Sample records for specific anatomical features

  1. Quantitative Wood Anatomy-Practical Guidelines.

    PubMed

    von Arx, Georg; Crivellaro, Alan; Prendin, Angela L; Čufar, Katarina; Carrer, Marco

    2016-01-01

    Quantitative wood anatomy analyzes the variability of xylem anatomical features in trees, shrubs, and herbaceous species to address research questions related to plant functioning, growth, and environment. Among the more frequently considered anatomical features are lumen dimensions and wall thickness of conducting cells, fibers, and several ray properties. The structural properties of each xylem anatomical feature are mostly fixed once they are formed, and define to a large extent its functionality, including transport and storage of water, nutrients, sugars, and hormones, and providing mechanical support. The anatomical features can often be localized within an annual growth ring, which allows to establish intra-annual past and present structure-function relationships and its sensitivity to environmental variability. However, there are many methodological challenges to handle when aiming at producing (large) data sets of xylem anatomical data. Here we describe the different steps from wood sample collection to xylem anatomical data, provide guidance and identify pitfalls, and present different image-analysis tools for the quantification of anatomical features, in particular conducting cells. We show that each data production step from sample collection in the field, microslide preparation in the lab, image capturing through an optical microscope and image analysis with specific tools can readily introduce measurement errors between 5 and 30% and more, whereby the magnitude usually increases the smaller the anatomical features. Such measurement errors-if not avoided or corrected-may make it impossible to extract meaningful xylem anatomical data in light of the rather small range of variability in many anatomical features as observed, for example, within time series of individual plants. Following a rigid protocol and quality control as proposed in this paper is thus mandatory to use quantitative data of xylem anatomical features as a powerful source for many research topics.

  2. Quantitative Wood Anatomy—Practical Guidelines

    PubMed Central

    von Arx, Georg; Crivellaro, Alan; Prendin, Angela L.; Čufar, Katarina; Carrer, Marco

    2016-01-01

    Quantitative wood anatomy analyzes the variability of xylem anatomical features in trees, shrubs, and herbaceous species to address research questions related to plant functioning, growth, and environment. Among the more frequently considered anatomical features are lumen dimensions and wall thickness of conducting cells, fibers, and several ray properties. The structural properties of each xylem anatomical feature are mostly fixed once they are formed, and define to a large extent its functionality, including transport and storage of water, nutrients, sugars, and hormones, and providing mechanical support. The anatomical features can often be localized within an annual growth ring, which allows to establish intra-annual past and present structure-function relationships and its sensitivity to environmental variability. However, there are many methodological challenges to handle when aiming at producing (large) data sets of xylem anatomical data. Here we describe the different steps from wood sample collection to xylem anatomical data, provide guidance and identify pitfalls, and present different image-analysis tools for the quantification of anatomical features, in particular conducting cells. We show that each data production step from sample collection in the field, microslide preparation in the lab, image capturing through an optical microscope and image analysis with specific tools can readily introduce measurement errors between 5 and 30% and more, whereby the magnitude usually increases the smaller the anatomical features. Such measurement errors—if not avoided or corrected—may make it impossible to extract meaningful xylem anatomical data in light of the rather small range of variability in many anatomical features as observed, for example, within time series of individual plants. Following a rigid protocol and quality control as proposed in this paper is thus mandatory to use quantitative data of xylem anatomical features as a powerful source for many research topics. PMID:27375641

  3. Feature-Based Morphometry: Discovering Group-related Anatomical Patterns

    PubMed Central

    Toews, Matthew; Wells, William; Collins, D. Louis; Arbel, Tal

    2015-01-01

    This paper presents feature-based morphometry (FBM), a new, fully data-driven technique for discovering patterns of group-related anatomical structure in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between subjects, FBM explicitly aims to identify distinctive anatomical patterns that may only be present in subsets of subjects, due to disease or anatomical variability. The image is modeled as a collage of generic, localized image features that need not be present in all subjects. Scale-space theory is applied to analyze image features at the characteristic scale of underlying anatomical structures, instead of at arbitrary scales such as global or voxel-level. A probabilistic model describes features in terms of their appearance, geometry, and relationship to subject groups, and is automatically learned from a set of subject images and group labels. Features resulting from learning correspond to group-related anatomical structures that can potentially be used as image biomarkers of disease or as a basis for computer-aided diagnosis. The relationship between features and groups is quantified by the likelihood of feature occurrence within a specific group vs. the rest of the population, and feature significance is quantified in terms of the false discovery rate. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer's (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and an equal error classification rate of 0.80 is achieved for subjects aged 60-80 years exhibiting mild AD (CDR=1). PMID:19853047

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafata, K; Ren, L; Wu, Q

    Purpose: To develop a data-mining methodology based on quantum clustering and machine learning to predict expected dosimetric endpoints for lung SBRT applications based on patient-specific anatomic features. Methods: Ninety-three patients who received lung SBRT at our clinic from 2011–2013 were retrospectively identified. Planning information was acquired for each patient, from which various features were extracted using in-house semi-automatic software. Anatomic features included tumor-to-OAR distances, tumor location, total-lung-volume, GTV and ITV. Dosimetric endpoints were adopted from RTOG-0195 recommendations, and consisted of various OAR-specific partial-volume doses and maximum point-doses. First, PCA analysis and unsupervised quantum-clustering was used to explore the feature-space tomore » identify potentially strong classifiers. Secondly, a multi-class logistic regression algorithm was developed and trained to predict dose-volume endpoints based on patient-specific anatomic features. Classes were defined by discretizing the dose-volume data, and the feature-space was zero-mean normalized. Fitting parameters were determined by minimizing a regularized cost function, and optimization was performed via gradient descent. As a pilot study, the model was tested on two esophageal dosimetric planning endpoints (maximum point-dose, dose-to-5cc), and its generalizability was evaluated with leave-one-out cross-validation. Results: Quantum-Clustering demonstrated a strong separation of feature-space at 15Gy across the first-and-second Principle Components of the data when the dosimetric endpoints were retrospectively identified. Maximum point dose prediction to the esophagus demonstrated a cross-validation accuracy of 87%, and the maximum dose to 5cc demonstrated a respective value of 79%. The largest optimized weighting factor was placed on GTV-to-esophagus distance (a factor of 10 greater than the second largest weighting factor), indicating an intuitively strong correlation between this feature and both endpoints. Conclusion: This pilot study shows that it is feasible to predict dose-volume endpoints based on patient-specific anatomic features. The developed methodology can potentially help to identify patients at risk for higher OAR doses, thus improving the efficiency of treatment planning. R01-184173.« less

  5. Effects of lung disease on the three-dimensional structure and air flow pattern in the human airway tree

    NASA Astrophysics Data System (ADS)

    van de Moortele, Tristan; Nemes, Andras; Wendt, Christine; Coletti, Filippo

    2016-11-01

    The morphological features of the airway tree directly affect the air flow features during breathing, which determines the gas exchange and inhaled particle transport. Lung disease, Chronic Obstructive Pulmonary Disease (COPD) in this study, affects the structural features of the lungs, which in turn negatively affects the air flow through the airways. Here bronchial tree air volume geometries are segmented from Computed Tomography (CT) scans of healthy and diseased subjects. Geometrical analysis of the airway centerlines and corresponding cross-sectional areas provide insight into the specific effects of COPD on the airway structure. These geometries are also used to 3D print anatomically accurate, patient specific flow models. Three-component, three-dimensional velocity fields within these models are acquired using Magnetic Resonance Imaging (MRI). The three-dimensional flow fields provide insight into the change in flow patterns and features. Additionally, particle trajectories are determined using the velocity fields, to identify the fate of therapeutic and harmful inhaled aerosols. Correlation between disease-specific and patient-specific anatomical features with dysfunctional airflow patterns can be achieved by combining geometrical and flow analysis.

  6. A Bayesian approach to the creation of a study-customized neonatal brain atlas

    PubMed Central

    Zhang, Yajing; Chang, Linda; Ceritoglu, Can; Skranes, Jon; Ernst, Thomas; Mori, Susumu; Miller, Michael I.; Oishi, Kenichi

    2014-01-01

    Atlas-based image analysis (ABA), in which an anatomical “parcellation map” is used for parcel-by-parcel image quantification, is widely used to analyze anatomical and functional changes related to brain development, aging, and various diseases. The parcellation maps are often created based on common MRI templates, which allow users to transform the template to target images, or vice versa, to perform parcel-by-parcel statistics, and report the scientific findings based on common anatomical parcels. The use of a study-specific template, which represents the anatomical features of the study population better than common templates, is preferable for accurate anatomical labeling; however, the creation of a parcellation map for a study-specific template is extremely labor intensive, and the definitions of anatomical boundaries are not necessarily compatible with those of the common template. In this study, we employed a Volume-based Template Estimation (VTE) method to create a neonatal brain template customized to a study population, while keeping the anatomical parcellation identical to that of a common MRI atlas. The VTE was used to morph the standardized parcellation map of the JHU-neonate-SS atlas to capture the anatomical features of a study population. The resultant “study-customized” T1-weighted and diffusion tensor imaging (DTI) template, with three-dimensional anatomical parcellation that defined 122 brain regions, was compared with the JHU-neonate-SS atlas, in terms of the registration accuracy. A pronounced increase in the accuracy of cortical parcellation and superior tensor alignment were observed when the customized template was used. With the customized atlas-based analysis, the fractional anisotropy (FA) detected closely approximated the manual measurements. This tool provides a solution for achieving normalization-based measurements with increased accuracy, while reporting scientific findings in a consistent framework. PMID:25026155

  7. Segmenting Brain Tissues from Chinese Visible Human Dataset by Deep-Learned Features with Stacked Autoencoder

    PubMed Central

    Zhao, Guangjun; Wang, Xuchu; Niu, Yanmin; Tan, Liwen; Zhang, Shao-Xiang

    2016-01-01

    Cryosection brain images in Chinese Visible Human (CVH) dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel). Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE) to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain. PMID:27057543

  8. Segmenting Brain Tissues from Chinese Visible Human Dataset by Deep-Learned Features with Stacked Autoencoder.

    PubMed

    Zhao, Guangjun; Wang, Xuchu; Niu, Yanmin; Tan, Liwen; Zhang, Shao-Xiang

    2016-01-01

    Cryosection brain images in Chinese Visible Human (CVH) dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel). Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE) to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain.

  9. Bone morphology of the hind limbs in two caviomorph rodents.

    PubMed

    de Araújo, F A P; Sesoko, N F; Rahal, S C; Teixeira, C R; Müller, T R; Machado, M R F

    2013-04-01

    In order to evaluate the hind limbs of caviomorph rodents a descriptive analysis of the Cuniculus paca (Linnaeus, 1766) and Hydrochoerus hydrochaeris (Linnaeus, 1766) was performed using anatomical specimens, radiography, computed tomography (CT) and full-coloured prototype models to generate bone anatomy data. The appendicular skeleton of the two largest rodents of Neotropical America was compared with the previously reported anatomical features of Rattus norvegicus (Berkenhout, 1769) and domestic Cavia porcellus (Linnaeus, 1758). The structures were analyzed macroscopically and particular findings of each species reported. Features including the presence of articular fibular projection and lunulae were observed in the stifle joint of all rodents. Imaging aided in anatomical description and, specifically in the identification of bone structures in Cuniculus paca and Hydrochoerus hydrochaeris. The imaging findings were correlated with the anatomical structures observed. The data may be used in future studies comparing these animals to other rodents and mammalian species. © 2012 Blackwell Verlag GmbH.

  10. Neurocomputational Consequences of Evolutionary Connectivity Changes in Perisylvian Language Cortex.

    PubMed

    Schomers, Malte R; Garagnani, Max; Pulvermüller, Friedemann

    2017-03-15

    The human brain sets itself apart from that of its primate relatives by specific neuroanatomical features, especially the strong linkage of left perisylvian language areas (frontal and temporal cortex) by way of the arcuate fasciculus (AF). AF connectivity has been shown to correlate with verbal working memory-a specifically human trait providing the foundation for language abilities-but a mechanistic explanation of any related causal link between anatomical structure and cognitive function is still missing. Here, we provide a possible explanation and link, by using neurocomputational simulations in neuroanatomically structured models of the perisylvian language cortex. We compare networks mimicking key features of cortical connectivity in monkeys and humans, specifically the presence of relatively stronger higher-order "jumping links" between nonadjacent perisylvian cortical areas in the latter, and demonstrate that the emergence of working memory for syllables and word forms is a functional consequence of this structural evolutionary change. We also show that a mere increase of learning time is not sufficient, but that this specific structural feature, which entails higher connectivity degree of relevant areas and shorter sensorimotor path length, is crucial. These results offer a better understanding of specifically human anatomical features underlying the language faculty and their evolutionary selection advantage. SIGNIFICANCE STATEMENT Why do humans have superior language abilities compared to primates? Recently, a uniquely human neuroanatomical feature has been demonstrated in the strength of the arcuate fasciculus (AF), a fiber pathway interlinking the left-hemispheric language areas. Although AF anatomy has been related to linguistic skills, an explanation of how this fiber bundle may support language abilities is still missing. We use neuroanatomically structured computational models to investigate the consequences of evolutionary changes in language area connectivity and demonstrate that the human-specific higher connectivity degree and comparatively shorter sensorimotor path length implicated by the AF entail emergence of verbal working memory, a prerequisite for language learning. These results offer a better understanding of specifically human anatomical features for language and their evolutionary selection advantage. Copyright © 2017 Schomers et al.

  11. 3D scanning and printing skeletal tissues for anatomy education.

    PubMed

    Thomas, Daniel B; Hiscox, Jessica D; Dixon, Blair J; Potgieter, Johan

    2016-09-01

    Detailed anatomical models can be produced with consumer-level 3D scanning and printing systems. 3D replication techniques are significant advances for anatomical education as they allow practitioners to more easily introduce diverse or numerous specimens into classrooms. Here we present a methodology for producing anatomical models in-house, with the chondrocranium cartilage from a spiny dogfish (Squalus acanthias) and the skeleton of a cane toad (Rhinella marina) as case studies. 3D digital replicas were produced using two consumer-level scanners and specimens were 3D-printed with selective laser sintering. The fidelity of the two case study models was determined with respect to key anatomical features. Larger-scale features of the dogfish chondrocranium and frog skeleton were all well-resolved and distinct in the 3D digital models, and many finer-scale features were also well-resolved, but some more subtle features were absent from the digital models (e.g. endolymphatic foramina in chondrocranium). All characters identified in the digital chondrocranium could be identified in the subsequent 3D print; however, three characters in the 3D-printed frog skeleton could not be clearly delimited (palatines, parasphenoid and pubis). Characters that were absent in the digital models or 3D prints had low-relief in the original scanned specimen and represent a minor loss of fidelity. Our method description and case studies show that minimal equipment and training is needed to produce durable skeletal specimens. These technologies support the tailored production of models for specific classes or research aims. © 2016 Anatomical Society.

  12. Gross feature recognition of Anatomical Images based on Atlas grid (GAIA): Incorporating the local discrepancy between an atlas and a target image to capture the features of anatomic brain MRI.

    PubMed

    Qin, Yuan-Yuan; Hsu, Johnny T; Yoshida, Shoko; Faria, Andreia V; Oishi, Kumiko; Unschuld, Paul G; Redgrave, Graham W; Ying, Sarah H; Ross, Christopher A; van Zijl, Peter C M; Hillis, Argye E; Albert, Marilyn S; Lyketsos, Constantine G; Miller, Michael I; Mori, Susumu; Oishi, Kenichi

    2013-01-01

    We aimed to develop a new method to convert T1-weighted brain MRIs to feature vectors, which could be used for content-based image retrieval (CBIR). To overcome the wide range of anatomical variability in clinical cases and the inconsistency of imaging protocols, we introduced the Gross feature recognition of Anatomical Images based on Atlas grid (GAIA), in which the local intensity alteration, caused by pathological (e.g., ischemia) or physiological (development and aging) intensity changes, as well as by atlas-image misregistration, is used to capture the anatomical features of target images. As a proof-of-concept, the GAIA was applied for pattern recognition of the neuroanatomical features of multiple stages of Alzheimer's disease, Huntington's disease, spinocerebellar ataxia type 6, and four subtypes of primary progressive aphasia. For each of these diseases, feature vectors based on a training dataset were applied to a test dataset to evaluate the accuracy of pattern recognition. The feature vectors extracted from the training dataset agreed well with the known pathological hallmarks of the selected neurodegenerative diseases. Overall, discriminant scores of the test images accurately categorized these test images to the correct disease categories. Images without typical disease-related anatomical features were misclassified. The proposed method is a promising method for image feature extraction based on disease-related anatomical features, which should enable users to submit a patient image and search past clinical cases with similar anatomical phenotypes.

  13. Reduced hemispheric asymmetry of brain anatomical networks in attention deficit hyperactivity disorder.

    PubMed

    Li, Dandan; Li, Ting; Niu, Yan; Xiang, Jie; Cao, Rui; Liu, Bo; Zhang, Hui; Wang, Bin

    2018-05-11

    Despite many studies reporting a variety of alterations in brain networks in patients with attention deficit hyperactivity disorder (ADHD), alterations in hemispheric anatomical networks are still unclear. In this study, we investigated topology alterations in hemispheric white matter in patients with ADHD and the relationship between these alterations and clinical features of the illness. Weighted hemispheric brain anatomical networks were first constructed for each of 40 right-handed patients with ADHD and 53 matched normal controls. Then, graph theoretical approaches were utilized to compute hemispheric topological properties. The small-world property was preserved in the hemispheric network. Furthermore, a significant group-by-hemisphere interaction was revealed in global efficiency, local efficiency and characteristic path length, attributed to the significantly reduced hemispheric asymmetry of global and local integration in patients with ADHD compared with normal controls. Specifically, reduced asymmetric regional efficiency was found in three regions. Finally, we found that the abnormal asymmetry of hemispheric brain anatomical network topology and regional efficiency were both associated with clinical features (the Adult ADHD Self-Report Scale and Wechsler Adult Intelligence Scale) in patients. Our findings provide new insights into the lateralized nature of hemispheric dysconnectivity and highlight the potential for using brain network measures of hemispheric asymmetry as neural biomarkers for ADHD and its clinical features.

  14. Epidemiology of Feature-Specific Injuries Sustained by Skiers in a Snow Park.

    PubMed

    Carús, Luis; Escorihuela, María

    2016-09-01

    The objective of the present case series study was to analyze injury types and injured anatomic locations resulting from skiing in snow park (SP) features and to determine potential risk factors for ski injuries in an SP. The study was conducted during the 2013-2014 winter season in the SP of a major winter resort located in the Spanish Pyrenees. Cases involved skiers who experienced feature-related injuries in the SP. A total of 113 cases met the inclusion criteria. Logistic regression was used to calculate the odds of injury types and injury to anatomic locations on aerial versus nonaerial features. The overall injury rate was 0.9 per 1000 skier runs. The proportion of injuries was higher for aerials (1.18% of uses) than for nonaerials (0.66% of uses). Results revealed that the upper extremities were the most commonly injured body region, and sprains/strains/dislocations and fractures were the most common injury type. The most commonly injured anatomic location on nonaerial features was the face, while on aerial features it was the head. A higher proportion of fractures was observed on aerial features, while a higher proportion of sprains/strains/dislocations was observed on nonaerial features. Prevention strategies to reduce injury risk include SP redesign, safety and communication policies, instruction on technical skills, and promotion of the use of protective equipment. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  15. Anatomical curve identification

    PubMed Central

    Bowman, Adrian W.; Katina, Stanislav; Smith, Joanna; Brown, Denise

    2015-01-01

    Methods for capturing images in three dimensions are now widely available, with stereo-photogrammetry and laser scanning being two common approaches. In anatomical studies, a number of landmarks are usually identified manually from each of these images and these form the basis of subsequent statistical analysis. However, landmarks express only a very small proportion of the information available from the images. Anatomically defined curves have the advantage of providing a much richer expression of shape. This is explored in the context of identifying the boundary of breasts from an image of the female torso and the boundary of the lips from a facial image. The curves of interest are characterised by ridges or valleys. Key issues in estimation are the ability to navigate across the anatomical surface in three-dimensions, the ability to recognise the relevant boundary and the need to assess the evidence for the presence of the surface feature of interest. The first issue is addressed by the use of principal curves, as an extension of principal components, the second by suitable assessment of curvature and the third by change-point detection. P-spline smoothing is used as an integral part of the methods but adaptations are made to the specific anatomical features of interest. After estimation of the boundary curves, the intermediate surfaces of the anatomical feature of interest can be characterised by surface interpolation. This allows shape variation to be explored using standard methods such as principal components. These tools are applied to a collection of images of women where one breast has been reconstructed after mastectomy and where interest lies in shape differences between the reconstructed and unreconstructed breasts. They are also applied to a collection of lip images where possible differences in shape between males and females are of interest. PMID:26041943

  16. Conversion Discriminative Analysis on Mild Cognitive Impairment Using Multiple Cortical Features from MR Images.

    PubMed

    Guo, Shengwen; Lai, Chunren; Wu, Congling; Cen, Guiyin

    2017-01-01

    Neuroimaging measurements derived from magnetic resonance imaging provide important information required for detecting changes related to the progression of mild cognitive impairment (MCI). Cortical features and changes play a crucial role in revealing unique anatomical patterns of brain regions, and further differentiate MCI patients from normal states. Four cortical features, namely, gray matter volume, cortical thickness, surface area, and mean curvature, were explored for discriminative analysis among three groups including the stable MCI (sMCI), the converted MCI (cMCI), and the normal control (NC) groups. In this study, 158 subjects (72 NC, 46 sMCI, and 40 cMCI) were selected from the Alzheimer's Disease Neuroimaging Initiative. A sparse-constrained regression model based on the l2-1-norm was introduced to reduce the feature dimensionality and retrieve essential features for the discrimination of the three groups by using a support vector machine (SVM). An optimized strategy of feature addition based on the weight of each feature was adopted for the SVM classifier in order to achieve the best classification performance. The baseline cortical features combined with the longitudinal measurements for 2 years of follow-up data yielded prominent classification results. In particular, the cortical thickness produced a classification with 98.84% accuracy, 97.5% sensitivity, and 100% specificity for the sMCI-cMCI comparison; 92.37% accuracy, 84.78% sensitivity, and 97.22% specificity for the cMCI-NC comparison; and 93.75% accuracy, 92.5% sensitivity, and 94.44% specificity for the sMCI-NC comparison. The best performances obtained by the SVM classifier using the essential features were 5-40% more than those using all of the retained features. The feasibility of the cortical features for the recognition of anatomical patterns was certified; thus, the proposed method has the potential to improve the clinical diagnosis of sub-types of MCI and predict the risk of its conversion to Alzheimer's disease.

  17. Anatomical location differences between mutated and wild-type isocitrate dehydrogenase 1 in low-grade gliomas.

    PubMed

    Yu, Jinhua; Shi, Zhifeng; Ji, Chunhong; Lian, Yuxi; Wang, Yuanyuan; Chen, Liang; Mao, Ying

    2017-10-01

    Anatomical location of gliomas has been considered as a factor implicating the contributions of a specific precursor cells during the tumor growth. Isocitrate dehydrogenase 1 (IDH1) is a pathognomonic biomarker with a significant impact on the development of gliomas and remarkable prognostic effect. The correlation between anatomical location of tumor and IDH1 states for low-grade gliomas was analyzed quantitatively in this study. Ninety-two patients diagnosed of low-grade glioma pathologically were recruited in this study, including 65 patients with IDH1-mutated glioma and 27 patients with wide-type IDH1. A convolutional neural network was designed to segment the tumor from three-dimensional magnetic resonance imaging images. Voxel-based lesion symptom mapping was then employed to study the tumor location distribution differences between gliomas with mutated and wild-type IDH1. In order to characterize the location differences quantitatively, the Automated Anatomical Labeling Atlas was used to partition the standard brain atlas into 116 anatomical volumes of interests (AVOIs). The percentages of tumors with different IDH1 states in 116 AVOIs were calculated and compared. Support vector machine and AdaBoost algorithms were used to estimate the IDH1 status based on the 116 location features of each patient. Experimental results proved that the quantitative tumor location measurement could be a very important group of imaging features in biomarker estimation based on radiomics analysis of glioma.

  18. Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs

    PubMed Central

    Wu, Ming; Nern, Aljoscha; Williamson, W Ryan; Morimoto, Mai M; Reiser, Michael B; Card, Gwyneth M; Rubin, Gerald M

    2016-01-01

    Visual projection neurons (VPNs) provide an anatomical connection between early visual processing and higher brain regions. Here we characterize lobula columnar (LC) cells, a class of Drosophila VPNs that project to distinct central brain structures called optic glomeruli. We anatomically describe 22 different LC types and show that, for several types, optogenetic activation in freely moving flies evokes specific behaviors. The activation phenotypes of two LC types closely resemble natural avoidance behaviors triggered by a visual loom. In vivo two-photon calcium imaging reveals that these LC types respond to looming stimuli, while another type does not, but instead responds to the motion of a small object. Activation of LC neurons on only one side of the brain can result in attractive or aversive turning behaviors depending on the cell type. Our results indicate that LC neurons convey information on the presence and location of visual features relevant for specific behaviors. DOI: http://dx.doi.org/10.7554/eLife.21022.001 PMID:28029094

  19. Using GIS for spatial analysis of rectal lesions in the human body.

    PubMed

    Garb, Jane L; Ganai, Sabha; Skinner, Ric; Boyd, Christopher S; Wait, Richard B

    2007-03-15

    Geographic Information Systems (GIS) have been used in a wide variety of applications to integrate data and explore the spatial relationship of geographic features. Traditionally this has referred to features on the surface of the earth. However, it is possible to apply GIS in medicine, at the scale of the human body, to visualize and analyze anatomic and clinical features. In the present study we used GIS to examine the findings of transanal endoscopic microsurgery (TEM), a minimally-invasive procedure to locate and remove both benign and cancerous lesions of the rectum. Our purpose was to determine whether anatomic features of the human rectum and clinical findings at the time of surgery could be rendered in a GIS and spatially analyzed for their relationship to clinical outcomes. Maps of rectal topology were developed in two and three dimensions. These maps highlight anatomic features of the rectum and the location of lesions found on TEM. Spatial analysis demonstrated a significant relationship between anatomic location of the lesion and procedural failure. This study demonstrates the feasibility of rendering anatomical locations and clinical events in a GIS and its value in clinical research. This allows the visualization and spatial analysis of clinical and pathologic features, increasing our awareness of the relationship between anatomic features and clinical outcomes as well as enhancing our understanding and management of this disease process.

  20. Using GIS for spatial analysis of rectal lesions in the human body

    PubMed Central

    Garb, Jane L; Ganai, Sabha; Skinner, Ric; Boyd, Christopher S; Wait, Richard B

    2007-01-01

    Background Geographic Information Systems (GIS) have been used in a wide variety of applications to integrate data and explore the spatial relationship of geographic features. Traditionally this has referred to features on the surface of the earth. However, it is possible to apply GIS in medicine, at the scale of the human body, to visualize and analyze anatomic and clinical features. In the present study we used GIS to examine the findings of transanal endoscopic microsurgery (TEM), a minimally-invasive procedure to locate and remove both benign and cancerous lesions of the rectum. Our purpose was to determine whether anatomic features of the human rectum and clinical findings at the time of surgery could be rendered in a GIS and spatially analyzed for their relationship to clinical outcomes. Results Maps of rectal topology were developed in two and three dimensions. These maps highlight anatomic features of the rectum and the location of lesions found on TEM. Spatial analysis demonstrated a significant relationship between anatomic location of the lesion and procedural failure. Conclusion This study demonstrates the feasibility of rendering anatomical locations and clinical events in a GIS and its value in clinical research. This allows the visualization and spatial analysis of clinical and pathologic features, increasing our awareness of the relationship between anatomic features and clinical outcomes as well as enhancing our understanding and management of this disease process. PMID:17362510

  1. Neuropsychological Features of Dyslexia.

    ERIC Educational Resources Information Center

    Feifer, Steven G.

    This literature review provides support for the idea that subtle anatomical and functional deviations in the brain correlate with specific types of reading disorders. It finds evidence that symmetry or reversed asymmetry in the plana temporale may be associated with difficulty in acquiring sound/symbol relationships. Studies are reported to show…

  2. Anatomic features involved in technical complexity of partial nephrectomy.

    PubMed

    Hou, Weibin; Yan, Weigang; Ji, Zhigang

    2015-01-01

    Nephrometry score systems, including RENAL nephrometry, preoperative aspects and dimensions used for an anatomical classification system, C-index, diameter-axial-polar nephrometry, contact surface area score, calculating resected and ischemized volume, renal tumor invasion index, surgical approach renal ranking score, zonal NePhRO score, and renal pelvic score, have been reviewed. Moreover, salient anatomic features like the perinephric fat and vascular variants also have been discussed. We then extract 7 anatomic characteristics, namely tumor size, spatial location, adjacency, exophytic/endophytic extension, vascular variants, pelvic anatomy, and perinephric fat as important features for partial nephrectomy. For novice surgeons, comprehensive and adequate anatomic consideration may help them in their early clinical practice. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Brain Morphometry Using Anatomical Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Bansal, Ravi; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    The efficacy of anatomical magnetic resonance imaging (MRI) in studying the morphological features of various regions of the brain is described, also providing the steps used in the processing and studying of the images. The ability to correlate these features with several clinical and psychological measures can help in using anatomical MRI to…

  4. Anatomical Entity Recognition with a Hierarchical Framework Augmented by External Resources

    PubMed Central

    Xu, Yan; Hua, Ji; Ni, Zhaoheng; Chen, Qinlang; Fan, Yubo; Ananiadou, Sophia; Chang, Eric I-Chao; Tsujii, Junichi

    2014-01-01

    References to anatomical entities in medical records consist not only of explicit references to anatomical locations, but also other diverse types of expressions, such as specific diseases, clinical tests, clinical treatments, which constitute implicit references to anatomical entities. In order to identify these implicit anatomical entities, we propose a hierarchical framework, in which two layers of named entity recognizers (NERs) work in a cooperative manner. Each of the NERs is implemented using the Conditional Random Fields (CRF) model, which use a range of external resources to generate features. We constructed a dictionary of anatomical entity expressions by exploiting four existing resources, i.e., UMLS, MeSH, RadLex and BodyPart3D, and supplemented information from two external knowledge bases, i.e., Wikipedia and WordNet, to improve inference of anatomical entities from implicit expressions. Experiments conducted on 300 discharge summaries showed a micro-averaged performance of 0.8509 Precision, 0.7796 Recall and 0.8137 F1 for explicit anatomical entity recognition, and 0.8695 Precision, 0.6893 Recall and 0.7690 F1 for implicit anatomical entity recognition. The use of the hierarchical framework, which combines the recognition of named entities of various types (diseases, clinical tests, treatments) with information embedded in external knowledge bases, resulted in a 5.08% increment in F1. The resources constructed for this research will be made publicly available. PMID:25343498

  5. SU-F-R-14: PET Based Radiomics to Predict Outcomes in Patients with Hodgkin Lymphoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J; Aristophanous, M; Akhtari, M

    Purpose: To identify PET-based radiomics features associated with high refractory/relapsed disease risk for Hodgkin lymphoma patients. Methods: A total of 251 Hodgkin lymphoma patients including 19 primary refractory and 9 relapsed patients were investigated. All patients underwent an initial pre-treatment diagnostic FDG PET/CT scan. All cancerous lymph node regions (ROIs) were delineated by an experienced physician based on thresholding each volume of disease in the anatomical regions to SUV>2.5. We extracted 122 image features and evaluated the effect of ROI selection (the largest ROI, the ROI with highest mean SUV, merged ROI, and a single anatomic region [e.g. mediastinum]) onmore » classification accuracy. Random forest was used as a classifier and ROC analysis was used to assess the relationship between selected features and patient’s outcome status. Results: Each patient had between 1 and 9 separate ROIs, with much intra-patient variability in PET features. The best model, which used features from a single anatomic region (the mediastinal ROI, only volumes>5cc: 169 patients with 12 primary refractory) had a classification accuracy of 80.5% for primary refractory disease. The top five features, based on Gini index, consist of shape features (max 3D-diameter and volume) and texture features (correlation and information measure of correlation1&2). In the ROC analysis, sensitivity and specificity of the best model were 0.92 and 0.80, respectively. The area under the ROC (AUC) and the accuracy were 0.86 and 0.86, respectively. The classification accuracy was less than 60% for other ROI models or when ROIs less than 5cc were included. Conclusion: This study showed that PET-based radiomics features from the mediastinal lymph region are associated with primary refractory disease and therefore may play an important role in predicting outcomes in Hodgkin lymphoma patients. These features could be additive beyond baseline tumor and clinical characteristics, and may warrant more aggressive treatment.« less

  6. The AEO, an Ontology of Anatomical Entities for Classifying Animal Tissues and Organs

    PubMed Central

    Bard, Jonathan B. L.

    2012-01-01

    This paper describes the AEO, an ontology of anatomical entities that expands the common anatomy reference ontology (CARO) and whose major novel feature is a type hierarchy of ~160 anatomical terms. The breadth of the AEO is wider than CARO as it includes both developmental and gender-specific classes, while the granularity of the AEO terms is at a level adequate to classify simple-tissues (~70 classes) characterized by their containing a predominantly single cell-type. For convenience and to facilitate interoperability, the AEO contains an abbreviated version of the ontology of cell-types (~100 classes) that is linked to these simple-tissue types. The AEO was initially based on an analysis of a broad range of animal anatomy ontologies and then upgraded as it was used to classify the ~2500 concepts in a new version of the ontology of human developmental anatomy (www.obofoundry.org/), a process that led to significant improvements in its structure and content, albeit with a possible focus on mammalian embryos. The AEO is intended to provide the formal classification expected in contemporary ontologies as well as capturing knowledge about anatomical structures not currently included in anatomical ontologies. The AEO may thus be useful in increasing the amount of tissue and cell-type knowledge in other anatomy ontologies, facilitating annotation of tissues that share common features, and enabling interoperability across anatomy ontologies. The AEO can be downloaded from http://www.obofoundry.org/. PMID:22347883

  7. 2D image classification for 3D anatomy localization: employing deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    de Vos, Bob D.; Wolterink, Jelmer M.; de Jong, Pim A.; Viergever, Max A.; Išgum, Ivana

    2016-03-01

    Localization of anatomical regions of interest (ROIs) is a preprocessing step in many medical image analysis tasks. While trivial for humans, it is complex for automatic methods. Classic machine learning approaches require the challenge of hand crafting features to describe differences between ROIs and background. Deep convolutional neural networks (CNNs) alleviate this by automatically finding hierarchical feature representations from raw images. We employ this trait to detect anatomical ROIs in 2D image slices in order to localize them in 3D. In 100 low-dose non-contrast enhanced non-ECG synchronized screening chest CT scans, a reference standard was defined by manually delineating rectangular bounding boxes around three anatomical ROIs -- heart, aortic arch, and descending aorta. Every anatomical ROI was automatically identified using a combination of three CNNs, each analyzing one orthogonal image plane. While single CNNs predicted presence or absence of a specific ROI in the given plane, the combination of their results provided a 3D bounding box around it. Classification performance of each CNN, expressed in area under the receiver operating characteristic curve, was >=0.988. Additionally, the performance of ROI localization was evaluated. Median Dice scores for automatically determined bounding boxes around the heart, aortic arch, and descending aorta were 0.89, 0.70, and 0.85 respectively. The results demonstrate that accurate automatic 3D localization of anatomical structures by CNN-based 2D image classification is feasible.

  8. The AEO, an Ontology of Anatomical Entities for Classifying Animal Tissues and Organs.

    PubMed

    Bard, Jonathan B L

    2012-01-01

    This paper describes the AEO, an ontology of anatomical entities that expands the common anatomy reference ontology (CARO) and whose major novel feature is a type hierarchy of ~160 anatomical terms. The breadth of the AEO is wider than CARO as it includes both developmental and gender-specific classes, while the granularity of the AEO terms is at a level adequate to classify simple-tissues (~70 classes) characterized by their containing a predominantly single cell-type. For convenience and to facilitate interoperability, the AEO contains an abbreviated version of the ontology of cell-types (~100 classes) that is linked to these simple-tissue types. The AEO was initially based on an analysis of a broad range of animal anatomy ontologies and then upgraded as it was used to classify the ~2500 concepts in a new version of the ontology of human developmental anatomy (www.obofoundry.org/), a process that led to significant improvements in its structure and content, albeit with a possible focus on mammalian embryos. The AEO is intended to provide the formal classification expected in contemporary ontologies as well as capturing knowledge about anatomical structures not currently included in anatomical ontologies. The AEO may thus be useful in increasing the amount of tissue and cell-type knowledge in other anatomy ontologies, facilitating annotation of tissues that share common features, and enabling interoperability across anatomy ontologies. The AEO can be downloaded from http://www.obofoundry.org/.

  9. Nonlocal atlas-guided multi-channel forest learning for human brain labeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Guangkai; Gao, Yaozong; Wu, Guorong

    Purpose: It is important for many quantitative brain studies to label meaningful anatomical regions in MR brain images. However, due to high complexity of brain structures and ambiguous boundaries between different anatomical regions, the anatomical labeling of MR brain images is still quite a challenging task. In many existing label fusion methods, appearance information is widely used. However, since local anatomy in the human brain is often complex, the appearance information alone is limited in characterizing each image point, especially for identifying the same anatomical structure across different subjects. Recent progress in computer vision suggests that the context features canmore » be very useful in identifying an object from a complex scene. In light of this, the authors propose a novel learning-based label fusion method by using both low-level appearance features (computed from the target image) and high-level context features (computed from warped atlases or tentative labeling maps of the target image). Methods: In particular, the authors employ a multi-channel random forest to learn the nonlinear relationship between these hybrid features and target labels (i.e., corresponding to certain anatomical structures). Specifically, at each of the iterations, the random forest will output tentative labeling maps of the target image, from which the authors compute spatial label context features and then use in combination with original appearance features of the target image to refine the labeling. Moreover, to accommodate the high inter-subject variations, the authors further extend their learning-based label fusion to a multi-atlas scenario, i.e., they train a random forest for each atlas and then obtain the final labeling result according to the consensus of results from all atlases. Results: The authors have comprehensively evaluated their method on both public LONI-LBPA40 and IXI datasets. To quantitatively evaluate the labeling accuracy, the authors use the dice similarity coefficient to measure the overlap degree. Their method achieves average overlaps of 82.56% on 54 regions of interest (ROIs) and 79.78% on 80 ROIs, respectively, which significantly outperform the baseline method (random forests), with the average overlaps of 72.48% on 54 ROIs and 72.09% on 80 ROIs, respectively. Conclusions: The proposed methods have achieved the highest labeling accuracy, compared to several state-of-the-art methods in the literature.« less

  10. Nonlocal atlas-guided multi-channel forest learning for human brain labeling

    PubMed Central

    Ma, Guangkai; Gao, Yaozong; Wu, Guorong; Wu, Ligang; Shen, Dinggang

    2016-01-01

    Purpose: It is important for many quantitative brain studies to label meaningful anatomical regions in MR brain images. However, due to high complexity of brain structures and ambiguous boundaries between different anatomical regions, the anatomical labeling of MR brain images is still quite a challenging task. In many existing label fusion methods, appearance information is widely used. However, since local anatomy in the human brain is often complex, the appearance information alone is limited in characterizing each image point, especially for identifying the same anatomical structure across different subjects. Recent progress in computer vision suggests that the context features can be very useful in identifying an object from a complex scene. In light of this, the authors propose a novel learning-based label fusion method by using both low-level appearance features (computed from the target image) and high-level context features (computed from warped atlases or tentative labeling maps of the target image). Methods: In particular, the authors employ a multi-channel random forest to learn the nonlinear relationship between these hybrid features and target labels (i.e., corresponding to certain anatomical structures). Specifically, at each of the iterations, the random forest will output tentative labeling maps of the target image, from which the authors compute spatial label context features and then use in combination with original appearance features of the target image to refine the labeling. Moreover, to accommodate the high inter-subject variations, the authors further extend their learning-based label fusion to a multi-atlas scenario, i.e., they train a random forest for each atlas and then obtain the final labeling result according to the consensus of results from all atlases. Results: The authors have comprehensively evaluated their method on both public LONI_LBPA40 and IXI datasets. To quantitatively evaluate the labeling accuracy, the authors use the dice similarity coefficient to measure the overlap degree. Their method achieves average overlaps of 82.56% on 54 regions of interest (ROIs) and 79.78% on 80 ROIs, respectively, which significantly outperform the baseline method (random forests), with the average overlaps of 72.48% on 54 ROIs and 72.09% on 80 ROIs, respectively. Conclusions: The proposed methods have achieved the highest labeling accuracy, compared to several state-of-the-art methods in the literature. PMID:26843260

  11. Characterization anatomical leaf blade five species Nepenthes from Kerinci Seblat National Park, Kerinci regency, Jambi Province

    NASA Astrophysics Data System (ADS)

    Al Farishy, D. D.; Nisyawati, Metusala, D.

    2017-07-01

    Nepenthes is one of carnivorous plant genera which have key characters on leaf and pitcher as the modification. However, wide varieties of morphological features on pitcher intraspecies and between species could be tough for identification process. The objective was to provide alternative characters for identification process by anatomical features. Kerinci Seblat National Park was chosen because lack of update data on wild type of species there. Whole five species were collected at Lingkat Lake and Gunung Tujuh Lake as representative lowland and highland species. Leaves collected fresh, flawless, and has grown pitcher. Each leaf was separated into the paradermal and transversal section, dehydrated by series alcohol, and stained by safranin and fast green. Sections observed by light microscope. Result show there were specific differences between species that could be potential to be key characters. That features are stomatal density, stomatal length, sessile glands surface shaped, sessile glands density, trichome distribution, adaxial cuticle thickness, adaxial hypodermic thickness, and the number of layers of adaxial hypodermis

  12. Primary progressive aphasia and the evolving neurology of the language network

    PubMed Central

    Mesulam, M.-Marsel; Rogalski, Emily J.; Wieneke, Christina; Hurley, Robert S.; Geula, Changiz; Bigio, Eileen H.; Thompson, Cynthia K.; Weintraub, Sandra

    2014-01-01

    Primary progressive aphasia (PPA) is caused by selective neurodegeneration of the language-dominant cerebral hemisphere; a language deficit initially arises as the only consequential impairment and remains predominant throughout most of the course of the disease. Agrammatic, logopenic and semantic subtypes, each reflecting a characteristic pattern of language impairment and corresponding anatomical distribution of cortical atrophy, represent the most frequent presentations of PPA. Such associations between clinical features and the sites of atrophy have provided new insights into the neurology of fluency, grammar, word retrieval, and word comprehension, and have necessitated modification of concepts related to the functions of the anterior temporal lobe and Wernicke’s area. The underlying neuropathology of PPA is, most commonly, frontotemporal lobar degeneration in the agrammatic and semantic forms, and Alzheimer disease (AD) pathology in the logopenic form; the AD pathology often displays atypical and asymmetrical anatomical features consistent with the aphasic phenotype. The PPA syndrome reflects complex interactions between disease-specific neuropathological features and patient-specific vulnerability. A better understanding of these interactions might help us to elucidate the biology of the language network and the principles of selective vulnerability in neurodegenerative diseases. We review these aspects of PPA, focusing on advances in our understanding of the clinical features and neuropathology of PPA and what they have taught us about the neural substrates of the language network. PMID:25179257

  13. Morphometry Based on Effective and Accurate Correspondences of Localized Patterns (MEACOLP)

    PubMed Central

    Wang, Hu; Ren, Yanshuang; Bai, Lijun; Zhang, Wensheng; Tian, Jie

    2012-01-01

    Local features in volumetric images have been used to identify correspondences of localized anatomical structures for brain morphometry. However, the correspondences are often sparse thus ineffective in reflecting the underlying structures, making it unreliable to evaluate specific morphological differences. This paper presents a morphometry method (MEACOLP) based on correspondences with improved effectiveness and accuracy. A novel two-level scale-invariant feature transform is used to enhance the detection repeatability of local features and to recall the correspondences that might be missed in previous studies. Template patterns whose correspondences could be commonly identified in each group are constructed to serve as the basis for morphometric analysis. A matching algorithm is developed to reduce the identification errors by comparing neighboring local features and rejecting unreliable matches. The two-sample t-test is finally adopted to analyze specific properties of the template patterns. Experiments are performed on the public OASIS database to clinically analyze brain images of Alzheimer's disease (AD) and normal controls (NC). MEACOLP automatically identifies known morphological differences between AD and NC brains, and characterizes the differences well as the scaling and translation of underlying structures. Most of the significant differences are identified in only a single hemisphere, indicating that AD-related structures are characterized by strong anatomical asymmetry. In addition, classification trials to differentiate AD subjects from NC confirm that the morphological differences are reliably related to the groups of interest. PMID:22540000

  14. Primary progressive aphasia and the evolving neurology of the language network.

    PubMed

    Mesulam, M-Marsel; Rogalski, Emily J; Wieneke, Christina; Hurley, Robert S; Geula, Changiz; Bigio, Eileen H; Thompson, Cynthia K; Weintraub, Sandra

    2014-10-01

    Primary progressive aphasia (PPA) is caused by selective neurodegeneration of the language-dominant cerebral hemisphere; a language deficit initially arises as the only consequential impairment and remains predominant throughout most of the course of the disease. Agrammatic, logopenic and semantic subtypes, each reflecting a characteristic pattern of language impairment and corresponding anatomical distribution of cortical atrophy, represent the most frequent presentations of PPA. Such associations between clinical features and the sites of atrophy have provided new insights into the neurology of fluency, grammar, word retrieval, and word comprehension, and have necessitated modification of concepts related to the functions of the anterior temporal lobe and Wernicke's area. The underlying neuropathology of PPA is, most commonly, frontotemporal lobar degeneration in the agrammatic and semantic forms, and Alzheimer disease (AD) pathology in the logopenic form; the AD pathology often displays atypical and asymmetrical anatomical features consistent with the aphasic phenotype. The PPA syndrome reflects complex interactions between disease-specific neuropathological features and patient-specific vulnerability. A better understanding of these interactions might help us to elucidate the biology of the language network and the principles of selective vulnerability in neurodegenerative diseases. We review these aspects of PPA, focusing on advances in our understanding of the clinical features and neuropathology of PPA and what they have taught us about the neural substrates of the language network.

  15. Posterior Rigid Instrumentation of C7: Surgical Considerations and Biomechanics at the Cervicothoracic Junction. A Review of the Literature.

    PubMed

    Bayoumi, Ahmed B; Efe, Ibrahim E; Berk, Selim; Kasper, Ekkehard M; Toktas, Zafer Orkun; Konya, Deniz

    2018-03-01

    The cervicothoracic junction is a challenging anatomic transition in spine surgery. It is commonly affected by different types of diseases that may significantly impair stability in this region. The seventh cervical vertebra (C7) is an atypical cervical vertebra with unique anatomic features compared to subaxial cervical spine (C3 to C6). C7 has relatively broader laminae, larger pedicles, smaller lateral masses, and a long nonbifid spinous process. These features allow a variety of surgical methods for performing posterior rigid instrumentation in the form of different types of screws, such as lateral mass screws, pedicle screws, transfacet screws, and intralaminar screws. Many biomechanical studies on cadavers have evaluated and compared different types of implants at C7. We reviewed PubMed/Medline by using specific combinations of keywords to summarize previously published articles that examined C7 posterior rigid instrumentation thoroughly in an experimental fashion on patients or cadavers with additional descriptive radiologic parameters for evaluation of the optimum surgical technique for each type. A total of 44 articles were reported, including 22 articles that discussed anatomic considerations (entry points, sagittal and axial trajectories, and features of screws) and another 22 articles that discussed the relevant biomechanical testing at this transitional region if C7 was directly involved in terms of receiving posterior rigid implants. C7 can accommodate different types of screws, which can provide additional benefits and risks based on availability of bony purchase, awareness of surgical technique, biomechanics, and anatomic considerations. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. SU-D-BRA-04: Computerized Framework for Marker-Less Localization of Anatomical Feature Points in Range Images Based On Differential Geometry Features for Image-Guided Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soufi, M; Arimura, H; Toyofuku, F

    Purpose: To propose a computerized framework for localization of anatomical feature points on the patient surface in infrared-ray based range images by using differential geometry (curvature) features. Methods: The general concept was to reconstruct the patient surface by using a mathematical modeling technique for the computation of differential geometry features that characterize the local shapes of the patient surfaces. A region of interest (ROI) was firstly extracted based on a template matching technique applied on amplitude (grayscale) images. The extracted ROI was preprocessed for reducing temporal and spatial noises by using Kalman and bilateral filters, respectively. Next, a smooth patientmore » surface was reconstructed by using a non-uniform rational basis spline (NURBS) model. Finally, differential geometry features, i.e. the shape index and curvedness features were computed for localizing the anatomical feature points. The proposed framework was trained for optimizing shape index and curvedness thresholds and tested on range images of an anthropomorphic head phantom. The range images were acquired by an infrared ray-based time-of-flight (TOF) camera. The localization accuracy was evaluated by measuring the mean of minimum Euclidean distances (MMED) between reference (ground truth) points and the feature points localized by the proposed framework. The evaluation was performed for points localized on convex regions (e.g. apex of nose) and concave regions (e.g. nasofacial sulcus). Results: The proposed framework has localized anatomical feature points on convex and concave anatomical landmarks with MMEDs of 1.91±0.50 mm and 3.70±0.92 mm, respectively. A statistically significant difference was obtained between the feature points on the convex and concave regions (P<0.001). Conclusion: Our study has shown the feasibility of differential geometry features for localization of anatomical feature points on the patient surface in range images. The proposed framework might be useful for tasks involving feature-based image registration in range-image guided radiation therapy.« less

  17. Eigenanatomy on Fractional Anisotropy Imaging Provides White Matter Anatomical Features Discriminating Between Alzheimer's Disease and Late Onset Bipolar Disorder.

    PubMed

    Besga, Ariadna; Chyzhyk, Darya; González-Ortega, Itxaso; Savio, Alexandre; Ayerdi, Borja; Echeveste, Jon; Graña, Manuel; González-Pinto, Ana

    2016-01-01

    Late Onset Bipolar Disorder (LOBD) is the arousal of Bipolar Disorder (BD) at old age (>60) without any previous history of disorders. LOBD is often difficult to distinguish from degenerative dementias, such as Alzheimer Disease (AD), due to comorbidities and common cognitive symptoms. Moreover, LOBD prevalence is increasing due to population aging. Biomarkers extracted from blood plasma are not discriminant because both pathologies share pathophysiological features related to neuroinflammation, therefore we look for anatomical features highly correlated with blood biomarkers that allow accurate diagnosis prediction. This may shed some light on the basic biological mechanisms leading to one or another disease. Moreover, accurate diagnosis is needed to select the best personalized treatment. We look for white matter features which are correlated with blood plasma biomarkers (inflammatory and neurotrophic) discriminating LOBD from AD. A sample of healthy controls (HC) (n=19), AD patients (n=35), and BD patients (n=24) has been recruited at the Alava University Hospital. Plasma biomarkers have been obtained at recruitment time. Diffusion weighted (DWI) magnetic resonance imaging (MRI) are obtained for each subject. DWI is preprocessed to obtain diffusion tensor imaging (DTI) data, which is reduced to fractional anisotropy (FA) data. In the selection phase, eigenanatomy finds FA eigenvolumes maximally correlated with plasma biomarkers by partial sparse canonical correlation analysis (PSCCAN). In the analysis phase, we take the eigenvolume projection coefficients as the classification features, carrying out cross-validation of support vector machine (SVM) to obtain discrimination power of each biomarker effects. The John Hopkins Universtiy white matter atlas is used to provide anatomical localizations of the detected feature clusters. Classification results show that one specific biomarker of oxidative stress (malondialdehyde MDA) gives the best classification performance ( accuracy 85%, F-score 86%, sensitivity, and specificity 87%, ) in the discrimination of AD and LOBD. Discriminating features appear to be localized in the posterior limb of the internal capsule and superior corona radiata. It is feasible to support contrast diagnosis among LOBD and AD by means of predictive classifiers based on eigenanatomy features computed from FA imaging correlated to plasma biomarkers. In addition, white matter eigenanatomy localizations offer some new avenues to assess the differential pathophysiology of LOBD and AD.

  18. Proposed catalog of the neuroanatomy and the stratified anatomy for the 361 acupuncture points of 14 channels.

    PubMed

    Chapple, Will

    2013-10-01

    In spite of the extensive research on acupuncture mechanisms, no comprehensive and systematic peer-reviewed reference list of the stratified anatomical and the neuroanatomical features of all 361 acupuncture points exists. This study creates a reference list of the neuroanatomy and the stratified anatomy for each of the 361 acupuncture points on the 14 classical channels and for 34 extra points. Each acupuncture point was individually assessed to relate the point's location to anatomical and neuroanatomical features. The design of the catalogue is intended to be useful for any style of acupuncture or Oriental medicine treatment modality. The stratified anatomy was divided into shallow, intermediate and deep insertion. A separate stratified anatomy was presented for different needle angles and directions. The following are identified for each point: additional specifications for point location, the stratified anatomy, motor innervation, cutaneous nerve and sensory innervation, dermatomes, Langer's lines, and somatotopic organization in the primary sensory and motor cortices. Acupuncture points for each muscle, dermatome and myotome are also reported. This reference list can aid clinicians, practitioners and researchers in furthering the understanding and accurate practice of acupuncture. Additional research on the anatomical variability around acupuncture points, the frequency of needle contact with an anatomical structure in a clinical setting, and conformational imaging should be done to verify this catalogue. Copyright © 2013. Published by Elsevier B.V.

  19. Neuroanatomic organization of sound memory in humans.

    PubMed

    Kraut, Michael A; Pitcock, Jeffery A; Calhoun, Vince; Li, Juan; Freeman, Thomas; Hart, John

    2006-11-01

    The neural interface between sensory perception and memory is a central issue in neuroscience, particularly initial memory organization following perceptual analyses. We used functional magnetic resonance imaging to identify anatomic regions extracting initial auditory semantic memory information related to environmental sounds. Two distinct anatomic foci were detected in the right superior temporal gyrus when subjects identified sounds representing either animals or threatening items. Threatening animal stimuli elicited signal changes in both foci, suggesting a distributed neural representation. Our results demonstrate both category- and feature-specific responses to nonverbal sounds in early stages of extracting semantic memory information from these sounds. This organization allows for these category-feature detection nodes to extract early, semantic memory information for efficient processing of transient sound stimuli. Neural regions selective for threatening sounds are similar to those of nonhuman primates, demonstrating semantic memory organization for basic biological/survival primitives are present across species.

  20. A 3D subject-specific model of the spinal subarachnoid space with anatomically realistic ventral and dorsal spinal cord nerve rootlets.

    PubMed

    Sass, Lucas R; Khani, Mohammadreza; Natividad, Gabryel Connely; Tubbs, R Shane; Baledent, Olivier; Martin, Bryn A

    2017-12-19

    The spinal subarachnoid space (SSS) has a complex 3D fluid-filled geometry with multiple levels of anatomic complexity, the most salient features being the spinal cord and dorsal and ventral nerve rootlets. An accurate anthropomorphic representation of these features is needed for development of in vitro and numerical models of cerebrospinal fluid (CSF) dynamics that can be used to inform and optimize CSF-based therapeutics. A subject-specific 3D model of the SSS was constructed based on high-resolution anatomic MRI. An expert operator completed manual segmentation of the CSF space with detailed consideration of the anatomy. 31 pairs of semi-idealized dorsal and ventral nerve rootlets (NR) were added to the model based on anatomic reference to the magnetic resonance (MR) imaging and cadaveric measurements in the literature. Key design criteria for each NR pair included the radicular line, descending angle, number of NR, attachment location along the spinal cord and exit through the dura mater. Model simplification and smoothing was performed to produce a final model with minimum vertices while maintaining minimum error between the original segmentation and final design. Final model geometry and hydrodynamics were characterized in terms of axial distribution of Reynolds number, Womersley number, hydraulic diameter, cross-sectional area and perimeter. The final model had a total of 139,901 vertices with a total CSF volume within the SSS of 97.3 cm 3 . Volume of the dura mater, spinal cord and NR was 123.1, 19.9 and 5.8 cm 3 . Surface area of these features was 318.52, 112.2 and 232.1 cm 2 respectively. Maximum Reynolds number was 174.9 and average Womersley number was 9.6, likely indicating presence of a laminar inertia-dominated oscillatory CSF flow field. This study details an anatomically realistic anthropomorphic 3D model of the SSS based on high-resolution MR imaging of a healthy human adult female. The model is provided for re-use under the Creative Commons Attribution-ShareAlike 4.0 International license (CC BY-SA 4.0) and can be used as a tool for development of in vitro and numerical models of CSF dynamics for design and optimization of intrathecal therapeutics.

  1. Transcriptomic and anatomical complexity of primary, seminal, and crown roots highlight root type-specific functional diversity in maize (Zea mays L.)

    PubMed Central

    Tai, Huanhuan; Lu, Xin; Opitz, Nina; Marcon, Caroline; Paschold, Anja; Lithio, Andrew; Nettleton, Dan; Hochholdinger, Frank

    2016-01-01

    Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across all root types and highlighted the unique transcriptome of seminal roots. While functions in cell remodeling and cell wall formation were prominent in primary and crown roots, stress-related genes and transcriptional regulators were over-represented in seminal roots, suggesting functional specialization of the different root types. Dynamic expression of lignin biosynthesis genes and histochemical staining suggested diversification of cell wall lignification among the three root types. Our findings highlight a cost-efficient anatomical structure and a unique expression profile of seminal roots of the maize inbred line B73 different from primary and crown roots. PMID:26628518

  2. Advances in Retrograde Technique for Coronary Chronic Total Occlusions

    PubMed Central

    DeMartini, Tony J.

    2014-01-01

    Despite a short lag period since its development the retrograde approach has been increasingly integrated within the treatment strategies for the percutaneous treatment of coronary chronic total occlusions. This review article discuss which anatomical features argue most powerfully for its use, the specific skills required for its uptake and the technology which has facilitated these developments. PMID:25311005

  3. Frontal lobe seizures: from clinical semiology to localization.

    PubMed

    Bonini, Francesca; McGonigal, Aileen; Trébuchon, Agnès; Gavaret, Martine; Bartolomei, Fabrice; Giusiano, Bernard; Chauvel, Patrick

    2014-02-01

    Frontal lobe seizures are difficult to characterize according to semiologic and electrical features. We wished to establish whether different semiologic subgroups can be identified and whether these relate to anatomic organization. We assessed all seizures from 54 patients with frontal lobe epilepsy that were explored with stereoelectroencephalography (SEEG) during presurgical evaluation. Semiologic features and concomitant intracerebral EEG changes were documented and quantified. These variables were examined using Principal Component Analysis and Cluster Analysis, and semiologic features correlated with anatomic localization. Four main groups of patients were identified according to semiologic features, and correlated with specific patterns of anatomic seizure localization. Group 1 was characterized clinically by elementary motor signs and involved precentral and premotor regions. Group 2 was characterized by a combination of elementary motor signs and nonintegrated gestural motor behavior, and involved both premotor and prefrontal regions. Group 3 was characterized by integrated gestural motor behavior with distal stereotypies and involved anterior lateral and medial prefrontal regions. Group 4 was characterized by seizures with fearful behavior and involved the paralimbic system (ventromedial prefrontal cortex ± anterior temporal structures). The groups were organized along a rostrocaudal axis, representing bands within a spectrum rather than rigid categories. The more anterior the seizure organization, the more likely was the occurrence of integrated behavior during seizures. Distal stereotypies were associated with the most anterior prefrontal localizations, whereas proximal stereotypies occurred in more posterior prefrontal regions. Meaningful categorization of frontal seizures in terms of semiology is possible and correlates with anatomic organization along a rostrocaudal axis, in keeping with current hypotheses of frontal lobe hierarchical organization. The proposed electroclinical categorization offers pointers as to the likely zone of organization of networks underlying semiologic production, thus aiding presurgical localization. Furthermore, analysis of ictal motor behavior in prefrontal seizures, including stereotypies, leads to deciphering the cortico-subcortical networks that produce such behaviors. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  4. Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming.

    PubMed

    Chiu, Stephanie J; Toth, Cynthia A; Bowes Rickman, Catherine; Izatt, Joseph A; Farsiu, Sina

    2012-05-01

    This paper presents a generalized framework for segmenting closed-contour anatomical and pathological features using graph theory and dynamic programming (GTDP). More specifically, the GTDP method previously developed for quantifying retinal and corneal layer thicknesses is extended to segment objects such as cells and cysts. The presented technique relies on a transform that maps closed-contour features in the Cartesian domain into lines in the quasi-polar domain. The features of interest are then segmented as layers via GTDP. Application of this method to segment closed-contour features in several ophthalmic image types is shown. Quantitative validation experiments for retinal pigmented epithelium cell segmentation in confocal fluorescence microscopy images attests to the accuracy of the presented technique.

  5. Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming

    PubMed Central

    Chiu, Stephanie J.; Toth, Cynthia A.; Bowes Rickman, Catherine; Izatt, Joseph A.; Farsiu, Sina

    2012-01-01

    This paper presents a generalized framework for segmenting closed-contour anatomical and pathological features using graph theory and dynamic programming (GTDP). More specifically, the GTDP method previously developed for quantifying retinal and corneal layer thicknesses is extended to segment objects such as cells and cysts. The presented technique relies on a transform that maps closed-contour features in the Cartesian domain into lines in the quasi-polar domain. The features of interest are then segmented as layers via GTDP. Application of this method to segment closed-contour features in several ophthalmic image types is shown. Quantitative validation experiments for retinal pigmented epithelium cell segmentation in confocal fluorescence microscopy images attests to the accuracy of the presented technique. PMID:22567602

  6. WE-EF-210-08: BEST IN PHYSICS (IMAGING): 3D Prostate Segmentation in Ultrasound Images Using Patch-Based Anatomical Feature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X; Rossi, P; Jani, A

    Purpose: Transrectal ultrasound (TRUS) is the standard imaging modality for the image-guided prostate-cancer interventions (e.g., biopsy and brachytherapy) due to its versatility and real-time capability. Accurate segmentation of the prostate plays a key role in biopsy needle placement, treatment planning, and motion monitoring. As ultrasound images have a relatively low signal-to-noise ratio (SNR), automatic segmentation of the prostate is difficult. However, manual segmentation during biopsy or radiation therapy can be time consuming. We are developing an automated method to address this technical challenge. Methods: The proposed segmentation method consists of two major stages: the training stage and the segmentation stage.more » During the training stage, patch-based anatomical features are extracted from the registered training images with patient-specific information, because these training images have been mapped to the new patient’ images, and the more informative anatomical features are selected to train the kernel support vector machine (KSVM). During the segmentation stage, the selected anatomical features are extracted from newly acquired image as the input of the well-trained KSVM and the output of this trained KSVM is the segmented prostate of this patient. Results: This segmentation technique was validated with a clinical study of 10 patients. The accuracy of our approach was assessed using the manual segmentation. The mean volume Dice Overlap Coefficient was 89.7±2.3%, and the average surface distance was 1.52 ± 0.57 mm between our and manual segmentation, which indicate that the automatic segmentation method works well and could be used for 3D ultrasound-guided prostate intervention. Conclusion: We have developed a new prostate segmentation approach based on the optimal feature learning framework, demonstrated its clinical feasibility, and validated its accuracy with manual segmentation (gold standard). This segmentation technique could be a useful tool for image-guided interventions in prostate-cancer diagnosis and treatment. This research is supported in part by DOD PCRP Award W81XWH-13-1-0269, and National Cancer Institute (NCI) Grant CA114313.« less

  7. Defining the lateral and accessory views of the patella: an anatomic and radiographic study with implications for fracture treatment.

    PubMed

    Berkes, Marschall B; Little, Milton T M; Pardee, Nadine C; Lazaro, Lionel E; Helfet, David L; Lorich, Dean G

    2013-12-01

    The majority of orthopaedic surgeons rely on a lateral fluoroscopic image to assess reduction during patella fracture osteosynthesis. However, a comprehensive radiographic description of the lateral view of the patella has not been performed previously, and no accessory views to better visualize specific anatomic features have been developed. The purpose of this study was to provide a detailed anatomic description of all radiographic features of the true lateral of the patella, describe reproducible accessory views for assessing specific features of the patella, and demonstrate their utility in a fracture model. Twelve cadaver knee specimens free of patellofemoral pathology were used, and imaging was performed using standard C-arm fluoroscopy. For each specimen, a true lateral radiographic projection of the patella was obtained and distinct features were noted. Next, an arthrotomy was made and steel wire was contoured and fixed to various anatomic regions of the patella so as to obliterate the radiographic densities on the true lateral projection, thus confirming their anatomic correlation. Ideal views of the lateral and medial facets themselves were determined using radiographic markers and varying amounts of internal or external rotation of the specimen. Last, a transverse osteotomy was created in each patella and the ability of the true lateral and accessory views to detect malreduction was assessed. The true lateral projection of the patella was obtained with the limb in neutral alignment. Constant radiographic features of the lateral view of the patella include the articular tangent, a secondary articular density of variable length, and a dorsal cortical density. The articular tangent was produced by the central ridge between the medial and lateral facets in all specimens. The secondary articular density was created by a confluence of the edge of the lateral and edge of the medial facets in 5 patellas, a confluence of the edge of the lateral facet and the intersection of the odd and medial facets in 6 patellas, and the edge of the lateral facet alone in 1 patella. The edge of the lateral facet gave a constant contribution to the appearance of the secondary articular density in all cases. A distinct accessory view of the tangent of the lateral facet could be seen with an average of 17 degrees of patella external rotation (range, 12-35 degrees), and the tangent of the medial facet with an average of 26.5 degrees of internal rotation (range, 15-45 degrees). These accessory views were better able to visualize malreduction than the single lateral projection in a fracture model in all specimens. Described here is a comprehensive description of the true lateral radiographic view of the patella and accessory views. These views can be used in the evaluation of minimally displaced patella fractures if a computerized tomography is not desired to better assess the true amount of displacement and when assessing intraoperative reduction during patella fracture osteosynthesis.

  8. Pediatric chest imaging.

    PubMed

    Gross, G W

    1992-10-01

    The highlight of recent articles published on pediatric chest imaging is the potential advantage of digital imaging of the infant's chest. Digital chest imaging allows accurate determination of functional residual capacity as well as manipulation of the image to highlight specific anatomic features. Reusable photostimulable phosphor imaging systems provide wide imaging latitude and lower patient dose. In addition, digital radiology permits multiple remote-site viewing on monitor displays. Several excellent reviews of the imaging features of various thoracic abnormalities and the application of newer imaging modalities, such as ultrafast CT and MR imaging to the pediatric chest, are additional highlights.

  9. A machine learning approach for classification of anatomical coverage in CT

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyong; Lo, Pechin; Ramakrishna, Bharath; Goldin, Johnathan; Brown, Matthew

    2016-03-01

    Automatic classification of anatomical coverage of medical images is critical for big data mining and as a pre-processing step to automatically trigger specific computer aided diagnosis systems. The traditional way to identify scans through DICOM headers has various limitations due to manual entry of series descriptions and non-standardized naming conventions. In this study, we present a machine learning approach where multiple binary classifiers were used to classify different anatomical coverages of CT scans. A one-vs-rest strategy was applied. For a given training set, a template scan was selected from the positive samples and all other scans were registered to it. Each registered scan was then evenly split into k × k × k non-overlapping blocks and for each block the mean intensity was computed. This resulted in a 1 × k3 feature vector for each scan. The feature vectors were then used to train a SVM based classifier. In this feasibility study, four classifiers were built to identify anatomic coverages of brain, chest, abdomen-pelvis, and chest-abdomen-pelvis CT scans. Each classifier was trained and tested using a set of 300 scans from different subjects, composed of 150 positive samples and 150 negative samples. Area under the ROC curve (AUC) of the testing set was measured to evaluate the performance in a two-fold cross validation setting. Our results showed good classification performance with an average AUC of 0.96.

  10. Anatomical Features and Early Outcomes of Endovascular Repair of Abdominal Aortic Aneurysm from a Korean Multicenter Registry.

    PubMed

    Kwon, Hyunwook; Lee, Do Yun; Choi, Soo Jin Na; Park, Ki Hyuk; Min, Seung-Kee; Chang, Jeong-Hwan; Huh, Seung; Jeon, Yong Sun; Won, Jehwan; Byun, Seung Jae; Park, Sang Jun; Jang, Lee Chan; Kwon, Tae-Won

    2015-09-01

    To introduce a nation-based endovascular aneurysm repair (EVAR) registry in South Korea and to analyze the anatomical features and early clinical outcomes of abdominal aortic aneurysms (AAA) in patients who underwent EVAR. The Korean EVAR registry (KER) was a template-based online registry developed and established in 2009. The KER recruited 389 patients who underwent EVAR from 13 medical centers in South Korea from January 2010 to June 2010. We retrospectively reviewed the anatomic features and 30-day clinical outcomes. Initial deployment without open conversion was achieved in all cases and procedure-related 30-day mortality rate was 1.9%. Anatomic features showed the following variables: proximal aortic neck angle 48.8±25.7° (mean±standard deviation), vertical neck length 35.0±17.2 mm, aneurysmal sac diameter 57.2±14.2 mm, common iliac artery (CIA) involvement in 218 (56.3%) patients, and median right CIA length 34.9 mm. Two hundred and nineteen (56.3%) patients showed neck calcification, 98 patients (25.2%) had neck thrombus, and the inferior mesenteric arteries of 91 patients (23.4%) were occluded. Anatomical features of AAA in patients from the KER were characterized as having angulated proximal neck, tortuous iliac artery, and a higher rate of CIA involvement. Long-term follow-up and ongoing studies are required.

  11. Transcriptomic and anatomical complexity of primary, seminal, and crown roots highlight root type-specific functional diversity in maize (Zea mays L.).

    PubMed

    Tai, Huanhuan; Lu, Xin; Opitz, Nina; Marcon, Caroline; Paschold, Anja; Lithio, Andrew; Nettleton, Dan; Hochholdinger, Frank

    2016-02-01

    Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across all root types and highlighted the unique transcriptome of seminal roots. While functions in cell remodeling and cell wall formation were prominent in primary and crown roots, stress-related genes and transcriptional regulators were over-represented in seminal roots, suggesting functional specialization of the different root types. Dynamic expression of lignin biosynthesis genes and histochemical staining suggested diversification of cell wall lignification among the three root types. Our findings highlight a cost-efficient anatomical structure and a unique expression profile of seminal roots of the maize inbred line B73 different from primary and crown roots. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Abdominal Aortic Dissections

    PubMed Central

    Borioni, Raoul; Garofalo, Mariano; De Paulis, Ruggero; Nardi, Paolo; Scaffa, Raffaele; Chiariello, Luigi

    2005-01-01

    Isolated abdominal aortic dissections are rare events. Their anatomic and clinical features are different from those of atherosclerotic aneurysms. We report 4 cases of isolated abdominal aortic dissection that were successfully treated with surgical or endovascular intervention. The anatomic and clinical features and a review of the literature are also presented. PMID:15902826

  13. Mediastinal lymph node detection and station mapping on chest CT using spatial priors and random forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiamin; Hoffman, Joanne; Zhao, Jocelyn

    2016-07-15

    Purpose: To develop an automated system for mediastinal lymph node detection and station mapping for chest CT. Methods: The contextual organs, trachea, lungs, and spine are first automatically identified to locate the region of interest (ROI) (mediastinum). The authors employ shape features derived from Hessian analysis, local object scale, and circular transformation that are computed per voxel in the ROI. Eight more anatomical structures are simultaneously segmented by multiatlas label fusion. Spatial priors are defined as the relative multidimensional distance vectors corresponding to each structure. Intensity, shape, and spatial prior features are integrated and parsed by a random forest classifiermore » for lymph node detection. The detected candidates are then segmented by the following curve evolution process. Texture features are computed on the segmented lymph nodes and a support vector machine committee is used for final classification. For lymph node station labeling, based on the segmentation results of the above anatomical structures, the textual definitions of mediastinal lymph node map according to the International Association for the Study of Lung Cancer are converted into patient-specific color-coded CT image, where the lymph node station can be automatically assigned for each detected node. Results: The chest CT volumes from 70 patients with 316 enlarged mediastinal lymph nodes are used for validation. For lymph node detection, their system achieves 88% sensitivity at eight false positives per patient. For lymph node station labeling, 84.5% of lymph nodes are correctly assigned to their stations. Conclusions: Multiple-channel shape, intensity, and spatial prior features aggregated by a random forest classifier improve mediastinal lymph node detection on chest CT. Using the location information of segmented anatomic structures from the multiatlas formulation enables accurate identification of lymph node stations.« less

  14. Thyroid nodule ultrasound: technical advances and future horizons.

    PubMed

    McQueen, Andrew S; Bhatia, Kunwar S S

    2015-04-01

    Thyroid nodules are extremely common and the vast majority are non-malignant; therefore the accurate discrimination of a benign lesion from malignancy is challenging. Ultrasound (US) characterisation has become the key component of many thyroid nodule guidelines and is primarily based on the detection of key features by high-resolution US. The thyroid imager should be familiar with the strengths and limitations of this modality and understand the technical factors that create and alter the imaging characteristics. Specific advances in high-resolution US are discussed with reference to individual features of thyroid cancer and benign disease. Potential roles for three-dimensional thyroid ultrasound and computer-aided diagnosis are also considered. The second section provides an overview of current evidence regarding thyroid ultrasound elastography (USE). USE is a novel imaging technique that quantifies tissue elasticity (stiffness) non-invasively and has potential utility because cancers cause tissue stiffening. In recent years, there has been much research into the value of thyroid USE for distinguishing benign and malignant nodules. Preliminary findings from multiple pilot studies and meta-analyses are promising and suggest that USE can augment the anatomical detail provided by high-resolution US. However, a definite role remains controversial and is discussed. • High-resolution US characterises thyroid nodules by demonstration of specific anatomical features • Technical advances heavily influence the key US features of thyroid nodules • Most papillary carcinomas appear stiffer than benign thyroid nodules on US elastography (USE) • Thyroid USE is controversial because of variation in the reported accuracies for malignancy • Combined grey-scale US/USE may lower the FNAC rate in benign nodules.

  15. Multi-Contrast Multi-Atlas Parcellation of Diffusion Tensor Imaging of the Human Brain

    PubMed Central

    Tang, Xiaoying; Yoshida, Shoko; Hsu, John; Huisman, Thierry A. G. M.; Faria, Andreia V.; Oishi, Kenichi; Kutten, Kwame; Poretti, Andrea; Li, Yue; Miller, Michael I.; Mori, Susumu

    2014-01-01

    In this paper, we propose a novel method for parcellating the human brain into 193 anatomical structures based on diffusion tensor images (DTIs). This was accomplished in the setting of multi-contrast diffeomorphic likelihood fusion using multiple DTI atlases. DTI images are modeled as high dimensional fields, with each voxel exhibiting a vector valued feature comprising of mean diffusivity (MD), fractional anisotropy (FA), and fiber angle. For each structure, the probability distribution of each element in the feature vector is modeled as a mixture of Gaussians, the parameters of which are estimated from the labeled atlases. The structure-specific feature vector is then used to parcellate the test image. For each atlas, a likelihood is iteratively computed based on the structure-specific vector feature. The likelihoods from multiple atlases are then fused. The updating and fusing of the likelihoods is achieved based on the expectation-maximization (EM) algorithm for maximum a posteriori (MAP) estimation problems. We first demonstrate the performance of the algorithm by examining the parcellation accuracy of 18 structures from 25 subjects with a varying degree of structural abnormality. Dice values ranging 0.8–0.9 were obtained. In addition, strong correlation was found between the volume size of the automated and the manual parcellation. Then, we present scan-rescan reproducibility based on another dataset of 16 DTI images – an average of 3.73%, 1.91%, and 1.79% for volume, mean FA, and mean MD respectively. Finally, the range of anatomical variability in the normal population was quantified for each structure. PMID:24809486

  16. Anatomical influences on internally coupled ears in reptiles.

    PubMed

    Young, Bruce A

    2016-10-01

    Many reptiles, and other vertebrates, have internally coupled ears in which a patent anatomical connection allows pressure waves generated by the displacement of one tympanic membrane to propagate (internally) through the head and, ultimately, influence the displacement of the contralateral tympanic membrane. The pattern of tympanic displacement caused by this internal coupling can give rise to novel sensory cues. The auditory mechanics of reptiles exhibit more anatomical variation than in any other vertebrate group. This variation includes structural features such as diverticula and septa, as well as coverings of the tympanic membrane. Many of these anatomical features would likely influence the functional significance of the internal coupling between the tympanic membranes. Several of the anatomical components of the reptilian internally coupled ear are under active motor control, suggesting that in some reptiles the auditory system may be more dynamic than previously recognized.

  17. Opening wedge and anatomic-specific plates in foot and ankle applications.

    PubMed

    Kluesner, Andrew J; Morris, Jason B

    2011-08-01

    As surgeons continually push to improve techniques and outcomes, anatomic-specific and procedure-specific fixation options are becoming increasingly available. The unique size, shape, and function of the foot provide an ideal framework for the use of anatomic-specific plates. These distinctive plate characteristics range from anatomic contouring and screw placements to incorporated step-offs and wedges. By optimizing support, compression, and stabilization, patients may return to weight bearing and activity sooner, improving outcomes. This article discusses anatomic-specific plates and their use in forefoot and rearfoot surgical procedures. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Specific aspects of a combined approach to male face correction: botulinum toxin A and volumetric fillers.

    PubMed

    Scherer, Max-Adam

    2016-12-01

    Cosmetologists in the last decade face a permanently increasing number of male patients. The necessity of a gender-adjusted approach in treatment of this patient category is obvious. An adequate correction requires consideration of the anatomic and physiologic features of male faces together with a whole set of interrelated aspects of psychologic perception of the male face esthetics, socially formed understanding of masculine features and appropriate emotional expressions, also of the motivations and expectations of men coming to a cosmetologist. The author explains in detail the elaborated out of own vast experience methods of complex male face correction using the above-mentioned gender-specific approach to create a naturally looking and harmonic facial expression and appearance. The presented botulinum therapy specifics concern the injection point location and toxin doses for every point. As a result, a rather distinct smoothening of the skin profile without detriment to the facial expressiveness and gender-related features is achieved. The importance and methods of an extremely delicate approach to volumetric plasty with stabilized hyaluronic acid-based fillers in men for avoiding hypercorrection and retaining the gender-specific features are discussed. © 2016 Wiley Periodicals, Inc.

  19. Variations in algorithm implementation among quantitative texture analysis software packages

    NASA Astrophysics Data System (ADS)

    Foy, Joseph J.; Mitta, Prerana; Nowosatka, Lauren R.; Mendel, Kayla R.; Li, Hui; Giger, Maryellen L.; Al-Hallaq, Hania; Armato, Samuel G.

    2018-02-01

    Open-source texture analysis software allows for the advancement of radiomics research. Variations in texture features, however, result from discrepancies in algorithm implementation. Anatomically matched regions of interest (ROIs) that captured normal breast parenchyma were placed in the magnetic resonance images (MRI) of 20 patients at two time points. Six first-order features and six gray-level co-occurrence matrix (GLCM) features were calculated for each ROI using four texture analysis packages. Features were extracted using package-specific default GLCM parameters and using GLCM parameters modified to yield the greatest consistency among packages. Relative change in the value of each feature between time points was calculated for each ROI. Distributions of relative feature value differences were compared across packages. Absolute agreement among feature values was quantified by the intra-class correlation coefficient. Among first-order features, significant differences were found for max, range, and mean, and only kurtosis showed poor agreement. All six second-order features showed significant differences using package-specific default GLCM parameters, and five second-order features showed poor agreement; with modified GLCM parameters, no significant differences among second-order features were found, and all second-order features showed poor agreement. While relative texture change discrepancies existed across packages, these differences were not significant when consistent parameters were used.

  20. Neuroimaging parameters in early open spina bifida detection. Further benefit in first trimester screening?

    PubMed

    Iliescu, D; Comănescu, A; Antsaklis, P; Tudorache, Stefania; Ghiluşi, Mirela; Comănescu, Violeta; Paulescu, Daniela; Ceauşu, Iuliana; Antsaklis, A; Novac, Liliana; Cernea, N

    2011-01-01

    Morphological investigation of the central nervous system (CNS) in fetuses with positive markers for open spina bifida (OSB) detection, visualized by ultrasound during the first trimester of pregnancy. Data from fetuses that underwent routine first trimester ultrasound scan in our center during September 2007-March 2011 and presented abnormal aspects of the fourth ventricle, also referred as intracranial translucency (IT), provided the morphological support to evaluate CNS features. A neuro-histological study of posterior cerebral fossa illustrated anatomical features of the structures involved in the sonographic first trimester detection of neural tube defects. Abnormal IT aspects were found in OSB cases examined in the first trimester, but also in other severe cerebral abnormalities. Brain stem antero-posterior diameter (BS) and brain stem to occipital bone (BSOB) ratio may be more specific for OSB detection. Correlations between histological aspects of posterior brain fossa and ultrasound standard assessment have been made; highlighting the anatomical features involved by the new techniques developed for OSB early detection. Preliminary results show that modern sonographic protocols are capable to detect abnormalities in the morphometry of the posterior brain. First trimester fourth ventricle abnormalities should be followed by careful CNS evaluation because are likely to appear in OSB affected fetuses, but also in other CNS severe anomalies; in such cases, normal BS and BSOB ratio may serve as indirect argument for spine integrity, if specificity is confirmed in large series of fetuses.

  1. Patient-specific surgical planning and hemodynamic computational fluid dynamics optimization through free-form haptic anatomy editing tool (SURGEM).

    PubMed

    Pekkan, Kerem; Whited, Brian; Kanter, Kirk; Sharma, Shiva; de Zelicourt, Diane; Sundareswaran, Kartik; Frakes, David; Rossignac, Jarek; Yoganathan, Ajit P

    2008-11-01

    The first version of an anatomy editing/surgical planning tool (SURGEM) targeting anatomical complexity and patient-specific computational fluid dynamics (CFD) analysis is presented. Novel three-dimensional (3D) shape editing concepts and human-shape interaction technologies have been integrated to facilitate interactive surgical morphology alterations, grid generation and CFD analysis. In order to implement "manual hemodynamic optimization" at the surgery planning phase for patients with congenital heart defects, these tools are applied to design and evaluate possible modifications of patient-specific anatomies. In this context, anatomies involve complex geometric topologies and tortuous 3D blood flow pathways with multiple inlets and outlets. These tools make it possible to freely deform the lumen surface and to bend and position baffles through real-time, direct manipulation of the 3D models with both hands, thus eliminating the tedious and time-consuming phase of entering the desired geometry using traditional computer-aided design (CAD) systems. The 3D models of the modified anatomies are seamlessly exported and meshed for patient-specific CFD analysis. Free-formed anatomical modifications are quantified using an in-house skeletization based cross-sectional geometry analysis tool. Hemodynamic performance of the systematically modified anatomies is compared with the original anatomy using CFD. CFD results showed the relative importance of the various surgically created features such as pouch size, vena cave to pulmonary artery (PA) flare and PA stenosis. An interactive surgical-patch size estimator is also introduced. The combined design/analysis cycle time is used for comparing and optimizing surgical plans and improvements are tabulated. The reduced cost of patient-specific shape design and analysis process, made it possible to envision large clinical studies to assess the validity of predictive patient-specific CFD simulations. In this paper, model anatomical design studies are performed on a total of eight different complex patient specific anatomies. Using SURGEM, more than 30 new anatomical designs (or candidate configurations) are created, and the corresponding user times presented. CFD performances for eight of these candidate configurations are also presented.

  2. Soft-Tissue Infections and Their Imaging Mimics: From Cellulitis to Necrotizing Fasciitis.

    PubMed

    Hayeri, Mohammad Reza; Ziai, Pouya; Shehata, Monda L; Teytelboym, Oleg M; Huang, Brady K

    2016-10-01

    Infection of the musculoskeletal system can be associated with high mortality and morbidity if not promptly and accurately diagnosed. These infections are generally diagnosed and managed clinically; however, clinical and laboratory findings sometimes lack sensitivity and specificity, and a definite diagnosis may not be possible. In uncertain situations, imaging is frequently performed to confirm the diagnosis, evaluate the extent of the disease, and aid in treatment planning. In particular, cross-sectional imaging, including computed tomography and magnetic resonance imaging, provides detailed anatomic information in the evaluation of soft tissues due to their inherent high spatial and contrast resolution. Imaging findings of soft-tissue infections can be nonspecific and can have different appearances depending on the depth and anatomic extent of tissue involvement. Although many imaging features of infectious disease can overlap with noninfectious processes, imaging can help establish the diagnosis when combined with the clinical history and laboratory findings. Radiologists should be familiar with the spectrum of imaging findings of soft-tissue infections to better aid the referring physician in managing these patients. The aim of this article is to review the spectrum of soft-tissue infections using a systematic anatomic compartment approach. We discuss the clinical features of soft-tissue infections, their imaging findings with emphasis on cross-sectional imaging, their potential mimics, and clinical management. © RSNA, 2016.

  3. Reconstruction of Thoracic Spine Using a Personalized 3D-Printed Vertebral Body in Adolescent with T9 Primary Bone Tumor.

    PubMed

    Choy, Wen Jie; Mobbs, Ralph J; Wilcox, Ben; Phan, Steven; Phan, Kevin; Sutterlin, Chester E

    2017-09-01

    Neurosurgery and spine surgery have the potential to benefit from the use of 3-dimensional printing (3DP) technology due to complex anatomic considerations and the delicate nature of surrounding structures. We report a procedure that uses a 3D-printed titanium T9 vertebral body implant post T9 vertebrectomy for a primary bone tumor. A 14-year-old female presented with progressive kyphoscoliosis and a pathologic fracture of the T9 vertebra with sagittal and coronal deformity due to a destructive primary bone tumor. Surgical resection and reconstruction was performed in combination with a 3D-printed, patient-specific implant. Custom design features included porous titanium end plates, corrective angulation of the implant to restore sagittal balance, and pedicle screw holes in the 3D implant to assist with insertion of the device. In addition, attachment of the anterior column construct to the posterior pedicle screw construct was possible due to the customized features of the patient-specific implant. An advantage of 3DP is the ability to manufacture patient-specific implants, as in the current case example. Additionally, the use of 3DP has been able to reduce operative time significantly. Surgical procedures can be preplanned using 3DP patient-specific models. Surgeons can train before performing complex procedures, which enhances their presurgical planning in order to maximize patient outcomes. When considering implants and prostheses, the use of 3DP allows a superior anatomic fit for the patient, with the potential to improve restoration of anatomy. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Asymmetry of the Brain: Development and Implications.

    PubMed

    Duboc, Véronique; Dufourcq, Pascale; Blader, Patrick; Roussigné, Myriam

    2015-01-01

    Although the left and right hemispheres of our brains develop with a high degree of symmetry at both the anatomical and functional levels, it has become clear that subtle structural differences exist between the two sides and that each is dominant in processing specific cognitive tasks. As the result of evolutionary conservation or convergence, lateralization of the brain is found in both vertebrates and invertebrates, suggesting that it provides significant fitness for animal life. This widespread feature of hemispheric specialization has allowed the emergence of model systems to study its development and, in some cases, to link anatomical asymmetries to brain function and behavior. Here, we present some of what is known about brain asymmetry in humans and model organisms as well as what is known about the impact of environmental and genetic factors on brain asymmetry development. We specifically highlight the progress made in understanding the development of epithalamic asymmetries in zebrafish and how this model provides an exciting opportunity to address brain asymmetry at different levels of complexity.

  5. Functional brain networks reconstruction using group sparsity-regularized learning.

    PubMed

    Zhao, Qinghua; Li, Will X Y; Jiang, Xi; Lv, Jinglei; Lu, Jianfeng; Liu, Tianming

    2018-06-01

    Investigating functional brain networks and patterns using sparse representation of fMRI data has received significant interests in the neuroimaging community. It has been reported that sparse representation is effective in reconstructing concurrent and interactive functional brain networks. To date, most of data-driven network reconstruction approaches rarely take consideration of anatomical structures, which are the substrate of brain function. Furthermore, it has been rarely explored whether structured sparse representation with anatomical guidance could facilitate functional networks reconstruction. To address this problem, in this paper, we propose to reconstruct brain networks utilizing the structure guided group sparse regression (S2GSR) in which 116 anatomical regions from the AAL template, as prior knowledge, are employed to guide the network reconstruction when performing sparse representation of whole-brain fMRI data. Specifically, we extract fMRI signals from standard space aligned with the AAL template. Then by learning a global over-complete dictionary, with the learned dictionary as a set of features (regressors), the group structured regression employs anatomical structures as group information to regress whole brain signals. Finally, the decomposition coefficients matrix is mapped back to the brain volume to represent functional brain networks and patterns. We use the publicly available Human Connectome Project (HCP) Q1 dataset as the test bed, and the experimental results indicate that the proposed anatomically guided structure sparse representation is effective in reconstructing concurrent functional brain networks.

  6. Diversification of C. elegans Motor Neuron Identity via Selective Effector Gene Repression.

    PubMed

    Kerk, Sze Yen; Kratsios, Paschalis; Hart, Michael; Mourao, Romulo; Hobert, Oliver

    2017-01-04

    A common organizational feature of nervous systems is the existence of groups of neurons that share common traits but can be divided into individual subtypes based on anatomical or molecular features. We elucidate the mechanistic basis of neuronal diversification processes in the context of C.elegans ventral cord motor neurons that share common traits that are directly activated by the terminal selector UNC-3. Diversification of motor neurons into different classes, each characterized by unique patterns of effector gene expression, is controlled by distinct combinations of phylogenetically conserved, class-specific transcriptional repressors. These repressors are continuously required in postmitotic neurons to prevent UNC-3, which is active in all neuron classes, from activating class-specific effector genes in specific motor neuron subsets via discrete cis-regulatory elements. The strategy of antagonizing the activity of broadly acting terminal selectors of neuron identity in a subtype-specific fashion may constitute a general principle of neuron subtype diversification. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A 3D anatomical atlas of appendage musculature in the chelicerate arthropod Limulus polyphemus

    PubMed Central

    Wroe, Stephen; Paterson, John R.

    2018-01-01

    Limulus polyphemus, an archetypal chelicerate taxon, has interested both biological and paleontological researchers due to its unique suite of anatomical features and as a useful modern analogue for fossil arthropod groups. To assist the study and documentation of this iconic taxon, we present a 3D atlas on the appendage musculature, with specific focus on the muscles of the cephalothoracic appendages. As L. polyphemus appendage musculature has been the focus of extensive study, depicting the muscles in 3D will facilitate a more complete understanding thereof for future researchers. A large museum specimen was CT scanned to illustrate the major exoskeletal features of L. polyphemus. Micro-CT scans of iodine-stained appendages from fresh, non-museum specimens were digitally dissected to interactively depict appendage sections and muscles. This study has revealed the presence of two new muscles: one within the pushing leg, located dorsally relative to all other patella muscles, and the other within the male pedipalp, located in the modified tibiotarsus. This atlas increases accessibility to important internal and external morphological features of L. polyphemus and reduces the need for destructive fresh tissue dissection of specimens. Scanning, digitally dissecting, and documenting taxa in 3D is a pivotal step towards creating permanent digital records of life on Earth. PMID:29444161

  8. Feature-based Morphometry

    PubMed Central

    Toews, Matthew; Wells, William M.; Collins, Louis; Arbel, Tal

    2013-01-01

    This paper presents feature-based morphometry (FBM), a new, fully data-driven technique for identifying group-related differences in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between all subjects, FBM models images as a collage of distinct, localized image features which may not be present in all subjects. FBM thus explicitly accounts for the case where the same anatomical tissue cannot be reliably identified in all subjects due to disease or anatomical variability. A probabilistic model describes features in terms of their appearance, geometry, and relationship to sub-groups of a population, and is automatically learned from a set of subject images and group labels. Features identified indicate group-related anatomical structure that can potentially be used as disease biomarkers or as a basis for computer-aided diagnosis. Scale-invariant image features are used, which reflect generic, salient patterns in the image. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer’s (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and obtains an equal error classification rate of 0.78 on new subjects. PMID:20426102

  9. An atlas of radiological interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calder, J.F.; Chessell, G.

    1988-01-01

    This book is concerned with pathologic entities and their impact on the skeleton. The book is divided into nine chapters. After a discussion of normal anatomic features, the authors discuss trauma, avascular necrosis and osteochondritis, bone infections, diseases of the joints, bone tumors, reticuloses and hemopoietic disorders, endocrine and metabolic bone diseases, and congenital abnormalities. A line drawing accompanies every radiograph to contrast the pathologic findings with the normal anatomic features.

  10. Improving anatomical mapping of complexly deformed anatomy for external beam radiotherapy and brachytherapy dose accumulation in cervical cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vásquez Osorio, Eliana M., E-mail: e.vasquezosorio@erasmusmc.nl; Kolkman-Deurloo, Inger-Karine K.; Schuring-Pereira, Monica

    Purpose: In the treatment of cervical cancer, large anatomical deformations, caused by, e.g., tumor shrinkage, bladder and rectum filling changes, organ sliding, and the presence of the brachytherapy (BT) applicator, prohibit the accumulation of external beam radiotherapy (EBRT) and BT dose distributions. This work proposes a structure-wise registration with vector field integration (SW+VF) to map the largely deformed anatomies between EBRT and BT, paving the way for 3D dose accumulation between EBRT and BT. Methods: T2w-MRIs acquired before EBRT and as a part of the MRI-guided BT procedure for 12 cervical cancer patients, along with the manual delineations of themore » bladder, cervix-uterus, and rectum-sigmoid, were used for this study. A rigid transformation was used to align the bony anatomy in the MRIs. The proposed SW+VF method starts by automatically segmenting features in the area surrounding the delineated organs. Then, each organ and feature pair is registered independently using a feature-based nonrigid registration algorithm developed in-house. Additionally, a background transformation is calculated to account for areas far from all organs and features. In order to obtain one transformation that can be used for dose accumulation, the organ-based, feature-based, and the background transformations are combined into one vector field using a weighted sum, where the contribution of each transformation can be directly controlled by its extent of influence (scope size). The optimal scope sizes for organ-based and feature-based transformations were found by an exhaustive analysis. The anatomical correctness of the mapping was independently validated by measuring the residual distances after transformation for delineated structures inside the cervix-uterus (inner anatomical correctness), and for anatomical landmarks outside the organs in the surrounding region (outer anatomical correctness). The results of the proposed method were compared with the results of the rigid transformation and nonrigid registration of all structures together (AST). Results: The rigid transformation achieved a good global alignment (mean outer anatomical correctness of 4.3 mm) but failed to align the deformed organs (mean inner anatomical correctness of 22.4 mm). Conversely, the AST registration produced a reasonable alignment for the organs (6.3 mm) but not for the surrounding region (16.9 mm). SW+VF registration achieved the best results for both regions (3.5 and 3.4 mm for the inner and outer anatomical correctness, respectively). All differences were significant (p < 0.02, Wilcoxon rank sum test). Additionally, optimization of the scope sizes determined that the method was robust for a large range of scope size values. Conclusions: The novel SW+VF method improved the mapping of large and complex deformations observed between EBRT and BT for cervical cancer patients. Future studies that quantify the mapping error in terms of dose errors are required to test the clinical applicability of dose accumulation by the SW+VF method.« less

  11. A graph-based approach for the retrieval of multi-modality medical images.

    PubMed

    Kumar, Ashnil; Kim, Jinman; Wen, Lingfeng; Fulham, Michael; Feng, Dagan

    2014-02-01

    In this paper, we address the retrieval of multi-modality medical volumes, which consist of two different imaging modalities, acquired sequentially, from the same scanner. One such example, positron emission tomography and computed tomography (PET-CT), provides physicians with complementary functional and anatomical features as well as spatial relationships and has led to improved cancer diagnosis, localisation, and staging. The challenge of multi-modality volume retrieval for cancer patients lies in representing the complementary geometric and topologic attributes between tumours and organs. These attributes and relationships, which are used for tumour staging and classification, can be formulated as a graph. It has been demonstrated that graph-based methods have high accuracy for retrieval by spatial similarity. However, naïvely representing all relationships on a complete graph obscures the structure of the tumour-anatomy relationships. We propose a new graph structure derived from complete graphs that structurally constrains the edges connected to tumour vertices based upon the spatial proximity of tumours and organs. This enables retrieval on the basis of tumour localisation. We also present a similarity matching algorithm that accounts for different feature sets for graph elements from different imaging modalities. Our method emphasises the relationships between a tumour and related organs, while still modelling patient-specific anatomical variations. Constraining tumours to related anatomical structures improves the discrimination potential of graphs, making it easier to retrieve similar images based on tumour location. We evaluated our retrieval methodology on a dataset of clinical PET-CT volumes. Our results showed that our method enabled the retrieval of multi-modality images using spatial features. Our graph-based retrieval algorithm achieved a higher precision than several other retrieval techniques: gray-level histograms as well as state-of-the-art methods such as visual words using the scale- invariant feature transform (SIFT) and relational matrices representing the spatial arrangements of objects. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Adaptive Adjustment in Taraxacum Officinale Wigg. in the Conditions of Overburden Dump

    NASA Astrophysics Data System (ADS)

    Legoshchina, Olga; Egorova, Irina; Neverova, Olga

    2017-11-01

    Morphological and anatomical features of the leaves and roots of Taraxacum officinale Wigg., growing under the conditions of the rocky dump of the Kedrovsky coal mine of the Kemerovo region, were studied. It was revealed that the specific environmental conditions of the dump cause morphological and anatomical changes in the leaves and roots of the dandelion. At the level of morphology, a decrease in the average leaf area, a thickening of leaf blades, a tendency to decrease the number of leaves in the rosette, a significant decrease in the mass and length of the roots. At the level of the anatomical structure of the leaves, there is a significant increase in the thickness of the mesophyll, a tendency to decrease the thickness of the tissues of the upper and lower epidermis, a decrease in the number of cells in 1 mm2 and an increase in the size of stomata in the tissues of the lower and upper epidermis, a decrease in the number of stomata by 1 mm2 and a stomatal index on the upper epidermis. At the level of the anatomical structure of the roots, the radius of the root decreases, the radius of the cortex and phloem, the diameter of the xylem.

  13. The anatomical and functional specialization of the fusiform gyrus

    PubMed Central

    Weiner, Kevin S.; Zilles, Karl

    2015-01-01

    The fusiform gyrus (FG) is commonly included in anatomical atlases and is considered a key structure for functionally-specialized computations of high-level vision such as face perception, object recognition, and reading. However, it is not widely known that the FG has a contentious history. In this review, we first provide a historical analysis of the discovery of the FG and why certain features, such as the mid-fusiform sulcus, were discovered and then forgotten. We then discuss how observer-independent methods for identifying cytoarchitectonical boundaries of the cortex revolutionized our understanding of cytoarchitecture and the correspondence between those boundaries and cortical folding patterns of the FG. We further explain that the co-occurrence between cortical folding patterns and cytoarchitectonical boundaries are more common than classically thought and also, are functionally meaningful especially on the FG and probably in high-level visual cortex more generally. We conclude by proposing a series of alternatives for how the anatomical organization of the FG can accommodate seemingly different theoretical aspects of functional processing, such as domain specificity and perceptual expertise. PMID:26119921

  14. [Extended endoscopic endonasal posterior (transclival) approach to tumors of the clival region and ventral posterior cranial fossa. Part 1. Topographic and anatomical features of the clivus and adjacent structures].

    PubMed

    Shkarubo, A N; Koval', K V; Dobrovol'skiy, G F; Shkarubo, M A; Karnaukhov, V V; Kadashev, B A; Andreev, D N; Chernov, I V; Gadzhieva, O A; Aleshkina, O Yu; Anisimova, E A; Kalinin, P L; Kutin, M A; Fomichev, D V; Sharipov, O I; Ismailov, D B; Selivanov, E S

    to describe the main topographic and anatomical features of the clival region and its adjacent structures for improvement and optimization of the extended endoscopic endonasal posterior (transclival) approach for resection of tumors of the clival region and ventral posterior cranial fossa. We performed a craniometric study of 125 human skulls and a topographic anatomical study of heads of 25 cadavers, the arterial and venous bed of which was stained with colored silicone (the staining technique was developed by the authors) to visualize bed features and individual variability. Currently, we have clinical material from more than 120 surgical patients with various skull base tumors of the clival region and ventral posterior cranial fossa (chordomas, pituitary adenomas, meningiomas, cholesteatomas, etc.) who were operated on using the endoscopic transclival approach. We present the main anatomical landmarks and parameters of some anatomical structures that are required for performing the endoscopic endonasal posterior approach. The anatomical landmarks, such as the intradural openings of the abducens and glossopharyngeal nerves, may be used to arbitrarily divide the clival region into the superior, middle, and inferior thirds. The anatomical landmarks important for the surgeon, which are detected during a topographic anatomical study of the skull base, facilitate identification of the boundaries between the different clival portions and the C1 segments of the internal carotid arteries. The superior, middle, and inferior transclival approaches provide an access to the ventral surface of the upper, middle, and lower neurovascular complexes in the posterior cranial fossa. The endoscopic transclival approach may be used to access midline tumors of the posterior cranial fossa. The approach is an alternative to transcranial approaches in surgical treatment of clival region lesions. This approach provides results comparable (and sometimes better) to those of the transcranial and transfacial approaches.

  15. A hierarchical anatomical classification schema for prediction of phenotypic side effects

    PubMed Central

    Kanji, Rakesh

    2018-01-01

    Prediction of adverse drug reactions is an important problem in drug discovery endeavors which can be addressed with data-driven strategies. SIDER is one of the most reliable and frequently used datasets for identification of key features as well as building machine learning models for side effects prediction. The inherently unbalanced nature of this data presents with a difficult multi-label multi-class problem towards prediction of drug side effects. We highlight the intrinsic issue with SIDER data and methodological flaws in relying on performance measures such as AUC while attempting to predict side effects.We argue for the use of metrics that are robust to class imbalance for evaluation of classifiers. Importantly, we present a ‘hierarchical anatomical classification schema’ which aggregates side effects into organs, sub-systems, and systems. With the help of a weighted performance measure, using 5-fold cross-validation we show that this strategy facilitates biologically meaningful side effects prediction at different levels of anatomical hierarchy. By implementing various machine learning classifiers we show that Random Forest model yields best classification accuracy at each level of coarse-graining. The manually curated, hierarchical schema for side effects can also serve as the basis of future studies towards prediction of adverse reactions and identification of key features linked to specific organ systems. Our study provides a strategy for hierarchical classification of side effects rooted in the anatomy and can pave the way for calibrated expert systems for multi-level prediction of side effects. PMID:29494708

  16. A hierarchical anatomical classification schema for prediction of phenotypic side effects.

    PubMed

    Wadhwa, Somin; Gupta, Aishwarya; Dokania, Shubham; Kanji, Rakesh; Bagler, Ganesh

    2018-01-01

    Prediction of adverse drug reactions is an important problem in drug discovery endeavors which can be addressed with data-driven strategies. SIDER is one of the most reliable and frequently used datasets for identification of key features as well as building machine learning models for side effects prediction. The inherently unbalanced nature of this data presents with a difficult multi-label multi-class problem towards prediction of drug side effects. We highlight the intrinsic issue with SIDER data and methodological flaws in relying on performance measures such as AUC while attempting to predict side effects.We argue for the use of metrics that are robust to class imbalance for evaluation of classifiers. Importantly, we present a 'hierarchical anatomical classification schema' which aggregates side effects into organs, sub-systems, and systems. With the help of a weighted performance measure, using 5-fold cross-validation we show that this strategy facilitates biologically meaningful side effects prediction at different levels of anatomical hierarchy. By implementing various machine learning classifiers we show that Random Forest model yields best classification accuracy at each level of coarse-graining. The manually curated, hierarchical schema for side effects can also serve as the basis of future studies towards prediction of adverse reactions and identification of key features linked to specific organ systems. Our study provides a strategy for hierarchical classification of side effects rooted in the anatomy and can pave the way for calibrated expert systems for multi-level prediction of side effects.

  17. Carotid artery protrusion and dehiscence in patients with acromegaly.

    PubMed

    Sasagawa, Yasuo; Tachibana, Osamu; Doai, Mariko; Hayashi, Yasuhiko; Tonami, Hisao; Iizuka, Hideaki; Nakada, Mitsutoshi

    2016-10-01

    Acromegaly is a systemic disease which causes multiple bony alterations. Some authors reported that acromegalic patients have risk factors for an intraoperative vascular injury due to the specific anatomical features of their sphenoid sinus. The objective of our study was to analyze the anatomic characteristics of sphenoid sinus in acromegalic patients compared with controls, by evaluation of computed tomography (CT) findings. We examined 45 acromegalic (acromegaly group) and 45 non-acromegalic patients (control group) with pituitary adenomas who were matched for sex, age, height, tumor size, and cavernous sinus invasion (Knosp grade). Preoperative CT of the pituitary region including the sphenoid sinus was used to evaluate the following anatomic characteristics: type of sphenoid sinus (sellar or pre-sellar/conchal); intrasphenoid septa (non/single or multiple); carotid artery protrusion; carotid artery dehiscence; intercarotid distance. Sixteen acromegalic patients (35.5 %) and 6 controls (13.3 %) had carotid artery protrusion. Additionally, 10 acromegalic patients (22.2 %) and 3 controls (6.6 %) had carotid artery dehiscence. Carotid artery protrusion and dehiscence were more frequent in the acromegaly group than in control group (p = 0.013 and 0.035, respectively). Other anatomic characteristics (type of sphenoid sinus, intrasphenoid septa, and intracarotid distance) showed no significant differences between acromegaly and control groups. Our study suggests that carotid artery protrusion and dehiscence occur more frequently among acromegalic patients, compared with non-acromegalic patients. It is important for surgeons to be aware of these anatomic variations to avoid vital complications, such as carotid injuries, during surgery.

  18. Hierarchical Multi-atlas Label Fusion with Multi-scale Feature Representation and Label-specific Patch Partition

    PubMed Central

    Wu, Guorong; Kim, Minjeong; Sanroma, Gerard; Wang, Qian; Munsell, Brent C.; Shen, Dinggang

    2014-01-01

    Multi-atlas patch-based label fusion methods have been successfully used to improve segmentation accuracy in many important medical image analysis applications. In general, to achieve label fusion a single target image is first registered to several atlas images, after registration a label is assigned to each target point in the target image by determining the similarity between the underlying target image patch (centered at the target point) and the aligned image patch in each atlas image. To achieve the highest level of accuracy during the label fusion process it’s critical the chosen patch similarity measurement accurately captures the tissue/shape appearance of the anatomical structure. One major limitation of existing state-of-the-art label fusion methods is that they often apply a fixed size image patch throughout the entire label fusion procedure. Doing so may severely affect the fidelity of the patch similarity measurement, which in turn may not adequately capture complex tissue appearance patterns expressed by the anatomical structure. To address this limitation, we advance state-of-the-art by adding three new label fusion contributions: First, each image patch now characterized by a multi-scale feature representation that encodes both local and semi-local image information. Doing so will increase the accuracy of the patch-based similarity measurement. Second, to limit the possibility of the patch-based similarity measurement being wrongly guided by the presence of multiple anatomical structures in the same image patch, each atlas image patch is further partitioned into a set of label-specific partial image patches according to the existing labels. Since image information has now been semantically divided into different patterns, these new label-specific atlas patches make the label fusion process more specific and flexible. Lastly, in order to correct target points that are mislabeled during label fusion, a hierarchically approach is used to improve the label fusion results. In particular, a coarse-to-fine iterative label fusion approach is used that gradually reduces the patch size. To evaluate the accuracy of our label fusion approach, the proposed method was used to segment the hippocampus in the ADNI dataset and 7.0 tesla MR images, sub-cortical regions in LONI LBPA40 dataset, mid-brain regions in SATA dataset from MICCAI 2013 segmentation challenge, and a set of key internal gray matter structures in IXI dataset. In all experiments, the segmentation results of the proposed hierarchical label fusion method with multi-scale feature representations and label-specific atlas patches are more accurate than several well-known state-of-the-art label fusion methods. PMID:25463474

  19. Anatomic documentation of the G-spot complex role in the genesis of anterior vaginal wall ballooning.

    PubMed

    Ostrzenski, Adam

    2014-09-01

    To expand previous G-spot anatomical and histological investigations; to examine the G-spot complex anatomic role in the anterior vaginal wall ballooning bio-mechanisms; and to determine, which division of autonomic nervous system (sympathetic or parasympathetic) dominates at the time of female sudden death. A prospective-descriptive case series anatomical study on eleven consecutive fresh humane female cadavers was conducted. Anterior vaginal wall stratum-by-stratum macro-dissections were executed in axial, coronal and sagittal plains. Upon G-spot extirpations, micro-dissections were performed. The G-spot tissues were stained with hematoxilin and eosin for histological examinations to authenticate the G-spot anatomical and histological characteristic features. The G-spot complex was identified and present in all subjects on either the distal vaginal left (more often) or on the right side from the lateral margin of the urethra; the G-spot anatomical and microscopic characteristic features have been authenticated; the G-spot complex expansion elevated anterior vaginal walls in each subject; the autonomic parasympathetic nervous system was the dominant division at the time of female subject sudden death. This study advances our anatomical and histological understanding of the G-spot complex and its role in the genesis of anterior vaginal ballooning bio-mechanisms. The G-spot complex is under parasympathetic nervous system domination at the time of female sudden death. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Patient feature based dosimetric Pareto front prediction in esophageal cancer radiotherapy.

    PubMed

    Wang, Jiazhou; Jin, Xiance; Zhao, Kuaike; Peng, Jiayuan; Xie, Jiang; Chen, Junchao; Zhang, Zhen; Studenski, Matthew; Hu, Weigang

    2015-02-01

    To investigate the feasibility of the dosimetric Pareto front (PF) prediction based on patient's anatomic and dosimetric parameters for esophageal cancer patients. Eighty esophagus patients in the authors' institution were enrolled in this study. A total of 2928 intensity-modulated radiotherapy plans were obtained and used to generate PF for each patient. On average, each patient had 36.6 plans. The anatomic and dosimetric features were extracted from these plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose, and PTV homogeneity index were recorded for each plan. Principal component analysis was used to extract overlap volume histogram (OVH) features between PTV and other organs at risk. The full dataset was separated into two parts; a training dataset and a validation dataset. The prediction outcomes were the MHD and MLD. The spearman's rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The stepwise multiple regression method was used to fit the PF. The cross validation method was used to evaluate the model. With 1000 repetitions, the mean prediction error of the MHD was 469 cGy. The most correlated factor was the first principal components of the OVH between heart and PTV and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 284 cGy. The most correlated factors were the first principal components of the OVH between heart and PTV and the overlap between lung and PTV in Z-axis. It is feasible to use patients' anatomic and dosimetric features to generate a predicted Pareto front. Additional samples and further studies are required improve the prediction model.

  1. TU-C-17A-10: Patient Features Based Dosimetric Pareto Front Prediction In Esophagus Cancer Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Zhao, K; Peng, J

    2014-06-15

    Purpose: The purpose of this study is to study the feasibility of the dosimetric pareto front (PF) prediction based on patient anatomic and dosimetric parameters for esophagus cancer patients. Methods: Sixty esophagus patients in our institution were enrolled in this study. A total 2920 IMRT plans were created to generated PF for each patient. On average, each patient had 48 plans. The anatomic and dosimetric features were extracted from those plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose and PTV homogeneous index (PTVHI) were recorded for each plan. The principal component analysis (PCA) wasmore » used to extract overlap volume histogram (OVH) features between PTV and other critical organs. The full dataset was separated into two parts include the training dataset and the validation dataset. The prediction outcomes were the MHD and MLD for the current study. The spearman rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The PF was fit by the the stepwise multiple regression method. The cross-validation method was used to evaluation the model. Results: The mean prediction error of the MHD was 465 cGy with 100 repetitions. The most correlated factors were the first principal components of the OVH between heart and PTV, and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 195 cGy. The most correlated factors were the first principal components of the OVH between lung and PTV, and the overlap between lung and PTV in Z-axis. Conclusion: It is feasible to use patients anatomic and dosimetric features to generate a predicted PF. Additional samples and further studies were required to get a better prediction model.« less

  2. Patient feature based dosimetric Pareto front prediction in esophageal cancer radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiazhou; Zhao, Kuaike; Peng, Jiayuan

    2015-02-15

    Purpose: To investigate the feasibility of the dosimetric Pareto front (PF) prediction based on patient’s anatomic and dosimetric parameters for esophageal cancer patients. Methods: Eighty esophagus patients in the authors’ institution were enrolled in this study. A total of 2928 intensity-modulated radiotherapy plans were obtained and used to generate PF for each patient. On average, each patient had 36.6 plans. The anatomic and dosimetric features were extracted from these plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose, and PTV homogeneity index were recorded for each plan. Principal component analysis was used to extract overlapmore » volume histogram (OVH) features between PTV and other organs at risk. The full dataset was separated into two parts; a training dataset and a validation dataset. The prediction outcomes were the MHD and MLD. The spearman’s rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The stepwise multiple regression method was used to fit the PF. The cross validation method was used to evaluate the model. Results: With 1000 repetitions, the mean prediction error of the MHD was 469 cGy. The most correlated factor was the first principal components of the OVH between heart and PTV and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 284 cGy. The most correlated factors were the first principal components of the OVH between heart and PTV and the overlap between lung and PTV in Z-axis. Conclusions: It is feasible to use patients’ anatomic and dosimetric features to generate a predicted Pareto front. Additional samples and further studies are required improve the prediction model.« less

  3. Anatomical Features of the Interscapular Area Where Wet Cupping Therapy Is Done and Its Possible Relation to Acupuncture Meridians.

    PubMed

    Ghods, Roshanak; Sayfouri, Nasrin; Ayati, Mohammad Hossein

    2016-12-01

    Although wet cupping has been a treatment for centuries, its mechanism of action is not well understood. Because the anatomical features of the wet-cupping area might play a role in its mechanism, we focus on the features of the interscapular area in which a common type of wet-cupping therapy (WCT), called Hijamat-e-Aam in Iranian medicine, is usually applied and discuss the possible relation of those features to the acupuncture meridians. We gathered and analyzed data from reliable textbooks on modern medicine with a focus on the anatomical features of the interscapular area, topics related to WTC in Iranian medicine, and acupuncture sources obtained by searching PubMed, Google-Scholar, and Science Direct. The interscapular area used for WCT was found to have special features: brown adipose tissue, immediate proximity to sympathetic ganglia, passage of the thoracic duct, two important acupuncture meridians, and proximity to the main vessel divisions carrying blood from the heart and the brain. These features indicate that the interscapular application of WCT not only discharges waste materials through a shifting of blood to the site after application of a traction force but also invigorates the body's metabolism, increases immunity, and regulates blood biochemistry, which are desired therapeutic effects of WCT. Copyright © 2016. Published by Elsevier B.V.

  4. Deep Learning in Medical Image Analysis

    PubMed Central

    Shen, Dinggang; Wu, Guorong; Suk, Heung-Il

    2016-01-01

    The computer-assisted analysis for better interpreting images have been longstanding issues in the medical imaging field. On the image-understanding front, recent advances in machine learning, especially, in the way of deep learning, have made a big leap to help identify, classify, and quantify patterns in medical images. Specifically, exploiting hierarchical feature representations learned solely from data, instead of handcrafted features mostly designed based on domain-specific knowledge, lies at the core of the advances. In that way, deep learning is rapidly proving to be the state-of-the-art foundation, achieving enhanced performances in various medical applications. In this article, we introduce the fundamentals of deep learning methods; review their successes to image registration, anatomical/cell structures detection, tissue segmentation, computer-aided disease diagnosis or prognosis, and so on. We conclude by raising research issues and suggesting future directions for further improvements. PMID:28301734

  5. [The age-specific features of palm dermatoglyphics in the adults subjects].

    PubMed

    Teplov, K V; Bozhchenko, A P; Tolmachev, I A; Moiseenko, S A

    2016-01-01

    This article was designed to consider the congenital age-specific features of palm dermatoglyphics in the adults subjects (including the type of the papillary patterns, axial tri-radii, the termini of palmar main lines, the rudiments of palmar lines, the dermatoglyphic ridge count between the stable anatomical structures). The objective of the study was to look for the new diagnostic markers of the biological age. It included the identification of the palm prints obtained from 180 Caucasoid men and 120 women at the age varying from 16 to 80 years. The results of the mathematical and statistical analysis provided the basis for drawing up the list of 18 attributes of palm dermatoglyphics significantly (p<0.05) differing in the frequency of occurrence between the representatives of individual age groups. The methods are proposed allowing to use these findings for the expert evaluation of the age of unknown subjects.

  6. Estimation of lung tumor position from multiple anatomical features on 4D-CT using multiple regression analysis.

    PubMed

    Ono, Tomohiro; Nakamura, Mitsuhiro; Hirose, Yoshinori; Kitsuda, Kenji; Ono, Yuka; Ishigaki, Takashi; Hiraoka, Masahiro

    2017-09-01

    To estimate the lung tumor position from multiple anatomical features on four-dimensional computed tomography (4D-CT) data sets using single regression analysis (SRA) and multiple regression analysis (MRA) approach and evaluate an impact of the approach on internal target volume (ITV) for stereotactic body radiotherapy (SBRT) of the lung. Eleven consecutive lung cancer patients (12 cases) underwent 4D-CT scanning. The three-dimensional (3D) lung tumor motion exceeded 5 mm. The 3D tumor position and anatomical features, including lung volume, diaphragm, abdominal wall, and chest wall positions, were measured on 4D-CT images. The tumor position was estimated by SRA using each anatomical feature and MRA using all anatomical features. The difference between the actual and estimated tumor positions was defined as the root-mean-square error (RMSE). A standard partial regression coefficient for the MRA was evaluated. The 3D lung tumor position showed a high correlation with the lung volume (R = 0.92 ± 0.10). Additionally, ITVs derived from SRA and MRA approaches were compared with ITV derived from contouring gross tumor volumes on all 10 phases of the 4D-CT (conventional ITV). The RMSE of the SRA was within 3.7 mm in all directions. Also, the RMSE of the MRA was within 1.6 mm in all directions. The standard partial regression coefficient for the lung volume was the largest and had the most influence on the estimated tumor position. Compared with conventional ITV, average percentage decrease of ITV were 31.9% and 38.3% using SRA and MRA approaches, respectively. The estimation accuracy of lung tumor position was improved by the MRA approach, which provided smaller ITV than conventional ITV. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  7. The tarsal-metatarsal complex of caviomorph rodents: Anatomy and functional-adaptive analysis.

    PubMed

    Candela, Adriana M; Muñoz, Nahuel A; García-Esponda, César M

    2017-06-01

    Caviomorph rodents represent a major adaptive radiation of Neotropical mammals. They occupy a variety of ecological niches, which is also reflected in their wide array of locomotor behaviors. It is expected that this radiation would be mirrored by an equivalent disparity of tarsal-metatarsal morphology. Here, the tarsal-metatarsal complex of Erethizontidae, Cuniculidae, Dasyproctidae, Caviidae, Chinchillidae, Octodontidae, Ctenomyidae, and Echimyidae was examined, in order to evaluate its anatomical variation and functional-adaptive relevance in relation to locomotor behaviors. A qualitative study in functional morphology and a geometric morphometric analysis were performed. We recognized two distinct tarsal-metatarsal patterns that represent the extremes of anatomical variation in the foot. The first, typically present in arboreal species, is characterized by features that facilitate movements at different levels of the tarsal-metatarsal complex. The second pattern, typically present in cursorial caviomorphs, has a set of features that act to stabilize the joints, improve the interlocking of the tarsal bones, and restrict movements to the parasagittal plane. The morphological disparity recognized in this study seems to result from specific locomotor adaptations to climb, dig, run, jump and swim, as well as phylogenetic effects within and among the groups studies. © 2017 Wiley Periodicals, Inc.

  8. Identification of selected CITES-protected Araucariaceae using DART TOFMS

    Treesearch

    Philip D. Evans; Ignacio A. Mundo; Michael C. Wiemann; Gabriela D. Chavarria; Pamela J. McClure; Doina Voin; Edgard O. Espinoza

    2017-01-01

    Determining the species source of logs and planks suspected of being Araucaria araucana (Molina) K.Koch (CITES Appendix I) using traditional wood anatomy has been difficult, because its anatomical features are not diagnostic. Additionally, anatomical studies of Araucaria angustifolia (Bertol.) Kuntze, Araucaria...

  9. Differences in subependymal vein anatomy may predispose preterm infants to GMH-IVH.

    PubMed

    Tortora, Domenico; Severino, Mariasavina; Malova, Mariya; Parodi, Alessandro; Morana, Giovanni; Sedlacik, Jan; Govaert, Paul; Volpe, Joseph J; Rossi, Andrea; Ramenghi, Luca Antonio

    2018-01-01

    The anatomy of the deep venous system plays an important role in the pathogenesis of brain lesions in the preterm brain as shown by different histological studies. The aims of this study were to compare the subependymal vein anatomy of preterm neonates with germinal matrix haemorrhage-intraventricular haemorrhage (GMH-IVH), as evaluated by susceptibility-weighted imaging (SWI) venography, with a group of age-matched controls with normal brain MRI, and to explore the relationship between the anatomical features of subependymal veins and clinical risk factors for GMH-IVH. SWI venographies of 48 neonates with GMH-IVH and 130 neonates with normal brain MRI were retrospectively evaluated. Subependymal vein anatomy was classified into six different patterns: type 1 represented the classic pattern and types 2-6 were considered anatomic variants. A quantitative analysis of the venous curvature index was performed. Variables were analysed by using Mann-Whitney U and χ 2 tests, and a multiple logistic regression analysis was performed to evaluate the association between anatomical features, clinical factors and GMH-IVH. A significant difference was noticed among the six anatomical patterns according to the presence of GMH-IVH (χ 2 =14.242, p=0.014). Anatomic variants were observed with higher frequency in neonates with GMH-IVH than in controls (62.2% and 49.6%, respectively). Neonates with GMH-IVH presented a narrower curvature of the terminal portion of subependymal veins (p<0.05). These anatomical features were significantly associated with GMH-IVH (p<0.05). Preterm neonates with GMH-IVH show higher variability of subependymal veins anatomy confirming a potential role as predisposing factor for GMH-IVH. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. HDlive rendering images of the fetal stomach: a preliminary report.

    PubMed

    Inubashiri, Eisuke; Abe, Kiyotaka; Watanabe, Yukio; Akutagawa, Noriyuki; Kuroki, Katumaru; Sugawara, Masaki; Maeda, Nobuhiko; Minami, Kunihiro; Nomura, Yasuhiro

    2015-01-01

    This study aimed to show reconstruction of the fetal stomach using the HDlive rendering mode in ultrasound. Seventeen healthy singleton fetuses at 18-34 weeks' gestational age were observed using the HDlive rendering mode of ultrasound in utero. In all of the fetuses, we identified specific spatial structures, including macroscopic anatomical features (e.g., the pyrous, cardia, fundus, and great curvature) of the fetal stomach, using the HDlive rendering mode. In particular, HDlive rendering images showed remarkably fine details that appeared as if they were being viewed under an endoscope, with visible rugal folds after 27 weeks' gestational age. Our study suggests that the HDlive rendering mode can be used as an additional method for evaluating the fetal stomach. The HDlive rendering mode shows detailed 3D structural images and anatomically realistic images of the fetal stomach. This technique may be effective in prenatal diagnosis for examining detailed information of fetal organs.

  11. Enhancer trap expression patterns provide a novel teaching resource.

    PubMed

    Geisler, Matt; Jablonska, Barbara; Springer, Patricia S

    2002-12-01

    A collection of Arabidopsis enhancer trap transposants has been identified for use as a teaching tool. This collection serves to assist students in understanding the patterning and organization of plant tissues and cells, and will be useful in plant anatomy, morphology, and developmental biology courses. Each transposant exhibits reporter gene expression in a specific tissue, cell type, or domain, and these lines collectively offer a glimpse of compartments of gene expression. Some compartments correspond to classical definitions of botanical anatomy and can assist in anatomical identification. Other patterns of reporter gene expression are more complex and do not necessarily correspond to known anatomical features. The sensitivity of the beta-glucuronidase histochemical stain provides the student with a colorful and direct way to visualize difficult aspects of plant development and anatomy, and provides the teacher with an invaluable tool for a practical laboratory session.

  12. Unsupervised definition of the tibia-femoral joint regions of the human knee and its applications to cartilage analysis

    NASA Astrophysics Data System (ADS)

    Tamez-Peña, José G.; Barbu-McInnis, Monica; Totterman, Saara

    2006-03-01

    Abnormal MR findings including cartilage defects, cartilage denuded areas, osteophytes, and bone marrow edema (BME) are used in staging and evaluating the degree of osteoarthritis (OA) in the knee. The locations of the abnormal findings have been correlated to the degree of pain and stiffness of the joint in the same location. The definition of the anatomic region in MR images is not always an objective task, due to the lack of clear anatomical features. This uncertainty causes variance in the location of the abnormality between readers and time points. Therefore, it is important to have a reproducible system to define the anatomic regions. This works present a computerized approach to define the different anatomic knee regions. The approach is based on an algorithm that uses unique features of the femur and its spatial relation in the extended knee. The femur features are found from three dimensional segmentation maps of the knee. From the segmentation maps, the algorithm automatically divides the femur cartilage into five anatomic regions: trochlea, medial weight bearing area, lateral weight bearing area, posterior medial femoral condyle, and posterior lateral femoral condyle. Furthermore, the algorithm automatically labels the medial and lateral tibia cartilage. The unsupervised definition of the knee regions allows a reproducible way to evaluate regional OA changes. This works will present the application of this automated algorithm for the regional analysis of the cartilage tissue.

  13. Anatomically realistic multiscale models of normal and abnormal gastrointestinal electrical activity

    PubMed Central

    Cheng, Leo K; Komuro, Rie; Austin, Travis M; Buist, Martin L; Pullan, Andrew J

    2007-01-01

    One of the major aims of the International Union of Physiological Sciences (IUPS) Physiome Project is to develop multiscale mathematical and computer models that can be used to help understand human health. We present here a small facet of this broad plan that applies to the gastrointestinal system. Specifically, we present an anatomically and physiologically based modelling framework that is capable of simulating normal and pathological electrical activity within the stomach and small intestine. The continuum models used within this framework have been created using anatomical information derived from common medical imaging modalities and data from the Visible Human Project. These models explicitly incorporate the various smooth muscle layers and networks of interstitial cells of Cajal (ICC) that are known to exist within the walls of the stomach and small bowel. Electrical activity within individual ICCs and smooth muscle cells is simulated using a previously published simplified representation of the cell level electrical activity. This simulated cell level activity is incorporated into a bidomain representation of the tissue, allowing electrical activity of the entire stomach or intestine to be simulated in the anatomically derived models. This electrical modelling framework successfully replicates many of the qualitative features of the slow wave activity within the stomach and intestine and has also been used to investigate activity associated with functional uncoupling of the stomach. PMID:17457969

  14. Unconscious automatic brain activation of acoustic and action-related conceptual features during masked repetition priming.

    PubMed

    Trumpp, Natalie M; Traub, Felix; Pulvermüller, Friedemann; Kiefer, Markus

    2014-02-01

    Classical theories of semantic memory assume that concepts are represented in a unitary amodal memory system. In challenging this classical view, pure or hybrid modality-specific theories propose that conceptual representations are grounded in the sensory-motor brain areas, which typically process sensory and action-related information. Although neuroimaging studies provided evidence for a functional-anatomical link between conceptual processing of sensory or action-related features and the sensory-motor brain systems, it has been argued that aspects of such sensory-motor activation may not directly reflect conceptual processing but rather strategic imagery or postconceptual elaboration. In the present ERP study, we investigated masked effects of acoustic and action-related conceptual features to probe unconscious automatic conceptual processing in isolation. Subliminal feature-specific ERP effects at frontocentral electrodes were observed, which differed with regard to polarity, topography, and underlying brain electrical sources in congruency with earlier findings under conscious viewing conditions. These findings suggest that conceptual acoustic and action representations can also be unconsciously accessed, thereby excluding any postconceptual strategic processes. This study therefore further substantiates a grounding of conceptual and semantic processing in action and perception.

  15. Automatic detection of obstructive sleep apnea using speech signals.

    PubMed

    Goldshtein, Evgenia; Tarasiuk, Ariel; Zigel, Yaniv

    2011-05-01

    Obstructive sleep apnea (OSA) is a common disorder associated with anatomical abnormalities of the upper airways that affects 5% of the population. Acoustic parameters may be influenced by the vocal tract structure and soft tissue properties. We hypothesize that speech signal properties of OSA patients will be different than those of control subjects not having OSA. Using speech signal processing techniques, we explored acoustic speech features of 93 subjects who were recorded using a text-dependent speech protocol and a digital audio recorder immediately prior to polysomnography study. Following analysis of the study, subjects were divided into OSA (n=67) and non-OSA (n=26) groups. A Gaussian mixture model-based system was developed to model and classify between the groups; discriminative features such as vocal tract length and linear prediction coefficients were selected using feature selection technique. Specificity and sensitivity of 83% and 79% were achieved for the male OSA and 86% and 84% for the female OSA patients, respectively. We conclude that acoustic features from speech signals during wakefulness can detect OSA patients with good specificity and sensitivity. Such a system can be used as a basis for future development of a tool for OSA screening. © 2011 IEEE

  16. Systemic regulation of leaf anatomical structure, photosynthetic performance, and high-light tolerance in sorghum.

    PubMed

    Jiang, Chuang-Dao; Wang, Xin; Gao, Hui-Yuan; Shi, Lei; Chow, Wah Soon

    2011-03-01

    Leaf anatomy of C3 plants is mainly regulated by a systemic irradiance signal. Since the anatomical features of C4 plants are different from that of C3 plants, we investigated whether the systemic irradiance signal regulates leaf anatomical structure and photosynthetic performance in sorghum (Sorghum bicolor), a C4 plant. Compared with growth under ambient conditions (A), no significant changes in anatomical structure were observed in newly developed leaves by shading young leaves alone (YS). Shading mature leaves (MS) or whole plants (S), on the other hand, caused shade-leaf anatomy in newly developed leaves. By contrast, chloroplast ultrastructure in developing leaves depended only on their local light conditions. Functionally, shading young leaves alone had little effect on their net photosynthetic capacity and stomatal conductance, but shading mature leaves or whole plants significantly decreased these two parameters in newly developed leaves. Specifically, the net photosynthetic rate in newly developed leaves exhibited a positive linear correlation with that of mature leaves, as did stomatal conductance. In MS and S treatments, newly developed leaves exhibited severe photoinhibition under high light. By contrast, newly developed leaves in A and YS treatments were more resistant to high light relative to those in MS- and S-treated seedlings. We suggest that (1) leaf anatomical structure, photosynthetic capacity, and high-light tolerance in newly developed sorghum leaves were regulated by a systemic irradiance signal from mature leaves; and (2) chloroplast ultrastructure only weakly influenced the development of photosynthetic capacity and high-light tolerance. The potential significance of the regulation by a systemic irradiance signal is discussed.

  17. A feature-based developmental model of the infant brain in structural MRI.

    PubMed

    Toews, Matthew; Wells, William M; Zöllei, Lilla

    2012-01-01

    In this paper, anatomical development is modeled as a collection of distinctive image patterns localized in space and time. A Bayesian posterior probability is defined over a random variable of subject age, conditioned on data in the form of scale-invariant image features. The model is automatically learned from a large set of images exhibiting significant variation, used to discover anatomical structure related to age and development, and fit to new images to predict age. The model is applied to a set of 230 infant structural MRIs of 92 subjects acquired at multiple sites over an age range of 8-590 days. Experiments demonstrate that the model can be used to identify age-related anatomical structure, and to predict the age of new subjects with an average error of 72 days.

  18. Anatomical and/or pathological predictors for the “incorrect” classification of red dot markers on wrist radiographs taken following trauma

    PubMed Central

    Kranz, R

    2015-01-01

    Objective: To establish the prevalence of red dot markers in a sample of wrist radiographs and to identify any anatomical and/or pathological characteristics that predict “incorrect” red dot classification. Methods: Accident and emergency (A&E) wrist cases from a digital imaging and communications in medicine/digital teaching library were examined for red dot prevalence and for the presence of several anatomical and pathological features. Binary logistic regression analyses were run to establish if any of these features were predictors of incorrect red dot classification. Results: 398 cases were analysed. Red dot was “incorrectly” classified in 8.5% of cases; 6.3% were “false negatives” (“FNs”)and 2.3% false positives (FPs) (one decimal place). Old fractures [odds ratio (OR), 5.070 (1.256–20.471)] and reported degenerative change [OR, 9.870 (2.300–42.359)] were found to predict FPs. Frykman V [OR, 9.500 (1.954–46.179)], Frykman VI [OR, 6.333 (1.205–33.283)] and non-Frykman positive abnormalities [OR, 4.597 (1.264–16.711)] predict “FNs”. Old fractures and Frykman VI were predictive of error at 90% confidence interval (CI); the rest at 95% CI. Conclusion: The five predictors of incorrect red dot classification may inform the image interpretation training of radiographers and other professionals to reduce diagnostic error. Verification with larger samples would reinforce these findings. Advances in knowledge: All healthcare providers strive to eradicate diagnostic error. By examining specific anatomical and pathological predictors on radiographs for such error, as well as extrinsic factors that may affect reporting accuracy, image interpretation training can focus on these “problem” areas and influence which radiographic abnormality detection schemes are appropriate to implement in A&E departments. PMID:25496373

  19. Deep Learning in Medical Image Analysis.

    PubMed

    Shen, Dinggang; Wu, Guorong; Suk, Heung-Il

    2017-06-21

    This review covers computer-assisted analysis of images in the field of medical imaging. Recent advances in machine learning, especially with regard to deep learning, are helping to identify, classify, and quantify patterns in medical images. At the core of these advances is the ability to exploit hierarchical feature representations learned solely from data, instead of features designed by hand according to domain-specific knowledge. Deep learning is rapidly becoming the state of the art, leading to enhanced performance in various medical applications. We introduce the fundamentals of deep learning methods and review their successes in image registration, detection of anatomical and cellular structures, tissue segmentation, computer-aided disease diagnosis and prognosis, and so on. We conclude by discussing research issues and suggesting future directions for further improvement.

  20. [Liver diseases in the elderly].

    PubMed

    Bruguera, Miguel

    2014-11-01

    Liver diseases in the elderly have aroused less interest than diseases of other organs, since the liver plays a limited role in aging. There are no specific liver diseases of old age, but age-related anatomical and functional modifications of the liver cause changes in the frequency and clinical behavior of some liver diseases compared with those in younger patients. This review discusses the most important features of liver function in the healthy elderly population, as well as the features of the most prevalent liver diseases in this age group, especially the diagnostic approach to the most common liver problems in the elderly: asymptomatic elevation of serum transaminases and jaundice. Copyright © 2014 Elsevier España, S.L.U. and AEEH y AEG. All rights reserved.

  1. The complex simplicity of the brittle star nervous system.

    PubMed

    Zueva, Olga; Khoury, Maleana; Heinzeller, Thomas; Mashanova, Daria; Mashanov, Vladimir

    2018-01-01

    Brittle stars (Ophiuroidea, Echinodermata) have been increasingly used in studies of animal behavior, locomotion, regeneration, physiology, and bioluminescence. The success of these studies directly depends on good working knowledge of the ophiuroid nervous system. Here, we describe the arm nervous system at different levels of organization, including the microanatomy of the radial nerve cord and peripheral nerves, ultrastructure of the neural tissue, and localization of different cell types using specific antibody markers. We standardize the nomenclature of nerves and ganglia, and provide an anatomically accurate digital 3D model of the arm nervous system as a reference for future studies. Our results helped identify several general features characteristic to the adult echinoderm nervous system, including the extensive anatomical interconnections between the ectoneural and hyponeural components, neuroepithelial organization of the central nervous system, and the supporting scaffold of the neuroepithelium formed by radial glial cells. In addition, we provide further support to the notion that the echinoderm radial glia is a complex and diverse cell population. We also tested the suitability of a range of specific cell-type markers for studies of the brittle star nervous system and established that the radial glial cells are reliably labeled with the ERG1 antibodies, whereas the best neuronal markers are acetylated tubulin, ELAV, and synaptotagmin B. The transcription factor Brn1/2/4 - a marker of neuronal progenitors - is expressed not only in neurons, but also in a subpopulation of radial glia. For the first time, we describe putative ophiuroid proprioceptors associated with the hyponeural part of the central nervous system. Together, our data help establish both the general principles of neural architecture common to the phylum Echinodermata and the specific ophiuroid features.

  2. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy.

    PubMed

    Wognum, S; Bondar, L; Zolnay, A G; Chai, X; Hulshof, M C C M; Hoogeman, M S; Bel, A

    2013-02-01

    Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumor and the lack of visible anatomical landmarks for validation. The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight parameters were determined for the weighted S-TPS-RPM. The weighted S-TPS-RPM registration algorithm with optimal parameters significantly improved the anatomical accuracy as compared to S-TPS-RPM registration of the bladder alone and reduced the range of the anatomical errors by half as compared with the simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. The weighted algorithm reduced the RDE range of lipiodol markers from 0.9-14 mm after rigid bone match to 0.9-4.0 mm, compared to a range of 1.1-9.1 mm with S-TPS-RPM of bladder alone and 0.9-9.4 mm for simultaneous nonweighted registration. All registration methods resulted in good geometric accuracy on the bladder; average error values were all below 1.2 mm. The weighted S-TPS-RPM registration algorithm with additional weight parameter allowed indirect control over structure-specific flexibility in multistructure registrations of bladder and bladder tumor, enabling anatomically coherent registrations. The availability of an anatomically validated deformable registration method opens up the horizon for improvements in IGART for bladder cancer.

  3. The Effect of Anatomical Location of Lymph Node Metastases on Cancer Specific Survival in Patients with Clear Cell Renal Cell Carcinoma.

    PubMed

    Nini, Alessandro; Larcher, Alessandro; Cianflone, Francesco; Trevisani, Francesco; Terrone, Carlo; Volpe, Alessandro; Regis, Federica; Briganti, Alberto; Salonia, Andrea; Montorsi, Francesco; Bertini, Roberto; Capitanio, Umberto

    2018-01-01

    Positive nodal status (pN1) is an independent predictor of survival in renal cell carcinoma (RCC) patients. However, no study to date has tested whether the location of lymph node (LN) metastases does affect oncologic outcomes in a population submitted to radical nephrectomy (RN) and extended lymph node dissection (eLND). To describe nodal disease dissemination in clear cell RCC (ccRCC) patients and to assess the effect of the anatomical sites and the number of nodal areas affected on cancer specific mortality (CSM). The study included 415 patients who underwent RN and eLND, defined as the removal of hilar, side-specific (pre/paraaortic or pre/paracaval) and interaortocaval LNs for ccRCC, at two institutions. Descriptive statistics were used to depict nodal dissemination in pN1 patients, stratified according to nodal site and number of involved areas. Multivariable Cox regression analyses and Kaplan-Meier curves were used to explore the relationship between pN1 disease features and survival outcomes. Median number of removed LN was 14 (IQR 9-19); 23% of patients were pN1. Among patients with one involved nodal site, 54 and 26% of patients were positive only in side-specific and interaortocaval station, respectively. The most frequent nodal site was the interaortocaval and side-specific one, for right and left ccRCC, respectively. Interaortocaval nodal positivity (HR 2.3, CI 95%: 1.3-3.9, p < 0.01) represented an independent predictor of CSM. When ccRCC patient harbour nodal disease, its spreading can occur at any nodal station without involving the others. The presence of interoartocaval positive nodes does affect oncologic outcomes. Lymph node invasion in patients with clear cell renal cell carcinoma is not following a fixed anatomical pattern. An extended lymph node dissection, during treatment for primary kidney tumour, would aid patient risk stratification and multimodality upfront treatment.

  4. A study on automated anatomical labeling to arteries concerning with colon from 3D abdominal CT images

    NASA Astrophysics Data System (ADS)

    Hoang, Bui Huy; Oda, Masahiro; Jiang, Zhengang; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Mori, Kensaku

    2011-03-01

    This paper presents an automated anatomical labeling method of arteries extracted from contrasted 3D CT images based on multi-class AdaBoost. In abdominal surgery, understanding of vasculature related to a target organ such as the colon is very important. Therefore, the anatomical structure of blood vessels needs to be understood by computers in a system supporting abdominal surgery. There are several researches on automated anatomical labeling, but there is no research on automated anatomical labeling to arteries concerning with the colon. The proposed method obtains a tree structure of arteries from the artery region and calculates features values of each branch. These feature values are thickness, curvature, direction, and running vectors of branch. Then, candidate arterial names are computed by classifiers that are trained to output artery names. Finally, a global optimization process is applied to the candidate arterial names to determine final names. Target arteries of this paper are nine lower abdominal arteries (AO, LCIA, RCIA, LEIA, REIA, SMA, IMA, LIIA, RIIA). We applied the proposed method to 14 cases of 3D abdominal contrasted CT images, and evaluated the results by leave-one-out scheme. The average precision and recall rates of the proposed method were 87.9% and 93.3%, respectively. The results of this method are applicable for anatomical name display of surgical simulation and computer aided surgery.

  5. Automated anatomical labeling method for abdominal arteries extracted from 3D abdominal CT images

    NASA Astrophysics Data System (ADS)

    Oda, Masahiro; Hoang, Bui Huy; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Mori, Kensaku

    2012-02-01

    This paper presents an automated anatomical labeling method of abdominal arteries. In abdominal surgery, understanding of blood vessel structure concerning with a target organ is very important. Branching pattern of blood vessels differs among individuals. It is required to develop a system that can assist understanding of a blood vessel structure and anatomical names of blood vessels of a patient. Previous anatomical labbeling methods for abdominal arteries deal with either of the upper or lower abdominal arteries. In this paper, we present an automated anatomical labeling method of both of the upper and lower abdominal arteries extracted from CT images. We obtain a tree structure of artery regions and calculate feature values for each branch. These feature values include the diameter, curvature, direction, and running vectors of a branch. Target arteries of this method are grouped based on branching conditions. The following processes are separately applied for each group. We compute candidate artery names by using classifiers that are trained to output artery names. A correction process of the candidate anatomical names based on the rule of majority is applied to determine final names. We applied the proposed method to 23 cases of 3D abdominal CT images. Experimental results showed that the proposed method is able to perform nomenclature of entire major abdominal arteries. The recall and the precision rates of labeling are 79.01% and 80.41%, respectively.

  6. Genomic regression of claw keratin, taste receptor and light-associated genes provides insights into biology and evolutionary origins of snakes.

    PubMed

    Emerling, Christopher A

    2017-10-01

    Regressive evolution of anatomical traits often corresponds with the regression of genomic loci underlying such characters. As such, studying patterns of gene loss can be instrumental in addressing questions of gene function, resolving conflicting results from anatomical studies, and understanding the evolutionary history of clades. The evolutionary origins of snakes involved the regression of a number of anatomical traits, including limbs, taste buds and the visual system, and by analyzing serpent genomes, I was able to test three hypotheses associated with the regression of these features. The first concerns two keratins that are putatively specific to claws. Both genes that encode these keratins are pseudogenized/deleted in snake genomes, providing additional evidence of claw-specificity. The second hypothesis is that snakes lack taste buds, an issue complicated by conflicting results in the literature. I found evidence that different snakes have lost one or more taste receptors, but all snakes examined retained at least one gustatory channel. The final hypothesis addressed is that the earliest snakes were adapted to a dim light niche. I found evidence of deleted and pseudogenized genes with light-associated functions in snakes, demonstrating a pattern of gene loss similar to other dim light-adapted clades. Molecular dating estimates suggest that dim light adaptation preceded the loss of limbs, providing some bearing on interpretations of the ecological origins of snakes. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Radiological features for the approach in trans-sphenoidal pituitary surgery.

    PubMed

    Twigg, Victoria; Carr, Simon D; Balakumar, Ramkishan; Sinha, Saurabh; Mirza, Showkat

    2017-08-01

    In order to perform trans-sphenoidal endoscopic pituitary surgery safely and efficiently it is important to identify anatomical and pituitary disease features on the pre-operative CT and MRI scans; thereby minimising the risk to surrounding structures and optimising outcomes. We aim to create a checklist to streamline pre-operative planning. We retrospectively reviewed pre-operative CT and MRI scans of 100 adults undergoing trans-sphenoidal endoscopic pituitary surgery. Radiological findings and their incidence included deviated nasal septum (62%), concha bullosa (32%), bony dehiscence of the carotid arteries (18%), sphenoid septation overlying the internal carotid artery (24% at the sella) and low lying CSF (32%). The mean distance of the sphenoid ostium to the skull base was 10 mm (range 2.7-17.6 mm). We also describe the 'teddy bear' sign which when present on an axial CT indicates the carotid arteries will be identifiable intra-operatively. There are significant variations in the anatomical and pituitary disease features between patients. We describe a number of features on pre-operative scans and have devised a checklist including a new 'teddy bear' sign to aid the surgeon in the anatomical assessment of patients undergoing trans-sphenoidal pituitary surgery.

  8. Anatomical features of skull base and oral cavity: a pilot study to determine the accessibility of the sella by transoral robotic-assisted surgery.

    PubMed

    Amelot, Aymeric; Trunet, Stephanie; Degos, Vincent; André, Olivier; Dionnet, Aurore; Cornu, Philippe; Hans, Stéphane; Chauvet, Dorian

    2015-10-01

    The role of transoral robotic surgery (TORS) in the skull base emerges and represents the natural progression toward miniinvasive resections in confined spaces. The accessibility of the sella via TORS has been recently described on fresh human cadavers. An anatomic study is mandatory to know if this approach would be feasible in the majority of patients regardless of their oral morphological features. From 30 skull base CT scans from patients who were asked to open their mouth as wide as they can, we measured specific dimensions of the oral cavity and the skull base, such as length of the palate, mouth opening and distance from the sella to the palate. All data were acquired on a sagittal midline plane and on a 25° rotation plane, which simulated the axis of the robotic instruments. Looking at the projection of the dental palatine line on the sella, we studied possible predictive factors of sellar accessibility and tried to bring objective data for surgical feasibility. We also proposed an angle α to study the working angle at the skull base. We observed that the maximal mouth opening was a good predictive factor of sellar accessibility by TORS (p < 0.05). The mouth aperture threshold value for a good sensitivity, over 80 %, was comparable to the mean value of mouth opening in our series, 38.9 and 39.4 mm respectively. Moreover, we showed a statistically significant increase of the working angle α at the skull base comparing the lateral access to the midline one (p < 0.05). This seemed to quantitatively demonstrate that the robotic arms placed at the labial commissure of the mouth can reach the sella. From these anatomical features and previous cadaveric dissections, we assume that TORS may be feasible on a majority of patients to remove pituitary adenomas.

  9. Anatomical investigations on root, stem, and leaf of Gentiana olivieri Griseb

    PubMed Central

    Tüzün, Canan Yağci; Toker, Mehmet Cihat; Toker, Gülnur

    2011-01-01

    Background: Gentiana olivieri Griseb. (Afat) (Gentianaceae), which has many bioactive compounds is used as antidiabetic, hepatoprotective, digestive aid, antidepressant, and antianemic in traditional medicine. Materials and Methods: Root, stem, and leaf sections of G. olivieri were taken free hand or by sliding microtome and examined on light microscope. Results: Anatomical characters of the species were observed to be similar to the usual features of Gentianaceae anatomy. Conclusion: Intraxylary phloem, which was primarily the distinguishing feature between Gentianoideae and Menyanthoideae sub-families was observed in G. olivieri roots. PMID:21472072

  10. A micro-computed tomography study of the negotiation and anatomical feature in apical root canal of mandibular molars.

    PubMed

    Min, Yi; Ma, Jing-Zhi; Shen, Ya; Cheung, Gary Shun-Pan; Gao, Yuan

    2016-11-01

    The aim of this study was to investigate the clinical negotiation of various apical anatomic features of the mandibular first molars in a Chinese population using micro-computed tomography (micro-CT). A total of 152 mandibular first molars were scanned with micro-CT at 30 µm resolution. The apical 5 mm of root canal (ARC) was reconstructed three dimensionally and classified. Subsequently, the access cavity was prepared with the ARC anatomy blinded to the operator. The ARC was negotiated with a size 10 K file with or without precurve. Information on the ability to obtain a reproducible glide path was recorded. The anatomical classification of ARC was Type I with 68.45% in mandibular first molars. The negotiation result of ARC with Category i was 387 canals (74.00%). With a bent negotiating file, 96 canals were negotiated, including 88 reproducible glide paths (Category ii) and 8 irregular glide paths (Category iii). About 7.65% canals could not be negotiated with patency successfully (Category iv). The statistical analyze shown the anatomic feature of ARC had effect on the negotiation of ARC (p < 0.05). In conclusion, ARC anatomic variations had a strong potential impact on the negotiation. The category of negotiation in ARC would be helpful in the using of NiTi rotary instruments. Negotiation of ARC to the working length with patency should be careful and skillful because of the complexities of ARC. SCANNING 38:819-824, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  11. Dictionary learning-based CT detection of pulmonary nodules

    NASA Astrophysics Data System (ADS)

    Wu, Panpan; Xia, Kewen; Zhang, Yanbo; Qian, Xiaohua; Wang, Ge; Yu, Hengyong

    2016-10-01

    Segmentation of lung features is one of the most important steps for computer-aided detection (CAD) of pulmonary nodules with computed tomography (CT). However, irregular shapes, complicated anatomical background and poor pulmonary nodule contrast make CAD a very challenging problem. Here, we propose a novel scheme for feature extraction and classification of pulmonary nodules through dictionary learning from training CT images, which does not require accurately segmented pulmonary nodules. Specifically, two classification-oriented dictionaries and one background dictionary are learnt to solve a two-category problem. In terms of the classification-oriented dictionaries, we calculate sparse coefficient matrices to extract intrinsic features for pulmonary nodule classification. The support vector machine (SVM) classifier is then designed to optimize the performance. Our proposed methodology is evaluated with the lung image database consortium and image database resource initiative (LIDC-IDRI) database, and the results demonstrate that the proposed strategy is promising.

  12. Functional MRI registration with tissue-specific patch-based functional correlation tensors.

    PubMed

    Zhou, Yujia; Zhang, Han; Zhang, Lichi; Cao, Xiaohuan; Yang, Ru; Feng, Qianjin; Yap, Pew-Thian; Shen, Dinggang

    2018-06-01

    Population studies of brain function with resting-state functional magnetic resonance imaging (rs-fMRI) rely on accurate intersubject registration of functional areas. This is typically achieved through registration using high-resolution structural images with more spatial details and better tissue contrast. However, accumulating evidence has suggested that such strategy cannot align functional regions well because functional areas are not necessarily consistent with anatomical structures. To alleviate this problem, a number of registration algorithms based directly on rs-fMRI data have been developed, most of which utilize functional connectivity (FC) features for registration. However, most of these methods usually extract functional features only from the thin and highly curved cortical grey matter (GM), posing great challenges to accurate estimation of whole-brain deformation fields. In this article, we demonstrate that additional useful functional features can also be extracted from the whole brain, not restricted to the GM, particularly the white-matter (WM), for improving the overall functional registration. Specifically, we quantify local anisotropic correlation patterns of the blood oxygenation level-dependent (BOLD) signals using tissue-specific patch-based functional correlation tensors (ts-PFCTs) in both GM and WM. Functional registration is then performed by integrating the features from different tissues using the multi-channel large deformation diffeomorphic metric mapping (mLDDMM) algorithm. Experimental results show that our method achieves superior functional registration performance, compared with conventional registration methods. © 2018 Wiley Periodicals, Inc.

  13. Standard Anatomic Terminologies: Comparison for Use in a Health Information Exchange–Based Prior Computed Tomography (CT) Alerting System

    PubMed Central

    Lowry, Tina; Vreeman, Daniel J; Loo, George T; Delman, Bradley N; Thum, Frederick L; Slovis, Benjamin H; Shapiro, Jason S

    2017-01-01

    Background A health information exchange (HIE)–based prior computed tomography (CT) alerting system may reduce avoidable CT imaging by notifying ordering clinicians of prior relevant studies when a study is ordered. For maximal effectiveness, a system would alert not only for prior same CTs (exams mapped to the same code from an exam name terminology) but also for similar CTs (exams mapped to different exam name terminology codes but in the same anatomic region) and anatomically proximate CTs (exams in adjacent anatomic regions). Notification of previous same studies across an HIE requires mapping of local site CT codes to a standard terminology for exam names (such as Logical Observation Identifiers Names and Codes [LOINC]) to show that two studies with different local codes and descriptions are equivalent. Notifying of prior similar or proximate CTs requires an additional mapping of exam codes to anatomic regions, ideally coded by an anatomic terminology. Several anatomic terminologies exist, but no prior studies have evaluated how well they would support an alerting use case. Objective The aim of this study was to evaluate the fitness of five existing standard anatomic terminologies to support similar or proximate alerts of an HIE-based prior CT alerting system. Methods We compared five standard anatomic terminologies (Foundational Model of Anatomy, Systematized Nomenclature of Medicine Clinical Terms, RadLex, LOINC, and LOINC/Radiological Society of North America [RSNA] Radiology Playbook) to an anatomic framework created specifically for our use case (Simple ANatomic Ontology for Proximity or Similarity [SANOPS]), to determine whether the existing terminologies could support our use case without modification. On the basis of an assessment of optimal terminology features for our purpose, we developed an ordinal anatomic terminology utility classification. We mapped samples of 100 random and the 100 most frequent LOINC CT codes to anatomic regions in each terminology, assigned utility classes for each mapping, and statistically compared each terminology’s utility class rankings. We also constructed seven hypothetical alerting scenarios to illustrate the terminologies’ differences. Results Both RadLex and the LOINC/RSNA Radiology Playbook anatomic terminologies ranked significantly better (P<.001) than the other standard terminologies for the 100 most frequent CTs, but no terminology ranked significantly better than any other for 100 random CTs. Hypothetical scenarios illustrated instances where no standard terminology would support appropriate proximate or similar alerts, without modification. Conclusions LOINC/RSNA Radiology Playbook and RadLex’s anatomic terminologies appear well suited to support proximate or similar alerts for commonly ordered CTs, but for less commonly ordered tests, modification of the existing terminologies with concepts and relations from SANOPS would likely be required. Our findings suggest SANOPS may serve as a framework for enhancing anatomic terminologies in support of other similar use cases. PMID:29242174

  14. MULTIMODAL CLASSIFICATION OF DEMENTIA USING FUNCTIONAL DATA, ANATOMICAL FEATURES AND 3D INVARIANT SHAPE DESCRIPTORS

    PubMed Central

    Mikhno, Arthur; Nuevo, Pablo Martinez; Devanand, Davangere P.; Parsey, Ramin V.; Laine, Andrew F.

    2013-01-01

    Multimodality classification of Alzheimer’s disease (AD) and its prodromal stage, Mild Cognitive Impairment (MCI), is of interest to the medical community. We improve on prior classification frameworks by incorporating multiple features from MRI and PET data obtained with multiple radioligands, fluorodeoxyglucose (FDG) and Pittsburg compound B (PIB). We also introduce a new MRI feature, invariant shape descriptors based on 3D Zernike moments applied to the hippocampus region. Classification performance is evaluated on data from 17 healthy controls (CTR), 22 MCI, and 17 AD subjects. Zernike significantly outperforms volume, accuracy (Zernike to volume): CTR/AD (90.7% to 71.6%), CTR/MCI (76.2% to 60.0%), MCI/AD (84.3% to 65.5%). Zernike also provides comparable and complementary performance to PET. Optimal accuracy is achieved when Zernike and PET features are combined (accuracy, specificity, sensitivity), CTR/AD (98.8%, 99.5%, 98.1%), CTR/MCI (84.3%, 82.9%, 85.9%) and MCI/AD (93.3%, 93.6%, 93.3%). PMID:24576927

  15. MULTIMODAL CLASSIFICATION OF DEMENTIA USING FUNCTIONAL DATA, ANATOMICAL FEATURES AND 3D INVARIANT SHAPE DESCRIPTORS.

    PubMed

    Mikhno, Arthur; Nuevo, Pablo Martinez; Devanand, Davangere P; Parsey, Ramin V; Laine, Andrew F

    2012-01-01

    Multimodality classification of Alzheimer's disease (AD) and its prodromal stage, Mild Cognitive Impairment (MCI), is of interest to the medical community. We improve on prior classification frameworks by incorporating multiple features from MRI and PET data obtained with multiple radioligands, fluorodeoxyglucose (FDG) and Pittsburg compound B (PIB). We also introduce a new MRI feature, invariant shape descriptors based on 3D Zernike moments applied to the hippocampus region. Classification performance is evaluated on data from 17 healthy controls (CTR), 22 MCI, and 17 AD subjects. Zernike significantly outperforms volume, accuracy (Zernike to volume): CTR/AD (90.7% to 71.6%), CTR/MCI (76.2% to 60.0%), MCI/AD (84.3% to 65.5%). Zernike also provides comparable and complementary performance to PET. Optimal accuracy is achieved when Zernike and PET features are combined (accuracy, specificity, sensitivity), CTR/AD (98.8%, 99.5%, 98.1%), CTR/MCI (84.3%, 82.9%, 85.9%) and MCI/AD (93.3%, 93.6%, 93.3%).

  16. A Feature-based Developmental Model of the Infant Brain in Structural MRI

    PubMed Central

    Toews, Matthew; Wells, William M.; Zöllei, Lilla

    2014-01-01

    In this paper, anatomical development is modeled as a collection of distinctive image patterns localized in space and time. A Bayesian posterior probability is defined over a random variable of subject age, conditioned on data in the form of scale-invariant image features. The model is automatically learned from a large set of images exhibiting significant variation, used to discover anatomical structure related to age and development, and fit to new images to predict age. The model is applied to a set of 230 infant structural MRIs of 92 subjects acquired at multiple sites over an age range of 8-590 days. Experiments demonstrate that the model can be used to identify age-related anatomical structure, and to predict the age of new subjects with an average error of 72 days. PMID:23286050

  17. A reusable anatomically segmented digital mannequin for public health communication.

    PubMed

    Fujieda, Kaori; Okubo, Kosaku

    2016-01-01

    The ongoing development of world wide web technologies has facilitated a change in health communication, which has now become bi-directional and encompasses people with diverse backgrounds. To enable an even greater role for medical illustrations, a data set, BodyParts3D, has been generated and its data set can be used by anyone to create and exchange customised three-dimensional (3D) anatomical images. BP3D comprises more than 3000 3D object files created by segmenting a digital mannequin in accordance with anatomical naming conventions. This paper describes the methodologies and features used to generate an anatomically correct male mannequin.

  18. Physical exercise antagonizes clinical and anatomical features characterizing Lieber-DeCarli diet-induced obesity and related metabolic disorders.

    PubMed

    Gonçalves, Inês O; Passos, Emanuel; Rocha-Rodrigues, Sílvia; Torrella, Joan R; Rizo, David; Santos-Alves, Estela; Portincasa, Piero; Martins, Maria J; Ascensão, António; Magalhães, José

    2015-04-01

    Lieber-DeCarli diet has been used to induce obesity and non-alcoholic steatohepatitis (NASH). As scarce anatomical and clinical-related information on this diet model exists and being exercise an advised strategy to counteract metabolic diseases, we aimed to analyze the preventive (voluntary physical activity - VPA) and therapeutic (endurance training - ET) effect of exercise on clinical/anatomical features of rats fed with Lieber-DeCarli diet. In the beginning of the protocol, Sprague-Dawley rats were divided into standard-diet sedentary (SS, n = 20), standard-diet VPA (SVPA, n = 10), high-fat diet sedentary (HS, n = 20) and high-fat diet VPA (HVPA, n = 10) groups. After 9-weeks, half (n = 10) of SS and HS groups were engaged in an ET program (8 wks/5 d/wk/60 min/day). At this time, a blood sample was collected for biochemical analysis. At the end of protocol (17-weeks) anatomic measures were assessed. Heart, liver, femur and visceral fat were weighted and blood was collected again. Liver section was used for histopathological examination. At 17-weeks, high-fat diet increased visceral adiposity (HS vs. SS), which was counteracted by both exercises. However, ET was the only intervention able to diminished obesity-related measures and the histological features of NASH. Moreover, blood analysis at 9 weeks showed that high-fat diet increased ALT, AST, cholesterol and HDL while VLDL and TG levels were decreased (HS vs. SS). Notably, although these parameters were counteracted after 9-weeks of VPA, they were transitory and not observed after 17-weeks. ET used as a therapeutic tool mitigated the clinical/anatomical-related features induced by Liber-DeCarli diet, thus possibly contributing to control obesity and metabolic disorders. Copyright © 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  19. Detectability and anatomical correlation of middle ear cholesteatoma using fused thin slice non-echo planar imaging diffusion-weighted image and magnetic resonance cisternography (FTS-nEPID).

    PubMed

    Kanoto, Masafumi; Sugai, Yukio; Hosoya, Takaaki; Toyoguchi, Yuuki; Konno, Yoshihiro; Watarai, Fumika; Ito, Tsukasa; Watanabe, Tomoo; Kakehata, Seiji

    2015-12-01

    Cholesteatomas show high intensity in diffusion-weighted imaging (DWI). We performed fused thin slice non-echo planar imaging (EPI) DWI and magnetic resonance cisternography (FTS-nEPID) for cholesteatoma patients to increase the detectability of FTS-nEPID for cholesteatoma. The subjects are 77 consecutive patients who underwent FTS-nEPID as a preoperative study (mean age: 53.3±21.8, 47 men and 30 women). Otorhinolaryngologists performed the operations. We anatomically classified the middle ear into four portions. A radiologist evaluated the images for cholesteatoma and assessed the anatomical invasive range in four portions using only FTS-nEPID. We classified large cholesteatomas that invaded more than three portions and small ones that invaded less than two portions based on the results obtained from surgery, and calculated the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). For all cholesteatomas with an existing diagnosis, the sensitivity, specificity, PPV, and NPV were 71%, 70%, 94%, and 27%, respectively. In anatomical evaluation, the sensitivity, specificity, PPV, and NPV were 49%, 85%, 77%, and 64%, respectively. For large cholesteatomas with an existing diagnosis, the sensitivity was 86%. In anatomical evaluation, the sensitivity, specificity, PPV, and NPV were 51%, 57%, 88%, and 18%, respectively. For small cholesteatomas with an existing diagnosis, the sensitivity, specificity, PPV, and NPV were 59%, 78%, 92%, and 30%, respectively. In anatomical evaluation, the sensitivity, specificity, PPV, and NPV were 40%, 85%, 60%, and 71%, respectively. FTS-nEPID may be useful for diagnosing cholesteatomas. Further research is needed for anatomical evaluation because there were many false-negative results. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Anterior ankle impingement syndromes.

    PubMed

    Umans, Hilary R; Cerezal, Luiz

    2008-06-01

    Ankle impingement syndromes are painful conditions that may complicate ankle trauma and are characterized by chronic, progressive pain, swelling, and limitation of movement. These disorders are subclassified according to anatomical location about the tibiotalar joint. This article reviews the various forms of anterior ankle impingement, detailing the unique clinical features, anatomical considerations, pathoetiology, and imaging findings for each.

  1. Location Sensitive Deep Convolutional Neural Networks for Segmentation of White Matter Hyperintensities.

    PubMed

    Ghafoorian, Mohsen; Karssemeijer, Nico; Heskes, Tom; van Uden, Inge W M; Sanchez, Clara I; Litjens, Geert; de Leeuw, Frank-Erik; van Ginneken, Bram; Marchiori, Elena; Platel, Bram

    2017-07-11

    The anatomical location of imaging features is of crucial importance for accurate diagnosis in many medical tasks. Convolutional neural networks (CNN) have had huge successes in computer vision, but they lack the natural ability to incorporate the anatomical location in their decision making process, hindering success in some medical image analysis tasks. In this paper, to integrate the anatomical location information into the network, we propose several deep CNN architectures that consider multi-scale patches or take explicit location features while training. We apply and compare the proposed architectures for segmentation of white matter hyperintensities in brain MR images on a large dataset. As a result, we observe that the CNNs that incorporate location information substantially outperform a conventional segmentation method with handcrafted features as well as CNNs that do not integrate location information. On a test set of 50 scans, the best configuration of our networks obtained a Dice score of 0.792, compared to 0.805 for an independent human observer. Performance levels of the machine and the independent human observer were not statistically significantly different (p-value = 0.06).

  2. Morphological evaluation of clefts of the lip, palate, or both in dogs.

    PubMed

    Peralta, Santiago; Fiani, Nadine; Kan-Rohrer, Kimi H; Verstraete, Frank J M

    2017-08-01

    OBJECTIVE To systematically characterize the morphology of cleft lip, cleft palate, and cleft lip and palate in dogs. ANIMALS 32 client-owned dogs with clefts of the lip (n = 5), palate (23), or both (4) that had undergone a CT or cone-beam CT scan of the head prior to any surgical procedures involving the oral cavity or face. PROCEDURES Dog signalment and skull type were recorded. The anatomic form of each defect was characterized by use of a widely used human oral-cleft classification system on the basis of CT findings and clinical images. Other defect morphological features, including shape, relative size, facial symmetry, and vomer involvement, were also recorded. RESULTS 9 anatomic forms of cleft were identified. Two anatomic forms were identified in the 23 dogs with cleft palate, in which differences in defect shape and size as well as vomer abnormalities were also evident. Seven anatomic forms were observed in 9 dogs with cleft lip or cleft lip and palate, and most of these dogs had incisive bone abnormalities and facial asymmetry. CONCLUSIONS AND CLINICAL RELEVANCE The morphological features of congenitally acquired cleft lip, cleft palate, and cleft lip and palate were complex and varied among dogs. The features identified here may be useful for surgical planning, developing of clinical coding schemes, or informing genetic, embryological, or clinical research into birth defects in dogs and other species.

  3. Virtual tape measure for the operating microscope: system specifications and performance evaluation.

    PubMed

    Kim, M Y; Drake, J M; Milgram, P

    2000-01-01

    The Virtual Tape Measure for the Operating Microscope (VTMOM) was created to assist surgeons in making accurate 3D measurements of anatomical structures seen in the surgical field under the operating microscope. The VTMOM employs augmented reality techniques by combining stereoscopic video images with stereoscopic computer graphics, and functions by relying on an operator's ability to align a 3D graphic pointer, which serves as the end-point of the virtual tape measure, with designated locations on the anatomical structure being measured. The VTMOM was evaluated for its baseline and application performances as well as its application efficacy. Baseline performance was determined by measuring the mean error (bias) and standard deviation of error (imprecision) in measurements of non-anatomical objects. Application performance was determined by comparing the error in measuring the dimensions of aneurysm models with and without the VTMOM. Application efficacy was determined by comparing the error in selecting the appropriate aneurysm clip size with and without the VTMOM. Baseline performance indicated a bias of 0.3 mm and an imprecision of 0.6 mm. Application bias was 3.8 mm and imprecision was 2.8 mm for aneurysm diameter. The VTMOM did not improve aneurysm clip size selection accuracy. The VTMOM is a potentially accurate tool for use under the operating microscope. However, its performance when measuring anatomical objects is highly dependent on complex visual features of the object surfaces. Copyright 2000 Wiley-Liss, Inc.

  4. Computer aided diagnosis system for Alzheimer disease using brain diffusion tensor imaging features selected by Pearson's correlation.

    PubMed

    Graña, M; Termenon, M; Savio, A; Gonzalez-Pinto, A; Echeveste, J; Pérez, J M; Besga, A

    2011-09-20

    The aim of this paper is to obtain discriminant features from two scalar measures of Diffusion Tensor Imaging (DTI) data, Fractional Anisotropy (FA) and Mean Diffusivity (MD), and to train and test classifiers able to discriminate Alzheimer's Disease (AD) patients from controls on the basis of features extracted from the FA or MD volumes. In this study, support vector machine (SVM) classifier was trained and tested on FA and MD data. Feature selection is done computing the Pearson's correlation between FA or MD values at voxel site across subjects and the indicative variable specifying the subject class. Voxel sites with high absolute correlation are selected for feature extraction. Results are obtained over an on-going study in Hospital de Santiago Apostol collecting anatomical T1-weighted MRI volumes and DTI data from healthy control subjects and AD patients. FA features and a linear SVM classifier achieve perfect accuracy, sensitivity and specificity in several cross-validation studies, supporting the usefulness of DTI-derived features as an image-marker for AD and to the feasibility of building Computer Aided Diagnosis systems for AD based on them. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. PINUS cembra L: histo-anatomical features, antioxidant enzyme activities and heavy metal contents of leaves and long shoots.

    PubMed

    Lungu, Cristina; Stănescu, Irina; Cojocaru, Sabina Ioana; Ciobanu, C; Ivănescu, Bianca; Miron, Anca

    2015-01-01

    This study aimed to investigate the histo-anatomical features of the long shoots and leaves (young and mature) of Pinus cembra L.. The activity of antioxidant enzymatic systems and the content of heavy metals were also evaluated. For the histo-anatomical study, the cross-sections were performed by usual techniques. The activity of antioxidant enzymatic systems (superoxide dismutase, catalase and peroxidase) was evaluated by spectrophotometric methods. The content of heavy metals was determined by atomic absorption spectroscopy. The cross-section through the long shoots shows many resiniferous canals and a periderm of variable thickness. The leaf has a triangular shape and only two vascular bundles in the inferior and upper levels. The highest level of superoxide dismutase activity (344.90 U/mg protein) was determined in the long shoots collected from a cembran pine in Vatra Dornei, while the highest level of peroxidase activity (7611.11 U/mg protein) was found in the leaves collected in Calimani Mountains. Cd level in all samples was under the quantification limit. Higher levels of Pb were determined in the long shoots (3 μg/g dry weight for the vegetal material collected in Vatra Dornei and 2.86 μg/g dry weight for the vegetal material collected in Calimani Mountains). Pinus cembra L. leaves show specific elements of subgenus Strobus (a triangular shape of the cross section, one single vascular bundle and two resiniferous canals). The results obtained for the superoxide dismutase and peroxidase activities corroborated with those obtained for the heavy metal contents indicate that antioxidant enzymes play an important role in the protection of Pinus cembra L. against exogenous stress factors.

  6. Skeletal idiopathic osteosclerosis helps to perform personal identification of unknown decedents: A novel contribution from anatomical variants through CT scan.

    PubMed

    De Angelis, D; Gibelli, D; Palazzo, E; Sconfienza, L; Obertova, Z; Cattaneo, C

    2016-07-01

    Personal identification consists of the comparison of ante-mortem information from a missing person with post-mortem data obtained from an unidentified corpse. Such procedure is based on the assessment of individualizing features which may help in providing a conclusive identification between ante-mortem and post-mortem material. Anatomical variants may provide important clues to correctly identify human remains. Areas of idiopathic osteosclerosis (IO), or dense bone islands (DBIs) characterized by radiopaque areas of dense, trabeculated, non-inflamed vital bone represent one of these, potentially individualizing, anatomical features. This study presents a case where the finding of DBI was crucial for a positive identification through CT-scan. A decomposed body was found in an apartment in June 2014 in advanced decomposition and no dental records were available to perform a comparison for positive identification. Genetic tests were not applicable because of the lack of relatives in a direct line. The analysis of the only ante-mortem documentation, a CT-scan to the deceased dating back to August 2009, showed the presence of three DBIs within the trabecular bone of the proximal portion of the right femur. The same bony district was removed from the corpse during the autopsy and analysed by CT-scan, which verified the presence of the same features. Forensic practitioners should therefore be aware of the great importance of anatomical bone variants, such as dense bone islands for identification purposes, and the importance of advanced radiological technique for addressing the individualizing potential of such variants. We propose that anatomical variants of the human skeleton should be considered as being "primary identification characteristics" similar to dental status, fingerprints and DNA. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Variation in stem anatomical characteristics of Campanuloideae species in relation to evolutionary history and ecological preferences.

    PubMed

    Schweingruber, Fritz Hans; Ríha, Pavel; Doležal, Jiří

    2014-01-01

    The detailed knowledge of plant anatomical characters and their variation among closely related taxa is key to understanding their evolution and function. We examined anatomical variation in 46 herbaceous taxa from the subfamily Campanuloideae (Campanulaceae) to link this information with their phylogeny, ecology and comparative material of 56 woody tropical taxa from the subfamily Lobelioideae. The species studied covered major environmental gradients from Mediterranean to Arctic zones, allowing us to test hypotheses on the evolution of anatomical structure in relation to plant competitive ability and ecological preferences. To understand the evolution of anatomical diversity, we reconstructed the phylogeny of studied species from nucleotide sequences and examined the distribution of anatomical characters on the resulting phylogenetic tree. Redundancy analysis, with phylogenetic corrections, was used to separate the evolutionary inertia from the adaptation to the environment. A large anatomical diversity exists within the Campanuloideae. Traits connected with the quality of fibres were the most congruent with phylogeny, and the Rapunculus 2 ("phyteumoid") clade was especially distinguished by a number of characters (absence of fibres, pervasive parenchyma, type of rays) from two other clades (Campanula s. str. and Rapunculus 1) characterized by the dominance of fibres and the absence of parenchyma. Septate fibres are an exclusive trait in the Lobelioideae, separating it clearly from the Campanuloideae where annual rings, pervasive parenchyma and crystals in the phellem are characteristic features. Despite clear phylogenetic inertia in the anatomical features studied, the ecological attributes and plant height had a significant effect on anatomical divergence. From all three evolutionary clades, the taller species converged towards similar anatomical structure, characterized by a smaller number of early wood vessels of large diameter, thinner cell-walls and alternate intervessel pits, while the opposite trend was found in small Arctic and alpine taxa. This supports the existing generalization that narrower vessels allow plants to grow in colder places where they can avoid freezing-induced embolism, while taller plants have wider vessels to minimize hydraulic resistance with their greater path lengths.

  8. Variation in Stem Anatomical Characteristics of Campanuloideae Species in Relation to Evolutionary History and Ecological Preferences

    PubMed Central

    Schweingruber, Fritz Hans; Říha, Pavel; Doležal, Jiří

    2014-01-01

    Background The detailed knowledge of plant anatomical characters and their variation among closely related taxa is key to understanding their evolution and function. We examined anatomical variation in 46 herbaceous taxa from the subfamily Campanuloideae (Campanulaceae) to link this information with their phylogeny, ecology and comparative material of 56 woody tropical taxa from the subfamily Lobelioideae. The species studied covered major environmental gradients from Mediterranean to Arctic zones, allowing us to test hypotheses on the evolution of anatomical structure in relation to plant competitive ability and ecological preferences. Methodology/Principal Findings To understand the evolution of anatomical diversity, we reconstructed the phylogeny of studied species from nucleotide sequences and examined the distribution of anatomical characters on the resulting phylogenetic tree. Redundancy analysis, with phylogenetic corrections, was used to separate the evolutionary inertia from the adaptation to the environment. A large anatomical diversity exists within the Campanuloideae. Traits connected with the quality of fibres were the most congruent with phylogeny, and the Rapunculus 2 (“phyteumoid”) clade was especially distinguished by a number of characters (absence of fibres, pervasive parenchyma, type of rays) from two other clades (Campanula s. str. and Rapunculus 1) characterized by the dominance of fibres and the absence of parenchyma. Septate fibres are an exclusive trait in the Lobelioideae, separating it clearly from the Campanuloideae where annual rings, pervasive parenchyma and crystals in the phellem are characteristic features. Conclusions/Significance Despite clear phylogenetic inertia in the anatomical features studied, the ecological attributes and plant height had a significant effect on anatomical divergence. From all three evolutionary clades, the taller species converged towards similar anatomical structure, characterized by a smaller number of early wood vessels of large diameter, thinner cell-walls and alternate intervessel pits, while the opposite trend was found in small Arctic and alpine taxa. This supports the existing generalization that narrower vessels allow plants to grow in colder places where they can avoid freezing-induced embolism, while taller plants have wider vessels to minimize hydraulic resistance with their greater path lengths. PMID:24586306

  9. [Anatomical rationale for lingual nerve injury prevention during mandibular block].

    PubMed

    Semkin, V A; Dydikin, S S; Kuzin, A V; Sogacheva, V V

    2015-01-01

    The topographic and anatomical study of lingual nerve structural features was done. It was revealed that during mandibular anesthesia possible lingual nerve injury can occur if puncture needle is lower than 1 cm. of molars occlusal surface level. The position of the lingual nerve varies withmandible movements. At the maximum open mouth lingual nerve is not mobile and is pressed against the inner surface of the mandibular ramus by the medial pterygoid muscle and the temporal muscle tendon. When closing the mouth to 1.25±0.2 cmfrom the physiological maximum, lingual nerve is displaced posteriorly from the internal oblique line of the mandible and gets mobile. On the basis of topographic and anatomic features of the lingual nervestructure the authors recommend the re-do of inferior alveolar nerve block, a semi-closed mouth position or the use the "high block techniques" (Torus anesthesia, Gow-Gates, Vazirani-Akinozi).

  10. Evaluation by medical students of the educational value of multi-material and multi-colored three-dimensional printed models of the upper limb for anatomical education.

    PubMed

    Mogali, Sreenivasulu Reddy; Yeong, Wai Yee; Tan, Heang Kuan Joel; Tan, Gerald Jit Shen; Abrahams, Peter H; Zary, Nabil; Low-Beer, Naomi; Ferenczi, Michael Alan

    2018-01-01

    For centuries, cadaveric material has been the cornerstone of anatomical education. For reasons of changes in curriculum emphasis, cost, availability, expertise, and ethical concerns, several medical schools have replaced wet cadaveric specimens with plastinated prosections, plastic models, imaging, and digital models. Discussions about the qualities and limitations of these alternative teaching resources are on-going. We hypothesize that three-dimensional printed (3DP) models can replace or indeed enhance existing resources for anatomical education. A novel multi-colored and multi-material 3DP model of the upper limb was developed based on a plastinated upper limb prosection, capturing muscles, nerves, arteries and bones with a spatial resolution of ∼1 mm. This study aims to examine the educational value of the 3DP model from the learner's point of view. Students (n = 15) compared the developed 3DP models with the plastinated prosections, and provided their views on their learning experience using 3DP models using a survey and focus group discussion. Anatomical features in 3DP models were rated as accurate by all students. Several positive aspects of 3DP models were highlighted, such as the color coding by tissue type, flexibility and that less care was needed in the handling and examination of the specimen than plastinated specimens which facilitated the appreciation of relations between the anatomical structures. However, students reported that anatomical features in 3DP models are less realistic compared to the plastinated specimens. Multi-colored, multi-material 3DP models are a valuable resource for anatomical education and an excellent adjunct to wet cadaveric or plastinated prosections. Anat Sci Educ 11: 54-64. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  11. Reduced White Matter Connectivity in the Corpus Callosum of Children with Tourette Syndrome

    ERIC Educational Resources Information Center

    Plessen, Kerstin J.; Gruner, Renate; Lundervold, Arvid; Hirsch, Jochen G.; Xu, Dongrong; Bansal, Ravi; Hammar, Asa; Lundervold, Astri J.; Wentzel-Larsen, Tore; Lie, Stein Atle; Gass, Achim; Peterson, Bradley S.; Hugdahl, Kenneth

    2006-01-01

    Background: Brain imaging studies have revealed anatomical anomalies in the brains of individuals with Tourette syndrome (TS). Prefrontal regions have been found to be larger and the corpus callosum (CC) area smaller in children and young adults with TS compared with healthy control subjects, and these anatomical features have been understood to…

  12. Image analysis of anatomical traits in stalk transections of maize and other grasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heckwolf, Sven; Heckwolf, Marlies; Kaeppler, Shawn M.

    Grass stalks architecturally support leaves and reproductive structures, functionally support the transport of water and nutrients, and are harvested for multiple agricultural uses. Research on these basic and applied aspects of grass stalks would benefit from improved capabilities for measuring internal anatomical features. In particular, methods suitable for phenotyping populations of plants are needed.

  13. Image analysis of anatomical traits in stalk transections of maize and other grasses

    DOE PAGES

    Heckwolf, Sven; Heckwolf, Marlies; Kaeppler, Shawn M.; ...

    2015-04-09

    Grass stalks architecturally support leaves and reproductive structures, functionally support the transport of water and nutrients, and are harvested for multiple agricultural uses. Research on these basic and applied aspects of grass stalks would benefit from improved capabilities for measuring internal anatomical features. In particular, methods suitable for phenotyping populations of plants are needed.

  14. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wognum, S.; Chai, X.; Hulshof, M. C. C. M.

    2013-02-15

    Purpose: Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumormore » and the lack of visible anatomical landmarks for validation. Methods: The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight parameters were determined for the weighted S-TPS-RPM. Results: The weighted S-TPS-RPM registration algorithm with optimal parameters significantly improved the anatomical accuracy as compared to S-TPS-RPM registration of the bladder alone and reduced the range of the anatomical errors by half as compared with the simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. The weighted algorithm reduced the RDE range of lipiodol markers from 0.9-14 mm after rigid bone match to 0.9-4.0 mm, compared to a range of 1.1-9.1 mm with S-TPS-RPM of bladder alone and 0.9-9.4 mm for simultaneous nonweighted registration. All registration methods resulted in good geometric accuracy on the bladder; average error values were all below 1.2 mm. Conclusions: The weighted S-TPS-RPM registration algorithm with additional weight parameter allowed indirect control over structure-specific flexibility in multistructure registrations of bladder and bladder tumor, enabling anatomically coherent registrations. The availability of an anatomically validated deformable registration method opens up the horizon for improvements in IGART for bladder cancer.« less

  15. Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer.

    PubMed

    Hoadley, Katherine A; Yau, Christina; Hinoue, Toshinori; Wolf, Denise M; Lazar, Alexander J; Drill, Esther; Shen, Ronglai; Taylor, Alison M; Cherniack, Andrew D; Thorsson, Vésteinn; Akbani, Rehan; Bowlby, Reanne; Wong, Christopher K; Wiznerowicz, Maciej; Sanchez-Vega, Francisco; Robertson, A Gordon; Schneider, Barbara G; Lawrence, Michael S; Noushmehr, Houtan; Malta, Tathiane M; Stuart, Joshua M; Benz, Christopher C; Laird, Peter W

    2018-04-05

    We conducted comprehensive integrative molecular analyses of the complete set of tumors in The Cancer Genome Atlas (TCGA), consisting of approximately 10,000 specimens and representing 33 types of cancer. We performed molecular clustering using data on chromosome-arm-level aneuploidy, DNA hypermethylation, mRNA, and miRNA expression levels and reverse-phase protein arrays, of which all, except for aneuploidy, revealed clustering primarily organized by histology, tissue type, or anatomic origin. The influence of cell type was evident in DNA-methylation-based clustering, even after excluding sites with known preexisting tissue-type-specific methylation. Integrative clustering further emphasized the dominant role of cell-of-origin patterns. Molecular similarities among histologically or anatomically related cancer types provide a basis for focused pan-cancer analyses, such as pan-gastrointestinal, pan-gynecological, pan-kidney, and pan-squamous cancers, and those related by stemness features, which in turn may inform strategies for future therapeutic development. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Gastrointestinal Fibroblasts Have Specialized, Diverse Transcriptional Phenotypes: A Comprehensive Gene Expression Analysis of Human Fibroblasts

    PubMed Central

    Ishii, Genichiro; Aoyagi, Kazuhiko; Sasaki, Hiroki; Ochiai, Atsushi

    2015-01-01

    Background Fibroblasts are the principal stromal cells that exist in whole organs and play vital roles in many biological processes. Although the functional diversity of fibroblasts has been estimated, a comprehensive analysis of fibroblasts from the whole body has not been performed and their transcriptional diversity has not been sufficiently explored. The aim of this study was to elucidate the transcriptional diversity of human fibroblasts within the whole body. Methods Global gene expression analysis was performed on 63 human primary fibroblasts from 13 organs. Of these, 32 fibroblasts from gastrointestinal organs (gastrointestinal fibroblasts: GIFs) were obtained from a pair of 2 anatomical sites: the submucosal layer (submucosal fibroblasts: SMFs) and the subperitoneal layer (subperitoneal fibroblasts: SPFs). Using hierarchical clustering analysis, we elucidated identifiable subgroups of fibroblasts and analyzed the transcriptional character of each subgroup. Results In unsupervised clustering, 2 major clusters that separate GIFs and non-GIFs were observed. Organ- and anatomical site-dependent clusters within GIFs were also observed. The signature genes that discriminated GIFs from non-GIFs, SMFs from SPFs, and the fibroblasts of one organ from another organ consisted of genes associated with transcriptional regulation, signaling ligands, and extracellular matrix remodeling. Conclusions GIFs are characteristic fibroblasts with specific gene expressions from transcriptional regulation, signaling ligands, and extracellular matrix remodeling related genes. In addition, the anatomical site- and organ-dependent diversity of GIFs was also discovered. These features of GIFs contribute to their specific physiological function and homeostatic maintenance, and create a functional diversity of the gastrointestinal tract. PMID:26046848

  17. An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool.

    PubMed

    Fernandez, J W; Hunter, P J

    2005-08-01

    A 3D anatomically based patient-specific finite element (FE) model of patello-femoral (PF) articulation is presented to analyse the main features of patella biomechanics, namely, patella tracking (kinematics), quadriceps extensor forces, surface contact and internal patella stresses. The generic geometries are a subset from the model database of the International Union of Physiological Sciences (IUPS) (http://www.physiome.org.nz) Physiome Project with soft tissue derived from the widely used visible human dataset, and the bones digitised from an anatomically accurate physical model with muscle attachment information. The models are customised to patient magnetic resonance images using a variant of free-form deformation, called 'host-mesh' fitting. The continuum was solved using the governing equation of finite elasticity, with the multibody problem coupled through contact mechanics. Additional constraints such as tissue incompressibility are also imposed. Passive material properties are taken from the literature and implemented for deformable tissue with a non-linear micro-structurally based constitutive law. Bone and cartilage are implemented using a 'St-Venant Kirchoff' model suitable for rigid body rotations. The surface fibre directions have been estimated from anatomy images of cadaver muscle dissections and active muscle contraction was based on a steady-state calcium-tension relation. The 3D continuum model of muscle, tendon and bone is compared with experimental results from the literature, and surgical simulations performed to illustrate its clinical assessment capabilities (a Maquet procedure for reducing patella stresses and a vastus lateralis release for a bipartite patella). Finally, the model limitations, issues and future improvements are discussed.

  18. Joint detection of anatomical points on surface meshes and color images for visual registration of 3D dental models

    NASA Astrophysics Data System (ADS)

    Destrez, Raphaël.; Albouy-Kissi, Benjamin; Treuillet, Sylvie; Lucas, Yves

    2015-04-01

    Computer aided planning for orthodontic treatment requires knowing occlusion of separately scanned dental casts. A visual guided registration is conducted starting by extracting corresponding features in both photographs and 3D scans. To achieve this, dental neck and occlusion surface are firstly extracted by image segmentation and 3D curvature analysis. Then, an iterative registration process is conducted during which feature positions are refined, guided by previously found anatomic edges. The occlusal edge image detection is improved by an original algorithm which follows Canny's poorly detected edges using a priori knowledge of tooth shapes. Finally, the influence of feature extraction and position optimization is evaluated in terms of the quality of the induced registration. Best combination of feature detection and optimization leads to a positioning average error of 1.10 mm and 2.03°.

  19. The New Face of Genetics: Creating A Multimedia Educational Tool for the Twenty-First Century

    NASA Astrophysics Data System (ADS)

    Fan, Audrey

    In the study of certain genetic conditions, it is important to understand the specific "dysmorphology" associated with them. This describes the unique anatomical manifestations of the genetic condition. Traditionally, students learn about dysmorphology by reading text descriptions or looking at photographs of affected individuals. The New Face of Genetics is a film project that aims to teach students dysmorphology by featuring people who have specific genetic conditions. The goal is to enhance students' understanding of these conditions as well as to impart the humanity and beauty of the people who appear in the film. Students will have the opportunity to see dysmorphic features on the animated human form as well as meet individuals who are living with genetic difference. The target audience includes genetic counseling students and other medical professionals. Three short films were made in this format to demonstrate how this type of educational tool can be made. The featured conditions were Marfan syndrome, Sturge-Weber syndrome and Joubert syndrome. Future work will be carried out by other genetic counseling students who will make additional films based on our templates. A compendium of approximately 20 films will be eventually completed and released to genetic counseling programs and medical schools.

  20. Sensitivity of human auditory cortex to rapid frequency modulation revealed by multivariate representational similarity analysis.

    PubMed

    Joanisse, Marc F; DeSouza, Diedre D

    2014-01-01

    Functional Magnetic Resonance Imaging (fMRI) was used to investigate the extent, magnitude, and pattern of brain activity in response to rapid frequency-modulated sounds. We examined this by manipulating the direction (rise vs. fall) and the rate (fast vs. slow) of the apparent pitch of iterated rippled noise (IRN) bursts. Acoustic parameters were selected to capture features used in phoneme contrasts, however the stimuli themselves were not perceived as speech per se. Participants were scanned as they passively listened to sounds in an event-related paradigm. Univariate analyses revealed a greater level and extent of activation in bilateral auditory cortex in response to frequency-modulated sweeps compared to steady-state sounds. This effect was stronger in the left hemisphere. However, no regions showed selectivity for either rate or direction of frequency modulation. In contrast, multivoxel pattern analysis (MVPA) revealed feature-specific encoding for direction of modulation in auditory cortex bilaterally. Moreover, this effect was strongest when analyses were restricted to anatomical regions lying outside Heschl's gyrus. We found no support for feature-specific encoding of frequency modulation rate. Differential findings of modulation rate and direction of modulation are discussed with respect to their relevance to phonetic discrimination.

  1. Force of habit: shrubs, trees and contingent evolution of wood anatomical diversity using Croton (Euphorbiaceae) as a model system

    PubMed Central

    van Ee, Benjamin W.; Riina, Ricarda; Berry, Paul E.; Wiedenhoeft, Alex C.

    2017-01-01

    Abstract Background and Aims Wood is a major innovation of land plants, and is usually a central component of the body plan for two major plant habits: shrubs and trees. Wood anatomical syndromes vary between shrubs and trees, but no prior work has explicitly evaluated the contingent evolution of wood anatomical diversity in the context of these plant habits. Methods Phylogenetic comparative methods were used to test for contingent evolution of habit, habitat and wood anatomy in the mega-diverse genus Croton (Euphorbiaceae), across the largest and most complete molecular phylogeny of the genus to date. Key Results Plant habit and habitat are highly correlated, but most wood anatomical features correlate more strongly with habit. The ancestral Croton was reconstructed as a tree, the wood of which is inferred to have absent or indistinct growth rings, confluent-like axial parenchyma, procumbent ray cells and disjunctive ray parenchyma cell walls. The taxa sampled showed multiple independent origins of the shrub habit in Croton, and this habit shift is contingent on several wood anatomical features (e.g. similar vessel-ray pits, thick fibre walls, perforated ray cells). The only wood anatomical trait correlated with habitat and not habit was the presence of helical thickenings in the vessel elements of mesic Croton. Conclusions Plant functional traits, individually or in suites, are responses to multiple and often confounding contexts in evolution. By establishing an explicit contingent evolutionary framework, the interplay between habit, habitat and wood anatomical diversity was dissected in the genus Croton. Both habit and habitat influence the evolution of wood anatomical characters, and conversely, the wood anatomy of lineages can affect shifts in plant habit and habitat. This study hypothesizes novel putatively functional trait associations in woody plant structure that could be further tested in a variety of other taxa. PMID:28065919

  2. Force of habit: shrubs, trees and contingent evolution of wood anatomical diversity using Croton (Euphorbiaceae) as a model system.

    PubMed

    Arévalo, Rafael; van Ee, Benjamin W; Riina, Ricarda; Berry, Paul E; Wiedenhoeft, Alex C

    2017-03-01

    Wood is a major innovation of land plants, and is usually a central component of the body plan for two major plant habits: shrubs and trees. Wood anatomical syndromes vary between shrubs and trees, but no prior work has explicitly evaluated the contingent evolution of wood anatomical diversity in the context of these plant habits. Phylogenetic comparative methods were used to test for contingent evolution of habit, habitat and wood anatomy in the mega-diverse genus Croton (Euphorbiaceae), across the largest and most complete molecular phylogeny of the genus to date. Plant habit and habitat are highly correlated, but most wood anatomical features correlate more strongly with habit. The ancestral Croton was reconstructed as a tree, the wood of which is inferred to have absent or indistinct growth rings, confluent-like axial parenchyma, procumbent ray cells and disjunctive ray parenchyma cell walls. The taxa sampled showed multiple independent origins of the shrub habit in Croton , and this habit shift is contingent on several wood anatomical features (e.g. similar vessel-ray pits, thick fibre walls, perforated ray cells). The only wood anatomical trait correlated with habitat and not habit was the presence of helical thickenings in the vessel elements of mesic Croton . Plant functional traits, individually or in suites, are responses to multiple and often confounding contexts in evolution. By establishing an explicit contingent evolutionary framework, the interplay between habit, habitat and wood anatomical diversity was dissected in the genus Croton . Both habit and habitat influence the evolution of wood anatomical characters, and conversely, the wood anatomy of lineages can affect shifts in plant habit and habitat. This study hypothesizes novel putatively functional trait associations in woody plant structure that could be further tested in a variety of other taxa. Published by Oxford University Press on behalf of the Annals of Botany Company 2017. This work is written by US Government employees and is in the public domain in the US.

  3. Large-scale subject-specific cerebral arterial tree modeling using automated parametric mesh generation for blood flow simulation.

    PubMed

    Ghaffari, Mahsa; Tangen, Kevin; Alaraj, Ali; Du, Xinjian; Charbel, Fady T; Linninger, Andreas A

    2017-12-01

    In this paper, we present a novel technique for automatic parametric mesh generation of subject-specific cerebral arterial trees. This technique generates high-quality and anatomically accurate computational meshes for fast blood flow simulations extending the scope of 3D vascular modeling to a large portion of cerebral arterial trees. For this purpose, a parametric meshing procedure was developed to automatically decompose the vascular skeleton, extract geometric features and generate hexahedral meshes using a body-fitted coordinate system that optimally follows the vascular network topology. To validate the anatomical accuracy of the reconstructed vasculature, we performed statistical analysis to quantify the alignment between parametric meshes and raw vascular images using receiver operating characteristic curve. Geometric accuracy evaluation showed an agreement with area under the curves value of 0.87 between the constructed mesh and raw MRA data sets. Parametric meshing yielded on-average, 36.6% and 21.7% orthogonal and equiangular skew quality improvement over the unstructured tetrahedral meshes. The parametric meshing and processing pipeline constitutes an automated technique to reconstruct and simulate blood flow throughout a large portion of the cerebral arterial tree down to the level of pial vessels. This study is the first step towards fast large-scale subject-specific hemodynamic analysis for clinical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Teeth and numerology from zodiac signs. A correlative study.

    PubMed

    Kudva, S; Bhat, A P

    2000-01-01

    Comparative anatomical descriptions have been time and again mentioned in the literature. Based on these aspects, an attempt is made to correlate the morphological features of the human teeth, the zodiac sun signs and numerology. This unique study (first ever of its kind) is also done with a purpose as to whether a particular 'Zodiac Sunsign' or numerology can predict about an individual dental health, the same way the future predictions are being made. It was quite interesting to note that there are few definite attributable dental morphological traits and health to the specific sun signs and numerology.

  5. Comparative leaf and root anatomy of two Dendrobium species (Orchidaceae) from different habitat in relation to their potential adaptation to drought

    NASA Astrophysics Data System (ADS)

    Metusala, D.; Supriatna, J.; Nisyawati, Sopandie, D.

    2017-07-01

    Dendrobium capra and Dendrobium arcuatum are closely related in phylogeny, but they have very contrasting vegetative morphology and habitats. D. capra is known as a species that is well-adapted to dry lowland teak forest habitat in East Java, where most trees drop their leaves in summer, while D. arcuatum has adapted to mid or high land moist forest at elevation up to 800 m dpl. In order to investigate their potential adaptation to drought stress in the climate change era, we have compared and analyzed the leaf and root anatomical characteristics of both species. Transversal sections were made using hand mini microtome, dehydrated in graded alcohol series and stained with safranin 1 % and fastgreen 1 %. Leaf scraping technique has been used to prepare paradermal sections, and then dehydrated in graded alcohol series and stained with safranin 1 %. Quantitative anatomical characteristics between D. capra and D. arcuatum have been compared using a t-test. The result showed that there were significant differences on anatomical characters between both species. Compared to D. arcuatum, D. capra shows more developed anatomical features for adapting to drought and dry condition. These anatomical features were a thicker cuticle, thicker epidermis, presence of hypodermis, thicker mesophyll, broader primary vascular bundle, well developed xylem's sclerenchyma, lower stomatal density, thicker and high proportion of velamen.

  6. 3D-Printed Patient-Specific ACL Femoral Tunnel Guide from MRI.

    PubMed

    Rankin, Iain; Rehman, Haroon; Frame, Mark

    2018-01-01

    Traditional ACL reconstruction with non-anatomic techniques can demonstrate unsatisfactory long-term outcomes with regards instability and the degenerative knee changes observed with these results. Anatomic ACL reconstruction attempts to closely reproduce the patient's individual anatomic characteristics with the aim of restoring knee kinematics, in order to improve patient short and long-term outcomes. We designed an arthroscopic, patient-specific, ACL femoral tunnel guide to aid anatomical placement of the ACL graft within the femoral tunnel. The guide design was based on MRI scan of the subject's uninjured contralateral knee, identifying the femoral footprint and its anatomical position relative to the borders of the femoral articular cartilage. Image processing software was used to create a 3D computer aided design which was subsequently exported to a 3D-printing service. Transparent acrylic based photopolymer, PA220 plastic and 316L stainless steel patient-specific ACL femoral tunnel guides were created; the models produced were accurate with no statistical difference in size and positioning of the center of the ACL femoral footprint guide to MRI ( p =0.344, p =0.189, p =0.233 respectively). The guides aim to provide accurate marking of the starting point of the femoral tunnel in arthroscopic ACL reconstruction. This study serves as a proof of concept for the accurate creation of 3D-printed patient-specific guides for the anatomical placement of the femoral tunnel during ACL reconstruction.

  7. The growth and anatomical features of nutrient-deficient seedlings

    Treesearch

    Fred M. Lamb; Wayne K. Murphey

    1968-01-01

    As the tree improvement and genetic programs supply better planting stock, a more suitable environment must be provided if their full potential is to be realized. This will require much more information than we now have on how nutrient deficiencies affect the growth and anatomy of forest trees. The importance of anatomical studies has been shown by Church (1949) and...

  8. Tissue reaction to a titanium-nickelide mesh implant after plasty of postresection defects of anatomic structures of the chest.

    PubMed

    Topolnitskiy, E B; Dambaev, G Ts; Hodorenko, V N; Fomina, T I; Shefer, N A; Gunther, V E

    2012-07-01

    We studied morphological features of the regenerate formed after postresection defect plasty of the pericardium, diaphragm, and thorax with a mesh implant made of nanostructural titanium-nickelide threads. The newly formed tissue grew through the implant with the formation of an integrated tissue regenerate ensuring anatomic and physiological restoration of this area.

  9. Development of a patient-specific anatomical foot model from structured light scan data.

    PubMed

    Lochner, Samuel J; Huissoon, Jan P; Bedi, Sanjeev S

    2014-01-01

    The use of anatomically accurate finite element (FE) models of the human foot in research studies has increased rapidly in recent years. Uses for FE foot models include advancing knowledge of orthotic design, shoe design, ankle-foot orthoses, pathomechanics, locomotion, plantar pressure, tissue mechanics, plantar fasciitis, joint stress and surgical interventions. Similar applications but for clinical use on a per-patient basis would also be on the rise if it were not for the high costs associated with developing patient-specific anatomical foot models. High costs arise primarily from the expense and challenges of acquiring anatomical data via magnetic resonance imaging (MRI) or computed tomography (CT) and reconstructing the three-dimensional models. The proposed solution morphs detailed anatomy from skin surface geometry and anatomical landmarks of a generic foot model (developed from CT or MRI) to surface geometry and anatomical landmarks acquired from an inexpensive structured light scan of a foot. The method yields a patient-specific anatomical foot model at a fraction of the cost of standard methods. Average error for bone surfaces was 2.53 mm for the six experiments completed. Highest accuracy occurred in the mid-foot and lowest in the forefoot due to the small, irregular bones of the toes. The method must be validated in the intended application to determine if the resulting errors are acceptable.

  10. The management of nonunion and malunion of the distal humerus--a 30-year experience.

    PubMed

    Jupiter, Jesse B

    2008-01-01

    This personal series of nonunions of the distal humerus reviews unique features of this problem, categorizes them according to unique anatomic features, and presents pitfalls and pearls in the management of these complex reconstructive problems.

  11. The Effect of Anatomical Location of Lymph Node Metastases on Cancer Specific Survival in Patients with Clear Cell Renal Cell Carcinoma

    PubMed Central

    Nini, Alessandro; Larcher, Alessandro; Cianflone, Francesco; Trevisani, Francesco; Terrone, Carlo; Volpe, Alessandro; Regis, Federica; Briganti, Alberto; Salonia, Andrea; Montorsi, Francesco; Bertini, Roberto; Capitanio, Umberto

    2018-01-01

    Background Positive nodal status (pN1) is an independent predictor of survival in renal cell carcinoma (RCC) patients. However, no study to date has tested whether the location of lymph node (LN) metastases does affect oncologic outcomes in a population submitted to radical nephrectomy (RN) and extended lymph node dissection (eLND). Objective To describe nodal disease dissemination in clear cell RCC (ccRCC) patients and to assess the effect of the anatomical sites and the number of nodal areas affected on cancer specific mortality (CSM). Design, setting and partecipants The study included 415 patients who underwent RN and eLND, defined as the removal of hilar, side-specific (pre/paraaortic or pre/paracaval) and interaortocaval LNs for ccRCC, at two institutions. Outcome measurement and statistical analysis Descriptive statistics were used to depict nodal dissemination in pN1 patients, stratified according to nodal site and number of involved areas. Multivariable Cox regression analyses and Kaplan-Meier curves were used to explore the relationship between pN1 disease features and survival outcomes. Results and limitations Median number of removed LN was 14 (IQR 9–19); 23% of patients were pN1. Among patients with one involved nodal site, 54 and 26% of patients were positive only in side-specific and interaortocaval station, respectively. The most frequent nodal site was the interaortocaval and side-specific one, for right and left ccRCC, respectively. Interaortocaval nodal positivity (HR 2.3, CI 95%: 1.3–3.9, p < 0.01) represented an independent predictor of CSM. Conclusions When ccRCC patient harbour nodal disease, its spreading can occur at any nodal station without involving the others. The presence of interoartocaval positive nodes does affect oncologic outcomes. Patient summary Lymph node invasion in patients with clear cell renal cell carcinoma is not following a fixed anatomical pattern. An extended lymph node dissection, during treatment for primary kidney tumour, would aid patient risk stratification and multimodality upfront treatment. PMID:29740587

  12. Anatomical Basis for the Cardiac Interventional Electrophysiologist

    PubMed Central

    Sánchez-Quintana, Damián; Doblado-Calatrava, Manuel; Cabrera, José Angel; Macías, Yolanda; Saremi, Farhood

    2015-01-01

    The establishment of radiofrequency catheter ablation techniques as the mainstay in the treatment of tachycardia has renewed new interest in cardiac anatomy. The interventional arrhythmologist has drawn attention not only to the gross anatomic details of the heart but also to architectural and histological characteristics of various cardiac regions that are relevant to the development or recurrence of tachyarrhythmias and procedural related complications of catheter ablation. In this review, therefore, we discuss some anatomic landmarks commonly used in catheter ablations including the terminal crest, sinus node region, Koch's triangle, cavotricuspid isthmus, Eustachian ridge and valve, pulmonary venous orifices, venoatrial junctions, and ventricular outflow tracts. We also discuss the anatomical features of important structures in the vicinity of the atria and pulmonary veins, such as the esophagus and phrenic nerves. This paper provides basic anatomic information to improve understanding of the mapping and ablative procedures for cardiac interventional electrophysiologists. PMID:26665006

  13. Anatomical parameterization for volumetric meshing of the liver

    NASA Astrophysics Data System (ADS)

    Vera, Sergio; González Ballester, Miguel A.; Gil, Debora

    2014-03-01

    A coordinate system describing the interior of organs is a powerful tool for a systematic localization of injured tissue. If the same coordinate values are assigned to specific anatomical landmarks, the coordinate system allows integration of data across different medical image modalities. Harmonic mappings have been used to produce parametric coordinate systems over the surface of anatomical shapes, given their flexibility to set values at specific locations through boundary conditions. However, most of the existing implementations in medical imaging restrict to either anatomical surfaces, or the depth coordinate with boundary conditions is given at sites of limited geometric diversity. In this paper we present a method for anatomical volumetric parameterization that extends current harmonic parameterizations to the interior anatomy using information provided by the volume medial surface. We have applied the methodology to define a common reference system for the liver shape and functional anatomy. This reference system sets a solid base for creating anatomical models of the patient's liver, and allows comparing livers from several patients in a common framework of reference.

  14. Reflectance spectroscopy of pigmented cutaneous benign and malignant lesions

    NASA Astrophysics Data System (ADS)

    Borisova, E.; Jeliazkova, Al.; Pavlova, E.; Troyanova, P.; Kundurdjiev, T.; Pavlova, P.; Avramov, L.

    2014-10-01

    For the DRS measurements of skin benign, dysplastic and malignant lesions in vivo we applied halogen lamp (LS-1, OceanOptics Inc, Dunedin, Fl, USA) as a continuous light source in the region of 400-900 nm, optical probe (6+1 fibers) for the delivery of illumination and diffuse reflected light from the skin investigated and microspectrometer USB4000 (OceanOptics Inc., Dunedin, Fl, USA) for a storage and display of the spectra detected. As a diffuse reflectance standard Spectralon® plate was used to calibrate the spectrometer. The reflectance spectra obtained from normal skin in identical anatomic sites of different patients have similar spectral shape features, slightly differ by the reflectance intensity at different wavelengths, depending on the particular patient' skin phototype. One could find diagnostically important spectral features, related to specific intensity changes for a given wavelength due to specific pigments appearance, slope changes by value and sign for the reflectance spectra curves in a specific spectral range, disappearance or manifestation of minima, related to hemoglobin absorption at 410-420 nm, 543, 575 nm. Based on the observed peculiarities multispectral analysis of the reflectance spectra of the different lesions was used and diagnostically specific features are found. Discrimination using the DRS data obtained between benign compound and dermal nevi (45 cases), dysplastic nevi (17 cases) and pigmented malignant melanoma (41 cases) lesions is achieved with a diagnostic accuracy of 96 % for the benign nevi vs. MM, and 90 % for the dysplastic nevi vs. MM.

  15. Representation learning: a unified deep learning framework for automatic prostate MR segmentation.

    PubMed

    Liao, Shu; Gao, Yaozong; Oto, Aytekin; Shen, Dinggang

    2013-01-01

    Image representation plays an important role in medical image analysis. The key to the success of different medical image analysis algorithms is heavily dependent on how we represent the input data, namely features used to characterize the input image. In the literature, feature engineering remains as an active research topic, and many novel hand-crafted features are designed such as Haar wavelet, histogram of oriented gradient, and local binary patterns. However, such features are not designed with the guidance of the underlying dataset at hand. To this end, we argue that the most effective features should be designed in a learning based manner, namely representation learning, which can be adapted to different patient datasets at hand. In this paper, we introduce a deep learning framework to achieve this goal. Specifically, a stacked independent subspace analysis (ISA) network is adopted to learn the most effective features in a hierarchical and unsupervised manner. The learnt features are adapted to the dataset at hand and encode high level semantic anatomical information. The proposed method is evaluated on the application of automatic prostate MR segmentation. Experimental results show that significant segmentation accuracy improvement can be achieved by the proposed deep learning method compared to other state-of-the-art segmentation approaches.

  16. Correlates of low back pain in a general population sample: a multidisciplinary perspective.

    PubMed

    Roncarati, A; McMullen, W

    1988-06-01

    This study identifies correlates of low back pain in a general population sample and defines a profile of subjects with low back pain. A multidisciplinary approach was employed that required surveying and physically assessing 674 subjects on 105 variables in biographical, anatomical, strength and flexibility measurement categories. No attempt was made to select subjects from specific occupational, age, athletic, psychological and anatomical groups or subjects with specific biographical features, which may have resulted in a sample that was atypical of the general population. The results of this study based on a causal comparative ex post facto research design corroborated selected findings of previous research conducted on nongeneral population samples. These findings include relationships between low back pain and age, body type, sex, stress, smoking, selected types of physical activity, occupation and previous injuries to the neck, shoulders, back and upper legs, as well as previous episodes of low back pain. Additional correlates of low back pain that were identified and have little or controversial review in the back literature include: delayed low back pain syndrome caused by abrupt changes in running frequency, Q angle, pes cavus, leg length (right and left), trunk length, genu recurvatum and multiplane strength and flexibility limitations in the hip joints.

  17. A Method to Recognize Anatomical Site and Image Acquisition View in X-ray Images.

    PubMed

    Chang, Xiao; Mazur, Thomas; Li, H Harold; Yang, Deshan

    2017-12-01

    A method was developed to recognize anatomical site and image acquisition view automatically in 2D X-ray images that are used in image-guided radiation therapy. The purpose is to enable site and view dependent automation and optimization in the image processing tasks including 2D-2D image registration, 2D image contrast enhancement, and independent treatment site confirmation. The X-ray images for 180 patients of six disease sites (the brain, head-neck, breast, lung, abdomen, and pelvis) were included in this study with 30 patients each site and two images of orthogonal views each patient. A hierarchical multiclass recognition model was developed to recognize general site first and then specific site. Each node of the hierarchical model recognized the images using a feature extraction step based on principal component analysis followed by a binary classification step based on support vector machine. Given two images in known orthogonal views, the site recognition model achieved a 99% average F1 score across the six sites. If the views were unknown in the images, the average F1 score was 97%. If only one image was taken either with or without view information, the average F1 score was 94%. The accuracy of the site-specific view recognition models was 100%.

  18. Use your head! Perception of action possibilities by means of an object attached to the head.

    PubMed

    Wagman, Jeffrey B; Hajnal, Alen

    2016-03-01

    Perceiving any environmental property requires spontaneously assembling a smart perceptual instrument-a task-specific measurement device assembled across potentially independent anatomical units. Previous research has shown that to a large degree, perception of a given environmental property is anatomically independent. We attempted to provide stronger evidence for this proposal by investigating perception by an organization of anatomical and inert components that likely requires the spontaneous assembly of a novel smart perceptual instrument-a rod attached to the head. Specifically, we compared cephalic and manual perception of whether an inclined surface affords standing on. In both conditions, perception reflected the action capabilities of the perceiver and not the appendage used to wield the rod. Such results provide stronger evidence for anatomical independence of perception within a given perceptual system and highlight that flexible task-specific detection units can be assembled across units that span the body and inert objects.

  19. Comparative anatomy of the arm muscles of the Japanese monkey (Macaca fuscata) with some comments on locomotor mechanics and behavior.

    PubMed

    Aversi-Ferreira, Tales Alexandre; Aversi-Ferreira, Roqueline A G M F; Bretas, Rafael Vieira; Nishimaru, Hiroshi; Nishijo, Hisao

    2016-08-01

    The anatomical literature on the genus Macaca has focused mainly on the rhesus monkey. However, some aspects in the positional behaviors of the Japanese monkey may be different from those in rhesus monkey, suggesting that the anatomical details of these species are divergent. Four thoracic limbs of Macaca fuscata adults were dissected. The arm muscles in Japanese macaques are more similar to rhesus monkeys and Papio; these characteristics are closer to those of bearded capuchins than apes, indicating more proximity of this genus to New World primates. The anatomical features observed favor quadrupedal locomotor behaviors on the ground and in arboreal environments. Japanese monkeys, rhesus monkeys, and bearded capuchins, which share more primitive characteristics in their arm muscles, present features that favor both arboreal and quadrupedal locomotor behaviors, whereas apes, mainly Pan and Gorilla, which spend more time on the ground, present more quadrupedal specializations. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Fast correspondences search in anatomical trees

    NASA Astrophysics Data System (ADS)

    dos Santos, Thiago R.; Gergel, Ingmar; Meinzer, Hans-Peter; Maier-Hein, Lena

    2010-03-01

    Registration of multiple medical images commonly comprises the steps feature extraction, correspondences search and transformation computation. In this paper, we present a new method for a fast and pose independent search of correspondences using as features anatomical trees such as the bronchial system in the lungs or the vessel system in the liver. Our approach scores the similarities between the trees' nodes (bifurcations) taking into account both, topological properties extracted from their graph representations and anatomical properties extracted from the trees themselves. The node assignment maximizes the global similarity (sum of the scores of each pair of assigned nodes), assuring that the matches are distributed throughout the trees. Furthermore, the proposed method is able to deal with distortions in the data, such as noise, motion, artifacts, and problems associated with the extraction method, such as missing or false branches. According to an evaluation on swine lung data sets, the method requires less than one second on average to compute the matching and yields a high rate of correct matches compared to state of the art work.

  1. Color mapping of one specific velocity of a biological fluid flows with complex geometry using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Potlov, A. Yu.; Frolov, S. V.; Proskurin, S. G.

    2018-04-01

    The method of Doppler color mapping of one specific (previously chosen) velocity in a turbulent flow inside biological tissues using optical coherence tomography is described. The key features of the presented method are: the raw data are separated into three parts, corresponding to the unmoving biological tissue, the positively and negatively directed biological fluid flows; the further independent signal processing procedure yields the structure image and two images of the chosen velocity, which are then normalised, encoded and joined. The described method can be used to obtain in real time the anatomical maps of the chosen velocities in normal and pathological states. The described method can be applied not only in optical coherence tomography, but also in endoscopic and Doppler ultrasonic medical imaging systems.

  2. Invasive adenocarcinoma with bronchoalveolar features: a population-based evaluation of the extent of resection in bronchoalveolar cell carcinoma.

    PubMed

    Whitson, Bryan A; Groth, Shawn S; Andrade, Rafael S; Mitiek, Mohi O; Maddaus, Michael A; D'Cunha, Jonathan

    2012-03-01

    We used a population-based data set to assess the association between the extent of pulmonary resection for bronchoalveolar carcinoma and survival. The reports thus far have been limited to small, institutional series. Using the Surveillance, Epidemiology, and End Results database (1988-2007), we identified patients with bronchoalveolar carcinoma who had undergone wedge resection, segmentectomy, or lobectomy. The bronchoalveolar carcinoma histologic findings were mucinous, nonmucinous, mixed, not otherwise specified, and alveolar carcinoma. To adjust for potential confounders, we used a Cox proportional hazards regression model. A total of 6810 patients met the inclusion criteria. Compared with the sublobar resections (wedge resections and segmentectomies), lobectomy conferred superior 5-year overall (59.5% vs 43.9%) and cancer-specific (67.1% vs 53.1%) survival (P < .0001). After adjusting for potential confounding patient and tumor characteristics, we found that patients who underwent an anatomic resection had significantly better overall (segmentectomy: hazard ratio, 0.59; 95% confidence interval, 0.43-0.81; lobectomy: hazard ratio, 0.50; 95% confidence interval, 0.44-0.57) and cancer-specific (segmentectomy: hazard ratio, 0.51; 95% confidence interval, 0.34-0.75; lobectomy: hazard ratio, 0.46; 95% confidence interval, 0.40-0.53) survival compared with patients who underwent wedge resection. Additionally, gender, race, tumor size, and degree of tumor de-differentiation were negative prognostic factors. Our results were unchanged when we limited our analysis to early-stage disease. Using a population-based data set, we found that anatomic resections for bronchoalveolar carcinoma conferred superior overall and cancer-specific survival rates compared with wedge resection. Bronchoalveolar carcinoma's propensity for intraparenchymal spread might be the underlying biologic basis of our observation of improved survival after anatomic resection. Copyright © 2012 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  3. Cross-sectional anatomy, computed tomography and magnetic resonance imaging of the head of common dolphin (Delphinus delphis) and striped dolphin (Stenella coeruleoalba).

    PubMed

    Alonso-Farré, J M; Gonzalo-Orden, M; Barreiro-Vázquez, J D; Barreiro-Lois, A; André, M; Morell, M; Llarena-Reino, M; Monreal-Pawlowsky, T; Degollada, E

    2015-02-01

    Computed tomography (CT) and low-field magnetic resonance imaging (MRI) were used to scan seven by-caught dolphin cadavers, belonging to two species: four common dolphins (Delphinus delphis) and three striped dolphins (Stenella coeruleoalba). CT and MRI were obtained with the animals in ventral recumbency. After the imaging procedures, six dolphins were frozen at -20°C and sliced in the same position they were examined. Not only CT and MRI scans, but also cross sections of the heads were obtained in three body planes: transverse (slices of 1 cm thickness) in three dolphins, sagittal (5 cm thickness) in two dolphins and dorsal (5 cm thickness) in two dolphins. Relevant anatomical structures were identified and labelled on each cross section, obtaining a comprehensive bi-dimensional topographical anatomy guide of the main features of the common and the striped dolphin head. Furthermore, the anatomical cross sections were compared with their corresponding CT and MRI images, allowing an imaging identification of most of the anatomical features. CT scans produced an excellent definition of the bony and air-filled structures, while MRI allowed us to successfully identify most of the soft tissue structures in the dolphin's head. This paper provides a detailed anatomical description of the head structures of common and striped dolphins and compares anatomical cross sections with CT and MRI scans, becoming a reference guide for the interpretation of imaging studies. © 2014 Blackwell Verlag GmbH.

  4. [The clinical research of aviatic nasal diseases with medical evaluation prevention and control intervention].

    PubMed

    Wang, Binru; Xu, Xianrong; Jin, Zhangguo; Zhang, Yang

    2015-03-01

    Exploring the clinical features of aviatic nasal diseases to provide references for medical evaluation, prevention and control measures in aircrew. To analysis and summary 605 cases with 503 pilots of nasal diseases in aircrew during 1966 to 2013. (1) There were 605 cases of aviatic nasal diseases, including 550 cases of general diseases and 55 cases of specific diseases. The general nasal diseases included 140 cases of anatomical abnormalities in nasal cavity type, 290 cases of inflammation in nasal cavity, 73 cases of allergy type, 47 cases of cyst and tumor type, and the specific nasal diseases were 55 cases of sinus barotrauma (SB). (2) The, constituent ratio of SB, which was happened in frontal sinus and /or maxillary sinus, was 95.55%. (3) The constituent ratio of cyst and tumor type in nasal cavity was easier causing to SB than anatomical abnormalities, inflammation, allergy disease in nasal cavity (P < 0.05). (4) The grounded constituent ratio of secondary SB was higher than anatomical abnormalities, inflammation, allergy, cyst and tumor disease in nasal cavity (P < 0.05). (5) The ways of hypobaric chamber tests were different for the kinds of aircrew. The qualified adjustment function of sinuses for barometric pressure was an essential condition for aircrew to continue flying. (6) The key point for the treatment of aviatic nasal diseases was to remove pathological change in nasal cavity and sinus and restore sinus ostium patency. The key point for the medical evaluation was to restore normal sinus pressure balance function. The key point of medical evaluation about aviatic nasal diseases is to assess the sinus pressure balance function in hypobaric chamber tests. Normative treatment and medical evaluation can effectively avoid flight accidents and improve the attendance rate for aircrew.

  5. Comparative anatomy, morphology, and molecular phylogenetics of the African genus Satanocrater (Acanthaceae).

    PubMed

    Tripp, Erin A; Fatimah, Siti

    2012-06-01

    Anatomical and morphological features of Satanocrater were studied to test hypotheses of xeric adaptations in the genus, which is endemic to arid tropical Africa. These features, together with molecular data, were used to test the phylogenetic placement of Satanocrater within the large plant family Acanthaceae. We undertook a comparative study of four species of Satanocrater. Carbon isotope ratios were generated to test a hypothesis of C(4) photosynthesis. Molecular data from chloroplast (trnG-trnS, trnG-trnR, psbA-trnH) and nuclear (Eif3E) loci were used to test the placement of Satanocrater within Acanthaceae. Anatomical features reflecting xeric adaptations of species of Satanocrater included a thick-walled epidermis, thick cuticle, abundant trichomes and glandular scales, stomata overarched by subsidiary cells, tightly packed mesophyll cells, and well-developed palisade parenchyma on both leaf surfaces. Although two species had enlarged bundle sheath cells, a feature often implicated in C(4) photosynthesis, isotope ratios indicated all species of Satanocrater use the C(3) pathway. Molecular data resolved Satanocrater within tribe Ruellieae with strong support. Within Ruellieae, our data suggest that pollen morphology of Satanocrater may represent an intermediate stage in a transition series. Anatomical and morphological features of Satanocrater reflect adaptation to xeric environments and add new information about the biology of xerophytes. Morphological and molecular data place Satanocrater in the tribe Ruellieae with confidence. This study adds to our capacity to test hypotheses of broad evolutionary and ecological interest in a diverse and important family of flowering plants.

  6. An anatomical study of the transversus nuchae muscle: Application to better understanding occipital neuralgia.

    PubMed

    Watanabe, Koichi; Saga, Tsuyoshi; Iwanaga, Joe; Tabira, Yoko; Yamaki, Koh-Ichi

    2017-01-01

    The transversus nuchae muscle appears inconsistently in the occipital region. It has gained attention as one of the muscles composing the superficial musculoaponeurotic system (SMAS). The purpose of this study was to clarify its detailed anatomical features. We examined 124 sides of 62 cadavers. The transversus nuchae muscle was identified when present and examined after it had been completely exposed. We also examined its relationship to the occipital cutaneous nerves.The transversus nuchae muscle was detected in 40 sides (40/124, 32.2%) of 26 cadavers; it was present bilaterally in 14 and unilaterally in 12. It originated from the external occipital protuberance; 43% of the observed muscles inserted around the mastoid process, and 58% curved upward around the mastoid process and became the uppermost bundle of the platysma. In one case, an additional bundle originated from the lower posterior border of the sternocleidomastoid muscle and coursed obliquely upward along with platysma. Ninety percent of the muscles ran below the sling through which the greater occipital nerve passed; 65% of the lesser occipital nerves ran deep to the muscle, and 55% of the great auricular nerves ran superficial to it. Our observations clarify the unique anatomical features of the transversus nuchae muscle. We found that it occurs at a rate similar to that described in previous reports, but its arrangement is variable. Further investigations will be performed to clarify its innervation and other anatomical features. Clin. Anat. 30:32-38, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Anatomical variations and sinusitis.

    PubMed

    Jorissen, M; Hermans, R; Bertrand, B; Eloy, P

    1997-01-01

    Paranasal sinus anatomy and variations have gained interest with the introduction of functional endoscopic sinus surgery and the concept of the ostiomeatal complex. Anatomical variations can be divided in structural abnormalities, (increased) pneumatization and supplementary openings. Most anatomical variations are equally found in control and sinusitis patients. The anatomical variations which are most commonly associated with sinus pathology are septal deviations, true conchae bullosae and supplementary maxillary ostia but the latter one only when recycling is present. The knowledge of anatomical variations is most important in the surgical management and specifically in the prevention of complications.

  8. Three variations of the laryngeal nerve in the same patient: a case report

    PubMed Central

    2011-01-01

    Introduction A non-recurrent course is a rare anatomic variation of the inferior laryngeal nerve (ILN). Bilateral extra-laryngeal bifurcation of the ILN seldom occurs before its laryngeal entry. Anastomosis between the ILN and cervical sympathetic chain is another rare anatomic feature. The prevalence of extra-laryngeal branching of the non-recurrent nerve is unknown. We present an example of triple anatomic variations of ILNs in the same patient, and also two anatomic variations in the same nerve. Case presentation A 56-year-old Caucasian man with a large toxic multi-nodular goiter was surgically treated with total thyroidectomy. Both his right and left ILNs were identified, fully exposed and preserved along their cervical courses. We discovered many variations during bilateral exploration of the two ILNs. His right ILN was non-recurrent. This non-recurrent ILN showed a terminal division before laryngeal entry. The left nerve had a usual course as a recurrent laryngeal nerve (RLN) at his tracheaesophageal groove. We also discovered bifurcation of his RLN beginning at a neurovascular (RLN and inferior thyroid artery) crossing point. Anterior and posterior branches of both nerves entered his larynx separately. The sympathetic inferior laryngeal anastomotic branch (SILAB) between the posterior branch of his left ILN and the cervical sympathetic chain was established in the distal part of the nerve before laryngeal entry. Conclusion A non-recurrent nerve and extra-laryngeal branching of the ILN are two different variations. The coincidence of a right non-recurrent ILN and bilateral bifurcation of both nerves is a very interesting feature. SILAB is a rare additional finding as a third anatomic variation in the same patient. Extra-laryngeal terminal division of a non-recurrent ILN is an extremely unusual anatomic finding. Two anatomic variations have occurred in the same nerve, like "the variation of the variation". PMID:21722360

  9. Whole-body and local RF absorption in human models as a function of anatomy and position within 1.5T MR body coil.

    PubMed

    Murbach, Manuel; Neufeld, Esra; Kainz, Wolfgang; Pruessmann, Klaas P; Kuster, Niels

    2014-02-01

    Radiofrequency energy deposition in magnetic resonance imaging must be limited to prevent excessive heating of the patient. Correlations of radiofrequency absorption with large-scale anatomical features (e.g., height) are investigated in this article. The specific absorption rate (SAR), as the pivotal parameter for quantifying absorbed radiofrequency, increases with the radial dimension of the patient and therefore with the large-scale anatomical properties. The absorbed energy in six human models has been modeled in different Z-positions (head to knees) within a 1.5T bodycoil. For a fixed B1+ incident field, the whole-body SAR can be up to 2.5 times higher (local SAR up to seven times) in obese adult models compared to children. If the exposure is normalized to 4 W/kg whole-body SAR, the local SAR can well-exceed the limits for local transmit coils and shows intersubject variations of up to a factor of three. The correlations between anatomy and induced local SAR are weak for normalized exposure, but strong for a fixed B1+ field, suggesting that anatomical properties could be used for fast SAR predictions. This study demonstrates that a representative virtual human population is indispensable for the investigation of local SAR levels. Copyright © 2013 Wiley Periodicals, Inc.

  10. Clinical features and risk factors for development of urinary tract infections in cats.

    PubMed

    Martinez-Ruzafa, Ivan; Kruger, John M; Miller, RoseAnn; Swenson, Cheryl L; Bolin, Carole A; Kaneene, John B

    2012-10-01

    The clinical and diagnostic features of 155 cats with urinary tract infection (UTI) and 186 controls with negative urine culture/s were characterized retrospectively (signalment, clinical signs, urinalysis, urine culture, concurrent diseases, lower urinary tract diagnostic/therapeutic procedures). Multivariable logistic regression was used to identify risk factors associated with UTI. Cats of all ages were affected by UTI with no sex/breed predisposition. Lower urinary tract signs were absent in 35.5% of cats with UTI. Pyuria and bacteriuria had sensitivities of 52.9% and 72.9%, and specificities of 85.5% and 67.7% for detection of UTI, respectively. Risk factors significantly associated with increased odds of UTI were urinary incontinence [odds ratio (OR)=10.78, P=0.0331], transurethral procedures (OR=8.37, P<0.0001), urogenital surgery (OR=6.03, P=0.0385), gastrointestinal disease (OR=2.62, P=0.0331), decreased body weight (OR=0.81, P=0.0259) and decreased urine specific gravity (OR=0.78, P=0.0055). Whilst not independently significant, renal disease and lower urinary tract anatomic abnormalities improved statistical model performance and contributed to UTI.

  11. Procedure Planning: Anatomical Determinants of Strategy

    PubMed Central

    Hanratty, Colm; Walsh, Simon

    2014-01-01

    In contemporary practice there are three main methods that can be employed when attempting to open a chronic total occlusion (CTO) of a coronary artery; antegrade or retrograde wire escalation, antegrade dissection re-entry and retrograde dissection re-entry. This editorial will attempt to clarify the anatomical features that can be identified to help when deciding which of these strategies to employ initially and help understand the reasons for this decision. PMID:24694102

  12. The morphologic universe of melanoma.

    PubMed

    Jaimes, Natalia; Marghoob, Ashfaq A

    2013-10-01

    Differentiating dysplastic nevi from melanoma remains one of the main objectives of dermoscopy. Melanomas tend not to manifest any of the benign patterns described for nevi and instead usually display chaotic dermoscopic morphologies. Melanomas located on the face, chronically sun-damaged skin, volar surfaces, nails, and mucosal surfaces have additional features that can assist in their identification. However, some melanomas lack any defined dermoscopic structures. These so-called featureless melanomas can be identified via digital surveillance. This article reviews the melanoma-specific structures as a function of anatomic location (ie, melanomas on nonglabrous skin, face, volar surfaces, mucosae, and nails). Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Investigation of erectile dysfunction.

    PubMed

    Patel, D V; Halls, J; Patel, U

    2012-11-01

    Erectile dysfunction (ED) represents a common and debilitating condition with a wide range of organic and non-organic causes. Physical aetiologies can be divided into disorders affecting arterial inflow, the venous occlusion mechanism or the penile structure itself. Various imaging modalities can be utilised to investigate the physical causes of ED, but penile Doppler sonography (PDS) is the most informative technique, indicated in those patients with ED who do not respond to oral pharmacological agents (e.g. phosphodiesterase type 5 inhibitors). This review will examine the anatomical and physiological basis of penile erection, the method for performing PDS and features of specific causes of ED, and will also consider the alternative imaging modalities available.

  14. Coping with the diagnostic complexities of the compartment syndrome

    NASA Technical Reports Server (NTRS)

    Mubarak, S. J.; Hargens, A. R.; Karkal, S. S.

    1988-01-01

    This review recognizes that, given the various complexities associated with the condition, no pat answers can be given to fit every patient with the compartment syndrome. The authors first give a definition of the syndrome, together with a brief account of how this self-perpetuating pathologic cycle is triggered. Next, they delineate specific anatomical features of compartments that are likely to be involved, and follow this with an inventory of symptoms and signs to look for in suspected cases. After sorting out the entities that can mimic the compartment syndrome, the authors describe three essential techniques of measuring tissue pressure, which can prove invaluable in diagnosing the compartment syndrome.

  15. Development of a new generation of high-resolution anatomical models for medical device evaluation: the Virtual Population 3.0

    NASA Astrophysics Data System (ADS)

    Gosselin, Marie-Christine; Neufeld, Esra; Moser, Heidi; Huber, Eveline; Farcito, Silvia; Gerber, Livia; Jedensjö, Maria; Hilber, Isabel; Di Gennaro, Fabienne; Lloyd, Bryn; Cherubini, Emilio; Szczerba, Dominik; Kainz, Wolfgang; Kuster, Niels

    2014-09-01

    The Virtual Family computational whole-body anatomical human models were originally developed for electromagnetic (EM) exposure evaluations, in particular to study how absorption of radiofrequency radiation from external sources depends on anatomy. However, the models immediately garnered much broader interest and are now applied by over 300 research groups, many from medical applications research fields. In a first step, the Virtual Family was expanded to the Virtual Population to provide considerably broader population coverage with the inclusion of models of both sexes ranging in age from 5 to 84 years old. Although these models have proven to be invaluable for EM dosimetry, it became evident that significantly enhanced models are needed for reliable effectiveness and safety evaluations of diagnostic and therapeutic applications, including medical implants safety. This paper describes the research and development performed to obtain anatomical models that meet the requirements necessary for medical implant safety assessment applications. These include implementation of quality control procedures, re-segmentation at higher resolution, more-consistent tissue assignments, enhanced surface processing and numerous anatomical refinements. Several tools were developed to enhance the functionality of the models, including discretization tools, posing tools to expand the posture space covered, and multiple morphing tools, e.g., to develop pathological models or variations of existing ones. A comprehensive tissue properties database was compiled to complement the library of models. The results are a set of anatomically independent, accurate, and detailed models with smooth, yet feature-rich and topologically conforming surfaces. The models are therefore suited for the creation of unstructured meshes, and the possible applications of the models are extended to a wider range of solvers and physics. The impact of these improvements is shown for the MRI exposure of an adult woman with an orthopedic spinal implant. Future developments include the functionalization of the models for specific physical and physiological modeling tasks.

  16. Thomas Willis, a pioneer in translational research in anatomy (on the 350th anniversary of Cerebri anatome)

    PubMed Central

    Arráez-Aybar, Luis-Alfonso; Navia-Álvarez, Pedro; Fuentes-Redondo, Talia; Bueno-López, José-L

    2015-01-01

    The year 2014 marked the 350th anniversary of the publication in London of Cerebri anatome, a ground-breaking work of neuroscience heavily influenced by the political and cultural context of Baroque Europe and mid-17th century England. This article aims to review the work of the English physician and anatomist Thomas Willis, specifically with regard to the contents of his Cerebri anatome. Willis's academic and professional career was influenced by the turbulent period of the English Civil War during which he studied medicine. Willis went from chemistry to dissection arguably because of his need to justify the body-brain-soul relationship. As a result, he became a fellow of a select club of eminent experimentalists, and afterward was a Fellow of the Royal Society. Later on, he went to London, leaving the academic life to dedicate himself fully to the profession of medicine. As a physician, Willis did not base his practice on aphorisms but on a ‘bench to bedside’ approach to medicine, while studying neuroanatomy – covering embryology, comparative anatomy and pathological anatomy – as a basis for the comprehension of neurological pathology. He developed innovative anatomical methods for the preservation and dissection of the brain, injection of coloured substances and illustration of his findings. In Cerebri anatome, Willis recognized the cerebral cortex as the substrate of cognition. He also claimed that the painful stimuli came from the meninges, but not from the brain itself. He explained for the first time the pathological and functional meaning of the brain's circular arterial anastomosis, which is named after him. He also specified some features of the cranial origin of the sympathetic nerves and coined the term ‘neurologie’. Cerebri anatome marked the transition between the mediaeval and modern notions of brain function, and thus it is considered a cornerstone of clinical and comparative anatomy of the nervous system. The new contributions and methods employed by Willis justify his place as a father of neurology and a pioneer of translational research. PMID:25688933

  17. Molecular imaging of rheumatoid arthritis: emerging markers, tools, and techniques

    PubMed Central

    2014-01-01

    Early diagnosis and effective monitoring of rheumatoid arthritis (RA) are important for a positive outcome. Instant treatment often results in faster reduction of inflammation and, as a consequence, less structural damage. Anatomical imaging techniques have been in use for a long time, facilitating diagnosis and monitoring of RA. However, mere imaging of anatomical structures provides little information on the processes preceding changes in synovial tissue, cartilage, and bone. Molecular imaging might facilitate more effective diagnosis and monitoring in addition to providing new information on the disease pathogenesis. A limiting factor in the development of new molecular imaging techniques is the availability of suitable probes. Here, we review which cells and molecules can be targeted in the RA joint and discuss the advances that have been made in imaging of arthritis with a focus on such molecular targets as folate receptor, F4/80, macrophage mannose receptor, E-selectin, intercellular adhesion molecule-1, phosphatidylserine, and matrix metalloproteinases. In addition, we discuss a new tool that is being introduced in the field, namely the use of nanobodies as tracers. Finally, we describe additional molecules displaying specific features in joint inflammation and propose these as potential new molecular imaging targets, more specifically receptor activator of nuclear factor κB and its ligand, chemokine receptors, vascular cell adhesion molecule-1, αVβ3 integrin, P2X7 receptor, suppression of tumorigenicity 2, dendritic cell-specific transmembrane protein, and osteoclast-stimulatory transmembrane protein. PMID:25099015

  18. Muscle development and differentiation in the urodele Ambystoma mexicanum.

    PubMed

    Banfi, Serena; Monti, Laura; Acquati, Francesco; Tettamanti, Gianluca; de Eguileor, Magda; Grimaldi, Annalisa

    2012-05-01

    Muscle differentiation has been widely described in zebrafish and Xenopus, but nothing is known about this process in amphibian urodeles. Both anatomical features and locomotor activity in urodeles are known to show intermediate features between fish and anurans. Therefore, a better understanding of myogenesis in urodeles could be useful to clarify the evolutionary changes that led to the formation of skeletal muscle in the trunk of land vertebrates. We report here a detailed morphological and molecular investigation on several embryonic stages of Ambystoma mexicanum and show that the first differentiating muscle fibers are the slow ones, originating from a myoblast population initially localized close to the notochord that forms a superficial layer on the somitic surface afterwards. Subsequently, fast fibers differentiation ensues. We also identified and cloned A. mexicanum Myf5 as a muscle-specific transcriptional factor likely involved in urodele muscle differentiation. © 2012 The Authors Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.

  19. Mapping pathological phenotypes in a mouse model of CDKL5 disorder.

    PubMed

    Amendola, Elena; Zhan, Yang; Mattucci, Camilla; Castroflorio, Enrico; Calcagno, Eleonora; Fuchs, Claudia; Lonetti, Giuseppina; Silingardi, Davide; Vyssotski, Alexei L; Farley, Dominika; Ciani, Elisabetta; Pizzorusso, Tommaso; Giustetto, Maurizio; Gross, Cornelius T

    2014-01-01

    Mutations in cyclin-dependent kinase-like 5 (CDKL5) cause early-onset epileptic encephalopathy, a neurodevelopmental disorder with similarities to Rett Syndrome. Here we describe the physiological, molecular, and behavioral phenotyping of a Cdkl5 conditional knockout mouse model of CDKL5 disorder. Behavioral analysis of constitutive Cdkl5 knockout mice revealed key features of the human disorder, including limb clasping, hypoactivity, and abnormal eye tracking. Anatomical, physiological, and molecular analysis of the knockout uncovered potential pathological substrates of the disorder, including reduced dendritic arborization of cortical neurons, abnormal electroencephalograph (EEG) responses to convulsant treatment, decreased visual evoked responses (VEPs), and alterations in the Akt/rpS6 signaling pathway. Selective knockout of Cdkl5 in excitatory and inhibitory forebrain neurons allowed us to map the behavioral features of the disorder to separable cell-types. These findings identify physiological and molecular deficits in specific forebrain neuron populations as possible pathological substrates in CDKL5 disorder.

  20. Is the gravity effect of radiographic anatomic features enough to justify stone clearance or fragments retention following extracorporeal shock wave lithotripsy (SWL).

    PubMed

    Mustafa, Mahmoud

    2012-08-01

    We determined whether the gravity effect of radiographic anatomic features on the preoperative urography (IVP) are enough to predict fragments clearance after shock wave lithotripsy (SWL). A Total of 282 patients with mean age 45.8 ± 13.2 years (189 male, 93 female), who underwent SWL due to renal calculi between October 2005 and August 2009 were enrolled. The mean calculi load was 155.72 ± 127.66 mm². The patients were stratified into three groups: patients with pelvis calculi (group 1); patients with upper or middle pole calculi (group 2) and patients with lower pole calculi (group 3). Three angles on the pretreatment IVP were measured: the inner angle between the axis of the lower pole infundibular and ureteropelvic axis (angle I); the inner angle between the lower pole infundibular axis and main axis of pelvis-ureteropelvic (UP) junction point (angle II) and the inner angle between the lower pole infundibular axis and perpendicular line (angle III). Multivariate analysis was used to define the significant predictors of stone clearance. The overall success rate was 85.81%. All angles, sessions number, shock waves number and stone burden were significant predictors of success in patients in group 1. However, in group 2 only angle II and in group 3 angles I and II had significant effect on stone clearance. Radiographic anatomic features have significant role in determining the stone-free rate following satisfactory fragmentation of renal stones with SWL. The measurement of infundibulopelvic angle in different manner helps to predict the stone-free status in patients with renal calculi located not only in lower pole, but also in renal pelvis and upper or middle pole. Gravity effect is not enough to justify the significant influence of the radiographic anatomic features on the stone clearance and fragments retention after SWL.

  1. Three-Dimensional Printing: Custom-Made Implants for Craniomaxillofacial Reconstructive Surgery

    PubMed Central

    Matias, Mariana; Zenha, Horácio; Costa, Horácio

    2017-01-01

    Craniomaxillofacial reconstructive surgery is a challenging field. First it aims to restore primary functions and second to preserve craniofacial anatomical features like symmetry and harmony. Three-dimensional (3D) printed biomodels have been widely adopted in medical fields by providing tactile feedback and a superior appreciation of visuospatial relationship between anatomical structures. Craniomaxillofacial reconstructive surgery was one of the first areas to implement 3D printing technology in their practice. Biomodeling has been used in craniofacial reconstruction of traumatic injuries, congenital disorders, tumor removal, iatrogenic injuries (e.g., decompressive craniectomies), orthognathic surgery, and implantology. 3D printing has proven to improve and enable an optimization of preoperative planning, develop intraoperative guidance tools, reduce operative time, and significantly improve the biofunctional and the aesthetic outcome. This technology has also shown great potential in enriching the teaching of medical students and surgical residents. The aim of this review is to present the current status of 3D printing technology and its practical and innovative applications, specifically in craniomaxillofacial reconstructive surgery, illustrated with two clinical cases where the 3D printing technology was successfully used. PMID:28523082

  2. Integrating anatomy and function for zebrafish circuit analysis.

    PubMed

    Arrenberg, Aristides B; Driever, Wolfgang

    2013-01-01

    Due to its transparency, virtually every brain structure of the larval zebrafish is accessible to light-based interrogation of circuit function. Advanced stimulation techniques allow the activation of optogenetic actuators at different resolution levels, and genetically encoded calcium indicators report the activity of a large proportion of neurons in the CNS. Large datasets result and need to be analyzed to identify cells that have specific properties-e.g., activity correlation to sensory stimulation or behavior. Advances in three-dimensional (3D) functional mapping in zebrafish are promising; however, the mere coordinates of implicated neurons are not sufficient. To comprehensively understand circuit function, these functional maps need to be placed into the proper context of morphological features and projection patterns, neurotransmitter phenotypes, and key anatomical landmarks. We discuss the prospect of merging functional and anatomical data in an integrated atlas from the perspective of our work on long-range dopaminergic neuromodulation and the oculomotor system. We propose that such a resource would help researchers to surpass current hurdles in circuit analysis to achieve an integrated understanding of anatomy and function.

  3. Mechanisms of alveolar fibrosis after acute lung injury.

    PubMed

    Marinelli, W A; Henke, C A; Harmon, K R; Hertz, M I; Bitterman, P B

    1990-12-01

    In patients who die after severe acute lung injury, a dramatic fibroproliferative response occurs within the alveolar air space, interstitium, and microvessels. Profound shunt physiology, dead space ventilation, and pulmonary hypertension are the physiologic consequences of this fibroproliferative response. The anatomic pattern of the response is unique within each alveolar compartment. For example, the air space is obliterated by granulation tissue, with replicating mesenchymal cells, their connective tissue products, and an expanding network of intra-alveolar capillaries. In contrast, the vascular fibroproliferative response is dominated by mesenchymal cell replication and connective tissue deposition within the walls of microvessels. Despite the unique anatomic features of these fibroproliferative processes, the regulatory signals involved are likely to be similar. Although our current understanding of the signals regulating the fibroproliferative response to acute lung injury is limited, inferences can be made from in vitro studies of mesenchymal cell behavior and several better understood fibroproliferative processes, including wound healing and chronic fibrotic lung diseases. As clinicians, our future ability to enhance effective lung repair will likely utilize therapeutic strategies specifically targeted to the signals that regulate the fibroproliferative process within the alveolar microenvironment.

  4. [Clinical examination of the hip joint in adults].

    PubMed

    Grifka, J; Keshmiri, A; Maderbacher, G; Craiovan, B

    2014-12-01

    Complaints in the region of the hips and pelvis are often difficult to classify. This is due to the fact that pain projection and overlapping can occur; therefore, the complete region of the lumbar spine, pelvis and hips must be considered as a single entity in which alterations can result in radiation throughout the whole region. There are many different anatomical structures within the pelvic region so that the function of various muscle components can be impaired and cause pathological alterations to positional relationships of bony structures or even alterations to other soft tissues, such as ligaments, tendons and labra. In terms of differential diagnostics the groin must be seen as the weak point of the peritoneum and vascular system and taken into consideration. Therefore, a detailed and targeted medical history, functional testing and specific examinations and tests are necessary to narrow down the pathology in question and reach a definitive diagnosis. Orthopedic surgeons must know which conspicuous features can lead to which problems and which anatomical structures are likely to be affected by irritation. The results of the clinical examination are the basis for targeted imaging diagnostics and subsequent therapy.

  5. [Clinical examination of the hip joint in adults].

    PubMed

    Grifka, J; Keshmiri, A; Maderbacher, G; Craiovan, B

    2015-07-01

    Complaints in the region of the hips and pelvis are often difficult to classify. This is due to the fact that pain projection and overlapping can occur; therefore, the complete region of the lumbar spine, pelvis and hips must be considered as a single entity in which alterations can result in radiation throughout the whole region. There are many different anatomical structures within the pelvic region so that the function of various muscle components can be impaired and cause pathological alterations to positional relationships of bony structures or even alterations to other soft tissues, such as ligaments, tendons and labra. In terms of differential diagnostics the groin must be seen as the weak point of the peritoneum and vascular system and taken into consideration. Therefore, a detailed and targeted medical history, functional testing and specific examinations and tests are necessary to narrow down the pathology in question and reach a definitive diagnosis. Orthopedic surgeons must know which conspicuous features can lead to which problems and which anatomical structures are likely to be affected by irritation. The results of the clinical examination are the basis for targeted imaging diagnostics and subsequent therapy.

  6. Wood Cellular Dendroclimatology: A Pilot Study on Bristlecone Pine in the Southwest US

    NASA Astrophysics Data System (ADS)

    Ziaco, E.; Biondi, F.; Heinrich, I.

    2015-12-01

    Tree-rings provide paleoclimatic records at annual to seasonal resolution for regions or periods with no instrumental climatic data. Relationships between climatic variability and wood cellular features allow for a more complete understanding of the physiological mechanisms that control the climatic response of trees. Given the increasing importance of wood anatomy as a source of dendroecological information, such studies are now starting in the US. We analyzed 10 cores of bristlecone pine (Pinus longaeva D.K. Bailey) from a high-elevation site included in the Nevada Climate-ecohydrological Assessment Network (NevCAN). Century-long chronologies (1870-2013) of wood anatomical parameters (lumen area, cell diameter, cell wall thickness) can be developed by capturing strongly contrasted microscopic images using a Confocal Laser Scanning Microscope, and then measuring cellular parameters with task-specific software. Measures of empirical signal strength were used to test the strength of the environmental information embedded in wood anatomy. Correlation functions between ring-width, cellular features, and PRISM climatic variables were produced for the period 1926-2013. Time series of anatomical features present lower autocorrelation compared to ring widths, highlighting the role of environmental conditions occurring at the time of cell formation. Mean chronologies of radial lumen length and cell diameter carry a stronger climatic signal compared to cell wall thickness, and are significantly correlated with climatic variables (maximum temperature and total precipitation) in spring (Mar-Apr) and during the growing season (Jun-Sep), whereas ring widths show weaker or no correlation. Wood anatomy holds great potential to refine dendroclimatic reconstructions at higher temporal resolution, providing better estimates of hydroclimatic variability and plant physiological adaptations in the southwest US.

  7. Specification and estimation of sources of bias affecting neurological studies in PET/MR with an anatomical brain phantom

    NASA Astrophysics Data System (ADS)

    Teuho, J.; Johansson, J.; Linden, J.; Saunavaara, V.; Tolvanen, T.; Teräs, M.

    2014-01-01

    Selection of reconstruction parameters has an effect on the image quantification in PET, with an additional contribution from a scanner-specific attenuation correction method. For achieving comparable results in inter- and intra-center comparisons, any existing quantitative differences should be identified and compensated for. In this study, a comparison between PET, PET/CT and PET/MR is performed by using an anatomical brain phantom, to identify and measure the amount of bias caused due to differences in reconstruction and attenuation correction methods especially in PET/MR. Differences were estimated by using visual, qualitative and quantitative analysis. The qualitative analysis consisted of a line profile analysis for measuring the reproduction of anatomical structures and the contribution of the amount of iterations to image contrast. The quantitative analysis consisted of measurement and comparison of 10 anatomical VOIs, where the HRRT was considered as the reference. All scanners reproduced the main anatomical structures of the phantom adequately, although the image contrast on the PET/MR was inferior when using a default clinical brain protocol. Image contrast was improved by increasing the amount of iterations from 2 to 5 while using 33 subsets. Furthermore, a PET/MR-specific bias was detected, which resulted in underestimation of the activity values in anatomical structures closest to the skull, due to the MR-derived attenuation map that ignores the bone. Thus, further improvements for the PET/MR reconstruction and attenuation correction could be achieved by optimization of RAMLA-specific reconstruction parameters and implementation of bone to the attenuation template.

  8. Brain Growth Across the Life Span in Autism: Age-Specific Changes in Anatomical Pathology

    PubMed Central

    Courchesne, Eric; Campbell, Kathleen; Solso, Stephanie

    2014-01-01

    Autism is marked by overgrowth of the brain at the earliest ages but not at older ages when decreases in structural volumes and neuron numbers are observed instead. This has lead to the theory of age-specific anatomic abnormalities in autism. Here we report age-related changes in brain size in autistic and typical subjects from 12 months to 50 years of age based on analyses of 586 longitudinal and cross-sectional MRI scans. This dataset is several times larger than the largest autism study to date. Results demonstrate early brain overgrowth during infancy and the toddler years in autistic boys and girls, followed by an accelerated rate of decline in size and perhaps degeneration from adolescence to late middle age in this disorder. We theorize that underlying these age-specific changes in anatomic abnormalities in autism there may also be age-specific changes in gene expression, molecular, synaptic, cellular and circuit abnormalities. A peak age for detecting and studying the earliest fundamental biological underpinnings of autism is prenatal life and the first three postnatal years. Studies of the older autistic brain may not address original causes but are essential to discovering how best to help the older aging autistic person. Lastly, the theory of age-specific anatomic abnormalities in autism has broad implications for a wide range of work on the disorder including the design, validation and interpretation of animal model, lymphocyte gene expression, brain gene expression, and genotype/CNV-anatomic phenotype studies. PMID:20920490

  9. A reference dataset for deformable image registration spatial accuracy evaluation using the COPDgene study archive

    NASA Astrophysics Data System (ADS)

    Castillo, Richard; Castillo, Edward; Fuentes, David; Ahmad, Moiz; Wood, Abbie M.; Ludwig, Michelle S.; Guerrero, Thomas

    2013-05-01

    Landmark point-pairs provide a strategy to assess deformable image registration (DIR) accuracy in terms of the spatial registration of the underlying anatomy depicted in medical images. In this study, we propose to augment a publicly available database (www.dir-lab.com) of medical images with large sets of manually identified anatomic feature pairs between breath-hold computed tomography (BH-CT) images for DIR spatial accuracy evaluation. Ten BH-CT image pairs were randomly selected from the COPDgene study cases. Each patient had received CT imaging of the entire thorax in the supine position at one-fourth dose normal expiration and maximum effort full dose inspiration. Using dedicated in-house software, an imaging expert manually identified large sets of anatomic feature pairs between images. Estimates of inter- and intra-observer spatial variation in feature localization were determined by repeat measurements of multiple observers over subsets of randomly selected features. 7298 anatomic landmark features were manually paired between the 10 sets of images. Quantity of feature pairs per case ranged from 447 to 1172. Average 3D Euclidean landmark displacements varied substantially among cases, ranging from 12.29 (SD: 6.39) to 30.90 (SD: 14.05) mm. Repeat registration of uniformly sampled subsets of 150 landmarks for each case yielded estimates of observer localization error, which ranged in average from 0.58 (SD: 0.87) to 1.06 (SD: 2.38) mm for each case. The additions to the online web database (www.dir-lab.com) described in this work will broaden the applicability of the reference data, providing a freely available common dataset for targeted critical evaluation of DIR spatial accuracy performance in multiple clinical settings. Estimates of observer variance in feature localization suggest consistent spatial accuracy for all observers across both four-dimensional CT and COPDgene patient cohorts.

  10. Semi-Automated Trajectory Analysis of Deep Ballistic Penetrating Brain Injury

    PubMed Central

    Folio, Les; Solomon, Jeffrey; Biassou, Nadia; Fischer, Tatjana; Dworzak, Jenny; Raymont, Vanessa; Sinaii, Ninet; Wassermann, Eric M.; Grafman, Jordan

    2016-01-01

    Background Penetrating head injuries (PHIs) are common in combat operations and most have visible wound paths on computed tomography (CT). Objective We assess agreement between an automated trajectory analysis-based assessment of brain injury and manual tracings of encephalomalacia on CT. Methods We analyzed 80 head CTs with ballistic PHI from the Institutional Review Board approved Vietnam head injury registry. Anatomic reports were generated from spatial coordinates of projectile entrance and terminal fragment location. These were compared to manual tracings of the regions of encephalomalacia. Dice’s similarity coefficients, kappa, sensitivities, and specificities were calculated to assess agreement. Times required for case analysis were also compared. Results Results show high specificity of anatomic regions identified on CT with semiautomated anatomical estimates and manual tracings of tissue damage. Radiologist’s and medical students’ anatomic region reports were similar (Kappa 0.8, t-test p < 0.001). Region of probable injury modeling of involved brain structures was sensitive (0.7) and specific (0.9) compared with manually traced structures. Semiautomated analysis was 9-fold faster than manual tracings. Conclusion Our region of probable injury spatial model approximates anatomical regions of encephalomalacia from ballistic PHI with time-saving over manual methods. Results show potential for automated anatomical reporting as an adjunct to current practice of radiologist/neurosurgical review of brain injury by penetrating projectiles. PMID:23707123

  11. Construction of a 3-D anatomical model for teaching temporal lobectomy.

    PubMed

    de Ribaupierre, Sandrine; Wilson, Timothy D

    2012-06-01

    Although we live and work in 3 dimensional space, most of the anatomical teaching during medical school is done on 2-D (books, TV and computer screens, etc). 3-D spatial abilities are essential for a surgeon but teaching spatial skills in a non-threatening and safe educational environment is a much more difficult pedagogical task. Currently, initial anatomical knowledge formation or specific surgical anatomy techniques, are taught either in the OR itself, or in cadaveric labs; which means that the trainee has only limited exposure. 3-D computer models incorporated into virtual learning environments may provide an intermediate and key step in a blended learning approach for spatially challenging anatomical knowledge formation. Specific anatomical structures and their spatial orientation can be further clinically contextualized through demonstrations of surgical procedures in the 3-D digital environments. Recordings of digital models enable learner reviews, taking as much time as they want, stopping the demonstration, and/or exploring the model to understand the anatomical relation of each structure. We present here how a temporal lobectomy virtual model has been developed to aid residents and fellows conceptualization of the anatomical relationships between different cerebral structures during that procedure. We suggest in comparison to cadaveric dissection, such virtual models represent a cost effective pedagogical methodology providing excellent support for anatomical learning and surgical technique training. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Determination of optimal ultrasound planes for the initialisation of image registration during endoscopic ultrasound-guided procedures.

    PubMed

    Bonmati, Ester; Hu, Yipeng; Gibson, Eli; Uribarri, Laura; Keane, Geri; Gurusami, Kurinchi; Davidson, Brian; Pereira, Stephen P; Clarkson, Matthew J; Barratt, Dean C

    2018-06-01

    Navigation of endoscopic ultrasound (EUS)-guided procedures of the upper gastrointestinal (GI) system can be technically challenging due to the small fields-of-view of ultrasound and optical devices, as well as the anatomical variability and limited number of orienting landmarks during navigation. Co-registration of an EUS device and a pre-procedure 3D image can enhance the ability to navigate. However, the fidelity of this contextual information depends on the accuracy of registration. The purpose of this study was to develop and test the feasibility of a simulation-based planning method for pre-selecting patient-specific EUS-visible anatomical landmark locations to maximise the accuracy and robustness of a feature-based multimodality registration method. A registration approach was adopted in which landmarks are registered to anatomical structures segmented from the pre-procedure volume. The predicted target registration errors (TREs) of EUS-CT registration were estimated using simulated visible anatomical landmarks and a Monte Carlo simulation of landmark localisation error. The optimal planes were selected based on the 90th percentile of TREs, which provide a robust and more accurate EUS-CT registration initialisation. The method was evaluated by comparing the accuracy and robustness of registrations initialised using optimised planes versus non-optimised planes using manually segmented CT images and simulated ([Formula: see text]) or retrospective clinical ([Formula: see text]) EUS landmarks. The results show a lower 90th percentile TRE when registration is initialised using the optimised planes compared with a non-optimised initialisation approach (p value [Formula: see text]). The proposed simulation-based method to find optimised EUS planes and landmarks for EUS-guided procedures may have the potential to improve registration accuracy. Further work will investigate applying the technique in a clinical setting.

  13. [New Radiopharmaceuticals Based on Prostate-Specific Inhibitors of Membrane Antigen for Diagnostics and Therapy of Metastatic Prostate Cancer].

    PubMed

    Vlasova, O P; German, K E; Krilov, V V; Petriev, V M; Epstein, N B

    2015-01-01

    About 10.7% cases of prostate cancer were registered in Russia in 2011 (40,000 patients). More than half of cancer cases were revealed in advanced (III-IV) stages when metastases inevitably developed quickly. Clinical problem of early diagnostics and treatment of metastatic prostate cancer is still not solved. Anatomical imaging techniques have low sensitivity and specificity for the detection of this disease. Metabolic visualization methods which use prostate specific antigen (PSA) as a marker are also ineffective. This article describes prostate-specific membrane antigens (PSMA) that are proposed as a marker for diagnostics and therapy of prostate cancer. The most promising PSMA-based radiopharmaceutical agent for diagnostics has been developed and clinically tested in the European countries. These pharmaceuticals are based on small peptide molecules modified with urea, and have the highest affinity to PSMA. Favorable phannacokinetics, rapid accumulation in the tumor and rapid excretion from the body are beneficial features of these pharmaceuticals.

  14. Computer-aided diagnostic method for classification of Alzheimer's disease with atrophic image features on MR images

    NASA Astrophysics Data System (ADS)

    Arimura, Hidetaka; Yoshiura, Takashi; Kumazawa, Seiji; Tanaka, Kazuhiro; Koga, Hiroshi; Mihara, Futoshi; Honda, Hiroshi; Sakai, Shuji; Toyofuku, Fukai; Higashida, Yoshiharu

    2008-03-01

    Our goal for this study was to attempt to develop a computer-aided diagnostic (CAD) method for classification of Alzheimer's disease (AD) with atrophic image features derived from specific anatomical regions in three-dimensional (3-D) T1-weighted magnetic resonance (MR) images. Specific regions related to the cerebral atrophy of AD were white matter and gray matter regions, and CSF regions in this study. Cerebral cortical gray matter regions were determined by extracting a brain and white matter regions based on a level set based method, whose speed function depended on gradient vectors in an original image and pixel values in grown regions. The CSF regions in cerebral sulci and lateral ventricles were extracted by wrapping the brain tightly with a zero level set determined from a level set function. Volumes of the specific regions and the cortical thickness were determined as atrophic image features. Average cortical thickness was calculated in 32 subregions, which were obtained by dividing each brain region. Finally, AD patients were classified by using a support vector machine, which was trained by the image features of AD and non-AD cases. We applied our CAD method to MR images of whole brains obtained from 29 clinically diagnosed AD cases and 25 non-AD cases. As a result, the area under a receiver operating characteristic (ROC) curve obtained by our computerized method was 0.901 based on a leave-one-out test in identification of AD cases among 54 cases including 8 AD patients at early stages. The accuracy for discrimination between 29 AD patients and 25 non-AD subjects was 0.840, which was determined at the point where the sensitivity was the same as the specificity on the ROC curve. This result showed that our CAD method based on atrophic image features may be promising for detecting AD patients by using 3-D MR images.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Jun, E-mail: jun-lian@med.unc.edu; Chera, Bhishamjit S.; Chang, Sha

    Purpose: To build a statistical model to quantitatively correlate the anatomic features of structures and the corresponding dose-volume histogram (DVH) of head and neck (HN) Tomotherapy (Tomo) plans. To study if the model built upon one intensity modulated radiation therapy (IMRT) technique (such as conventional Linac) can be used to predict anticipated organs-at-risk (OAR) DVH of patients treated with a different IMRT technique (such as Tomo). To study if the model built upon the clinical experience of one institution can be used to aid IMRT planning for another institution. Methods: Forty-four Tomotherapy intensity modulate radiotherapy plans of HN cases (Tomo-IMRT)more » from Institution A were included in the study. A different patient group of 53 HN fixed gantry IMRT (FG-IMRT) plans was selected from Institution B. The analyzed OARs included the parotid, larynx, spinal cord, brainstem, and submandibular gland. Two major groups of anatomical features were considered: the volumetric information and the spatial information. The volume information includes the volume of target, OAR, and overlapped volume between target and OAR. The spatial information of OARs relative to PTVs was represented by the distance-to-target histogram (DTH). Important anatomical and dosimetric features were extracted from DTH and DVH by principal component analysis. Two regression models, one for Tomotherapy plan and one for IMRT plan, were built independently. The accuracy of intratreatment-modality model prediction was validated by a leave one out cross-validation method. The intertechnique and interinstitution validations were performed by using the FG-IMRT model to predict the OAR dosimetry of Tomo-IMRT plans. The dosimetry of OARs, under the same and different institutional preferences, was analyzed to examine the correlation between the model prediction and planning protocol. Results: Significant patient anatomical factors contributing to OAR dose sparing in HN Tomotherapy plans have been analyzed and identified. For all the OARs, the discrepancies of dose indices between the model predicted values and the actual plan values were within 2.1%. Similar results were obtained from the modeling of FG-IMRT plans. The parotid gland was spared in a comparable fashion during the treatment planning of two institutions. The model based on FG-IMRT plans was found to predict the median dose of the parotid of Tomotherapy plans quite well, with a mean error of 2.6%. Predictions from the FG-IMRT model suggested the median dose of the larynx, median dose of the brainstem and D2 of the brainstem could be reduced by 10.5%, 12.8%, and 20.4%, respectively, in the Tomo-IMRT plans. This was found to be correlated to the institutional differences in OAR constraint settings. Re-planning of six Tomotherapy patients confirmed the potential of optimization improvement predicted by the FG-IMRT model was correct. Conclusions: The authors established a mathematical model to correlate the anatomical features and dosimetric indexes of OARs of HN patients in Tomotherapy plans. The model can be used for the setup of patient-specific OAR dose sparing goals and quality control of planning results. The institutional clinical experience was incorporated into the model which allows the model from one institution to generate a reference plan for another institution, or another IMRT technique.« less

  16. Thickened cranial vault and parasagittal keeling: correlated traits and autapomorphies of Homo erectus?

    PubMed

    Balzeau, Antoine

    2013-06-01

    Homo erectus sensu lato (s.l.) is a key species in the hominin fossil record for the study of human evolution, being one of the first species discovered and perhaps the most documented, but also because of its long temporal range and having dispersed out of Africa earlier than any other human species. Here I test two proposed autapomorphic traits of H. erectus, namely the increased thickness of the upper cranial vault and parasagittal keeling. The definition of these two anatomical features and their expression and variation among hominids are discussed. The results of this study indicate that the upper vault in Asian H. erectus is not absolutely thicker compared with fossil anatomically modern Homo sapiens, whereas Broken Hill and Petralona have values above the range of variation of H. erectus. Moreover, this anatomical region in Asian H. erectus is not significantly thicker compared with Pan paniscus. In addition, these results demonstrate that cranial vault thickness should not be used to make hypotheses regarding sexual attribution of fossil hominin specimens. I also show that the relation between relief on the external surface of the upper vault, parasagittal keeling and bregmatic eminence, and bone thickness is complex. In this context, the autapomorphic status of the two analysed traits in H. erectus may be rejected. Nevertheless, different patterns in the distribution of bone thickness on the upper vault were identified. Some individual variations are visible, but specificities are observable in samples of different species. The pattern of bone thickness distribution observed in Asian H. erectus, P. paniscus, possibly australopiths, and early Homo or Homo ergaster/erectus appears to be shared by these different species and would be a plesiomorphic trait among hominids. In contrast, two apomorphic states for this feature were identified for Neandertals and H. sapiens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. An anatomic transcriptional atlas of human glioblastoma.

    PubMed

    Puchalski, Ralph B; Shah, Nameeta; Miller, Jeremy; Dalley, Rachel; Nomura, Steve R; Yoon, Jae-Guen; Smith, Kimberly A; Lankerovich, Michael; Bertagnolli, Darren; Bickley, Kris; Boe, Andrew F; Brouner, Krissy; Butler, Stephanie; Caldejon, Shiella; Chapin, Mike; Datta, Suvro; Dee, Nick; Desta, Tsega; Dolbeare, Tim; Dotson, Nadezhda; Ebbert, Amanda; Feng, David; Feng, Xu; Fisher, Michael; Gee, Garrett; Goldy, Jeff; Gourley, Lindsey; Gregor, Benjamin W; Gu, Guangyu; Hejazinia, Nika; Hohmann, John; Hothi, Parvinder; Howard, Robert; Joines, Kevin; Kriedberg, Ali; Kuan, Leonard; Lau, Chris; Lee, Felix; Lee, Hwahyung; Lemon, Tracy; Long, Fuhui; Mastan, Naveed; Mott, Erika; Murthy, Chantal; Ngo, Kiet; Olson, Eric; Reding, Melissa; Riley, Zack; Rosen, David; Sandman, David; Shapovalova, Nadiya; Slaughterbeck, Clifford R; Sodt, Andrew; Stockdale, Graham; Szafer, Aaron; Wakeman, Wayne; Wohnoutka, Paul E; White, Steven J; Marsh, Don; Rostomily, Robert C; Ng, Lydia; Dang, Chinh; Jones, Allan; Keogh, Bart; Gittleman, Haley R; Barnholtz-Sloan, Jill S; Cimino, Patrick J; Uppin, Megha S; Keene, C Dirk; Farrokhi, Farrokh R; Lathia, Justin D; Berens, Michael E; Iavarone, Antonio; Bernard, Amy; Lein, Ed; Phillips, John W; Rostad, Steven W; Cobbs, Charles; Hawrylycz, Michael J; Foltz, Greg D

    2018-05-11

    Glioblastoma is an aggressive brain tumor that carries a poor prognosis. The tumor's molecular and cellular landscapes are complex, and their relationships to histologic features routinely used for diagnosis are unclear. We present the Ivy Glioblastoma Atlas, an anatomically based transcriptional atlas of human glioblastoma that aligns individual histologic features with genomic alterations and gene expression patterns, thus assigning molecular information to the most important morphologic hallmarks of the tumor. The atlas and its clinical and genomic database are freely accessible online data resources that will serve as a valuable platform for future investigations of glioblastoma pathogenesis, diagnosis, and treatment. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. Is there consistency and specificity of autonomic changes during emotional episodes? Guidance from the conceptual act theory and psychophysiology

    PubMed Central

    Quigley, Karen S.; Barrett, Lisa Feldman

    2014-01-01

    The consistency and specificity of autonomic nervous system (ANS) responses during emotional episodes remains a topic of debate with relevance for emotional concordance. We present a recent model of how mental states are constructed, the Conceptual Act Theory (CAT), and then review findings from existing meta-analyses and a qualitative review along with studies using pattern classification of multivariate ANS patterns to determine if there is across-study evidence for consistency and specificity of ANS responses during emotional episodes. We conclude that there is thus far minimal evidence for ANS response consistency and specificity across studies. We then review the current understanding of the functional and anatomical features of ANS including its efferent and afferent connections with the central nervous system, which suggests the need to reformulate how we conceptualize ANS response consistency and specificity. We conclude by showing how this reformulation is consistent with the CAT, and how we suggest the model to propose when we would and would not expect to see consistency and specificity in ANS responses, and concordance more generally, during emotional episodes. PMID:24388802

  19. SU-F-T-499: Anatomic Features for Selection of Electronic Tissue Compensation Radiotherapy in Early-Stage Breast Cancer Patients After Breast-Conserving Surgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Y; Gan, L; Chen, X

    Purpose: To explore the correlations between anatomic features and dose-volumetric parameters in 3DCRT and eComp whole breast irradiation and identify the feasibility of anatomic parameters to predict the planning method selection. Methods: We compared the effectiveness between conventional three-dimensional conformal radiotherapy (3DCRT) and electronic tissue compensation (eComp) for whole breast irradiation. 3DCRT and eComp planning techniques were used to generate treatment plans for 60 whole breast patients, respectively. The planning goal was to cover 95% of the planning target volume (PTV) with 95% of the prescription dose while minimizing dose to lung, heart, and skin. Statistical analyses were performed betweenmore » critical organ doses and patient anatomic features, i.e., central lung distance (CLD), maximal heart distance (MHD), maximal heart length (MHL) and breast separation (BS). Results: Comparing to 3DCRT plans, on the average, eComp treatment planning process was about 7 minutes longer, but resulted in lower lung V20Gy, lower mean skin dose, with similar heart dose. The benefits were more pronounced for larger breast patients. To keep the lung V20Gy lower than 20% and mean skin dose lower than 85% of the prescription dose, eComp was the preferred method for patients with more than 2.3 cm CLD or larger than 22.5 cm BS. Conclusion: The study results may be useful in providing a handy criterion in clinical practice allowing us to easily choose between different planning techniques to satisfy the planning goal with minimal increase in complexity and cost. This study was supported by National Natural Science Foundation of China (NO. 31420103915) and Chongqing Health and Family Planning Commission Project (2015MSXM012).« less

  20. Recent advances in standards for collaborative Digital Anatomic Pathology

    PubMed Central

    2011-01-01

    Context Collaborative Digital Anatomic Pathology refers to the use of information technology that supports the creation and sharing or exchange of information, including data and images, during the complex workflow performed in an Anatomic Pathology department from specimen reception to report transmission and exploitation. Collaborative Digital Anatomic Pathology can only be fully achieved using medical informatics standards. The goal of the international integrating the Healthcare Enterprise (IHE) initiative is precisely specifying how medical informatics standards should be implemented to meet specific health care needs and making systems integration more efficient and less expensive. Objective To define the best use of medical informatics standards in order to share and exchange machine-readable structured reports and their evidences (including whole slide images) within hospitals and across healthcare facilities. Methods Specific working groups dedicated to Anatomy Pathology within multiple standards organizations defined standard-based data structures for Anatomic Pathology reports and images as well as informatic transactions in order to integrate Anatomic Pathology information into the electronic healthcare enterprise. Results The DICOM supplements 122 and 145 provide flexible object information definitions dedicated respectively to specimen description and Whole Slide Image acquisition, storage and display. The content profile “Anatomic Pathology Structured Report” (APSR) provides standard templates for structured reports in which textual observations may be bound to digital images or regions of interest. Anatomic Pathology observations are encoded using an international controlled vocabulary defined by the IHE Anatomic Pathology domain that is currently being mapped to SNOMED CT concepts. Conclusion Recent advances in standards for Collaborative Digital Anatomic Pathology are a unique opportunity to share or exchange Anatomic Pathology structured reports that are interoperable at an international level. The use of machine-readable format of APSR supports the development of decision support as well as secondary use of Anatomic Pathology information for epidemiology or clinical research. PMID:21489187

  1. Comparison of Feature Selection Techniques in Machine Learning for Anatomical Brain MRI in Dementia.

    PubMed

    Tohka, Jussi; Moradi, Elaheh; Huttunen, Heikki

    2016-07-01

    We present a comparative split-half resampling analysis of various data driven feature selection and classification methods for the whole brain voxel-based classification analysis of anatomical magnetic resonance images. We compared support vector machines (SVMs), with or without filter based feature selection, several embedded feature selection methods and stability selection. While comparisons of the accuracy of various classification methods have been reported previously, the variability of the out-of-training sample classification accuracy and the set of selected features due to independent training and test sets have not been previously addressed in a brain imaging context. We studied two classification problems: 1) Alzheimer's disease (AD) vs. normal control (NC) and 2) mild cognitive impairment (MCI) vs. NC classification. In AD vs. NC classification, the variability in the test accuracy due to the subject sample did not vary between different methods and exceeded the variability due to different classifiers. In MCI vs. NC classification, particularly with a large training set, embedded feature selection methods outperformed SVM-based ones with the difference in the test accuracy exceeding the test accuracy variability due to the subject sample. The filter and embedded methods produced divergent feature patterns for MCI vs. NC classification that suggests the utility of the embedded feature selection for this problem when linked with the good generalization performance. The stability of the feature sets was strongly correlated with the number of features selected, weakly correlated with the stability of classification accuracy, and uncorrelated with the average classification accuracy.

  2. The alterations of the sigmoid-rectal junction in diverticular disease of the colon revealed by MR-defecography.

    PubMed

    Romagnoli, Francesco; Colaiacomo, Maria Chiara; De Milito, Ritanna; Modini, Claudio; Gualdi, Gianfranco; Catani, Marco

    2014-01-01

    The sigmoidorectal junction (SRJ) has been defined as an anatomical sphincter with particular physiological behavior that regulates sigmoid and rectum evacuation. Its function in clinical conditions, such as diverticular disease has been advocated. The aim of our study is to identify the SRJ and to compare the morphometric and dynamic features of the SRJ between patients with diverticular disease and healthy subjects using MR-defecography. Sixteen individuals, eight with uncomplicated diverticular disease and eight healthy subjects, were studied using MR-defecography to identify the SRJ and to compare the morphometric and dynamic features observed. In each subject studied, MR-defecography was able to identify the SRJ. This resulted in the identification of a discrete anatomical entity with a mean length of 31.23 mm, located in front of the first sacral vertebra (S1) and at a mean distance of 15.55 cm from the anal verge, with a mean wall thickness of 4.45 mm, significantly different from the sigmoid and rectal parietal thickness. The SRJ wall was significantly thicker in patients with diverticular disease than the controls (P = 0.005), showing a unique shape and behavior in dynamic sequences. Our findings support the hypothesis that SRJ plays a critical role in patients with symptomatic diverticular disease; further investigation may clarify whether specific SRJ analysis, such as MR-defecography, would predict inflammatory complications of this diffuse and heterogenic disease.

  3. A Spur to Atavism: Placing Platypus Poison.

    PubMed

    Hobbins, Peter

    2015-11-01

    For over two centuries, the platypus (Ornithorhynchus anatinus) has been constructed and categorized in multiple ways. An unprecedented mélange of anatomical features and physiological functions, it long remained a systematic quandary. Nevertheless, since 1797, naturalists and biologists have pursued two recurring obsessions. Investigations into platypus reproduction and lactation have focused attention largely upon females of the species. Despite its apparent admixture of avian, reptilian and mammalian characters, the platypus was soon placed as a rudimentary mammal--primitive, naïve and harmless. This article pursues a different taxonomic trajectory, concentrating on a specifically male anatomical development: the crural spur and venom gland on the hind legs. Once the defining characteristic of both the platypus and echidna (Tachyglossus aculeatus), by 1830 this sexed spur had been largely dismissed as inactive and irrelevant. For a creature regularly depicted as a biological outlier, the systematic and evolutionary implications of platypus poison have remained largely overlooked. In Australia, however, sporadic cases of 'spiking' led to consistent homologies being remarked between the platypus crural system and the venom glands of snakes. As with its reproductive reliance upon eggs, possession of an endogenous poison suggested significant reptilian affinities, yet the platypus has rarely been classed as an advanced reptile. Indeed, ongoing uncertainty regarding the biological purpose of the male's spur has ostensibly posed a directional puzzle. As with so many of its traits, however, platypus poison has been consistently described as a redundant remnant, rather than an emergent feature indicating evolutionary advance.

  4. Anatomic Peculiarities of Pig and Human Liver.

    PubMed

    Nykonenko, Andriy; Vávra, Petr; Zonča, Pavel

    2017-02-01

    Many investigations on surgical methods and medical treatment are currently done on pigs. This is possible because the pig is sufficiently close genetically to humans. In recent years, progress in liver surgery has opened new possibilities in surgical treatment of liver diseases. Because the methods are relatively novel, various improvements are still needed, and it is thus helpful to conduct experimental surgeries on pig livers. We reviewed the literature to compare the anatomic and functional features of pig and human livers, information that will be of great importance for improving surgical techniques. During the literature review, we used various sources, such as PubMed, Scopus, and veterinary journals. Our results were summarized in diagrams to facilitate understanding of the vascular structure and biliary systems. We conclude that, although the shapes of the human and pig livers are quite different, the pig liver is divided into the same number of segments as the human liver, which also shows a common structure of the vascular system. Thus, with the anatomic and structural features of the pig liver taken into account, this animal model can be used in experimental hepatic surgery.

  5. Pseudo CT estimation from MRI using patch-based random forest

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Lei, Yang; Shu, Hui-Kuo; Rossi, Peter; Mao, Hui; Shim, Hyunsuk; Curran, Walter J.; Liu, Tian

    2017-02-01

    Recently, MR simulators gain popularity because of unnecessary radiation exposure of CT simulators being used in radiation therapy planning. We propose a method for pseudo CT estimation from MR images based on a patch-based random forest. Patient-specific anatomical features are extracted from the aligned training images and adopted as signatures for each voxel. The most robust and informative features are identified using feature selection to train the random forest. The well-trained random forest is used to predict the pseudo CT of a new patient. This prediction technique was tested with human brain images and the prediction accuracy was assessed using the original CT images. Peak signal-to-noise ratio (PSNR) and feature similarity (FSIM) indexes were used to quantify the differences between the pseudo and original CT images. The experimental results showed the proposed method could accurately generate pseudo CT images from MR images. In summary, we have developed a new pseudo CT prediction method based on patch-based random forest, demonstrated its clinical feasibility, and validated its prediction accuracy. This pseudo CT prediction technique could be a useful tool for MRI-based radiation treatment planning and attenuation correction in a PET/MRI scanner.

  6. Computerized detection of unruptured aneurysms in MRA images: reduction of false positives using anatomical location features

    NASA Astrophysics Data System (ADS)

    Uchiyama, Yoshikazu; Gao, Xin; Hara, Takeshi; Fujita, Hiroshi; Ando, Hiromichi; Yamakawa, Hiroyasu; Asano, Takahiko; Kato, Hiroki; Iwama, Toru; Kanematsu, Masayuki; Hoshi, Hiroaki

    2008-03-01

    The detection of unruptured aneurysms is a major subject in magnetic resonance angiography (MRA). However, their accurate detection is often difficult because of the overlapping between the aneurysm and the adjacent vessels on maximum intensity projection images. The purpose of this study is to develop a computerized method for the detection of unruptured aneurysms in order to assist radiologists in image interpretation. The vessel regions were first segmented using gray-level thresholding and a region growing technique. The gradient concentration (GC) filter was then employed for the enhancement of the aneurysms. The initial candidates were identified in the GC image using a gray-level threshold. For the elimination of false positives (FPs), we determined shape features and an anatomical location feature. Finally, rule-based schemes and quadratic discriminant analysis were employed along with these features for distinguishing between the aneurysms and the FPs. The sensitivity for the detection of unruptured aneurysms was 90.0% with 1.52 FPs per patient. Our computerized scheme can be useful in assisting the radiologists in the detection of unruptured aneurysms in MRA images.

  7. Brain growth across the life span in autism: age-specific changes in anatomical pathology.

    PubMed

    Courchesne, Eric; Campbell, Kathleen; Solso, Stephanie

    2011-03-22

    Autism is marked by overgrowth of the brain at the earliest ages but not at older ages when decreases in structural volumes and neuron numbers are observed instead. This has led to the theory of age-specific anatomic abnormalities in autism. Here we report age-related changes in brain size in autistic and typical subjects from 12 months to 50 years of age based on analyses of 586 longitudinal and cross-sectional MRI scans. This dataset is several times larger than the largest autism study to date. Results demonstrate early brain overgrowth during infancy and the toddler years in autistic boys and girls, followed by an accelerated rate of decline in size and perhaps degeneration from adolescence to late middle age in this disorder. We theorize that underlying these age-specific changes in anatomic abnormalities in autism, there may also be age-specific changes in gene expression, molecular, synaptic, cellular, and circuit abnormalities. A peak age for detecting and studying the earliest fundamental biological underpinnings of autism is prenatal life and the first three postnatal years. Studies of the older autistic brain may not address original causes but are essential to discovering how best to help the older aging autistic person. Lastly, the theory of age-specific anatomic abnormalities in autism has broad implications for a wide range of work on the disorder including the design, validation, and interpretation of animal model, lymphocyte gene expression, brain gene expression, and genotype/CNV-anatomic phenotype studies. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Anatomy of the human orbital muscle (OM): Features of its detailed topography, syntopy and morphology.

    PubMed

    Wilden, Andre; Feiser, Janna; Wöhler, Aliona; Isik, Zeynep; Bendella, Habib; Angelov, Doychin N

    2017-05-01

    The human orbital muscle (OM) is not readily accessible during ordinary anatomical teaching because of insufficient time and difficulties encountered in the preparation. Accordingly, its few anatomical descriptions are supported only by drawings, but not by photographs. The aim of this study was to present OM in dissected anatomic specimens in more detail. Following microscope-assisted dissection, its location, syntopy and morphology were analyzed in 88 orbits of 51 cadavers. Together with the periorbital connective tissue OM filled the infraorbital fissure (IOF) and extended back to the cavernous sinus. As a new finding, we here report that in 34% of the orbits we observed OM-fibers, which proceeded from IOF caudally to the facies infratemporalis of the maxilla. OM had a mean width of 4±1mm, a mean length of 22±5mm and its mean mass was 0.22±0.19g. The subsequent histological analysis of all specimens showed features of smooth muscle tissue: long, spindle-like cells with a centrally located cell nucleus (hematoxylin-eosin staining) which were innervated by tyrosine-hydroxylase immunopositive adrenergic fibers. We conclude that precise knowledge on OM might be very helpful not only to students in medicine and dentistry during anatomical dissection courses, but also to head and neck surgeons, ear-nose-throat specialists and neurosurgeons working in this field. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models

    NASA Astrophysics Data System (ADS)

    Lee, Choonsik; Lodwick, Daniel; Hasenauer, Deanna; Williams, Jonathan L.; Lee, Choonik; Bolch, Wesley E.

    2007-07-01

    Anthropomorphic computational phantoms are computer models of the human body for use in the evaluation of dose distributions resulting from either internal or external radiation sources. Currently, two classes of computational phantoms have been developed and widely utilized for organ dose assessment: (1) stylized phantoms and (2) voxel phantoms which describe the human anatomy via mathematical surface equations or 3D voxel matrices, respectively. Although stylized phantoms based on mathematical equations can be very flexible in regard to making changes in organ position and geometrical shape, they are limited in their ability to fully capture the anatomic complexities of human internal anatomy. In turn, voxel phantoms have been developed through image-based segmentation and correspondingly provide much better anatomical realism in comparison to simpler stylized phantoms. However, they themselves are limited in defining organs presented in low contrast within either magnetic resonance or computed tomography images—the two major sources in voxel phantom construction. By definition, voxel phantoms are typically constructed via segmentation of transaxial images, and thus while fine anatomic features are seen in this viewing plane, slice-to-slice discontinuities become apparent in viewing the anatomy of voxel phantoms in the sagittal or coronal planes. This study introduces the concept of a hybrid computational newborn phantom that takes full advantage of the best features of both its stylized and voxel counterparts: flexibility in phantom alterations and anatomic realism. Non-uniform rational B-spline (NURBS) surfaces, a mathematical modeling tool traditionally applied to graphical animation studies, was adopted to replace the limited mathematical surface equations of stylized phantoms. A previously developed whole-body voxel phantom of the newborn female was utilized as a realistic anatomical framework for hybrid phantom construction. The construction of a hybrid phantom is performed in three steps: polygonization of the voxel phantom, organ modeling via NURBS surfaces and phantom voxelization. Two 3D graphic tools, 3D-DOCTOR™ and Rhinoceros™, were utilized to polygonize the newborn voxel phantom and generate NURBS surfaces, while an in-house MATLAB™ code was used to voxelize the resulting NURBS model into a final computational phantom ready for use in Monte Carlo radiation transport calculations. A total of 126 anatomical organ and tissue models, including 38 skeletal sites and 31 cartilage sites, were described within the hybrid phantom using either NURBS or polygon surfaces. A male hybrid newborn phantom was constructed following the development of the female phantom through the replacement of female-specific organs with male-specific organs. The outer body contour and internal anatomy of the NURBS-based phantoms were adjusted to match anthropometric and reference newborn data reported by the International Commission on Radiological Protection in their Publication 89. The voxelization process was designed to accurately convert NURBS models to a voxel phantom with minimum volumetric change. A sensitivity study was additionally performed to better understand how the meshing tolerance and voxel resolution would affect volumetric changes between the hybrid-NURBS and hybrid-voxel phantoms. The male and female hybrid-NURBS phantoms were constructed in a manner so that all internal organs approached their ICRP reference masses to within 1%, with the exception of the skin (-6.5% relative error) and brain (-15.4% relative error). Both hybrid-voxel phantoms were constructed with an isotropic voxel resolution of 0.663 mm—equivalent to the ICRP 89 reference thickness of the newborn skin (dermis and epidermis). Hybrid-NURBS phantoms used to create their voxel counterpart retain the non-uniform scalability of stylized phantoms, while maintaining the anatomic realism of segmented voxel phantoms with respect to organ shape, depth and inter-organ positioning. This work was supported by the National Cancer Institute.

  10. Effect of the anatomical site on telomere length and pref-1 gene expression in bovine adipose tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Tomoya, E-mail: toyamada@affrc.go.jp; Higuchi, Mikito; Nakanishi, Naoto

    Adipose tissue growth is associated with preadipocyte proliferation and differentiation. Telomere length is a biological marker for cell proliferation. Preadipocyte factor-1 (pref-1) is specifically expressed in preadipocytes and acts as a molecular gatekeeper of adipogenesis. In the present study, we investigated the fat depot-specific differences in telomere length and pref-1 gene expression in various anatomical sites (subcutaneous, intramuscular and visceral) of fattening Wagyu cattle. Visceral adipose tissue expressed higher pref-1 mRNA than did subcutaneous and intramuscular adipose tissues. The telomere length in visceral adipose tissue tended to be longer than that of subcutaneous and intramuscular adipose tissues. The telomere lengthmore » of adipose tissue was not associated with adipocyte size from three anatomical sites. No significant correlation was found between the pref-1 mRNA level and the subcutaneous adipocyte size. In contrast, the pref-1 mRNA level was negatively correlated with the intramuscular and visceral adipocyte size. These results suggest that anatomical sites of adipose tissue affect the telomere length and expression pattern of the pref-1 gene in a fat depot-specific manner. - Highlights: • Visceral adipose tissue express higher pref-1 mRNA than other anatomical sites. • Telomere length in visceral adipose tissue is longer than other anatomical sites. • Telomere length of adipose tissue is not associated with adipocyte size. • Pref-1 mRNA is negatively correlated with intramuscular and visceral adipocyte size.« less

  11. Subject-specific longitudinal shape analysis by coupling spatiotemporal shape modeling with medial analysis

    NASA Astrophysics Data System (ADS)

    Hong, Sungmin; Fishbaugh, James; Rezanejad, Morteza; Siddiqi, Kaleem; Johnson, Hans; Paulsen, Jane; Kim, Eun Young; Gerig, Guido

    2017-02-01

    Modeling subject-specific shape change is one of the most important challenges in longitudinal shape analysis of disease progression. Whereas anatomical change over time can be a function of normal aging, anatomy can also be impacted by disease related degeneration. Anatomical shape change may also be affected by structural changes from neighboring shapes, which may cause non-linear variations in pose. In this paper, we propose a framework to analyze disease related shape changes by coupling extrinsic modeling of the ambient anatomical space via spatiotemporal deformations with intrinsic shape properties from medial surface analysis. We compare intrinsic shape properties of a subject-specific shape trajectory to a normative 4D shape atlas representing normal aging to isolate shape changes related to disease. The spatiotemporal shape modeling establishes inter/intra subject anatomical correspondence, which in turn enables comparisons between subjects and the 4D shape atlas, and also quantitative analysis of disease related shape change. The medial surface analysis captures intrinsic shape properties related to local patterns of deformation. The proposed framework jointly models extrinsic longitudinal shape changes in the ambient anatomical space, as well as intrinsic shape properties to give localized measurements of degeneration. Six high risk subjects and six controls are randomly sampled from a Huntington's disease image database for qualitative and quantitative comparison.

  12. Usefulness and preference for tablet personal computers by medical students: are the features worth the money?

    PubMed

    Wiese, Dawn; Atreja, Ashish; Mehta, Neil

    2008-11-06

    Tablet Personal Computers (PCs) have a huge potential in medical education due to their interactive human- computer interface and the need for anatomical diagrams, annotations, biochemistry flow charts etc. We conducted an online survey of medical students to determine their pattern of usage of the tablet features. The results revealed that the majority of medical students use the tablet features infrequently and most do not place a high value on the tablet features.

  13. Building 3D anatomical model of coiling of the internal carotid artery derived from CT angiographic data.

    PubMed

    Govsa, Figen; Yagdi, Tahir; Ozer, Mehmet Asim; Eraslan, Cenk; Alagoz, Ahmet Kemal

    2017-02-01

    The purpose of this study is to recreate live patient arterial anomalies using new recent application of three-dimensional (3D) printed anatomical models. Another purpose of building such models is to evaluate the effectiveness of angiographic data. With the help of the DICOM files from computed tomographic angiography (CT-A), we were able to build a printed model of variant course of the internal carotid artery (ICA). Images of coiling of the ICA taken by CT-A, were then converted into 3D images using Google SketchUp free software, and the images were saved in stereolithography format. Imaging helped us conduct the examination in details with reference to geometrical features of ICA, degree of curve, its extension, location and presence of loop. Challenging vascular anatomy was exposed with models of adverse curve of carotid anatomy, including highly angulated necks, conical necks, short necks, tortuous carotid arteries, and narrowed carotid lumens. It assisted us to comprehend spatial anatomy configuration of life-like models. 3D model can be very effective in cases when anatomical difficulties are detected through the CT-A, and therefore, a tactile approach is demanded preoperatively. 3D life-like models serve as an essential office-based tool in vascular surgery as they assist surgeons in preoperative planning, develop intraoperative guidance, teach both the patients and the surgical trainees, and simulate to show patient-specific procedures in medical field.

  14. Supraorbital Rim Syndrome: Definition, Surgical Treatment, and Outcomes for Frontal Headache

    PubMed Central

    Fallucco, Michael A.; Janis, Jeffrey E.

    2016-01-01

    Background: Supraorbital rim syndrome (SORS) is a novel term attributed to a composite of anatomically defined peripheral nerve entrapment sites of the supraorbital rim region. The SORS term establishes a more consistent nomenclature to describe the constellation of frontal peripheral nerve entrapment sites causing frontal headache pain. In this article, we describe the anatomical features of SORS and evidence to support its successful treatment using the transpalpebral approach that allows direct vision of these sites and the intraconal space. Methods: A retrospective review of 276 patients who underwent nerve decompression or neurectomy procedures for frontal or occipital headache was performed. Of these, treatment of 96 patients involved frontal surgery, and 45 of these patients were pure SORS patients who underwent this specific frontal trigger site deactivation surgery only. All procedures involved direct surgical approach through the upper eyelid to address the nerves of the supraorbital rim at the bony rim and myofascial sites. Results: Preoperative and postoperative data from the Migraine Disability Assessment Questionnaire were analyzed with paired t test. After surgical intervention, Migraine Disability Assessment Questionnaire scores decreased significantly at 12 months postoperatively (P < 0.0001). Conclusions: SORS describes the totality of compression sites both at the bony orbital rim and the corrugator myofascial unit for the supraorbital rim nerves. Proper diagnosis, full anatomical site knowledge, and complete decompression allow for consistent treatment. Furthermore, the direct, transpalpebral surgical approach provides significant benefit to allow complete decompression. PMID:27536474

  15. Divergent climate response on hydraulic-related xylem anatomical traits of Picea abies along a 900-m altitudinal gradient.

    PubMed

    Castagneri, Daniele; Petit, Giai; Carrer, Marco

    2015-12-01

    Climate change can induce substantial modifications in xylem structure and water transport capacity of trees exposed to environmental constraints. To elucidate mechanisms of xylem plasticity in response to climate, we retrospectively analysed different cell anatomical parameters over tree-ring series in Norway spruce (Picea abies L. Karst.). We sampled 24 trees along an altitudinal gradient (1200, 1600 and 2100 m above sea level, a.s.l.) and processed 2335 ± 1809 cells per ring. Time series for median cell lumen area (MCA), cell number (CN), tree-ring width (RW) and tree-ring-specific hydraulic conductivity (Kr) were crossed with daily temperature and precipitation records (1926-2011) to identify climate influence on xylem anatomical traits. Higher Kr at the low elevation site was due to higher MCA and CN. These variables were related to different aspects of intra-seasonal climatic variability under different environmental conditions, with MCA being more sensitive to summer precipitation. Winter precipitation (snow) benefited most parameters in all the sites. Descending the gradient, sensitivity of xylem features to summer climate shifted mostly from temperature to precipitation. In the context of climate change, our results indicate that higher summer temperatures at high elevations will benefit cell production and xylem hydraulic efficiency, whereas reduced water availability at lower elevations could negatively affect tracheids enlargement and thus stem capacity to transport water. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, D.H.; Hadjis, N.S.; Banks, L.M.

    Thirty-seven patients with histologic proof of cholangiocarcinoma at the confluence were examined by computed tomography (CT) to determine whether this examination is of value in the assessment of these patients for surgery and whether there are any features specific to this type of tumor. Thirty-two patients showed intrahepatic duct dilatation; six of these showed dilatation of ducts in one lobe only. Eighteen patients had intrahepatic low-attenuation areas, while eight had a mass lesion in the porta hepatis. The results of this study show that CT provides useful anatomic information preoperatively but that the appearances are nonspecific. Lobar atrophy is highlymore » suggestive of hilar cholangiocarcinoma, either of long-standing or with unilateral portal venous involvement.« less

  17. Subcranial approach in the surgical treatment of anterior skull base trauma.

    PubMed

    Schaller, B

    2005-04-01

    Fractures of the anterior skull base, because of the region's anatomical relationships, are readily complicated by neurological damage to the brain or cranial nerves. This review highlights the use of a subcranial approach in the operative treatment of injuries of the anterior skull base and compares it to the more traditional neurosurgical transcranial approach. The extended anterior subcranial approach takes advantage of the specific features of injuries in this region and allows direct access to the central anterior cranial base in order to repair fractures, close CSF fistulae and relieve of optic nerve compression. It avoids extensive frontal lobe manipulation. The success of the approach in achieving the aims of surgery with low morbidity is reviewed.

  18. Development and chromosome mechanics in nematodes: Results from IML-1

    NASA Astrophysics Data System (ADS)

    Nelson, G. A.; Schubert, W. W.; Kazarians, G. A.; Richards, G. F.

    1994-08-01

    A subset of the Caenorhabditis elegans nematodes flown aboard Biorack on IML-1 was analyzed for the fidelity of development and the mechanics of chromosomes at meiosis. To assess meiosis, mutant worms marked at two linked or unlinked loci were inoculated as heterozygous hermaphrodites and allowed to self fertilize. Mendelian segregation ratios and recombination frequency were measured for offspring produced at 1XG or in microgravity. To assess development, worms and embryos were fixed and stained with the DNA dye, DAPI, or antibodies specific for antigens expressed in germ cells, pharyngeal and body wall muscles, and gut cells. The distribution of cytoplasmic determinants, cell nuclei counts and positions were scored to assess symmetry relations and anatomical features.

  19. Mammalian touch catches up

    PubMed Central

    Walsh, Carolyn M.; Bautista, Diana M.; Lumpkin, Ellen A.

    2015-01-01

    An assortment of touch receptors innervate the skin and encode different tactile features of the environment. Compared with invertebrate touch and other sensory systems, our understanding of the molecular and cellular underpinnings of mammalian touch lags behind. Two recent breakthroughs have accelerated progress. First, an arsenal of cell-type-specific molecular markers allowed the functional and anatomical properties of sensory neurons to be matched, thereby unraveling a cellular code for touch. Such markers have also revealed key roles of non-neuronal cell types, such as Merkel cells and keratinocytes, in touch reception. Second, the discovery of Piezo genes as a new family of mechanically activated channels has fueled the discovery of molecular mechanisms that mediate and mechanotransduction in mammalian touch receptors. PMID:26100741

  20. [Renal sympathetic denervation (RSD): a new, non-pharmacologic therapeutic strategy for treatment-resistant hypertension (TRH). Report of the first procedure in Mexico].

    PubMed

    Gaspar Hernández, Jorge; Eid-Lidt, Guering; Payró Ramírez, Gerardo; Ricalde Alcocer, Alejandro; Martínez Ríos, Marco A

    2012-01-01

    A patient with resistant hypertension successfully treated with sympathetic renal denervation (SRD) is reported. This novel therapy is based on the partial ablation of the renal nerves by applying radiofrequency to the luminal surface of the renal arteries using vascular catheterization techniques. This first case performed in Mexico has two particular features: (i) an electrophysiology ablation catheter was employed due to the unavailability of the system specifically designed for SDR, and (ii) under current denervation protocols, the anatomical complexity of the targeted renal arteries would have excluded our patient from this procedure and thus deprived her of the benefit provided.

  1. Endoscopic colloid cyst excision: surgical techniques and nuances.

    PubMed

    Azab, Waleed Abdelfattah; Najibullah, Mustafa; Yosef, Waleed

    2017-06-01

    Endoscopic excision of colloid cysts is currently well established as a minimally invasive and highly effective technique that is associated with less morbidity in comparison to microsurgical resection. Operative charts and videos of patients undergoing endoscopic colloid cyst excision were retrieved from the senior author's database of endoscopic procedures and reviewed. This revealed nine trans-foraminal and three trans-septal procedures. Description of the surgical techniques was then formulated. Variation of the technique is based on the specific patho-anatomical features of the colloid cyst being resected. For the trans-foraminal approach, we think that the rotational technique is associated with a more complete removal of the cyst wall and consequently lower recurrence rate.

  2. Historical evolution of anatomical terminology from ancient to modern.

    PubMed

    Sakai, Tatsuo

    2007-06-01

    The historical development of anatomical terminology from the ancient to the modern can be divided into five stages. The initial stage is represented by the oldest extant anatomical treatises by Galen of Pergamon in the Roman Empire. The anatomical descriptions by Galen utilized only a limited number of anatomical terms, which were essentially colloquial words in the Greek of this period. In the second stage, Vesalius in the early 16th century described the anatomical structures in his Fabrica with the help of detailed magnificent illustrations. He coined substantially no anatomical terms, but devised a system that distinguished anatomical structures with ordinal numbers. The third stage of development in the late 16th century was marked by innovation of a large number of specific anatomical terms especially for the muscles, vessels and nerves. The main figures at this stage were Sylvius in Paris and Bauhin in Basel. In the fourth stage between Bauhin and the international anatomical terminology, many anatomical textbooks were written mainly in Latin in the 17th century, and in modern languages in the 18th and 19th centuries. Anatomical terms for the same structure were differently expressed by different authors. The last stage began at the end of the 19th century, when the first international anatomical terminology in Latin was published as Nomina anatomica. The anatomical terminology was revised repeatedly until the current Terminologia anatomica both in Latin and English.

  3. Anatomical location of metastatic lymph nodes: an indispensable prognostic factor for gastric cancer patients who underwent curative resection.

    PubMed

    Zhao, Bochao; Zhang, Jingting; Zhang, Jiale; Chen, Xiuxiu; Chen, Junqing; Wang, Zhenning; Xu, Huimian; Huang, Baojun

    2018-02-01

    Although the numeric-based lymph node (LN) staging was widely used in the worldwide, it did not represent the anatomical location of metastatic lymph nodes (MLNs) and not reflect extent of LN dissection. Therefore, in the present study, we investigated whether the anatomical location of MLNs was still necessary to evaluate the prognosis of node-positive gastric cancer (GC) patients. We reviewed 1451 GC patients who underwent radical gastrectomy in our institution between January 1986 and January 2008. All patients were reclassified into several groups according to the anatomical location of MLNs and the number of MLNs. The prognostic differences between different patient groups were compared and clinicopathologic features were analyzed. In the present study, both anatomical location of MLNs and the number of MLNs were identified as the independent prognostic factors (p < .01). The patients with extraperigastric LN involvement showed a poorer prognosis compared with the perigastric-only group (p < .001). For the N1-N2 stage patients, the prognostic discrepancy was still observed among them when the anatomical location of MLNs was considered (p < .05). For the N3-stage patients, although the anatomical location of MLNs had no significant effect on the prognosis of these patients, the higher number of MLNs in the extraperigastric area was correlated with the unfavorable prognosis (p < .05). The anatomical location of MLNs was an important factor influencing the prognostic outcome of GC patients. To provide more accurate prognostic information for GC patients, the anatomical location of MLNs should not be ignored.

  4. Musculoskeletal Simulation Model Generation from MRI Data Sets and Motion Capture Data

    NASA Astrophysics Data System (ADS)

    Schmid, Jérôme; Sandholm, Anders; Chung, François; Thalmann, Daniel; Delingette, Hervé; Magnenat-Thalmann, Nadia

    Today computer models and computer simulations of the musculoskeletal system are widely used to study the mechanisms behind human gait and its disorders. The common way of creating musculoskeletal models is to use a generic musculoskeletal model based on data derived from anatomical and biomechanical studies of cadaverous specimens. To adapt this generic model to a specific subject, the usual approach is to scale it. This scaling has been reported to introduce several errors because it does not always account for subject-specific anatomical differences. As a result, a novel semi-automatic workflow is proposed that creates subject-specific musculoskeletal models from magnetic resonance imaging (MRI) data sets and motion capture data. Based on subject-specific medical data and a model-based automatic segmentation approach, an accurate modeling of the anatomy can be produced while avoiding the scaling operation. This anatomical model coupled with motion capture data, joint kinematics information, and muscle-tendon actuators is finally used to create a subject-specific musculoskeletal model.

  5. Anatomical frame identification and reconstruction for repeatable lower limb joint kinematics estimates.

    PubMed

    Donati, Marco; Camomilla, Valentina; Vannozzi, Giuseppe; Cappozzo, Aurelio

    2008-07-19

    The quantitative description of joint mechanics during movement requires the reconstruction of the position and orientation of selected anatomical axes with respect to a laboratory reference frame. These anatomical axes are identified through an ad hoc anatomical calibration procedure and their position and orientation are reconstructed relative to bone-embedded frames normally derived from photogrammetric marker positions and used to describe movement. The repeatability of anatomical calibration, both within and between subjects, is crucial for kinematic and kinetic end results. This paper illustrates an anatomical calibration approach, which does not require anatomical landmark manual palpation, described in the literature to be prone to great indeterminacy. This approach allows for the estimate of subject-specific bone morphology and automatic anatomical frame identification. The experimental procedure consists of digitization through photogrammetry of superficial points selected over the areas of the bone covered with a thin layer of soft tissue. Information concerning the location of internal anatomical landmarks, such as a joint center obtained using a functional approach, may also be added. The data thus acquired are matched with the digital model of a deformable template bone. Consequently, the repeatability of pelvis, knee and hip joint angles is determined. Five volunteers, each of whom performed five walking trials, and six operators, with no specific knowledge of anatomy, participated in the study. Descriptive statistics analysis was performed during upright posture, showing a limited dispersion of all angles (less than 3 deg) except for hip and knee internal-external rotation (6 deg and 9 deg, respectively). During level walking, the ratio of inter-operator and inter-trial error and an absolute subject-specific repeatability were assessed. For pelvic and hip angles, and knee flexion-extension the inter-operator error was equal to the inter-trial error-the absolute error ranging from 0.1 deg to 0.9 deg. Knee internal-external rotation and ab-adduction showed, on average, inter-operator errors, which were 8% and 28% greater than the relevant inter-trial errors, respectively. The absolute error was in the range 0.9-2.9 deg.

  6. Dorsal metacarpal veins: anatomic variation and potential clinical implications.

    PubMed

    Elmegarhi, Sara S; Amarin, Justin Z; Hadidi, Maher T; Badran, Darwish H; Massad, Islam M; Bani-Hani, Amjad M; Shatarat, Amjad T

    2018-03-01

    The dorsal metacarpal veins are frequently cannulated. Cannulation success is determined by several variable anatomic features. The objective of this study is to classify, for the first time, the anatomic variants of the dorsal metacarpal veins. In this cross-sectional study, 520 university students and staff were conveniently recruited. The dorsal metacarpal veins in 1040 hands were studied. Venous visibility was enhanced by either tourniquet application or near-infrared illumination. Variant patterns of the dorsal metacarpal veins were classified. The final analysis included 726 hands, for an exclusion rate of 30 %. Eight pattern types were identified. Three anatomic features informed the variation. Bilateral symmetry of the dorsal metacarpal veins was present in 352 participants (83 % of the total). The overall frequency distribution of variants in both hands was similar (P = 0.8). The frequency distribution of variants was subject to sexual dimorphism (P = 0.001), ethnic variation (P < 0.001), and technical variation (P < 0.001). The anatomic variants of the dorsal metacarpal veins were sorted into decreasingly frequent primary, secondary, and tertiary groups. The groups may signify a progressive increase in difficulty of peripheral cannulation, in the mentioned order. As such, primary patterns are the most common and likely the easiest to cannulate, while tertiary patterns are the least common and likely the most difficult to cannulate. The preceding premise, in tandem with the bilateral asymmetry of the veins, is clinically significant. With cannulation difficulty likely signifying an underlying tertiary pattern, the contralateral dorsal metacarpal veins are probabilistically characterized by a primary pattern and are, as such, the easier option for peripheral venous cannulation.

  7. Lower cranial nerves.

    PubMed

    Soldatos, Theodoros; Batra, Kiran; Blitz, Ari M; Chhabra, Avneesh

    2014-02-01

    Imaging evaluation of cranial neuropathies requires thorough knowledge of the anatomic, physiologic, and pathologic features of the cranial nerves, as well as detailed clinical information, which is necessary for tailoring the examinations, locating the abnormalities, and interpreting the imaging findings. This article provides clinical, anatomic, and radiological information on lower (7th to 12th) cranial nerves, along with high-resolution magnetic resonance images as a guide for optimal imaging technique, so as to improve the diagnosis of cranial neuropathy. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Long-range population dynamics of anatomically defined neocortical networks

    PubMed Central

    Chen, Jerry L; Voigt, Fabian F; Javadzadeh, Mitra; Krueppel, Roland; Helmchen, Fritjof

    2016-01-01

    The coordination of activity across neocortical areas is essential for mammalian brain function. Understanding this process requires simultaneous functional measurements across the cortex. In order to dissociate direct cortico-cortical interactions from other sources of neuronal correlations, it is furthermore desirable to target cross-areal recordings to neuronal subpopulations that anatomically project between areas. Here, we combined anatomical tracers with a novel multi-area two-photon microscope to perform simultaneous calcium imaging across mouse primary (S1) and secondary (S2) somatosensory whisker cortex during texture discrimination behavior, specifically identifying feedforward and feedback neurons. We find that coordination of S1-S2 activity increases during motor behaviors such as goal-directed whisking and licking. This effect was not specific to identified feedforward and feedback neurons. However, these mutually projecting neurons especially participated in inter-areal coordination when motor behavior was paired with whisker-texture touches, suggesting that direct S1-S2 interactions are sensory-dependent. Our results demonstrate specific functional coordination of anatomically-identified projection neurons across sensory cortices. DOI: http://dx.doi.org/10.7554/eLife.14679.001 PMID:27218452

  9. Artistic shaping of key facial features in children and adolescents.

    PubMed

    Sullivan, P K; Singer, D P

    2001-12-01

    Facial aesthetics can be enhanced by otoplasty, rhinoplasty and genioplasty. Excellent outcomes can be obtained given appropriate timing, patient selection, preoperative planning, and artistic sculpting of the region with the appropriate surgical technique. Choosing a patient with mature psychological, developmental, and anatomic features that are amenable to treatment in the pediatric population can be challenging, yet rewarding.

  10. Application of kernel method in fluorescence molecular tomography

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Baikejiang, Reheman; Li, Changqing

    2017-02-01

    Reconstruction of fluorescence molecular tomography (FMT) is an ill-posed inverse problem. Anatomical guidance in the FMT reconstruction can improve FMT reconstruction efficiently. We have developed a kernel method to introduce the anatomical guidance into FMT robustly and easily. The kernel method is from machine learning for pattern analysis and is an efficient way to represent anatomical features. For the finite element method based FMT reconstruction, we calculate a kernel function for each finite element node from an anatomical image, such as a micro-CT image. Then the fluorophore concentration at each node is represented by a kernel coefficient vector and the corresponding kernel function. In the FMT forward model, we have a new system matrix by multiplying the sensitivity matrix with the kernel matrix. Thus, the kernel coefficient vector is the unknown to be reconstructed following a standard iterative reconstruction process. We convert the FMT reconstruction problem into the kernel coefficient reconstruction problem. The desired fluorophore concentration at each node can be calculated accordingly. Numerical simulation studies have demonstrated that the proposed kernel-based algorithm can improve the spatial resolution of the reconstructed FMT images. In the proposed kernel method, the anatomical guidance can be obtained directly from the anatomical image and is included in the forward modeling. One of the advantages is that we do not need to segment the anatomical image for the targets and background.

  11. Unique cortical physiology associated with ipsilateral hand movements and neuroprosthetic implications.

    PubMed

    Wisneski, Kimberly J; Anderson, Nicholas; Schalk, Gerwin; Smyth, Matt; Moran, Daniel; Leuthardt, Eric C

    2008-12-01

    Brain computer interfaces (BCIs) offer little direct benefit to patients with hemispheric stroke because current platforms rely on signals derived from the contralateral motor cortex (the same region injured by the stroke). For BCIs to assist hemiparetic patients, the implant must use unaffected cortex ipsilateral to the affected limb. This requires the identification of distinct electrophysiological features from the motor cortex associated with ipsilateral hand movements. In this study we studied 6 patients undergoing temporary placement of intracranial electrode arrays. Electrocorticographic (ECoG) signals were recorded while the subjects engaged in specific ipsilateral or contralateral hand motor tasks. Spectral changes were identified with regards to frequency, location, and timing. Ipsilateral hand movements were associated with electrophysiological changes that occur in lower frequency spectra, at distinct anatomic locations, and earlier than changes associated with contralateral hand movements. In a subset of 3 patients, features specific to ipsilateral and contralateral hand movements were used to control a cursor on a screen in real time. In ipsilateral derived control this was optimal with lower frequency spectra. There are distinctive cortical electrophysiological features associated with ipsilateral movements which can be used for device control. These findings have implications for patients with hemispheric stroke because they offer a potential methodology for which a single hemisphere can be used to enhance the function of a stroke induced hemiparesis.

  12. Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with high-grade glioma, a systematic review and meta-analysis.

    PubMed

    van Dijken, Bart R J; van Laar, Peter Jan; Holtman, Gea A; van der Hoorn, Anouk

    2017-10-01

    Treatment response assessment in high-grade gliomas uses contrast enhanced T1-weighted MRI, but is unreliable. Novel advanced MRI techniques have been studied, but the accuracy is not well known. Therefore, we performed a systematic meta-analysis to assess the diagnostic accuracy of anatomical and advanced MRI for treatment response in high-grade gliomas. Databases were searched systematically. Study selection and data extraction were done by two authors independently. Meta-analysis was performed using a bivariate random effects model when ≥5 studies were included. Anatomical MRI (five studies, 166 patients) showed a pooled sensitivity and specificity of 68% (95%CI 51-81) and 77% (45-93), respectively. Pooled apparent diffusion coefficients (seven studies, 204 patients) demonstrated a sensitivity of 71% (60-80) and specificity of 87% (77-93). DSC-perfusion (18 studies, 708 patients) sensitivity was 87% (82-91) with a specificity of 86% (77-91). DCE-perfusion (five studies, 207 patients) sensitivity was 92% (73-98) and specificity was 85% (76-92). The sensitivity of spectroscopy (nine studies, 203 patients) was 91% (79-97) and specificity was 95% (65-99). Advanced techniques showed higher diagnostic accuracy than anatomical MRI, the highest for spectroscopy, supporting the use in treatment response assessment in high-grade gliomas. • Treatment response assessment in high-grade gliomas with anatomical MRI is unreliable • Novel advanced MRI techniques have been studied, but diagnostic accuracy is unknown • Meta-analysis demonstrates that advanced MRI showed higher diagnostic accuracy than anatomical MRI • Highest diagnostic accuracy for spectroscopy and perfusion MRI • Supports the incorporation of advanced MRI in high-grade glioma treatment response assessment.

  13. A neural command circuit for grooming movement control.

    PubMed

    Hampel, Stefanie; Franconville, Romain; Simpson, Julie H; Seeds, Andrew M

    2015-09-07

    Animals perform many stereotyped movements, but how nervous systems are organized for controlling specific movements remains unclear. Here we use anatomical, optogenetic, behavioral, and physiological techniques to identify a circuit in Drosophila melanogaster that can elicit stereotyped leg movements that groom the antennae. Mechanosensory chordotonal neurons detect displacements of the antennae and excite three different classes of functionally connected interneurons, which include two classes of brain interneurons and different parallel descending neurons. This multilayered circuit is organized such that neurons within each layer are sufficient to specifically elicit antennal grooming. However, we find differences in the durations of antennal grooming elicited by neurons in the different layers, suggesting that the circuit is organized to both command antennal grooming and control its duration. As similar features underlie stimulus-induced movements in other animals, we infer the possibility of a common circuit organization for movement control that can be dissected in Drosophila.

  14. Architectural Representation of Valence in the Limbic System

    PubMed Central

    Namburi, Praneeth; Al-Hasani, Ream; Calhoon, Gwendolyn G; Bruchas, Michael R; Tye, Kay M

    2016-01-01

    In order to thrive, animals must be able to recognize aversive and appetitive stimuli within the environment and subsequently initiate appropriate behavioral responses. This assignment of positive or negative valence to a stimulus is a key feature of emotional processing, the neural substrates of which have been a topic of study for several decades. Until recently, the result of this work has been the identification of specific brain regions, such as the basolateral amygdala (BLA) and nucleus accumbens (NAc), as important to valence encoding. The advent of modern tools in neuroscience has allowed further dissection of these regions to identify specific populations of neurons signaling the valence of environmental stimuli. In this review, we focus upon recent work examining the mechanisms of valence encoding, and provide a model for the systematic investigation of valence within anatomically-, genetically-, and functionally defined populations of neurons. PMID:26647973

  15. The Sherlock Holmes approach to diagnosing fetal syndromes by ultrasound.

    PubMed

    Benacerraf, Beryl B

    2012-03-01

    Prenatal detection of fetal anomalies is one of the major goals of obstetrical ultrasound. The primary reason is the options that are often offered to the family and caregivers from therapy in selected cases to special care at delivery to termination of the pregnancy. An important aspect of the diagnosis is to determine whether the anomaly is expected to be lethal or associated with severe physical or mental impediments. This goal is often difficult to accomplish without a clear diagnosis. A systematic approach is essential when an abnormality is first identified sonographically to help the practitioner discover certain patterns of associated defects. The use of this logical and stepwise strategy facilitates arriving at the correct diagnosis of specific syndrome by taking all anatomic findings into account. This process focuses on first pinpointing a key or sentinel feature specific to each syndrome and which can anchor the diagnosis.

  16. Distinct subtypes of behavioral-variant frontotemporal dementia based on patterns of network degeneration

    PubMed Central

    Ranasinghe, Kamalini G; Rankin, Katherine P; Pressman, Peter S; Perry, David C; Lobach, Iryna V; Seeley, William W; Coppola, Giovanni; Karydas, Anna M; Grinberg, Lea T; Shany-Ur, Tal; Lee, Suzee E; Rabinovici, Gil D; Rosen, Howard J; Gorno-Tempini, Maria Luisa; Boxer, Adam L; Miller, Zachary A; Chiong, Winston; DeMay, Mary; Kramer, Joel H; Possin, Katherine L; Sturm, Virginia E; Bettcher, Brianne M; Neylan, Michael; Zackey, Diana D; Nguyen, Lauren A; Ketelle, Robin; Block, Nikolas; Wu, Teresa Q; Dallich, Alison; Russek, Natanya; Caplan, Alyssa; Geschwind, Daniel H; Vossel, Keith A; Miller, Bruce L

    2016-01-01

    Importance Clearer delineation of the phenotypic heterogeneity within behavioral variant frontotemporal dementia (bvFTD) will help uncover underlying biological mechanisms, and will improve clinicians’ ability to predict disease course and design targeted management strategies. Objective To identify subtypes of bvFTD syndrome based on distinctive patterns of atrophy defined by selective vulnerability of specific functional networks targeted in bvFTD, using statistical classification approaches. Design, Setting and Participants In this retrospective observational study, 104 patients meeting the Frontotemporal Dementia Consortium consensus criteria for bvFTD were evaluated at the Memory and Aging Center of Department of Neurology at University of California, San Francisco. Patients underwent a multidisciplinary clinical evaluation, including clinical demographics, genetic testing, symptom evaluation, neurological exam, neuropsychological bedside testing, and socioemotional assessments. Ninety patients underwent structural Magnetic Resonance Imaging at their earliest evaluation at the memory clinic. From each patients’ structural imaging, the mean volumes of 18 regions of interest (ROI) comprising the functional networks specifically vulnerable in bvFTD, including the ‘salience network’ (SN), with key nodes in the frontoinsula and pregenual anterior cingulate, and the ‘semantic appraisal network’ (SAN) anchored in the anterior temporal lobe and subgenual cingulate, were estimated. Principal component and cluster analyses of ROI volumes were used to identify patient clusters with anatomically distinct atrophy patterns. Main Outcome Measures We evaluated brain morphology and other clinical features including presenting symptoms, neurologic exam signs, neuropsychological performance, rate of dementia progression, and socioemotional function in each patient cluster. Results We identified four subgroups of bvFTD patients with distinct anatomic patterns of network degeneration, including two separate salience network–predominant subgroups: frontal/temporal (SN-FT), and frontal (SN-F), and a semantic appraisal network–predominant group (SAN), and a subcortical–predominant group. Subgroups demonstrated distinct patterns of cognitive, socioemotional, and motor symptoms, as well as genetic compositions and estimated rates of disease progression. Conclusions Divergent patterns of vulnerability in specific functional network components make an important contribution to clinical heterogeneity of bvFTD. The data-driven anatomical classification identifies biologically meaningful phenotypes and provides a replicable approach to disambiguate the bvFTD syndrome. PMID:27429218

  17. A Comprehensive Specimen-Specific Multiscale Data Set for Anatomical and Mechanical Characterization of the Tibiofemoral Joint

    PubMed Central

    Chokhandre, Snehal; Colbrunn, Robb; Bennetts, Craig; Erdemir, Ahmet

    2015-01-01

    Understanding of tibiofemoral joint mechanics at multiple spatial scales is essential for developing effective preventive measures and treatments for both pathology and injury management. Currently, there is a distinct lack of specimen-specific biomechanical data at multiple spatial scales, e.g., joint, tissue, and cell scales. Comprehensive multiscale data may improve the understanding of the relationship between biomechanical and anatomical markers across various scales. Furthermore, specimen-specific multiscale data for the tibiofemoral joint may assist development and validation of specimen-specific computational models that may be useful for more thorough analyses of the biomechanical behavior of the joint. This study describes an aggregation of procedures for acquisition of multiscale anatomical and biomechanical data for the tibiofemoral joint. Magnetic resonance imaging was used to acquire anatomical morphology at the joint scale. A robotic testing system was used to quantify joint level biomechanical response under various loading scenarios. Tissue level material properties were obtained from the same specimen for the femoral and tibial articular cartilage, medial and lateral menisci, anterior and posterior cruciate ligaments, and medial and lateral collateral ligaments. Histology data were also obtained for all tissue types to measure specimen-specific cell scale information, e.g., cellular distribution. This study is the first of its kind to establish a comprehensive multiscale data set for a musculoskeletal joint and the presented data collection approach can be used as a general template to guide acquisition of specimen-specific comprehensive multiscale data for musculoskeletal joints. PMID:26381404

  18. Anatomy of the sural nerve: cadaver study and literature review.

    PubMed

    Riedl, Otto; Frey, Manfred

    2013-04-01

    The sural nerve is commonly used as donor for nerve grafting. Contrary to its constant retromalleolar position, formation and course of the proximal sural nerve show great variability. The coexistence of different and deceptive terminologies contributes to the complexity, and reviewing the international literature is confusing. Because detailed anatomical knowledge is essential for efficient and safe sural nerve harvesting, this study aims to bring clarity. Previous sural nerve reports listed in the PubMed database and established anatomical textbooks were reviewed. Different terminologies were compared and adjusted. Anatomical details and variations were noted. Subtle prospective anatomical dissections and comparison with actual data followed. Two hundred twenty-one relevant reports were identified and worked up going back to the nineteenth century. Fourteen established German and English language anatomical textbooks were reviewed. Thirty lower limbs were dissected. In total, this study pools the information of more than 2500 sural nerves. This study covers all information about the sural nerve anatomy published internationally. The coexistence of different and confusing terminologies is pinpointed and adjusted to allow comparison of previous reports and to gain a coordinated data pool of more than 2500 investigated sural nerves. Detailed features are clearly described and summarized, findings from the authors' own prospective dissections complete these data, and the prior existing anatomical confusion is resolved. Finally, clinical implications are described.

  19. Comparison of in vitro flows past a mechanical heart valve in anatomical and axisymmetric aorta models

    NASA Astrophysics Data System (ADS)

    Haya, Laura; Tavoularis, Stavros

    2017-06-01

    Flow characteristics past a bileaflet mechanical heart valve were measured under physiological flow conditions in a straight tube with an axisymmetric expansion, similar to vessels used in previous studies, and in an anatomical model of the aorta. We found that anatomical features, including the three-lobed sinus and the aorta's curvature affected significantly the flow characteristics. The turbulent and viscous stresses were presented and discussed as indicators for potential blood damage and thrombosis. Both types of stresses, averaged over the two axial measurement planes, were significantly lower in the anatomical model than in the axisymmetric one. This difference was attributed to the lower height-to-width ratio and more gradual contraction of the anatomical aortic sinus. The curvature of the aorta caused asymmetries in the velocity and stress distributions during forward flow. Secondary flows resulting from the aorta's curvature are thought to have redistributed the fluid stresses transversely, resulting in a more homogeneous stress distribution in the anatomical aortic root than in the axisymmetric root. The results of this study demonstrate the importance of modelling accurately the aortic geometry in experimental and computational studies of prosthetic devices. Moreover, our findings suggest that grafts used for aortic root replacement should approximate as closely as possible the shape of the natural sinuses.

  20. Evolving Concepts in Posterior Subthalamic Area Deep Brain Stimulation for Treatment of Tremor: Surgical Neuroanatomy and Practical Considerations.

    PubMed

    Ramirez-Zamora, Adolfo; Smith, Heather; Kumar, Vignessh; Prusik, Julia; Phookan, Sujoy; Pilitsis, Julie G

    2016-01-01

    Although thalamic deep brain stimulation (DBS) has been established as an effective therapy for refractory tremor in Parkinson's disease and essential tremor, reports investigating the efficacy of posterior subthalamic area (PSA) DBS for severe, debilitating tremors continue to emerge. However, questions regarding the optimal anatomical target, surgical approach, programming paradigms and effectiveness compared to other targets remain. In this report, we aimed to review the current literature to assess different stereotactic techniques, anatomical considerations, adverse effects and stimulation settings in PSA DBS. A comprehensive literature review was performed searching for articles discussing tremors and PSA stimulation. We performed a quantitative analysis comparing different DBS tremor targets. Tremor improvement is consistently documented in most reports with an average reduction in tremor of 79% depending on the specific tremor syndrome. Tremor benefit in patients with multiple sclerosis (MS) tremor was significantly higher than for other stimulation targets. Transient paresthesias, imbalance, dizziness and dysarthria are the most common side effects with PSA DBS. PSA DBS is an effective and safe treatment for tremor control and should be considered in patients with refractory tremors with associated cerebellar or dystonic features, proximal tremors and MS tremor. © 2016 S. Karger AG, Basel.

  1. Computational Fluid Dynamics Simulations of Hemodynamics in Plaque Erosion

    PubMed Central

    Campbell, Ian C.; Timmins, Lucas H.; Giddens, Don P.; Virmani, Renu; Veneziani, Alessandro; Rab, S. Tanveer; Samady, Habib; McDaniel, Michael C.; Finn, Aloke V.; Taylor, W. Robert; Oshinski, John N.

    2013-01-01

    Purpose We investigated whether local hemodynamics were associated with sites of plaque erosion and hypothesized that patients with plaque erosion have locally elevated WSS magnitude in regions where erosion has occurred. Methods We generated 3D, patient-specific models of coronary arteries from biplane angiographic images in 3 human patients with plaque erosion diagnosed by optical coherence tomography (OCT). Using computational fluid dynamics, we simulated pulsatile blood flow and calculated both wall shear stress (WSS) and oscillatory shear index (OSI). We also investigated anatomic features of plaque erosion sites by examining branching and local curvature in x-ray angiograms of barium-perfused autopsy hearts. Results Neither high nor low magnitudes of mean WSS were associated with sites of plaque erosion. OSI and local curvature were also not associated with erosion. Anatomically, 8 of 13 hearts had a nearby bifurcation upstream of the site of plaque erosion. Conclusions This study provides preliminary evidence that neither hemodynamics nor anatomy are predictors of plaque erosion, based upon a very unique dataset. Our sample sizes are small, but this dataset suggests that high magnitudes of wall shear stress, one potential mechanism for inducing plaque erosion, are not necessary for erosion to occur. PMID:24223678

  2. Imaging and examination strategies of normal male and female sex development and anatomy.

    PubMed

    Wünsch, Lutz; Schober, Justine M

    2007-09-01

    Over recent years a variety of new details on the developmental biology of sexual differentiation has been discovered. Moreover, important advances have been made in imaging and examination strategies for urogenital organs, and these have added new knowledge to our understanding of the 'normal' anatomy of the sexes. Both aspects contribute to the comprehension of phenotypic sex development, but they are not commonly presented in the same context. This will be attempted in this chapter, which aims to link discoveries in developmental biology to anatomical details shown by modern examination techniques. A review of the literature concerning the link between sexual development and imaging of urogenital organs was performed. Genes, proteins and pathways related to sexual differentiation were related to some organotypic features revealed by clinical examination techniques. Early 'organotypic' patterns can be identified in prostatic, urethral and genital development and followed into postnatal life. New imaging and endoscopy techniques allow for detailed descriptive anatomical studies, hopefully resulting in a broader understanding of sex development and a better genotype-phenotype correlation in defined disorders. Clinical description relying on imaging techniques should be related to knowledge of the genetic and endocrine factors influencing sex development in a specific and stepwise manner.

  3. Computerized tomography-based anatomic description of the porcine liver.

    PubMed

    Bekheit, Mohamed; Bucur, Petru O; Wartenberg, Mylene; Vibert, Eric

    2017-04-01

    The knowledge of the anatomic features is imperative for successful modeling of the different surgical situations. This study aims to describe the anatomic features of the porcine using computerized tomography (CT) scan. Thirty large, white, female pigs were included in this study. The CT image acquisition was performed in four-phase contrast study. Subsequently, analysis of the images was performed using syngo.via software (Siemens) to subtract mainly the hepatic artery and its branches. Analysis of the portal and hepatic veins division pattern was performed using the Myrian XP-Liver 1.14.1 software (Intrasense). The mean total liver volume was 915 ± 159 mL. The largest sector in the liver was the right medial one representing around 28 ± 5.7% of the total liver volume. Next in order is the right lateral sector constituting around 24 ± 5%. Its volume is very close to the volume of the left medial sector, which represents around 22 ± 4.7% of the total liver volume. The caudate lobe represents around 8 ± 2% of the total liver volume.The portal vein did not show distinct right and left divisions rather than consecutive branches that come off the main trunk. The hepatic artery frequently trifurcates into left trunk that gives off the right gastric artery and the artery to the left lateral sector, the middle hepatic artery that supplies both the right and the left medial sectors and the right hepatic artery trunk that divides to give anterior branch to the right lateral lobe, branch to the right medial lobe, and at least a branch to the caudate lobe. Frequently, there is a posterior branch that crosses behind the portal vein to the right lateral lobe. The suprahepatic veins join the inferior vena cava in three distinct openings. There are communications between the suprahepatic veins that drain the adjacent sectors. The vein from the right lateral and the right medial sectors drains into a common trunk. The vein from the left lateral and from the left medial sectors drains into a common trunk. A separate opening is usually encountered draining the right medial sector. The caudate lobe drains separately into inferior vena cava caudal to the other veins. Knowledge of the anatomic features of the porcine liver is crucial to the performance of a successful surgical procedure. We herein describe the CT-depicted anatomic features of the porcine liver. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. A Newsletter for Massachusetts Marine Educators.

    ERIC Educational Resources Information Center

    Flotsam and JETsam, 1986

    1986-01-01

    Provides background information (in outline form) on the bottlenose dolphin. Includes facts on characteristic anatomical and physiological features and highlights behavioral and communication patterns of dolphins. Also includes an explanation of ecolocation. (ML)

  5. Functional imaging of the semantic system: retrieval of sensory-experienced and verbally learned knowledge.

    PubMed

    Noppeney, Uta; Price, Cathy J

    2003-01-01

    This paper considers how functional neuro-imaging can be used to investigate the organization of the semantic system and the limitations associated with this technique. The majority of the functional imaging studies of the semantic system have looked for divisions by varying stimulus category. These studies have led to divergent results and no clear anatomical hypotheses have emerged to account for the dissociations seen in behavioral studies. Only a few functional imaging studies have used task as a variable to differentiate the neural correlates of semantic features more directly. We extend these findings by presenting a new study that contrasts tasks that differentially weight sensory (color and taste) and verbally learned (origin) semantic features. Irrespective of the type of semantic feature retrieved, a common semantic system was activated as demonstrated in many previous studies. In addition, the retrieval of verbally learned, but not sensory-experienced, features enhanced activation in medial and lateral posterior parietal areas. We attribute these "verbally learned" effects to differences in retrieval strategy and conclude that evidence for segregation of semantic features at an anatomical level remains weak. We believe that functional imaging has the potential to increase our understanding of the neuronal infrastructure that sustains semantic processing but progress may require multiple experiments until a consistent explanatory framework emerges.

  6. Fabrication of anatomically tapered foveal pits for retinal phantoms for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lee, Gary C. F.; Smith, Gennifer T.; Agrawal, Monica; Ellerbee, Audrey K.

    2015-03-01

    Optical Coherence Tomography (OCT) has become a standard tool for diagnosing retinal disease in many ophthalmology clinics. Nonetheless, the technical and clinical research communities still lack a standardized phantom that could aid in evaluating and normalizing the various scan protocols and OCT machines employed at different institutions. Existing retinal phantoms designed for OCT imaging mimic some important features of the retina, such as the thickness and scattering properties of its many layers. However, the morphology of the foveal pit and the visible tapering of the retinal layers underlying the surface surrounding the pit remains a challenge to replicate in current phantoms. Recent attempts at creating a realistic foveal pit include molding, ablation and laser etching but have not proved sufficient to replicate this particular anatomical feature. In this work, we demonstrate a new fabrication procedure that is capable of replicating the tapered appearance of the retinal layers near the foveal pit using a combination of spin-coating and replica molding. The ability to create an anatomically correct foveal pit will allow for a new phantom better suited for intra- and inter-system evaluation and for improved testing of retinal segmentation algorithms.

  7. Joint detection and localization of multiple anatomical landmarks through learning

    NASA Astrophysics Data System (ADS)

    Dikmen, Mert; Zhan, Yiqiang; Zhou, Xiang Sean

    2008-03-01

    Reliable landmark detection in medical images provides the essential groundwork for successful automation of various open problems such as localization, segmentation, and registration of anatomical structures. In this paper, we present a learning-based system to jointly detect (is it there?) and localize (where?) multiple anatomical landmarks in medical images. The contributions of this work exist in two aspects. First, this method takes the advantage from the learning scenario that is able to automatically extract the most distinctive features for multi-landmark detection. Therefore, it is easily adaptable to detect arbitrary landmarks in various kinds of imaging modalities, e.g., CT, MRI and PET. Second, the use of multi-class/cascaded classifier architecture in different phases of the detection stage combined with robust features that are highly efficient in terms of computation time enables a seemingly real time performance, with very high localization accuracy. This method is validated on CT scans of different body sections, e.g., whole body scans, chest scans and abdominal scans. Aside from improved robustness (due to the exploitation of spatial correlations), it gains a run time efficiency in landmark detection. It also shows good scalability performance under increasing number of landmarks.

  8. Quantitative imaging features: extension of the oncology medical image database

    NASA Astrophysics Data System (ADS)

    Patel, M. N.; Looney, P. T.; Young, K. C.; Halling-Brown, M. D.

    2015-03-01

    Radiological imaging is fundamental within the healthcare industry and has become routinely adopted for diagnosis, disease monitoring and treatment planning. With the advent of digital imaging modalities and the rapid growth in both diagnostic and therapeutic imaging, the ability to be able to harness this large influx of data is of paramount importance. The Oncology Medical Image Database (OMI-DB) was created to provide a centralized, fully annotated dataset for research. The database contains both processed and unprocessed images, associated data, and annotations and where applicable expert determined ground truths describing features of interest. Medical imaging provides the ability to detect and localize many changes that are important to determine whether a disease is present or a therapy is effective by depicting alterations in anatomic, physiologic, biochemical or molecular processes. Quantitative imaging features are sensitive, specific, accurate and reproducible imaging measures of these changes. Here, we describe an extension to the OMI-DB whereby a range of imaging features and descriptors are pre-calculated using a high throughput approach. The ability to calculate multiple imaging features and data from the acquired images would be valuable and facilitate further research applications investigating detection, prognosis, and classification. The resultant data store contains more than 10 million quantitative features as well as features derived from CAD predictions. Theses data can be used to build predictive models to aid image classification, treatment response assessment as well as to identify prognostic imaging biomarkers.

  9. Is an Appreciation of Isomerism the Key to Unlocking the Mysteries of the Cardiac Findings in Heterotaxy?

    PubMed

    Anderson, Robert H; Spicer, Diane E; Loomba, Rohit

    2018-02-06

    Pediatric cardiologists treating patients with severe congenital cardiac defects define "visceral heterotaxy" on the basis of isomerism of the atrial appendages. The isomeric features represent an obvious manifestation of disruption of left-right asymmetry during embryonic development. Thus, there are two subsets of individuals within the overall syndrome, with features of either right or left isomerism. Within the heart, it is only the atrial appendages that are truly isomeric. The remainder of the cardiac components shows variable morphology, as does the arrangement of the remaining body organs. Order is provided in this potentially chaotic arrangement simply by describing the specific features of each of the systems. These features as defined by clinicians, however, seem less well recognized by those investigating the developmental origins of the disruption of symmetry. Developmental biologists place much greater emphasis on ventricular looping. Although the direction of the loop can certainly be interpreted as representing an example of asymmetry, it is not comparable to the isomeric features that underscore the clinical syndromes. This is because, thus far, there is no evidence of ventricular isomerism, with the ventricles distinguished one from the other on the basis of their disparate anatomical features. In similar fashion, some consider transposition to represent abnormal lateralization, but again, clinical diagnosis depends on recognition of the lateralized features. In this review, therefore, we discuss the key questions that currently underscore the mismatch in the approaches to "lateralization" as taken by clinicians and developmental biologists.

  10. Biophysical modelling of intra-ring variations in tracheid features and wood density of Pinus pinaster trees exposed to seasonal droughts.

    PubMed

    Wilkinson, Sarah; Ogée, Jérôme; Domec, Jean-Christophe; Rayment, Mark; Wingate, Lisa

    2015-03-01

    Process-based models that link seasonally varying environmental signals to morphological features within tree rings are essential tools to predict tree growth response and commercially important wood quality traits under future climate scenarios. This study evaluated model portrayal of radial growth and wood anatomy observations within a mature maritime pine (Pinus pinaster (L.) Aït.) stand exposed to seasonal droughts. Intra-annual variations in tracheid anatomy and wood density were identified through image analysis and X-ray densitometry on stem cores covering the growth period 1999-2010. A cambial growth model was integrated with modelled plant water status and sugar availability from the soil-plant-atmosphere transfer model MuSICA to generate estimates of cell number, cell volume, cell mass and wood density on a weekly time step. The model successfully predicted inter-annual variations in cell number, ring width and maximum wood density. The model was also able to predict the occurrence of special anatomical features such as intra-annual density fluctuations (IADFs) in growth rings. Since cell wall thickness remained surprisingly constant within and between growth rings, variations in wood density were primarily the result of variations in lumen diameter, both in the model and anatomical data. In the model, changes in plant water status were identified as the main driver of the IADFs through a direct effect on cell volume. The anatomy data also revealed that a trade-off existed between hydraulic safety and hydraulic efficiency. Although a simplified description of cambial physiology is presented, this integrated modelling approach shows potential value for identifying universal patterns of tree-ring growth and anatomical features over a broad climatic gradient. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Phonologic errors as a clinical marker of the logopenic variant of PPA.

    PubMed

    Leyton, Cristian E; Ballard, Kirrie J; Piguet, Olivier; Hodges, John R

    2014-05-06

    To disentangle the clinical heterogeneity of nonsemantic variants of primary progressive aphasia (PPA) and to identify a coherent linguistic-anatomical marker for the logopenic variant of PPA (lv-PPA). Key speech and language features of 14 cases of lv-PPA and 18 cases of nonfluent/agrammatic variant of PPA were systematically evaluated and scored by an independent rater blinded to diagnosis. Every case underwent a structural MRI and a Pittsburgh compound B (PiB)-PET scan, a putative biomarker of Alzheimer disease. Key speech and language features that showed association with the PiB-PET status were entered into a hierarchical cluster analysis. The linguistic features and patterns of cortical thinning in each resultant cluster were analyzed. The cluster analysis revealed 3 coherent clinical groups, each of which was linked to a specific PiB-PET status. The first cluster was linked to high PiB retention and characterized by phonologic errors and cortical thinning focused on the left superior temporal gyrus. The second and third clusters were characterized by grammatical production errors and motor speech disorders, respectively, and were associated with low PiB brain retention. A fourth cluster, however, demonstrated nonspecific language deficits and unpredictable PiB-PET status. These findings suggest that despite the clinical and pathologic heterogeneity of nonsemantic variants, discrete clinical syndromes can be distinguished and linked to specific likelihood of PiB-PET status. Phonologic errors seem to be highly predictive of high amyloid burden in PPA and can provide a specific clinical marker for lv-PPA.

  12. Micro-anatomical quantitative optical imaging: toward automated assessment of breast tissues.

    PubMed

    Dobbs, Jessica L; Mueller, Jenna L; Krishnamurthy, Savitri; Shin, Dongsuk; Kuerer, Henry; Yang, Wei; Ramanujam, Nirmala; Richards-Kortum, Rebecca

    2015-08-20

    Pathologists currently diagnose breast lesions through histologic assessment, which requires fixation and tissue preparation. The diagnostic criteria used to classify breast lesions are qualitative and subjective, and inter-observer discordance has been shown to be a significant challenge in the diagnosis of selected breast lesions, particularly for borderline proliferative lesions. Thus, there is an opportunity to develop tools to rapidly visualize and quantitatively interpret breast tissue morphology for a variety of clinical applications. Toward this end, we acquired images of freshly excised breast tissue specimens from a total of 34 patients using confocal fluorescence microscopy and proflavine as a topical stain. We developed computerized algorithms to segment and quantify nuclear and ductal parameters that characterize breast architectural features. A total of 33 parameters were evaluated and used as input to develop a decision tree model to classify benign and malignant breast tissue. Benign features were classified in tissue specimens acquired from 30 patients and malignant features were classified in specimens from 22 patients. The decision tree model that achieved the highest accuracy for distinguishing between benign and malignant breast features used the following parameters: standard deviation of inter-nuclear distance and number of duct lumens. The model achieved 81 % sensitivity and 93 % specificity, corresponding to an area under the curve of 0.93 and an overall accuracy of 90 %. The model classified IDC and DCIS with 92 % and 96 % accuracy, respectively. The cross-validated model achieved 75 % sensitivity and 93 % specificity and an overall accuracy of 88 %. These results suggest that proflavine staining and confocal fluorescence microscopy combined with image analysis strategies to segment morphological features could potentially be used to quantitatively diagnose freshly obtained breast tissue at the point of care without the need for tissue preparation.

  13. Grating-based tomography of human tissues

    NASA Astrophysics Data System (ADS)

    Müller, Bert; Schulz, Georg; Mehlin, Andrea; Herzen, Julia; Lang, Sabrina; Holme, Margaret; Zanette, Irene; Hieber, Simone; Deyhle, Hans; Beckmann, Felix; Pfeiffer, Franz; Weitkamp, Timm

    2012-07-01

    The development of therapies to improve our health requires a detailed knowledge on the anatomy of soft tissues from the human body down to the cellular level. Grating-based phase contrast micro computed tomography using synchrotron radiation provides a sensitivity, which allows visualizing micrometer size anatomical features in soft tissue without applying any contrast agent. We show phase contrast tomography data of human brain, tumor vessels and constricted arteries from the beamline ID 19 (ESRF) and urethral tissue from the beamline W2 (HASYLAB/DESY) with micrometer resolution. Here, we demonstrate that anatomical features can be identified within brain tissue as well known from histology. Using human urethral tissue, the application of two photon energies is compared. Tumor vessels thicker than 20 μm can be perfectly segmented. The morphology of coronary arteries can be better extracted in formalin than after paraffin embedding.

  14. Sonographic anatomy of the gastrohepatic ligament.

    PubMed

    Desai, Gaurav; Filly, Roy A

    2010-01-01

    The purpose of this presentation is to illustrate anatomic and pathologic features of the gastrohepatic ligament (GHL) and to show its usefulness for precise localization of abnormalities, particularly in relation to the lesser peritoneal cavity and diseases occurring within the confines of the ligament itself. Cases were selected that illustrate the objectives above. Illustrations show various anatomic and pathologic features meant to enhance interpretation of left upper quadrant sonograms. Illustrations seen in the sonographic literature vaguely interpret the relationships of the GHL. Misunderstanding has led not only to improper nomenclature but also to the use of inappropriate indicators of lesser omental diseases. With a clear understanding of the anatomy of the GHL and its use as a pivotal marker for structures around and within it, one can avoid these pitfalls and better evaluate adult and pediatric lesser omental anatomy.

  15. Vascular Leiomyoma and Geniculate Ganglion

    PubMed Central

    Magliulo, Giuseppe; Iannella, Giannicola; Valente, Michele; Greco, Antonio; Appiani, Mario Ciniglio

    2013-01-01

    Objectives Discussion of a rare case of angioleiomyoma involving the geniculate ganglion and the intratemporal facial nerve segment and its surgical treatment. Design Case report. Setting Presence of an expansive lesion englobing the geniculate ganglion without any lesion to the cerebellopontine angle. Participants A 45-year-old man with a grade III facial paralysis according to the House-Brackmann scale of evaluation. Main Outcomes Measure Surgical pathology, radiologic appearance, histological features, and postoperative facial function. Results Removal of the entire lesion was achieved, preserving the anatomic integrity of the nerve; no nerve graft was necessary. Postoperative histology and immunohistochemical studies revealed features indicative of solid vascular leiomyoma. Conclusion Angioleiomyoma should be considered in the differential diagnosis of geniculate ganglion lesions. Optimal postoperative facial function is possible only by preserving the anatomical and functional integrity of the facial nerve. PMID:23943721

  16. Validation of hand and foot anatomical feature measurements from smartphone images

    NASA Astrophysics Data System (ADS)

    Amini, Mohammad; Vasefi, Fartash; MacKinnon, Nicholas

    2018-02-01

    A smartphone mobile medical application, previously presented as a tool for individuals with hand arthritis to assess and monitor the progress of their disease, has been modified and expanded to include extraction of anatomical features from the hand (joint/finger width, and angulation) and foot (length, width, big toe angle, and arch height index) from smartphone camera images. Image processing algorithms and automated measurements were validated by performing tests on digital hand models, rigid plastic hand models, and real human hands and feet to determine accuracy and reproducibility compared to conventional measurement tools such as calipers, rulers, and goniometers. The mobile application was able to provide finger joint width measurements with accuracy better than 0.34 (+/-0.25) millimeters. Joint angulation measurement accuracy was better than 0.50 (+/-0.45) degrees. The automatically calculated foot length accuracy was 1.20 (+/-1.27) millimeters and the foot width accuracy was 1.93 (+/-1.92) millimeters. Hallux valgus angle (used in assessing bunions) accuracy was 1.30 (+/-1.29) degrees. Arch height index (AHI) measurements had an accuracy of 0.02 (+/-0.01). Combined with in-app documentation of symptoms, treatment, and lifestyle factors, the anatomical feature measurements can be used by both healthcare professionals and manufacturers. Applications include: diagnosing hand osteoarthritis; providing custom finger splint measurements; providing compression glove measurements for burn and lymphedema patients; determining foot dimensions for custom shoe sizing, insoles, orthotics, or foot splints; and assessing arch height index and bunion treatment effectiveness.

  17. Variation in xylem formation of Viburnum odoratissimum var. awabuki: growth strain and related anatomical features of branches exhibiting unusual eccentric growth.

    PubMed

    Wang, Yue; Gril, Joseph; Sugiyama, Junji

    2009-05-01

    Growth strains (GSs) and growth eccentricity in the branches of Viburnum odoratissimum var. awabuki (K. Koch) Zabel were measured. A pronounced growth promotion occurred on the lower side of some branches. Although the GS of the branches was similar to that of normal wood, a larger GS was observed on the upper side of the branches. Thus, eccentric growth occurred on the side opposite to the larger GS. In addition, there was a strong negative relationship between f-back bending and eccentric growth, indicating that eccentric growth largely precluded correction to the vertical position. To understand the function of eccentric growth on the lower side of the branches, we examined several anatomical features of the branches and found that (1) the cell walls of both sides lacked the gelatinous layer, (2) the microfibril angle measured by X-ray diffraction and polarizing light was small on both the upper and the lower sides and (3) the vessel number and the cell wall area did not change to a large extent. The anatomical features of the xylem did not differ obviously between the upper and the lower sides of the branches; however, the fibers were longer on the lower side than on the upper side. These results suggest that the growth stress pattern and formation of branch architecture in V. odoratissimum differ from those observed in other woody angiosperms.

  18. Modular control of glutamatergic neuronal identity in C.elegans by distinct homeodomain proteins

    PubMed Central

    Serrano-Saiz, Esther; Poole, Richard J.; Felton, Terry; Zhang, Feifan; De La Cruz, Estanisla Daniel; Hobert, Oliver

    2013-01-01

    The choice of using one of many possible neurotransmitter systems is a critical step in defining the identity of an individual neuron type. We show here that the key defining feature of glutamatergic neurons, the vesicular glutamate transporter EAT-4/VGLUT is expressed in 38 of the 118 anatomically defined neuron classes of the C.elegans nervous system. We show that eat-4/VGLUT expression is controlled in a modular manner, with distinct cis-regulatory modules driving expression in distinct glutamatergic neuron classes. We identify 13 different transcription factors, 11 of them homeodomain proteins, that act in specific combinations in 25 different glutamatergic neuron classes to initiate and maintain eat-4/VGLUT expression. We show that the adoption of a glutamatergic phenotype is linked to the adoption of other terminal identity features of a neuron, including cotransmitter phenotypes. Examination of mouse orthologs of these homeodomain proteins resulted in the identification of mouse LHX1 as a regulator of glutamatergic neurons in the brainstem. PMID:24243022

  19. Mapping Pathological Phenotypes in a Mouse Model of CDKL5 Disorder

    PubMed Central

    Amendola, Elena; Zhan, Yang; Mattucci, Camilla; Castroflorio, Enrico; Calcagno, Eleonora; Fuchs, Claudia; Lonetti, Giuseppina; Silingardi, Davide; Vyssotski, Alexei L.; Farley, Dominika; Ciani, Elisabetta; Pizzorusso, Tommaso; Giustetto, Maurizio; Gross, Cornelius T.

    2014-01-01

    Mutations in cyclin-dependent kinase-like 5 (CDKL5) cause early-onset epileptic encephalopathy, a neurodevelopmental disorder with similarities to Rett Syndrome. Here we describe the physiological, molecular, and behavioral phenotyping of a Cdkl5 conditional knockout mouse model of CDKL5 disorder. Behavioral analysis of constitutive Cdkl5 knockout mice revealed key features of the human disorder, including limb clasping, hypoactivity, and abnormal eye tracking. Anatomical, physiological, and molecular analysis of the knockout uncovered potential pathological substrates of the disorder, including reduced dendritic arborization of cortical neurons, abnormal electroencephalograph (EEG) responses to convulsant treatment, decreased visual evoked responses (VEPs), and alterations in the Akt/rpS6 signaling pathway. Selective knockout of Cdkl5 in excitatory and inhibitory forebrain neurons allowed us to map the behavioral features of the disorder to separable cell-types. These findings identify physiological and molecular deficits in specific forebrain neuron populations as possible pathological substrates in CDKL5 disorder. PMID:24838000

  20. Modeling and measurements of dispersion in a multi-generational model of the human airways

    NASA Astrophysics Data System (ADS)

    Fresconi, Frank

    2005-11-01

    A detailed knowledge of the flow and dispersion within the human respiratory tract is desirable for numerous reasons. Both risk assessments of exposure to toxic particles in the environment, and the design of medical delivery systems targeting both lung-specific conditions (asthma, cystic fibrosis, and chronic obstructive pulmonary disease) and system-wide ailments (diabetes, cancer, hormone replacement) would profit from such an understanding. The present work features both theoretical and experimental efforts aimed at elucidating the fluid mechanics of the lung. Steady streaming due to dissimilar velocity profiles between inspiration and expiration is addressed theoretically. This model employs a parameterized velocity profile to determine the effect on mass transport in the limit of no mixing and full mixing in the cross-section. Particle image velocimetry and laser induced fluorescence measurements of oscillatory flows in anatomically accurate models (single and multi-generational) of the conductive region of the lung illustrate pertinent flow features. Results are interpreted in the light of physiological applications.

  1. GBM heterogeneity characterization by radiomic analysis of phenotype anatomical planes

    NASA Astrophysics Data System (ADS)

    Chaddad, Ahmad; Desrosiers, Christian; Toews, Matthew

    2016-03-01

    Glioblastoma multiforme (GBM) is the most common malignant primary tumor of the central nervous system, characterized among other traits by rapid metastatis. Three tissue phenotypes closely associated with GBMs, namely, necrosis (N), contrast enhancement (CE), and edema/invasion (E), exhibit characteristic patterns of texture heterogeneity in magnetic resonance images (MRI). In this study, we propose a novel model to characterize GBM tissue phenotypes using gray level co-occurrence matrices (GLCM) in three anatomical planes. The GLCM encodes local image patches in terms of informative, orientation-invariant texture descriptors, which are used here to sub-classify GBM tissue phenotypes. Experiments demonstrate the model on MRI data of 41 GBM patients, obtained from the cancer genome atlas (TCGA). Intensity-based automatic image registration is applied to align corresponding pairs of fixed T1˗weighted (T1˗WI) post-contrast and fluid attenuated inversion recovery (FLAIR) images. GBM tissue regions are then segmented using the 3D Slicer tool. Texture features are computed from 12 quantifier functions operating on GLCM descriptors, that are generated from MRI intensities within segmented GBM tissue regions. Various classifier models are used to evaluate the effectiveness of texture features for discriminating between GBM phenotypes. Results based on T1-WI scans showed a phenotype classification accuracy of over 88.14%, a sensitivity of 85.37% and a specificity of 96.1%, using the linear discriminant analysis (LDA) classifier. This model has the potential to provide important characteristics of tumors, which can be used for the sub-classification of GBM phenotypes.

  2. Application of neuroanatomical features to tractography clustering.

    PubMed

    Wang, Qian; Yap, Pew-Thian; Wu, Guorong; Shen, Dinggang

    2013-09-01

    Diffusion tensor imaging allows unprecedented insight into brain neural connectivity in vivo by allowing reconstruction of neuronal tracts via captured patterns of water diffusion in white matter microstructures. However, tractography algorithms often output hundreds of thousands of fibers, rendering subsequent data analysis intractable. As a remedy, fiber clustering techniques are able to group fibers into dozens of bundles and thus facilitate analyses. Most existing fiber clustering methods rely on geometrical information of fibers, by viewing them as curves in 3D Euclidean space. The important neuroanatomical aspect of fibers, however, is ignored. In this article, the neuroanatomical information of each fiber is encapsulated in the associativity vector, which functions as the unique "fingerprint" of the fiber. Specifically, each entry in the associativity vector describes the relationship between the fiber and a certain anatomical ROI in a fuzzy manner. The value of the entry approaches 1 if the fiber is spatially related to the ROI at high confidence; on the contrary, the value drops closer to 0. The confidence of the ROI is calculated by diffusing the ROI according to the underlying fibers from tractography. In particular, we have adopted the fast marching method for simulation of ROI diffusion. Using the associativity vectors of fibers, we further model fibers as observations sampled from multivariate Gaussian mixtures in the feature space. To group all fibers into relevant major bundles, an expectation-maximization clustering approach is employed. Experimental results indicate that our method results in anatomically meaningful bundles that are highly consistent across subjects. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  3. Statistical Analyses of Femur Parameters for Designing Anatomical Plates.

    PubMed

    Wang, Lin; He, Kunjin; Chen, Zhengming

    2016-01-01

    Femur parameters are key prerequisites for scientifically designing anatomical plates. Meanwhile, individual differences in femurs present a challenge to design well-fitting anatomical plates. Therefore, to design anatomical plates more scientifically, analyses of femur parameters with statistical methods were performed in this study. The specific steps were as follows. First, taking eight anatomical femur parameters as variables, 100 femur samples were classified into three classes with factor analysis and Q-type cluster analysis. Second, based on the mean parameter values of the three classes of femurs, three sizes of average anatomical plates corresponding to the three classes of femurs were designed. Finally, based on Bayes discriminant analysis, a new femur could be assigned to the proper class. Thereafter, the average anatomical plate suitable for that new femur was selected from the three available sizes of plates. Experimental results showed that the classification of femurs was quite reasonable based on the anatomical aspects of the femurs. For instance, three sizes of condylar buttress plates were designed. Meanwhile, 20 new femurs are judged to which classes the femurs belong. Thereafter, suitable condylar buttress plates were determined and selected.

  4. Efficacy of autologous platelets in macular hole surgery.

    PubMed

    Konstantinidis, Aristeidis; Hero, Mark; Nanos, Panagiotis; Panos, Georgios D

    2013-01-01

    The introduction of optical coherence tomography has allowed accurate measurement of the size of macular holes. A retrospective consecutive review was performed of 21 patients undergoing macular hole repair with vitrectomy, gas tamponade, and autologous platelet injection and we assessed the effect of macular hole parameters on anatomic and functional outcomes. We looked at the demographic features, final visual outcome, and anatomical closure. Twenty-one patients were included in the study. They underwent routine vitrectomy with gas tamponade (C3F8) and injection of autologous platelets. All patients were advised to maintain a facedown posture for 2 weeks. Anatomical closure was confirmed in all cases and 20 out of 21 of patients had improved postoperative visual acuity by two or more lines. In our series, the macular hole dimensions did not have much effect on the final results. The use of autologous platelets and strict facedown posture seems to be the deciding factor in good anatomical and visual outcome irrespective of macular hole dimensions.

  5. Visualization of the Left Extraperitoneal Space and Spatial Relationships to Its Related Spaces by the Visible Human Project

    PubMed Central

    Xu, Haotong; Li, Xiaoxiao; Zhang, Zhengzhi; Qiu, Mingguo; Mu, Qiwen; Wu, Yi; Tan, Liwen; Zhang, Shaoxiang; Zhang, Xiaoming

    2011-01-01

    Background The major hindrance to multidetector CT imaging of the left extraperitoneal space (LES), and the detailed spatial relationships to its related spaces, is that there is no obvious density difference between them. Traditional gross anatomy and thick-slice sectional anatomy imagery are also insufficient to show the anatomic features of this narrow space in three-dimensions (3D). To overcome these obstacles, we used a new method to visualize the anatomic features of the LES and its spatial associations with related spaces, in random sections and in 3D. Methods In conjunction with Mimics® and Amira® software, we used thin-slice cross-sectional images of the upper abdomen, retrieved from the Chinese and American Visible Human dataset and the Chinese Virtual Human dataset, to display anatomic features of the LES and spatial relationships of the LES to its related spaces, especially the gastric bare area. The anatomic location of the LES was presented on 3D sections reconstructed from CVH2 images and CT images. Principal Findings What calls for special attention of our results is the LES consists of the left sub-diaphragmatic fat space and gastric bare area. The appearance of the fat pad at the cardiac notch contributes to converting the shape of the anteroexternal surface of the LES from triangular to trapezoidal. Moreover, the LES is adjacent to the lesser omentum and the hepatic bare area in the anterointernal and right rear direction, respectively. Conclusion The LES and its related spaces were imaged in 3D using visualization technique for the first time. This technique is a promising new method for exploring detailed communication relationships among other abdominal spaces, and will promote research on the dynamic extension of abdominal diseases, such as acute pancreatitis and intra-abdominal carcinomatosis. PMID:22087259

  6. Registration of prone and supine CT colonography scans using correlation optimized warping and canonical correlation analysis

    PubMed Central

    Wang, Shijun; Yao, Jianhua; Liu, Jiamin; Petrick, Nicholas; Van Uitert, Robert L.; Periaswamy, Senthil; Summers, Ronald M.

    2009-01-01

    Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice—Once supine and once prone—to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined by the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27±52.97 to 14.98 mm±11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline. PMID:20095272

  7. Registration of prone and supine CT colonography scans using correlation optimized warping and canonical correlation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Shijun; Yao Jianhua; Liu Jiamin

    Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice--Once supine and once prone--to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined bymore » the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27{+-}52.97 to 14.98 mm{+-}11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline.« less

  8. Quantitative analysis of hepatic macro- and microvascular alterations during cirrhogenesis in the rat.

    PubMed

    Peeters, Geert; Debbaut, Charlotte; Friebel, Adrian; Cornillie, Pieter; De Vos, Winnok H; Favere, Kasper; Vander Elst, Ingrid; Vandecasteele, Tim; Johann, Tim; Van Hoorebeke, Luc; Monbaliu, Diethard; Drasdo, Dirk; Hoehme, Stefan; Laleman, Wim; Segers, Patrick

    2018-03-01

    Cirrhosis represents the end-stage of any persistent chronically active liver disease. It is characterized by the complete replacement of normal liver tissue by fibrosis, regenerative nodules, and complete fibrotic vascularized septa. The resulting angioarchitectural distortion contributes to an increasing intrahepatic vascular resistance, impeding liver perfusion and leading to portal hypertension. To date, knowledge on the dynamically evolving pathological changes of the hepatic vasculature during cirrhogenesis remains limited. More specifically, detailed anatomical data on the vascular adaptations during disease development is lacking. To address this need, we studied the 3D architecture of the hepatic vasculature during induction of cirrhogenesis in a rat model. Cirrhosis was chemically induced with thioacetamide (TAA). At predefined time points, the hepatic vasculature was fixed and visualized using a combination of vascular corrosion casting and deep tissue microscopy. Three-dimensional reconstruction and data-fitting enabled cirrhogenic features to extracted at multiple scales, portraying the impact of cirrhosis on the hepatic vasculature. At the macrolevel, we noticed that regenerative nodules severely compressed pliant venous vessels from 12 weeks of TAA intoxication onwards. Especially hepatic veins were highly affected by this compression, with collapsed vessel segments severely reducing perfusion capabilities. At the microlevel, we discovered zone-specific sinusoidal degeneration, with sinusoids located near the surface being more affected than those in the middle of a liver lobe. Our data shed light on and quantify the evolving angioarchitecture during cirrhogenesis. These findings may prove helpful for future targeted invasive interventions. © 2017 Anatomical Society.

  9. Intra- and interregional coregulation of opioid genes: broken symmetry in spinal circuits

    PubMed Central

    Kononenko, Olga; Galatenko, Vladimir; Andersson, Malin; Bazov, Igor; Watanabe, Hiroyuki; Zhou, Xing Wu; Iatsyshyna, Anna; Mityakina, Irina; Yakovleva, Tatiana; Sarkisyan, Daniil; Ponomarev, Igor; Krishtal, Oleg; Marklund, Niklas; Tonevitsky, Alex; Adkins, DeAnna L.; Bakalkin, Georgy

    2017-01-01

    Regulation of the formation and rewiring of neural circuits by neuropeptides may require coordinated production of these signaling molecules and their receptors that may be established at the transcriptional level. Here, we address this hypothesis by comparing absolute expression levels of opioid peptides with their receptors, the largest neuropeptide family, and by characterizing coexpression (transcriptionally coordinated) patterns of these genes. We demonstrated that expression patterns of opioid genes highly correlate within and across functionally and anatomically different areas. Opioid peptide genes, compared with their receptor genes, are transcribed at much greater absolute levels, which suggests formation of a neuropeptide cloud that covers the receptor-expressed circuits. Surprisingly, we found that both expression levels and the proportion of opioid receptors are strongly lateralized in the spinal cord, interregional coexpression patterns are side specific, and intraregional coexpression profiles are affected differently by left- and right-side unilateral body injury. We propose that opioid genes are regulated as interconnected components of the same molecular system distributed between distinct anatomic regions. The striking feature of this system is its asymmetric coexpression patterns, which suggest side-specific regulation of selective neural circuits by opioid neurohormones.—Kononenko, O., Galatenko, V., Andersson, M., Bazov, I., Watanabe, H., Zhou, X. W., Iatsyshyna, A., Mityakina, I., Yakovleva, T., Sarkisyan, D., Ponomarev, I., Krishtal, O., Marklund, N., Tonevitsky, A., Adkins, D. L., Bakalkin, G. Intra- and interregional coregulation of opioid genes: broken symmetry in spinal circuits. PMID:28122917

  10. Quantitative analysis of the plain radiographic appearance of nonossifying fibroma.

    PubMed

    Friedland, J A; Reinus, W R; Fisher, A J; Wilson, A J

    1995-08-01

    To quantitate radiographic features that distinguish the plain radiographic appearance of nonossifying fibroma (NOF) from other solitary lesions of bone. Seven hundred nine cases of focal bone lesions, including 34 NOFs, were analyzed according to demographic, anatomic, and plain radiographic features. Vector analysis of groups of features was performed to determine those that are most sensitive and specific for the appearance of NOF in contrast to other lesions in the data base. The radiographic appearance of NOFs was most consistently a medullary based (97%), lytic lesion (100%) with geographic bone destruction (100%), marginal sclerosis (97%), and well-defined edges (94%). A statistically significant number of lesions were located in the distal aspect of long bones. Unicameral bone cyst shared the most radiographic features with the NOF. Vector analysis showed a large degree of overlap between NOF and other lesions such as aneurysmal bone cyst, chondromyxoid fibroma, and eosinophilic granuloma. The description that optimized sensitivity and prevalence for detection of NOF is a medullary based, ovoid lesion in the distal or proximal portions of a long bone with well-defined edges, a partial or complete rind of sclerosis, and absence of fallen fragment, periosteal reaction, and cortical disruption. The radiographic appearance of NOF is relatively nonspecific but, using vector analysis, can be better elucidated over current textbook descriptions.

  11. Characterization of Capsicum species using anatomical and molecular data.

    PubMed

    Dias, G B; Gomes, V M; Moraes, T M S; Zottich, U P; Rabelo, G R; Carvalho, A O; Moulin, M; Gonçalves, L S A; Rodrigues, R; Da Cunha, M

    2013-02-28

    Capsicum species are frequently described in terms of genetic divergence, considering morphological, agronomic, and molecular databases. However, descriptions of genetic differences based on anatomical characters are rare. We examined the anatomy and the micromorphology of vegetative and reproductive organs of several Capsicum species. Four Capsicum accessions representing the species C. annuum var. annuum, C. baccatum var. pendulum, C. chinense, and C. frutescens were cultivated in a greenhouse; leaves, fruits and seeds were sampled and their organ structure analyzed by light and scanning electronic microscopy. Molecular accession characterization was made using ISSR markers. Polymorphism was observed among tector trichomes and also in fruit color and shape. High variability among accessions was detected by ISSR markers. Despite the species studied present a wide morphological and molecular variability that was not reflected by anatomical features.

  12. Development of a quantitative multivariable radiographic method to evaluate anatomic changes associated with laminitis in the forefeet of donkeys.

    PubMed

    Collins, Simon N; Dyson, Sue J; Murray, Rachel C; Newton, J Richard; Burden, Faith; Trawford, Andrew F

    2012-08-01

    To establish and validate an objective method of radiographic diagnosis of anatomic changes in laminitic forefeet of donkeys on the basis of data from a comprehensive series of radiographic measurements. 85 donkeys with and 85 without forelimb laminitis for baseline data determination; a cohort of 44 donkeys with and 18 without forelimb laminitis was used for validation analyses. For each donkey, lateromedial radiographic views of 1 weight-bearing forelimb were obtained; images from 11 laminitic and 2 nonlaminitic donkeys were excluded (motion artifact) from baseline data determination. Data from an a priori selection of 19 measurements of anatomic features of laminitic and nonlaminitic donkey feet were analyzed by use of a novel application of multivariate statistical techniques. The resultant diagnostic models were validated in a blinded manner with data from the separate cohort of laminitic and nonlaminitic donkeys. Data were modeled, and robust statistical rules were established for the diagnosis of anatomic changes within laminitic donkey forefeet. Component 1 scores ≤ -3.5 were indicative of extreme anatomic change, and scores from -2.0 to 0.0 denoted modest change. Nonlaminitic donkeys with a score from 0.5 to 1.0 should be considered as at risk for laminitis. Results indicated that the radiographic procedures evaluated can be used for the identification, assessment, and monitoring of anatomic changes associated with laminitis. Screening assessments by use of this method may enable early detection of mild anatomic change and identification of at-risk donkeys.

  13. How small could a pup sound? The physical bases of signaling body size in harbor seals

    PubMed Central

    Gross, Stephanie; Garcia, Maxime; Rubio-Garcia, Ana; de Boer, Bart

    2017-01-01

    Abstract Vocal communication is a crucial aspect of animal behavior. The mechanism which most mammals use to vocalize relies on three anatomical components. First, air overpressure is generated inside the lower vocal tract. Second, as the airstream goes through the glottis, sound is produced via vocal fold vibration. Third, this sound is further filtered by the geometry and length of the upper vocal tract. Evidence from mammalian anatomy and bioacoustics suggests that some of these three components may covary with an animal’s body size. The framework provided by acoustic allometry suggests that, because vocal tract length (VTL) is more strongly constrained by the growth of the body than vocal fold length (VFL), VTL generates more reliable acoustic cues to an animal’s size. This hypothesis is often tested acoustically but rarely anatomically, especially in pinnipeds. Here, we test the anatomical bases of the acoustic allometry hypothesis in harbor seal pups Phoca vitulina. We dissected and measured vocal tract, vocal folds, and other anatomical features of 15 harbor seals post-mortem. We found that, while VTL correlates with body size, VFL does not. This suggests that, while body growth puts anatomical constraints on how vocalizations are filtered by harbor seals’ vocal tract, no such constraints appear to exist on vocal folds, at least during puppyhood. It is particularly interesting to find anatomical constraints on harbor seals’ vocal tracts, the same anatomical region partially enabling pups to produce individually distinctive vocalizations. PMID:29492005

  14. Development and chromosome mechanics in nematodes: Results from IML-1

    NASA Technical Reports Server (NTRS)

    Nelson, G. A.; Schubert, W. W.; Kazarians, G. A.; Richards, G. F.

    1994-01-01

    A subset of the Caenorhabditis elegans nematodes flown aboard Biorack on IML-1 was analyzed for the fidelity of development and the mechanics of chromosomes at meiosis. To assess meiosis, mutant worms marked at two linked or unlinked loci were inoculated as heterozygous hermaphrodites and allowed to self fertilize. Mendelian segregation ratios and recombination frequency were measured for offspring produced at 1XG or in microgravity. To assess development, worms and embryos were fixed and stained with the DNA dye, Diamidinophenolindole (DAPI), or antibodies specific for antigens expressed in germ cells, pharyngeal and body wall muscles, and gut cells. The distribution of cytoplasmic determinants, cell nuclei counts and positions were scored to assess symmetry relations and anatomical features.

  15. [THE CONSTITUTIONAL ANATOMICAL CHARACTERISTIC OF THE WOMEN OF MATURE AGE].

    PubMed

    Nikitiuk, D B; Nikolenko, V N; Klochkova, S V; Minnibayev, T Sh; Timoshenko, K T

    2015-01-01

    A comprehensive anthropometric and bioelectrical study of 651 women of mature age (relative norm) aged 22 to 55 years living in the Moscow region, was conducted. The somatotyping was performed according to I.B. Galant-V.P. Chtetzov-B.A. Ni kitiuk scheme. The quantitative distribution of women according to their somatotypological characteristics was obtained, the anthropometric peculiarities and the specific features of body composition in women belonging to different somatotypes were determined. It was found that among the women of mature age studied, mesoplastic (26.9%) and stenoplastici (16.7%) somatotypes were dominant. The least frequently encountered were the representatives of asthenic (1.7%) and athletic (5.2%) somatic types. Women of different somatotypes vary significantly in height and weight and other anthropometric parameters.

  16. What can mice tell us about how vision works?

    PubMed Central

    Huberman, Andrew D.; Niell, Cristopher M.

    2012-01-01

    Understanding the neural basis of visual perception is a longstanding fundamental goal of neuroscience. Historically, most vision studies were carried out on humans, macaque monkeys and cats. Over the last five years, however, a growing number of researchers have begun using mice to parse the mechanisms underlying visual processing- the rationale is that despite having relatively poor acuity, mice are unmatched in terms of the variety and sophistication of tools available to label, monitor and manipulate specific cell types and circuits. In this review, we discuss recent advances in understanding the mouse visual system at the anatomical, receptive field and perceptual level, focusing on the opportunities and constraints those features provide toward the goal of understanding how vision works. PMID:21840069

  17. Nasal reconstruction after epithelioma.

    PubMed

    Rodríguez-Camps, S

    2001-01-01

    In this paper we present our procedure for the treatment, histopathological diagnosis, and resection of skin cancer in the nasal pyramid and its subsequent reconstruction. Because we are dealing with the most important anatomical feature of the face our goal is an aesthetic reconstruction [2,4] according to the anatomical subunits criterion of Burget [3]. First, a histopathological diagnosis is made to determine the nature of the tumor. Then, we proceed with the resection according to the Mohs Micrographic Surgery [1,5,7]. Then we begin with the first step of the nasal reconstruction.

  18. [Overview of the biological etiology of transsexualism].

    PubMed

    Kórász, Krisztián; Simon, Lajos

    2008-08-17

    Gender identity disorder, or transsexualism as it is more commonly known, is a highly complex clinical entity. The general belief among behavioural scientists and physicians is that transsexualism is an identifiable and incapacitating disease which can be diagnosed and successfully treated by reassignment surgery. Although the exact etiology of gender identity disorder is unknown, several environmental, genetic and anatomical theories have been described. The reviewers draw attention to the possible genetic, hormonal, immunological and anatomical causes. An attempt is made to point out the future trends in research, highlighting their progressive features.

  19. Anatomy and histology of the newly discovered adipose sac structure within the labia majora: international original research.

    PubMed

    Ostrzenski, Adam; Krajewski, Pawel; Davis, Kern

    2016-09-01

    To determine whether there is any new anatomical structure present within the labia majora. A case serial study was executed on eleven consecutive fresh human female cadavers. Stratum-by-stratum dissections of the labia majora were performed. Twenty-two anatomic dissections of labia majora were completed. Eosin and Hematoxylin agents were used to stain newly discovered adipose sac's tissues of the labia majora and the cylinder-like structures, which cover condensed adipose tissues. The histology of these two structures was compared. All dissected labia majora demonstrated the presence of the anatomic existence of the adipose sac structure. Just under the dermis of the labia majora, the adipose sac was located, which was filled with lobules containing condensed fatty tissues in the form of cylinders. The histological investigation established that the well-organized fibro-connective-adipose tissues represented the adipose sac. The absence of descriptions of the adipose sac within the labia majora in traditional anatomic and gynecologic textbooks was noted. In this study group, the newly discovered adipose sac is consistently present within the anatomical structure of the labia majora. The well-organized fibro-connective-adipose tissue represents microscopic characteristic features of the adipose sac.

  20. The neurobiology of cognitive disorders in temporal lobe epilepsy

    PubMed Central

    Bell, Brian; Lin, Jack J.; Seidenberg, Michael; Hermann, Bruce

    2013-01-01

    Cognitive impairment and especially memory disruption is a major complicating feature of the epilepsies. In this review we begin with a focus on the problem of memory impairment in temporal lobe epilepsy. We start with a brief overview of the early development of knowledge regarding the anatomic substrates of memory disorder in temporal lobe epilepsy, followed by discussion of the refinement of that knowledge over time as informed by the outcomes of epilepsy surgery (anterior temporal lobectomy) and the clinical efforts to predict those patients at greatest risk of adverse cognitive outcomes following epilepsy surgery. These efforts also yielded new theoretical insights regarding the function of the human hippocampus and a few examples of these insights are touched on briefly. Finally, the vastly changing view of temporal lobe epilepsy is examined including findings demonstrating that anatomic abnormalities extend far outside the temporal lobe, cognitive impairments extend beyond memory function, with linkage of these distributed cognitive and anatomic abnormalities pointing to a new understanding of the anatomic architecture of cognitive impairment in epilepsy. Challenges remain in understanding the origin of these cognitive and anatomic abnormalities, their progression over time, and most importantly, how to intervene to protect cognitive and brain health in epilepsy. PMID:21304484

  1. Two Parallel Olfactory Pathways for Processing General Odors in a Cockroach

    PubMed Central

    Watanabe, Hidehiro; Nishino, Hiroshi; Mizunami, Makoto; Yokohari, Fumio

    2017-01-01

    In animals, sensory processing via parallel pathways, including the olfactory system, is a common design. However, the mechanisms that parallel pathways use to encode highly complex and dynamic odor signals remain unclear. In the current study, we examined the anatomical and physiological features of parallel olfactory pathways in an evolutionally basal insect, the cockroach Periplaneta americana. In this insect, the entire system for processing general odors, from olfactory sensory neurons to higher brain centers, is anatomically segregated into two parallel pathways. Two separate populations of secondary olfactory neurons, type1 and type2 projection neurons (PNs), with dendrites in distinct glomerular groups relay olfactory signals to segregated areas of higher brain centers. We conducted intracellular recordings, revealing olfactory properties and temporal patterns of both types of PNs. Generally, type1 PNs exhibit higher odor-specificities to nine tested odorants than type2 PNs. Cluster analyses revealed that odor-evoked responses were temporally complex and varied in type1 PNs, while type2 PNs exhibited phasic on-responses with either early or late latencies to an effective odor. The late responses are 30–40 ms later than the early responses. Simultaneous intracellular recordings from two different PNs revealed that a given odor activated both types of PNs with different temporal patterns, and latencies of early and late responses in type2 PNs might be precisely controlled. Our results suggest that the cockroach is equipped with two anatomically and physiologically segregated parallel olfactory pathways, which might employ different neural strategies to encode odor information. PMID:28529476

  2. Modelling tendon excursions and moment arms of the finger flexors: anatomic fidelity versus function.

    PubMed

    Kociolek, Aaron M; Keir, Peter J

    2011-07-07

    A detailed musculoskeletal model of the human hand is needed to investigate the pathomechanics of tendon disorders and carpal tunnel syndrome. The purpose of this study was to develop a biomechanical model with realistic flexor tendon excursions and moment arms. An existing upper extremity model served as a starting point, which included programmed movement of the index finger. Movement capabilities were added for the other fingers. Metacarpophalangeal articulations were modelled as universal joints to simulate flexion/extension and abduction/adduction while interphalangeal articulations used hinges to represent flexion. Flexor tendon paths were modelled using two approaches. The first method constrained tendons with control points, representing annular pulleys. The second technique used wrap objects at the joints as tendon constraints. Both control point and joint wrap models were iteratively adjusted to coincide with tendon excursions and moment arms from a anthropometric regression model using inputs for a 50th percentile male. Tendon excursions from the joint wrap method best matched the regression model even though anatomic features of the tendon paths were not preserved (absolute differences: mean<0.33 mm, peak<0.74 mm). The joint wrap model also produced similar moment arms to the regression (absolute differences: mean<0.63 mm, peak<1.58 mm). When a scaling algorithm was used to test anthropometrics, the scaled joint wrap models better matched the regression than the scaled control point models. Detailed patient-specific anatomical data will improve model outcomes for clinical use; however, population studies may benefit from simplified geometry, especially with anthropometric scaling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. PAVA: Physiological and Anatomical Visual Analytics for Mapping of Tissue-Specific Concentration and Time-Course Data

    EPA Science Inventory

    We describe the development and implementation of a Physiological and Anatomical Visual Analytics tool (PAVA), a web browser-based application, used to visualize experimental/simulated chemical time-course data (dosimetry), epidemiological data and Physiologically-Annotated Data ...

  4. Neonatal Atlas Construction Using Sparse Representation

    PubMed Central

    Shi, Feng; Wang, Li; Wu, Guorong; Li, Gang; Gilmore, John H.; Lin, Weili; Shen, Dinggang

    2014-01-01

    Atlas construction generally includes first an image registration step to normalize all images into a common space and then an atlas building step to fuse the information from all the aligned images. Although numerous atlas construction studies have been performed to improve the accuracy of the image registration step, unweighted or simply weighted average is often used in the atlas building step. In this article, we propose a novel patch-based sparse representation method for atlas construction after all images have been registered into the common space. By taking advantage of local sparse representation, more anatomical details can be recovered in the built atlas. To make the anatomical structures spatially smooth in the atlas, the anatomical feature constraints on group structure of representations and also the overlapping of neighboring patches are imposed to ensure the anatomical consistency between neighboring patches. The proposed method has been applied to 73 neonatal MR images with poor spatial resolution and low tissue contrast, for constructing a neonatal brain atlas with sharp anatomical details. Experimental results demonstrate that the proposed method can significantly enhance the quality of the constructed atlas by discovering more anatomical details especially in the highly convoluted cortical regions. The resulting atlas demonstrates superior performance of our atlas when applied to spatially normalizing three different neonatal datasets, compared with other start-of-the-art neonatal brain atlases. PMID:24638883

  5. Patient-specific cardiac phantom for clinical training and preprocedure surgical planning.

    PubMed

    Laing, Justin; Moore, John; Vassallo, Reid; Bainbridge, Daniel; Drangova, Maria; Peters, Terry

    2018-04-01

    Minimally invasive mitral valve repair procedures including MitraClip ® are becoming increasingly common. For cases of complex or diseased anatomy, clinicians may benefit from using a patient-specific cardiac phantom for training, surgical planning, and the validation of devices or techniques. An imaging compatible cardiac phantom was developed to simulate a MitraClip ® procedure. The phantom contained a patient-specific cardiac model manufactured using tissue mimicking materials. To evaluate accuracy, the patient-specific model was imaged using computed tomography (CT), segmented, and the resulting point cloud dataset was compared using absolute distance to the original patient data. The result, when comparing the molded model point cloud to the original dataset, resulted in a maximum Euclidean distance error of 7.7 mm, an average error of 0.98 mm, and a standard deviation of 0.91 mm. The phantom was validated using a MitraClip ® device to ensure anatomical features and tools are identifiable under image guidance. Patient-specific cardiac phantoms may allow for surgical complications to be accounted for preoperative planning. The information gained by clinicians involved in planning and performing the procedure should lead to shorter procedural times and better outcomes for patients.

  6. FLASHLIGHT Anatomy.

    ERIC Educational Resources Information Center

    Weber, Suzanne

    1987-01-01

    Explains how a flashlight can be used to introduce a unit on blood, muscles, and bones for elementary science students. Describes activities which focus on anatomical features. Includes a diagram of a paper hand which is used in one of the investigations. (ML)

  7. Textural analysis of optical coherence tomography skin images: quantitative differentiation between healthy and cancerous tissues

    NASA Astrophysics Data System (ADS)

    Adabi, Saba; Conforto, Silvia; Hosseinzadeh, Matin; Noe, Shahryar; Daveluy, Steven; Mehregan, Darius; Nasiriavanaki, Mohammadreza

    2017-02-01

    Optical Coherence Tomography (OCT) offers real-time high-resolution three-dimensional images of tissue microstructures. In this study, we used OCT skin images acquired from ten volunteers, neither of whom had any skin conditions addressing the features of their anatomic location. OCT segmented images are analyzed based on their optical properties (attenuation coefficient) and textural image features e.g., contrast, correlation, homogeneity, energy, entropy, etc. Utilizing the information and referring to their clinical insight, we aim to make a comprehensive computational model for the healthy skin. The derived parameters represent the OCT microstructural morphology and might provide biological information for generating an atlas of normal skin from different anatomic sites of human skin and may allow for identification of cell microstructural changes in cancer patients. We then compared the parameters of healthy samples with those of abnormal skin and classified them using a linear Support Vector Machines (SVM) with 82% accuracy.

  8. Two-Phase and Graph-Based Clustering Methods for Accurate and Efficient Segmentation of Large Mass Spectrometry Images.

    PubMed

    Dexter, Alex; Race, Alan M; Steven, Rory T; Barnes, Jennifer R; Hulme, Heather; Goodwin, Richard J A; Styles, Iain B; Bunch, Josephine

    2017-11-07

    Clustering is widely used in MSI to segment anatomical features and differentiate tissue types, but existing approaches are both CPU and memory-intensive, limiting their application to small, single data sets. We propose a new approach that uses a graph-based algorithm with a two-phase sampling method that overcomes this limitation. We demonstrate the algorithm on a range of sample types and show that it can segment anatomical features that are not identified using commonly employed algorithms in MSI, and we validate our results on synthetic MSI data. We show that the algorithm is robust to fluctuations in data quality by successfully clustering data with a designed-in variance using data acquired with varying laser fluence. Finally, we show that this method is capable of generating accurate segmentations of large MSI data sets acquired on the newest generation of MSI instruments and evaluate these results by comparison with histopathology.

  9. Astragalar Morphology of Selected Giraffidae.

    PubMed

    Solounias, Nikos; Danowitz, Melinda

    2016-01-01

    The artiodactyl astragalus has been modified to exhibit two trochleae, creating a double pullied structure allowing for significant dorso-plantar motion, and limited mediolateral motion. The astragalus structure is partly influenced by environmental substrates, and correspondingly, morphometric studies can yield paleohabitat information. The present study establishes terminology and describes detailed morphological features on giraffid astragali. Each giraffid astragalus exhibits a unique combination of anatomical characteristics. The giraffid astragalar morphologies reinforce previously established phylogenetic relationships. We find that the enlargement of the navicular head is a feature shared by all giraffids, and that the primitive giraffids possess exceptionally tall astragalar heads in relation to the total astragalar height. The sivatheres and the okapi share a reduced notch on the lateral edge of the astragalus. We find that Samotherium is more primitive in astragalar morphologies than Palaeotragus, which is reinforced by tooth characteristics and ossicone position. Diagnostic anatomical characters on the astragalus allow for giraffid species identifications and a better understanding of Giraffidae.

  10. Designing Image Operators for MRI-PET Image Fusion of the Brain

    NASA Astrophysics Data System (ADS)

    Márquez, Jorge; Gastélum, Alfonso; Padilla, Miguel A.

    2006-09-01

    Our goal is to obtain images combining in a useful and precise way the information from 3D volumes of medical imaging sets. We address two modalities combining anatomy (Magnetic Resonance Imaging or MRI) and functional information (Positron Emission Tomography or PET). Commercial imaging software offers image fusion tools based on fixed blending or color-channel combination of two modalities, and color Look-Up Tables (LUTs), without considering the anatomical and functional character of the image features. We used a sensible approach for image fusion taking advantage mainly from the HSL (Hue, Saturation and Luminosity) color space, in order to enhance the fusion results. We further tested operators for gradient and contour extraction to enhance anatomical details, plus other spatial-domain filters for functional features corresponding to wide point-spread-function responses in PET images. A set of image-fusion operators was formulated and tested on PET and MRI acquisitions.

  11. A study of the anatomy and injection techniques of the ovine stifle by positive contrast arthrography, computed tomography arthrography and gross anatomical dissection.

    PubMed

    Vandeweerd, Jean-Michel; Kirschvink, Nathalie; Muylkens, Benoit; Depiereux, Eric; Clegg, Peter; Herteman, Nicolas; Lamberts, Matthieu; Bonnet, Pierre; Nisolle, Jean-Francois

    2012-08-01

    Although ovine stifle models are commonly used to study osteoarthritis, meniscal pathology and cruciate ligament injuries and repair, there is little information about the anatomy of the joint or techniques for synovial injections. The objectives of this study were to improve anatomical knowledge of the synovial cavities of the ovine knee and to compare intra-articular injection techniques. Synovial cavities of 24 cadaver hind limbs from 12 adult sheep were investigated by intra-articular resin, positive-contrast arthrography, computed tomography (CT) arthrography and gross anatomical dissection. Communication between femoro-patellar, medial femoro-tibial and lateral femoro-tibial compartments occurred in all cases. The knee joint should be considered as one synovial structure with three communicating compartments. Several unreported features were observed, including a communication between the medial femoro-tibial and lateral femoro-tibial compartments and a latero-caudal recess of the lateral femoro-tibial compartment. No intermeniscal ligament was identified. CT was able to define many anatomical features of the stifle, including the anatomy of the tendinous synovial recess on the lateral aspect of the proximal tibia under the combined tendon of the peroneus tertius, extensor longus digitorum and extensor digiti III proprius. An approach for intra-articular injection into this recess (the subtendinous technique) was assessed and compared with the retropatellar and paraligamentous techniques. All three injection procedures were equally successful, but the subtendinous technique appeared to be most appropriate for synoviocentesis and for injections in therapeutic research protocols with less risk of damaging the articular cartilage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Anatomic characteristics of bileaflet mitral valve prolapse--Barlow disease--in patients undergoing mitral valve repair.

    PubMed

    Rostagno, Carlo; Droandi, Ginevra; Rossi, Alessandra; Bevilacqua, Sergio; Romagnoli, Stefano; Montesi, Gian Franco; Stefàno, Pier Luigi

    2014-01-01

    Barlow disease is a still challenging pathology for the surgeon. Aim of the present study is to report anatomic abnormalities of mitral valve in patients undergoing mitral valve repair. Between January 1st, 2007, and December 31st, 2010, 85 consecutive patients (54 men and 31 women, mean age 59 +/- 14 years--range: 28-85 years) with the features of a Barlow mitral valve disease underwent mitral repair Forty seven percent of patients were in New York Heart Association functional class III or IV. Preoperative transesophageal echocardiography was compared with anatomical findings at the moment of surgery. Transthoracic echocardiography diagnosis of Barlow disease according to the criteria described by Carpentier was confirmed at anatomical inspection. Annular calcifications were found in 28 patients while 7 patients presented single or multiple clefts. A flail posterior mitral leaflet was detected in 32 subjects, while a flail anterior leaflet in 8. Elongation of chordae tendineae was demonstrated in 45 patients and chordal rupture in 31. All patients showed at trans esophageal echocardiography the typical features of Barlow disease. Seventy-seven (90.6%) patients had severe mitral valve regurgitation, in the remaining 9.4% it was moderate to severe. Transesophageal echocardiography failed to identify clefts in 2/7 and chordal rupture in 4/31. bileaflet prolapse > 2 mm, billowing valve with excess tissue and thickened leaflets > or = 3 mm, and severe annular dilatation, are characteristics of Barlow disease, however the identification of the associated and complex abnormalities of mitral valve is necessary to obtain optimal valve repair.

  13. Three dysconnectivity patterns in treatment-resistant schizophrenia patients and their unaffected siblings.

    PubMed

    Wang, Jicai; Cao, Hongbao; Liao, Yanhui; Liu, Weiqing; Tan, Liwen; Tang, Yanqing; Chen, Jindong; Xu, Xiufeng; Li, Haijun; Luo, Chunrong; Liu, Chunyu; Ries Merikangas, Kathleen; Calhoun, Vince; Tang, Jinsong; Shugart, Yin Yao; Chen, Xiaogang

    2015-01-01

    Among individuals diagnosed with schizophrenia, approximately 20%-33% are recognized as treatment-resistant schizophrenia (TRS) patients. These TRS patients suffer more severely from the disease but struggle to benefit from existing antipsychotic treatments. A few recent studies suggested that schizophrenia may be caused by impaired synaptic plasticity that manifests as functional dysconnectivity in the brain, however, few of those studies focused on the functional connectivity changes in the brains of TRS groups. In this study, we compared the whole brain connectivity variations in TRS patients, their unaffected siblings, and healthy controls. Connectivity network features between and within the 116 automated anatomical labeling (AAL) brain regions were calculated and compared using maps created with three contrasts: patient vs. control, patient vs. sibling, and sibling vs. To evaluate the predictive power of the selected features, we performed a multivariate classification approach. We also evaluated the influence of six important clinical measures (e.g. age, education level) on the connectivity features. This study identified abnormal significant connectivity changes of three patterns in TRS patients and their unaffected siblings: 1) 69 patient-specific connectivity (PCN); 2) 102 shared connectivity (SCN); and 3) 457 unshared connectivity (UCN). While the first two patterns were widely reported by previous non-TRS specific studies, we were among the first to report widespread significant connectivity differences between TRS patient groups and their healthy sibling groups. Observations of this study may provide new insights for the understanding of the neurophysiological mechanisms of TRS.

  14. [Parameters of cardiac muscle repolarization on the electrocardiogram when changing anatomical and electric position of the heart].

    PubMed

    Chaĭkovskiĭ, I A; Baum, O V; Popov, L A; Voloshin, V I; Budnik, N N; Frolov, Iu A; Kovalenko, A S

    2014-01-01

    While discussing the diagnostic value of the single channel electrocardiogram a set of theoretical considerations emerges inevitably, one of the most important among them is the question about dependence of the electrocardiogram parameters from the direction of electrical axis of heart. In other words, changes in what of electrocardiogram parameters are in fact liable to reflect pathological processes in myocardium, and what ones are determined by extracardiac factors, primarily by anatomic characteristics of patients. It is arguable that while analyzing electrocardiogram it is necessary to orient to such physiologically based informative indexes as ST segment displacement. Also, symmetry of the T wave shape is an important parameter which is independent of patients anatomic features. The results obtained are of interest for theoretical and applied aspects of the biophysics of the cardiac electric field.

  15. Livers, guts and gills: mapping the decay profiles of soft tissues to understand authigenic mineral replacement.

    NASA Astrophysics Data System (ADS)

    Clements, Thomas; Purnell, Mark; Gabbott, Sarah

    2016-04-01

    The hard mineralised parts of organisms such as shells, teeth and bones dominate the fossil record. There are, however, sites around the world where soft-tissues are preserved often through rapid replacement of original tissue by rapidly-precipitating authigenic minerals. These exceptionally well-preserved soft-bodied fossils are much more informative about the anatomy, physiology, ecology and behaviour of ancient organisms as well as providing a more inclusive picture of ecosystems and evolution throughout geological time. However, despite the wealth of information that soft-bodied fossils can provide they must first be correctly interpreted as the processes of both decay and preservation act to modify the carcass from its in vivo condition. Decay leads to alteration of the appearance and topology of anatomy, and ultimately to loss. Preservation is selective with some anatomical features being more likely to be captured than others. These problems are especially germane to the interpretation of deep-time and/or enigmatic fossils where no modern analogue exist for comparative anatomical analysis. It is therefore of vital importance to understand the processes carcasses undergo during the fossilisation process, , in order to interpret the anatomical remains of fossils and thus extract true evolutionary presence or absence of anatomy from absence due to taphonomic biases. We have designed a series of novel experiments to investigate, in real time, how decay processes affect the fossilisation potential of soft-tissues - especially of internal anatomy. Our data allow us to unravel both the timing and sequence of anatomical decay of different organs. At the same time through measuring Eh and pH in selected organs we can predict when anatomical features will fall in to the window of authigenic mineralization and thus potentially become preserved. We can also place constraints on which minerals will operate to capture tissues. Our findings are applied to the fossil record allowing greater accuracy in reading the record of exceptionally preserved organisms.

  16. Knowledge-based segmentation of pediatric kidneys in CT for measuring parenchymal volume

    NASA Astrophysics Data System (ADS)

    Brown, Matthew S.; Feng, Waldo C.; Hall, Theodore R.; McNitt-Gray, Michael F.; Churchill, Bernard M.

    2000-06-01

    The purpose of this work was to develop an automated method for segmenting pediatric kidneys in contrast-enhanced helical CT images and measuring the volume of the renal parenchyma. An automated system was developed to segment the abdomen, spine, aorta and kidneys. The expected size, shape, topology an X-ray attenuation of anatomical structures are stored as features in an anatomical model. These features guide 3-D threshold-based segmentation and then matching of extracted image regions to anatomical structures in the model. Following segmentation, the kidney volumes are calculated by summing included voxels. To validate the system, the kidney volumes of 4 swine were calculated using our approach and compared to the 'true' volumes measured after harvesting the kidneys. Automated volume calculations were also performed retrospectively in a cohort of 10 children. The mean difference between the calculated and measured values in the swine kidneys was 1.38 (S.D. plus or minus 0.44) cc. For the pediatric cases, calculated volumes ranged from 41.7 - 252.1 cc/kidney, and the mean ratio of right to left kidney volume was 0.96 (S.D. plus or minus 0.07). These results demonstrate the accuracy of the volumetric technique that may in the future provide an objective assessment of renal damage.

  17. A unique combination of anatomy and physiology in cells of the rat paralaminar thalamic nuclei adjacent to the medial geniculate body

    PubMed Central

    Smith, Philip H.; Bartlett, Edward L.; Kowalkowski, Anna

    2010-01-01

    The medial geniculate body (MGB) has three major subdivisions - ventral (MGV), dorsal (MGD) and medial (MGM). MGM is linked with paralaminar nuclei that are situated medial and ventral to MGV/MGD. Paralaminar nuclei have unique inputs and outputs when compared with MGV and MGD and have been linked to circuitry underlying some important functional roles. We recorded intracellularly from cells in the paralaminar nuclei in vitro. We found that they possess an unusual combination of anatomical and physiological features when compared to those reported for “standard” thalamic neurons seen in the MGV/MGD and elsewhere in the thalamus. Compared to MGV/MGD neurons, anatomically, 1) paralaminar cell dendrites can be long, branch sparingly and encompass a much larger area. 2) their dendrites may be smooth but can have well defined spines and 3) their axons can have collaterals that branch locally within the same or nearby paralaminar nuclei. When compared to MGV/MGD neurons physiologically 1) their spikes are larger in amplitude and can be shorter in duration and 2) can have dual afterhyperpolarizations with fast and slow components and 3) they can have a reduction or complete absence of the low threshold, voltage-sensitive calcium conductance that reduces or eliminates the voltage-dependent burst response. We also recorded from cells in the parafascicular nucleus, a nucleus of the posterior intralaminar nuclear group, because they have unusual anatomical features that are similar to some of our paralaminar cells. Like the labeled paralaminar cells, parafascicular cells had physiological features distinguishing them from typical thalamic neurons. PMID:16566009

  18. Anatomic feature of deltoid ligament attachment in posteromedial osteochondral lesion of talar dome.

    PubMed

    Nakasa, Tomoyuki; Sawa, Mikiya; Ikuta, Yasunari; Yoshikawa, Masahiro; Tsuyuguchi, Yusuke; Adachi, Nobuo

    2018-03-01

    Osteochondral lesions of the talus (OLT) are recognized as being commonly associated with trauma. However, the etiology of OLT remains unclear. In the case of a posteromedial lesion of OLT (medial OLT), the deep layer of the deltoid ligament is located close to the medial OLT, and this relationship between a medial lesion and deltoid ligament could be a risk factor for medial OLT. The purpose of this study is to investigate the unique anatomic feature of the deep deltoid attachment to the talus in patients with medial OLT compared with patients with non-medial OLT. Forty ankles with medial OLT and 40 ankles without medial OLT were retrospectively reviewed in this study. On the coronal images of MRI, the attachment of deltoid ligament was measured. The continuity of the osteochondral fragment and its bed was evaluated on MRI and arthroscopic findings. Coronal MRI images showed that the attachment of the deep deltoid ligament to the medial OLT was broader and located more proximally than in non-medial OLT. The continuity of fibers from the insertion site of deltoid ligament to the talus to the osteochondral fragment was observed (76.7%). In the arthroscopic findings, the osteochondral fragment was obviously connected to the talus at the medial site in 85.2% of feet. The location of the deep deltoid ligament attachment to the medial OLT was more proximal and there was the possibility of these anatomic feature might contribute to the pathogenesis of medial OLT. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  19. Evaluation of feature selection algorithms for classification in temporal lobe epilepsy based on MR images

    NASA Astrophysics Data System (ADS)

    Lai, Chunren; Guo, Shengwen; Cheng, Lina; Wang, Wensheng; Wu, Kai

    2017-02-01

    It's very important to differentiate the temporal lobe epilepsy (TLE) patients from healthy people and localize the abnormal brain regions of the TLE patients. The cortical features and changes can reveal the unique anatomical patterns of brain regions from the structural MR images. In this study, structural MR images from 28 normal controls (NC), 18 left TLE (LTLE), and 21 right TLE (RTLE) were acquired, and four types of cortical feature, namely cortical thickness (CTh), cortical surface area (CSA), gray matter volume (GMV), and mean curvature (MCu), were explored for discriminative analysis. Three feature selection methods, the independent sample t-test filtering, the sparse-constrained dimensionality reduction model (SCDRM), and the support vector machine-recursive feature elimination (SVM-RFE), were investigated to extract dominant regions with significant differences among the compared groups for classification using the SVM classifier. The results showed that the SVM-REF achieved the highest performance (most classifications with more than 92% accuracy), followed by the SCDRM, and the t-test. Especially, the surface area and gray volume matter exhibited prominent discriminative ability, and the performance of the SVM was improved significantly when the four cortical features were combined. Additionally, the dominant regions with higher classification weights were mainly located in temporal and frontal lobe, including the inferior temporal, entorhinal cortex, fusiform, parahippocampal cortex, middle frontal and frontal pole. It was demonstrated that the cortical features provided effective information to determine the abnormal anatomical pattern and the proposed method has the potential to improve the clinical diagnosis of the TLE.

  20. Visuomotor Transformations Underlying Hunting Behavior in Zebrafish

    PubMed Central

    Bianco, Isaac H.; Engert, Florian

    2015-01-01

    Summary Visuomotor circuits filter visual information and determine whether or not to engage downstream motor modules to produce behavioral outputs. However, the circuit mechanisms that mediate and link perception of salient stimuli to execution of an adaptive response are poorly understood. We combined a virtual hunting assay for tethered larval zebrafish with two-photon functional calcium imaging to simultaneously monitor neuronal activity in the optic tectum during naturalistic behavior. Hunting responses showed mixed selectivity for combinations of visual features, specifically stimulus size, speed, and contrast polarity. We identified a subset of tectal neurons with similar highly selective tuning, which show non-linear mixed selectivity for visual features and are likely to mediate the perceptual recognition of prey. By comparing neural dynamics in the optic tectum during response versus non-response trials, we discovered premotor population activity that specifically preceded initiation of hunting behavior and exhibited anatomical localization that correlated with motor variables. In summary, the optic tectum contains non-linear mixed selectivity neurons that are likely to mediate reliable detection of ethologically relevant sensory stimuli. Recruitment of small tectal assemblies appears to link perception to action by providing the premotor commands that release hunting responses. These findings allow us to propose a model circuit for the visuomotor transformations underlying a natural behavior. PMID:25754638

  1. Visuomotor transformations underlying hunting behavior in zebrafish.

    PubMed

    Bianco, Isaac H; Engert, Florian

    2015-03-30

    Visuomotor circuits filter visual information and determine whether or not to engage downstream motor modules to produce behavioral outputs. However, the circuit mechanisms that mediate and link perception of salient stimuli to execution of an adaptive response are poorly understood. We combined a virtual hunting assay for tethered larval zebrafish with two-photon functional calcium imaging to simultaneously monitor neuronal activity in the optic tectum during naturalistic behavior. Hunting responses showed mixed selectivity for combinations of visual features, specifically stimulus size, speed, and contrast polarity. We identified a subset of tectal neurons with similar highly selective tuning, which show non-linear mixed selectivity for visual features and are likely to mediate the perceptual recognition of prey. By comparing neural dynamics in the optic tectum during response versus non-response trials, we discovered premotor population activity that specifically preceded initiation of hunting behavior and exhibited anatomical localization that correlated with motor variables. In summary, the optic tectum contains non-linear mixed selectivity neurons that are likely to mediate reliable detection of ethologically relevant sensory stimuli. Recruitment of small tectal assemblies appears to link perception to action by providing the premotor commands that release hunting responses. These findings allow us to propose a model circuit for the visuomotor transformations underlying a natural behavior. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Anatomical background noise power spectrum in differential phase contrast breast images

    NASA Astrophysics Data System (ADS)

    Garrett, John; Ge, Yongshuai; Li, Ke; Chen, Guang-Hong

    2015-03-01

    In x-ray breast imaging, the anatomical noise background of the breast has a significant impact on the detection of lesions and other features of interest. This anatomical noise is typically characterized by a parameter, β, which describes a power law dependence of anatomical noise on spatial frequency (the shape of the anatomical noise power spectrum). Large values of β have been shown to reduce human detection performance, and in conventional mammography typical values of β are around 3.2. Recently, x-ray differential phase contrast (DPC) and the associated dark field imaging methods have received considerable attention as possible supplements to absorption imaging for breast cancer diagnosis. However, the impact of these additional contrast mechanisms on lesion detection is not yet well understood. In order to better understand the utility of these new methods, we measured the β indices for absorption, DPC, and dark field images in 15 cadaver breast specimens using a benchtop DPC imaging system. We found that the measured β value for absorption was consistent with the literature for mammographic acquisitions (β = 3.61±0.49), but that both DPC and dark field images had much lower values of β (β = 2.54±0.75 for DPC and β = 1.44±0.49 for dark field). In addition, visual inspection showed greatly reduced anatomical background in both DPC and dark field images. These promising results suggest that DPC and dark field imaging may help provide improved lesion detection in breast imaging, particularly for those patients with dense breasts, in whom anatomical noise is a major limiting factor in identifying malignancies.

  3. Anatomic variation and orgasm: Could variations in anatomy explain differences in orgasmic success?

    PubMed

    Emhardt, E; Siegel, J; Hoffman, L

    2016-07-01

    Though the public consciousness is typically focused on factors such as psychology, penis size, and the presence of the "G-spot," there are other anatomical and neuro-anatomic differences that could play an equal, or more important, role in the frequency and intensity of orgasms. Discovering these variations could direct further medical or procedural management to improve sexual satisfaction. The aim of this study is to review the available literature of anatomical sexual variation and to explain why this variation may predispose some patients toward a particular sexual experience. In this review, we explored the available literature on sexual anatomy and neuro-anatomy. We used PubMed and OVID Medline for search terms, including orgasm, penile size variation, clitoral variation, Grafenberg spot, and benefits of orgasm. First we review the basic anatomy and innervation of the reproductive organs. Then we describe several anatomical variations that likely play a superior role to popular known variation (penis size, presence of g-spot, etc). For males, the delicate play between the parasympathetic and sympathetic nervous systems is vital to achieve orgasm. For females, the autonomic component is more complex. The clitoris is the primary anatomical feature for female orgasm, including its migration toward the anterior vaginal wall. In conclusions, orgasms are complex phenomena involving psychological, physiological, and anatomic variation. While these variations predispose people to certain sexual function, future research should explore how to surgically or medically alter these. Clin. Anat. 29:665-672, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Specific excitatory connectivity for feature integration in mouse primary visual cortex

    PubMed Central

    Molina-Luna, Patricia; Roth, Morgane M.

    2017-01-01

    Local excitatory connections in mouse primary visual cortex (V1) are stronger and more prevalent between neurons that share similar functional response features. However, the details of how functional rules for local connectivity shape neuronal responses in V1 remain unknown. We hypothesised that complex responses to visual stimuli may arise as a consequence of rules for selective excitatory connectivity within the local network in the superficial layers of mouse V1. In mouse V1 many neurons respond to overlapping grating stimuli (plaid stimuli) with highly selective and facilitatory responses, which are not simply predicted by responses to single gratings presented alone. This complexity is surprising, since excitatory neurons in V1 are considered to be mainly tuned to single preferred orientations. Here we examined the consequences for visual processing of two alternative connectivity schemes: in the first case, local connections are aligned with visual properties inherited from feedforward input (a ‘like-to-like’ scheme specifically connecting neurons that share similar preferred orientations); in the second case, local connections group neurons into excitatory subnetworks that combine and amplify multiple feedforward visual properties (a ‘feature binding’ scheme). By comparing predictions from large scale computational models with in vivo recordings of visual representations in mouse V1, we found that responses to plaid stimuli were best explained by assuming feature binding connectivity. Unlike under the like-to-like scheme, selective amplification within feature-binding excitatory subnetworks replicated experimentally observed facilitatory responses to plaid stimuli; explained selective plaid responses not predicted by grating selectivity; and was consistent with broad anatomical selectivity observed in mouse V1. Our results show that visual feature binding can occur through local recurrent mechanisms without requiring feedforward convergence, and that such a mechanism is consistent with visual responses and cortical anatomy in mouse V1. PMID:29240769

  5. Utility of dual source CT with ECG-triggered high-pitch spiral acquisition (Flash Spiral Cardio mode) to evaluate morphological features of ventricles in children with complex congenital heart defects.

    PubMed

    Nakagawa, Motoo; Ozawa, Yoshiyuki; Nomura, Norikazu; Inukai, Sachiko; Tsubokura, Satoshi; Sakurai, Keita; Shimohira, Masashi; Ogawa, Masaki; Shibamoto, Yuta

    2016-04-01

    We evaluated the ability of dual source CT (DSCT) with ECG-triggered high-pitch spiral acquisition (Flash Spiral Cardio mode) to depict the morphological features of ventricles in pediatric patients with congenital heart defects (CHD). Between July 2013 and April 2015, 78 pediatric patients with CHD (median age 4 months) were examined using DSCT with the Flash Spiral Cardio mode. The types of ventricular abnormalities were ventricular septal defect (VSD) in 42 (the malaligned type in 11, perimembranous type in 23, supracristal type in 2, atrioventricular type in 2, and muscular type in 4), single ventricle (SV) in 11, and congenital corrected transposition of the great arteries (ccTGA) in 4. We evaluated the accuracy of the diagnosis of the VSD type. In cases of SV and ccTGA, we assessed the detectability of the anatomical features of both ventricles for a diagnosis of ventricular situs. DSCT confirmed the diagnoses for all VSDs. The type of defect was precisely diagnosed for all patients. The anatomical features of both ventricles were also depicted and ventricular situs of SV and ccTGA was correctly diagnosed. The results suggest that DSCT has the ability to clearly depict the configuration of ventricles.

  6. The brain of René Descartes (1650): A neuro-anatomical analysis.

    PubMed

    Philippe, Charlier; Isabelle, Huynh-Charlier; Philippe, Froesch; Russell, Shorto; Nadia, Benmoussa; Alain, Froment; Dominique, Grimaud-Hervé; Saudamini, Deo; Anaïs, Augias; Lou, Albessard; Antoine, Balzeau

    2017-07-15

    The skull of René Descartes is held in the National Museum of Natural History since the 19th c. Up to date, only anthropological examinations were carried out, focusing on the cranial capacity and phrenological interpretation of the skull morphology. Using CT-scan based 3D technology, a reconstruction of the endocast was performed, allowing for its first complete description and inter-disciplinary analysis: assessment of metrical and non-metrical features, retrospective diagnosis of anatomical anomalies, and confrontation with neuro-psychological abilities of this well-identified individual. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan.

    PubMed

    Wang, Zhuo; Pascual-Anaya, Juan; Zadissa, Amonida; Li, Wenqi; Niimura, Yoshihito; Huang, Zhiyong; Li, Chunyi; White, Simon; Xiong, Zhiqiang; Fang, Dongming; Wang, Bo; Ming, Yao; Chen, Yan; Zheng, Yuan; Kuraku, Shigehiro; Pignatelli, Miguel; Herrero, Javier; Beal, Kathryn; Nozawa, Masafumi; Li, Qiye; Wang, Juan; Zhang, Hongyan; Yu, Lili; Shigenobu, Shuji; Wang, Junyi; Liu, Jiannan; Flicek, Paul; Searle, Steve; Wang, Jun; Kuratani, Shigeru; Yin, Ye; Aken, Bronwen; Zhang, Guojie; Irie, Naoki

    2013-06-01

    The unique anatomical features of turtles have raised unanswered questions about the origin of their unique body plan. We generated and analyzed draft genomes of the soft-shell turtle (Pelodiscus sinensis) and the green sea turtle (Chelonia mydas); our results indicated the close relationship of the turtles to the bird-crocodilian lineage, from which they split ∼267.9-248.3 million years ago (Upper Permian to Triassic). We also found extensive expansion of olfactory receptor genes in these turtles. Embryonic gene expression analysis identified an hourglass-like divergence of turtle and chicken embryogenesis, with maximal conservation around the vertebrate phylotypic period, rather than at later stages that show the amniote-common pattern. Wnt5a expression was found in the growth zone of the dorsal shell, supporting the possible co-option of limb-associated Wnt signaling in the acquisition of this turtle-specific novelty. Our results suggest that turtle evolution was accompanied by an unexpectedly conservative vertebrate phylotypic period, followed by turtle-specific repatterning of development to yield the novel structure of the shell.

  8. Statistical estimation of femur micro-architecture using optimal shape and density predictors.

    PubMed

    Lekadir, Karim; Hazrati-Marangalou, Javad; Hoogendoorn, Corné; Taylor, Zeike; van Rietbergen, Bert; Frangi, Alejandro F

    2015-02-26

    The personalization of trabecular micro-architecture has been recently shown to be important in patient-specific biomechanical models of the femur. However, high-resolution in vivo imaging of bone micro-architecture using existing modalities is still infeasible in practice due to the associated acquisition times, costs, and X-ray radiation exposure. In this study, we describe a statistical approach for the prediction of the femur micro-architecture based on the more easily extracted subject-specific bone shape and mineral density information. To this end, a training sample of ex vivo micro-CT images is used to learn the existing statistical relationships within the low and high resolution image data. More specifically, optimal bone shape and mineral density features are selected based on their predictive power and used within a partial least square regression model to estimate the unknown trabecular micro-architecture within the anatomical models of new subjects. The experimental results demonstrate the accuracy of the proposed approach, with average errors of 0.07 for both the degree of anisotropy and tensor norms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Prospective regularization design in prior-image-based reconstruction

    NASA Astrophysics Data System (ADS)

    Dang, Hao; Siewerdsen, Jeffrey H.; Webster Stayman, J.

    2015-12-01

    Prior-image-based reconstruction (PIBR) methods leveraging patient-specific anatomical information from previous imaging studies and/or sequences have demonstrated dramatic improvements in dose utilization and image quality for low-fidelity data. However, a proper balance of information from the prior images and information from the measurements is required (e.g. through careful tuning of regularization parameters). Inappropriate selection of reconstruction parameters can lead to detrimental effects including false structures and failure to improve image quality. Traditional methods based on heuristics are subject to error and sub-optimal solutions, while exhaustive searches require a large number of computationally intensive image reconstructions. In this work, we propose a novel method that prospectively estimates the optimal amount of prior image information for accurate admission of specific anatomical changes in PIBR without performing full image reconstructions. This method leverages an analytical approximation to the implicitly defined PIBR estimator, and introduces a predictive performance metric leveraging this analytical form and knowledge of a particular presumed anatomical change whose accurate reconstruction is sought. Additionally, since model-based PIBR approaches tend to be space-variant, a spatially varying prior image strength map is proposed to optimally admit changes everywhere in the image (eliminating the need to know change locations a priori). Studies were conducted in both an ellipse phantom and a realistic thorax phantom emulating a lung nodule surveillance scenario. The proposed method demonstrated accurate estimation of the optimal prior image strength while achieving a substantial computational speedup (about a factor of 20) compared to traditional exhaustive search. Moreover, the use of the proposed prior strength map in PIBR demonstrated accurate reconstruction of anatomical changes without foreknowledge of change locations in phantoms where the optimal parameters vary spatially by an order of magnitude or more. In a series of studies designed to explore potential unknowns associated with accurate PIBR, optimal prior image strength was found to vary with attenuation differences associated with anatomical change but exhibited only small variations as a function of the shape and size of the change. The results suggest that, given a target change attenuation, prospective patient-, change-, and data-specific customization of the prior image strength can be performed to ensure reliable reconstruction of specific anatomical changes.

  10. MalaCards: an integrated compendium for diseases and their annotation

    PubMed Central

    Rappaport, Noa; Nativ, Noam; Stelzer, Gil; Twik, Michal; Guan-Golan, Yaron; Iny Stein, Tsippi; Bahir, Iris; Belinky, Frida; Morrey, C. Paul; Safran, Marilyn; Lancet, Doron

    2013-01-01

    Comprehensive disease classification, integration and annotation are crucial for biomedical discovery. At present, disease compilation is incomplete, heterogeneous and often lacking systematic inquiry mechanisms. We introduce MalaCards, an integrated database of human maladies and their annotations, modeled on the architecture and strategy of the GeneCards database of human genes. MalaCards mines and merges 44 data sources to generate a computerized card for each of 16 919 human diseases. Each MalaCard contains disease-specific prioritized annotations, as well as inter-disease connections, empowered by the GeneCards relational database, its searches and GeneDecks set analyses. First, we generate a disease list from 15 ranked sources, using disease-name unification heuristics. Next, we use four schemes to populate MalaCards sections: (i) directly interrogating disease resources, to establish integrated disease names, synonyms, summaries, drugs/therapeutics, clinical features, genetic tests and anatomical context; (ii) searching GeneCards for related publications, and for associated genes with corresponding relevance scores; (iii) analyzing disease-associated gene sets in GeneDecks to yield affiliated pathways, phenotypes, compounds and GO terms, sorted by a composite relevance score and presented with GeneCards links; and (iv) searching within MalaCards itself, e.g. for additional related diseases and anatomical context. The latter forms the basis for the construction of a disease network, based on shared MalaCards annotations, embodying associations based on etiology, clinical features and clinical conditions. This broadly disposed network has a power-law degree distribution, suggesting that this might be an inherent property of such networks. Work in progress includes hierarchical malady classification, ontological mapping and disease set analyses, striving to make MalaCards an even more effective tool for biomedical research. Database URL: http://www.malacards.org/ PMID:23584832

  11. Anatomical entity mention recognition at literature scale

    PubMed Central

    Pyysalo, Sampo; Ananiadou, Sophia

    2014-01-01

    Motivation: Anatomical entities ranging from subcellular structures to organ systems are central to biomedical science, and mentions of these entities are essential to understanding the scientific literature. Despite extensive efforts to automatically analyze various aspects of biomedical text, there have been only few studies focusing on anatomical entities, and no dedicated methods for learning to automatically recognize anatomical entity mentions in free-form text have been introduced. Results: We present AnatomyTagger, a machine learning-based system for anatomical entity mention recognition. The system incorporates a broad array of approaches proposed to benefit tagging, including the use of Unified Medical Language System (UMLS)- and Open Biomedical Ontologies (OBO)-based lexical resources, word representations induced from unlabeled text, statistical truecasing and non-local features. We train and evaluate the system on a newly introduced corpus that substantially extends on previously available resources, and apply the resulting tagger to automatically annotate the entire open access scientific domain literature. The resulting analyses have been applied to extend services provided by the Europe PubMed Central literature database. Availability and implementation: All tools and resources introduced in this work are available from http://nactem.ac.uk/anatomytagger. Contact: sophia.ananiadou@manchester.ac.uk Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:24162468

  12. [Research Progress of Multi-Model Medical Image Fusion at Feature Level].

    PubMed

    Zhang, Junjie; Zhou, Tao; Lu, Huiling; Wang, Huiqun

    2016-04-01

    Medical image fusion realizes advantage integration of functional images and anatomical images.This article discusses the research progress of multi-model medical image fusion at feature level.We firstly describe the principle of medical image fusion at feature level.Then we analyze and summarize fuzzy sets,rough sets,D-S evidence theory,artificial neural network,principal component analysis and other fusion methods’ applications in medical image fusion and get summery.Lastly,we in this article indicate present problems and the research direction of multi-model medical images in the future.

  13. A novel 3D shape descriptor for automatic retrieval of anatomical structures from medical images

    NASA Astrophysics Data System (ADS)

    Nunes, Fátima L. S.; Bergamasco, Leila C. C.; Delmondes, Pedro H.; Valverde, Miguel A. G.; Jackowski, Marcel P.

    2017-03-01

    Content-based image retrieval (CBIR) aims at retrieving from a database objects that are similar to an object provided by a query, by taking into consideration a set of extracted features. While CBIR has been widely applied in the two-dimensional image domain, the retrieval of3D objects from medical image datasets using CBIR remains to be explored. In this context, the development of descriptors that can capture information specific to organs or structures is desirable. In this work, we focus on the retrieval of two anatomical structures commonly imaged by Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) techniques, the left ventricle of the heart and blood vessels. Towards this aim, we developed the Area-Distance Local Descriptor (ADLD), a novel 3D local shape descriptor that employs mesh geometry information, namely facet area and distance from centroid to surface, to identify shape changes. Because ADLD only considers surface meshes extracted from volumetric medical images, it substantially diminishes the amount of data to be analyzed. A 90% precision rate was obtained when retrieving both convex (left ventricle) and non-convex structures (blood vessels), allowing for detection of abnormalities associated with changes in shape. Thus, ADLD has the potential to aid in the diagnosis of a wide range of vascular and cardiac diseases.

  14. Classification of nasolabial folds in Asians and the corresponding surgical approaches: By Shanghai 9th People's Hospital.

    PubMed

    Zhang, Lu; Tang, Meng-Yao; Jin, Rong; Zhang, Ying; Shi, Yao-Ming; Sun, Bao-Shan; Zhang, Yu-Guang

    2015-07-01

    One of the earliest signs of aging appears in the nasolabial fold, which is a special anatomical region that requires many factors for comprehensive assessment. Hence, it is inadequate to rely on a single index to facilitate the classification of nasolabial folds. Through clinical observation, we have observed that traditional filling treatments provide little improvement for some patients, which prompted us to seek a more specific and scientific classification standard and assessment system. A total of 900 patients who sought facial rejuvenation treatment in Shanghai 9th People's Hospital were invited in this study. We observed the different nasolabial fold traits for different age groups and in different states, and the results were compared with the Wrinkle Severity Rating Scale (WSRS). We summarized the data, presented a classification scheme, and proposed a selection of treatment options. Consideration of the anatomical and histological features of nasolabial folds allowed us to divide nasolabial folds into five types, namely the skin type, fat pad type, muscular type, bone retrusion type, and hybrid type. Because different types of nasolabial folds require different treatments, it is crucial to accurately assess and correctly classify the conditions. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  15. Preoperative Staging With 11C-Choline PET/CT Is Adequately Accurate in Patients With Very High-Risk Prostate Cancer.

    PubMed

    Schiavina, Riccardo; Bianchi, Lorenzo; Mineo Bianchi, Federico; Borghesi, Marco; Pultrone, Cristian Vincenzo; Dababneh, Hussam; Castellucci, Paolo; Ceci, Francesco; Nanni, Cristina; Gaudiano, Caterina; Fiorentino, Michelangelo; Porreca, Angelo; Chessa, Francesco; Minervini, Andrea; Fanti, Stefano; Brunocilla, Eugenio

    2018-05-30

    To evaluate the accuracy of 11 C-choline positron emission tomography (PET)/computed tomography (CT) for nodal staging of prostate cancer (PCa) in different populations of high-risk patients. We evaluated 262 individuals with intermediate- or high-risk PCa submitted to radical prostatectomy and extended pelvic lymph node dissection. Within men with high-risk disease, we identified a subgroup of individuals harboring very high-risk (VHR, n = 28) disease: clinical stage ≥ T2c and more than 5 cores with Gleason score 8-10; primary biopsy Gleason score of 5; 3 high-risk features; or prostate-specific antigen ≥ 30 ng/mL. The diagnostic accuracy of PET/CT and contrast-enhanced CT (CECT) was assessed after stratifying patients according to risk group classification on a patient- and anatomic region-based analysis. On patient-based analysis, considering high-risk patients (n = 155), 11 C-choline PET/CT versus CECT had sensitivity and specificity of 50% and 76% versus 21% and 92%, respectively. Considering VHR men as separate subgroups (n = 28), 11 C-choline PET/CT versus CECT had sensitivity and specificity of 71% and 93% versus 25% and 79%, respectively. Accordingly, in the VHR category, the area under the curve of 11 C-choline PET/CT versus CECT was 0.86 (95% confidence interval, 0.71-1.0) versus 0.69 (95% confidence interval, 0.52-0.86), respectively. On anatomic region-based analysis, considering the VHR group, 11 C-choline PET/CT versus CECT had sensitivity and specificity of 70.6% and 95.5% versus 35.3% and 98.5%, respectively. Patients with VHR characteristics could represent the ideal candidate to undergo disease staging with PET/CT before surgery with the highest cost efficacy. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Anatomic features of the neck as predictive markers of difficult direct laryngoscopy in men and women: A prospective study

    PubMed Central

    Chara, Liaskou; Eleftherios, Vouzounerakis; Maria, Moirasgenti; Anastasia, Trikoupi; Chryssoula, Staikou

    2014-01-01

    Background and Aims: Difficult airway assessment is based on various anatomic parameters of upper airway, much of it being concentrated on oral cavity and the pharyngeal structures. The diagnostic value of tests based on neck anatomy in predicting difficult laryngoscopy was assessed in this prospective, open cohort study. Methods: We studied 341 adult patients scheduled to receive general anaesthesia. Thyromental distance (TMD), sternomental distance (STMD), ratio of height to thyromental distance (RHTMD) and neck circumference (NC) were measured pre-operatively. The laryngoscopic view was classified according to the Cormack–Lehane Grade (1-4). Difficult laryngoscopy was defined as Cormack–Lehane Grade 3 or 4. The optimal cut-off points for each variable were identified by using receiver operating characteristic analysis. Sensitivity, specificity and positive predictive value and negative predictive value (NPV) were calculated for each test. Multivariate analysis with logistic regression, including all variables, was used to create a predictive model. Comparisons between genders were also performed. Results: Laryngoscopy was difficult in 12.6% of the patients. The cut-off values were: TMD ≤7 cm, STMD ≤15 cm, RHTMD >18.4 and NC >37.5 cm. The RHTMD had the highest sensitivity (88.4%) and NPV (95.2%), while TMD had the highest specificity (83.9%). The area under curve (AUC) for the TMD, STMD, RHTMD and NC was 0.63, 0.64, 0.62 and 0.54, respectively. The predictive model exhibited a higher and statistically significant diagnostic accuracy (AUC: 0.68, P < 0.001). Gender-specific cut-off points improved the predictive accuracy of NC in women (AUC: 0.65). Conclusions: The TMD, STMD, RHTMD and NC were found to be poor single predictors of difficult laryngoscopy, while a model including all four variables had a significant predictive accuracy. Among the studied tests, gender-specific cut-off points should be used for NC. PMID:24963183

  17. Anatomic features of the neck as predictive markers of difficult direct laryngoscopy in men and women: A prospective study.

    PubMed

    Liaskou, Chara; Chara, Liaskou; Vouzounerakis, Eleftherios; Eleftherios, Vouzounerakis; Moirasgenti, Maria; Maria, Moirasgenti; Trikoupi, Anastasia; Anastasia, Trikoupi; Staikou, Chryssoula; Chryssoula, Staikou

    2014-03-01

    Difficult airway assessment is based on various anatomic parameters of upper airway, much of it being concentrated on oral cavity and the pharyngeal structures. The diagnostic value of tests based on neck anatomy in predicting difficult laryngoscopy was assessed in this prospective, open cohort study. We studied 341 adult patients scheduled to receive general anaesthesia. Thyromental distance (TMD), sternomental distance (STMD), ratio of height to thyromental distance (RHTMD) and neck circumference (NC) were measured pre-operatively. The laryngoscopic view was classified according to the Cormack-Lehane Grade (1-4). Difficult laryngoscopy was defined as Cormack-Lehane Grade 3 or 4. The optimal cut-off points for each variable were identified by using receiver operating characteristic analysis. Sensitivity, specificity and positive predictive value and negative predictive value (NPV) were calculated for each test. Multivariate analysis with logistic regression, including all variables, was used to create a predictive model. Comparisons between genders were also performed. Laryngoscopy was difficult in 12.6% of the patients. The cut-off values were: TMD ≤7 cm, STMD ≤15 cm, RHTMD >18.4 and NC >37.5 cm. The RHTMD had the highest sensitivity (88.4%) and NPV (95.2%), while TMD had the highest specificity (83.9%). The area under curve (AUC) for the TMD, STMD, RHTMD and NC was 0.63, 0.64, 0.62 and 0.54, respectively. The predictive model exhibited a higher and statistically significant diagnostic accuracy (AUC: 0.68, P < 0.001). Gender-specific cut-off points improved the predictive accuracy of NC in women (AUC: 0.65). The TMD, STMD, RHTMD and NC were found to be poor single predictors of difficult laryngoscopy, while a model including all four variables had a significant predictive accuracy. Among the studied tests, gender-specific cut-off points should be used for NC.

  18. [National guidelines of diagnosis and treatment of the non-Hodgkin lymphoma].

    PubMed

    Candelaria, Myrna; Cervera-Ceballos, Eduardo; Meneses-García, Abelardo; Avilés-Salas, Alejandro; Lome-Maldonado, Carmen; Zárate-Osorno, Alejandra; Ortiz-Hidalgo, Carlos; Rodríguez-Moguel, Leticia; Quiñónez-Urrego, Enoe Enedina; Ramos-Salazar, Patricia; Romero-Guadarrama, Mónica Belinda; Lara-Torres, César; Ramírez-Aceves, Rocío; López-Navarro, Omar; Rivas-Vera, Silvia; Díaz-Meneses, Iván Eudaldo; Estrada-Lobato, Enrique; Cervera-Ceballos, José; Rojas-Marín, Carlos Enrique; Hernández-Rodriguez, José Mario; Pérez-López, Berenice; Gómez-Almaguer, David; Altamirano-Ley, Javier; Baz, Patricia; Valero-Saldaña, Luis Manuel; Navarrete-Herrera, José René; Torres-Salgado, Francisco Gerardo; Solano-Murillo, Pedro; Nambo-Lucio, María de Jesús; Rivas-Llamas, Ramón; Aquino-Salgado, Jorge Luis; Avila-Arreguín, Elsa Verónica; Cortês-Esteban, Patricia; Chongo-Alfaro, Martha Lilia; Pérez-Ramírez, Oscar de Jesús; Toledano-Cuevas, Diana Vanesa; Lobato-Mendizábal, Eduardo; Martínez-Ramírez, Mario Alberto; Morales-Maravilla, Adrián; Sosa-Camas, Rosa Elena; Agreda-Vásquez, Gladys P; Camacho-Hernández, Alejandro; Aguayo-González, Alvaro; Espinoza-Zamora, José Ramiro; Sánchez-Guerrero, Sergio A; Lozano-Zavaleta, Valentín; Selva-Pallares, Julio Edgar; Hernádez-Rodríguez, Juan Manuel; Cardiel-Silva, Mariela; Castillo-Rivera, Manuel Héctor; Villela, Luis; Loarca-Piña, Luis Martín; Zurita-Martínez, Hugo; Graham-Casassus, Juan; Azaola-Espinosa, Patricio; Silva-López, Salvador; Armenta-San Sebastián, Jorge Antonio; Mijangos-Huesca, Francisco; Pérez-Osorio, Jorge Eduardo; Aldaco-Sarvide, Fernando; Castellanos, Guillermo; Ramírez-Ibarguen, Ana Florencia; Zapata-Canto, Nidia; Labardini-Méndez, Juan Rafael

    2013-06-01

    Non-Hodgkin lymphoma comprises a heterogeneous group of haematological malignancies, classified according to their clinic, anatomic-pathological features and, lately, to their molecular biomarkers. Despite the therapeutic advances, nearly half of the patients will die because of this disease. The new diagnostic tools have been the cornerstone to design recent therapy targets, which must be included in the current treatment guidelines of this sort of neoplasms by means of clinical trials and evidence-based medicine. In the face of poor diagnoses devices in most of the Mexican hospitals, we recommend the present diagnose stratification, and treatment guidelines for non-Hodgkin lymphoma, based on evidence. They include the latest and most innovative therapeutic approaches, as well as specific recommendations for hospitals with limited framework and therapy resources.

  19. A "Second Life" for Gross Anatomy: Applications for Multiuser Virtual Environments in Teaching the Anatomical Sciences

    ERIC Educational Resources Information Center

    Richardson, April; Hazzard, Matthew; Challman, Sandra D.; Morgenstein, Aaron M.; Brueckner, Jennifer K.

    2011-01-01

    This article describes the emerging role of educational multiuser virtual environments, specifically Second Life[TM], in anatomical sciences education. Virtual worlds promote inquiry-based learning and conceptual understanding, potentially making them applicable for teaching and learning gross anatomy. A short introduction to Second Life as an…

  20. Semantic Dementia and Persisting Wernicke's Aphasia: Linguistic and Anatomical Profiles

    ERIC Educational Resources Information Center

    Ogar, J. M.; Baldo, J. V.; Wilson, S. M.; Brambati, S. M.; Miller, B. L.; Dronkers, N. F.; Gorno-Tempini, M. L.

    2011-01-01

    Few studies have directly compared the clinical and anatomical characteristics of patients with progressive aphasia to those of patients with aphasia caused by stroke. In the current study we examined fluent forms of aphasia in these two groups, specifically semantic dementia (SD) and persisting Wernicke's aphasia (WA) due to stroke. We compared…

  1. The importance of spatial ability and mental models in learning anatomy

    NASA Astrophysics Data System (ADS)

    Chatterjee, Allison K.

    As a foundational course in medical education, gross anatomy serves to orient medical and veterinary students to the complex three-dimensional nature of the structures within the body. Understanding such spatial relationships is both fundamental and crucial for achievement in gross anatomy courses, and is essential for success as a practicing professional. Many things contribute to learning spatial relationships; this project focuses on a few key elements: (1) the type of multimedia resources, particularly computer-aided instructional (CAI) resources, medical students used to study and learn; (2) the influence of spatial ability on medical and veterinary students' gross anatomy grades and their mental models; and (3) how medical and veterinary students think about anatomy and describe the features of their mental models to represent what they know about anatomical structures. The use of computer-aided instruction (CAI) by gross anatomy students at Indiana University School of Medicine (IUSM) was assessed through a questionnaire distributed to the regional centers of the IUSM. Students reported using internet browsing, PowerPoint presentation software, and email on a daily bases to study gross anatomy. This study reveals that first-year medical students at the IUSM make limited use of CAI to study gross anatomy. Such studies emphasize the importance of examining students' use of CAI to study gross anatomy prior to development and integration of electronic media into the curriculum and they may be important in future decisions regarding the development of alternative learning resources. In order to determine how students think about anatomical relationships and describe the features of their mental models, personal interviews were conducted with select students based on students' ROT scores. Five typologies of the characteristics of students' mental models were identified and described: spatial thinking, kinesthetic approach, identification of anatomical structures, problem solving strategies, and study methods. Students with different levels of spatial ability visualize and think about anatomy in qualitatively different ways, which is reflected by the features of their mental models. Low spatial ability students thought about and used two-dimensional images from the textbook. They possessed basic two-dimensional models of anatomical structures; they placed emphasis on diagrams and drawings in their studies; and they re-read anatomical problems many times before answering. High spatial ability students thought fully in three-dimensional and imagined rotation and movement of the structures; they made use of many types of images and text as they studied and solved problems. They possessed elaborate three-dimensional models of anatomical structures which they were able to manipulate to solve problems; and they integrated diagrams, drawings, and written text in their studies. Middle spatial ability students were a mix between both low and high spatial ability students. They imagined two-dimensional images popping out of the flat paper to become more three-dimensional, but still relied on drawings and diagrams. Additionally, high spatial ability students used a higher proportion of anatomical terminology than low spatial ability or middle spatial ability students. This provides additional support to the premise that high spatial students' mental models are a complex mixture of imagistic representations and propositional representations that incorporate correct anatomical terminology. Low spatial ability students focused on the function of structures and ways to group information primarily for the purpose of recall. This supports the theory that low spatial students' mental models will be characterized by more on imagistic representations that are general in nature. (Abstract shortened by UMI.)

  2. An automated distinction of DICOM images for lung cancer CAD system

    NASA Astrophysics Data System (ADS)

    Suzuki, H.; Saita, S.; Kubo, M.; Kawata, Y.; Niki, N.; Nishitani, H.; Ohmatsu, H.; Eguchi, K.; Kaneko, M.; Moriyama, N.

    2009-02-01

    Automated distinction of medical images is an important preprocessing in Computer-Aided Diagnosis (CAD) systems. The CAD systems have been developed using medical image sets with specific scan conditions and body parts. However, varied examinations are performed in medical sites. The specification of the examination is contained into DICOM textual meta information. Most DICOM textual meta information can be considered reliable, however the body part information cannot always be considered reliable. In this paper, we describe an automated distinction of DICOM images as a preprocessing for lung cancer CAD system. Our approach uses DICOM textual meta information and low cost image processing. Firstly, the textual meta information such as scan conditions of DICOM image is distinguished. Secondly, the DICOM image is set to distinguish the body parts which are identified by image processing. The identification of body parts is based on anatomical structure which is represented by features of three regions, body tissue, bone, and air. The method is effective to the practical use of lung cancer CAD system in medical sites.

  3. Guidance of vascular development: lessons from the nervous system.

    PubMed

    Larrivée, Bruno; Freitas, Catarina; Suchting, Steven; Brunet, Isabelle; Eichmann, Anne

    2009-02-27

    The vascular system of vertebrates consists of an organized, branched network of arteries, veins, and capillaries that penetrates all the tissues of the body. One of the most striking features of the vascular system is that its branching pattern is highly stereotyped, with major and secondary branches forming at specific sites and developing highly conserved organ-specific vascular patterns. The factors controlling vascular patterning are not yet completely understood. Recent studies have highlighted the anatomic and structural similarities between blood vessels and nerves. The 2 networks are often aligned, with nerve fibers and blood vessels following parallel routes. Furthermore, both systems require precise control over their guidance and growth. Several molecules with attractive and repulsive properties have been found to modulate the proper guidance of both nerves and blood vessels. These include the Semaphorins, the Slits, and the Netrins and their receptors. In this review, we describe the molecular mechanisms by which blood vessels and axons achieve proper path finding and the molecular cues that are involved in their guidance.

  4. Understanding the intentional acoustic behavior of humpback whales: a production-based approach.

    PubMed

    Cazau, Dorian; Adam, Olivier; Laitman, Jeffrey T; Reidenberg, Joy S

    2013-09-01

    Following a production-based approach, this paper deals with the acoustic behavior of humpback whales. This approach investigates various physical factors, which are either internal (e.g., physiological mechanisms) or external (e.g., environmental constraints) to the respiratory tractus of the whale, for their implications in sound production. This paper aims to describe a functional scenario of this tractus for the generation of vocal sounds. To do so, a division of this tractus into three different configurations is proposed, based on the air recirculation process which determines air sources and laryngeal valves. Then, assuming a vocal function (in sound generation or modification) for several specific anatomical components, an acoustic characterization of each of these configurations is proposed to link different spectral features, namely, fundamental frequencies and formant structures, to specific vocal production mechanisms. A discussion around the question of whether the whale is able to fully exploit the acoustic potential of its respiratory tractus is eventually provided.

  5. The Evolution of Lineage-Specific Regulatory Activities in the Human Embryonic Limb

    PubMed Central

    Cotney, Justin; Leng, Jing; Yin, Jun; Reilly, Steven K.; DeMare, Laura E.; Emera, Deena; Ayoub, Albert E.; Rakic, Pasko; Noonan, James P.

    2013-01-01

    SUMMARY The evolution of human anatomical features likely involved changes in gene regulation during development. However, the nature and extent of human-specific developmental regulatory functions remain unknown. We obtained a genome-wide view of cis-regulatory evolution in human embryonic tissues by comparing the histone modification H3K27ac, which provides a quantitative readout of promoter and enhancer activity, during human, rhesus, and mouse limb development. Based on increased H3K27ac, we find that 13% of promoters and 11% of enhancers have gained activity on the human lineage since the human-rhesus divergence. These gains largely arose by modification of ancestral regulatory activities in the limb or potential co-option from other tissues and are likely to have heterogeneous genetic causes. Most enhancers that exhibit gain of activity in humans originated in mammals. Gains at promoters and enhancers in the human limb are associated with increased gene expression, suggesting they include molecular drivers of human morphological evolution. PMID:23827682

  6. Concise Review: Criteria for Chamber‐Specific Categorization of Human Cardiac Myocytes Derived from Pluripotent Stem Cells

    PubMed Central

    Kane, Christopher

    2017-01-01

    Abstract Human pluripotent stem cell‐derived cardiomyocytes (PSC‐CMs) have great potential application in almost all areas of cardiovascular research. A current major goal of the field is to build on the past success of differentiation strategies to produce CMs with the properties of those originating from the different chambers of the adult human heart. With no anatomical origin or developmental pathway to draw on, the question of how to judge the success of such approaches and assess the chamber specificity of PSC‐CMs has become increasingly important; commonly used methods have substantial limitations and are based on limited evidence to form such an assessment. In this article, we discuss the need for chamber‐specific PSC‐CMs in a number of areas as well as current approaches used to assess these cells on their likeness to those from different chambers of the heart. Furthermore, describing in detail the structural and functional features that distinguish the different chamber‐specific human adult cardiac myocytes, we propose an evidence‐based tool to aid investigators in the phenotypic characterization of differentiated PSC‐CMs. Stem Cells 2017;35:1881–1897 PMID:28577296

  7. Muscle Logic: New Knowledge Resource for Anatomy Enables Comprehensive Searches of the Literature on the Feeding Muscles of Mammals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Druzinsky, Robert E.; Balhoff, James P.; Crompton, Alfred W.

    Here we present the Mammalian Feeding Muscle Ontology (MFMO), a multi-species ontology focused on anatomical structures that participate in feeding and other oral/pharyngeal behaviors. A unique feature of the MFMO is that a simple, computable, definition of each muscle, which includes its attachments and innervation, is true across mammals. This construction mirrors the logical foundation of comparative anatomy and permits searches using language familiar to biologists. Further, it provides a template for muscles that will be useful in extending any anatomy ontology. The MFMO is developed to support the Feeding Experiments End-User Database Project (FEED, https://feedexp.org/), a publicly-available, online repositorymore » for physiological data collected from in vivo studies of feeding (e.g., mastication, biting, swallowing) in mammals. Currently the MFMO is integrated into FEED and also into two literature-specific implementations of Textpresso, a text-mining system that facilitates powerful searches of a corpus of scientific publications. We evaluate the MFMO by asking questions that test the ability of the ontology to return appropriate answers (competency questions). Lastly, we compare the results of queries of the MFMO to results from similar searches in PubMed and Google Scholar. Our tests demonstrate that the MFMO is competent to answer queries formed in the common language of comparative anatomy, but PubMed and Google Scholar are not. Overall, our results show that by incorporating anatomical ontologies into searches, an expanded and anatomically comprehensive set of results can be obtained. The broader scientific and publishing communities should consider taking up the challenge of semantically enabled search capabilities.« less

  8. Muscle Logic: New Knowledge Resource for Anatomy Enables Comprehensive Searches of the Literature on the Feeding Muscles of Mammals

    DOE PAGES

    Druzinsky, Robert E.; Balhoff, James P.; Crompton, Alfred W.; ...

    2016-02-12

    Here we present the Mammalian Feeding Muscle Ontology (MFMO), a multi-species ontology focused on anatomical structures that participate in feeding and other oral/pharyngeal behaviors. A unique feature of the MFMO is that a simple, computable, definition of each muscle, which includes its attachments and innervation, is true across mammals. This construction mirrors the logical foundation of comparative anatomy and permits searches using language familiar to biologists. Further, it provides a template for muscles that will be useful in extending any anatomy ontology. The MFMO is developed to support the Feeding Experiments End-User Database Project (FEED, https://feedexp.org/), a publicly-available, online repositorymore » for physiological data collected from in vivo studies of feeding (e.g., mastication, biting, swallowing) in mammals. Currently the MFMO is integrated into FEED and also into two literature-specific implementations of Textpresso, a text-mining system that facilitates powerful searches of a corpus of scientific publications. We evaluate the MFMO by asking questions that test the ability of the ontology to return appropriate answers (competency questions). Lastly, we compare the results of queries of the MFMO to results from similar searches in PubMed and Google Scholar. Our tests demonstrate that the MFMO is competent to answer queries formed in the common language of comparative anatomy, but PubMed and Google Scholar are not. Overall, our results show that by incorporating anatomical ontologies into searches, an expanded and anatomically comprehensive set of results can be obtained. The broader scientific and publishing communities should consider taking up the challenge of semantically enabled search capabilities.« less

  9. Computational design and engineering of polymeric orthodontic aligners.

    PubMed

    Barone, S; Paoli, A; Razionale, A V; Savignano, R

    2016-10-05

    Transparent and removable aligners represent an effective solution to correct various orthodontic malocclusions through minimally invasive procedures. An aligner-based treatment requires patients to sequentially wear dentition-mating shells obtained by thermoforming polymeric disks on reference dental models. An aligner is shaped introducing a geometrical mismatch with respect to the actual tooth positions to induce a loading system, which moves the target teeth toward the correct positions. The common practice is based on selecting the aligner features (material, thickness, and auxiliary elements) by only considering clinician's subjective assessments. In this article, a computational design and engineering methodology has been developed to reconstruct anatomical tissues, to model parametric aligner shapes, to simulate orthodontic movements, and to enhance the aligner design. The proposed approach integrates computer-aided technologies, from tomographic imaging to optical scanning, from parametric modeling to finite element analyses, within a 3-dimensional digital framework. The anatomical modeling provides anatomies, including teeth (roots and crowns), jaw bones, and periodontal ligaments, which are the references for the down streaming parametric aligner shaping. The biomechanical interactions between anatomical models and aligner geometries are virtually reproduced using a finite element analysis software. The methodology allows numerical simulations of patient-specific conditions and the comparative analyses of different aligner configurations. In this article, the digital framework has been used to study the influence of various auxiliary elements on the loading system delivered to a maxillary and a mandibular central incisor during an orthodontic tipping movement. Numerical simulations have shown a high dependency of the orthodontic tooth movement on the auxiliary element configuration, which should then be accurately selected to maximize the aligner's effectiveness. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Unravelling the Intrinsic Functional Organization of the Human Striatum: A Parcellation and Connectivity Study Based on Resting-State fMRI

    PubMed Central

    Jung, Wi Hoon; Jang, Joon Hwan; Park, Jin Woo; Kim, Euitae; Goo, Eun-Hoe; Im, Oh-Soo; Kwon, Jun Soo

    2014-01-01

    As the main input hub of the basal ganglia, the striatum receives projections from the cerebral cortex. Many studies have provided evidence for multiple parallel corticostriatal loops based on the structural and functional connectivity profiles of the human striatum. A recent resting-state fMRI study revealed the topography of striatum by assigning each voxel in the striatum to its most strongly correlated cortical network among the cognitive, affective, and motor networks. However, it remains unclear what patterns of striatal parcellation would result from performing the clustering without subsequent assignment to cortical networks. Thus, we applied unsupervised clustering algorithms to parcellate the human striatum based on its functional connectivity patterns to other brain regions without any anatomically or functionally defined cortical targets. Functional connectivity maps of striatal subdivisions, identified through clustering analyses, were also computed. Our findings were consistent with recent accounts of the functional distinctions of the striatum as well as with recent studies about its functional and anatomical connectivity. For example, we found functional connections between dorsal and ventral striatal clusters and the areas involved in cognitive and affective processes, respectively, and between rostral and caudal putamen clusters and the areas involved in cognitive and motor processes, respectively. This study confirms prior findings, showing similar striatal parcellation patterns between the present and prior studies. Given such striking similarity, it is suggested that striatal subregions are functionally linked to cortical networks involving specific functions rather than discrete portions of cortical regions. Our findings also demonstrate that the clustering of functional connectivity patterns is a reliable feature in parcellating the striatum into anatomically and functionally meaningful subdivisions. The striatal subdivisions identified here may have important implications for understanding the relationship between corticostriatal dysfunction and various neurodegenerative and psychiatric disorders. PMID:25203441

  11. Anatomical characterization of hoof growth pattern in six Iranian sheep breeds and its possible implication for trimming recommendations.

    PubMed

    Azarpajouh, S; Marchewka, J; Segura Correa, J C; Calderón Díaz, J A

    2018-03-11

    The objective of this study was to compare hoof anatomy, hoof growth pattern, and hoof weight-bearing surface of six different Iranian sheep breeds to identify possible differences in the hoof anatomical features that could help to minimize adverse effects of hoof trimming methods. Front and hind hooves of 2-year-old, previously untrimmed, pastured dairy ewes of six Iranian breeds (Afshari, Moghani, Kurdi, Makoui, Chaleshtori, and Lori-Bakhtiari; n = 180 ewes; 30 ewes per breed) were collected after slaughter. Medial and lateral claws were incised sagittally and anatomical measurements such as toe length, heel height, toe height, sole thickness, sole length, and toe angle were recorded in each claw. Data were analyzed using mixed model equations including breed, claw (lateral or medial), hoof (front or hind) and their interactions as fixed effects, and ewe as random effect. Breed differences were observed for all hoof measurements (P < 0.05). Chaleshtori sheep had higher measurements for most of the traits studied while Afshari and Makoui sheep had lower measurements. All measurements, except for toe length and toe height to solar surface to heel height ratio, were significantly greater in the front hooves than in the hind hooves (P < 0.05). Soles were longer in the medial claws compared to the lateral claws of the front hooves (P < 0.05). Results suggest the observed breed differences could interfere with establishing a standard, uniform hoof trimming method for sheep. For instance, it might be possible that while Afshari and Makoui sheep could require more conservative trimming, Chaleshtori sheep could require to be trimmed more. In consequence, hoof trimming methods might need to be adjusted to specific breed characteristics to avoid possible tissue damage.

  12. Anatomical analysis of thumb opponency movement in the capuchin monkey (Sapajus sp).

    PubMed

    Aversi-Ferreira, Roqueline A G M F; Souto Maior, Rafael; Aziz, Ashraf; Ziermann, Janine M; Nishijo, Hisao; Tomaz, Carlos; Tavares, Maria Clotilde H; Aversi-Ferreira, Tales Alexandre

    2014-01-01

    Capuchin monkeys present a wide variety of manipulatory skills and make routine use of tools both in captivity and in the wild. Efficient handling of objects in this genus has led several investigators to assume near-human thumb movements despite the lack of anatomical studies. Here we perform an anatomical analysis of muscles and bones in the capuchin hand. Trapezo-metacarpal joint surfaces observed in capuchins indicate that medial rotation of metacarpal I is either absent or very limited. Overall, bone structural arrangement and thumb position relative to the other digits and the hand's palm suggest that capuchins are unable to perform any kind of thumb opponency, but rather a 'lateral pinch' movement. Although the capuchin hand apparatus bears other features necessary for complex tool use, the lack thumb opposition movements suggests that a developed cognitive and motor nervous system may be even more important for high manipulatory skills than traditionally held.

  13. Anatomical and physiological evidence for polarisation vision in the nocturnal bee Megalopta genalis.

    PubMed

    Greiner, Birgit; Cronin, Thomas W; Ribi, Willi A; Wcislo, William T; Warrant, Eric J

    2007-06-01

    The presence of a specialised dorsal rim area with an ability to detect the e-vector orientation of polarised light is shown for the first time in a nocturnal hymenopteran. The dorsal rim area of the halictid bee Megalopta genalis features a number of characteristic anatomical specialisations including an increased rhabdom diameter and a lack of primary screening pigments. Optically, these specialisations result in wide spatial receptive fields (Deltarho = 14 degrees ), a common adaptation found in the dorsal rim areas of insects used to filter out interfering effects (i.e. clouds) from the sky. In this specialised eye region all nine photoreceptors contribute their microvilli to the entire length of the ommatidia. These orthogonally directed microvilli are anatomically arranged in an almost linear, anterior-posterior orientation. Intracellular recordings within the dorsal rim area show very high polarisation sensitivity and a sensitivity peak within the ultraviolet part of the spectrum.

  14. Pleistocene Homo sapiens from Middle Awash, Ethiopia.

    PubMed

    White, Tim D; Asfaw, Berhane; DeGusta, David; Gilbert, Henry; Richards, Gary D; Suwa, Gen; Howell, F Clark

    2003-06-12

    The origin of anatomically modern Homo sapiens and the fate of Neanderthals have been fundamental questions in human evolutionary studies for over a century. A key barrier to the resolution of these questions has been the lack of substantial and accurately dated African hominid fossils from between 100,000 and 300,000 years ago. Here we describe fossilized hominid crania from Herto, Middle Awash, Ethiopia, that fill this gap and provide crucial evidence on the location, timing and contextual circumstances of the emergence of Homo sapiens. Radioisotopically dated to between 160,000 and 154,000 years ago, these new fossils predate classic Neanderthals and lack their derived features. The Herto hominids are morphologically and chronologically intermediate between archaic African fossils and later anatomically modern Late Pleistocene humans. They therefore represent the probable immediate ancestors of anatomically modern humans. Their anatomy and antiquity constitute strong evidence of modern-human emergence in Africa.

  15. [Multi-center study of the Jenaer model of the temporal bone].

    PubMed

    Schneider, G; Müller, A

    2004-06-01

    Preparing exercises at the temporal bone are a prerequisite for the knowledge of the anatomical special features of this region and for learning the fundamentals of the tympanic cavity surgery. Since however fewer human temporal bones are available, the search for back-up models already took place in the last years. Based on the experiences of the handling and visualization of CT data for the 3D-implant construction in the ent department Jena a temporal bone model was developed. The model was sent away to surgeons of different training. On the basis of identification of anatomical structures and evaluation of general parameters by means of a point system the model was evaluated. The Jenaer temporal bone model is suitable as entrance into the preparing exercises. The anatomical structures are good to identify for the beginner. The handling with drill and chisel can be learned.

  16. Novelties in secretory structures and anatomy of Rhynchosia (Fabaceae).

    PubMed

    De Vargas, Wanderleia; Sartori, Ângela L B; Dias, Edna S

    2015-03-01

    A comparative anatomical study was carried out on the secretory structures of leaflets from taxa belonging to the genus Rhynchosia - taxa difficult to delimit because of uncertain interspecific relations - in order to evaluate the potential diagnostic value of these anatomical traits for taxonomic assignment. A further objective was to establish consensual denomination for these secretory structures. The new anatomical features found in these taxa were sufficiently consistent to separate the species evaluated. The presence and localization of glandular-punctate structures bulbous-based trichomes, the number of layers in the palisade parenchyma and the arrangement of vascular units distinguish the taxa investigated and these characteristics can be extended to other species of Papilionoideae. The trichomes analyzed were described and classified into five types. Depicted in diagrams, photomicrographs, and by scanning electron microscopy, and listed for the first time at the genus and species levels. The information obtained served to effectively distinguish the taxa investigated among species of Papilonoideae.

  17. Bioprinting for vascular and vascularized tissue biofabrication.

    PubMed

    Datta, Pallab; Ayan, Bugra; Ozbolat, Ibrahim T

    2017-03-15

    Bioprinting is a promising technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision. Bioprinting enables the deposition of various biologics including growth factors, cells, genes, neo-tissues and extra-cellular matrix-like hydrogels. Benefits of bioprinting have started to make a mark in the fields of tissue engineering, regenerative medicine and pharmaceutics. Specifically, in the field of tissue engineering, the creation of vascularized tissue constructs has remained a principal challenge till date. However, given the myriad advantages over other biofabrication methods, it becomes organic to expect that bioprinting can provide a viable solution for the vascularization problem, and facilitate the clinical translation of tissue engineered constructs. This article provides a comprehensive account of bioprinting of vascular and vascularized tissue constructs. The review is structured as introducing the scope of bioprinting in tissue engineering applications, key vascular anatomical features and then a thorough coverage of 3D bioprinting using extrusion-, droplet- and laser-based bioprinting for fabrication of vascular tissue constructs. The review then provides the reader with the use of bioprinting for obtaining thick vascularized tissues using sacrificial bioink materials. Current challenges are discussed, a comparative evaluation of different bioprinting modalities is presented and future prospects are provided to the reader. Biofabrication of living tissues and organs at the clinically-relevant volumes vitally depends on the integration of vascular network. Despite the great progress in traditional biofabrication approaches, building perfusable hierarchical vascular network is a major challenge. Bioprinting is an emerging technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision, which holds a great promise in fabrication of vascular or vascularized tissues for transplantation use. Although a great progress has recently been made on building perfusable tissues and branched vascular network, a comprehensive review on the state-of-the-art in vascular and vascularized tissue bioprinting has not reported so far. This contribution is thus significant because it discusses the use of three major bioprinting modalities in vascular tissue biofabrication for the first time in the literature and compares their strengths and limitations in details. Moreover, the use of scaffold-based and scaffold-free bioprinting is expounded within the domain of vascular tissue fabrication. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Ankle impingement syndromes: an imaging review

    PubMed Central

    Tafur, Monica; Ahmed, Sonya S; Huang, Brady K; Chang, Eric Y

    2017-01-01

    Ankle impingement syndromes encompass a broad spectrum of post-traumatic and chronic degenerative changes that present with pain on specific movements about the ankle joint. Both amateur and professional athletes are disproportionately affected by these conditions, and while conservative measures can potentially treat an impingement syndrome, definitive therapy is often alleviated surgically. Imaging (including conventional radiography, ultrasound, CT and MRI) plays an invaluable role in the diagnosis and pre-surgical work-up. An anatomically based classification system is useful in these syndromes, as the aetiology, sites of pathology and preferred treatment methods are similarly based on anatomic locations about the ankle. This review focuses on the anatomic locations, pathophysiology, imaging considerations and brief discussion of therapies for each of the major anatomic ankle impingement syndromes. PMID:27885856

  19. A statistical shape modelling framework to extract 3D shape biomarkers from medical imaging data: assessing arch morphology of repaired coarctation of the aorta.

    PubMed

    Bruse, Jan L; McLeod, Kristin; Biglino, Giovanni; Ntsinjana, Hopewell N; Capelli, Claudio; Hsia, Tain-Yen; Sermesant, Maxime; Pennec, Xavier; Taylor, Andrew M; Schievano, Silvia

    2016-05-31

    Medical image analysis in clinical practice is commonly carried out on 2D image data, without fully exploiting the detailed 3D anatomical information that is provided by modern non-invasive medical imaging techniques. In this paper, a statistical shape analysis method is presented, which enables the extraction of 3D anatomical shape features from cardiovascular magnetic resonance (CMR) image data, with no need for manual landmarking. The method was applied to repaired aortic coarctation arches that present complex shapes, with the aim of capturing shape features as biomarkers of potential functional relevance. The method is presented from the user-perspective and is evaluated by comparing results with traditional morphometric measurements. Steps required to set up the statistical shape modelling analyses, from pre-processing of the CMR images to parameter setting and strategies to account for size differences and outliers, are described in detail. The anatomical mean shape of 20 aortic arches post-aortic coarctation repair (CoA) was computed based on surface models reconstructed from CMR data. By analysing transformations that deform the mean shape towards each of the individual patient's anatomy, shape patterns related to differences in body surface area (BSA) and ejection fraction (EF) were extracted. The resulting shape vectors, describing shape features in 3D, were compared with traditionally measured 2D and 3D morphometric parameters. The computed 3D mean shape was close to population mean values of geometric shape descriptors and visually integrated characteristic shape features associated with our population of CoA shapes. After removing size effects due to differences in body surface area (BSA) between patients, distinct 3D shape features of the aortic arch correlated significantly with EF (r = 0.521, p = .022) and were well in agreement with trends as shown by traditional shape descriptors. The suggested method has the potential to discover previously unknown 3D shape biomarkers from medical imaging data. Thus, it could contribute to improving diagnosis and risk stratification in complex cardiac disease.

  20. [Ocular surface system integrity].

    PubMed

    Safonova, T N; Pateyuk, L S

    2015-01-01

    The interplay of different structures belonging to either the anterior segment of the eye or its accessory visual apparatus, which all share common embryological, anatomical, functional, and physiological features, is discussed. Explanation of such terms, as ocular surface, lacrimal functional unit, and ocular surface system, is provided.

  1. Application of anatomy and HPTLC in characterizing species of Dioscorea (Dioscoreaceae)

    PubMed Central

    Galal, Ahmed M.; Avula, Bharathi; Sagi, Satyanarayanaraju; Smillie, Troy J.

    2017-01-01

    The edible tubers from different species of Dioscorea are a major source of food and nutrition for millions of people. Some of the species are medicinally important but others are toxic. The genus consists of about 630 species of almost wholly dioecious plants, many of them poorly characterized. The taxonomy of Dioscorea is confusing and identification of the species is generally problematic. There are no adequate anatomical studies available for most of the species. This study is aimed to fill this gap and provides a detailed investigation of the anatomy and micromorphology of the rhizomes and tubers of five different species of Dioscorea, namely D. balcanica, D. bulbifera, D. polystachya, D. rotundata and D. villosa. The primary features that can help in distinguishing the species include the nature of periderm, presence or absence of pericyclic sclereids, lignification in the phloem, types of calcium oxalate crystals and features of starch grains. The descriptions are supported with images of bright-field and scanning electron microscopy for better understanding of these species. The diagnostic key of anatomical features included in this paper can help distinguish the investigated species unambiguously. Additionally, HPTLC analyses of authentic and commercial samples of the five species are described. PMID:24928704

  2. ‘Metabolically healthy obesity’: Origins and implications

    PubMed Central

    Denis, Gerald V.; Obin, Martin S.

    2013-01-01

    When humans eat more and exercise less, they tend to become obese and unhealthy. The molecular pathways that link obesity to serious diseases like Type 2 diabetes and cardiovascular disease have become a subject of intensive scientific investigation because the exploding prevalence of obesity worldwide represents a grave new threat to the health of hundreds of millions of people. However, obesity is not always destiny. Two important clinical populations have been valuable to understand the mechanisms behind this conundrum: individuals who exhibit metabolic dysfunction, diabetes and elevated cardiovascular disease risk despite a lean body type, and individuals who are relatively protected from these dangers despite significant obesity. Study of this second group of ‘metabolically healthy obese’ people in particular has been revealing because such individuals exhibit specific, identifiable, anatomic, cellular and molecular features that set them apart from the rest of us who suffer declining health with increasing weight. Here, we examine some of these features, including some mouse models that are informative of mechanism, and suggest hypotheses for further study, including the possibility that genes and pathways of the immune system might offer new diagnostic or therapeutic targets. PMID:23068072

  3. Lung partitioning for x-ray CAD applications

    NASA Astrophysics Data System (ADS)

    Annangi, Pavan; Raja, Anand

    2011-03-01

    Partitioning the inside region of lung into homogeneous regions becomes a crucial step in any computer-aided diagnosis applications based on chest X-ray. The ribs, air pockets and clavicle occupy major space inside the lung as seen in the chest x-ray PA image. Segmenting the ribs and clavicle to partition the lung into homogeneous regions forms a crucial step in any CAD application to better classify abnormalities. In this paper we present two separate algorithms to segment ribs and the clavicle bone in a completely automated way. The posterior ribs are segmented based on Phase congruency features and the clavicle is segmented using Mean curvature features followed by Radon transform. Both the algorithms work on the premise that the presentation of each of these anatomical structures inside the left and right lung has a specific orientation range within which they are confined to. The search space for both the algorithms is limited to the region inside the lung, which is obtained by an automated lung segmentation algorithm that was previously developed in our group. Both the algorithms were tested on 100 images of normal and patients affected with Pneumoconiosis.

  4. Comparison of Bone Remodeling Between an Anatomic Short Stem and a Straight Stem in 1-Stage Bilateral Total Hip Arthroplasty.

    PubMed

    Koyano, Gaku; Jinno, Tetsuya; Koga, Daisuke; Yamauchi, Yuki; Muneta, Takeshi; Okawa, Atsushi

    2017-02-01

    Femurs of dysplastic hips exhibit specific abnormalities, and use of modular or specially designed components is recommended. An anatomic short stem was previously designed specifically for dysplastic hips using 3-dimensional data acquired from dysplastic patients. To investigate effects of stem geometry on bone remodeling, we undertook a prospective, randomized study of patients who had undergone 1-stage bilateral total hip arthroplasty (THA) with the anatomic short stem on one side and a conventional straight stem on the other. The study included 36 patients who underwent the above THA procedure. We assessed bone mineral density as well as the presence of cancellous condensation or bony atrophy due to stress shielding based on the analysis of Gruen's zones and newly defined equal-interval zones, at an average follow-up period of 9.2 years. All stems were bone ingrown stable. Cancellous condensation was observed more proximally, and areas of bone atrophy were narrower on the anatomic short stem side than on the straight stem side. Bone mineral density values reflected results of cancellous condensation and stress shielding and were higher in more proximal zones on the anatomic short stem side than on the straight stem side. Although radiographic results indicated good midterm outcomes of THA with both stems, the loading pattern differed. The anatomic short stem achieved its design purpose in terms of proximal fixation and load transfer and led to better preservation of the proximal femur. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Physician opinions about an anatomy core curriculum: a case for medical imaging and vertical integration.

    PubMed

    Orsbon, Courtney P; Kaiser, Rebecca S; Ross, Callum F

    2014-01-01

    Pre-clinical anatomy curricula must provide medical students with the knowledge needed in a variety of medical and surgical specialties. But do physicians within specialties agree about what anatomical knowledge is most important in their practices? And, what is the common core of anatomical knowledge deemed essential by physicians in different specialties? Answers to these questions would be useful in designing pre-clinical anatomy courses. The primary aim of this study was to assess the importance of a human gross anatomy course by soliciting the opinions of physicians from a range of specialties. We surveyed 93 physicians to determine the importance of specific anatomical topics in their own practices. Their responses were analyzed to assess variation in intra- and inter-departmental attitudes toward the importance of anatomy. Nearly all of the topics taught in the course were deemed important by the clinicians as a group, but respondents showed little agreement on the rank order of importance of anatomical topics. Overall, only medical imaging received high importance by nearly all respondents, and lower importance was attached to embryology and lymphatic anatomy. Our survey data, however, also suggested distinct hierarchies in the importance assigned to anatomical topics within specialties. Given that physicians view the importance of anatomy differently, we suggest that students revisit anatomy through a vertically integrated curriculum tailored to provide specialty-specific anatomical training to advanced students based on their areas of clinical interest. Integration of medical imaging into pre-clinical anatomy courses, already underway in many medical schools, is of high clinical relevance. © 2013 American Association of Anatomists.

  6. Improving results for carotid artery stenting by validation of the anatomic scoring system for carotid artery stenting with patient-specific simulated rehearsal.

    PubMed

    Willaert, Willem I M; Cheshire, Nicholas J; Aggarwal, Rajesh; Van Herzeele, Isabelle; Stansby, Gerard; Macdonald, Sumaira; Vermassen, Frank E

    2012-12-01

    Carotid artery stenting (CAS) is a technically demanding procedure with a risk of periprocedural stroke. A scoring system based on anatomic criteria has been developed to facilitate patient selection for CAS. Advancements in simulation science also enable case evaluation through patient-specific virtual reality (VR) rehearsal on an endovascular simulator. This study aimed to validate the anatomic scoring system for CAS using the patient-specific VR technology. Three patients were selected and graded according to the CAS scoring system (maximum score, 9): one easy (score, <4.9), one intermediate (score, 5.0-5.9), and one difficult (score, >7.0). The three cases were performed on the simulator in random order by 20 novice interventionalists pretrained in CAS. Technical performances were assessed using simulator-based metrics and expert-based ratings. The interventionalists took significantly longer to perform the difficult CAS case (median, 31.6 vs 19.7 vs 14.6 minutes; P<.0001) compared with the intermediate and easy cases; similarly, more fluoroscopy time (20.7 vs 12.1 vs 8.2 minutes; P<.0001), contrast volume (56.5 vs 51.5 vs 50.0 mL; P=.0060), and roadmaps (10 vs 9 vs 9; P=.0040) were used. The quality of performance declined significantly as the cases became more challenging (score, 24 vs 22 vs 19; P<.0001). The anatomic scoring system for CAS can predict the difficulty of a CAS procedure as measured by patient-specific VR. This scoring system, with or without the additional use of patient-specific VR, can guide novice interventionalists in selecting appropriate patients for CAS. This may reduce the perioperative stroke risk and enhance patient safety. Copyright © 2012 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  7. Vowel Acoustic Space Development in Children: A Synthesis of Acoustic and Anatomic Data

    ERIC Educational Resources Information Center

    Vorperian, Houri K.; Kent, Ray D.

    2007-01-01

    Purpose: This article integrates published acoustic data on the development of vowel production. Age specific data on formant frequencies are considered in the light of information on the development of the vocal tract (VT) to create an anatomic-acoustic description of the maturation of the vowel acoustic space for English. Method: Literature…

  8. Short-Term Memories in "Drosophila" Are Governed by General and Specific Genetic Systems

    ERIC Educational Resources Information Center

    Zars, Troy

    2010-01-01

    In a dynamic environment, there is an adaptive value in the ability of animals to acquire and express memories. That both simple and complex animals can learn is therefore not surprising. How animals have solved this problem genetically and anatomically probably lies somewhere in a range between a single molecular/anatomical mechanism that applies…

  9. The utility of cadaver-based approaches for the teaching of human anatomy: A survey of British and Irish anatomy teachers.

    PubMed

    Balta, Joy Y; Cronin, Michael; Cryan, John F; O'Mahony, Siobhain M

    2017-03-01

    Utilizing reality anatomy such as dissection and demonstrating using cadavers has been described as a superior way to create meaning. The chemicals used to embalm cadavers differentially alter the tissue of the human body, which has led to the usage of different processes along the hard to soft-fixed spectrum of preserved cadavers. A questionnaire based approach was used to gain a better insight into the opinion of anatomists on the use of preserved cadavers for the teaching of human anatomy. This study focused on anatomy teachers in the United Kingdom and Ireland. From the 125 participating anatomists, 34.4% were medically qualified, 30.4% had a PhD in a non-anatomical science and 22.4% had a PhD in an anatomical science, these figures include ten anatomists who had combinations of MD with the two other PhD qualifications. The main findings from the questionnaire were that 61.6% of participants agreed that hard-fixed formalin cadavers accurately resemble features of a human body whereas 21.6% disagreed. Moreover, anatomists rated the teaching aids on how accurately they resemble features of the human body as follows: plastic models the least accurate followed by plastinated specimens, hard fixed cadavers; soft preserved cadavers were considered to be the most accurate when it comes to resembling features of the human body. Though anatomists considered soft preserved cadavers as the most accurate tool, further research is required in order to investigate which techniques or methods provide better teaching tool for a range of anatomical teaching levels and for surgical training. Anat Sci Educ 10: 137-143. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  10. Investigation of adverse events associated with an off-label use of arterial stents and CE-marked iliac vein stents in the iliac vein: insights into developing a better iliac vein stent.

    PubMed

    Shida, Takuya; Umezu, Mitsuo; Iwasaki, Kiyotaka

    2018-06-01

    We analyzed the adverse events associated with an off-label use of arterial stents and CE-marked iliac vein stents for the treatment of iliac venous thromboembolism and investigated their relationships with the anatomical features of the iliac vein, to gain insights into the development of a better iliac vein stent. Reports of adverse events following the use of stents in the iliac vein were retrieved from the Manufacturer and User Facility Device Experience (MAUDE) database that contain suspected device-associated complications reported to the Food and Drug Administration. Data from 2006 to 2016 were investigated. The literature analysis was also conducted using PubMed, Cochrane Library, EMBASE, and Web of Science focusing on English articles published up to 4 October 2016. The analysis of 88 adverse events from the MAUDE database and 182 articles from the literature revealed that a higher number of adverse events had been reported following the use of arterial stents in the iliac vein compared to CE-marked iliac vein stents. While stent migration and shortening were reported only for the arterial stents, stent fracture and compression occurred regardless of the stent type, even though a vein does not pulsate. A study of the anatomical features of the iliac vein implies that bending, compression, and kink loads are applied to the iliac vein stents in vivo. For designing, developing, and pre-clinical testing of stents intended for use in the iliac vein, the above mechanical load environments induced by the anatomical features should be considered.

  11. The hip adductor muscle group in caviomorph rodents: anatomy and homology.

    PubMed

    García-Esponda, César M; Candela, Adriana M

    2015-06-01

    Anatomical comparative studies including myological data of caviomorph rodents are relatively scarce, leading to a lack of use of muscular features in cladistic and morphofunctional analyses. In rodents, the hip adductor muscles constitute an important group of the hindlimb musculature, having an important function during the beginning of the stance phase. These muscles are subdivided in several distinct ways in the different clades of rodents, making the identification of their homologies hard to establish. In this contribution we provide a detailed description of the anatomical variation of the hip adductor muscle group of different genera of caviomorph rodents and identify the homologies of these muscles in the context of Rodentia. On this basis, we identify the characteristic pattern of the hip adductor muscles in Caviomorpha. Our results indicate that caviomorphs present a singular pattern of the hip adductor musculature that distinguishes them from other groups of rodents. They are characterized by having a single m. adductor brevis that includes solely its genicular part. This muscle, together with the m. gracilis, composes a muscular sheet that is medial to all other muscles of the hip adductor group. Both muscles probably have a synergistic action during locomotion, where the m. adductor brevis reinforces the multiple functions of the m. gracilis in caviomorphs. Mapping of analyzed myological characters in the context of Rodentia indicates that several features are recovered as potential synapomorphies of caviomorphs. Thus, analysis of the myological data described here adds to the current knowledge of caviomorph rodents from anatomical and functional points of view, indicating that this group has features that clearly differentiate them from other rodents. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Pathology economic model tool: a novel approach to workflow and budget cost analysis in an anatomic pathology laboratory.

    PubMed

    Muirhead, David; Aoun, Patricia; Powell, Michael; Juncker, Flemming; Mollerup, Jens

    2010-08-01

    The need for higher efficiency, maximum quality, and faster turnaround time is a continuous focus for anatomic pathology laboratories and drives changes in work scheduling, instrumentation, and management control systems. To determine the costs of generating routine, special, and immunohistochemical microscopic slides in a large, academic anatomic pathology laboratory using a top-down approach. The Pathology Economic Model Tool was used to analyze workflow processes at The Nebraska Medical Center's anatomic pathology laboratory. Data from the analysis were used to generate complete cost estimates, which included not only materials, consumables, and instrumentation but also specific labor and overhead components for each of the laboratory's subareas. The cost data generated by the Pathology Economic Model Tool were compared with the cost estimates generated using relative value units. Despite the use of automated systems for different processes, the workflow in the laboratory was found to be relatively labor intensive. The effect of labor and overhead on per-slide costs was significantly underestimated by traditional relative-value unit calculations when compared with the Pathology Economic Model Tool. Specific workflow defects with significant contributions to the cost per slide were identified. The cost of providing routine, special, and immunohistochemical slides may be significantly underestimated by traditional methods that rely on relative value units. Furthermore, a comprehensive analysis may identify specific workflow processes requiring improvement.

  13. Colder environments are associated with a greater cancer incidence in the female population of the United States.

    PubMed

    Sharma, Ankit; Sharma, Tanu; Panwar, Mahaveer S; Sharma, Devesh; Bundel, Rashmi; Hamilton, Ryan T; Radosevich, James A; Mandal, Chandi C

    2017-10-01

    Cancer incidence and/or mortality among individuals varies with diet, socio-culture, ethnicity, race, gender, and age. Similarly, environmental temperature modulates many biological functions. To study the effect of environment temperature on cancer incidence, the US population was selected. Because, county-wise cancer incidence rate data of various anatomical site-specific cancers and different races/ethnicities for both males and females are available. Moreover, the differences amongst the aforementioned factors among individuals are much less, as compared to the world population. Statistical analysis showed a negative correlation between the average annual temperature and cancer incidence rate at all anatomical sites and individually for 13 types (out of 16 types) of anatomical site-specific cancer incidence rates (e.g. uterine, bladder, thyroid, breast, esophagus, ovary, melanoma, non-Hodgkin lymphoma, leukemia, brain, pancreas, etc.) for females. Further analysis found a similar inverse trend in all races/ethnicities of the female population but not in all male races/ethnicities or anatomical site-specific cancers. Moreover, the majority of the counties having the top-most cancer incidence rate in females are located above the latitude 36.5°N. These findings indicate that living in a cold county in the United States might have a higher risk of cancer irrespective of cancer type (except cervical and liver) and races/ethnicities for females but not in all such cases for the male population.

  14. Work domain constraints for modelling surgical performance.

    PubMed

    Morineau, Thierry; Riffaud, Laurent; Morandi, Xavier; Villain, Jonathan; Jannin, Pierre

    2015-10-01

    Three main approaches can be identified for modelling surgical performance: a competency-based approach, a task-based approach, both largely explored in the literature, and a less known work domain-based approach. The work domain-based approach first describes the work domain properties that constrain the agent's actions and shape the performance. This paper presents a work domain-based approach for modelling performance during cervical spine surgery, based on the idea that anatomical structures delineate the surgical performance. This model was evaluated through an analysis of junior and senior surgeons' actions. Twenty-four cervical spine surgeries performed by two junior and two senior surgeons were recorded in real time by an expert surgeon. According to a work domain-based model describing an optimal progression through anatomical structures, the degree of adjustment of each surgical procedure to a statistical polynomial function was assessed. Each surgical procedure showed a significant suitability with the model and regression coefficient values around 0.9. However, the surgeries performed by senior surgeons fitted this model significantly better than those performed by junior surgeons. Analysis of the relative frequencies of actions on anatomical structures showed that some specific anatomical structures discriminate senior from junior performances. The work domain-based modelling approach can provide an overall statistical indicator of surgical performance, but in particular, it can highlight specific points of interest among anatomical structures that the surgeons dwelled on according to their level of expertise.

  15. WE-EF-207-01: FEATURED PRESENTATION and BEST IN PHYSICS (IMAGING): Task-Driven Imaging for Cone-Beam CT in Interventional Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gang, G; Stayman, J; Ouadah, S

    2015-06-15

    Purpose: This work introduces a task-driven imaging framework that utilizes a patient-specific anatomical model, mathematical definition of the imaging task, and a model of the imaging system to prospectively design acquisition and reconstruction techniques that maximize task-based imaging performance. Utility of the framework is demonstrated in the joint optimization of tube current modulation and view-dependent reconstruction kernel in filtered-backprojection reconstruction and non-circular orbit design in model-based reconstruction. Methods: The system model is based on a cascaded systems analysis of cone-beam CT capable of predicting the spatially varying noise and resolution characteristics as a function of the anatomical model and amore » wide range of imaging parameters. Detectability index for a non-prewhitening observer model is used as the objective function in a task-driven optimization. The combination of tube current and reconstruction kernel modulation profiles were identified through an alternating optimization algorithm where tube current was updated analytically followed by a gradient-based optimization of reconstruction kernel. The non-circular orbit is first parameterized as a linear combination of bases functions and the coefficients were then optimized using an evolutionary algorithm. The task-driven strategy was compared with conventional acquisitions without modulation, using automatic exposure control, and in a circular orbit. Results: The task-driven strategy outperformed conventional techniques in all tasks investigated, improving the detectability of a spherical lesion detection task by an average of 50% in the interior of a pelvis phantom. The non-circular orbit design successfully mitigated photon starvation effects arising from a dense embolization coil in a head phantom, improving the conspicuity of an intracranial hemorrhage proximal to the coil. Conclusion: The task-driven imaging framework leverages a knowledge of the imaging task within a patient-specific anatomical model to optimize image acquisition and reconstruction techniques, thereby improving imaging performance beyond that achievable with conventional approaches. 2R01-CA-112163; R01-EB-017226; U01-EB-018758; Siemens Healthcare (Forcheim, Germany)« less

  16. Synchronized imaging and acoustic analysis of the upper airway in patients with sleep-disordered breathing.

    PubMed

    Chang, Yi-Chung; Huon, Leh-Kiong; Pham, Van-Truong; Chen, Yunn-Jy; Jiang, Sun-Fen; Shih, Tiffany Ting-Fang; Tran, Thi-Thao; Wang, Yung-Hung; Lin, Chen; Tsao, Jenho; Lo, Men-Tzung; Wang, Pa-Chun

    2014-12-01

    Progressive narrowing of the upper airway increases airflow resistance and can produce snoring sounds and apnea/hypopnea events associated with sleep-disordered breathing due to airway collapse. Recent studies have shown that acoustic properties during snoring can be altered with anatomic changes at the site of obstruction. To evaluate the instantaneous association between acoustic features of snoring and the anatomic sites of obstruction, a novel method was developed and applied in nine patients to extract the snoring sounds during sleep while performing dynamic magnetic resonance imaging (MRI). The degree of airway narrowing during the snoring events was then quantified by the collapse index (ratio of airway diameter preceding and during the events) and correlated with the synchronized acoustic features. A total of 201 snoring events (102 pure retropalatal and 99 combined retropalatal and retroglossal events) were recorded, and the collapse index as well as the soft tissue vibration time were significantly different between pure retropalatal (collapse index, 2 ± 11%; vibration time, 0.2 ± 0.3 s) and combined (retropalatal and retroglossal) snores (collapse index, 13 ± 7% [P ≤ 0.0001]; vibration time, 1.2 ± 0.7 s [P ≤ 0.0001]). The synchronized dynamic MRI and acoustic recordings successfully characterized the sites of obstruction and established the dynamic relationship between the anatomic site of obstruction and snoring acoustics.

  17. Landmark-based deep multi-instance learning for brain disease diagnosis.

    PubMed

    Liu, Mingxia; Zhang, Jun; Adeli, Ehsan; Shen, Dinggang

    2018-01-01

    In conventional Magnetic Resonance (MR) image based methods, two stages are often involved to capture brain structural information for disease diagnosis, i.e., 1) manually partitioning each MR image into a number of regions-of-interest (ROIs), and 2) extracting pre-defined features from each ROI for diagnosis with a certain classifier. However, these pre-defined features often limit the performance of the diagnosis, due to challenges in 1) defining the ROIs and 2) extracting effective disease-related features. In this paper, we propose a landmark-based deep multi-instance learning (LDMIL) framework for brain disease diagnosis. Specifically, we first adopt a data-driven learning approach to discover disease-related anatomical landmarks in the brain MR images, along with their nearby image patches. Then, our LDMIL framework learns an end-to-end MR image classifier for capturing both the local structural information conveyed by image patches located by landmarks and the global structural information derived from all detected landmarks. We have evaluated our proposed framework on 1526 subjects from three public datasets (i.e., ADNI-1, ADNI-2, and MIRIAD), and the experimental results show that our framework can achieve superior performance over state-of-the-art approaches. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Cone beam computed tomography of plastinated hearts for instruction of radiological anatomy.

    PubMed

    Chang, Chih-Wei; Atkinson, Gregory; Gandhi, Niket; Farrell, Michael L; Labrash, Steven; Smith, Alice B; Norton, Neil S; Matsui, Takashi; Lozanoff, Scott

    2016-09-01

    Radiological anatomy education is an important aspect of the medical curriculum. The purpose of this study was to establish and demonstrate the use of plastinated anatomical specimens, specifically human hearts, for use in radiological anatomy education. Four human hearts were processed with routine plastination procedures at room temperature. Specimens were subjected to cone beam computed tomography and a graphics program (ER3D) was applied to generate 3D cardiac models. A comparison was conducted between plastinated hearts and their corresponding computer models based on a list of morphological cardiac features commonly studied in the gross anatomy laboratory. Results showed significant correspondence between plastinations and CBCT-generated 3D models (98 %; p < .01) for external structures and 100 % for internal cardiac features, while 85 % correspondence was achieved between plastinations and 2D CBCT slices. Complete correspondence (100 %) was achieved between key observations on the plastinations and internal radiological findings typically required of medical student. All pathologic features seen on the plastinated hearts were also visualized internally with the CBCT-generated models and 2D slices. These results suggest that CBCT-derived slices and models can be successfully generated from plastinated material and provide accurate representations for radiological anatomy education.

  19. Fabrication of tissue engineered osteochondral grafts for restoring the articular surface of diarthrodial joints

    PubMed Central

    Roach, Brendan L.; Hung, Clark T.; Cook, James L.; Ateshian, Gerard A.; Tan, Andrea R.

    2015-01-01

    Osteochondral allograft implantation is an effective cartilage restoration technique for large defects (>10 cm2), though the demand far exceeds the supply of available quality donor tissue. Large bilayered engineered cartilage tissue constructs with accurate anatomical features (i.e. contours, thickness, architecture) could be beneficial in replacing damaged tissue. When creating these osteochondral constructs, however, it is pertinent to maintain biofidelity to restore functionality. Here, we describe a step-by-step framework for the fabrication of a large osteochondral construct with correct anatomical architecture and topology through a combination of high-resolution imaging, rapid prototyping, impression molding, and injection molding. PMID:25794950

  20. Anatomical and morphological study of the subcoracoacromial canal.

    PubMed

    Le Reun, O; Lebhar, J; Mateos, F; Voisin, J L; Thomazeau, H; Ropars, M

    2016-12-01

    Many clinical anatomy studies have looked into how variations in the acromion, coracoacromial ligament (CAL) and subacromial space are associated with rotator cuff injuries. However, no study up to now had defined anatomically the fibro-osseous canal that confines the supraspinatus muscle in the subcoracoacromial space. Through an anatomical study of the scapula, we defined the bone-related parameters of this canal and its anatomical variations. This study on dry bones involved 71 scapulas. With standardised photographs in two orthogonal views (superior and lateral), the surface area of the subcoracoacromial canal and the anatomical parameters making up this canal were defined and measured using image analysis software. The primary analysis evaluated the anatomical parameters of the canal as a function of three canal surface area groups; the secondary analysis looked into how variations in the canal surface area were related to the type of acromion according to the Bigliani classification. Relative to glenoid width, the group with a large canal surface area (L) had significantly less lateral overhang of the acromion than the group with a small canal surface area (S), with ratios of 0.41±0.23 and 0.58±0.3, respectively (P=0.04). The mean length of the CAL was 46±8mm in the L group and 39±9mm in the S group (P=0.003). The coracoacromial arch angle was 38°±11° in the L group and 34°±9° in the S group; the canal surface area was smaller in specimens with a smaller coracoacromial arch angle (P=0.20). Apart from acromial morphology, there could be innate anatomical features of the scapula that predispose people to extrinsic lesions to the supraspinatus tendon (lateral overhang, coracoacromial arch angle) by reducing the subcoracoacromial canal's surface area. Anatomical descriptive study. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Ceratocystis smalleyi colonization of bitternut hickkory and host responses in the xylem

    Treesearch

    J.-H. Park; J. Juzwik

    2014-01-01

    Colonization of Carya cordiformis sapwood by Ceratocystis smalleyi and subsequent host defence responses following artificial inoculation were investigated using anatomical and histological techniques. Hyphae of C. smalleyi were observed in all sapwood xylem features confirming the ability of the pathogen to...

  2. 21 CFR 886.1660 - Gonioscopic prism.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1660 Gonioscopic prism. (a) Identification. A gonioscopic prism is a device that is a prism intended to be placed on the eye to study the anterior chamber. The device may have angled mirrors to facilitate visualization of anatomical features. (b...

  3. [Clinical and anatomical features of congenital microphthalmia and anophthalmia in children and conservative methods of rehabilitation].

    PubMed

    Sudovskaya, T V; Filatova, I A; Kiseleva, T N; Bobrovskaya, Yu A; Kokoeva, N Sh

    2016-01-01

    To develop a comprehensive classification system of distinctive clinical and anatomical features of congenital microphthalmia and anophthalmia in children and to specify indications, contraindications, and optimal timing of the primary and subsequent prosthetic treatment. A total of 70 patients with congenital micro- or anophthalmia aged from 1 month to 12 years were examined. Besides the routine ophthalmic examination, all patients underwent eye and orbit ultrasound (axial length measurement and B-scan), computed tomography of the orbits and skull, and immunological tests for infectious diseases (enzyme-linked immunosorbent assays). Basing on the examination we have determined the common types of congenital micro- and anophthalmia in children. We have also developed a stepwise prosthetic treatment aimed at better cosmetic rehabilitation. Indications and contraindications for the use of ocular prostheses in children with congenital micro- and anophthalmia have been identified. The proposed method of stepwise prosthetics is the principal option for conservative rehabilitation of children with congenital micro- or anophthalmia.

  4. Registration of opthalmic images using control points

    NASA Astrophysics Data System (ADS)

    Heneghan, Conor; Maguire, Paul

    2003-03-01

    A method for registering pairs of digital ophthalmic images of the retina is presented using anatomical features as control points present in both images. The anatomical features chosen are blood vessel crossings and bifurcations. These control points are identified by a combination of local contrast enhancement, and morphological processing. In general, the matching between control points is unknown, however, so an automated algorithm is used to determine the matching pairs of control points in the two images as follows. Using two control points from each image, rigid global transform (RGT) coefficients are calculated for all possible combinations of control point pairs, and the set of RGT coefficients is identified. Once control point pairs are established, registration of two images can be achieved by using linear regression to optimize an RGT, bilinear or second order polynomial global transform. An example of cross-modal image registration using an optical image and a fluorescein angiogram of an eye is presented to illustrate the technique.

  5. Historical perspective: eponyms of vascular radiology.

    PubMed

    DiPoce, Jason; Jimenez, Guillermo; Weintraub, Joshua

    2014-01-01

    Eponyms are ubiquitous throughout the medical literature, especially the radiology lexicon. In particular, vascular radiology is replete with dozens of eponyms named after pathologic and anatomic features and various medical devices. Several disease processes are known exclusively by their eponyms or by both their eponyms and their descriptive names. Although some authors advocate abandoning eponyms in favor of more descriptive terms, the established history and common use of eponyms make it unlikely that they will disappear from the vocabulary. Radiologists should be familiar with both the eponymous and descriptive names of disease processes to ensure effective communication and prevent erroneous identification. Study of these eponyms provides information about these disease processes and other medical knowledge for use in daily practice. In addition, biographic information about the pertinent physicians can yield insights into the sometimes surprising origins of these eponyms. The authors provide biographic sketches of these physicians and discuss the clinical relevance of the anatomic features, malformations, and syndromes that bear their names. ©RSNA, 2014.

  6. Astragalar Morphology of Selected Giraffidae

    PubMed Central

    2016-01-01

    The artiodactyl astragalus has been modified to exhibit two trochleae, creating a double pullied structure allowing for significant dorso-plantar motion, and limited mediolateral motion. The astragalus structure is partly influenced by environmental substrates, and correspondingly, morphometric studies can yield paleohabitat information. The present study establishes terminology and describes detailed morphological features on giraffid astragali. Each giraffid astragalus exhibits a unique combination of anatomical characteristics. The giraffid astragalar morphologies reinforce previously established phylogenetic relationships. We find that the enlargement of the navicular head is a feature shared by all giraffids, and that the primitive giraffids possess exceptionally tall astragalar heads in relation to the total astragalar height. The sivatheres and the okapi share a reduced notch on the lateral edge of the astragalus. We find that Samotherium is more primitive in astragalar morphologies than Palaeotragus, which is reinforced by tooth characteristics and ossicone position. Diagnostic anatomical characters on the astragalus allow for giraffid species identifications and a better understanding of Giraffidae. PMID:27028515

  7. System and technique for retrieving depth information about a surface by projecting a composite image of modulated light patterns

    NASA Technical Reports Server (NTRS)

    Hassebrook, Laurence G. (Inventor); Lau, Daniel L. (Inventor); Guan, Chun (Inventor)

    2010-01-01

    A technique, associated system and program code, for retrieving depth information about at least one surface of an object, such as an anatomical feature. Core features include: projecting a composite image comprising a plurality of modulated structured light patterns, at the anatomical feature; capturing an image reflected from the surface; and recovering pattern information from the reflected image, for each of the modulated structured light patterns. Pattern information is preferably recovered for each modulated structured light pattern used to create the composite, by performing a demodulation of the reflected image. Reconstruction of the surface can be accomplished by using depth information from the recovered patterns to produce a depth map/mapping thereof. Each signal waveform used for the modulation of a respective structured light pattern, is distinct from each of the other signal waveforms used for the modulation of other structured light patterns of a composite image; these signal waveforms may be selected from suitable types in any combination of distinct signal waveforms, provided the waveforms used are uncorrelated with respect to each other. The depth map/mapping to be utilized in a host of applications, for example: displaying a 3-D view of the object; virtual reality user-interaction interface with a computerized device; face--or other animal feature or inanimate object--recognition and comparison techniques for security or identification purposes; and 3-D video teleconferencing/telecollaboration.

  8. Fluid Structure Interaction simulation of heart prosthesis in patient-specific left-ventricle/aorta anatomies

    NASA Astrophysics Data System (ADS)

    Le, Trung; Borazjani, Iman; Sotiropoulos, Fotis

    2009-11-01

    In order to test and optimize heart valve prosthesis and enable virtual implantation of other biomedical devices it is essential to develop and validate high-resolution FSI-CFD codes for carrying out simulations in patient-specific geometries. We have developed a powerful numerical methodology for carrying out FSI simulations of cardiovascular flows based on the CURVIB approach (Borazjani, L. Ge, and F. Sotiropoulos, Journal of Computational physics, vol. 227, pp. 7587-7620 2008). We have extended our FSI method to overset grids to handle efficiently more complicated geometries e.g. simulating an MHV implanted in an anatomically realistic aorta and left-ventricle. A compliant, anatomic left-ventricle is modeled using prescribed motion in one domain. The mechanical heart valve is placed inside the second domain i.e. the body-fitted curvilinear mesh of the anatomic aorta. The simulations of an MHV with a left-ventricle model underscore the importance of inflow conditions and ventricular compliance for such simulations and demonstrate the potential of our method as a powerful tool for patient-specific simulations.

  9. Basic anatomical and physiological data for use in radiological protection: reference values. A report of age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. ICRP Publication 89.

    PubMed

    2002-01-01

    This report presents detailed information on age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. These reference values provide needed input to prospective dosimetry calculations for radiation protection purposes for both workers and members of the general public. The purpose of this report is to consolidate and unify in one publication, important new information on reference anatomical and physiological values that has become available since Publication 23 was published by the ICRP in 1975. There are two aspects of this work. The first is to revise and extend the information in Publication 23 as appropriate. The second is to provide additional information on individual variation among grossly normal individuals resulting from differences in age, gender, race, or other factors. This publication collects, unifies, and expands the updated ICRP reference values for the purpose of providing a comprehensive and consistent set of age- and gender-specific reference values for anatomical and physiological features of the human body pertinent to radiation dosimetry. The reference values given in this report are based on: (a) anatomical and physiological information not published before by the ICRP; (b) recent ICRP publications containing reference value information; and (c) information in Publication 23 that is still considered valid and appropriate for radiation protection purposes. Moving from the past emphasis on 'Reference Man', the new report presents a series of reference values for both male and female subjects of six different ages: newborn, 1 year, 5 years, 10 years, 15 years, and adult. In selecting reference values, the Commission has used data on Western Europeans and North Americans because these populations have been well studied with respect to antomy, body composition, and physiology. When appropriate, comparisons are made between the chosen reference values and data from several Asian populations. The first section of the report provides summary tables of all the anatomical and physiological parameters given as reference values in this publication. These results give a comprehensive view of reference values for an individual as influenced by age and gender. The second section describes characteristics of dosimetric importance for the embryo and fetus. Information is provided on the development of the total body and the timing of appearance and development of the various organ systems. Reference values are provided on the mass of the total body and selected organs and tissues, as well as a number of physiological parameters. The third section deals with reference values of important anatomical and physiological characteristics of reference individuals from birth to adulthood. This section begins with details on the growth and composition of the total body in males and females. It then describes and quantifies anatomical and physiological characteristics of various organ systems and changes in these characteristics during growth, maturity, and pregnancy. Reference values are specified for characteristics of dosimetric importance. The final section gives a brief summary of the elemental composition of individuals. Focusing on the elements of dosimetric importance, information is presented on the body content of 13 elements: calcium, carbon, chloride, hydrogen, iodine, iron, magnesium, nitrogen, oxygen, potassium, sodium, sulphur, and phosphorus.

  10. Anatomical variations between the sciatic nerve and the piriformis muscle: a contribution to surgical anatomy in piriformis syndrome.

    PubMed

    Natsis, Konstantinos; Totlis, Trifon; Konstantinidis, George A; Paraskevas, George; Piagkou, Maria; Koebke, Juergen

    2014-04-01

    To detect the variable relationship between sciatic nerve and piriformis muscle and make surgeons aware of certain anatomical features of each variation that may be useful for the surgical treatment of the piriformis syndrome. The gluteal region of 147 Caucasian cadavers (294 limbs) was dissected. The anatomical relationship between the sciatic nerve and the piriformis muscle was recorded and classified according to the Beaton and Anson classification. The literature was reviewed to summarize the incidence of each variation. The sciatic nerve and piriformis muscle relationship followed the typical anatomical pattern in 275 limbs (93.6 %). In 12 limbs (4.1 %) the common peroneal nerve passed through and the tibial nerve below a double piriformis. In one limb (0.3 %) the common peroneal nerve coursed superior and the tibial nerve below the piriformis. In one limb (0.3 %) both nerves penetrated the piriformis. In one limb (0.3 %) both nerves passed above the piriformis. Four limbs (1.4 %) presented non-classified anatomical variations. When a double piriformis muscle was present, two different arrangements of the two heads were observed. Anatomical variations of the sciatic nerve around the piriformis muscle were present in 6.4 % of the limbs examined. When dissection of the entire piriformis is necessary for adequate sciatic nerve decompression, the surgeon should explore for the possible existence of a second tendon, which may be found either inferior or deep to the first one. Some rare, unclassified variations of the sciatic nerve should be expected during surgical intervention of the region.

  11. Spatial mapping of humeral head bone density.

    PubMed

    Alidousti, Hamidreza; Giles, Joshua W; Emery, Roger J H; Jeffers, Jonathan

    2017-09-01

    Short-stem humeral replacements achieve fixation by anchoring to the metaphyseal trabecular bone. Fixing the implant in high-density bone can provide strong fixation and reduce the risk of loosening. However, there is a lack of data mapping the bone density distribution in the proximal humerus. The aim of the study was to investigate the bone density in proximal humerus. Eight computed tomography scans of healthy cadaveric humeri were used to map bone density distribution in the humeral head. The proximal humeral head was divided into 12 slices parallel to the humeral anatomic neck. Each slice was then divided into 4 concentric circles. The slices below the anatomic neck, where short-stem implants have their fixation features, were further divided into radial sectors. The average bone density for each of these regions was calculated, and regions of interest were compared using a repeated-measures analysis of variance with significance set at P < .05. Average apparent bone density was found to decrease from proximal to distal regions, with the majority of higher bone density proximal to the anatomic neck of the humerus (P < .05). Below the anatomic neck, bone density increases from central to peripheral regions, where cortical bone eventually occupies the space (P < .05). In distal slices below the anatomic neck, a higher bone density distribution in the medial calcar region was also observed. This study indicates that it is advantageous with respect to implant fixation to preserve some bone above the anatomic neck and epiphyseal plate and to use the denser bone at the periphery. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Functional and Anatomic Esophagogastic Junction Outflow Obstruction: Manometry, Timed Barium Esophagram Findings, and Treatment Outcomes.

    PubMed

    Clayton, Steven B; Patel, Rupal; Richter, Joel E

    2016-06-01

    Little is known about the clinical features, radiology and manometry findings, and treatment outcomes of patients with functional and mechanical esophagogastic junction outflow obstruction (EGJOO). Between November 2011 and February 2015, a total of 1443 high-resolution manometries were reviewed and 49 patients (3.4%) met the manometric criteria for EGJOO. Then, we performed a retrospective chart review, collecting data from manometric studies, timed barium esophagram findings (TBEs), endoscopic reports, and clinical records. Twenty-seven patients had functional EGJOO and 22 patients had an anatomic esophageal obstruction. Common causes of anatomic EGJOO included strictures (36% of patients) and hiatal hernias (31% of patients). There were no differences between groups in manometric or radiographic metrics. Each group had increased basal lower esophageal sphincter and intrabolus pressures, compared with individuals without EGJOO, and most patients had abnormal findings on TBE analysis. Two patients with functional EGJOO progressed to type 3 achalasia. We conclude that patients diagnosed with EGJOO based on manometry findings can have anatomic obstruction or functional EGJOO; high-resolution manometry and TBE do not distinguish between disease causes. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  13. Hybrid Optical-Ultrasonic Technique for Biomedical Diagnostics

    PubMed Central

    Marcu, L.; Sun, Y.; Stephens, D.; Park, J.; Farwell, D. G.; Shung, K. K.

    2010-01-01

    We report the development of a diagnostic system combining time-resolved fluorescence spectroscopy and ultrasound backscatter microscopy and its application in diagnosis of tumors and atherosclerotic disease. This system allows for concurrent evaluation of distinct compositional, functional, and micro-anatomical features of normal and diseased tissues. PMID:21918737

  14. Hoarseness.

    PubMed

    Sulica, Lucian

    2011-06-01

    Hoarseness is the colloquial expression for dysphonia ; these terms are often used interchangeably in medicine to refer to altered voice quality. Hoarseness may be both a symptom and a sign of dysfunction of the phonatory apparatus. It is never a diagnosis, despite having a corresponding International Classification of Diseases code and sometimes serving as such for purposes of administrative convenience. The same anatomical and physiological features that make the vocal folds uniquely suited for the high-speed vibration necessary for sound production render them exquisitely sensitive to a wide range of abnormalities. The breadth of pathologic conditions that can cause hoarseness makes a unified overview a challenge; hoarseness is simply not a homogeneous category after the initial laryngoscopy. Moreover, the available literature predominantly focuses on specific diagnoses rather than on hoarseness as a whole, so scant published data exist to support an evidence-based approach. Nevertheless, certain unifying principles exist.

  15. Osteosarcoma: Diagnostic dilemmas in histopathology and prognostic factors

    PubMed Central

    Wadhwa, Neelam

    2014-01-01

    Osteosarcoma (OS), the commonest malignancy of osteoarticular origin, is a very aggressive neoplasm. Divergent histologic differentiation is common in OS; hence triple diagnostic approach is essential in all cases. 20% cases are atypical owing to lack of concurrence among clinicoradiologic and pathologic features necessitating resampling. Recognition of specific anatomic and histologic variants is essential in view of better outcome. Traditional prognostic factors of OS do stratify patients for short term outcome, but often fail to predict their long term outcome. Considering the negligible improvement in the patient outcome during the last 20 years, search for novel prognostic factors is in progress like ezrin vascular endothelial growth factor, chemokine receptors, dysregulation of various micro ribonucleic acid are potentially promising. Their utility needs to be validated by long term followup studies before they are incorporated in routine clinical practice. PMID:24932029

  16. Measurement of Flow Patterns and Dispersion in the Human Airways

    NASA Astrophysics Data System (ADS)

    Fresconi, Frank E.; Prasad, Ajay K.

    2006-03-01

    A detailed knowledge of the flow and dispersion within the human respiratory tract is desirable for numerous reasons. Both risk assessments of exposure to toxic particles in the environment and the design of medical delivery systems targeting both lung-specific conditions (asthma, cystic fibrosis, and chronic obstructive pulmonary disease (COPD)) and system-wide ailments (diabetes, cancer, hormone replacement) would profit from such an understanding. The present work features experimental efforts aimed at elucidating the fluid mechanics of the lung. Particle image velocimetry (PIV) and laser induced fluorescence (LIF) measurements of oscillatory flows were undertaken in anatomically accurate models (single and multi-generational) of the conductive region of the lung. PIV results captured primary and secondary velocity fields. LIF was used to determine the amount of convective dispersion across an individual generation of the lung.

  17. An eFTD-VP framework for efficiently generating patient-specific anatomically detailed facial soft tissue FE mesh for craniomaxillofacial surgery simulation

    PubMed Central

    Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime

    2017-01-01

    Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians’ need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical simulation of facial soft tissue change. PMID:29027022

  18. An eFTD-VP framework for efficiently generating patient-specific anatomically detailed facial soft tissue FE mesh for craniomaxillofacial surgery simulation.

    PubMed

    Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime; Liebschner, Michael A K; Xia, James J

    2018-04-01

    Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians' need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical simulation of facial soft tissue change.

  19. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia

    PubMed Central

    Kim, Junghoe; Calhoun, Vince D.; Shim, Eunsoo; Lee, Jong-Hwan

    2015-01-01

    Functional connectivity (FC) patterns obtained from resting-state functional magnetic resonance imaging data are commonly employed to study neuropsychiatric conditions by using pattern classifiers such as the support vector machine (SVM). Meanwhile, a deep neural network (DNN) with multiple hidden layers has shown its ability to systematically extract lower-to-higher level information of image and speech data from lower-to-higher hidden layers, markedly enhancing classification accuracy. The objective of this study was to adopt the DNN for whole-brain resting-state FC pattern classification of schizophrenia (SZ) patients vs. healthy controls (HCs) and identification of aberrant FC patterns associated with SZ. We hypothesized that the lower-to-higher level features learned via the DNN would significantly enhance the classification accuracy, and proposed an adaptive learning algorithm to explicitly control the weight sparsity in each hidden layer via L1-norm regularization. Furthermore, the weights were initialized via stacked autoencoder based pre-training to further improve the classification performance. Classification accuracy was systematically evaluated as a function of (1) the number of hidden layers/nodes, (2) the use of L1-norm regularization, (3) the use of the pre-training, (4) the use of framewise displacement (FD) removal, and (5) the use of anatomical/functional parcellation. Using FC patterns from anatomically parcellated regions without FD removal, an error rate of 14.2% was achieved by employing three hidden layers and 50 hidden nodes with both L1-norm regularization and pre-training, which was substantially lower than the error rate from the SVM (22.3%). Moreover, the trained DNN weights (i.e., the learned features) were found to represent the hierarchical organization of aberrant FC patterns in SZ compared with HC. Specifically, pairs of nodes extracted from the lower hidden layer represented sparse FC patterns implicated in SZ, which was quantified by using kurtosis/modularity measures and features from the higher hidden layer showed holistic/global FC patterns differentiating SZ from HC. Our proposed schemes and reported findings attained by using the DNN classifier and whole-brain FC data suggest that such approaches show improved ability to learn hidden patterns in brain imaging data, which may be useful for developing diagnostic tools for SZ and other neuropsychiatric disorders and identifying associated aberrant FC patterns. PMID:25987366

  20. 18F-FDG PET brain images as features for Alzheimer classification

    NASA Astrophysics Data System (ADS)

    Azmi, M. H.; Saripan, M. I.; Nordin, A. J.; Ahmad Saad, F. F.; Abdul Aziz, S. A.; Wan Adnan, W. A.

    2017-08-01

    2-Deoxy-2-[fluorine-18] fluoro-D-glucose (18F-FDG) Positron Emission Tomography (PET) imaging offers meaningful information for various types of diseases diagnosis. In Alzheimer's disease (AD), the hypometabolism of glucose which observed on the low intensity voxel in PET image may relate to the onset of the disease. The importance of early detection of AD is inevitable because the resultant brain damage is irreversible. Several statistical analysis and machine learning algorithm have been proposed to investigate the rate and the pattern of the hypometabolism. This study focus on the same aim with further investigation was performed on several hypometabolism pattern. Some pre-processing steps were implemented to standardize the data in order to minimize the effect of resolution and anatomical differences. The features used are the mean voxel intensity within the AD pattern mask, which derived from several z-score and FDR threshold values. The global mean voxel (GMV) and slice-based mean voxel (SbMV) intensity were observed and used as input to the neural network. Several neural network architectures were tested and compared to the nearest neighbour method. The highest accuracy equals to 0.9 and recorded at z-score ≤-1.3 with 1 node neural network architecture (sensitivity=0.81 and specificity=0.95) and at z-score ≤-0.7 with 10 nodes neural network (sensitivity=0.83 and specificity=0.94).

  1. Anatomically ordered tapping interferes more with one-digit addition than two-digit addition: a dual-task fMRI study.

    PubMed

    Soylu, Firat; Newman, Sharlene D

    2016-02-01

    Fingers are used as canonical representations for numbers across cultures. In previous imaging studies, it was shown that arithmetic processing activates neural resources that are known to participate in finger movements. Additionally, in one dual-task study, it was shown that anatomically ordered finger tapping disrupts addition and subtraction more than multiplication, possibly due to a long-lasting effect of early finger counting experiences on the neural correlates and organization of addition and subtraction processes. How arithmetic task difficulty and tapping complexity affect the concurrent performance is still unclear. If early finger counting experiences have bearing on the neural correlates of arithmetic in adults, then one would expect anatomically and non-anatomically ordered tapping to have different interference effects, given that finger counting is usually anatomically ordered. To unravel these issues, we studied how (1) arithmetic task difficulty and (2) the complexity of the finger tapping sequence (anatomical vs. non-anatomical ordering) affect concurrent performance and use of key neural circuits using a mixed block/event-related dual-task fMRI design with adult participants. The results suggest that complexity of the tapping sequence modulates interference on addition, and that one-digit addition (fact retrieval), compared to two-digit addition (calculation), is more affected from anatomically ordered tapping. The region-of-interest analysis showed higher left angular gyrus BOLD response for one-digit compared to two-digit addition, and in no-tapping conditions than dual tapping conditions. The results support a specific association between addition fact retrieval and anatomically ordered finger movements in adults, possibly due to finger counting strategies that deploy anatomically ordered finger movements early in the development.

  2. Post-cranial skeletons of hypothyroid cretins show a similar anatomical mosaic as Homo floresiensis.

    PubMed

    Oxnard, Charles; Obendorf, Peter J; Kefford, Ben J

    2010-09-27

    Human remains, some as recent as 15 thousand years, from Liang Bua (LB) on the Indonesian island of Flores have been attributed to a new species, Homo floresiensis. The definition includes a mosaic of features, some like modern humans (hence derived: genus Homo), some like modern apes and australopithecines (hence primitive: not species sapiens), and some unique (hence new species: floresiensis). Conversely, because only modern humans (H. sapiens) are known in this region in the last 40 thousand years, these individuals have also been suggested to be genetic human dwarfs. Such dwarfs resemble small humans and do not show the mosaic combination of the most complete individuals, LB1 and LB6, so this idea has been largely dismissed. We have previously shown that some features of the cranium of hypothyroid cretins are like those of LB1. Here we examine cretin postcrania to see if they show anatomical mosaics like H. floresiensis. We find that hypothyroid cretins share at least 10 postcranial features with Homo floresiensis and unaffected humans not found in apes (or australopithecines when materials permit). They share with H. floresiensis, modern apes and australopithecines at least 11 postcranial features not found in unaffected humans. They share with H. floresiensis, at least 8 features not found in apes, australopithecines or unaffected humans. Sixteen features can be rendered metrically and multivariate analyses demonstrate that H. floresiensis co-locates with cretins, both being markedly separate from humans and chimpanzees (P<0.001: from analysis of similarity (ANOSIM) over all variables, ANOSIM, global R>0.999). We therefore conclude that LB1 and LB6, at least, are, most likely, endemic cretins from a population of unaffected Homo sapiens. This is consistent with recent hypothyroid endemic cretinism throughout Indonesia, including the nearby island of Bali.

  3. MRIVIEW: An interactive computational tool for investigation of brain structure and function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranken, D.; George, J.

    MRIVIEW is a software system which uses image processing and visualization to provide neuroscience researchers with an integrated environment for combining functional and anatomical information. Key features of the software include semi-automated segmentation of volumetric head data and an interactive coordinate reconciliation method which utilizes surface visualization. The current system is a precursor to a computational brain atlas. We describe features this atlas will incorporate, including methods under development for visualizing brain functional data obtained from several different research modalities.

  4. New clinical opportunities for retinal vascular imaging: adaptive optics to OCT angiography

    NASA Astrophysics Data System (ADS)

    Rosen, Richard; Chui, Toco; Weitz, Rishard; Dubra, Alfredo; Carroll, Joseph; Garcia, Patricia; Pinhas, Alexander; Scripsema, Nicole; Mo, Shelley; Agemy, Steven; Krawitz, Brian

    2018-03-01

    As techniques of retinal imaging have evolved, anatomic features that were only assessable in the laboratory have become available in the clinic for patient care. The retinal capillaries were initially described on microscope sections in the pathology laboratory. As optical methods have advanced these features have become part of the routine clinical landscape inspected daily by physicians. This paper briefly traces the evolution of these techniques and shows how they fit into the modern diagnostic armamentarium of ophthalmic retinal care.

  5. The Anatomy of Self-Defense

    ERIC Educational Resources Information Center

    Sparks Stein, Pamela; Richardson, April D.; Challman, Sandra D.

    2008-01-01

    The following study describes a creative application of anatomical principles in the instruction of self-defense. Undergraduates at the University of Kentucky were invited to a special lecture that featured a series of self-defense moves introduced by a local police officer. Following a demonstration of each self-defense tactic, the students were…

  6. Nonlesions, misdiagnoses, missed diagnoses, and other interpretive challenges in fish histopathology studies-A guide for investigators, authors, reviewers, and readers

    USDA-ARS?s Scientific Manuscript database

    Differentiating salient histopathologic changes from normal anatomic features or tissue artifacts can be decidedly challenging, especially for the novice fish pathologist. As a consequence, findings of questionable accuracy may be reported inadvertently, and the potential negative impacts of publish...

  7. The Anatomy Puzzle Book.

    ERIC Educational Resources Information Center

    Jacob, Willis H.; Carter, Robert, III

    This document features review questions, crossword puzzles, and word search puzzles on human anatomy. Topics include: (1) Anatomical Terminology; (2) The Skeletal System and Joints; (3) The Muscular System; (4) The Nervous System; (5) The Eye and Ear; (6) The Circulatory System and Blood; (7) The Respiratory System; (8) The Urinary System; (9) The…

  8. Non-lesions, Misdiagnoses, Missed Diagnoses, and Other Interpretive Challenges in Fish Histopathology Studies: A Guide for Investigators, Authors, Reviewers, and Readers

    EPA Science Inventory

    Differentiating salient histopathologic changes from normal anatomic features or tissue artifacts can be decidedly challenging, especially for the novice fish pathologist. As a consequence, findings of questionable accuracy may be reported inadvertently, and the potential negativ...

  9. Anatomic variation of depth-dependent mechanical properties in neonatal bovine articular cartilage.

    PubMed

    Silverberg, Jesse L; Dillavou, Sam; Bonassar, Lawrence; Cohen, Itai

    2013-05-01

    Articular cartilage has well known depth-dependent structure and has recently been shown to have similarly non-uniform depth-dependent mechanical properties. Here, we study anatomic variation of the depth-dependent shear modulus and energy dissipation rate in neonatal bovine knees. The regions we specifically focus on are the patellofemoral groove, trochlea, femoral condyle, and tibial plateau. In every sample, we find a highly compliant region within the first 500 µm of tissue measured from the articular surface, where the local shear modulus is reduced by up to two orders of magnitude. Comparing measurements taken from different anatomic sites, we find statistically significant differences localized within the first 50 µm. Histological images reveal these anatomic variations are associated with differences in collagen density and fiber organization. Copyright © 2012 Orthopaedic Research Society.

  10. The Blooming Anatomy Tool (BAT): A Discipline-Specific Rubric for Utilizing Bloom's Taxonomy in the Design and Evaluation of Assessments in the Anatomical Sciences

    ERIC Educational Resources Information Center

    Thompson, Andrew R.; O'Loughlin, Valerie D.

    2015-01-01

    Bloom's taxonomy is a resource commonly used to assess the cognitive level associated with course assignments and examination questions. Although widely utilized in educational research, Bloom's taxonomy has received limited attention as an analytical tool in the anatomical sciences. Building on previous research, the Blooming Anatomy Tool (BAT)…

  11. Minimal resin embedding of multicellular specimens for targeted FIB-SEM imaging.

    PubMed

    Schieber, Nicole L; Machado, Pedro; Markert, Sebastian M; Stigloher, Christian; Schwab, Yannick; Steyer, Anna M

    2017-01-01

    Correlative light and electron microscopy (CLEM) is a powerful tool to perform ultrastructural analysis of targeted tissues or cells. The large field of view of the light microscope (LM) enables quick and efficient surveys of the whole specimen. It is also compatible with live imaging, giving access to functional assays. CLEM protocols take advantage of the features to efficiently retrace the position of targeted sites when switching from one modality to the other. They more often rely on anatomical cues that are visible both by light and electron microscopy. We present here a simple workflow where multicellular specimens are embedded in minimal amounts of resin, exposing their surface topology that can be imaged by scanning electron microscopy (SEM). LM and SEM both benefit from a large field of view that can cover whole model organisms. As a result, targeting specific anatomic locations by focused ion beam-SEM (FIB-SEM) tomography becomes straightforward. We illustrate this application on three different model organisms, used in our laboratory: the zebrafish embryo Danio rerio, the marine worm Platynereis dumerilii, and the dauer larva of the nematode Caenorhabditis elegans. Here we focus on the experimental steps to reduce the amount of resin covering the samples and to image the specimens inside an FIB-SEM. We expect this approach to have widespread applications for volume electron microscopy on multiple model organisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Abdominal emergencies during pregnancy.

    PubMed

    Bouyou, J; Gaujoux, S; Marcellin, L; Leconte, M; Goffinet, F; Chapron, C; Dousset, B

    2015-12-01

    Abdominal emergencies during pregnancy (excluding obstetrical emergencies) occur in one out of 500-700 pregnancies and may involve gastrointestinal, gynecologic, urologic, vascular and traumatic etiologies; surgery is necessary in 0.2-2% of cases. Since these emergencies are relatively rare, patients should be referred to specialized centers where surgical, obstetrical and neonatal cares are available, particularly because surgical intervention increases the risk of premature labor. Clinical presentations may be atypical and misleading because of pregnancy-associated anatomical and physiologic alterations, which often result in diagnostic uncertainty and therapeutic delay with increased risks of maternal and infant morbidity. The most common abdominal emergencies are acute appendicitis (best treated by laparoscopic appendectomy), acute calculous cholecystitis (best treated by laparoscopic cholecystectomy from the first trimester through the early part of the third trimester) and intestinal obstruction (where medical treatment is the first-line approach, just as in the non-pregnant patient). Acute pancreatitis is rare, usually resulting from trans-ampullary passage of gallstones; it usually resolves with medical treatment but an elevated risk of recurrent episodes justifies laparoscopic cholecystectomy in the 2nd trimester and endoscopic sphincterotomy in the 3rd trimester. The aim of the present work is to review pregnancy-induced anatomical and physiological modifications, to describe the main abdominal emergencies during pregnancy, their specific features and their diagnostic and therapeutic management. Copyright © 2015. Published by Elsevier Masson SAS.

  13. Imaging Metals in Brain Tissue by Laser Ablation - Inductively Coupled Plasma - Mass Spectrometry (LA-ICP-MS)

    PubMed Central

    Hare, Dominic J.; Kysenius, Kai; Paul, Bence; Knauer, Beate; Hutchinson, Robert W.; O'Connor, Ciaran; Fryer, Fred; Hennessey, Tom P.; Bush, Ashley I.; Crouch, Peter J.; Doble, Philip A.

    2017-01-01

    Metals are found ubiquitously throughout an organism, with their biological role dictated by both their chemical reactivity and abundance within a specific anatomical region. Within the brain, metals have a highly compartmentalized distribution, depending on the primary function they play within the central nervous system. Imaging the spatial distribution of metals has provided unique insight into the biochemical architecture of the brain, allowing direct correlation between neuroanatomical regions and their known function with regard to metal-dependent processes. In addition, several age-related neurological disorders feature disrupted metal homeostasis, which is often confined to small regions of the brain that are otherwise difficult to analyze. Here, we describe a comprehensive method for quantitatively imaging metals in the mouse brain, using laser ablation - inductively coupled plasma - mass spectrometry (LA-ICP-MS) and specially designed image processing software. Focusing on iron, copper and zinc, which are three of the most abundant and disease-relevant metals within the brain, we describe the essential steps in sample preparation, analysis, quantitative measurements and image processing to produce maps of metal distribution within the low micrometer resolution range. This technique, applicable to any cut tissue section, is capable of demonstrating the highly variable distribution of metals within an organ or system, and can be used to identify changes in metal homeostasis and absolute levels within fine anatomical structures. PMID:28190025

  14. Anatomically accurate individual face modeling.

    PubMed

    Zhang, Yu; Prakash, Edmond C; Sung, Eric

    2003-01-01

    This paper presents a new 3D face model of a specific person constructed from the anatomical perspective. By exploiting the laser range data, a 3D facial mesh precisely representing the skin geometry is reconstructed. Based on the geometric facial mesh, we develop a deformable multi-layer skin model. It takes into account the nonlinear stress-strain relationship and dynamically simulates the non-homogenous behavior of the real skin. The face model also incorporates a set of anatomically-motivated facial muscle actuators and underlying skull structure. Lagrangian mechanics governs the facial motion dynamics, dictating the dynamic deformation of facial skin in response to the muscle contraction.

  15. The draft genomes of soft–shell turtle and green sea turtle yield insights into the development and evolution of the turtle–specific body plan

    PubMed Central

    Niimura, Yoshihito; Huang, Zhiyong; Li, Chunyi; White, Simon; Xiong, Zhiqiang; Fang, Dongming; Wang, Bo; Ming, Yao; Chen, Yan; Zheng, Yuan; Kuraku, Shigehiro; Pignatelli, Miguel; Herrero, Javier; Beal, Kathryn; Nozawa, Masafumi; Li, Qiye; Wang, Juan; Zhang, Hongyan; Yu, Lili; Shigenobu, Shuji; Wang, Junyi; Liu, Jiannan; Flicek, Paul; Searle, Steve; Wang, Jun; Kuratani, Shigeru; Yin, Ye; Aken, Bronwen; Zhang, Guojie; Irie, Naoki

    2014-01-01

    The unique anatomical features of turtles have raised unanswered questions about the origin of their unique body plan. We generated and analyzed draft genomes of the soft-shell turtle (Pelodiscus sinensis) and the green sea turtle (Chelonia mydas); our results indicated the close relationship of the turtles to the bird-crocodilian lineage, from which they split ~267.9–248.3 million years ago (Upper Permian to Triassic). We also found extensive expansion of olfactory receptor genes in these turtles. Embryonic gene expression analysis identified an hourglass-like divergence of turtle and chicken embryogenesis, with maximal conservation around the vertebrate phylotypic period, rather than at later stages that show the amniote-common pattern. Wnt5a expression was found in the growth zone of the dorsal shell, supporting the possible co-option of limb-associated Wnt signaling in the acquisition of this turtle-specific novelty. Our results suggest that turtle evolution was accompanied by an unexpectedly conservative vertebrate phylotypic period, followed by turtle-specific repatterning of development to yield the novel structure of the shell. PMID:23624526

  16. Application of 3-Dimensional Printing in a Case of Osteogenesis Imperfecta for Patient Education, Anatomic Understanding, Preoperative Planning, and Intraoperative Evaluation.

    PubMed

    Eisenmenger, Laura B; Wiggins, Richard H; Fults, Daniel W; Huo, Eugene J

    2017-11-01

    The techniques and applications of 3-dimensional (3D) printing have progressed at a fast pace. In the last 10 years, there has been significant progress in applying this technology to medical applications. We present a case of osteogenesis imperfecta in which treatment was aided by prospectively using patient-specific, anatomically accurate 3D prints of the calvaria. The patient-specific, anatomically accurate 3D prints were used in the clinic and in the operating room to augment patient education, improve surgical decision making, and enhance preoperative planning. A 41-year-old woman with osteogenesis imperfecta and an extensive neurosurgical history presented for cranioplasty revision. Computed tomography (CT) data obtained as part of routine preoperative imaging were processed into a 3D model. The 3D patient-specific models were used in the clinic for patient education and in the operating room for preoperative visualization, planning, and intraoperative evaluation of anatomy. The patient reported the 3D models improved her understanding and comfort with the planned surgery when compared with discussing the procedure with the neurosurgeon or viewing the CT images with a neuroradiologist. The neurosurgeon reported an improved understanding of the patient's anatomy and potential cause of patient symptoms as well as improved preoperative planning compared with viewing the CT imaging alone. The neurosurgeon also reported an improvement in the planned surgical approach with a better intraoperative visualization and confirmation of the regions of planned calvarial resection. The use of patient-specific, anatomically accurate 3D prints may improve patient education, surgeon understanding and visualization, preoperative decision making, and intraoperative management. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Toward knowledge-enhanced viewing using encyclopedias and model-based segmentation

    NASA Astrophysics Data System (ADS)

    Kneser, Reinhard; Lehmann, Helko; Geller, Dieter; Qian, Yue-Chen; Weese, Jürgen

    2009-02-01

    To make accurate decisions based on imaging data, radiologists must associate the viewed imaging data with the corresponding anatomical structures. Furthermore, given a disease hypothesis possible image findings which verify the hypothesis must be considered and where and how they are expressed in the viewed images. If rare anatomical variants, rare pathologies, unfamiliar protocols, or ambiguous findings are present, external knowledge sources such as medical encyclopedias are consulted. These sources are accessed using keywords typically describing anatomical structures, image findings, pathologies. In this paper we present our vision of how a patient's imaging data can be automatically enhanced with anatomical knowledge as well as knowledge about image findings. On one hand, we propose the automatic annotation of the images with labels from a standard anatomical ontology. These labels are used as keywords for a medical encyclopedia such as STATdx to access anatomical descriptions, information about pathologies and image findings. On the other hand we envision encyclopedias to contain links to region- and finding-specific image processing algorithms. Then a finding is evaluated on an image by applying the respective algorithm in the associated anatomical region. Towards realization of our vision, we present our method and results of automatic annotation of anatomical structures in 3D MRI brain images. Thereby we develop a complex surface mesh model incorporating major structures of the brain and a model-based segmentation method. We demonstrate the validity by analyzing the results of several training and segmentation experiments with clinical data focusing particularly on the visual pathway.

  18. Pediatric cervical spine in emergency: radiographic features of normal anatomy, variants and pitfalls.

    PubMed

    Adib, Omar; Berthier, Emeline; Loisel, Didier; Aubé, Christophe

    2016-12-01

    Injuries of the cervical spine are uncommon in children. The distribution of injuries, when they do occur, differs according to age. Young children aged less than 8 years usually have upper cervical injuries because of the anatomic and biomechanical properties of their immature spine, whereas older children, whose biomechanics more closely resemble those of adults, are prone to lower cervical injuries. In all cases, the pediatric cervical spine has distinct radiographic features, making the emergency radiological analysis of it difficult. Such features as hypermobility between C2 and C3, pseudospread of the atlas on the axis, pseudosubluxation, the absence of lordosis, anterior wedging of vertebral bodies, pseudowidening of prevertebral soft tissue and incomplete ossification of synchondrosis can be mistaken for traumatic injuries. The interpretation of a plain radiograph of the pediatric cervical spine following trauma must take into account the age of the child, the location of the injury and the mechanism of trauma. Comprehensive knowledge of the specific anatomy and biomechanics of the childhood spine is essential for the diagnosis of suspected cervical spine injury. With it, the physician can, on one hand, differentiate normal physes or synchondroses from pathological fractures or ligamentous disruptions and, on the other, identify any possible congenital anomalies that may also be mistaken for injury. Thus, in the present work, we discuss normal radiological features of the pediatric cervical spine, variants that may be encountered and pitfalls that must be avoided when interpreting plain radiographs taken in an emergency setting following trauma.

  19. In search of a periodic table of the neurons: Axonal-dendritic circuitry as the organizing principle: Patterns of axons and dendrites within distinct anatomical parcels provide the blueprint for circuit-based neuronal classification.

    PubMed

    Ascoli, Giorgio A; Wheeler, Diek W

    2016-10-01

    No one knows yet how to organize, in a simple yet predictive form, the knowledge concerning the anatomical, biophysical, and molecular properties of neurons that are accumulating in thousands of publications every year. The situation is not dissimilar to the state of Chemistry prior to Mendeleev's tabulation of the elements. We propose that the patterns of presence or absence of axons and dendrites within known anatomical parcels may serve as the key principle to define neuron types. Just as the positions of the elements in the periodic table indicate their potential to combine into molecules, axonal and dendritic distributions provide the blueprint for network connectivity. Furthermore, among the features commonly employed to describe neurons, morphology is considerably robust to experimental conditions. At the same time, this core classification scheme is suitable for aggregating biochemical, physiological, and synaptic information. © 2016 WILEY Periodicals, Inc.

  20. Multi-channel metabolic imaging, with SENSE reconstruction, of hyperpolarized [1- 13C] pyruvate in a live rat at 3.0 tesla on a clinical MR scanner

    NASA Astrophysics Data System (ADS)

    Tropp, James; Lupo, Janine M.; Chen, Albert; Calderon, Paul; McCune, Don; Grafendorfer, Thomas; Ozturk-Isik, Esin; Larson, Peder E. Z.; Hu, Simon; Yen, Yi-Fen; Robb, Fraser; Bok, Robert; Schulte, Rolf; Xu, Duan; Hurd, Ralph; Vigneron, Daniel; Nelson, Sarah

    2011-01-01

    We report metabolic images of 13C, following injection of a bolus of hyperpolarized [1-13C] pyruvate in a live rat. The data were acquired on a clinical scanner, using custom coils for volume transmission and array reception. Proton blocking of all carbon resonators enabled proton anatomic imaging with the system body coil, to allow for registration of anatomic and metabolic images, for which good correlation was achieved, with some anatomic features (kidney and heart) clearly visible in a carbon image, without reference to the corresponding proton image. Parallel imaging with sensitivity encoding was used to increase the spatial resolution in the SI direction of the rat. The signal to noise ratio in was in some instances unexpectedly high in the parallel images; variability of the polarization among different trials, plus partial volume effects, are noted as a possible cause of this.

  1. The facial nerve: anatomy and associated disorders for oral health professionals.

    PubMed

    Takezawa, Kojiro; Townsend, Grant; Ghabriel, Mounir

    2018-04-01

    The facial nerve, the seventh cranial nerve, is of great clinical significance to oral health professionals. Most published literature either addresses the central connections of the nerve or its peripheral distribution but few integrate both of these components and also highlight the main disorders affecting the nerve that have clinical implications in dentistry. The aim of the current study is to provide a comprehensive description of the facial nerve. Multiple aspects of the facial nerve are discussed and integrated, including its neuroanatomy, functional anatomy, gross anatomy, clinical problems that may involve the nerve, and the use of detailed anatomical knowledge in the diagnosis of the site of facial nerve lesion in clinical neurology. Examples are provided of disorders that can affect the facial nerve during its intra-cranial, intra-temporal and extra-cranial pathways, and key aspects of clinical management are discussed. The current study is complemented by original detailed dissections and sketches that highlight key anatomical features and emphasise the extent and nature of anatomical variations displayed by the facial nerve.

  2. Anatomical Analysis of Thumb Opponency Movement in the Capuchin Monkey (Sapajus sp)

    PubMed Central

    Aversi-Ferreira, Roqueline A. G. M. F.; Maior, Rafael Souto; Aziz, Ashraf; Ziermann, Janine M.; Nishijo, Hisao; Tomaz, Carlos; Tavares, Maria Clotilde H.; Aversi-Ferreira, Tales Alexandre

    2014-01-01

    Capuchin monkeys present a wide variety of manipulatory skills and make routine use of tools both in captivity and in the wild. Efficient handling of objects in this genus has led several investigators to assume near-human thumb movements despite the lack of anatomical studies. Here we perform an anatomical analysis of muscles and bones in the capuchin hand. Trapezo-metacarpal joint surfaces observed in capuchins indicate that medial rotation of metacarpal I is either absent or very limited. Overall, bone structural arrangement and thumb position relative to the other digits and the hand’s palm suggest that capuchins are unable to perform any kind of thumb opponency, but rather a ‘lateral pinch’ movement. Although the capuchin hand apparatus bears other features necessary for complex tool use, the lack thumb opposition movements suggests that a developed cognitive and motor nervous system may be even more important for high manipulatory skills than traditionally held. PMID:24498307

  3. Going virtual with quicktime VR: new methods and standardized tools for interactive dynamic visualization of anatomical structures.

    PubMed

    Trelease, R B; Nieder, G L; Dørup, J; Hansen, M S

    2000-04-15

    Continuing evolution of computer-based multimedia technologies has produced QuickTime, a multiplatform digital media standard that is supported by stand-alone commercial programs and World Wide Web browsers. While its core functions might be most commonly employed for production and delivery of conventional video programs (e.g., lecture videos), additional QuickTime VR "virtual reality" features can be used to produce photorealistic, interactive "non-linear movies" of anatomical structures ranging in size from microscopic through gross anatomic. But what is really included in QuickTime VR and how can it be easily used to produce novel and innovative visualizations for education and research? This tutorial introduces the QuickTime multimedia environment, its QuickTime VR extensions, basic linear and non-linear digital video technologies, image acquisition, and other specialized QuickTime VR production methods. Four separate practical applications are presented for light and electron microscopy, dissectable preserved specimens, and explorable functional anatomy in magnetic resonance cinegrams.

  4. Arrhythmia Mechanism and Scaling Effect on the Spectral Properties of Electroanatomical Maps With Manifold Harmonics.

    PubMed

    Sanroman-Junquera, Margarita; Mora-Jimenez, Inmaculada; Garcia-Alberola, Arcadio; Caamano, Antonio J; Trenor, Beatriz; Rojo-Alvarez, Jose L

    2018-04-01

    Spatial and temporal processing of intracardiac electrograms provides relevant information to support the arrhythmia ablation during electrophysiological studies. Current cardiac navigation systems (CNS) and electrocardiographic imaging (ECGI) build detailed 3-D electroanatomical maps (EAM), which represent the spatial anatomical distribution of bioelectrical features, such as activation time or voltage. We present a principled methodology for spectral analysis of both EAM geometry and bioelectrical feature in CNS or ECGI, including their spectral representation, cutoff frequency, or spatial sampling rate (SSR). Existing manifold harmonic techniques for spectral mesh analysis are adapted to account for a fourth dimension, corresponding to the EAM bioelectrical feature. Appropriate scaling is required to address different magnitudes and units. With our approach, simulated and real EAM showed strong SSR dependence on both the arrhythmia mechanism and the cardiac anatomical shape. For instance, high frequencies increased significantly the SSR because of the "early-meets-late" in flutter EAM, compared with the sinus rhythm. Besides, higher frequency components were obtained for the left atrium (more complex anatomy) than for the right atrium in sinus rhythm. The proposed manifold harmonics methodology opens the field toward new signal processing tools for principled EAM spatiofeature analysis in CNS and ECGI, and to an improved knowledge on arrhythmia mechanisms.

  5. Trace Elemental Imaging of Rare Earth Elements Discriminates Tissues at Microscale in Flat Fossils

    PubMed Central

    Gueriau, Pierre; Mocuta, Cristian; Dutheil, Didier B.; Cohen, Serge X.; Thiaudière, Dominique; Charbonnier, Sylvain; Clément, Gaël; Bertrand, Loïc

    2014-01-01

    The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation. Unfortunately, the widely-used X-ray micro-computed tomography, for visualizing hidden or internal structures of a broad range of fossils, is generally inapplicable to flattened specimens, due to the very high differential absorbance in distinct directions. Here we show that synchrotron X-ray fluorescence spectral raster-scanning coupled to spectral decomposition or a much faster Kullback-Leibler divergence based statistical analysis provides microscale visualization of tissues. We imaged exceptionally well-preserved fossils from the Late Cretaceous without needing any prior delicate preparation. The contrasting elemental distributions greatly improved the discrimination of skeletal elements material from both the sedimentary matrix and fossilized soft tissues. Aside content in alkaline earth elements and phosphorus, a critical parameter for tissue discrimination is the distinct amounts of rare earth elements. Local quantification of rare earths may open new avenues for fossil description but also in paleoenvironmental and taphonomical studies. PMID:24489809

  6. Trace elemental imaging of rare earth elements discriminates tissues at microscale in flat fossils.

    PubMed

    Gueriau, Pierre; Mocuta, Cristian; Dutheil, Didier B; Cohen, Serge X; Thiaudière, Dominique; Charbonnier, Sylvain; Clément, Gaël; Bertrand, Loïc

    2014-01-01

    The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation. Unfortunately, the widely-used X-ray micro-computed tomography, for visualizing hidden or internal structures of a broad range of fossils, is generally inapplicable to flattened specimens, due to the very high differential absorbance in distinct directions. Here we show that synchrotron X-ray fluorescence spectral raster-scanning coupled to spectral decomposition or a much faster Kullback-Leibler divergence based statistical analysis provides microscale visualization of tissues. We imaged exceptionally well-preserved fossils from the Late Cretaceous without needing any prior delicate preparation. The contrasting elemental distributions greatly improved the discrimination of skeletal elements material from both the sedimentary matrix and fossilized soft tissues. Aside content in alkaline earth elements and phosphorus, a critical parameter for tissue discrimination is the distinct amounts of rare earth elements. Local quantification of rare earths may open new avenues for fossil description but also in paleoenvironmental and taphonomical studies.

  7. The anatomy of self-defense.

    PubMed

    Stein, Pamela Sparks; Richardson, April D; Challman, Sandra D

    2008-01-01

    The following study describes a creative application of anatomical principles in the instruction of self-defense. Undergraduates at the University of Kentucky were invited to a special lecture that featured a series of self-defense moves introduced by a local police officer. Following a demonstration of each self-defense tactic, the students were briefed on the anatomy of both the victim and the assailant that contributed to the overall effectiveness of each move. This approach was unique in that students learned critical knowledge of self-defense while reinforcing anatomical principles previously introduced in class. Moreover, this integration of topics prompted students to think about their response to potentially dangerous situations on campus. (c) 2008 American Association of Anatomists.

  8. Chemical Composition and Activity of Essential Oils of Carissa macrocarpa (Eckl.) A.DC. Cultivated in Tunisia and its Anatomical Features.

    PubMed

    Souilem, Fedia; El Ayeb, Asma; Djlassi, Brahim; Ayari, Olfa; Chiboub, Wiem; Arbi, Faten; Ascrizzi, Roberta; Flamini, Guido; Harzallah-Skhiri, Fethia

    2018-06-15

    This is the first study investigating the chemical composition of essential oils (EOs) isolated from different tissues of Carissa macrocarpa (Eckl.)A.DC, their antimicrobial activity and the anatomical characters of the aerial organs and the fruits. The main EO components were pentadecanal and tetradecan-1-ol (31.9 and 16.5% in fresh leaf EO, resp.), (E)-nerolidol and caryophyllene oxide (27.3 and 15.0% in fruit EO, resp.), linalool and hexahydrofarnesyl acetone (30.9 and 24.9% in stem EO, resp.), benzyl benzoate (24.3% in flower EO). The fruit EO was more active against Candida albicans (MIC=0.46 mg/mL) compared to the reference antibiotic (17.66 mg/mL). Furthermore, at this concentration it inhibited all the Gram-positive bacteria. Concerning the anatomical features, it is noteworth the presence of a large cluster of Ca oxalate crystals inside some parenchymatous cells. Large ducts corresponding to non articulated laticifers were identified in the cortex of leaf, stem and fruit pericarp. The laticifers categories and their distribution are taxonomically important to discriminate this species from others acclimated in different countries. Considering the obtained results, EOs of C. macrocarpa can be a good source of antimicrobial compounds, contributing to solve the problem of microbial resistance to antibiotics. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Measurement of distances between anatomical structures using a translating stage with mounted endoscope

    NASA Astrophysics Data System (ADS)

    Kahrs, Lueder A.; Blachon, Gregoire S.; Balachandran, Ramya; Fitzpatrick, J. Michael; Labadie, Robert F.

    2012-02-01

    During endoscopic procedures it is often desirable to determine the distance between anatomical features. One such clinical application is percutaneous cochlear implantation (PCI), which is a minimally invasive approach to the cochlea via a single, straight drill path and can be achieved accurately using bone-implanted markers and customized microstereotactic frame. During clinical studies to validate PCI, traditional open-field cochlear implant surgery was performed and prior to completion of the surgery, a customized microstereotactic frame designed to achieve the desired PCI trajectory was attached to the bone-implanted markers. To determine whether this trajectory would have safely achieved the target, a sham drill bit is passed through the frame to ensure that the drill bit would reach the cochlea without damaging vital structures. Because of limited access within the facial recess, the distances from the bit to anatomical features could not be measured with calipers. We hypothesized that an endoscope mounted on a sliding stage that translates only along the trajectory, would provide sufficient triangulation to accurately measure these distances. In this paper, the design, fabrication, and testing of such a system is described. The endoscope is mounted so that its optical axis is approximately aligned with the trajectory. Several images are acquired as the stage is moved, and threedimensional reconstruction of selected points allows determination of distances. This concept also has applicability in a large variety of rigid endoscopic interventions including bronchoscopy, laparoscopy, and sinus endoscopy.

  10. Intraspecific Variation in Wood Anatomical, Hydraulic, and Foliar Traits in Ten European Beech Provenances Differing in Growth Yield

    PubMed Central

    Hajek, Peter; Kurjak, Daniel; von Wühlisch, Georg; Delzon, Sylvain; Schuldt, Bernhard

    2016-01-01

    In angiosperms, many studies have described the inter-specific variability of hydraulic-related traits and little is known at the intra-specific level. This information is however mandatory to assess the adaptive capacities of tree populations in the context of increasing drought frequency and severity. Ten 20-year old European beech (Fagus sylvatica L.) provenances representing the entire distribution range throughout Europe and differing significantly in aboveground biomass increment (ABI) by a factor of up to four were investigated for branch wood anatomical, hydraulic, and foliar traits in a provenance trial located in Northern Europe. We quantified to which extend xylem hydraulic and leaf traits are under genetic control and tested whether the xylem hydraulic properties (hydraulic efficiency and safety) trades off with yield and wood anatomical and leaf traits. Our results showed that only three out of 22 investigated ecophysiological traits showed significant genetic differentiations between provenances, namely vessel density (VD), the xylem pressure causing 88% loss of hydraulic conductance and mean leaf size. Depending of the ecophysiological traits measured, genetic differentiation between populations explained 0–14% of total phenotypic variation, while intra-population variability was higher than inter-population variability. Most wood anatomical traits and some foliar traits were additionally related to the climate of provenance origin. The lumen to sapwood area ratio, vessel diameter, theoretical specific conductivity and theoretical leaf-specific conductivity as well as the C:N-ratio increased with climatic aridity at the place of origin while the carbon isotope signature (δ13C) decreased. Contrary to our assumption, none of the wood anatomical traits were related to embolism resistance but were strong determinants of hydraulic efficiency. Although ABI was associated with both VD and δ13C, both hydraulic efficiency and embolism resistance were unrelated, disproving the assumed trade-off between hydraulic efficiency and safety. European beech seems to compensate increasing water stress with growing size mainly by adjusting vessel number and not vessel diameter. In conclusion, European beech has a high potential capacity to cope with climate change due to the high degree of intra-population genetic variability. PMID:27379112

  11. Intraspecific Variation in Wood Anatomical, Hydraulic, and Foliar Traits in Ten European Beech Provenances Differing in Growth Yield.

    PubMed

    Hajek, Peter; Kurjak, Daniel; von Wühlisch, Georg; Delzon, Sylvain; Schuldt, Bernhard

    2016-01-01

    In angiosperms, many studies have described the inter-specific variability of hydraulic-related traits and little is known at the intra-specific level. This information is however mandatory to assess the adaptive capacities of tree populations in the context of increasing drought frequency and severity. Ten 20-year old European beech (Fagus sylvatica L.) provenances representing the entire distribution range throughout Europe and differing significantly in aboveground biomass increment (ABI) by a factor of up to four were investigated for branch wood anatomical, hydraulic, and foliar traits in a provenance trial located in Northern Europe. We quantified to which extend xylem hydraulic and leaf traits are under genetic control and tested whether the xylem hydraulic properties (hydraulic efficiency and safety) trades off with yield and wood anatomical and leaf traits. Our results showed that only three out of 22 investigated ecophysiological traits showed significant genetic differentiations between provenances, namely vessel density (VD), the xylem pressure causing 88% loss of hydraulic conductance and mean leaf size. Depending of the ecophysiological traits measured, genetic differentiation between populations explained 0-14% of total phenotypic variation, while intra-population variability was higher than inter-population variability. Most wood anatomical traits and some foliar traits were additionally related to the climate of provenance origin. The lumen to sapwood area ratio, vessel diameter, theoretical specific conductivity and theoretical leaf-specific conductivity as well as the C:N-ratio increased with climatic aridity at the place of origin while the carbon isotope signature (δ(13)C) decreased. Contrary to our assumption, none of the wood anatomical traits were related to embolism resistance but were strong determinants of hydraulic efficiency. Although ABI was associated with both VD and δ(13)C, both hydraulic efficiency and embolism resistance were unrelated, disproving the assumed trade-off between hydraulic efficiency and safety. European beech seems to compensate increasing water stress with growing size mainly by adjusting vessel number and not vessel diameter. In conclusion, European beech has a high potential capacity to cope with climate change due to the high degree of intra-population genetic variability.

  12. The evaluation of multi-structure, multi-atlas pelvic anatomy features in a prostate MR lymphography CAD system

    NASA Astrophysics Data System (ADS)

    Meijs, M.; Debats, O.; Huisman, H.

    2015-03-01

    In prostate cancer, the detection of metastatic lymph nodes indicates progression from localized disease to metastasized cancer. The detection of positive lymph nodes is, however, a complex and time consuming task for experienced radiologists. Assistance of a two-stage Computer-Aided Detection (CAD) system in MR Lymphography (MRL) is not yet feasible due to the large number of false positives in the first stage of the system. By introducing a multi-structure, multi-atlas segmentation, using an affine transformation followed by a B-spline transformation for registration, the organ location is given by a mean density probability map. The atlas segmentation is semi-automatically drawn with ITK-SNAP, using Active Contour Segmentation. Each anatomic structure is identified by a label number. Registration is performed using Elastix, using Mutual Information and an Adaptive Stochastic Gradient optimization. The dataset consists of the MRL scans of ten patients, with lymph nodes manually annotated in consensus by two expert readers. The feature map of the CAD system consists of the Multi-Atlas and various other features (e.g. Normalized Intensity and multi-scale Blobness). The voxel-based Gentleboost classifier is evaluated using ROC analysis with cross validation. We show in a set of 10 studies that adding multi-structure, multi-atlas anatomical structure likelihood features improves the quality of the lymph node voxel likelihood map. Multiple structure anatomy maps may thus make MRL CAD more feasible.

  13. Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited.

    PubMed

    Thomas, Cibu; Ye, Frank Q; Irfanoglu, M Okan; Modi, Pooja; Saleem, Kadharbatcha S; Leopold, David A; Pierpaoli, Carlo

    2014-11-18

    Tractography based on diffusion-weighted MRI (DWI) is widely used for mapping the structural connections of the human brain. Its accuracy is known to be limited by technical factors affecting in vivo data acquisition, such as noise, artifacts, and data undersampling resulting from scan time constraints. It generally is assumed that improvements in data quality and implementation of sophisticated tractography methods will lead to increasingly accurate maps of human anatomical connections. However, assessing the anatomical accuracy of DWI tractography is difficult because of the lack of independent knowledge of the true anatomical connections in humans. Here we investigate the future prospects of DWI-based connectional imaging by applying advanced tractography methods to an ex vivo DWI dataset of the macaque brain. The results of different tractography methods were compared with maps of known axonal projections from previous tracer studies in the macaque. Despite the exceptional quality of the DWI data, none of the methods demonstrated high anatomical accuracy. The methods that showed the highest sensitivity showed the lowest specificity, and vice versa. Additionally, anatomical accuracy was highly dependent upon parameters of the tractography algorithm, with different optimal values for mapping different pathways. These results suggest that there is an inherent limitation in determining long-range anatomical projections based on voxel-averaged estimates of local fiber orientation obtained from DWI data that is unlikely to be overcome by improvements in data acquisition and analysis alone.

  14. By more ways than one: Rapid convergence at hydrothermal vents shown by 3D anatomical reconstruction of Gigantopelta (Mollusca: Neomphalina).

    PubMed

    Chen, Chong; Uematsu, Katsuyuki; Linse, Katrin; Sigwart, Julia D

    2017-03-01

    Extreme environments prompt the evolution of characteristic adaptations. Yet questions remain about whether radiations in extreme environments originate from a single lineage that masters a key adaptive pathway, or if the same features can arise in parallel through convergence. Species endemic to deep-sea hydrothermal vents must accommodate high temperature and low pH. The most successful vent species share a constrained pathway to successful energy exploitation: hosting symbionts. The vent-endemic gastropod genus Gigantopelta, from the Southern and Indian Oceans, shares unusual features with a co-occurring peltospirid, the 'scaly-foot gastropod' Chrysomallon squamiferum. Both are unusually large for the clade and share other adaptive features such as a prominent enlarged trophosome-like oesophageal gland, not found in any other vent molluscs. Transmission electron microscopy confirmed endosymbiont bacteria in the oesophageal gland of Gigantopelta, as also seen in Chrysomallon. They are the only known members of their phylum in vent ecosystems hosting internal endosymbionts; other vent molluscs host endosymbionts in or on their gills, or in the mantle cavity. A five-gene phylogenetic reconstruction demonstrated that Gigantopelta and Chrysomallon are not phylogenetically sister-taxa, despite their superficial similarity. Both genera have specialist adaptations to accommodate internalised endosymbionts, but with anatomical differences that indicate separate evolutionary origins. Hosting endosymbionts in an internal organ within the host means that all resources required by the bacteria must be supplied by the animal, rather than directly by the vent fluid. Unlike Chrysomallon, which has an enlarged oesophageal gland throughout post-settlement life, the oesophageal gland in Gigantopelta is proportionally much smaller in juveniles and the animals likely undergo a trophic shift during ontogeny. The circulatory system is hypertrophied in both but the overall size is smaller in Gigantopelta. In contrast with Chrysomallon, Gigantopelta possesses true ganglia and is gonochoristic. Key anatomical differences between Gigantopelta and Chrysomallon demonstrate these two genera acquired a similar way of life through independent and convergent adaptive pathways. What appear to be the holobiont's adaptations to an extreme environment, are driven by optimising bacteria's access to vent nutrients. By comparing Gigantopelta and Chrysomallon, we show that metazoans are capable of rapidly and repeatedly evolving equivalent anatomical adaptations and close-knit relationships with chemoautotrophic bacteria, achieving the same end-product through parallel evolutionary trajectories.

  15. Comparisons of Computed Mobile Phone Induced SAR in the SAM Phantom to That in Anatomically Correct Models of the Human Head.

    PubMed

    Beard, Brian B; Kainz, Wolfgang; Onishi, Teruo; Iyama, Takahiro; Watanabe, Soichi; Fujiwara, Osamu; Wang, Jianqing; Bit-Babik, Giorgi; Faraone, Antonio; Wiart, Joe; Christ, Andreas; Kuster, Niels; Lee, Ae-Kyoung; Kroeze, Hugo; Siegbahn, Martin; Keshvari, Jafar; Abrishamkar, Houman; Simon, Winfried; Manteuffel, Dirk; Nikoloski, Neviana

    2006-06-05

    The specific absorption rates (SAR) determined computationally in the specific anthropomorphic mannequin (SAM) and anatomically correct models of the human head when exposed to a mobile phone model are compared as part of a study organized by IEEE Standards Coordinating Committee 34, SubCommittee 2, and Working Group 2, and carried out by an international task force comprising 14 government, academic, and industrial research institutions. The detailed study protocol defined the computational head and mobile phone models. The participants used different finite-difference time-domain software and independently positioned the mobile phone and head models in accordance with the protocol. The results show that when the pinna SAR is calculated separately from the head SAR, SAM produced a higher SAR in the head than the anatomically correct head models. Also the larger (adult) head produced a statistically significant higher peak SAR for both the 1- and 10-g averages than did the smaller (child) head for all conditions of frequency and position.

  16. Early patterning and specification of cardiac progenitors in gastrulating mesoderm

    PubMed Central

    Devine, W Patrick; Wythe, Joshua D; George, Matthew; Koshiba-Takeuchi, Kazuko; Bruneau, Benoit G

    2014-01-01

    Mammalian heart development requires precise allocation of cardiac progenitors. The existence of a multipotent progenitor for all anatomic and cellular components of the heart has been predicted but its identity and contribution to the two cardiac progenitor ‘fields’ has remained undefined. Here we show, using clonal genetic fate mapping, that Mesp1+ cells in gastrulating mesoderm are rapidly specified into committed cardiac precursors fated for distinct anatomic regions of the heart. We identify Smarcd3 as a marker of early specified cardiac precursors and identify within these precursors a compartment boundary at the future junction of the left and right ventricles that arises prior to morphogenesis. Our studies define the timing and hierarchy of cardiac progenitor specification and demonstrate that the cellular and anatomical fate of mesoderm-derived cardiac cells is specified very early. These findings will be important to understand the basis of congenital heart defects and to derive cardiac regeneration strategies. DOI: http://dx.doi.org/10.7554/eLife.03848.001 PMID:25296024

  17. Evidence-based anatomical review areas derived from systematic analysis of cases from a radiological departmental discrepancy meeting.

    PubMed

    Chin, S C; Weir-McCall, J R; Yeap, P M; White, R D; Budak, M J; Duncan, G; Oliver, T B; Zealley, I A

    2017-10-01

    To produce short checklists of specific anatomical review sites for different regions of the body based on the frequency of radiological errors reviewed at radiology discrepancy meetings, thereby creating "evidence-based" review areas for radiology reporting. A single centre discrepancy database was retrospectively reviewed from a 5-year period. All errors were classified by type, modality, body system, and specific anatomical location. Errors were assigned to one of four body regions: chest, abdominopelvic, central nervous system (CNS), and musculoskeletal (MSK). Frequencies of errors in anatomical locations were then analysed. There were 561 errors in 477 examinations; 290 (46%) errors occurred in the abdomen/pelvis, 99 (15.7%) in the chest, 117 (18.5%) in the CNS, and 125 (19.9%) in the MSK system. In each body system, the five most common location were chest: lung bases on computed tomography (CT), apices on radiography, pulmonary vasculature, bones, and mediastinum; abdominopelvic: vasculature, colon, kidneys, liver, and pancreas; CNS: intracranial vasculature, peripheral cerebral grey matter, bone, parafalcine, and the frontotemporal lobes surrounding the Sylvian fissure; and MSK: calvarium, sacrum, pelvis, chest, and spine. The five listed locations accounted for >50% of all perceptual errors suggesting an avenue for focused review at the end of reporting. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  18. AnatomicalTerms.info: heading for an online solution to the anatomical synonym problem hurdles in data-reuse from the Terminologia Anatomica and the foundational model of anatomy and potentials for future development.

    PubMed

    Gobée, O Paul; Jansma, Daniël; DeRuiter, Marco C

    2011-10-01

    The many synonyms for anatomical structures confuse medical students and complicate medical communication. Easily accessible translations would alleviate this problem. None of the presently available resources-Terminologia Anatomica (TA), digital terminologies such as the Foundational Model of Anatomy (FMA), and websites-are fully satisfactory to this aim. Internet technologies offer new possibilities to solve the problem. Several authors have called for an online TA. An online translation resource should be easily accessible, user-friendly, comprehensive, expandable, and its quality determinable. As first step towards this goal, we built a translation website that we named www.AnatomicalTerms.info, based on the database of the FMA. It translates between English, Latin, eponyms, and to a lesser extent other languages, and presently contains over 31,000 terms for 7,250 structures, covering 95% of TA. In addition, it automatically presents searches for images, documents and anatomical variations regarding the sought structure. Several terminological and conceptual issues were encountered in transferring data from TA and FMA into AnatomicalTerms.info, resultant from these resources' different set-ups (paper versus digital) and targets (machine versus human-user). To the best of our knowledge, AnatomicalTerms.info is unique in its combination of user-friendliness and comprehensiveness. As next step, wiki-like expandability will be added to enable open contribution of clinical synonyms and terms in different languages. Specific quality measures will be taken to strike a balance between open contribution and quality assurance. AnatomicalTerms.info's mechanism that "translates" terms to structures furthermore may enhance targeted searching by linking images, descriptions, and other anatomical resources to the structures. Copyright © 2011 Wiley-Liss, Inc.

  19. Long interspersed element-1 protein expression is a hallmark of many human cancers.

    PubMed

    Rodić, Nemanja; Sharma, Reema; Sharma, Rajni; Zampella, John; Dai, Lixin; Taylor, Martin S; Hruban, Ralph H; Iacobuzio-Donahue, Christine A; Maitra, Anirban; Torbenson, Michael S; Goggins, Michael; Shih, Ie-Ming; Duffield, Amy S; Montgomery, Elizabeth A; Gabrielson, Edward; Netto, George J; Lotan, Tamara L; De Marzo, Angelo M; Westra, William; Binder, Zev A; Orr, Brent A; Gallia, Gary L; Eberhart, Charles G; Boeke, Jef D; Harris, Chris R; Burns, Kathleen H

    2014-05-01

    Cancers comprise a heterogeneous group of human diseases. Unifying characteristics include unchecked abilities of tumor cells to proliferate and spread anatomically, and the presence of clonal advantageous genetic changes. However, universal and highly specific tumor markers are unknown. Herein, we report widespread long interspersed element-1 (LINE-1) repeat expression in human cancers. We show that nearly half of all human cancers are immunoreactive for a LINE-1-encoded protein. LINE-1 protein expression is a common feature of many types of high-grade malignant cancers, is rarely detected in early stages of tumorigenesis, and is absent from normal somatic tissues. Studies have shown that LINE-1 contributes to genetic changes in cancers, with somatic LINE-1 insertions seen in selected types of human cancers, particularly colon cancer. We sought to correlate this observation with expression of the LINE-1-encoded protein, open reading frame 1 protein, and found that LINE-1 open reading frame 1 protein is a surprisingly broad, yet highly tumor-specific, antigen. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  20. Mass Spectrometry Imaging, an Emerging Technology in Neuropsychopharmacology

    PubMed Central

    Shariatgorji, Mohammadreza; Svenningsson, Per; Andrén, Per E

    2014-01-01

    Mass spectrometry imaging is a powerful tool for directly determining the distribution of proteins, peptides, lipids, neurotransmitters, metabolites and drugs in neural tissue sections in situ. Molecule-specific imaging can be achieved using various ionization techniques that are suited to different applications but which all yield data with high mass accuracies and spatial resolutions. The ability to simultaneously obtain images showing the distributions of chemical species ranging from metal ions to macromolecules makes it possible to explore the chemical organization of a sample and to correlate the results obtained with specific anatomical features. The imaging of biomolecules has provided new insights into multiple neurological diseases, including Parkinson's and Alzheimer's disease. Mass spectrometry imaging can also be used in conjunction with other imaging techniques in order to identify correlations between changes in the distribution of important chemical species and other changes in the properties of the tissue. Here we review the applications of mass spectrometry imaging in neuroscience research and discuss its potential. The results presented demonstrate that mass spectrometry imaging is a useful experimental method with diverse applications in neuroscience. PMID:23966069

  1. Prostate lesion detection and localization based on locality alignment discriminant analysis

    NASA Astrophysics Data System (ADS)

    Lin, Mingquan; Chen, Weifu; Zhao, Mingbo; Gibson, Eli; Bastian-Jordan, Matthew; Cool, Derek W.; Kassam, Zahra; Chow, Tommy W. S.; Ward, Aaron; Chiu, Bernard

    2017-03-01

    Prostatic adenocarcinoma is one of the most commonly occurring cancers among men in the world, and it also the most curable cancer when it is detected early. Multiparametric MRI (mpMRI) combines anatomic and functional prostate imaging techniques, which have been shown to produce high sensitivity and specificity in cancer localization, which is important in planning biopsies and focal therapies. However, in previous investigations, lesion localization was achieved mainly by manual segmentation, which is time-consuming and prone to observer variability. Here, we developed an algorithm based on locality alignment discriminant analysis (LADA) technique, which can be considered as a version of linear discriminant analysis (LDA) localized to patches in the feature space. Sensitivity, specificity and accuracy generated by the proposed algorithm in five prostates by LADA were 52.2%, 89.1% and 85.1% respectively, compared to 31.3%, 85.3% and 80.9% generated by LDA. The delineation accuracy attainable by this tool has a potential in increasing the cancer detection rate in biopsies and in minimizing collateral damage of surrounding tissues in focal therapies.

  2. Mass spectrometry imaging, an emerging technology in neuropsychopharmacology.

    PubMed

    Shariatgorji, Mohammadreza; Svenningsson, Per; Andrén, Per E

    2014-01-01

    Mass spectrometry imaging is a powerful tool for directly determining the distribution of proteins, peptides, lipids, neurotransmitters, metabolites and drugs in neural tissue sections in situ. Molecule-specific imaging can be achieved using various ionization techniques that are suited to different applications but which all yield data with high mass accuracies and spatial resolutions. The ability to simultaneously obtain images showing the distributions of chemical species ranging from metal ions to macromolecules makes it possible to explore the chemical organization of a sample and to correlate the results obtained with specific anatomical features. The imaging of biomolecules has provided new insights into multiple neurological diseases, including Parkinson's and Alzheimer's disease. Mass spectrometry imaging can also be used in conjunction with other imaging techniques in order to identify correlations between changes in the distribution of important chemical species and other changes in the properties of the tissue. Here we review the applications of mass spectrometry imaging in neuroscience research and discuss its potential. The results presented demonstrate that mass spectrometry imaging is a useful experimental method with diverse applications in neuroscience.

  3. On the role of the reticular formation in vocal pattern generation.

    PubMed

    Jürgens, Uwe; Hage, Steffen R

    2007-09-04

    This review is an attempt to localize the brain region responsible for pattern generation of species-specific vocalizations. A catalogue is set up, listing the criteria considered to be essential for a vocal pattern generator. According to this catalogue, a vocal pattern generator should show vocalization-correlated activity, starting before vocal onset and reflecting specific acoustic features of the vocalization. Artificial activation by electrical or glutamatergic stimulation should produce artificially sounding vocalization. Lesioning is expected to have an inhibitory or deteriorating effect on vocalization. Anatomically, a vocal pattern generator can be assumed to have direct or, at least, oligosynaptic connections with all the motoneuron pools involved in phonation. A survey of the literature reveals that the only area meeting all these criteria is a region, reaching from the parvocellular pontine reticular formation just above the superior olive through the lateral reticular formation around the facial nucleus and nucleus ambiguus down to the caudalmost medulla, including the dorsal and ventral reticular nuclei and nucleus retroambiguus. It is proposed that vocal pattern generation takes place within this whole region.

  4. Anatomical connections of the functionally-defined “face patches” in the macaque monkey

    PubMed Central

    Saleem, Kadharbatcha S.

    2017-01-01

    The neural circuits underlying face recognition provide a model for understanding visual object representation, social cognition, and hierarchical information processing. A fundamental piece of information lacking to date is the detailed anatomical connections of the face patches. Here, we injected retrograde tracers into four different face patches (PL, ML, AL, AM) to characterize their anatomical connectivity. We found that the patches are strongly and specifically connected to each other, and individual patches receive inputs from extrastriate cortex, the medial temporal lobe, and three subcortical structures (the pulvinar, claustrum, and amygdala). Inputs from prefrontal cortex were surprisingly weak. Patches were densely interconnected to one another in both feedforward and feedback directions, inconsistent with a serial hierarchy. These results provide the first direct anatomical evidence that the face patches constitute a highly specialized system, and suggest that subcortical regions may play a vital role in routing face-related information to subsequent processing stages. PMID:27263973

  5. Patterns of differences in brain morphology in humans as compared to extant apes.

    PubMed

    Aldridge, Kristina

    2011-01-01

    Although human evolution is characterized by a vast increase in brain size, it is not clear whether or not certain regions of the brain are enlarged disproportionately in humans, or how this enlargement relates to differences in overall neural morphology. The aim of this study is to determine whether or not there are specific suites of features that distinguish the morphology of the human brain from that of apes. The study sample consists of whole brain, in vivo magnetic resonance images (MRIs) of anatomically modern humans (Homo sapiens sapiens) and five ape species (gibbons, orangutans, gorillas, chimpanzees, bonobos). Twenty-nine 3D landmarks, including surface and internal features of the brain were located on 3D MRI reconstructions of each individual using MEASURE software. Landmark coordinate data were scaled for differences in size and analyzed using Euclidean Distance Matrix Analysis (EDMA) to statistically compare the brains of each non-human ape species to the human sample. Results of analyses show both a pattern of brain morphology that is consistently different between all apes and humans, as well as patterns that differ among species. Further, both the consistent and species-specific patterns include cortical and subcortical features. The pattern that remains consistent across species indicates a morphological reorganization of 1) relationships between cortical and subcortical frontal structures, 2) expansion of the temporal lobe and location of the amygdala, and 3) expansion of the anterior parietal region. Additionally, results demonstrate that, although there is a pattern of morphology that uniquely defines the human brain, there are also patterns that uniquely differentiate human morphology from the morphology of each non-human ape species, indicating that reorganization of neural morphology occurred at the evolutionary divergence of each of these groups. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Patterns of differences in brain morphology in humans as compared to extant apes

    PubMed Central

    Aldridge, Kristina

    2010-01-01

    Although human evolution is characterized by a vast increase in brain size, it is not clear whether or not certain regions of the brain are enlarged disproportionately in humans, or how this enlargement relates to differences in overall neural morphology. The aim of this study is to determine whether or not there are specific suites of features that distinguish the morphology of the human brain from that of apes. The study sample consists of whole brain, in vivo magnetic resonance images (MRIs) of anatomically modern humans (Homo sapiens sapiens) and five ape species (gibbons, orangutans, gorillas, chimpanzees, bonobos). Twenty-nine 3D landmarks, including surface and internal features of the brain were located on 3D MRI reconstructions of each individual using MEASURE software. Landmark coordinate data were scaled for differences in size and analyzed using Euclidean Distance Matrix Analysis (EDMA) to statistically compare the brains of each non-human ape species to the human sample. Results of analyses show both a pattern of brain morphology that is consistently different between all apes and humans, as well as patterns that differ among species. Further, both the consistent and species-specific patterns include cortical and subcortical features. The pattern that remains consistent across species indicates a morphological reorganization of 1) relationships between cortical and subcortical frontal structures, 2) expansion of the temporal lobe and location of the amygdala, and 3) expansion of the anterior parietal region. Additionally, results demonstrate that, although there is a pattern of morphology that uniquely defines the human brain, there are also patterns that uniquely differentiate human morphology from the morphology of each non-human ape species, indicating that reorganization of neural morphology occurred at the evolutionary divergence of each of these groups. PMID:21056456

  7. Variations and asymmetries in regional brain surface in the genus Homo.

    PubMed

    Balzeau, Antoine; Holloway, Ralph L; Grimaud-Hervé, Dominique

    2012-06-01

    Paleoneurology is an important field of research within human evolution studies. Variations in size and shape of an endocast help to differentiate among fossil hominin species whereas endocranial asymmetries are related to behavior and cognitive function. Here we analyse variations of the surface of the frontal, parieto-temporal and occipital lobes among different species of Homo, including 39 fossil hominins, ten fossil anatomically modern Homo sapiens and 100 endocasts of extant modern humans. We also test for the possible asymmetries of these features in a large sample of modern humans and observe individual particularities in the fossil specimens. This study contributes important new information about the brain evolution in the genus Homo. Our results show that the general pattern of surface asymmetry for the different regional brain surfaces in fossil species of Homo does not seem to be different from the pattern described in a large sample of anatomically modern H. sapiens, i.e., the right hemisphere has a larger surface than the left, as do the right frontal, the right parieto-temporal and the left occipital lobes compared with the contra-lateral side. It also appears that Asian Homo erectus specimens are discriminated from all other samples of Homo, including African and Georgian specimens that are also sometimes included in that taxon. The Asian fossils show a significantly smaller relative size of the parietal and temporal lobes. Neandertals and anatomically modern H. sapiens, who share the largest endocranial volume of all hominins, show differences when considering the relative contribution of the frontal, parieto-temporal and occipital lobes. These results illustrate an original variation in the pattern of brain organization in hominins independent of variations in total size. The globularization of the brain and the enlargement of the parietal lobes could be considered derived features observed uniquely in anatomically modern H. sapiens. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light

    NASA Technical Reports Server (NTRS)

    Schuerger, A. C.; Brown, C. S.; Stryjewski, E. C.

    1997-01-01

    Pepper plants (Capsicum annuum L. cv., Hungarian Wax) were grown under metal halide (MH) lamps or light-emitting diode (LED) arrays with different spectra to determine the effects of light quality on plant anatomy of leaves and stems. One LED (660) array supplied 90% red light at 660 nm (25nm band-width at half-peak height) and 1% far-red light between 700-800nm. A second LED (660/735) array supplied 83% red light at 660nm and 17% far-red light at 735nm (25nm band-width at half-peak height). A third LED (660/blue) array supplied 98% red light at 660nm, 1% blue light between 350-550nm, and 1% far-red light between 700-800nm. Control plants were grown under broad spectrum metal halide lamps. Plants were gron at a mean photon flux (300-800nm) of 330 micromol m-2 s-1 under a 12 h day-night photoperiod. Significant anatomical changes in stem and leaf morphologies were observed in plants grown under the LED arrays compared to plants grown under the broad-spectrum MH lamp. Cross-sectional areas of pepper stems, thickness of secondary xylem, numbers of intraxylary phloem bundles in the periphery of stem pith tissues, leaf thickness, numbers of choloplasts per palisade mesophyll cell, and thickness of palisade and spongy mesophyll tissues were greatest in peppers grown under MH lamps, intermediate in plants grown under the 660/blue LED array, and lowest in peppers grown under the 660 or 660/735 LED arrays. Most anatomical features of pepper stems and leaves were similar among plants grown under 660 or 660/735 LED arrays. The effects of spectral quality on anatomical changes in stem and leaf tissues of peppers generally correlate to the amount of blue light present in the primary light source.

  9. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light.

    PubMed

    Schuerger, A C; Brown, C S; Stryjewski, E C

    1997-03-01

    Pepper plants (Capsicum annuum L. cv., Hungarian Wax) were grown under metal halide (MH) lamps or light-emitting diode (LED) arrays with different spectra to determine the effects of light quality on plant anatomy of leaves and stems. One LED (660) array supplied 90% red light at 660 nm (25nm band-width at half-peak height) and 1% far-red light between 700-800nm. A second LED (660/735) array supplied 83% red light at 660nm and 17% far-red light at 735nm (25nm band-width at half-peak height). A third LED (660/blue) array supplied 98% red light at 660nm, 1% blue light between 350-550nm, and 1% far-red light between 700-800nm. Control plants were grown under broad spectrum metal halide lamps. Plants were gron at a mean photon flux (300-800nm) of 330 micromol m-2 s-1 under a 12 h day-night photoperiod. Significant anatomical changes in stem and leaf morphologies were observed in plants grown under the LED arrays compared to plants grown under the broad-spectrum MH lamp. Cross-sectional areas of pepper stems, thickness of secondary xylem, numbers of intraxylary phloem bundles in the periphery of stem pith tissues, leaf thickness, numbers of choloplasts per palisade mesophyll cell, and thickness of palisade and spongy mesophyll tissues were greatest in peppers grown under MH lamps, intermediate in plants grown under the 660/blue LED array, and lowest in peppers grown under the 660 or 660/735 LED arrays. Most anatomical features of pepper stems and leaves were similar among plants grown under 660 or 660/735 LED arrays. The effects of spectral quality on anatomical changes in stem and leaf tissues of peppers generally correlate to the amount of blue light present in the primary light source.

  10. Identification among morphologically similar Argyreia (Convolvulaceae) based on leaf anatomy and phenetic analyses.

    PubMed

    Traiperm, Paweena; Chow, Janene; Nopun, Possathorn; Staples, G; Swangpol, Sasivimon C

    2017-12-01

    The genus Argyreia Lour. is one of the species-rich Asian genera in the family Convolvulaceae. Several species complexes were recognized in which taxon delimitation was imprecise, especially when examining herbarium materials without fully developed open flowers. The main goal of this study is to investigate and describe leaf anatomy for some morphologically similar Argyreia using epidermal peeling, leaf and petiole transverse sections, and scanning electron microscopy. Phenetic analyses including cluster analysis and principal component analysis were used to investigate the similarity of these morpho-types. Anatomical differences observed between the morpho-types include epidermal cell walls and the trichome types on the leaf epidermis. Additional differences in the leaf and petiole transverse sections include the epidermal cell shape of the adaxial leaf blade, the leaf margins, and the petiole transverse sectional outline. The phenogram from cluster analysis using the UPGMA method represented four groups with an R value of 0.87. Moreover, the important quantitative and qualitative leaf anatomical traits of the four groups were confirmed by the principal component analysis of the first two components. The results from phenetic analyses confirmed the anatomical differentiation between the morpho-types. Leaf anatomical features regarded as particularly informative for morpho-type differentiation can be used to supplement macro morphological identification.

  11. Active shape models incorporating isolated landmarks for medical image annotation

    NASA Astrophysics Data System (ADS)

    Norajitra, Tobias; Meinzer, Hans-Peter; Stieltjes, Bram; Maier-Hein, Klaus H.

    2014-03-01

    Apart from their robustness in anatomic surface segmentation, purely surface based 3D Active Shape Models lack the ability to automatically detect and annotate non-surface key points of interest. However, annotation of anatomic landmarks is desirable, as it yields additional anatomic and functional information. Moreover, landmark detection might help to further improve accuracy during ASM segmentation. We present an extension of surface-based 3D Active Shape Models incorporating isolated non-surface landmarks. Positions of isolated and surface landmarks are modeled conjoint within a point distribution model (PDM). Isolated landmark appearance is described by a set of haar-like features, supporting local landmark detection on the PDM estimates using a kNN-Classi er. Landmark detection was evaluated in a leave-one-out cross validation on a reference dataset comprising 45 CT volumes of the human liver after shape space projection. Depending on the anatomical landmark to be detected, our experiments have shown in about 1/4 up to more than 1/2 of all test cases a signi cant improvement in detection accuracy compared to the position estimates delivered by the PDM. Our results encourage further research with regard to the combination of shape priors and machine learning for landmark detection within the Active Shape Model Framework.

  12. Application of a conductive polymer electronic-nose device to identify aged woody samples

    Treesearch

    Alphus D. Wilson

    2012-01-01

    The identification of aged woody samples is often a difficult task as a result of weathering and physical deterioration over time which removes or obscures distinguishing anatomical features and characteristics required for visual taxonomic determinations. Fortunately, the chemical characteristics of aged woods usually are preserved better than physical characteristics...

  13. Transmission line based thermoacoustic imaging of small animals

    NASA Astrophysics Data System (ADS)

    Omar, Murad; Kellnberger, Stephan; Sergiadis, George; Razansky, Daniel; Ntziachristos, Vasilis

    2013-06-01

    We have generated high resolution images of RF-Contrast in small animals using nearfield thermoacoustic system. This enables us to see some anatomical features of a mouse such as the heart, the spine and the boundary. OCIS codes: (000.0000) General; (000.0000) General [8-pt. type. For codes, see www.opticsinfobase.org/submit/ocis.

  14. New Knowledge Derived from Learned Knowledge: Functional-Anatomic Correlates of Stimulus Equivalence

    ERIC Educational Resources Information Center

    Schlund, Michael W.; Hoehn-Saric, Rudolf; Cataldo, Michael F.

    2007-01-01

    Forming new knowledge based on knowledge established through prior learning is a central feature of higher cognition that is captured in research on stimulus equivalence (SE). Numerous SE investigations show that reinforcing behavior under control of distinct sets of arbitrary conditional relations gives rise to stimulus control by new, "derived"…

  15. Designing Patient-Focused Information: An Opportunity for Communicating Anatomically Related Information

    ERIC Educational Resources Information Center

    Evans, Darrell J. R.

    2008-01-01

    Literature clearly demonstrates that there has been a large increase in the time devoted to teaching oral communication skills within medical curricula worldwide. In contrast, the ability to communicate with patients through written means does not appear to be a feature in many programmes, despite its fundamental importance in creating…

  16. Music Therapy for Children with Down Syndrome: Perceptions of Caregivers in a Special School Setting

    ERIC Educational Resources Information Center

    Pienaar, Dorothea

    2012-01-01

    Down syndrome (DS) is a genetic disorder resulting from chromosome 21 having three copies (trisomy 21). Cognitive functioning and anatomical features cause speech and language development delay (Kumin, 2003). Children with DS generally enjoy communication (Schoenbrodt, 2004), and respond well to interaction and social scripts. Music therapy has…

  17. Magnetic resonance imaging (MRI) of oak trees infected with Phytophthora ramorum to determine potential avenues of infection in bark

    Treesearch

    Edwin R. Florance

    2006-01-01

    Non-destructive magnetic resonance imaging (MRI) revealed pathological anatomical features of coast live oak trees (Quercus agrifolia) that were naturally infected with Phytophthora ramorum. Fresh excised whole slices showing typical macroscopic cankers and bleeding were examined. Infected areas (i.e. cankers) were compared to...

  18. Segmentation and feature extraction of cervical spine x-ray images

    NASA Astrophysics Data System (ADS)

    Long, L. Rodney; Thoma, George R.

    1999-05-01

    As part of an R&D project in mixed text/image database design, the National Library of Medicine has archived a collection of 17,000 digitized x-ray images of the cervical and lumbar spine which were collected as part of the second National Health and Nutrition Examination Survey (NHANES II). To make this image data available and usable to a wide audience, we are investigating techniques for indexing the image content by automated or semi-automated means. Indexing of the images by features of interest to researchers in spine disease and structure requires effective segmentation of the vertebral anatomy. This paper describes work in progress toward this segmentation of the cervical spine images into anatomical components of interest, including anatomical landmarks for vertebral location, and segmentation and identification of individual vertebrae. Our work includes developing a reliable method for automatically fixing an anatomy-based coordinate system in the images, and work to adaptively threshold the images, using methods previously applied by researchers in cardioangiography. We describe the motivation for our work and present our current results in both areas.

  19. Deformable templates guided discriminative models for robust 3D brain MRI segmentation.

    PubMed

    Liu, Cheng-Yi; Iglesias, Juan Eugenio; Tu, Zhuowen

    2013-10-01

    Automatically segmenting anatomical structures from 3D brain MRI images is an important task in neuroimaging. One major challenge is to design and learn effective image models accounting for the large variability in anatomy and data acquisition protocols. A deformable template is a type of generative model that attempts to explicitly match an input image with a template (atlas), and thus, they are robust against global intensity changes. On the other hand, discriminative models combine local image features to capture complex image patterns. In this paper, we propose a robust brain image segmentation algorithm that fuses together deformable templates and informative features. It takes advantage of the adaptation capability of the generative model and the classification power of the discriminative models. The proposed algorithm achieves both robustness and efficiency, and can be used to segment brain MRI images with large anatomical variations. We perform an extensive experimental study on four datasets of T1-weighted brain MRI data from different sources (1,082 MRI scans in total) and observe consistent improvement over the state-of-the-art systems.

  20. Pathophysiology of Venous Thromboembolism with Respect to the Anatomical Features of the Deep Veins of Lower Limbs: A Review.

    PubMed

    Ro, Ayako; Kageyama, Norimasa; Mukai, Toshiji

    2017-06-25

    Here the pathophysiology of venous thromboembolism is reviewed with respect to the anatomical features of the deep veins of lower limbs. A thrombus is less likely to form in the thigh veins compared with that in the calf veins; however, clinical symptoms are more likely to appear in the thigh veins owing to vascular occlusion. When a patient is bedridden, thrombosis is more likely to occur in the intramuscular vein, which mainly depends on muscular pumping and the venous valve, rather than in the three crural branches, which mainly depends on the pulsation of the accompanying artery. Thrombi are prone to be generated in the soleal vein compared with those in the gastrocnemius vein because of the vein and muscle structures. A soleal vein thrombosis grows toward the proximal veins along the drainage veins. To prevent a sudden pulmonary thromboembolism-related death in bedridden patients, preventing soleal vein thrombus formation and observing the thrombus proximal propagation via the drainage veins are clinically important. When deep vein thrombosis occurs, avoiding embolization and sequela caused by the thrombus organization is necessary.

  1. Heterogeneous patterns of brain atrophy in Alzheimer's disease.

    PubMed

    Poulakis, Konstantinos; Pereira, Joana B; Mecocci, Patrizia; Vellas, Bruno; Tsolaki, Magda; Kłoszewska, Iwona; Soininen, Hilkka; Lovestone, Simon; Simmons, Andrew; Wahlund, Lars-Olof; Westman, Eric

    2018-05-01

    There is increasing evidence showing that brain atrophy varies between patients with Alzheimer's disease (AD), suggesting that different anatomical patterns might exist within the same disorder. We investigated AD heterogeneity based on cortical and subcortical atrophy patterns in 299 AD subjects from 2 multicenter cohorts. Clusters of patients and important discriminative features were determined using random forest pairwise similarity, multidimensional scaling, and distance-based hierarchical clustering. We discovered 2 typical (72.2%) and 3 atypical (28.8%) subtypes with significantly different demographic, clinical, and cognitive characteristics, and different rates of cognitive decline. In contrast to previous studies, our unsupervised random forest approach based on cortical and subcortical volume measures and their linear and nonlinear interactions revealed more typical AD subtypes with important anatomically discriminative features, while the prevalence of atypical cases was lower. The hippocampal-sparing and typical AD subtypes exhibited worse clinical progression in visuospatial, memory, and executive cognitive functions. Our findings suggest there is substantial heterogeneity in AD that has an impact on how patients function and progress over time. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Qualitative optical evaluation of malignancies related to cutaneous phototype

    NASA Astrophysics Data System (ADS)

    Borisova, E.; Avramov, L.; Pavlova, P.; Pavlova, E.; Troyanova, P.

    2010-02-01

    Spectral techniques used for early diagnosis of skin cancer give to the investigators diagnostically important features usually in the process of comparison of signals received from normal and abnormal skin sites. In this study are presented some initial results of fluorescence for early detection of cutaneous tumors. However, due to great variety of optical properties and choromophores' distribution spectra of "normal" skin could have observable differences between themselves. Diagnostically significant features, such as intensity, appearance of specific minima or maxima in the spectra received, depend from anatomic place, ages, cutaneous phototype, when are measured in vivo. Therefore, development of objective differentiation algorithms for early diagnosis of skin pathologies will strongly depend from our understanding - what is the influence of major fluorophores and absorbers in the spectra observed in defined as "healthy" skin sites, and how these spectral peculiarities could influent the spectra received from lesion sites, distorting our diagnosis. In such way, we could obtain complete picture of normal skin fluorescence properties, which will be the background for comparison with any cutaneous pathology, appearing on the patient skin surface, useful for early diagnostics and alert for pre-cancerous conditions and large areas observations.

  3. EmbryoMiner: A new framework for interactive knowledge discovery in large-scale cell tracking data of developing embryos.

    PubMed

    Schott, Benjamin; Traub, Manuel; Schlagenhauf, Cornelia; Takamiya, Masanari; Antritter, Thomas; Bartschat, Andreas; Löffler, Katharina; Blessing, Denis; Otte, Jens C; Kobitski, Andrei Y; Nienhaus, G Ulrich; Strähle, Uwe; Mikut, Ralf; Stegmaier, Johannes

    2018-04-01

    State-of-the-art light-sheet and confocal microscopes allow recording of entire embryos in 3D and over time (3D+t) for many hours. Fluorescently labeled structures can be segmented and tracked automatically in these terabyte-scale 3D+t images, resulting in thousands of cell migration trajectories that provide detailed insights to large-scale tissue reorganization at the cellular level. Here we present EmbryoMiner, a new interactive open-source framework suitable for in-depth analyses and comparisons of entire embryos, including an extensive set of trajectory features. Starting at the whole-embryo level, the framework can be used to iteratively focus on a region of interest within the embryo, to investigate and test specific trajectory-based hypotheses and to extract quantitative features from the isolated trajectories. Thus, the new framework provides a valuable new way to quantitatively compare corresponding anatomical regions in different embryos that were manually selected based on biological prior knowledge. As a proof of concept, we analyzed 3D+t light-sheet microscopy images of zebrafish embryos, showcasing potential user applications that can be performed using the new framework.

  4. A study of vocal nonlinearities in humpback whale songs: from production mechanisms to acoustic analysis.

    PubMed

    Cazau, Dorian; Adam, Olivier; Aubin, Thierry; Laitman, Jeffrey T; Reidenberg, Joy S

    2016-10-10

    Although mammalian vocalizations are predominantly harmonically structured, they can exhibit an acoustic complexity with nonlinear vocal sounds, including deterministic chaos and frequency jumps. Such sounds are normative events in mammalian vocalizations, and can be directly traceable to the nonlinear nature of vocal-fold dynamics underlying typical mammalian sound production. In this study, we give qualitative descriptions and quantitative analyses of nonlinearities in the song repertoire of humpback whales from the Ste Marie channel (Madagascar) to provide more insight into the potential communication functions and underlying production mechanisms of these features. A low-dimensional biomechanical modeling of the whale's U-fold (vocal folds homolog) is used to relate specific vocal mechanisms to nonlinear vocal features. Recordings of living humpback whales were searched for occurrences of vocal nonlinearities (instabilities). Temporal distributions of nonlinearities were assessed within sound units, and between different songs. The anatomical production sources of vocal nonlinearities and the communication context of their occurrences in recordings are discussed. Our results show that vocal nonlinearities may be a communication strategy that conveys information about the whale's body size and physical fitness, and thus may be an important component of humpback whale songs.

  5. A study of vocal nonlinearities in humpback whale songs: from production mechanisms to acoustic analysis

    NASA Astrophysics Data System (ADS)

    Cazau, Dorian; Adam, Olivier; Aubin, Thierry; Laitman, Jeffrey T.; Reidenberg, Joy S.

    2016-10-01

    Although mammalian vocalizations are predominantly harmonically structured, they can exhibit an acoustic complexity with nonlinear vocal sounds, including deterministic chaos and frequency jumps. Such sounds are normative events in mammalian vocalizations, and can be directly traceable to the nonlinear nature of vocal-fold dynamics underlying typical mammalian sound production. In this study, we give qualitative descriptions and quantitative analyses of nonlinearities in the song repertoire of humpback whales from the Ste Marie channel (Madagascar) to provide more insight into the potential communication functions and underlying production mechanisms of these features. A low-dimensional biomechanical modeling of the whale’s U-fold (vocal folds homolog) is used to relate specific vocal mechanisms to nonlinear vocal features. Recordings of living humpback whales were searched for occurrences of vocal nonlinearities (instabilities). Temporal distributions of nonlinearities were assessed within sound units, and between different songs. The anatomical production sources of vocal nonlinearities and the communication context of their occurrences in recordings are discussed. Our results show that vocal nonlinearities may be a communication strategy that conveys information about the whale’s body size and physical fitness, and thus may be an important component of humpback whale songs.

  6. Radiology of Osteogenesis Imperfecta, Rickets and Other Bony Fragility States.

    PubMed

    Calder, Alistair D

    2015-01-01

    This section gives an overview of radiological findings in bony fragility states, with a special focus on osteogenesis imperfecta (OI) and rickets. Conventional radiological assessment of bone density is inaccurate and imprecise and only reliably detects severe osteopaenia. However, other aspects of bone structure and morphology can be assessed, and it is possible to distinguish between osteopaenic and osteomalacic states. OI is a heterogeneous group of disorders of type 1 collagen formation and processing that are characterised by varying degrees of bony fragility, with presentations varying from perinatal lethality to asymptomatic. Radiological diagnosis of severe forms is usually straightforward, but that of milder disease may be challenging because specific features are often absent. However, a multidisciplinary approach is usually successful. Features of OI, including Wormian bones, skull base deformities, vertebral involvement and long bone fractures and deformities, are reviewed in this section. Rickets is best defined as a disorder of the growth plate characterised by the impaired apoptosis of hypertrophied chondrocytes. Vitamin D deficiency is a common cause of rickets. The patho-anatomical basis of radiological findings in rickets is reviewed and illustrated. Rickets is frequently accompanied by hyperparathyroidism and osteomalacia. Rickets used to be classified as calciopaenic or phosphopaenic but is now referred to as parathyroid hormone or fibroblast growth factor 23 mediated, respectively [1]. The radiological features of the two forms are reviewed. © 2015 S. Karger AG, Basel.

  7. Generation algorithm of craniofacial structure contour in cephalometric images

    NASA Astrophysics Data System (ADS)

    Mondal, Tanmoy; Jain, Ashish; Sardana, H. K.

    2010-02-01

    Anatomical structure tracing on cephalograms is a significant way to obtain cephalometric analysis. Computerized cephalometric analysis involves both manual and automatic approaches. The manual approach is limited in accuracy and repeatability. In this paper we have attempted to develop and test a novel method for automatic localization of craniofacial structure based on the detected edges on the region of interest. According to the grey scale feature at the different region of the cephalometric images, an algorithm for obtaining tissue contour is put forward. Using edge detection with specific threshold an improved bidirectional contour tracing approach is proposed by an interactive selection of the starting edge pixels, the tracking process searches repetitively for an edge pixel at the neighborhood of previously searched edge pixel to segment images, and then craniofacial structures are obtained. The effectiveness of the algorithm is demonstrated by the preliminary experimental results obtained with the proposed method.

  8. [The endoscopic anatomy of the middle ear (a dissection study)].

    PubMed

    Rzaev, R M; Rzaev, R R

    The objective of the present work was to study the specific endoscopic anatomical features of the middle ear using the dissected temporal bones with the intact tympanic membrane. The 18 cm long endoscopes 4 mm in diameter with a visual angle from 0 to 45 degrees in the combination with some other microinstruments, such as ear pincers, needles, curettes, elevators, and suction tubes, were used during the examination. It was shown that endomeato-transtympanic endosopy provides a panoramic view of almost all structures of the middle ear. After the resection of the posterior bone edge of 'annulus tympanicus', the use of the 45o endoscope ensured the panoramic view not only of certain structures of the middle ear (e.g. the tympanic chord, the stapedius muscle tendon, the entire pyramidal process) but also of the structures of the retrotympanic and anterior epitympanic spaces.

  9. Managing Spatial Selections With Contextual Snapshots

    PubMed Central

    Mindek, P; Gröller, M E; Bruckner, S

    2014-01-01

    Spatial selections are a ubiquitous concept in visualization. By localizing particular features, they can be analysed and compared in different views. However, the semantics of such selections often depend on specific parameter settings and it can be difficult to reconstruct them without additional information. In this paper, we present the concept of contextual snapshots as an effective means for managing spatial selections in visualized data. The selections are automatically associated with the context in which they have been created. Contextual snapshots can also be used as the basis for interactive integrated and linked views, which enable in-place investigation and comparison of multiple visual representations of data. Our approach is implemented as a flexible toolkit with well-defined interfaces for integration into existing systems. We demonstrate the power and generality of our techniques by applying them to several distinct scenarios such as the visualization of simulation data, the analysis of historical documents and the display of anatomical data. PMID:25821284

  10. Secondary flow measurements and passive tracer dispersion in multi-generational models of conducting airways of the lung

    NASA Astrophysics Data System (ADS)

    Fresconi, Frank; Prasad, Ajay

    2006-11-01

    A detailed knowledge of the flow and dispersion within the human respiratory tract is desirable for numerous reasons. Both risk assessments of exposure to toxic particles in the environment and the design of medical delivery systems targeting both lung-specific conditions (asthma, cystic fibrosis, and chronic obstructive pulmonary disease (COPD)) and system-wide ailments (diabetes, cancer, hormone replacement) would profit from such an understanding. The present work features experimental efforts aimed at elucidating the fluid mechanics of the lung. Particle image velocimetry (PIV) and laser induced fluorescence (LIF) measurements of steady and oscillatory flows were undertaken in anatomically accurate models (single and multi-generational) of the conductive region of the lung. PIV results captured primary and secondary velocity fields. LIF allowed visualization of the time-dependent deformation of a passive tracer and also quantified convective dispersion through the usage of a transport profile.

  11. Isolated prospective confabulation in Wernicke-Korsakoff syndrome: a case for reality filtering.

    PubMed

    Schnider, Armin; Nahum, Louis; Pignat, Jean-Michel; Leemann, Béatrice; Lövblad, Karl-Olof; Wissmeyer, Michael; Ptak, Radek

    2013-01-01

    A 57-year-old man suffered severe amnesia and disorientation, accompanied by content-specific confabulation, due to an alcoholic Wernicke-Korsakoff syndrome. For months, he was deeply concerned about a single obligation that he thought he had to respond to, but which he had already assumed 20 years previously. This monothematic, prospective confabulation was associated with failures of reality filtering as previously documented in behaviorally spontaneous confabulation and disorientation: the patient failed to suppress the interference of currently irrelevant memories and to abandon anticipations that were no longer valid (impaired extinction capacity). Magnetic resonance imaging showed damage to the mamillary bodies and the dorsomedial thalamic nucleus. Positron emission tomography (FDG-PET) showed extended orbitofrontal hypometabolism. We suggest that isolated prospective confabulation shares the core feature (acts and thoughts based on currently irrelevant memory), mechanism (failure of reality filtering), and anatomical basis (orbitofrontal dysfunction) with behaviorally spontaneous confabulations.

  12. Using 3D modeling techniques to enhance teaching of difficult anatomical concepts

    PubMed Central

    Pujol, Sonia; Baldwin, Michael; Nassiri, Joshua; Kikinis, Ron; Shaffer, Kitt

    2016-01-01

    Rationale and Objectives Anatomy is an essential component of medical education as it is critical for the accurate diagnosis in organs and human systems. The mental representation of the shape and organization of different anatomical structures is a crucial step in the learning process. The purpose of this pilot study is to demonstrate the feasibility and benefits of developing innovative teaching modules for anatomy education of first-year medical students based on 3D reconstructions from actual patient data. Materials and Methods A total of 196 models of anatomical structures from 16 anonymized CT datasets were generated using the 3D Slicer open-source software platform. The models focused on three anatomical areas: the mediastinum, the upper abdomen and the pelvis. Online optional quizzes were offered to first-year medical students to assess their comprehension in the areas of interest. Specific tasks were designed for students to complete using the 3D models. Results Scores of the quizzes confirmed a lack of understanding of 3D spatial relationships of anatomical structures despite standard instruction including dissection. Written task material and qualitative review by students suggested that interaction with 3D models led to a better understanding of the shape and spatial relationships among structures, and helped illustrate anatomical variations from one body to another. Conclusion The study demonstrates the feasibility of one possible approach to the generation of 3D models of the anatomy from actual patient data. The educational materials developed have the potential to supplement the teaching of complex anatomical regions and help demonstrate the anatomic variation among patients. PMID:26897601

  13. Anatomic Sites and Associated Clinical Factors for Deep Dyspareunia.

    PubMed

    Yong, Paul J; Williams, Christina; Yosef, Ali; Wong, Fontayne; Bedaiwy, Mohamed A; Lisonkova, Sarka; Allaire, Catherine

    2017-09-01

    Deep dyspareunia negatively affects women's sexual function. There is a known association between deep dyspareunia and endometriosis of the cul-de-sac or uterosacral ligaments in reproductive-age women; however, other factors are less clear in this population. To identify anatomic sites and associated clinical factors for deep dyspareunia in reproductive-age women at a referral center. This study involved the analysis of cross-sectional baseline data from a prospective database of 548 women (87% consent rate) recruited from December 2013 through April 2015 at a tertiary referral center for endometriosis and/or pelvic pain. Exclusion criteria included menopausal status, age at least 50 years, previous hysterectomy or oophorectomy, and not sexually active. We performed a standardized endovaginal ultrasound-assisted pelvic examination to palpate anatomic structures for tenderness and reproduce deep dyspareunia. Multivariable regression was used to determine which tender anatomic structures were independently associated with deep dyspareunia severity and to identify clinical factors independently associated with each tender anatomic site. Severity of deep dyspareunia on a numeric pain rating scale of 0 to 10. Severity of deep dyspareunia (scale = 0-10) was independently associated with tenderness of the bladder (b = 0.88, P = .018), pelvic floor (levator ani) (b = 0.66, P = .038), cervix and uterus (b = 0.88, P = .008), and cul-de-sac or uterosacral ligaments (b = 1.39, P < .001), but not with the adnexa (b = -0.16, P = 0.87). The number of tender anatomic sites was significantly correlated with more severe deep dyspareunia (Spearman r = 0.34, P < .001). For associated clinical factors, greater depression symptom severity was specifically associated with tenderness of the bladder (b = 1.05, P = .008) and pelvic floor (b = 1.07, P < .001). A history of miscarriage was specifically associated with tenderness of the cervix and uterus (b = 2.24, P = .001). Endometriosis was specifically associated with tenderness of the cul-de-sac or uterosacral ligaments (b = 3.54, P < .001). In reproductive-age women at a tertiary referral center, deep dyspareunia was independently associated not only with tenderness of the cul-de-sac and uterosacral ligaments but also with tenderness of the bladder, pelvic floor, and cervix and uterus. Yong PJ, Williams C, Yosef A, et al. Anatomic Sites and Associated Clinical Factors for Deep Dyspareunia. Sex Med 2017;5:e184-e195. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Automatic construction of subject-specific human airway geometry including trifurcations based on a CT-segmented airway skeleton and surface

    PubMed Central

    Miyawaki, Shinjiro; Tawhai, Merryn H.; Hoffman, Eric A.; Wenzel, Sally E.; Lin, Ching-Long

    2016-01-01

    We propose a method to construct three-dimensional airway geometric models based on airway skeletons, or centerlines (CLs). Given a CT-segmented airway skeleton and surface, the proposed CL-based method automatically constructs subject-specific models that contain anatomical information regarding branches, include bifurcations and trifurcations, and extend from the trachea to terminal bronchioles. The resulting model can be anatomically realistic with the assistance of an image-based surface; alternatively a model with an idealized skeleton and/or branch diameters is also possible. This method systematically identifies and classifies trifurcations to successfully construct the models, which also provides the number and type of trifurcations for the analysis of the airways from an anatomical point of view. We applied this method to 16 normal and 16 severe asthmatic subjects using their computed tomography images. The average distance between the surface of the model and the image-based surface was 11% of the average voxel size of the image. The four most frequent locations of trifurcations were the left upper division bronchus, left lower lobar bronchus, right upper lobar bronchus, and right intermediate bronchus. The proposed method automatically constructed accurate subject-specific three-dimensional airway geometric models that contain anatomical information regarding branches using airway skeleton, diameters, and image-based surface geometry. The proposed method can construct (i) geometry automatically for population-based studies, (ii) trifurcations to retain the original airway topology, (iii) geometry that can be used for automatic generation of computational fluid dynamics meshes, and (iv) geometry based only on a skeleton and diameters for idealized branches. PMID:27704229

  15. An international ecological study of adult height in relation to cancer incidence for 24 anatomical sites.

    PubMed

    Jiang, Yannan; Marshall, Roger J; Walpole, Sarah C; Prieto-Merino, David; Liu, Dong-Xu; Perry, Jo K

    2015-03-01

    Anthropometric indices associated with childhood growth and height attained in adulthood, have been associated with an increased incidence of certain malignancies. To evaluate the cancer-height relationship, we carried out a study using international data, comparing various cancer rates with average adult height of women and men in different countries. An ecological analysis of the relationship between country-specific cancer incidence rates and average adult height was conducted for twenty-four anatomical cancer sites. Age-standardized rates were obtained from GLOBOCAN 2008. Average female (112 countries) and male (65 countries) heights were sourced and compiled primarily from national health surveys. Graphical and weighted regression analysis was conducted, taking into account BMI and controlling for the random effect of global regions. A significant positive association between a country's average adult height and the country's overall cancer rate was observed in both men and women. Site-specific cancer incidence for females was positively associated with height for most cancers: lung, kidney, colorectum, bladder, melanoma, brain and nervous system, breast, non-Hodgkin lymphoma, multiple myeloma, corpus uteri, ovary, and leukemia. A significant negative association was observed with cancer of the cervix uteri. In males, site-specific cancer incidence was positively associated with height for cancers of the brain and nervous system, kidney, colorectum, non-Hodgkin lymphoma, multiple myeloma, prostate, testicular, lip and oral cavity, and melanoma. Incidence of cancer was associated with tallness in the majority of anatomical/cancer sites investigated. The underlying biological mechanisms are unclear, but may include nutrition and early-life exposure to hormones, and may differ by anatomical site.

  16. Space Technology - Game Changing Development NASA Facts: Autonomous Medical Operations

    NASA Technical Reports Server (NTRS)

    Thompson, David E.

    2018-01-01

    The AMO (Autonomous Medical Operations) Project is working extensively to train medical models on the reliability and confidence of computer-aided interpretation of ultrasound images in various clinical settings, and of various anatomical structures. AI (Artificial Intelligence) algorithms recognize and classify features in the ultrasound images, and these are compared to those features that clinicians use to diagnose diseases. The acquisition of clinically validated image assessment and the use of the AI algorithms constitutes fundamental baseline for a Medical Decision Support System that will advise crew on long-duration, remote missions.

  17. Examining Curricular Integration Strategies To Optimize Learning Of The Anatomical Sciences

    NASA Astrophysics Data System (ADS)

    Lisk, Kristina Adriana Ayako

    Background: Integration of basic and clinical science knowledge is essential to clinical practice. Although the importance of these two knowledge domains is well-recognized, successfully supporting the development of learners' integrated basic and clinical science knowledge, remains an educational challenge. In this dissertation, I examine curricular integration strategies to optimize learning of the anatomical sciences. Objectives: The studies were designed to achieve the following research aims: 1) to objectively identify clinically relevant content for an integrated musculoskeletal anatomy curriculum; 2) to examine the value of integrated anatomy and clinical science instruction compared to clinical science instruction alone on novices' diagnostic accuracy and diagnostic reasoning process; 3) to compare the effect of integrating and segregating anatomy and clinical science instruction along with a learning strategy (self-explanation) on novices' diagnostic accuracy. Methods: A modified Delphi was used to objectively select clinically relevant content for an integrated musculoskeletal anatomy curriculum. Two experimental studies were created to compare different instructional strategies to optimize learning of the curricular content. In both of these studies, novice learners were taught the clinical features of musculoskeletal pathologies using different learning approaches. Diagnostic performance was measured immediately after instruction and one-week later. Results: The results show that the Delphi method is an effective strategy to select clinically relevant content for integrated anatomy curricula. The findings also demonstrate that novices who were explicitly taught the clinical features of musculoskeletal diseases using causal basic science descriptions had superior diagnostic accuracy and a better understanding of the relative importance of key clinical features for disease categories. Conclusions: This research demonstrates how integration strategies can be applied at multiple levels of the curriculum. Further, this work shows the value of cognitive integration of anatomy and clinical science and it emphasizes the importance of purposefully linking the anatomical and clinical sciences in day-to-day teaching.

  18. Marginal Space Deep Learning: Efficient Architecture for Volumetric Image Parsing.

    PubMed

    Ghesu, Florin C; Krubasik, Edward; Georgescu, Bogdan; Singh, Vivek; Yefeng Zheng; Hornegger, Joachim; Comaniciu, Dorin

    2016-05-01

    Robust and fast solutions for anatomical object detection and segmentation support the entire clinical workflow from diagnosis, patient stratification, therapy planning, intervention and follow-up. Current state-of-the-art techniques for parsing volumetric medical image data are typically based on machine learning methods that exploit large annotated image databases. Two main challenges need to be addressed, these are the efficiency in scanning high-dimensional parametric spaces and the need for representative image features which require significant efforts of manual engineering. We propose a pipeline for object detection and segmentation in the context of volumetric image parsing, solving a two-step learning problem: anatomical pose estimation and boundary delineation. For this task we introduce Marginal Space Deep Learning (MSDL), a novel framework exploiting both the strengths of efficient object parametrization in hierarchical marginal spaces and the automated feature design of Deep Learning (DL) network architectures. In the 3D context, the application of deep learning systems is limited by the very high complexity of the parametrization. More specifically 9 parameters are necessary to describe a restricted affine transformation in 3D, resulting in a prohibitive amount of billions of scanning hypotheses. The mechanism of marginal space learning provides excellent run-time performance by learning classifiers in clustered, high-probability regions in spaces of gradually increasing dimensionality. To further increase computational efficiency and robustness, in our system we learn sparse adaptive data sampling patterns that automatically capture the structure of the input. Given the object localization, we propose a DL-based active shape model to estimate the non-rigid object boundary. Experimental results are presented on the aortic valve in ultrasound using an extensive dataset of 2891 volumes from 869 patients, showing significant improvements of up to 45.2% over the state-of-the-art. To our knowledge, this is the first successful demonstration of the DL potential to detection and segmentation in full 3D data with parametrized representations.

  19. Function-specific and Enhanced Brain Structural Connectivity Mapping via Joint Modeling of Diffusion and Functional MRI.

    PubMed

    Chu, Shu-Hsien; Parhi, Keshab K; Lenglet, Christophe

    2018-03-16

    A joint structural-functional brain network model is presented, which enables the discovery of function-specific brain circuits, and recovers structural connections that are under-estimated by diffusion MRI (dMRI). Incorporating information from functional MRI (fMRI) into diffusion MRI to estimate brain circuits is a challenging task. Usually, seed regions for tractography are selected from fMRI activation maps to extract the white matter pathways of interest. The proposed method jointly analyzes whole brain dMRI and fMRI data, allowing the estimation of complete function-specific structural networks instead of interactively investigating the connectivity of individual cortical/sub-cortical areas. Additionally, tractography techniques are prone to limitations, which can result in erroneous pathways. The proposed framework explicitly models the interactions between structural and functional connectivity measures thereby improving anatomical circuit estimation. Results on Human Connectome Project (HCP) data demonstrate the benefits of the approach by successfully identifying function-specific anatomical circuits, such as the language and resting-state networks. In contrast to correlation-based or independent component analysis (ICA) functional connectivity mapping, detailed anatomical connectivity patterns are revealed for each functional module. Results on a phantom (Fibercup) also indicate improvements in structural connectivity mapping by rejecting false-positive connections with insufficient support from fMRI, and enhancing under-estimated connectivity with strong functional correlation.

  20. Dissecting aneurysms of posterior communicating artery itself: anatomical, diagnostic, clinical, and therapeutical considerations.

    PubMed

    Kocak, Burak; Tureci, Ercan; Kizilkilic, Osman; Islak, Civan; Kocer, Naci

    2013-09-01

    Posterior communicating artery (PCoA) itself is an unusual location for intracranial aneurysms in that isolated dissections or dissecting aneurysms are extremely rare. In the way of correct diagnosis of dissecting aneurysms of PCoA itself, a proper understanding of (1) the anatomy of the PCoA and its perforator branches, (2) some particular diagnostic features, and (3) related clinical aspects is of significant importance. Although there are no established treatment strategies for this particular type of aneurysms, the endovascular approach might be considered as a plausible one. In this paper, our scope was to report five cases with dissecting aneurysm of the PCoA itself and to discuss this rare vascular pathology from anatomical, diagnostic, clinical, and therapeutical perspectives.

  1. The plantaris tendon: a narrative review focusing on anatomical features and clinical importance.

    PubMed

    Spang, C; Alfredson, H; Docking, S I; Masci, L; Andersson, G

    2016-10-01

    In recent years, the plantaris tendon has been implicated in the development of chronic painful mid-portion Achilles tendinopathy. In some cases, a thickened plantaris tendon is closely associated with the Achilles tendon, and surgical excision of the plantaris tendon has been reported to be curative in patients who have not derived benefit following conservative treatment and surgical interventions. The aim of this review is to outline the basic aspects of, and the recent research findings, related to the plantaris tendon, covering anatomical and clinical studies including those dealing with histology, imaging and treatment. Cite this article: Bone Joint J 2016;98-B:1312-19. ©2016 The British Editorial Society of Bone & Joint Surgery.

  2. Muscle Logic: New Knowledge Resource for Anatomy Enables Comprehensive Searches of the Literature on the Feeding Muscles of Mammals.

    PubMed

    Druzinsky, Robert E; Balhoff, James P; Crompton, Alfred W; Done, James; German, Rebecca Z; Haendel, Melissa A; Herrel, Anthony; Herring, Susan W; Lapp, Hilmar; Mabee, Paula M; Muller, Hans-Michael; Mungall, Christopher J; Sternberg, Paul W; Van Auken, Kimberly; Vinyard, Christopher J; Williams, Susan H; Wall, Christine E

    2016-01-01

    In recent years large bibliographic databases have made much of the published literature of biology available for searches. However, the capabilities of the search engines integrated into these databases for text-based bibliographic searches are limited. To enable searches that deliver the results expected by comparative anatomists, an underlying logical structure known as an ontology is required. Here we present the Mammalian Feeding Muscle Ontology (MFMO), a multi-species ontology focused on anatomical structures that participate in feeding and other oral/pharyngeal behaviors. A unique feature of the MFMO is that a simple, computable, definition of each muscle, which includes its attachments and innervation, is true across mammals. This construction mirrors the logical foundation of comparative anatomy and permits searches using language familiar to biologists. Further, it provides a template for muscles that will be useful in extending any anatomy ontology. The MFMO is developed to support the Feeding Experiments End-User Database Project (FEED, https://feedexp.org/), a publicly-available, online repository for physiological data collected from in vivo studies of feeding (e.g., mastication, biting, swallowing) in mammals. Currently the MFMO is integrated into FEED and also into two literature-specific implementations of Textpresso, a text-mining system that facilitates powerful searches of a corpus of scientific publications. We evaluate the MFMO by asking questions that test the ability of the ontology to return appropriate answers (competency questions). We compare the results of queries of the MFMO to results from similar searches in PubMed and Google Scholar. Our tests demonstrate that the MFMO is competent to answer queries formed in the common language of comparative anatomy, but PubMed and Google Scholar are not. Overall, our results show that by incorporating anatomical ontologies into searches, an expanded and anatomically comprehensive set of results can be obtained. The broader scientific and publishing communities should consider taking up the challenge of semantically enabled search capabilities.

  3. TH-CD-206-02: BEST IN PHYSICS (IMAGING): 3D Prostate Segmentation in MR Images Using Patch-Based Anatomical Signature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X; Jani, A; Rossi, P

    Purpose: MRI has shown promise in identifying prostate tumors with high sensitivity and specificity for the detection of prostate cancer. Accurate segmentation of the prostate plays a key role various tasks: to accurately localize prostate boundaries for biopsy needle placement and radiotherapy, to initialize multi-modal registration algorithms or to obtain the region of interest for computer-aided detection of prostate cancer. However, manual segmentation during biopsy or radiation therapy can be time consuming and subject to inter- and intra-observer variation. This study’s purpose it to develop an automated method to address this technical challenge. Methods: We present an automated multi-atlas segmentationmore » for MR prostate segmentation using patch-based label fusion. After an initial preprocessing for all images, all the atlases are non-rigidly registered to a target image. And then, the resulting transformation is used to propagate the anatomical structure labels of the atlas into the space of the target image. The top L similar atlases are further chosen by measuring intensity and structure difference in the region of interest around prostate. Finally, using voxel weighting based on patch-based anatomical signature, the label that the majority of all warped labels predict for each voxel is used for the final segmentation of the target image. Results: This segmentation technique was validated with a clinical study of 13 patients. The accuracy of our approach was assessed using the manual segmentation (gold standard). The mean volume Dice Overlap Coefficient was 89.5±2.9% between our and manual segmentation, which indicate that the automatic segmentation method works well and could be used for 3D MRI-guided prostate intervention. Conclusion: We have developed a new prostate segmentation approach based on the optimal feature learning label fusion framework, demonstrated its clinical feasibility, and validated its accuracy. This segmentation technique could be a useful tool in image-guided interventions for prostate-cancer diagnosis and treatment.« less

  4. Quantitative evaluation of brain development using anatomical MRI and diffusion tensor imaging☆

    PubMed Central

    Oishi, Kenichi; Faria, Andreia V.; Yoshida, Shoko; Chang, Linda; Mori, Susumu

    2013-01-01

    The development of the brain is structure-specific, and the growth rate of each structure differs depending on the age of the subject. Magnetic resonance imaging (MRI) is often used to evaluate brain development because of the high spatial resolution and contrast that enable the observation of structure-specific developmental status. Currently, most clinical MRIs are evaluated qualitatively to assist in the clinical decision-making and diagnosis. The clinical MRI report usually does not provide quantitative values that can be used to monitor developmental status. Recently, the importance of image quantification to detect and evaluate mild-to-moderate anatomical abnormalities has been emphasized because these alterations are possibly related to several psychiatric disorders and learning disabilities. In the research arena, structural MRI and diffusion tensor imaging (DTI) have been widely applied to quantify brain development of the pediatric population. To interpret the values from these MR modalities, a “growth percentile chart,” which describes the mean and standard deviation of the normal developmental curve for each anatomical structure, is required. Although efforts have been made to create such a growth percentile chart based on MRI and DTI, one of the greatest challenges is to standardize the anatomical boundaries of the measured anatomical structures. To avoid inter- and intra-reader variability about the anatomical boundary definition, and hence, to increase the precision of quantitative measurements, an automated structure parcellation method, customized for the neonatal and pediatric population, has been developed. This method enables quantification of multiple MR modalities using a common analytic framework. In this paper, the attempt to create an MRI- and a DTI-based growth percentile chart, followed by an application to investigate developmental abnormalities related to cerebral palsy, Williams syndrome, and Rett syndrome, have been introduced. Future directions include multimodal image analysis and personalization for clinical application. PMID:23796902

  5. Variations in paranasal sinus anatomy: implications for the pathophysiology of chronic rhinosinusitis and safety of endoscopic sinus surgery.

    PubMed

    Nouraei, S A R; Elisay, A R; Dimarco, A; Abdi, R; Majidi, H; Madani, S A; Andrews, P J

    2009-02-01

    To study the radiologic anatomy of the paranasal sinuses in patients with and without chronic rhinosinusitis to assess whether anatomic variations are associated with disease pathology, and to identify those variants that may impact operative safety. Tertiary referral otolaryngology unit. Incidence and nature of anatomic variants with potential impact on operative safety, and the presence or absence of sinus mucosal disease and its correlation with anatomic variants with a potential impact on mucociliary clearance. We reviewed 278 computed tomographic scans from patients with rhinosinusitis symptoms to investigate anatomic variations that may predispose to sinusitis or impact on operative safety. The incidence of variants with potential impact on sinus drainage was compared between patients with and without sinus mucosal disease with logistic regression. A closed osteomeatal complex was identified in 148 patients (53%), followed by concha bullosa in 98 patients (35%). Closed osteomeatal complex and nasal polyposis were independent risk factors for sinus mucosal disease. Anatomic variants with a potential impact on operative safety included anterior clinoid process pneumatization (18%), infraorbital ethmoid cell (12%), sphenomaxillary plate (11%), and supraorbital recess (6%). In 92% of patients, the level difference between the roof of the ethmoid cavity and the cribriform plate was Keros I. Bony anatomic variants do not increase the risk of sinus mucosal disease. However, anatomic variants with a potential impact on operative safety occur frequently and need to be specifically sought as part of preoperative evaluation.

  6. Improved scintimammography using a high-resolution camera mounted on an upright mammography gantry

    NASA Astrophysics Data System (ADS)

    Itti, Emmanuel; Patt, Bradley E.; Diggles, Linda E.; MacDonald, Lawrence; Iwanczyk, Jan S.; Mishkin, Fred S.; Khalkhali, Iraj

    2003-01-01

    99mTc-sestamibi scintimammography (SMM) is a useful adjunct to conventional X-ray mammography (XMM) for the assessment of breast cancer. An increasing number of studies has emphasized fair sensitivity values for the detection of tumors >1 cm, compared to XMM, particularly in situations where high glandular breast densities make mammographic interpretation difficult. In addition, SMM has demonstrated high specificity for cancer, compared to various functional and anatomic imaging modalities. However, large field-of-view (FOV) gamma cameras are difficult to position close to the breasts, which decreases spatial resolution and subsequently, the sensitivity of detection for tumors <1 cm. New dedicated detectors featuring small FOV and increased spatial resolution have recently been developed. In this setting, improvement in tumor detection sensitivity, particularly with regard to small cancers is expected. At Division of Nuclear Medicine, Harbor-UCLA Medical Center, we have performed over 2000 SMM within the last 9 years. We have recently used a dedicated breast camera (LumaGEM™) featuring a 12.8×12.8 cm 2 FOV and an array of 2×2×6 mm 3 discrete crystals coupled to a photon-sensitive photomultiplier tube readout. This camera is mounted on a mammography gantry allowing upright imaging, medial positioning and use of breast compression. Preliminary data indicates significant enhancement of spatial resolution by comparison with standard imaging in the first 10 patients. Larger series will be needed to conclude on sensitivity/specificity issues.

  7. Consensus Paper: Radiological Biomarkers of Cerebellar Diseases

    PubMed Central

    Baldarçara, Leonardo; Currie, Stuart; Hadjivassiliou, M.; Hoggard, Nigel; Jack, Allison; Jackowski, Andrea P.; Mascalchi, Mario; Parazzini, Cecilia; Reetz, Kathrin; Righini, Andrea; Schulz, Jörg B.; Vella, Alessandra; Webb, Sara Jane; Habas, Christophe

    2016-01-01

    Hereditary and sporadic cerebellar ataxias represent a vast and still growing group of diseases whose diagnosis and differentiation cannot only rely on clinical evaluation. Brain imaging including magnetic resonance (MR) and nuclear medicine techniques allows for characterization of structural and functional abnormalities underlying symptomatic ataxias. These methods thus constitute a potential source of radiological biomarkers, which could be used to identify these diseases and differentiate subgroups of them, and to assess their severity and their evolution. Such biomarkers mainly comprise qualitative and quantitative data obtained from MR including proton spectroscopy, diffusion imaging, tractography, voxel-based morphometry, functional imaging during task execution or in a resting state, and from SPETC and PET with several radiotracers. In the current article, we aim to illustrate briefly some applications of these neuroimaging tools to evaluation of cerebellar disorders such as inherited cerebellar ataxia, fetal developmental malformations, and immune-mediated cerebellar diseases and of neurodegenerative or early-developing diseases, such as dementia and autism in which cerebellar involvement is an emerging feature. Although these radiological biomarkers appear promising and helpful to better understand ataxia-related anatomical and physiological impairments, to date, very few of them have turned out to be specific for a given ataxia with atrophy of the cerebellar system being the main and the most usual alteration being observed. Consequently, much remains to be done to establish sensitivity, specificity, and reproducibility of available MR and nuclear medicine features as diagnostic, progression and surrogate biomarkers in clinical routine. PMID:25382714

  8. Influence of prenatal EGCG treatment and Dyrk1a dosage reduction on craniofacial features associated with Down syndrome.

    PubMed

    McElyea, Samantha D; Starbuck, John M; Tumbleson-Brink, Danika M; Harrington, Emily; Blazek, Joshua D; Ghoneima, Ahmed; Kula, Katherine; Roper, Randall J

    2016-11-15

    Trisomy 21 (Ts21) affects craniofacial precursors in individuals with Down syndrome (DS). The resultant craniofacial features in all individuals with Ts21 may significantly affect breathing, eating and speaking. Using mouse models of DS, we have traced the origin of DS-associated craniofacial abnormalities to deficiencies in neural crest cell (NCC) craniofacial precursors early in development. Hypothetically, three copies of Dyrk1a (dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A), a trisomic gene found in most humans with DS and mouse models of DS, may significantly affect craniofacial structure. We hypothesized that we could improve DS-related craniofacial abnormalities in mouse models using a Dyrk1a inhibitor or by normalizing Dyrk1a gene dosage. In vitro and in vivo treatment with Epigallocatechin-3-gallate (EGCG), a Dyrk1a inhibitor, modulated trisomic NCC deficiencies at embryonic time points. Furthermore, prenatal EGCG treatment normalized some craniofacial phenotypes, including cranial vault in adult Ts65Dn mice. Normalization of Dyrk1a copy number in an otherwise trisomic Ts65Dn mice normalized many dimensions of the cranial vault, but did not correct all craniofacial anatomy. These data underscore the complexity of the gene–phenotype relationship in trisomy and suggest that changes in Dyrk1a expression play an important role in morphogenesis and growth of the cranial vault. These results suggest that a temporally specific prenatal therapy may be an effective way to ameliorate some craniofacial anatomical changes associated with DS.

  9. Amygdala and hippocampus volumetry and diffusivity in relation to dreaming.

    PubMed

    De Gennaro, Luigi; Cipolli, Carlo; Cherubini, Andrea; Assogna, Francesca; Cacciari, Claudia; Marzano, Cristina; Curcio, Giuseppe; Ferrara, Michele; Caltagirone, Carlo; Spalletta, Gianfranco

    2011-09-01

    Microstructural analyses by MRI brain scans and by DTI analysis of MR images were used to investigate the possible relationship between deep gray matter structures (amygdala and hippocampus) and dreaming in healthy subjects. Thirty-four subjects ranging in age 20s to 70s underwent to a MRI protocol for the assessment of volume and mean diffusivity (MD) in the amygdala and hippocampus and were asked to fill out a dream diary via audiotape recording upon morning awakening for two weeks. Multiple regression analyses evaluated the relationships between anatomical measures and quantitative and qualitative measures of the reported dreams. The main result points to a dissociation between some quantitative and qualitative aspects of dream reports. While the mean number of dreams recalled per day did not show any significant relationship with the neuroanatomical measures, significant associations with some qualitative features of the recalled dreams (emotional load, bizarreness, and vividness) and, to some extent, with the length of dream reports were observed. Particularly, a higher MD of the left amygdala, reflecting a decreased microstructural integrity, was associated with shorter dream reports and lower scores on emotional load. Bizarreness of dream reports was negatively correlated with the left amygdala volume and positively correlated with the right amygdala MD. Some specific, although weaker, relationships were also found between bizarreness and hippocampal measures. These findings indicate some direct relationships between volumetric and ultrastructural measures of the hippocampus-amygdala complex and specific qualitative features of dreaming. Copyright © 2010 Wiley-Liss, Inc.

  10. Variable uptake feature of focal nodular hyperplasia in Tc-99m phytate hepatic scintigraphy/single-photon emission computed tomography-A parametric analysis.

    PubMed

    Hsu, Yu-Ling; Chen, Yu-Wen; Lin, Chia-Yang; Lai, Yun-Chang; Chen, Shinn-Cherng; Lin, Zu-Yau

    2015-12-01

    Tc-99m phytate hepatic scintigraphy remains the standard method for evaluating the functional features of Kupffer cells. In this study, we demonstrate the variable uptake feature of focal nodular hyperplasia (FNH) in Tc-99m phytate scintigraphy. We reviewed all patients who underwent Tc-99m phytate hepatic scintigraphy between 2008 and 2012 in Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. Cases with FNH were diagnosed on the basis of pathology or at least one or more prior imaging with a periodic clinical follow-up. All patients received a standard protocol of dynamic flow study and planar and Tc-99m phytate single-photon emission computed tomography (E. CAM; Siemens). The correlation of variable nodular radioactivity with parameters such as tumor size and localization was analyzed. In total, 15 lesions of 14 patients in the clinic were diagnosed as FNH. The tumor size was approximately 2.9-7.4 cm (mean size 4.6 cm). Four lesions were larger than 5 cm. The major anatomic distribution was in the right hepatic lobe (10 lesions), particularly in the superior segments (7 lesions). Tc-99m phytate single-photon emission computed tomography imaging for determining the functional features of Kupffer cells included cool/cold (8 lesions), isoradioactive/warm (6 lesions), and hot (1 lesion) patterns of uptake. We did not observe any statistically significant correlation between variable nodular radioactivity and tumor size (p=0.68) or localization (p=0.04). Herein, we demonstrate the variable uptake feature of FNH in Tc-99m phytate scintigraphy. In small FNH tumors (< 5 cm), increased or equal uptake still provided specificity for the differential diagnosis of hepatic solid tumors. Copyright © 2015. Published by Elsevier Taiwan.

  11. Morphological study of the eye and adnexa in capuchin monkeys (Sapajus sp.)

    PubMed Central

    Silva, Danielle Nascimento; Oriá, Arianne Pontes; Araujo, Nayone Lantyer; Martins-Filho, Emanoel; Muramoto, Caterina; Libório, Fernanda de Azevedo

    2017-01-01

    The objective of this study was to describe the anatomic and histologic features of the Sapajus sp. eye, comparing similarities and differences of humans and other species of non-human primates for biomedical research purposes. Computed tomography (CT) of adnexa, eye and orbit live animal, as well as formolized pieces of the same structures of Sapajus sp. for anatomical and histological study were also performed. The anatomical description of the eye and adnexa was performed using the techniques of topographic dissection and exenteration. Histological fragments were fixated in buffered formalin 10%, processed by the routine paraffin inclusion technique, stained with hematoxylin-eosin and special stains. CT scan evaluation showed no differences between the live animal and the formolized head on identification of visual apparatus structures. Anatomic and histologic evaluation revealed rounded orbit, absence of the supraorbital foramen and frontal notch, little exposure of the sclera, with slight pigmentation of the exposed area and marked pigmentation at the sclerocorneal junction. Masson's Trichrome revealed the Meibomian glands, the corneal epithelium and Bowman's membrane; in the choroid, melanocytes and Bruch's membrane were observed; and in the retina, cones and rods as well as, optic nerve, the lamina cribrosa of the nerve fibers bundles. Toluidine blue highlighted the membranes: Bowman, Descemet and the endothelium; in the choroid: melanocytes; and in the retina: nuclear layers and retinal pigment epithelium. In view of the observed results Sapajus sp. is an important experimental model for research in the ophthalmology field, which has been shown due to the high similarity of its anatomical and histological structures with the human species. PMID:29206882

  12. Virtual reality in rhinology-a new dimension of clinical experience.

    PubMed

    Klapan, Ivica; Raos, Pero; Galeta, Tomislav; Kubat, Goranka

    2016-07-01

    There is often a need to more precisely identify the extent of pathology and the fine elements of intracranial anatomic features during the diagnostic process and during many operations in the nose, sinus, orbit, and skull base region. In two case reports, we describe the methods used in the diagnostic workup and surgical therapy in the nose and paranasal sinus region. Besides baseline x-ray, multislice computed tomography, and magnetic resonance imaging, operative field imaging was performed via a rapid prototyping model, virtual endoscopy, and 3-D imaging. Different head tissues were visualized in different colors, showing their anatomic interrelations and the extent of pathologic tissue within the operative field. This approach has not yet been used as a standard preoperative or intraoperative procedure in otorhinolaryngology. In this way, we tried to understand the new, visualized "world of anatomic relations within the patient's head" by creating an impression of perception (virtual perception) of the given position of all elements in a particular anatomic region of the head, which does not exist in the real world (virtual world). This approach was aimed at upgrading the diagnostic workup and surgical therapy by ensuring a faster, safer and, above all, simpler operative procedure. In conclusion, any ENT specialist can provide virtual reality support in implementing surgical procedures, with additional control of risks and within the limits of normal tissue, without additional trauma to the surrounding tissue in the anatomic region. At the same time, the virtual reality support provides an impression of the virtual world as the specialist navigates through it and manipulates virtual objects.

  13. Feature-Motivated Simplified Adaptive PCNN-Based Medical Image Fusion Algorithm in NSST Domain.

    PubMed

    Ganasala, Padma; Kumar, Vinod

    2016-02-01

    Multimodality medical image fusion plays a vital role in diagnosis, treatment planning, and follow-up studies of various diseases. It provides a composite image containing critical information of source images required for better localization and definition of different organs and lesions. In the state-of-the-art image fusion methods based on nonsubsampled shearlet transform (NSST) and pulse-coupled neural network (PCNN), authors have used normalized coefficient value to motivate the PCNN-processing both low-frequency (LF) and high-frequency (HF) sub-bands. This makes the fused image blurred and decreases its contrast. The main objective of this work is to design an image fusion method that gives the fused image with better contrast, more detail information, and suitable for clinical use. We propose a novel image fusion method utilizing feature-motivated adaptive PCNN in NSST domain for fusion of anatomical images. The basic PCNN model is simplified, and adaptive-linking strength is used. Different features are used to motivate the PCNN-processing LF and HF sub-bands. The proposed method is extended for fusion of functional image with an anatomical image in improved nonlinear intensity hue and saturation (INIHS) color model. Extensive fusion experiments have been performed on CT-MRI and SPECT-MRI datasets. Visual and quantitative analysis of experimental results proved that the proposed method provides satisfactory fusion outcome compared to other image fusion methods.

  14. The Porifera Ontology (PORO): enhancing sponge systematics with an anatomy ontology.

    PubMed

    Thacker, Robert W; Díaz, Maria Cristina; Kerner, Adeline; Vignes-Lebbe, Régine; Segerdell, Erik; Haendel, Melissa A; Mungall, Christopher J

    2014-01-01

    Porifera (sponges) are ancient basal metazoans that lack organs. They provide insight into key evolutionary transitions, such as the emergence of multicellularity and the nervous system. In addition, their ability to synthesize unusual compounds offers potential biotechnical applications. However, much of the knowledge of these organisms has not previously been codified in a machine-readable way using modern web standards. The Porifera Ontology is intended as a standardized coding system for sponge anatomical features currently used in systematics. The ontology is available from http://purl.obolibrary.org/obo/poro.owl, or from the project homepage http://porifera-ontology.googlecode.com/. The version referred to in this manuscript is permanently available from http://purl.obolibrary.org/obo/poro/releases/2014-03-06/. By standardizing character representations, we hope to facilitate more rapid description and identification of sponge taxa, to allow integration with other evolutionary database systems, and to perform character mapping across the major clades of sponges to better understand the evolution of morphological features. Future applications of the ontology will focus on creating (1) ontology-based species descriptions; (2) taxonomic keys that use the nested terms of the ontology to more quickly facilitate species identifications; and (3) methods to map anatomical characters onto molecular phylogenies of sponges. In addition to modern taxa, the ontology is being extended to include features of fossil taxa.

  15. Validation of model-based deformation correction in image-guided liver surgery via tracked intraoperative ultrasound: preliminary method and results

    NASA Astrophysics Data System (ADS)

    Clements, Logan W.; Collins, Jarrod A.; Wu, Yifei; Simpson, Amber L.; Jarnagin, William R.; Miga, Michael I.

    2015-03-01

    Soft tissue deformation represents a significant error source in current surgical navigation systems used for open hepatic procedures. While numerous algorithms have been proposed to rectify the tissue deformation that is encountered during open liver surgery, clinical validation of the proposed methods has been limited to surface based metrics and sub-surface validation has largely been performed via phantom experiments. Tracked intraoperative ultrasound (iUS) provides a means to digitize sub-surface anatomical landmarks during clinical procedures. The proposed method involves the validation of a deformation correction algorithm for open hepatic image-guided surgery systems via sub-surface targets digitized with tracked iUS. Intraoperative surface digitizations were acquired via a laser range scanner and an optically tracked stylus for the purposes of computing the physical-to-image space registration within the guidance system and for use in retrospective deformation correction. Upon completion of surface digitization, the organ was interrogated with a tracked iUS transducer where the iUS images and corresponding tracked locations were recorded. After the procedure, the clinician reviewed the iUS images to delineate contours of anatomical target features for use in the validation procedure. Mean closest point distances between the feature contours delineated in the iUS images and corresponding 3-D anatomical model generated from the preoperative tomograms were computed to quantify the extent to which the deformation correction algorithm improved registration accuracy. The preliminary results for two patients indicate that the deformation correction method resulted in a reduction in target error of approximately 50%.

  16. Anorectal Cancer: Critical Anatomic and Staging Distinctions That Affect Use of Radiation Therapy

    PubMed Central

    Mamon, Harvey J.; Fuchs, Charles S.; Doyle, Leona A.; Tirumani, Sree Harsha; Ramaiya, Nikhil H.; Rosenthal, Michael H.

    2015-01-01

    Although rectal and anal cancers are anatomically close, they are distinct entities with different histologic features, risk factors, staging systems, and treatment pathways. Imaging is at the core of initial clinical staging of these cancers and most commonly includes magnetic resonance imaging for local-regional staging and computed tomography for evaluation of metastatic disease. The details of the primary tumor and involvement of regional lymph nodes are crucial in determining if and how radiation therapy should be used in treatment of these cancers. Unfortunately, available imaging modalities have been shown to have imperfect accuracy for identification of nodal metastases and imaging features other than size. Staging of nonmetastatic rectal cancers is dependent on the depth of invasion (T stage) and the number of involved regional lymph nodes (N stage). Staging of nonmetastatic anal cancers is determined according to the size of the primary mass and the combination of regional nodal sites involved; the number of positive nodes at each site is not a consideration for staging. Patients with T3 rectal tumors and/or involvement of perirectal, mesenteric, and internal iliac lymph nodes receive radiation therapy. Almost all anal cancers warrant use of radiation therapy, but the extent and dose of the radiation fields is altered on the basis of both the size of the primary lesion and the presence and extent of nodal involvement. The radiologist must recognize and report these critical anatomic and staging distinctions, which affect use of radiation therapy in patients with anal and rectal cancers. ©RSNA, 2015 PMID:26562239

  17. Plastic Response of Tracheids in Pinus pinaster in a Water-Limited Environment: Adjusting Lumen Size instead of Wall Thickness

    PubMed Central

    Carvalho, Ana; Nabais, Cristina; Vieira, Joana; Rossi, Sergio; Campelo, Filipe

    2015-01-01

    The formation of wood results from cambial activity and its anatomical properties reflect the variability of environmental conditions during the growing season. Recently, it was found that wood density variations in conifers growing under cold-limited environment result from the adjustment of cell wall thickness (CWT) to temperature. Additionally, it is known that intra-annual density fluctuations (IADFs) are formed in response to precipitation after the summer drought. Although IADFs are frequent in Mediterranean conifers no study has yet been conducted to determine if these structures result from the adjustment of lumen diameter (LD) or CWT to soil water availability. Our main objective is to investigate the intra-ring variation of wood anatomical features (LD and CWT) in Pinus pinaster Ait. growing under a water-limited environment. We compared the tracheidograms of LD and CWT for the years 2010–2013 in P. pinaster growing in the west coast of Portugal. Our results suggest a close association between LD and soil moisture content along the growing season, reinforcing the role of water availability in determining tracheid size. Compared with CWT, LD showed a higher intra- and inter-annual variability suggesting its strong adjustment value to variations in water availability. The formation of a latewood IADF appears to be predisposed by higher rates of cell production in spring and triggered by early autumn precipitation. Our findings reinforce the crucial role of water availability on cambial activity and wood formation in Mediterranean conifers, and emphasize the high plasticity of wood anatomical features under Mediterranean climate. PMID:26305893

  18. Plastic Response of Tracheids in Pinus pinaster in a Water-Limited Environment: Adjusting Lumen Size instead of Wall Thickness.

    PubMed

    Carvalho, Ana; Nabais, Cristina; Vieira, Joana; Rossi, Sergio; Campelo, Filipe

    2015-01-01

    The formation of wood results from cambial activity and its anatomical properties reflect the variability of environmental conditions during the growing season. Recently, it was found that wood density variations in conifers growing under cold-limited environment result from the adjustment of cell wall thickness (CWT) to temperature. Additionally, it is known that intra-annual density fluctuations (IADFs) are formed in response to precipitation after the summer drought. Although IADFs are frequent in Mediterranean conifers no study has yet been conducted to determine if these structures result from the adjustment of lumen diameter (LD) or CWT to soil water availability. Our main objective is to investigate the intra-ring variation of wood anatomical features (LD and CWT) in Pinus pinaster Ait. growing under a water-limited environment. We compared the tracheidograms of LD and CWT for the years 2010-2013 in P. pinaster growing in the west coast of Portugal. Our results suggest a close association between LD and soil moisture content along the growing season, reinforcing the role of water availability in determining tracheid size. Compared with CWT, LD showed a higher intra- and inter-annual variability suggesting its strong adjustment value to variations in water availability. The formation of a latewood IADF appears to be predisposed by higher rates of cell production in spring and triggered by early autumn precipitation. Our findings reinforce the crucial role of water availability on cambial activity and wood formation in Mediterranean conifers, and emphasize the high plasticity of wood anatomical features under Mediterranean climate.

  19. An investigation of the vegetative anatomy of Piper sarmentosum, and a comparison with the anatomy of Piper betle (Piperaceae)

    USDA-ARS?s Scientific Manuscript database

    Piper sarmentosum Roxb. (synonym, P. lolot C.DC.) is a southeast Asian medicinal plant valued for its medicinal and culinary uses. Hand-sections of the vegetative parts of P. sarmentosum were prepared and the anatomical features were studied by light microscopy and scanning electron microscopy. Th...

  20. Chapter 04: Bloodless wood specimen preparation for hand lens observation

    Treesearch

    Alex Wiedenhoeft

    2011-01-01

    The single most difficult physical skill involved in wood identification is producing a smoothly prepared surface for observing anatomical features. This skill must be practiced patiently; it takes time to become proficient at this task. Producing a cleanly cut surface is also the only appreciably dangerous aspect of wood identification with a hand lens; the tools used...

  1. Imaging in the assessment and management of athletic pubalgia.

    PubMed

    Robinson, Philip; Bhat, Vineet; English, Bryan

    2011-02-01

    This article reviews the clinical, anatomical, and biomechanical basis of pubalgia and relates it to the potential imaging findings and subsequent management. Although the magnetic resonance imaging features typically seen in symptomatic athletes are emphasized, this condition remains a complex clinical problem, and treatment addressing the functional rehabilitation of the entire region is highlighted. © Thieme Medical Publishers.

  2. Language Laterality in Autism Spectrum Disorder and Typical Controls: A Functional, Volumetric, and Diffusion Tensor MRI Study

    ERIC Educational Resources Information Center

    Knaus, Tracey A.; Silver, Andrew M.; Kennedy, Meaghan; Lindgren, Kristen A.; Dominick, Kelli C.; Siegel, Jeremy; Tager-Flusberg, Helen

    2010-01-01

    Language and communication deficits are among the core features of autism spectrum disorder (ASD). Reduced or reversed asymmetry of language has been found in a number of disorders, including ASD. Studies of healthy adults have found an association between language laterality and anatomical measures but this has not been systematically…

  3. Microscopic and UPLC-UV-MS analyses of authentic and commercial yohimbe (Pausinystalia johimbe) bark samples

    USDA-ARS?s Scientific Manuscript database

    Yohimbine is the major alkaloid found in the stem-bark of yohimbe, Pausinystalia johimbe (Rubiaceae), an evergreen tree native to Africa. A number of yohimbe products are sold in USA as dietary supplements. Hand-sections of the stem-bark were prepared and the anatomical features were studied by ligh...

  4. Increased Activation in Superior Temporal Gyri as a Function of Increment in Phonetic Features

    ERIC Educational Resources Information Center

    Osnes, Berge; Hugdahl, Kenneth; Hjelmervik, Helene; Specht, Karsten

    2011-01-01

    A common assumption is that phonetic sounds initiate unique processing in the superior temporal gyri and sulci (STG/STS). The anatomical areas subserving these processes are also implicated in the processing of non-phonetic stimuli such as music instrument sounds. The differential processing of phonetic and non-phonetic sounds was investigated in…

  5. A review of simulation platforms in surgery of the temporal bone.

    PubMed

    Bhutta, M F

    2016-10-01

    Surgery of the temporal bone is a high-risk activity in an anatomically complex area. Simulation enables rehearsal of such surgery. The traditional simulation platform is the cadaveric temporal bone, but in recent years other simulation platforms have been created, including plastic and virtual reality platforms. To undertake a review of simulation platforms for temporal bone surgery, specifically assessing their educational value in terms of validity and in enabling transition to surgery. Systematic qualitative review. Search of the Pubmed, CINAHL, BEI and ERIC databases. Assessment of reported outcomes in terms of educational value. A total of 49 articles were included, covering cadaveric, animal, plastic and virtual simulation platforms. Cadaveric simulation is highly rated as an educational tool, but there may be a ceiling effect on educational outcomes after drilling 8-10 temporal bones. Animal models show significant anatomical variation from man. Plastic temporal bone models offer much potential, but at present lack sufficient anatomical or haptic validity. Similarly, virtual reality platforms lack sufficient anatomical or haptic validity, but with technological improvements they are advancing rapidly. At present, cadaveric simulation remains the best platform for training in temporal bone surgery. Technological advances enabling improved materials or modelling mean that in the future plastic or virtual platforms may become comparable to cadaveric platforms, and also offer additional functionality including patient-specific simulation from CT data. © 2015 John Wiley & Sons Ltd.

  6. A review of the anatomy of the hip abductor muscles, gluteus medius, gluteus minimus, and tensor fascia lata.

    PubMed

    Flack, Natasha Amy May Sparks; Nicholson, Helen D; Woodley, Stephanie Jane

    2012-09-01

    The hip abductor muscles have the capability to contribute to numerous actions, including pelvic stabilization during gait, and abduction and rotation at the hip joint. To fully understand the role of these muscles, as well as their involvement in hip joint dysfunction, knowledge of their anatomical structure is essential. The clinical literature suggests anatomical diversity within these muscles, and that gluteus medius (GMed) and gluteus minimus (GMin), in particular, may be comprised of compartments. This systematic review of the English literature focuses on the gross anatomy of GMed, GMin, and tensor fascia lata (TFL) muscles. Although studies of this muscle group have generated useful descriptions, comparison of results is hindered by methodological limitations. Furthermore, there is no single comprehensive anatomical investigation of all three muscles. Several aspects of the morphology of attachment sites are unknown or unclear. There is little data on fascicle orientation, the interface between fascicles and tendons, and the specific patterning of the superior gluteal nerve. Consequently, the existence of anatomical compartmentalization within the hip abductor muscles is difficult to assess. Further research of the architecture and innervation of the hip abductor muscle group is required; a better understanding of the precise anatomy of these muscles should improve our understanding of their specific functions and their contribution to the pathogenesis of disorders affecting the hip joint. Copyright © 2011 Wiley Periodicals, Inc.

  7. Teacher's opinions about learning continuum based on the student's level of competence and specific pedagogical materials on anatomical aspects

    NASA Astrophysics Data System (ADS)

    Astuti, Laili Dwi; Subali, Bambang

    2017-08-01

    This research deals with designing learning continuum for developing a curriculum. The objective of this study is to gather the opinion of public junior and high school teachers about Learning Continuum based on Student's Level of Competence and Specific Pedagogical Material on Anatomical Aspects. This is a survey research. The population of the research is natural science teachers at junior high school and biology teacher at senior high school in Yogyakarta Special Region. Data were collected using a questionnaire. Data were analyzed using a descriptive analysis technique. Based on the results of the survey, the teachers opinion are in accordance with the level of the students they teach. Junior high school teachers argued that anatomical aspects were taught in grade VII,VIII, IX and X on the level of C2 (understanding), the high school teacher argued that anatomical aspects were taught in grade VIII, X and XI on the level of C2 (understanding) and C3 (apply). While according to the opinions of primary school teachers about aspects of anatomy resulted from the research of Subali (2016), anatomy is mostly not taught at the elementary school level, only some of the materials that are taught in this school level. Therefore, the results of the survey can be inferred that the opinions of teachers is still based on the existing curriculum.

  8. Enhanced anatomical calibration in human movement analysis.

    PubMed

    Donati, Marco; Camomilla, Valentina; Vannozzi, Giuseppe; Cappozzo, Aurelio

    2007-07-01

    The representation of human movement requires knowledge of both movement and morphology of bony segments. The determination of subject-specific morphology data and their registration with movement data is accomplished through an anatomical calibration procedure (calibrated anatomical systems technique: CAST). This paper describes a novel approach to this calibration (UP-CAST) which, as compared with normally used techniques, achieves better repeatability, a shorter application time, and can be effectively performed by non-skilled examiners. Instead of the manual location of prominent bony anatomical landmarks, the description of which is affected by subjective interpretation, a large number of unlabelled points is acquired over prominent parts of the subject's bone, using a wand fitted with markers. A digital model of a template-bone is then submitted to isomorphic deformation and re-orientation to optimally match the above-mentioned points. The locations of anatomical landmarks are automatically made available. The UP-CAST was validated considering the femur as a paradigmatic case. Intra- and inter-examiner repeatability of the identification of anatomical landmarks was assessed both in vivo, using average weight subjects, and on bare bones. Accuracy of the identification was assessed using the anatomical landmark locations manually located on bare bones as reference. The repeatability of this method was markedly higher than that reported in the literature and obtained using the conventional palpation (ranges: 0.9-7.6 mm and 13.4-17.9, respectively). Accuracy resulted, on average, in a maximal error of 11 mm. Results suggest that the principal source of variability resides in the discrepancy between subject's and template bone morphology and not in the inter-examiner differences. The UP-CAST anatomical calibration could be considered a promising alternative to conventional calibration contributing to a more repeatable 3D human movement analysis.

  9. Mental rotation and the human body: Children's inflexible use of embodiment mirrors that of adults.

    PubMed

    Krüger, Markus; Ebersbach, Mirjam

    2017-12-25

    Adults' mental rotation performance with body-like stimuli is enhanced if these stimuli are anatomically compatible with a human body, but decreased by anatomically incompatible stimuli. In this study, we investigated these effects for kindergartners and first-graders: When asked to mentally rotate cube configurations attached with human body parts in an anatomically compatible way, allowing for the projection of a human body, children performed better than with pure cube combinations. By contrast, when body parts were attached in an anatomically incompatible way, disallowing the projection of a human body, children performed worse than with pure combinations. This experiment is of specific interest against the background of two different theoretical approaches concerning imagery and the motor system in development: One approach assumes an increasing integration of motor processes and imagery over time that enables older children and adults to requisition motor resources for imagery processes, while the other postulates that imagery stems from early sensorimotor processes in the first place, and is disentangled from it over time. The finding that children of the two age groups tested show exactly the same effects as adults when mentally rotating anatomically compatible and incompatible stimuli is interpreted in favour of the latter approach. Statement of contribution What is already known on this subject? In mental rotation, adults perform better when rotating anatomically possible stimuli as compared to rotating standard cube combinations. Performance is worse when rotating anatomically impossible stimuli. What does this study add? The present study shows that children's mental transformations mirror those of adults in these respects. In case of the anatomically impossible stimuli, this highlights an inflexible use of embodiment in both age groups. This is in line with the Piagetian assumption of imagery being based on sensorimotor processes. © 2017 The British Psychological Society.

  10. Retrieving high-resolution images over the Internet from an anatomical image database

    NASA Astrophysics Data System (ADS)

    Strupp-Adams, Annette; Henderson, Earl

    1999-12-01

    The Visible Human Data set is an important contribution to the national collection of anatomical images. To enhance the availability of these images, the National Library of Medicine has supported the design and development of a prototype object-oriented image database which imports, stores, and distributes high resolution anatomical images in both pixel and voxel formats. One of the key database modules is its client-server Internet interface. This Web interface provides a query engine with retrieval access to high-resolution anatomical images that range in size from 100KB for browser viewable rendered images, to 1GB for anatomical structures in voxel file formats. The Web query and retrieval client-server system is composed of applet GUIs, servlets, and RMI application modules which communicate with each other to allow users to query for specific anatomical structures, and retrieve image data as well as associated anatomical images from the database. Selected images can be downloaded individually as single files via HTTP or downloaded in batch-mode over the Internet to the user's machine through an applet that uses Netscape's Object Signing mechanism. The image database uses ObjectDesign's object-oriented DBMS, ObjectStore that has a Java interface. The query and retrieval systems has been tested with a Java-CDE window system, and on the x86 architecture using Windows NT 4.0. This paper describes the Java applet client search engine that queries the database; the Java client module that enables users to view anatomical images online; the Java application server interface to the database which organizes data returned to the user, and its distribution engine that allow users to download image files individually and/or in batch-mode.

  11. Reevaluation of the superior radial collateral artery in the human upper arm.

    PubMed

    Ichimura, Koichiro; Kinose, Shota; Kawasaki, Yuto; Kato, Kota; Sakai, Tatsuo

    2018-01-01

    The superior radial collateral artery (SRCA) was described in well-established anatomy textbooks published in the 1800s. According to those textbooks, the SRCA originates from the brachial artery, passes transversely between the coracobrachialis and the humerus, and distributes to the most distal portion of the deltoid. The SRCA is not listed in the international standard on anatomical terminology, Terminologia Anatomica, or in modern anatomy textbooks. In the present study, we reevaluated the anatomical features of the SRCA by cadaveric dissection. We found that two kinds of SRCAs were consistently present in the upper arm. One was similar to the previous descriptions of the SRCA in terms of origin and course, but the distribution was somewhat different. The other was similar to the previous descriptions in terms of the distribution, although it differed in origin and course. The discrepancy between the description of the SRCA in classical textbooks and the actual morphologies of the SRCA presumably prompted previous anatomists to question the existence of the SRCA, resulting in its absence from anatomical textbooks after a particular time point.

  12. Comparative evaluation of the cadaveric and computed tomographic features of the coelomic cavity in the green iguana (Iguana iguana), black and white tegu (Tupinambis merianae) and bearded dragon (Pogona vitticeps).

    PubMed

    Banzato, T; Selleri, P; Veladiano, I A; Zotti, A

    2013-12-01

    Contrast-enhanced computed tomographic studies of the coelomic cavity in four green iguanas, four black and white tegus and four bearded dragons were performed using a conventional CT scanner. Anatomical reference cross sections were obtained from four green iguana, four black and white tegu and six bearded dragon cadavers; the specimens were stored in a -20°C freezer for 24 h then sliced into 5-mm intervals. The frozen sections were cleaned with water and photographed on both sides. The individual anatomical structures were identified by means of the available literature; these were labelled first on the anatomical images and then matched to the corresponding computed tomography images. The results provide an atlas of the normal cross-sectional and computed tomographic anatomy of the coelomic cavity in the green iguana, the black and white tegu and the bearded dragon, which is useful in the interpretation of any imaging modality. © 2013 Blackwell Verlag GmbH.

  13. Intensity-based hierarchical clustering in CT-scans: application to interactive segmentation in cardiology

    NASA Astrophysics Data System (ADS)

    Hadida, Jonathan; Desrosiers, Christian; Duong, Luc

    2011-03-01

    The segmentation of anatomical structures in Computed Tomography Angiography (CTA) is a pre-operative task useful in image guided surgery. Even though very robust and precise methods have been developed to help achieving a reliable segmentation (level sets, active contours, etc), it remains very time consuming both in terms of manual interactions and in terms of computation time. The goal of this study is to present a fast method to find coarse anatomical structures in CTA with few parameters, based on hierarchical clustering. The algorithm is organized as follows: first, a fast non-parametric histogram clustering method is proposed to compute a piecewise constant mask. A second step then indexes all the space-connected regions in the piecewise constant mask. Finally, a hierarchical clustering is achieved to build a graph representing the connections between the various regions in the piecewise constant mask. This step builds up a structural knowledge about the image. Several interactive features for segmentation are presented, for instance association or disassociation of anatomical structures. A comparison with the Mean-Shift algorithm is presented.

  14. Male characteristics on female mud snails caused by antifouling bottom paints.

    PubMed

    Smith, B S

    1981-02-01

    This study continues an investigation of an anatomical abnormality, named 'imposex', which consists of a superimposition of male characteristics on to a functionally normal female reproductive anatomy of the dioecious snail Nassarius obsoletus Say. Imposex is prevalent in natural populations living near yacht basins and rarely found distant from them. In the current study caged snails were transferred between a yacht basin and a distant 'clean' locality where the natural population of snails was normal. Imposex was induced in some normal snails kept at the marina and suppressed, but not lost in abnormal snails kept at the clean locality. A similar positive result was obtained in the laboratory by exposing normal snails to organotin-containing antifouling paints and abnormal snails to clean sea water. Results were negative in parallel tests of various marina-associated materials which did not contain organotin. The laboratory studies have thus identified a causative factor for the anatomical abnormalities common near yacht basins in the natural environment. They also provide a rare, if not unique, example of a chemical agent which causes the appearance of superfluous anatomical features in an animal.

  15. Use of laser 3D surface digitizer in data collection and 3D modeling of anatomical structures

    NASA Astrophysics Data System (ADS)

    Tse, Kelly; Van Der Wall, Hans; Vu, Dzung H.

    2006-02-01

    A laser digitizer (Konica-Minolta Vivid 910) is used to obtain 3-dimensional surface scans of anatomical structures with a maximum resolution of 0.1mm. Placing the specimen on a turntable allows multiple scans allaround because the scanner only captures data from the portion facing its lens. A computer model is generated using 3D modeling software such as Geomagic. The 3D model can be manipulated on screen for repeated analysis of anatomical features, a useful capability when the specimens are rare or inaccessible (museum collection, fossils, imprints in rock formation.). As accurate measurements can be performed on the computer model, instead of taking measurements on actual specimens only at the archeological excavation site e.g., a variety of quantitative data can be later obtained on the computer model in the laboratory as new ideas come to mind. Our group had used a mechanical contact digitizer (Microscribe) for this purpose, but with the surface digitizer, we have been obtaining data sets more accurately and more quickly.

  16. Segmentation of medical images using explicit anatomical knowledge

    NASA Astrophysics Data System (ADS)

    Wilson, Laurie S.; Brown, Stephen; Brown, Matthew S.; Young, Jeanne; Li, Rongxin; Luo, Suhuai; Brandt, Lee

    1999-07-01

    Knowledge-based image segmentation is defined in terms of the separation of image analysis procedures and representation of knowledge. Such architecture is particularly suitable for medical image segmentation, because of the large amount of structured domain knowledge. A general methodology for the application of knowledge-based methods to medical image segmentation is described. This includes frames for knowledge representation, fuzzy logic for anatomical variations, and a strategy for determining the order of segmentation from the modal specification. This method has been applied to three separate problems, 3D thoracic CT, chest X-rays and CT angiography. The application of the same methodology to such a range of applications suggests a major role in medical imaging for segmentation methods incorporating representation of anatomical knowledge.

  17. Concept of a selective tumour therapy and its evaluation by near-infrared fluorescence imaging and flat-panel volume computed tomography in mice.

    PubMed

    Alves, Frauke; Dullin, Christian; Napp, Joanna; Missbach-Guentner, Jeannine; Jannasch, Katharina; Mathejczyk, Julia; Pardo, Luis A; Stühmer, Walter; Tietze, Lutz-F

    2009-05-01

    Conventional chemotherapy of cancer has its limitations, especially in advanced and disseminated disease and suffers from lack of specificity. This results in a poor therapeutic index and considerable toxicity to normal organs. Therefore, many efforts are made to develop novel therapeutic tools against cancer with the aim of selectively targeting the drug to the tumour site. Drug delivery strategies fundamentally rely on the identification of good-quality biomarkers, allowing unequivocal discrimination between cancer and healthy tissue. At present, antibodies or antibody fragments have clearly proven their value as carrier molecules specific for a tumour-associated molecular marker. This present review draws attention to the use of near-infrared fluorescence (NIRF) imaging to investigate binding specificity and kinetics of carrier molecules such as monoclonal antibodies. In addition, flat-panel volume computed tomography (fpVCT) will be presented to monitor anatomical structures in tumour mouse models over time in a non-invasive manner. Each imaging device sheds light on a different aspect; functional imaging is applied to optimise the dose schedule and the concept of selective tumour therapies, whereas anatomical imaging assesses preclinically the efficacy of novel tumour therapies. Both imaging techniques in combination allow the visualisation of functional information obtained by NIRF imaging within an adequate anatomic framework.

  18. Optic neuropathies: the tip of the neurodegeneration iceberg

    PubMed Central

    Carelli, Valerio; La Morgia, Chiara; Ross-Cisneros, Fred N.; Sadun, Alfredo A.

    2017-01-01

    Abstract The optic nerve and the cells that give origin to its 1.2 million axons, the retinal ganglion cells (RGCs), are particularly vulnerable to neurodegeneration related to mitochondrial dysfunction. Optic neuropathies may range from non-syndromic genetic entities, to rare syndromic multisystem diseases with optic atrophy such as mitochondrial encephalomyopathies, to age-related neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease where optic nerve involvement has, until recently, been a relatively overlooked feature. New tools are available to thoroughly investigate optic nerve function, allowing unparalleled access to this part of the central nervous system. Understanding the molecular pathophysiology of RGC neurodegeneration and optic atrophy, is key to broadly understanding the pathogenesis of neurodegenerative disorders, for monitoring their progression in describing the natural history, and ultimately as outcome measures to evaluate therapies. In this review, the different layers, from molecular to anatomical, that may contribute to RGC neurodegeneration and optic atrophy are tackled in an integrated way, considering all relevant players. These include RGC dendrites, cell bodies and axons, the unmyelinated retinal nerve fiber layer and the myelinated post-laminar axons, as well as olygodendrocytes and astrocytes, looked for unconventional functions. Dysfunctional mitochondrial dynamics, transport, homeostatic control of mitobiogenesis and mitophagic removal, as well as specific propensity to apoptosis may target differently cell types and anatomical settings. Ultimately, we can envisage new investigative approaches and therapeutic options that will speed the early diagnosis of neurodegenerative diseases and their cure. PMID:28977448

  19. The neural optimal control hierarchy for motor control

    NASA Astrophysics Data System (ADS)

    DeWolf, T.; Eliasmith, C.

    2011-10-01

    Our empirical, neuroscientific understanding of biological motor systems has been rapidly growing in recent years. However, this understanding has not been systematically mapped to a quantitative characterization of motor control based in control theory. Here, we attempt to bridge this gap by describing the neural optimal control hierarchy (NOCH), which can serve as a foundation for biologically plausible models of neural motor control. The NOCH has been constructed by taking recent control theoretic models of motor control, analyzing the required processes, generating neurally plausible equivalent calculations and mapping them on to the neural structures that have been empirically identified to form the anatomical basis of motor control. We demonstrate the utility of the NOCH by constructing a simple model based on the identified principles and testing it in two ways. First, we perturb specific anatomical elements of the model and compare the resulting motor behavior with clinical data in which the corresponding area of the brain has been damaged. We show that damaging the assigned functions of the basal ganglia and cerebellum can cause the movement deficiencies seen in patients with Huntington's disease and cerebellar lesions. Second, we demonstrate that single spiking neuron data from our model's motor cortical areas explain major features of single-cell responses recorded from the same primate areas. We suggest that together these results show how NOCH-based models can be used to unify a broad range of data relevant to biological motor control in a quantitative, control theoretic framework.

  20. The perirhinal cortex and conceptual processing: Effects of feature-based statistics following damage to the anterior temporal lobes.

    PubMed

    Wright, Paul; Randall, Billi; Clarke, Alex; Tyler, Lorraine K

    2015-09-01

    The anterior temporal lobe (ATL) plays a prominent role in models of semantic knowledge, although it remains unclear how the specific subregions within the ATL contribute to semantic memory. Patients with neurodegenerative diseases, like semantic dementia, have widespread damage to the ATL thus making inferences about the relationship between anatomy and cognition problematic. Here we take a detailed anatomical approach to ask which substructures within the ATL contribute to conceptual processing, with the prediction that the perirhinal cortex (PRc) will play a critical role for concepts that are more semantically confusable. We tested two patient groups, those with and without damage to the PRc, across two behavioural experiments - picture naming and word-picture matching. For both tasks, we manipulated the degree of semantic confusability of the concepts. By contrasting the performance of the two groups, along with healthy controls, we show that damage to the PRc results in worse performance in processing concepts with higher semantic confusability across both experiments. Further by correlating the degree of damage across anatomically defined regions of interest with performance, we find that PRc damage is related to performance for concepts with increased semantic confusability. Our results show that the PRc supports a necessary and crucial neurocognitve function that enables fine-grained conceptual processes to take place through the resolution of semantic confusability. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

Top