall accuracy is around 85% for images acquired at different times. Species composition is spatially attributed by topographical features and soil moisture conditions. Spatio-temporal variation of species composition implies the growing process and succession of different species, which is critical for understanding the evolutionary features of grassland ecosystems. Strengths and challenges of applying UAV-acquired imagery for vegetation studies are summarized at the end.
Kim, Mi Young; Kim, Eun Jin; Kim, Young-Nam; Choi, Changsun
2012-01-01
Pumpkins have considerable variation in nutrient contents depending on the cultivation environment, species, or part. In this study, the general chemical compositions and some bioactive components, such as tocopherols, carotenoids, and β-sitosterol, were analyzed in three major species of pumpkin (Cucurbitaceae pepo, C. moschata, and C. maxima) grown in Korea and also in three parts (peel, flesh, and seed) of each pumpkin species. C. maxima had significantly more carbohydrate, protein, fat, and fiber than C. pepo or C. moschata (P < 0.05). The moisture content as well as the amino acid and arginine contents in all parts of the pumpkin was highest in C. pepo. The major fatty acids in the seeds were palmitic, stearic, oleic, and linoleic acids. C. pepo and C. moschata seeds had significantly more γ-tocopherol than C. maxima, whose seeds had the highest β-carotene content. C. pepo seeds had significantly more β-sitosterol than the others. Nutrient compositions differed considerably among the pumpkin species and parts. These results will be useful in updating the nutrient compositions of pumpkin in the Korean food composition database. Additional analyses of various pumpkins grown in different years and in different areas of Korea are needed. PMID:22413037
The ghosts of trees past: savanna trees create enduring legacies in plant species composition.
Stahlheber, Karen A; Crispin, Kimberly L; Anton, Cassidy; D'Antonio, Carla M
2015-09-01
Isolated trees in savannas worldwide are known to modify their local environment and interact directly with neighboring plants. Less is known about how related tree species differ in their impacts on surrounding communities, how the effects of trees vary between years, and how composition might change following loss of the tree. To address these knowledge gaps, we explored the following questions: How do savanna trees influence the surrounding composition of herbaceous plants? Is the influence of trees consistent across different species and years? How does this change following the death of the tree? We surveyed herbaceous species composition and environmental attributes surrounding living and dead evergreen and deciduous Quercus trees in California (USA) savannas across several years that differed in their total precipitation. Oak trees of all species created distinct, homogenous understory communities dominated by exotic grasses across several sites. The composition of the low-diversity understory communities showed less interannual variation than open grassland, despite a two-fold difference in precipitation between the driest and wettest year. Vegetation composition was correlated with variation in soil properties, which were strongly affected by trees. Oaks also influenced the communities beyond the edge of the crown, but this depended on site and oak species. Low-diversity understory communities persisted up to 43 years following the death of the tree. A gradual decline in the effect of trees on the physical, environment following death did not result in vegetation becoming more similar to open grassland over time. The presence of long-lasting legacies of past tree crowns highlights the difficulty of assigning control of the current distribution of herbaceous species in grassland to their contemporary environment.
Ectoparasites and endoparasites of fish form networks with different structures.
Bellay, S; DE Oliveira, E F; Almeida-Neto, M; Mello, M A R; Takemoto, R M; Luque, J L
2015-06-01
Hosts and parasites interact with each other in a variety of ways, and this diversity of interactions is reflected in the networks they form. To test for differences in interaction patterns of ecto- and endoparasites we analysed subnetworks formed by each kind of parasites and their host fish species in fish-parasite networks for 22 localities. We assessed the proportion of parasite species per host species, the relationship between parasite fauna composition and host taxonomy, connectance, nestedness and modularity of each subnetwork (n = 44). Furthermore, we evaluated the similarity in host species composition among modules in ecto- and endoparasite subnetworks. We found several differences between subnetworks of fish ecto- and endoparasites. The association with a higher number of host species observed among endoparasites resulted in higher connectance and nestedness, and lower values of modularity in their subnetworks than in those of ectoparasites. Taxonomically related host species tended to share ecto- or endoparasites with the same interaction intensity, but the species composition of hosts tended to differ between modules formed by ecto- and endoparasites. Our results suggest that different evolutionary and ecological processes are responsible for organizing the networks formed by ecto- and endoparasites and fish.
A Review of the Composition of the Essential Oils and Biological Activities of Angelica Species.
Sowndhararajan, Kandasamy; Deepa, Ponnuvel; Kim, Minju; Park, Se Jin; Kim, Songmun
2017-09-20
A number of Angelica species have been used in traditional systems of medicine to treat many ailments. Especially, essential oils (EOs) from the Angelica species have been used for the treatment of various health problems, including malaria, gynecological diseases, fever, anemia, and arthritis. EOs are complex mixtures of low molecular weight compounds, especially terpenoids and their oxygenated compounds. These components deliver specific fragrance and biological properties to essential oils. In this review, we summarized the chemical composition and biological activities of EOs from different species of Angelica . For this purpose, a literature search was carried out to obtain information about the EOs of Angelica species and their bioactivities from electronic databases such as PubMed, Science Direct, Wiley, Springer, ACS, Google, and other journal publications. There has been a lot of variation in the EO composition among different Angelica species. EOs from Angelica species were reported for different kinds of biological activities, such as antioxidant, anti-inflammatory, antimicrobial, immunotoxic, and insecticidal activities. The present review is an attempt to consolidate the available data for different Angelica species on the basis of major constituents in the EOs and their biological activities.
Influence of Soil Properties on Soldierless Termite Distribution.
Bourguignon, Thomas; Drouet, Thomas; Šobotník, Jan; Hanus, Robert; Roisin, Yves
2015-01-01
In tropical rainforests, termites constitute an important part of the soil fauna biomass, and as for other soil arthropods, variations in soil composition create opportunities for niche partitioning. The aim of this study was twofold: first, we tested whether soil-feeding termite species differ in the foraging substrate; second, we investigated whether soil-feeding termites select their foraging sites to enhance nutrients intake. To do so, we collected termites and analysed the composition and structure of their feeding substrates. Although Anoplotermes-group members are all considered soil-feeders, our results show that some species specifically feed on abandoned termite nests and very rotten wood, and that this substrate selection is correlated with previous stable isotope analyses, suggesting that one component of niche differentiation among species is substrate selection. Our results show that the composition and structure of bare soils on which different termite species foraged do not differ, suggesting that there is no species specialization for a particular type of bare soil. Finally, the bare soil on which termites forage does not differ from random soil samples. Overall, our results suggest that few species of the Anoplotermes-group are specialized toward substrates rich in organic matter, but that the vast majority forage on soil independently of its structural and chemical composition, being ecologically equivalent for this factor.
Osthoff, G; Hugo, A; Madende, M; Deacon, F; Nel, P J
2017-02-01
The composition of major nutrients and fatty acids of the milk of three species, red hartebeest, Southern reedbuck and warthog, and milk fatty acids of giraffe, that have not been published before, are reported, and together with the same parameters of 11 species previously published, were incorporated in a phylogenetic comparison. Unique properties of milk composition have been observed. Southern reedbuck milk seems to have a complex casein composition, similar to that of sheep. Milk composition varies between species. Although some differences may be ascribed to biological condition, such as stage of lactation, or ecological factors, such as availability of certain nutrients, the contribution by evolutionary history is not well documented and the emphasis is usually on the composition of the macro nutrients. Phylogenetic comparisons often lack representatives of multiple species of taxonomic groups and sub-groups. To date phylogenetic comparisons of milk composition have been carried out by using data from different publications. The problem with this approach is that the ecological factors cannot be completely ruled out. A statistical phylogenetic comparison by PCA between 15 species representing 7 different suborders, families or subfamilies of African Artiodactyla was carried out. The phylogenetic properties showed that the milk composition of the Bovinae, represented here by the subfamilies Bovini and Tragelaphini, differs from the other taxonomic groups, in that the Alcelaphinae had a high milk fat content of the medium chain length fatty acids C8-C12 (>17% of total fatty acids) and the Hippotraginae high amounts of oligosaccharides (>0.4%). Copyright © 2016 Elsevier Inc. All rights reserved.
Ockinger, Erik; Smith, Henrik G
2006-09-01
During the last 50 years, the distribution and abundance of many European butterfly species associated with semi-natural grasslands have declined. This may be the result of deteriorating habitat quality, but habitat loss, resulting in decreasing area and increasing isolation of remaining habitat, is also predicted to result in reduced species richness. To investigate the effects of habitat loss on species richness, we surveyed butterflies in semi-natural grasslands of similar quality and structure, but situated in landscapes of different habitat composition. Using spatially explicit habitat data, we selected one large (6-10 ha) and one small (0.5-2 ha) grassland site (pasture) in each of 24 non-overlapping 28.2 km(2) landscapes belonging to three categories differing in the proportion of the area that consisted of semi-natural grasslands. After controlling for local habitat quality, species richness was higher in grassland sites situated in landscapes consisting of a high proportion of grasslands. Species richness was also higher in larger grassland sites, and this effect was more pronounced for sedentary than for mobile species. However, the number of species for a given area did not differ between large and small grasslands. There was also a significant relationship between butterfly species richness and habitat quality in the form of vegetation height and abundance of flowers. In contrast, butterfly density was not related to landscape composition or grassland size. When species respond differently to habitat area or landscape composition this leads to effects on community structure, and nestedness analysis showed that depauperate communities were subsets of richer ones. Both grassland area and landscape composition may have contributed to this pattern, implying that small habitat fragments and landscapes with low proportions of habitat are both likely to mainly contain common generalist species. Based on these results, conservation efforts should aim at preserving landscapes with high proportions of the focal habitat.
Chemical Composition of Cacti Wood and Comparison with the Wood of Other Taxonomic Groups.
Maceda, Agustín; Soto-Hernández, Marcos; Peña-Valdivia, Cecilia B; Terrazas, Teresa
2018-04-01
The aims of this study were to determine the wood chemical composition of 25 species of Cactaceae and to relate the composition to their anatomical diversity. The hypothesis was that wood chemical components differ in relationship to their wood features. The results showed significant differences in wood chemical compounds across species and genera (P < 0.05). Pereskia had the highest percentage of lignin, whereas species of Coryphantha had the lowest; extractive compounds in water were highest for Echinocereus, Mammillaria, and Opuntia. Principal component analysis showed that lignin proportion separated the fibrous, dimorphic, and non-fibrous groups; additionally, the differences within each type of wood occurred because of the lignification of the vascular tissue and the type of wall thickening. Compared with other groups of species, the Cactaceae species with fibrous and dimorphic wood had a higher lignin percentage than did gymnosperms and Acer species. Lignin may confer special rigidity to tracheary elements to withstand desiccation without damage during adverse climatic conditions. © 2018 Wiley-VHCA AG, Zurich, Switzerland.
Remnant trees affect species composition but not structure of tropical second-growth forest.
Sandor, Manette E; Chazdon, Robin L
2014-01-01
Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2-3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests ("control plots"). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields.
Remnant Trees Affect Species Composition but Not Structure of Tropical Second-Growth Forest
Sandor, Manette E.; Chazdon, Robin L.
2014-01-01
Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2–3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests (“control plots”). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields. PMID:24454700
NASA Astrophysics Data System (ADS)
Kholis, N.; Patria, M. P.; Soedjiarti, T.
2017-07-01
Research of composition and diversity of fish species in seagrass bed ecosystem at Muara Binuangeun, Lebak, Banten, had been conducted in May and November 2015. Catch per Unit of Effort (CPUE) was used as a method with push net and boat net as fishing gear. Fishing was conducted during low tide. Collected samples were preserved with 10 % Formalin Solution and then being identified in the laboratory. In total, 286 fishes were collected from 17 families and 38 species. Moolgarda sp. was the most relative abundant species (17,13 %) and Istiblennius edentulus was a fish species with the highest relative frequency. Diversity index value of seagrass bed ecosystem was 2,973. Different sampling time showed the different composition of fish, in an example of Arothron immaculatus.
Hu, Yanqiu; Su, Zhiyao; Li, Wenbin; Li, Jingpeng; Ke, Xiandong
2015-01-01
We assessed the impact of species composition and stand structure on the spatial variation of forest carbon density using data collected from a 4-ha plot in a subtropical forest in southern China. We found that 1) forest biomass carbon density significantly differed among communities, reflecting a significant effect of community structure and species composition on carbon accumulation; 2) soil organic carbon density increased whereas stand biomass carbon density decreased across communities, indicating that different mechanisms might account for the accumulation of stand biomass carbon and soil organic carbon in the subtropical forest; and 3) a small number of tree individuals of the medium- and large-diameter class contributed predominantly to biomass carbon accumulation in the community, whereas a large number of seedlings and saplings were responsible for a small proportion of the total forest carbon stock. These findings demonstrate that both biomass carbon and soil carbon density in the subtropical forest are sensitive to species composition and community structure, and that heterogeneity in species composition and stand structure should be taken into account to ensure accurate forest carbon accounting. PMID:26317523
Hu, Yanqiu; Su, Zhiyao; Li, Wenbin; Li, Jingpeng; Ke, Xiandong
2015-01-01
We assessed the impact of species composition and stand structure on the spatial variation of forest carbon density using data collected from a 4-ha plot in a subtropical forest in southern China. We found that 1) forest biomass carbon density significantly differed among communities, reflecting a significant effect of community structure and species composition on carbon accumulation; 2) soil organic carbon density increased whereas stand biomass carbon density decreased across communities, indicating that different mechanisms might account for the accumulation of stand biomass carbon and soil organic carbon in the subtropical forest; and 3) a small number of tree individuals of the medium- and large-diameter class contributed predominantly to biomass carbon accumulation in the community, whereas a large number of seedlings and saplings were responsible for a small proportion of the total forest carbon stock. These findings demonstrate that both biomass carbon and soil carbon density in the subtropical forest are sensitive to species composition and community structure, and that heterogeneity in species composition and stand structure should be taken into account to ensure accurate forest carbon accounting.
Mangels, Jule; Blüthgen, Nico; Frank, Kevin; Grassein, Fabrice; Hilpert, Andrea; Mody, Karsten
2015-01-01
Most forests are exposed to anthropogenic management activities that affect tree species composition and natural ecosystem processes. Changes in ecosystem processes such as herbivory depend on management intensity, and on regional environmental conditions and species pools. Whereas influences of specific forest management measures have already been addressed for different herbivore taxa on a local scale, studies considering effects of different aspects of forest management across different regions are rare. We assessed the influence of tree species composition and intensity of harvesting activities on arthropod herbivores and herbivore-related damage to beech trees, Fagus sylvatica, in 48 forest plots in three regions of Germany. We found that herbivore abundance and damage to beech trees differed between regions and that – despite the regional differences - density of tree-associated arthropod taxa and herbivore damage were consistently affected by tree species composition and harvest intensity. Specifically, overall herbivore damage to beech trees increased with increasing dominance of beech trees – suggesting the action of associational resistance processes – and decreased with harvest intensity. The density of leaf chewers and mines was positively related to leaf damage, and several arthropod groups responded to beech dominance and harvest intensity. The distribution of damage patterns was consistent with a vertical shift of herbivores to higher crown layers during the season and with higher beech dominance. By linking quantitative data on arthropod herbivore abundance and herbivory with tree species composition and harvesting activity in a wide variety of beech forests, our study helps to better understand the influence of forest management on interactions between a naturally dominant deciduous forest tree and arthropod herbivores. PMID:25938417
Wayne C. Zipperer
2002-01-01
Regenerated and remnant forest patches were inventoried in Syracuse, New York, USA to determine differences in structure, species composition, human disturbances, and landscape context. Patches had similar mean stem diameter, total stem density, and total basal areas, but differed with respect to diameter distribution, disturbance regime, landscape context, and...
van der Kooij, Thomas A W; Krupinska, Karin; Krause, Kirsten
2005-07-01
The holoparasitic plant genus Cuscuta is comprised of species with various degrees of plastid functionality and significant differences in photosynthetic capacity, ranging from moderate to no photosynthetic carbon fixation. In the present study, several Cuscuta species were analyzed with respect to the overall contents of tocochromanols and plastoquinone and the levels of the individual tocochromanols. No correlations among photosynthetic capacity, the amount of carotenoids, of plastoquinone and of tocochromanols were observed. On the contrary, wide variation in the composition of the tocochromanol fraction was observed among different species, as well as in stems of the same species in response to starvation conditions. The implications of these findings are discussed.
NASA Astrophysics Data System (ADS)
Alguacil, M. M.; Torrecillas, E.; Roldán, A.; Díaz, G.; Torres, P.
2012-04-01
The arbuscular mycorrhizal fungi (AMF) communities composition regulate plant interactions and determine the structure of plant communities. In this study we analysed the diversity of AMF in the roots of two perennial gypsophyte plant species, Herniaria fruticosa and Senecio auricula, and an annual herbaceous species, Bromus rubens, growing in a gypsum soil from a semiarid area. The objective was to determine whether perennial and annual host plants support different AMF communities in their roots and whether there are AMF species that might be indicators of specific functional plant roles in these ecosystems. The roots were analysed by nested PCR, cloning, sequencing of the ribosomal DNA small subunit region and phylogenetic analysis. Twenty AMF sequence types, belonging to the Glomus group A, Glomus group B, Diversisporaceae, Acaulosporaceae, Archaeosporaceae and Paraglomeraceae, were identified. Both gypsophyte perennial species had differing compositions of the AMF community and higher diversity when compared with the annual species, showing preferential selection by specific AMF sequences types. B. rubens did not show host specificity, sharing the full composition of its AMF community with both perennial plant species. Seasonal variations in the competitiveness of AM fungi could explain the observed differences in AMF community composition, but this is still a working hypothesis that requires the analysis of further data obtained from a higher number of both annual and perennial plant species in order to be fully tested.
NASA Astrophysics Data System (ADS)
Atma, Y.
2017-03-01
Research on fish bone gelatin has been increased in the last decade. The quality of gelatin depends on its physicochemical properties. Fish bone gelatin from warm-water fishes has a superior amino acid composition than cold-water fishes. The composition of amino acid can determine the strength and stability of gelatin. Thus, it is important to analyze the composition of amino acid as well as proximate composition for potential gelatin material. The warm water fish species used in this study were Grass carp, Pangasius catfish, Catfish, Lizard fish, Tiger-toothed croaker, Pink perch, Red snapper, Brown spotted grouper, and King weakfish. There werre five dominant amino acid in fish bone gelatin including glycine (21.2-36.7%), proline (8.7-11.7%), hydroxyproline (5.3-9.6%), alanine (8.48-12.9%), and glutamic acid (7.23-10.15%). Different warm-water species has some differences in amino acid composition. The proximate composition showed that fishbone gelatin from Pangasius catfish has the highest protein content. The water composition of all fishbone gelatin was well suited to the standard. Meanwhile, based on ash content, only gelatin from gelatin Pangasius catfish met the standard for food industries.
Predictability of bee community composition after floral removals differs by floral trait group.
Urban-Mead, Katherine R
2017-11-01
Plant-bee visitor communities are complex networks. While studies show that deleting nodes alters network topology, predicting these changes in the field remains difficult. Here, a simple trait-based approach is tested for predicting bee community composition following disturbance. I selected six fields with mixed cover of flower species with shallow (open) and deep (tube) nectar access, and removed all flowers or flower heads of species of each trait in different plots paired with controls, then observed bee foraging and composition. I compared the bee community in each manipulated plot with bees on the same flower species in control plots. The bee morphospecies composition in manipulations with only tube flowers remaining was the same as that in the control plots, while the bee morphospecies on only open flowers were dissimilar from those in control plots. However, the proportion of short- and long-tongued bees on focal flowers did not differ between control and manipulated plots for either manipulation. So, bees within some functional groups are more strongly linked to their floral trait partners than others. And, it may be more fruitful to describe expected bee community compositions in terms of relative proportions of relevant ecological traits than species, particularly in species-diverse communities. © 2017 The Author(s).
A retrospective analysis of pollen host plant use by stable and declining bumble bee species.
Kleijn, David; Raemakers, Ivo
2008-07-01
Understanding population declines has been the objective of a wide range of ecological studies. When species have become rare such studies are complicated because particular behavior or life history traits may be the cause but also the result of the decline of a species. We approached this problem by studying species' characteristics on specimens that were collected before the onset of their decline and preserved in natural history museums. In northwestern Europe, some bumble bee species declined dramatically during the 20th century whereas other, ecologically similar, species maintained stable populations. A long-standing debate focuses on whether this is caused by declining species having stricter host plant preferences. We compared the composition of pollen loads of five bumble bee species with stable populations and five with declining populations using museum specimens collected before 1950 in Belgium, England, and The Netherlands. Prior to 1950, the number of plant taxa in pollen loads of declining species was almost one-third lower than that in stable species even though individuals of stable and declining species generally originated from the same areas. There were no systematic differences in the composition of pollen loads between stable and declining species, but the plant taxa preferred by declining species before 1950 had experienced a stronger decline in the 20th century than those preferred by stable species. In 2004 and 2005, we surveyed the areas where bumble bees had been caught in the past and compared the composition of past and present pollen loads of the stable, but not of the by now locally extinct declining species. The number of collected pollen taxa was similar, but the composition differed significantly between the two periods. Differences in composition reflected the major changes in land use in northwestern Europe but also the spread of the invasive plant species Impatiens glandulifera. The main question now is why declining species apparently were not able to switch to less preferred food plants when stable species were. This study shows that natural history collections can play an important role in improving our understanding of the ecological mechanisms driving species population change.
Physiographic position, disturbance and species composition in North Carolina coastal plain forests
James G. Wyant; Ralph J. Alig; William A. Bechtold
1991-01-01
Relations among physiographic heterogeneity, disturbance and temporal change in forest composition were analyzed on 765 forest stands in the southern coastal plain of North Carolina. Physiographic position strongly restricted the species composition of forest stands, though broad overlap of some physiographic classes was noted. Forest stands in different physiographic...
[FATTY ACID COMPOSITION ALTEROMONAS-LIKE BACTERIA ISOLATED FROM THE BLACK SEA WATER].
Klochko, V V; Avdeeva, L V
2015-01-01
Alteromonas macleodii strains isolated from the Black sea water were similar in their fatty acids composition with the type strain of this species. Analysis of lipid composition of 10 A. macleodii strains isolated from the deep and surface water layers in different World ocean regions including the Black sea water has shown that the deep and surface isolates of this species formed two groups different in their fatty acids profiles. The Black sea isolates of Pseudoalteromonas haloplanktis, P. citrea, P. flavipulchra conformed to these species type strains in their fatty acids composition. On the basis of the fatty acids spectra similarity of three Pseudoalteromonas species strains with Plipolytica described in 2010 has been established. Presence of three isomers C16:1ψ7, C 16:1ψ9 and C16:1ψ6--components of hexadecenic acid in the Black sea isolates of Shewanella baltica has been shown.
Management type affects composition and facilitative processes in altoandine dry grassland
NASA Astrophysics Data System (ADS)
Catorci, Andrea; Cesaretti, Sabrina; Velasquez, Jose Luis; Burrascano, Sabina; Zeballos, Horacio
2013-10-01
We performed our study in the Dry Puna of the southern Peruvian Andes. Through a comparative approach we aimed to assess the effects of the two management systems, low grazing pressure by wild camelids vs. high grazing pressure by domestic livestock and periodic burning. Our general hypothesis was that the traditional high disturbance regime affects the dry Puna species diversity and composition through modifications of the magnitude of plant-plant-interactions and changes of the community structure due to shifts in species dominance. In 40 plots of 10 × 10 m, the cover value of each species was recorded and the species richness, floristic diversity, and community similarity of each treatment were compared. For each disturbance regime, differences of soil features (organic matter, carbon/nitrogen ratio, and potassium content) were tested. To evaluate plant-plant interactions, 4 linear transect divided into 500 plots of 10 × 10 cm were laid out and co-occurrence analysis was performed. We found that different disturbance regimes were associated with differences in the floristic composition, and that the high disturbance condition had lower species diversity and evenness. A decrease of tall species such as Festuca orthophylla and increase of dwarf and spiny Tetraglochin cristatum shrubs was observed as well. In addition, different disturbance intensities caused differences in the functional composition of the plant communities, since species with avoidance strategies are selected by high grazing pressure. High disturbance intensity was also associated to differences of soil features and to different clumped spatial structure of the dry Puna. Our results indicate also that: positive interactions are often species-specific mainly depending on the features of nurse and beneficiary species; the importance of positive interaction is higher at low grazing pressure than at high disturbance intensity; the magnitude and direction of the herbivory-mediated facilitation processes may be traced back to the grazing pressure of wild camelids.
NASA Astrophysics Data System (ADS)
Myun Park, Joo; Nam Kwak, Seok; Huh, Sung-Hoi; Han, In-Seong
2017-09-01
Dietary niches and food resource partitioning can support the coexistence of many fishes in benthic marine systems, which can lead to the greater abundances of those species that can potentially support their fisheries. Diets and niche overlap among nine demersal fish species were investigated in the southern continental shelf of East/Japan Sea, Korea. Specimens were collected monthly from January to November 2007 on soft bottoms between 40 and 100 m depth using a bottom trawl. A total of 20 prey taxa were found in 1904 stomachs of the nine species. Comparison of the stomach contents among the nine species showed that inter-specific dietary compositions differed significantly. Although all fish species consumed similar types of prey items, their contributions to the diet of different species varied. Among prey taxa, carid shrimps contributed greatly to the diets of Amblychaeturichthys hexanema, Amblychaeturichthys sciistius, Coelorinchus multispinulosus, Lepidotrigla guentheri, and Liparis tanakae, whereas polychaetes and teleosts contributed to the diets of Callionymus lunatus and Lophius litulon, respectively. On the other hand, carid shrimps and teleosts together contributed to the diets of Pseudorhombus pentophthalmus. Non-metric multivariate analysis of the mass contributions of dietary categories for food resources emphasized visually that the dietary compositions of the nine species differed. Although C. multispinulosus, L. guentheri, L. litulon, and L. tanakae showed similar dietary compositions between small and large size classes, ontogenetic diet changes of the remaining six species were evident. Feeding relationships among the nine demersal species were complicated, but inter- and intra-specific differences in dietary composition among the species reduced potential competition for food resources within the fish community in the southern continental shelf of East/Japan Sea, Korea.
Does Tropical Forest Fragmentation Increase Long-Term Variability of Butterfly Communities?
Leidner, Allison K.; Haddad, Nick M.; Lovejoy, Thomas E.
2010-01-01
Habitat fragmentation is a major driver of biodiversity loss. Yet, the overall effects of fragmentation on biodiversity may be obscured by differences in responses among species. These opposing responses to fragmentation may be manifest in higher variability in species richness and abundance (termed hyperdynamism), and in predictable changes in community composition. We tested whether forest fragmentation causes long-term hyperdynamism in butterfly communities, a taxon that naturally displays large variations in species richness and community composition. Using a dataset from an experimentally fragmented landscape in the central Amazon that spanned 11 years, we evaluated the effect of fragmentation on changes in species richness and community composition through time. Overall, adjusted species richness (adjusted for survey duration) did not differ between fragmented forest and intact forest. However, spatial and temporal variation of adjusted species richness was significantly higher in fragmented forests relative to intact forest. This variation was associated with changes in butterfly community composition, specifically lower proportions of understory shade species and higher proportions of edge species in fragmented forest. Analysis of rarefied species richness, estimated using indices of butterfly abundance, showed no differences between fragmented and intact forest plots in spatial or temporal variation. These results do not contradict the results from adjusted species richness, but rather suggest that higher variability in butterfly adjusted species richness may be explained by changes in butterfly abundance. Combined, these results indicate that butterfly communities in fragmented tropical forests are more variable than in intact forest, and that the natural variability of butterflies was not a buffer against the effects of fragmentation on community dynamics. PMID:20224772
Cully, J.F.; Collinge, S.K.; Van Nimwegen, R. E.; Ray, C.; Johnson, W.C.; Thiagarajan, Bala; Conlin, D.B.; Holmes, B.E.
2010-01-01
Species with extensive geographic ranges may interact with different species assemblages at distant locations, with the result that the nature of the interactions may vary spatially. Black-tailed prairie dogs Cynomys ludovicianus occur from Canada to Mexico in grasslands of the western Great Plains of North America. Black-tailed prairie dogs alter vegetation and dig extensive burrow systems that alter grassland habitats for plants and other animal species. These alterations of habitat justify the descriptor " ecological engineer," and the resulting changes in species composition have earned them status as a keystone species. We examined the impact of black-tailed prairie dogs on small mammal assemblages by trapping at on- and off-colony locations at eight study areas across the species' geographic range. We posed 2 nested hypotheses: 1) prairie dogs function as a keystone species for other rodent species; and 2) the keystone role varies spatially. Assuming that it does, we asked what are the sources of the variation? Black-tailed prairie dogs consistently functioned as a keystone species in that there were strong statistically significant differences in community composition on versus off prairie dog colonies across the species range in prairie grassland. Small mammal species composition varied along both latitudinal and longitudinal gradients, and species richness varied from 4 to 11. Assemblages closer together were more similar; such correlations approximately doubled when including only on- or off-colony grids. Black-tailed prairie dogs had a significant effect on associated rodent assemblages that varied regionally, dependent upon the composition of the local rodent species pool. Over the range of the black-tailed prairie dog, on-colony rodent richness and evenness were less variable, and species composition was more consistent than off-colony assemblages. ?? 2010 The Authors.
Pyridine-type alkaloid composition affects bacterial community composition of floral nectar
Aizenberg-Gershtein, Yana; Izhaki, Ido; Santhanam, Rakesh; Kumar, Pavan; Baldwin, Ian T.; Halpern, Malka
2015-01-01
Pyridine-type alkaloids are most common in Nicotiana species. To study the effect of alkaloid composition on bacterial community composition in floral nectar, we compared the nicotine-rich wild type (WT) N. attenuata, the nicotine biosynthesis-silenced N. attenuata that was rich in anatabine and the anabasine-rich WT N. glauca plants. We found that the composition of these secondary metabolites in the floral nectar drastically affected the bacterial community richness, diversity and composition. Significant differences were found between the bacterial community compositions in the nectar of the three plants with a much greater species richness and diversity in the nectar from the transgenic plant. The highest community composition similarity index was detected between the two wild type plants. The different microbiome composition and diversity, caused by the different pyridine-type alkaloid composition, could modify the nutritional content of the nectar and consequently, may contribute to the change in the nectar consumption and visitation. These may indirectly have an effect on plant fitness. PMID:26122961
Pyridine-type alkaloid composition affects bacterial community composition of floral nectar.
Aizenberg-Gershtein, Yana; Izhaki, Ido; Santhanam, Rakesh; Kumar, Pavan; Baldwin, Ian T; Halpern, Malka
2015-06-30
Pyridine-type alkaloids are most common in Nicotiana species. To study the effect of alkaloid composition on bacterial community composition in floral nectar, we compared the nicotine-rich wild type (WT) N. attenuata, the nicotine biosynthesis-silenced N. attenuata that was rich in anatabine and the anabasine-rich WT N. glauca plants. We found that the composition of these secondary metabolites in the floral nectar drastically affected the bacterial community richness, diversity and composition. Significant differences were found between the bacterial community compositions in the nectar of the three plants with a much greater species richness and diversity in the nectar from the transgenic plant. The highest community composition similarity index was detected between the two wild type plants. The different microbiome composition and diversity, caused by the different pyridine-type alkaloid composition, could modify the nutritional content of the nectar and consequently, may contribute to the change in the nectar consumption and visitation. These may indirectly have an effect on plant fitness.
Catterall, Carla P.; Stork, Nigel E.
2018-01-01
Clearing of dry forests globally creates edges between remnant forest and open anthropogenic habitats. We used flight intercept traps to evaluate how forest beetle communities are influenced by distance from such edges, together with vertical height, spatial location, and local vegetation structure, in an urbanising region (Brisbane, Australia). Species composition (but not total abundance or richness) differed greatly between ground and canopy. Species composition also varied strongly among sites at both ground and canopy levels, but almost all other significant effects occurred only at ground level, where: species richness declined from edge to interior; composition differed between positions near edges (<10 m) and interiors (> 50 m); high local canopy cover was associated with greater total abundance and richness and differing composition; and greater distances to the city centre were associated with increased total abundances and altered composition. Analyses of individual indicator species associated with this variation enabled further biological interpretations. A global literature synthesis showed that most spatially well-replicated studies of edge effects on ground-level beetles within forest fragments have likewise found that positions within tens of metres from edges with open anthropogenic habitats had increased species richness and different compositions from forest interior sites, with fewer effects on abundance. Accordingly, negative edge effects will not prevent relatively small compact fragments (if >10–20 ha) from supporting forest-like beetle communities, although indirect consequences of habitat degradation remain a threat. Retention of multiple spatially scattered forest areas will also be important in conserving forest-dependent beetles, given high levels of between-site diversity. PMID:29494680
Stone, Marisa J; Catterall, Carla P; Stork, Nigel E
2018-01-01
Clearing of dry forests globally creates edges between remnant forest and open anthropogenic habitats. We used flight intercept traps to evaluate how forest beetle communities are influenced by distance from such edges, together with vertical height, spatial location, and local vegetation structure, in an urbanising region (Brisbane, Australia). Species composition (but not total abundance or richness) differed greatly between ground and canopy. Species composition also varied strongly among sites at both ground and canopy levels, but almost all other significant effects occurred only at ground level, where: species richness declined from edge to interior; composition differed between positions near edges (<10 m) and interiors (> 50 m); high local canopy cover was associated with greater total abundance and richness and differing composition; and greater distances to the city centre were associated with increased total abundances and altered composition. Analyses of individual indicator species associated with this variation enabled further biological interpretations. A global literature synthesis showed that most spatially well-replicated studies of edge effects on ground-level beetles within forest fragments have likewise found that positions within tens of metres from edges with open anthropogenic habitats had increased species richness and different compositions from forest interior sites, with fewer effects on abundance. Accordingly, negative edge effects will not prevent relatively small compact fragments (if >10-20 ha) from supporting forest-like beetle communities, although indirect consequences of habitat degradation remain a threat. Retention of multiple spatially scattered forest areas will also be important in conserving forest-dependent beetles, given high levels of between-site diversity.
Utilization of individual lecithins in intestinal lipoprotein formation in the rat.
Patton, G M; Clark, S B; Fasulo, J M; Robins, S J
1984-01-01
To determine the molecular species composition of lecithins of different nascent lipoproteins, high density lipoproteins (HDL), very low density lipoproteins (VLDL), and chylomicrons (CM) were isolated from the mesenteric lymph of rats. Lymph was collected at 0 degrees C with 5,5'-dithiobis-2-dinitrobenzoic acid added to inhibit lecithin-cholesterol acyl transferase. CM were separated by ultracentrifugation and HDL from VLDL by dextran SO4-MG+2 precipitation. Molecular species of lecithin were directly isolated by reverse phase high performance liquid chromatography. In fasted animals, the lecithin compositions of lymph HDL and VLDL were virtually the same and closely resembled the lecithin composition of intestinal mucosa. When bile lecithin was eliminated (by bile diversion), there was a marked change in lecithin composition of all lipoprotein and mucosal samples, which was most notable for a reduction in 16:0-species (which are predominant in bile) and a relative increase in the corresponding 18:0-species. Feeding unsaturated triglycerides (triolein, trilinolein, or a combination of triolein and trilinolein) also resulted in a change in HDL and VLDL lecithin composition. The effect was similar whether bile lecithin was present or eliminated and was notable for a reduction in 16:0-species, an increase in 18:0-species, and the emergence of large amounts of diunsaturated lecithins that corresponded to the fatty acid composition of the triglycerides fed (i.e., 18:1-18:1, 18:2-18:2, and 18:1-18:2 lecithins). When bile-diverted rats were infused via the duodenum with a mix of [14C]choline-labeled lecithins (isolated from the bile of other rats), the incorporation of infused lecithins into different lymph lipoproteins was distinctly different. Individual lecithins were incorporated to a variable extent into each lipoprotein. In fasted rats the specific activities of all major molecular species of lecithin were relatively greater in VLDL than HDL, indicating that HDL derived proportionately more of its lecithins from an endogenous pool than did VLDL. Feeding triolein changed the specific activities of more of the lecithin species of VLDL than of HDL. The specific activities of lecithins in CM were more similar to VLDL than to HDL after triolein feeding. Results thus indicate that, although the lecithins of different mesenteric lymph lipoproteins are similar and may be derived from membrane sites with the same lecithin composition, lecithins incorporated into different lipoproteins originate from different metabolic pools and/or by different mechanisms. PMID:6690480
[Vegetation diversity, composition and structure in a cattle agro-landscape of Matiguás, Nicaragua].
Merlos, Dalia Sánchez; Harvey, Celia A; Grijalva, Alfredo; Medina, Arnulfo; Vílchez, Sergio; Hernández, Blas
2005-01-01
The diversity, composition and structure of vegetation in a cattle landscape in Matiguás, Nicaragua was characterized, and the floristic and structural differences of six types of habitats (secondary forests, riparian forests, charrales, live fences and pastures with high and low tree cover) were compared. A total of 3 949 trees of 180 species and 52 families were recorded. Forty six percent of the total trees reported for the landscape were represented by Guazuma ulmifolia (18.5%), Bursera simaruha (13.2%), Tabebuia rosea (6.3%), Enterolobium cyclocarpum (4.2%) and Albizia saman (3.4%). Many of the dominant species in the landscape were typical of open and disturbed areas. There were significant differences between the different habitats in the patterns of tree species richness, abundance, diversity, structure and floristic composition. The riparian forests had greater tree richness (p=0.0001) and diversity (p=0.0009) than other habitats. The floristic composition varied across habitats. with pairs of habitats sharing between 18.4 and 51.6% of the same tree species, and with clear differences in composition between the forested (riparian and secondary forests) and agricultural habitats. Of the habitats studied, the riparian forests and secondary forests seem to have greatest value for the conservation of the flora in the agropaisaje because they have the greatest species richness, and maintain small populations of endangered species. On the basis of the study, we recommend including agricultural landscapes in strategies to conserve tree diversity and suggest measures to ensure the maintenance of tree diversity in the Matiguas landscape.
Huo, Hong; Feng, Qi; Su, Yong-hong
2014-01-01
Understanding the factors that influence the distribution of understory vegetation is important for biological conservation and forest management. We compared understory species composition by multi-response permutation procedure and indicator species analysis between plots dominated by Qinghai spruce (Picea crassifolia Kom.) and Qilian juniper (Sabina przewalskii Kom.) in coniferous forests of the Qilian Mountains, northwestern China. Understory species composition differed markedly between the forest types. Many heliophilous species were significantly associated with juniper forest, while only one species was indicative of spruce forest. Using constrained ordination and the variation partitioning model, we quantitatively assessed the relative effects of two sets of explanatory variables on understory species composition. The results showed that topographic variables had higher explanatory power than did site conditions for understory plant distributions. However, a large amount of the variation in understory species composition remained unexplained. Forward selection revealed that understory species distributions were primarily affected by elevation and aspect. Juniper forest had higher species richness and α-diversity and lower β-diversity in the herb layer of the understory plant community than spruce forest, suggesting that the former may be more important in maintaining understory biodiversity and community stability in alpine coniferous forest ecosystems.
Uchida, Kei; Koyanagi, Tomoyo F; Matsumura, Toshikazu; Koyama, Asuka
2018-07-15
Land-use changes cause biodiversity loss in semi-natural ecosystems worldwide. Biotic homogenization has led to biodiversity loss, mainly through declines in species composition turnover. Elucidating patterns of turnover in species composition could enhance our understanding of how anthropogenic activities affect community assembly. Here, we focused on whether the decreasing patterns in plant diversity and turnover of species composition resulting from land-use change vary in two regions. We estimated the species diversity and composition of semi-natural grasslands surrounding paddy fields in satoyama landscapes. We examined the differences in species diversity and composition across three land-use types (abandoned, traditional, and intensified) in two regions (Hyogo and Niigata Prefectures, Japan), which were characterized by different climatic conditions. We then assessed alpha-, beta-, and gamma-diversity to compare the patterns of diversity losses in the two regions as a result of land-use changes. In each region, gamma-diversity was consistently higher in the traditional sites compared to abandoned or intensified sites. The analyses revealed that most of the beta-diversity in traditional sites differed significantly from those of abandoned and intensified sites in both regions. However, the beta-diversity of total and perennial species did not differ between traditional and abandoned sites in the Hyogo region. We noted that the beta-diversity of total and perennial species in intensified sites was much lower than that in the traditional sites of the Niigata region. Overall, the patterns of alpha- and gamma-diversity loss were similar in both study regions. Although the biotic homogenization was caused by intensified land-use in the Niigata region, this hypothesis did not completely explain the loss of biodiversity in the abandoned sites in the Hyogo region. The present study contributes to the growing body of work investigating changes in biodiversity as a result of both biotic homogenization and differentiation in semi-natural ecosystems. Conservationists and policy makers should focus on patterns of species composition responded to land-use changes that continue to increase worldwide. Copyright © 2018 Elsevier Ltd. All rights reserved.
Spatial variability in plant species composition and peatland carbon exchange
NASA Astrophysics Data System (ADS)
Goud, E.; Moore, T. R.; Roulet, N. T.
2015-12-01
Plant species shifts in response to global change will have significant impacts on ecosystem carbon (C) exchange and storage arising from changes in hydrology. Spatial variation in peatland C fluxes have largely been attributed to the spatial distribution of microhabitats that arise from variation in surface topography and water table depth, but little is known about how plant species composition impacts peatland C cycling or how these impacts will be influenced by changing environmental conditions. We quantified the effect of species composition and environmental variables on carbon dioxide (CO2) and methane (CH4) fluxes over 2 years in a temperate peatland for four plant communities situated along a water table gradient from ombrotrophic bog to beaver pond. We hypothesized that (i) spatial heterogeneity in species composition would drive predictable spatial heterogeneity in C fluxes due to variation in plant traits and ecological tolerances, and (ii) increases in peat temperature would increase C fluxes. Species had different effects on C fluxes primarily due to differences in leaf traits. Differences in ecological tolerances among communities resulted in different rates of CO2 exchange in response to changes in water table depth. There was an overall reduction in ecosystem respiration (ER), gross primary productivity (GPP) and CH4 flux in response to colder peat temperatures in the second year, and the additive effects of a deeper water table in the bog margin and pond sites further reduced flux rates in these areas. These results demonstrate that different plant species can increase or decrease the flux of C into and out of peatlands based on differences in leaf traits and ecological tolerances, and that CO2 and CH4 fluxes are sensitive to changes in soil temperature, especially when coupled with changes in moisture availability.
Historical factors shaped species diversity and composition of Salix in eastern Asia.
Wang, Qinggang; Su, Xiangyan; Shrestha, Nawal; Liu, Yunpeng; Wang, Siyang; Xu, Xiaoting; Wang, Zhiheng
2017-02-08
Ambient energy, niche conservatism, historical climate stability and habitat heterogeneity hypothesis have been proposed to explain the broad-scale species diversity patterns and species compositions, while their relative importance have been controversial. Here, we assessed the relative contributions of contemporary climate, historical climate changes and habitat heterogeneity in shaping Salix species diversity and species composition in whole eastern Asia as well as mountains and lowlands using linear regressions and distance-based redundancy analyses, respectively. Salix diversity was negatively related with mean annual temperature. Habitat heterogeneity was more important than contemporary climate in shaping Salix diversity patterns, and their relative contributions were different in mountains and lowlands. In contrast, the species composition was strongly influenced by contemporary climate and historical climate change than habitat heterogeneity, and their relative contributions were nearly the same both in mountains and lowlands. Our findings supported niche conservatism and habitat heterogeneity hypotheses, but did not support ambient energy and historical climate stability hypotheses. The diversity pattern and species composition of Salix could not be well-explained by any single hypothesis tested, suggesting that other factors such as disturbance history and diversification rate may be also important in shaping the diversity pattern and composition of Salix species.
Historical factors shaped species diversity and composition of Salix in eastern Asia
Wang, Qinggang; Su, Xiangyan; Shrestha, Nawal; Liu, Yunpeng; Wang, Siyang; Xu, Xiaoting; Wang, Zhiheng
2017-01-01
Ambient energy, niche conservatism, historical climate stability and habitat heterogeneity hypothesis have been proposed to explain the broad-scale species diversity patterns and species compositions, while their relative importance have been controversial. Here, we assessed the relative contributions of contemporary climate, historical climate changes and habitat heterogeneity in shaping Salix species diversity and species composition in whole eastern Asia as well as mountains and lowlands using linear regressions and distance-based redundancy analyses, respectively. Salix diversity was negatively related with mean annual temperature. Habitat heterogeneity was more important than contemporary climate in shaping Salix diversity patterns, and their relative contributions were different in mountains and lowlands. In contrast, the species composition was strongly influenced by contemporary climate and historical climate change than habitat heterogeneity, and their relative contributions were nearly the same both in mountains and lowlands. Our findings supported niche conservatism and habitat heterogeneity hypotheses, but did not support ambient energy and historical climate stability hypotheses. The diversity pattern and species composition of Salix could not be well-explained by any single hypothesis tested, suggesting that other factors such as disturbance history and diversification rate may be also important in shaping the diversity pattern and composition of Salix species. PMID:28176816
Wacker, Alexander; Piepho, Maike; Harwood, John L.; Guschina, Irina A.; Arts, Michael T.
2016-01-01
We tested the influence of two light intensities [40 and 300 μmol PAR / (m2s)] on the fatty acid composition of three distinct lipid classes in four freshwater phytoplankton species. We chose species of different taxonomic classes in order to detect potentially similar reaction characteristics that might also be present in natural phytoplankton communities. From samples of the bacillariophyte Asterionella formosa, the chrysophyte Chromulina sp., the cryptophyte Cryptomonas ovata and the zygnematophyte Cosmarium botrytis we first separated glycolipids (monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol), phospholipids (phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, and phosphatidylserine) as well as non-polar lipids (triacylglycerols), before analyzing the fatty acid composition of each lipid class. High variation in the fatty acid composition existed among different species. Individual fatty acid compositions differed in their reaction to changing light intensities in the four species. Although no generalizations could be made for species across taxonomic classes, individual species showed clear but small responses in their ecologically-relevant omega-3 and omega-6 polyunsaturated fatty acids (PUFA) in terms of proportions and of per tissue carbon quotas. Knowledge on how lipids like fatty acids change with environmental or culture conditions is of great interest in ecological food web studies, aquaculture, and biotechnology, since algal lipids are the most important sources of omega-3 long-chain PUFA for aquatic and terrestrial consumers, including humans. PMID:27014290
Yan, Yin-zhuo; Qian, Yu-lin; Ji, Feng-di; Chen, Jing-yu; Han, Bei-zhong
2013-05-01
Koji-making is a key process for production of high quality soy sauce. The microbial composition during koji-making was investigated by culture-dependent and culture-independent methods to determine predominant bacterial and fungal populations. The culture-dependent methods used were direct culture and colony morphology observation, and PCR amplification of 16S/26S rDNA fragments followed by sequencing analysis. The culture-independent method was based on the analysis of 16S/26S rDNA clone libraries. There were differences between the results obtained by different methods. However, sufficient overlap existed between the different methods to identify potentially significant microbial groups. 16 and 20 different bacterial species were identified using culture-dependent and culture-independent methods, respectively. 7 species could be identified by both methods. The most predominant bacterial genera were Weissella and Staphylococcus. Both 6 different fungal species were identified using culture-dependent and culture-independent methods, respectively. Only 3 species could be identified by both sets of methods. The most predominant fungi were Aspergillus and Candida species. This work illustrated the importance of a comprehensive polyphasic approach in the analysis of microbial composition during soy sauce koji-making, the knowledge of which will enable further optimization of microbial composition and quality control of koji to upgrade Chinese traditional soy sauce product. Copyright © 2013 Elsevier Ltd. All rights reserved.
The Specific Nature of Plant Cell Wall Polysaccharides 1
Nevins, Donald J.; English, Patricia D.; Albersheim, Peter
1967-01-01
Polysaccharide compositions of cell walls were assessed by quantitative analyses of the component sugars. Cell walls were hydrolyzed in 2 n trifluoroacetic acid and the liberated sugars reduced to their respective alditols. The alditols were acetylated and the resulting alditol acetates separated by gas chromatography. Quantitative assay of the alditol acetates was accomplished by electronically integrating the detector output of the gas chromatograph. Myo-inositol, introduced into the sample prior to hydrolysis, served as an internal standard. The cell wall polysaccharide compositions of plant varieties within a given species are essentially identical. However, differences in the sugar composition were observed in cell walls prepared from different species of the same as well as of different genera. The fact that the wall compositions of different varieties of the same species are the same indicates that the biosynthesis of cell wall polysaccharides is genetically regulated. The cell walls of various morphological parts (roots, hypocotyls, first internodes and primary leaves) of bean plants were each found to have a characteristic sugar composition. It was found that the cell wall sugar composition of suspension-cultured sycamore cells could be altered by growing the cells on different carbon sources. This demonstrates that the biosynthesis of cell wall polysaccharides can be manipulated without fatal consequences. PMID:16656594
Neighboring trees affect ectomycorrhizal fungal community composition in a woodland-forest ecotone.
Hubert, Nathaniel A; Gehring, Catherine A
2008-09-01
Ectomycorrhizal fungi (EMF) are frequently species rich and functionally diverse; yet, our knowledge of the environmental factors that influence local EMF diversity and species composition remains poor. In particular, little is known about the influence of neighboring plants on EMF community structure. We tested the hypothesis that the EMF of plants with heterospecific neighbors would differ in species richness and community composition from the EMF of plants with conspecific neighbors. We conducted our study at the ecotone between pinyon (Pinus edulis)-juniper (Juniperus monosperma) woodland and ponderosa pine (Pinus ponderosa) forest in northern Arizona, USA where the dominant trees formed associations with either EMF (P. edulis and P. ponderosa) or arbuscular mycorrhizal fungi (AMF; J. monosperma). We also compared the EMF communities of pinyon and ponderosa pines where their rhizospheres overlapped. The EMF community composition, but not species richness of pinyon pines was significantly influenced by neighboring AM juniper, but not by neighboring EM ponderosa pine. Ponderosa pine EMF communities were different in species composition when growing in association with pinyon pine than when growing in association with a conspecific. The EMF communities of pinyon and ponderosa pines were similar where their rhizospheres overlapped consisting of primarily the same species in similar relative abundance. Our findings suggest that neighboring tree species identity shaped EMF community structure, but that these effects were specific to host-neighbor combinations. The overlap in community composition between pinyon pine and ponderosa pine suggests that these tree species may serve as reservoirs of EMF inoculum for one another.
The diversity of beetle assemblages in different habitat types in Sabah, Malaysia.
Chung, A Y; Eggleton, P; Speight, M R; Hammond, P M; Chey, V K
2000-12-01
The diversity of beetle assemblages in different habitat types (primary forest, logged forest, acacia plantation and oil palm plantation) in Sabah, Malaysia was investigated using three different methods based on habitat levels (Winkler sampling, flight-interception-trapping and mist-blowing). The overall diversity was extremely high, with 1711 species recorded from only 8028 individuals and 81 families (115 family and subfamily groups). Different degrees of environmental changes had varying effects on the beetle species richness and abundance, with oil palm plantation assemblage being most severely affected, followed by acacia plantation and then logged forest. A few species became numerically dominant in the oil palm plantation. In terms of beetle species composition, the acacia fauna showed much similarity with the logged forest fauna, and the oil palm fauna was very different from the rest. The effects of environmental variables (number of plant species, sapling and tree densities, amount of leaf litter, ground cover, canopy cover, soil pH and compaction) on the beetle assemblage were also investigated. Leaf litter correlated with species richness, abundance and composition of subterranean beetles. Plant species richness, tree and sapling densities correlated with species richness, abundance and composition of understorey beetles while ground cover correlated only with the species richness and abundance of these beetles. Canopy cover correlated only with arboreal beetles. In trophic structure, predators represented more than 40% of the species and individuals. Environmental changes affected the trophic structure with proportionally more herbivores (abundance) but fewer predators (species richness and abundance) in the oil palm plantation. Biodiversity, conservation and practical aspects of pest management were also highlighted in this study.
Proximate composition and caloric content of eight Lake Michigan fishes
Rottiers, Donald V.; Tucker, Robert M.
1982-01-01
We measured the proximate composition (percentage lipid, water, fat-free dry material, ash) and caloric content of eight species of Lake Michigan fish: lake trout (Salvelinus namaycush), coho salmon (Oncorhynchus kisutch), lake whitefish (Coregonus clupeaformis), bloater (Coregonus hoyi), alewife (Alosa pseudoharengus), rainbow smelt (Osmerus mordax), deepwater sculpin (Myoxocephalus quadricornis), and slimy sculpin (Cottus cognatus). Except for alewives, proximate composition and caloric content did not differ significantly between males and females. And, for coho salmon, there was no significant difference in composition between fish collected in different years. Lipid and caloric content of lake trout increased directly with age. In all species examined, lipids and caloric contents were significantly lower in small, presumably immature, fish than in larger, older fish. Lipid content of lake trout, lake whitefish, and bloaters (range of means, 16-22%) was nearly 3 times higher than that of coho salmon, sculpins, rainbow smelt, and alewives (range of means, 5.2-7.0%). The mean caloric content ranged from 6.9 to 7.1 kcal/g for species high in lipids and from 5.8 to 6.3 kcal/g for species low in lipids. Although the caloric content of all species varied directly with lipid content and inversely with water content, an increase in lipid content did not always coincide with a proportional increase in caloric content when other components of fish composition were essentially unchanged. This observation suggests that the energy content of fish estimated from the proximate composition by using universal conversion factors may not necessarily be accurate.
The effects of tropospheric ozone on the species dynamics of calcareous grassland.
Thwaites, R H; Ashmore, M R; Morton, A J; Pakeman, R J
2006-11-01
Although ozone has been shown to reduce the growth of individual species and to alter the composition of simple species mixtures, there is little understanding of its long-term effects on species dynamics and composition in real communities. Intact turfs of calcareous grassland were exposed to four different ozone regimes in open-top chambers over three consecutive summers. Treatments provided a mean seasonal AOT40 ranging from approximately zero to 15 ppm h. Cumulative ozone exposure was a significant factor in compositional change, but only explained 4.6% of the variation. The dominant grass species (Festuca rubra) showed a consistent decline in cover in the high ozone treatment over time and the forb Campanula rotundifolia was lost from all three ozone treatments. The frequency of some species (Galium verum and Plantago lanceolata) increased with ozone exposure. Long-term effects of ozone on species composition in chalk grassland may be a function of both the sensitivity of individual species and the response of the dominant species.
Analysis of scorpion venom composition by Raman Spectroscopy
NASA Astrophysics Data System (ADS)
Martínez-Zérega, Brenda E.; González-Solís, José L.
2015-01-01
In this work we study the venom of two Centruroides scorpion species using Raman spectroscopy. The spectra analysis allows to determine the venoms chemical composition and to establish the main differences and similarities among the species. It is also shown that the use of Principal Component Analysis may help to tell apart between the scorpion species.
Macroecological analysis of the fish fauna inhabiting Cymodocea nodosa seagrass meadows.
Espino, F; Brito, A; Haroun, R; Tuya, F
2015-10-01
In this study, patterns in the taxonomic richness and composition of the fish fauna inhabiting Cymodocea nodosa seagrass meadows were described across their entire distribution range in the Mediterranean Sea and adjacent Atlantic Ocean. Specifically, the study tested whether there are differences in the composition of fish assemblages between those ecoregions encompassed by the distribution range of C. nodosa, and whether these differences in composition are connected with differences in bioclimatic affinities of the fish faunas. A literature review resulted in a total of 19 studies, containing 22 fish assemblages at 18 locations. The ichthyofauna associated with C. nodosa seagrass meadows comprises 59 families and 188 species. The western Mediterranean (WM) Sea has the highest species richness (87 species). Fish assemblages from the Macaronesia-Canary Islands, the Sahelian Upwelling, South European Atlantic Shelf and the WM differ, in terms of assemblage composition, relative to other ecoregions. In contrast, the composition of the fish fauna from the central and eastern Mediterranean overlaps. There is a significant serial correlation in fish assemblage composition between adjacent ecoregions along the distribution range of C. nodosa. Dissimilarities in assemblage composition are connected with the geographical separation between locations, and the mean minimum annual seawater temperature is the environmental factor that explains most variation in fish assemblage composition. © 2015 The Fisheries Society of the British Isles.
Canto, A; Herrera, C M
2012-11-01
Variation in the composition of floral nectar reflects intrinsic plant characteristics as well as the action of extrinsic factors. Micro-organisms, particularly yeasts, represent one extrinsic factor that inhabit the nectar of animal-pollinated flowers worldwide. In this study a 'microbial imprint hypothesis' is formulated and tested, in which it is proposed that natural community-wide variation in nectar sugar composition will partly depend on the presence of yeasts in flowers. Occurrence and density of yeasts were studied microscopically in single-flower nectar samples of 22 animal-pollinated species from coastal xeric and sub-humid tropical habitats of the Yucatán Peninsula, Mexico. Nectar sugar concentration and composition were concurrently determined on the same samples using high-performance liquid chromatography (HPLC) methods. Microscopical examination of nectar samples revealed the presence of yeasts in nearly all plant species (21 out of 22 species) and in about half of the samples examined (51·8 % of total, all species combined). Plant species and individuals differed significantly in nectar sugar concentration and composition, and also in the incidence of nectar yeasts. After statistically controlling for differences between plant species and individuals, nectar yeasts still accounted for a significant fraction of community-wide variance in all nectar sugar parameters considered. Significant yeast × species interactions on sugar parameters revealed that plant species differed in the nectar sugar correlates of variation in yeast incidence. The results support the hypothesis that nectar yeasts impose a detectable imprint on community-wide variation in nectar sugar composition and concentration. Since nectar sugar features influence pollinator attraction and plant reproduction, future nectar studies should control for yeast presence and examine the extent to which microbial signatures on nectar characteristics ultimately have some influence on pollination services in plant communities.
de la Riva, Enrique G; Marañón, Teodoro; Violle, Cyrille; Villar, Rafael; Pérez-Ramos, Ignacio M
2017-01-01
According with niche theory the species are specialized in different ecological niches, being able to coexist as result of a differential use of resources. In this context, the biogeochemical niche hypothesis proposes that species have an optimal elemental composition which results from the link between the chemical and morphological traits for the optimum plant functioning. Thus, and attending to the limiting similarity concept, different elemental composition and plant structure among co-occurring species may reduce competition, promoting different functional niches. Different functional habits associated with leaf life-span or growth forms are associated with different strategies for resource uptake, which could promote niche partitioning. In the present study, based on the biogeochemical niche concept and the use of resources in different proportions, we have focused on leaf traits (morphological and chemical) associated with resource uptake, and explored the niche partitioning among functional habits: leaf life-span (deciduous, evergreen, and semideciduous) and growth (tree, shrub, and arborescent-shrub). To this end, we have quantified the hypervolume of the leaf functional trait space (both structure and chemical composition) in a sample of 45 Mediterranean woody species from Sierra Morena Mountains (Spain) growing along a local soil resource gradient. Our results show consistent variation in functional space for woody communities distributed along the environmental gradient. Thus, communities dominated by deciduous trees with faster growth and a predominant acquisitive strategy were characteristic of bottom forests and showed highest leaf biogeochemical space. While semideciduous shrubs and evergreen (arborescent, trees) species, characterized by a conservative strategy, dominated ridge forests and showed smaller functional space. In addition, within each topographical zone or environment type, the foliar biogeochemical niche partitioning would underlie the species ability to coexist by diverging on leaf nutrient composition and resource uptake. Lower niche overlap among functional habits were found, which support that different growth forms and leaf life-habits may facilitate the coexistence of the woody species and niche partitioning along and within the gradient.
Migdalia Alvarez Ruiz; Ariel E. Lugo
2012-01-01
We studied the structure and species composition of nine residual forest stands of Dacryodes excelsa (tabonuco), a dominant vegetation type in the moist and wet lower montane forests of the Caribbean. The stands were scattered over three different landscapes with different degrees of anthropogenic disturbance: forested, shade coffee, and tobacco. We compared our...
Oliveira, Fernando; Lima, Cláudia Afonso; Brás, Susana; França, Ângela; Cerca, Nuno
2015-10-01
Coagulase-negative staphylococci (CoNS) are common bacterial colonizers of the human skin. They are often involved in nosocomial infections due to biofilm formation in indwelling medical devices. While biofilm formation has been extensively studied in Staphylococcus epidermidis, little is known regarding other CoNS species. Here, biofilms from six different CoNS species were characterized in terms of biofilm composition and architecture. Interestingly, the ability to form a thick biofilm was not associated with any particular species, and high variability on biofilm accumulation was found within the same species. Cell viability assays also revealed different proportions of live and dead cells within biofilms formed by different species, although this parameter was particularly similar at the intraspecies level. On the other hand, biofilm disruption assays demonstrated important inter- and intraspecies differences regarding extracellular matrix composition. Lastly, confocal laser scanning microscopy experiments confirmed this variability, highlighting important differences and common features of CoNS biofilms. We hypothesized that the biofilm formation heterogeneity observed was rather associated with biofilm matrix composition than with cells themselves. Additionally, our results indicate that polysaccharides, DNA and proteins are fundamental pieces in the process of CoNS biofilm formation. © FEMS 2015. All rights reserved.
Unraveling the drivers of community dissimilarity and species extinction in fragmented landscapes.
Banks-Leite, Cristina; Ewers, Robert M; Metzger, Jean Paul
2012-12-01
Communities in fragmented landscapes are often assumed to be structured by species extinction due to habitat loss, which has led to extensive use of the species-area relationship (SAR) in fragmentation studies. However, the use of the SAR presupposes that habitat loss leads species to extinction but does not allow for extinction to be offset by colonization of disturbed-habitat specialists. Moreover, the use of SAR assumes that species richness is a good proxy of community changes in fragmented landscapes. Here, we assessed how communities dwelling in fragmented landscapes are influenced by habitat loss at multiple scales; then we estimated the ability of models ruled by SAR and by species turnover in successfully predicting changes in community composition, and asked whether species richness is indeed an informative community metric. To address these issues, we used a data set consisting of 140 bird species sampled in 65 patches, from six landscapes with different proportions of forest cover in the Atlantic Forest of Brazil. We compared empirical patterns against simulations of over 8 million communities structured by different magnitudes of the power-law SAR and with species-specific rules to assign species to sites. Empirical results showed that, while bird community composition was strongly influenced by habitat loss at the patch and landscape scale, species richness remained largely unaffected. Modeling results revealed that the compositional changes observed in the Atlantic Forest bird metacommunity were only matched by models with either unrealistic magnitudes of the SAR or by models ruled by species turnover, akin to what would be observed along natural gradients. We show that, in the presence of such compositional turnover, species richness is poorly correlated with species extinction, and z values of the SAR strongly underestimate the effects of habitat loss. We suggest that the observed compositional changes are driven by each species reaching its individual extinction threshold: either a threshold of forest cover for species that disappear with habitat loss, or of matrix cover for species that benefit from habitat loss.
Baz, Arturo; Cifrián, Blanca; Martín-Vega, Daniel
2014-01-01
Abstract The patterns of diversity and abundance of the carrion insect species in the different habitats of the Natural Park “Hoces del Río Riaza” (central Spain) were studied with the use of carrion-baited traps. Representativeness of the inventories was assessed with the calculation of randomized species richness curves and nonparametric estimators. Coleoptera families, Silphidae and Dermestidae, and Diptera families, Calliphoridae and Muscidae, were dominant in every sampling habitat, but differences in the patterns of diversity and abundance were found. Lusitanian oakwood and riparian forest were the most diverse habitats with high abundance of saprophagous species, whereas more open (i.e., exposed to continuous sunlight during the day) habitats showed lower diversity values and a different species composition and distribution of species abundance, favoring thermophilous species and necrophagous species with high tolerance to different environmental conditions. Differences in the bioclimatical features of the sampled habitats are suggested to explain the composition and diversity of the carrion insect assemblages in different environments. PMID:25368080
NASA Astrophysics Data System (ADS)
Krab, E. J.; Berg, M. P.; Aerts, R.; van Logtestijn, R. S. P.; Cornelissen, H. H. C.
2014-12-01
Climate-change-induced trends towards shrub dominance in subarctic, moss-dominated peatlands will most likely have large effects on soil carbon (C) dynamics through an input of more easily decomposable litter. The mechanisms by which this increase in vascular litter input interacts with the abundance and diet-choice of the decomposer community to alter C-processing have, however, not yet been unraveled. We used a novel 13C tracer approach to link invertebrate species composition (Collembola), abundance and species-specific feeding behavior to C-processing of vascular and peat moss litters. We incubated different litter mixtures, 100% Sphagnum moss litter, 100% Betula leaf litter, and a 50/50 mixture of both, in mesocosms for 406 days. We revealed the transfer of C from the litters to the soil invertebrate species by 13C labeling of each of the litter types and assessed 13C signatures of the invertebrates Collembola species composition differed significantly between Sphagnum and Betula litter. Within the 'single type litter' mesocosms, Collembola species showed different 13C signatures, implying species-specific differences in diet choice. Surprisingly, the species composition and Collembola abundance changed relatively little as a consequence of Betula input to a Sphagnum based system. Their diet choice, however, changed drastically; species-specific differences in diet choice disappeared and approximately 67% of the food ingested by all Collembola originated from Betula litter. Furthermore, litter decomposition patterns corresponded to these findings; mass loss of Betula increased from 16.1% to 26.2% when decomposing in combination with Sphagnum, while Sphagnum decomposed even slower in combination with Betula litter (1.9%) than alone (4.7%). This study is the first to empirically show that collective diet shifts of the peatland decomposer community from mosses towards vascular plant litter may drive altered decomposition patterns. In addition, we showed that although species-specific differences in Collembola feeding behavior appear to exist, species are very plastic in their diet. This implies that changes in C turnover rates with vegetation shifts, might well be due to diet shifts of the present decomposer community rather than by changes in species composition.
Distribution of Diatoms in Relation to Land Use and pH in Blackwater Coastal Plain Streams
NASA Astrophysics Data System (ADS)
Zampella, Robert A.; Laidig, Kim J.; Lowe, Rex L.
2007-03-01
We compared the composition of diatom assemblages collected from New Jersey Pinelands blackwater streams draining four different land uses, including forest land, abandoned-cranberry bogs, active-cranberry bogs, and developed and upland-agricultural land. Over a 2-year period (2002-2003), we collected 132 diatom taxa at 14 stream sites. Between-year variability in the composition of stream samples was high. Most diatom species were rarely encountered and were found in low abundance. Specific conductance and pH were higher at developed/agricultural sites compared with all other site types. Neither species richness nor genus richness was significantly different between stream types. However, clear community patterns were evident, and a significant difference in species composition existed between the developed/agricultural sites and both cranberry and forest sites. The primary community gradient, represented by the first axis of a DCA ordination, was associated with variations in pH and specific conductance. Although community patterns revealed by ordinating the data collected in 2002 differed from those obtained using the 2003 data, both ordinations contrasted the developed/agricultural sites and the other sites. Acidobiontic and acidophilous diatoms characterized the dominant species at forest, abandoned-bog, and cranberry sites, whereas indifferent species dominated the developed/agricultural samples. Although our study demonstrated a relationship between the composition of diatom assemblages and watershed conditions, several factors, including taxonomic problems, the large number of diatom species, incomplete pH classifications, and year-to-year variability may limit the utility of diatom species as indicators of watershed conditions in the New Jersey Pinelands.
Disturbance and productivity interactions mediate stability of forest composition and structure.
O'Connor, Christopher D; Falk, Donald A; Lynch, Ann M; Swetnam, Thomas W; Wilcox, Craig P
2017-04-01
Fire is returning to many conifer-dominated forests where species composition and structure have been altered by fire exclusion. Ecological effects of these fires are influenced strongly by the degree of forest change during the fire-free period. Response of fire-adapted species assemblages to extended fire-free intervals is highly variable, even in communities with similar historical fire regimes. This variability in plant community response to fire exclusion is not well understood; however, ecological mechanisms such as individual species' adaptations to disturbance or competition and underlying site characteristics that facilitate or impede establishment and growth have been proposed as potential drivers of assemblage response. We used spatially explicit dendrochronological reconstruction of tree population dynamics and fire regimes to examine the influence of historical disturbance frequency (a proxy for adaptation to disturbance or competition), and potential site productivity (a proxy for underlying site characteristics) on the stability of forest composition and structure along a continuous ecological gradient of pine, dry mixed-conifer, mesic mixed-conifer, and spruce-fir forests following fire exclusion. While average structural density increased in all forests, species composition was relatively stable in the lowest productivity pine-dominated and highest productivity spruce-fir-dominated sites immediately following fire exclusion and for the next 100 years, suggesting site productivity as a primary control on species composition and structure in forests with very different historical fire regimes. Species composition was least stable on intermediate productivity sites dominated by mixed-conifer forests, shifting from primarily fire-adapted species to competition-adapted, fire-sensitive species within 20 years of fire exclusion. Rapid changes to species composition and stand densities have been interpreted by some as evidence of high-severity fire. We demonstrate that the very different ecological process of fire exclusion can produce similar changes by shifting selective pressures from disturbance-mediated to productivity-mediated controls. Restoring disturbance-adapted species composition and structure to intermediate productivity forests may help to buffer them against projected increasing temperatures, lengthening fire seasons, and more frequent and prolonged moisture stress. Fewer management options are available to promote adaptation in forest assemblages historically constrained by underlying site productivity. © 2016 by the Ecological Society of America.
Pennington, Victoria E.; Palmquist, Kyle A.; Bradford, John B.; Lauenroth, William K.
2017-01-01
Article for outlet: Plant Ecology. Abstract: Big sagebrush (Artemisia tridentata Nutt.) plant communities are widespread non-forested drylands in western North American and similar to all shrub steppe ecosystems world-wide are composed of a shrub overstory layer and a forb and graminoid understory layer. Forbs account for the majority of plant species diversity in big sagebrush plant communities and are important for ecosystem function. Few studies have explored the geographic patterns of forb species richness and composition and their relationships with environmental variables in these communities. Our objectives were to examine the small and large-scale spatial patterns in forb species richness and composition and the influence of environmental variables. We sampled forb species richness and composition along transects at 15 field sites in Colorado, Idaho, Montana, Nevada, Oregon, Utah, and Wyoming, built species-area relationships to quantify differences in forb species richness at sites, and used Principal Components Analysis and nonmetric multidimensional scaling to identify relationships among environmental variables and forb species richness and composition. We found that species richness was most strongly correlated with soil texture, while species composition was most related to climate. The combination of climate and soil texture influences water availability, with important consequences for forb species richness and composition, which suggests climate-change induced modification of soil water availability may have important implications for plant species diversity in the future. Our paper is the first to our knowledge to examine forb biodiversity patterns in big sagebrush ecosystems in relation to environmental factors across the big sagebrush region.
Purahong, Witoon; Pietsch, Katherina A; Lentendu, Guillaume; Schöps, Ricardo; Bruelheide, Helge; Wirth, Christian; Buscot, François; Wubet, Tesfaye
2017-01-01
The deadwood mycobiome, also known as wood-inhabiting fungi (WIF), are among the key players in wood decomposition, having a large impact on nutrient cycling in forest soils. However, our knowledge of WIF richness and distribution patterns in different forest biomes is limited. Here, we used pyrotag sequencing of the fungal internal transcribed spacer (ITS2) region to characterize the deadwood mycobiome of two tree species with greatly different wood characteristics ( Schima superba and Pinus massoniana ) in a Chinese subtropical forest ecosystem. Specifically, we tested (i) the effects of tree species and wood quality properties on WIF OTU richness and community composition; (ii) the role of biotic and abiotic factors in shaping the WIF communities; and (iii) the relationship between WIF OTU richness, community composition and decomposition rates. Due to different wood chemical properties, we hypothesized that the WIF communities derived from the two tree species would be correlated differently with biotic and abiotic factors. Our results show that deadwood in subtropical forests harbors diverse fungal communities comprising six ecological functional groups. We found interesting colonization patterns for this subtropical biome, where Resinicium spp. were highly detected in both broadleaved and coniferous deadwood. In addition, the members of Xylariales were frequently found in Schima . The two deadwood species differed significantly in WIF OTU richness ( Pinus > Schima ) and community composition ( P < 0.001). Variations in WIF community composition of both tree species were significantly explained by wood pH and ecological factors (biotic: deadwood species, basal area and abiotic: soil pH), but the WIF communities derived from each tree species correlated differently with abiotic factors. Interestingly, we found that deadwood decomposition rate significantly correlated with WIF communities and negatively correlated with WIF OTU richness. We conclude that the pattern of WIF OTU richness and community composition are controlled by multiple interacting biotic and abiotic factors. Overall, our study provides an in-depth picture of the deadwood mycobiome in this subtropical forest. Furthermore, by comparing our results to results from temperate and boreal forests we contribute to a better understanding of patterns of WIF communities across different biomes and geographic locations.
Purahong, Witoon; Pietsch, Katherina A.; Lentendu, Guillaume; Schöps, Ricardo; Bruelheide, Helge; Wirth, Christian; Buscot, François; Wubet, Tesfaye
2017-01-01
The deadwood mycobiome, also known as wood-inhabiting fungi (WIF), are among the key players in wood decomposition, having a large impact on nutrient cycling in forest soils. However, our knowledge of WIF richness and distribution patterns in different forest biomes is limited. Here, we used pyrotag sequencing of the fungal internal transcribed spacer (ITS2) region to characterize the deadwood mycobiome of two tree species with greatly different wood characteristics (Schima superba and Pinus massoniana) in a Chinese subtropical forest ecosystem. Specifically, we tested (i) the effects of tree species and wood quality properties on WIF OTU richness and community composition; (ii) the role of biotic and abiotic factors in shaping the WIF communities; and (iii) the relationship between WIF OTU richness, community composition and decomposition rates. Due to different wood chemical properties, we hypothesized that the WIF communities derived from the two tree species would be correlated differently with biotic and abiotic factors. Our results show that deadwood in subtropical forests harbors diverse fungal communities comprising six ecological functional groups. We found interesting colonization patterns for this subtropical biome, where Resinicium spp. were highly detected in both broadleaved and coniferous deadwood. In addition, the members of Xylariales were frequently found in Schima. The two deadwood species differed significantly in WIF OTU richness (Pinus > Schima) and community composition (P < 0.001). Variations in WIF community composition of both tree species were significantly explained by wood pH and ecological factors (biotic: deadwood species, basal area and abiotic: soil pH), but the WIF communities derived from each tree species correlated differently with abiotic factors. Interestingly, we found that deadwood decomposition rate significantly correlated with WIF communities and negatively correlated with WIF OTU richness. We conclude that the pattern of WIF OTU richness and community composition are controlled by multiple interacting biotic and abiotic factors. Overall, our study provides an in-depth picture of the deadwood mycobiome in this subtropical forest. Furthermore, by comparing our results to results from temperate and boreal forests we contribute to a better understanding of patterns of WIF communities across different biomes and geographic locations. PMID:28469600
Liu, X-P; Gong, C-M; Fan, Y-Y; Eiblmeier, M; Zhao, Z; Han, G; Rennenberg, H
2013-01-01
This study aimed to identify drought-mediated differences in amino nitrogen (N) composition and content of xylem and phloem in trees having different symbiotic N(2)-fixing bacteria. Under controlled water availability, 1-year-old seedlings of Robinia pseudoacacia (nodules with Rhizobium), Hippophae rhamnoides (symbiosis with Frankia) and Buddleja alternifolia (no such root symbiosis) were exposed to control, medium drought and severe drought, corresponding soil water content of 70-75%, 45-50% and 30-35% of field capacity, respectively. Composition and content of amino compounds in xylem sap and phloem exudates were analysed as a measure of N nutrition. Drought strongly reduced biomass accumulation in all species, but amino N content in xylem and phloem remained unaffected only in R. pseudoacacia. In H. rhamnoides and B. alternifolia, amino N in phloem remained constant, but increased in xylem of both species in response to drought. There were differences in composition of amino compounds in xylem and phloem of the three species in response to drought. Proline concentrations in long-distance transport pathways of all three species were very low, below the limit of detection in phloem of H. rhamnoides and in phloem and xylem of B. alternifolia. Apparently, drought-mediated changes in N composition were much more connected with species-specific changes in C:N ratios. Irrespective of soil water content, the two species with root symbioses did not show similar features for the different types of symbiosis, neither in N composition nor in N content. There was no immediate correlation between symbiotic N fixation and drought-mediated changes in amino N in the transport pathways. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
Astegiano, Julia; Altermatt, Florian; Massol, François
2017-11-13
Species establish different interactions (e.g. antagonistic, mutualistic) with multiple species, forming multilayer ecological networks. Disentangling network co-structure in multilayer networks is crucial to predict how biodiversity loss may affect the persistence of multispecies assemblages. Existing methods to analyse multilayer networks often fail to consider network co-structure. We present a new method to evaluate the modular co-structure of multilayer networks through the assessment of species degree co-distribution and network module composition. We focus on modular structure because of its high prevalence among ecological networks. We apply our method to two Lepidoptera-plant networks, one describing caterpillar-plant herbivory interactions and one representing adult Lepidoptera nectaring on flowers, thereby possibly pollinating them. More than 50% of the species established either herbivory or visitation interactions, but not both. These species were over-represented among plants and lepidopterans, and were present in most modules in both networks. Similarity in module composition between networks was high but not different from random expectations. Our method clearly delineates the importance of interpreting multilayer module composition similarity in the light of the constraints imposed by network structure to predict the potential indirect effects of species loss through interconnected modular networks.
Bäcklund, Sofia; Jönsson, Mari; Strengbom, Joachim; Frisch, Andreas; Thor, Göran
2016-01-01
With an increasing demand for forest-based products, there is a growing interest in introducing fast-growing non-native tree species in forest management. Such introductions often have unknown consequences for native forest biodiversity. In this study, we examine epiphytic lichen species richness and species composition on the trunks of non-native Pinus contorta and compare these to the native Pinus sylvestris and Picea abies in managed boreal forests in northern Sweden across a chronosequence of age classes. Overall, we recorded a total of 66,209 lichen occurrences belonging to 57 species in the 96 studied forest stands. We found no difference in species richness of lichens between stands of P. contorta and P. sylvestris, but stands of P. abies had higher total species richness. However, species richness of lichens in stands of P. abies decreased with increasing stand age, while no such age effect was detected for P. contorta and P. sylvestris. Lichen species composition progressively diverged with increasing stand age, and in 30-year-old stands all three tree species showed species-specific assemblages. Epiphytic lichen assemblages in stands of 30-year-old P. contorta were influenced by greater basal area, canopy closure, and average diameter at breast height, P. abies stands by higher branch density and canopy closure, and stands of P. sylvestris by greater bark crevice depth. Differences in lichen species richness and composition were mainly explained by canopy closure and habitat availability, and the greater canopy closure in mature P. abies stands promoted the colonization and growth of calicioid lichen species. Our results indicate that the non-native P. contorta have similar species richness as the native P. sylvestris. The main difference in lichen species richness and composition is between P. abies and Pinus spp. in managed forests of boreal Sweden.
Bäcklund, Sofia; Jönsson, Mari; Strengbom, Joachim; Frisch, Andreas; Thor, Göran
2016-01-01
With an increasing demand for forest-based products, there is a growing interest in introducing fast-growing non-native tree species in forest management. Such introductions often have unknown consequences for native forest biodiversity. In this study, we examine epiphytic lichen species richness and species composition on the trunks of non-native Pinus contorta and compare these to the native Pinus sylvestris and Picea abies in managed boreal forests in northern Sweden across a chronosequence of age classes. Overall, we recorded a total of 66,209 lichen occurrences belonging to 57 species in the 96 studied forest stands. We found no difference in species richness of lichens between stands of P. contorta and P. sylvestris, but stands of P. abies had higher total species richness. However, species richness of lichens in stands of P. abies decreased with increasing stand age, while no such age effect was detected for P. contorta and P. sylvestris. Lichen species composition progressively diverged with increasing stand age, and in 30-year-old stands all three tree species showed species-specific assemblages. Epiphytic lichen assemblages in stands of 30-year-old P. contorta were influenced by greater basal area, canopy closure, and average diameter at breast height, P. abies stands by higher branch density and canopy closure, and stands of P. sylvestris by greater bark crevice depth. Differences in lichen species richness and composition were mainly explained by canopy closure and habitat availability, and the greater canopy closure in mature P. abies stands promoted the colonization and growth of calicioid lichen species. Our results indicate that the non-native P. contorta have similar species richness as the native P. sylvestris. The main difference in lichen species richness and composition is between P. abies and Pinus spp. in managed forests of boreal Sweden. PMID:26799558
Conflicts in maintaining biodiversity at multiple scales.
Lankau, Richard A
2011-05-01
Biodiversity consists of multiple scales, including functional diversity in ecological traits, species diversity and genetic diversity within species, and is declining across the globe, largely in response to human activities. While species extinctions are the most obvious aspect of this, there has also been a more insidious loss of genetic diversity within species. While a vast literature concerns each of these scales of biodiversity, less is known about how different scales affect one another. In particular, genetic and species diversity may influence each other in numerous ways, both positively and negatively. However, we know little about the mechanism behind these patterns. In this issue of Molecular Ecology, Nestmann et al. (2011) experimentally explore the effect of species and functional diversity and composition of grassland plant communities on the genetic structure of one of the component species. Increasing species richness led to greater changes in the genetic composition of the focal populations over 4 years, primarily because of genetic drift in smaller population sizes. However, there were also genetic changes in response to particular plant functional groups, indicating selective differences driven by plant community composition. These results suggest that different levels of biodiversity can trade-off in communities, which may prove a challenge for conservation biologists seeking to preserve all aspects of biodiversity.
Rodríguez-Riaño, T; Ortega-Olivencia, A; López, J; Pérez-Bote, J L; Navarro-Pérez, M L
2014-11-01
In some angiosperm groups, a parallelism between nectar traits and pollination syndromes has been demonstrated, whereas in others there is not such relationship and it has been explained as due to phylogenetic constraints. However, nectar trait information remains scarce for many plant groups. This paper focuses on three groups of Scrophularia species, with different flower sizes and principal pollinators, to find out whether nectar sugar composition is determined by pollinator type or reflects taxonomic affinities. Since the species we examined have protogynous flowers, and gender bias in nectar sugar composition has been noted in few plant groups, we also investigated whether sexual phase influenced Scrophularia nectar composition. The sugar composition was found to be similar in all species, having high-sucrose nectar, except for the Macaronesian Scrophularia calliantha, which was the only species with balanced nectar; this last kind of nectar could be associated with the high interaction rates observed between S. calliantha and passerine birds. The nectar sugar composition (high in sucrose) was unrelated to the principal pollinator group, and could instead be considered a conservative taxonomic trait. No gender bias was observed between functionally female and male flowers for nectar volume or concentration. However, sexual phase significantly affected sucrose percentage in the largest-flowered species, where the female phase flowers had higher sucrose percentages than the male phase flowers. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
NASA Astrophysics Data System (ADS)
Agostini, Kayna; Sazima, Marlies; Galetto, Leonardo
2011-11-01
Nectar is secreted in particular rhythms throughout the lifespan of a flower, which allows determining the nectar production dynamics. This paper compares nectar features in Mucuna japira and Mucuna urens describing: dynamics of nectar production, floral response to nectar removal, resorption, nectar sugar composition, and variation in nectar sugar composition. M. japira inflorescence bears 12-21 yellow flowers, which are in anthesis for 7 days, whereas M. urens inflorescence bears 36-54 greenish flowers, but only 1-3 flowers are in anthesis simultaneously that last one night. Nectar volume and sugar concentration were measured, and the amount of sugar was estimated. Qualitative and quantitative nectar sugar composition was determined. Both species had a constant nectar sugar concentration (ca. 10% for M. japira and ca. 16% for M. urens) and secreted high volumes of nectar (ca. 340 μl per flower for M. japira and 310 μl per flower for M. urens), during 5 days for M. japira and 6 h for M. urens, but after the first removal, i.e., when flower opening mechanism is triggered, nectar production stops immediately. Nectar resorption occurred in both species. Nectar sugar composition showed some similarities between the species. Variation in nectar sugar composition occurred in both species. The Mucuna species are dependent on their pollinators to produce fruits and seeds, and they have different strategies to promote the necessary interaction with birds or bats, especially related to nectar and flower characteristics.
Agostini, Kayna; Sazima, Marlies; Galetto, Leonardo
2011-11-01
Nectar is secreted in particular rhythms throughout the lifespan of a flower, which allows determining the nectar production dynamics. This paper compares nectar features in Mucuna japira and Mucuna urens describing: dynamics of nectar production, floral response to nectar removal, resorption, nectar sugar composition, and variation in nectar sugar composition. M. japira inflorescence bears 12-21 yellow flowers, which are in anthesis for 7 days, whereas M. urens inflorescence bears 36-54 greenish flowers, but only 1-3 flowers are in anthesis simultaneously that last one night. Nectar volume and sugar concentration were measured, and the amount of sugar was estimated. Qualitative and quantitative nectar sugar composition was determined. Both species had a constant nectar sugar concentration (ca. 10% for M. japira and ca. 16% for M. urens) and secreted high volumes of nectar (ca. 340 μl per flower for M. japira and 310 μl per flower for M. urens), during 5 days for M. japira and 6 h for M. urens, but after the first removal, i.e., when flower opening mechanism is triggered, nectar production stops immediately. Nectar resorption occurred in both species. Nectar sugar composition showed some similarities between the species. Variation in nectar sugar composition occurred in both species. The Mucuna species are dependent on their pollinators to produce fruits and seeds, and they have different strategies to promote the necessary interaction with birds or bats, especially related to nectar and flower characteristics.
Li, Wen-Bo; Liu, Nai-Yi; Wu, Yun-He; Zhang, Yu-Cai; Xu, Qin; Chu, Jun; Wang, Shu-Yan
2017-01-01
Abstract This study used pitfall trapping to examine community composition and diversity of ground beetles in five different habitats (coniferous, deciduous, mixed coniferous, farmland, and settlements) within Anhui Yaoluoping National Nature Reserve from May to September 2014. In total, 1,352 ground beetles were collected, belonging to 16 genera and 44 species. Of these, four dominant species Dolichus halensis, Harpalus pastor, Carabus casaleianus, and Pheropsophus jessoensis were identified, respectively, comprising 370, 177, 131, and 123 individuals. The deciduous forest showed greater diversity (3.78 according to Shannon–Weiner index), equitability (0.80 according to Pielou’s index), and dominance (9.52 according to Simpson’s index) when compared with farmland, but species richness in the deciduous forest (27) was lower than that in farmland (35). One-way analysis of variance showed that ground beetle species composition and abundance among different habitats varied significantly. Cluster analysis and principal coordinate analysis showed that farmland shared low community similarity with other habitat types, and coniferous and mixed coniferous forests shared similar community types. Our results indicate that species composition, abundance, and diversity of ground beetles are affected by different habitat types, with deciduous forest types being critical in maintaining the diversity of rare species. We recommend reducing cultivated farmland area and increasing the area of carefully planned deciduous forest in order to better protect ground beetle diversity in the region.
Papalexandratou, Zoi; De Vuyst, Luc
2011-11-01
The yeast species composition of 12 cocoa bean fermentations carried out in Brazil, Ecuador, Ivory Coast and Malaysia was investigated culture-independently. Denaturing gradient gel electrophoresis of 26S rRNA gene fragments, obtained through polymerase chain reaction with universal eukaryotic primers, was carried out with two different commercial apparatus (the DCode and CBS systems). In general, this molecular method allowed a rapid monitoring of the yeast species prevailing during fermentation. Under similar and optimal denaturing gradient gel electrophoresis conditions, the CBS system allowed a better separated band pattern than the DCode system and an unambiguous detection of the prevailing species present in the fermentation samples. The most frequent yeast species were Hanseniaspora sp., followed by Pichia kudriavzevii and Saccharomyces cerevisiae, independent of the origin of the cocoa. This indicates a restricted yeast species composition of the cocoa bean fermentation process. Exceptionally, the Ivorian cocoa bean box fermentation samples showed a wider yeast species composition, with Hyphopichia burtonii and Meyerozyma caribbica among the main representatives. Yeasts were not detected in the samples when the temperature inside the fermenting cocoa pulp-bean mass reached values higher than 45 °C or under early acetic acid production conditions. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Winter Waterbird Community Composition and Use at Created Wetlands in West Virginia, USA
Peters, Michael L.
2017-01-01
Information on nonbreeding waterbirds using created wetlands in the Central Appalachian region of the United States is limited. We compared waterbird communities of two managed wetlands, created in 2013 and 2001, in West Virginia. We observed 27 species of waterbirds. Species richness and diversity were generally similar between the wetlands, but species composition and use differed. Branta canadensis (Canada Geese), Anas strepera (Gadwall), Bucephala albeola (Buffleheads), Aythya affinis (Lesser Scaup), and Aythya collaris (Ring-Necked Ducks) used the older wetland most frequently. Disparities in species use were the highest in March. The older wetland differed from the younger in supporting species such as diving ducks, possibly due to differences in size, vegetation, water depth, and microtopography. However, the ability to provide habitat for waterbirds during the winter was determined to be comparable between wetlands, despite their age difference. PMID:28386513
Temporal patterns of woody species diversity in a central Appalachian forest from 1856 to 1997
Thomas M. Schuler; Andrew R. Gillespie
2000-01-01
This study examined the composition of woody species in a mixed mesophytic forest in the central Appalachian region with respect to both time and different disturbance regimes. Species composition and diversity were assessed from 1856 to 1997 on a tract of land that currently is part of the Fernow Experimental Forest in north-central West Virginia. Additionally, the...
Bezemer, T M; Fountain, M T; Barea, J M; Christensen, S; Dekker, S C; Duyts, H; van Hal, R; Harvey, J A; Hedlund, K; Maraun, M; Mikola, J; Mladenov, A G; Robin, C; de Ruiter, P C; Scheu, S; Setälä, H; Smilauer, P; van der Putten, W H
2010-10-01
Soils are extremely rich in biodiversity, and soil organisms play pivotal roles in supporting terrestrial life, but the role that individual plants and plant communities play in influencing the diversity and functioning of soil food webs remains highly debated. Plants, as primary producers and providers of resources to the soil food web, are of vital importance for the composition, structure, and functioning of soil communities. However, whether natural soil food webs that are completely open to immigration and emigration differ underneath individual plants remains unknown. In a biodiversity restoration experiment we first compared the soil nematode communities of 228 individual plants belonging to eight herbaceous species. We included grass, leguminous, and non-leguminous species. Each individual plant grew intermingled with other species, but all plant species had a different nematode community. Moreover, nematode communities were more similar when plant individuals were growing in the same as compared to different plant communities, and these effects were most apparent for the groups of bacterivorous, carnivorous, and omnivorous nematodes. Subsequently, we analyzed the composition, structure, and functioning of the complete soil food webs of 58 individual plants, belonging to two of the plant species, Lotus corniculatus (Fabaceae) and Plantago lanceolata (Plantaginaceae). We isolated and identified more than 150 taxa/groups of soil organisms. The soil community composition and structure of the entire food webs were influenced both by the species identity of the plant individual and the surrounding plant community. Unexpectedly, plant identity had the strongest effects on decomposing soil organisms, widely believed to be generalist feeders. In contrast, quantitative food web modeling showed that the composition of the plant community influenced nitrogen mineralization under individual plants, but that plant species identity did not affect nitrogen or carbon mineralization or food web stability. Hence, the composition and structure of entire soil food webs vary at the scale of individual plants and are strongly influenced by the species identity of the plant. However, the ecosystem functions these food webs provide are determined by the identity of the entire plant community.
Grundel, R.; Pavlovic, N.B.
2008-01-01
1. Managers considering restoration of landscapes often face a fundamental challenge - what should be the habitat composition of the restored landscape? We present a method for evaluating an important conservation trade-off inherent in making that decision. 2. Oak savannas and grasslands were historically widespread across central North America but are now rare. Today, in north-west Indiana, USA, habitats spanning a range of woody vegetation density, from nearly treeless open habitats to forests, occur across the conserved landscape where savannas probably once dominated. To understand the benefits of different potential landscape compositions, we evaluated how different proportions of five habitats - open, savanna, woodland, scrub and forest - might affect the conservation value of the north-west Indiana landscape for birds. Two variables of potential conservation importance were examined: species diversity, a measure of avian community richness, and conservation index, the percentage of a bird species' global population occurring on a hectare of landscape, summed across all bird species present. Higher values of conservation index were associated with higher local densities of globally more rare and more threatened species. 3. Conservation index and species diversity were correlated negatively across hypothetical landscapes composed of different proportions of the five habitats. Therefore, a management trade-off existed between conservation index and species diversity because landscapes that maximized species diversity differed from landscapes that maximized conservation index. 4. A landscape of 50% open, 22% savanna, 15% scrub and 13% forest was predicted to represent a compromise at which conservation index and species diversity reached the same percentage of their maxima. In contrast, the current landscape is dominated by forest. 5. Synthesis and applications. We quantified the trade-off between two potential aspects of a landscape's conservation value for birds - the landscape's ability to promote avian species diversity and the landscape's use by threatened avian species. This quantification allowed us to evaluate the ability of different landscape compositions to achieve preferable trade-off compromises, such as maximizing diversity for a given level of landscape use by threatened species. Managers can use these trade-off results to determine which landscape compositions are associated with particular conservation and management priorities.
The role of biotic interactions in plant community assembly: What is the community species pool?
NASA Astrophysics Data System (ADS)
Švamberková, Eva; Vítová, Alena; Lepš, Jan
2017-11-01
Differences in plant species composition between a community and its species pool are considered to reflect the effect of community filters. If we define the species pool as a set of species able to reach a site and form a viable population in a given abiotic environment (i.e. to pass the dispersal and abiotic filter), the difference in species composition should correspond to the effect of biotic interactions. However, most of the operational definitions of the species pool are based on co-occurrence patterns and thus also reflect the effect of biotic relationships, including definitions based on functional plant traits, Ellenberg indicator values or Beals index. We conducted two seed introduction experiments in an oligotrophic wet meadow with the aim of demonstrating that many species excluded, according to the above definitions, from a species pool are in fact able to establish there successfully if competition is removed. In sowing experiments, we studied the establishment and survival of species after the removal of competition (i.e. in artificial gaps) and in intact vegetation. We also investigated inter-annual variability of seed germination and seedling establishment and competitive exclusion of sown species. The investigated species also included those from very different habitats (i.e. species with very low corresponding Beals index or Ellenberg indicator values that were different from the target community weighted mean). Many of these species were able to grow in the focal wet meadow if competition was removed, but they did not establish and survive in the intact community. These species are thus not limited by abiotic conditions, but by the biotic filter. We also recorded a great inter-annual variability in seed germination and seedling establishment. Competitive exclusion of species with different ecological requirements could be quite fast (one and half seasons) in some species, but some non-resident species were able to survive several seasons; the resident species were able to persist in competition. Comparison of realized vegetation composition with the corresponding species pool greatly underestimates the potential impact of the biotic filter if the delimitation of the species pool is based on the realized niches of species and co-occurrence patterns.
Amplicon-Based Sequencing of Soil Fungi from Wood Preservative Test Sites
Kirker, Grant T.; Bishell, Amy B.; Jusino, Michelle A.; Palmer, Jonathan M.; Hickey, William J.; Lindner, Daniel L.
2017-01-01
Soil samples were collected from field sites in two AWPA (American Wood Protection Association) wood decay hazard zones in North America. Two field plots at each site were exposed to differing preservative chemistries via in-ground installations of treated wood stakes for approximately 50 years. The purpose of this study is to characterize soil fungal species and to determine if long term exposure to various wood preservatives impacts soil fungal community composition. Soil fungal communities were compared using amplicon-based DNA sequencing of the internal transcribed spacer 1 (ITS1) region of the rDNA array. Data show that soil fungal community composition differs significantly between the two sites and that long-term exposure to different preservative chemistries is correlated with different species composition of soil fungi. However, chemical analyses using ICP-OES found levels of select residual preservative actives (copper, chromium and arsenic) to be similar to naturally occurring levels in unexposed areas. A list of indicator species was compiled for each treatment-site combination; functional guild analyses indicate that long-term exposure to wood preservatives may have both detrimental and stimulatory effects on soil fungal species composition. Fungi with demonstrated capacity to degrade industrial pollutants were found to be highly correlated with areas that experienced long-term exposure to preservative testing. PMID:29093702
Effects of past and present livestock grazing on herpetofauna in a landscape-scale experiment.
Kay, Geoffrey M; Mortelliti, Alessio; Tulloch, Ayesha; Barton, Philip; Florance, Daniel; Cunningham, Saul A; Lindenmayer, David B
2017-04-01
Livestock grazing is the most widespread land use on Earth and can have negative effects on biodiversity. Yet, many of the mechanisms by which grazing leads to changes in biodiversity remain unresolved. One reason is that conventional grazing studies often target broad treatments rather than specific parameters of grazing (e.g., intensity, duration, and frequency) or fail to account for historical grazing effects. We conducted a landscape-scale replicated grazing experiment (15,000 km 2 , 97 sites) to examine the impact of past grazing management and current grazing regimes (intensity, duration, and frequency) on a community of ground-dwelling herpetofauna (39 species). We analyzed community variables (species richness and composition) for all species and built multiseason patch-occupancy models to predict local colonization and extinction for the 7 most abundant species. Past grazing practices did not influence community richness but did affect community composition and patch colonization and extinction for 4 of 7 species. Present grazing parameters did not influence community richness or composition, but 6 of the 7 target species were affected by at least one grazing parameter. Grazing frequency had the most consistent influence, positively affecting 3 of 7 species (increased colonization or decreased extinction). Past grazing practice affected community composition and population dynamics in some species in different ways, which suggests that conservation planners should examine the different grazing histories of an area. Species responded differently to specific current grazing practices; thus, incentive programs that apply a diversity of approaches rather than focusing on a change such as reduced grazing intensity should be considered. Based on our findings, we suggest that determining fine-scale grazing attributes is essential for advancing grazing as a conservation strategy. © 2016 Society for Conservation Biology.
Campião, K M; da Silva, R J; Ferreira, V L
2014-03-01
Several factors may influence the structure of parasite communities in amphibian hosts. In this study, we describe the helminth parasites of three allopatric populations of the frog Leptodactylus podicipinus and test whether host size and sex were determinants of the structure and composition of the helminth communities. One hundred and twenty-three anurans were collected from three different study sites within the Pantanal wetlands and surveyed for helminth parasites. We found 14 helminth taxa: 7 species of nematodes, 4 species of trematodes, 1 species of cestodes, 1 species of acanthocephalan and one unidentified cyst. Host sex and size did not cause significant differences in helminth abundance or richness. The structure of helminth communities from the three study sites varied in terms of species composition, abundance and diversity. Six out of 14 helminth taxa were found in the three localities. Among those, the nematodes Cosmocerca podicipinus and Rhabdias sp., the trematode Catadiscus propinquus and the helminth cyst showed significant differences in mean abundances. We suggest that such differences found among the three component communities are driven by biotic and abiotic factors operating locally. Moreover, these differences stress the importance of local conditions, such as hydrologic characteristics and landscape composition, on helminth community structure.
Wang, Zhe; Quinn, Paul C; Jin, Haiyang; Sun, Yu-Hao P; Tanaka, James W; Pascalis, Olivier; Lee, Kang
2018-04-25
Using a composite-face paradigm, we examined the holistic processing induced by Asian faces, Caucasian faces, and monkey faces with human Asian participants in two experiments. In Experiment 1, participants were asked to judge whether the upper halves of two faces successively presented were the same or different. A composite-face effect was found for Asian faces and Caucasian faces, but not for monkey faces. In Experiment 2, participants were asked to judge whether the lower halves of the two faces successively presented were the same or different. A composite-face effect was found for monkey faces as well as for Asian faces and Caucasian faces. Collectively, these results reveal that own-species (i.e., own-race and other-race) faces engage holistic processing in both upper and lower halves of the face, but other-species (i.e., monkey) faces engage holistic processing only when participants are asked to match the lower halves of the face. The findings are discussed in the context of a region-based holistic processing account for the species-specific effect in face recognition. Copyright © 2018 Elsevier Ltd. All rights reserved.
Castaño, Carles; Parladé, Javier; Pera, Joan; Martínez de Aragón, Juan; Alday, Josu G; Bonet, José Antonio
2016-11-01
Drying soil samples before DNA extraction is commonly used for specific fungal DNA quantification and metabarcoding studies, but the impact of different drying procedures on both the specific fungal DNA quantity and the fungal community composition has not been analyzed. We tested three different drying procedures (freeze-drying, oven-drying, and room temperature) on 12 different soil samples to determine (a) the soil mycelium biomass of the ectomycorrhizal species Lactarius vinosus using qPCR with a specifically designed TaqMan® probe and (b) the fungal community composition and diversity using the PacBio® RS II sequencing platform. Mycelium biomass of L. vinosus was significantly greater in the freeze-dried soil samples than in samples dried at oven and room temperature. However, drying procedures had no effect on fungal community composition or on fungal diversity. In addition, there were no significant differences in the proportions of fungi according to their functional roles (moulds vs. mycorrhizal species) in response to drying procedures. Only six out of 1139 operational taxonomic units (OTUs) had increased their relative proportions after soil drying at room temperature, with five of these OTUs classified as mould or yeast species. However, the magnitude of these changes was small, with an overall increase in relative abundance of these OTUs of approximately 2 %. These results suggest that DNA degradation may occur especially after drying soil samples at room temperature, but affecting equally nearly all fungi and therefore causing no significant differences in diversity and community composition. Despite the minimal effects caused by the drying procedures at the fungal community composition, freeze-drying resulted in higher concentrations of L. vinosus DNA and prevented potential colonization from opportunistic species.
Species effects on ecosystem processes are modified by faunal responses to habitat composition.
Bulling, Mark T; Solan, Martin; Dyson, Kirstie E; Hernandez-Milian, Gema; Luque, Patricia; Pierce, Graham J; Raffaelli, Dave; Paterson, David M; White, Piran C L
2008-12-01
Heterogeneity is a well-recognized feature of natural environments, and the spatial distribution and movement of individual species is primarily driven by resource requirements. In laboratory experiments designed to explore how different species drive ecosystem processes, such as nutrient release, habitat heterogeneity is often seen as something which must be rigorously controlled for. Most small experimental systems are therefore spatially homogeneous, and the link between environmental heterogeneity and its effects on the redistribution of individuals and species, and on ecosystem processes, has not been fully explored. In this paper, we used a mesocosm system to investigate the relationship between habitat composition, species movement and sediment nutrient release for each of four functionally contrasting species of marine benthic invertebrate macrofauna. For each species, various habitat configurations were generated by selectively enriching patches of sediment with macroalgae, a natural source of spatial variability in intertidal mudflats. We found that the direction and extent of faunal movement between patches differs with species identity, density and habitat composition. Combinations of these factors lead to concomitant changes in nutrient release, such that habitat composition effects are modified by species identity (in the case of NH4-N) and by species density (in the case of PO4-P). It is clear that failure to accommodate natural patterns of spatial heterogeneity in such studies may result in an incomplete understanding of system behaviour. This will be particularly important for future experiments designed to explore the effects of species richness on ecosystem processes, where the complex interactions reported here for single species may be compounded when species are brought together in multi-species combinations.
Hjältén, Joakim; Stenbacka, Fredrik; Pettersson, Roger B; Gibb, Heloise; Johansson, Therese; Danell, Kjell; Ball, John P; Hilszczański, Jacek
2012-01-01
Restoration of habitats is critically important in preventing full realization of the extinction debt owed as a result of anthropogenic habitat destruction. Although much emphasis has been placed on macrohabitats, suitable microhabitats are also vital for the survival of most species. The aim of this large-scale field experiment was to evaluate the relative importance of manipulated microhabitats, i.e., dead wood substrates of spruce (snags, and logs that were burned, inoculated with wood fungi or shaded) and macrohabitats, i.e., stand types (clear-cuts, mature managed forests, and forest reserves) for species richness, abundance and assemblage composition of all saproxylic and red-listed saproxylic beetles. Beetles were collected in emergence traps in 30 forest stands in 2001, 2003, 2004 and 2006. More individuals emerged from snags and untreated logs than from burned and shaded logs, but species richness did not differ among substrates. Assemblage composition differed among substrates for both all saproxylics and red-listed saproxylic species, mainly attributed to different assemblage composition on snags. This suggests that the practise of leaving snags for conservation purposes should be complemented with log supplementation. Clear-cuts supported fewer species and different assemblages from mature managed forests and reserves. Neither abundance, nor species richness or assemblage composition differed between reserves and mature managed forests. This suggests that managed stands subjected to selective cutting, not clear-felling, maintain sufficient old growth characteristics and continuity to maintain more or less intact assemblages of saproxylic beetles. Thus, alternative management methods, e.g., continuity forestry should be considered for some of these stands to maintain continuity and conservation values. Furthermore, the significantly higher estimated abundance per ha of red-listed beetles in reserves underlines the importance of reserves for maintaining viable populations of rare red-listed species and as source areas for saproxylic species in boreal forest landscapes.
Assessing diet compositions of Lake Ontario predators using fatty acid profiles of prey fishes
Happell, Austin; Pattridge, Robert; Rinchard, Jacques; Walsh, Maureen
2017-01-01
Fatty acid profiles are used in food web studies to assess trophic interactions between predator and prey. The present study provides the first comprehensive fatty acid dataset for important prey and predator species in Lake Ontario. Three major prey fish (alewife, rainbow smelt, and round goby) were collected at three sites along the southern shore of Lake Ontario during the spring and fall of 2013, and predator species were collected in similar locations during the summer of 2013. Fatty acid compositions were compared among all prey species, all predator species, and information from both predator and prey was used to infer foraging differences among predators. Seasonal differences in fatty acids were found within each prey species studied. Differences among prey species were greater than any spatio-temporal differences detected within species. Fatty acids of predators revealed species-specific differences that matched known foraging habits. Chinook and Coho salmon, which are known to select alewife as their dominant prey item, had relatively little variation in fatty acid profiles. Conversely, brown trout, lake trout, yellow perch and esocids had highly variable fatty acid profiles and likely highly variable diet compositions. In general, our data suggested three dominant foraging patterns: 1) diet composed of nearly exclusively alewife for Chinook and Coho Salmon; 2) a mixed diet of alewife and round goby for brown and lake trout, and both rock and smallmouth bass; 3) a diet that is likely comprised of forage fishes other than those included in our study for northern pike and chain pickerel.
Veblen, Kari E; Porensky, Lauren M; Riginos, Corinna; Young, Truman P
2016-09-01
The widespread replacement of wild ungulate herbivores by domestic livestock in African savannas is composed of two interrelated phenomena: (1) loss or reduction in numbers of individual wildlife species or guilds and (2) addition of livestock to the system. Each can have important implications for plant community dynamics. Yet very few studies have experimentally addressed the individual, combined, and potentially interactive effects of wild vs. domestic herbivore species on herbaceous plant communities within a single system. Additionally, there is little information about whether, and in which contexts, livestock might functionally replace native herbivore wildlife or, alternatively, have fundamentally different effects on plant species composition. The Kenya Long-term Exclosure Experiment, which has been running since 1995, is composed of six treatment combinations of mega-herbivores, meso-herbivore ungulate wildlife, and cattle. We sampled herbaceous vegetation 25 times between 1999 and 2013. We used partial redundancy analysis and linear mixed models to assess effects of herbivore treatments on overall plant community composition and key plant species. Plant communities in the six different herbivore treatments shifted directionally over time and diverged from each other substantially by 2013. Plant community composition was strongly related (R 2 = 0.92) to residual plant biomass, a measure of herbivore utilization. Addition of any single herbivore type (cattle, wildlife, or mega-herbivores) caused a shift in plant community composition that was proportional to its removal of plant biomass. These results suggest that overall herbivory pressure, rather than herbivore type or complex interactions among different herbivore types, was the main driver of changes in plant community composition. Individual plant species, however, did respond most strongly to either wild ungulates or cattle. Although these results suggest considerable functional similarity between a suite of native wild herbivores (which included grazers, browsers, and mixed feeders) and cattle (mostly grazers) with respect to understory plant community composition, responses of individual plant species demonstrate that at the plant-population-level impacts of a single livestock species are not functionally identical to those of a diverse group of native herbivores. © 2016 by the Ecological Society of America.
Alañón, M Elena; Díaz-Maroto, M Consuelo; Díaz-Maroto, Ignacio J; Vila-Lameiro, Pablo; Pérez-Coello, M Soledad
2011-02-23
Cyclic polyalcohol composition of 80 natural wood samples from different botanical species, with the majority of them used in the oenology industry for aging purposes, has been studied by gas chromatography-mass spectrometry (GC-MS) after its conversion into their trimethylsilyloxime derivatives. Each botanical species showed a different and specific cyclic polyalcohol profile. Oak wood samples were characterized by the richness in deoxyinositols, especially proto-quercitol. Meanwhile, other botanical species showed a very low content of cyclic polyalcohols. The qualitative and quantitative study of cyclic polyalcohols was a useful tool to characterize and differentiate woods of different botanical origin to guarantee the authenticity of chips used in the wine-aging process. Monosaccharide composition was also analyzed, showing some quantitative differences among species, but cyclic polyalcohols were the compounds that revealed the main differentiation power.
Reconsidering the evolution of brain, cognition, and behavior in birds and mammals
Willemet, Romain
2013-01-01
Despite decades of research, some of the most basic issues concerning the extraordinarily complex brains and behavior of birds and mammals, such as the factors responsible for the diversity of brain size and composition, are still unclear. This is partly due to a number of conceptual and methodological issues. Determining species and group differences in brain composition requires accounting for the presence of taxon-cerebrotypes and the use of precise statistical methods. The role of allometry in determining brain variables should be revised. In particular, bird and mammalian brains appear to have evolved in response to a variety of selective pressures influencing both brain size and composition. “Brain” and “cognition” are indeed meta-variables, made up of the variables that are ecologically relevant and evolutionarily selected. External indicators of species differences in cognition and behavior are limited by the complexity of these differences. Indeed, behavioral differences between species and individuals are caused by cognitive and affective components. Although intra-species variability forms the basis of species evolution, some of the mechanisms underlying individual differences in brain and behavior appear to differ from those between species. While many issues have persisted over the years because of a lack of appropriate data or methods to test them; several fallacies, particularly those related to the human brain, reflect scientists' preconceptions. The theoretical framework on the evolution of brain, cognition, and behavior in birds and mammals should be reconsidered with these biases in mind. PMID:23847570
Knörr, U C; Gottsberger, G
2012-09-01
Tropical forests are seriously threatened by fragmentation and habitat loss. The impact of fragment size and forest configuration on the composition of seed rain is insufficiently studied. For the present study, seed rain composition of small and large forest fragments (8-388 ha) was assessed in order to identify variations in seed abundance, species richness, seed size and dispersal mode. Seed rain was documented during a 1-year period in three large and four small Atlantic Forest fragments that are isolated by a sugarcane matrix. Total seed rain included 20,518 seeds of 149 species of trees, shrubs, palms, lianas and herbs. Most species and seeds were animal-dispersed. A significant difference in the proportion of seeds and species within different categories of seed size was found between small and large fragments. Small fragments received significantly more very small-sized seeds (<0.3 cm) and less large-seeded species (>1.5 cm) that were generally very rare, with only one species in small and eight in large fragments. We found a negative correlation between the inflow of small-sized seeds and the percentage of forest cover. Species richness was lower in small than in large fragments, but the difference was not very pronounced. Given our results, we propose changing plant species pools through logging, tree mortality and a high inflow of pioneer species and lianas, especially in small forest fragments and areas with low forest cover. Connecting forest fragments through corridors and reforestation with local large-seeded tree species may facilitate the maintenance of species diversity. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
Skogan, Gunnar
2017-01-01
ABSTRACT The ability to perform controlled experiments with bioaerosols is a fundamental enabler of many bioaerosol research disciplines. A practical alternative to using hazardous biothreat agents, e.g., for detection equipment development and testing, involves using appropriate model organisms (simulants). Several species of Gram-negative bacteria have been used or proposed as biothreat simulants. However, the appropriateness of different bacterial genera, species, and strains as simulants is still debated. Here, we report aerobiological stability characteristics of four species of Gram-negative bacteria (Pantoea agglomerans, Serratia marcescens, Escherichia coli, and Xanthomonas arboricola) in single-cell particles and cell clusters produced using four spray liquids (H2O, phosphate-buffered saline[PBS], spent culture medium[SCM], and a SCM-PBS mixture). E. coli showed higher stability in cell clusters from all spray liquids than the other species, but it showed similar or lower stability in single-cell particles. The overall stability was higher in cell clusters than in single-cell particles. The highest overall stability was observed for bioaerosols produced using SCM-containing spray liquids. A key finding was the observation that stability differences caused by particle size or compositional changes frequently followed species-specific patterns. The results highlight how even moderate changes to one experimental parameter, e.g., bacterial species, spray liquid, or particle size, can strongly affect the aerobiological stability of Gram-negative bacteria. Taken together, the results highlight the importance of careful and informed selection of Gram-negative bacterial biothreat simulants and also the accompanying particle size and composition. The outcome of this work contributes to improved selection of simulants, spray liquids, and particle size for use in bioaerosol research. IMPORTANCE The outcome of this work contributes to improved selection of simulants, spray liquids, and particle size for use in bioaerosol research. Taken together, the results highlight the importance of careful and informed selection of Gram-negative bacterial biothreat simulants and also the accompanying particle size and composition. The results highlight how even moderate changes to one experimental parameter, e.g., bacterial species, spray liquid, or particle size, can strongly affect the aerobiological stability of Gram-negative bacteria. A key finding was the observation that stability differences caused by particle size or compositional changes frequently followed species-specific patterns. PMID:28687646
Canto, A.; Herrera, C. M.
2012-01-01
Background and Aims Variation in the composition of floral nectar reflects intrinsic plant characteristics as well as the action of extrinsic factors. Micro-organisms, particularly yeasts, represent one extrinsic factor that inhabit the nectar of animal-pollinated flowers worldwide. In this study a ‘microbial imprint hypothesis’ is formulated and tested, in which it is proposed that natural community-wide variation in nectar sugar composition will partly depend on the presence of yeasts in flowers. Methods Occurrence and density of yeasts were studied microscopically in single-flower nectar samples of 22 animal-pollinated species from coastal xeric and sub-humid tropical habitats of the Yucatán Peninsula, Mexico. Nectar sugar concentration and composition were concurrently determined on the same samples using high-performance liquid chromatography (HPLC) methods. Key Results Microscopical examination of nectar samples revealed the presence of yeasts in nearly all plant species (21 out of 22 species) and in about half of the samples examined (51·8 % of total, all species combined). Plant species and individuals differed significantly in nectar sugar concentration and composition, and also in the incidence of nectar yeasts. After statistically controlling for differences between plant species and individuals, nectar yeasts still accounted for a significant fraction of community-wide variance in all nectar sugar parameters considered. Significant yeast × species interactions on sugar parameters revealed that plant species differed in the nectar sugar correlates of variation in yeast incidence. Conclusions The results support the hypothesis that nectar yeasts impose a detectable imprint on community-wide variation in nectar sugar composition and concentration. Since nectar sugar features influence pollinator attraction and plant reproduction, future nectar studies should control for yeast presence and examine the extent to which microbial signatures on nectar characteristics ultimately have some influence on pollination services in plant communities. PMID:22915578
Linking Above- and Belowground Dynamics in Tropical Urban Forests
NASA Astrophysics Data System (ADS)
Atkinson, E. E.; Marin-Spiotta, E.
2013-12-01
Secondary forests that emerge after a long history of agriculture can have altered plant community composition and relative abundances of different species. These forests can look and behave differently compared to pre-agricultural forests due changes in primary productivity, resource allocation, and phenology, which can significantly affect processes such as carbon accumulation and nutrient availability. Our research explores how alternative successional trajectories following intensive agricultural use affect linkages among the establishment of novel plant communities, soil nutrient availability and turnover, and soil microbial community composition and function. We hypothesize that different plant species composition due to differing land use legacies and successional trajectories would drive changes in soil microbial community structure and function, affecting soil C and N chemistry and turnover. We conducted this research in the subtropical dry forest life zone of St. Croix, U.S. Virgin Islands where island-wide abandonment of sugarcane resulted in a mosaic of sites in different stages of forest succession. We identified replicate sites with the following post-sugarcane trajectories: 1) natural forest regeneration, 2) low intensity pasture use, followed by reforestation with timber plantation, which are no longer being managed, 3) high intensity pasture use and recent natural forest regeneration, and 4) high intensity pasture use and current active grazing. During 2011-2013, we sampled soils seasonally (0-10 cm) and measured tree species composition. The successional trajectories showed distinct tree species composition. The first two trajectories yielded 40-year old mixed-species secondary forest, dominated by the dry forest tree species Melicoccus bijugatas, Guapira fragrans, Maniklara zapota, and Sideroxylon foetidissimum. The tree species Melicoccus bijugatas primarily drove differences between the first two trajectories (natural forest regeneration vs. timber plantation and subsequent forest regeneration) while the N-fixing species Leucaena leucocephala drove differences between these forests and younger forests (10-year old), which only recently regenerated. The 40-year old mixed-species forests, regardless of successional trajectory, both had higher soil organic C and N (40 × 6 Mg C/ha and 3.8 × 6 Mg N/ha) compared to younger forests (32 × 2 Mg C/ha and 2.9 × 0.2 Mg N/ha) and active pastures. Active pastures had the lowest soil organic C and N (22 × 6 Mg C/ha and 2.1 × 0.5 Mg N/ha). We found that each successional trajectory showed distinct soil microbial community composition. In addition, the recently regenerated younger forests, dominated by N-fixing tree species, had higher microbial biomass and higher rates of N-cycling enzyme activity (N-acetyl glucosaminidase) when compared with the older, mixed-species forest. Our next step is to link microbial community structure and function with distinct forms of soil organic matter (SOM), and thus determine whether changes in function create distinct SOM stabilization pathways. To do this we will compare SOM chemistry and turnover for the different successional trajectories and analyze data from long-term leaf litter and root transplant experiments between the young and old secondary forests.
Jürgens, Andreas; Bosch, Simone R.; Webber, Antonio C.; Witt, Taina; Frame, Dawn; Gottsberger, Gerhard
2009-01-01
Background and Aims Spatial variation in pollinator composition and abundance is a well-recognized phenomenon. However, a weakness of many studies claiming specificity of plant–pollinator interactions is that they are often restricted to a single locality. The aim of the present study was to investigate pollinator effectiveness of the different flower visitors to the terrestrial orchid Eulophia alta at three different localities and to analyse whether differences in pollinator abundance and composition effect this plant's reproductive success. Methods Natural pollination was observed in vivo, and manipulative experiments were used to study the pollination biology and breeding system of E. alta at three sites near Manaus, Brazil. To gain a better understanding of the underlying mechanisms of pollinator attraction, nectar composition and secretion patterns were also studied, floral scent composition was analysed and a bioassay was conducted. Key Results Flower visitors, pollinator composition, pollinia transfer efficiency of particular pollinator species and natural fruit set differed among the investigated populations of E. alta. Flowers were self-compatible, partially autogamous and effectively pollinated by five bee species (four Centris species and Xylocopa muscaria). Visiting insects appeared to imbibe small amounts of hexose-rich nectar. Nectar sugar content was highest on the third day after flower opening. Floral fragrance analyses revealed 42 compounds, of which monoterpenes and benzenoids predominated. A bioassay using floral parts revealed that only floral tissue from the labellum chamber and labellum tip was attractive to flower visitors. Conclusions The data suggest that observed differences in reproductive success in the three populations cannot be explained by absolute abundance of pollinators alone. Due to behavioural patterns such as disturbance of effective pollinators on flowers by male Centris varia bees defending territory, pollinia transfer efficiencies of particular pollinator species also vary between study sites and result in differing reproductive success. PMID:19666899
NASA Astrophysics Data System (ADS)
Rosa, R.; Nunes, M. L.
2003-01-01
The objectives of the present study were to characterize the benthic life strategies of Aristeus antennatus (Crustacea: Penaeidea), Parapenaeus longirostris (Crustacea: Penaeidea) and Nephrops norvegicus (Crustacea: Astacidea) on the basis of biochemical composition (proximate chemical composition, total lipids, glycogen and cholesterol contents), and its response to biological and environmental factors (sex, maturation, reproduction, food availability and depth) into account. The specimens were collected at depths between 200 and 600 m off the Portuguese south coast (Algarve). The nektobenthic species ( A. antennatus and P. longirostris) showed higher protein, lipid, cholesterol and glycogen contents, and lower moisture content in the muscle than the benthic-endobenthic species ( N. norvegicus). Consequently, the energy content of the nektobenthic species was also higher. Principal component analyses were used to assess the relationship between the different biochemical contents and to relate them to the biotic and abiotic factors. Depth seems to have the most important role in the observed trends of the biochemical composition. The increase of the ovarian lipid levels occurs as a result of the maturation process. The highest values were obtained in mature N. norvegicus females. The differences can be due to maternal investment (lipid metabolism of the female is geared to the provision of egg lipid), since N. norvegicus produce large lecithotrophic eggs. The biochemical differences observed in the three species did not seem to be due to distinct trophic strategies, but instead were a consequence of depth, which may have a significant interspecific effect on food intake. It was also evident that reproductive cycle has profound effects upon the biochemistry of the three species. Gonadal maturation has large associated energy costs due to the increase in biosynthetic work. Moreover, the biochemical composition would be influenced by or synchronized with seasonal feeding activity or food availability.
Effects of water level on three wetlands soil seed banks on the Tibetan Plateau.
Ma, Miaojun; Ma, Zhen; Du, Guozhen
2014-01-01
Although the effect of water level on germination in soil seed banks has been documented in many ecosystems, the mechanism is not fully understood, and to date no empirical studies on this subject exist. Further, no work has been done on the effect of water level on seed banks of drying and saline-alkaline wetlands in alpine areas on the Tibetan Plateau. We examined the effects of water level (0 cm, 5 cm and 10 cm) on seed germination and seedling establishment from soil seed banks at 0-5 cm and 5-10 cm depths in typical, drying, and saline-alkaline wetlands. We also explore the potential role of soil seed bank in restoration of drying and saline-alkaline wetlands. Species richness decreased with increase in water level, but there almost no change in seed density. A huge difference exists in species composition of the seed bank among different water levels in all three wetlands, especially between 0 cm and 5 cm and 0 cm and 10 cm. Similarity of species composition between seed bank and plant community was higher in 0 cm water level in drying wetland than in the other two wetlands. The similarity was much higher in 0 cm water level than in 5 cm and 10 cm water levels in all three wetlands. Species composition of the alpine wetland plant community changed significantly after drying and salinization, however, species composition of the seed bank was unchanged regardless of the environment change. Water level greatly affects seed bank recruitment and plant community establishment. Further, different water levels in restored habitats are likely to determine its species composition of the plant community. The seed bank is important in restoration of degraded wetlands. Successful restoration of drying and salinization wetlands could depend on the seed bank.
Drivers of metacommunity structure diverge for common and rare Amazonian tree species.
Bispo, Polyanna da Conceição; Balzter, Heiko; Malhi, Yadvinder; Slik, J W Ferry; Dos Santos, João Roberto; Rennó, Camilo Daleles; Espírito-Santo, Fernando D; Aragão, Luiz E O C; Ximenes, Arimatéa C; Bispo, Pitágoras da Conceição
2017-01-01
We analysed the flora of 46 forest inventory plots (25 m x 100 m) in old growth forests from the Amazonian region to identify the role of environmental (topographic) and spatial variables (obtained using PCNM, Principal Coordinates of Neighbourhood Matrix analysis) for common and rare species. For the analyses, we used multiple partial regression to partition the specific effects of the topographic and spatial variables on the univariate data (standardised richness, total abundance and total biomass) and partial RDA (Redundancy Analysis) to partition these effects on composition (multivariate data) based on incidence, abundance and biomass. The different attributes (richness, abundance, biomass and composition based on incidence, abundance and biomass) used to study this metacommunity responded differently to environmental and spatial processes. Considering standardised richness, total abundance (univariate) and composition based on biomass, the results for common species differed from those obtained for all species. On the other hand, for total biomass (univariate) and for compositions based on incidence and abundance, there was a correspondence between the data obtained for the total community and for common species. Our data also show that in general, environmental and/or spatial components are important to explain the variability in tree communities for total and common species. However, with the exception of the total abundance, the environmental and spatial variables measured were insufficient to explain the attributes of the communities of rare species. These results indicate that predicting the attributes of rare tree species communities based on environmental and spatial variables is a substantial challenge. As the spatial component was relevant for several community attributes, our results demonstrate the importance of using a metacommunities approach when attempting to understand the main ecological processes underlying the diversity of tropical forest communities.
Geographical ecology of dry forest tree communities in the West Indies
Janet Franklin; Riley Andrade; Mark L. Daniels; Patrick Fairbairn; Maria C. Fandino; Thomas W. Gillespie; Grizelle González; Otto Gonzalez; Daniel Imbert; Valerie Kapos; Daniel L. Kelly; Humfredo Marcano-Vega; Elvia J. Meléndez-Ackerman; Kurt P. McLaren; Morag A. McDonald; Julie Ripplinger; Julissa Rojas-Sandoval; Michael S. Ross; Jorge Ruiz; David W. Steadman; Edmund V. J. Tanner; Inge Terrill; Michel Vennetier
2018-01-01
Aim: Seasonally dry tropical forest (SDTF) of the Caribbean Islands (primarily West Indies) is floristically distinct from Neotropical SDTF in Central and South America. We evaluate whether tree species composition was associated with climatic gradients or geographical distance. Turnover (dissimilarity) in species composition of different islands or among more distant...
Clay Jackson; Dan Pitillo; Lee Allen; Thomas R Wnetworth; Bronson P Bullock; David L. Loftis
2009-01-01
Because of ongoing debate over the long term impacts of logging, we conducteda study to assess if second growth (70 6 10 years) rich coves differ from old growth rich coves(. 125 years) in species diversity or composition. We sampled twenty-six 0.1 ha...
Butterfly community shifts over two centuries.
Habel, Jan Christian; Segerer, Andreas; Ulrich, Werner; Torchyk, Olena; Weisser, Wolfgang W; Schmitt, Thomas
2016-08-01
Environmental changes strongly impact the distribution of species and subsequently the composition of species assemblages. Although most community ecology studies represent temporal snap shots, long-term observations are rather rare. However, only such time series allow the identification of species composition shifts over several decades or even centuries. We analyzed changes in the species composition of a southeastern German butterfly and burnet moth community over nearly 2 centuries (1840-2013). We classified all species observed over this period according to their ecological tolerance, thereby assessing their degree of habitat specialisation. This classification was based on traits of the butterfly and burnet moth species and on their larval host plants. We collected data on temperature and precipitation for our study area over the same period. The number of species declined substantially from 1840 (117 species) to 2013 (71 species). The proportion of habitat specialists decreased, and most of these are currently endangered. In contrast, the proportion of habitat generalists increased. Species with restricted dispersal behavior and species in need of areas poor in soil nutrients had severe losses. Furthermore, our data indicated a decrease in species composition similarity between different decades over time. These data on species composition changes and the general trends of modifications may reflect effects from climate change and atmospheric nitrogen loads, as indicated by the ecological characteristics of host plant species and local changes in habitat configuration with increasing fragmentation. Our observation of major declines over time of currently threatened and protected species shows the importance of efficient conservation strategies. © 2015 Society for Conservation Biology.
Mao, Bing; Mao, Rong; Zeng, De-Hui
2017-01-01
Decomposition of litter mixtures generally cannot be predicted from the component species incubated in isolation. Therefore, such non-additive effects of litter mixing on soil C and N dynamics remain poorly understood in terrestrial ecosystems. In this study, litters of Mongolian pine and three dominant understory species and soil were collected from a Mongolian pine plantation in Northeast China. In order to examine the effects of mixed-species litter on soil microbial biomass N, soil net N mineralization and soil respiration, four single litter species and their mixtures consisting of all possible 2-, 3- and 4-species combinations were added to soils, respectively. In most instances, species mixing produced synergistic non-additive effects on soil microbial biomass N and soil respiration, but antagonistic non-additive effects on net N mineralization. Species composition rather than species richness explained the non-additive effects of species mixing on soil microbial biomass N and net N mineralization, due to the interspecific differences in litter chemical composition. Both litter species composition and richness explained non-additive soil respiration responses to mixed-species litter, while litter chemical diversity and chemical composition did not. Our study indicated that litter mixtures promoted soil microbial biomass N and soil respiration, and inhibited net N mineralization. Soil N related processes rather than soil respiration were partly explained by litter chemical composition and chemical diversity, highlighting the importance of functional diversity of litter on soil N cycling. PMID:28686660
Mao, Bing; Mao, Rong; Zeng, De-Hui
2017-01-01
Decomposition of litter mixtures generally cannot be predicted from the component species incubated in isolation. Therefore, such non-additive effects of litter mixing on soil C and N dynamics remain poorly understood in terrestrial ecosystems. In this study, litters of Mongolian pine and three dominant understory species and soil were collected from a Mongolian pine plantation in Northeast China. In order to examine the effects of mixed-species litter on soil microbial biomass N, soil net N mineralization and soil respiration, four single litter species and their mixtures consisting of all possible 2-, 3- and 4-species combinations were added to soils, respectively. In most instances, species mixing produced synergistic non-additive effects on soil microbial biomass N and soil respiration, but antagonistic non-additive effects on net N mineralization. Species composition rather than species richness explained the non-additive effects of species mixing on soil microbial biomass N and net N mineralization, due to the interspecific differences in litter chemical composition. Both litter species composition and richness explained non-additive soil respiration responses to mixed-species litter, while litter chemical diversity and chemical composition did not. Our study indicated that litter mixtures promoted soil microbial biomass N and soil respiration, and inhibited net N mineralization. Soil N related processes rather than soil respiration were partly explained by litter chemical composition and chemical diversity, highlighting the importance of functional diversity of litter on soil N cycling.
NASA Astrophysics Data System (ADS)
Mosepele, K.; Mosepele, B.; Bokhutlo, T.; Amutenya, K.
The species assemblage and community structure of four lagoons was assessed through time series data collected between 2001 and 2005 in the Okavango Delta. The main aim of this study was to evaluate the importance of lagoons as fish habitats in the Delta. Therefore, this study assessed the importance of these habitats through determining fish species diversity, composition, relative abundance, and community structure between the lagoons. Forty six species belonging to 11 families and five orders were collected over the study period. Main results showed that Cichlidae was the most important family and had the highest species richness in the lagoons. Significant differences ( p < 0.05) were observed in species richness, faunal composition, and diversity among some of the lagoons. Moreover, there were also variations in species composition, and also significant differences in mean length and weight of some selected fish species in the four lagoons. This study showed that lagoons are important repositories of food fish to local communities. Moreover, a management of the fish stocks based on restricting fishing in some lagoons as protected areas is not feasible because of these significant differences in species assemblages between lagoons. Furthermore, lagoons are subject to multiple where most of the lodges are constructed, which makes subsequently makes them vulnerable to pollution. Therefore, the integrity of lagoon habitats needs to be maintained so that their ecosystem functioning (i.e. fish repositories) is maintained.
BOREAS TGB-3 Plant Species Composition Data over the NSA Fen
NASA Technical Reports Server (NTRS)
Bubier, Jill L.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)
2000-01-01
The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-3) team collected several data sets that contributed to understanding the measured trace gas fluxes over sites in the Northern Study Area (NSA). This data set contains information about the composition of plant species that were within the collars used to measure Net Ecosystem Exchange of CO2 (NEE). The species composition was identified to understand the differences in NEE among the various plant communities in the NSA fen. The data were collected in July of 1994 and 1996. The data are contained in comma-delimited, ASCII files.
Feng, Li; Li, Xin-Rong; Guo, Qun; Zhang, Jing-Guang; Zhang, Zhi-Shan
2011-05-01
Aimed to examine the effects of highway on the vegetation species composition in arid desert area, forty-eight transects perpendicular to the provincial highway 201 from Shapotou to Jing-tai in the southeastern margin of Tengger Desert were installed, with the vegetation species distribution along a distance gradient from the road edge investigated. The results showed that with increasing distance from the road edge, the species number, coverage, biomass, and alpha-diversity of herbaceous plants declined, but had no significant differences with the control beyond 5 m. Within 0-6 m to the road edge, the herbaceous plant height was greater than that of the control, but their density had less change. Within 0-2 m to the road edge, the species turnover rate of herbaceous plants was lower; at 2-5m, this rate was the highest; while beyond 10 m, the species composition of herbaceous plants was similar to that of the control. The herbaceous plant community at the road edge was dominated by gramineous plants, with the disturbance-tolerant species Pennisetum centrasiaticum, Chloris virgata, and Agropyron cristatum accounting for 68.6% of the total. C. virgata beyond 1 m to the road edge had a rapid decrease in its individual number and presence frequency, P. centrasiaticum and A. cristatum beyond 2 m also showed a similar trend, while the composite plants Artemisia capillaris and A. frigida beyond 2 m from the road edge had a rapid increase in its individual number, accounting for 70% of the herbaceous plants. At the road edge, the coverage and density of shrubs were significantly lower than those of the control, but the species composition had no significant difference.
Treydte, Anna Christina; Baumgartner, Sabine; Heitkönig, Ignas M. A.; Grant, Catharina C.; Getz, Wayne M.
2013-01-01
Herbivores generally have strong structural and compositional effects on vegetation, which in turn determines the plant forage species available. We investigated how selected large mammalian herbivore assemblages use and alter herbaceous vegetation structure and composition in a southern African savanna in and adjacent to the Kruger National Park, South Africa. We compared mixed and mono-specific herbivore assemblages of varying density and investigated similarities in vegetation patterns under wildlife and livestock herbivory. Grass species composition differed significantly, standing biomass and grass height were almost twice as high at sites of low density compared to high density mixed wildlife species. Selection of various grass species by herbivores was positively correlated with greenness, nutrient content and palatability. Nutrient-rich Urochloa mosambicensis Hack. and Panicum maximum Jacq. grasses were preferred forage species, which significantly differed in abundance across sites of varying grazing pressure. Green grasses growing beneath trees were grazed more frequently than dry grasses growing in the open. Our results indicate that grazing herbivores appear to base their grass species preferences on nutrient content cues and that a characteristic grass species abundance and herb layer structure can be matched with mammalian herbivory types. PMID:24358228
Zhou, Yonghong; Peisker, Helga
2016-01-01
Cardiolipin (CL), an anionic phospholipid of the inner mitochondrial membrane, provides essential functions for stabilizing respiratory complexes and is involved in mitochondrial morphogenesis and programmed cell death in animals. The role of CL and its metabolism in plants are less well understood. The measurement of CL in plants, including its molecular species composition, is hampered by the fact that CL is of extremely low abundance, and that plants contain large amounts of interfering compounds including galactolipids, neutral lipids, and pigments. We used solid phase extraction by anion exchange chromatography to purify CL from crude plant lipid extracts. LC/MS was used to determine the content and molecular species composition of CL. Thus, up to 23 different molecular species of CL were detected in different plant species, including Arabidopsis, mung bean, spinach, barley, and tobacco. Similar to animals, plant CL is dominated by highly unsaturated species, mostly containing linoleic and linolenic acid. During phosphate deprivation or exposure to an extended dark period, the amount of CL decreased in Arabidopsis, accompanied with an increased degree in unsaturation. The mechanism of CL remodeling during stress, and the function of highly unsaturated CL molecular species, remains to be defined. PMID:27179363
Zhang, Heng; Yang, Sheng-Long; Meng, Hai-Xing
2012-06-01
Based on four surveys of eggs and larvae in the Yangtze estuary in 2005 (April and November) and 2006 (April and September), combined with the historical data of the wetland in 1990 (September) and 1991 (March), we analyzed seasonal changes in fish species composition and quantity of ichthyoplankton. Thirty-six species of egg and larvae were collected and marine fish species were the highest represented ecological guild. Average fish species and average abundance in spring were lower than in autumn for every survey. The total number of eggs in brackish water was higher than in fresh water, but the total number of larvae and juveniles in brackish water was lower. The abundance of eggs and larvae during from 2005 to 2006 in both spring and autumn was higher compared to those from 1990 to 1991. Obvious differences in species composition in September between 1990 and 2006 were found, especially for Erythroculter ilishaeformis and Neosalanx taihuensis. Fish species composition and quantity within the ichthyoplankton community has obviously changed in the Yangtze estuary over the last 20 years.
Le Loc'h, F; Durand, J-D; Diop, K; Panfili, J
2015-04-01
Potential trophic competition between two sympatric mullet species, Mugil cephalus and Mugil curema, was explored in the hypersaline estuary of the Saloum Delta (Senegal) using δ(13) C and δ(15) N composition of muscle tissues. Between species, δ(15) N compositions were similar, suggesting a similar trophic level, while the difference in δ(13) C compositions indicated that these species did not feed from exactly the same basal production sources or at least not in the same proportions. This result provides the first evidence of isotopic niche segregation between two limno-benthophageous species belonging to the geographically widespread, and often locally abundant, Mugilidae family. © 2015 The Fisheries Society of the British Isles.
Rocha-Pessôa, T C; Nunes-Freitas, A F; Cogliatti-Carvalho, L; Rocha, C F D
2008-05-01
We studied some ecological parameters such as richness, abundance, density, biomass and variation in species composition in four vegetation zones and in a zone with anthropic disturbance in the Massambaba Restinga in Arraial do Cabo, Rio de Janeiro State. We sampled 100 plots of 100 m(2) (10 x 10 m) recording the bromeliad species and their abundance. We found a total of seven bromeliad species, with Vriesea neoglutinosa (5647 ramets) and Tillandsia stricta (1277 ramets) being the most abundant. The vegetation zone called Clusia shrubs had the highest richness (S = 5) and density (6360 ramets.ha(-1)) of bromeliads. The differences found in abundance and variation in species composition among vegetation zones seems to be related to the vegetation structure of each zone.
Panayotova-Pencheva, Mariana Stancheva
2011-10-01
Lungs of 52 ruminants from different regions of Bulgaria, 16 from goats (Capra aegagrus f. domestica L.), 15 from sheep (Ovis ammon f. domestica L.), 11 from mouflons (Ovis musimon L.), and 10 from chamois (Rupicapra rupicapra L.), were investigated. The aim of the study was to determine the species composition of small lungworms in these hosts. The obtained results are summarized with those of previous studies, and a picture of the present status of the species composition of protostrongylids in ruminants from Bulgaria is forwarded. Morphometric data about the species Muellerius capillaris, Cystocaulus ocreatus, Neostrongylus linearis, Protostrongylus brevispiculum, and Protostrongylus rufescens are presented. The data on the morphology of these five species are supplied for the first time both for Bulgaria and the south-east part of the European continent.
How Should Beta-Diversity Inform Biodiversity Conservation?
Socolar, Jacob B; Gilroy, James J; Kunin, William E; Edwards, David P
2016-01-01
To design robust protected area networks, accurately measure species losses, or understand the processes that maintain species diversity, conservation science must consider the organization of biodiversity in space. Central is beta-diversity--the component of regional diversity that accumulates from compositional differences between local species assemblages. We review how beta-diversity is impacted by human activities, including farming, selective logging, urbanization, species invasions, overhunting, and climate change. Beta-diversity increases, decreases, or remains unchanged by these impacts, depending on the balance of processes that cause species composition to become more different (biotic heterogenization) or more similar (biotic homogenization) between sites. While maintaining high beta-diversity is not always a desirable conservation outcome, understanding beta-diversity is essential for protecting regional diversity and can directly assist conservation planning. Copyright © 2015 Elsevier Ltd. All rights reserved.
Distinct antimicrobial peptide expression determines host species-specific bacterial associations
Franzenburg, Sören; Walter, Jonas; Künzel, Sven; Wang, Jun; Baines, John F.; Bosch, Thomas C. G.; Fraune, Sebastian
2013-01-01
Animals are colonized by coevolved bacterial communities, which contribute to the host’s health. This commensal microbiota is often highly specific to its host-species, inferring strong selective pressures on the associated microbes. Several factors, including diet, mucus composition, and the immune system have been proposed as putative determinants of host-associated bacterial communities. Here we report that species-specific antimicrobial peptides account for different bacterial communities associated with closely related species of the cnidarian Hydra. Gene family extensions for potent antimicrobial peptides, the arminins, were detected in four Hydra species, with each species possessing a unique composition and expression profile of arminins. For functional analysis, we inoculated arminin-deficient and control polyps with bacterial consortia characteristic for different Hydra species and compared their selective preferences by 454 pyrosequencing of the bacterial microbiota. In contrast to control polyps, arminin-deficient polyps displayed decreased potential to select for bacterial communities resembling their native microbiota. This finding indicates that species-specific antimicrobial peptides shape species-specific bacterial associations. PMID:24003149
Exotic species enhance response diversity to land-use change but modify functional composition.
Stavert, Jamie R; Pattemore, David E; Gaskett, Anne C; Beggs, Jacqueline R; Bartomeus, Ignasi
2017-08-16
Two main mechanisms may buffer ecosystem functions despite biodiversity loss. First, multiple species could share similar ecological roles, thus providing functional redundancy. Second, species may respond differently to environmental change (response diversity). However, ecosystem function would be best protected when functionally redundant species also show response diversity. This linkage has not been studied directly, so we investigated whether native and exotic pollinator species with similar traits (functional redundancy) differed in abundance (response diversity) across an agricultural intensification gradient. Exotic pollinator species contributed most positive responses, which partially stabilized overall abundance of the pollinator community. However, although some functionally redundant species exhibited response diversity, this was not consistent across functional groups and aggregate abundances within each functional group were rarely stabilized. This shows functional redundancy and response diversity do not always operate in concert. Hence, despite exotic species becoming increasingly dominant in human-modified systems, they cannot replace the functional composition of native species. © 2017 The Author(s).
GonzÁlez, JosÉ A
2018-04-23
The complete list of Canarian marine decapods (last update by González Quiles 2003, popular book) currently comprises 374 species/subspecies, grouped in 198 genera and 82 families; whereas the Cape Verdean marine decapods (now fully listed for the first time) are represented by 343 species/subspecies with 201 genera and 80 families. Due to changing environmental conditions, in the last decades many subtropical/tropical taxa have reached the coasts of the Canary Islands. Comparing the carcinofaunal composition and their biogeographic components between the Canary and Cape Verde archipelagos would aid in: validating the appropriateness in separating both archipelagos into different ecoregions (Spalding et al. 2007), and understanding faunal movements between areas of benthic habitat. The consistency of both ecoregions is here compared and validated by assembling their decapod crustacean checklists, analysing their taxa composition, gathering their bathymetric data, and comparing their biogeographic patterns. Four main evidences (i.e. different taxa; divergent taxa composition; different composition of biogeographic patterns; different endemicity rates) support that separation, especially in coastal benthic decapods; and these parametres combined would be used as a valuable tool at comparing biotas from oceanic archipelagos. To understand/predict south-north faunal movements in a scenario of regional tropicalization, special attention is paid to species having at the Canaries their southernmost occurrence, and also to tropical African warm-affinity species.
NASA Astrophysics Data System (ADS)
Plenty, Shaun J.; Tweedley, James R.; Bird, David J.; Newton, Lyn; Warwick, Richard M.; Henderson, Peter A.; Hall, Norm G.; Potter, Ian C.
2018-07-01
A 26-year time series of monthly samples from the water intake of a power station has been used to analyse the trends exhibited by number of species, total abundance, and composition of the mysids and caridean decapods in the inner Bristol Channel. During this period, annual water temperatures, salinities and the North Atlantic Oscillation Index (NAOI) in winter did not change significantly, whereas annual NAOI declined. Annual mean monthly values for the number of species and total abundance both increased over the 26 years, but these changes were not correlated with any of the measured physico-chemical/climatic factors. As previous studies demonstrated that, during a similar period, metal concentrations in the Severn Estuary and Bristol Channel (into which that estuary discharges) declined and water quality increased, it is proposed that the above changes are due to an improved environment. The fauna was dominated by the mysids Mesopodopsis slabberi and Schistomysis spiritus, which collectively contributed 94% to total abundance. Both species, which were represented by juveniles, males, non-brooding females and brooding females, underwent statistically-indistinguishable patterns of change in abundance over the 26 years. When analysis was based on the abundances of the various species, the overall species composition differed significantly among years and changed serially with year. When abundances were converted to percentage compositions, this pattern of seriation broke down, demonstrating that changes in abundance and not percentage composition were responsible for the seriation. As with the number and abundance of species, changes in composition over the 26 years were not related to any of the physico-chemical/climatic factors tested. Species composition changed monthly in a pronounced cyclical manner throughout the year, due to statistically different time-staggered changes in the abundance of each species. This cyclicity was related most strongly to salinity.
Chen, Yun; Svenning, Jens-Christian; Wang, Xueying; Cao, Ruofan; Yuan, Zhiliang; Ye, Yongzhong
2018-01-01
The effects of environmental and dispersal processes on macrofungi community assembly remain unclear. Further, it is not well understood if community assembly differs for different functional guilds of macrofungi, e.g., soil and rotten-wood macrofungi. In this study, using 2433 macrofungi sporocarps belonging to 217 species located within a forest dynamics plot in temperate mountain forest (China), we examined the explanatory power of topography, spatial eigenvectors (representing unknown spatial processes, e.g., dispersal), plant community, and light availability for local spatial variation in the macrofungi community through variance partitioning and partial least squares path modeling. We found spatial eigenvectors and light as the most important factors for explaining species richness and composition of macrofungi. Light was negatively correlated with species richness of macrofungi. Furthermore, species richness and composition of soil macrofungi were best explained by light, and species richness and composition of rotten-wood macrofungi were best explained by spatial eigenvectors. Woody plant community structure was not an important factor for species richness and composition of macrofungi. Our findings suggest that spatial processes, perhaps dispersal limitation, and light availability were the most important factors affecting macrofungi community in temperate deciduous broad-leaved forest. Major differences in influencing factors between soil and rotten-wood macrofungi were observed, with light as the major driver for soil macrofungi and unknown spatial processes as the major driver for rotten-wood macrofungi. These findings shed new light to the processes shaping community assembly in macrofungi in temperate deciduous broad-leaved forest and point to the potential importance of both intrinsic dynamics, such as dispersal, and external forcing, such as forest dynamics, via its effect on light availability. PMID:29410660
Agricultural matrices affect ground ant assemblage composition inside forest fragments
Dos Santos, Iracenir Andrade; Ramos, Flavio Nunes; Majer, Jonathan David; Vilela, Evaldo Ferreira
2018-01-01
The establishment of agricultural matrices generally involves deforestation, which leads to fragmentation of the remaining forest. This fragmentation can affect forest dynamics both positively and negatively. Since most animal species are affected, certain groups can be used to measure the impact of such fragmentation. This study aimed to measure the impacts of agricultural crops (matrices) on ant communities of adjacent lower montane Atlantic rainforest fragments. We sampled nine forest fragments at locations surrounded by different agricultural matrices, namely: coffee (3 replicates); sugarcane (3); and pasture (3). At each site we installed pitfall traps along a 500 m transect from the interior of the matrix to the interior of the fragment (20 pitfall traps ~25 m apart). Each transect was partitioned into four categories: interior of the matrix; edge of the matrix; edge of the fragment; and interior of the fragment. For each sample site, we measured ant species richness and ant community composition within each transect category. Ant richness and composition differed between fragments and matrices. Each sample location had a specific composition of ants, probably because of the influence of the nature and management of the agricultural matrices. Species composition in the coffee matrix had the highest similarity to its corresponding fragment. The variability in species composition within forest fragments surrounded by pasture was greatest when compared with forest fragments surrounded by sugarcane or, to a lesser extent, coffee. Functional guild composition differed between locations, but the most representative guild was ‘generalist’ both in the agricultural matrices and forest fragments. Our results are important for understanding how agricultural matrices act on ant communities, and also, how these isolated forest fragments could act as an island of biodiversity in an ‘ocean of crops’. PMID:29791493
Agricultural matrices affect ground ant assemblage composition inside forest fragments.
Assis, Diego Santana; Dos Santos, Iracenir Andrade; Ramos, Flavio Nunes; Barrios-Rojas, Katty Elena; Majer, Jonathan David; Vilela, Evaldo Ferreira
2018-01-01
The establishment of agricultural matrices generally involves deforestation, which leads to fragmentation of the remaining forest. This fragmentation can affect forest dynamics both positively and negatively. Since most animal species are affected, certain groups can be used to measure the impact of such fragmentation. This study aimed to measure the impacts of agricultural crops (matrices) on ant communities of adjacent lower montane Atlantic rainforest fragments. We sampled nine forest fragments at locations surrounded by different agricultural matrices, namely: coffee (3 replicates); sugarcane (3); and pasture (3). At each site we installed pitfall traps along a 500 m transect from the interior of the matrix to the interior of the fragment (20 pitfall traps ~25 m apart). Each transect was partitioned into four categories: interior of the matrix; edge of the matrix; edge of the fragment; and interior of the fragment. For each sample site, we measured ant species richness and ant community composition within each transect category. Ant richness and composition differed between fragments and matrices. Each sample location had a specific composition of ants, probably because of the influence of the nature and management of the agricultural matrices. Species composition in the coffee matrix had the highest similarity to its corresponding fragment. The variability in species composition within forest fragments surrounded by pasture was greatest when compared with forest fragments surrounded by sugarcane or, to a lesser extent, coffee. Functional guild composition differed between locations, but the most representative guild was 'generalist' both in the agricultural matrices and forest fragments. Our results are important for understanding how agricultural matrices act on ant communities, and also, how these isolated forest fragments could act as an island of biodiversity in an 'ocean of crops'.
NASA Astrophysics Data System (ADS)
Horsák, Michal; Juřičková, Lucie; Horsáková, Veronika; Pokorná, Adéla; Pokorný, Petr; Šizling, Arnošt L.; Chytrý, Milan
2018-04-01
Diversity patterns of forest snail assemblages have been studied mainly in Europe. Siberian snail faunas have different evolutionary history and colonization dynamics than European faunas, but studies of forest snail diversity are almost missing from Siberia. Therefore, we collected snails at 173 forest sites in the Russian Altai and adjacent areas, encompassing broad variation in climate and forest types. We found 51 species, with a maximum of 15 and an average of seven species per site. The main gradient in species composition was related to soil pH, a variable that also positively correlates with snail abundances. The second gradient was associated with climate characteristics of winter. We observed significant differences in both species richness and composition among six forest types defined based on vegetation classification. Hemiboreal continental forests were the poorest of these types but hosted several species characteristic of European full-glacial stages of the Late Pleistocene. A high snow cover in Temperate coniferous and mixed forests, protecting the soil from freezing, allowed the frost-sensitive large-bodied (>10 mm) species to inhabit this forest type. In contrast to most of the European snail assemblages studied so far we found that the factors responsible for the variation in species richness differed from those driving species composition. This may be attributed to the sharp climatic gradient and the presence of the cold-adapted species typical of the Pleistocene cold stages. We suggest that southern Siberian forests hosting these species can serve as modern analogues of full-glacial forests in periglacial Central and Eastern Europe.
Bagatini, Inessa Lacativa; Eiler, Alexander; Bertilsson, Stefan; Klaveness, Dag; Tessarolli, Letícia Piton; Vieira, Armando Augusto Henriques
2014-01-01
Many freshwater phytoplankton species have the potential to form transient nuisance blooms that affect water quality and other aquatic biota. Heterotrophic bacteria can influence such blooms via nutrient regeneration but also via antagonism and other biotic interactions. We studied the composition of bacterial communities associated with three bloom-forming freshwater phytoplankton species, the diatom Aulacoseira granulata and the cyanobacteria Microcystis aeruginosa and Cylindrospermopsis raciborskii. Experimental cultures incubated with and without lake bacteria were sampled in three different growth phases and bacterial community composition was assessed by 454-Pyrosequencing of 16S rRNA gene amplicons. Betaproteobacteria were dominant in all cultures inoculated with lake bacteria, but decreased during the experiment. In contrast, Alphaproteobacteria, which made up the second most abundant class of bacteria, increased overall during the course of the experiment. Other bacterial classes responded in contrasting ways to the experimental incubations causing significantly different bacterial communities to develop in response to host phytoplankton species, growth phase and between attached and free-living fractions. Differences in bacterial community composition between cyanobacteria and diatom cultures were greater than between the two cyanobacteria. Despite the significance, major differences between phytoplankton cultures were in the proportion of the OTUs rather than in the absence or presence of specific taxa. Different phytoplankton species favoring different bacterial communities may have important consequences for the fate of organic matter in systems where these bloom forming species occur. The dynamics and development of transient blooms may also be affected as bacterial communities seem to influence phytoplankton species growth in contrasting ways. PMID:24465807
Ballantyne, Mark; Pickering, Catherine Marina
2015-08-15
Hiking trails, which are among the most common forms of infrastructure created for nature-based tourism, can alter key ecological processes. Trails can damage plants that facilitate the establishment and growth of other species leading to changes in community and functional composition. This can be a particular concern in harsh alpine ecosystems where plant communities are often dominated by one or two keystone species that provide shelter to a suite of beneficiary species. We analysed how a hiking trail affects interspecific facilitation by a dominant trampling-sensitive nurse shrub in the highest National Park in Australia. First we assessed the effects of the trail on the abundance, size and density of the nurse shrub at different distances from the trail. We then compared species richness and composition between areas in, and out, of the nurse shrub's canopy at different distances from the trail. To better understand why some species may benefit from facilitation and any effects of the trail on the quality of facilitation we compared functional composition between quadrats using community trait weighted means calculated by combining plant composition with species functional traits (canopy height, leaf area, % dry weight of leaves and specific leaf area). The abundance, size and density of nurse shrubs was lower on the trail edges than further away, particularly on the leeward edge, where there was more bare ground and less shrub cover. There were differences in species richness, cover, composition and functional composition in and outside the nurse shrub canopy. The shrubs appeared to facilitate species with more competitive, but less stress tolerant traits (e.g. taller plants with leaves that were larger, had high specific leaf area and low dry matter content). However, despite reductions in nurse shrubs near the trail, where they do exist, they appear to provide the same 'quality' of facilitation as nurse shrubs further away. However, longer-term effects may be occurring as the loss of nurse shrubs alters the wind profile of the ridgeline and therefore succession. The use of a steel mesh walkway along the trail may facilitate the regeneration of nurse shrubs and other plants that require protection from wind. Our results highlight the importance of diversifying recreation ecology research to assess how trails affect important ecological processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The purpose of this study was to determine if Eimeria oocyst concentrations and species composition in commercial broiler house litter changed during different cycles of anticoccidial drug (ACD) or live Eimeria oocyst vaccine (VAC) control programs, and if there was a correlation between Eimeria ooc...
Mujica, María Isabel; Saez, Nicolás; Cisternas, Mauricio; Manzano, Marlene; Armesto, Juan J; Pérez, Fernanda
2016-07-01
Mycorrhizal associations are influenced by abiotic and biotic factors, including climate, soil conditions and the identity of host plants. However, the effect of environmental conditions on orchid mycorrhizal associations remains poorly understood. The present study examined how differences in soil nutrient availability are related to the diversity and composition of mycorrhizal fungi associated with two terrestrial orchid species from central Chile. For 12 populations of Bipinnula fimbriata and B. plumosa, OTU (operational taxonomic unit) richness, phylogenetic diversity and community composition of mycorrhizal fungi in root samples were estimated using internal transcribed spacer (ITS) sequences. Then, these mycorrhizal diversity variables were related to soil nutrients and host species using generalized linear models and non-metric multidimensional scaling. Variation in OTU composition of mycorrhizal fungi among sites was explained mainly by orchid host species. Fungi in Tulasnellaceae and Ceratobasidiaceae were isolated from both orchid species, but the former were more frequent in B. fimbriata and the latter in B. plumosa. Soil nutrients and orchid host species had significant effects on OTU richness and phylogenetic diversity. Mycorrhizal diversity decreased in habitats with higher N in both species and increased with P availability only in B. fimbriata The results suggest that soil nutrient availability modulates orchid mycorrhizal associations and provide support for the hypothesis that specialization is favoured by higher soil nutrient availability. Inter-specific differences in mycorrhizal composition can arise due to a geographical pattern of distribution of orchid mycorrhizal fungi, host preferences for fungal partners or differential performance of mycorrhizal fungi under different nutrient availabilities. Further experiments are needed to evaluate these hypotheses. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mujica, María Isabel; Saez, Nicolás; Cisternas, Mauricio; Manzano, Marlene; Armesto, Juan J.; Pérez, Fernanda
2016-01-01
Background and Aims Mycorrhizal associations are influenced by abiotic and biotic factors, including climate, soil conditions and the identity of host plants. However, the effect of environmental conditions on orchid mycorrhizal associations remains poorly understood. The present study examined how differences in soil nutrient availability are related to the diversity and composition of mycorrhizal fungi associated with two terrestrial orchid species from central Chile. Methods For 12 populations of Bipinnula fimbriata and B. plumosa, OTU (operational taxonomic unit) richness, phylogenetic diversity and community composition of mycorrhizal fungi in root samples were estimated using internal transcribed spacer (ITS) sequences. Then, these mycorrhizal diversity variables were related to soil nutrients and host species using generalized linear models and non-metric multidimensional scaling. Key Results Variation in OTU composition of mycorrhizal fungi among sites was explained mainly by orchid host species. Fungi in Tulasnellaceae and Ceratobasidiaceae were isolated from both orchid species, but the former were more frequent in B. fimbriata and the latter in B. plumosa. Soil nutrients and orchid host species had significant effects on OTU richness and phylogenetic diversity. Mycorrhizal diversity decreased in habitats with higher N in both species and increased with P availability only in B. fimbriata. Conclusions The results suggest that soil nutrient availability modulates orchid mycorrhizal associations and provide support for the hypothesis that specialization is favoured by higher soil nutrient availability. Inter-specific differences in mycorrhizal composition can arise due to a geographical pattern of distribution of orchid mycorrhizal fungi, host preferences for fungal partners or differential performance of mycorrhizal fungi under different nutrient availabilities. Further experiments are needed to evaluate these hypotheses. PMID:27311572
Changes in the fatty acid composition in bitter Lupinus species depend on the debittering process.
Curti, Carolina A; Curti, Ramiro N; Bonini, Norberto; Ramón, Adriana N
2018-10-15
The evaluation of changes in the fatty acid composition in Lupinus species after the debittering process is crucial to determine their nutritional implications. The aim of this study was to evaluate changes in the fatty acid composition in Lupinus albus and L. mutabilis after the debittering process. Lupinus species showed different fatty acid compositions which changed depending on the debittering process applied. The debittering process changed the monounsaturated and polyunsaturated fatty acids in L. albus, whereas in L. mutabilis it changed the w-6/w-3 ratio. However, the total saturated fatty acid content remained stable in both species after the debittering process. The changes in L. albus were associated with the fatty acid desaturation and a conversion into unsaturated fatty acids, whereas in L. mutabilis with the lipid peroxidation by decreasing the linoleic acid content. Nutritional implications of these changes in the fatty acid composition are discussed. Copyright © 2018. Published by Elsevier Ltd.
Alencar, Jeronimo; de Mello, Cecilia Ferreira; Gil-Santana, Hélcio R; Guimarães, Anthony Érico; de Almeida, Sergio Antonio Silva; Gleiser, Raquel M
2016-06-01
This study aimed to assess the vertical patterns of oviposition and temporal changes in the distribution of mosquito species in an area of the Atlantic Forest in Rio de Janeiro State, Brazil, and in particular, the behavior and oviposition of potential yellow fever virus vectors. Mosquito samples were collected from the Ecological Reserve Guapiaçu (REGUA, Brazil), which includes a somewhat disturbed forest, with a large diversity of plants and animals. In all, 5,458 specimens (ten species from seven genera) were collected. Haemagogus leucocelaenus was the most frequently captured species, representing 73% of the specimens collected. Species richness and diversity were the highest in the samples collected from the ground-level ovitraps and decreased with height. Species composition also differed significantly among heights. The largest species differences were detected between ovitraps set at the ground level and those set at 7 m and 9 m; Hg. leucocelaenus, Limatus durhamii, and Limatus paraensis contributed most to these differences. Sampling month and climatic variables had significant effects on species richness and diversity. Species diversity and richness decreased with height, suggesting that the conditions for mosquito breeding are more favorable closer to the ground. Species composition also showed vertical differences. © 2016 The Society for Vector Ecology.
Modeling the Effects of Fire Frequency and Severity on Forests in the Northwestern United States
Busing, Richard T.; Solomon, Allen M.
2006-01-01
This study used a model of forest dynamics (FORCLIM) and actual forest survey data to demonstrate the effects of various fire regimes on different forest types in the Pacific Northwest. We examined forests in eight ecoregions ranging from wet coastal forests dominated by Pseudotsuga menziesii and other tall conifers to dry interior forests dominated by Pinus ponderosa. Fire effects simulated as elevated mortality of trees based on their species and size did alter forest structure and species composition. Low frequency fires characteristic of wetter forests (return interval >200 yr) had minor effects on composition. When fires were severe, they tended to reduce total basal area with little regard to species differences. High frequency fires characteristic of drier forests (return interval <30 yr) had major effects on species composition and on total basal area. Typically, they caused substantial reductions in total basal area and shifts in dominance toward highly fire tolerant species. With the addition of fire, simulated basal areas averaged across ecoregions were reduced to levels approximating observed basal areas.
Major and c-series gangliosides in lenticular tissues: mammals to molluscs.
Saito, M; Sugiyama, K
2001-10-01
Gangliosides of eye lenses were examined in mammals (rat, rabbits, pig, cow), bird (chicken), reptile (terrapin), amphibian (bullfrog), bony fish (red sea bream, bluefin tuna, bonito, Pacific mackerel) and molluscs (common squid, Pacific octopus). Besides the fact that GM3 was the common ganglioside species, the composition of major gangliosides in mammalian eye lenses significantly differed from each other. While gangliotetraose gangliosides were abundant in rat eye lens, they did not constitute major components in porcine and bovine tissues. The c-series ganglioside GT3 was expressed in rat eye lenses but were practically absent in other mammalian tissues. The composition of major gangliosides in eye lenses of lower animals varied from species to species, whereas c-series gangliosides were consistently expressed, showing similar compositional profiles. Our results demonstrate the species-specific compositions of lenticular gangliosides. Evidence was also provided suggesting that eye lenses of common squid (Todarodes pacificus) and Pacific octopus (Octopus vulgaris) express gangliosides including gangliotetraose species and c-series gangliosides.
Riley, Kathryn N; Browne, Robert A
2011-01-01
We examined diversity, community composition, and wing-state of Carabidae as a function of forest age in Piedmont North Carolina. Carabidae were collected monthly from 396 pitfall traps (12×33 sites) from March 2009 through February 2010, representing 5 forest age classes approximately 0, 10, 50, 85, and 150 years old. A total of 2,568 individuals, representing 30 genera and 63 species, were collected. Carabid species diversity, as estimated by six diversity indices, was significantly different between the oldest and youngest forest age classes for four of the six indices. Most carabid species were habitat generalists, occurring in all or most of the forest age classes. Carabid species composition varied across forest age classes. Seventeen carabid species were identified as potential candidates for ecological indicators of forest age. Non-metric multidimensional scaling (NMDS) showed separation among forest age classes in terms of carabid beetle community composition. The proportion of individuals capable of flight decreased significantly with forest age.
Riley, Kathryn N.; Browne, Robert A.
2011-01-01
Abstract We examined diversity, community composition, and wing-state of Carabidae as a function of forest age in Piedmont North Carolina. Carabidae were collected monthly from 396 pitfall traps (12×33 sites) from March 2009 through February 2010, representing 5 forest age classes approximately 0, 10, 50, 85, and 150 years old. A total of 2,568 individuals, representing 30 genera and 63 species, were collected. Carabid species diversity, as estimated by six diversity indices, was significantly different between the oldest and youngest forest age classes for four of the six indices. Most carabid species were habitat generalists, occurring in all or most of the forest age classes. Carabid species composition varied across forest age classes. Seventeen carabid species were identified as potential candidates for ecological indicators of forest age. Non-metric multidimensional scaling (NMDS) showed separation among forest age classes in terms of carabid beetle community composition. The proportion of individuals capable of flight decreased significantly with forest age. PMID:22371677
Rosenfeld, Sebastián; Marambio, Johanna; Ojeda, Jaime; Juan Pablo Rodríguez; González-Wevar, Claudio; Gerard, Karin; Tamara Contador; Pizarro, Gemita; Mansilla, Andrés
2018-01-01
Interactions between algae and herbivores can be affected by various factors, such as seasonality and habitat structure. Among herbivores inhabiting marine systems, species of the order Patellogastropoda are considered key organisms in many rocky coasts of the world. Nacella species are one of the most dominant macro-herbivores on the rocky shores of the sub-Antarctic ecoregion of Magellan. However, the importance of its key role must be associated with its trophic ecology. The objective of this work was to evaluate spatial and temporal variabilities in the dietary composition of two intertidal Nacella species, considering grazing on macro- (macroalgae) and microscopic (periphyton) food. The composition of periphyton and the availability of macroalgae in the winter and summer seasons were examined at two localities of the Magellanic province, alongside the gut contents of N. magellanica and N. deaurata . The dietary composition differed between the two Nacella species, as well as between seasons and locations. The differences observed in the diet of the two species of Nacella may be mainly due to their respective distributions in the intertidal zone. Both species presented a generalist strategy of grazing, which is relationed to the seasonality of micro- and macroalgae availability and to the variability of the assemblages between the localities. This research was the first to perform a detailed study of the diet of intertidal Nacella species.
Rosenfeld, Sebastián; Marambio, Johanna; Ojeda, Jaime; Juan Pablo Rodríguez; González-Wevar, Claudio; Gerard, Karin; Tamara Contador; Pizarro, Gemita; Mansilla, Andrés
2018-01-01
Abstract Interactions between algae and herbivores can be affected by various factors, such as seasonality and habitat structure. Among herbivores inhabiting marine systems, species of the order Patellogastropoda are considered key organisms in many rocky coasts of the world. Nacella species are one of the most dominant macro-herbivores on the rocky shores of the sub-Antarctic ecoregion of Magellan. However, the importance of its key role must be associated with its trophic ecology. The objective of this work was to evaluate spatial and temporal variabilities in the dietary composition of two intertidal Nacella species, considering grazing on macro- (macroalgae) and microscopic (periphyton) food. The composition of periphyton and the availability of macroalgae in the winter and summer seasons were examined at two localities of the Magellanic province, alongside the gut contents of N. magellanica and N. deaurata. The dietary composition differed between the two Nacella species, as well as between seasons and locations. The differences observed in the diet of the two species of Nacella may be mainly due to their respective distributions in the intertidal zone. Both species presented a generalist strategy of grazing, which is relationed to the seasonality of micro- and macroalgae availability and to the variability of the assemblages between the localities. This research was the first to perform a detailed study of the diet of intertidal Nacella species. PMID:29670417
Different pitcher shapes and trapping syndromes explain resource partitioning in Nepenthes species.
Gaume, Laurence; Bazile, Vincent; Huguin, Maïlis; Bonhomme, Vincent
2016-03-01
Nepenthes pitcher plants display interspecific diversity in pitcher form and diets. This species-rich genus might be a conspicuous candidate for an adaptive radiation. However, the pitcher traits of different species have never been quantified in a comparative study, nor have their possible adaptations to the resources they exploit been tested. In this study, we compare the pitcher features and prey composition of the seven Nepenthes taxa that grow in the heath forest of Brunei (Borneo) and investigate whether these species display different trapping syndromes that target different prey. The Nepenthes species are shown to display species-specific combinations of pitcher shapes, volumes, rewards, attraction and capture traits, and different degrees of ontogenetic pitcher dimorphism. The prey spectra also differ among plant species and between ontogenetic morphotypes in their combinations of ants, flying insects, termites, and noninsect guilds. According to a discriminant analysis, the Nepenthes species collected at the same site differ significantly in prey abundance and composition at the level of order, showing niche segregation but with varying degrees of niche overlap according to pairwise species comparisons. Weakly carnivorous species are first characterized by an absence of attractive traits. Generalist carnivorous species have a sweet odor, a wide pitcher aperture, and an acidic pitcher fluid. Guild specializations are explained by different combinations of morpho-functional traits. Ant captures increase with extrafloral nectar, fluid acidity, and slippery waxy walls. Termite captures increase with narrowness of pitchers, presence of a rim of edible trichomes, and symbiotic association with ants. The abundance of flying insects is primarily correlated with pitcher conicity, pitcher aperture diameter, and odor presence. Such species-specific syndromes favoring resource partitioning may result from local character displacement by competition and/or previous adaptations to geographically distinct environments.
Zhang, Zhiming; Yang, Jiantao; Zhu, Yiwei
2017-01-01
Arbuscular mycorrhizal fungi (AMF) play an essential role in complex ecosystems. However, the species diversity and composition of AMF communities remain unclear in semi-arid mountains. Further, it is not well understood if the characteristics of AMF community assemblies differ for different habitat types, e.g., agricultural arable land, artificial forest land, natural grassland, and bush/wood land. Here, using the high-throughput technology by Illumina sequencing on the MiSeq platform, we explored the species diversity and composition of soil AMF communities among different habitat types in a semi-arid mountain (Taihang Mountain, Mid-western region of China). Then, we analyzed the effect of nutrient composition and soil texture on AMF community assembly. Our results showed that members of the Glomus genera were predominated in all soil types. The distance-based redundancy analysis indicated that the content of water, available phosphorus, and available potassium were the most crucial geochemical factors that significantly affected AMF communities (p < 0.05). The analysis of the soil texture confirmed that AMF diversity was negatively correlated with soil clay content. The comparison of AMF diversity among the various habitat types revealed that the artificial forest land had the lowest AMF diversity in comparison with other land types. Our findings suggest that there were differences in species diversity and composition of soil AMF communities among different habitat types. These findings shed new light on the characteristics of community structure and drivers of community assembly in AMF in semi-arid mountains, and point to the potential importance of different habitat types on AMF communities. PMID:29230378
Oliveira, G F; Rohde, C; Garcia, A C L; Montes, M A; Valente, V L S
2016-10-01
In this study, semi-arid environments were tested to see if they support insect diversity. This was evaluated through the structure of the composition of assemblies of drosophilids in three conservation units placed in three different ecoregions in the dryland forests, Caatinga. This is a unique biome in northeast Brazil, comprising approximately 10% of the country. Species richness was investigated over 2 years during a prolonged drought, considered the worst affliction the Caatinga ecosystem had experienced in the last 50 years. Alpha diversity indices and the ecological similarity between the samples were calculated to determine how the environments drive the composition of Drosophilidae in such semi-arid places. A total of 7352 specimens were sampled. They were classified into 20 species belonging to four genera: Drosophila, Rhinoleucophenga, Scaptodrosophila, and Zaprionus. Drosophila nebulosa Sturtevant (44.5%) and Drosophila cardini Sturtevant (12.5%) were the most abundant species. The occurrences and abundances of all the species differed greatly between sites. These results and other ecological analyses indicate that although placed in the same biome, there are great variability in the drosophilid species and abundance among the three protected and conserved dryland environments.
Spatio-temporal dynamics of species richness in coastal fish communities
Lekve, K.; Boulinier, T.; Stenseth, N.C.; Gjøsaeter, J.; Fromentin, J-M.; Hines, J.E.; Nichols, J.D.
2002-01-01
Determining patterns of change in species richness and the processes underlying the dynamics of biodiversity are of key interest within the field of ecology, but few studies have investigated the dynamics of vertebrate communities at a decadal temporal scale. Here, we report findings on the spado-temporal variability in the richness and composition of fish communities along the Norwegian Skagerrak coast having been surveyed for more than half a century. Using statistical models incorporating non-detection and associated sampling variance, we estimate local species richness and changes in species composition allowing us to compute temporal variability in species richness. We tested whether temporal variation could be related to distance to the open sea and to local levels of pollution. Clear differences in mean species richness and temporal variability are observed between fjords that were and were not exposed to the effects of pollution. Altogether this indicates that the fjord is an appropriate scale for studying changes in coastal fish communities in space and time. The year-to-year rates of local extinction and turnover were found to be smaller than spatial differences in community composition. At the regional level, exposure to the open sea plays a homogenizing role, possibly due to coastal currents and advection.
Interspecies differences in the empty body chemical composition of domestic animals.
Maeno, H; Oishi, K; Hirooka, H
2013-07-01
Domestication of animals has resulted in phenotypic changes by means of natural and human-directed selection. Body composition is important for farm animals because it reflects the status of energy reserves. Thus, there is the possibility that farm animals as providers of food have been more affected by human-directed selection for body composition than laboratory animals. In this study, an analysis was conducted to determine what similarities and differences in body composition occur between farm and laboratory animals using literature data obtained from seven comparative slaughter studies (n = 136 observations). Farm animals from four species (cattle, goats, pigs and sheep) were all castrated males, whereas laboratory animals from three species (dogs, mice and rats) comprised males and/or females. All animals were fed ad libitum. The allometric equation, Y = aX b , was used to determine the influence of species on the accretion rates of chemical components (Y, kg) relative to the growth of the empty body, fat-free empty body or protein weights (X, kg). There were differences between farm and laboratory animals in terms of the allometric growth coefficients for chemical components relative to the empty BW and fat-free empty BW (P < 0.01); farm animals had more rapid accretion rates of fat (P < 0.01) but laboratory animals had more rapid accretion rates of protein, water and ash (P < 0.01). In contrast, there was no difference in terms of the allometric growth coefficients for protein and water within farm animals (P > 0.2). The allometric growth coefficients for ash weight relative to protein weight for six species except sheep were not different from a value of 1 (P > 0.1), whereas that of sheep was smaller than 1 (P < 0.01). When compared at the same fat content of the empty body, the rate of change in water content (%) per unit change in fat content (%) was not different (P > 0.05) across farm animal species and similar ash-to-protein ratios were obtained except for dogs. The fraction of empty body energy gain retained as fat increased in a curvilinear manner, and there was little variation among farm animals at the same fat content of the empty body. These findings may provide the opportunity to develop a general model to predict empty body composition across farm animal species. In contrast, there were considerable differences of chemical body composition between farm and laboratory animals.
Potential Impacts of Climate Change on Insect Communities: A Transplant Experiment
Nooten, Sabine S.; Andrew, Nigel R.; Hughes, Lesley
2014-01-01
Climate change will have profound impacts on the distribution, abundance and ecology of all species. We used a multi-species transplant experiment to investigate the potential effects of a warmer climate on insect community composition and structure. Eight native Australian plant species were transplanted into sites approximately 2.5°C (mean annual temperature) warmer than their native range. Subsequent insect colonisation was monitored for 12 months. We compared the insect communities on transplanted host plants at the warmer sites with control plants transplanted within the species' native range. Comparisons of the insect communities were also made among transplanted plants at warmer sites and congeneric plant species native to the warmer transplant area. We found that the morphospecies composition of the colonising Coleoptera and Hemiptera communities differed markedly between transplants at the control compared to the warmer sites. Community structure, as described by the distribution of feeding guilds, was also found to be different between the controls and transplants when the entire Coleoptera and Hemiptera community, including non-herbivore feeding guilds, was considered. However, the structure of the herbivorous insect community showed a higher level of consistency between plants at control and warm sites. There were marked differences in community composition and feeding guild structure, for both herbivores and non-herbivores, between transplants and congenerics at the warm sites. These results suggest that as the climate warms, considerable turnover in the composition of insect communities may occur, but insect herbivore communities may retain elements of their present-day structure. PMID:24465827
Stajić, Mirjana; Glamoclija, Jasmina; Maksimović, Vuk; Vukojević, Jelena; Simonić, Jasmina; Zervakis, George
2011-01-01
Ganoderma lucidum is a well-known medicinal mushroom species in which polysaccharides are one of the major sources of biological activity. The species was considered as a species-complex due to significant variations in morphological, biochemical, and genetic features among populations with a worldwide distribution. This fact was the basis for setting the aim of this research: to study intraspecific diversity in polysaccharide production and intracellular sugar composition among selected G. lucidum strains. The presence ofintraspecific diversity among 10 G. lucidum strains, from different areas worldwide, was noted. Values of produced mycelia biomass and intracellular polysaccharides were found in wide ranges (3.1 - 28.2 g L(-1) and 20.0 - 53.3 mg g(-1), respectively), while differences in extracellular polysaccharide amounts were minor (0.2 - 1.5 mg mL(-1)). The significant quantitative and qualitative differences in intracellular sugar composition were noted. Glucose was the predominant sugar in almost all strains except one (HAI 447), where sucrose was dominant. The potential of polysaccharide production and intracellular sugar composition could be one more taxonomic criterion for strain characterization within G. lucidum. The differences in intracellular sugar composition and proportions could be reflected in features of produced polysaccharides and also in their biological activities.
Yang, Yilong
2017-01-01
Abstract The subgenomic compositions of the octoploid (2n = 8× = 56) strawberry (Fragaria) species, including the economically important cultivated species Fragaria x ananassa, have been a topic of long-standing interest. Phylogenomic approaches utilizing next-generation sequencing technologies offer a new window into species relationships and the subgenomic compositions of polyploids. We have conducted a large-scale phylogenetic analysis of Fragaria (strawberry) species using the Fluidigm Access Array system and 454 sequencing platform. About 24 single-copy or low-copy nuclear genes distributed across the genome were amplified and sequenced from 96 genomic DNA samples representing 16 Fragaria species from diploid (2×) to decaploid (10×), including the most extensive sampling of octoploid taxa yet reported. Individual gene trees were constructed by different tree-building methods. Mosaic genomic structures of diploid Fragaria species consisting of sequences at different phylogenetic positions were observed. Our findings support the presence in octoploid species of genetic signatures from at least five diploid ancestors (F. vesca, F. iinumae, F. bucharica, F. viridis, and at least one additional allele contributor of unknown identity), and questions the extent to which distinct subgenomes are preserved over evolutionary time in the allopolyploid Fragaria species. In addition, our data support divergence between the two wild octoploid species, F. virginiana and F. chiloensis. PMID:29045639
Pérez-Mora, Walter; Jorrin-Novo, Jesús V; Melgarejo, Luz Marina
2018-02-01
Substantial equivalence studies were performed in three Theobroma spp., cacao, bicolor and grandiflorum through chemical composition analysis and protein profiling of fruit (pulp juice and seeds). Principal component analysis of sugar, organic acid, and phenol content in pulp juice revealed equivalence among the three species, with differences in some of the compounds that may result in different organoleptic properties. Proteins were extracted from seeds and pulp juice, resolved by two dimensional electrophoresis and major spots subjected to mass spectrometry analysis and identification. The protein profile, as revealed by principal component analysis, was variable among the three species in both seed and pulp, with qualitative and quantitative differences in some of protein species. The functional grouping of the identified proteins correlated with the biological role of each organ. Some of the identified proteins are of interest, being minimally discussed, including vicilin, a protease inhibitor, and a flavonol synthase/flavanone 3-hydroxylase. Theobroma grandiflorum and Theobroma bicolor are endemic Amazonian plants that are poorly traded at the local level. As close relatives of Theobroma cacao, they may provide a good alternative for human consumption and industrial purposes. In this regard, we performed equivalence studies by conducting a comparative biochemical and proteomics analysis of the fruit, pulp juice and seeds of these three species. The results indicated equivalent chemical compositions and variable protein profiles with some differences in the content of the specific compounds or protein species that may result in variable organoleptic properties between the species and can be exploited for traceability purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lopes, C M; De Barba, M; Boyer, F; Mercier, C; da Silva Filho, P J S; Heidtmann, L M; Galiano, D; Kubiak, B B; Langone, P; Garcias, F M; Gielly, L; Coissac, E; de Freitas, T R O; Taberlet, P
2015-01-01
Closely related sympatric species commonly develop different ecological strategies to avoid competition. Ctenomys minutus and C. flamarioni are subterranean rodents parapatrically distributed in the southern Brazilian coastal plain, showing a narrow sympatric zone. To gain understanding on food preferences and possible competition for food resources, we evaluated their diet composition performing DNA metabarcoding analyzes of 67 C. minutus and 100 C. flamarioni scat samples, collected along the species geographical ranges. Thirteen plant families, mainly represented by Poaceae, Araliaceae, Asteraceae and Fabaceae, were identified in the diet of C. minutus. For C. flamarioni, 10 families were recovered, with a predominance of Poaceae, Araliaceae and Asteraceae. A significant correlation between diet composition and geographical distance was detected in C. minutus, whereas the diet of C. flamarioni was quite homogeneous throughout its geographical distribution. No significant differences were observed between males and females of each species. However, differences in diet composition between species were evident according to multivariate analysis. Our results suggest some level of diet partitioning between C. flamarioni and C. minutus in the sympatric region. While the first species is more specialized on few plant items, the second showed a more varied and heterogeneous diet pattern among individuals. These differences might have been developed to avoid competition in the region of co-occurrence. Resource availability in the environment also seems to influence food choices. Our data indicate that C. minutus and C. flamarioni are generalist species, but that some preference for Poaceae, Asteraceae and Araliaceae families can be suggested for both rodents. PMID:25649502
Leverkus, Alexandro B; Lorite, Juan; Navarro, Francisco B; Sánchez-Cañete, Enrique P; Castro, Jorge
2014-01-15
An intense debate exists on the effects of post-fire salvage logging on plant community regeneration, but scant data are available derived from experimental studies. We analyzed the effects of salvage logging on plant community regeneration in terms of species richness, diversity, cover, and composition by experimentally managing a burnt forest on a Mediterranean mountain (Sierra Nevada, S Spain). In each of three plots located at different elevations, three replicates of three treatments were implemented seven months after the fire, differing in the degree of intervention: "Non-Intervention" (all trees left standing), "Partial Cut plus Lopping" (felling 90% of the trees, cutting the main branches, and leaving all the biomass in situ), and "Salvage Logging" (felling and piling the logs, and masticating the woody debris). Plant composition in each treatment was monitored two years after the fire in linear point transects. Post-fire salvage logging was associated with reduced species richness, Shannon diversity, and total plant cover. Moreover, salvaged sites hosted different species assemblages and 25% lower cover of seeder species (but equal cover of resprouters) compared to the other treatments. Cover of trees and shrubs was also lowest in Salvage Logging, which could suggest a potential slow-down of forest regeneration. Most of these results were consistent among the three plots despite plots hosting different plant communities. Concluding, our study suggests that salvage logging may reduce species richness and diversity, as well as the recruitment of woody species, which could delay the natural regeneration of the ecosystem. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chemical composition of vegetation along urbanisation gradients in two European cities.
Sæbø, A; Hanslin, H M; Torp, T; Lierhagen, S; Gawronska, H; Dzierzanowski, K; Gawronski, S
2015-03-01
Accumulation of particulate matter (PM) and metals on leaves of three deciduous woody species was studied along urbanisation gradients in Stavanger and Warsaw. Differences between rural and urban sites explained most of the observed variation in leaf chemistry, followed by differences between regions. Highest leaf accumulation of elements was found in Warsaw, but also composition of elements differed between the cities. Overall, species showed similar patterns of element accumulation, but differed in accumulation of specific elements. These differences could in part be explained by differences in epicuticular waxes and PM accumulation. Expected source of elements and their chemical characteristics did not explain the observed accumulation patterns. A better differentiation between elements taken up from soil and air would be required for his. Species specific accumulation of elements has to be taken into consideration using leaf samples for biomonitoring. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wawrzyniak, Rafał; Wasiak, Wiesław; Bączkiewicz, Alina; Buczkowska, Katarzyna
2014-09-01
Aneura pinguis is one of the liverwort species complexes that consist of several cryptic species. Ten samples collected from different regions in Poland are in the focus of our research. Eight of the A. pinguis complex belonging to four cryptic species (A, B, C, E) and two samples of closely related species Aneura maxima were tested for the composition of volatile compounds. The HS-SPME technique coupled to GC/FID and GC/MS analysis has been applied. The fiber coated with DVB/CAR/PDMS has been used. The results of the present study, revealed the qualitative and quantitative differences in the composition of the volatile compounds between the studied species. Mainly they are from the group of sesquiterpenoids, oxygenated sesquiterpenoids and aliphatic hydrocarbons. The statistical methods (CA and PCA) showed that detected volatile compounds allow to distinguish cryptic species of A. pinguis. All examined cryptic species of the A. pinguis complex differ from A. maxima. Species A and E of A. pinguis, in CA and PCA, form separate clusters remote from two remaining cryptic species of A. pinguis (B and C) and A. maxima. Relationship between the cryptic species appeared from the chemical studies are in accordance with that revealed on the basis of DNA sequences. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
do Espírito Santo, M. M.; Neves, F. S.; Valério, H. M.; Leite, L. O.; Falcão, L. A.; Borges, M.; Beirão, M.; Reis, R., Jr.; Berbara, R.; Nunes, Y. R.; Silva, A.; Silva, L. F.; Siqueira, P. R.
2015-12-01
In this study, we aimed to determine the changes on soil traits, forest structure and species richness and composition of multiple groups of organisms along secondary succession in a tropical dry forest (TDF) in southeastern Brazil. We defined three successional stages based in forest vertical and horizontal structure and age: early (18-25 years), intermediate (50-60 years) and late (no records of clearing). Five plots of 50 x 20 m were established per stage, and the following groups were sampled using specific techniques: rhizobacteria, mycorrhiza, trees and lianas, butterflies, ants, dung beetles, mosquitoes (Culicidae), birds and bats. We also determined soil chemical and physical characteristics and forest structure (tree height, density and basal area). Soil fertility increased along the successional gradient, and the same pattern was observed for all the forest structure variables. However, species richness and composition showed mixed results depending on the organism group. Three groups usually considered as good bioindicators of habitat quality did not differ in species richness and composition between stages: butterflies, ants and dung beetles. On the other hand, rizhobacteria and mycorrhiza differed both in species richness and composition between stages and may be more sensitive to changes in environmental conditions in TDFs. The other five groups differed either in species richness or composition between one or two pairs of successional stages. Although changes in abiotic conditions and forest structure match the predictions of classical successional models, the response of each group of organism is idiosyncratic in terms of diversity and ecological function, as a consequence of specific resource requirements and life-history traits. In general, diversity increased and functional groups changed mostly from early to intermediate-late stages, strengthening the importance of secondary forests to the maintenance of ecosystem integrity of TDFs.
Basnet, Tej B; Rokaya, Maan B; Bhattarai, Bishnu P; Münzbergová, Zuzana
2016-01-01
Understanding factors determining the distribution of species is a key requirement for protecting diversity in a specific area. The aim of this study was to explore the factors affecting diversity and distribution of species of birds on different forested hills in central Nepal. The area is rich in species of birds. Because the area is characterized by steep gradients, we were also interested in the importance of altitude in determining the diversity and species composition of the bird communities. We assessed bird diversity and species composition based on point observations along a gradient of increasing altitude in two valleys (Kathmandu and Palung) in central Nepal. Data on environmental variables were also collected in order to identify the main determinants of bird diversity and species composition of the bird communities. We recorded 6522 individual birds belonging to 146 species, 77 genera and 23 families. Resident birds made up 80% (117 species) of the total dataset. The study supported the original expectation that altitude is a major determinant of species richness and composition of bird communities in the area. More diverse bird communities were found also in areas with steeper slopes. This together with the positive effect of greater heterogeneity suggests that forests on steep slopes intermixed with patches of open habitats on shallow soil at large spatial scales are more important for diverse bird communities than more disturbed habitats on shallow slopes. In addition, we demonstrated that while different habitat characteristics such as presence of forests edges and shrubs play an important role in driving species composition, but they do not affect species richness. This indicates that while habitat conditions are important determinants of the distribution of specific species, the number of niches is determined by large scale characteristics, such as landscape level habitat heterogeneity and altitude. Thus, to protect bird diversity in the mid-hills of central Nepal, we should maintain diverse local habitats (viz. forest, shrubs, open land, etc.) but also make sure the natural habitats on steeper slopes with large scale heterogeneity are maintained.
Basnet, Tej B.; Rokaya, Maan B.; Bhattarai, Bishnu P.; Münzbergová, Zuzana
2016-01-01
Understanding factors determining the distribution of species is a key requirement for protecting diversity in a specific area. The aim of this study was to explore the factors affecting diversity and distribution of species of birds on different forested hills in central Nepal. The area is rich in species of birds. Because the area is characterized by steep gradients, we were also interested in the importance of altitude in determining the diversity and species composition of the bird communities. We assessed bird diversity and species composition based on point observations along a gradient of increasing altitude in two valleys (Kathmandu and Palung) in central Nepal. Data on environmental variables were also collected in order to identify the main determinants of bird diversity and species composition of the bird communities. We recorded 6522 individual birds belonging to 146 species, 77 genera and 23 families. Resident birds made up 80% (117 species) of the total dataset. The study supported the original expectation that altitude is a major determinant of species richness and composition of bird communities in the area. More diverse bird communities were found also in areas with steeper slopes. This together with the positive effect of greater heterogeneity suggests that forests on steep slopes intermixed with patches of open habitats on shallow soil at large spatial scales are more important for diverse bird communities than more disturbed habitats on shallow slopes. In addition, we demonstrated that while different habitat characteristics such as presence of forests edges and shrubs play an important role in driving species composition, but they do not affect species richness. This indicates that while habitat conditions are important determinants of the distribution of specific species, the number of niches is determined by large scale characteristics, such as landscape level habitat heterogeneity and altitude. Thus, to protect bird diversity in the mid-hills of central Nepal, we should maintain diverse local habitats (viz. forest, shrubs, open land, etc.) but also make sure the natural habitats on steeper slopes with large scale heterogeneity are maintained. PMID:26938616
Macrofaunal Patterns in and around du Couedic and Bonney Submarine Canyons, South Australia
Dittmann, Sabine; Sorokin, Shirley J.; Hendrycks, Ed
2015-01-01
Two South Australian canyons, one shelf-incising (du Couedic) and one slope-limited (Bonney) were compared for macrofaunal patterns on the shelf and slope that spanned three water masses. It was hypothesized that community structure would (H1) significantly differ by water mass, (H2) show significant regional differences and (H3) differ significantly between interior and exterior of each canyon. Five hundred and thirty-one species of macrofauna ≥1 mm were captured at 27 stations situated in depth stratified transects inside and outside the canyons from 100 to1500 m depth. The macrofauna showed a positive relationship to depth in abundance, biomass, species richness and community composition while taxonomic distinctness and evenness remained high at all depths. Biotic variation on the shelf was best defined by variation in bottom water primary production while sediment characteristics and bottom water oxygen, temperature and nutrients defined biotic variation at greater depth. Community structure differed significantly (p<0.01) among the three water masses (shelf-flowing South Australian current, upper slope Flinders current and lower slope Antarctic Intermediate Water) (H1). Although community differences between the du Couedic and Bonney regions were marginally above significance at p = 0.05 (H2), over half of the species captured were unique to each region. This supports the evidence from fish and megafaunal distributions that the du Couedic and Bonney areas are in different bioregions. Overall, the canyon interiors were not significantly different in community composition from the exterior (H3). However, both canyons had higher abundance and/or biomass, increased species dominance, different species composition and coarser sediments near the canyon heads compared to outside the canyons at the same depth (500 m), suggestive of heightened currents within the canyons that influence community composition there. At 1000–1500 m, the canyon interiors were depauperate, typical of V-shaped canyons elsewhere. The large number of species captured, given the relatively low sampling effort and focus on the larger macrofauna, support previous studies that identify the South Australian coast as a high biodiversity area. PMID:26618354
USDA-ARS?s Scientific Manuscript database
Species composition, activity patterns and blood meal analysis of sand fly populations were investigated in the metropolitan region of Thessaloniki, North Greece from May to October 2011. Sampling was conducted weekly in 3 different environments (animal facilities, open fields, residential areas) al...
Katherine J. Elliott; James M. Vose; Duke Rankin
2014-01-01
We synthesized the current information on mesophytic cove forests in the southern Appalachians, assessed the range of variation in herb species composition and diversity in stands with different disturbance histories and environmental conditions, identified key knowledge gaps, and suggested approaches to fill these knowledge gaps. The purpose of this synthesis was to...
Casas-Güell, Edgar; Cebrian, Emma; Garrabou, Joaquim; Ledoux, Jean-Baptiste; Linares, Cristina; Teixidó, Núria
2016-01-01
Data on species diversity and structure in coralligenous outcrops dominated by Corallium rubrum are lacking. A hierarchical sampling including 3 localities and 9 sites covering more than 400 km of rocky coasts in NW Mediterranean, was designed to characterize the spatial variability of structure, composition and diversity of perennial species inhabiting coralligenous outcrops. We estimated species/taxa composition and abundance. Eight morpho-functional groups were defined according to their life span and growth to characterize the structural complexity of the outcrops. The species composition and structural complexity differed consistently across all spatial scales considered. The lowest and the highest variability were found among localities (separated by >200 km) and within sites (separated by 1–5 km), respectively supporting differences in diversity indices. The morpho-functional groups displayed a consistent spatial arrangement in terms of the number, size and shape of patches across study sites. These results contribute to filling the gap on the understanding of assemblage composition and structure and to build baselines to assess the response of this of this highly threatened habitat to anthropogenic disturbances. PMID:27857209
Patterns and determinants of plant biodiversity in non-commercial forests of eastern China
Wu, Chuping; Vellend, Mark; Yuan, Weigao; Jiang, Bo; Liu, Jiajia; Shen, Aihua; Liu, Jinliang; Zhu, Jinru
2017-01-01
Non-commercial forests represent important habitats for the maintenance of biodiversity and ecosystem function in China, yet no studies have explored the patterns and determinants of plant biodiversity in these human dominated landscapes. Here we test the influence of (1) forest type (pine, mixed, and broad-leaved), (2) disturbance history, and (3) environmental factors, on tree species richness and composition in 600 study plots in eastern China. In total, we found 143 species in 53 families of woody plants, with a number of species rare and endemic in the study region. Species richness in mixed forest and broad-leaved forest was higher than that in pine forest, and was higher in forests with less disturbance. Species composition was influenced by environment factors in different ways in different forest types, with important variables including elevation, soil depth and aspect. Surprisingly, we found little effect of forest age after disturbance on species composition. Most non-commercial forests in this region are dominated by species poor pine forests and mixed young forests. As such, our results highlight the importance of broad-leaved forests for regional plant biodiversity conservation. To increase the representation of broad-leaved non-commercial forests, specific management practices such as thinning of pine trees could be undertaken. PMID:29161324
Patterns and determinants of plant biodiversity in non-commercial forests of eastern China.
Wu, Chuping; Vellend, Mark; Yuan, Weigao; Jiang, Bo; Liu, Jiajia; Shen, Aihua; Liu, Jinliang; Zhu, Jinru; Yu, Mingjian
2017-01-01
Non-commercial forests represent important habitats for the maintenance of biodiversity and ecosystem function in China, yet no studies have explored the patterns and determinants of plant biodiversity in these human dominated landscapes. Here we test the influence of (1) forest type (pine, mixed, and broad-leaved), (2) disturbance history, and (3) environmental factors, on tree species richness and composition in 600 study plots in eastern China. In total, we found 143 species in 53 families of woody plants, with a number of species rare and endemic in the study region. Species richness in mixed forest and broad-leaved forest was higher than that in pine forest, and was higher in forests with less disturbance. Species composition was influenced by environment factors in different ways in different forest types, with important variables including elevation, soil depth and aspect. Surprisingly, we found little effect of forest age after disturbance on species composition. Most non-commercial forests in this region are dominated by species poor pine forests and mixed young forests. As such, our results highlight the importance of broad-leaved forests for regional plant biodiversity conservation. To increase the representation of broad-leaved non-commercial forests, specific management practices such as thinning of pine trees could be undertaken.
Weyenberg, Scott A.; Pavlovic, Noel B.
2014-01-01
Conducting dormant season or springtime prescribed fire treatments has become a common practice in many regions of the United States to restore ecosystems to their natural state. Despite the knowledge that historically, fires often occurred during the summer, the application of summer burns has been deterred, in part, by a lack of understanding of fire season effects on vegetation. We explored the differences in fire effects between spring and summer burns at Voyageurs National Park, Minnesota. The fire season effects on the ground layer vegetation were clearly different among the treatments: pre-burn, spring, and summer. Vegetation composition of pre-burn and after spring fires was similar, but differed significantly from the summer fires. Spring fires propagated the same species that were present prior to the fire, whereas summer fires promoted a new suite of species through the germination of seedbank and high seed dispersal species. Cover and richness of seed bank and intolerant species were greatest after the summer fires, which contributed to the peak in richness found across all reproductive and tolerance attributes five years after these fires. Post summer fire composition showed shifts in composition through time. Substantial differences in the effects of burn seasonality on ground layer vegetation should be considered in long term restoration efforts to help maintain species diversity in red and white pine forest ecosystems.
González-Ortegón, E; Walton, M E M; Moghaddam, B; Vilas, C; Prieto, A; Kennedy, H A; Pedro Cañavate, J; Le Vay, L
2015-01-15
In a restored wetland (South of Spain), where different flow regimes control water exchange with the adjacent Guadalquivir estuary, the native Palaemon varians coexists with an exotic counterpart species Palaemon macrodactylus. This controlled m\\acrocosm offers an excellent opportunity to investigate how the effects of water management, through different flow regimes, and the presence of a non-native species affect the aquatic community and the trophic niche (by gut contents and C-N isotopic composition) of the native shrimp Palaemon varians. We found that increased water exchange rate (5% day(-1) in mixed ponds vs. 0.1% day(-1) in extensive ponds) modified the aquatic community of this wetland; while extensive ponds are dominated by isopods and amphipods with low presence of P. macrodactylus, mixed ponds presented high biomass of mysids, corixids, copepods and both shrimp species. An estuarine origin of nutrients and primary production might explain seasonal and spatial differences found among ponds of this wetland. A combined analysis of gut contents and isotopic composition of the native and the exotic species showed that: (1) native P. varians is mainly omnivorous (2) while the non-native P. macrodactylus is more zooplanktivorous and (3) a dietary overlap occurred when both species coexist at mixed ponds where a higher water exchange and high abundance of mysids and copepods diversifies the native species' diet. Thus differences in the trophic ecology of both species are clearly explained by water management. This experimental study is a valuable tool for integrated management between river basin and wetlands since it allows quantification of wetland community changes in response to the flow regime. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sanaullah, M.; Chabbi, A.; Rumpel, C.
2009-04-01
The influence of litter quality on its rate of decomposition is a crucial aspect of C cycle. In this study we concentrated on grassland ecosystems where leaf litter is one of the major sources of C input. To quantify the contribution of initial leaf chemistry within different plant species, the decomposition of chemically different leaf litter of three grassland species (Lolium perenne, Festuca arundinacea and Dactylis glomerata) was monitored, using the litter bag technique. Litter of different maturity stages i.e. green (fresh leaves) and brown litter (brown leaves were still attached to the plant), were incubated on bare soil surface. Samples were taken at different time intervals (0, 2, 4, 8, 20 and 44 weeks) and were analyzed for mass loss, organic C and N contents and stable isotopic signatures (C and N). Changes in litter chemistry were addressed by determining lignin-derived phenols after CuO oxidation and non-cellulosic polysaccharides after acid hydrolysis followed by gas chromatography. Green litter was chemically different from brown litter due to higher initial N and lower lignin contents. While in grassland species, both L. perenne and D. glomerata were similar in their initial chemical composition compared with F. arundinacea. Green litter showed higher rate of degradation. In green litter, Percent lignin remaining of initial (% OI) followed the similar decomposition pattern as of C remaining indicating lignin as controlling factor in decomposition. Constant Acid-to-Aldehyde ratios of lignin-derived phenols (vanillyl and syringyl) did not suggest any transformation in lignin structures. In green litter, increase in non-cellulosic polysaccharides ratios (C6/C5 and deoxy/C5) proposed microbial-derived sugars, while there was no significant increase in these ratios in brown litter. In conclusion, due to the differences in initial chemical composition (initial N and lignin contents), green litter decomposition was higher than brown litter in all grassland species. Regardless of similarities in initial composition of grassland species, green and brown litter of Lolium perenne decomposed more rapidly compared with other two species. So, Species related differences in initial litter chemistry did not control its degradation.
Zotti, Maurizio; Coco, Laura Del; Pascali, Sandra Angelica De; Migoni, Danilo; Vizzini, Salvatrice; Mancinelli, Giorgio; Fanizzi, Francesco Paolo
2016-02-01
The proximate composition and element contents of claw muscle tissue of Atlantic blue crabs (Callinectes sapidus) were compared with the native warty crab (Eriphia verrucosa) and the commercially edible crab (Cancer pagurus). The scope of the analysis was to profile the chemical characteristics and nutritive value of the three crab species. Elemental fingerprints showed significant inter-specific differences, whereas non-significant variations in the moisture and ash contents were observed. In the blue crab, protein content was significantly lower than in the other two species, while its carbon content resulted lower than that characterizing only the warty crab. Among micro-elements, Ba, Cr, Cu, Li, Mn, Ni, and Pb showed extremely low concentrations and negligible among-species differences. Significant inter-specific differences were observed for Na, Sr, V, Ba, Cd and Zn; in particular, cadmium and zinc were characterized in the blue crab by concentrations significantly lower than in the other two species. The analysis of the available literature on the three species indicated a general lack of comparable information on their elemental composition. The need to implement extended elemental fingerprinting techniques for shellfish quality assessment is discussed, in view of other complementary profiling methods such as NMR-based metabolomics.
Bartlett, Jill K; Maher, William A; Purss, Matthew B J
2018-03-15
Near infrared spectroscopy (NIRS) quantitative modelling was used to measure the protein, lipid and glycogen composition of five marine bivalve species (Saccostrea glomerata, Ostrea angasi, Crassostrea gigas, Mytilus galloprovincialis and Anadara trapezia) from multiple locations and seasons. Predictive models were produced for each component using individual species and aggregated sample populations for the three oyster species (S. glomerata, O. angasi and C. gigas) and for all five bivalve species. Whole animal tissues were freeze dried, ground to >20μm and scanned by NIRS. Protein, lipid and glycogen composition were determined by traditional chemical analyses and calibration models developed to allow rapid NIRS-measurement of these components in the five bivalve species. Calibration modelling was performed using wavelet selection, genetic algorithms and partial least squares analysis. Model quality was assessed using RPIQ and RMESP. For protein composition, single species model results had RPIQ values between 2.4 and 3.5 and RMSEP between 8.6 and 18%, the three oyster model had an RPIQ of 2.6 and an RMSEP of 10.8% and the five bivalve species had an RPIQ of 3.6 and RMSEP of 8.7% respectively. For lipid composition, single species models achieved RPIQ values between 2.9 and 5.3 with RMSEP between 9.1 and 11.2%, the oyster model had an RPIQ of 3.6 and RMSEP of 6.8 and the five bivalve model had an RPIQ of 5.2 and RMSEP of 6.8% respectively. For glycogen composition, the single species models had RPIQs between 3.8 and 18.9 with RMSEP between 3.5 and 9.2%, the oyster model had an RPIQ of 5.5 and RMSEP of 7.1% and the five bivalve model had an RPIQ of 4 and RMSEP of 7.6% respectively. Comparison between individual species models and aggregated models for three oyster species and five bivalve species for each component indicate that aggregating data from like species produces high quality models with robust and reliable quantitative application. The benefit of aggregated multi-species models include a greater range of bivalve composition, greater application to different bivalve species and reduced need to extensively sample individual species, that is required for obtain robust single species NIRS models. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bartlett, Jill K.; Maher, William A.; Purss, Matthew B. J.
2018-03-01
Near infrared spectroscopy (NIRS) quantitative modelling was used to measure the protein, lipid and glycogen composition of five marine bivalve species (Saccostrea glomerata, Ostrea angasi, Crassostrea gigas, Mytilus galloprovincialis and Anadara trapezia) from multiple locations and seasons. Predictive models were produced for each component using individual species and aggregated sample populations for the three oyster species (S. glomerata, O. angasi and C. gigas) and for all five bivalve species. Whole animal tissues were freeze dried, ground to > 20 μm and scanned by NIRS. Protein, lipid and glycogen composition were determined by traditional chemical analyses and calibration models developed to allow rapid NIRS-measurement of these components in the five bivalve species. Calibration modelling was performed using wavelet selection, genetic algorithms and partial least squares analysis. Model quality was assessed using RPIQ and RMESP. For protein composition, single species model results had RPIQ values between 2.4 and 3.5 and RMSEP between 8.6 and 18%, the three oyster model had an RPIQ of 2.6 and an RMSEP of 10.8% and the five bivalve species had an RPIQ of 3.6 and RMSEP of 8.7% respectively. For lipid composition, single species models achieved RPIQ values between 2.9 and 5.3 with RMSEP between 9.1 and 11.2%, the oyster model had an RPIQ of 3.6 and RMSEP of 6.8 and the five bivalve model had an RPIQ of 5.2 and RMSEP of 6.8% respectively. For glycogen composition, the single species models had RPIQs between 3.8 and 18.9 with RMSEP between 3.5 and 9.2%, the oyster model had an RPIQ of 5.5 and RMSEP of 7.1% and the five bivalve model had an RPIQ of 4 and RMSEP of 7.6% respectively. Comparison between individual species models and aggregated models for three oyster species and five bivalve species for each component indicate that aggregating data from like species produces high quality models with robust and reliable quantitative application. The benefit of aggregated multi-species models include a greater range of bivalve composition, greater application to different bivalve species and reduced need to extensively sample individual species, that is required for obtain robust single species NIRS models.
Canedo-Júnior, Ernesto de Oliveira; Cuissi, Rafael Gonçalves; Nelson Henrique de Almeida, Curi; Demetrio, Guilherme Ramos; Lasmar, Chaim José; Malves, Kira
2016-03-01
Fire occurrences are a common perturbation in Cerrado ecosystems, and may differently impact the local biodiversity. Arthropods are one of the taxa affected by fires, and among them, ants are known as good bioindicators. We aimed to evaluate the effect of anthropic fires on epigaeic and hypogaeic ant communities (species richness and composition) in Cerrado areas with different post-fire event recovery periods. We conducted the study in four Cerrado areas during two weeks of 2012 dry season: one unburned and three at different post-fire times (one month, one and two years). We sampled ants with pitfall traps in epigaeic and hypogaeic microhabitats. We collected 71 ant morpho-species from 25 genera. In the epigaeic microhabitat we sampled 56 morpho-species and 42 in the hypogaeic microhabitat. The area with the shortest recovery time presented lower epigaeic ant species richness (4.3 ± 2.00) in comparison to the other areas (8.1 ± 2.68 species on one year area; 10.3 ± 2.66 species on two years area; 10.4 ± 2.31 species on control area), but recovery time did not affect hypogaeic ant species richness. Regarding ant species composition, fire did not directly affect hypogaeic ant species, which remained the same even one month after fire event. However, two years were not enough to reestablish ant species composition in both microhabitats in relation to our control group samples. Our study is the first to assess anthropic fire effects upon epigaeic and hypogaeic ants communities; highlighting the importance of evaluating different microhabitats, to more accurately detect the effects of anthropic disturbances in biological communities. We concluded that ant communities are just partially affected by fire occurrences, and epigaeic assemblages are the most affected ones in comparison to hypogaeic ants. Furthermore the study provides knowledge to aid in the creation of vegetation management programs that allow Cerrado conservation.
Ion composition variety and variability around perihelion
NASA Astrophysics Data System (ADS)
Beth, Arnaud; Altwegg, Kathrin; Behar, Étienne; Broiles, Tom; Burch, Jim; Carr, Christopher; Eriksson, Anders; Galand, Marina; Goetz, Charlotte; Henri, Pierre; Heritier, Kévin; Nilsson, Hans; Odelstad, Elias; Richter, Ingo; Rubin, Martin; Vallieres, Xavier
2017-04-01
For two years, the Double Focusing Mass Spectrometer (DFMS), one of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) onboard Rosetta probed the neutral gas and the plasma composition of the comet 67P/Churyumov-Gerasimenko's coma (67P). Major ion species detected include water ions (e.g, H2O+, H3O+, HO+) observed throughout the escorting phase. The analysis of DFMS data revealed a large zoo of ion species near perihelion (summer 2015). In particular, protonated versions of high proton affinity neutrals (e.g., NH4+) were detected, but also hydrocarbon and organic ion species. Near perihelion, ion composition was also highly variable and showed interesting variations in the complexity of the observed ion species. We will first present an overview of the rich variety of ion species observed during perihelion. This study will be supported by ionospheric modeling of ion composition below the ion exobase. We will then show an intercomparison between DFMS data and Rosetta Plasma Consortium (RPC) plasma and particle data to interpret the DFMS ion composition variability. Our primary goal is to highlight any correlation between observations from these different instruments (i.e. ion composition, ion and electron number density, energy distribution, magnetic field) and to find relevant signatures of physical processes which can affect the chemistry and dynamics (e.g., acceleration and deflection) of the involved neutral and ion species.
Seaweed composition from Bintulu coast of Sarawak, Malaysia.
Zawawi, Mohd Hafizbillah; Idris, Mohd Hanafi; Kamal, Abu Hena Mustafa; King, Wong Sing
2014-08-01
Species composition of seaweed and distribution were investigated in the coastal waters of Bintulu, Sarawak. The seaweed samples were collected during low tide between May 2011 and May 2012 from the six different stations. In total 54 species of seaweeds were identified from study areas of Bintulu coastal waters. Among them, 23 species were from Rhodophyta with 11 families, 15 species were from Phaeophyta with 2 families and 16 species were from Chlorophyta with 10 families: Seventeen species of seaweeds were recorded from the Tanjung Batu, while 23 species from Pantai Telekom, 14 species from Golden Beach, 26 species from Kuala Similajau, 12 species from Kuala Nyalau and 21 species from Batu Mandi. Seaweeds abundance was high in rocky substrate and Rhodophyta (11 families and 23 species) was the common and highest group of seaweeds in this coastal areas. Present study recorded high diversified seaweed species at the rocky shore area compare to reef area.
COMMUNITY SCALE STREAM TAXA SENSITIVITIES TO DIFFERENT COMPOSITIONS OF EXCESS TOTAL DISSOLVED SOLIDS
Model stream chronic dosing studies (42 d) were conducted with three total dissolved solids (TDS) recipes. The recipes differed in composition of major ions. Community scale emergence was compared with single-species responses conducted simultaneously using the whole effluent tox...
Peterson, Sarah H; Ackerman, Joshua T; Eagles-Smith, Collin A; Herzog, Mark P; Hartman, C Alex
2018-01-01
Predators sample the available prey community when foraging; thus, changes in the environment may be reflected by changes in predator diet and foraging preferences. We examined Forster's tern (Sterna forsteri) prey species over an 11-year period by sampling approximately 10,000 prey fish returned to 17 breeding colonies in south San Francisco Bay, California. We compared the species composition among repeatedly-sampled colonies (≥ 4 years), using both relative species abundance and the composition of total dry mass by species. Overall, the relative abundances of prey species at seven repeatedly-sampled tern colonies were more different than would be expected by chance, with the most notable differences in relative abundance observed between geographically distant colonies. In general, Mississippi silverside (Menidia audens) and topsmelt silverside (Atherinops affinis) comprised 42% of individuals and 40% of dry fish mass over the study period. Three-spined stickleback (Gasterosteus aculeatus) comprised the next largest proportion of prey species by individuals (19%) but not by dry mass (6%). Five additional species each contributed ≥ 4% of total individuals collected over the study period: yellowfin goby (Acanthogobius flavimanus; 10%), longjaw mudsucker (Gillichthys mirabilis; 8%), Pacific herring (Clupea pallasii; 6%), northern anchovy (Engraulis mordax; 4%), and staghorn sculpin (Leptocottus armatus; 4%). At some colonies, the relative abundance and biomass of specific prey species changed over time. In general, the abundance and dry mass of silversides increased, whereas the abundance and dry mass of three-spined stickleback and longjaw mudsucker decreased. As central place foragers, Forster's terns are limited in the distance they forage; thus, changes in the prey species returned to Forster's tern colonies suggest that the relative availability of some fish species in the environment has changed, possibly in response to alteration of the available habitat.
Peterson, Sarah; Ackerman, Joshua T.; Eagles-Smith, Collin A.; Herzog, Mark; Hartman, C. Alex
2018-01-01
Predators sample the available prey community when foraging; thus, changes in the environment may be reflected by changes in predator diet and foraging preferences. We examined Forster’s tern (Sterna forsteri) prey species over an 11-year period by sampling approximately 10,000 prey fish returned to 17 breeding colonies in south San Francisco Bay, California. We compared the species composition among repeatedly-sampled colonies (≥ 4 years), using both relative species abundance and the composition of total dry mass by species. Overall, the relative abundances of prey species at seven repeatedly-sampled tern colonies were more different than would be expected by chance, with the most notable differences in relative abundance observed between geographically distant colonies. In general, Mississippi silverside (Menidia audens) and topsmelt silverside (Atherinops affinis) comprised 42% of individuals and 40% of dry fish mass over the study period. Three-spined stickleback (Gasterosteus aculeatus) comprised the next largest proportion of prey species by individuals (19%) but not by dry mass (6%). Five additional species each contributed ≥ 4% of total individuals collected over the study period: yellowfin goby (Acanthogobius flavimanus; 10%), longjaw mudsucker (Gillichthys mirabilis; 8%), Pacific herring (Clupea pallasii; 6%), northern anchovy (Engraulis mordax; 4%), and staghorn sculpin (Leptocottus armatus; 4%). At some colonies, the relative abundance and biomass of specific prey species changed over time. In general, the abundance and dry mass of silversides increased, whereas the abundance and dry mass of three-spined stickleback and longjaw mudsucker decreased. As central place foragers, Forster’s terns are limited in the distance they forage; thus, changes in the prey species returned to Forster’s tern colonies suggest that the relative availability of some fish species in the environment has changed, possibly in response to alteration of the available habitat.
Catanese, Gaetano; Hinz, Hilmar; Gil, Maria Del Mar; Palmer, Miquel; Breen, Michael; Mira, Antoni; Pastor, Elena; Grau, Amalia; Campos-Candela, Andrea; Koleva, Elka; Grau, Antoni Maria; Morales-Nin, Beatriz
2018-01-01
In the Balearic Islands, different trammel net designs have been adopted to promote fisheries sustainability and reduce discards. Here, we compare the catch performance of three trammel net designs targeting the spiny lobster Palinurus elephas in terms of biomass, species composition and revenue from commercial catches and discards. Designs differ in the netting fiber type (standard polyfilament, PMF, or a new polyethylene multi-monofilament, MMF) and the use of a guarding net or greca , a mesh piece intended to reduce discards. Catches were surveyed by an on-board observer from 1,550 netting walls corresponding to 70 nets. The number of marketable species captured indicated that the lobster trammel net fishery has multiple targets, which contribute significantly to the total revenue. The discarded species ranged from habitat-forming species to elasmobranches, but the magnitude of gear-habitat interactions on the long term dynamics of benthos remains unclear. No relevant differences in revenue and weight of discards were detected after Bayesian analyses. However, the species composition of discards was different when using greca . Interestingly, high immediate survival was found for discarded undersized lobsters, while a seven day survival assessment, using captive observation, gave an asymptotic estimate of survival probability as 0.64 (95% CI [0.54-0.76]). Therefore, it is recommended that it would be beneficial for this stock if an exemption from the EU landing obligation regulation was sought for undersized lobsters in the Balearic trammel net fishery.
Alarie, Yves
2016-01-01
Abstract The Haliplidae, Gyrinidae and Dytiscidae (Coleoptera) of Prince Edward Island, Canada were surveyed during the years 2004–2005. A total of 2450 individuals from 79 species were collected from 98 different localities, among which 30 species are newly recorded from that region. Among these, Acilius sylvanus Hilsenhoff, Rhantus consimilis Motschulsky and Neoporus sulcipennis (Fall) stand out as representing the easternmost reports of these species in Canada. Once removed, Gyrinus aquiris LeConte (Gyrinidae) is reinstated in the faunal list of Prince Edward Island. According to this study and literature 84 species of Hydradephaga are currently known from Prince Edward Island. The Nearctic component of the fauna is made up of 68 species (80.9%) and the Holarctic component of 16 species (19.1%). Most species are characteristic of the Boreal and Atlantic Maritime Ecozones and have a transcontinental distribution. In an examination of the Hydradephaga of insular portions of Atlantic Canada, we found that despite significantly different land areas and different distances to the neighbouring continental mainland the island faunas of Prince Edward Island and insular Newfoundland are very similar in the number of species (84 and 94 species respectively) despite differences in composition. With a land area significantly larger than that of Prince Edward Island, however, the fauna of Cape Breton Island was 39% smaller consisting of 53 species. This difference could be due to the comparative lack of collecting efforts on Cape Breton Island. PMID:27408603
Alarie, Yves
2016-01-01
The Haliplidae, Gyrinidae and Dytiscidae (Coleoptera) of Prince Edward Island, Canada were surveyed during the years 2004-2005. A total of 2450 individuals from 79 species were collected from 98 different localities, among which 30 species are newly recorded from that region. Among these, Acilius sylvanus Hilsenhoff, Rhantus consimilis Motschulsky and Neoporus sulcipennis (Fall) stand out as representing the easternmost reports of these species in Canada. Once removed, Gyrinus aquiris LeConte (Gyrinidae) is reinstated in the faunal list of Prince Edward Island. According to this study and literature 84 species of Hydradephaga are currently known from Prince Edward Island. The Nearctic component of the fauna is made up of 68 species (80.9%) and the Holarctic component of 16 species (19.1%). Most species are characteristic of the Boreal and Atlantic Maritime Ecozones and have a transcontinental distribution. In an examination of the Hydradephaga of insular portions of Atlantic Canada, we found that despite significantly different land areas and different distances to the neighbouring continental mainland the island faunas of Prince Edward Island and insular Newfoundland are very similar in the number of species (84 and 94 species respectively) despite differences in composition. With a land area significantly larger than that of Prince Edward Island, however, the fauna of Cape Breton Island was 39% smaller consisting of 53 species. This difference could be due to the comparative lack of collecting efforts on Cape Breton Island.
Schmid, Matthias; Guihéneuf, Freddy; Stengel, Dagmar B
2016-10-01
This study evaluated the impact of different food- and non-food grade extraction solvents on yield and fatty acid composition of the lipid extracts of two seaweed species (Palmaria palmata and Laminaria digitata). The application of chloroform/methanol and three different food grade solvents (ethanol, hexane, ethanol/hexane) revealed significant differences in both, extraction yield and fatty acid composition. The extraction efficiency, in terms of yields of total fatty acids (TFA), was in the order: chloroform/methanol>ethanol>hexane>ethanol/hexane for both species. Highest levels of polyunsaturated fatty acids (PUFA) were achieved by the extraction with ethanol. Additionally the effect of storage temperature on the stability of PUFA in ground and freeze-dried seaweed biomass was investigated. Seaweed samples were stored for a total duration of 22months at three different temperatures (-20°C, 4°C and 20°C). Levels of TFA and PUFA were only stable after storage at -20°C for the two seaweed species. Copyright © 2016 Elsevier Ltd. All rights reserved.
Is arsenobetaine the major arsenic compound in the liver of birds marine mammals, and sea turtles?
NASA Astrophysics Data System (ADS)
Kubota, R.; Kunito, T.; Tanabe, S.
2003-05-01
Concentrations of total arsenic and individual arsenic compounds were determined in the livers of birds, marine mammals, and sea turtles by using hydride generation-atomic absorption spectrometry (HG-AAS) and high performance liquid chromatography/inductively coupled plasma-mass spectrometry (HPLC/ICP-MS). Marine mammals feeding on cephalopods and crustaceans accumulated higher arsenic concentrations than the species feeding on fishes. No significant age and gender differences in arsenic concentrations were observed for most of the species of marine mammals. Elevated total arsenic concentrations were found in livers of black-footed albatross and loggerhead turtles and these values were comparable to those of lower trophic marine animals. Arsenobetaine was the major arsenical in the livers of most of the species examined. Particularly, in seabirds, mean proportions of arsenobetaine was more than90% of total extractable arsenic In contast, arsenobetaine was a minor constituent in dugong. The compositions of arsenic compounds were different among the species examined. These results might be due to the differences in the metabolic capacity among species and/or the different compositions of arsenic compounds in their preys.
Vandeweyer, D; Crauwels, S; Lievens, B; Van Campenhout, L
2017-11-16
Despite the continuing development of new insect-derived food products, microbial research on edible insects and insect-based foods is still very limited. The goal of this study was to increase the knowledge on the microbial quality of edible insects by comparing the bacterial community composition of mealworms (Tenebrio molitor) and crickets (Acheta domesticus and Gryllodes sigillatus) from several production cycles and rearing companies. Remarkable differences in the bacterial community composition were found between different mealworm rearing companies and mealworm production cycles from the same company. In comparison with mealworms, the bacterial community composition of the investigated crickets was more similar among different companies, and was highly similar between both cricket species investigated. Mealworm communities were dominated by Spiroplasma and Erwinia species, while crickets were abundantly colonised by (Para)bacteroides species. With respect to food safety, only a few operational taxonomic units could be associated with potential human pathogens such as Cronobacter or spoilage bacteria such as Pseudomonas. In summary, our results implicate that at least for cricket rearing, production cycles of constant and good quality in terms of bacterial composition can be obtained by different rearing companies. For mealworms however, more variation in terms of microbial quality occurs between companies. Copyright © 2017 Elsevier B.V. All rights reserved.
Phyllostomid bat microbiome composition is associated to host phylogeny and feeding strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrillo-Araujo, Mario; Taş, Neslihan; Alcántara-Hernández, Rocio J.
The members of the Phyllostomidae, the New-World leaf-nosed family of bats, show a remarkable evolutionary diversification of dietary strategies including insectivory, as the ancestral trait, followed by appearance of carnivory and plant-based diets such as nectarivory and frugivory. Here we explore the microbiome composition of different feeding specialists: insectivore Macrotus waterhousii, sanguivore Desmodus rotundus, nectarivores Leptonycteris yerbabuenae and Glossophaga soricina, and frugivores Carollia perspicillata and Artibeus jamaicensis. The V4 region of the 16S rRNA gene from three intestinal regions of three individuals per species was amplified and community composition and structure was analyzed with α and β diversity metrics. Batsmore » with plant-based diets had low diversity microbiomes, whereas the sanguivore D. rotundus and insectivore M. waterhousii had the most diverse microbiomes. There were no significant differences in microbiome composition between different intestine regions within each individual. Plant-based feeders showed less specificity in their microbiome compositions, whereas animal-based specialists, although more diverse overall, showed a more clustered arrangement of their intestinal bacterial components. The main characteristics defining microbiome composition in phyllostomids were species and feeding strategy. This study shows how differences in feeding strategies contributed to the development of different intestinal microbiomes in Phyllostomidae.« less
Phyllostomid bat microbiome composition is associated to host phylogeny and feeding strategies
Carrillo-Araujo, Mario; Taş, Neslihan; Alcántara-Hernández, Rocio J.; ...
2015-05-19
The members of the Phyllostomidae, the New-World leaf-nosed family of bats, show a remarkable evolutionary diversification of dietary strategies including insectivory, as the ancestral trait, followed by appearance of carnivory and plant-based diets such as nectarivory and frugivory. Here we explore the microbiome composition of different feeding specialists: insectivore Macrotus waterhousii, sanguivore Desmodus rotundus, nectarivores Leptonycteris yerbabuenae and Glossophaga soricina, and frugivores Carollia perspicillata and Artibeus jamaicensis. The V4 region of the 16S rRNA gene from three intestinal regions of three individuals per species was amplified and community composition and structure was analyzed with α and β diversity metrics. Batsmore » with plant-based diets had low diversity microbiomes, whereas the sanguivore D. rotundus and insectivore M. waterhousii had the most diverse microbiomes. There were no significant differences in microbiome composition between different intestine regions within each individual. Plant-based feeders showed less specificity in their microbiome compositions, whereas animal-based specialists, although more diverse overall, showed a more clustered arrangement of their intestinal bacterial components. The main characteristics defining microbiome composition in phyllostomids were species and feeding strategy. This study shows how differences in feeding strategies contributed to the development of different intestinal microbiomes in Phyllostomidae.« less
Phyllostomid bat microbiome composition is associated to host phylogeny and feeding strategies
Carrillo-Araujo, Mario; Taş, Neslihan; Alcántara-Hernández, Rocio J.; Gaona, Osiris; Schondube, Jorge E.; Medellín, Rodrigo A.; Jansson, Janet K.; Falcón, Luisa I.
2015-01-01
The members of the Phyllostomidae, the New-World leaf-nosed family of bats, show a remarkable evolutionary diversification of dietary strategies including insectivory, as the ancestral trait, followed by appearance of carnivory and plant-based diets such as nectarivory and frugivory. Here we explore the microbiome composition of different feeding specialists: insectivore Macrotus waterhousii, sanguivore Desmodus rotundus, nectarivores Leptonycteris yerbabuenae and Glossophaga soricina, and frugivores Carollia perspicillata and Artibeus jamaicensis. The V4 region of the 16S rRNA gene from three intestinal regions of three individuals per species was amplified and community composition and structure was analyzed with α and β diversity metrics. Bats with plant-based diets had low diversity microbiomes, whereas the sanguivore D. rotundus and insectivore M. waterhousii had the most diverse microbiomes. There were no significant differences in microbiome composition between different intestine regions within each individual. Plant-based feeders showed less specificity in their microbiome compositions, whereas animal-based specialists, although more diverse overall, showed a more clustered arrangement of their intestinal bacterial components. The main characteristics defining microbiome composition in phyllostomids were species and feeding strategy. This study shows how differences in feeding strategies contributed to the development of different intestinal microbiomes in Phyllostomidae. PMID:26042099
Koyama, Kazuya; Kamigakiuchi, Hiroshi; Iwashita, Kazuhiro; Mochioka, Ryosuke; Goto-Yamamoto, Nami
2017-02-01
Grapes (Vitis spp.) produce diverse polyphenolic compounds, which are phytochemicals that contribute to human health. In this study, the polyphenolic profiles of the red-purple berries of two wild grape species native to Japan, Vitis ficifolia and V. coignetiae, and their interspecific hybrid cultivars were investigated and compared with the profiles of V. vinifera and V. × labruscana cultivars. Proanthocyanidins (PAs) were present at lower concentrations in both skins and seeds of wild grape species and their hybrid cultivars than those in V. vinifera cultivars. They also differed in their composition, consisting mainly of epicatechin in wild grape species, but containing considerable amounts of both epigallocatechin in the skins and epicatechin gallate in the seeds of V. vinifera. In contrast, V. ficifolia varieties and their hybrid cultivars accumulated high concentrations of diverse anthocyanins, and whose compositions of anthocyanins and flavonols differed between species in their degree of modification by glucosylation, acylation, methylation and B-ring hydroxylation. Principal component analysis (PCA) indicated that the polyphenolic constituents clearly separate V. vinifera and V. × labruscana cultivars from the wild grape species as well as between wild grape species, V. coignetiae and V. ficifolia. Intermediate compositions were also observed in the hybrid cultivars between these wild grape species and V. vinifera. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of Water Level on Three Wetlands Soil Seed Banks on the Tibetan Plateau
Ma, Miaojun; Ma, Zhen; Du, Guozhen
2014-01-01
Background Although the effect of water level on germination in soil seed banks has been documented in many ecosystems, the mechanism is not fully understood, and to date no empirical studies on this subject exist. Further, no work has been done on the effect of water level on seed banks of drying and saline-alkaline wetlands in alpine areas on the Tibetan Plateau. Methodology We examined the effects of water level (0 cm, 5 cm and 10 cm) on seed germination and seedling establishment from soil seed banks at 0–5 cm and 5–10 cm depths in typical, drying, and saline-alkaline wetlands. We also explore the potential role of soil seed bank in restoration of drying and saline-alkaline wetlands. Principal Findings Species richness decreased with increase in water level, but there almost no change in seed density. A huge difference exists in species composition of the seed bank among different water levels in all three wetlands, especially between 0 cm and 5 cm and 0 cm and 10 cm. Similarity of species composition between seed bank and plant community was higher in 0 cm water level in drying wetland than in the other two wetlands. The similarity was much higher in 0 cm water level than in 5 cm and 10 cm water levels in all three wetlands. Species composition of the alpine wetland plant community changed significantly after drying and salinization, however, species composition of the seed bank was unchanged regardless of the environment change. Conclusions/Significance Water level greatly affects seed bank recruitment and plant community establishment. Further, different water levels in restored habitats are likely to determine its species composition of the plant community. The seed bank is important in restoration of degraded wetlands. Successful restoration of drying and salinization wetlands could depend on the seed bank. PMID:24984070
Diepenbrock, Lauren M; Fothergill, Kent; Tindall, Kelly V; Losey, John E; Smyth, Rebecca R; Finke, Deborah L
2016-08-01
The diversity and abundance of native lady beetles (Coccinellidae) in North America has declined in recent decades. This decline is often correlated with the introduction and establishment of exotic lady beetle species, including Coccinella septempunctata L. and Harmonia axyridis Pallas, suggesting that exotic species precipitated the decline of native lady beetles. We examined species records of native coccinellids in Missouri over 118 yr and asked whether the species composition of the community experienced a shift following the establishment of the exotic species. We found that the contemporary native coccinellid community is different from the community that was present nearly a century ago. However, there was no evidence for a recent abrupt shift in composition triggered by the establishment of exotic species. Instead, our data suggest that the native lady beetle community has been undergoing consistent and gradual change over time, with some species decreasing in abundance and others increasing. While not excluding exotic species as a factor contributing to the decline of native lady beetle species, our findings suggest that other continuous factors, like land use change, may have played a more influential role in determining the composition of the native coccinellid communities within our region. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Aoyama, J; Yoshinaga, T; Tanaka, C; Ishii, K
2017-03-01
To examine species composition and population structures in sand lance (Ammodytidae) along the northern Pacific coast of Japan, genetic analysis were carried out for specimens collected in 2014 from Otsuchi Bay, Iwate, Ishinomaki Bay, Miyagi, off Soma, Fukushima and Ise-Mikawa Bays, Aichi. The samples consisted of Ammodytes japonicus and Ammodytes heian, of which the latter is a recently described species. Neither species exhibited significant genetic differences among localities. Only A. japonicus was found in the most southern locality at Aichi, but it decreased northward to <90% in Miyagi and Fukushima and the two species occurred almost evenly in Iwate suggesting a latitudinal cline in their species composition along the northern Pacific coast of Japan, off Tohoku. The vertebral counts differed between A. japonicus and A. heian with modes of 65 and 63, respectively, but this characteristic did not differ significantly within a locality (Iwate). This suggests that the vertebral counts of Ammodytes spp. in Japanese waters are probably strongly determined by the environment than by a species-specific genetic trait. © 2016 The Fisheries Society of the British Isles.
Carvalho, Patricía de O; Arrebola, Melissa B; Sawaya, Alexandra C H F; Cunha, Ildenize B S; Bastos, Deborah H M; Eberlin, Marcos N
2006-08-01
The oil content, FA, and lipid class composition of the mature seeds of six Cordia species were analyzed. Mature seeds of each species were collected in their natural habitat from 2002 to 2004. The total lipid content varied from 1.9% to 13.2%, there being significant differences between the results found in different years for each species and between the species analyzed. The contents of FFA varied from 2.0% to 7.9% of total lipids. Neutral lipids (NL) were the largest class, making up between 89.6% and 96.4% of the total lipids; the phospholipids (PL) were the second largest class (3.0% to 8.9% of the total lipids), and the glycolipids (GL) were the smallest class (0.6 to 3.4%). The presence of GLA was determined in each class of lipids; it is predominant in the NL. Levels of GLA ranged from 1.2% to 6.8% of total seed FA. This is, to our knowledge the first study of lipid composition in seeds of species of Cordia from Brazil.
Divergent environmental filters drive functional segregation of European peatlands
NASA Astrophysics Data System (ADS)
Robroek, B.; Jassey, V.; Bragazza, L.; Buttler, A.
2015-12-01
Plant communities are largely shaped by prevailing climatic conditions. As a result, environmental change is expected to alter the (functional) composition in plant communities. Because plants, and particularly the composition of plant species, play an important role in driving ecosystem processes, it is crucial that we improve our understanding on which environmental factors are most important in shaping plant communities. Here we presnt the results for a cross-Eurpean study, were we assessed the role of environmnetal conditions on plant community composition in 56 peatlands. We show that plant species richness and diversity are relatively stable across the main environmental gradients. Nevertheless, we observe large changes in the plant community structure. In other words, species turnover increased with increasing differences in environmental viariables. Such turnover in the community composition is largely associated to gradients temperature and precipitation, whilst nutrients -often reported as major driver for changes in peatland ecosystems- were only important at the end of the gradient of current deposition levels in Europe. Using a combination of species distribution modelling and species co-occurence patterns, we identified two spatially non-exclusive groups of plant species. Species within a distinct group responded similarly to bioclimatic variables and nutrient deposition levels, whilst between group response was mirrored. These results suggest that these two groups of plants are subjected to divergent environmental filters. Additionally, European peatlands aggregate into two distinct clusters based on plant functional trait composition. Each cluster was dominated by plant species from either one of the two co-response groups. Overall, our results demonstrate that environmental change results in a gradual replacement of plant species from two divergent groups, consequently affecting the functional trait composition in peatlands.
Factors associated with long-term species composition in dry tropical forests of Central India
NASA Astrophysics Data System (ADS)
Agarwala, M.; DeFries, R. S.; Qureshi, Q.; Jhala, Y. V.
2016-10-01
The long-term future of species composition in forests depends on regeneration. Many factors can affect regeneration, including human use, environmental conditions, and species’ traits. This study examines the influence of these factors in a tropical deciduous forest of Central India, which is heavily used by local, forest-dependent residents for livestock grazing, fuel-wood extraction, construction and other livelihood needs. We measure size-class proportions (the ratio of abundance of a species at a site in a higher size class to total abundance in both lower and higher size classes) for 39 tree species across 20 transects at different intensities of human use. The size-class proportions for medium to large trees and for small to medium-sized trees were negatively associated with species that are used for local construction, while size class proportions for saplings to small trees were positively associated with those species that are fire resistant and negatively associated with livestock density. Results indicate that grazing and fire prevent non-fire resistant species from reaching reproductive age, which can alter the long term composition and future availability of species that are important for local use and ecosystem services. Management efforts to reduce fire and forest grazing could reverse these impacts on long-term forest composition.
Vertical stratification of beetles (Coleoptera) and flies (Diptera) in temperate forest canopies.
Maguire, Dorothy Y; Robert, Katleen; Brochu, Kristen; Larrivée, Maxim; Buddle, Christopher M; Wheeler, Terry A
2014-02-01
Forest canopies support high arthropod biodiversity, but in temperate canopies, little is known about the spatial distribution of these arthropods. This is an important first step toward understanding ecological roles of insects in temperate canopies. The objective of this study was to assess differences in the species composition of two dominant and diverse taxa (Diptera and Coleoptera) along a vertical gradient in temperate deciduous forest canopies. Five sugar maple trees from each of three deciduous forest sites in southern Quebec were sampled using a combination of window and trunk traps placed in three vertical strata (understory, mid-canopy, and upper-canopy) for three sampling periods throughout the summer. Coleoptera species richness and abundance did not differ between canopy heights, but more specimens and species of Diptera were collected in the upper-canopy. Community composition of Coleoptera and Diptera varied significantly by trap height. Window traps collected more specimens and species of Coleoptera than trunk traps, although both trap types should be used to maximize representation of the entire Coleoptera community. There were no differences in abundance, diversity, or composition of Diptera collected between trap types. Our data confirm the relevance of sampling all strata in a forest when studying canopy arthropod biodiversity.
Olsson, Jens; Bergström, Lena; Gårdmark, Anna
2013-01-01
The structure of many marine ecosystems has changed substantially during recent decades, as a result of overexploitation, climate change and eutrophication. Despite of the apparent ecological and economical importance of coastal areas and communities, this aspect has received relatively little attention in coastal systems. Here we assess the temporal development of zoobenthos communities in two areas on the Swedish Baltic Sea coast during 30 years, and relate their development to changes in climate, eutrophication and top-down regulation from fish. Both communities show substantial structural changes, with a decrease in marine polychaetes and species sensitive to increased water temperatures. Concurrently, opportunistic species tolerant to environmental perturbation have increased in abundance. Species composition show a similar temporal development in both communities and significant changes in species composition occurred in both data sets in the late 1980s and early 1990s. The change in species composition was associated with large scale changes in climate (salinity and water temperature) and to the structure of the local fish community, whereas we found no effects of nutrient loading or ambient nutrient concentrations. Our results suggest that these coastal zoobenthos communities have gone through substantial structural changes over the last 30 years, resulting in communities of different species composition with potentially different ecological functions. We hence suggest that the temporal development of coastal zoobenthos communities should be assessed in light of prevailing climatic conditions considering the potential for top-down effects exerted by local fish communities.
Olsson, Jens; Bergström, Lena; Gårdmark, Anna
2013-01-01
The structure of many marine ecosystems has changed substantially during recent decades, as a result of overexploitation, climate change and eutrophication. Despite of the apparent ecological and economical importance of coastal areas and communities, this aspect has received relatively little attention in coastal systems. Here we assess the temporal development of zoobenthos communities in two areas on the Swedish Baltic Sea coast during 30 years, and relate their development to changes in climate, eutrophication and top-down regulation from fish. Both communities show substantial structural changes, with a decrease in marine polychaetes and species sensitive to increased water temperatures. Concurrently, opportunistic species tolerant to environmental perturbation have increased in abundance. Species composition show a similar temporal development in both communities and significant changes in species composition occurred in both data sets in the late 1980s and early 1990s. The change in species composition was associated with large scale changes in climate (salinity and water temperature) and to the structure of the local fish community, whereas we found no effects of nutrient loading or ambient nutrient concentrations. Our results suggest that these coastal zoobenthos communities have gone through substantial structural changes over the last 30 years, resulting in communities of different species composition with potentially different ecological functions. We hence suggest that the temporal development of coastal zoobenthos communities should be assessed in light of prevailing climatic conditions considering the potential for top-down effects exerted by local fish communities. PMID:23737998
Rodrigures, Moreno S; Batista, Elis P; Silva, Alexandre A; Costa, Fábio M; Neto, Verissimo A S; Gil, Luiz Herman S
2017-02-22
Anopheles mosquitoes are the only vectors of human malaria. Anopheles species use standing water as breeding sites. Human activities, like the creation of an artificial lake during the implementation of hydroelectric power plants, lead to changes in environmental characteristics and, therefore, may changes the species richness and composition of Anopheles mosquitoes. The aim of the present study was to verify whether or not there is an association between the artificial flooding resulting from the construction of the Jirau hydroelectric power plant, and the richness and composition of anophelines. Mosquitoes samples were obtained monthly from the Jirau hydroelectric power plant area located at Porto Velho, Rondônia State, using Human Landing Catch (06:00-10:00 PM). Mosquitoes collected were transported to Laboratório de Entomologia Médica FIOCRUZ-RO where they were identified until species using dichotomous key. A total of 6347 anophelines belonging to eight different species were collected. The anophelines species richness was significantly lower during the first flooding stage. Differences in anophelines species composition were found when comparing the first flooding stage with the other stages. Furthermore, the mean number of Anopheles darlingi, the main vector of malaria in the region, increases during the first and the third flooding stages. The continual monitoring of these vectors during the late operational phase may be useful in order to understand how anophelines will behave in this area.
NASA Technical Reports Server (NTRS)
Douglas, Robert B.; Parker, V. Thomas; Cullings, Kenneth W.; Sun, Sidney (Technical Monitor)
2003-01-01
Forest development patterns following disturbance are known to influence the physical and chemical attributes of soils at different points in time. Changes in soil resources are thought to have a corresponding effect on ectomycorrhizal (ECM) community structure. We used molecular methods to compare below-ground ECM species richness, composition, and abundance between adjacent stands of homogenous lodgepole pine and old growth mixed conifer in Yellowstone National Park (YNP). In each stand-type we collected soil cores to both identify mycorrhizae and assess soil chemistry. Although no statistical difference was observed in the mean number of ECM root tips per core between stand types, the total number of species identified (85 versus 35) and the mean number of species per core (8.8 +/- 0.6 versus 2.5 +/- 0.3) were significantly higher in lodgepole pine. Differences between the actual and estimated species richness levels indicated that these forest types support a high number of ECM species and that undersampling was severe. Species compositions were widely disparate between stands where only four species were shared out of a total of 116. Soil analysis also revealed that mixed conifer was significantly lower in pH, but higher in organic matter, potassium, phosphorus, and ammonium when compared to lodgepole pine stands. Species richness per core was correlated with these chemical data, however, analysis of covariance indicated that stand type was the only statistically significant factor in the observed difference in species richness. Our data suggest that ECM fungal richness increases as homogenous lodgepole pine stands grow and mature, but declines after Engelmann spruce and subalpine fir colonize. Despite difficulties linking species composition with soil chemistry, there are a variety of physical and chemical factors that could be influencing ECM community structure. Future field experiments are necessary to test some of the mechanisms potentially operating within this system.
Le Roux, X; Bardy, M; Loiseau, P; Louault, F
2003-11-01
Stimulation of nitrification and denitrification by long term (from years to decades) grazing has commonly been reported in different grassland ecosystems. However, grazing generally induces important changes in plant species composition, and whether changes in nitrification and denitrification are primarily due to changes in vegetation composition has never been tested. We compared soil nitrification- and denitrification-enzyme activities (NEA and DEA, respectively) between semi-natural grassland sites experiencing intensive (IG) and light (LG) grazing/mowing regimes for 13 years. Mean NEA and DEA (i.e. observed from random soil sampling) were higher in IG than LG sites. The NEA/DEA ratio was higher in IG than LG sites, indicating a higher stimulation of nitrification. Marked changes in plant species composition were observed in response to the grazing/mowing regime. In particular, the specific phytomass volume of Elymus repens was lower in IG than LG sites, whereas the specific volume of Lolium perenne was higher in IG than LG sites. In contrast, the specific volume of Holcus lanatus, Poa trivialis and Arrhenatherum elatius were not significantly different between treatments. Soils sampled beneath grass tussocks of the last three species exhibited higher DEA, NEA and NEA/DEA ratio in IG than LG sites. For a given grazing regime, plant species did not affect significantly soil DEA, NEA and NEA/DEA ratio. The modification of plant species composition is thus not the primary factor driving changes in nitrification and denitrification in semi-natural grassland ecosystems experiencing long term intensive grazing. Factors such as trampling, N returned in animal excreta, and/or modification of N uptake and C exudation by frequently defoliated plants could be responsible for the enhanced microbial activities.
Species Composition at the Sub-Meter Level in Discontinuous Permafrost in Subarctic Sweden
NASA Astrophysics Data System (ADS)
Anderson, S. M.; Palace, M. W.; Layne, M.; Varner, R. K.; Crill, P. M.
2013-12-01
Northern latitudes are experiencing rapid warming. Wetlands underlain by permafrost are particularly vulnerable to warming which results in changes in vegetative cover. Specific species have been associated with greenhouse gas emissions therefore knowledge of species compositional shift allows for the systematic change and quantification of emissions and changes in such emissions. Species composition varies on the sub-meter scale based on topography and other microsite environmental parameters. This complexity and the need to scale vegetation to the landscape level proves vital in our estimation of carbon dioxide (CO2) and methane (CH4) emissions and dynamics. Stordalen Mire (68°21'N, 18°49'E) in Abisko and is located at the edge of discontinuous permafrost zone. This provides a unique opportunity to analyze multiple vegetation communities in a close proximity. To do this, we randomly selected 25 1x1 meter plots that were representative of five major cover types: Semi-wet, wet, hummock, tall graminoid, and tall shrub. We used a quadrat with 64 sub plots and measured areal percent cover for 24 species. We collected ground based remote sensing (RS) at each plot to determine species composition using an ADC-lite (near infrared, red, green) and GoPro (red, blue, green). We normalized each image based on a Teflon white chip placed in each image. Textural analysis was conducted on each image for entropy, angular second momentum, and lacunarity. A logistic regression was developed to examine vegetation cover types and remote sensing parameters. We used a multiple linear regression using forwards stepwise variable selection. We found statistical difference in species composition and diversity indices between vegetation cover types. In addition, we were able to build regression model to significantly estimate vegetation cover type as well as percent cover for specific key vegetative species. This ground-based remote sensing allows for quick quantification of vegetation cover and species and also provides the framework for scaling to satellite image data to estimate species composition and shift on the landscape level. To determine diversity within our plots we calculated species richness and Shannon Index. We found that there were statistically different species composition within each vegetation cover type and also determined which species were indicative for cover type. Our logistical regression was able to significantly classify vegetation cover types based on RS parameters. Our multiple regression analysis indicated Betunla nana (Dwarf Birch) (r2= .48, p=<0.0001) and Sphagnum (r2=0.59, p=<0.0001) were statistically significant with respect to RS parameters. We suggest that ground based remote sensing methods may provide a unique and efficient method to quantify vegetation across the landscape in northern latitude wetlands.
NASA Astrophysics Data System (ADS)
Andrade, L. S.; Frameschi, I. F.; Costa, R. C.; Castilho, A. L.; Fransozo, A.
2015-02-01
Three regions along the Brazilian coast characterized by the occurrence of contrasting natural phenomena, such as upwellings and continental input, were surveyed to determine the composition and structure of the assemblage of swimming crabs. Twelve monthly collections were undertaken (July 2010 to June 2011) in Macaé, Rio de Janeiro (MAC); Ubatuba, São Paulo (UBA); and São Francisco do Sul, Santa Catarina (SFS). The lowest values of the phi sediment grain size measure, bottom temperature and the highest values of organic matter and salinity were measured in MAC. In all, 10,686 individuals were collected, belonging to six species of Portunoidea: Arenaeus cribrarius, Callinectes danae, Callinectes ornatus, Callinectes sapidus, Achelous spinicarpus and Achelous spinimanus. A Multiple Response Permutation Procedure (MRPP) test indicated that the species composition differed significantly among the sampling sites, showing substantial heterogeneity in the composition and abundance of species among regions. The results suggest that C. danae was more abundant in waters with lower salinity and lower organic matter content. In contrast, A. spinimanus is positively correlated with these factors, showing a greater abundance under the opposite conditions. Callinectes ornatus appeared not to show strong selectivity for particular habitat characteristics. We conclude from these findings that areas affected by different phenomena produce changes in the composition and abundance of the assemblage of Portunoidea. Although the strength of eutrophication differs between UBA and MAC, the substantial continental inflow affecting SFS favors the development of species that complete their life cycle in the estuary.
Grain Surface Chemistry and the Composition of Interstellar Ices
NASA Technical Reports Server (NTRS)
Tielens, A. G. G. M.
2006-01-01
Submicron sized dust grains are an important component of the interstellar medium. In particular they provide surface where active chemistry can take place. At the low temperatures (-10 K) of the interstellar medium, colliding gas phase species will stick, diffuse, react, and form an icy mantle on these dust grains. This talk will review the principles of grain surface chemistry and delineate important grain surface routes, focusing on reactions involving H, D, and O among each other and with molecules such as CO. Interstellar ice mantles can be studied through the fundamental vibrations of molecular species in the mid-infrared spectra of sources embedded in or located behind dense molecular clouds. Analysis of this type of data has provided a complex view of the composition of these ices and the processes involved. Specifically, besides grain surface chemistry, the composition of interstellar ices is also affected by thermal processing due to nearby newly formed stars. This leads to segregation between different ice components as well as outgassing. The latter results in the formation of a so-called Hot Core region with a gas phase composition dominated by evaporated mantle species. Studies of such regions provide thus a different view on the ice composition and the chemical processes involved. Interstellar ices can also be processed by FUV photons and high energy cosmic ray ions. Cosmic ray processing likely dominates the return of accreted species to the gas phase where further gas phase reactions can take place. These different chemical routes towards molecular complexity in molecular clouds and particularly regions of star formation will be discussed.
Marten, Andreas; Kaib, Manfred; Brandl, Roland
2009-05-01
In several termite species, distinct differences in the composition of cuticular hydrocarbons among colonies correspond to high genetic divergence of mitochondrial DNA sequences. These observations suggest that hydrocarbon phenotypes represent cryptic species. Different cuticular hydrocarbon phenotypes also are found among colonies of fungus-growing termites of the genus Macrotermes. To determine if these hydrocarbon differences in Macrotermes also indicate cryptic species, we sequenced the mitochondrial CO I gene from species in West and East Africa. Among individuals of a supposed species but belonging to different cuticular hydrocarbon phenotypes, the genetic distances are much smaller than distances between species. Unlike what has been observed in other termites, Macrotermes hydrocarbon phenotypes do not represent cryptic species. Our findings suggest fundamental differences in the evolution and/or function of cuticular hydrocarbons among different termite lineages.
Meyer, Kim; Bashir, Shahid; Llorca, Jordi; Idriss, Hicham; Ranocchiari, Marco; van Bokhoven, Jeroen A
2016-09-19
A composite of the metal-organic framework (MOF) NH 2 -MIL-125(Ti) and molecular and ionic nickel(II) species, catalyzed hydrogen evolution from water under UV light. In 95 v/v % aqueous conditions the composite produced hydrogen in quantities two orders of magnitude higher than that of the virgin framework and an order of magnitude greater than that of the molecular catalyst. In a 2 v/v % water and acetonitrile mixture, the composite demonstrated a TOF of 28 mol H 2 g(Ni) -1 h -1 and remained active for up to 50 h, sustaining catalysis for three times longer and yielding 20-fold the amount of hydrogen. Appraisal of physical mixtures of the MOF and each of the nickel species under identical photocatalytic conditions suggest that similar surface localized light sensitization and proton reduction processes operate in the composite catalyst. Both nickel species contribute to catalytic conversion, although different activation behaviors are observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of oil-palm plantations on diversity of tropical anurans.
Faruk, Aisyah; Belabut, Daicus; Ahmad, Norhayati; Knell, Robert J; Garner, Trenton W J
2013-06-01
Agriculturally altered vegetation, especially oil-palm plantations, is rapidly increasing in Southeast Asia. Low species diversity is associated with this commodity, but data on anuran diversity in oil-palm plantations are lacking. We investigated how anuran biological diversity differs between forest and oil-palm plantation, and whether observed differences in biological diversity of these areas is linked to specific environmental factors. We hypothesized that biological diversity is lower in plantations and that plantations support a larger proportion of disturbance-tolerant species than forest. We compared species richness, abundance, and community composition between plantation and forest areas and between site types within plantation and forest (forest stream vs. plantation stream, forest riparian vs. plantation riparian, forest terrestrial vs. plantation terrestrial). Not all measures of biological diversity differed between oil-palm plantations and secondary forest sites. Anuran community composition, however, differed greatly between forest and plantation, and communities of anurans in plantations contained species that prosper in disturbed areas. Although plantations supported large numbers of breeding anurans, we concluded the community consisted of common species that were of little conservation concern (commonly found species include Fejervarya limnocharis, Microhyla heymonsi, and Hylarana erythrea). We believe that with a number of management interventions, oil-palm plantations can provide habitat for species that dwell in secondary forests. © 2013 Society for Conservation Biology.
Yang, Yilong; Davis, Thomas M
2017-12-01
The subgenomic compositions of the octoploid (2n = 8× = 56) strawberry (Fragaria) species, including the economically important cultivated species Fragaria x ananassa, have been a topic of long-standing interest. Phylogenomic approaches utilizing next-generation sequencing technologies offer a new window into species relationships and the subgenomic compositions of polyploids. We have conducted a large-scale phylogenetic analysis of Fragaria (strawberry) species using the Fluidigm Access Array system and 454 sequencing platform. About 24 single-copy or low-copy nuclear genes distributed across the genome were amplified and sequenced from 96 genomic DNA samples representing 16 Fragaria species from diploid (2×) to decaploid (10×), including the most extensive sampling of octoploid taxa yet reported. Individual gene trees were constructed by different tree-building methods. Mosaic genomic structures of diploid Fragaria species consisting of sequences at different phylogenetic positions were observed. Our findings support the presence in octoploid species of genetic signatures from at least five diploid ancestors (F. vesca, F. iinumae, F. bucharica, F. viridis, and at least one additional allele contributor of unknown identity), and questions the extent to which distinct subgenomes are preserved over evolutionary time in the allopolyploid Fragaria species. In addition, our data support divergence between the two wild octoploid species, F. virginiana and F. chiloensis. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Costanzo, Alessandra; Panseri, Sara; Giorgi, Annamaria; Romano, Andrea; Caprioli, Manuela; Saino, Nicola
2016-01-01
Avian communication has been traditionally believed to be mainly mediated by visual and auditory channels. However, an increasing number of studies are disclosing the role of olfaction in the interaction of birds with their social environment and with other species, as well as in other behaviors such as nest recognition, food location and navigation. Olfaction has also been suggested to play a role in parent-offspring communication not only in the post- but also in the pre-hatching period. Volatile compounds produced during embryogenesis and passively released through the eggshell pores may indeed represent the only cue at parents’ disposal to assess offspring quality, including the sex composition of their clutch before hatching. In turn, sex identification before hatching may mediate adaptive strategies of allocation to either sex. In the present study, we analyzed odour composition of barn swallow eggs incubated in their nest in order to identify any sex-related differences in volatile compounds emitted. For the first time in any bird species, we also investigated whether odour composition is associated with relatedness. The evidence of differences in odour composition among eggs containing embryos of either sex indicates that parents have a cue to identify their brood sex composition even before hatching which can be used to modulate their behavior accordingly. Moreover, odour similarity within nests may represent the prerequisite for kin recognition in this species. PMID:27851741
Soini, Helena A; Whittaker, Danielle J; Wiesler, Donald; Ketterson, Ellen D; Novotny, Milos V
2013-11-22
Large foraging seabirds are known to navigate to food sources using their excellent sense of smell, but much less is known about the use of olfaction by the songbirds (passerine birds). Some evidence of individual recognition based on the bird preen oil volatile organic compound (VOC) compositions, which is the main odor source in birds, have been reported for dark-eyed junco and house finch. In this study we have investigated preen oil VOCs in 16 different songbird species and two other small bird species in order to determine whether the VOC compositions follow phylogenetic and evolutionary relatedness. We have used the stir bar sorptive extraction (SBSE) methodology followed by gas chromatography-mass spectrometry (GC-MS) to determine preen oil VOCs during the long light summer conditions for mostly wild caught birds. Large diversity among the VOC compositions was observed, while some compound classes were found in almost all species. The divergent VOC profiles did not follow the phylogenetic family lines among the bird species. This suggests that songbirds may use VOC odors as a mate recognition cue. Copyright © 2013 Elsevier B.V. All rights reserved.
Effects of postfire salvage logging on deadwood-associated beetles.
Cobb, T P; Morissette, J L; Jacobs, J M; Koivula, M J; Spence, J R; Langor, D W
2011-02-01
In Canada and the United States pressure to recoup financial costs of wildfire by harvesting burned timber is increasing, despite insufficient understanding of the ecological consequences of postfire salvage logging. We compared the species richness and composition of deadwood-associated beetle assemblages among undisturbed, recently burned, logged, and salvage-logged, boreal, mixed-wood stands. Species richness was lowest in salvage-logged stands, largely due to a negative effect of harvesting on the occurrence of wood- and bark-boring species. In comparison with undisturbed stands, the combination of wildfire and logging in salvage-logged stands had a greater effect on species composition than either disturbance alone. Strong differences in species composition among stand treatments were linked to differences in quantity and quality (e.g., decay stage) of coarse woody debris. We found that the effects of wildfire and logging on deadwood-associated beetles were synergistic, such that the effects of postfire salvage logging could not be predicted reliably on the basis of data on either disturbance alone. Thus, increases in salvage logging of burned forests may have serious negative consequences for deadwood-associated beetles and their ecological functions in early postfire successional forests. ©2010 Society for Conservation Biology.
Singh, Pooja
2017-01-01
Essential oils of aromatic and medicinal plants generally have a diverse range of activities because they possess several active constituents that work through several modes of action. The genus Artemisia includes the largest genus of family Asteraceae has several medicinal uses in human and plant diseases aliments. Extensive investigations on essential oil composition, antimicrobial, insecticidal and antioxidant studies have been conducted for various species of this genus. In this review, we have compiled data of recent literature (2012–2017) on essential oil composition, antimicrobial, insecticidal and antioxidant activities of different species of the genus Artemisia. Regarding the antimicrobial and insecticidal properties we have only described here efficacy of essential oils against plant pathogens and insect pests. The literature revealed that 1, 8-cineole, beta-pinene, thujone, artemisia ketone, camphor, caryophyllene, camphene and germacrene D are the major components in most of the essential oils of this plant species. Oils from different species of genus Artemisia exhibited strong antimicrobial activity against plant pathogens and insecticidal activity against insect pests. However, only few species have been explored for antioxidant activity. PMID:28930281
Usefulness of Fatty Acid Composition for Differentiation of Legionella Species
Diogo, Alexandra; Veríssimo, António; Nobre, M. Fernanda; da Costa, Milton S.
1999-01-01
Numerical analysis of fatty acid methyl ester (FAME) profiles of 199 isolates and 76 reference strains, belonging to all validly described species of the genus Legionella that can be cultured in laboratory media, was used to differentiate between the species of this genus. With the exception of the strains that autofluoresced red, it was possible to differentiate all the other Legionella species. The strains of the species L. bozemanii, L. dumoffii, L. feeleii, L. gormanii, L. maceachernii, L. micdadei, and L. quinlivanii did not form single clusters, showing some degree of variability in the fatty acid compositions. The strains of the blue-white autofluorescent species had very similar fatty acid compositions and were difficult to distinguish from each other. Nine isolates had fatty acid profiles unlike those of any of the validly described species and may represent different FAME groups of known species or undescribed Legionella species. The method used in this study was useful for screening and discriminating large number of isolates of Legionella species. Moreover, the results obtained can be included in a database of fatty acid profiles, leading to a more accurate automatic identification of Legionella isolates. PMID:10364593
Diversity among macroalgae-consuming fishes on coral reefs: a transcontinental comparison.
Vergés, Adriana; Bennett, Scott; Bellwood, David R
2012-01-01
Despite high diversity and abundance of nominally herbivorous fishes on coral reefs, recent studies indicate that only a small subset of taxa are capable of removing dominant macroalgae once these become established. This limited functional redundancy highlights the potential vulnerability of coral reefs to disturbance and stresses the need to assess the functional role of individual species of herbivores. However, our knowledge of species-specific patterns in macroalgal consumption is limited geographically, and there is a need to determine the extent to which patterns observed in specific reefs can be generalised at larger spatial scales. In this study, video cameras were used to quantify rates of macroalgae consumption by fishes in two coral reefs located at a similar latitude in opposite sides of Australia: the Keppel Islands in the Great Barrier Reef (eastern coast) and Ningaloo Reef (western coast). The community of nominally herbivorous fish was also characterised in both systems to determine whether potential differences in the species observed feeding on macroalgae were related to spatial dissimilarities in herbivore community composition. The total number of species observed biting on the dominant brown alga Sargassum myriocystum differed dramatically among the two systems, with 23 species feeding in Ningaloo, compared with just 8 in the Keppel Islands. Strong differences were also found in the species composition and total biomass of nominally herbivorous fish, which was an order of magnitude higher in Ningaloo. However, despite such marked differences in the diversity, biomass, and community composition of resident herbivorous fishes, Sargassum consumption was dominated by only four species in both systems, with Naso unicornis and Kyphosus vaigiensis consistently emerging as dominant feeders of macroalgae.
Hejda, Martin
2012-01-01
The aim was to estimate the impacts of invasive Impatiens parviflora on forests’ herbal layer communities. A replicated Before-After-Control-Impact field experiment and comparisons with adjacent uninvaded plots were used. The alien’s impact on species richness was tested using hierarchical generalized mixed effect models with Poisson error structure. Impact on species composition was tested using multivariate models (DCA, CCA, RDA) and Monte-Carlo permutation tests. Removal plots did not differ in native species richness from neither invaded nor adjacent uninvaded plots, both when the treatment’s main effect or its interaction with sampling time was tested (Chi2 = 0.4757, DF = 2, p = 0.7883; Chi2 = 7.229, DF = 8, p = 0.5121 respectively). On the contrary, ordination models revealed differences in the development of plots following the treatments (p = 0.034) with the invaded plots differing from the adjacent uninvaded (p = 0.002). Impatiens parviflora is highly unlikely to impact native species richness of invaded communities, which may be associated with its limited ability to create a dense canopy, a modest root system or the fact the I. parviflora does not represent a novel and distinctive dominant to the invaded communities. Concerning its potential impacts on species composition, the presence of native clonal species (Athyrium filix-femina, Dryopteris filix-mas, Fragaria moschata, Luzula luzuloides, Poa nemoralis) on the adjacent uninvaded plots likely makes them different from the invaded plots. However, these competitive and strong species are more likely to prevent the invasion of I. parviflora on the adjacent uninvaded plots rather than being themselves eliminated from the invaded communities. PMID:22768091
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivas-Ubach, Albert; Hódar, José A.; Sardans, Jordi
The debate whether the coevolution of plants and insects or macroevolutionary processes (phylogeny) is the main driver determining the arsenal of molecular defensive compounds of plants remains unresolved. Attacks by herbivorous insects affect not only the composition of defensive compounds in plants but the entire metabolome (the set of molecular metabolites), including defensive compounds. Metabolomes are the final products of genotypes and are directly affected by macroevolutionary processes, so closely related species should have similar metabolomic compositions and may respond in similar ways to attacks by folivores. We analyzed the elemental compositions and metabolomes of needles from Pinus pinaster, P.more » nigra and P. sylvestris to determine if these closely related Pinus species with different coevolutionary histories with the caterpillars of the processionary moth respond similarly to attacks by this lepidopteran. All pines had different metabolomes and metabolic responses to herbivorous attack. The metabolomic variation among the pine species and the responses to folivory reflected their macroevolutionary relationships, with P. pinaster having the most divergent metabolome. The concentrations of phenolic metabolites were generally not higher in the attacked trees, which had lower concentrations of terpenes, suggesting that herbivores avoid individuals with high concentrations of terpenes. Our results suggest that macroevolutionary history plays important roles in the metabolomic responses of these pine species to folivory, but plant-insect coevolution probably constrains those responses. Combinations of different evolutionary factors and trade-offs are likely responsible for the different responses of each species to folivory, which is not necessarily exclusively linked to plant-insect coevolution.« less
Legume-rhizobium symbiotic promiscuity and effectiveness do not affect plant invasiveness.
Keet, Jan-Hendrik; Ellis, Allan G; Hui, Cang; Le Roux, Johannes J
2017-06-01
The ability to fix atmospheric nitrogen is thought to play an important role in the invasion success of legumes. Interactions between legumes and nitrogen-fixing bacteria (rhizobia) span a continuum of specialization, and promiscuous legumes are thought to have higher chances of forming effective symbioses in novel ranges. Using Australian Acacia species in South Africa, it was hypothesized that widespread and highly invasive species will be more generalist in their rhizobial symbiotic requirements and more effective in fixing atmospheric nitrogen compared with localized and less invasive species. To test these hypotheses, eight localized and 11 widespread acacias were examined using next-generation sequencing data for the nodulation gene, nodC , to compare the identity, species richness, diversity and compositional similarity of rhizobia associated with these acacias. Stable isotope analysis was also used to determine levels of nitrogen obtained from the atmosphere via symbiotic nitrogen fixation. No differences were found in richness, diversity and community composition between localized and widespread acacias. Similarly, widespread and localized acacias did not differ in their ability to fix atmospheric nitrogen. However, for some species by site comparisons, significant differences in δ15N isotopic signatures were found, indicating differential symbiotic effectiveness between these species at specific localities. Overall, the results support recent findings that root nodule rhizobial diversity and community composition do not differ between acacias that vary in their invasiveness. Differential invasiveness of acacias in South Africa is probably linked to attributes such as differences in propagule pressure, reasons for (e.g. forestry vs. ornamental) and extent of, plantings in the country. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Herpetofaunal species composition and relative abundance among three New England forest types
Richard M. DeGraaf; Deborah D. Rudis
1990-01-01
Drift fences and pitfall traps captured > 2000 reptiles and amphibians during 2 years; the most common species were wood frog (Rana sylvatica), American toad (Bufo americanus), and redback salamander (Plethodon cinereus). There were differences in species abundances among streamside and upland...
Variability of community interaction networks in marine reserves and adjacent exploited areas
Montano-Moctezuma, G.; Li, H.W.; Rossignol, P.A.
2008-01-01
Regional and small-scale local oceanographic conditions can lead to high variability in community structure even among similar habitats. Communities with identical species composition can depict distinct networks due to different levels of disturbance as well as physical and biological processes. In this study we reconstruct community networks in four different areas off the Oregon Coast by matching simulated communities with observed dynamics. We compared reserves with harvested areas. Simulations suggested that different community networks, but with the same species composition, can represent each study site. Differences were found in predator-prey interactions as well as non-predatory interactions between community members. In addition, each site can be represented as a set of models, creating alternative stages among sites. The set of alternative models that characterize each study area depicts a sequence of functional responses where each specific model or interaction structure creates different species composition patterns. Different management practices, either in the past or of the present, may lead to alternative communities. Our findings suggest that management strategies should be analyzed at a community level that considers the possible consequences of shifting from one community scenario to another. This analysis provides a novel conceptual framework to assess the consequences of different management options for ecological communities. ?? 2008 Elsevier B.V. All rights reserved.
Spring bird migration in Mississippi Alluvial Valley forests
Wilson, R. Randy; Twedt, Daniel J.
2003-01-01
We surveyed forest songbirds during migration in bottomland hardwood forest stands and managed cottonwood (Populus deltoides) plantations in northeast Louisiana and west-central Mississippi between 24 March and 24 May 1996 and 1997. We detected more bird species in bottomland hardwood stands than in cottonwood stands. Within hardwood stands, we detected more individuals in stands subjected to uneven-aged timber harvest than in unmanaged stands. Early in migration, avian species composition was similar in both forest types, being comprised mainly of short-distance migrants. Bird species composition in these forest types became increasingly disparate as long-distance neotropical-nearctic migrants arrived. Ten bird species were characteristic of bottomland hardwood forests, whereas eight different species were characteristic of managed cottonwood plantations. Because these two forest types supported different bird communities, both forest types provide important inland stopover habitat during migration. Silvicultural management of bottomland hardwood forests that increases their understory vegetation will provide forested habitat for a more species rich and abundant population of songbirds during migration.
Marine predator surveys in Glacier Bay National Park and Preserve
Bodkin, James L.; Kloecker, Kimberly A.; Coletti, Heather A.; Esslinger, George G.; Monson, Daniel H.; Ballachey, Brenda E.
2002-01-01
Since 1999, vessel based surveys to estimate species composition, distribution and relative abundance of marine birds and mammals have been conducted along coastal and pelagic (offshore) transects in Glacier Bay, Alaska. Surveys have been conducted during winter (November-March) and summer (June). This annual report presents the results of those surveys conducted in March and June of 2001. Following completion of surveys in 2002 we will provide a final report of the results of all surveys conducted between 1999 and 2002.Glacier Bay supports diverse and abundant assemblages of marine birds and mammals. In 2001 we identified 58 species of bird, 7 species of marine mammal, and 6 species of terrestrial mammal on transects sampled during winter and summer. Of course all species are not equally abundant. Among all taxa, in both seasons, sea ducks were the numerically dominant group. In their roles as consumers and because of their generally large size, marine mammals are also likely important in the consumption of energy produced in the Glacier Bay ecosystem. Most common and abundant marine birds and mammals can be placed in either a fish based (e.g. alcids and pinnipeds), or a benthic invertebrate (e.g. sea ducks and sea otters) based food web.Distinct differences in the species composition and abundance of marine birds were observed between winter and summer surveys. Winter marine bird assemblages were dominated numerically (> 11,000; 65% of all birds) by a relatively few species of sea ducks (scoters, goldeneye, Bufflehead, Harlequin and Long-tailed ducks). The sea ducks were distributed almost exclusively along near shore habitats. The prevalence of sea ducks during the March surveys indicates the importance of Glacier Bay as a wintering area for this poorly understood group of animals that occupy a high trophic position in a principally benthic invertebrate (mussel and clam) food web. Marine mammal assemblages were generally consistent between seasons, although Humpback and Killer whales were not observed in winter 2001.Summer marine bird assemblages remained numerically dominated by sea ducks, but species composition shifted between the goldeneye whose density was 44/m2 in winter to < 0.2/m2 in summer, to scoters, whose density was 29/m2 in winter to > 60/m2 in summer. Large increases in Black-legged kittiwake, murrelet (Marbled and Kittlitz’s) and Common merganser densities were detected during summer surveys. Seasonal differences in abundance of species likely reflected differences in life history attributes (e.g. reproductive biology, foraging ecology) among species.Because of differences observed in species composition between the winter and summer, it is apparent that a single annual survey cannot accurately describe the populations of marine birds and mammals that occur in Glacier Bay. Preliminary analysis further suggests that interpretations of data resulting from this type of survey may depend to a large extent on the individual species. Because species exhibit differences in behavior, morphology, coloration, and distribution, accuracy and precision of abundance estimates likely vary among species. Confidence in survey results should be evaluated in consideration of life history and detection probabilities at the species level. However, survey results likely provide reasonable estimates of species composition and relative abundance, as well as accurate abundance estimates for those species whose detection closely approximates one.
Olaniyi, Wasiu A; Makinde, Olukayode A; Omitogun, Ofelia G
2017-03-01
Clariid catfish are favorite food fish especially in African and Asian continents. Recently there has been preference for particular species or hybrids of these species based on quality assurance and value addition. Consequently, this study aimed to evaluate the possible effect of different catfish species and their hybrids on proximate composition and sensory attributes. Catfish species, Clarias gariepinus (CC), Heterobranchus bidorsalis (HH), with their hybrid (CH), and reciprocal hybrid (HC) were evaluated for sensory variables - cognitive (sweet, salty, sour, bitter, and recent characteristic taste 'umami' ) and qualitative (texture, aroma, flavor, and color) tests; and nutritional variables - proximate composition (moisture, protein, ether/fat, and ash). A 5-point hedonic scale from 'neutral/neither like nor dislike' to 'excellent/like extremely' was employed in sensory testing. The results showed similar ( P > 0.05) high moisture contents (>70%) in all species and high but different ( P < 0.05) ash contents (11-14%) that suggested good sources of mineral elements. The parent species CC and HH had higher ash contents than CH or HC. The crude protein contents were high and similar ( P > 0.05) across species (>57%). Fat or ether extract was different ( P < 0.05) and tended to be higher for species with Clarias as the female parent than Heterobranchus . Sensory analysis showed the parent species, CC and HH, more favorably rated for sweet and umami than the hybrids, CH and HC. However, CH was less sour and bitter than all other species and HC better than CH for salty but similar to CC and HH. All fish species were very well liked for texture, but the parent species were superior in flavor than the hybrids. All species were very well liked for aroma, color, and overall acceptability except HC, which was moderately liked. HC rated inferior to the other species overall in sensory attributes. All the fish species did not rate 'excellent/like extremely' for any attribute. It can be concluded that the parent catfish species possess better sensory qualities than hybrids, but all species need exogenous enhancement to their natural sensory components.
Chen, Xu; Bu, Zhaojun; Stevenson, Mark A; Cao, Yanmin; Zeng, Linghan; Qin, Bo
2016-10-15
Peatlands are a specialized type of organic wetlands, fulfilling essential roles as global carbon sinks, headwaters of rivers and biodiversity hotspots. Despite their importance, peatlands are being lost at an alarming rate due to human disturbance and climatic variability. Both the scientific and regulatory communities have focused considerable attention on developing tools for assessing environmental changes in peatlands. Diatoms are widely used in biomonitoring studies of lakes, rivers and streams as they have high abundance, specific ecological preferences and can respond rapidly to environmental change. However, diatom-based assessment studies in peatlands remain limited. The aims of this study were to identify indicator species and genus for three types of habitats (hummocks, hollows and ditch edges) in peatlands (central China), to examine the effects of physiochemical factors on diatom composition at genus and species levels, and to compare the efficiency of species- and genus-level identification in environmental assessment. Our results revealed that hummocks were characterized by drought-tolerant diatoms, while hollows were dominated by species and genus preferring wet conditions. Ditch edges were characterized by diatoms with different life strategies. Depth to water table, redox potential, conductivity and calcium were significant predictors of both genus- and species-level composition. According to ordination analyses, pH was not correlated with species composition while it was a significant factor associated with genus-level composition. Genus-level composition outperformed species composition in describing the response of diatoms to environmental variables. Our results indicate that diatoms can be useful environmental indicators of peatlands, and show that genus-level taxonomic analysis can be a potential tool for assessing environmental change in peatlands. Copyright © 2016 Elsevier B.V. All rights reserved.
Local individual preferences for nest materials in a passerine bird.
Mennerat, Adèle; Perret, Philippe; Lambrechts, Marcel M
2009-01-01
Variation in the behavioural repertoire of animals is acquired by learning in a range of animal species. In nest-building birds, the assemblage of nest materials in an appropriate structure is often typical of a bird genus or species. Yet plasticity in the selection of nest materials may be beneficial because the nature and abundance of nest materials vary across habitats. Such plasticity can be learned, either individually or socially. In Corsican populations of blue tits Cyanistes caeruleus, females regularly add in their nests fragments of several species of aromatic plants during the whole breeding period. The selected plants represent a small fraction of the species present in the environment and have positive effects on nestlings. We investigated spatiotemporal variations of this behaviour to test whether the aromatic plant species composition in nests depends on 1) plant availability in territories, 2) female experience or 3) female identity. Our results indicate that territory plays a very marginal role in the aromatic plant species composition of nests. Female experience is not related to a change in nest plant composition. Actually, this composition clearly depends on female identity, i.e. results from individual preferences which, furthermore, are repeatable both within and across years. A puzzling fact is the strong difference in plant species composition of nests across distinct study plots. This study demonstrates that plant species composition of nests results from individual preferences that are homogeneous within study plots. We propose several hypotheses to interpret this pattern of spatial variation before discussing them in the light of preliminary results. As a conclusion, we cannot exclude the possibility of social transmission of individual preferences for aromatic plants. This is an exciting perspective for further work in birds, where nest construction behaviour has classically been considered as a stereotypic behaviour.
Cheng, Xia-Lan; Yuan, Lang-Xing; Nizamani, Mir Mohammad; Zhu, Zhi-Xin; Friedman, Cynthia Ross; Wang, Hua-Feng
2018-01-01
Anthropogenic processes and socio-economic factors play important roles in shaping plant diversity in urban parks. To investigate how plant diversity of Ma' anling urban volcano park in Hainan Province, China respond to these factors, we carried out a field investigation on the taxonomic and phylogenetic diversity of vascular plants and soil properties in this area. We found 284 species of vascular plants belonging to 88 families and 241 genera, which included 194 native species, 23 invasive species, 31 naturalized species, 40 cultivars, and 4 rare / endangered plant species. Tree composition and richness significantly varied between different vegetation formations (plantation, secondary forest, and abandoned land). Plant species richness and community composition were significantly affected by elevation (El), soil water content (WC), total soil nitrogen (TN) and soil organic matter (SOM). There were significant diversity differences between plantations and abandoned lands, but not between the plantations and secondary forests. The flora in the study site was tropical in nature, characterized by pantropic distributions. Compared to adjacent areas, floristic composition in the study site was most similar to that of Guangdong, followed by that of Vietnam. Our study revealed the diversity patterns of volcanic plants and provided the basis for future planning of plant conservation, such as preserving plant species, maintaining plant habitats, and coordinating plant management in this region.
CO2 flux studies of different hemiboreal forest ecosystems
NASA Astrophysics Data System (ADS)
Krasnova, Alisa; Krasnov, Dmitrii; Noe, Steffen M.; Uri, Veiko; Mander, Ülo; Niinemets, Ülo; Soosaar, Kaido
2017-04-01
Hemiboreal zone is a transition between boreal and temperate zones characterized by the combination of climatic and edaphic conditions inherent in both zones. Hemiboreal forests are typically presented by mixed forests types with different ratios of deciduous and conifer tree species. Dominating tree species composition affects the functioning of forest ecosystem and its influence on biogeochemical cycles. We present the result of ecosystem scale CO2 eddy-covariance fluxes research conducted in 4 ecosystems (3 forests sites and 1 clear-cut area) of hemiboreal zone in Estonia. All 4 sites were developing under similar climatic conditions, but different forest management practices resulted in different composition of dominating tree species: pine forest with spruce trees as a second layer (Soontaga site); spruce/birch forest with single alder trees (Liispõllu site); forest presented by sectors of pine, spruce, birch and clearcut areas (SMEAR Estonia site); 5-years old clearcut area (Kõnnu site).
Moore, Georgianne W; Bond, Barbara J; Jones, Julia A; Phillips, Nathan; Meinzer, Federick C
2004-05-01
Large areas of forests in the Pacific Northwest are being transformed to younger forests, yet little is known about the impact this may have on hydrological cycles. Previous work suggests that old trees use less water per unit leaf area or sapwood area than young mature trees of the same species in similar environments. Do old forests, therefore, use less water than young mature forests in similar environments, or are there other structural or compositional components in the forests that compensate for tree-level differences? We investigated the impacts of tree age, species composition and sapwood basal area on stand-level transpiration in adjacent watersheds at the H.J. Andrews Forest in the western Cascades of Oregon, one containing a young, mature (about 40 years since disturbance) conifer forest and the other an old growth (about 450 years since disturbance) forest. Sap flow measurements were used to evaluate the degree to which differences in age and species composition affect water use. Stand sapwood basal area was evaluated based on a vegetation survey for species, basal area and sapwood basal area in the riparian area of two watersheds. A simple scaling exercise derived from estimated differences in water use as a result of differences in age, species composition and stand sapwood area was used to estimate transpiration from late June through October within the entire riparian area of these watersheds. Transpiration was higher in the young stand because of greater sap flux density (sap flow per unit sapwood area) by age class and species, and greater total stand sapwood area. During the measurement period, mean daily sap flux density was 2.30 times higher in young compared with old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees. Sap flux density was 1.41 times higher in young red alder (Alnus rubra Bong.) compared with young P. menziesii trees, and was 1.45 times higher in old P. menziesii compared with old western hemlock (Tsuga heterophylla (Raf.) Sarg.) trees. Overall, sapwood basal area was 21% higher in the young stand than in the old stand. In the old forest, T. heterophylla is an important co-dominant, accounting for 58% of total sapwood basal area, whereas P. menziesii is the only dominant conifer in the young stand. Angiosperms accounted for 36% of total sapwood basal area in the young stand, but only 7% in the old stand. For all factors combined, we estimated 3.27 times more water use by vegetation in the riparian area of the young stand over the measurement period. Tree age had the greatest effect on stand differences in water use, followed by differences in sapwood basal area, and finally species composition. The large differences in transpiration provide further evidence that forest management alters site water balance via elevated transpiration in vigorous young stands.
Burson, Amanda; Stomp, Maayke; Greenwell, Emma; Grosse, Julia; Huisman, Jef
2018-05-01
A key challenge in ecology is to understand how nutrients and light affect the biodiversity and community structure of phytoplankton and plant communities. According to resource competition models, ratios of limiting nutrients are major determinants of species composition. At high nutrient levels, however, species interactions may shift to competition for light, which might make nutrient ratios less relevant. The "nutrient-load hypothesis" merges these two perspectives, by extending the classic model of competition for two nutrients to include competition for light. Here, we test five key predictions of the nutrient-load hypothesis using multispecies competition experiments. A marine phytoplankton community sampled from the North Sea was inoculated in laboratory chemostats provided with different nitrogen (N) and phosphorus (P) loads to induce either single resource limitation or co-limitation of N, P, and light. Four of the five predictions were validated by the experiments. In particular, different resource limitations favored the dominance of different species. Increasing nutrient loads caused changes in phytoplankton species composition, even if the N:P ratio of the nutrient loads remained constant, by shifting the species interactions from competition for nutrients to competition for light. In all treatments, small species became dominant whereas larger species were competitively excluded, supporting the common view that small cell size provides a competitive advantage under resource-limited conditions. Contrary to expectation, all treatments led to coexistence of diatoms, cyanobacteria and green algae, resulting in a higher diversity of species than predicted by theory. Because the coexisting species comprised three phyla with different photosynthetic pigments, we speculate that niche differentiation in the light spectrum might play a role. Our results show that mechanistic resource competition models that integrate nutrient-based and light-based approaches provide an important step forward to understand and predict how changing nutrient loads affect community composition. © 2018 The Authors Ecology published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.
Bros, Vicenç; Brotons, Lluís; De Mas, Eva; Herraiz, Joan A.; Herrando, Sergi; Miño, Àngel; Olmo-Vidal, Josep M.; Quesada, Javier; Ribes, Jordi; Sabaté, Santiago; Sauras-Yera, Teresa; Serra, Antoni; Vallejo, V. Ramón; Viñolas, Amador
2014-01-01
Fire is a major agent involved in landscape transformation and an indirect cause of changes in species composition. Responses to fire may vary greatly depending on life histories and functional traits of species. We have examined the taxonomic and functional responses to fire of eight taxonomic animal groups displaying a gradient of dietary and mobility patterns: Gastropoda, Heteroptera, Formicidae, Coleoptera, Araneae, Orthoptera, Reptilia and Aves. The fieldwork was conducted in a Mediterranean protected area on 3 sites (one unburnt and two burnt with different postfire management practices) with five replicates per site. We collected information from 4606 specimens from 274 animal species. Similarity in species composition and abundance between areas was measured by the Bray-Curtis index and ANOSIM, and comparisons between animal and plant responses by Mantel tests. We analyze whether groups with the highest percentage of omnivorous species, these species being more generalist in their dietary habits, show weak responses to fire (i.e. more similarity between burnt and unburnt areas), and independent responses to changes in vegetation. We also explore how mobility, i.e. dispersal ability, influences responses to fire. Our results demonstrate that differences in species composition and abundance between burnt and unburnt areas differed among groups. We found a tendency towards presenting lower differences between areas for groups with higher percentages of omnivorous species. Moreover, taxa with a higher percentage of omnivorous species had significantly more independent responses of changes in vegetation. High- (e.g. Aves) and low-mobility (e.g. Gastropoda) groups had the strongest responses to fire (higher R scores of the ANOSIM); however, we failed to find a significant general pattern with all the groups according to their mobility. Our results partially support the idea that functional traits underlie the response of organisms to environmental changes caused by fire. PMID:24516616
Santos, Xavier; Mateos, Eduardo; Bros, Vicenç; Brotons, Lluís; De Mas, Eva; Herraiz, Joan A; Herrando, Sergi; Miño, Àngel; Olmo-Vidal, Josep M; Quesada, Javier; Ribes, Jordi; Sabaté, Santiago; Sauras-Yera, Teresa; Serra, Antoni; Vallejo, V Ramón; Viñolas, Amador
2014-01-01
Fire is a major agent involved in landscape transformation and an indirect cause of changes in species composition. Responses to fire may vary greatly depending on life histories and functional traits of species. We have examined the taxonomic and functional responses to fire of eight taxonomic animal groups displaying a gradient of dietary and mobility patterns: Gastropoda, Heteroptera, Formicidae, Coleoptera, Araneae, Orthoptera, Reptilia and Aves. The fieldwork was conducted in a Mediterranean protected area on 3 sites (one unburnt and two burnt with different postfire management practices) with five replicates per site. We collected information from 4606 specimens from 274 animal species. Similarity in species composition and abundance between areas was measured by the Bray-Curtis index and ANOSIM, and comparisons between animal and plant responses by Mantel tests. We analyze whether groups with the highest percentage of omnivorous species, these species being more generalist in their dietary habits, show weak responses to fire (i.e. more similarity between burnt and unburnt areas), and independent responses to changes in vegetation. We also explore how mobility, i.e. dispersal ability, influences responses to fire. Our results demonstrate that differences in species composition and abundance between burnt and unburnt areas differed among groups. We found a tendency towards presenting lower differences between areas for groups with higher percentages of omnivorous species. Moreover, taxa with a higher percentage of omnivorous species had significantly more independent responses of changes in vegetation. High- (e.g. Aves) and low-mobility (e.g. Gastropoda) groups had the strongest responses to fire (higher R scores of the ANOSIM); however, we failed to find a significant general pattern with all the groups according to their mobility. Our results partially support the idea that functional traits underlie the response of organisms to environmental changes caused by fire.
Neves, F S; Queiroz-Dantas, K S; da Rocha, W D; Delabie, J H C
2013-06-01
Habitat heterogeneity and complexity associated with variations in climatic conditions are important factors determining the structure of ant communities in different terrestrial ecosystems. The objective of this study was to describe the horizontal and vertical distribution patterns of the ant community associated with three adjacent habitats in a transition area between the Cerrado and Caatinga biomes at the Pandeiros River, state of Minas Gerais, Brazil. We tested the following hypotheses: (1) the richness and composition of ant species and functional group structure changes between different habitats and strata; (2) habitats with higher tree species richness and density support higher ant species richness; and (3) habitats with lower variation in canopy cover support higher ant species richness. Sampling was conducted in three adjacent habitats and at three vertical strata. Ant species richness was significantly different among vertical strata. Ant species composition was different among both habitats and vertical strata and functional group structure was divergent among habitats. Partitioning of the diversity revealed that the diversity for the three components was statistically different from the one expected by the null model; α and β 2 were higher and β 1 was lower than the values expected by chance. Tree density and variation in canopy cover negatively affected ant species richness. The occurrence of different species and the changing of functional group structures in different habitats and strata suggest an ecological-evolutionary relationship between ants and their habitats and emphasize the need to implement local conservation strategies in the ecotones between biomes.
Chong, Geneva W.; Allen, Leslie A.
2012-01-01
Climate change models for the northern Rocky Mountains predict changes in temperature and water availability that in turn will alter vegetation. Changes include timing of plant life-history events, or phenology, such as green-up, flowering and senescence, and shifts in species composition. Moreover, climate changes may favor different species, such as nonnative, annual grasses over native species. Changes in vegetation could make forage for ungulates, sage-grouse, and livestock available earlier in the growing season, but shifts in species composition and phenology may also result in earlier senescence (die-off or dormancy) and reduced overall forage production.
Abella, Scott R; Chiquoine, Lindsay P; Backer, Dana M
2013-10-01
Ecological conditions following removal of exotic plants are a key part of comprehensive environmental management strategies to combat exotic plant invasions. We examined ecological conditions following removal of the management-priority buffelgrass (Pennisetum ciliare) in Saguaro National Park of the North American Sonoran Desert. We assessed soil, vegetation, and soil seed banks on seven buffelgrass site types: five different frequencies of buffelgrass herbicide plus hand removal treatments (ranging from 5 years of annual treatment to a single year of treatment), untreated sites, and non-invaded sites, with three replicates for each of the seven site types. The 22 measured soil properties (e.g., pH) differed little among sites. Regarding vegetation, buffelgrass cover was low (≤1% median cover), or absent, across all treated sites but was high (10-70%) in untreated sites. Native vegetation cover, diversity, and composition were indistinguishable across site types. Species composition was dominated by native species (>93% relative cover) across all sites except untreated buffelgrass sites. Most (38 species, 93%) of the 41 species detected in soil seed banks were native, and native seed density did not differ significantly across sites. Results suggest that: (1) buffelgrass cover was minimal across treated sites; (2) aside from high buffelgrass cover in untreated sites, ecological conditions were largely indistinguishable across sites; (3) soil seed banks harbored ≥12 species that were frequent in the aboveground vegetation; and (4) native species dominated post-treatment vegetation composition, and removing buffelgrass did not result in replacement by other exotic species.
NASA Astrophysics Data System (ADS)
Abella, Scott R.; Chiquoine, Lindsay P.; Backer, Dana M.
2013-10-01
Ecological conditions following removal of exotic plants are a key part of comprehensive environmental management strategies to combat exotic plant invasions. We examined ecological conditions following removal of the management-priority buffelgrass ( Pennisetum ciliare) in Saguaro National Park of the North American Sonoran Desert. We assessed soil, vegetation, and soil seed banks on seven buffelgrass site types: five different frequencies of buffelgrass herbicide plus hand removal treatments (ranging from 5 years of annual treatment to a single year of treatment), untreated sites, and non-invaded sites, with three replicates for each of the seven site types. The 22 measured soil properties (e.g., pH) differed little among sites. Regarding vegetation, buffelgrass cover was low (≤1 % median cover), or absent, across all treated sites but was high (10-70 %) in untreated sites. Native vegetation cover, diversity, and composition were indistinguishable across site types. Species composition was dominated by native species (>93 % relative cover) across all sites except untreated buffelgrass sites. Most (38 species, 93 %) of the 41 species detected in soil seed banks were native, and native seed density did not differ significantly across sites. Results suggest that: (1) buffelgrass cover was minimal across treated sites; (2) aside from high buffelgrass cover in untreated sites, ecological conditions were largely indistinguishable across sites; (3) soil seed banks harbored ≥12 species that were frequent in the aboveground vegetation; and (4) native species dominated post-treatment vegetation composition, and removing buffelgrass did not result in replacement by other exotic species.
Seasonal dynamics of ant community structure in the Moroccan Argan Forest.
El Keroumi, Abderrahim; Naamani, Khalid; Soummane, Hassna; Dahbi, Abdallah
2012-01-01
In this study we describe the structure and composition of ant communities in the endemic Moroccan Argan forest, using pitfall traps sampling technique throughout the four seasons between May 2006 and February 2007. The study focused on two distinct climatic habitats within the Essaouira Argan forest, a semi-continental site at Lahssinate, and a coastal site at Boutazarte. Thirteen different ant species were identified, belonging to seven genera. Monomorium subopacum Smith and Tapinoma simrothi Krausse-Heldrungen (Hymenoptera: Formicidae) were the most abundant and behaviorally dominant ant species in the arganeraie. In addition, more specimens were captured in the semi-continental site than in the coastal area. However, no significant difference was observed in species richness, evenness, or diversity between both sites. Composition and community structure showed clear seasonal dynamics. The number of species, their abundance, their diversity, and their evenness per Argan tree were significantly dissimilar among seasons. The richness (except between summer and autumn), and the abundance and the evenness of ant species among communities, showed a significant difference between the dry period (summer and spring) and the rainy period (winter and autumn). Higher abundance and richness values occurred in the dry period of the year. Ant species dominance and seasonal climatic variations in the arganeraie might be among the main factors affecting the composition, structure, and foraging activity of ant communities. This study, together with recent findings on ant predation behavior below Argan trees, highlights the promising use of dominant ant species as potential agents of Mediterranean fruit fly bio-control in the Argan forest and surrounding ecosystems.
Butterfly responses to prairie restoration through fire and grazing
Vogel, Jennifer A.; Debinski, Diane M.; Koford, Rolf R.; Miller, J.R.
2007-01-01
The development of land for modern agriculture has resulted in losses of native prairie habitat. The small, isolated patches of prairie habitat that remain are threatened by fire suppression, overgrazing, and invasion by non-native species. We evaluated the effects of three restoration practices (grazing only, burning only, and burning and grazing) on the vegetation characteristics and butterfly communities of remnant prairies. Total butterfly abundance was highest on prairies that were managed with burning and grazing and lowest on those that were only burned. Butterfly species richness did not differ among any of the restoration practices. Butterfly species diversity was highest on sites that were only burned. Responses of individual butterfly species to restoration practices were highly variable. In the best predictive regression model, total butterfly abundance was negatively associated with the percent cover of bare ground and positively associated with the percent cover of forbs. Canonical correspondence analysis revealed that sites with burned only and grazed only practices could be separated based on their butterfly community composition. Butterfly communities in each of the three restoration practices are equally species rich but different practices yield compositionally different butterfly communities. Because of this variation in butterfly species responses to different restoration practices, there is no single practice that will benefit all species or even all species within habitat-specialist or habitat-generalist habitat guilds. ?? 2007 Elsevier Ltd. All rights reserved.
Lazzi, C; Rossetti, L; Zago, M; Neviani, E; Giraffa, G
2004-01-01
To detect bacteria present in controlled dairy ecosystems with defined composition by length-heterogeneity (LH)-PCR. LH-PCR allows to distinguish different organisms on the basis of natural variations in the length of 16S rRNA gene sequences. LH-PCR was applied to depict population structure of the lactic acid bacteria (LAB) species recoverable from Grana Padano cheese whey starters. Typical bacterial species present in the LAB community were evidenced and well discriminated. Small differences in species composition, e.g. the frequent finding of Streptococcus thermophilus and the constant presence of thermophilic lactobacilli (Lactobacillus helveticus, Lact. delbrueckii subsp. lactis/bulgaricus and Lact. fermentum) were reliably highlighted. Specificity of LH-PCR was confirmed by species-specific PCR from total DNA of the cultures. LH-PCR is a useful tool to monitor microbial composition and population dynamics in dairy starter cultures. When present, non-dominant bacterial species present in the whey starters, such as Strep. thermophilus, can easily be visualized and characterized without isolating and cultivating single strains. A similar approach can be applied to more complex dairy ecosystems such as milk or cheese curd. Community members and differences in population structure of controlled dairy ecosystems such as whey starters for hard cheeses can be evaluated and compared in a relative easy, fast, reliable and highly reproducible way.
Vivanco, Lucía; Rascovan, Nicolás; Austin, Amy T
2018-01-01
Plant-microbial interactions in the litter layer represent one of the most relevant interactions for biogeochemical cycling as litter decomposition is a key first step in carbon and nitrogen turnover. However, our understanding of these interactions in the litter layer remains elusive. In an old-growth mixed Nothofagus forest in Patagonia, we studied the effects of single tree species identity and the mixture of three tree species on the fungal and bacterial composition in the litter layer. We also evaluated the effects of nitrogen (N) addition on these plant-microbial interactions. In addition, we compared the magnitude of stimulation of litter decomposition due to home field advantage (HFA, decomposition occurs more rapidly when litter is placed beneath the plant species from which it had been derived than beneath a different plant species) and N addition that we previously demonstrated in this same forest, and used microbial information to interpret these results. Tree species identity had a strong and significant effect on the composition of fungal communities but not on the bacterial community of the litter layer. The microbial composition of the litter layer under the tree species mixture show an averaged contribution of each single tree species. N addition did not erase the plant species footprint on the fungal community, and neither altered the bacterial community. N addition stimulated litter decomposition as much as HFA for certain tree species, but the mechanisms behind N and HFA stimulation may have differed. Our results suggest that stimulation of decomposition from N addition might have occurred due to increased microbial activity without large changes in microbial community composition, while HFA may have resulted principally from plant species' effects on the litter fungal community. Together, our results suggest that plant-microbial interactions can be an unconsidered driver of litter decomposition in temperate forests.
Intestinal microbiota composition in fishes is influenced by host ecology and environment.
Wong, Sandi; Rawls, John F
2012-07-01
The digestive tracts of vertebrates are colonized by complex assemblages of micro-organisms, collectively called the gut microbiota. Recent studies have revealed important contributions of gut microbiota to vertebrate health and disease, stimulating intense interest in understanding how gut microbial communities are assembled and how they impact host fitness (Sekirov et al. 2010). Although all vertebrates harbour a gut microbiota, current information on microbiota composition and function has been derived primarily from mammals. Comparisons of different mammalian species have revealed intriguing associations between gut microbiota composition and host diet, anatomy and phylogeny (Ley et al. 2008b). However, mammals constitute <10% of all vertebrate species, and it remains unclear whether similar associations exist in more diverse and ancient vertebrate lineages such as fish. In this issue, Sullam et al. (2012) make an important contribution toward identifying factors determining gut microbiota composition in fishes. The authors conducted a detailed meta-analysis of 25 bacterial 16S rRNA gene sequence libraries derived from the intestines of different fish species. To provide a broader context for their analysis, they compared these data sets to a large collection of 16S rRNA gene sequence data sets from diverse free-living and host-associated bacterial communities. Their results suggest that variation in gut microbiota composition in fishes is strongly correlated with species habitat salinity, trophic level and possibly taxonomy. Comparison of data sets from fish intestines and other environments revealed that fish gut microbiota compositions are often similar to those of other animals and contain relatively few free-living environmental bacteria. These results suggest that the gut microbiota composition of fishes is not a simple reflection of the micro-organisms in their local habitat but may result from host-specific selective pressures within the gut (Bevins & Salzman 2011).
Jacoboski, L I; Mendonça-Lima, A de; Hartz, S M
2016-04-19
Replacement of native habitats by tree plantations has increased dramatically in Brazil, resulting in loss of structural components for birds, such as appropriate substrates for foraging and nesting. Tree plantations can also reduce faunal richness and change the composition of bird species. This study evaluated the structure of avian communities in eucalyptus plantations of different ages and in a native forest. We classified species as habitat specialists or generalists, and assessed if the species found in eucalyptus plantations are a subset of the species that occur in the native forest. Forty-one sampling sites were evaluated, with three point counts each, in a native forest and in eucalyptus plantations of four different ages. A total of 71 bird species were identified. Species richness and abundance were higher in the native forest, reflecting the greater heterogeneity of the habitat. The composition of bird species also differed between the native forest and plantations. The species recorded in the plantations represented a subset of the species of the native forest, with a predominance of generalist species. These species are more tolerant of habitat changes and are able to use the plantations. The commercial plantations studied here can serve as a main or occasional habitat for these generalists, especially for those that are semi-dependent on edge and forest. The bird species most affected by silviculture are those that are typical of open grasslands, and those that are highly dependent on well-preserved forests.
Differences in species richness patterns between unicellular and multicellular organisms.
Hillebrand, Helmut; Watermann, Frank; Karez, Rolf; Berninger, Ulrike-G
2001-01-01
For unicellular organisms, a lack of effects of local species richness on ecosystem function has been proposed due to their locally high species richness and their ubiquitous distribution. High dispersal ability and high individual numbers may enable unicellular taxa to occur everywhere. Using our own and published data sets on uni- and multicellular organisms, we conducted thorough statistical analyses to test whether (1) unicellular taxa show higher relative local species richness compared to multicellular taxa, (2) unicellular taxa show lower slopes of the species:area relationships and species:individuals relationships, and (3) the species composition of unicellular taxa is less influenced by geographic distance compared to multicellular taxa. We found higher local species richness compared to the global species pool for unicellular organisms than for metazoan taxa. The difference was significant if global species richness was conservatively estimated but not if extrapolated, and therefore higher richness estimates were used. Both microalgae and protozoans showed lower slopes between species richness and sample size (area or individuals) compared to macrozoobenthos, also indicating higher local species richness for unicellular taxa. The similarity of species composition of both benthic diatoms and ciliates decreased with increasing geographic distance. This indicated restricted dispersal ability of protists and the absence of ubiquity. However, a steeper slope between similarity and distance was found for polychaetes and corals, suggesting a stronger effect of distance on the dispersal of metazoans compared to unicellular taxa. In conclusion, we found partly different species richness patterns among uni- and multicellular eukaryotes, but no strict ubiquity of unicellular taxa. Therefore, the effect of local unicellular species richness on ecosystem function has to be reanalyzed. Macroecological patterns suggested for multicellular organisms may differ in unicellular communities.
Tree Regeneration Under Different Land-Use Mosaics in the Brazilian Amazon's "Arc of Deforestation".
Do Vale, Igor; Miranda, Izildinha Souza; Mitja, Danielle; Grimaldi, Michel; Nelson, Bruce Walker; Desjardins, Thierry; Costa, Luiz Gonzaga Silva
2015-08-01
We studied the tree-regeneration patterns in three distinct agricultural settlements in the Eastern Amazon to test the influence of land-use mosaics. The following questions are addressed: are the floristic structure and composition of regenerating trees affected by the various land-use types applied in the agricultural settlements? Do tree-regeneration patterns respond similarly to distinct land-use mosaics? Is there a relationship between tree regeneration and soil characteristics among the land-use types? The regeneration was inventoried at 45 sampling points in each settlement. At each sampling point, fourteen soil variables were analyzed. Nine different land-use types were considered. The floristic structure and composition of the settlements showed differences in the density of individuals and species and high species heterogeneity among the land-use types. The maximum Jaccard similarity coefficient found between land-use types was only 29%. Shade-tolerant species were the most diverse functional group in most land-use types, including pasture and annual crops, ranging from 91% of the number of species in the conserved and exploited forests of Travessão 338-S to 53% in the invaded pastures of Maçaranduba. The land-use types influenced significantly the floristic structure and composition of regenerating trees in two agricultural settlements, but not in third the settlement, which had greater forest cover. This finding demonstrates that the composition of each land-use mosaic, established by different management approaches, affects regeneration patterns. Tree regeneration was related to soil characteristics in all mosaics. Preparation of the area by burning was most likely the determining factor in the differences in soil characteristics between forests and agricultural areas.
Ant diversity in Brazilian tropical dry forests across multiple vegetation domains
NASA Astrophysics Data System (ADS)
Figueiredo Silva, Luciana; Mello Souza, Rayana; Solar, Ricardo R. C.; de Siqueira Neves, Frederico
2017-03-01
Understanding the environmental drivers of biodiversity persistence and community organization in natural ecosystems is of great importance for planning the conservation of those ecosystems. This comprehension is even more important in severely threatened ecosystems. In this context, we analyzed ant communities in tropical dry forests (TDFs) in Brazil. These forests are embedded within other biomes, such as Cerrado and Caatinga. In this study, we asked whether (i) ant species richness and composition changes between TDFs within different vegetation domains; (ii) whether ant species richness and β-diversity increase north-to-south, possibly related to changes in tree richness and tree density; and (iii) species replacement contributes relatively more to β-diversity than does nestedness. We found that species composition is unique to each TDF within different biomes, and that species richness and β-diversity differ among the vegetation domains, being smaller in the Caatinga. We also found that replacement contributes most to β-diversity, although this contribution is lower in Caatinga than in Cerrado. We show that regional context is the main driver of species diversity, which is likely to be driven by both historical and ecological mechanisms. By analyzing large spatial scale variation in TDF environmental characteristics, we were able to evaluate how ant diversity changes along an environmental gradient. The high levels of species replacement and unique species composition of each region indicates that, to fully conserve TDFs, we need to have various conservation areas distributed across the entire range of vegetation domains in which these forests can be found. Thus, we demonstrate that a landscape-wise planning is urgent and necessary in order to preserve tropical dry forests.
Liu, M; Bagdade, J D; Subbaiah, P V
1995-08-01
To determine whether the specificity of lecithin: cholesterol acyltransferase (LCAT) influences the susceptibility to atherosclerosis, we compared the composition and in vitro synthesis of cholesteryl ester (CE) in the plasmas of 14 vertebrate species with varying predisposition to atherosclerosis. The susceptible species (Group I) had significantly higher ratios of 16:0 CE/20:4 CE in their plasma than the resistant species (Group II). The in vitro formation of labeled CE species in native plasma from labeled cholesterol correlated highly with the mass composition, showing that the LCAT reaction is the predominant source of plasma CE in all the animal species examined. Isolated LCATs from Group I species also synthesized CE with higher ratios of 16:0/20:4 than LCATs from Group II when egg phosphatidylcholine (PC) was used as the acyl donor. In addition, the Group I LCATs exhibited lower specificity towards sn-2-20:4 and sn-2-22:6 PCs, and higher specificity towards sn-2-18:2 PC species than Group II LCATs. With 16:0-20:4 PC as the substrate, all Group I LCATs synthesized more 16:0 CE than 20:4 CE, whereas all Group II LCATs, with the exception of dog enzyme, synthesized predominantly 20:4 CE, showing that the two types of LCAT have different positional specificities towards this PC. These results suggest that there are two classes of LCAT in nature that differ from each other in their substrate and positional specificities, possibly because of differences in their active-site architectures. We propose that the presence of one type of LCAT, which cannot efficiently transfer certain long chain polyunsaturated acyl groups and which consequently synthesizes more saturated CE, may increase the risk of atherosclerosis.
Large-scale dark diversity estimates: new perspectives with combined methods.
Ronk, Argo; de Bello, Francesco; Fibich, Pavel; Pärtel, Meelis
2016-09-01
Large-scale biodiversity studies can be more informative if observed diversity in a study site is accompanied by dark diversity, the set of absent although ecologically suitable species. Dark diversity methodology is still being developed and a comparison of different approaches is needed. We used plant data at two different scales (European and seven large regions) and compared dark diversity estimates from two mathematical methods: species co-occurrence (SCO) and species distribution modeling (SDM). We used plant distribution data from the Atlas Florae Europaeae (50 × 50 km grid cells) and seven different European regions (10 × 10 km grid cells). Dark diversity was estimated by SCO and SDM for both datasets. We examined the relationship between the dark diversity sizes (type II regression) and the overlap in species composition (overlap coefficient). We tested the overlap probability according to the hypergeometric distribution. We combined the estimates of the two methods to determine consensus dark diversity and composite dark diversity. We tested whether dark diversity and completeness of site diversity (log ratio of observed and dark diversity) are related to various natural and anthropogenic factors differently than simple observed diversity. Both methods provided similar dark diversity sizes and distribution patterns; dark diversity is greater in southern Europe. The regression line, however, deviated from a 1:1 relationship. The species composition overlap of two methods was about 75%, which is much greater than expected by chance. Both consensus and composite dark diversity estimates showed similar distribution patterns. Both dark diversity and completeness measures exhibit relationships to natural and anthropogenic factors different than those exhibited by observed richness. In summary, dark diversity revealed new biodiversity patterns which were not evident when only observed diversity was examined. A new perspective in dark diversity studies can incorporate a combination of methods.
Raman measurement of carotenoid composition in human skin
NASA Astrophysics Data System (ADS)
Ermakov, Igor V.; Ermakova, Maia R.; Gellermann, Werner
2004-07-01
The carotenoids lycopene and beta-carotene are powerful antioxidants in skin and are thought to act as scavengers for free radicals and singlet oxygen. The role of carotenoid species in skin health is of strong current interest. We demonstrate the possibility to use Resonance Raman spectroscopy for fast, non-invasive, highly specific, and quantitative detection of beta-carotene and lycopene in human skin. Analyzing Raman signals originating from the carbon-carbon double bond stretch vibrations of the carotenoid molecules under blue and green laser excitation, we were able to characterize quantitatively the relative concentrations of each carotenoid species in-vivo. In the selective detection, we take advantage of different Raman cross-section spectral profiles for beta-carotene and lycopene molecules, and obtain a quantitative assessment of individual long-chain carotenoid species in the skin rather than their cumulative levels. Preliminary dual-wavelength Raman measurements reveal significant differences in the carotenoid composition of different subjects. The technique holds promise for rapid screening of carotenoid compositions in human skin in large populations and may be suitable in clinical studies for assessing the risk for cutaneous diseases.
Schnoor, Tim; Bruun, Hans Henrik; Olsson, Pål Axel
2015-01-01
Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success of particular species will not inform on how plant communities respond ecologically to disturbance. We therefore evaluated vegetation development following disturbance by quantifying species richness, species composition and functional trait composition. Degraded calcareous sandy grassland was subjected to experimental disturbance treatments (ploughing or rotavation), and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration target. Species richness and functional diversity both increased in response to soil disturbance, and rotavation, but not ploughing, had a persistent positive effect on the occurrence of specialist species of calcareous sandy grassland. However, no type of soil disturbance caused the plant species composition to develop towards the target vegetation. The disturbance had an immediate and large impact on the vegetation, but the vegetation developed rapidly back towards the control sites. Plant functional composition analysis indicated that the treatments created habitats different both from control sites and target sites. Community-weighted mean Ellenberg indicator values suggested that the observed plant community response was at least partially due to an increase in nitrogen and water availability following disturbance. This study shows that a mild type of disturbance, such as rotavation, may be most successful in promoting specialist species in calcareous sandy grassland, but that further treatments are needed to reduce nutrient availability. We conclude that a functional trait based analysis provides additional information of the vegetation response and the abiotic conditions created, complementing the information from the species composition.
Schnoor, Tim; Bruun, Hans Henrik; Olsson, Pål Axel
2015-01-01
Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success of particular species will not inform on how plant communities respond ecologically to disturbance. We therefore evaluated vegetation development following disturbance by quantifying species richness, species composition and functional trait composition. Degraded calcareous sandy grassland was subjected to experimental disturbance treatments (ploughing or rotavation), and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration target. Species richness and functional diversity both increased in response to soil disturbance, and rotavation, but not ploughing, had a persistent positive effect on the occurrence of specialist species of calcareous sandy grassland. However, no type of soil disturbance caused the plant species composition to develop towards the target vegetation. The disturbance had an immediate and large impact on the vegetation, but the vegetation developed rapidly back towards the control sites. Plant functional composition analysis indicated that the treatments created habitats different both from control sites and target sites. Community-weighted mean Ellenberg indicator values suggested that the observed plant community response was at least partially due to an increase in nitrogen and water availability following disturbance. This study shows that a mild type of disturbance, such as rotavation, may be most successful in promoting specialist species in calcareous sandy grassland, but that further treatments are needed to reduce nutrient availability. We conclude that a functional trait based analysis provides additional information of the vegetation response and the abiotic conditions created, complementing the information from the species composition. PMID:25875745
Deepa S. Pureswaran; Richard W. Hofstetter; Brian T. Sullivan; Amanda M. Grady; Cavell Brownie
2016-01-01
When related species coexist, selection pressure should favor evolution of species recognition mechanisms to prevent interspecific pairing and wasteful reproductive encounters. We investigated the potential role of pheromone and acoustic signals in species recognition between two species of tree-killing bark beetles, the southern pine beetle, Dendroctonus frontalis...
Andrew M. Liebhold; Takehiko Yamanaka; Alain Roques; Sylvie Augustin; Steven L. Chown; Eckehard G. Brockerhoff; Petr Pysek
2016-01-01
Insects are among the world's most ecologically and economically important invasive species. Here we assemble inventories of native and nonnative species from 20 world regions and contrast relative numbers among these species assemblages. Multivariate ordination indicates that the distribution of species among insect orders is completely different between native...
Wang, Hui; Liu, Shi-Rong; Wang, Jing-Xin; Shi, Zuo-Min; Xu, Jia; Hong, Pi-Zheng; Ming, An-Gang; Yu, Hao-Long; Chen, Lin; Lu, Li-Hua; Cai, Dao-Xiong
2016-01-01
A strategic selection of tree species will shift the type and quality of litter input, and subsequently magnitude and composition of the soil organic carbon (SOC) through soil microbial community. We conducted a manipulative experiment in randomized block design with leaf litter inputs of four native subtropical tree species in a Pinus massoniana plantation in southern China and found that the chemical composition of SOC did not differ significantly among treatments until after 28 months of the experiment. Contrasting leaf litter inputs had significant impacts on the amounts of total microbial, Gram-positive bacterial, and actinomycic PLFAs, but not on the amounts of total bacterial, Gram-negative bacterial, and fungal PLFAs. There were significant differences in alkyl/O-alkyl C in soils among the leaf litter input treatments, but no apparent differences in the proportions of chemical compositions (alkyl, O-alkyl, aromatic, and carbonyl C) in SOC. Soil alkyl/O-alkyl C was significantly related to the amounts of total microbial, and Gram-positive bacterial PLFAs, but not to the chemical compositions of leaf litter. Our findings suggest that changes in forest leaf litter inputs could result in changes in chemical stability of SOC through the altered microbial community composition. PMID:27256545
Wang, Hui; Liu, Shi-Rong; Wang, Jing-Xin; Shi, Zuo-Min; Xu, Jia; Hong, Pi-Zheng; Ming, An-Gang; Yu, Hao-Long; Chen, Lin; Lu, Li-Hua; Cai, Dao-Xiong
2016-06-03
A strategic selection of tree species will shift the type and quality of litter input, and subsequently magnitude and composition of the soil organic carbon (SOC) through soil microbial community. We conducted a manipulative experiment in randomized block design with leaf litter inputs of four native subtropical tree species in a Pinus massoniana plantation in southern China and found that the chemical composition of SOC did not differ significantly among treatments until after 28 months of the experiment. Contrasting leaf litter inputs had significant impacts on the amounts of total microbial, Gram-positive bacterial, and actinomycic PLFAs, but not on the amounts of total bacterial, Gram-negative bacterial, and fungal PLFAs. There were significant differences in alkyl/O-alkyl C in soils among the leaf litter input treatments, but no apparent differences in the proportions of chemical compositions (alkyl, O-alkyl, aromatic, and carbonyl C) in SOC. Soil alkyl/O-alkyl C was significantly related to the amounts of total microbial, and Gram-positive bacterial PLFAs, but not to the chemical compositions of leaf litter. Our findings suggest that changes in forest leaf litter inputs could result in changes in chemical stability of SOC through the altered microbial community composition.
NASA Astrophysics Data System (ADS)
Wang, Hui; Liu, Shi-Rong; Wang, Jing-Xin; Shi, Zuo-Min; Xu, Jia; Hong, Pi-Zheng; Ming, An-Gang; Yu, Hao-Long; Chen, Lin; Lu, Li-Hua; Cai, Dao-Xiong
2016-06-01
A strategic selection of tree species will shift the type and quality of litter input, and subsequently magnitude and composition of the soil organic carbon (SOC) through soil microbial community. We conducted a manipulative experiment in randomized block design with leaf litter inputs of four native subtropical tree species in a Pinus massoniana plantation in southern China and found that the chemical composition of SOC did not differ significantly among treatments until after 28 months of the experiment. Contrasting leaf litter inputs had significant impacts on the amounts of total microbial, Gram-positive bacterial, and actinomycic PLFAs, but not on the amounts of total bacterial, Gram-negative bacterial, and fungal PLFAs. There were significant differences in alkyl/O-alkyl C in soils among the leaf litter input treatments, but no apparent differences in the proportions of chemical compositions (alkyl, O-alkyl, aromatic, and carbonyl C) in SOC. Soil alkyl/O-alkyl C was significantly related to the amounts of total microbial, and Gram-positive bacterial PLFAs, but not to the chemical compositions of leaf litter. Our findings suggest that changes in forest leaf litter inputs could result in changes in chemical stability of SOC through the altered microbial community composition.
NASA Technical Reports Server (NTRS)
Cullings, Kenneth; Finley, S. K.; Parker, V. T.; Makhija, S.; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
Restriction Fragment Length Polymorphisms (RFLPs) analyses were used to determine patterns of change in ectomycorrhizal community structure response to seasonal warming and drying of soils. Soil cores (42 total, 21 from cold and wet soil in early June, and 21 from dry, warm soil in late August) were collected from replicate blocks in a mixed-conifer forest stand in Yellowstone. Results indicated no significant differences in species richness (2.62 species/core, SE 0.2 in June; 3.25, SE 0.2 in August), however there was a significant effect on ectomycorrhizal infection (P<0.05), mean number of EM tips/core was significantly lower in June (185.8, SE 34) than in August (337 SE 78). Data indicated no difference in overall EM fungal species composition, however among system dominants, two species (Cortinarius 9 and Cortinarius 10) were more abundant in August than in June (P<0.02). The remaining dominant fungal species exhibited no differences in relative abundance. Results are discussed in relation to soil fertility and composition.
Stand, species, and individual traits impact transpiration in historically disturbed forests.
NASA Astrophysics Data System (ADS)
Blakely, B.; Rocha, A. V.; McLachlan, J. S.
2017-12-01
Historic logging disturbances have changed the structure and species composition of most Northern temperate forests. These changes impact the process of transpiration - which in turn impacts canopy surface temperature - but the links among structure, composition, and transpiration remain unclear. For this reason, ecosystem models typically use simplified structure and composition to simulate the impact of disturbances on forest transpiration. However, such simplifications ignore real variability among stands, species, and individual trees that may strongly influence transpiration across spatial and temporal scales. To capture this variability, we monitored transpiration in 48 individual trees of multiple species in both undisturbed (400+ yr) and historically logged (80 - 120 yr) forests. Using modern and historic forest surveys, we upscaled our observations to stand and regional scales to identify the key changes impacting transpiration. We extended these inferences by establishing a relationship between transpiration and measured surface temperature, linking disturbance-induced changes in structure and composition to local and regional climate. Despite greater potential evapotranspiration and basal area, undisturbed forest transpired less than disturbed (logged) forest. Transpiration was a strong predictor of surface temperature, and the canopy surface was warmer in undisturbed forest. Transpiration differences among disturbed and undisturbed forests resulted from (1) lesser transpiration and dampened seasonality in evergreen species (2) greater transpiration in younger individuals within a species, and (3) strong transpiration by large individuals. When transpiration was scaled to the stand or regional level in a simplified manner (e.g. a single transpiration rate for all deciduous individuals), the resulting estimates differed markedly from the original. Stand- species- and individual-level traits are therefore essential for understanding how transpiration and surface temperature respond to disturbance. Without consideration of such traits, current ecosystem models may struggle to capture the true impact of logging disturbances on forest transpiration.
Effects of 10-year management regimes on the soil seed bank in saline-alkaline grassland.
Ma, Hongyuan; Yang, Haoyu; Liang, Zhengwei; Ooi, Mark K J
2015-01-01
Management regimes for vegetation restoration of degraded grasslands can significantly affect the process of ecological succession. However, few studies have focused on variation in the soil seed bank during vegetation restoration under different management regimes, especially in saline-alkaline grassland habitats. Our aim was to provide insights into the ecological effects of grassland management regimes on soil seed bank composition and vegetation establishment in mown, fenced, transplanted and natural grassland sites, all dominated by the perennial rhizomatous grass Leymus chinensis. We studied species composition and diversity in both the soil seed bank and aboveground vegetation in differently managed grasslands in Northeast China. An NMDS (nonmetric multidimensional scaling) was used to evaluate the relationship between species composition, soil seed banks, aboveground vegetation and soil properties. Fenced and mown grassland sites had high density and species richness in both the soil seed bank and aboveground vegetation. The Transplanted treatment exhibited the highest vegetation growth and seed production of the target species L. chinensis. Seeds of L. chinensis in the soil occurred only in transplanted and natural grassland. Based on the NMDS analysis, the number of species in both the soil seed bank and aboveground vegetation were significantly related to soil Na+, Cl-, RSC (residual sodium carbonate), alkalinity, ESP (exchangeable sodium percentage) and AP (available phosphorus). Soil seed bank composition and diversity in the saline-alkaline grassland were significantly affected by the management regimes implemented, and were also significantly related to the aboveground vegetation and several soil properties. Based on vegetative growth, reproductive output and maintenance of soil seed bank, the transplanting was identified as the most effective method for relatively rapid restoration of the target species L. chinensis. This approach could be beneficial for the restoration of dominant species in a wide range of degraded grassland ecosystems.
NASA Astrophysics Data System (ADS)
Bell, C. W.; Calderon, F.; Pendall, E.; Wallenstein, M. D.
2012-12-01
Plant communities affect the activity and composition of soil microbial communities through alteration of the soil environment during root growth; substrate availability through root exudation; nutrient availability through plant uptake; and moisture regimes through transpiration. As a result, positive feedbacks in soil properties can result from alterations in microbial community composition and function in the rhizosphere zone. At the ecosystem-scale, many properties of soil microbial communities can vary between forest stands dominated by different species, including community composition and stoichiometry. However, the influence of smaller individual plants on grassland soils and microbial communities is less well documented. There is evidence to suggest that some plants can modify their soil environment in a manner that favors their persistence. For example, when Bromus tectorum plants invade, soil microbial communities tend to have higher N mineralization rates (in the rhizosphere zone) relative to native plants. If tight linkages between individual plant species and microbial communities inhabiting the rhizosphere exist, we hypothesized that any differences among plant species specific rhizosphere zones could be observed by shifts in: 1) soil -rhizosphere microbial community structure, 2) enzymatic C:N:P acquisition activities, 3) alterations in the soil C chemistry composition in the rhizosphere, and 4) plant - soil - microbial C:N:P elemental stoichiometry. We selected and grew 4 different C3 grasses species including three species native to the Shortgrass Steppe region (Pascopyrum smithii, Koeleria macrantha, and Vulpia octoflora) and one exotic invasive plant species (B. tectorum) in root-boxes that are designed to allow for easy access to the rhizosphere. The field soil was homogenized using a 4mm sieve and mixed 1:1 with sterile sand and seeded as monocultures (24 replicate root - boxes for each species). Plant and soil samples (along with no - plant control soil samples) were collected on day 28, 78, and 148 (N = 4 /sample period/species). Microbial community structure was quantified using the barcoded pyrosequencing protocols. We measured the potential activity of seven hydrolytic soil enzymes to represent the degradation of C, N, and P-rich substrates. Soil microbial C:N biomass responses to specific plant rhizospheres (MBC and MBN) were measured using the chloroform fumigation extraction method followed by DOC & N analysis. Fourier Transform Infrared Spectroscopy was used to assess differences in plant and soil C chemistry. We found that species specific rhizospheres are characteristic of very different soil chemical, edaphic, and microbial properties. These plant species act as gateways that introduce variability into soil C, N, and P ecosystem functional dynamics directly facilitated by rhizosphere - microbe associations. Our results suggest that nutrient stoichiometry within plant species' rhizospheres is a useful tool for identifying intra-ecosystem functional patterns. By identifying what and how specific species rhizospheres differ among the overall plant community, we can better predict how below-ground microbial community function and subsequent ecosystem processes can be influenced by alterations in plant community shifts based on the rhizosphere effects.
Ding, Tao; Melcher, Ulrich
2016-01-01
Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant’s growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species. PMID:26974817
Ding, Tao; Melcher, Ulrich
2016-01-01
Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.
Subramanian, Abhishek; Sarkar, Ram Rup
2015-10-01
Understanding the variations in gene organization and its effect on the phenotype across different Leishmania species, and to study differential clinical manifestations of parasite within the host, we performed large scale analysis of codon usage patterns between Leishmania and other known Trypanosomatid species. We present the causes and consequences of codon usage bias in Leishmania genomes with respect to mutational pressure, translational selection and amino acid composition bias. We establish GC bias at wobble position that governs codon usage bias across Leishmania species, rather than amino acid composition bias. We found that, within Leishmania, homogenous codon context coding for less frequent amino acid pairs and codons avoiding formation of folding structures in mRNA are essentially chosen. We predicted putative differences in global expression between genes belonging to specific pathways across Leishmania. This explains the role of evolution in shaping the otherwise conserved genome to demonstrate species-specific function-level differences for efficient survival. Copyright © 2015 Elsevier Inc. All rights reserved.
Mili, Sami; Ennouri, Rym; Dhib, Amel; Laouar, Houcine; Missaoui, Hechmi; Aleya, Lotfi
2016-06-01
To monitor and assess the state of Tunisian freshwater fisheries, two surveys were undertaken at Ghezala and Lahjar reservoirs. Samples were taken in April and May 2013, a period when the fish catchability is high. The selected reservoirs have different surface areas and bathymetries. Using multi-mesh gill nets (EN 14575 amended) designed for sampling fish in lakes, standard fishing methods were applied to estimate species composition, abundance, biomass, and size distribution. Four species were caught in the two reservoirs: barbel, mullet, pike-perch, and roach. Fish abundance showed significant change according to sampling sites, depth strata, and the different mesh sizes used. From the reservoir to the tributary, it was concluded that fish biomass distribution was governed by depth and was most abundant in the upper water layers. Species size distribution differed significantly between the two reservoirs, exceeding the length at first maturity. Species composition and abundance were greater in Lahjar reservoir than in Ghezala. Both reservoirs require support actions to improve fish productivity.
Characterizing fish community diversity across Virginia landscapes: Prerequisite for conservation
Angermeier, P.L.; Winston, M.R.
1999-01-01
The number of community types occurring within landscapes is an important, but often unprotected, component of biological diversity. Generally applicable protocols for characterizing community diversity need to be developed to facilitate conservation. We used several multivariate techniques to analyze geographic variation in the composition of fish communities in Virginia streams. We examined relationships between community composition and six landscape variables: drainage basin, physiography, stream order, elevation, channel slope, and map coordinates. We compared patterns at two scales (statewide and subdrainage-specific) to assess sensitivity of community classification to spatial scale. We also compared patterns based on characterizing communities by species composition vs. ecological composition. All landscape variables explained significant proportions of the variance in community composition. Statewide, they explained 32% of the variance in species composition and 48% of the variance in ecological composition. Typical communities in each drainage or physiography were statistically distinctive. Communities in different combinations of drainage, physiography, and stream size were even more distinctive, but composition was strongly spatially autocorrelated. Ecological similarity and species similarity of community pairs were strongly related, but replacement by ecologically similar species was common among drainage-physiography combinations. Landscape variables explained significant proportions of variance in community composition within selected subdrainages, but proportions were less than at the statewide scale, and the explanatory power of individual variables varied considerably among subdrainages. Community variation within subdrainages appeared to be much more closely related to environmental variation than to replacement among ecologically similar species. Our results suggest that taxonomic and ecological characterizations of community composition are complementary; both are useful in a conservation context. Landscape features such as drainage, physiography, and water body size generally may provide a basis for assessing aquatic community diversity, especially in regions where the biota is poorly known. Systematic conservation of community types would be a major advance relative to most current conservation programs, which typically focus narrowly on populations of imperiled species. More effective conservation of aquatic biodiversity will require new approaches that recognize the value of both species and assemblages, and that emphasize protection of key landscape-scale processes.
Pinto-Leite, C M; Rocha, P L B
2012-12-01
Empirical studies using visual search methods to investigate spider communities were conducted with different sampling protocols, including a variety of plot sizes, sampling efforts, and diurnal periods for sampling. We sampled 11 plots ranging in size from 5 by 10 m to 5 by 60 m. In each plot, we computed the total number of species detected every 10 min during 1 hr during the daytime and during the nighttime (0630 hours to 1100 hours, both a.m. and p.m.). We measured the influence of time effort on the measurement of species richness by comparing the curves produced by sample-based rarefaction and species richness estimation (first-order jackknife). We used a general linear model with repeated measures to assess whether the phase of the day during which sampling occurred and the differences in the plot lengths influenced the number of species observed and the number of species estimated. To measure the differences in species composition between the phases of the day, we used a multiresponse permutation procedure and a graphical representation based on nonmetric multidimensional scaling. After 50 min of sampling, we noted a decreased rate of species accumulation and a tendency of the estimated richness curves to reach an asymptote. We did not detect an effect of plot size on the number of species sampled. However, differences in observed species richness and species composition were found between phases of the day. Based on these results, we propose guidelines for visual search for tropical web spiders.
Średnicka-Tober, Dominika; Barański, Marcin; Seal, Chris; Sanderson, Roy; Benbrook, Charles; Steinshamn, Håvard; Gromadzka-Ostrowska, Joanna; Rembiałkowska, Ewa; Skwarło-Sońta, Krystyna; Eyre, Mick; Cozzi, Giulio; Krogh Larsen, Mette; Jordon, Teresa; Niggli, Urs; Sakowski, Tomasz; Calder, Philip C; Burdge, Graham C; Sotiraki, Smaragda; Stefanakis, Alexandros; Yolcu, Halil; Stergiadis, Sokratis; Chatzidimitriou, Eleni; Butler, Gillian; Stewart, Gavin; Leifert, Carlo
2016-03-28
Demand for organic meat is partially driven by consumer perceptions that organic foods are more nutritious than non-organic foods. However, there have been no systematic reviews comparing specifically the nutrient content of organic and conventionally produced meat. In this study, we report results of a meta-analysis based on sixty-seven published studies comparing the composition of organic and non-organic meat products. For many nutritionally relevant compounds (e.g. minerals, antioxidants and most individual fatty acids (FA)), the evidence base was too weak for meaningful meta-analyses. However, significant differences in FA profiles were detected when data from all livestock species were pooled. Concentrations of SFA and MUFA were similar or slightly lower, respectively, in organic compared with conventional meat. Larger differences were detected for total PUFA and n-3 PUFA, which were an estimated 23 (95 % CI 11, 35) % and 47 (95 % CI 10, 84) % higher in organic meat, respectively. However, for these and many other composition parameters, for which meta-analyses found significant differences, heterogeneity was high, and this could be explained by differences between animal species/meat types. Evidence from controlled experimental studies indicates that the high grazing/forage-based diets prescribed under organic farming standards may be the main reason for differences in FA profiles. Further studies are required to enable meta-analyses for a wider range of parameters (e.g. antioxidant, vitamin and mineral concentrations) and to improve both precision and consistency of results for FA profiles for all species. Potential impacts of composition differences on human health are discussed.
Freeland-Riggert, Brandye T.; Cairns, Stefan H.; Poulton, Barry C.; Riggert, Chris M.
2016-01-01
Introductions of alien species into aquatic ecosystems have been well documented, including invasions of crayfish species; however, little is known about the effects of these introductions on macroinvertebrate communities. The woodland crayfish (Orconectes hylas (Faxon)) has been introduced into the St. Francis River watershed in southeast Missouri and has displaced populations of native crayfish. The effects of O. hylas on macroinvertebrate community composition were investigated in a fourth-order Ozark stream at two locations, one with the presence of O. hylas and one without. Significant differences between sites and across four sampling periods and two habitats were found in five categories of benthic macroinvertebrate metrics: species richness, percent/composition, dominance/diversity, functional feeding groups, and biotic indices. In most seasons and habitat combinations, the invaded site had significantly higher relative abundance of riffle beetles (Coleoptera: Elmidae), and significantly lower Missouri biotic index values, total taxa richness, and both richness and relative abundance of midges (Diptera: Chironomidae). Overall study results indicate that some macroinvertebrate community differences due to the O. hylas invasion were not consistent between seasons and habitats, suggesting that further research on spatial and temporal habitat use and feeding ecology of Ozark crayfish species is needed to improve our understanding of the effects of these invasions on aquatic communities.
Freeland-Riggert, Brandye T.
2016-01-01
Introductions of alien species into aquatic ecosystems have been well documented, including invasions of crayfish species; however, little is known about the effects of these introductions on macroinvertebrate communities. The woodland crayfish (Orconectes hylas (Faxon)) has been introduced into the St. Francis River watershed in southeast Missouri and has displaced populations of native crayfish. The effects of O. hylas on macroinvertebrate community composition were investigated in a fourth-order Ozark stream at two locations, one with the presence of O. hylas and one without. Significant differences between sites and across four sampling periods and two habitats were found in five categories of benthic macroinvertebrate metrics: species richness, percent/composition, dominance/diversity, functional feeding groups, and biotic indices. In most seasons and habitat combinations, the invaded site had significantly higher relative abundance of riffle beetles (Coleoptera: Elmidae), and significantly lower Missouri biotic index values, total taxa richness, and both richness and relative abundance of midges (Diptera: Chironomidae). Overall study results indicate that some macroinvertebrate community differences due to the O. hylas invasion were not consistent between seasons and habitats, suggesting that further research on spatial and temporal habitat use and feeding ecology of Ozark crayfish species is needed to improve our understanding of the effects of these invasions on aquatic communities. PMID:26986207
Diversity and Community Composition of Vertebrates in Desert River Habitats
Free, C. L.; Baxter, G. S.; Dickman, C. R.; Lisle, A.; Leung, L. K.-P.
2015-01-01
Animal species are seldom distributed evenly at either local or larger spatial scales, and instead tend to aggregate in sites that meet their resource requirements and maximise fitness. This tendency is likely to be especially marked in arid regions where species could be expected to concentrate at resource-rich oases. In this study, we first test the hypothesis that productive riparian sites in arid Australia support higher vertebrate diversity than other desert habitats, and then elucidate the habitats selected by different species. We addressed the first aim by examining the diversity and composition of vertebrate assemblages inhabiting the Field River and adjacent sand dunes in the Simpson Desert, western Queensland, over a period of two and a half years. The second aim was addressed by examining species composition in riparian and sand dune habitats in dry and wet years. Vertebrate species richness was estimated to be highest (54 species) in the riverine habitats and lowest on the surrounding dune habitats (45 species). The riverine habitats had different species pools compared to the dune habitats. Several species, including the agamid Gowidon longirostris and tree frog Litoria rubella, inhabited the riverine habitats exclusively, while others such as the skinks Ctenotus ariadnae and C. dux were captured only in the dune habitats. The results suggest that, on a local scale, diversity is higher along riparian corridors and that riparian woodland is important for tree-dependent species. Further, the distribution of some species, such as Mus musculus, may be governed by environmental variables (e.g. soil moisture) associated with riparian corridors that are not available in the surrounding desert environment. We conclude that inland river systems may be often of high conservation value, and that management should be initiated where possible to alleviate threats to their continued functioning. PMID:26637127
Reese, Aspen T; Savage, Amy; Youngsteadt, Elsa; McGuire, Krista L; Koling, Adam; Watkins, Olivia; Frank, Steven D; Dunn, Robert R
2016-01-01
The biological diversity and composition of microorganisms influences both human health outcomes and ecological processes; therefore, understanding the factors that influence microbial biodiversity is key to creating healthy, functional landscapes in which to live. In general, biological diversity is predicted to be limited by habitat size, which for green areas is often reduced in cities, and by chronic disturbance (stress). These hypotheses have not previously been tested in microbial systems in direct comparison to macroorganisms. Here we analyzed bacterial, fungal and ant communities in small road medians (average area 0.0008 km2) and larger parks (average area 0.64 km2) across Manhattan (NYC). Bacterial species richness was not significantly different between medians and parks, but community composition was significantly distinct. In contrast, ant communities differed both in composition and richness with fewer ant species in medians than parks. Fungi showed no significant variation in composition or richness but had few shared taxa between habitats or sites. The diversity and composition of microbes appears less sensitive to habitat patchiness or urban stress than those of macroorganisms. Microbes and their associated ecosystem services and functions may be more resilient to the negative effects of urbanization than has been previously appreciated. PMID:26394011
Gottdenker, Nicole L.; Chaves, Luis Fernando; Calzada, José E.; Saldaña, Azael; Carroll, C. Ronald
2012-01-01
Background Anthropogenic land use may influence transmission of multi-host vector-borne pathogens by changing diversity, relative abundance, and community composition of reservoir hosts. These reservoir hosts may have varying competence for vector-borne pathogens depending on species-specific characteristics, such as life history strategy. The objective of this study is to evaluate how anthropogenic land use change influences blood meal species composition and the effects of changing blood meal species composition on the parasite infection rate of the Chagas disease vector Rhodnius pallescens in Panama. Methodology/Principal Findings R. pallescens vectors (N = 643) were collected in different habitat types across a gradient of anthropogenic disturbance. Blood meal species in DNA extracted from these vectors was identified in 243 (40.3%) vectors by amplification and sequencing of a vertebrate-specific fragment of the 12SrRNA gene, and T. cruzi vector infection was determined by pcr. Vector infection rate was significantly greater in deforested habitats as compared to contiguous forests. Forty-two different species of blood meal were identified in R. pallescens, and species composition of blood meals varied across habitat types. Mammals (88.3%) dominated R. pallescens blood meals. Xenarthrans (sloths and tamanduas) were the most frequently identified species in blood meals across all habitat types. A regression tree analysis indicated that blood meal species diversity, host life history strategy (measured as rmax, the maximum intrinsic rate of population increase), and habitat type (forest fragments and peridomiciliary sites) were important determinants of vector infection with T. cruzi. The mean intrinsic rate of increase and the skewness and variability of rmax were positively associated with higher vector infection rate at a site. Conclusions/Significance In this study, anthropogenic landscape disturbance increased vector infection with T. cruzi, potentially by changing host community structure to favor hosts that are short-lived with high reproductive rates. Study results apply to potential environmental management strategies for Chagas disease. PMID:23166846
The effect of prescribed burning on plant rarity in a temperate forest.
Patykowski, John; Holland, Greg J; Dell, Matt; Wevill, Tricia; Callister, Kate; Bennett, Andrew F; Gibson, Maria
2018-02-01
Rare species can play important functional roles, but human-induced changes to disturbance regimes, such as fire, can inadvertently affect these species. We examined the influence of prescribed burns on the recruitment and diversity of plant species within a temperate forest in southeastern Australia, with a focus on species that were rare prior to burning. Floristic composition was compared among plots in landscapes before and after treatment with prescribed burns differing in the extent of area burnt and season of burn (before-after, control-impact design). Floristic surveys were conducted before burns, at the end of a decade of drought, and 3 years postburn. We quantified the effect of prescribed burns on species grouped by their frequency within the landscape before burning (common, less common, and rare) and their life-form attributes (woody perennials, perennial herbs or geophytes, and annual herbs). Burn treatment influenced the response of rare species. In spring-burn plots, the recruitment of rare annual herbs was promoted, differentiating this treatment from both autumn-burn and unburnt plots. In autumn-burn plots, richness of rare species increased across all life-form groups, although composition remained statistically similar to control plots. Richness of rare woody perennials increased in control plots. For all other life-form and frequency groups, the floristic composition of landscapes changed between survey years, but there was no effect of burn treatment, suggesting a likely effect of rainfall on species recruitment. A prescribed burn can increase the occurrence of rare species in a landscape, but burn characteristics can affect the promotion of different life-form groups and thus affect functional diversity. Drought-breaking rain likely had an overarching effect on floristic composition during our study, highlighting that weather can play a greater role in influencing recruitment and diversity in plant communities than a prescribed burn.
Métoyer, Benjamin; Lebouvier, Nicolas; Hnawia, Edouard; Herbette, Gaëtan; Thouvenot, Louis; Asakawa, Yoshinori; Nour, Mohammed; Raharivelomanana, Phila
2018-06-05
Volatile components of seven species of the Bazzanioideae sub-family (Lepidoziaceae) native to New Caledonia, including three endemic species ( Bazzania marginata , Acromastigum caledonicum and A. tenax ), were analyzed by GC-FID-MS in order to index these plants to known or new chemotypes. Detected volatile constituents in studied species were constituted mainly by sesquiterpene, as well as diterpene compounds. All so-established compositions cannot successfully index some of them to known chemotypes but afforded the discovery of new chemotypes such as cuparane/fusicoccane. The major component of B. francana was isolated and characterized as a new zierane-type sesquiterpene called ziera-12(13),10(14)-dien-5-ol ( 23 ). In addition, qualitative intraspecies variations of chemical composition were very important particularly for B. francana which possessed three clearly defined different compositions. We report here also the first phytochemical investigation of Acromastigum species. Moreover, crude diethyl ether extract of B. vitatta afforded a new bis(bibenzyl) called vittatin ( 51 ), for which a putative biosynthesis was suggested.
Arai, Takaomi; Amalina, Razikin; Bachok, Zainudin
2015-02-22
In order to understand feeding ecology and habitat use of coral reef fish, fatty acid composition was examined in five coral reef fishes, Thalassoma lunare, Lutjanus lutjanus, Abudefduf bengalensis, Scarus rivulatus and Scolopsis affinis collected in the Bidong Island of Malaysian South China Sea. Proportions of saturated fatty acids (SAFA) ranged 57.2% 74.2%, with the highest proportions in fatty acids, the second highest was monounsaturated fatty acids (MUFA) ranged from 21.4% to 39.0% and the proportion of polyunsaturated fatty acids (PUFA) was the lowest ranged from 2.8% to 14.1%. Each fatty acid composition differed among fishes, suggesting diverse feeding ecology, habitat use and migration during the fishes' life history in the coral reef habitats. Diets of the coral fish species might vary among species in spite of that each species are living sympatrically. Differences in fatty acid profiles might not just be considered with respect to the diets, but might be based on the habitat and migration.
Zygomycetes From Herbivore Dung in the Ecological Reserve of Dois IrmÃOs, Northeast Brazil
de Azevedo Santiago, André Luiz Cabral Monteiro; Botelho Trufem, Sandra Farto; Malosso, Elaine; dos Santos, Paulo Jorge Parreira; de Queiroz Cavalcanti, Maria Auxiliadora
2011-01-01
Thirty-eight taxa of Zygomycetes distributed in 15 genera were recorded from tapir (Tapirus terrestris), camel (Camelus bactrianus), horse (Equus caballus), deer (Cervus elaphus), agouti (Dasyprocta aguti), donkey (Equus asinus), llama (Llama glama) and waterbuck (Kobus ellipsiprymnus) dung collected at the Reserva Ecológica de Dois Irmãos located in Recife, State of Pernambuco, Northeast Brazil. The samples were collected on a monthly basis from June 2005 to May 2006, taken to the laboratory and incubated in moist chambers. Higher number of taxa was observed in the excrements of tapir, followed by deer and donkey. The highest number of species was detected for Mucor, followed by Pilobolus. Statistical analyses showed significant differences in richness of Zygomycetes taxa between the herbivore dung types. Differences of species composition, however, were weak. Seasonality influenced the Zygomycetes species composition but not its richness. Variations in taxa composition between ruminants and non-ruminants dung were non significant. PMID:24031609
Zygomycetes From Herbivore Dung in the Ecological Reserve of Dois IrmÃOs, Northeast Brazil.
de Azevedo Santiago, André Luiz Cabral Monteiro; Botelho Trufem, Sandra Farto; Malosso, Elaine; Dos Santos, Paulo Jorge Parreira; de Queiroz Cavalcanti, Maria Auxiliadora
2011-01-01
Thirty-eight taxa of Zygomycetes distributed in 15 genera were recorded from tapir (Tapirus terrestris), camel (Camelus bactrianus), horse (Equus caballus), deer (Cervus elaphus), agouti (Dasyprocta aguti), donkey (Equus asinus), llama (Llama glama) and waterbuck (Kobus ellipsiprymnus) dung collected at the Reserva Ecológica de Dois Irmãos located in Recife, State of Pernambuco, Northeast Brazil. The samples were collected on a monthly basis from June 2005 to May 2006, taken to the laboratory and incubated in moist chambers. Higher number of taxa was observed in the excrements of tapir, followed by deer and donkey. The highest number of species was detected for Mucor, followed by Pilobolus. Statistical analyses showed significant differences in richness of Zygomycetes taxa between the herbivore dung types. Differences of species composition, however, were weak. Seasonality influenced the Zygomycetes species composition but not its richness. Variations in taxa composition between ruminants and non-ruminants dung were non significant.
Relative importance of different secondary successional pathways in an Alaskan boreal forest
Thomas A. Kurkowski; Daniel H. Mann; T. Scott Rupp; David L. Verbyla
2008-01-01
Postfire succession in the Alaskan boreal forest follows several different pathways, the most common being self-replacement and species-dominance relay. In self-replacement, canopy-dominant tree species replace themselves as the postfire dominants. It implies a relatively unchanging forest composition through time maintained by trees segregated within their respective...
Gong, W-C; Chen, G; Vereecken, N J; Dunn, B L; Ma, Y-P; Sun, W-B
2015-01-01
Traditionally, plant-pollinator interactions have been interpreted as pollination syndrome. However, the validity of pollination syndrome has been widely doubted in modern studies of pollination ecology. The pollination ecology of five Asian Buddleja species, B. asiatica, B. crispa, B. forrestii, B. macrostachya and B. myriantha, in the Sino-Himalayan region in Asia, flowering in different local seasons, with scented inflorescences were investigated during 2011 and 2012. These five species exhibited diverse floral traits, with narrow and long corolla tubes and concealed nectar. According to their floral morphology, larger bees and Lepidoptera were expected to be the major pollinators. However, field observations showed that only larger bees (honeybee/bumblebee) were the primary pollinators, ranging from 77.95% to 97.90% of total visits. In this study, floral scents of each species were also analysed using coupled gas chromatography and mass spectrometry (GC-MS). Although the five Buddleja species emitted differentiated floral scent compositions, our results showed that floral scents of the five species are dominated by substances that can serve as attractive signals to bees, including species-specific scent compounds and principal compounds with larger relative amounts. This suggests that floral scent compositions are closely associated with the principal pollinator assemblages in these five species. Therefore, we conclude that floral scent compositions rather than floral morphology traits should be used to interpret plant-pollinator interactions in these Asian Buddleja species. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Angular distribution of species in pulsed laser deposition of LaxCa1-xMnO3
NASA Astrophysics Data System (ADS)
Ojeda-G-P, Alejandro; Schneider, Christof W.; Döbeli, Max; Lippert, Thomas; Wokaun, Alexander
2015-05-01
The angular distribution of species from a La0.4Ca0.6MnO3 target irradiated with a 248 nm nanosecond pulsed laser was investigated by Rutherford backscattering spectrometry for four different Ar pressures. The film thickness angular distribution was also analyzed using profilometry. Depending on the background gas pressure, the target to substrate distance, and the angular location the film thickness and composition varies considerably. In particular the film composition could vary by up to 17% with respect to the composition of the target material.
Soukhova, N V; Fesenko, S V; Klein, D; Spiridonov, S I; Sanzharova, N I; Badot, P M
2003-01-01
The distributions of 137Cs among annual rings of Pinus sylvestris and Betula pendula at four experimental sites located in the most contaminated areas in the Russian territory after the Chernobyl accident in 1986 were studied. Trees of different ages were sampled from four forest sites with different tree compositions and soil properties. The data analysis shows that 137Cs is very mobile in wood and the 1986 rings do not show the highest contamination. The difference between pine and birch in the pattern of radial 137Cs distribution can be satisfactorily explained by the difference in radial ray composition. 137Cs radial distribution in the wood can be described as the sum of two exponential functions for both species. The function parameters are height, age and species dependent. The distribution of 137Cs in birch wood reveals much more pronounced dependence on site characteristics and/or the age of trees than pines. The data obtained can be used to assess 137Cs content in wood.
Li, Youzhi; Chen, Xinsheng; Xie, Yonghong; Li, Xu; Li, Feng; Hou, Zhiyong
2014-01-01
This study evaluated the effects of young poplar plantations on understory plant diversity in the Dongting Lake wetlands, China. Poplar plantations resulted in a higher species number and Shannon's diversity. Species compositions were different between areas with poplar and reed populations: a lower ratio of hygrophytes but a higher ratio of mesophytes, and a higher ratio of heliophytes but a lower ratio of neutrophilous or shade plants in poplar areas compared to reed areas. Poplar plantations supported a higher ratio of ligneous plants in the entire Dongting Lake area, but there was no difference in the monitored plots. Unlike reedy areas, poplar plantations had higher light availability but lower soil water content during the growing seasons. These data suggest that young poplar plantations generally increased species richness and plant diversity, but significantly changed species composition due to the reduced soil water and increased light availability. PMID:25208975
Lejon, David P H; Chaussod, Rémi; Ranger, Jacques; Ranjard, Lionel
2005-11-01
Overexploitation of forests to increase wood production has led to the replacement of native forest by large areas of monospecific tree plantations. In the present study, the effects of different monospecific tree cover plantations on density and composition of the indigenous soil microbial community are described. The experimental site of "Breuil-Chenue" in the Morvan (France) was the site of a comparison of a similar mineral soil under Norway spruce (Picea abies), Douglas fir (Pseudotuga menziesii), oak (Quercus sessiflora), and native forest [mixed stand dominated by oak and beech (Fagus sylvatica)]. Sampling was performed during winter (February) at three depths (0-5, 5-10, and 10-15 cm). Abundance of microorganisms was estimated via microbial biomass measurements, using the fumigation-extraction method. The genetic structure of microbial communities was investigated using the bacterial- and fungal-automated ribosomal intergenic spacer analysis (B-ARISA and F-ARISA, respectively) DNA fingerprint. Only small differences in microbial biomass were observed between tree species, the highest values being recorded under oak forest and the lowest under Douglas fir. B- and F-ARISA community profiles of the different tree covers clustered separately, but noticeable similarities were observed for soils under Douglas fir and oak. A significant stratification was revealed under each tree species by a decrease in microbial biomass with increasing depths and by distinct microbial communities for each soil layer. Differences in density and community composition according to tree species and depth were related to soil physicochemical characteristics and organic matter composition.
Dimitrakopoulos, Panayiotis G; Siamantziouras, Akis-Stavros D; Galanidis, Alexandros; Mprezetou, Irene; Troumbis, Andreas Y
2006-06-01
We conducted a field experiment using constructed communities to test whether species richness contributed to the maintenance of ecosystem processes under fire disturbance. We studied the effects of diversity components (i.e., species richness and species composition) upon productivity, structural traits of vegetation, decomposition rates, and soil nutrients between burnt and unburnt experimental Mediterranean grassland communities. Our results demonstrated that fire and species richness had interactive effects on aboveground biomass production and canopy structure components. Fire increased biomass production of the highest-richness communities. The effects of fire on aboveground biomass production at different levels of species richness were derived from changes in both vertical and horizontal canopy structure of the communities. The most species-rich communities appeared to be more resistant to fire in relation to species-poor ones, due to both compositional and richness effects. Interactive effects of fire and species richness were not important for belowground processes. Decomposition rates increased with species richness, related in part to increased levels of canopy structure traits. Fire increased soil nutrients and long-term decomposition rate. Our results provide evidence that composition within richness levels had often larger effects on the stability of aboveground ecosystem processes in the face of fire disturbance than species richness per se.
Kim, Min-Sun; Nam, Miso; Hwang, Geum-Sook
2018-01-01
Cirsium chanroenicum and C. setidens are commonly used both in traditional folk medicine and as a food source. The quality of different species of Cirsium at different harvest times is a function of their metabolite composition, which is determined by the phenological stage. We sought to determine the differences in the metabolite composition of two species of Cirsium during different phenological stages using ultra-performance liquid chromatography (UPLC) quadrupole time-of-flight (QTOF) mass spectrometry (MS). Cirsium chanroenicum and C. setidens plants were collected at the floral budding and full flowering stages. Metabolic profiles of Cirsium extracts were determined using UPLC-QTOF/MS to characterise the differences between phenological stages, and the major metabolites were quantified using UPLC-QTOF/MS-multiple reaction monitoring (MRM). At the full flowering stage, the levels of phenolic acids as well as components of the phenylpropanoid pathway were increased. Flavonoids predominated at the full flowering stage in both species. The levels of coumaric acid, kaempferol, and pectolinarigenin differed between the two species of Cirsium. Overall, these results suggest that components of the phenylpropanoid metabolic pathway are upregulated in the full flowering stage in Cirsium, although we did observe some variation between the species. These results will help elucidate the metabolic pathways related to the different phases of the vegetative cycle, and may help determine the optimal season for the harvest of Cirsium with the highest levels of bioactive compounds. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Diverse Effects of a Seven-Year Experimental Grassland Fragmentation on Major Invertebrate Groups
Braschler, Brigitte; Baur, Bruno
2016-01-01
Habitat fragmentation is a major driver of biodiversity loss, but observed effects vary and may depend on the group examined. Time since fragmentation may explain some differences between taxonomical groups, as some species and thus species composition respond with a delay to changes in their environment. Impacts of drivers of global change may thus be underestimated in short-term studies. In our study we experimentally fragmented nutrient-poor dry calcareous grasslands and studied the response of species richness, individual density and species composition of various groups of invertebrates (gastropods, ants, ground beetles, rove beetles, orthoptera, spiders, woodlice) in 12 small (1.5 m * 1.5 m) and 12 large (4.5 m * 4.5 m) fragments and their corresponding control plots after 7 years. We further examined responses to fragmentation in relation to body size and habitat preferences. Responses to fragmentation varied between taxonomical groups. While spider species richness and individual density were lower in fragments, the opposite was true for an orthopteran species and woodlice. Species composition and β-diversity differed between fragments and control plots for some groups. However, the interaction treatment*plot size was rarely significant. Species with high occupancy rates in undisturbed control plots responded more negatively to the fragmentation, while species with large body size were relatively more abundant in fragments in some groups. No effect of the fragmentation was found for ants, which may have the longest lag times because of long-lived colonies. However, relationships between abundance and the species’ preferences for environmental factors affected by edge effects indicate that ant diversity too may be affected in the longer-term. Our results show the importance of considering different groups in conservation management in times of widespread fragmentation of landscapes. While species richness may respond slowly, changes in abundance related to habitat preferences or morphology may allow insights into likely long-term changes. PMID:26891049
Species loss on spatial patterns and composition of zoonotic parasites
Harris, Nyeema C.; Dunn, Robert R.
2013-01-01
Species loss can result in the subsequent loss of affiliate species. Though largely ignored to date, these coextinctions can pose threats to human health by altering the composition, quantity and distribution of zoonotic parasites. We simulated host extinctions from more than 1300 host–parasite associations for 29 North American carnivores to investigate changes in parasite composition and species richness. We also explored the geography of zoonotic parasite richness under three carnivore composition scenarios and examined corresponding levels of human exposure. We found that changes in parasite assemblages differed among parasite groups. Because viruses tend to be generalists, the proportion of parasites that are viruses increased as more carnivores went extinct. Coextinction of carnivore parasites is unlikely to be common, given that few specialist parasites exploit hosts of conservation concern. However, local extirpations of widespread carnivore hosts can reduce overall zoonotic richness and shift distributions of parasite-rich areas. How biodiversity influences disease risks remains the subject of debate. Our results make clear that hosts vary in their contribution to human health risks. As a consequence, so too does the loss (or gain) of particular hosts. Anticipating changes in host composition in future environments may help inform parasite conservation and disease mitigation efforts. PMID:24068356
NASA Astrophysics Data System (ADS)
Fiorella, R.; Poulsen, C. J.; Matheny, A. M.; Rey Sanchez, C.; Fotis, A. T.; Morin, T. H.; Vogel, C. S.; Gough, C. M.; Aron, P.; Bohrer, G.
2016-12-01
Forest structure, age, and species composition modulate fluxes of carbon and water between the land surface and the atmosphere. The response of forests to intermediate disturbances such as ecological succession, species-specific insect invasion, or selective logging that disrupt the canopy but do not promote complete stand replacement, shape how these fluxes evolve through time. We investigate the impact of an intermediate disturbance to water cycling processes by comparing vertical profiles of stable water isotopes in two closely located forest canopies in the northern lower peninsula of Michigan using cavity ring-down spectroscopy. In one of the canopies, an intermediate disturbance was prescribed in 2008 by inducing mortality in all canopy-dominant early successional species. Isotopic compositions of atmospheric water vapor are measured at six heights during two time periods (summer and early fall) at two flux towers and compared with local meteorology and calculated atmospheric back-trajectories. Disturbance has little impact on low-frequency changes in isotopic composition (e.g., >1 day); at these timescales, isotopic composition is strongly related to large-scale moisture transport. In contrast, disturbance has substantial impacts on the vertical distribution of water isotopes throughout the canopy when transpiration rates are high during the summer, but impact is muted during early fall. Sub-diurnal differences in canopy water vapor cycling are likely related to differences in species composition and response to disturbance and changes in canopy structure. Predictions of transpiration fluxes by land-surface models that do not account species-specific relationships and canopy structure are unlikely to capture these relationships, but addition of stable isotopes to land surface models may provide a useful parameter to improve these predictions.
Atmospheric deposition in coniferous and deciduous tree stands in Poland
NASA Astrophysics Data System (ADS)
Kowalska, Anna; Astel, Aleksander; Boczoń, Andrzej; Polkowska, Żaneta
2016-05-01
The objective of this study was to assess the transformation of precipitation in terms of quantity and chemical composition following contact with the crown layer in tree stands with varied species composition, to investigate the effect of four predominant forest-forming species (pine, spruce, beech, and oak) on the amount and composition of precipitation reaching forest soils, and to determine the sources of pollution in atmospheric precipitation in forest areas in Poland. The amount and chemical composition (pH, electric conductivity, alkalinity, and chloride, nitrate, sulfate, phosphate, ammonium, calcium, magnesium, sodium, potassium, iron aluminum, manganese, zinc, copper, total nitrogen, and dissolved organic carbon contents) of atmospheric (bulk, BP) and throughfall (TF) precipitation were studied from January to December 2010 on twelve forest monitoring plots representative of Polish conditions. The study results provided the basis for the determination of the fluxes of pollutants in the forest areas of Poland and allowed the comparison of such fluxes with values provided in the literature for European forest areas. The transformation of precipitation in the canopy was compared for different tree stands. The fluxes of substances in an open field and under canopy were influenced by the location of the plot, including the regional meteorological conditions (precipitation amounts), vicinity of the sea (effect of marine aerosols), and local level of anthropogenic pollution. Differences between the plots were higher in TF than in BP. The impact of the vegetation cover on the chemical composition of precipitation depended on the region of the country and dominant species in a given tree stand. Coniferous species tended to cause acidification of precipitation, whereas deciduous species increased the pH of TF. Pine and oak stands enriched precipitation with components that leached from the canopy (potassium, manganese, magnesium) to a higher degree than spruce and beech stands.
Aphid watery saliva counteracts sieve-tube occlusion: a universal phenomenon?
Will, Torsten; Kornemann, Sarah R; Furch, Alexandra C U; Tjallingii, W Fred; van Bel, Aart J E
2009-10-01
Ca2+-binding proteins in the watery saliva of Megoura viciae counteract Ca2+-dependent occlusion of sieve plates in Vicia faba and so prevent the shut-down of food supply in response to stylet penetration. The question arises whether this interaction between aphid saliva and sieve-element proteins is a universal phenomenon as inferred by the coincidence between sieve-tube occlusion and salivation. For this purpose, leaf tips were burnt in a number of plant species from four different families to induce remote sieve-plate occlusion. Resultant sieve-plate occlusion in these plant species was counteracted by an abrupt switch of aphid behaviour. Each of the seven aphid species tested interrupted its feeding behaviour and started secreting watery saliva. The protein composition of watery saliva appeared strikingly different between aphid species with less than 50% overlap. Secretion of watery saliva seems to be a universal means to suppress sieve-plate occlusion, although the protein composition of watery saliva seems to diverge between species.
Aguilera, Moisés A; Broitman, Bernardo R; Thiel, Martin
2014-10-15
Strong differences have been observed between the assemblages on artificial reefs and on natural hard-bottom habitats worldwide, but little is known about the mechanisms that cause contrasting biodiversity patterns. We examined the influence of spatial attributes in relation to both biogenic and topographic microhabitats, in the distribution and composition of intertidal species on both artificial and natural reefs. We found higher small-scale spatial heterogeneity on the natural reef compared with the study breakwater. Species richness and diversity were associated with a higher availability of crevices, rock pools and mussels in natural habitats. Spatial distribution of certain grazers corresponded well with the spatial structure of microhabitats. In contrast, the lack of microhabitats on the breakwater resulted in the absence of several grazers reflected in lower species richness. Biogenic and topographic microhabitats can have interactive effects providing niche opportunities for multiple species, explaining differences in species diversity between artificial versus natural reefs. Copyright © 2014 Elsevier Ltd. All rights reserved.
The influence of habitat structure on bird species composition in lowland malaysian rain forests.
Mansor, Mohammad Saiful; Sah, Shahrul Anuar Mohd
2012-05-01
Bird surveys were conducted in the Bukit Kepala Gajah limestone area in Lenggong, Perak from July 2010 to January 2011. The study area was divided into three zones: forest edge, forest intermediate and forest interior. A point-count distance sampling method was used in the bird surveys. The study recorded 7789 detections, representing 100 bird species belonging to 28 families. Pycnonotidae, Timaliidae and Nectariniidae were the dominant families overall and showed the highest number of observations recorded in the study area whereas Motacillidae showed the fewest observations. The bird species were grouped into three feeding guilds: insectivores, frugivores and others (omnivores, carnivores, nectarivores and granivores). The species richness of insectivorous birds differed significantly among the forest zones sampled (Kruskal-Wallis: α=0.05, H=10.979, d.f.=2, p=0.004), with more insectivorous birds occurring in the forest interior. No significant differences were found among the zones in the species richness of either the frugivore guild or the composite others guild.
The Influence of Habitat Structure on Bird Species Composition in Lowland Malaysian Rain Forests
Mansor, Mohammad Saiful; Sah, Shahrul Anuar Mohd
2012-01-01
Bird surveys were conducted in the Bukit Kepala Gajah limestone area in Lenggong, Perak from July 2010 to January 2011. The study area was divided into three zones: forest edge, forest intermediate and forest interior. A point-count distance sampling method was used in the bird surveys. The study recorded 7789 detections, representing 100 bird species belonging to 28 families. Pycnonotidae, Timaliidae and Nectariniidae were the dominant families overall and showed the highest number of observations recorded in the study area whereas Motacillidae showed the fewest observations. The bird species were grouped into three feeding guilds: insectivores, frugivores and others (omnivores, carnivores, nectarivores and granivores). The species richness of insectivorous birds differed significantly among the forest zones sampled (Kruskal-Wallis: α=0.05, H=10.979, d.f.=2, p=0.004), with more insectivorous birds occurring in the forest interior. No significant differences were found among the zones in the species richness of either the frugivore guild or the composite others guild. PMID:24575221
NASA Astrophysics Data System (ADS)
Bao, Rui; Sheng, Xuefen; Teng, Henry H.; Ji, Junfeng
2018-05-01
Carbon isotope compositions of land snail shells (δ13Cshell) are shown to be indicative of local climate conditions. However, it is largely unknown how the responses of δ13Cshell to climatic factors changes amongst different species. In this study, we collected 3 species of land snail shells across the East Asian monsoon region of China to explore the overall relationship between δ13Cshell as well as the response of individual species to the regional climate. Results show that, whereas all species collectively can provide a consensus relation between δ13Cshell and local climatic factors such as temperature and precipitation; the response of individual species to the fluctuations of these factors is not uniform. Specifically, while the southerly species Bradybaena similaris exhibits robust δ13Cshell - mean precipitation correlation in both linearity and sensitivity, a common northerly species, Cathaica fasciola, only finds limited utility as a climate indicator, particularly for precipitation. Meanwhile, the south-central species Acusta ravida appears to be able to faithfully record past climate conditions despite showing a wider distribution and a broader habitat. Such species-dependent nature in the relations between δ13Cshell and local climatic factors can be attributed to the effect of ingested carbonate and variations in eco-physiological factors of different species, and is expected to be widespread, suggesting the need to be taken into consideration for future studies.
Maestre, F.T.; Castillo-Monroy, A. P.; Bowker, M.A.; Ochoa-Hueso, R.
2012-01-01
1. Recent studies have suggested that the simultaneous maintenance of multiple ecosystem functions (multifunctionality) is positively supported by species richness. However, little is known regarding the relative importance of other community attributes (e.g. spatial pattern, species evenness) as drivers of multifunctionality. 2. We conducted two microcosm experiments using model biological soil crust communities dominated by lichens to: (i) evaluate the joint effects and relative importance of changes in species composition, spatial pattern (clumped and random distribution of lichens), evenness (maximal and low evenness) and richness (from two to eight species) on soil functions related to nutrient cycling (β-glucosidase, urease and acid phosphatase enzymes, in situ N availability, total N, organic C, and N fixation), and (ii) assess how these community attributes affect multifunctionality. 3. Species richness, composition and spatial pattern affected multiple ecosystem functions (e.g. organic C, total N, N availability, β-glucosidase activity), albeit the magnitude and direction of their effects varied with the particular function, experiment and soil depth considered. Changes in species composition had effects on organic C, total N and the activity of β-glucosidase. Significant species richness × evenness and spatial pattern × evenness interactions were found when analysing functions such as organic C, total N and the activity of phosphatase. 4. The probability of sustaining multiple ecosystem functions increased with species richness, but this effect was largely modulated by attributes such as species evenness, composition and spatial pattern. Overall, we found that model communities with high species richness, random spatial pattern and low evenness increased multifunctionality. 5. Synthesis. Our results illustrate how different community attributes have a diverse impact on ecosystem functions related to nutrient cycling, and provide new experimental evidence illustrating the importance of the spatial pattern of organisms on ecosystem functioning. They also indicate that species richness is not the only biotic driver of multifunctionality, and that particular combinations of community attributes may be required to maximize it.
Jenkins, Mark C; Parker, Carolyn; Ritter, Donald
2017-06-01
The purpose of this study was to determine if Eimeria oocyst concentrations and species composition in commercial broiler house litter changed during different cycles of anticoccidial drug (ACD) or live Eimeria oocyst vaccine (VAC) control programs and if there was a correlation between Eimeria oocyst levels and broiler performance. Litter samples were collected from a total of 15 different broiler farms encompassing a total of 45 individual houses during at least one complete grow-out cycle over a 21-mo period. Of these 15 broiler farms, three were followed for the entire 21-mo period spanning three ACD and four VAC cycles. Samples were collected at 2, 4, and 7-8 wk of grow-out corresponding to starter, grower, and withdraw periods of the ACD cycle. On a number of occasions, litter samples were obtained just prior to chick placement. Eimeria oocysts were isolated from all samples, counted by microscopy, and extracted for DNA to identify Eimeria species by ITS1 PCR. In general, Eimeria oocyst concentration in litter reached peak levels at 2-4 wk of grow-out regardless of coccidiosis control measure being used. However, peak oocyst numbers were sometimes delayed until 7-8 wk, indicating some level of Eimeria spp. drug resistance or incomplete vaccine coverage. Eimeria maxima , Eimeria acervulina , Eimeria praecox, and Eimeria tenella were generally present in all samples, and no difference in the species composition was noted between houses on a particular farm. While Eimeria species composition was similar among houses, Eimeria spp. oocyst levels exhibited sporadic peaks in one house of a given location's houses. Of particular interest was the observed correlation between E. maxima oocyst abundance and chick mortality. However, no correlation was observed in E. maxima oocyst levels, and the performance parameters adjusted feed conversion ratio and average daily weight gain. This study showed that understanding the dynamics of Eimeria spp. oocyst levels and species composition in litter during ACD or VAC programs may provide insight into the effectiveness of coccidiosis control measures in commercial broiler production.
NASA Astrophysics Data System (ADS)
Bohn, Friedrich J.; May, Felix; Huth, Andreas
2018-03-01
Rising temperatures due to climate change influence the wood production of forests. Observations show that some temperate forests increase their productivity, whereas others reduce their productivity. This study focuses on how species composition and forest structure properties influence the temperature sensitivity of aboveground wood production (AWP). It further investigates which forests will increase their productivity the most with rising temperatures. We described forest structure by leaf area index, forest height and tree height heterogeneity. Species composition was described by a functional diversity index (Rao's Q) and a species distribution index (ΩAWP). ΩAWP quantified how well species are distributed over the different forest layers with regard to AWP. We analysed 370 170 forest stands generated with a forest gap model. These forest stands covered a wide range of possible forest types. For each stand, we estimated annual aboveground wood production and performed a climate sensitivity analysis based on 320 different climate time series (of 1-year length). The scenarios differed in mean annual temperature and annual temperature amplitude. Temperature sensitivity of wood production was quantified as the relative change in productivity resulting from a 1 °C rise in mean annual temperature or annual temperature amplitude. Increasing ΩAWP positively influenced both temperature sensitivity indices of forest, whereas forest height showed a bell-shaped relationship with both indices. Further, we found forests in each successional stage that are positively affected by temperature rise. For such forests, large ΩAWP values were important. In the case of young forests, low functional diversity and small tree height heterogeneity were associated with a positive effect of temperature on wood production. During later successional stages, higher species diversity and larger tree height heterogeneity were an advantage. To achieve such a development, one could plant below the closed canopy of even-aged, pioneer trees a climax-species-rich understorey that will build the canopy of the mature forest. This study highlights that forest structure and species composition are both relevant for understanding the temperature sensitivity of wood production.
Fine Spatial Scale Variation of Soil Microbial Communities under European Beech and Norway Spruce
Nacke, Heiko; Goldmann, Kezia; Schöning, Ingo; Pfeiffer, Birgit; Kaiser, Kristin; Castillo-Villamizar, Genis A.; Schrumpf, Marion; Buscot, François; Daniel, Rolf; Wubet, Tesfaye
2016-01-01
The complex interactions between trees and soil microbes in forests as well as their inherent seasonal and spatial variations are poorly understood. In this study, we analyzed the effects of major European tree species (Fagus sylvatica L. and Picea abies (L.) Karst) on soil bacterial and fungal communities. Mineral soil samples were collected from different depths (0–10, 10–20 cm) and at different horizontal distances from beech or spruce trunks (0.5, 1.5, 2.5, 3.5 m) in early summer and autumn. We assessed the composition of soil bacterial and fungal communities based on 16S rRNA gene and ITS DNA sequences. Community composition of bacteria and fungi was most strongly affected by soil pH and tree species. Different ectomycorrhizal fungi (e.g., Tylospora) known to establish mutualistic associations with plant roots showed a tree species preference. Moreover, bacterial and fungal community composition showed spatial and seasonal shifts in soil surrounding beech and spruce. The relative abundance of saprotrophic fungi was higher at a depth of 0–10 vs. 10–20 cm depth. This was presumably a result of changes in nutrient availability, as litter input and organic carbon content decreased with soil depth. Overall bacterial community composition showed strong variations under spruce with increasing distance from the tree trunks, which might be attributed in part to higher fine root biomass near spruce trunks. Furthermore, overall bacterial community composition was strongly affected by season under deciduous trees. PMID:28066384
Fine Spatial Scale Variation of Soil Microbial Communities under European Beech and Norway Spruce.
Nacke, Heiko; Goldmann, Kezia; Schöning, Ingo; Pfeiffer, Birgit; Kaiser, Kristin; Castillo-Villamizar, Genis A; Schrumpf, Marion; Buscot, François; Daniel, Rolf; Wubet, Tesfaye
2016-01-01
The complex interactions between trees and soil microbes in forests as well as their inherent seasonal and spatial variations are poorly understood. In this study, we analyzed the effects of major European tree species ( Fagus sylvatica L. and Picea abies (L.) Karst) on soil bacterial and fungal communities. Mineral soil samples were collected from different depths (0-10, 10-20 cm) and at different horizontal distances from beech or spruce trunks (0.5, 1.5, 2.5, 3.5 m) in early summer and autumn. We assessed the composition of soil bacterial and fungal communities based on 16S rRNA gene and ITS DNA sequences. Community composition of bacteria and fungi was most strongly affected by soil pH and tree species. Different ectomycorrhizal fungi (e.g., Tylospora ) known to establish mutualistic associations with plant roots showed a tree species preference. Moreover, bacterial and fungal community composition showed spatial and seasonal shifts in soil surrounding beech and spruce. The relative abundance of saprotrophic fungi was higher at a depth of 0-10 vs. 10-20 cm depth. This was presumably a result of changes in nutrient availability, as litter input and organic carbon content decreased with soil depth. Overall bacterial community composition showed strong variations under spruce with increasing distance from the tree trunks, which might be attributed in part to higher fine root biomass near spruce trunks. Furthermore, overall bacterial community composition was strongly affected by season under deciduous trees.
The polymorphic weddellite crystals in three species of Cephalocereus (Cactaceae).
Bárcenas-Argüello, María-Luisa; Gutiérrez-Castorena, Ma C-del-Carmen; Terrazas, Teresa
2015-10-01
Mineral inclusions in plant cells are genetically regulated, have an ecological function and are used as taxonomic characters. In Cactaceae, crystals in epidermal and cortical tissues have been reported; however, few studies have conducted chemical and morphological analyses on these crystals, and even fewer have reported non-mineral calcium to determine its systematic value. Cephalocereus apicicephalium, C. totolapensis and C. nizandensis are Cactaceae species endemic to the Isthmus of Tehuantepec, Mexico with abundant epidermal prismatic crystals. In the present study, we characterize the mineral cell inclusions, including their chemical composition and their morphology, for three species of Cephalocereus. Crystals of healthy branches of the three species were isolated and studied. The crystals were identified by X-ray diffraction (XRD), their morphology was described using a petrographic and scanning electron microscope (SEM), and their elemental composition was measured with Energy Dispersive X-ray (EDXAR). The three species synthesized weddellite with different degrees of hydration depending on the species. The optical properties of calcium oxalate crystals were different from the core, which was calcium carbonate. We observed a large diversity of predominantly spherical forms with SEM. EDXAR analysis detected different concentrations of Ca and significant amounts of elements, such as Si, Mg, Na, K, Cl, and Fe, which may be related to the edaphic environment of these cacti. The occurrence of weddellite is novel for the genus according to previous reports. The morphological diversity of the crystals may be related to their elemental composition and may be a source of phylogenetic characters. Copyright © 2015 Elsevier Ltd. All rights reserved.
Aguilar, Consuelo; González-Sansón, Gaspar; Cabrera, Yureidy; Ruiz, Alexei; Curry, R Allen
2014-06-01
Movement and exchange of individuals among habitats is critical for the dynamics and success of reef fish populations. Size segregation among habitats could be taken as evidence for habitat connectivity, and this would be a first step to formulate hypotheses about ontogenetic inter-habitat migrations. The primary goal of our research was to find evidence of inter-habitat differences in size distributions and density of reef fish species that can be classified a priori as habitat-shifters in an extensive (-600km2) Caribbean shelf area in NW Cuba. We sampled the fish assemblage of selected species using visual census (stationary and transect methods) in 20 stations (sites) located in mangrove roots, patch reefs, inner zone of the crest and fore reef (12-16m depth). In each site, we performed ten censuses for every habitat type in June and September 2009. A total of 11 507 individuals of 34 species were counted in a total of 400 censuses. We found significant differences in densities and size compositions among reef and mangrove habitats, supporting the species-specific use of coastal habitats. Adults were found in all habitats. Reef habitats, mainly patch reefs, seem to be most important for juvenile fish of most species. Mangroves were especially important for two species of snappers (Lutjanus apodus and L. griseus), providing habitat for juveniles. These species also displayed well defined gradients in length composition across the shelf.
Ogorodova, L M; Fedosenko, S V; Popenko, A S; Petrov, V A; Tyakht, A V; Saltykova, I V; Deev, I A; Kulikov, E S; Kirillova, N A; Govorun, V M; Kostryukova, E S
2015-01-01
The result of comparative study of oropharyngeal microbiota taxonomic composition in patients with different severity level of bronchial asthma (BA) and chronic obstructive pulmonary disease (COPD) is presented in this paper. To compare oropharyngeal microbiota composition in case of bronchial asthma and chronic obstructive pulmonary disease in different severity levels. 138 patients, 50 with BA and 88 with COPD were studied. For each patient was collected anamnesis vitae, swab from the back of the throat and performed physical examination. High-throughput 16S ribosomal RNA gene sequencing and bioinformatic analysis was employed to characterize the microbial communities. As a result of the study wasfound a number of differences on various taxonomic levels in microbiota's composition within group of patients with different severity level of BA and group of patients with different severity level of COPD and between those groups. COPD patients with GOLD 1-2 in comparison with GOLD 3-4 patiens are marked by prevalence of species Brevibacterium aureum, genus Scardovia, Coprococcus, Haemophilus, Moryella, Dialister, Paludibacter and decrease of Prevotella melaninogenica species. BA patients with severe uncontrolled asthma in comparison with patients which have mild persistent asthma are marked by decrease of Prevotella and increase of species Bifidobacterium longum, Prevotella nanceiensis, Neisseria cinerea, Aggregatibacter segnis and genus Odoribacter, Alloiococcus, Lactobacillus, Megasphaera, Parvimonas, Sneathia. Patient's microbiota in BA group in comparison with COPD group is characterized by the prevalence of Prevotella melaninogenica and genus Selenomonas, Granulicatella u Gemella, and decrease of Prevotella nigrescens, Haemophilus influenza and genus Aggregatibacter, Alloiococcus, Catonella, Mycoplasma, Peptoniphilus u Sediminibacterium. There are no differences between microbiota composition in case of severe uncontrolled BA and very severe COPD. Lack of differences in oropharyngeal microbiota taxonomic composition between patients with severe uncontrolled BA and very severe COPD allow us to suggest a similarity of bronchopulmonary system condition in case of diseases' severe stages.
Nord, Maria; Forslund, Pär
2015-01-01
Scientifically-based systematic conservation planning for reserve design requires knowledge of species richness patterns and how these are related to environmental gradients. In this study, we explore a large inventory of coastal breeding birds, in total 48 species, sampled in 4646 1 km2 squares which covered a large archipelago in the Baltic Sea on the east coast of Sweden. We analysed how species richness (α diversity) and community composition (β diversity) of two groups of coastal breeding birds (specialists, i.e. obligate coastal breeders; generalists, i.e. facultative coastal breeders) were affected by distance to open sea, land area, shoreline length and archipelago width. The total number of species per square increased with increasing shoreline length, but increasing land area counteracted this effect in specialists. The number of specialist bird species per square increased with decreasing distance to open sea, while the opposite was true for the generalists. Differences in community composition between squares were associated with differences in land area and distance to open sea, both when considering all species pooled and each group separately. Fourteen species were nationally red-listed, and showed similar relationships to the environmental gradients as did all species, specialists and generalists. We suggest that availability of suitable breeding habitats, and probably also proximity to feeding areas, explain much of the observed spatial distributions of coastal birds in this study. Our findings have important implications for systematic conservation planning of coastal breeding birds. In particular, we provide information on where coastal breeding birds occur and which environments they seem to prefer. Small land areas with long shorelines are highly valuable both in general and for red-listed species. Thus, such areas should be prioritized for protection against human disturbance and used by management in reserve selection.
Nord, Maria; Forslund, Pär
2015-01-01
Scientifically-based systematic conservation planning for reserve design requires knowledge of species richness patterns and how these are related to environmental gradients. In this study, we explore a large inventory of coastal breeding birds, in total 48 species, sampled in 4646 1 km2 squares which covered a large archipelago in the Baltic Sea on the east coast of Sweden. We analysed how species richness (α diversity) and community composition (β diversity) of two groups of coastal breeding birds (specialists, i.e. obligate coastal breeders; generalists, i.e. facultative coastal breeders) were affected by distance to open sea, land area, shoreline length and archipelago width. The total number of species per square increased with increasing shoreline length, but increasing land area counteracted this effect in specialists. The number of specialist bird species per square increased with decreasing distance to open sea, while the opposite was true for the generalists. Differences in community composition between squares were associated with differences in land area and distance to open sea, both when considering all species pooled and each group separately. Fourteen species were nationally red-listed, and showed similar relationships to the environmental gradients as did all species, specialists and generalists. We suggest that availability of suitable breeding habitats, and probably also proximity to feeding areas, explain much of the observed spatial distributions of coastal birds in this study. Our findings have important implications for systematic conservation planning of coastal breeding birds. In particular, we provide information on where coastal breeding birds occur and which environments they seem to prefer. Small land areas with long shorelines are highly valuable both in general and for red-listed species. Thus, such areas should be prioritized for protection against human disturbance and used by management in reserve selection. PMID:25714432
Ashley D. Keiser; Jennifer D. Knoepp; Mark A. Bradford
2013-01-01
Background and aims Climate change alters regional plant species distributions, creating new combinations of litter species and soil communities. Biogeographic patterns in microbial communities relate to dissimilarity in microbial community function, meaning novel litters to communities may decompose differently than predicted from their chemical composition. Therefore...
Encroachment of oriental bittersweet into Pitcher’s thistle habitat
Leicht-Young, Stacey A.; Pavlovic, Noel B.
2012-01-01
Common invasive species and rare endemic species can grow and interact at the ecotone between forested and non-forested dune habitats. To investigate these interactions, a comparison of the proximity and community associates of a sympatric invasive (Celastrus orbiculatus; oriental bittersweet) and native (C. scandens; American bittersweet) liana species to federally threatened Cirsium pitcheri (Pitcher's thistle) in the dunes habitats of Lake Michigan was conducted. Overall, the density of the invasive liana species was significantly greater in proximity to C. pitcheri than the native species. On the basis of composition, the three focal species occurred in both foredune and blowout habitats. The plant communities associated with the three focal species overlapped in ordination space, but there were significant differences in composition. The ability of C. orbiculatus to rapidly grow and change the ecological dynamics of invasion sites adds an additional threat to the successional habitats of C. pitcheri.
Aranguren-Riaño, Nelson J; Guisande, Cástor; Shurin, Jonathan B; Jones, Natalie T; Barreiro, Aldo; Duque, Santiago R
2018-07-01
Variation in resource use among species determines their potential for competition and co-existence, as well as their impact on ecosystem processes. Planktonic crustaceans consume a range of micro-organisms that vary among habitats and species, but these differences in resource consumption are difficult to characterize due to the small size of the organisms. Consumers acquire amino acids from their diet, and the composition of tissues reflects both the use of different resources and their assimilation in proteins. We examined the amino acid composition of common crustacean zooplankton from 14 tropical lakes in Colombia in three regions (the Amazon floodplain, the eastern range of the Andes, and the Caribbean coast). Amino acid composition varied significantly among taxonomic groups and the three regions. Functional richness in amino acid space was greatest in the Amazon, the most productive region, and tended to be positively related to lake trophic status, suggesting the niche breadth of the community could increase with ecosystem productivity. Functional evenness increased with lake trophic status, indicating that species were more regularly distributed within community-wide niche space in more productive lakes. These results show that zooplankton resource use in tropical lakes varies with both habitat and taxonomy, and that lake productivity may affect community functional diversity and the distribution of species within niche space.
Hamberg, Leena; Lehvävirta, Susanna; Kotze, D Johan; Heikkinen, Juha
2015-03-15
Recent studies have shown a considerable increase in the abundance of rowan (Sorbus aucuparia) saplings in urban forests in Finland, yet the reasons for this increase are not well understood. Here we investigated whether canopy cover or tree species composition, i.e., the basal areas of different tree species in Norway spruce dominated urban forests, affects the abundances of rowan seedlings, saplings and trees. Altogether 24 urban forest patches were investigated. We sampled the number of rowan and other saplings, and calculated the basal areas of trees. We showed that rowan abundance was affected by tree species composition. The basal area of rowan trees (≥ 5 cm in diameter at breast height, dbh) decreased with increasing basal area of Norway spruce, while the cover of rowan seedlings increased with an increase in Norway spruce basal area. However, a decrease in the abundance of birch (Betula pendula) and an increase in the broad-leaved tree group (Acer platanoides, Alnus glutinosa, Alnus incana, Amelanchier spicata, Prunus padus, Quercus robur, Rhamnus frangula and Salix caprea) coincided with a decreasing number of rowans. Furthermore, rowan saplings were scarce in the vicinity of mature rowan trees. Although it seems that tree species composition has an effect on rowan, the relationship between rowan saplings and mature trees is complex, and therefore we conclude that regulating tree species composition is not an easy way to keep rowan thickets under control in urban forests in Finland. Copyright © 2015 Elsevier Ltd. All rights reserved.
Early warning of critical transitions in biodiversity from compositional disorder.
Doncaster, C Patrick; Alonso Chávez, Vasthi; Viguier, Clément; Wang, Rong; Zhang, Enlou; Dong, Xuhui; Dearing, John A; Langdon, Peter G; Dyke, James G
2016-11-01
Global environmental change presents a clear need for improved leading indicators of critical transitions, especially those that can be generated from compositional data and that work in empirical cases. Ecological theory of community dynamics under environmental forcing predicts an early replacement of slowly replicating and weakly competitive "canary" species by slowly replicating but strongly competitive "keystone" species. Further forcing leads to the eventual collapse of the keystone species as they are replaced by weakly competitive but fast-replicating "weedy" species in a critical transition to a significantly different state. We identify a diagnostic signal of these changes in the coefficients of a correlation between compositional disorder and biodiversity. Compositional disorder measures unpredictability in the composition of a community, while biodiversity measures the amount of species in the community. In a stochastic simulation, sequential correlations over time switch from positive to negative as keystones prevail over canaries, and back to positive with domination of weedy species. The model finds support in empirical tests on multi-decadal time series of fossil diatom and chironomid communities from lakes in China. The characteristic switch from positive to negative correlation coefficients occurs for both communities up to three decades preceding a critical transition to a sustained alternate state. This signal is robust to unequal time increments that beset the identification of early-warning signals from other metrics. © 2016 The Authors. Ecology, published by Wiley Periodicals, Inc., on behalf of the Ecological Society of America.
Patch dynamics of a foraging assemblage of bees.
Wright, David Hamilton
1985-03-01
The composition and dynamics of foraging assemblages of bees were examined from the standpoint of species-level arrival and departure processes in patches of flowers. Experiments with bees visiting 4 different species of flowers in subalpine meadows in Colorado gave the following results: 1) In enriched patches the rates of departure of bees were reduced, resulting in increases in both the number of bees per species and the average number of species present. 2) The reduction in bee departure rates from enriched patches was due to mechanical factors-increased flower handling time, and to behavioral factors-an increase in the number of flowers visited per inflorescence and in the number of inflorescences visited per patch. Bees foraging in enriched patches could collect nectar 30-45% faster than those foraging in control patches. 3) The quantitative changes in foraging assemblages due to enrichment, in terms of means and variances of species population sizes, fraction of time a species was present in a patch, and in mean and variance of the number of species present, were in reasonable agreement with predictions drawn from queuing theory and studies in island biogeography. 4) Experiments performed with 2 species of flowers with different corolla tube lengths demonstrated that manipulation of resources of differing availability had unequal effects on particular subsets of the larger foraging community. The arrival-departure process of bees on flowers and the immigration-extinction process of species on islands are contrasted, and the value of the stochastic, species-level approach to community composition is briefly discussed.
NASA Astrophysics Data System (ADS)
Ji, Huawei; Du, Baoming; Liu, Chunjiang
2017-04-01
To understand how different trophic organisms in a parasite food chain adapt to the differences in soil nutrient conditions, we investigated stoichiometric variation and homeostasis of multiple elements in two acorn trees, Quercus variabilis and Quercus acutissima, and their parasite weevil larvae (Curculio davidi Fairmaire) at phosphorus (P)-deficient and P-rich sites in subtropical China where P-rich ores are scattered among dominant P-deficient soils. Results showed that elemental stoichiometry and compositions of both acorns and weevil larvae differed significantly between P-deficient and P-rich sites (p < 0.05), with the largest contribution of acorn and weevil larva P in distinguishing the stoichiometric compositions between the two site types. The two acorn species were statistically separated by their acorn elemental stoichiometry and compositions (p < 0.05), but no difference was observed on weevil larvae between the two acorn species. P was one of the few elements that were non strict homeostasis in both acorns and weevil larvae. These findings highlight the importance of both environmental influence in elemental stoichiometry and composition and physiological regulations of nutritional needs in organisms and provide possible stoichiometric responses of both plants and animals to P loading, a worldwide issue from excess release of P into the environment.
NASA Astrophysics Data System (ADS)
Ronowicz, Marta; Kukliński, Piotr; Włodarska-Kowalczuk, Maria
2018-05-01
Kelp forests are complex underwater habitats that support diverse assemblages of animals ranging from sessile filter feeding invertebrates to fishes and marine mammals. In this study, the diversity of invertebrate fauna associated with kelp holdfasts was surveyed in a high Arctic glacial fjord (76 N, Hornsund, Svalbard). The effects of algal host identity (three kelp species: Laminaria digitata, Saccharina latissima and Alaria esculenta), depth (5 and 10 m) and glacier-derived disturbance (three sites with varying levels of mineral sedimentation) on faunal species richness and composition were studied based on 239 collected algal holdfasts. The species pool was mostly made up by three taxa: colonial Bryozoa and Hydrozoa, and Polychaeta. While the all-taxa species richness did not differ between depths, algal hosts and sites, the patterns varied when the two colonial sessile filter-feeding taxa were analysed alone (Hydrozoa and Bryozoa). The Hydrozoa sample species richness and average taxonomic distinctness were the highest at undisturbed sites, whereas Bryozoa species richness was higher in sediment-impacted localities, indicating relative insensitivity of this phylum to the increased level of mineral suspension in the water column. The average taxonomic distinctness of Bryozoa did not vary between sites. The species composition of kelp-associated fauna varied between sites and depths for the whole community and the most dominant taxa (Bryozoa, Hydrozoa). The high load of inorganic suspension and sedimentation did not cause pauperization of kelp holdfast-associated fauna but instead triggered the changes in species composition and shifts between dominant taxonomic groups.
NASA Astrophysics Data System (ADS)
Miller, J. A.; Peterson, W. T.; Copeman, L. A.; Du, X.; Morgan, C. A.; Litz, M. N. C.
2017-06-01
There is strong correlative evidence that variation in the growth and survival of secondary consumers is related to the copepod species composition within the Northern California Current. Potential mechanisms driving these correlations include: (1) enhanced growth and survival of secondary consumers when lipid-rich, boreal copepod species are abundant, with cascading effects on higher trophic levels; (2) the regulation of growth and condition of primary and secondary consumers by the relative proportion of certain essential fatty acids (FAs) in primary producers; or (3) a combination of these factors. Disentangling the relative importance of taxonomic composition, lipid quantity, and FA composition on the nutritional quality of copepods requires detailed information on both the consumer and primary producers. Therefore, we collected phytoplankton and copepods at an oceanographic station for 19 months and completed species community analyses and generated detailed lipid profiles, including lipid classes and FAs, for both groups. There was strong covariation between species and biochemistry within and across trophic levels and distinct seasonal differences. The amount of total lipid within both the phytoplankton and copepod communities was twice as high in spring and summer than in fall and winter, and certain FAs, such as diatom indicators 20:5ω3 and 16:1ω7, comprised a greater proportion of the FA pool in spring and summer. Indicators of bacterial production within the copepod community were proportionally twice as high during fall and winter than spring and summer. Seasonal transitions in copepod FA composition were consistently offset from transitions in copepod species composition by approximately two weeks. The timing of the seasonal transition in copepod FAs reflected seasonal shifts in the species composition and/or biochemistry of primary producers more than seasonal shifts in the copepod species composition. These results emphasize the importance of interactions between the copepod community and their available phytoplankton prey in regulating the nutritional quality of primary consumers.
Biodiversity and ecosystem functioning in dynamic landscapes
Brose, Ulrich; Hillebrand, Helmut
2016-01-01
The relationship between biodiversity and ecosystem functioning (BEF) and its consequence for ecosystem services has predominantly been studied by controlled, short-term and small-scale experiments under standardized environmental conditions and constant community compositions. However, changes in biodiversity occur in real-world ecosystems with varying environments and a dynamic community composition. In this theme issue, we present novel research on BEF in such dynamic communities. The contributions are organized in three sections on BEF relationships in (i) multi-trophic diversity, (ii) non-equilibrium biodiversity under disturbance and varying environmental conditions, and (iii) large spatial and long temporal scales. The first section shows that multi-trophic BEF relationships often appear idiosyncratic, while accounting for species traits enables a predictive understanding. Future BEF research on complex communities needs to include ecological theory that is based on first principles of species-averaged body masses, stoichiometry and effects of environmental conditions such as temperature. The second section illustrates that disturbance and varying environments have direct as well as indirect (via changes in species richness, community composition and species' traits) effects on BEF relationships. Fluctuations in biodiversity (species richness, community composition and also trait dominance within species) can severely modify BEF relationships. The third section demonstrates that BEF at larger spatial scales is driven by different variables. While species richness per se and community biomass are most important, species identity effects and community composition are less important than at small scales. Across long temporal scales, mass extinctions represent severe changes in biodiversity with mixed effects on ecosystem functions. Together, the contributions of this theme issue identify new research frontiers and answer some open questions on BEF relationships in dynamic communities of real-world landscapes. PMID:27114570
Gabriel, Doreen; Roschewitz, Indra; Tscharntke, Teja; Thies, Carsten
2006-10-01
Biodiversity studies that guide agricultural subsidy policy have generally compared farming systems at a single spatial scale: the field. However, diversity patterns vary across spatial scales. Here, we examined the effects of farming system (organic vs. conventional) and position in the field (edge vs. center) on plant species richness in wheat fields at three spatial scales. We quantified alpha-, beta-, and gamma-diversity at the microscale in 800 plots, at the mesoscale in 40 fields, and at the macroscale in three regions using the additive partitioning approach, and evaluated the relative contribution of beta-diversity at each spatial scale to total observed species richness. We found that alpha-, beta-, and gamma-diversity were higher in organic than conventional fields and higher at the field edge than in the field center at all spatial scales. In both farming systems, beta-diversity at the meso- and macroscale explained most of the overall species richness (up to 37% and 25%, respectively), indicating considerable differences in community composition among fields and regions due to environmental heterogeneity. The spatial scale at which beta-diversity contributed the most to overall species richness differed between rare and common species. Total richness of rare species (present in < or = 5% of total samples) was mainly explained by differences in community composition at the meso- and macroscale (up to 27% and 48%, respectively), but only in organic fields. Total richness of common species (present in > or = 25% of total samples) was explained by differences in community composition at the micro- and mesoscale (up to 29% and 47%, respectively), i.e., among plots and fields, independent of farming system. Our results show that organic farming made the greatest contribution to total species richness at the meso (among fields) and macro (among regions) scale due to environmental heterogeneity. Hence, agri-environment schemes should exploit this large-scale contribution of beta-diversity by tailoring schemes at regional scales to maximize dissimilarity between conservation areas using geographic information systems rather than focusing entirely at the classical local-field scale, which is the current practice.
NASA Astrophysics Data System (ADS)
Melle, W.; Broms, C.; Meier, S.; Mæhle, S.; Skern, R.
2016-02-01
Accumulation and utilization of stored lipids impact important life-cycle events of Calanus species. The con-generic copepods Calanus finmarchicus (cold-temperate) and C. helgolandicus (warm-temperate) co-occur in the Norwegian Sea, although their abundances and seasonal dynamics differ. These species also exhibit important differences regarding behaviour, fat metabolism and deposition, and diet. During one year, C. finmarchicus and C. helgolandicus were sampled at a number of stations in the Norwegian Sea in January, May and November. The samples are depth-stratified, taken down to 1500 meters depth, and have been analyzed to copepodite stages IV, V and VI males and females. The species are separated based on genetic analysis. The lipid classes (phospholipids, triacylglycerol and wax esters) composition of the different species are analysed by Folch extraction and Thin-Layer Chromatography (TLC) followed by gas chromatography analysis of fatty acids and alcohols. The species-, stage-, and depth specific lipid contents have been related to the Calanus species vertical distribution, physical environment, prey field, and invertebrate predator field. Questions that have been attempted answered: How does the lipid content affect vertical seasonal migration? How does the lipid content affect overwintering depth and duration of diapause? Can lipid content explain differences in behaviour and phenology between C. finmarchicus and C. helgolandicus? Preliminary analyses of fatty acids reveals only small differences in the diet composition of C. finmarchicus and C. helgolandicus sampled at the same location. The Calanus species are adapted to different habitats and temperature regimes. Improving our understanding of how diet and fat accumulation and utilization affects important life-cycle events will allow us to better predict how these species, and thus the herbivore community of the Norwegian Sea, will change in response to global warming.
Boieiro, Mário; Carvalho, José C.; Cardoso, Pedro; Aguiar, Carlos A. S.; Rego, Carla; de Faria e Silva, Israel; Amorim, Isabel R.; Pereira, Fernando; Azevedo, Eduardo B.; Borges, Paulo A. V.; Serrano, Artur R. M.
2013-01-01
The development in recent years of new beta diversity analytical approaches highlighted valuable information on the different processes structuring ecological communities. A crucial development for the understanding of beta diversity patterns was also its differentiation in two components: species turnover and richness differences. In this study, we evaluate beta diversity patterns of ground beetles from 26 sites in Madeira Island distributed throughout Laurisilva – a relict forest restricted to the Macaronesian archipelagos. We assess how the two components of ground beetle beta diversity (βrepl – species turnover and βrich - species richness differences) relate with differences in climate, geography, landscape composition matrix, woody plant species richness and soil characteristics and the relative importance of the effects of these variables at different spatial scales. We sampled 1025 specimens from 31 species, most of which are endemic to Madeira Island. A spatially explicit analysis was used to evaluate the contribution of pure environmental, pure spatial and environmental spatially structured effects on variation in ground beetle species richness and composition. Variation partitioning showed that 31.9% of species turnover (βrepl) and 40.7% of species richness variation (βrich) could be explained by the environmental and spatial variables. However, different environmental variables controlled the two types of beta diversity: βrepl was influenced by climate, disturbance and soil organic matter content whilst βrich was controlled by altitude and slope. Furthermore, spatial variables, represented through Moran’s eigenvector maps, played a significant role in explaining both βrepl and βrich, suggesting that both dispersal ability and Madeira Island complex orography are crucial for the understanding of beta diversity patterns in this group of beetles. PMID:23724065
Brown, W V; Rose, H A; Lacey, M J; Wright, K
2000-11-01
The cuticular hydrocarbons of a widespread species of soil-burrowing cockroach, Macropanesthia rhinoceros, have been sampled from most of its known geographical locations. Analysis of extracts from individual insects has enabled a study of differences within a population as well as among geographical locations. In the case of M. rhinoceros, except for newly hatched first-instar nymphs, variations in hydrocarbon composition among individuals of different cohorts of M. rhinoceros, based on age and sex, are no greater than those among individuals of a single cohort. Geographical populations of this species are variable in hydrocarbon composition unless they occur within a few kilometres of each other. A few populations showed very different hydrocarbon patterns but, in the absence of any correlating biological differences, it is uncertain whether this signifies the presence of otherwise unrecognizable sibling species or just extreme examples of the geographical variation characteristic of this group of insects.
Amphibian diversity and threatened species in a severely transformed neotropical region in Mexico.
Meza-Parral, Yocoyani; Pineda, Eduardo
2015-01-01
Many regions around the world concentrate a large number of highly endangered species that have very restricted distributions. The mountainous region of central Veracruz, Mexico, is considered a priority area for amphibian conservation because of its high level of endemism and the number of threatened species. The original tropical montane cloud forest in the region has been dramatically reduced and fragmented and is now mainly confined to ravines and hillsides. We evaluated the current situation of amphibian diversity in the cloud forest fragments of this region by analyzing species richness and abundance, comparing assemblage structure and species composition, examining the distribution and abundance of threatened species, and identifying the local and landscape variables associated with the observed amphibian diversity. From June to October 2012 we sampled ten forest fragments, investing 944 person-hours of sampling effort. A total of 895 amphibians belonging to 16 species were recorded. Notable differences in species richness, abundance, and assemblage structure between forest fragments were observed. Species composition between pairs of fragments differed by an average of 53%, with the majority (58%) resulting from species replacement and the rest (42%) explained by differences in species richness. Half of the species detected are under threat of extinction according to the International Union for Conservation of Nature, and although their distribution and abundance varied markedly, there were also ubiquitous and abundant species, along with rare species of restricted distribution. The evident heterogeneity of the ten study sites indicates that to conserve amphibians in a mountainous region such as this one it is necessary to protect groups of fragments which represent the variability of the system. Both individually and together cloud forest fragments are very important to conservation because each remnant is inhabited by several threatened species, some of them at imminent risk of extinction.
NASA Astrophysics Data System (ADS)
Straková, Petra; Laiho, Raija
2016-04-01
In this presentation, we assess the merits of using Fourier transform infrared (FTIR) spectra to estimate the organic matter composition in different plant biomass and peat soil samples. Infrared spectroscopy has a great potential in large-scale peatland studies that require low cost and high throughput techniques, as it gives a unique "chemical overview" of a sample, with all the chemical compounds present contributing to the spectrum produced. Our extensive sample sets include soil samples ranging from boreal to tropical peatlands, including sites under different environmental and/or land-use changes; above- and below-ground biomass of different peatland plant species; plant root mixtures. We mainly use FTIR to estimate (1) chemical composition of the samples (e.g., total C and N, C:N ratio, holocellulose, lignin and ash content), (2) proportion of each plant species in root mixtures, and (3) respiration of surface peat. The satisfactory results of our predictive models suggest that this experimental approach can, for example, be used as a screening tool in the evaluation of organic matter composition in peatlands during monitoring of their degradation and/or restoration success.
NASA Astrophysics Data System (ADS)
Bischoff, S.; Schwarz, M. T.; Siemens, J.; Thieme, L.; Wilcke, W.; Michalzik, B.
2014-10-01
For the first time, we investigated the composition of dissolved organic matter (DOM) compared to total OM (TOM, consisting of DOM and particulate OM, POM) in throughfall, stemflow and forest floor leachate of beech and spruce forests using solid state 13C nuclear magnetic resonance spectroscopy. We hypothesized that the composition and properties of OM in forest ecosystem water samples differed between DOM and TOM and between the two tree species. Under beech, a contribution of phyllosphere-derived fresh POM was echoed in structural differences. Compared with DOM, TOM exhibited higher relative intensities for the alkyl C region, representing aliphatic C from less decomposed organic material, and lower relative intensities for lignin-derived and aromatic C of the aryl C region, resulting in lower aromaticity indices and reduced humification intensities. Since differences in the structural composition of DOM and TOM were less pronounced under spruce than under beech, we suspect a~tree species-related effect on the origin of OM composition and resulting properties (e.g. recalcitrance, allelopathic potential).
Baker, Timothy R; Vela Díaz, Dilys M; Chama Moscoso, Victor; Navarro, Gilberto; Monteagudo, Abel; Pinto, Ruy; Cangani, Katia; Fyllas, Nikolaos M; Lopez Gonzalez, Gabriela; Laurance, William F; Lewis, Simon L; Lloyd, Jonathan; Ter Steege, Hans; Terborgh, John W; Phillips, Oliver L
2016-03-01
Understanding the resilience of moist tropical forests to treefall disturbance events is important for understanding the mechanisms that underlie species coexistence and for predicting the future composition of these ecosystems. Here, we test whether variation in the functional composition of Amazonian forests determines their resilience to disturbance.We studied the legacy of natural treefall disturbance events in four forests across Amazonia that differ substantially in functional composition. We compared the composition and diversity of all free-standing woody stems 2-10 cm diameter in previously disturbed and undisturbed 20 × 20 m subplots within 55, one-hectare, long-term forest inventory plots.Overall, stem number increased following disturbance, and species and functional composition shifted to favour light-wooded, small-seeded taxa. Alpha-diversity increased, but beta-diversity was unaffected by disturbance, in all four forests.Changes in response to disturbance in both functional composition and alpha-diversity were, however, small (2 - 4% depending on the parameter) and similar among forests. Synthesis . This study demonstrates that variation in the functional composition of Amazonian forests does not lead to large differences in the response of these forests to treefall disturbances, and overall, these events have a minor role in maintaining the diversity of these ecosystems.
Local Individual Preferences for Nest Materials in a Passerine Bird
Mennerat, Adèle; Perret, Philippe; Lambrechts, Marcel M.
2009-01-01
Background Variation in the behavioural repertoire of animals is acquired by learning in a range of animal species. In nest-building birds, the assemblage of nest materials in an appropriate structure is often typical of a bird genus or species. Yet plasticity in the selection of nest materials may be beneficial because the nature and abundance of nest materials vary across habitats. Such plasticity can be learned, either individually or socially. In Corsican populations of blue tits Cyanistes caeruleus, females regularly add in their nests fragments of several species of aromatic plants during the whole breeding period. The selected plants represent a small fraction of the species present in the environment and have positive effects on nestlings. Methodology/Principal Findings We investigated spatiotemporal variations of this behaviour to test whether the aromatic plant species composition in nests depends on 1) plant availability in territories, 2) female experience or 3) female identity. Our results indicate that territory plays a very marginal role in the aromatic plant species composition of nests. Female experience is not related to a change in nest plant composition. Actually, this composition clearly depends on female identity, i.e. results from individual preferences which, furthermore, are repeatable both within and across years. A puzzling fact is the strong difference in plant species composition of nests across distinct study plots. Conclusions/Significance This study demonstrates that plant species composition of nests results from individual preferences that are homogeneous within study plots. We propose several hypotheses to interpret this pattern of spatial variation before discussing them in the light of preliminary results. As a conclusion, we cannot exclude the possibility of social transmission of individual preferences for aromatic plants. This is an exciting perspective for further work in birds, where nest construction behaviour has classically been considered as a stereotypic behaviour. PMID:19337365
Long-term changes in species composition and relative abundances of sharks at a provisioning site.
Brunnschweiler, Juerg M; Abrantes, Kátya G; Barnett, Adam
2014-01-01
Diving with sharks, often in combination with food baiting/provisioning, has become an important product of today's recreational dive industry. Whereas the effects baiting/provisioning has on the behaviour and abundance of individual shark species are starting to become known, there is an almost complete lack of equivalent data from multi-species shark diving sites. In this study, changes in species composition and relative abundances were determined at the Shark Reef Marine Reserve, a multi-species shark feeding site in Fiji. Using direct observation sampling methods, eight species of sharks (bull shark Carcharhinus leucas, grey reef shark Carcharhinus amblyrhynchos, whitetip reef shark Triaenodon obesus, blacktip reef shark Carcharhinus melanopterus, tawny nurse shark Nebrius ferrugineus, silvertip shark Carcharhinus albimarginatus, sicklefin lemon shark Negaprion acutidens, and tiger shark Galeocerdo cuvier) displayed inter-annual site fidelity between 2003 and 2012. Encounter rates and/or relative abundances of some species changed over time, overall resulting in more individuals (mostly C. leucas) of fewer species being encountered on average on shark feeding dives at the end of the study period. Differences in shark community composition between the years 2004-2006 and 2007-2012 were evident, mostly because N. ferrugineus, C. albimarginatus and N. acutidens were much more abundant in 2004-2006 and very rare in the period of 2007-2012. Two explanations are offered for the observed changes in relative abundances over time, namely inter-specific interactions and operator-specific feeding protocols. Both, possibly in combination, are suggested to be important determinants of species composition and encounter rates, and relative abundances at this shark provisioning site in Fiji. This study, which includes the most species from a spatially confined shark provisioning site to date, suggests that long-term provisioning may result in competitive exclusion among shark species.
Seasonal contrasts in the response of coffee ants to agroforestry shade-tree management.
Teodoro, A V; Sousa-Souto, L; Klein, A-M; Tscharntke, T
2010-12-01
In many tropical landscapes, agroforestry systems are the last forested ecosystems, providing shade, having higher humidity, mitigating potential droughts, and possessing more species than any other crop system. Here, we tested the hypothesis that higher levels of shade and associated humidity in agroforestry enhance coffee ant richness more during the dry than rainy season, comparing ant richness in 22 plots of three coffee agroforestry types in coastal Ecuador: simple-shade agroforests (intensively managed with low tree species diversity), complex-shade agroforests (extensively managed with intermediate tree species diversity) and abandoned coffee agroforests (abandoned for 10-15 yr and resembling secondary forests). Seasonality affected responses of ant richness but not composition to agroforestry management, in that most species were observed in abandoned coffee agroforests in the dry season. In the rainy season, however, most species were found in simple-shade agroforests, and complex agroforestry being intermediate. Foraging coffee ants species composition did not change differently according to agroforestry type and season. Results show that shade appears to be most important in the dry seasons, while a mosaic of different land-use types may provide adequate environmental conditions to ant species, maximizing landscape-wide richness throughout the year. © 2010 Entomological Society of America
Leaf-trait plasticity and species vulnerability to climate change in a Mongolian steppe.
Liancourt, Pierre; Boldgiv, Bazartseren; Song, Daniel S; Spence, Laura A; Helliker, Brent R; Petraitis, Peter S; Casper, Brenda B
2015-09-01
Climate change is expected to modify plant assemblages in ways that will have major consequences for ecosystem functions. How climate change will affect community composition will depend on how individual species respond, which is likely related to interspecific differences in functional traits. The extraordinary plasticity of some plant traits is typically neglected in assessing how climate change will affect different species. In the Mongolian steppe, we examined whether leaf functional traits under ambient conditions and whether plasticity in these traits under altered climate could explain climate-induced biomass responses in 12 co-occurring plant species. We experimentally created three probable climate change scenarios and used a model selection procedure to determine the set of baseline traits or plasticity values that best explained biomass response. Under all climate change scenarios, plasticity for at least one leaf trait correlated with change in species performance, while functional leaf-trait values in ambient conditions did not. We demonstrate that trait plasticity could play a critical role in vulnerability of species to a rapidly changing environment. Plasticity should be considered when examining how climate change will affect plant performance, species' niche spaces, and ecological processes that depend on plant community composition. © 2015 John Wiley & Sons Ltd.
Mixing effects on litter decomposition rates in a young tree diversity experiment
NASA Astrophysics Data System (ADS)
Setiawan, Nuri Nurlaila; Vanhellemont, Margot; De Schrijver, An; Schelfhout, Stephanie; Baeten, Lander; Verheyen, Kris
2016-01-01
Litter decomposition is an essential process for biogeochemical cycling and for the formation of new soil organic matter. Mixing litter from different tree species has been reported to increase litter decomposition rates through synergistic effects. We assessed the decomposition rates of leaf litter from five tree species in a recently established tree diversity experiment on a post-agriculture site in Belgium. We used 20 different leaf litter compositions with diversity levels ranging from 1 up to 4 species. Litter mass loss in litterbags was assessed 10, 20, 25, 35, and 60 weeks after installation in the field. We found that litter decomposition rates were higher for high-quality litters, i.e., with high nitrogen content and low lignin content. The decomposition rates of mixed litter were more affected by the identity of the litter species within the mixture than by the diversity of the litter per se, but the variability in litter decomposition rates decreased as the litter diversity increased. Among the 15 different mixed litter compositions in our study, only three litter combinations showed synergistic effects. Our study suggests that admixing tree species with high-quality litter in post-agricultural plantations helps in increasing the mixture's early-stage litter decomposition rate.
Effects of land use on arbuscular mycorrhizal fungal communities in Estonia.
Sepp, Siim-Kaarel; Jairus, Teele; Vasar, Martti; Zobel, Martin; Öpik, Maarja
2018-04-01
Arbuscular mycorrhizal (AM) fungal communities vary across habitat types, as well as across different land use types. Most relevant research, however, has focused on agricultural or other severely human-impacted ecosystems. Here, we compared AM fungal communities across six habitat types: calcareous grassland, overgrown ungrazed calcareous grassland, wooded meadow, farmyard lawn, boreonemoral forest, and boreonemoral forest clear-cut, exhibiting contrasting modes of land use. AM fungi in the roots of a single host plant species, Prunella vulgaris, and in its rhizosphere soil were identified using 454-sequencing from a total of 103 samples from 12 sites in Estonia. Mean AM fungal taxon richness per sample did not differ among habitats. AM fungal community composition, however, was significantly different among habitat types. Both abandonment and land use intensification (clearcutting; trampling combined with frequent mowing) changed AM fungal community composition. The AM fungal communities in different habitat types were most similar in the roots of the single host plant species and most distinct in soil samples, suggesting a non-random pattern in host-fungal taxon interactions. The results show that AM fungal taxon composition is driven by habitat type and land use intensity, while the plant host may act as an additional filter between the available and realized AM fungal species pool.
NASA Astrophysics Data System (ADS)
Geist, Simon Joscha; Nordhaus, Inga; Hinrichs, Saskia
2012-01-01
Diversity and composition of the intertidal brachyuran crab community in the Segara Anakan Lagoon (SAL), Java, Indonesia, during the dry season of 2005 and the rainy season of 2006, shows that crab community composition and structure alone appeared to be poor indicators for the state of a forest in terms of tree diversity and wood-cutting intensity. The lagoon is surrounded by the largest mangrove stand in Java and is under constant anthropogenic pressure, mainly due to logging, land conversion for agriculture, overfishing and industrial pollution. This study aims to determine the crab community composition at different sites of the lagoon in relation to vegetation composition and sediment parameters. In addition it investigates if mangrove crabs can be used as bioindicators to describe the environmental state of mangrove forests (tree diversity, degree of logging). It was assumed to find a low crab diversity and species richness and a strong dominance of a single species at highly disturbed forest sites compared to moderately disturbed sites. A stratified, hierarchical design was used to sample the crab fauna at 13 stations distributed over the entire lagoon. Additionally, abiotic parameters and vegetation composition were recorded. In total 6463 crabs were caught belonging to 49 species, 5 superfamilies and 10 families, with Ocypodidae and Sesarmidae being the families of most note. Mean density of adult crabs was 27.7 individuals*m -2 and mean biomass was 12.8 g wet mass*m -2 or 1.3 g ash free dry mass*m -2. Density and biomass varied strongly within and between stations but they where within the range reported for other mangrove forests of the Indo-West-Pacific. Species composition was significantly different between stations. The distribution of facultatively leaf-feeding grapsid crabs was related to vegetation parameters (tree, seedling and undergrowth density), but the occurrence of single crab and tree species was not correlated. The distribution of ocypodid crabs, feeding on detritus and microphytobenthos, correlated with sediment characteristics like median grain size and organic content. The crab community was strongly dominated by one species at six stations, however, this was not correlated to the degree of logging. Leaf-feeding crab and mangrove tree diversity was correlated at areas of one hectare (stations), but not at a lower spatial scale (areas of 100 m 2, "zone"). Species richness of leaf-feeding crabs was not linked to forest diversity. Hence a functional relation between leaf-feeding crab and tree species diversity could not be proven.
The important role of scattered trees on the herbaceous diversity of a grazed Mediterranean dehesa
NASA Astrophysics Data System (ADS)
López-Sánchez, Aida; San Miguel, Alfonso; López-Carrasco, Celia; Huntsinger, Lynn; Roig, Sonia
2016-10-01
Scattered trees are considered keystone structures and play an important role in Mediterranean sylvopastoral systems. Such systems are associated with high biodiversity and provide important natural resources and ecosystem services. In this study, we measured the contribution of scattered trees and different grazing management (cattle, sheep and wildlife only) to the diversity of the grassland sward in a dehesa (open holm oak woodland) located in Central Spain. We analyzed alpha and beta diversity through measurement of species richness, Shannon-Wiener, and Whittaker indices, respectively; and the floristic composition of the herb layer using subplots within two adjacent plots (trees present vs. trees absent) under three different grazing management regimes, including wildlife only, during a year. We found a 20-30% increment in the alpha diversity of wooded plots, compared to those without trees, regardless of grazing management. All beta indices calculated showed more than 60% species turnover. Wooded plots were occupied by different herbaceous species in different heterogeneous microsites (under the canopy, in the ecotone or on open land) created by the trees. Livestock grazing modified species composition (e.g. more nitrophilous species) compared to wildlife only plots. In addition to all their other benefits, trees are important to maintaining grassland diversity in Mediterranean dehesas.
Uroz, S; Oger, P; Tisserand, E; Cébron, A; Turpault, M-P; Buée, M; De Boer, W; Leveau, J H J; Frey-Klett, P
2016-06-15
The impacts of plant species on the microbial communities and physico-chemical characteristics of soil are well documented for many herbs, grasses and legumes but much less so for tree species. Here, we investigate by rRNA and ITS amplicon sequencing the diversity of microorganisms from the three domains of life (Archaea, Bacteria and Eukaryota:Fungi) in soil samples taken from the forest experimental site of Breuil-Chenue (France). We discovered significant differences in the abundance, composition and structure of the microbial communities associated with two phylogenetically distant tree species of the same age, deciduous European beech (Fagus sylvatica) and coniferous Norway spruce (Picea abies Karst), planted in the same soil. Our results suggest a significant effect of tree species on soil microbiota though in different ways for each of the three microbial groups. Fungal and archaeal community structures and compositions are mainly determined according to tree species, whereas bacterial communities differ to a great degree between rhizosphere and bulk soils, regardless of the tree species. These results were confirmed by quantitative PCR, which revealed significant enrichment of specific bacterial genera, such as Burkholderia and Collimonas, known for their ability to weather minerals within the tree root vicinity.
Forest vegetation related to elevation in the White Mountains of New Hampshire
William B. Leak; Raymond E. Graber
1974-01-01
Maximum tree size and species composition are related to elevation on Mount Washington (disturbed by logging) and Mount Whiteface (uncut) in the White Mountains of New Hampshire. Species migrational trends and differences between the two mountains in species elevational limits indicate that both hardwoods and softwoods will move to higher elevations in areas where...
Fatty Acid Compositions of Six Wild Edible Mushroom Species
Günç Ergönül, Pelin; Akata, Ilgaz; Kalyoncu, Fatih; Ergönül, Bülent
2013-01-01
The fatty acids of six wild edible mushroom species (Boletus reticulatus, Flammulina velutipes var. velutipes, Lactarius salmonicolor, Pleurotus ostreatus, Polyporus squamosus, and Russula anthracina) collected from different regions from Anatolia were determined. The fatty acids were identified and quantified by gas chromatography and studied using fruit bodies. Fatty acid composition varied among species. The dominant fatty acid in fruit bodies of all mushrooms was cis-linoleic acid (18 : 2). Percentage of cis-linoleic acid in species varied from 22.39% to 65.29%. The other major fatty acids were, respectively, cis-oleic, palmitic, and stearic acids. Fatty acids analysis of the mushrooms showed that the unsaturated fatty acids were at higher concentrations than saturated fatty acids. PMID:23844377
Arriaga-Jiménez, Alfonsina; Halffter, Gonzalo
2018-01-01
Insect diversity patterns of high mountain ecosystems remain poorly studied in the tropics. Sampling dung beetles of the subfamilies Aphodiinae, Scarabaeinae, and Geotrupinae was carried out at four volcanoes in the Trans-Mexican Volcanic Belt (TMVB) in the Mexican transition zone at 2,700 and 3,400 MASL, and on the windward and leeward sides. Sampling units represented a forest–shrubland–pasture (FSP) mosaic typical of this mountain region. A total of 3,430 individuals of 29 dung beetle species were collected. Diversity, abundance and compositional similarity (CS) displayed a high variability at all scales; elevation, cardinal direction, or FSP mosaics did not show any patterns of higher or lower values of those measures. The four mountains were different regarding dispersion patterns and taxonomic groups, both for species and individuals. Onthophagus chevrolati dominated all four mountains with an overall relative abundance of 63%. CS was not related to distance among mountains, but when O. chevrolati was excluded from the analysis, CS values based on species abundance decreased with increasing distance. Speciation, dispersion, and environmental instability are suggested as the main drivers of high mountain diversity patterns, acting together at different spatial and temporal scales. Three species new to science were collected (>10% of all species sampled). These discoveries may indicate that speciation rate is high among these volcanoes—a hypothesis that is also supported by the elevated number of collected species with a restricted montane distribution. Dispersion is an important factor in driving species composition, although naturally limited between high mountains; horizontal colonization events at different time scales may best explain the observed species composition in the TMVB, complemented by vertical colonization events to a lesser extent. Environmental instability may be the main factor causing the high variability of diversity and abundance patterns found during sampling. Together, we interpret these results as indicating that species richness and composition in the high mountains of the TMVB may be driven by biogeographical history while variability in diversity is determined by ecological factors. We argue that current conservation strategies do not focus sufficiently on protecting high mountain fauna, and that there is a need for developing and applying new conservation concepts that take into account the high spatial and temporal variability of this system. PMID:29507842
NASA Astrophysics Data System (ADS)
Cha, Jae-Hoon; Kim, Kwang-Bae; Song, Ji-Na; Kim, In-Soo; Seo, Jeong-Bin; Kwoun, Chul-Hwi
2013-12-01
This study was carried out to learn about differences in the sessile macrobenthic fauna communities between the artificial and natural habitats. There were some differences in terms of species composition and dominant species and community structure between two habitat types. The dominant species include Pollicipes mitella and Granuilittorina exigua in natural rocky intertidal zones; Monodonta labio confusa, Ligia exotica, Tetraclita japonica in the artificial rocky intertidal zones. Among all the species, L. exotica and T. japonica occurred only in the artificial rocky intertidal zone. The results of cluster analysis and nMDS analysis showed a distinct difference in community structure between artificial and natural rocky intertidal zones. The fauna in the natural rocky intertidal zones were similar to each other and the fauna in the artificial rocky intertidal zones were divided depending on the slope of the substratum. In the case of a sloping tetrapod, M. labio confusa and P. mitella were dominant, but at the vertical artificial seawall, Cellana nigrolineata, L. exotica T. japonica were dominant. The analysis of the species presented in natural and artificial rocky intertidal areas showed the exclusive presence of 10 species on natural rocks and 12 species on artificial rocks. The species in the natural rocky intertidal area included mobile gastropods and cnidarians (i.e. rock anemones), and the species in the artificial rocky intertidal area mostly included non-mobile attached animals. The artificial novel structure seems to contribute to increasing the heterogeneity of habitats for marine invertebrate species and an increase the species diversity in rocky coastal areas.
Mendonça, Milton De S; Piccardi, Hosana M F; Jahnke, Simone M; Dalbem, Ricardo V
2010-01-01
Galling arthropods create plant structures inside which they find shelter. Factors acting on galler diversity are still being discussed, with this fauna considered more diverse in xeric than mesic environments (higrothermic stress hypothesis, HSH), and also in more plant diverse sites. Here we compare galler abundance (N), equitability (E), species richness (S) and composition between adjacent restinga (xeric) and swamp forests (mesic) in Parque Estadual de Itapeva (29°21' S, 49°45' W), Rio Grande do Sul, southern Brazil. Five trails, two in swamp forest and three in restingas, were sampled four times each (January/December 2005). After an effort of 60h/person, 621 galled plant individuals belonging to 104 gall morphotypes were recorded. This suggests a high galler diversity for the Park, comparable to the richest places known. No differences were found for N, E or S between restingas and swamp forests. However, faunal composition differs significantly between the vegetation types. The dominant (most abundant) species are different in either vegetation type, and are rare or absent on the other vegetation type. Such species composition analysis is still largely ignored for gallers, and stresses the fact that the HSH cannot explain this pattern, since the latter is based on preferences by the ovipositing galler for xeric sites instead of mesic ones. The two habitats differ in microclimate, but species richness, as would be predicted by the HSH, does not differ. This small scale pattern can perhaps be attributed to biogeographic processes on larger scales, as suggested by the resource synchronisation hypothesis.
NASA Astrophysics Data System (ADS)
Poulton, Alex J.; Holligan, Patrick M.; Charalampopoulou, Anastasia; Adey, Tim R.
2017-11-01
Coccolithophore species composition was determined in 199 samples collected from the upper 300 m of the Atlantic Ocean, spanning temperate, tropical and subtropical waters in both hemispheres during four Atlantic Meridional Transect (AMT) cruises over the period 2003-2005. Of the 171 taxa observed, 140 consistently represented <5% of total cell numbers, and were classed as rare. Multivariate statistical techniques were used on the common taxa to assess variability in community composition vertically in the water column, horizontally across hydrographic provinces (subtropical gyres, equatorial waters, temperate waters), and temporally between cruises. Sharper gradients of statistical dissimilarity in species composition occurred vertically over a few tens of metres than horizontally over hundreds of kilometres. Three floral groups were identified from analysis of the depth of normalised abundance maxima in the subtropical gyres and equatorial waters: the upper euphotic zone (UEZ, >10% surface irradiance); the lower euphotic zone (LEZ, 10-1% surface irradiance); and the sub-euphotic zone (SEZ, <1% surface irradiance). The LEZ includes the deep chlorophyll maximum (DCM) and nutricline, and was characterised by species such as Emiliania huxleyi and Gephyrocapsa ericsonii which were also abundant at higher latitudes. It is suggested that this pattern reflects similarities in the light (and inorganic nutrient) conditions between the LEZ and temperate waters. The SEZ is below the depth where light is thought to be sufficient to support photosynthesis, suggesting that deep-dwelling species such as Florisphaera profunda and Gladiolithus spp. may be mixotrophic or phagotrophic, although conclusive proof will need to be gained experimentally. Mixotrophy could also be an important nutritional strategy for species abundant (Umbellosphaera spp., holococcolithophores) in the UEZ where inorganic nutrient concentrations are depleted and limiting to growth, although other nutritional strategies, such as the use of organic nutrients, are also possible. Statistical differences were also found in the species composition between the different cruises, with high levels of similarity for similar timed cruises (May or September-October). Few individual taxa showed significant variability in abundance over the time-span of sampling, except species such as E. huxleyi and G. ericsonii at higher latitudes. In subtropical and equatorial waters, high levels of species richness and low levels of species dominance remained throughout the sampling period indicating that seasonal fluctuations reflected differences in the whole coccolithophore community rather than in just one or a few species. Multivariate analyses of the taxa classified as rare also indicated some level of temporal, as well as vertical, zonation. Such insights into coccolithophore ecology and community composition provide important new perspectives that require innovative research to fully understand their impact on ocean biogeochemistry.
Pérez-Huerta, Alberto; Dauphin, Yannicke
2016-02-01
The structure and composition of the eggshells of two commercial species (guinea fowl and greylag goose) have been studied. Thin sections and scanning electron microcopy show the similarity of the overall structure, but the relative thickness of the layers differs in these two taxa. Atomic force microscopy shows that the different layers are composed of rounded, heterogeneous granules, the diameter of which is between 50 and 100 nm, with a thin cortex. Infrared data and thermogravimetric analyses show that both eggshells are made of calcite, but differing on the quality and quantity when the organic component is considered. Chemical maps show that chemical element distribution is not uniform within a sample, and differs between the species, but with low magnesium content. Electron back scattered diffraction confirms the eggshells are calcite, but the microtexture strongly differs between the two species. Based on the chemical-structural differences, a species-specific biological control on the biomineralization is found, despite the rapid formation of an eggshell. Overall results indicate that to estimate the quality of eggshells, such as resistance to breakage, is not a straightforward process because of the high complexity of avian eggshell biomineralization. Copyright © 2015 Elsevier GmbH. All rights reserved.
Li, J; Ni, J; Li, J; Wang, C; Li, X; Wu, S; Zhang, T; Yu, Y; Yan, Q
2014-12-01
To reveal the effects of fish genotype, feeding habits and serum physiological index on the composition of gastrointestinal microbiota, eight fish species with four different feeding habits were investigated. The V1 to V3 regions of 16S rRNA gene were analysed by high-throughput sequencing (454 platform) to compare the gut microbiota of different fish species. A total of 551 995 high-quality sequences with an average length of 463 bp were obtained from the 48 samples. No significant difference was observed among the detected sequences obtained from fishes with different feeding habits (One-way anova, F = 1·003, P = 0·400), but the number of OTUs among different feeding habits was significantly different (One-way anova, F = 7·564, P < 0·001). Additionally, significant correlations were detected between the fish genotype and microbial composition (partial Mantel test, all P values = 0·001) in the stomach, foregut and hindgut. Moreover, different core intestinal microbiota was also noticed in the eight fish species with different feeding habits. Feeding habits and genotype clearly affected the gastrointestinal microbiota of fish. Moreover, the evolutionary process shaped the serum physiological indexes of fish. This study provided much important information for developing commercial fish feeds. © 2014 The Society for Applied Microbiology.
Rain forest fragmentation and the proliferation of successional trees.
Laurance, William F; Nascimento, Henrique E M; Laurance, Susan G; Andrade, Ana C; Fearnside, Philip M; Ribeiro, José E L; Capretz, Robson L
2006-02-01
The effects of habitat fragmentation on diverse tropical tree communities are poorly understood. Over a 20-year period we monitored the density of 52 tree species in nine predominantly successional genera (Annona, Bellucia, Cecropia, Croton, Goupia, Jacaranda, Miconia, Pourouma, Vismia) in fragmented and continuous Amazonian forests. We also evaluated the relative importance of soil, topographic, forest dynamic, and landscape variables in explaining the abundance and species composition of successional trees. Data were collected within 66 permanent 1-ha plots within a large (approximately 1000 km2) experimental landscape, with forest fragments ranging from 1 to 100 ha in area. Prior to forest fragmentation, successional trees were uncommon, typically comprising 2-3% of all trees (> or =10 cm diameter at breast height [1.3 m above the ground surface]) in each plot. Following fragmentation, the density and basal area of successional trees increased rapidly. By 13-17 years after fragmentation, successional trees had tripled in abundance in fragment and edge plots and constituted more than a quarter of all trees in some plots. Fragment age had strong, positive effects on the density and basal area of successional trees, with no indication of a plateau in these variables, suggesting that successional species could become even more abundant in fragments over time. Nonetheless, the 52 species differed greatly in their responses to fragmentation and forest edges. Some disturbance-favoring pioneers (e.g., Cecropia sciadophylla, Vismia guianensis, V. amazonica, V. bemerguii, Miconia cf. crassinervia) increased by >1000% in density on edge plots, whereas over a third (19 of 52) of all species remained constant or declined in numbers. Species responses to fragmentation were effectively predicted by their median growth rate in nearby intact forest, suggesting that faster-growing species have a strong advantage in forest fragments. An ordination analysis revealed three main gradients in successional-species composition across our study area. Species gradients were most strongly influenced by the standlevel rate of tree mortality on each plot and by the number of nearby forest edges. Species-composition also varied significantly among different cattle ranches, which differed in their surrounding matrices and disturbance histories. These same variables were also the best predictors of total successional-tree abundance and species richness. Successional-tree assemblages in fragment interior plots (>150 m from edge), which are subjected to fragment area effects but not edge effects, did not differ significantly from those in intact forest, indicating that area effects per se had little influence on successional trees. Soils and topography also had little discernable effect on these species. Collectively, our results indicate that successional-tree species proliferate rapidly in fragmented Amazonian forests, largely as a result of chronically elevated tree mortality near forest edges and possibly an increased seed rain from successional plants growing in nearby degraded habitats. The proliferation of fast-growing successional trees and correlated decline of old-growth trees will have important effects on species composition, forest dynamics, carbon storage, and nutrient cycling in fragmented forests.
Global meta-analysis reveals low consistency of biodiversity congruence relationships.
Westgate, Martin J; Barton, Philip S; Lane, Peter W; Lindenmayer, David B
2014-05-21
Knowledge of the number and distribution of species is fundamental to biodiversity conservation efforts, but this information is lacking for the majority of species on earth. Consequently, subsets of taxa are often used as proxies for biodiversity; but this assumes that different taxa display congruent distribution patterns. Here we use a global meta-analysis to show that studies of cross-taxon congruence rarely give consistent results. Instead, species richness congruence is highest at extreme spatial scales and close to the equator, while congruence in species composition is highest at large extents and grain sizes. Studies display highest variance in cross-taxon congruence when conducted in areas with dissimilar areal extents (for species richness) or latitudes (for species composition). These results undermine the assumption that a subset of taxa can be representative of biodiversity. Therefore, researchers whose goal is to prioritize locations or actions for conservation should use data from a range of taxa.
Warner, David M.; Claramunt, Randall M.; Schaeffer, Jeffrey S.; Yule, Daniel L.; Hrabik, Tom R.; Peintka, Bernie; Rudstam, Lars G.; Holuszko, Jeffrey D.; O'Brien, Timothy P.
2012-01-01
Because it is not possible to identify species with echosounders alone, trawling is widely used as a method for collecting species and size composition data for allocating acoustic fish density estimates to species or size groups. In the Laurentian Great Lakes, data from midwater trawls are commonly used for such allocations. However, there are no rules for how much midwater trawling effort is required to adequately describe species and size composition of the pelagic fish communities in these lakes, so the balance between acoustic sampling effort and trawling effort has been unguided. We used midwater trawl data collected between 1986 and 2008 in lakes Michigan and Huron and a variety of analytical techniques to develop guidance for appropriate levels of trawl effort. We used multivariate regression trees and re-sampling techniques to i. identify factors that influence species and size composition of the pelagic fish communities in these lakes, ii. identify stratification schemes for the two lakes, iii. determine if there was a relationship between uncertainty in catch composition and the number of tows made, and iv. predict the number of tows required to reach desired uncertainty targets. We found that depth occupied by fish below the surface was the most influential explanatory variable. Catch composition varied between lakes at depths <38.5 m below the surface, but not at depths ≥38.5 m below the surface. Year, latitude, and bottom depth influenced catch composition in the near-surface waters of Lake Michigan, while only year was important for Lake Huron surface waters. There was an inverse relationship between RSE [relative standard error = 100 × (SE/mean)] and the number of tows made for the proportions of the different size and species groups. We found for the fifth (Lake Huron) and sixth (Lake Michigan) largest lakes in the world, 15–35 tows were adequate to achieve target RSEs (15% and 30%) for ubiquitous species, but rarer species required much higher, and at times, impractical effort levels to reach these targets.
FORAGE FISH AND ZOOPLANKTON COMMUNITY COMPOSITION IN WESTERN LAKE SUPERIOR
We assessed the abundance, size, and species composition of the fish and zooplankton communities of western Lake Superior during 1996 and 1997. Data were analyzed for 3 ecoregions (Duluth-Superior (1), Apostle Islands (2), Minnesota coast (3) differing in lake bathymetry, phsiodo...
Charles E. Williams; William J. Moriarity
2000-01-01
We assessed the species composition and structure of three riparian forest stands of differing ages (old-growth, late-successional, mid-successional), dominated by eastern hemlock (Tsuga canadensis Carr.), in the Allegheny National Forest of northwestern Pennsylvania.
Blaimer, Bonnie B.; Schmitt, Thomas
2017-01-01
Cuticular hydrocarbons (CHCs) cover the cuticles of virtually all insects, serving as a waterproofing agent and as a communication signal. The causes for the high CHC variation between species, and the factors influencing CHC profiles, are scarcely understood. Here, we compare CHC profiles of ant species from seven biogeographic regions, searching for physiological constraints and for climatic and biotic selection pressures. Molecule length constrained CHC composition: long-chain profiles contained fewer linear alkanes, but more hydrocarbons with disruptive features in the molecule. This is probably owing to selection on the physiology to build a semi-fluid cuticular layer, which is necessary for waterproofing and communication. CHC composition also depended on the precipitation in the ants' habitats. Species from wet climates had more alkenes and fewer dimethyl alkanes than those from drier habitats, which can be explained by different waterproofing capacities of these compounds. By contrast, temperature did not affect CHC composition. Mutualistically associated (parabiotic) species possessed profiles highly distinct from non-associated species. Our study is, to our knowledge, the first to show systematic impacts of physiological, climatic and biotic factors on quantitative CHC composition across a global, multi-species dataset. We demonstrate how they jointly shape CHC profiles, and advance our understanding of the evolution of this complex functional trait in insects. PMID:28298343
Céspedes, V; Pallarés, S; Arribas, P; Millán, A; Velasco, J
2013-10-01
Water salinity and ionic composition are among the main environmental variables that constrain the fundamental niches of aquatic species, and accordingly, physiological tolerance to these factors constitutes a crucial part of the evolution, ecology, and biogeography of these organisms. The present study experimentally estimated the fundamental saline and anionic niches of adults of two pairs of congeneric saline beetle species that differ in habitat preference (lotic and lentic) in order to test the habitat constraint hypothesis. Osmotic and anionic realised niches were also estimated based on the field occurrences of adult beetle species using Outlying Mean Index analysis and their relationship with experimental tolerances. In the laboratory, all of the studied species showed a threshold response to increased salinity, displaying high survival times when exposed to low and intermediate conductivity levels. These results suggest that these species are not strictly halophilic, but that they are able to regulate both hyperosmotically and hypoosmotically. Anionic water composition had a significant effect on salinity tolerance at conductivity levels near their upper tolerance limits, with decreased species survival at elevated sulphate concentrations. Species occupying lentic habitats demonstrated higher salinity tolerance than their lotic congeners in agreement with the habitat constraint hypothesis. As expected, realised salinity niches were narrower than fundamental niches and corresponded to conditions near the upper tolerance limits of the species. These species are uncommon on freshwater-low conductivity habitats despite the fact that these conditions might be physiologically suitable for the adult life stage. Other factors, such as biotic interactions, could prevent their establishment at low salinities. Differences in the realised anionic niches of congeneric species could be partially explained by the varying habitat availability in the study area. Combining the experimental estimation of fundamental niches with realised field data niche estimates is a powerful method for understanding the main factors constraining species' distribution at multiple scales, which is a key issue when predicting species' ability to cope with global change. Copyright © 2013 Elsevier Ltd. All rights reserved.
Comparison of burbot populations across adjacent native and introduced ranges
Walters, Annika W.; Mandeville, Elizabeth G.; Saunders, W. Carl; Gerrity, Paul C.; Skorupski, Joseph A.; Underwood, Zachary E.; Gardunio, Eric I.
2017-01-01
Introduced species are a threat to biodiversity. Burbot, Lota lota, a fish native to the Wind River Drainage, Wyoming and a species of conservation concern, have been introduced into the nearby Green River Drainage, Wyoming, where they are having negative effects on native fish species. We compared these native and introduced burbot populations to evaluate potential mechanisms that could be leading to introduction success. We examined genetic ancestry, physical habitat characteristics, community composition, and burbot abundance, relative weight, and size structure between the native and introduced range to elucidate potential differences. The origin of introduced burbot in Flaming Gorge Reservoir is most likely Boysen Reservoir and several nearby river populations in the native Wind River Drainage. Burbot populations did not show consistent differences in abundance, size structure, and relative weight between drainages, though Fontenelle Reservoir, in the introduced drainage, had the largest burbot. There were also limited environmental and community composition differences, though reservoirs in the introduced drainage had lower species richness and a higher percentage of non-native fish species than the reservoir in the native drainage. Burbot introduction in the Green River Drainage is likely an example of reservoir construction creating habitat with suitable environmental conditions to allow a southwards range expansion of this cold-water species. An understanding of the factors driving introduction success can allow better management of species, both in their introduced and native range.
Aisyah, Siti; Vincken, Jean-Paul; Andini, Silvia; Mardiah, Zahara; Gruppen, Harry
2016-02-01
The effects of germination and elicitation on (iso)flavonoid composition of extracts from three edible lupine species (Lupinus luteus, Lupinus albus, Lupinus angustifolius) were determined by RP-UHPLC-MS(n). The total (iso)flavonoid content of lupine increased over 10-fold upon germination, with the total content and composition of isoflavonoids more affected than those of flavonoids. Glycosylated isoflavones were the most predominant compounds found in lupine seedlings. Lesser amounts of isoflavone aglycones, including prenylated ones, were also accumulated. Elicitation with Rhizopus oryzae, in addition to germination, raised the content of isoflavonoids further: the total content of 2'-hydroxygenistein derivatives was increased considerably, without increasing that of genistein derivatives. Elicitation by fungus triggered prenylation of isoflavonoids, especially of the 2'-hydroxygenistein derivatives. The preferred positions of prenylation differed among the three lupine species. The change in isoflavone composition increased the agonistic activity of the extracts towards the human estrogen receptors, whereas no antagonistic activity was observed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Microbiota of little penguins and short-tailed shearwaters during development
Arnould, John P. Y.; Allnutt, Theo R.; Crowley, Tamsyn; Krause, Lutz; Reynolds, John; Dann, Peter; Smith, Stuart C.
2017-01-01
The establishment and early colonisation of the gastrointestinal (GI) tract has been recognised as a crucial stage in chick development, with pioneering microbial species responsible for influencing the development of the GI tract and influencing host health, fitness and disease status throughout life. Development of the microbiota in long lived seabirds is poorly understood. This study characterised the microbial composition of little penguin and short-tailed shearwater chicks throughout development, using Quantitative Real Time PCR (qPCR) and 16S rRNA sequencing. The results indicated that microbial development differed between the two seabird species with the short-tailed shearwater microbiota being relatively stable throughout development whilst significant fluctuations in the microbial composition and an upward trend in the abundance of Firmicutes and Bacteroidetes were observed in the little penguin. When the microbial composition of adults and chicks was compared, both species showed low similarity in microbial composition, indicating that the adult microbiota may have a negligible influence over the chick’s microbiota. PMID:28806408
Context dependency and saturating effects of loss of rare soil microbes on plant productivity.
Hol, W H Gera; de Boer, Wietse; de Hollander, Mattias; Kuramae, Eiko E; Meisner, Annelein; van der Putten, Wim H
2015-01-01
Land use intensification is associated with loss of biodiversity and altered ecosystem functioning. Until now most studies on the relationship between biodiversity and ecosystem functioning focused on random loss of species, while loss of rare species that usually are the first to disappear received less attention. Here we test if the effect of rare microbial species loss on plant productivity depends on the origin of the microbial soil community. Soils were sampled from three land use types at two farms. Microbial communities with increasing loss of rare species were created by inoculating sterilized soils with serially diluted soil suspensions. After 8 months of incubation, the effects of the different soil communities on abiotic soil properties, soil processes, microbial community composition, and plant productivity was measured. Dilution treatments resulted in increasing species loss, which was in relation to abundance of bacteria in the original field soil, without affecting most of the other soil parameters and processes. Microbial species loss affected plant biomass positively, negatively or not at all, depending on soil origin, but not on land use history. Even within fields the effects of dilution on plant biomass varied between replicates, suggesting heterogeneity in microbial community composition. The effects of medium and severe species loss on plant biomass were similar, pointing toward a saturating effect of species loss. We conclude that changes in the composition of the soil microbial community, including rare species loss, can affect plant productivity, depending on the composition of the initial microbial community. Future work on the relation between function and species loss effects should address this variation by including multiple sampling origins.
NASA Astrophysics Data System (ADS)
Linse, Katrin; Schwabe, Enrico
2018-02-01
While biodiversity patterns of Atlantic deep-sea bivalves and gastropods have served as model taxa for setting global latitudinal and bathymetric hypotheses, less is known on abyssal, amphi-Atlantic molluscan assemblage compositions. The Vema-TRANSIT expedition sampled 17 stations in the Vema Fracture Zone (VFZ) and the Puerto Rico Trench (PRT) by epibenthic sledge. These samples comprised a total of 1333 specimens and 64 morphospecies of the classes Caudofoveata (7 species), Solenogastres (7 spp.), Bivalvia (22 spp.), Gastropoda (24 spp.), and Scaphopoda (4 spp.) while Cephalopoda, Monoplacophora and Polyplacophora were absent. The majority of species was rare with 21 uniques (32.8% of all species) and 10 duplicates (15.6% of all species) and of these 15 (48% of rare/23.4% of all species) morphospecies were singletons and 8 (25.8% of rare/12.5% of all species) morphospecies were doubletons. Overall bivalves (686 specimens) were most abundant, followed by scaphopods (314 spec.), while solenogastres (180 spec.), caudofoveates (86 spec.) and gastropods (67 spec.) were less abundant. The abyssal macro-molluscan species composition did not vary significantly between the eastern and western Atlantic sides of the VFZ while abundances standardized to 1000 m2 trawled area were higher on the eastern side. The abyssal PRT stations resembled the VFZ ones in species composition and abundances, in the latter the eastern VFZ. The hadal PRT differed in species composition from the abyssal VFZ and PRT and abundances were similarly low like the western VFZ. The Mid-Atlantic Ridge appeared not to be a barrier for the dispersal of the mostly lecitotrophic or plankotrophic larval stages of the reported molluscan species in this study.
Influence of habitat structure on fish assemblage of an artificial reef in southern Brazil.
Hackradt, Carlos Werner; Félix-Hackradt, Fabiana Cézar; García-Charton, José Antonio
2011-12-01
Habitat complexity strongly influences reef fish community composition. An understanding of the underlying reasons for this relationship is important for evaluating the suitability of artificial reef (AR) habitats as a marine resource management tool. We studied the influence of AR habitat structure on fish assemblage composition off the southern coast of Brazil. We found that reef blocks with greater area and number of holes possessed the greatest fish species richness and abundance. Reef blocks with greater complexity had higher abundance of almost 30% of fish species present. Natural reef (NR) and AR were different in their fish species composition, trophic structure and categories of water column occupancy by fish (spatial categories). Although NR was more diverse and harboured more trophic levels, AR presented the higher abundances and the presence of distinct fish species that underlined their importance at a regional scale. The greater availability of sheltering habitat where hard substrate is scarce, together with their frequent use by economically important species, make AR a useful tool for coastal management when certain ecological conditions are met. Copyright © 2011 Elsevier Ltd. All rights reserved.
First record of Anopheles minimus C and significant decrease of An. minimus A in central Vietnam.
Garros, Claire; Marchand, Ron P; Quang, Nguyen Tuyen; Hai, Nguyen Son; Manguin, Sylvie
2005-06-01
Before August 1998, in the Khanh Phu commune (central Vietnam), Anopheles minimus s.l. individuals were identified as species A and showed the typical species A wing form. After a significant decrease over the 3 years 1999-2001, an increase in 2002 of An. minimus s.l. possessing a different wing pattern was observed. To determine the specific status of the An. minimus species collected in 2002 and to follow changes in the species composition, an allele-specific polymerase chain reaction was applied to samples collected from 1993 to 2002. This study reports the first record of An. minimus C in central Vietnam and, since 1998, a significant reduction of An. minimus A that coincided with the wide use of permethrin-treated bednets. This change in anopheline composition may have important consequences on malaria transmission. This work shows that the geographic distribution of malaria vectors in southeast Asia is only partially known and highlights the importance of species identification for understanding changes in the vector composition as a result of selective vector control.
Berman, Maïa; Andersen, Alan N.; Hély, Christelle; Gaucherel, Cédric
2013-01-01
Ants are among the most ubiquitous and harmful invaders worldwide, but there are few regional studies of their relationships with habitat and native ant communities. New Caledonia has a unique and diverse ant fauna that is threatened by exotic ants, but broad-scale patterns of exotic and native ant community composition in relation to habitat remain poorly documented. We conducted a systematic baiting survey of 56 sites representing the main New Caledonian habitat types: rainforest on ultramafic soils (15 sites), rainforest on volcano-sedimentary soils (13), maquis shrubland (15), Melaleuca-dominated savannas (11) and Acacia spirorbis thickets (2). We collected a total of 49 species, 13 of which were exotic. Only five sites were free of exotic species, and these were all rainforest. The five most abundant exotic species differed in their habitat association, with Pheidole megacephala associated with rainforests, Brachymyrmex cf. obscurior with savanna, and Wasmannia auropunctata and Nylanderia vaga present in most habitats. Anoplolepis gracilipes occurred primarily in maquis-shrubland, which contrasts with its rainforest affinity elsewhere. Multivariate analysis of overall ant species composition showed strong differentiation of sites according to the distribution of exotic species, and these patterns were maintained at the genus and functional group levels. Native ant composition differed at invaded versus uninvaded rainforest sites, in the absence of differences in habitat variables. Generalised Myrmicinae and Forest Opportunists were particularly affected by invasion. There was a strong negative relationship between the abundance of W. auropunctata and native ant abundance and richness. This emphasizes that, in addition to dominating many ant communities numerically, some exotic species, and in particular W. auropunctata, have a marked impact on native ant communities. PMID:23840639
Coelho, Marcel Serra; Carneiro, Marco Antônio Alves; Branco, Cristina Alves; Borges, Rafael Augusto Xavier; Fernandes, Geraldo Wilson
2018-01-01
This study describes differences in species richness and composition of the assemblages of galling insects and their host plants at different spatial scales. Sampling was conducted along altitudinal gradients composed of campos rupestres and campos de altitude of two mountain complexes in southeastern Brazil: Espinhaço Range and Mantiqueira Range. The following hypotheses were tested: i) local and regional richness of host plants and galling insects are positively correlated; ii) beta diversity is the most important component of regional diversity of host plants and galling insects; and iii) Turnover is the main mechanism driving beta diversity of both host plants and galling insects. Local richness of galling insects and host plants increased with increasing regional richness of species, suggesting a pattern of unsaturated communities. The additive partition of regional richness (γ) into local and beta components shows that local richnesses (α) of species of galling insects and host plants are low relative to regional richness; the beta (β) component incorporates most of the regional richness. The multi-scale analysis of additive partitioning showed similar patterns for galling insects and host plants with the local component (α) incorporated a small part of regional richness. Beta diversity of galling insects and host plants were mainly the result of turnover, with little contribution from nesting. Although the species composition of galling insects and host plant species varied among sample sites, mountains and even mountain ranges, local richness remained relatively low. In this way, the addition of local habitats with different landscapes substantially affects regional richness. Each mountain contributes fundamentally to the composition of regional diversity of galling insects and host plants, and so the design of future conservation strategies should incorporate multiple scales.
Climate and Vegetation Effects on Temperate Mountain Forest ...
Current forest composition may be resilient to typical climatic variability; however, climate trends, combined with projected changes in species composition, may increase tree vulnerability to water stress. A shift in forest composition toward tree species with higher water use has implications for biogenic emissions and deposition of reactive nitrogen and carbon compounds. Forest evapotranspiration (ET) can vary greatly at daily and seasonal time scales, but compared to carbon fluxes, often exhibits relatively consistent inter-annual behavior. The processes controlling ET involve the combined effects of physical and biological factors. Atmospheric conditions that promote high ET, consisting of high radiation and vapor pressure deficit (D), are often characterized by rainless periods when soil water supply to vegetation may be limiting and plant stomata may close to prevent excessive water loss. In contrast, periods of high ecosystem water availability require frequent precipitation and are characterized by low D. Thus, the combination of these contrasting conditions throughout a growing season may explain some of the consistency in ET. Additionally, vegetation composition is also an important factor in determining ET. In mixed species forests, physiological differences in water use strategies (e.g. isohydric/anisohydric species) can produce conservative water use throughout wet and dry phases of the growing season. Furthermore, transpiration by evergreen specie
Relationships among Egg Size, Composition, and Energy: A Comparative Study of Geminate Sea Urchins
McAlister, Justin S.; Moran, Amy L.
2012-01-01
Egg size is one of the fundamental parameters in the life histories of marine organisms. However, few studies have examined the relationships among egg size, composition, and energetic content in a phylogenetically controlled context. We investigated the associations among egg size, composition, and energy using a comparative system, geminate species formed by the closure of the Central American Seaway. We examined western Atlantic (WA) and eastern Pacific (EP) species in three echinoid genera, Echinometra, Eucidaris, and Diadema. In the genus with the largest difference in egg size between geminates (Echinometra), the eggs of WA species were larger, lipid rich and protein poor compared to the smaller eggs of their EP geminate. In addition, the larger WA eggs had significantly greater total egg energy and summed biochemical constituents yet significantly lower egg energy density (energy-per-unit-volume). However, the genera with smaller (Eucidaris) or no (Diadema) differences in egg size were not significantly different in summed biochemical constituents, total egg energy, or energy density. Theoretical models generally assume a strong tradeoff between egg size and fecundity that limits energetic investment and constrains life history evolution. We show that even among closely-related taxa, large eggs cannot be assumed to be scaled-up small eggs either in terms of energy or composition. Although our data comes exclusively from echinoid echinoderms, this pattern may be generalizable to other marine invertebrate taxa. Because egg composition and egg size do not necessarily evolve in lockstep, selective factors such as sperm limitation could act on egg volume without necessarily affecting maternal or larval energetics. PMID:22911821
Dunstan, Piers K.; Althaus, Franziska; Williams, Alan; Bax, Nicholas J.
2012-01-01
Understanding patterns of biodiversity in deep sea systems is increasingly important because human activities are extending further into these areas. However, obtaining data is difficult, limiting the ability of science to inform management decisions. We have used three different methods of quantifying biodiversity to describe patterns of biodiversity in an area that includes two marine reserves in deep water off southern Australia. We used biological data collected during a recent survey, combined with extensive physical data to model, predict and map three different attributes of biodiversity: distributions of common species, beta diversity and rank abundance distributions (RAD). The distribution of each of eight common species was unique, although all the species respond to a depth-correlated physical gradient. Changes in composition (beta diversity) were large, even between sites with very similar environmental conditions. Composition at any one site was highly uncertain, and the suite of species changed dramatically both across and down slope. In contrast, the distributions of the RAD components of biodiversity (community abundance, richness, and evenness) were relatively smooth across the study area, suggesting that assemblage structure (i.e. the distribution of abundances of species) is limited, irrespective of species composition. Seamounts had similar biodiversity based on metrics of species presence, beta diversity, total abundance, richness and evenness to the adjacent continental slope in the same depth ranges. These analyses suggest that conservation objectives need to clearly identify which aspects of biodiversity are valued, and employ an appropriate suite of methods to address these aspects, to ensure that conservation goals are met. PMID:22606271
Dunstan, Piers K; Althaus, Franziska; Williams, Alan; Bax, Nicholas J
2012-01-01
Understanding patterns of biodiversity in deep sea systems is increasingly important because human activities are extending further into these areas. However, obtaining data is difficult, limiting the ability of science to inform management decisions. We have used three different methods of quantifying biodiversity to describe patterns of biodiversity in an area that includes two marine reserves in deep water off southern Australia. We used biological data collected during a recent survey, combined with extensive physical data to model, predict and map three different attributes of biodiversity: distributions of common species, beta diversity and rank abundance distributions (RAD). The distribution of each of eight common species was unique, although all the species respond to a depth-correlated physical gradient. Changes in composition (beta diversity) were large, even between sites with very similar environmental conditions. Composition at any one site was highly uncertain, and the suite of species changed dramatically both across and down slope. In contrast, the distributions of the RAD components of biodiversity (community abundance, richness, and evenness) were relatively smooth across the study area, suggesting that assemblage structure (i.e. the distribution of abundances of species) is limited, irrespective of species composition. Seamounts had similar biodiversity based on metrics of species presence, beta diversity, total abundance, richness and evenness to the adjacent continental slope in the same depth ranges. These analyses suggest that conservation objectives need to clearly identify which aspects of biodiversity are valued, and employ an appropriate suite of methods to address these aspects, to ensure that conservation goals are met.
Effects of selective logging on bat communities in the southeastern Amazon.
Peters, Sandra L; Malcolm, Jay R; Zimmerman, Barbara L
2006-10-01
Although extensive areas of tropical forest are selectively logged each year, the responses of bat communities to this form of disturbance have rarely been examined. Our objectives were to (1) compare bat abundance, species composition, and feeding guild structure between unlogged and low-intensity selectively logged (1-4 logged stems/ha) sampling grids in the southeastern Amazon and (2) examine correlations between logging-induced changes in bat communities and forest structure. We captured bats in understory and canopy mist nets set in five 1-ha study grids in both logged and unlogged forest. We captured 996 individuals, representing 5 families, 32 genera, and 49 species. Abundances of nectarivorous and frugivorous taxa (Glossophaginae, Lonchophyllinae, Stenodermatinae, and Carolliinae) were higher at logged sites, where canopy openness and understory foliage density were greatest. In contrast, insectivorous and omnivorous species (Emballonuridae, Mormoopidae, Phyllostominae, and Vespertilionidae) were more abundant in unlogged sites, where canopy foliage density and variability in the understory stratum were greatest. Multivariate analyses indicated that understory bat species composition differed strongly between logged and unlogged sites but provided little evidence of logging effects for the canopy fauna. Different responses among feeding guilds and taxonomic groups appeared to be related to foraging and echolocation strategies and to changes in canopy cover and understory foliage densities. Our results suggest that even low-intensity logging modifies habitat structure, leading to changes in bat species composition.
Comparison of habitat quality and diet of Colobus vellerosus in forest fragments in Ghana.
Wong, Sarah N P; Saj, Tania L; Sicotte, Pascale
2006-10-01
The forest fragments surrounding the Boabeng-Fiema Monkey Sanctuary (BFMS) in central Ghana shelter small populations of Colobus vellerosus. Little is known about these populations or the ability of the fragments to support them, despite the fact that these fragments represent potentially important habitat for the colobus in this region. We compared the diet of three groups of C. vellerosus in the fragments to two groups in BFMS. We also examined the differences in plant species composition and food abundance among fragments. The study took place from June to November 2003. Dietary data were collected using scan sampling. Plant species composition and food abundance were evaluated using tree plots and large tree surveys. As in BFMS groups, leaves constituted the highest proportion of the diet of fragment groups, yet the colobus in fragments fed on more lianas than did those in BFMS. Over 50% of all species observed eaten by colobus in the fragments were not consumed in BFMS groups during the same season. Food abundance was similar between fragments and BFMS, although species composition differed. There was no relationship between the density of colobus and the density of food trees or percentage of food species, suggesting that other factors may be influencing the number of colobus present. This study highlights the broad dietary range of C. vellerosus, which may be a factor allowing its survival in these fragments.
Halffter, Gonzalo; Pineda, Eduardo; Arellano, Lucrecia; Escobar, Federico
2007-12-01
We analyzed changes over time in species composition and functional guild structure (temporal beta diversity) for natural assemblages and those modified by humans in a fragmented, tropical mountain landscape. The assemblages belong to cloud forests (the original vegetation type), secondary forests, traditional shaded coffee plantations, commercial shaded coffee plantations, and a cattle pasture. Copronecrophagous beetles, subfamily Scarabaeinae (Insecta: Coleoptera: Scarabaeidae), were used as the indicator group. This group has been used in previous studies and other tropical forests and has been found to be a good indicator of the effects of anthropogenic change. For each assemblage, we compared samples that were collected several years apart. Changes were found in species composition, order of abundance, and in the proportion that a given species is present in the different functional groups. The changes that occurred between samplings affected the less abundant species in the cloud forest and in the pasture. In the other vegetation types, both abundant and less abundant species were affected. Their order of abundance and proportion in the different guilds also changed. This study shows that, although landscape richness remains relatively constant, richness at the local level (alpha diversity) changes notably even over short lapses of time. This could be a characteristic of landscapes with intermediate degrees of disturbance (such as those that have been partially modified for human use), where assemblage composition is very fluid.
Kowalski, Krzysztof; Eichert, Urszula; Bogdziewicz, Michał; Rychlik, Leszek
2014-05-01
Only a few studies comparing flea composition on the coast and in the mountains have been conducted. We investigated differences in flea communities infesting small mammals in selected habitats in northern, central, and southern Poland. We predicted (1) a greater number of flea species in the southeastern Poland and a lower number in the north, (2) a greater number of flea species in fertile and wet habitats than in poor and arid habitats, and (3) a low similarity of flea species between flea communities in western and eastern Poland. We found a negative effect of increasing latitude on flea species richness. We suppose that the mountains providing a variety of environments and the limits of the geographic ranges of several flea subspecies in southeastern Poland result in a higher number of flea species. There was a positive effect of increasing wetness of habitat on flea species richness. We found a high diversity in flea species composition between western and eastern Poland (beta diversity = 11) and between central and eastern Poland (beta diversity = 12). Re-colonization of Poland by small mammals and their ectoparasites from different (western and eastern) refugees can affect on this high diversity of flea species.
Li, Haiqiang; Pan, Hongsheng; Wang, Dongmei; Liu, Bing; Liu, Jian; Zhang, Jianping; Lu, Yanhui
2018-05-05
With the recent increase in planting of fruit trees in southern Xinjiang, the intercropping of fruit trees and cotton has been widely adopted. From 2014 to 2016, a large-scale study was conducted in Aksu, an important agricultural area in southern Xinjiang, to compare the abundance and species composition of spider mites in cotton fields under jujube-cotton, apple-cotton, and cotton monocrop systems. The abundance of spider mites in cotton fields under both intercropping systems was generally higher than in the cotton monocrop. The species composition of spider mites also differed greatly between cotton intercropped with apple or jujube compared to the cotton monocrop. The relative proportion of Tetranychus truncates Ehara (Acari: Tetranychidae) in the species complex generally increased while that of another spider mite, Tetranychus dunhuangensis Wang (Acari: Tetranychidae), decreased under fruit tree-cotton systems. More attention should be paid to the monitoring and management of spider mites, especially T. truncates in this important region of China.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Qian; Walter, Eric D.; Cosimbescu, Lelia
2016-02-29
Organic radical batteries (ORBs) bearing robust radical polymers as energy storage species, are emerging promisingly with durable high energy and power characteristics by unique tunable redox properties. Here we report the development and application of in situ electrochemical-electron spin resonance (ESR) methodologies to identify the charge transfer mechanism of Poly(2,2,6,6- tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA) based organic radical composite cathodes in the charge-discharge process of lithium half cells. The in situ experiments allow each electrochemical state to be associated with the chemical state (or environment) of the radical species upon the cell cycling. In situ ESR spectra of the composite cathode demonstratemore » a two-electron redox reaction of PTMA. Moreover, two different local environments of radical species are found in the composite electrode that includes both concentrated and isolated radicals. These two types of radicals show similarities during the redox reaction process while behave quite differently in the non-faradic reaction of ion sorption/desorption on the electrode surface.« less
Maloney, K.O.; Munguia, P.; Mitchell, R.M.
2011-01-01
Measures of species diversity are valuable tools for assessing ecosystem health. However, most assessments have addressed individual sites or regional taxon pools, with few comparisons of differences in assemblage composition within or among regions. We examined the effects of anthropogenic disturbance on local richness (?? diversity) and species turnover (?? diversity) of benthic macroinvertebrates in small streams within and between 2 ecoregions (Northern Piedmont vs Southeastern Plains ecoregions) of the Patuxent River basin (Maryland, USA). Regional species pools did not differ between ecoregions (Piedmont = 166 taxa, Plains = 162 taxa); however, local richness was lower in the Plains (mean = 17.4 taxa/stream) compared to the Piedmont (mean = 22.2 taxa/stream). When streams were categorized into disturbance classes (low, medium, high), local richness did not differ among categories for either region. However, at the entire Patuxent scale, local richness tended to decrease with % impervious cover in a watershed. Variation in species composition, analyzed with nonmetric multidimensional scaling (nMDS), differed significantly between Piedmont and Plains streams, and Plains streams had higher ?? diversity than Piedmont streams. When partitioned by disturbance category and region, ?? diversity differed only between the low-disturbance sites (Plains > Piedmont). Relationships between ?? diversity and environmental variables varied by region. ?? diversity was weakly negatively related to % row-crop cover in a watershed at the entire Patuxent scale. For the Piedmont region, ?? diversity tended to decrease with % forest, % pasture, and % row-crop cover in a watershed. Such negative relationships between ?? diversity and landuse variables indicate a possible homogenization of the assemblage. The incongruence between diversity measures and composition measures, together with differing effects of anthropogenic land use on ?? diversity in the 2 regions, emphasizes the need to incorporate both ?? and ?? diversity and regional environmental factors in conservation/land management studies. ?? 2011 The North American Benthological Society.
Healthy n-6/n-3 fatty acid composition from five European game meat species remains after cooking.
Valencak, Teresa G; Gamsjäger, Lisa; Ohrnberger, Sarah; Culbert, Nicole J; Ruf, Thomas
2015-06-27
Intensive farming of livestock along with recent food scandals and consumer deception have increased awareness about risks for human nutrition. In parallel, the demand for meat obtained under more natural conditions from animals that can freely forage has largely increased. Interestingly, the consumption of game meat has not become more common despite its excellent quality and content of polyunsaturated fatty acids (PUFAs). We addressed the question if game meat fatty acid composition is modified through kitchen preparation. By analysing muscle fatty acid (FA) composition (polar and total lipids) of five European game species in a raw and a processed state, we aimed to quantify the proportion of PUFA that are oxidised and hydrogenated during processing. All game meat species originated from local hunters and free-living individuals. To mimic a realistic situation a professional chef prepared the meat samples with gentle use of heat in a standardised way. Expectedly, the overall content of polyunsaturated fatty acids declined during the cooking process but the decrease size was <5% and the nutritiously most important n-3/n-6 ratio was not affected by processing (F1,54 = 0.46; p = 0.5). Generally, our samples contained species-specific high PUFA and n-3 FA contents but we point out that differentiating between species is necessary. Game meat thus provides a healthy meat source, as cooking does not substantially alter its favourable fatty acid composition. Further research is needed to elucidate species-specific differences and the role of habitat quality and locomotion for tissue composition.
Knief, Claudia; Ramette, Alban; Frances, Lisa; Alonso-Blanco, Carlos; Vorholt, Julia A
2010-06-01
The plant phyllosphere constitutes a habitat for numerous microorganisms; among them are members of the genus Methylobacterium. Owing to the ubiquitous occurrence of methylobacteria on plant leaves, they represent a suitable target for studying plant colonization patterns. The influence of the factor site, host plant species, time and the presence of other phyllosphere bacteria on Methylobacterium community composition and population size were evaluated in this study. Leaf samples were collected from Arabidopsis thaliana or Medicago truncatula plants and from the surrounding plant species at several sites. The abundance of cultivable Methylobacterium clearly correlated with the abundance of other phyllosphere bacteria, suggesting that methylobacteria constitute a considerable and rather stable fraction of the phyllosphere microbiota under varying environmental conditions. Automated ribosomal intergenic spacer analysis (ARISA) was applied to characterize the Methylobacterium community composition and showed the presence of similar communities on A. thaliana plants at most sites in 2 consecutive years of sampling. A substantial part of the observed variation in the community composition was explained by site and plant species, especially in the case of the plants collected at the Arabidopsis sites (50%). The dominating ARISA peaks that were detected on A. thaliana plants were found on other plant species grown at the same site, whereas some different peaks were detected on A. thaliana plants from other sites. This indicates that site-specific factors had a stronger impact on the Methylobacterium community composition than did plant-specific factors and that the Methylobacterium-plant association is not highly host plant species specific.
NASA Astrophysics Data System (ADS)
Segura, Javier; Nilsson, Mats B.; Erhagen, Björn; Sparrman, Tobias; Ilstedt, Ulrik; Schleucher, Jürgen; Öquist, Mats
2017-04-01
High-latitude ecosystems store a large proportion of the global soil organic matter (SOM) and its mineralization constitutes a major carbon flux to the atmosphere. It has been suggested that different tree species can significantly influence organo-chemical composition of SOM, and rate and temperature sensitivity of SOM decomposition. In this study we used surface soil samples (top 5 cm) from a field experiment where five different tree species (Pinus silvestrys L, Picea abies (L.) H. Karst., Larix decidua Mill., Betula pendula Roth, and Pinus contorta Douglas) were planted on a grass meadow in a randomized block design (n=3) ca. 40 years ago. The samples were incubated at 4, 9, 14, and 19 °C at a soil water potential of -25 kPa (previously determined as optimal water content for decomposition). CO2 production rates were measured hourly for 13 days. CO2 production rates were consequently lowest in the control plots and increased in the order Meadow< Contorta < Betula < Larix < Pinus < Picea. The values ranged between 0.03-0.1, 0.06-0.154, 0.1-0.24 and 0.13-0.36 mg CO2 g-1 OM (dw) h-1 at 4, 9, 14 and 19°C respectively. The temperature response of CO2 production corresponded to Q10s of 2.22 (±0.11), 2.22(±0.15), 2.66 (±0.18), 2.09 (±0.33), 2.38 (±0.31) and 2.31 (±0.09) for meadow, contorta, betula, larix, pinus and picea respectively. Only betula resulted in significantly higher Q10s as compared to the control plots, picea, contorta and larix treatments. These differences in tree species effects on SOM decomposition and its temperature sensitivity will be further discussed in relation to the organo-chemical composition of SOM as determined by pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) and nuclear magnetic resonance spectroscopy (NMR) techniques. We conclude that the temperature response of SOM decomposition rates is likely coupled to tree species composition and may have important implications for soil C dynamics. This finding can have important implications for both the understanding of forest ecosystem carbon balances in high latitude ecosystems and also the selection of different tree species in forest management schemes.
Effects of 10-Year Management Regimes on the Soil Seed Bank in Saline-Alkaline Grassland
Ma, Hongyuan; Yang, Haoyu; Liang, Zhengwei; Ooi, Mark K. J.
2015-01-01
Background Management regimes for vegetation restoration of degraded grasslands can significantly affect the process of ecological succession. However, few studies have focused on variation in the soil seed bank during vegetation restoration under different management regimes, especially in saline-alkaline grassland habitats. Our aim was to provide insights into the ecological effects of grassland management regimes on soil seed bank composition and vegetation establishment in mown, fenced, transplanted and natural grassland sites, all dominated by the perennial rhizomatous grass Leymus chinensis. Methodology We studied species composition and diversity in both the soil seed bank and aboveground vegetation in differently managed grasslands in Northeast China. An NMDS (nonmetric multidimensional scaling) was used to evaluate the relationship between species composition, soil seed banks, aboveground vegetation and soil properties. Principal Findings Fenced and mown grassland sites had high density and species richness in both the soil seed bank and aboveground vegetation. The Transplanted treatment exhibited the highest vegetation growth and seed production of the target species L. chinensis. Seeds of L. chinensis in the soil occurred only in transplanted and natural grassland. Based on the NMDS analysis, the number of species in both the soil seed bank and aboveground vegetation were significantly related to soil Na+, Cl-, RSC (residual sodium carbonate), alkalinity, ESP (exchangeable sodium percentage) and AP (available phosphorus). Conclusions Soil seed bank composition and diversity in the saline-alkaline grassland were significantly affected by the management regimes implemented, and were also significantly related to the aboveground vegetation and several soil properties. Based on vegetative growth, reproductive output and maintenance of soil seed bank, the transplanting was identified as the most effective method for relatively rapid restoration of the target species L. chinensis. This approach could be beneficial for the restoration of dominant species in a wide range of degraded grassland ecosystems. PMID:25902145
Dunn, Christopher P.; Scott, Michael L.
1987-01-01
The influence of thermal disturbance and site characteristics on distribution of herbs was studied in portions of a 3020 ha wetland in the southeastern USA. Presence-absence of 52 species in 130 0.25 m2 plots was determined from four sites with different disturbance histories and from an undisturbed site. Data from the four disturbed sites were ordinated by detrended correspondence analysis. Differences in species composition among sites (coarse scale) were associated with water depth, light, and substrate type. Within a site (at a fine scale), correlation of environmental variables with ordination scores at a chronically disturbed site was weakly correlated with light (r=0.50). At two sites with episodic disturbance, species composition correlated significantly and positively with substrate and water depth. At a recovering site, vegetation patterns were moderately correlated with water depth (r=−0.52). Species richness was correlated with substrate type along the disturbance gradient. Our results are consistent the intermediate disturbance hypothesis and the subsidy-stress gradient concept.
Walter, André; Bechsgaard, Jesper; Scavenius, Carsten; Dyrlund, Thomas S; Sanggaard, Kristian W; Enghild, Jan J; Bilde, Trine
2017-08-10
Spiders are predaceous arthropods that are capable of subduing and consuming relatively large prey items compared to their own body size. For this purpose, spiders have evolved potent venoms to immobilise prey and digestive fluids that break down nutrients inside the prey's body by means of extra-oral digestion (EOD). Both secretions contain an array of active proteins, and an overlap of some components has been anecdotally reported, but not quantified. We systematically investigated the extent of such protein overlap. As venom injection and EOD succeed each other, we further infer functional explanations, and, by comparing two spider species belonging to different clades, assess its adaptive significance for spider EOD in general. We describe the protein composition of the digestive fluids of the mygalomorph Acanthoscurria geniculata and the araneomorph Stegodyphus mimosarum, in comparison with previously published data on a third spider species. We found a number of similar hydrolases being highly abundant in all three species. Among them, members of the family of astacin-like metalloproteases were particularly abundant. While the importance of these proteases in spider venom and digestive fluid was previously noted, we now highlight their widespread use across different spider taxa. Finally, we found species specific differences in the protein overlap between venom and digestive fluid, with the difference being significantly greater in S. mimosarum compared to A. geniculata. The injection of venom precedes the injection with digestive fluid, and the overlap of proteins between venom and digestive fluid suggests an early involvement in EOD. Species specific differences in the overlap may reflect differences in ecology between our two study species. The protein composition of the digestive fluid of all the three species we compared is highly similar, suggesting that the cocktail of enzymes is highly conserved and adapted to spider EOD.
Hu, Jian; Wang, Lun-Ji; Dong, Jun-Feng; Song, Yue-Qin; Sun, Hui-Zhong
2017-01-01
Abstract Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a cryptic species complex, causing significant crop losses in China during the last decade. Although knowledge of cryptic species composition and dynamics within B. tabaci complex is critical for developing sustainable pest management strategies, limited information is available on this pest in the Henan province of China. A systematic survey of the cryptic species composition and distribution of B. tabaci complex in different locations of Henan province was conducted in 2012. The results of RAPD-PCR and the gene for the mitochondrial cytochrome oxidase subunit-1 (mtCOI) based phylogenetic relationships established using Bayesian method indicated there were four known cryptic species MEAM1, MED, Asia II 3, Asia II 9 and a new cryptic species named China 6 in Henan province. In the survey, the invasive cryptic species MED and MEAM1 were found to be predominant with wide spread distribution across the surveyed regions. On the contrary, the indigenous B. tabaci cryptic species including Asia II 3, Asia II 9 and China 6 remained with low prevalence in some surveyed regions. Cryptic species MEAM1 and MED have not completely displaced the native B. tabaci in Henan province. This current study for the first time unifies our knowledge of the diversity and distribution of B. tabaci across Henan province of China. PMID:28973577
Karkossa, Frank; Klein, Sandra
2017-10-01
The objective of this test series was to elucidate the importance of selecting the right media composition for a biopredictive in-vitro dissolution screening of enteric-coated dosage forms. Drug release from immediate-release (IR) and enteric-coated (EC) aspirin formulations was assessed in phosphate-based and bicarbonate-based media with different pH, electrolyte composition and ionic strength. Drug release from aspirin IR tablets was unaffected by media composition. In contrast, drug release from EC aspirin formulations was affected by buffer species and ionic strength. In all media, drug release increased with increasing ionic strength, but in bicarbonate-based buffers was delayed when compared with that in phosphate-based buffers. Interestingly, the cation species in the dissolution medium had also a clear impact on drug release. Drug release profiles obtained in Blank CarbSIF, a new medium simulating pH and average ionic composition of small intestinal fluid, were different from those obtained in all other buffer compositions studied. Results from this study in which the impact of various media parameters on drug release of EC aspirin formulations was systematically screened clearly show that when developing predictive dissolution tests, it is important to simulate the ionic composition of intraluminal fluids as closely as possible. © 2017 Royal Pharmaceutical Society.
Khlifa, Rim; Paquette, Alain; Messier, Christian; Reich, Peter B; Munson, Alison D
2017-10-01
Studies of biodiversity-ecosystem function in treed ecosystems have generally focused on aboveground functions. This study investigates intertrophic links between tree diversity and soil microbial community function and composition. We examined how microbial communities in surface mineral soil responded to experimental gradients of tree species richness (SR), functional diversity (FD), community-weighted mean trait value (CWM), and tree identity. The site was a 4-year-old common garden experiment near Montreal, Canada, consisting of deciduous and evergreen tree species mixtures. Microbial community composition, community-level physiological profiles, and respiration were evaluated using phospholipid fatty acid (PLFA) analysis and the MicroResp ™ system, respectively. The relationship between tree species richness and glucose-induced respiration (GIR), basal respiration (BR), metabolic quotient (qCO 2 ) followed a positive but saturating shape. Microbial communities associated with species mixtures were more active (basal respiration [BR]), with higher biomass (glucose-induced respiration [GIR]), and used a greater number of carbon sources than monocultures. Communities associated with deciduous tree species used a greater number of carbon sources than those associated with evergreen species, suggesting a greater soil carbon storage capacity. There were no differences in microbial composition (PLFA) between monocultures and SR mixtures. The FD and the CWM of several functional traits affected both BR and GIR. In general, the CWM of traits had stronger effects than did FD, suggesting that certain traits of dominant species have more effect on ecosystem processes than does FD. Both the functions of GIR and BR were positively related to aboveground tree community productivity. Both tree diversity (SR) and identity (species and functional identity-leaf habit) affected soil microbial community respiration, biomass, and composition. For the first time, we identified functional traits related to life-history strategy, as well as root traits that influence another trophic level, soil microbial community function, via effects on BR and GIR.
ERIC Educational Resources Information Center
Taubert, Jessica; Parr, Lisa A.
2009-01-01
Humans are subject to the composite illusion: two identical top halves of a face are perceived as "different" when they are presented with different bottom halves. This observation suggests that when building a mental representation of a face, the underlying system perceives the whole face, and has difficulty decomposing facial features. We…
Brian S. Hughett; Wayne K. Clatterbuck
2014-01-01
Differences in composition, structure, and growth under canopy gaps created by the mortality of a single stem were analyzed using analysis of variance under two scenarios, with stem removed or with stem left as a standing snag. There were no significant differences in composition and structure of large diameter residual stems within upper canopy strata. Some...
Gas composition of sludge residue profiles in a sludge treatment reed bed between loadings.
Larsen, Julie D; Nielsen, Steen M; Scheutz, Charlotte
2017-11-01
Treatment of sludge in sludge treatment reed bed systems includes dewatering and mineralization. The mineralization process, which is driven by microorganisms, produces different gas species as by-products. The pore space composition of the gas species provides useful information on the biological processes occurring in the sludge residue. In this study, we measured the change in composition of gas species in the pore space at different depth levels in vertical sludge residue profiles during a resting period of 32 days. The gas composition of the pore space in the sludge residue changed during the resting period. As the resting period proceeded, atmospheric air re-entered the pore space at all depth levels. The methane (CH 4 ) concentration was at its highest during the first part of the resting period, and then declined as the sludge residue became more dewatered and thereby aerated. In the pore space, the concentration of CH 4 often exceeded the concentration of carbon dioxide (CO 2 ). However, the total emission of CO 2 from the surface of the sludge residue exceeded the total emission of CH 4 , suggesting that CO 2 was mainly produced in the layer of newly applied sludge and/or that CO 2 was emitted from the sludge residue more readily compared to CH 4 .
Rodríguez, Alejandro; Jansson, Gunnar; Andrén, Henrik
2007-01-01
Assuming better colonization abilities of inferior competitors, the competition–colonization trade-off (CCTO) is one of the hypotheses that explains spatial variation of species composition in fragmented habitats. Whereas this mechanism may structure some plant and insect communities, ecologists have failed to document its operation in other natural systems, and its generality has been questioned. We combined fieldwork and published data to study the composition of a guild of passerines (Parus cristatus, Parus montanus, Parus ater and Regulus regulus) inhabiting 10 landscapes that differed in the amount of forest habitat. The species were ordered in a stable, well-defined competitive hierarchy, and the dispersal ability of each species was inversely correlated with its position in this hierarchy. In functionally continuous landscapes, superior competitors occupied most fragments and all guild members commonly occurred. The relative incidences of superior and inferior competitors were reversed, and differences amplified, in landscapes where patches were physically (distance) or functionally (matrix hardness) isolated. We found little support for two competing hypotheses, namely reduced habitat quality in isolated patches and lower abundance of a keystone predator (Glaucidium passerinum) in fragmented landscapes. We concluded that the CCTO offered the most probable explanation for variation in the composition of the Parus guild across landscapes. PMID:17389222
Rodríguez, Alejandro; Jansson, Gunnar; Andrén, Henrik
2007-06-07
Assuming better colonization abilities of inferior competitors, the competition-colonization trade-off (CCTO) is one of the hypotheses that explains spatial variation of species composition in fragmented habitats. Whereas this mechanism may structure some plant and insect communities, ecologists have failed to document its operation in other natural systems, and its generality has been questioned. We combined fieldwork and published data to study the composition of a guild of passerines (Parus cristatus, Parus montanus, Parus ater and Regulus regulus) inhabiting 10 landscapes that differed in the amount of forest habitat. The species were ordered in a stable, well-defined competitive hierarchy, and the dispersal ability of each species was inversely correlated with its position in this hierarchy. In functionally continuous landscapes, superior competitors occupied most fragments and all guild members commonly occurred. The relative incidences of superior and inferior competitors were reversed, and differences amplified, in landscapes where patches were physically (distance) or functionally (matrix hardness) isolated. We found little support for two competing hypotheses, namely reduced habitat quality in isolated patches and lower abundance of a keystone predator (Glaucidium passerinum) in fragmented landscapes. We concluded that the CCTO offered the most probable explanation for variation in the composition of the Parus guild across landscapes.
Violante-González, Juan; Monks, Scott; Gil-Guerrero, Salvador; Rojas-Herrera, Agustín A; Flores-Rodríguez, Pedro
2012-07-01
The composition and species richness in helminth communities of two species of heron, Ardea alba and Nyctanassa violacea, in two coastal lagoons from Guerrero, Mexico were examined. Nineteen species of helminth (7,804 individuals) were identified in 43 adult birds: 15 digeneans, 1 acanthocephalan, 1 cestode, and 2 nematodes. Eight species co-occurred in herons of both species and lagoons. The prevalence values of seven species and the mean abundance of five species varied significantly between species of birds and between lagoons. The heterophyid, Ascocotyle (Phagicola) longa, was the helminth numerically dominant in the helminth community of A. alba in both lagoons, while the cestode, Parvitaenia cochlearii, dominated the community of N. violacea. At the component community level, species richness varied significantly: 10 species in A. alba from Coyuca to 16 in N. violacea (Tres Palos). All of the birds examined were infected with helminth parasites: three to seven species per host in A. alba from Coyuca, and two to eight species in A. alba and N. violacea from Tres Palos. The results indicate that even though species composition was similar between both species of heron, the structure of their communities was not the same. Differences in the feeding behavior of the birds (day/night habits), as well as local differences in the abundance of species of fish, and infection levels of helminths in each lagoon are suggested as being responsible for the variations registered in the structure of the helminth communities.
NASA Astrophysics Data System (ADS)
Bell, D. M.; Gray, A. N.
2014-12-01
Forest successional theory describes the changes in forest biomass and community composition from forest establishment to climax communities, but the drivers of succession are still widely debated. For example, successional models have related biomass and community change to stand age, species rarity within the community, small-scale disturbance, or the ability of species to survive under low resource conditions. The degree to which these drivers might vary regionally limits our ability to model and predict ecosystem change. Our objective was to assess whether forest successional theory explains observed changes in species biomass and community composition across forests of the U. S. Pacific Northwest. Using remeasurements of 9,700 Current Vegetation Survey (CVS) National Forest inventory plots primarily in Oregon and Washington, we quantified the effects of forest stand age, community composition, disturbance, and moisture (i.e., topography and climate) on changes in species-specific proportional live biomass (ΔB) and species dominance (ΔD). We focused on differences in forest successional patterns in two vegetation zones: the Tsuga heterophylla (TSHE) zone, found at low elevations on the wet, west side of the Cascade Mountains; and the Abies concolor (ABCO) zone, found at mid-elevations on the dry, east side of the Cascade Mountains. Preliminary results indicate that the regional differences in tree species biomass change and dominance appear to be related to responses to climate and disturbance. Strong positive effects of cover change on ΔB were observed in the drier ABCO zone, but not the wetter TSHE zone. ΔB and ΔD were more often sensitive to precipitation and topographic position in the ABCO zone. In both regions, we found that ΔB was strongly negatively related to species biomass and stand age while ΔD was strongly negatively related to relative density, highlighting the importance of both age and community in shaping succession. Given that the importance of different forest successional processes in shaping ecosystem change varied regionally, this work provides valuable insights into potential risks of changing climate and disturbance regimes to species persistence and ecosystem stability across forests of the U.S. Pacific Northwest.
Phyllostomid Bat Occurrence in Successional Stages of Neotropical Dry Forests
Avila-Cabadilla, Luis Daniel; Stoner, Kathryn Elizabeth; Nassar, Jafet M.; Espírito-Santo, Mario M.; Alvarez-Añorve, Mariana Yolotl; Aranguren, Carla I.; Henry, Mickael; González-Carcacía, José A.; Dolabela Falcão, Luiz A.; Sanchez-Azofeifa, Gerardo Arturo
2014-01-01
Tropical dry forests (TDFs) are highly endangered tropical ecosystems being replaced by a complex mosaic of patches of different successional stages, agricultural fields and pasturelands. In this context, it is urgent to understand how taxa playing critical ecosystem roles respond to habitat modification. Because Phyllostomid bats provide important ecosystem services (e.g. facilitate gene flow among plant populations and promote forest regeneration), in this study we aimed to identify potential patterns on their response to TDF transformation in sites representing four different successional stages (initial, early, intermediate and late) in three Neotropical regions: México, Venezuela and Brazil. We evaluated bat occurrence at the species, ensemble (abundance) and assemblage level (species richness and composition, guild composition). We also evaluated how bat occurrence was modulated by the marked seasonality of TDFs. In general, we found high seasonal and regional specificities in phyllostomid occurrence, driven by specificities at species and guild levels. For example, highest frugivore abundance occurred in the early stage of the moistest TDF, while highest nectarivore abundance occurred in the same stage of the driest TDF. The high regional specificity of phyllostomid responses could arise from: (1) the distinctive environmental conditions of each region, (2) the specific behavior and ecological requirements of the regional bat species, (3) the composition, structure and phenological patterns of plant assemblages in the different stages, and (4) the regional landscape composition and configuration. We conclude that, in tropical seasonal environments, it is imperative to perform long-term studies considering seasonal variations in environmental conditions and plant phenology, as well as the role of landscape attributes. This approach will allow us to identify potential patterns in bat responses to habitat modification, which constitute an invaluable tool for not only bat biodiversity conservation but also for the conservation of the key ecological processes they provide. PMID:24404175
Breeding bird communities in regenerating and mature broadleaf forests in the USA Lake States
John R. Probst; Don R. Rakstad; David J. Rugg
1992-01-01
When Lake States aspen tree canopy is removed by clearcut harvest, bird species turnover is almost complete. Bird species richness and total populations were highest in mature stands with well-developed understories and in regenerating stands about 4 years after clearcutting. However, species composition in regenerating stands was different to that in mature stands....
Andersen, Keld Ejdrup; Bjergegaard, Charlotte; Møller, Peter; Sørensen, Jens Christian; Sørensen, Hilmer
2005-07-13
The contents of raffinose family oligosaccharides (RFO) and sucrose in Brassica, Lupinus, Pisum, and Hordeum species were investigated by chemometric principal component analysis (PCA). Hordeum samples contained sucrose and raffinose, and Brassica samples all contained sucrose, raffinose, and stachyose. In addition to these, the Pisum samples contained verbascose and the Lupinus samples also contained ajugose. High stachyose and low ajugose contents were found in Lupinus albus in contrast to Lupinus angustifolius, having low stachyose and high ajugose contents. Lupinus luteus had average stachyose and ajugose contents, whereas large amounts of verbascose were accumulated in these seeds. Lupinus mutabilis had high stachyose and low ajugose contents, similar to the composition in L. albus but showing higher raffinose content. The Brassica samples also showed compositional RFO variations within the species, and subgroup formations were discovered within the investigated Brassica napus varieties. PCA results indicated compositional variations between the investigated genera and within the various species of value as chemotaxonomic defined parameters and as tools in evaluations of authenticity/falsifications when RFO-containing plants are used as, for example, feed and food additives.
Bravo, Felipe; Hann, D.W.; Maguire, Douglas A.
2001-01-01
Mixed conifer and hardwood stands in southwestern Oregon were studied to explore the hypothesis that competition effects on individual-tree growth and survival will differ according to the species comprising the competition measure. Likewise, it was hypothesized that competition measures should extrapolate best if crown-based surrogates are given preference over diameter-based (basal area based) surrogates. Diameter growth and probability of survival were modeled for individual Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees growing in pure stands. Alternative models expressing one-sided and two-sided competition as a function of either basal area or crown structure were then applied to other plots in which Douglas-fir was mixed with other conifers and (or) hardwood species. Crown-based variables outperformed basal area based variables as surrogates for one-sided competition in both diameter growth and survival probability, regardless of species composition. In contrast, two-sided competition was best represented by total basal area of competing trees. Surrogates reflecting differences in crown morphology among species relate more closely to the mechanics of competition for light and, hence, facilitate extrapolation to species combinations for which no observations are available.
Tavares-Dias, Marcos; Neves, Ligia R
2017-01-01
The community composition of parasites was characterized in Astronotus ocellatus from a tributary of the Amazon River, northern Brazil. The prevalence was 87.9%, and a total of 526,052 parasites were collected, with a mean of 15,941 parasites per host. Nine taxa of ecto- and endo-parasites were identified, but Ichthyophthirius multifiliis was the dominant species, while Piscinoodinium pillulare, Clinostomum marginatum and Argulus multicolor were the least prevalent parasites. The parasite community was characterized by a low species richness, low diversity and low evenness. Host body size was not found to influence the composition of the parasite community, and there was no significant correlation between abundance of any parasite species and host body size. Papers published concerning the presence of parasites in this host in different hydrographic basins within Brazil indicate that 22 species of parasites are known to infect A. ocellatus, including species of ectoparasites and endoparasites. In Brazil, ectoparasites species, particularly crustaceans, have been found to parasitize A. ocellatus in relatively high numbers. This predominance of ectoparasites is typical of fish of lentic ecosystems. Finally, the presence of different endoparasites taxa suggest that A. ocellatus acts as an intermediate or definitive host.
Pescador, David S.; de Bello, Francesco; Valladares, Fernando; Escudero, Adrián
2015-01-01
Assessing changes in plant functional traits along gradients is useful for understanding the assembly of communities and their response to global and local environmental drivers. However, these changes may reflect the effects of species composition (i.e. composition turnover), species abundance (i.e. species interaction), and intra-specific trait variability (i.e. species plasticity). In order to determine the relevance of the latter, trait variation can be assessed under minimal effects of composition turnover. Nine sampling sites were established along an altitudinal gradient in a Mediterranean high mountain grassland community with low composition turnover (Madrid, Spain; 1940 m–2419 m). Nine functional traits were also measured for ten individuals of around ten plant species at each site, for a total of eleven species across all sites. The relative importance of different sources of variability (within/between site and intra-/inter-specific functional diversity) and trait variation at species and community level along the considered gradients were explored. We found a weak individual species response to altitude and other environmental variables although in some cases, individuals were smaller and leaves were thicker at higher elevations. This lack of species response was most likely due to greater within- than between-site species variation. At the community level, inter-specific functional diversity was generally greater than the intra-specific component except for traits linked to leaf element content (leaf carbon content, leaf nitrogen content, δ13C and δ15N). Inter-specific functional diversity decreased with lower altitude for four leaf traits (specific leaf area, leaf dry matter content, δ13C and δ15N), suggesting trait convergence between species at lower elevations, where water shortage may have a stronger environmental filtering effect than colder temperatures at higher altitudes. Our results suggest that, within a vegetation type encompassing various environmental gradients, both, changes in species abundance and intra-specific trait variability adjust for the community functional response to environmental changes. PMID:25774532
Pescador, David S; de Bello, Francesco; Valladares, Fernando; Escudero, Adrián
2015-01-01
Assessing changes in plant functional traits along gradients is useful for understanding the assembly of communities and their response to global and local environmental drivers. However, these changes may reflect the effects of species composition (i.e. composition turnover), species abundance (i.e. species interaction), and intra-specific trait variability (i.e. species plasticity). In order to determine the relevance of the latter, trait variation can be assessed under minimal effects of composition turnover. Nine sampling sites were established along an altitudinal gradient in a Mediterranean high mountain grassland community with low composition turnover (Madrid, Spain; 1940 m-2419 m). Nine functional traits were also measured for ten individuals of around ten plant species at each site, for a total of eleven species across all sites. The relative importance of different sources of variability (within/between site and intra-/inter-specific functional diversity) and trait variation at species and community level along the considered gradients were explored. We found a weak individual species response to altitude and other environmental variables although in some cases, individuals were smaller and leaves were thicker at higher elevations. This lack of species response was most likely due to greater within- than between-site species variation. At the community level, inter-specific functional diversity was generally greater than the intra-specific component except for traits linked to leaf element content (leaf carbon content, leaf nitrogen content, δ13C and δ15N). Inter-specific functional diversity decreased with lower altitude for four leaf traits (specific leaf area, leaf dry matter content, δ13C and δ15N), suggesting trait convergence between species at lower elevations, where water shortage may have a stronger environmental filtering effect than colder temperatures at higher altitudes. Our results suggest that, within a vegetation type encompassing various environmental gradients, both, changes in species abundance and intra-specific trait variability adjust for the community functional response to environmental changes.
Lengyel, Szabolcs; Déri, Eszter; Magura, Tibor
2016-01-01
Habitat diversity (spatial heterogeneity within and between habitat patches in a landscape, HD) is often invoked as a driver of species diversity at small spatial scales. However, the effect of HD on species richness (SR) of multiple taxa is not well understood. We quantified HD and SR in a wet-dry gradient of open grassland habitats in Hortobágy National Park (E-Hungary) and tested the effect of compositional and structural factors of HD on SR of flowering plants, orthopterans, true bugs, spiders, ground beetles and birds. Our dataset on 434 grassland species (170 plants, 264 animals) showed that the wet-dry gradient (compositional HD at the between-patch scale) was primarily related to SR in orthopterans, ground-dwelling arthropods, and all animals combined. The patchiness, or plant association richness, of the vegetation (compositional HD at the within-patch scale) was related to SR of vegetation-dwelling arthropods, whereas vegetation height (structural HD at the within-patch scale) was related to SR of ground-dwelling arthropods and birds. Patch area was related to SR only in birds, whereas management (grazing, mowing, none) was related to SR of plants and true bugs. All relationships between HD and SR were positive, indicating increasing SR with increasing HD. However, total SR was not related to HD because different taxa showed similar positive responses to different HD variables. Our findings, therefore, show that even though HD positively influences SR in a wide range of grassland taxa, each taxon responds to different compositional or structural measures of HD, resulting in the lack of a consistent relationship between HD and SR when taxon responses are pooled. The idiosyncratic responses shown here exemplify the difficulties in detecting general HD-SR relationships over multiple taxa. Our results also suggest that management and restoration aimed specifically to sustain or increase the diversity of habitats are required to conserve biodiversity in complex landscapes. PMID:26901569
Benthic macrofaunal dynamics and environmental stress across a salt wedge Mediterranean estuary.
Nebra, Alfonso; Alcaraz, Carles; Caiola, Nuno; Muñoz-Camarillo, Gloria; Ibáñez, Carles
2016-06-01
The spatial distribution of benthic macroinvertebrate community in relation to environmental factors was studied along the Ebro Estuary (NE Iberian Peninsula), a salt wedge Mediterranean estuary. Both ordination methods and generalized additive models were performed to identify the different benthic assemblages and their relationship to abiotic factors. Our results showed a strong relationship between macrofaunal assemblages and the predominant environmental gradients (e.g. salinity); thus revealing spatial differences in their structure and composition. Two different stretches were identified, namely the upper (UE) and the lower Ebro Estuary (LE). UE showed riverine characteristics and hence was colonized by a freshwater community; whereas LE was influenced by marine intrusion and sustained a complex marine-origin community. However, within each stretch, water and sediment characteristics played an important role in explaining species composition differences among sampling stations. Moreover, outcomes suggested a total species replacement pattern, instead of the nestedness pattern usually associated with well-mixed temperate estuaries. The sharp species turnover together with the estuarine stratification point out that the Ebro Estuary is working, in terms of ecological boundaries, under an ecotone model. Finally, despite obvious differences with well mixed estuaries (i.e. lack of tidal influence, stratification and species turnover), the Ebro Estuary shares important ecological attributes with well-mixed temperate estuaries. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhu, Xiaolin; Zhou, Shaomin; Guo, Jing; Zhao, Xiyue; Yang, Guanghua; Cai, Zhiqiang
2018-04-18
Paichongding (IPP) is a neonicotinoid chiral insecticide with independent intellectual property in China. IPP application can increase crop yield, and also lead to insecticide residue and pollution in soils, which will affect microbial population and community composition in soils. In this study, four different types of soils were employed to inquire into the impact of IPP on eukaryal community and species-group through pyrosequencing of 18S rRNA gene amplicons. Fungal population differed in different soils at different days after IPP treatment (DAT). Eukaryal community species in CK (control check) groups were more rich than that with Paichongding sprayed at 5 DAT, while eukaryal species in CK soils at 60 DAT was relatively slight. Shannon's H' analysis indicated fungal species in CK soils were also higher at 5 DAT and relative lower at 60 DAT, except in soil C. There are also differences in the phyla and genus levels of the eukaryotic communities in the soil. After IPP application, the relative abundance of Nectriaceae increased 3-4 times in soil C. In soil F, Phaeosphaeriaceae increased to 57.3% at 5 DAT. The genus of Guehomyces, Aspergillus and Alternaria increased from 3.1 to 9.7, 1.1 to 4.6, 1.5 to 6.7% in soil H, respectively.
Ding, Guo Chang; Wang, Xiao Hua; Yang, Qi Fan; Lin, Qun Xing; Huang, Zhi Qun
2017-11-01
We employed a comparative study to examine the effects of tree species transition on soil microbial biomass, community composition and enzymes activities under Cunninghamia lanceolata (Lamb.) Hook, Eucalyptus grandis and a N-fixing species, Acacia melanoxylon in subtropical China. Results showed that the effect of tree species on soil microbial community and enzymes activities was significant only in the 0-10 cm soil layer. Reforestation with N-fixing species A. melanoxylon on the C. lanceolata harvest site significantly increased the total phospholipid fatty acid (PLFA), fungal PLFAs, Gram-positive bacterial PLFAs, Gram-negative bacterial PLFAs and actinomycetes biomasses in the 0-10 cm soil layer. The principal component analysis (PCA) showed that the soil microbial community composition in A. melanoxylon soil differed significantly from that in C. lanceolata and E. grandis soils. N-fixing species (A. melanoxylon) significantly enhanced the percent abundance of Gram-positive bacteria, Gram-negative bacteria and actinomycetes. Activities of cellobiohydrolase, N-acetyl-β-d-glucosaminidase and acid phosphatase were significantly higher under A. melanoxylon than under C. lanceolata and E. grandis plantations. Our results suggested that reforestation with N-fixing species, A. melanoxylon on C. lanceolata harvest site could increase soil microbial biomass, enzyme activities and soil organic matter content.
Heng, Kong; Chevalier, Mathieu; Lek, Sovan; Laffaille, Pascal
2018-01-01
Tropical lakes and their associated floodplain habitats are dynamic habitat mosaics strongly influenced by seasonal variations in hydrologic conditions. In flood-pulse systems, water level oscillations directly influence the connectivity to floodplain habitats for fish. Here, we aimed to investigate whether seasonal changes in the water level of a flood-pulse system (the Tonle Sap Lake, Cambodia) differentially affect diet breadth and dietary overlap of three common and commercially important fish species (Anabas testudineus, Boesemania microplepis and Notopterus notopterus) presenting important differences in their life-cycle (e.g. seasonal migration). For this purpose, the three fish species were sampled at four locations spread over the lake and their stomach contents extracted for analyses. Dietary differences were investigated across seasons regarding the diet composition and diet breadth of each species as well as the amount of dietary overlap between species. We found that the proportion of empty stomachs changed similarly across seasons for the three species, thus suggesting that ecological differences between species are not sufficient to outweigh the effect of seasonal variations in resource abundance. In contrast, changes in diet composition were species-specific and can be explained by ecological and behavioral differences between species. Diet breadth differed between species in all seasons, except during the wet season, and tended to be higher during the dry season when dietary overlap was the lowest. These variations likely result from changes in the diversity and amount of resources and may lead to habitat use shifts with potential implications for competitive interactions. In particular, increasing connectivity to floodplain habitats may reduce the competitive pressure during the wet season, while resource scarcity during the dry season may constrain individuals to diversify their diet to avoid competition. Overall, our results suggest a considerable plasticity in the feeding behavior of the three species as demonstrated by seasonal variation in both diet breadth and dietary overlap. Such variations can be explained by a number of factors and processes, including changes in resource availability or competitive interactions between individuals for resources, whose relative influence might vary depending on the magnitude and the timing of the flood-pulse driving the connectivity to floodplain habitats. Gaining knowledge on the seasonal evolution of fish's diet is relevant for fisheries management and conservation and our result could be used to guide aquaculture development in Cambodia.
Stable isotope analyses-A method to distinguish intensively farmed from wild frogs.
Dittrich, Carolin; Struck, Ulrich; Rödel, Mark-Oliver
2017-04-01
Consumption of frog legs is increasing worldwide, with potentially dramatic effects for ecosystems. More and more functioning frog farms are reported to exist. However, due to the lack of reliable methods to distinguish farmed from wild-caught individuals, the origin of frogs in the international trade is often uncertain. Here, we present a new methodological approach to this problem. We investigated the isotopic composition of legally traded frog legs from suppliers in Vietnam and Indonesia. Muscle and bone tissue samples were examined for δ 15 N, δ 13 C, and δ 18 O stable isotope compositions, to elucidate the conditions under which the frogs grew up. We used DNA barcoding (16S rRNA) to verify species identities. We identified three traded species ( Hoplobatrachus rugulosus, Fejervarya cancrivora and Limnonectes macrodon ); species identities were partly deviating from package labeling. Isotopic values of δ 15 N and δ 18 O showed significant differences between species and country of origin. Based on low δ 15 N composition and generally little variation in stable isotope values, our results imply that frogs from Vietnam were indeed farmed. In contrast, the frogs from the Indonesian supplier likely grew up under natural conditions, indicated by higher δ 15 N values and stronger variability in the stable isotope composition. Our results indicate that stable isotope analyses seem to be a useful tool to distinguish between naturally growing and intensively farmed frogs. We believe that this method can be used to improve the control in the international trade of frog legs, as well as for other biological products, thus supporting farming activities and decreasing pressure on wild populations. However, we examined different species from different countries and had no access to samples of individuals with confirmed origin and living conditions. Therefore, we suggest improving this method further with individuals of known origin and history, preferably including samples of the respective nutritive bases.
VALKAMA, ELENA; SALMINEN, JUHA‐PEKKA; KORICHEVA, JULIA; PIHLAJA, KALEVI
2003-01-01
The morphology, ultrastructure, density and distribution of trichomes on leaves of Betula pendula, B. pubescens ssp. pubescens, B. pubescens ssp. czerepanovii and B. nana were examined by means of light, scanning and transmission electron microscopy. The composition of flavonoids in ethanolic leaf surface extracts was analysed by high pressure liquid chromatography. All taxa examined contained both glandular and non‐glandular trichomes (short and/or long hairs) but differed from each other in trichome ultrastructure, density and location on the leaf. Leaves of B. pubescens were more hairy than those of B. pendula, but the latter species had a higher density of glandular trichomes. Of the two subspecies of B. pubescens, leaves of ssp. pubescens had more short hairs on the leaf surface and four times the density of glandular trichomes of leaves of ssp. czerepanovii, whereas, in the latter subspecies, short hairs occurred largely on leaf veins, as in B. nana. The glandular trichomes were peltate glands, consisting of medullar and cortical cells, which differed structurally. Cortical cells possessed numerous small, poorly developed plastids and small vacuoles, whereas medullar cells had several large plastids with well‐developed thylakoid systems and fewer vacuoles. In B. pubescens subspecies, vacuoles of the glandular cells contained osmiophilic deposits, which were probably phenolic, whereas in B. pendula, vacuoles of glandular trichomes were characterized by the presence of numerous myelin‐like membranes. The composition of epicuticular flavonoids also differed among species. The two subspecies of B. pubescens and B. nana shared the same 12 compounds, but five of these occurred only in trace amounts in B. nana. Leaf surface extracts of B. pendula contained just six flavonoids, three of which occurred only in this species. In summary, the structure, density and distribution of leaf trichomes and the composition of epicuticular flavonoids represent good taxonomic markers for Finnish birch species. PMID:12714363
The sex specific metabolic footprint of Oithona davisae
NASA Astrophysics Data System (ADS)
Heuschele, Jan; Nemming, Louise; Tolstrup, Lea; Kiørboe, Thomas; Nylund, Göran M.; Selander, Erik
2016-11-01
In pelagic copepods, the group representing the highest animal abundances on earth, males and females have distinct morphological and behavioural differences. In several species female pheromones are known to facilitate the mate finding process, and copepod exudates induce changes in physiology and behaviour in several phytoplankton species. Here we tested whether the sexual dimorphism in morphology and behaviour is mirrored in the exudate composition of males and females. We find differences in the exudate composition, with females seemingly producing more compounds. While we were able to remove the sex pheromones from the water by filtration through reverse phase solid phase extraction columns, we were not able to recover the active pheromone from the solid phase.
NASA Astrophysics Data System (ADS)
Alday, Josu G.; Martínez-Ruiz, Carolina; Marrs, Rob H.; Bravo, Felipe
2010-05-01
Understorey plant species composition is an important part of forest ecosystems and its conservation is becoming an increasingly frequent objective in forest management plans. However, there is a lack of knowledge of the effect of timber harvesting on the characteristic understorey species in the Mediterranean region. We investigated the effects of three different harvest intensities on the short-term dynamics of understorey vegetation in a natural Maritime pine forest in Spain, and compared the results with uncut controls. Clear-cutting induced both qualitative and quantitative differences with respect to the controls, but intermediate levels of harvesting (25% and 50% removal) induced only quantitative differences. Harvesting reduced the frequency and cover of 56% of characteristic forest species, but only 22% showed an increase. Of the most abundant plant families only the Fabaceae showed a significant response with respect to harvesting intensity. Our findings suggest that Light- and Medium-harvest regimes are better management options than clear-cutting if the aim is to conserve the understorey vegetation.
[Effect of forest management on the herpetofauna of a temperate forest of western Oaxaca, Mexico].
Aldape-López, César Tonatiuh; Santos-Moreno, Antonio
2016-09-01
The development of silvicultural techniques has as main objective to maximize the production of timber, whereas at the same time minimize the impact generated during and after forest intervention in the local diversity. However, these activities change local climate, and this, in turn, alter the composition of natural communities. The effect of these changes may be greater in those taxonomic groups with high sensitivity to habitat disturbance, such as amphibians and reptiles, which are the unique terrestrial ectothermic vertebrates. The present study aims to know the differences in diversity of amphibians and reptiles in a temperate forest under two silvicultural treatments, one of low and the other of high intensity, as well as from one, five and ten years of regeneration since the last logging event, Sierra Sur of Oaxaca, Mexico. Records of 21 species of herpetofauna (six amphibians and 15 reptiles) were obtained. The total species richness was similar in both treatments; however, the composition varied between sites with different recovery times. Higher abundance of amphibian was presented on sites with the low-intensity treatment, while reptiles were more abundant at sites with intensive treatment. Compared to a mature forest without management, sites with intensive treatment have more rare species, although the values of true diversity of amphibians were similar between treatments with different intensities, while for reptiles sites under treatment showed less diversity that unmanaged site: 33 % for intensive treatment and 28 % at sites with low intensity with respect to one control site. Complementary Analysis showed a difference of 86 % between the compositions of species in sites with intensive treatment. The treatment intensity was associated with an increase in the number of species, but the way they respond to changes in habitat depends largely on the population characteristics of each species and its ability to adapt to new conditions.
Testing the use of a land cover map for habitat ranking in boreal forests.
Hilli, Milla; Kuitunen, Markku T
2005-04-01
Habitat loss and modification is one of the major threats to biodiversity and the preservation of conservation values. We use the term ''conservation value'' to mean the benefit of nature or habitats for species. The importance of identifying and preserving conservation values has increased with the decline in biodiversity and the adoption of more stringent environmental legislation. In this study, conservation values were considered in the context of land-use planning and the rapidly increasing demand for more accurate methods of predicting and identifying these values. We used a k-nearest neighbor interpreted satellite (Landsat TM) image classified in 61 classes to assess sites with potential conservation values at the regional and landscape planning scale. Classification was made at the National Land Survey of Finland for main tree species, timber volume, land-use type, and soil on the basis of spectral reflectance in satellite image together with broad numerical reference data. We used the number and rarity of vascular plant species observed in the field as indicators for potential conservation values. We assumed that significant differences in the species richness, rarity, or composition of flora among the classes interpreted in the satellite image would also mean a difference in conservation values among these classes. We found significant differences in species richness among the original satellite image classes. Many of the classes examined could be distinguished by the number of plant species. Species composition also differed correspondingly. Rare species were most abundant in old spruce forests (>200 m3/ha), raising the position of such forests in the ranking of categories according to conservation values. The original satellite image classification was correct for 70% of the sites studied. We concluded that interpreted satellite data can serve as a useful source for evaluating habitat categories on the basis of plant species richness and rarity. Recategorization of original satellite image classification into such new conservation value categories is challenging because of the variation in species composition among the new categories. However, it does not represent a major problem for the purposes of early-stage land-use planning. Benefits of interpreted satellite image recategorization as a rapid conservation value assessment tool for land-use planners would be great.
Boda, Pál; Bozóki, Tamás; Vásárhelyi, Tamás; Bakonyi, Gábor; Várbíró, Gábor
2015-01-01
Abstract A basic knowledge of regional faunas is necessary to follow the changes in macroinvertebrate communities caused by environmental influences and climatic trends in the future. We collected all the available data on water bugs in Hungary using an inventory method, a UTM grid based database was built, and Jackknife richness estimates and species accumulation curves were calculated. Fauna compositions were compared among Central-European states. As a result, an updated and annotated checklist for Hungary is provided, containing 58 species in 21 genera and 12 families. A total 66.8% of the total UTM 10 × 10 km squares in Hungary possess faunistic data for water bugs. The species number in grid cells numbered from 0 to 42, and their diversity patterns showed heterogeneity. The estimated species number of 58 is equal to the actual number of species known from the country. The asymptotic shape of the accumulative species curve predicts that additional sampling efforts will not increase the number of species currently known from Hungary. These results suggest that the number of species in the country was estimated correctly and that the species accumulation curve levels off at an asymptotic value. Thus a considerable increase in species richness is not expected in the future. Even with the species composition changing the chance of species turn-over does exist. Overall, 36.7% of the European water bug species were found in Hungary. The differences in faunal composition between Hungary and its surrounding countries were caused by the rare or unique species, whereas 33 species are common in the faunas of the eight countries. Species richness does show a correlation with latitude, and similar species compositions were observed in the countries along the same latitude. The species list and the UTM-based database are now up-to-date for Hungary, and it will provide a basis for future studies of distributional and biodiversity patterns, biogeography, relative abundance and frequency of occurrences important in community ecology, or the determination of conservation status. PMID:25987880
Wittmann, Florian; Marques, Márcia C. M.; Damasceno Júnior, Geraldo; Budke, Jean Carlos; Piedade, Maria T. F.; de Oliveira Wittmann, Astrid; Montero, Juan Carlos; de Assis, Rafael L.; Targhetta, Natália; Parolin, Pia; Junk, Wolfgang J.
2017-01-01
Wetlands harbor an important compliment of regional plant diversity, but in many regions data on wetland diversity and composition is still lacking, thus hindering our understanding of the processes that control it. While patterns of broad-scale terrestrial diversity and composition typically correlate with contemporary climate it is not clear to what extent patterns in wetlands are complimentary, or conflicting. To elucidate this, we consolidate data from wetland forest inventories in Brazil and examine patterns of diversity and composition along temperature and rainfall gradients spanning five biomes. We collated 196 floristic inventories covering an area >220 ha and including >260,000 woody individuals. We detected a total of 2,453 tree species, with the Amazon alone accounting for nearly half. Compositional patterns indicated differences in freshwater wetland floras among Brazilian biomes, although biomes with drier, more seasonal climates tended to have a larger proportion of more widely distributed species. Maximal alpha diversity increased with annual temperature, rainfall, and decreasing seasonality, patterns broadly consistent with upland vegetation communities. However, alpha diversity-climate relationships were only revealed at higher diversity values associated with the uppermost quantiles, and in most sites diversity varied irrespective of climate. Likewise, mean biome-level differences in alpha-diversity were unexpectedly modest, even in comparisons of savanna-area wetlands to those of nearby forested regions. We describe attenuated wetland climate-diversity relationships as a shifting balance of local and regional effects on species recruitment. Locally, excessive waterlogging strongly filters species able to colonize from regional pools. On the other hand, increased water availability can accommodate a rich community of drought-sensitive immigrant species that are able to track buffered wetland microclimates. We argue that environmental conditions in many wetlands are not homogeneous with respect to regional climate, and that responses of wetland tree communities to future climate change may lag behind that of non-wetland, terrestrial habitat. PMID:28394937
Klinger, Robert C.; Few, Alexandra P.; Knox, Kathleen A.; Hatfield, Brian E.; Clark, Jonathan; German, David W.; Stephenson, Thomas R.
2015-01-01
The association analyses indicated the potential for overlap between pack stock and SNBS was minimal; only 1 percent of the potential meadow area in the SNBS herd home ranges overlapped that of pack stock meadows. There were no systematic differences in overall vegetation structure or composition, or in diversity, cover, or composition of forage species, that indicated pack stock were altering SNBS habitat or affecting their nutrition. Variation in plant species composition was influenced primarily by random differences among meadows and environmental gradients, and there was little evidence that pack stock use contributed in meaningful ways to this variation. The few differences among meadows with different levels of use by bighorn sheep and pack stock either were minor or were not in a direction consistent with negative effects of pack stock on SNBS. We conclude that the current plan for managing pack stock grazing has been successful in minimizing significant negative effects on Sierra Nevada bighorn sheep at Sequoia and Kings Canyon National Parks.
Paillet, Yoan; Bergès, Laurent; Hjältén, Joakim; Odor, Péter; Avon, Catherine; Bernhardt-Römermann, Markus; Bijlsma, Rienk-Jan; De Bruyn, Luc; Fuhr, Marc; Grandin, Ulf; Kanka, Robert; Lundin, Lars; Luque, Sandra; Magura, Tibor; Matesanz, Silvia; Mészáros, Ilona; Sebastià, M-Teresa; Schmidt, Wolfgang; Standovár, Tibor; Tóthmérész, Béla; Uotila, Anneli; Valladares, Fernando; Vellak, Kai; Virtanen, Risto
2010-02-01
Past and present pressures on forest resources have led to a drastic decrease in the surface area of unmanaged forests in Europe. Changes in forest structure, composition, and dynamics inevitably lead to changes in the biodiversity of forest-dwelling species. The possible biodiversity gains and losses due to forest management (i.e., anthropogenic pressures related to direct forest resource use), however, have never been assessed at a pan-European scale. We used meta-analysis to review 49 published papers containing 120 individual comparisons of species richness between unmanaged and managed forests throughout Europe. We explored the response of different taxonomic groups and the variability of their response with respect to time since abandonment and intensity of forest management. Species richness was slightly higher in unmanaged than in managed forests. Species dependent on forest cover continuity, deadwood, and large trees (bryophytes, lichens, fungi, saproxylic beetles) and carabids were negatively affected by forest management. In contrast, vascular plant species were favored. The response for birds was heterogeneous and probably depended more on factors such as landscape patterns. The global difference in species richness between unmanaged and managed forests increased with time since abandonment and indicated a gradual recovery of biodiversity. Clearcut forests in which the composition of tree species changed had the strongest effect on species richness, but the effects of different types of management on taxa could not be assessed in a robust way because of low numbers of replications in the management-intensity classes. Our results show that some taxa are more affected by forestry than others, but there is a need for research into poorly studied species groups in Europe and in particular locations. Our meta-analysis supports the need for a coordinated European research network to study and monitor the biodiversity of different taxa in managed and unmanaged forests.
Ralston, Barbara; Cobb, Neil S.; Brantley, Sandra L.; Higgins, Jacob; Yackulic, Charles B.
2017-01-01
The disturbance history, plant species composition, productivity, and structural complexity of a site can exert bottom-up controls on arthropod diversity, abundance, and trophic structure. Regulation alters the hydrology and disturbance regimes of rivers and affects riparian habitats by changing plant quality parameters. Fifty years of regulation along the Colorado River downstream of Glen Canyon Dam has created a no-analog, postdam “lower” riparian zone close to the water's edge that includes tamarisk (Tamarix sp.), a nonnative riparian shrub. At the same time, the predam “upper” facultative riparian zone has persisted several meters above the current flood stage. In summer 2009, we used pitfall traps within these 2 riparian zones that differ in plant composition, productivity, and disturbance frequency to test for differences in arthropod community (Hymenoptera, Arachnida, and Coleoptera) structure. Arthropod community structure differed substantially between the 2 zones. Arthropod abundance and species richness was highest in the predam upper riparian zone, even though there was a greater amount of standing plant biomass in the postdam lower riparian zone. Omnivore abundance was proportionately greater in the upper riparian zone and was associated with lower estimated productivity values. Predators and detritivores were proportionately greater in the postdam lower riparian zone. In this case, river regulation may create habitats that support species of spiders and carabid beetles, but few other species that are exclusive to this zone. The combined richness found in both zones suggests a small increase in total richness and functional diversity for the Glen Canyon reach of the Colorado River.
Du, Hua-Dong; Jiao, Ju-Ying; Kou, Meng; Wang, Ning
2013-05-01
This paper studied the vegetation composition, bud composition, and the seasonal dynamics and vertical distribution pattern of bud bank in five erosion environments (sunny gully slope, sunny hilly slope, hilltop, shady hilly slope, and shady gully slope) on the hilly-gully Loess Plateau of North Shaanxi. In the study area, the perennial species with perennial bud bank accounted for 80.3% of the total species, while the annual species with seasonal bud bank took up 19.7% of the total. In vegetation turning-green season, there was a relatively large perennial bud bank stock on the sunny hilly-gully slope where serious erosion occurred, while seasonal bud bank showed a higher bud bank density in blossom and fruit-setting season on the hilltop and two shady slopes where soil erosion intensity was relatively gentle. The proportion of underground bud bank to total perennial bud bank in different erosion environments was relatively stable. On the land surface, the perennial bud bank stock was larger on the sunny slope where the soil disturbance often occurred, whereas the seasonal bud bank stock was larger on the shady slope and hilltop. Due to the different species composition of plant communities in different erosion environments, in addition to the disturbance of soil erosion and the seasonal plant regeneration, the seasonal dynamics and vertical distribution pattern of bud bank changed. It was suggested that bud bank played an important role in the vegetation regeneration after the disturbance of soil erosion on the hilly-gully Loess Plateau of North Shaanxi.
Susceptibility of Candida glabrata biofilms to echinocandins: alterations in the matrix composition.
Rodrigues, Célia F; Rodrigues, Maria Elisa; Henriques, Mariana
2018-05-25
Candidiases are the most recurrent fungal infections, especially among immunosuppressed patients. Although Candida albicans is still the most widespread isolated species, non-Candida albicans Candida species have been increasing. The goal of this work was to determine the susceptibility of C. glabrata biofilms to echinocandins and to evaluate their effect on the biofilm matrix composition, comparing the results with other Candida species. Drug susceptibilities were assessed through the determination of minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC) and minimum biofilm eradication concentration (MBEC) of caspofungin (Csf) and micafugin (Mcf). The β-1,3 glucans content of the matrices was assessed after contact with the drugs. The data suggest that, generally, after contact with echinocandins, the concentration of β-1,3 glucans increased. These adjustments in the matrix composition of C. glabrata biofilms and the chemical differences between Csf and Mcf, seem responsible and may determine the effectivity of the drug responses.
2010-01-01
Background Larval mosquito habitats of potential malaria vectors and related species of Anopheles from three provinces (Gyeonggi, Gyeongsangbuk, Chungcheongbuk Provinces) of the Republic of Korea were surveyed in 2007. This study aimed to determine the species composition, seasonal occurrence and distributions of Anopheles mosquitoes. Satellite derived normalized difference vegetation index data (NDVI) was also used to study the seasonal abundance patterns of Anopheles mosquitoes. Methods Mosquito larvae from various habitats were collected using a standard larval dipper or a white plastic larval tray, placed in plastic bags, and were preserved in 100% ethyl alcohol for species identification by PCR and DNA sequencing. The habitats in the monthly larval surveys included artificial containers, ground depressions, irrigation ditches, drainage ditches, ground pools, ponds, rice paddies, stream margins, inlets and pools, swamps, and uncultivated fields. All field-collected specimens were identified to species, and relationships among habitats and locations based on species composition were determined using cluster statistical analysis. Results In about 10,000 specimens collected, eight species of Anopheles belonging to three groups were identified: Hyrcanus Group - Anopheles sinensis, Anopheles kleini, Anopheles belenrae, Anopheles pullus, Anopheles lesteri, Anopheles sineroides; Barbirostris Group - Anopheles koreicus; and Lindesayi Group - Anopheles lindesayi japonicus. Only An. sinensis was collected from all habitats groups, while An. kleini, An. pullus and An. sineroides were sampled from all, except artificial containers. The highest number of Anopheles larvae was found in the rice paddies (34.8%), followed by irrigation ditches (23.4%), ponds (17.0%), and stream margins, inlets and pools (12.0%). Anopheles sinensis was the dominant species, followed by An. kleini, An. pullus and An. sineroides. The monthly abundance data of the Anopheles species from three locations (Munsan, Jinbo and Hayang) were compared against NDVI and NDVI anomalies. Conclusion The species composition of Anopheles larvae varied in different habitats at various locations. Anopheles populations fluctuated with the seasonal dynamics of vegetation for 2007. Multi-year data of mosquito collections are required to provide a better characterization of the abundance of these insects from year to year, which can potentially provide predictive capability of their population density based on remotely sensed ecological measurements. PMID:20163728
Monchamp, Marie-Eve; Pick, Frances R.; Beisner, Beatrix E.; Maranger, Roxane
2014-01-01
The eutrophication of freshwaters is a global health concern as lakes with excess nutrients are often subject to toxic cyanobacterial blooms. Although phosphorus is considered the main element regulating cyanobacterial biomass, nitrogen (N) concentration and more specifically the availability of different N forms may influence the overall toxicity of blooms. In this study of three eutrophic lakes prone to cyanobacterial blooms, we examined the effects of nitrogen species and concentrations and other environmental factors in influencing cyanobacterial community structure, microcystin (MC) concentrations and MC congener composition. The identification of specific MC congeners was of particular interest as they vary widely in toxicity. Different nitrogen forms appeared to influence cyanobacterial community structure leading to corresponding effects on MC concentrations and composition. Total MC concentrations across the lakes were largely explained by a combination of abiotic factors: dissolved organic nitrogen, water temperature and ammonium, but Microcystis spp. biomass was overall the best predictor of MC concentrations. Environmental factors did not appear to affect MC congener composition directly but there were significant associations between specific MC congeners and particular species. Based on redundancy analyses (RDA), the relative biomass of Microcystis aeruginosa was associated with MC-RR, M. wesenbergii with MC-LA and Aphanizomenon flos-aquae with MC-YR. The latter two species are not generally considered capable of MC production. Total nitrogen, water temperature, ammonium and dissolved organic nitrogen influenced the cyanobacterial community structure, which in turn resulted in differences in the dominant MC congener and the overall toxicity. PMID:24427318
Gut microbiota may predict host divergence time during Glires evolution.
Li, Huan; Qu, Jiapeng; Li, Tongtong; Yao, Minjie; Li, Jiaying; Li, Xiangzhen
2017-03-01
The gut microbial communities of animals play key roles in host evolution. However, the possible relationship between gut microbiota and host divergence time remains unknown. Here, we investigated the gut microbiota of eight Glires species (four lagomorph species and four rodent species) distributed throughout the Qinghai-Tibet plateau and Inner Mongolia grassland. Lagomorphs and rodents had distinct gut microbial compositions. Three out of four lagomorph species were dominated by Firmicutes, while rodents were dominated by Bacteroidetes in general. The alpha diversity values (Shannon diversity and evenness) exhibited significant differences between any two species within the lagomorphs, whereas there were no significant differences among rodents. The structure of the gut microbiota showed significant differences between lagomorphs and rodents. In addition, we calculated host phylogeny and divergence times, and used a phylogenetic approach to reconstruct how the animal gut microbiota has diverged from their ancestral species. Some core bacterial genera (e.g. Prevotella and Clostridium) shared by more than nine-tenths of all the Glires individuals associated with plant polysaccharide degradation showed marked changes within lagomorphs. Differences in Glires gut microbiota (based on weighted UniFrac and Bray-Curtis dissimilarity metrics) were positively correlated with host divergence time. Our results thus suggest the gut microbial composition is associated with host phylogeny, and further suggest that dissimilarity of animal gut microbiota may predict host divergence time. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Cytophotometric and biochemical analyses of DNA in pentaploid and diploid Agave species.
Cavallini, A; Natali, L; Cionini, G; Castorena-Sanchez, I
1996-04-01
Nuclear DNA content, chromatin structure, and DNA composition were investigated in four Agave species: two diploid, Agave tequilana Weber and Agave angustifolia Haworth var. marginata Hort., and two pentaploid, Agave fourcroydes Lemaire and Agave sisalana Perrine. It was determined that the genome size of pentaploid species is nearly 2.5 times that of diploid ones. Cytophotometric analyses of chromatin structure were performed following Feulgen or DAPI staining to determine optical density profiles of interphase nuclei. Pentaploid species showed higher frequencies of condensed chromatin (heterochromatin) than diploid species. On the other hand, a lower frequency of A-T rich (DAPI stained) heterochromatin was found in pentaploid species than in diploid ones, indicating that heterochromatin in pentaploid species is made up of sequences with base compositions different from those of diploid species. Since thermal denaturation profiles of extracted DNA showed minor variations in the base composition of the genomes of the four species, it is supposed that, in pentaploid species, the large heterochromatin content is not due to an overrepresentation of G-C repetitive sequences but rather to the condensation of nonrepetitive sequences, such as, for example, redundant gene copies switched off in the polyploid complement. It is suggested that speciation in the genus Agave occurs through point mutations and minor DNA rearrangements, as is also indicated by the relative stability of the karyotype of this genus. Key words : Agave, DNA cytophotometry, DNA melting profiles, chromatin structure, genome size.
Benthic and Plankton Foraminifers in Hydrothermally Active Zones of the Mid-Atlantic Ridge (MAR)
NASA Astrophysics Data System (ADS)
Khusid, T. A.; Os'kina, N. S.; Lukashina, N. P.; Gablina, I. F.; Libina, N. V.; Matul, A. G.
2018-01-01
Comparison of benthic foraminiferal assemblages from the core obtained within the Peterburgskoe ore field (Mid-Atlantic Ridge) and from the core taken five kilometers away from the ore field revealed evident differences in their composition, in the appearance of their shells, and also in the benthic-plankton species ratio. It was noted that the foraminiferal assemblage from the ore-bearing sediments of the Petersburg field was characterized by a higher relative content of benthic species and a large number of chemically altered and broken shells. The first occurrence of the species Osangularia umbonifera, which is able to exist in lowoxygen and CaCO3-undersaturated bottom waters at the boundary of biogenic sediments surrounding the ore field and in the ore-bearing sediments, was established. In the core section sampled beyond the ore field, the composition of foraminiferal assemblages differs insignificantly from typical oceanic ones.
Rochlin, I.; Ginsberg, H.S.; Campbell, S.R.
2009-01-01
Culex species were monitored at three proximate sites with historically different West Nile virus (WNV) activities. The site with human WNV transmission (epidemic) had the lowest abundance of the putative bridge vectors, Culex pipiens and Cx. salinarius. The site with horse cases but not human cases (epizootic) had the highest percent composition of Cx. salinarius, whereas the site with WNV-positive birds only (enzootic) had the highest Cx. pipiens abundance and percent composition. A total of 29 WNV-positive Culex pools were collected at the enzootic site, 17 at the epidemic site, and 14 at the epizootic site. Published models of human risk using Cx. pipiens and Cx. salinarius as the primary bridge vectors did not explain WNV activity at our sites. Other variables, such as additional vector species, environmental components, and socioeconomic factors, need to be examined to explain the observed patterns of WNV epidemic activity.
NASA Astrophysics Data System (ADS)
Wemheuer, Franziska; Kaiser, Kristin; Karlovsky, Petr; Daniel, Rolf; Vidal, Stefan; Wemheuer, Bernd
2017-01-01
Endophytic bacteria are critical for plant growth and health. However, compositional and functional responses of bacterial endophyte communities towards agricultural practices are still poorly understood. Hence, we analyzed the influence of fertilizer application and mowing frequency on bacterial endophytes in three agriculturally important grass species. For this purpose, we examined bacterial endophytic communities in aerial plant parts of Dactylis glomerata L., Festuca rubra L., and Lolium perenne L. by pyrotag sequencing of bacterial 16S rRNA genes over two consecutive years. Although management regimes influenced endophyte communities, observed responses were grass species-specific. This might be attributed to several bacteria specifically associated with a single grass species. We further predicted functional profiles from obtained 16S rRNA data. These profiles revealed that predicted abundances of genes involved in plant growth promotion or nitrogen metabolism differed between grass species and between management regimes. Moreover, structural and functional community patterns showed no correlation to each other indicating that plant species-specific selection of endophytes is driven by functional rather than phylogenetic traits. The unique combination of 16S rRNA data and functional profiles provided a holistic picture of compositional and functional responses of bacterial endophytes in agricultural relevant grass species towards management practices.
Reversal in the relationship between species richness and turnover in a phytoplankton community.
Matthews, Blake; Pomati, Francesco
2012-11-01
Negative relationships between species richness and the rate of compositional turnover are common, suggesting that diverse communities have greater stability than depauperate ones; however, the mechanistic basis for this pattern is still widely debated. Species richness and turnover can covary either because they are mechanistically linked or because they share common environmental drivers. Few empirical studies have combined long-term changes in community composition with multiple drivers of environmental change, and so little is known about how the underlying mechanisms of species coexistence interact with changes in the mean and variability of environmental conditions. Here, we use a 33 year long time series (1976-2008) of phytoplankton community composition from Lake Zurich, to examine how environmental variation influences the relationship between richness and annual turnover. We find that the relationship between richness and annual turnover reverses midway through the time series (1992-1993), leading to a hump-shaped relationship between species richness and annual turnover. Using structural equation modeling we show that annual turnover and diversity are independently associated with different drivers of environmental change. Furthermore, we find that the observed annual sequences of community assembly give rise to rates of species accumulation that are more heterogeneous through time than expected by chance, likely owing to a high proportion of species showing significant autocorrelation and to strong positive covariation in the occurrences of species.
Dauber, Jens; Bengtsson, Jan; Lenoir, Lisette
2006-08-01
Seminatural grasslands in Europe are susceptible to habitat destruction and fragmentation that result in negative effects on biodiversity because of increased isolation and area effects on extinction rate. However even small habitatpatches of seminatural grasslands might be of value for conservation and restoration of species richness in a landscape with a long history of management, which has been argued to lead to high species richness. We tested whether ant communities have been negatively affected by habitat loss and increased isolation of seminatural grasslands during the twentieth century. We examined species richness and community composition in seminatural grasslands of different size in a mosaic landscape in Central Sweden. Grasslands managed continuously over centuries harbored species-rich and ecologically diverse ant communities. Grassland remnant size had no effect on ant species richness. Small grassland remnants did not harbor a nested subset of the ant species of larger habitats. Community composition of ants was mainly affected by habitat conditions. Our results suggest that the abandonment of traditional land use and the encroachment of trees, rather than the effects of fragmentation, are important for species composition in seminatural grasslands. Our results highlight the importance of considering land-use continuity and dispersal ability of thefocal organisms when examining the effects of habitat loss and fragmentation on biodiversity. Landscape history should be considered in conservation programs focusing on effects of land-use change.
Borchhardt, Nadine; Baum, Christel; Mikhailyuk, Tatiana; Karsten, Ulf
2017-01-01
In the present study the biodiversity of biological soil crusts (BSCs) formed by phototrophic organisms were investigated on Arctic Svalbard (Norway). These communities exert several important ecological functions and constitute a significant part of vegetation at high latitudes. Non-diatom eukaryotic microalgal species of BSCs from 20 sampling stations around Ny-Ålesund and Longyearbyen were identified by morphology using light microscopy, and the results revealed a high species richness with 102 species in total. 67 taxa belonged to Chlorophyta (31 Chlorophyceae and 36 Trebouxiophyceae), 13 species were Streptophyta (11 Klebsormidiophyceae and two Zygnematophyceae) and 22 species were Ochrophyta (two Eustigmatophyceae and 20 Xanthophyceae). Surprisingly, Klebsormidium strains belonging to clade G (Streptophyta), which were so far described from Southern Africa, could be determined at 5 sampling stations. Furthermore, comparative analyses of Arctic and Antarctic BSCs were undertaken to outline differences in species composition. In addition, a pedological analysis of BSC samples included C, N, S, TP (total phosphorus), and pH measurements to investigate the influence of soil properties on species composition. No significant correlation with these chemical soil parameters was confirmed but the results indicated that pH might affect the BSCs. In addition, a statistically significant influence of precipitation on species composition was determined. Consequently, water availability was identified as one key driver for BSC biodiversity in Arctic regions.
Kelly, Emily L A; Eynaud, Yoan; Clements, Samantha M; Gleason, Molly; Sparks, Russell T; Williams, Ivor D; Smith, Jennifer E
2016-12-01
Patterns of species resource use provide insight into the functional roles of species and thus their ecological significance within a community. The functional role of herbivorous fishes on coral reefs has been defined through a variety of methods, but from a grazing perspective, less is known about the species-specific preferences of herbivores on different groups of reef algae and the extent of dietary overlap across an herbivore community. Here, we quantified patterns of redundancy and complementarity in a highly diverse community of herbivores at a reef on Maui, Hawaii, USA. First, we tracked fish foraging behavior in situ to record bite rate and type of substrate bitten. Second, we examined gut contents of select herbivorous fishes to determine consumption at a finer scale. Finally, we placed foraging behavior in the context of resource availability to determine how fish selected substrate type. All species predominantly (73-100 %) foraged on turf algae, though there were differences among the types of macroalgae and other substrates bitten. Increased resolution via gut content analysis showed the composition of turf algae consumed by fishes differed across herbivore species. Consideration of foraging behavior by substrate availability revealed 50 % of herbivores selected for turf as opposed to other substrate types, but overall, there were variable foraging portfolios across all species. Through these three methods of investigation, we found higher complementarity among herbivorous fishes than would be revealed using a single metric. These results suggest differences across species in the herbivore "rain of bites" that graze and shape benthic community composition.
HPLC pigment profiles of 31 harmful algal bloom species isolated from the coastal sea areas of China
NASA Astrophysics Data System (ADS)
Liu, Shuxia; Yao, Peng; Yu, Zhigang; Li, Dong; Deng, Chunmei; Zhen, Yu
2014-12-01
Chemotaxonomy based on diagnostic pigments is now a routine tool for macroscopic determination of the composition and abundance of phytoplankton in various aquatic environments. Since the taxonomic capability of this method depends on the relationships between diagnostic pigments and chlorophyll a of classified groups, it is critical to calibrate it by using pigment relationships obtained from representative and/or dominant species local to targeted investigation area. In this study, pigment profiles of 31 harmful algal bloom (HAB) species isolated from the coastal sea areas of China were analyzed with high performance liquid chromatography (HPLC). Pigment compositions, cellular pigment densities and ratios of pigments to chlorophyll a were determined and calculated. Among all these species, 25 kinds of pigments were detected, of which fucoxanthin, peridinin, 19'-butanoyloxyfucoxanthin, 19'-hexanoyloxyfucoxanthin, violaxanthin, and antheraxanthin were diagnostic pigments. Cellular pigment density was basically independent of species and environmental conditions, and therefore was recommended as a bridge to compare the results of HPLC-CHEMTAX technique with the traditional microscopy method. Pigment ratios of algal species isolated from the coast of China, especially the diagnostic pigment ratios, were higher than those from other locations. According to these results, pigment ratio ranges of four classes of phytoplankton common off the coast of China were summarized for using in the current chemotaxonomic method. Moreover, the differences of pigments ratios among different species under the same culturing conditions were consistent with their biological differences. Such differences have the potential to be used to classify the phytoplankton below class, which is meaningful for monitoring HABs by HPLC-CHEMTAX.
Gallinger, Jannicke; Gross, Jürgen
2018-01-01
Plant sap feeding insects like psyllids are known to be vectors of phloem dwelling bacteria (‘Candidatus Phytoplasma’ and ‘Ca. Liberibacter’), plant pathogens which cause severe diseases and economically important crop damage. Some univoltine psyllid species have a particular life cycle, within one generation they alternate two times between different host plant species. The plum psyllid Cacopsylla pruni, the vector of European Stone Fruit Yellows (ESFY), one of the most serious pests in European fruit production, migrates to stone fruit orchards (Prunus spp.) for mating and oviposition in early spring. The young adults of the new generation leave the Prunus trees in summer and emigrate to their overwintering hosts like spruce and other conifers. Very little is known about the factors responsible for the regulation of migration, reasons for host alternation, and the behavior of psyllids during their phase of life on conifers. Because insect feeding behavior and host acceptance is driven by different biotic factors, such as olfactory and gustatory cues as well as mechanical barriers, we carried out electrical penetration graph (EPG) recordings and survival bioassays with C. pruni on different conifer species as potential overwintering hosts and analyzed the chemical composition of the respective plant saps. We are the first to show that migrating psyllids do feed on overwintering hosts and that nymphs are able to ingest phloem and xylem sap of coniferous trees, but cannot develop on conifer diet. Analyses of plant saps reveal qualitative differences in the chemical composition between coniferous trees and Prunus as well as within conifer species. These differences are discussed with regard to nutritional needs of psyllid nymphs for proper development, overwintering needs of adults and restriction of ‘Ca. P. prunorum’ to Prunus phloem. PMID:29706983
NASA Astrophysics Data System (ADS)
Fay, P. A.; Jin, V.; Jackson, R. B.; Gill, R. A.; Way, D.; Polley, W.
2011-12-01
Climate change is likely to cause nonlinear responses in ecosystem function and threshold changes in species composition. Here we report aboveground net primary productivity (ANPP) responses to a continuous CO2 concentration gradient (250 to 500 μL L-1,) in experimental grassland communities on three soils differing in water holding capacity and other properties. Communities consisting of four C4 grasses, two C3 forbs, and one legume were established on a lowland clay (vertisol, n=32), an upland clay (mollisol, n=32), and an alluvial sand (alfisol, n=16). The communities were positioned in a stratified random design in the CO2 gradient for five growing seasons, and were irrigated to mimic the average growing season rainfall regime for the study site in Central Texas. ANPP increased with CO2 almost two-fold more on the upland clay and alluvial sand than on the lowland clay (p < 0.0001), because of strong linear responses to CO2 on these soils (R2 = 0.50 to 0.59, p < 0.002) compared to a saturating response to CO2 on the lowland clay (R2 = 0.48, p= 0.01). On the two more responsive soils, the mesic tallgrass Sorghastrum nutans replaced the more drought adapted mid-grass Bouteloua curtipendula at elevated CO2, while B. curtipendula largely replaced S. nutans at low CO2, especially on the upland clay. Evidence for a similar composition change was not found on the lowland clay. Thus, two soils displayed a threshold change in community composition that accounted for up to 57% of variation in ANPP for those soils. Variation in ANPP and species composition with CO2 were accompanied by linear increases in soil water content (SWC, 0 - 20 cm, volumetric), most strongly on the alluvial sand (R2 = 0.39, p < 0.009) and by weak decreases with CO2 in soil N. Structural equation models explained 34 to 52% of the variation in ANPP, and indicated that CO2 effects on ANPP on the upland clay were primarily explained by CO2 effects on species composition, and on the alluvial sand by CO2 effects on SWC. Responses to elevated CO2 in SWC, ANPP, and species composition were explained by reduced stomatal conductance and increased photosynthetic water use efficiency (WUE) in both grasses. In addition, S. nutans gained more in WUE at elevated CO2 than B. curtipendula, while B. curtipendula at elevated CO2 had lower light saturated photosynthetic capacity, quantum use efficiency, and dark respiration than S. nutans. Thus, at elevated CO2, shading by the taller S. nutans likely lowered B. curtipendula carbon assimilation and growth. We conclude that elevated CO2 strongly increased ANPP on upland clay and alluvial sand soils where there were also gains in soil moisture and threshold changes in species composition driven by physiological differences in the two dominant grass species. As a result, CO2 effects on ANPP will likely differ with soil type across the landscape.
Changes in Cell Wall Polysaccharides Associated With Growth 1
Nevins, Donald J.; English, Patricia D.; Albersheim, Peter
1968-01-01
Changes in the polysaccharide composition of Phaseolus vulgaris, P. aureus, and Zea mays cell walls were studied during the first 28 days of seedling development using a gas chromatographic method for the analysis of neutral sugars. Acid hydrolysis of cell wall material from young tissues liberates rhamnose, fucose, arabinose, xylose, mannose, galactose, and glucose which collectively can account for as much as 70% of the dry weight of the wall. Mature walls in fully expanded tissues of these same plants contain less of these constituents (10%-20% of dry wt). Gross differences are observed between developmental patterns of the cell wall in the various parts of a seedling, such as root, stem, and leaf. The general patterns of wall polysaccharide composition change, however, are similar for analogous organs among the varieties of a species. Small but significant differences in the rates of change in sugar composition were detected between varieties of the same species which exhibited different growth patterns. The cell walls of species which are further removed phylogenetically exhibit even more dissimilar developmental patterns. The results demonstrate the dynamic nature of the cell wall during growth as well as the quantitative and qualitative exactness with which the biosynthesis of plant cell walls is regulated. PMID:16656862
Vermerris, W; Boon, J J
2001-02-01
Despite recent progress, several aspects of lignin biosynthesis, including variation in lignin composition between species and between tissues within a given species, are still poorly understood. The analysis of mutants affected in cell wall biosynthesis may help increase the understanding of these processes. We have analyzed the maize brown midrib2 (bm2) mutant, one of the four bm mutants of maize, using pyrolysis-mass spectrometry (Py-MS) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). Vascular tissues from the leaf blade and leaf sheath from different parts of the plant were investigated and compared to the corresponding samples from a wild-type plant of the same genetic background (inbred line A619). Multivariate analysis revealed that the bm2 mutant had reduced amounts of di- and trimeric lignin derivatives, notably species with m/z 272 and m/z 330, and that the ratio of guaiacyl residues to polysaccharides was reduced in the bm2 mutant. In addition, differences in cell wall composition between different parts of the plant (blade versus sheath, young versus old tissue) were much less pronounced in the bm2 mutant. These changes suggest that the functional Bm2 gene is important for the establishment of tissue-specific cell wall composition.
Sanou, Lassina; Zida, Didier; Savadogo, Patrice; Thiombiano, Adjima
2018-06-11
Grazing removes a plant's aboveground vegetative and reproductive tissues and can modify the soil seed bank, potentially impacting the restoration of preferred species. Knowledge about aboveground vegetation and species composition of soil seed bank and the processes that contribute to vegetation recovery on and surrounding watering points subjected to grazing is lacking. Successful restoration strategies hinge on addressing these knowledge gaps. We assessed the effects of livestock grazing on aboveground vegetation and soil seed bank characteristics along a river bank and surrounding areas subject to different grazing intensities and draw implications for restoration. Plots (50 × 50 m) were established along five transects representing differing levels of grazing intensity. Soil samples were taken from three layers within each plot to determine soil properties and species composition of soil seed bank using the seedling emergence method. Heavy grazing resulted in the disappearance of perennial grasses, a reduction in species diversity and a decrease in soil nutrients with increased soil depth. Overall, the similarity between the extant aboveground vegetation and flora within the soil seed bank was low. The soil seed bank was dominated by herbaceous species and two woody species, suggesting that many woody species are not accumulating in the soil. With increasing soil depth, the seed density and richness declined. Canonical correspondence analyses (CCAs) showed that emerged seedlings from the soil seed bank were significantly influenced by soil carbon, organic matter, total nitrogen, total potassium and soil cation exchange capacity. This finding suggests that current grazing practices have a negative impact on the vegetation surrounding watering points; hence there is a need for improved grazing management strategies and vegetation restoration in these areas. The soil seed bank alone cannot restore degraded river banks; active transfer of propagules from adjacent undisturbed forest areas is essential.
Moss, C W; Wallace, P L; Hollis, D G; Weaver, R E
1988-03-01
We determined phenotypic characteristics, cellular fatty acid composition, and isoprenoid quinone content of representative strains of CDC groups EO-2, M-5, and M-6, Moraxella (Moraxella) species, Oligella urethralis, Acinetobacter species, and Psychrobacter immobilis. All organisms contained ubiquinone with eight isoprene units as the major isoprenolog, but distinct differences were observed in fatty acid composition. Twenty-eight of the original collection of CDC group EO-2 strains were further identified as P. immobilis, EO-2, or EO-3 by distinctive cellular fatty acid profiles, cellular morphology, and pigment production. The cellular fatty acid compositions of M-5 and M-6 were similar but were clearly different from those of other organisms. The genus Acinetobacter was differentiated from other organisms in the study by small amounts of 2-hydroxydodecanoic acid (2-OH-12:0), and P. immobilis was differentiated by small amounts of decanoic acid (10:0) and a branched-chain 17-carbon acid (i-17:0). All Moraxella species were distinguished by small amounts of decanoic acid (10:0) and the absence of i-17:0. M. bovis, M. nonliquefaciens, and some strains of M. lacunata formed a single fatty acid group, while M. osloensis, M. phenylpyruvica, M. atlantae, and other strains of M. lacunata (M. lacunata II) had species-specific fatty acid profiles. O. urethralis differed from Moraxella species by the presence of large amounts (49%) of cis-vaccenic acid (18:1 omega 7c), small amounts (1%) of 3-hydroxyhexadecanoate (3-OH-16:0), and the absence of 10:0 and 3-hydroxydodecanoate (3-OH-12:0). The combined use of chemical data and a small number of conventional tests permitted rapid identification and differentiation of these organisms from each other and from related organisms.
Moss, C W; Wallace, P L; Hollis, D G; Weaver, R E
1988-01-01
We determined phenotypic characteristics, cellular fatty acid composition, and isoprenoid quinone content of representative strains of CDC groups EO-2, M-5, and M-6, Moraxella (Moraxella) species, Oligella urethralis, Acinetobacter species, and Psychrobacter immobilis. All organisms contained ubiquinone with eight isoprene units as the major isoprenolog, but distinct differences were observed in fatty acid composition. Twenty-eight of the original collection of CDC group EO-2 strains were further identified as P. immobilis, EO-2, or EO-3 by distinctive cellular fatty acid profiles, cellular morphology, and pigment production. The cellular fatty acid compositions of M-5 and M-6 were similar but were clearly different from those of other organisms. The genus Acinetobacter was differentiated from other organisms in the study by small amounts of 2-hydroxydodecanoic acid (2-OH-12:0), and P. immobilis was differentiated by small amounts of decanoic acid (10:0) and a branched-chain 17-carbon acid (i-17:0). All Moraxella species were distinguished by small amounts of decanoic acid (10:0) and the absence of i-17:0. M. bovis, M. nonliquefaciens, and some strains of M. lacunata formed a single fatty acid group, while M. osloensis, M. phenylpyruvica, M. atlantae, and other strains of M. lacunata (M. lacunata II) had species-specific fatty acid profiles. O. urethralis differed from Moraxella species by the presence of large amounts (49%) of cis-vaccenic acid (18:1 omega 7c), small amounts (1%) of 3-hydroxyhexadecanoate (3-OH-16:0), and the absence of 10:0 and 3-hydroxydodecanoate (3-OH-12:0). The combined use of chemical data and a small number of conventional tests permitted rapid identification and differentiation of these organisms from each other and from related organisms. Images PMID:3356788
Nutrient-mediated architectural plasticity of a predatory trap.
Blamires, Sean J; Tso, I-Min
2013-01-01
Nutrients such as protein may be actively sought by foraging animals. Many predators exhibit foraging plasticity, but how their foraging strategies are affected when faced with nutrient deprivation is largely unknown. In spiders, the assimilation of protein into silk may be in conflict with somatic processes so we predicted web building to be affected under protein depletion. To assess the influence of protein intake on foraging plasticity we fed the orb-web spiders Argiope aemula and Cyclosa mulmeinensis high, low or no protein solutions over 10 days and allowed them to build webs. We compared post-feeding web architectural components and major ampullate (MA) silk amino acid compositions. We found that the number of radii in webs increased in both species when fed high protein solutions. Mesh size increased in A. aemula when fed a high protein solution. MA silk proline and alanine compositions varied in each species with contrasting variations in alanine between the two species. Glycine compositions only varied in C. mulmeinensis silk. No spiders significantly lost or gained mass on any feeding treatment, so they did not sacrifice somatic maintenance for amino acid investment in silk. Our results show that the amount of protein taken in significantly affects the foraging decisions of trap-building predators, such as orb web spiders. Nevertheless, the subtle differences found between species in the association between protein intake, the amino acids invested in silk and web architectural plasticity show that the influence of protein deprivation on specific foraging strategies differs among different spiders.
NASA Technical Reports Server (NTRS)
Ustin, Susan L.; Sanderson, Eric W.; Grossman, Yaffa; Hart, Quinn J.
1993-01-01
Advances in imaging spectroscopy have indicated that remotely sensed reflectance measurements of the plant canopy may be used to identify and qualify some classes of canopy biochemicals; however, the manner in which differences in biochemical compositions translate into differences is not well understood. Most frequently, multiple linear regression routines have been used to correlate narrow band reflectance values with measured biochemical concentrations. Although some success has been achieved with such methods for given data sets, the bands selected by multiple regression are not consistent between data sets, nor is it always clear what physical or biological basis underlies the correlation. To examine the relationship between biochemical concentration and leaf reflectance signal we chose to focus on the visible spectrum where the primary biochemical absorbances are due to photosynthetic pigments. Pigments provide a range of absorbance features, occur over a range of concentrations in natural samples, and are ecophysiologically important. Concentrations of chlorophyll, for example, have been strongly correlated to foliar nitrogen levels within a species and to photosynthetic capacity across many species. In addition pigments effectively absorb most of the photosynthetically active radiation between 400-700 nm, a spectral region for which silicon detectors have good signal/noise characteristics. Our strategy has been to sample a variety of naturally occurring species to measure leaf reflectance and pigment compositions. We hope to extend our understanding of pigment reflectance effects to interpret small overlapping absorbances of other biochemicals in the infrared region. For this reason, selected samples were also tested to determine total nitrogen, crude protein, cellulose, and lignin levels. Leaf reflectance spectra measured with AVIRIS bandwidths and wavelengths were compared between species and within species and for differences between seasons, for changes in the the shape of the spectra. We attempt to statistically correlate these shape changes with differences in pigment compositions. In parallel with our comparisons of pigment composition and leaf reflectance, we have modified the PROSPECT leaf reflectance model to test the contributions of pigments or pigment group concentrations. PROSPECT considers a leaf as a multi-layer dielectric plane with an uneven surface. Jacquemoud adapted the basic analysis of Allen for surface effects, a leaf thickness factor, and the absorption of water and chlorophyll (actually all pigments) and the plant matrix. Our modifications to PROSPECT in the forward direction include breaking out the pigment concentration parameter into separate components for chlorophyll a and b and a number of xanthophylls and carotenes, and introducing a shift and convolution function to model the spread and shift from their in vitro measurements to their in vivo state. Further, we have considered how the matrix elements (i.e., all biochemicals and structural effects not modeled explicity) vary with species.
Mangudo, C; Aparicio, J P; Rossi, G C; Gleiser, R M
2018-04-01
Water-holding tree holes are main larval habitats for many pathogen vectors, especially mosquitoes (Diptera: Culicidae). Along 3 years, the diversity and composition of mosquito species in tree holes of two neighbouring but completely different environments, a city and its adjacent forest, were compared using generalized linear mixed models, PERMANOVA, SIMPER and species association indexes. The city area (Northwest Argentina) is highly relevant epidemiologically due to the presence of Aedes aegypti L. (main dengue vector) and occurrence of dengue outbreaks; the Yungas rainforests are highly biologically diverse. In total seven mosquito species were recorded, in descending order of abundance: Ae. aegypti, Haemagogus spegazzinii Brèthes, Sabethes purpureus (Theobald), Toxorhynchites guadeloupensis Dyar and Knab, Aedes terrens Walker, Haemagogus leucocelaenus Dyar & Shannon and Sabethes petrocchiae (Shannon and Del Ponte). The seven mosquito species were recorded in both city sites and forested areas; however, their mosquito communities significantly diverged because of marked differences in the frequency and relative abundance of some species: Tx. guadeloupensis and Ae. aegypti were significantly more abundant in forest and urban areas, respectively. Positive significant associations were detected between Ae. aegypti, Hg. spegazzinii and Hg. leucocelaenus. The combined presence of Ae. aegypti, Haemagogus and Sabethes in the area also highlight a potential risk of yellow fever epidemics. Overall results show an impoverished tree hole mosquito fauna in urban environments, reflecting negative effects of urbanization on mosquito diversity.
Cisneros, Laura M; Fagan, Matthew E; Willig, Michael R
2016-01-01
Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities have been implemented to determine the relative importance of particular environmental (or niche-based) mechanisms. Nonetheless, few studies have integrated these quantitative approaches to comprehensively assess the relative importance of particular structuring processes. We employed a novel variation partitioning approach to evaluate the relative importance of particular spatial and environmental drivers of taxonomic, functional, and phylogenetic aspects of bat communities in a human-modified landscape in Costa Rica. Specifically, we estimated the amount of variation in species composition (taxonomic structure) and in two aspects of functional and phylogenetic structure (i.e., composition and dispersion) along a forest loss and fragmentation gradient that are uniquely explained by landscape characteristics (i.e., environment) or space to assess the importance of competing mechanisms. The unique effects of space on taxonomic, functional and phylogenetic structure were consistently small. In contrast, landscape characteristics (i.e., environment) played an appreciable role in structuring bat communities. Spatially-structured landscape characteristics explained 84% of the variation in functional or phylogenetic dispersion, and the unique effects of landscape characteristics significantly explained 14% of the variation in species composition. Furthermore, variation in bat community structure was primarily due to differences in dispersion of species within functional or phylogenetic space along the gradient, rather than due to differences in functional or phylogenetic composition. Variation among bat communities was related to environmental mechanisms, especially niche-based (i.e., environmental) processes, rather than spatial mechanisms. High variation in functional or phylogenetic dispersion, as opposed to functional or phylogenetic composition, suggests that loss or gain of niche space is driving the progressive loss or gain of species with particular traits from communities along the human-modified gradient. Thus, environmental characteristics associated with landscape structure influence functional or phylogenetic aspects of bat communities by effectively altering the ways in which species partition niche space.
Fagan, Matthew E.; Willig, Michael R.
2016-01-01
Background Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities have been implemented to determine the relative importance of particular environmental (or niche-based) mechanisms. Nonetheless, few studies have integrated these quantitative approaches to comprehensively assess the relative importance of particular structuring processes. Methods We employed a novel variation partitioning approach to evaluate the relative importance of particular spatial and environmental drivers of taxonomic, functional, and phylogenetic aspects of bat communities in a human-modified landscape in Costa Rica. Specifically, we estimated the amount of variation in species composition (taxonomic structure) and in two aspects of functional and phylogenetic structure (i.e., composition and dispersion) along a forest loss and fragmentation gradient that are uniquely explained by landscape characteristics (i.e., environment) or space to assess the importance of competing mechanisms. Results The unique effects of space on taxonomic, functional and phylogenetic structure were consistently small. In contrast, landscape characteristics (i.e., environment) played an appreciable role in structuring bat communities. Spatially-structured landscape characteristics explained 84% of the variation in functional or phylogenetic dispersion, and the unique effects of landscape characteristics significantly explained 14% of the variation in species composition. Furthermore, variation in bat community structure was primarily due to differences in dispersion of species within functional or phylogenetic space along the gradient, rather than due to differences in functional or phylogenetic composition. Discussion Variation among bat communities was related to environmental mechanisms, especially niche-based (i.e., environmental) processes, rather than spatial mechanisms. High variation in functional or phylogenetic dispersion, as opposed to functional or phylogenetic composition, suggests that loss or gain of niche space is driving the progressive loss or gain of species with particular traits from communities along the human-modified gradient. Thus, environmental characteristics associated with landscape structure influence functional or phylogenetic aspects of bat communities by effectively altering the ways in which species partition niche space. PMID:27761338
Former land-use and tree species affect nitrogen oxide emissions from a tropical dry forest.
Heather Erickson; Eric A. Davidson; Michael Keller
2002-01-01
Species composition in successional dry forests in the tropics varies widely, but the effect of this variation on biogeochemical processes is not well known. We examined fluxes of N oxides (nitrous and nitric oxide), soil N cycling, and litter chemistry (C/N ratio) in four successional dry forests on similar soils in western Puerto Rico with differing species...
Sveinsson, Saemundur; Gill, Navdeep; Kane, Nolan C; Cronk, Quentin
2013-07-24
Transposable elements (TEs) and other repetitive elements are a large and dynamically evolving part of eukaryotic genomes, especially in plants where they can account for a significant proportion of genome size. Their dynamic nature gives them the potential for use in identifying and characterizing crop germplasm. However, their repetitive nature makes them challenging to study using conventional methods of molecular biology. Next generation sequencing and new computational tools have greatly facilitated the investigation of TE variation within species and among closely related species. (i) We generated low-coverage Illumina whole genome shotgun sequencing reads for multiple individuals of cacao (Theobroma cacao) and related species. These reads were analysed using both an alignment/mapping approach and a de novo (graph based clustering) approach. (ii) A standard set of ultra-conserved orthologous sequences (UCOS) standardized TE data between samples and provided phylogenetic information on the relatedness of samples. (iii) The mapping approach proved highly effective within the reference species but underestimated TE abundance in interspecific comparisons relative to the de novo methods. (iv) Individual T. cacao accessions have unique patterns of TE abundance indicating that the TE composition of the genome is evolving actively within this species. (v) LTR/Gypsy elements are the most abundant, comprising c.10% of the genome. (vi) Within T. cacao the retroelement families show an order of magnitude greater sequence variability than the DNA transposon families. (vii) Theobroma grandiflorum has a similar TE composition to T. cacao, but the related genus Herrania is rather different, with LTRs making up a lower proportion of the genome, perhaps because of a massive presence (c. 20%) of distinctive low complexity satellite-like repeats in this genome. (i) Short read alignment/mapping to reference TE contigs provides a simple and effective method of investigating intraspecific differences in TE composition. It is not appropriate for comparing repetitive elements across the species boundaries, for which de novo methods are more appropriate. (ii) Individual T. cacao accessions have unique spectra of TE composition indicating active evolution of TE abundance within this species. TE patterns could potentially be used as a "fingerprint" to identify and characterize cacao accessions.
Howeth, Jennifer G; Leibold, Mathew A
2010-09-01
1. Recent studies indicate that large-scale spatial processes can alter local community structuring mechanisms to determine local and regional assemblages of predators and their prey. In metacommunities, this may occur when the functional diversity represented in the regional predator species pool interacts with the rate of prey dispersal among local communities to affect prey species diversity and trait composition at multiple scales. 2. Here, we test for effects of prey dispersal rate and spatially and temporally heterogeneous predation from functionally dissimilar predators on prey structure in pond mesocosm metacommunities. An experimental metacommunity consisted of three pond mesocosm communities supporting two differentially size-selective invertebrate predators and their zooplankton prey. In each metacommunity, two communities maintained constant predation and supported either Gyrinus sp. (Coleoptera) or Notonecta ungulata (Hemiptera) predators generating a spatial prey refuge while the third community supported alternating predation from Gyrinus sp. and N. ungulata generating a temporal prey refuge. Mesocosm metacommunities were connected at either low (0.7% day(-1)) or high (10% day(-1)) planktonic prey dispersal. The diversity, composition and body size of zooplankton prey were measured at local and regional (metacommunity) scales. 3. Metacommunities experiencing the low prey dispersal rate supported the greatest regional prey species diversity (H') and evenness (J'). Neither dispersal rate nor predation regime affected local prey diversity or evenness. The spatial prey refuge at low dispersal maintained the largest difference in species composition and body size diversity between communities under Gyrinus and Notonecta predation, suggesting that species sorting was operating at the low dispersal rate. There was no effect of dispersal rate on species diversity or body size distribution in the temporal prey refuge. 4. The frequency distribution, but not the range, of prey body sizes within communities depended upon prey dispersal rate and predator identity. Taken together, these results demonstrate that prey dispersal rate can moderate the strength of predation to influence prey species diversity and the local frequency distribution of prey traits in metacommunities supporting ecologically different predators.
NASA Astrophysics Data System (ADS)
Grossiord, Charlotte; Gessler, Arthur; Granier, André; Berger, Sigrid; Bréchet, Claude; Hentschel, Rainer; Hommel, Robert; Scherer-Lorenzen, Michael; Bonal, Damien
2014-11-01
Interactions between tree species in forests can be beneficial to ecosystem functions and services related to the carbon and water cycles by improving for example transpiration and productivity. However, little is known on below- and above-ground processes leading to these positive effects. We tested whether stratification in soil water uptake depth occurred between four tree species in a 10-year-old temperate mixed species plantation during a dry summer. We selected dominant and co-dominant trees of European beech, Sessile oak, Douglas fir and Norway spruce in areas with varying species diversity, competition intensity, and where different plant functional types (broadleaf vs. conifer) were present. We applied a deuterium labelling approach that consisted of spraying labelled water to the soil surface to create a strong vertical gradient of the deuterium isotope composition in the soil water. The deuterium isotope composition of both the xylem sap and the soil water was measured before labelling, and then again three days after labelling, to estimate the soil water uptake depth using a simple modelling approach. We also sampled leaves and needles from selected trees to measure their carbon isotope composition (a proxy for water use efficiency) and total nitrogen content. At the end of the summer, we found differences in the soil water uptake depth between plant functional types but not within types: on average, coniferous species extracted water from deeper layers than did broadleaved species. Neither species diversity nor competition intensity had a detectable influence on soil water uptake depth, foliar water use efficiency or foliar nitrogen concentration in the species studied. However, when coexisting with an increasing proportion of conifers, beech extracted water from progressively deeper soil layers. We conclude that complementarity for water uptake could occur in this 10-year-old plantation because of inherent differences among functional groups (conifers and broadleaves). Furthermore, water uptake depth of beech was already influenced at this young development stage by interspecific interactions whereas no clear niche differentiation occurred for the other species. This finding does not preclude that plasticity-mediated responses to species interactions could increase as the plantation ages, leading to the coexistence of these species in adult forest stands.
Composition Pulse Time-Of-Flight Mass Flow Sensor
Mosier, Bruce P.; Crocker, Robert W.; Harnett, Cindy K. l
2004-01-13
A device for measuring fluid flow rates over a wide range of flow rates (<1 nL/min to >10 .mu.L/min) and at pressures at least as great as 10,000 psi. The invention is particularly adapted for use in microfluidic systems. The device operates by producing compositional variations in the fluid, or pulses, that are subsequently detected downstream from the point of creation to derive a flow rate. Each pulse, comprising a small fluid volume, whose composition is different from the mean composition of the fluid, can be created by electrochemical means, such as by electrolysis of a solvent, electrolysis of a dissolved species, or electrodialysis of a dissolved ionic species. Measurements of the conductivity of the fluid can be used to detect the arrival time of the pulses, from which the fluid flow rate can be determined
Concostrina-Zubiri, L; Huber-Sannwald, E; Martínez, I; Flores Flores, J L; Reyes-Agüero, J A; Escude, A; Belnap, J
Grazing represents one of the most common disturbances in drylands worldwide, affecting both ecosystem structure and functioning. Despite the efforts to understand the nature and magnitude of grazing effects on ecosystem components and processes, contrasting results continue to arise. This is particularly remarkable for the biological soil crust (BSC) communities (i.e., cyanobacteria, lichens, and bryophytes), which play an important role in soil dynamics. Here we evaluated simultaneously the effect of grazing impact on BSC communities (resistance) and recovery after livestock exclusion (resilience) in a semiarid grassland of Central Mexico. In particular, we examined BSC species distribution, species richness, taxonomical group cover (i.e., cyanobacteria, lichen, bryophyte), and composition along a disturbance gradient with different grazing regimes (low, medium, high impact) and along a recovery gradient with differently aged livestock exclosures (short-, medium-, long-term exclusion). Differences in grazing impact and time of recovery from grazing both resulted in slight changes in species richness; however, there were pronounced shifts in species composition and group cover. We found we could distinguish four highly diverse and dynamic BSC species groups: (1) species with high resistance and resilience to grazing, (2) species with high resistance but low resilience, (3) species with low resistance but high resilience, and (4) species with low resistance and resilience. While disturbance resulted in a novel diversity configuration, which may profoundly affect ecosystem functioning, we observed that 10 years of disturbance removal did not lead to the ecosystem structure found after 27 years of recovery. These findings are an important contribution to our understanding of BCS dynamics from a species and community perspective placed in a land use change context.
Concostrina-Zubiri, L.; Huber-Sannwald, E.; Martínez, I.; Flores Flores, J. L.; Reyes-Agüero, J. A.; Escudero, A.; Belnap, Jayne
2014-01-01
Grazing represents one of the most common disturbances in drylands worldwide, affecting both ecosystem structure and functioning. Despite the efforts to understand the nature and magnitude of grazing effects on ecosystem components and processes, contrasting results continue to arise. This is particularly remarkable for the biological soil crust (BSC) communities (i.e., cyanobacteria, lichens, and bryophytes), which play an important role in soil dynamics. Here we evaluated simultaneously the effect of grazing impact on BSC communities (resistance) and recovery after livestock exclusion (resilience) in a semiarid grassland of Central Mexico. In particular, we examined BSC species distribution, species richness, taxonomical group cover (i.e., cyanobacteria, lichen, bryophyte), and composition along a disturbance gradient with different grazing regimes (low, medium, high impact) and along a recovery gradient with differently aged livestock exclosures (short-, medium-, long-term exclusion). Differences in grazing impact and time of recovery from grazing both resulted in slight changes in species richness; however, there were pronounced shifts in species composition and group cover. We found we could distinguish four highly diverse and dynamic BSC species groups: (1) species with high resistance and resilience to grazing, (2) species with high resistance but low resilience, (3) species with low resistance but high resilience, and (4) species with low resistance and resilience. While disturbance resulted in a novel diversity configuration, which may profoundly affect ecosystem functioning, we observed that 10 years of disturbance removal did not lead to the ecosystem structure found after 27 years of recovery. These findings are an important contribution to our understanding of BCS dynamics from a species and community perspective placed in a land use change context.
Green, Elizabeth A.; Davies, Sarah W.; Matz, Mikhail V.
2014-01-01
The genetic composition of the resident Symbiodinium endosymbionts can strongly modulate the physiological performance of reef-building corals. Here, we used quantitative metabarcoding to investigate Symbiodinium genetic diversity in two species of mountainous star corals, Orbicella franksi and Orbicella faveolata, from two reefs separated by 19 km of deep water. We aimed to determine if the frequency of different symbiont genotypes varied with respect to coral host species or geographic location. Our results demonstrate that across the two reefs both coral species contained seven haplotypes of Symbiodinium, all identifiable as clade B and most closely related to type B1. Five of these haplotypes have not been previously described and may be endemic to the Flower Garden Banks. No significant differences in symbiont composition were detected between the two coral species. However, significant quantitative differences were detected between the east and west banks for three background haplotypes comprising 0.1%–10% of the total. The quantitative metabarcoding approach described here can help to sensitively characterize cryptic genetic diversity of Symbiodinium and potentially contribute to the understanding of physiological variations among coral populations. PMID:24883247
Green, Elizabeth A; Davies, Sarah W; Matz, Mikhail V; Medina, Mónica
2014-01-01
The genetic composition of the resident Symbiodinium endosymbionts can strongly modulate the physiological performance of reef-building corals. Here, we used quantitative metabarcoding to investigate Symbiodinium genetic diversity in two species of mountainous star corals, Orbicella franksi and Orbicella faveolata, from two reefs separated by 19 km of deep water. We aimed to determine if the frequency of different symbiont genotypes varied with respect to coral host species or geographic location. Our results demonstrate that across the two reefs both coral species contained seven haplotypes of Symbiodinium, all identifiable as clade B and most closely related to type B1. Five of these haplotypes have not been previously described and may be endemic to the Flower Garden Banks. No significant differences in symbiont composition were detected between the two coral species. However, significant quantitative differences were detected between the east and west banks for three background haplotypes comprising 0.1%-10% of the total. The quantitative metabarcoding approach described here can help to sensitively characterize cryptic genetic diversity of Symbiodinium and potentially contribute to the understanding of physiological variations among coral populations.
Ruiz-Benito, Paloma; Lines, Emily R.; Gómez-Aparicio, Lorena; Zavala, Miguel A.; Coomes, David A.
2013-01-01
Tree mortality is a key process underlying forest dynamics and community assembly. Understanding how tree mortality is driven by simultaneous drivers is needed to evaluate potential effects of climate change on forest composition. Using repeat-measure information from c. 400,000 trees from the Spanish Forest Inventory, we quantified the relative importance of tree size, competition, climate and edaphic conditions on tree mortality of 11 species, and explored the combined effect of climate and competition. Tree mortality was affected by all of these multiple drivers, especially tree size and asymmetric competition, and strong interactions between climate and competition were found. All species showed L-shaped mortality patterns (i.e. showed decreasing mortality with tree size), but pines were more sensitive to asymmetric competition than broadleaved species. Among climatic variables, the negative effect of temperature on tree mortality was much larger than the effect of precipitation. Moreover, the effect of climate (mean annual temperature and annual precipitation) on tree mortality was aggravated at high competition levels for all species, but especially for broadleaved species. The significant interaction between climate and competition on tree mortality indicated that global change in Mediterranean regions, causing hotter and drier conditions and denser stands, could lead to profound effects on forest structure and composition. Therefore, to evaluate the potential effects of climatic change on tree mortality, forest structure must be considered, since two systems of similar composition but different structure could radically differ in their response to climatic conditions. PMID:23451096
Pivovaroff, Alexandria L; Santiago, Louis S; Vourlitis, George L; Grantz, David A; Allen, Michael F
2016-07-01
Anthropogenic nitrogen (N) deposition represents a significant N input for many terrestrial ecosystems. N deposition can affect plants on scales ranging from photosynthesis to community composition, yet few studies have investigated how changes in N availability affect plant water relations. We tested the effects of N addition on plant water relations, hydraulic traits, functional traits, gas exchange, and leaf chemistry in a semi-arid ecosystem in Southern California using long-term experimental plots fertilized with N for over a decade. The dominant species were Artemisia california and Salvia mellifera at Santa Margarita Ecological Reserve and Adenostoma fasciculatum and Ceanothus greggii at Sky Oaks Field Station. All species, except Ceanothus, showed increased leaf N concentration, decreased foliar carbon to N ratio, and increased foliar N isotopic composition with fertilization, indicating that added N was taken up by study species, yet each species had a differing physiological response to long-term N addition. Dry season predawn water potentials were less negative with N addition for all species except Adenostoma, but there were no differences in midday water potentials, or wet season water potentials. Artemisia was particularly responsive, as N addition increased stem hydraulic conductivity, stomatal conductance, and leaf carbon isotopic composition, and decreased wood density. The alteration of water relations and drought resistance parameters with N addition in Artemisia, as well as Adenostoma, Ceanothus, and Salvia, indicate that N deposition can affect the ability of native Southern California shrubs to respond to drought.
Soil seed bank in different habitats of the Eastern Desert of Egypt.
Gomaa, Nasr H
2012-04-01
The floristic composition and species diversity of the germinable soil seed bank were studied in three different habitats (desert salinized land, desert wadi, and reclaimed land) in the Eastern Desert of Egypt. Moreover, the degree of similarity between the seed bank and the above-ground vegetation was determined. The seed bank was studied in 40 stands representing the three habitats. Ten soil samples (each 25 × 20 cm and 5 cm depth) were randomly taken per stand. The seed bank was investigated by the seedling emergence method. Some 61 species belonging to 21 families and 54 genera were identified in the germinable seed bank. The recorded species include 43 annuals and 18 perennials. Ordination of stands by Detrended Correspondence Analysis (DCA) indicates that the stands of the three habitats are markedly distinguishable and show a clear pattern of segregation on the ordination planes. This indicates variations in the species composition among habitats. The results also demonstrate significant associations between the floristic composition of the seed bank and edaphic factors such as CaCO3, electrical conductivity, organic carbon and soil texture. The reclaimed land has the highest values of species richness, Shannon-index of diversity and the density of the germinable seed bank followed by the habitats of desert wadi and desert salinized land. Motyka's similarity index between the seed bank and the above-ground vegetation is significantly higher in reclaimed land (75.1%) compared to desert wadi (38.4%) and desert salinized land (36.5%).
Amphibian Diversity and Threatened Species in a Severely Transformed Neotropical Region in Mexico
Meza-Parral, Yocoyani; Pineda, Eduardo
2015-01-01
Many regions around the world concentrate a large number of highly endangered species that have very restricted distributions. The mountainous region of central Veracruz, Mexico, is considered a priority area for amphibian conservation because of its high level of endemism and the number of threatened species. The original tropical montane cloud forest in the region has been dramatically reduced and fragmented and is now mainly confined to ravines and hillsides. We evaluated the current situation of amphibian diversity in the cloud forest fragments of this region by analyzing species richness and abundance, comparing assemblage structure and species composition, examining the distribution and abundance of threatened species, and identifying the local and landscape variables associated with the observed amphibian diversity. From June to October 2012 we sampled ten forest fragments, investing 944 person-hours of sampling effort. A total of 895 amphibians belonging to 16 species were recorded. Notable differences in species richness, abundance, and assemblage structure between forest fragments were observed. Species composition between pairs of fragments differed by an average of 53%, with the majority (58%) resulting from species replacement and the rest (42%) explained by differences in species richness. Half of the species detected are under threat of extinction according to the International Union for Conservation of Nature, and although their distribution and abundance varied markedly, there were also ubiquitous and abundant species, along with rare species of restricted distribution. The evident heterogeneity of the ten study sites indicates that to conserve amphibians in a mountainous region such as this one it is necessary to protect groups of fragments which represent the variability of the system. Both individually and together cloud forest fragments are very important to conservation because each remnant is inhabited by several threatened species, some of them at imminent risk of extinction. PMID:25799369
Nomoto, Naoki; Hatamoto, Masashi; Hirakata, Yuga; Ali, Muntjeer; Jayaswal, Komal; Iguchi, Akinori; Okubo, Tsutomu; Takahashi, Masanobu; Kubota, Kengo; Tagawa, Tadashi; Uemura, Shigeki; Yamaguchi, Takashi; Harada, Hideki
2018-05-01
The characteristics of the microbial community in a practical-scale down-flow hanging sponge (DHS) reactor, high in organic matter and sulfate ion concentration, and the seasonal variation of the microbial community composition were investigated. Microorganisms related to sulfur oxidation and reduction (2-27%), as well as Leucobacter (7.50%), were abundant in the reactor. Anaerobic bacteria (27-38% in the first layer) were also in abundance and were found to contribute to the removal of organic matter from the sewage in the reactor. By comparing the Simpson index, the abundance-based coverage estimator (ACE) index, and the species composition of the microbial community across seasons (summer/dry, summer/rainy, autumn/dry, and winter/dry), the microbial community was found to change in composition only during the winter season. In addition to the estimation of seasonal variation, the difference in the microbial community composition along the axes of the DHS reactor was investigated for the first time. Although the abundance of each bacterial species differed along both axes of the reactor, the change of the community composition in the reactor was found to be greater along the vertical axis than the horizontal axis of the DHS reactor.
Microbiota of radish plants, cultivated in closed and open ecological systems
NASA Astrophysics Data System (ADS)
Tirranen, L. S.
It is common knowledge that microorganisms respond to environmental changes faster than other representatives of the living world. The major aim of this work was to examine and analyze the characteristics of the microbiota of radish culture, cultivated in the closed ecological system of human life-support Bios-3 and in an open system in different experiments. Microbial community of near-root, root zone and phyllosphere of radish were studied at the phases of seedlings, root formation, technical ripeness—by washing-off method—like microbiota of the substrate (expanded clay aggregate) and of the seeds of radish culture. Inoculation on appropriate media was made to count total quantity of anaerobic and aerobic bacteria, bacteria of coliform group, spore-forming, Proteus group, fluorescent, phytopathogenic bacteria, growing on Fermi medium, yeasts, microscopic fungi, Actinomyces. It was revealed that formation of the microbiota of radish plants depends on the age, plant cultivation technology and the specific conditions of the closed system. Composition of microbial conveyor-cultivated in phytotrons varied in quality and in quantity with plant growth phases—in the same manner as cultivation of even-aged soil and hydroponics monocultures which was determined by different qualitative and quantitative composition of root emissions in the course of plant vegetation. The higher plant component formed its own microbial complex different from that formed prior to closure. The microbial complex of vegetable polyculture is more diverse and stable than the monoculture of radish. We registered the changes in the species composition and microorganism quantity during plant cultivation in the closed system on a long-used solution. It was demonstrated that during the short-term (7 days) use of the nutrient solution in the experiments without system closing, the species composition of the microbiota of radish plants was more diverse in a multiple-aged vegetable polyculture (61 species of bacteria), than in an even-aged monoculture (32 species). Long-term use (120 days) of the solution for cultivation of multiple-aged vegetable polyculture from different radish parts in the experiment without system closing revealed 50 species, while in the experiment with the closed ecosystem only 39 species of bacteria were detected. It was found out that plant cultivation in a polyculture consisting of nine vegetable cultures is more preferable than in a monoculture, because the microbial complex is more stable, the functioning of elements is more accurate and the crop is higher.
Long-Term Changes in Species Composition and Relative Abundances of Sharks at a Provisioning Site
Brunnschweiler, Juerg M.; Abrantes, Kátya G.; Barnett, Adam
2014-01-01
Diving with sharks, often in combination with food baiting/provisioning, has become an important product of today’s recreational dive industry. Whereas the effects baiting/provisioning has on the behaviour and abundance of individual shark species are starting to become known, there is an almost complete lack of equivalent data from multi-species shark diving sites. In this study, changes in species composition and relative abundances were determined at the Shark Reef Marine Reserve, a multi-species shark feeding site in Fiji. Using direct observation sampling methods, eight species of sharks (bull shark Carcharhinus leucas, grey reef shark Carcharhinus amblyrhynchos, whitetip reef shark Triaenodon obesus, blacktip reef shark Carcharhinus melanopterus, tawny nurse shark Nebrius ferrugineus, silvertip shark Carcharhinus albimarginatus, sicklefin lemon shark Negaprion acutidens, and tiger shark Galeocerdo cuvier) displayed inter-annual site fidelity between 2003 and 2012. Encounter rates and/or relative abundances of some species changed over time, overall resulting in more individuals (mostly C. leucas) of fewer species being encountered on average on shark feeding dives at the end of the study period. Differences in shark community composition between the years 2004–2006 and 2007–2012 were evident, mostly because N. ferrugineus, C. albimarginatus and N. acutidens were much more abundant in 2004–2006 and very rare in the period of 2007–2012. Two explanations are offered for the observed changes in relative abundances over time, namely inter-specific interactions and operator-specific feeding protocols. Both, possibly in combination, are suggested to be important determinants of species composition and encounter rates, and relative abundances at this shark provisioning site in Fiji. This study, which includes the most species from a spatially confined shark provisioning site to date, suggests that long-term provisioning may result in competitive exclusion among shark species. PMID:24466197
Diagenetic changes in the elemental composition of unrecrystallized mollusk shells
Ragland, P.C.; Pilkey, O.H.; Blackwelder, B. W.
1979-01-01
The Mg, Sr, Mn, Fe, Na and K contents were determined for 230 apparently unrecrystallized mollusk shells (gastropods and bivalves) ranging in age from late Cretaceous to Holocene. Consistent differences between the Holocene and fossil shells with respect to concentrations of all these elements are attributed to postburial diagenetic changes. Fossil-Holocene shell comparisons are made on the intergeneric level, a more severe test of compositional differences than was previous work involved with few species. The observed differences re-emphasize the need for extreme caution in the use of the many geochemical tools which assume that no compositional changes have taken place prior to recrystallization of calcareous materials. ?? 1979.
Ardelean, Ioana Violeta; Keller, Christine; Scheidegger, Christoph
2015-01-01
Lichens are valuable bio-indicators for evaluating the consequences of human activities that are increasingly changing the earth's ecosystems. Since a major objective of national parks is the preservation of biodiversity, our aim is to analyse how natural resource management, the availability of lichen substrates and environmental parameters influence lichen diversity in Rodnei Mountains National Park situated in the Eastern Carpathians. Three main types of managed vegetation were investigated: the transhumance systems in alpine meadows, timber exploitation in mixed and pure spruce forests, and the corresponding conserved sites. The data were sampled following a replicated design. For the analysis, we considered not only all lichen species, but also species groups from different substrates such as soil, trees and deadwood. The lichen diversity was described according to species richness, red-list status and substrate-specialist species richness. The variation in species composition was related to the environmental variables. Habitat management was found to negatively influence species richness and alter the lichen community composition, particularly for threatened and substrate-specialist species. It reduced the mean level of threatened species richness by 59%, when all lichen species were considered, and by 81%, when only epiphytic lichens were considered. Management-induced disturbance significantly decreased lichen species richness in forest landscapes with long stand continuity. The diversity patterns of the lichens indicate a loss of species richness and change in species composition in areas where natural resources are still exploited inside the borders of the national park. It is thus imperative for protected areas, in particular old-growth forests and alpine meadows, to receive more protection than they have received in the past to ensure populations of the characteristic species remain viable in the future.
The Role of Diet in Shaping the Chemical Signal Design of Lacertid Lizards.
Baeckens, Simon; García-Roa, Roberto; Martín, José; Van Damme, Raoul
2017-09-01
Lizards communicate with others via chemical signals, the composition of which may vary among species. Although the selective pressures and constraints affecting chemical signal diversity at the species level remain poorly understood, the possible role of diet has been largely neglected. The chemical signals of many lizards originate from the femoral glands that exude a mixture of semiochemicals, and may be used in a variety of contexts. We analyzed the lipophilic fraction of the glandular secretions of 45 species of lacertid lizard species by gas chromatography/mass spectrometry. The proportions of nine major chemical classes (alcohols, aldehydes, fatty acids, furanones, ketones, steroids, terpenoids, tocopherols and waxy esters), the relative contributions of these different classes ('chemical diversity'), and the total number of different lipophilic compounds ('chemical richness') varied greatly among species. We examined whether interspecific differences in these chemical variables could be coupled to interspecific variation in diet using data from the literature. In addition, we compared chemical signal composition among species that almost never, occasionally, or often eat plant material. We found little support for the hypothesis that the chemical profile of a given species' secretion depends on the type of food consumed. Diet breadth did not correlate with chemical diversity or richness. The amount of plants or ants consumed did not affect the relative contribution of any of the nine major chemical classes to the secretion. Chemical diversity did not differ among lizards with different levels of plant consumption; however, chemical richness was low in species with an exclusive arthropod diet, suggesting that incorporating plants in the diet enables lizards to increase the number of compounds allocated to secretions, likely because a (partly) herbivorous diet allows them to include compounds of plant origin that are unavailable in animal prey. Still, overall, diet appears a relatively poor predictor of interspecific differences in the broad chemical profiles of secretions of lacertid lizards.
Grana Padano cheese whey starters: microbial composition and strain distribution.
Rossetti, Lia; Fornasari, Maria Emanuela; Gatti, Monica; Lazzi, Camilla; Neviani, Erasmo; Giraffa, Giorgio
2008-09-30
The aim of this work was to evaluate the species composition and the genotypic strain heterogeneity of dominant lactic acid bacteria (LAB) isolated from whey starter cultures used to manufacture Grana Padano cheese. Twenty-four Grana Padano cheese whey starters collected from dairies located over a wide geographic production area in the north of Italy were analyzed. Total thermophilic LAB streptococci and lactobacilli were quantified by agar plate counting. Population structure of the dominant and metabolically active LAB species present in the starters was profiled by reverse transcriptase, length heterogeneity-PCR (RT-LH-PCR), a culture-independent technique successfully applied to study whey starter ecosystems. The dominant bacterial species were Lactobacillus helveticus, Lactobacillus delbrueckii subsp. lactis, Streptococcus thermophilus, and Lactobacillus fermentum. Diversity in the species composition allowed the whey cultures to be grouped into four main typologies, the one containing L. helveticus, L. delbrueckii subsp. lactis, and S. thermophilus being the most frequent one (45% of the cultures analyzed), followed by that containing only the two lactobacilli (40%). Only a minor fraction of the cultures contained L. helveticus alone (4%) or all the four LAB species (11%). Five hundred and twelve strains were isolated from the 24 cultures and identified by M13-PCR fingerprinting coupled with 16S rRNA gene sequencing. Most of the strains were L. helveticus (190 strains; 37% of the total), L delbrueckii subsp. lactis (90 strains; 18%) and S. thermophilus (215 strains; 42%). This result was in good agreement with the qualitative whey starter composition observed by RT-LH-PCR. M13-PCR fingerprinting indicated a markedly low infra-species diversity, i.e. the same biotypes were often found in more than one culture. The distribution of the biotypes into the different cultures was mainly dairy plant-specific rather than correlated with the different production areas.
[Rapid ecological assessment of tropical fish communities in a gold mine area of Costa Rica].
Espinoza Mendiola, Mario
2008-12-01
Gold mining impacts have generated a great concern regarding aquatic systems and habitat fragmentation. Anthropogenic disturbances on the structure and heterogeneity of a system can have an important effect on aquatic community stability. Ecological rapid assessments (1996, 2002, and 2007) were employed to determine the structure, composition and distribution of tropical fish communities in several rivers and smaller creeks from a gold mining area in Cerro Crucitas, Costa Rica. In addition, species composition and relative abundance were related with habitat structure. A total of 35 species were registered, among which sardine Astyanax aeneus (Characidae) and livebearer Alfaro cultratus (Poeciliidae) were the most abundant fish (71%). The highest species richness was observed in Caño Crucitas (s=19) and Minas Creek (s=18). Significant differences in fish communities structure and composition from Infiernillo river and Minas creek were observed (lamda = 0.0, F(132, 66) = 2.24, p < 0.001). Presence and/or absence of certain species such as Dormitor gobiomorus, Rhamdia nicaraguensis, Parachromis loiseillei and Atractosteus tropicus explained most of the spatial variation among sites. Habitat structure also contributed to explain differences among sites (lamda = 0.004, F(60.183) = 5.52, p < 0.001). Substratum (soft and hard bottom types) and habitat attributes (elevation, width and depth) explained most of the variability observed in Infiernillo River, Caño Crucitas and Tamagá Creek. In addition, a significant association between fish species and habitat structure was observed. This study reveals a high complexity in tropical fish communities that inhabit a gold mine area. Furthermore, it highlights the importance of habitat heterogeneity in fish community dynamics. The loss and degradation of aquatic systems in Cerro Crucitas can have a strong negative effect on fish community structure and composition of local species. A better understanding of the use of specific habitats that serve as essential fish habitats can improve tropical fish conservation and management strategies, thus increasing local diversity, and thereby, the biological importance of the area.
USDA-ARS?s Scientific Manuscript database
Although single species of herbivores are known to affect soil microbial communities, the effects of herbivore species identity and functional composition on soil microbes is unknown. We tested the effects of single species of orthopterans and multiple species combinations on soil enzymatic activity...
Ferrer-Paris, José Rafael; Sánchez-Mercado, Ada; Rodríguez, Jon Paul
2013-03-01
The development of efficient sampling protocols is an essential prerequisite to evaluate and identify priority conservation areas. There are f ew protocols for fauna inventory and monitoring in wide geographical scales for the tropics, where the complexity of communities and high biodiversity levels, make the implementation of efficient protocols more difficult. We proposed here a simple strategy to optimize the capture of dung beetles, applied to sampling with baited traps and generalizable to other sampling methods. We analyzed data from eight transects sampled between 2006-2008 withthe aim to develop an uniform sampling design, that allows to confidently estimate species richness, abundance and composition at wide geographical scales. We examined four characteristics of any sampling design that affect the effectiveness of the sampling effort: the number of traps, sampling duration, type and proportion of bait, and spatial arrangement of the traps along transects. We used species accumulation curves, rank-abundance plots, indicator species analysis, and multivariate correlograms. We captured 40 337 individuals (115 species/morphospecies of 23 genera). Most species were attracted by both dung and carrion, but two thirds had greater relative abundance in traps baited with human dung. Different aspects of the sampling design influenced each diversity attribute in different ways. To obtain reliable richness estimates, the number of traps was the most important aspect. Accurate abundance estimates were obtained when the sampling period was increased, while the spatial arrangement of traps was determinant to capture the species composition pattern. An optimum sampling strategy for accurate estimates of richness, abundance and diversity should: (1) set 50-70 traps to maximize the number of species detected, (2) get samples during 48-72 hours and set trap groups along the transect to reliably estimate species abundance, (3) set traps in groups of at least 10 traps to suitably record the local species composition, and (4) separate trap groups by a distance greater than 5-10km to avoid spatial autocorrelation. For the evaluation of other sampling protocols we recommend to, first, identify the elements of sampling design that could affect the sampled effort (the number of traps, sampling duration, type and proportion of bait) and their spatial distribution (spatial arrangement of the traps) and then, to evaluate how they affect richness, abundance and species composition estimates.
Species- and community-level responses combine to drive phenology of lake phytoplankton
Walters, Annika; Sagrario, María de los Ángeles González; Schindler, Daniel E.
2013-01-01
Global change is leading to shifts in the seasonal timing of growth and maturation for primary producers. Remote sensing is increasingly used to measure the timing of primary production in both aquatic and terrestrial ecosystems, but there is often a poor correlation between these results and direct observations of life-history responses of individual species. One explanation may be that in addition to phenological shifts, global change is also causing shifts in community composition among species with different seasonal timing of growth and maturation. We quantified how shifts in species phenology and in community composition translated into phenological change in a diverse phytoplankton community from 1962-2000. During this time the aggregate community spring-summer phytoplankton peak has shifted 63 days earlier. The mean taxon shift was only 3 days earlier and shifts in taxa phenology explained only 40% of the observed community phenological shift. The remaining community shift was attributed to dominant early season taxa increasing in abundance while a dominant late season taxon decreased in abundance. In diverse producer communities experiencing multiple stressors, changes in species composition must be considered to fully understand and predict shifts in the seasonal timing of primary production.
The influence of climate on species distribution over time and space during the late Quaternary
NASA Astrophysics Data System (ADS)
Carotenuto, F.; Di Febbraro, M.; Melchionna, M.; Castiglione, S.; Saggese, F.; Serio, C.; Mondanaro, A.; Passaro, F.; Loy, A.; Raia, P.
2016-10-01
Understanding the effect of climate on the composition of communities and its change over time and space is one of the major aims in ecology and paleoecology. Herein, we tackled on this issue by studying late Quaternary large mammal paleocommunities of Eurasia. The late Quaternary was a period of strong environmental instability, especially characterized by the occurrence of the last glacial maximum (LGM). We used community phylogenetics and joint species distribution models in order to understand the factors determining paleocommunity composition in the late Quaternary. Our results support the existence of strong climatic selection operating on the LGM fauna, both through the disappearance of warm-adapted species such as Elephas antiquus, Hippopothamus amphibious, and Stephanorhinus hemitoechus, and by setting the stage for the existence of a community characterized by cold-adapted large mammals. Patterns of abundance in the fossil record, co-occurrence between species pairs, and the extent of climatic forcing on faunal composition, differ between paleocommunities, but not between extinct and extant species, which is consistent with the idea that climate change, rather than the presence of humans, exerted a major effect on the survival of the late Quaternary megafauna.
Jiu, Min; Hu, Jian; Wang, Lun-Ji; Dong, Jun-Feng; Song, Yue-Qin; Sun, Hui-Zhong
2017-05-01
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a cryptic species complex, causing significant crop losses in China during the last decade. Although knowledge of cryptic species composition and dynamics within B. tabaci complex is critical for developing sustainable pest management strategies, limited information is available on this pest in the Henan province of China. A systematic survey of the cryptic species composition and distribution of B. tabaci complex in different locations of Henan province was conducted in 2012. The results of RAPD-PCR and the gene for the mitochondrial cytochrome oxidase subunit-1 (mtCOI) based phylogenetic relationships established using Bayesian method indicated there were four known cryptic species MEAM1, MED, Asia II 3, Asia II 9 and a new cryptic species named China 6 in Henan province. In the survey, the invasive cryptic species MED and MEAM1 were found to be predominant with wide spread distribution across the surveyed regions. On the contrary, the indigenous B. tabaci cryptic species including Asia II 3, Asia II 9 and China 6 remained with low prevalence in some surveyed regions. Cryptic species MEAM1 and MED have not completely displaced the native B. tabaci in Henan province. This current study for the first time unifies our knowledge of the diversity and distribution of B. tabaci across Henan province of China. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.
Dietary nitrogen alters codon bias and genome composition in parasitic microorganisms.
Seward, Emily A; Kelly, Steven
2016-11-15
Genomes are composed of long strings of nucleotide monomers (A, C, G and T) that are either scavenged from the organism's environment or built from metabolic precursors. The biosynthesis of each nucleotide differs in atomic requirements with different nucleotides requiring different quantities of nitrogen atoms. However, the impact of the relative availability of dietary nitrogen on genome composition and codon bias is poorly understood. Here we show that differential nitrogen availability, due to differences in environment and dietary inputs, is a major determinant of genome nucleotide composition and synonymous codon use in both bacterial and eukaryotic microorganisms. Specifically, low nitrogen availability species use nucleotides that require fewer nitrogen atoms to encode the same genes compared to high nitrogen availability species. Furthermore, we provide a novel selection-mutation framework for the evaluation of the impact of metabolism on gene sequence evolution and show that it is possible to predict the metabolic inputs of related organisms from an analysis of the raw nucleotide sequence of their genes. Taken together, these results reveal a previously hidden relationship between cellular metabolism and genome evolution and provide new insight into how genome sequence evolution can be influenced by adaptation to different diets and environments.
Community shifts under climate change: mechanisms at multiple scales.
Gornish, Elise S; Tylianakis, Jason M
2013-07-01
Processes that drive ecological dynamics differ across spatial scales. Therefore, the pathways through which plant communities and plant-insect relationships respond to changing environmental conditions are also expected to be scale-dependent. Furthermore, the processes that affect individual species or interactions at single sites may differ from those affecting communities across multiple sites. We reviewed and synthesized peer-reviewed literature to identify patterns in biotic or abiotic pathways underpinning changes in the composition and diversity of plant communities under three components of climate change (increasing temperature, CO2, and changes in precipitation) and how these differ across spatial scales. We also explored how these changes to plants affect plant-insect interactions. The relative frequency of biotic vs. abiotic pathways of climate effects at larger spatial scales often differ from those at smaller scales. Local-scale studies show variable responses to climate drivers, often driven by biotic factors. However, larger scale studies identify changes to species composition and/or reduced diversity as a result of abiotic factors. Differing pathways of climate effects can result from different responses of multiple species, habitat effects, and differing effects of invasions at local vs. regional to global scales. Plant community changes can affect higher trophic levels as a result of spatial or phenological mismatch, foliar quality changes, and plant abundance changes, though studies on plant-insect interactions at larger scales are rare. Climate-induced changes to plant communities will have considerable effects on community-scale trophic exchanges, which may differ from the responses of individual species or pairwise interactions.
Grigorakis, Kriton
2017-09-22
Species diversification in Mediterranean mariculture involves various important fish that contribute to the diet of many human populations. These include meagres (Sciaenidae), flatfishes, mullets, and various sparids. Their quality aspects (yields, fillet proximate composition, and lipid quality) are discussed in this review. Their filleting yield is mostly 40-45%. The viscerosomatic index ranges from 1.5% to 14%, depending on species. Low muscle fat contents of flatfishes and meagres differentiate them from the rest of the farmed species. Farmed fish contain high n-3 polyunsaturates fatty acids (PUFA; 12.3-36.3% vs. 5.48-37.2% in the wild) and have higher muscle fat and n-6 PUFA contents (mainly 18:2 n-6) than their wild counterparts. The aquaculture management, diet, and season can affect fillet composition and fatty acids, while season (i.e. food availability and maturation) largely affects lipid quality in wild fish. Data on the sensory quality of Mediterranean-farmed species are mainly limited to whether specific management differentiates the sensory quality; thus, further development of tools for sensory analysis is required. Observations on the quality features in farmed Mediterranean fish indicate that species diversification can also provide product diversification based on different commercial weights and fillet quality specifications.
Wang, Xueqin; Cui, Hongyang; Shi, Jianhong; Zhao, Xinyu; Zhao, Yue; Wei, Zimin
2015-12-01
The aim of this study was to compare the bacterial structure of seven different composts. The primary environmental factors affecting bacterial species were identified, and a strategy to enhance the abundance of uncultured bacteria through controlling relevant environmental parameters was proposed. The results showed that the physical-chemical parameters of each different pile changed in its own manner during composting, which affected the structure and succession of bacteria in different ways. DGGE profiles showed that there were 10 prominent species during composting. Among them, four species existed in all compost types, two species existed in several piles and four species were detected in a single material. Redundancy analysis results showed that bacterial species compositions were significantly influenced by C/N and moisture (p<0.05). The optimal range of C/N was 14-27. Based on these results, the primary environmental factors affecting a certain species were further identified as a potential control of bacterial diversity. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xiaoying, Jin; Huijun, Jin
2017-04-01
Permafrost degradation caused by climate warming has markedly changed ecological environment in the Source Area of the Yellow River, in the northeast of the Qinghai Tibetan Plateau. However, related research about ecological impact of permafrost degradation is limited in this area. More attentions should be paid to the impact of permafrost degradation on alpine grassland. In this study vegetation characteristics (plant species composition, vegetation cover and biomass, etc.) at different permafrost degradation stages (as represented by the continuous and discontinuous permafrost zone, transitional zone, and seasonally frozen ground zone) is investigated. The results showed that (1) there are total 64 species in continuous and discontinuous permafrost zone, transitional zone, and seasonally frozen ground zone, and seasonally frozen ground zone has more species than transitional zone and permafrost zone, (2) sedge is the dominant species in three zones. But Shrub only presented in the seasonally frozen ground zone. These results suggest that permafrost degradation affect the species number and species composition of alpine grassland.
Poe, T.P.; Hatcher, C.O.; Brown, C.L.; Schloesser, D.W.
1986-01-01
Species composition and richness of fish assemblages in altered and unaltered littoral habitats in Lake St. Clair, Michigan, differed between areas. A percid-cyprinid-cyprinodontid assemblage dominated in the unaltered area, Muscamoot Bay, which has a natural shoreline (with almost no alteration due to dredging or bulkheading), high water quality, and high species richness of aquatic macrophytes. A centrarchid assemblage dominated in the altered area, Belvidere Bay, which has a bulkheaded shoreline, many dredged areas, reduced water quality due to inputs of nutrients from a nearby river, and relatively low species richness of aquatic macrophytes. Habitat factors, species richness and abundance of aquatic macrophytes, had the most influence on fish community structure in both areas. The percid-cyprinid-cyprinodontid assemblage was significantly correlated with six species of macrophytes whereas the centrarchid assemblage was significantly correlated with only four. These patterns suggest that preference for diverse habitats was higher, and tolerance to habitat alteration lower, in percid-cyprinid-cyprinodontid assemblages than in centrarchid assemblages.
Plant Diversity in Live Fences and Pastures, Two Examples from the Mexican Humid Tropics
NASA Astrophysics Data System (ADS)
Ruiz-Guerra, Betsabé; Rosas, Noé Velázquez; López-Acosta, Juan Carlos
2014-09-01
This study analyzes the potential uses of live fences and pastures as reservoirs of plant diversity for two regions with different management histories, Los Tuxtlas (LT) and Uxpanapa (UX), Veracruz, México. We studied two habitats, live fences and pastures, analyzed their species richness, diversity, structure and plant composition and classified species according to plant regeneration modes (light-demanding and shade tolerant), seed dispersal syndrome and their local uses. We recorded 62 species of trees at LT and 48 at UX. Live fences were more diverse than pastures in both regions. The LT site showed to analyze the relationship a higher diversity of plants in regeneration stages than the one at UX. However, UX had higher diversity of adult plants in the pastures than LT. Composition and structure of live fences were different between regions, as well as within live fences and pastures, 53 % of species were light-demanding and 40 % were shade tolerant; 70 % of the species were dispersed by birds. Differences between sites are associated with the modifications in live fences structure, which changed according to managerial practices and the use of local species; this may influence plant regeneration modes as well as the visits of avian dispersal agents. In LT, all species found in live fences were useful to humans, whereas in UX, less than half were used by the local population. Our results underline the importance of live fences and isolated trees in pasture habitats as potential sites to host native and useful species from tropical rain forests in livestock landscapes.
NASA Astrophysics Data System (ADS)
Trekels, Hendrik; Driesen, Mario; Vanschoenwinkel, Bram
2017-11-01
Globally, moss associated invertebrates remain poorly studied and it is largely unknown to what extent their diversity is driven by local environmental conditions or the landscape context. Here, we investigated small scale drivers of invertebrate communities in a moss landscape in a temperate forest in Western Europe. By comparing replicate quadrats of 5 different moss species in a continuous moss landscape, we found that mosses differed in invertebrate density and community composition. Although, in general, richness was similar among moss species, some invertebrate taxa were significantly linked to certain moss species. Only moss biomass and not relative moisture content could explain differences in invertebrate densities among moss species. Second, we focused on invertebrate communities associated with the locally common moss species Kindbergia praelonga in isolated moss patches on dead tree trunks to look at effects of patch size, quality, heterogeneity and connectivity on invertebrate communities. Invertebrate richness was higher in patches under closed canopies than under more open canopies, presumably due to the higher input of leaf litter and/or lower evaporation. In addition, increased numbers of other moss species in the same patch seemed to promote invertebrate richness in K. praelonga, possibly due to mass effects. Since invertebrate richness was unaffected by patch size and isolation, dispersal was probably not limiting in this system with patches separated by tens of meters, or stochastic extinctions may be uncommon. Overall, we conclude that invertebrate composition in moss patches may not only depend on local patch conditions, in a particular moss species, but also on the presence of other moss species in the direct vicinity.
Tiger-Moths in Savannas in Eastern Amazon: First Assessment of Diversity and Seasonal Aspects.
Valente, D M P; Zenker, M M; Teston, J A
2018-01-06
Biodiversity knowledge on insects is urgently needed due to the ever growing demand for food and the consequent deforestation process and loss of natural habitats in many understudied tropical regions. In this paper, we describe the outcome of a biodiversity research on tiger moths performed for the first time in a poorly studied Amazonian landscape-the savanna. We sampled tiger moths monthly with UV automatic light traps for 12 consecutive months in two sampling points in an area of savanna in eastern Amazon, and we compared our results to previously available data for eastern Amazon. We found a total of 91 species of which 80 were identified to species level. The most species-rich subtribes were Phaegopterina and Euchromiina with 32 species each. Species richness and abundance did not differ among sampling sites, but in general the species richness was higher during the dry season while abundance was higher during the wet season. This seasonal diversity pattern differs from the most common patterns recorded for savannas in other parts of the world. The species composition also changed in wet and dry seasons and correlated significantly with temperature and relative humidity. Our results suggest that the alpha diversity of the Amazonian savannas in our sampling area is lower than that in nearby rain forests and similar to that in agriculturally disturbed areas surrounded by rain forests. However, the species composition differed considerably from natural and disturbed areas. These results highlight the need of basic biodiversity surveys of insects in Amazonian savannas.
Li, Guipu; Sinclair, Andrew J; Li, Duo
2011-03-09
The lipid content and fatty acid composition in the edible meat of twenty-nine species of wild and cultured freshwater and marine fish and shrimps were investigated. Both the lipid content and fatty acid composition of the species were specified due to their unique food habits and trophic levels. Most of the marine fish demonstrated higher lipid content than the freshwater fish, whereas shrimps had the lowest lipid content. All the marine fish and shrimps had much higher total n-3 PUFA than n-6 PUFA, while most of the freshwater fish and shrimps demonstrated much lower total n-3 PUFA than n-6 PUFA. This may be the biggest difference in fatty acid composition between marine and freshwater species. The cultured freshwater fish demonstrated higher percentages of total PUFA, total n-3 PUFA, and EPA + DHA than the wild freshwater fish. Two freshwater fish, including bighead carp and silver carp, are comparable to the marine fish as sources of n-3 PUFA.
Padalia, Rajendra C; Verma, Ram S; Sundaresan, Velusamy; Chanotiya, Chandan S
2010-08-01
The essential-oil compositions of leaves, flowers, and rhizomes of Alpinia galanga (L.) Willd., Alpinia calcarata Rosc., Alpinia speciosa K. Schum., and Alpinia allughas Rosc. were examined and compared by capillary GC and GC/MS. Monoterpenoids were the major oil constituents identified. 1,8-Cineole, alpha-terpineol, (E)-methyl cinnamate, camphor, terpinen-4-ol, and alpha- and beta-pinenes were the major constituents commonly distributed in leaf and flower essential oils. The presence of endo-fenchyl acetate, exo-fenchyl acetate, and endo-fenchol was the unique feature of rhizome essential oils of A. galanga, A. calcarata, and A. speciosa. On contrary, the rhizome oil of A. allughas was dominated by beta-pinene. Significant qualitative and quantitative variations were observed in essential-oil compositions of different parts of Alpinia species growing in subtemperate and subtropical regions of Northern India. Cluster analysis was performed to find similarities and differences in essential-oil compositions based on representative molecular skeletons. Monoterpenoids, viz., 1,8-cineole, terpinen-4-ol, camphor, pinenes, (E)-methyl cinnamate, and fenchyl derivatives, were used as chemotaxonomic markers.
Closely related intertidal and deep-sea Halomonhystera species have distinct fatty acid compositions
NASA Astrophysics Data System (ADS)
Van Campenhout, Jelle; Vanreusel, Ann
2017-01-01
The deep-sea free-living nematode Halomonhystera hermesi, dominant in the sulphidic sediments of the Håkon Mosby mud volcano (1280 m, Barent sea slope), is part of the mainly estuarine Halomonhystera disjuncta species complex consisting of five cryptic species (GD1-GD5). Cryptic species have a very similar morphology raising questions on their specific environmental differences. This study analyzed total fatty acid (FA) compositions of H. hermesi and GD1, one of H. hermesi's closest relatives. Additionally, we experimentally investigated the effect of a temperature reduction, salinity increase and sulphide concentrations on GD1's FA composition. Because nematodes are expected to have low amounts of storage FA, total FA compositions most likely reflect FA contents of cellular membranes. The deep-sea nematode H. hermesi had significantly lower saturation levels and increased highly unsaturated fatty acid (HUFAs) proportions due to the presence of docosahexanoic acid (DHA—22:6ω3) and higher eicosapentaenoic acid (EPA—20:5ω3) proportions. HUFAs were absent in H. hermesi's food source indicating the ability and need for this nematode to synthesize HUFAs in a deep-sea environment. Our experimental data revealed that only a decrease in temperature resulted in lower saturated fatty acids proportions, indicating that the FA content of H. hermesi is most likely a response to temperature but not to sulphide concentrations or salinity differences. In experimental nematodes, EPA proportions were low and DHA was absent indicating that other factors than temperature, salinity and sulphides mediate the presence of these HUFAs in H. hermesi.
Måren, Inger Elisabeth; Kapfer, Jutta; Aarrestad, Per Arild; Grytnes, John-Arvid; Vandvik, Vigdis
2018-01-01
Successional dynamics in plant community assembly may result from both deterministic and stochastic ecological processes. The relative importance of different ecological processes is expected to vary over the successional sequence, between different plant functional groups, and with the disturbance levels and land-use management regimes of the successional systems. We evaluate the relative importance of stochastic and deterministic processes in bryophyte and vascular plant community assembly after fire in grazed and ungrazed anthropogenic coastal heathlands in Northern Europe. A replicated series of post-fire successions (n = 12) were initiated under grazed and ungrazed conditions, and vegetation data were recorded in permanent plots over 13 years. We used redundancy analysis (RDA) to test for deterministic successional patterns in species composition repeated across the replicate successional series and analyses of co-occurrence to evaluate to what extent species respond synchronously along the successional gradient. Change in species co-occurrences over succession indicates stochastic successional dynamics at the species level (i.e., species equivalence), whereas constancy in co-occurrence indicates deterministic dynamics (successional niche differentiation). The RDA shows high and deterministic vascular plant community compositional change, especially early in succession. Co-occurrence analyses indicate stochastic species-level dynamics the first two years, which then give way to more deterministic replacements. Grazed and ungrazed successions are similar, but the early stage stochasticity is higher in ungrazed areas. Bryophyte communities in ungrazed successions resemble vascular plant communities. In contrast, bryophytes in grazed successions showed consistently high stochasticity and low determinism in both community composition and species co-occurrence. In conclusion, stochastic and individualistic species responses early in succession give way to more niche-driven dynamics in later successional stages. Grazing reduces predictability in both successional trends and species-level dynamics, especially in plant functional groups that are not well adapted to disturbance. © 2017 The Authors. Ecology, published by Wiley Periodicals, Inc., on behalf of the Ecological Society of America.
Habitat connectivity shapes urban arthropod communities: the key role of green roofs.
Braaker, S; Ghazoul, J; Obrist, M K; Moretti, M
2014-04-01
The installation of green roofs, defined here as rooftops with a shallow soil cover and extensive vegetation, has been proposed as a possible measure to mitigate the loss of green space caused by the steady growth of cities. However, the effectiveness of green roofs in supporting arthropod communities, and the extent to which they facilitate connectivity of these communities within the urban environment is currently largely unknown. We investigated the variation of species community composition (beta diversity) of four arthropod groups with contrasting mobility (Carabidae, Araneae, Curculionidae, and Apidae) on 40 green roofs and 40 extensively managed green sites on the ground in the city of Zurich, Switzerland. With redundancy analysis and variation partitioning, we (1) disentangled the relative importance of local environmental conditions, the surrounding land cover composition, and habitat connectivity on species community composition, (2) searched for specific spatial scales of habitat connectivity for the different arthropod groups, and (3) discussed the ecological and functional value of green roofs in cities. Our study revealed that on green roofs community composition of high-mobility arthropod groups (bees and weevils) were mainly shaped by habitat connectivity, while low-mobility arthropod groups (carabids and spiders) were more influenced by local environmental conditions. A similar but less pronounced pattern was found for ground communities. The high importance of habitat connectivity in shaping high-mobility species community composition indicates that these green roof communities are substantially connected by the frequent exchange of individuals among surrounding green roofs. On the other hand, low-mobility species communities on green roofs are more likely connected to ground sites than to other green roofs. The integration of green roofs in urban spatial planning strategies has great potential to enable higher connectivity among green spaces, so that eventually even communities of low-mobility species become connected. Furthermore, improving the design of green roofs (composition and configuration of vegetation and soil types) could enhance the ecological value, particularly for low-mobility species.
Tewson, L H; Cowx, I G; Nunn, A D
2016-04-01
This study investigated diel variations in zooplankton composition and abundance, and the species composition, density, size structure, feeding activity, diet composition and prey selection of larval and 0+ year juvenile fishes in the littoral of a man-made floodplain waterbody over five 24 h periods within a 57 day period. There was a significant difference in the species composition of diurnal and nocturnal catches, with most species consistently peaking in abundance either during daylight or at night, reflecting their main activity period. There were no consistent diel patterns in assemblage structure or the abundance of some species, however, most likely, respectively, due to the phenology of fish hatching and ontogenetic shifts in diel behaviour or habitat use. There were few clear diel patterns in the diet composition or prey selection of larval and 0+ year juvenile roach Rutilus rutilus and perch Perca fluviatilis, with most taxa consistently selected or avoided irrespective of the time of day or night, and no obvious shift between planktonic and benthic food sources, but dietary overlap suggested that interspecific interactions were probably strongest at night. It is essential that sampling programmes account for the diel ecology of the target species, as diurnal surveys alone could produce inaccurate assessments of resource use. The relative lack of consistent diel patterns in this study suggests that multiple 24 h surveys are required in late spring and early summer to provide accurate assessments of 0+ year fish assemblage structure and foraging ecology. © 2016 The Fisheries Society of the British Isles.
Comparisons of Auricular Cartilage Tissues from Different Species.
Chiu, Loraine L Y; Giardini-Rosa, Renata; Weber, Joanna F; Cushing, Sharon L; Waldman, Stephen D
2017-12-01
Tissue engineering of auricular cartilage has great potential in providing readily available materials for reconstructive surgeries. As the field of tissue engineering moves forward to developing human tissues, there needs to be an interspecies comparison of the native auricular cartilage in order to determine a suitable animal model to assess the performance of engineered auricular cartilage in vivo. Here, we performed interspecies comparisons of auricular cartilage by comparing tissue microstructure, protein localization, biochemical composition, and mechanical properties of auricular cartilage tissues from rat, rabbit, pig, cow, and human. Human, pig, and cow auricular cartilage have smaller lacunae compared to rat and rabbit cartilage ( P < .05). Despite differences in tissue microstructure, human auricular cartilage has similar biochemical composition to both rat and rabbit. Auricular cartilage from pig and cow, alternatively, display significantly higher glycosaminoglycan and collagen contents compared to human, rat, and rabbit ( P < .05). The mechanical properties of human auricular cartilage were comparable to that of all 4 animal species. This is the first study that compares the microstructural, biochemical, and mechanical properties of auricular cartilage from different species. This study showed that different experimental animal models of human auricular cartilage may be suitable in different cases.
Ribeiro da Luz, B.
2006-01-01
??? Attenuated total reflectance (ATR) spectra of plant leaves display complex absorption features related to organic constituents of leaf surfaces. The spectra can be recorded rapidly, both in the field and in the laboratory, without special sample preparation. ??? This paper explores sources of ATR spectral variation in leaves, including compositional, positional and temporal variations. Interspecific variations are also examined, including the use of ATR spectra as a tool for species identification. ??? Positional spectral variations generally reflected the abundance of cutin and the epicuticular wax thickness and composition. For example, leaves exposed to full sunlight commonly showed more prominent cutin- and wax-related absorption features compared with shaded leaves. Adaxial vs. abaxial leaf surfaces displayed spectral variations reflecting differences in trichome abundance and wax composition. Mature vs. young leaves showed changes in absorption band position and intensity related to cutin, polysaccharide, and possibly amorphous silica development on and near the leaf surfaces. ??? Provided that similar samples are compared (e.g. adaxial surfaces of mature, sun-exposed leaves) same-species individuals display practically identical ATR spectra. Using spectral matching procedures to analyze an ATR database containing 117 individuals, including 32 different tree species, 83% of the individuals were correctly identified. ?? The Authors (2006).
Main photoautotrophic components of biofilms in natural draft cooling towers.
Hauer, Tomáš; Čapek, Petr; Böhmová, Petra
2016-05-01
While photoautotrophic organisms are an important component of biofilms that live in certain regions of natural draft cooling towers, little is known about these communities. We therefore examined 18 towers at nine sites to identify the general patterns of community assembly in three distinct tower parts, and we examined how community structures differ depending on geography. We also compared the newly acquired data with previously published data. The bottom sections of draft cooling towers are mainly settled by large filamentous algae, primarily Cladophora glomerata. The central portions of towers host a small amount of planktic algae biomass originating in the cooling water. The upper fourths of towers are colonized by biofilms primarily dominated by cyanobacteria, e.g., members of the genera Gloeocapsa and Scytonema. A total of 41 taxa of phototrophic microorganisms were identified. Species composition of the upper fourth of all towers was significantly affected by cardinal position. There was different species composition at positions facing north compared to positions facing south. West- and east-facing positions were transitory and highly similar to each other in terms of species composition. Biofilms contribute to the degradation of paint coatings inside towers.
NASA Astrophysics Data System (ADS)
Isinibilir, Melek; Kideys, Ahmet E.; Tarkan, Ahmet N.; Yilmaz, I. Noyan
2008-07-01
The monthly abundance, biomass and taxonomic composition of zooplankton of Izmit Bay (the northeastern Marmara Sea) were studied from October 2001 to September 2002. Most species within the zooplankton community displayed a clear pattern of succession throughout the year. Generally copepods and cladocerans were the most abundant groups, while the contribution of meroplankton increased at inner-most stations and dominated the zooplankton. Both species number ( S) and diversity ( H') were positively influenced by the increase in salinity of upper layers ( r = 0.30 and r = 0.31, p < 0.001, respectively), while chlorophyll a was negatively affected ( r = -0.36, p < 0.001). Even though Noctiluca scintillans had a significant seasonality ( F11,120 = 8.45, p < 0.001, ANOVA), abundance was not related to fluctuations in temperature and only chlorophyll a was adversely correlated ( r = -0.35, p < 0.001). In general, there are some minor differences in zooplankton assemblages of upper and lower layers. A comparison of the species composition and abundance of Izmit Bay with other Black Sea bays reveals a high similarity between them.
Baert, Jan M; De Laender, Frederik; Sabbe, Koen; Janssen, Colin R
2016-12-01
There is now ample evidence that biodiversity stabilizes aggregated ecosystem functions, such as primary production, in changing environments. In primary producer systems, this stabilizing effect is found to be driven by higher functional resistance (i.e., reduced changes in functions by environmental changes) rather than through higher functional resilience (i.e., rapid recovery following environmental changes) in more diverse systems. The stability of aggregated ecosystem functions directly depends on changes in species composition and by consequence their functional contributions to ecosystem functions. Still, it remains only theoretically explored how biodiversity can stabilize ecosystem functions by affecting compositional stability. Here, we demonstrate how biodiversity effects on compositional stability drive biodiversity effects on functional stability in diatom communities. In a microcosm experiment, we exposed 39 communities of five different levels of species richness (1, 2, 4, 6, and 8 species) to three concentrations of a chemical stressor (0, 25, and 250 μg/L atrazine) for four weeks, after which all communities were transferred to atrazine-free medium for three more weeks. Biodiversity simultaneously increased, increasing functional and compositional resistance, but decreased functional and compositional resilience. These results confirm the theoretically proposed link between biodiversity effects on functional and compositional stability in primary producer systems, and provide a mechanistic underpinning for observed biodiversity-stability relationships. Finally, we discuss how higher compositional stability can be expected to become increasingly important in stabilizing ecosystem functions under field conditions when multiple environmental stressors fluctuate simultaneously. © 2016 by the Ecological Society of America.
Grundel, R.; Jean, R.P.; Frohnapple, K.J.; Glowacki, G.A.; Scott, P.E.; Pavlovic, N.B.
2010-01-01
Given bees' central effect on vegetation communities, it is important to understand how and why bee distributions vary across ecological gradients. We examined how plant community composition, plant diversity, nesting suitability, canopy cover, land use, and fire history affected bee distribution across an open-forest gradient in northwest Indiana, USA, a gradient similar to the historic Midwest United States landscape mosaic. When considered with the other predictors, plant community composition was not a significant predictor of bee community composition. Bee abundance was negatively related to canopy cover and positively to recent fire frequency, bee richness was positively related to plant richness and abundance of potential nesting resources, and bee community composition was significantly related to plant richness, soil characteristics potentially related to nesting suitability, and canopy cover. Thus, bee abundance was predicted by a different set of environmental characteristics than was bee species richness, and bee community composition was predicted, in large part, by a combination of the significant predictors of bee abundance and richness. Differences in bee community composition along the woody vegetation gradient were correlated with relative abundance of oligolectic, or diet specialist, bees. Because oligoleges were rarer than diet generalists and were associated with open habitats, their populations may be especially affected by degradation of open habitats. More habitat-specialist bees were documented for open and forest/scrub habitats than for savanna/woodland habitats, consistent with bees responding to habitats of intermediate woody vegetation density, such as savannas, as ecotones rather than as distinct habitat types. Similarity of bee community composition, similarity of bee abundance, and similarity of bee richness between sites were not significantly related to proximity of sites to each other. Nestedness analysis indicated that species composition in species-poor sites was not merely a subset of species composition at richer sites. The lack of significant proximity or nestedness effects suggests that factors at a small spatial scale strongly influence bees' use of sites. The findings indicate that patterns of plant diversity, nesting resource availability, recent fire, and habitat shading, present at the scale of a few hundred meters, are key determinants of bee community patterns in the mosaic open-savanna-forest landscape. ?? 2010 by the Ecological Society of America.
Ayres, Edward; Steltzer, Heidi; Berg, Sarah; Wallenstein, Matthew D; Simmons, Breana L; Wall, Diana H
2009-06-18
Previous studies have shown that plants often have species-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single tree species are often adjacent to areas dominated by another tree species. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant tree species in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition. We assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the tree species, with the highest nitrogen (N) concentration and lowest lignin:N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin:N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among tree species, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the tree species, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid mites did not. Although some soil characteristics were unaffected by tree species identity, our results clearly demonstrate that these dominant tree species are associated with soils that differ in several physical, chemical, and biotic properties. Ongoing environmental changes in this region, e.g. changes in fire regime, frequency of insect outbreaks, changes in precipitation patterns and snowpack, and land-use change, may alter the relative abundance of these tree species over coming decades, which in turn will likely alter the soils.
Grundel, Ralph; Beamer, David; Glowacki, Gary A.; Frohnapple, Krystal; Pavlovic, Noel B.
2014-01-01
Temperate savannas are threatened across the globe. If we prioritize savanna restoration, we should ask how savanna animal communities differ from communities in related open habitats and forests. We documented distribution of amphibian and reptile species across an open-savanna–forest gradient in the Midwest U.S. to determine how fire history and habitat structure affected herpetofaunal community composition. The transition from open habitats to forests was a transition from higher reptile abundance to higher amphibian abundance and the intermediate savanna landscape supported the most species overall. These differences warn against assuming that amphibian and reptile communities will have similar ecological responses to habitat structure. Richness and abundance also often responded in opposite directions to some habitat characteristics, such as cover of bare ground or litter. Herpetofaunal community species composition changed along a fire gradient from infrequent and recent fires to frequent but less recent fires. Nearby (200-m) wetland cover was relatively unimportant in predicting overall herpetofaunal community composition while fire history and fire-related canopy and ground cover were more important predictors of composition, diversity, and abundance. Increased developed cover was negatively related to richness and abundance. This indicates the importance of fire history and fire related landscape characteristics, and the negative effects of development, in shaping the upland herpetofaunal community along the native grassland–forest continuum.
Phylogenetic Diversity in the Macromolecular Composition of Microalgae
Finkel, Zoe V.; Follows, Mick J.; Liefer, Justin D.; Brown, Chris M.; Benner, Ina; Irwin, Andrew J.
2016-01-01
The elemental stoichiometry of microalgae reflects their underlying macromolecular composition and influences competitive interactions among species and their role in the food web and biogeochemistry. Here we provide a new estimate of the macromolecular composition of microalgae using a hierarchical Bayesian analysis of data compiled from the literature. The median macromolecular composition of nutrient-sufficient exponentially growing microalgae is 32.2% protein, 17.3% lipid, 15.0% carbohydrate, 17.3% ash, 5.7% RNA, 1.1% chlorophyll-a and 1.0% DNA as percent dry weight. Our analysis identifies significant phylogenetic differences in macromolecular composition undetected by previous studies due to small sample sizes and the large inherent variability in macromolecular pools. The phylogenetic differences in macromolecular composition lead to variations in carbon-to-nitrogen ratios that are consistent with independent observations. These phylogenetic differences in macromolecular and elemental composition reflect adaptations in cellular architecture and biochemistry; specifically in the cell wall, the light harvesting apparatus, and storage pools. PMID:27228080
Wiezik, Michal; Svitok, Marek; Wieziková, Adela; Dovčiak, Martin
2015-01-01
Global or regional environmental changes in climate or land use have been increasingly implied in shifts in boundaries (ecotones) between adjacent ecosystems such as beech or oak-dominated forests and forest-steppe ecotones that frequently co-occur near the southern range limits of deciduous forest biome in Europe. Yet, our ability to detect changes in biological communities across these ecosystems, or to understand their environmental drivers, can be hampered when different sampling methods are required to characterize biological communities of the adjacent but ecologically different ecosystems. Ants (Hymenoptera: Formicidae) have been shown to be particularly sensitive to changes in temperature and vegetation and they require different sampling methods in closed vs. open habitats. We compared ant assemblages of closed-forests (beech- or oak-dominated) and open forest-steppe habitats in southwestern Carpathians using methods for closed-forest (litter sifting) and open habitats (pitfall trapping), and developed an integrated sampling approach to characterize changes in ant assemblages across these adjacent ecosystems. Using both methods, we collected 5,328 individual ant workers from 28 species. Neither method represented ant communities completely, but pitfall trapping accounted for more species (24) than litter sifting (16). Although pitfall trapping characterized differences in species richness and composition among the ecosystems better, with beech forest being most species poor and ecotone most species rich, litter sifting was more successful in identifying characteristic litter-dwelling species in oak-dominated forest. The integrated sampling approach using both methods yielded more accurate characterization of species richness and composition, and particularly so in species-rich forest-steppe habitat where the combined sample identified significantly higher number of species compared to either of the two methods on their own. Thus, an integrated sampling approach should be used to fully characterize changes in ant assemblages across ecosystem boundaries, or with vegetation change over time, and particularly so in species-rich habitats such as forest-steppe ecotones. PMID:26226140
Wiezik, Michal; Svitok, Marek; Wieziková, Adela; Dovčiak, Martin
2015-01-01
Global or regional environmental changes in climate or land use have been increasingly implied in shifts in boundaries (ecotones) between adjacent ecosystems such as beech or oak-dominated forests and forest-steppe ecotones that frequently co-occur near the southern range limits of deciduous forest biome in Europe. Yet, our ability to detect changes in biological communities across these ecosystems, or to understand their environmental drivers, can be hampered when different sampling methods are required to characterize biological communities of the adjacent but ecologically different ecosystems. Ants (Hymenoptera: Formicidae) have been shown to be particularly sensitive to changes in temperature and vegetation and they require different sampling methods in closed vs. open habitats. We compared ant assemblages of closed-forests (beech- or oak-dominated) and open forest-steppe habitats in southwestern Carpathians using methods for closed-forest (litter sifting) and open habitats (pitfall trapping), and developed an integrated sampling approach to characterize changes in ant assemblages across these adjacent ecosystems. Using both methods, we collected 5,328 individual ant workers from 28 species. Neither method represented ant communities completely, but pitfall trapping accounted for more species (24) than litter sifting (16). Although pitfall trapping characterized differences in species richness and composition among the ecosystems better, with beech forest being most species poor and ecotone most species rich, litter sifting was more successful in identifying characteristic litter-dwelling species in oak-dominated forest. The integrated sampling approach using both methods yielded more accurate characterization of species richness and composition, and particularly so in species-rich forest-steppe habitat where the combined sample identified significantly higher number of species compared to either of the two methods on their own. Thus, an integrated sampling approach should be used to fully characterize changes in ant assemblages across ecosystem boundaries, or with vegetation change over time, and particularly so in species-rich habitats such as forest-steppe ecotones.
Barthe, Stéphanie; Binelli, Giorgio; Hérault, Bruno; Scotti-Saintagne, Caroline; Sabatier, Daniel; Scotti, Ivan
2017-02-01
How Quaternary climatic and geological disturbances influenced the composition of Neotropical forests is hotly debated. Rainfall and temperature changes during and/or immediately after the last glacial maximum (LGM) are thought to have strongly affected the geographical distribution and local abundance of tree species. The paucity of the fossil records in Neotropical forests prevents a direct reconstruction of such processes. To describe community-level historical trends in forest composition, we turned therefore to inferential methods based on the reconstruction of past demographic changes. In particular, we modelled the history of rainforests in the eastern Guiana Shield over a timescale of several thousand generations, through the application of approximate Bayesian computation and maximum-likelihood methods to diversity data at nuclear and chloroplast loci in eight species or subspecies of rainforest trees. Depending on the species and on the method applied, we detected population contraction, expansion or stability, with a general trend in favour of stability or expansion, with changes presumably having occurred during or after the LGM. These findings suggest that Guiana Shield rainforests have globally persisted, while expanding, through the Quaternary, but that different species have experienced different demographic events, with a trend towards the increase in frequency of light-demanding, disturbance-associated species. © 2016 John Wiley & Sons Ltd.
Johnson, James H.; Chalupnicki, Marc; Abbett, Ross; Diaz, Avriel R; Nack, Christopher C
2017-01-01
Fish feeding ecology has been shown to vary over a 24-h period in terms of the prey consumed and feeding intensity. Consequently, in order to best determine the interspecific feeding associations within a fish community, examination of the diet at multiple times over a 24-h period is often necessary. We examined the diel feeding ecology of three fish species that were numerically dominant in a Lake Ontario embayment during summer. The diet of each of the three species, young-of-year Pumpkinseed Lepomis gibbosus, Golden Shiner Notemigonus crysoleucas, and Brook Silverside Labidesthes sicculus, was distinct with no significant overlap in diet composition occurring within any of the 4-h time intervals. The diet composition of each species suggested that Brook Silverside were feeding at the surface (terrestrial invertebrates and aquatic surface dwelling hemipterans), whereas young-of-year Pumpkinseed (amphipods) and Golden Shiner (tipulids) were feeding on different benthic prey. Differences in feeding periodicity were most pronounced for young-of-year Pumpkinseed. Our findings provide valuable insights on interspecific feeding associations among these three fish species during summer in a Lake Ontario embayment.
Wang, Xuexia; Dong, Shikui; Yang, Bing; Li, Yuanyuan; Su, Xukun
2014-10-01
A 3-year survey was conducted to explore the relationships among plant composition, productivity, and soil fertility characterizing four different degradation stages of an alpine meadow in the source region of the Yangtze and Yellow Rivers, China. Results showed that plant species diversity, productivity, and soil fertility of the top 30-cm soil layer significantly declined with degradation stages of alpine meadow over the study period. The productivity of forbs significantly increased with degradation stages, and the soil potassium stock was not affected by grassland degradation. The vegetation composition gradually shifted from perennial graminoids (grasses and sedges) to annual forbs along the degradation gradient. The abrupt change of response in plant diversity, plant productivity, and soil nutrients was demonstrated after heavy grassland degradation. Moreover, degradation can indicate plant species diversity and productivity through changing soil fertility. However, the clear relationships are difficult to establish. In conclusion, degradation influenced ecosystem function and services, such as plant species diversity, productivity, and soil carbon and nitrogen stocks. Additionally, both plant species diversity and soil nutrients were important predictors in different degradation stages of alpine meadows. To this end, heavy degradation grade was shown to cause shift of plant community in alpine meadow, which provided an important basis for sustaining ecosystem function, manipulating the vegetation composition of the area and restoring the degraded alpine grassland.