Sample records for specific antigen decrease

  1. Is the Quantification of Antigen-Specific Basophil Activation a Useful Tool for Monitoring Oral Tolerance Induction in Children With Egg Allergy?

    PubMed

    Gamboa, P M; Garcia-Lirio, E; Gonzalez, C; Gonzalez, A; Martinez-Aranguren R M; Sanz María, L

    2016-01-01

    To assess modifications in baseline specific IgE- and anti-IgE- and antigen-specific-mediated basophil activation in egg-allergic children. The values were compared before and after the children completed specific oral tolerance induction (SOTI) with egg. We studied 28 egg-allergic children who completed SOTI with egg. The basophil activation test and specific IgE determinations with egg white, ovalbumin, and ovomucoid were performed in all 28 children. A decrease in antigen-specific activation with egg white, ovalbumin, and ovomucoid was observed only at the 2 lowest concentrations used (5 and 0.05 ng/mL). Baseline activation was higher in patients with multiple food allergies and in those who developed anaphylaxis during SOTI; this activation decreased in both groups after completion of SOTI. A significant decrease was also observed in specific IgE values for egg white, ovalbumin, and ovomucoid after tolerance induction. Food tolerance induction is a specific process for each food that can be mediated by immunologic changes such as a decrease in specific IgE values and in specific and spontaneous basophil activation.

  2. Prostate-specific antigen lowering effect of metabolic syndrome is influenced by prostate volume.

    PubMed

    Choi, Woo Suk; Heo, Nam Ju; Paick, Jae-Seung; Son, Hwancheol

    2016-04-01

    To investigate the influence of metabolic syndrome on prostate-specific antigen levels by considering prostate volume and plasma volume. We retrospectively analyzed 4111 men who underwent routine check-ups including prostate-specific antigen and transrectal ultrasonography. The definition of metabolic syndrome was based on the modified Adult Treatment Panel III criteria. Prostate-specific antigen mass density (prostate-specific antigen × plasma volume / prostate volume) was calculated for adjusting plasma volume and prostate volume. We compared prostate-specific antigen and prostate-specific antigen mass density levels of participants with metabolic syndrome (metabolic syndrome group, n = 1242) and without metabolic syndrome (non-prostate-specific antigen metabolic syndrome group, n = 2869). To evaluate the impact of metabolic syndrome on prostate-specific antigen, linear regression analysis for the natural logarithm of prostate-specific antigen was used. Patients in the metabolic syndrome group had significantly older age (P < 0.001), larger prostate volume (P < 0.001), higher plasma volume (P < 0.001) and lower mean serum prostate-specific antigen (non-metabolic syndrome group vs metabolic syndrome group; 1.22 ± 0.91 vs 1.15 ± 0.76 ng/mL, P = 0.006). Prostate-specific antigen mass density in the metabolic syndrome group was still significantly lower than that in the metabolic syndrome group (0.124 ± 0.084 vs 0.115 ± 0.071 μg/mL, P = 0.001). After adjusting for age, prostate volume and plasma volume using linear regression model, the presence of metabolic syndrome was a significant independent factor for lower prostate-specific antigen (prostate-specific antigen decrease by 4.1%, P = 0.046). Prostate-specific antigen levels in patients with metabolic syndrome seem to be lower, and this finding might be affected by the prostate volume. © 2016 The Japanese Urological Association.

  3. Screening Immunomodulators To Skew the Antigen-Specific Autoimmune Response.

    PubMed

    Northrup, Laura; Sullivan, Bradley P; Hartwell, Brittany L; Garza, Aaron; Berkland, Cory

    2017-01-03

    Current therapies to treat autoimmune diseases often result in side effects such as nonspecific immunosuppression. Therapies that can induce antigen-specific immune tolerance provide an opportunity to reverse autoimmunity and mitigate the risks associated with global immunosuppression. In an effort to induce antigen-specific immune tolerance, co-administration of immunomodulators with autoantigens has been investigated in an effort to reprogram autoimmunity. To date, identifying immunomodulators that may skew the antigen-specific immune response has been ad hoc at best. To address this need, we utilized splenocytes obtained from mice with experimental autoimmune encephalomyelitis (EAE) in order to determine if certain immunomodulators may induce markers of immune tolerance following antigen rechallenge. Of the immunomodulatory compounds investigated, only dexamethasone modified the antigen-specific immune response by skewing the cytokine response and decreasing T-cell populations at a concentration corresponding to a relevant in vivo dose. Thus, antigen-educated EAE splenocytes provide an ex vivo screen for investigating compounds capable of skewing the antigen-specific immune response, and this approach could be extrapolated to antigen-educated cells from other diseases or human tissues.

  4. National Trends in Prostate Biopsy and Radical Prostatectomy Volumes Following the US Preventive Services Task Force Guidelines Against Prostate-Specific Antigen Screening.

    PubMed

    Halpern, Joshua A; Shoag, Jonathan E; Artis, Amanda S; Ballman, Karla V; Sedrakyan, Art; Hershman, Dawn L; Wright, Jason D; Shih, Ya Chen Tina; Hu, Jim C

    2017-02-01

    Studies demonstrate that use of prostate-specific antigen screening decreased significantly following the US Preventive Services Task Force (USPSTF) recommendation against prostate-specific antigen screening in 2012. To determine downstream effects on practice patterns in prostate cancer diagnosis and treatment following the 2012 USPSTF recommendation. Procedural volumes of certifying and recertifying urologists from 2009 through 2016 were evaluated for variation in prostate biopsy and radical prostatectomy (RP) volume. Trends were confirmed using the New York Statewide Planning and Research Cooperative System and Nationwide Inpatient Sample. The study included a representative sample of urologists across practice settings and nationally representative sample of all RP discharges. We obtained operative case logs from the American Board of Urology and identified urologists performing at least 1 prostate biopsy (n = 5173) or RP (n = 3748), respectively. The 2012 USPSTF recommendation against routine population-wide prostate-specific antigen screening. Change in median biopsy and RP volume per urologist and national procedural volume. Following the USPSTF recommendation, median biopsy volume per urologist decreased from 29 to 21 (interquartile range [IQR}, 12-34; P < .001). After adjusting for physician and practice characteristics, biopsy volume decreased by 28.7% following 2012 (parameter estimate, -0.25; SE, 0.03; P < .001). Similarly, following the USPSTF recommendation, median RP volume per urologist decreased from 7 (IQR, 3-15) to 6 (IQR, 2-12) (P < .001), and in adjusted analyses, RP volume decreased 16.2% (parameter estimate, -0.15; SE, 0.05; P = .003). Following the 2012 USPSTF recommendation, prostate biopsy and RP volumes decreased significantly. A panoramic vantage point is needed to evaluate the long-term consequences of the 2012 USPSTF recommendation.

  5. Relapsed prostate cancer with neuroendocrine differentiation and high serum levels of carcinoembryonic antigen without elevation of prostrate-specific antigen: a case report.

    PubMed

    Kinebuchi, Yoshiaki; Noguchi, Wataru; Irie, Kyoko; Nakayama, Tsuyoshi; Kato, Haruaki; Nishizawa, Osamu

    2007-02-01

    A 62-year-old man had been treated with combined androgen blockade due to cT2bN1M0 prostate cancer, and his serum prostate-specific antigen (PSA) levels decreased and remained under the level of 0.5 ng/mL during therapy. Approximately 40 months after the initial therapy, difficulty on urination and constipation developed gradually, and serum carcinoembryonic antigen (CEA) and pro-gastrin-releasing peptide (ProGRP) levels were high at this point. He underwent transrectal and transurethral biopsy of the prostate, which revealed adenocarcinoma positive for CEA and chromogranin A. He received palliative pelvic irradiation, and oral estramustine phosphate and etoposide combined therapy. Tumor markers decreased and clinical symptoms improved for several months. The patient died of encephalopathy of unknown etiology approximately 11 months after the relapse.

  6. Antigen specific T-cell responses against tumor antigens are controlled by regulatory T cells in patients with prostate cancer.

    PubMed

    Hadaschik, Boris; Su, Yun; Huter, Eva; Ge, Yingzi; Hohenfellner, Markus; Beckhove, Philipp

    2012-04-01

    Immunotherapy is a promising approach in an effort to control castration resistant prostate cancer. We characterized tumor antigen reactive T cells in patients with prostate cancer and analyzed the suppression of antitumor responses by regulatory T cells. Peripheral blood samples were collected from 57 patients with histologically confirmed prostate cancer, 8 patients with benign prostatic hyperplasia and 16 healthy donors. Peripheral blood mononuclear cells were isolated and antigen specific interferon-γ secretion of isolated T cells was analyzed by enzyme-linked immunospot assay. T cells were functionally characterized and T-cell responses before and after regulatory T-cell depletion were compared. As test tumor antigens, a panel of 11 long synthetic peptides derived from a total of 8 tumor antigens was used, including prostate specific antigen and prostatic acid phosphatase. In patients with prostate cancer we noted a 74.5% effector T-cell response rate compared with only 25% in patients with benign prostatic hyperplasia and 31% in healthy donors. In most patients 2 or 3 tumor antigens were recognized. Comparing various disease stages there was a clear increase in the immune response against prostate specific antigens from intermediate to high risk tumors and castration resistant disease. Regulatory T-cell depletion led to a significant boost in effector T-cell responses against prostate specific antigen and prostatic acid phosphatase. Tumor specific effector T cells were detected in most patients with prostate cancer, especially those with castration resistant prostate cancer. Since effector T-cell responses against prostate specific antigens strongly increased after regulatory T-cell depletion, our results indicate that immunotherapy efficacy could be enhanced by decreasing regulatory T cells. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  7. Clonotype and repertoire changes drive the functional improvement of HIV-specific CD8 T cell populations under conditions of limited antigenic stimulation

    PubMed Central

    Janbazian, Loury; Price, David A.; Canderan, Glenda; Filali-Mouhim, Abdelali; Asher, Tedi E.; Ambrozak, David R.; Scheinberg, Phillip; Boulassel, Mohamad Rachid; Routy, Jean-Pierre; Koup, Richard A.; Douek, Daniel C.; Sekaly, Rafick-Pierre; Trautmann, Lydie

    2011-01-01

    Persistent exposure to cognate antigen leads to the functional impairment and exhaustion of HIV-specific CD8 T cells. Antigen withdrawal, due either to antiretroviral treatment or the emergence of epitope escape mutations, causes HIV-specific CD8 T cell responses to wane over time. However, this process does not continue to extinction, and residual CD8 T cells likely play an important role in the control of HIV replication. Here, we conducted a longitudinal analysis of clonality, phenotype and function to define the characteristics of HIV-specific CD8 T cell populations that persist under conditions of limited antigenic stimulation. Antigen decay was associated with dynamic changes in the TCR repertoire, increased expression of CD45RA and CD127, decreased expression of PD-1 and the emergence of poly-functional HIV-specific CD8 T cells. High definition analysis of individual clonotypes revealed that the antigen loss-induced gain of function within HIV-specific CD8 T cell populations could be attributed to two non-exclusive mechanisms: (i) functional improvement of persisting clonotypes; and, (ii) recruitment of particular clonotypes endowed with superior functional capabilities. PMID:22210916

  8. Effect of oestradiol and pathogen-associated molecular patterns on class II-mediated antigen presentation and immunomodulatory molecule expression in the mouse female reproductive tract

    PubMed Central

    Ochiel, Daniel O; Rossoll, Richard M; Schaefer, Todd M; Wira, Charles R

    2012-01-01

    Cells of the female reproductive tract (FRT) can present antigen to naive and memory T cells. However, the effects of oestrogen, known to modulate immune responses, on antigen presentation in the FRT remain undefined. In the present study, DO11.10 T-cell antigen receptor transgenic mice specific for the class II MHC-restricted ovalbumin (OVA) 323–339 peptide were used to study the effects of oestradiol and pathogen-associated molecular patterns on antigen presentation in the FRT. We report here that oestradiol inhibited antigen presentation of OVA by uterine epithelial cells, uterine stromal cells and vaginal cells to OVA-specific memory T cells. When ovariectomized animals were treated with oestradiol for 1 or 3 days, antigen presentation was decreased by 20–80%. In contrast, incubation with PAMP increased antigen presentation by epithelial cells (Pam3Cys), stromal cells (peptidoglycan, Pam3Cys) and vaginal cells (Pam3Cys). In contrast, CpG inhibited both stromal and vaginal cell antigen presentation. Analysis of mRNA expression by reverse transcription PCR indicated that oestradiol inhibited CD40, CD80 and class II in the uterus and CD40, CD86 and class II in the vagina. Expression in isolated uterine and vaginal cells paralleled that seen in whole tissues. In contrast, oestradiol increased polymeric immunoglobulin receptor mRNA expression in the uterus and decreased it in the vagina. These results indicate that antigen-presenting cells in the uterus and vagina are responsive to oestradiol, which inhibits antigen presentation and co-stimulatory molecule expression. Further, these findings suggest that antigen-presenting cells in the uterus and vagina respond to selected Toll-like receptor agonists with altered antigen presentation. PMID:22043860

  9. Immunoglobulinfree light chains reduce in an antigen-specific manner the rate of rise of action potentials of mouse non-nociceptive dorsal root ganglion neurons.

    PubMed

    Rijnierse, Anneke; Kraneveld, Aletta D; Salemi, Arezo; Zwaneveld, Sandra; Goumans, Aleida P H; Rychter, Jakub W; Thio, Marco; Redegeld, Frank A; Westerink, Remco H S; Kroese, Alfons B A

    2013-11-15

    Plasma B cells secrete immunoglobulinfree light chains (IgLC) which by binding to mast cells can mediate hypersensitivity responses and are involved in several immunological disorders. To investigate the effects of antigen-specific IgLC activation, intracellular recordings were made from cultured murine dorsal root ganglion (DRG) neurons, which can specifically bind IgLC. The neurons were sensitized with IgLC for 90min and subsequently activated by application of the corresponding antigen (DNP-HSA). Antigen application induced a decrease in the rate of rise of the action potentials of non-nociceptive neurons (MANOVA, p=2.10(-6)), without affecting the resting membrane potential or firing threshold. The action potentials of the nociceptive neurons (p=0.57) and the electrical excitability of both types of neurons (p>0.35) were not affected. We conclude that IgLC can mediate antigen-specific responses by reducing the rate of rise of action potentials in non-nociceptive murine DRG neurons. We suggest that antigen-specific activation of IgLC-sensitized non-nociceptive DRG neurons may contribute to immunological hypersensitivity responses and neuroinflammation. © 2013.

  10. Multiple mechanisms underlie defective recognition of melanoma cells cultured in three-dimensional architectures by antigen-specific cytotoxic T lymphocytes.

    PubMed

    Feder-Mengus, C; Ghosh, S; Weber, W P; Wyler, S; Zajac, P; Terracciano, L; Oertli, D; Heberer, M; Martin, I; Spagnoli, G C; Reschner, A

    2007-04-10

    Cancer cells' growth in three-dimensional (3D) architectures promotes resistance to drugs, cytokines, or irradiation. We investigated effects of 3D culture as compared to monolayers (2D) on melanoma cells' recognition by tumour-associated antigen (TAA)-specific HLA-A(*)0201-restricted cytotoxic T-lymphocytes (CTL). Culture of HBL, D10 (both HLA-A(*)0201+, TAA+) and NA8 (HLA-A(*)0201+, TAA-) melanoma cells on polyHEMA-coated plates, resulted in generation of 3D multicellular tumour spheroids (MCTS). Interferon-gamma (IFN-gamma) production by HLA-A(*)0201-restricted Melan-A/MART-1(27-35) or gp 100(280-288)-specific CTL clones served as immunorecognition marker. Co-culture with melanoma MCTS, resulted in defective TAA recognition by CTL as compared to 2D as witnessed by decreased IFN-gamma production and decreased Fas Ligand, perforin and granzyme B gene expression. A multiplicity of mechanisms were potentially involved. First, MCTS per se limit CTL capacity of recognising HLA class I restricted antigens by reducing exposed cell surfaces. Second, expression of melanoma differentiation antigens is downregulated in MCTS. Third, expression of HLA class I molecules can be downregulated in melanoma MCTS, possibly due to decreased interferon-regulating factor-1 gene expression. Fourth, lactic acid production is increased in MCTS, as compared to 2D. These data suggest that melanoma cells growing in 3D, even in the absence of immune selection, feature characteristics capable of dramatically inhibiting TAA recognition by specific CTL.

  11. Transforming growth factor-beta inhibits human antigen-specific CD4+ T cell proliferation without modulating the cytokine response.

    PubMed

    Tiemessen, Machteld M; Kunzmann, Steffen; Schmidt-Weber, Carsten B; Garssen, Johan; Bruijnzeel-Koomen, Carla A F M; Knol, Edward F; van Hoffen, Els

    2003-12-01

    Transforming growth factor (TGF)-beta has been demonstrated to play a key role in the regulation of the immune response, mainly by its suppressive function towards cells of the immune system. In humans, the effect of TGF-beta on antigen-specific established memory T cells has not been investigated yet. In this study antigen-specific CD4(+) T cell clones (TCC) were used to determine the effect of TGF-beta on antigen-specific proliferation, the activation status of the T cells and their cytokine production. This study demonstrates that TGF-beta is an adequate suppressor of antigen-specific T cell proliferation, by reducing the cell-cycle rate rather than induction of apoptosis. Addition of TGF-beta resulted in increased CD69 expression and decreased CD25 expression on T cells, indicating that TGF-beta is able to modulate the activation status of in vivo differentiated T cells. On the contrary, the antigen-specific cytokine production was not affected by TGF-beta. Although TGF-beta was suppressive towards the majority of the T cells, insensitivity of a few TCC towards TGF-beta was also observed. This could not be correlated to differential expression of TGF-beta signaling molecules such as Smad3, Smad7, SARA (Smad anchor for receptor activation) and Hgs (hepatocyte growth factor-regulated tyrosine kinase substrate). In summary, TGF-beta has a pronounced inhibitory effect on antigen-specific T cell proliferation without modulating their cytokine production.

  12. Spontaneous CD4+ and CD8+ T‐cell responses directed against cancer testis antigens are present in the peripheral blood of testicular cancer patients

    PubMed Central

    Pearce, Hayden; Hutton, Paul; Chaudhri, Shalini; Porfiri, Emilio; Patel, Prashant; Viney, Richard

    2017-01-01

    Cancer/testis antigen (CTAg) expression is restricted to spermatogenic cells in an immune‐privileged site within the testis. However, these proteins are expressed aberrantly by malignant cells and T‐cell responses against CTAgs develop in many cancer patients. We investigated the prevalence, magnitude and phenotype of CTAg‐specific T cells in the blood of patients with testicular germ cell tumors (TGCTs). CD8+ and CD4+ T‐cell responses against MAGE‐A family antigens were present in 44% (20/45) of patients’ samples assayed by ex vivo IFN‐γ ELISPOT. The presence of MAGE‐specific CD8+ T cells was further determined following short‐term in vitro expansion through the use of pMHC‐I multimers containing known immunogenic peptides. Longitudinal analysis revealed that the frequency of MAGE‐specific T cells decreased by 89% following orchidectomy suggesting that persistence of tumor antigen is required to sustain CTAg‐specific T‐cell immunity. Notably, this decrease correlated with a decline in the global effector/memory T‐cell pool following treatment. Spontaneous T‐cell immunity against CTAg proteins therefore develops in many patients with testicular cancer and may play an important role in the excellent clinical outcome of patients with this tumor subtype. PMID:28555838

  13. Antibiotics may not decrease prostate-specific antigen levels or prevent unnecessary prostate biopsy in patients with moderately increased prostate-specific antigen levels: A meta-analysis.

    PubMed

    Yang, Lu; Zhu, Yuchun; Tang, Zhuang; Chen, Yongji; Gao, Liang; Liu, Liangren; Han, Ping; Li, Xiang; Wei, Qiang

    2015-05-01

    To evaluate the effect of empiric antibiotics on decreasing prostate-specific antigen (PSA) levels and the possibility of avoiding unnecessary prostate biopsies (PBs). A systematic search of PubMed, Embase, and the Cochrane Library was performed to identify all randomized controlled trials (RCTs) that compared effects of empiric antibiotics with no treatment or placebo on lowering PSA levels and minimizing unnecessary PBs in patients with moderately increased PSA levels. The Cochrane Collaboration Review Manager software (RevMan 5.1.4) was used for statistical analysis. The inclusion criteria for the study were met by 6 RCTs (1 placebo controlled and 5 no treatment controlled) involving 656 patients. The synthesized data from these RCTs indicated that there were no significant differences between the antibiotic and control groups in the PSA levels after treatment (mean difference [MD] = 0.15, 95% CI:-0.50 to 0.81, P = 0.65], number of patients with decreased PSA levels after treatment (relative risk [RR] = 1.22, 95% CI: 0.90-1.65, P = 0.20], prostate-specific antigen density levels after treatment (MD =-0.04, 95% CI:-0.15 to 0.07, P = 0.47), f/t% PSA after treatment (MD =-1.47, 95% CI:-4.65 to 1.71, P = 0.37), number of patients with responsive PSA (RR = 1.02, 95% CI: 0.58-1.81, P = 0.94), and individual Pca-positiverate in these patients (RR = 1.07, 95% CI: 0.53-2.16, P = 0.86), and Pca-positiverates (RR = 0.85, 95% CI: 0.48-1.50, P = 0.57). However, the antibiotic group had a significant change in the net PSA decrease after treatment compared with the control group (MD = 1.44, 95% CI: 0.70-2.17, P = 0.0001). The use of empiric antibiotics may not significantly decrease PSA levels or avoid unnecessary PBs. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Multiple mechanisms underlie defective recognition of melanoma cells cultured in three-dimensional architectures by antigen-specific cytotoxic T lymphocytes

    PubMed Central

    Feder-Mengus, C; Ghosh, S; Weber, W P; Wyler, S; Zajac, P; Terracciano, L; Oertli, D; Heberer, M; Martin, I; Spagnoli, G C; Reschner, A

    2007-01-01

    Cancer cells' growth in three-dimensional (3D) architectures promotes resistance to drugs, cytokines, or irradiation. We investigated effects of 3D culture as compared to monolayers (2D) on melanoma cells' recognition by tumour-associated antigen (TAA)-specific HLA-A*0201-restricted cytotoxic T-lymphocytes (CTL). Culture of HBL, D10 (both HLA-A*0201+, TAA+) and NA8 (HLA-A*0201+, TAA−) melanoma cells on polyHEMA-coated plates, resulted in generation of 3D multicellular tumour spheroids (MCTS). Interferon-gamma (IFN-γ) production by HLA-A*0201-restricted Melan-A/MART-127–35 or gp100280–288-specific CTL clones served as immunorecognition marker. Co-culture with melanoma MCTS, resulted in defective TAA recognition by CTL as compared to 2D as witnessed by decreased IFN-γ production and decreased Fas Ligand, perforin and granzyme B gene expression. A multiplicity of mechanisms were potentially involved. First, MCTS per se limit CTL capacity of recognising HLA class I restricted antigens by reducing exposed cell surfaces. Second, expression of melanoma differentiation antigens is downregulated in MCTS. Third, expression of HLA class I molecules can be downregulated in melanoma MCTS, possibly due to decreased interferon-regulating factor-1 gene expression. Fourth, lactic acid production is increased in MCTS, as compared to 2D. These data suggest that melanoma cells growing in 3D, even in the absence of immune selection, feature characteristics capable of dramatically inhibiting TAA recognition by specific CTL. PMID:17342088

  15. IL-10 down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells through decreased antigen uptake via the mannose receptor and lowered surface expression of accessory molecules.

    PubMed

    Knolle, P A; Uhrig, A; Hegenbarth, S; Löser, E; Schmitt, E; Gerken, G; Lohse, A W

    1998-12-01

    Our study demonstrates that antigen-presenting liver sinusoidal endothelial cells (LSEC) induce production of interferon-gamma (IFN-gamma) from cloned Th1 CD4+ T cells. We show that LSEC used the mannose receptor for antigen uptake, which further strengthened the role of LSEC as antigen-presenting cell (APC) population in the liver. The ability of LSEC to activate cloned CD4+ T cells antigen-specifically was down-regulated by exogenous prostaglandin E2 (PGE2) and by IL-10. We identify two separate mechanisms by which IL-10 down-regulated T cell activation through LSEC. IL-10 decreased the constitutive surface expression of MHC class II as well as of the accessory molecules CD80 and CD86 on LSEC. Furthermore, IL-10 diminished mannose receptor activity in LSEC. Decreased antigen uptake via the mannose receptor and decreased expression of accessory molecules may explain the down-regulation of T cell activation through IL-10. Importantly, the expression of low numbers of antigen on MHC II in the absence of accessory signals on LSEC may lead to induction of anergy in T cells. Because PGE2 and IL-10 are released from LSEC or Kupffer cells (KC) in response to those concentrations of endotoxin found physiologically in portal venous blood, it is possible that the continuous presence of these mediators and their negative effect on the local APC may explain the inability of the liver to induce T cell activation and to clear chronic infections. Our results support the notion that antigen presentation by LSEC in the hepatic microenvironment contributes to the observed inability to mount an effective cell-mediated immune response in the liver.

  16. Progesterone impairs antigen-non-specific immune protection by CD8 T memory cells via interferon-γ gene hypermethylation.

    PubMed

    Yao, Yushi; Li, Hui; Ding, Jie; Xia, Yixin; Wang, Lei

    2017-11-01

    Pregnant women and animals have increased susceptibility to a variety of intracellular pathogens including Listeria monocytogenes (LM), which has been associated with significantly increased level of sex hormones such as progesterone. CD8 T memory(Tm) cell-mediated antigen-non-specific IFN-γ responses are critically required in the host defense against LM. However, whether and how increased progesterone during pregnancy modulates CD8 Tm cell-mediated antigen-non-specific IFN-γ production and immune protection against LM remain poorly understood. Here we show in pregnant women that increased serum progesterone levels are associated with DNA hypermethylation of IFN-γ gene promoter region and decreased IFN-γ production in CD8 Tm cells upon antigen-non-specific stimulation ex vivo. Moreover, IFN-γ gene hypermethylation and significantly reduced IFN-γ production post LM infection in antigen-non-specific CD8 Tm cells are also observed in pregnant mice or progesterone treated non-pregnant female mice, which is a reversible phenotype following demethylation treatment. Importantly, antigen-non-specific CD8 Tm cells from progesterone treated mice have impaired anti-LM protection when adoptive transferred in either pregnant wild type mice or IFN-γ-deficient mice, and demethylation treatment rescues the adoptive protection of such CD8 Tm cells. These data demonstrate that increased progesterone impairs immune protective functions of antigen-non-specific CD8 Tm cells via inducing IFN-γ gene hypermethylation. Our findings thus provide insights into a new mechanism through which increased female sex hormone regulate CD8 Tm cell functions during pregnancy.

  17. Progesterone impairs antigen-non-specific immune protection by CD8 T memory cells via interferon-γ gene hypermethylation

    PubMed Central

    Yao, Yushi; Li, Hui; Ding, Jie; Xia, Yixin

    2017-01-01

    Pregnant women and animals have increased susceptibility to a variety of intracellular pathogens including Listeria monocytogenes (LM), which has been associated with significantly increased level of sex hormones such as progesterone. CD8 T memory(Tm) cell-mediated antigen-non-specific IFN-γ responses are critically required in the host defense against LM. However, whether and how increased progesterone during pregnancy modulates CD8 Tm cell-mediated antigen-non-specific IFN-γ production and immune protection against LM remain poorly understood. Here we show in pregnant women that increased serum progesterone levels are associated with DNA hypermethylation of IFN-γ gene promoter region and decreased IFN-γ production in CD8 Tm cells upon antigen-non-specific stimulation ex vivo. Moreover, IFN-γ gene hypermethylation and significantly reduced IFN-γ production post LM infection in antigen-non-specific CD8 Tm cells are also observed in pregnant mice or progesterone treated non-pregnant female mice, which is a reversible phenotype following demethylation treatment. Importantly, antigen-non-specific CD8 Tm cells from progesterone treated mice have impaired anti-LM protection when adoptive transferred in either pregnant wild type mice or IFN-γ-deficient mice, and demethylation treatment rescues the adoptive protection of such CD8 Tm cells. These data demonstrate that increased progesterone impairs immune protective functions of antigen-non-specific CD8 Tm cells via inducing IFN-γ gene hypermethylation. Our findings thus provide insights into a new mechanism through which increased female sex hormone regulate CD8 Tm cell functions during pregnancy. PMID:29155896

  18. Combined Functional and Immunochemical Analysis of Normal and Abnormal Human Factor X

    PubMed Central

    Fair, Daryl S.; Plow, Edward F.; Edgington, Thomas S.

    1979-01-01

    Human Factor X was isolated from Cohn fraction III and characterized by polyacrylamide gel electrophoresis, amino acid composition, and isoelectric focusing. Two molecular forms with biological activity were observed at isoelectric points of 4.8 and 5.0. Antisera generated to Factor X was monospecific and used to establish an equilibrium competitive inhibition radioimmunoassay. This assay was specific for human Factor X and did not cross-react with human prothrombin or bovine Factor X within the sensitivity range of 6-300 ng Factor X antigen/ml. The mean concentration of Factor X based on the antigen was 11.9 μg/ml, whereas concentration values based on coagulant activity was 7.8 μg/ml. This 30% difference in measurement appears to result from the presence of a subpopulation of Factor X molecules devoid of coagulant activity. The radioimmunoassay was used to qualitatively and quantitatively compare purified Factor X to plasmic Factor X obtained from normal, warfarintreated, acquired Factor X-deficient, and congenitaldeficient patients. In all but one case, the Factor X present in these plasmas was immunochemically identical to the purified Factor X and permitted precise quantitation of these abnormal Factor X molecules. Factor X procoagulant activity was analyzed relative to Factor X antigen and the specific activities were used to characterize normal and abnormal Factor X molecules. Reduced Factor X activity in plasmas from warfarin-treated and acquired Factor X-deficient patients was attributed to both decreases in Factor X antigen and decreased function of the Factor X molecules. Congenitally deficient patients, in general, showed a reduction in Factor X antigen in parallel with Factor X procoagulant activities resulting from comparable decreases in specific biological activity of the molecules. Images PMID:90058

  19. Spontaneous CD4+ and CD8+ T-cell responses directed against cancer testis antigens are present in the peripheral blood of testicular cancer patients.

    PubMed

    Pearce, Hayden; Hutton, Paul; Chaudhri, Shalini; Porfiri, Emilio; Patel, Prashant; Viney, Richard; Moss, Paul

    2017-07-01

    Cancer/testis antigen (CTAg) expression is restricted to spermatogenic cells in an immune-privileged site within the testis. However, these proteins are expressed aberrantly by malignant cells and T-cell responses against CTAgs develop in many cancer patients. We investigated the prevalence, magnitude and phenotype of CTAg-specific T cells in the blood of patients with testicular germ cell tumors (TGCTs). CD8 + and CD4 + T-cell responses against MAGE-A family antigens were present in 44% (20/45) of patients' samples assayed by ex vivo IFN-γ ELISPOT. The presence of MAGE-specific CD8 + T cells was further determined following short-term in vitro expansion through the use of pMHC-I multimers containing known immunogenic peptides. Longitudinal analysis revealed that the frequency of MAGE-specific T cells decreased by 89% following orchidectomy suggesting that persistence of tumor antigen is required to sustain CTAg-specific T-cell immunity. Notably, this decrease correlated with a decline in the global effector/memory T-cell pool following treatment. Spontaneous T-cell immunity against CTAg proteins therefore develops in many patients with testicular cancer and may play an important role in the excellent clinical outcome of patients with this tumor subtype. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effect of Urea and Thiourea on Generation of Xenogeneic Extracellular Matrix Scaffolds for Tissue Engineering

    PubMed Central

    Wong, Maelene L.; Wong, Janelle L.; Horn, Rebecca M.; Sannajust, Kimberley C.; Rice, Dawn A.

    2016-01-01

    Effective solubilization of proteins by chaotropes in proteomic applications motivates their use in solubilization-based antigen removal/decellularization strategies. A high urea concentration has previously been reported to significantly reduce lipophilic antigen content of bovine pericardium (BP); however, structure and function of the resultant extracellular matrix (ECM) scaffold were compromised. It has been recently demonstrated that in vivo ECM scaffold fate is determined by two primary outcome measures as follows: (1) sufficient reduction in antigen content to avoid graft-specific adaptive immune responses and (2) maintenance of native ECM structural proteins to avoid graft-specific innate responses. In this work, we assessed residual antigenicity, ECM architecture, ECM content, thermal stability, and tensile properties of BP subjected to a gradient of urea concentrations to determine whether an intermediate concentration exists at which both antigenicity and structure–function primary outcome measures for successful in vivo scaffold outcome can simultaneously be achieved. Alteration in tissue structure–function properties at various urea concentrations with decreased effectiveness for antigen removal makes use of urea-mediated antigen removal unlikely to be suitable for functional scaffold generation. PMID:27230226

  1. Immune response to a mammary adenocarcinoma. V. Sera from tumor-bearing rats contain multiple factors blocking cell-mediated cytotoxicity.

    PubMed

    Huber, S A; Lucas, Z J

    1978-12-01

    Sera from Fischer rats 3 to 13 days after i.p. injection of syngeneic 13762A mammary adenocarcinoma contain three factors specifically blocking cell-mediated cytotoxicity (CMC). The major blocking factor is a 160,000-dalton IgG that combines specifically to cytolytic lymphocytes but not to tumor cells or tumor antigen, and that is not dissociated after treatment with 8 M urea. The other factors have been putatively identified as tumor antigen (less than 70,000 daltons) and as soluble antigen-antibody complexes (greater than 200,000 daltons). Injecting the tumor antigen into tumor-free rats induced spleen cells specifically cytotoxic to the 13762A tumor and provided partial protection to challenge with live tumor cells. Treating soluble antigen-antibody complexes with 8 M urea decreased the size of the blocking activity from greater than 200,000 to less than 70,000 daltons. Although the IgG fraction dissociated from the complex did not block CMC, it did recombine with the tumor antigen fraction to transfer activity to the greater than 200,000-dalton fraction. In contrast, mixing tumor antigen with the IgG fraction that did block CMC did not alter the size of the blocking activities.

  2. Identification of threshold prostate specific antigen levels to optimize the detection of clinically significant prostate cancer by magnetic resonance imaging/ultrasound fusion guided biopsy.

    PubMed

    Shakir, Nabeel A; George, Arvin K; Siddiqui, M Minhaj; Rothwax, Jason T; Rais-Bahrami, Soroush; Stamatakis, Lambros; Su, Daniel; Okoro, Chinonyerem; Raskolnikov, Dima; Walton-Diaz, Annerleim; Simon, Richard; Turkbey, Baris; Choyke, Peter L; Merino, Maria J; Wood, Bradford J; Pinto, Peter A

    2014-12-01

    Prostate specific antigen sensitivity increases with lower threshold values but with a corresponding decrease in specificity. Magnetic resonance imaging/ultrasound targeted biopsy detects prostate cancer more efficiently and of higher grade than standard 12-core transrectal ultrasound biopsy but the optimal population for its use is not well defined. We evaluated the performance of magnetic resonance imaging/ultrasound targeted biopsy vs 12-core biopsy across a prostate specific antigen continuum. We reviewed the records of all patients enrolled in a prospective trial who underwent 12-core transrectal ultrasound and magnetic resonance imaging/ultrasound targeted biopsies from August 2007 through February 2014. Patients were stratified by each of 4 prostate specific antigen cutoffs. The greatest Gleason score using either biopsy method was compared in and across groups as well as across the population prostate specific antigen range. Clinically significant prostate cancer was defined as Gleason 7 (4 + 3) or greater. Univariate and multivariate analyses were performed. A total of 1,003 targeted and 12-core transrectal ultrasound biopsies were performed, of which 564 diagnosed prostate cancer for a 56.2% detection rate. Targeted biopsy led to significantly more upgrading to clinically significant disease compared to 12-core biopsy. This trend increased more with increasing prostate specific antigen, specifically in patients with prostate specific antigen 4 to 10 and greater than 10 ng/ml. Prostate specific antigen 5.2 ng/ml or greater captured 90% of upgrading by targeted biopsy, corresponding to 64% of patients who underwent multiparametric magnetic resonance imaging and subsequent fusion biopsy. Conversely a greater proportion of clinically insignificant disease was detected by 12-core vs targeted biopsy overall. These differences persisted when controlling for potential confounders on multivariate analysis. Prostate cancer upgrading with targeted biopsy increases with an increasing prostate specific antigen cutoff. Above a prostate specific antigen threshold of 5.2 ng/ml most upgrading to clinically significant disease was achieved by targeted biopsy. In our population this corresponded to potentially sparing biopsy in 36% of patients who underwent multiparametric magnetic resonance imaging. Below this value 12-core biopsy detected more clinically insignificant cancer. Thus, the diagnostic usefulness of targeted biopsy is optimized in patients with prostate specific antigen 5.2 ng/ml or greater. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  3. Immunosuppression and induction of anergy by CTLA4Ig in vitro: effects on cellular and antibody responses of lymphocytes from rats with experimental autoimmune myasthenia gravis.

    PubMed

    McIntosh, K R; Linsley, P S; Drachman, D B

    1995-11-01

    The pathogenic antibody response to acetylcholine receptor (AChR) in experimental autoimmune myasthenia gravis (EAMG) is T cell dependent. Therefore, it should be possible to design specific immunotherapeutic approaches to treat EAMG (and human MG) by interfering with AChR-specific helper T cells. Productive T cell activation by antigen requires at least two signals: one signal delivered through the T cell receptor by antigen and a second costimulatory signal delivered through the CD28 receptor via the B7 counterreceptor expressed on antigen-presenting cells. Here we show that interference with the B7 costimulatory signal, using a soluble CD28 analogue, CTLA4Ig, resulted in a profound decrease in IL2 production and significantly decreased lymphoproliferative responses and antibody responses by primed lymph node cells from rats with EAMG, when stimulated with AChR in vitro. Nonclonal AChR-specific T cell lines, when stimulated with AChR in the presence of CTLA4Ig, were also inhibited in their ability to proliferate and to produce the cytokines IL2 and IFN-gamma. They remained deficient in their ability to produce IL2 when restimulated with AChR plus fresh antigen-presenting cells and showed variable inhibition of proliferation. The induction of hyporesponsiveness was accompanied by the expression of functional IL2 receptors, as shown by vigorous proliferative responses to addition of exogenous IL2. These results indicate that specific antigen stimulation in the presence of CTLA4Ig can induce certain features typical of anergy. CTLA4Ig provides a promising approach for the immunomodulation of MG and other antibody-mediated autoimmune diseases.

  4. Immunity to herpes simplex virus type 2. Suppression of virus-induced immune responses in ultraviolet B-irradiated mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasumoto, S.; Hayashi, Y.; Aurelian, L.

    1987-10-15

    Ultraviolet B irradiation (280 to 320 nm) of mice at the site of intradermal infection with herpes simplex virus type 2 increased the severity of the herpes simplex virus type 2 disease and decreased delayed-type hypersensitivity (DTH) responses to viral antigen. Decrease in DTH resulted from the induction of suppressor T cells, as evidenced by the ability of spleen cells from UV-irradiated mice to inhibit DTH and proliferative responses after adoptive transfer. Lymph node cells from UV-irradiated animals did not transfer suppression. DTH was suppressed at the induction but not the expression phase. Suppressor T cells were Lyt-1+, L3T4+, andmore » their activity was antigen-specific. However, after in vitro culture of spleen cells from UV-irradiated mice with herpes simplex virus type 2 antigen, suppressor activity was mediated by Lyt-2+ cells. Culture supernatants contained soluble nonantigen-specific suppressive factors.« less

  5. Distinct patterns of IgG and IgA against food and microbial antigens in serum and feces of patients with inflammatory bowel diseases.

    PubMed

    Frehn, Lisa; Jansen, Anke; Bennek, Eveline; Mandic, Ana D; Temizel, Ilknur; Tischendorf, Stefanie; Verdier, Julien; Tacke, Frank; Streetz, Konrad; Trautwein, Christian; Sellge, Gernot

    2014-01-01

    Inflammatory bowel disease (IBD) is associated with a defective intestinal barrier and enhanced adaptive immune responses against commensal microbiota. Immune responses against food antigens in IBD patients remain poorly defined. IgG and IgA specific for food and microfloral antigens (wheat and milk extracts; purified ovalbumin; Escherichia coli and Bacteroides fragilis lysates; mannan from Saccharomyces cerevisiae) were analyzed by ELISA in the serum and feces of patients with Crohn's disease (CD; n = 52 for serum and n = 20 for feces), ulcerative colitis (UC; n = 29; n = 17), acute gastroenteritis/colitis (AGE; n = 12; n = 9) as well as non-inflammatory controls (n = 61; n = 39). Serum anti-Saccharomyces cerevisiae antibodies (ASCA) and anti-B. fragilis IgG and IgA levels were increased in CD patients whereas antibody (Ab) levels against E. coli and food antigens were not significantly different within the patient groups and controls. Subgroup analysis revealed that CD patients with severe diseases defined by stricturing and penetrating lesions have slightly higher anti-food and anti-microbial IgA levels whereas CD and UC patients with arthropathy have decreased anti-food IgG levels. Treatment with anti-TNF-α Abs in CD patients was associated with significantly decreased ASCA IgG and IgA and anti-E. coli IgG. In the feces specific IgG levels against all antigens were higher in CD and AGE patients while specific IgA levels were higher in non-IBD patients. Anti-food IgG and IgA levels did not correlate with food intolerance. In contrast to anti-microbial Abs, we found only minor changes in serum anti-food Ab levels in specific subgroups of IBD patients. Fecal Ab levels towards microbial and food antigens show distinct patterns in controls, CD and UC patients.

  6. Reduction of antigenic protein levels in latex gloves after gamma irradiation.

    PubMed

    Zehr, B D; Gromelski, S; Beezhold, D

    1994-01-01

    Gamma irradiation is currently the method most commonly used to sterilize surgical gloves. In this study, the effect of gamma irradiation on antigenic proteins in latex gloves was examined. Protein extraction and quantitation were carried out using latex gloves before and after sterilization. Antigenic protein levels were determined by an ELISA assay specific for latex proteins (LEAP). LEAP analysis revealed a significant decrease after gamma-irradiation sterilization. This observation may partially explain the lower levels of extractable antigenic proteins found in sterile surgical gloves compared with nonsterile examination gloves. However, gamma irradiation was less effective than autoclave sterilization in reducing protein levels.

  7. Comparative effects of vaccination against porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) in a PCV2-PRRSV challenge model.

    PubMed

    Park, Changhoon; Oh, Yeonsu; Seo, Hwi Won; Han, Kiwon; Chae, Chanhee

    2013-03-01

    The objective of the present study was to determine the effects of porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) vaccinations in an experimental PCV2-PRRSV challenge model, based on virological (viremia), immunological (neutralizing antibodies [NAs], gamma interferon-secreting cells [IFN-γ-SCs], and CD4(+) CD8(+) double-positive cells), and pathological (lesions and antigens in lymph nodes and lungs) evaluations. A total of 72 pigs were randomly divided into 9 groups (8 pigs per group): 5 vaccinated and challenged groups, 3 nonvaccinated and challenged groups, and a negative-control group. Vaccination against PCV2 induced immunological responses (NAs and PCV2-specific IFN-γ-SCs) and reduced PCV2 viremia, PCV2-induced lesions, and PCV2 antigens in the dually infected pigs. However, vaccination against PCV2 did not affect the PRRSV immunological responses (NAs and PRRSV-specific IFN-γ-SCs), PRRSV viremia, PRRSV-induced lesions, or PRRSV antigens in the dually infected pigs. Vaccination against PRRSV did not induce immunological responses (PRRSV-specific IFN-γ-SCs) or reduce PRRSV viremia, PRRSV-induced lesions, or PRRSV antigens in the dually infected pigs. In addition, vaccination against PRRSV increased PCV2 viremia, PCV2-induced lesions, and PCV2 antigens in the dually infected pigs. In summary, vaccination against PCV2 reduced PCV2 viremia, PCV2-induced lesions, and PCV2 antigens in the dually infected pigs. However, vaccination against PRRSV increased PCV2 viremia, PCV2-induced lesions, and PCV2 antigens in the dually infected pigs. Therefore, the PCV2 vaccine decreased the potentiation of PCV2-induced lesions by PRRSV in dually infected pigs. In contrast, the PRRSV vaccine alone did not decrease the potentiation of PCV2-induced lesions by PRRSV in dually infected pigs.

  8. Comparative Effects of Vaccination against Porcine Circovirus Type 2 (PCV2) and Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) in a PCV2-PRRSV Challenge Model

    PubMed Central

    Park, Changhoon; Oh, Yeonsu; Seo, Hwi Won; Han, Kiwon

    2013-01-01

    The objective of the present study was to determine the effects of porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) vaccinations in an experimental PCV2-PRRSV challenge model, based on virological (viremia), immunological (neutralizing antibodies [NAs], gamma interferon-secreting cells [IFN-γ-SCs], and CD4+ CD8+ double-positive cells), and pathological (lesions and antigens in lymph nodes and lungs) evaluations. A total of 72 pigs were randomly divided into 9 groups (8 pigs per group): 5 vaccinated and challenged groups, 3 nonvaccinated and challenged groups, and a negative-control group. Vaccination against PCV2 induced immunological responses (NAs and PCV2-specific IFN-γ-SCs) and reduced PCV2 viremia, PCV2-induced lesions, and PCV2 antigens in the dually infected pigs. However, vaccination against PCV2 did not affect the PRRSV immunological responses (NAs and PRRSV-specific IFN-γ-SCs), PRRSV viremia, PRRSV-induced lesions, or PRRSV antigens in the dually infected pigs. Vaccination against PRRSV did not induce immunological responses (PRRSV-specific IFN-γ-SCs) or reduce PRRSV viremia, PRRSV-induced lesions, or PRRSV antigens in the dually infected pigs. In addition, vaccination against PRRSV increased PCV2 viremia, PCV2-induced lesions, and PCV2 antigens in the dually infected pigs. In summary, vaccination against PCV2 reduced PCV2 viremia, PCV2-induced lesions, and PCV2 antigens in the dually infected pigs. However, vaccination against PRRSV increased PCV2 viremia, PCV2-induced lesions, and PCV2 antigens in the dually infected pigs. Therefore, the PCV2 vaccine decreased the potentiation of PCV2-induced lesions by PRRSV in dually infected pigs. In contrast, the PRRSV vaccine alone did not decrease the potentiation of PCV2-induced lesions by PRRSV in dually infected pigs. PMID:23302743

  9. Diet and dietary supplement intervention trials for the prevention of prostate cancer recurrence: a review of the randomized controlled trial evidence.

    PubMed

    Van Patten, Cheri L; de Boer, Johan G; Tomlinson Guns, Emma S

    2008-12-01

    We review the effect of diet and dietary supplement interventions on prostate cancer progression, recurrence and survival. A literature search was conducted in MEDLINE, EMBASE and CINAHL to identify diet and dietary supplement intervention studies in men with prostate cancer using prostate specific antigen or prostate specific antigen doubling time as a surrogate serum biomarker of prostate cancer recurrence and/or survival. Of the 32 studies identified 9 (28%) were randomized controlled trials and the focus of this review. In these studies men had confirmed prostate cancer and elevated or increasing prostate specific antigen. Only 1 trial included men with metastatic disease. When body mass index was reported, men were overweight or obese. A significant decrease in prostate specific antigen was observed in some studies using a low fat vegan diet, soy beverage or lycopene supplement. While not often reported as an end point, a significant increase in prostate specific antigen doubling time was observed in a study on lycopene supplementation. In only 1 randomized controlled trial in men undergoing orchiectomy was a survival end point of fewer deaths with lycopene supplementation reported. A limited number of randomized controlled trials were identified in which diet and dietary supplement interventions appeared to slow disease progression in men with prostate cancer, although results vary. Studies were limited by reliance on the surrogate biomarker prostate specific antigen, sample size and study duration. Well designed trials are warranted to expand knowledge, replicate findings and further assess the impact of diet and dietary supplement interventions on recurrence and treatment associated morbidities.

  10. Zoledronic acid induces dose-dependent increase of antigen-specific CD8 T-cell responses in combination with peptide/poly-IC vaccine.

    PubMed

    Park, Hye-Mi; Cho, Hyun-Il; Shin, Chang-Ae; Shon, Hyun-Jung; Kim, Tai-Gyu

    2016-03-04

    Zoledronic acid (ZA) is used for treating osteoporosis and for preventing skeletal fractures in cancer patients suffering from myeloma and prostate cancer. It is also reported to directly induce cancer cell apoptosis and indirectly modulate T-cell immune response as an antitumor agent. In this study, the effect of ZA following peptide/polyinosinic-polycytidylic acid (poly-IC) vaccination was investigated in a murine tumor model. The combination of ZA with peptide/poly-IC vaccine showed a synergistic effect on the induction of antigen-specific CD8 T-cell response. Three consecutive intravenous administrations of ZA was defined to induce the highest CD8 T-cell response. Further, total splenocyte counts and antigen-specific CD8 T-cell response gradually increased depending on the dose of ZA. In tumor-bearing mice, ZA showed a dose-dependent decrease of growth and prolonged survival. Treatment with ZA only decreased the number of CD11b(+)Gr1(+) myeloid cells in blood. Our results demonstrate that the use of ZA could improve antitumor immune responses induced by the peptide/poly-IC vaccine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Dutasteride reduces prostate size and prostate specific antigen in older hypogonadal men with benign prostatic hyperplasia undergoing testosterone replacement therapy.

    PubMed

    Page, Stephanie T; Hirano, Lianne; Gilchriest, Janet; Dighe, Manjiri; Amory, John K; Marck, Brett T; Matsumoto, Alvin M

    2011-07-01

    Benign prostatic hyperplasia and hypogonadism are common disorders in aging men. There is concern that androgen replacement in older men may increase prostate size and symptoms of benign prostatic hyperplasia. We examined whether combining dutasteride, which inhibits testosterone to dihydrotestosterone conversion, with testosterone treatment in older hypogonadal men with benign prostatic hyperplasia reduces androgenic stimulation of the prostate compared to testosterone alone. We conducted a double-blind, placebo controlled trial of 53 men 51 to 82 years old with symptomatic benign prostatic hyperplasia, prostate volume 30 cc or greater and serum total testosterone less than 280 ng/dl (less than 9.7 nmol/l). Subjects were randomized to daily transdermal 1% T gel plus oral placebo or dutasteride for 6 months. Testosterone dosing was adjusted to a serum testosterone of 500 to 1,000 ng/dl. The primary outcomes were prostate volume measured by magnetic resonance imaging, serum prostate specific antigen and androgen levels. A total of 46 subjects completed all procedures. Serum testosterone increased similarly into the mid-normal range in both groups. Serum dihydrotestosterone increased in the testosterone only but decreased in the testosterone plus dutasteride group. In the testosterone plus dutasteride group prostate volume and prostate specific antigen (mean ± SEM) decreased 12% ± 2.5% and 35% ± 5%, respectively, compared to the testosterone only group in which prostate volume and prostate specific antigen increased 7.5% ± 3.3% and 19% ± 7% (p = 0.03 and p = 0.008), respectively, after 6 months of treatment. Prostate symptom scores improved in both groups. Combined treatment with testosterone plus dutasteride reduces prostate volume and prostate specific antigen compared to testosterone only. Coadministration of a 5α-reductase inhibitor with testosterone appears to spare the prostate from androgenic stimulation during testosterone replacement in older, hypogonadal men with symptomatic benign prostatic hyperplasia. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  12. The role of anti-NHba antibody in bactericidal activity elicited by the meningococcal serogroup B vaccine, MenB-4C.

    PubMed

    Partridge, Elizabeth; Lujan, Eduardo; Giuntini, Serena; Vu, David M; Granoff, Dan M

    2017-07-24

    MenB-4C (Bexsero®) is a multicomponent serogroup B meningococcal vaccine. For vaccine licensure, efficacy was inferred from serum bactericidal antibody (SBA) against three antigen-specific indicator strains. The bactericidal role of antibody to the fourth vaccine antigen, Neisserial Heparin binding antigen (NHba), is incompletely understood. We identified nine adults immunized with two or three doses of MenB-4C who had sufficient volumes of sera and >3-fold increases in SBA titer against a strain with high NHba expression, which was mismatched with the other three MenB-4C antigens that elicit SBA. Using 1month-post-immunization sera we measured the effect of depletion of anti-NHba and/or anti-Factor H binding protein (FHbp) antibodies on SBA. Against three strains matched with the vaccine only for NHba, depletion of anti-NHba decreased SBA titers by an average of 43-79% compared to mock-adsorbed sera (P<0.05). Despite expression of sub-family A FHbp (mismatched with the sub-family B vaccine antigen), depletion of anti-FHbp antibodies also decreased SBA by 45-64% (P<0.05). Depletion of both antibodies decreased SBA by 84-100%. Against a strain with sub-family B FHbp and expression of NHba with 100% identity to the vaccine antigen, depletion of anti-NHba decreased SBA by an average of 26%, compared to mock-adsorbed sera (P<0.0001), and depletion of anti-FHbp antibody decreased SBA by 92% (P<0.0001). Anti-NHba antibody can contribute to SBA elicited by MenB-4C, particularly in concert with anti-FHbp antibody. However, some high NHba-expressing strains are resistant, even with an exact match between the amino acid sequence of the vaccine and strain antigens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Changes in structural and antigenic properties of proteins by radiation

    NASA Astrophysics Data System (ADS)

    Kume, Tamikazu; Matsuda, Tsukasa

    1995-08-01

    Radiation effect on structural and antigenic properties of proteins (0.2% in 0.01 M phosphate buffer, pH 7.4) were investigated using ovalbumin (OVA) and bovine serum albumin (BSA). Aggregation of OVA and BSA was induced by radiation and the molecular mass increased significantly in N 2. Significant changes in surface hydrophobicity and [ θ] 222 nm of CD were also observed by radiation showing the destruction of secondary structure of proteins. Antigenicity of irradiated OVA measured by the method of immunodiffusion was decreased by radiation, and the reactivity to anti-OVA antibody was almost diminished at 8 kGy in N 2 and 4 kGy in O 2, respectively. The reactivity of BSA was diminished at 4 kGy both in N 2 and O 2. Changes in hydrophobicity of OVA did not correspond to the decrease in antigenicity, whereas the changes in [ θ] 222 nm relatively well corresponded to the antigenicity. The SDS-PAGE and immunoblotting analysis showed that radiation at higher doses induced the production of protein aggregates and degraded fragments with reactivity to the specific antibodies. These results suggest that the main part of conformation-dependent antigenic structure (conformational epitope) is easily lost by radiation, but some antigenicity, which is mostly due to the amino acid sequence-dependent antigenic structures (sequential epitopes), remains even at higher dose.

  14. Mapping of epitopes and structural analysis of antigenic sites in the nucleoprotein of rabies virus.

    PubMed

    Goto, H; Minamoto, N; Ito, H; Ito, N; Sugiyama, M; Kinjo, T; Kawai, A

    2000-01-01

    Linear epitopes on the rabies virus nucleoprotein (N) recognized by six MAbs raised against antigenic sites I (MAbs 6-4, 12-2 and 13-27) and IV (MAbs 6-9, 7-12 and 8-1) were investigated. Based on our previous studies on sites I and IV, 24 consecutively overlapping octapeptides and N- and C-terminal-deleted mutant N proteins were prepared. Results showed that all three site I epitopes studied and two site IV epitopes (for MAbs 8-1 and 6-9) mapped to aa 358-367, and that the other site IV epitope of MAb 7-12 mapped to aa 375-383. Tests using chimeric and truncated proteins showed that MAb 8-1 also requires the N-terminal sequence of the N protein to recognize its binding region more efficiently. Immunofluorescence studies demonstrated that all three site I-specific MAbs and one site IV-specific MAb (7-12) stained the N antigen that was diffusely distributed in the whole cytoplasm; the other two site IV-specific MAbs (6-9 and 8-1) detected only the N antigen in the cytoplasmic inclusion bodies (CIB). An antigenic site II-specific MAb (6-17) also detected CIB-associated N antigen alone. Furthermore, the level of diffuse N antigens decreased after treatment of infected cells with cycloheximide. These results suggest that epitopes at site I are expressed on the immature form of the N protein, but epitope structures of site IV MAbs 6-9 and 8-1 are created and/or exposed only after maturation of the N protein.

  15. PS80 interferes with the antiallergic effect of Cry-consensus peptide, a novel recombinant peptide for immunotherapy of Japanese cedar pollinosis, at very low concentration through modulation of Th1/Th2 balance.

    PubMed

    Kozutsumi, Daisuke; Tsunematsu, Masako; Yamaji, Taketo; Murakami, Rika; Yokoyama, Minehiko; Kino, Kohsuke

    2006-07-01

    Polysorbate 80 (PS80 or Tween-80) is often used as an additive to promote the rapid solubilization of pharmaceuticals in aqueous solutions. We investigated whether coinjection of a minimal amount of PS80 had a modulatory effect on the immunotherapeutic effects of Cry (Cryptomeria)-consensus peptide, a novel peptide developed for the therapeutic management of Japanese cedar pollinosis, using a Cry j 1-sensitized mouse model with experimental allergic rhinitis. Subcutaneous challenge with Cry-consensus peptide plus 50 microg/ml of PS80 did not affect the antigen-specific proliferation of splenocytes, but decreased the potency of Cry-consensus peptide to inhibit antigen-specific interleukin (IL)-5 production by the cells significantly in comparison with challenge with Cry-consensus peptide alone. However, there was no significant difference between the effect of Cry-consensus peptide administration on interferon (IFN)-gamma production in the presence and absence of PS80, indicating that PS80 interfered with the T helper 1 (Th1)-dominant T helper balance induced by Cry-consensus peptide challenge. Moreover, the increase in the level of antigen-specific immunoglobulin G2a (IgG2a) induced by Cry-consensus peptide challenge was inhibited slightly but unambiguously by PS80 coinjection. These in vitro experiments indicated that PS80 induces Th2-type differentiation of T helper cells through preferential inhibition of IFN-gamma expression relative to IL-5 expression in splenocytes in a concentration-dependent manner. In naïve mice, sensitization by Cry-consensus peptide with PS80 induced antigen-specific IL-5 production more potently than sensitization by Cry-consensus peptide alone, and when PS80 was added to bone marrow-derived dendritic cells, the endocytosis of fluorescence-labelled Cry-consensus peptide was dramatically inhibited in a concentration-dependent manner. Therefore, we conclude that PS80 has an immunomodulatory effect on the antigen-specific response resulting in a shift towards Th2 predominance with respect to the antigen recognition stage. Taken together, our findings suggest that PS80 might decrease the efficacy of Cry-consensus peptide through modulation of the efficiency of antigen endocytosis and/or of the direction of successive T helper cell differentiation.

  16. Reduced response to Epstein–Barr virus antigens by T-cells in systemic lupus erythematosus patients

    PubMed Central

    Draborg, Anette Holck; Jacobsen, Søren; Westergaard, Marie; Mortensen, Shila; Larsen, Janni Lisander; Houen, Gunnar; Duus, Karen

    2014-01-01

    Objective Epstein–Barr virus (EBV) has for long been associated with systemic lupus erythematosus (SLE). In this study, we investigated the levels of latent and lytic antigen EBV-specific T-cells and antibodies in SLE patients. Methods T cells were analyzed by flow cytometry and antibodies were analyzed by enzyme-linked immunosorbent assay. Results SLE patients showed a significantly reduced number of activated (CD69) T-cells upon ex vivo stimulation with EBV nuclear antigen (EBNA) 1 or EBV early antigen diffuse (EBV-EA/D) in whole blood samples compared with healthy controls. Also, a reduced number of T-cells from SLE patients were found to produce interferon-γ upon stimulation with these antigens. Importantly, responses to a superantigen were normal in SLE patients. Compared with healthy controls, SLE patients had fewer EBV-specific T-cells but higher titres of antibodies against EBV. Furthermore, an inverse correlation was revealed between the number of lytic antigen EBV-specific T-cells and disease activity of the SLE patients, with high-activity SLE patients having fewer T-cells than low-activity SLE patients. Conclusions These results indicate a limited or a defective EBV-specific T-cell response in SLE patients, which may suggest poor control of EBV infection in SLE with an immune reaction shift towards a humoral response in an attempt to control viral reactivation. A role for decreased control of EBV as a contributing agent in the development or exacerbation of SLE is proposed. PMID:25396062

  17. Antigen-specific tolerance inhibits autoimmune uveitis in pre-sensitized animals by deletion and CD4+CD25+ T-regulatory cells.

    PubMed

    Matta, Bharati; Jha, Purushottam; Bora, Puran S; Bora, Nalini S

    2010-02-01

    The objective of this study was to inhibit experimental autoimmune anterior uveitis (EAAU) by establishing antigen-specific immune tolerance in animals pre-sensitized with melanin-associated antigen (MAA). Intravenous administration of MAA on days 6, 7, 8 and 9 post-immunization induced tolerance and inhibited EAAU in all Lewis rats. The number of cells (total T cells, CD4(+) T cells and CD8(+) T cells) undergoing apoptosis dramatically increased in the popliteal lymph nodes (LNs) of the tolerized animals compared with non-tolerized animals. In addition, Fas ligand (FasL), TNF receptor 1 (TNFR1) and caspase-8 were upregulated in tolerized rats. Proliferation of total lymphocytes, CD4(+)T cells and CD8(+) T cells (harvested from the popliteal LNs) in response to antigenic stimulation was drastically reduced in the state of tolerance compared with the cells from non-tolerized animals. The level of interferon (IFN)-gamma and IL-2 decreased, whereas TGF-beta2 was elevated in the state of tolerance. Furthermore, the number of CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) increased in the popliteal LNs of tolerized animals compared with non-tolerized animals. In conclusion, our results suggest that deletion of antigen-specific T cells by apoptosis and active suppression mediated by Tregs has an important role in the induction of antigen specific immune tolerance in animals with an established immune response against MAA.

  18. Accelerated production of antigen-specific T-cells for pre-clinical and clinical applications using Gas-permeable Rapid Expansion cultureware (G-Rex)

    PubMed Central

    Vera, Juan F.; Brenner, Lara J.; Gerdemann, Ulrike; Ngo, Minhtran C.; Sili, Uluhan; Liu, Hao; Wilson, John; Dotti, Gianpietro; Heslop, Helen E.; Leen, Ann M.; Rooney, Cliona M.

    2009-01-01

    The clinical manufacture of antigen-specific cytotoxic T lymphocytes (CTL) for adoptive immunotherapy is limited by the complexity and time required to produce large numbers with the desired function and specificity. The culture conditions required are rigorous, and in some cases only achieved in 2cm2 wells in which cell growth is limited by gas exchange, nutrients and waste accumulation. Bioreactors developed to overcome these issues tend to be complex, expensive and not always conducive to CTL growth. We observed that antigen-specific CTL undergo seven to ten divisions post-stimulation. However the expected CTL numbers were achieved only in the first week of culture. By recreating the culture conditions present during this first week - low frequency of antigen-specific T-cells and high frequency of feeder cells - we were able to increase CTL expansion to expected levels which could be sustained for several weeks without affecting phenotype or function. However, the number of 24-well plates needed was excessive and cultures required frequent media changes, increasing complexity and manufacturing costs. Therefore, we evaluated novel gas-permeable culture devices (G-Rex) with a silicone membrane at the base allowing gas exchange to occur uninhibited by depth of medium above. This system effectively supports the expansion of CTL and actually increases output by up to 20-fold while decreasing required technician time. Importantly, this amplified cell expansion is not due to more cell divisions but to reduced cell death. This bioprocess optimization increased T-cell output while decreasing the complexity and cost of CTL manufacture, making cell therapy more accessible. PMID:20445351

  19. Energy parasites trigger oncogene mutation.

    PubMed

    Pokorný, Jiří; Pokorný, Jan; Jandová, Anna; Kobilková, Jitka; Vrba, Jan; Vrba, Jan

    2016-10-01

    Cancer initialization can be explained as a result of parasitic virus energy consumption leading to randomized genome chemical bonding. Analysis of experimental data on cell-mediated immunity (CMI) containing about 12,000 cases of healthy humans, cancer patients and patients with precancerous cervical lesions disclosed that the specific cancer and the non-specific lactate dehydrogenase-elevating (LDH) virus antigen elicit similar responses. The specific antigen is effective only in cancer type of its origin but the non-specific antigen in all examined cancers. CMI results of CIN patients display both healthy and cancer state. The ribonucleic acid (RNA) of the LDH virus parasitizing on energy reduces the ratio of coherent/random oscillations. Decreased effect of coherent cellular electromagnetic field on bonding electrons in biological macromolecules leads to elevating probability of random genome reactions. Overlapping of wave functions in biological macromolecules depends on energy of the cellular electromagnetic field which supplies energy to bonding electrons for selective chemical bonds. CMI responses of cancer and LDH virus antigens in all examined healthy, precancerous and cancer cases point to energy mechanism in cancer initiation. Dependence of the rate of biochemical reactions on biological electromagnetic field explains yet unknown mechanism of genome mutation.

  20. Structural and functional studies of a 50 kDa antigenic protein from Salmonella enterica serovar Typhi.

    PubMed

    Choong, Yee Siew; Lim, Theam Soon; Chew, Ai Lan; Aziah, Ismail; Ismail, Asma

    2011-04-01

    The high typhoid incidence rate in developing and under-developed countries emphasizes the need for a rapid, affordable and accessible diagnostic test for effective therapy and disease management. TYPHIDOT®, a rapid dot enzyme immunoassay test for typhoid, was developed from the discovery of a ∼50 kDa protein specific for Salmonella enterica serovar Typhi. However, the structure of this antigen remains unknown till today. Studies on the structure of this antigen are important to elucidate its function, which will in turn increase the efficiency of the development and improvement of the typhoid detection test. This paper described the predictive structure and function of the antigenically specific protein. The homology modeling approach was employed to construct the three-dimensional structure of the antigen. The built structure possesses the features of TolC-like outer membrane protein. Molecular docking simulation was also performed to further probe the functionality of the antigen. Docking results showed that hexamminecobalt, Co(NH(3))(6)(3+), as an inhibitor of TolC protein, formed favorable hydrogen bonds with D368 and D371 of the antigen. The single point (D368A, D371A) and double point (D368A and D371A) mutations of the antigen showed a decrease (single point mutation) and loss (double point mutations) of binding affinity towards hexamminecobalt. The architecture features of the built model and the docking simulation reinforced and supported that this antigen is indeed the variant of outer membrane protein, TolC. As channel proteins are important for the virulence and survival of bacteria, therefore this ∼50 kDa channel protein is a good specific target for typhoid detection test. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. A glow of HLA typing in organ transplantation

    PubMed Central

    2013-01-01

    The transplant of organs and tissues is one of the greatest curative achievements of this century. In organ transplantation, the adaptive immunity is considered the main response exerted to the transplanted tissue, since the main goal of the immune response is the MHC (major histocompatibility complex) molecules expressed on the surface of donor cells. Cell surface molecules that induce an antigenic stimulus cause the rejection immune response to grafted tissue or organ. A wide variety of transplantation antigens have been described, including the major histocompatibility molecules, minor histocompatibility antigens, ABO blood group antigens and endothelial cell antigens. The sensitization to MHC antigens may be caused by transfusions, pregnancy, or failed previous grafts leading to development of anti-human leukocyte antigen (HLA) antibodies that are important factor responsible for graft rejection in solid organ transplantation and play a role in post-transfusion complication Anti-HLA Abs may be present in healthy individuals. Methods for HLA typing are described, including serological methods, molecular techniques of sequence-specific priming (SSP), sequence-specific oligonucleotide probing (SSOP), Sequence based typing (SBT) and reference strand-based conformation analysis (RSCA) method. Problems with organ transplantation are reservoir of organs and immune suppressive treatments that used to decrease rate of rejection with less side effect and complications. PMID:23432791

  2. Expression of simian virus 40 T antigen in Escherichia coli: localization of T-antigen origin DNA-binding domain to within 129 amino acids.

    PubMed Central

    Arthur, A K; Höss, A; Fanning, E

    1988-01-01

    The genomic coding sequence of the large T antigen of simian virus 40 (SV40) was cloned into an Escherichia coli expression vector by joining new restriction sites, BglII and BamHI, introduced at the intron boundaries of the gene. Full-length large T antigen, as well as deletion and amino acid substitution mutants, were inducibly expressed from the lac promoter of pUC9, albeit with different efficiencies and protein stabilities. Specific interaction with SV40 origin DNA was detected for full-length T antigen and certain mutants. Deletion mutants lacking T-antigen residues 1 to 130 and 260 to 708 retained specific origin-binding activity, demonstrating that the region between residues 131 and 259 must carry the essential binding domain for DNA-binding sites I and II. A sequence between residues 302 and 320 homologous to a metal-binding "finger" motif is therefore not required for origin-specific binding. However, substitution of serine for either of two cysteine residues in this motif caused a dramatic decrease in origin DNA-binding activity. This region, as well as other regions of the full-length protein, may thus be involved in stabilizing the DNA-binding domain and altering its preference for binding to site I or site II DNA. Images PMID:2835505

  3. Heat treatment and false-positive heartworm antigen testing in ex vivo parasites and dogs naturally infected by Dirofilaria repens and Angiostrongylus vasorum.

    PubMed

    Venco, Luigi; Manzocchi, Simone; Genchi, Marco; Kramer, Laura H

    2017-11-09

    Heartworm antigen testing is considered sensitive and specific. Currently available tests are reported as detecting a glycoprotein found predominantly in the reproductive tract of the female worm and can reach specificity close to 100%. Main concerns regard sensitivity in the case of light infections, the presence of immature females or cases of all-male infections. Research and development have been aimed at increasing sensitivity. Recently, heat treatment of serum prior to antigen testing has been shown to result in an increase in positive antigen test results, presumably due to disruption of natural antigen-antibody complexes. Cross-reactions in dogs with both natural and experimental infections with Angiostrongylus vasorum and Spirocerca lupi have been reported, but cross-reactions with other helminths have not been extensively studied. In order to evaluate potential cross-reactivity with other canine and feline parasites, two studies were performed. Study 1: Live adults of Dirofilaria immitis, Dirofilaria repens, Toxocara canis, Toxocara cati, Dipylidium caninum, Taenia taeniaeformis and Mesocestoides spp. larvae were washed and incubated in tubes with saline solution. All worms were alive at the time of removal from the saline. Saline solutions containing excretory/secretory antigens were then tested for heartworm with six different, commercially available antigen tests. All results were evaluated blind by three of the authors. Study 2: Sera from dogs with natural infections by A. vasorum or D. repens, living in areas free of heartworm disease, were tested with the same tests before and after heat treatment (103 °C for 10 min). Results suggest that antigens detected by currently available tests are not specific for D. immitis. They may give positive results through detection of different parasites' antigens that are normally not released into the bloodstream or released in a low amount and/or bound to antibodies. Tests may even detect antigens released by male D. immitis adult worms. D. repens appears to release more detectable antigens than the other worms studied. Cross-reaction with A. vasorum and D. repens does occur in the field and could potentially occur with other helminths. Heat treatment decreases specificity by enhancing cross-reactivity.

  4. Prostate-Specific Antigen (PSA) Bounce After Dose-Escalated External Beam Radiation Therapy Is an Independent Predictor of PSA Recurrence, Metastasis, and Survival in Prostate Adenocarcinoma Patients.

    PubMed

    Romesser, Paul B; Pei, Xin; Shi, Weiji; Zhang, Zhigang; Kollmeier, Marisa; McBride, Sean M; Zelefsky, Michael J

    2018-01-01

    To evaluate the difference in prostate-specific antigen (PSA) recurrence-free, distant metastasis-free, overall, and cancer-specific survival between PSA bounce (PSA-B) and non-bounce patients treated with dose-escalated external beam radiation therapy (DE-EBRT). During 1990-2010, 1898 prostate adenocarcinoma patients were treated with DE-EBRT to ≥75 Gy with ≥5 years follow-up. Patients receiving neoadjuvant/concurrent androgen-deprivation therapy (n=1035) or with fewer than 4 PSA values obtained 6 months or more after post-EBRT completion (n=87) were excluded. The evaluable 776 patients were treated (median, 81.0 Gy). Prostate-specific antigen bounce was defined as a ≥0.2-ng/mL increase above the interval PSA nadir, followed by a decrease to nadir or below. Prostate-specific antigen relapse was defined as post-radiation therapy PSA nadir + 2 ng/mL. Median follow-up was 9.2 years (interquartile range, 6.9-11.3 years). One hundred twenty-three patients (15.9%) experienced PSA-B after DE-EBRT at a median of 24.6 months (interquartile range, 16.1-38.5 months). On multivariate analysis, younger age (P=.001), lower Gleason score (P=.0003), and higher radiation therapy dose (P=.0002) independently predicted PSA-B. Prostate-specific antigen bounce was independently associated with decreased risk for PSA relapse (hazard ratio [HR] 0.53; 95% confidence interval [CI] 0.33-0.85; P=.008), distant metastatic disease (HR 0.34; 95% CI 0.12-0.94; P=.04), and all-cause mortality (HR 0.53; 95% CI 0.29-0.96; P=.04) on multivariate Cox analysis. Because all 50 prostate cancer-specific deaths in patients without PSA-B were in the non-bounce cohort, competing-risks analysis was not applicable. A nonparametric competing-risks test demonstrated that patients with PSA-B had superior cancer-specific survival compared with patients without PSA-B (P=.004). Patients treated with dose-escalated radiation therapy for prostate adenocarcinoma who experience posttreatment PSA-B have improved PSA recurrence-free survival, distant metastasis-free survival, overall survival, and cancer-specific survival outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Macrophages play an essential role in antigen-specific immune suppression mediated by T CD8⁺ cell-derived exosomes.

    PubMed

    Nazimek, Katarzyna; Ptak, Wlodzimierz; Nowak, Bernadeta; Ptak, Maria; Askenase, Philip W; Bryniarski, Krzysztof

    2015-09-01

    Murine contact sensitivity (CS) reaction could be antigen-specifically regulated by T CD8(+) suppressor (Ts) lymphocytes releasing microRNA-150 in antibody light-chain-coated exosomes that were formerly suggested to suppress CS through action on macrophages (Mφ). The present studies investigated the role of Mφ in Ts cell-exosome-mediated antigen-specific suppression as well as modulation of Mφ antigen-presenting function in humoral and cellular immunity by suppressive exosomes. Mice depleted of Mφ by clodronate liposomes could not be tolerized and did not produce suppressive exosomes. Moreover, isolated T effector lymphocytes transferring CS were suppressed by exosomes only in the presence of Mφ, demonstrating the substantial role of Mφ in the generation and action of Ts cell regulatory exosomes. Further, significant decrease of number of splenic B cells producing trinitrophenyl (TNP) -specific antibodies with the alteration of the ratio of serum titres of IgM to IgG was observed in recipients of exosome-treated, antigen-pulsed Mφ and the significant suppression of CS was demonstrated in recipients of exosome-treated, TNP-conjugated Mφ. Additionally, exosome-pulsed, TNP-conjugated Mφ mediated suppression of CS in mice pre-treated with a low-dose of cyclophosphamide, suggesting de novo induction of T regulatory (Treg) lymphocytes. Treg cell involvement in the effector phase of the studied suppression mechanism was proved by unsuccessful tolerization of DEREG mice depleted of Treg lymphocytes. Furthermore, the inhibition of proliferation of CS effector cells cultured with exosome-treated Mφ in a transmembrane manner was observed. Our results demonstrated the essential role of Mφ in antigen-specific immune suppression mediated by Ts cell-derived exosomes and realized by induction of Treg lymphocytes and inhibition of T effector cell proliferation. © 2015 John Wiley & Sons Ltd.

  6. Predictive value of different prostate-specific antigen-based markers in men with baseline total prostate-specific antigen <2.0 ng/mL.

    PubMed

    Fujizuka, Yuji; Ito, Kazuto; Oki, Ryo; Suzuki, Rie; Sekine, Yoshitaka; Koike, Hidekazu; Matsui, Hiroshi; Shibata, Yasuhiro; Suzuki, Kazuhiro

    2017-08-01

    To investigate the predictive value of various molecular forms of prostate-specific antigen in men with baseline prostate-specific antigen <2.0 ng/mL. The case cohort comprised 150 men with a baseline prostate-specific antigen level <2.0 ng/mL, and who developed prostate cancer within 10 years. The control cohort was 300 baseline prostate-specific antigen- and age-adjusted men who did not develop prostate cancer. Serum prostate-specific antigen, free prostate-specific antigen, and [-2] proenzyme prostate-specific antigen were measured at baseline and last screening visit. The predictive impact of baseline prostate-specific antigen- and [-2] proenzyme prostate-specific antigen-related indices on developing prostate cancer was investigated. The predictive impact of those indices at last screening visit and velocities from baseline to final screening on tumor aggressiveness were also investigated. The baseline free to total prostate-specific antigen ratio was a significant predictor of prostate cancer development. The odds ratio was 6.08 in the lowest quintile baseline free to total prostate-specific antigen ratio subgroup. No serum indices at diagnosis were associated with tumor aggressiveness. The Prostate Health Index velocity and [-2] proenzyme prostate-specific antigen/free prostate-specific antigen velocity significantly increased in patients with higher risk D'Amico risk groups and higher Gleason scores. Free to total prostate-specific antigen ratio in men with low baseline prostate-specific antigen levels seems to predict the risk of developing prostate cancer, and it could be useful for a more effective individualized screening system. Longitudinal changes in [-2] proenzyme prostate-specific antigen-related indices seem to correlate with tumor aggressiveness, and they could be used as prognostic tool before treatment and during active surveillance. © 2017 The Japanese Urological Association.

  7. Androgen deprivation decreases prostate specific antigen in the absence of tumor: implications for interpretation of PSA results.

    PubMed

    Wenisch, Judith M; Mayr, Florian B; Spiel, Alexander O; Radicioni, Milko; Jilma, Bernd; Jilma-Stohlawetz, Petra

    2014-03-01

    Prostate-specific antigen (PSA) is used as an outcome measure for relapsed disease in prostate cancer. Nonetheless, there are considerable concerns about its indiscriminate use as a surrogate endpoint for cell growth or survival. We hypothesized that treatment with a luteinizing hormone releasing hormone (LHRH) analog would decrease PSA levels even in the absence of malignant disease. We determined testosterone and PSA levels in 30 healthy volunteers after a single intramuscular injection of a LHRH depot formulation. Testosterone and PSA levels were quantified by radioimmunoassay and electrochemi-luminescence immunoassay, respectively. After an initial flare-up during the first 3 days testosterone decreased reaching castration levels in 18 of the 30 young men (60%). After the nadir on day 28, testosterone levels increased to normal again. Changes in PSA paralleled those of testosterone. Castration reduced PSA levels by 29% (95% CI 19%-39%) compared to baseline (p<0.0001). LHRH superagonists decrease PSA levels by testosterone deprivation. Conferring these findings to tumor patients, decreases in PSA after treatment with LHRH analogs might not only reflect disease regression but also a direct testosterone mediated effect on PSA. Thus, PSA levels should be cautiously interpreted when patients receive hormonal therapy.

  8. Development of a Highly Specific Recombinant Toxocara canis Second-Stage Larva Excretory-Secretory Antigen for Immunodiagnosis of Human Toxocariasis

    PubMed Central

    Yamasaki, Hiroshi; Araki, Kunioki; Lim, Patricia Kim Chooi; Zasmy, Ngah; Mak, Joon Wah; Taib, Radzan; Aoki, Takashi

    2000-01-01

    The specificity of the recombinant Toxocara canis antigen developed for the immunodiagnosis of human toxocariasis was compared with that of the excretory-secretory antigen from T. canis second-stage larvae (TES) by enzyme-linked immunosorbent assay. A total of 153 human serum samples from patients infected with 20 different helminths, including 11 cases of toxocariasis, were examined. No false-negative reactions were observed for the toxocariasis cases. When the TES was used at concentrations of 0.5 and 0.125 μg/ml, cross-reactions were observed in 79 (55.6%) and 61 (43.0%) of 142 cases, respectively. In contrast, when the recombinant antigen was tested at a concentration of 0.5 μg/ml, cross-reactions were observed in 19 (13.4%) of 142 cases. At a concentration of 0.125 μg/ml, however, the cross-reaction rate decreased sharply to only 2.1%, corresponding to 3 of 142 cases. The cross-reactions occurred with one case each of gnathostomiasis, paragonimiasis with Paragonimus miyazakii, and spirometriasis, in which high antibody titers were detected. In addition, the recombinant antigen showed negative reactions with serum samples from patients infected with Ascaris and hookworms, which are the most common parasites in the world. These findings are also supported by experiments with animals infected with Ascaris and hookworm. From these results, the recombinant antigen is highly specific for toxocariasis and may provide more reliable diagnostic results than other methods. PMID:10747116

  9. Prediagnostic prostate-specific antigen kinetics and the risk of biopsy progression in active surveillance patients.

    PubMed

    Iremashvili, Viacheslav; Barney, Shane L; Manoharan, Murugesan; Kava, Bruce R; Parekh, Dipen J; Punnen, Sanoj

    2016-04-01

    To analyze the association between prediagnostic prostate-specific antigen kinetics and the risk of biopsy progression in prostate cancer patients on active surveillance, and to study the effect of prediagnostic prostate-specific antigen values on the predictive performance of prostate-specific antigen velocity and prostate-specific antigen doubling time. The study included 137 active surveillance patients with two or more prediagnostic prostate-specific antigen levels measured over a period of at least 3 months. Two sets of analyses were carried out. First, the association between prostate-specific antigen kinetics calculated using only the prediagnostic prostate-specific antigen values and the risk of biopsy progression was studied. Second, using the same cohort of patients, the predictive value of prostate-specific antigen kinetics calculated using only post-diagnostic prostate-specific antigens and compared with that of prostate-specific antigen kinetics based on both pre- and post-diagnostic prostate-specific antigen levels was analyzed. Of 137 patients included in the analysis, 37 (27%) had biopsy progression over a median follow-up period of 3.2 years. Prediagnostic prostate-specific antigen velocity of more than 2 ng/mL/year and 3 ng/mL/year was statistically significantly associated with the risk of future biopsy progression. However, after adjustment for baseline prostate-specific antigen density, these associations were no longer significant. None of the tested prostate-specific antigen kinetics based on combined pre- and post-diagnostic prostate-specific antigen values were statistically significantly associated with the risk of biopsy progression. Historical prediagnostic prostate-specific antigens seems to be not clinically useful in patients diagnosed with low-risk prostate cancer on active surveillance. © 2016 The Japanese Urological Association.

  10. Antibodies attenuate the capacity of dendritic cells to stimulate HIV-specific cytotoxic T lymphocytes

    PubMed Central

    Posch, Wilfried; Cardinaud, Sylvain; Hamimi, Chiraz; Fletcher, Adam; Mühlbacher, Annelies; Loacker, Klaus; Eichberger, Paul; Dierich, Manfred P.; Pancino, Gianfranco; Lass-Flörl, Cornelia; Moris, Arnaud; Saez-Cirion, Asier; Wilflingseder, Doris

    2014-01-01

    Background Control of HIV is suggested to depend on potent effector functions of the virus-specific CD8+ T-cell response. Antigen opsonization can modulate the capture of antigen, its presentation, and the priming of specific CD8+ T-cell responses. Objective We have previously shown that opsonization of retroviruses acts as an endogenous adjuvant for dendritic cell (DC)–mediated induction of specific cytotoxic T lymphocytes (CTLs). However, in some HIV-positive subjects, high levels of antibodies and low levels of complement fragments coat the HIV surface. Methods Therefore we analyzed the effect of IgG opsonization on the antigen-presenting capacity of DCs by using CD8+ T-cell proliferation assays after repeated prime boosting, by measuring the antiviral activity against HIV-infected autologous CD4+ T cells, and by determining IFN-γ secretion from HIV-specific CTL clones. Results We find that DCs exposed to IgG-opsonized HIV significantly decreased the HIV-specific CD8+ T-cell response compared with the earlier described efficient CD8+ T-cell activation induced by DCs loaded with complement-opsonized HIV. DCs exposed to HIV bearing high surface IgG levels after incubation in plasma from HIV-infected subjects acted as weak stimulators for HIV-specific CTL clones. In contrast, HIV opsonized with plasma from patients exhibiting high complement and low IgG deposition on the viral surface favored significantly higher activation of HIV-specific CD8+ T-cell clones. Conclusion Our ex vivo and in vitro observations provide the first evidence that IgG opsonization of HIV is associated with a decreased CTL-stimulatory capacity of DCs. PMID:23063584

  11. Lovastatin inhibits T cell proliferation while preserving the cytolytic function of EBV-, CMV- and MART-1-specific CTLs

    PubMed Central

    Li, Dan; Li, Yufeng; Hernandez, Jessica A.; Patenia, Rebecca; Kim, Tae Kon; Khalili, Jahan; Dougherty, Mark C.; Hanley, Patrick J.; Bollard, Catherine M.; Komanduri, Krishna V.; Hwu, Patrick; Champlin, Richard E.; Radvanyi, Laszlo G.; Molldrem, Jeffrey J.; Ma, Qing

    2016-01-01

    Statin treatment has been shown to reduce graft-versus-host disease (GVHD) while preserving graft-versus-tumor (GVT) effect in allogeneic stem cell transplantation (allo-HCT). Herein, we investigated whether lovastatin treatment affects the function of human cytolytic T lymphocytes (CTLs). Upon TCR stimulation, lovastatin significantly inhibited the proliferation of both CD4+ and CD8+ T cells from healthy donors while their intracellular cytokine production including IFN-γ and TNF-α remained the same with a slight decrease of IL-2. Moreover, the specific lysis of target cells by CTL lines derived from patients and normal donors specific for EBV-encoded antigen LMP2 or CMV-encoded antigen pp65 was uncompromised in the presence of lovastatin. In addition, we evaluated the effect of lovastatin on the proliferation and effector function of the CD8+ tumor–infiltrating lymphocytes (TILs) derived from melanoma patients specific for MART-1 antigen. Lovastatin significantly reduced the expansion of antigen-specific TILs upon MART-1 stimulation. However, the effector function of TILs, including the specific lysis of target cells and secretion of cytokine IFN-γ, remained intact with lovastatin treatment. Taken together, these data demonstrated that lovastatin inhibits the proliferation of EBV-, CMV- and MART-1-specific CTLs without affecting cytolytic capacity. The differential effect of lovastatin on the proliferation versus cytoxicity of CTLs might shed some light on elucidating the possible mechanisms of GVHD and GVT effect elicited by alloimmune responses. PMID:20948439

  12. Preventing vaccinia virus class-I epitopes presentation by HSV-ICP47 enhances the immunogenicity of a TAP-independent cancer vaccine epitope.

    PubMed

    Raafat, Nermin; Sadowski-Cron, Charlotte; Mengus, Chantal; Heberer, Michael; Spagnoli, Giulio C; Zajac, Paul

    2012-09-01

    Herpes simplex virus protein ICP47, encoded by US12 gene, strongly downregulates major histocompatibility complex (MHC) class-I antigen restricted presentation by blocking transporter associated with antigen processing (TAP) protein. To decrease viral vector antigenic immunodominance and MHC class-I driven clearance, we engineered recombinant vaccinia viruses (rVV) expressing ICP47 alone (rVV-US12) or together with endoplasmic reticulum (ER)-targeted Melan-A/MART-1(27-35) model tumor epitope (rVV-MUS12). In this study, we show that antigen presenting cells (APC), infected with rVV-US12, display a decreased ability to present TAP dependent MHC class-I restricted viral antigens to CD8+ T-cells. While HLA class-I cell surface expression is strongly downregulated, other important immune related molecules such as CD80, CD44 and, most importantly, MHC class-II are unaffected. Characterization of rVV-MUS12 infected cells demonstrates that over-expression of a TAP-independent peptide, partially compensates for ICP47 induced surface MHC class-I downregulation (30% vs. 70% respectively). Most importantly, in conditions where clearance of infected APC by virus-specific CTL represents a limiting factor, a significant enhancement of CTL responses to the tumor epitope can be detected in cultures stimulated with rVV-MUS12, as compared to those stimulated by rVV-MART alone. Such reagents could become of high relevance in multiple boost protocols required for cancer immunotherapy, to limit vector-specific responsiveness. Copyright © 2011 UICC.

  13. Covalent binding of C3b to tetanus toxin: influence on uptake/internalization of antigen by antigen-specific and non-specific B cells.

    PubMed Central

    Villiers, M B; Villiers, C L; Jacquier-Sarlin, M R; Gabert, F M; Journet, A M; Colomb, M G

    1996-01-01

    Antigen opsonization by the C3b fragment of complement is a significant event in the modulation of cell-mediated immune response, but its mechanism is still largely unknown. The structural characteristics of C3b allow it to act as a bifunctional ligand between antigen and cells via their membrane C3b receptors. It was thus of interest to study the influence of the covalent link between C3b and antigen on the fixation and internalization of this antigen by antigen-presenting cells. Tetanus toxin (TT) was used as antigen, either free or covalently linked to C3b (TT-C3b). The antigen-presenting cells were TT-specific (4.2) or non-specific (BL15) Epstein-Barr virus (EBV)-transformed B cells. C3b was found to play an important role in antigen fixation and internalization by both antigen-specific and antigen non-specific cells. Covalent binding of C3b on TT (1) permitted fixation and internalization of this antigen by non-specific cells via their complement receptors; (2) enhanced antigen fixation and resulted in cross-linking between membrane immunoglobulins and complement receptors on antigen-specific cells. The consequences of covalent C3b binding to TT were analysed using antigen-specific and antigen-nonspecific cells. In both cases, a net increase in antigen fixation was observed. At the intracellular level, covalent C3b binding to TT resulted in a large TT incorporation in endosomes of nonspecific cells, similar to that observed in antigen-specific cells. Thus, C3b covalently linked to antigen enlarges the array of B-cell types capable of presenting antigen, including non-specific cells. Images Figure 2 PMID:8958046

  14. Prostate specific antigen density to predict prostate cancer upgrading in a contemporary radical prostatectomy series: a single center experience.

    PubMed

    Magheli, Ahmed; Hinz, Stefan; Hege, Claudia; Stephan, Carsten; Jung, Klaus; Miller, Kurt; Lein, Michael

    2010-01-01

    We investigated the value of pretreatment prostate specific antigen density to predict Gleason score upgrading in light of significant changes in grading routine in the last 2 decades. Of 1,061 consecutive men who underwent radical prostatectomy between 1999 and 2004, 843 were eligible for study. Prostate specific antigen density was calculated and a cutoff for highest accuracy to predict Gleason upgrading was determined using ROC curve analysis. The predictive accuracy of prostate specific antigen and prostate specific antigen density to predict Gleason upgrading was evaluated using ROC curve analysis based on predicted probabilities from logistic regression models. Prostate specific antigen and prostate specific antigen density predicted Gleason upgrading on univariate analysis (as continuous variables OR 1.07 and 7.21, each p <0.001) and on multivariate analysis (as continuous variables with prostate specific antigen density adjusted for prostate specific antigen OR 1.07, p <0.001 and OR 4.89, p = 0.037, respectively). When prostate specific antigen density was added to the model including prostate specific antigen and other Gleason upgrading predictors, prostate specific antigen lost its predictive value (OR 1.02, p = 0.423), while prostate specific antigen density remained an independent predictor (OR 4.89, p = 0.037). Prostate specific antigen density was more accurate than prostate specific antigen to predict Gleason upgrading (AUC 0.61 vs 0.57, p = 0.030). Prostate specific antigen density is a significant independent predictor of Gleason upgrading even when accounting for prostate specific antigen. This could be especially important in patients with low risk prostate cancer who seek less invasive therapy such as active surveillance since potentially life threatening disease may be underestimated. Further studies are warranted to help evaluate the role of prostate specific antigen density in Gleason upgrading and its significance for biochemical outcome.

  15. Fluorescently labeled dengue viruses as probes to identify antigen-specific memory B cells by multiparametric flow cytometry

    PubMed Central

    Woda, Marcia; Mathew, Anuja

    2015-01-01

    Low frequencies of memory B cells in the peripheral blood make it challenging to measure the functional and phenotypic characteristics of this antigen experienced subset of B cells without in vitro culture. To date, reagents are lacking to measure ex vivo frequencies of dengue virus (DENV)-specific memory B cells. We wanted to explore the possibility of using fluorescently labeled DENV as probes to detect antigen-specific memory B cells in the peripheral blood of DENV immune individuals. Alexa Fluor dye-labeled DENV yielded viable virus that could be stored at −80°C for long periods of time. Using a careful gating strategy and methods to decrease non-specific binding, we were able to identify a small frequency of B cells from dengue immune individuals that bound labeled DENV. Sorted DENV+ B cells from immune, but not naïve donors secreted antibodies that bound intact virions after in vitro stimulation. Overall, Alexa Fluor dye labeled -DENV are useful reagents to enable the detection and characterization of memory B cells in DENV immune individuals. PMID:25497702

  16. Immunity to tumour antigens.

    PubMed

    Li, Geng; Ali, Selman A; McArdle, Stephanie E B; Mian, Shahid; Ahmad, Murrium; Miles, Amanda; Rees, Robert C

    2005-01-01

    During the last decade, a large number of human tumour antigens have been identified. These antigens are classified as tumour-specific shared antigens, tissue-specific differentiation antigens, overexpressed antigens, tumour antigens resulting from mutations, viral antigens and fusion proteins. Antigens recognised by effectors of immune system are potential targets for antigen-specific cancer immunotherapy. However, most tumour antigens are self-proteins and are generally of low immunogenicity and the immune response elicited towards these tumour antigens is not always effective. Strategies to induce and enhance the tumour antigen-specific response are needed. This review will summarise the approaches to discovery of tumour antigens, the current status of tumour antigens, and their potential application to cancer treatment.

  17. Repertoire Analysis of Antibody CDR-H3 Loops Suggests Affinity Maturation Does Not Typically Result in Rigidification

    PubMed Central

    Jeliazkov, Jeliazko R.; Sljoka, Adnan; Kuroda, Daisuke; Tsuchimura, Nobuyuki; Katoh, Naoki; Tsumoto, Kouhei; Gray, Jeffrey J.

    2018-01-01

    Antibodies can rapidly evolve in specific response to antigens. Affinity maturation drives this evolution through cycles of mutation and selection leading to enhanced antibody specificity and affinity. Elucidating the biophysical mechanisms that underlie affinity maturation is fundamental to understanding B-cell immunity. An emergent hypothesis is that affinity maturation reduces the conformational flexibility of the antibody’s antigen-binding paratope to minimize entropic losses incurred upon binding. In recent years, computational and experimental approaches have tested this hypothesis on a small number of antibodies, often observing a decrease in the flexibility of the complementarity determining region (CDR) loops that typically comprise the paratope and in particular the CDR-H3 loop, which contributes a plurality of antigen contacts. However, there were a few exceptions and previous studies were limited to a small handful of cases. Here, we determined the structural flexibility of the CDR-H3 loop for thousands of recent homology models of the human peripheral blood cell antibody repertoire using rigidity theory. We found no clear delineation in the flexibility of naïve and antigen-experienced antibodies. To account for possible sources of error, we additionally analyzed hundreds of human and mouse antibodies in the Protein Data Bank through both rigidity theory and B-factor analysis. By both metrics, we observed only a slight decrease in the CDR-H3 loop flexibility when comparing affinity matured antibodies to naïve antibodies, and the decrease was not as drastic as previously reported. Further analysis, incorporating molecular dynamics simulations, revealed a spectrum of changes in flexibility. Our results suggest that rigidification may be just one of many biophysical mechanisms for increasing affinity. PMID:29545810

  18. Antigen sensitivity of CD22-specific chimeric T cell receptors is modulated by target epitope distance from the cell membrane

    PubMed Central

    James, Scott E.; Greenberg, Philip D.; Jensen, Michael C.; Lin, Yukang; Wang, Jinjuan; Till, Brian G.; Raubitschek, Andrew A.; Forman, Stephen J.; Press, Oliver W.

    2008-01-01

    We have targeted CD22 as a novel tumor-associated antigen for recognition by human CTL genetically modified to express chimeric T cell receptors (cTCR) recognizing this surface molecule. CD22-specifc cTCR targeting different epitopes of the CD22 molecule promoted efficient lysis of target cells expressing high levels of CD22 with a maximum lytic potential that appeared to decrease as the distance of the target epitope from the target cell membrane increased. Targeting membrane-distal CD22 epitopes with cTCR+ CTL revealed defects in both degranulation and lytic granule targeting. CD22-specific cTCR+ CTL exhibited lower levels of maximum lysis and lower antigen sensitivity than CTL targeting CD20, which has a shorter extracellular domain than CD22. This diminished sensitivity was not a result of reduced avidity of antigen engagement, but instead reflected weaker signaling per triggered cTCR molecule when targeting membrane-distal epitopes of CD22. Both of these parameters were restored by targeting a ligand expressing the same epitope but constructed as a truncated CD22 molecule to approximate the length of a TCR:pMHC complex. The reduced sensitivity of CD22-specific cTCR+ CTL for antigen-induced triggering of effector functions has potential therapeutic applications, as such cells selectively lysed B cell lymphoma lines expressing high levels of CD22 but demonstrated minimal activity against autologous normal B cells, which express lower levels of CD22. Thus, our results demonstrate that cTCR signal strength – and consequently antigen sensitivity – can be modulated by differential choice of target epitopes with respect to distance from the cell membrane, allowing discrimination between targets with disparate antigen density. PMID:18453625

  19. Multiantigen Print Immunoassay for Comparison of Diagnostic Antigens for Taenia solium Cysticercosis and Taeniasis▿

    PubMed Central

    Handali, Sukwan; Klarman, Molly; Gaspard, Amanda N.; Noh, John; Lee, Yeuk-Mui; Rodriguez, Silvia; Gonzalez, Armando E.; Garcia, Hector H.; Gilman, Robert H.; Tsang, Victor C. W.; Wilkins, Patricia P.

    2010-01-01

    One of the best-characterized tests for the diagnosis of neurocysticercosis is the enzyme-linked immunoelectrotransfer blot assay, developed at the CDC, which uses lentil lectin-purified glycoproteins (LLGPs) extracted from Taenia solium cysticerci. The purification of the LLGP antigens has been difficult to standardize, and the polyacrylamide gel system used for the immunoblot assay is not easily transferable to other laboratories. In this study, we developed a multiantigen printing immunoassay (MAPIA) to compare the performance of multiple recombinant Taenia solium proteins with the potential for the detection of cysticercosis and taeniasis. We prepared MAPIA strips using six cysticercosis and two taeniasis diagnostic proteins and compared the performance of the proteins with sera collected from defined cysticercosis and taeniasis cases. Of the six cysticercosis antigens, rT24H performed well in detecting cases with two or more viable cysts in the brain (sensitivity and specificity, 97% and 99.4%, respectively); the use of a combination of cysticercosis antigens did not improve the sensitivity of the test and decreased the specificity. None of the antigens could differentiate the different clinical presentations of cysticercosis. Both of the taeniasis antigens (rES33 and rES38) had the same sensitivity of 99.4% and specificities of 93.9% and 94.5%, respectively. Some cross-reactivity against rES33 and rES38 was found, especially with sera from cases infected with Schistosoma mansoni. We conclude that MAPIA is a simple and effective tool that may be used to compare antibody responses to different cysticercosis and taeniasis antigens and, in this case, may be useful for the rapid detection of T. solium cases. PMID:19906893

  20. Multiantigen print immunoassay for comparison of diagnostic antigens for Taenia solium cysticercosis and taeniasis.

    PubMed

    Handali, Sukwan; Klarman, Molly; Gaspard, Amanda N; Noh, John; Lee, Yeuk-Mui; Rodriguez, Silvia; Gonzalez, Armando E; Garcia, Hector H; Gilman, Robert H; Tsang, Victor C W; Wilkins, Patricia P

    2010-01-01

    One of the best-characterized tests for the diagnosis of neurocysticercosis is the enzyme-linked immunoelectrotransfer blot assay, developed at the CDC, which uses lentil lectin-purified glycoproteins (LLGPs) extracted from Taenia solium cysticerci. The purification of the LLGP antigens has been difficult to standardize, and the polyacrylamide gel system used for the immunoblot assay is not easily transferable to other laboratories. In this study, we developed a multiantigen printing immunoassay (MAPIA) to compare the performance of multiple recombinant Taenia solium proteins with the potential for the detection of cysticercosis and taeniasis. We prepared MAPIA strips using six cysticercosis and two taeniasis diagnostic proteins and compared the performance of the proteins with sera collected from defined cysticercosis and taeniasis cases. Of the six cysticercosis antigens, rT24H performed well in detecting cases with two or more viable cysts in the brain (sensitivity and specificity, 97% and 99.4%, respectively); the use of a combination of cysticercosis antigens did not improve the sensitivity of the test and decreased the specificity. None of the antigens could differentiate the different clinical presentations of cysticercosis. Both of the taeniasis antigens (rES33 and rES38) had the same sensitivity of 99.4% and specificities of 93.9% and 94.5%, respectively. Some cross-reactivity against rES33 and rES38 was found, especially with sera from cases infected with Schistosoma mansoni. We conclude that MAPIA is a simple and effective tool that may be used to compare antibody responses to different cysticercosis and taeniasis antigens and, in this case, may be useful for the rapid detection of T. solium cases.

  1. In vitro antigen-induced, antigen-specific antibody production in man. Specific and polyclonal components, kinetics, and cellular requirements

    PubMed Central

    1981-01-01

    A highly specific and reproducible antigen-induced, antigen-specific culture and assay system for antibody production by human peripheral blood B lymphocytes has been developed. The system is clearly T cell and monocyte dependent and is independent of exogenous mitogens. The major factors in our ability to trigger specific antibody production with antigen alone have been the use of extremely low concentrations of antigen in vitro (doses several orders of magnitude below those inducing a peak blastogenic response), careful attention to in vitro cell density and culture vessel geometry, and appreciation of the kinetics of the circulating antigen-inducible B cell repertoire. A dichotomy and overlap between antigen-induced, antigen-specific and antigen-induced, polyclonal responses was observed in the study of doubly immunized individuals. Whereas antibody responses highly specific for the antigen in culture were observed under one set of culture conditions (flat-bottomed vessels, 1.5 x 10(6) cells), switching to another culture system (round-bottomed vessels, 5 x 10(5) cells) resulted in polyclonal responses to antigen. Despite these culture condition-related differences in the induction of antibody synthesis, the suppression of specific antibody production that occurred at high concentrations of antigen was specific only for the antigen in culture. The capability to easily and reproducibly look at truly antigen-induced, antigen specific antibody production should be a major tool in furthering the understanding of human B cell activation and immunoregulation. PMID:6169778

  2. Specific removal of autoantibodies by extracorporeal immunoadsorption ameliorates experimental autoimmune myasthenia gravis.

    PubMed

    Lazaridis, Konstantinos; Dalianoudis, Ioannis; Baltatzidi, Vasiliki; Tzartos, Socrates J

    2017-11-15

    Myasthenia gravis (MG) is caused by autoantibodies, the majority of which target the muscle acetylcholine receptor (AChR). Plasmapheresis and IgG-immunoadsorption are useful therapy options, but are highly non-specific. Antigen-specific immunoadsorption would remove only the pathogenic autoantibodies, reducing the possibility of side effects while maximizing the benefit. We have extensively characterized such adsorbents, but in vivo studies are missing. We used rats with experimental autoimmune MG to perform antigen-specific immunoadsorptions over three weeks, regularly monitoring symptoms and autoantibody titers. Immunoadsorption was effective, resulting in a marked autoantibody titer decrease while the immunoadsorbed, but not the mock-treated, animals showed a dramatic symptom improvement. Overall, the procedure was found to be efficient, suggesting the subsequent initiation of clinical trials. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Peptide-Conjugated Nanoparticles Reduce Positive Co-stimulatory Expression and T Cell Activity to Induce Tolerance.

    PubMed

    Kuo, Robert; Saito, Eiji; Miller, Stephen D; Shea, Lonnie D

    2017-07-05

    Targeted approaches to treat autoimmune diseases would improve upon current therapies that broadly suppress the immune system and lead to detrimental side effects. Antigen-specific tolerance was induced using poly(lactide-co-glycolide) nanoparticles conjugated with disease-relevant antigen to treat a model of multiple sclerosis. Increasing the nanoparticle dose and amount of conjugated antigen both resulted in more durable immune tolerance. To identify active tolerance mechanisms, we investigated downstream cellular and molecular events following nanoparticle internalization by antigen-presenting cells. The initial cell response to nanoparticles indicated suppression of inflammatory signaling pathways. Direct and functional measurement of surface MHC-restricted antigen showed positive correlation with both increasing particle dose from 1 to 100 μg/mL and increasing peptide conjugation by 2-fold. Co-stimulatory analysis of cells expressing MHC-restricted antigen revealed most significant decreases in positive co-stimulatory molecules (CD86, CD80, and CD40) following high doses of nanoparticles with higher peptide conjugation, whereas expression of a negative co-stimulatory molecule (PD-L1) remained high. T cells isolated from mice immunized against myelin proteolipid protein (PLP 139-151 ) were co-cultured with antigen-presenting cells administered PLP 139-151 -conjugated nanoparticles, which resulted in reduced T cell proliferation, increased T cell apoptosis, and a stronger anti-inflammatory response. These findings indicate several potential mechanisms used by peptide-conjugated nanoparticles to induce antigen-specific tolerance. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  4. Stable antigen-specific T-cell hyporesponsiveness induced by tolerogenic dendritic cells from multiple sclerosis patients.

    PubMed

    Raϊch-Regué, Dàlia; Grau-López, Laia; Naranjo-Gómez, Mar; Ramo-Tello, Cristina; Pujol-Borrell, Ricardo; Martínez-Cáceres, Eva; Borràs, Francesc E

    2012-03-01

    Multiple sclerosis (MS) is a chronic demyelinating autoimmune disease of the central nervous system. Current therapies decrease the frequency of relapses and limit, to some extent, but do not prevent disease progression. Hence, new therapeutic approaches that modify the natural course of MSneed to be identified. Tolerance induction to self-antigens using monocyte-derived dendritic cells (MDDCs) is a promising therapeutic strategy in autoimmunity. In this work, we sought to generate and characterize tolerogenic MDDCs (tolDCs) from relapsing-remitting (RR) MSpatients, loaded with myelin peptides as specific antigen, with the aim of developing immunotherapeutics for MS. MDDCs were generated from both healthy-blood donors and RR-MSpatients, and MDDCmaturation was induced with a proinflammatory cytokine cocktail in the absence or presence of 1α,25-dihydroxyvitamin-D(3) , a tolerogenicity-inducing agent. tolDCs were generated from monocytes of RR-MSpatients as efficiently as from monocytes of healthy subjects. The RR-MStolDCs expressed a stable semimature phenotype and an antiinflammatory profile as compared with untreated MDDCs. Importantly, myelin peptide-loaded tolDCs induced stable antigen-specific hyporesponsiveness in myelin-reactive T cells from RR-MS patients. These results suggest that myelin peptide-loaded tolDCs may be a powerful tool for inducing myelin-specific tolerance in RR-MS patients. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Application of Protein Microarrays for Multiplexed Detection of Antibodies to Tumor Antigens in Breast Cancer

    PubMed Central

    Anderson, Karen S.; Ramachandran, Niroshan; Wong, Jessica; Raphael, Jacob V.; Hainsworth, Eugenie; Demirkan, Gokhan; Cramer, Daniel; Aronzon, Diana; Hodi, F. Stephen; Harris, Lyndsay; Logvinenko, Tanya; LaBaer, Joshua

    2012-01-01

    There is strong preclinical evidence that cancer, including breast cancer, undergoes immune surveillance. This continual monitoring, by both the innate and the adaptive immune systems, recognizes changes in protein expression, mutation, folding, glycosylation, and degradation. Local immune responses to tumor antigens are amplified in draining lymph nodes, and then enter the systemic circulation. The antibody response to tumor antigens, such as p53 protein, are robust, stable, and easily detected in serum, may exist in greater concentrations than their cognate antigens, and are potential highly specific biomarkers for cancer. However, antibodies have limited sensitivities as single analytes, and differences in protein purification and assay characteristics have limited their clinical application. For example, p53 autoantibodies in the sera are highly specific for cancer patients, but are only detected in the sera of 10-20% of patients with breast cancer. Detection of p53 autoantibodies is dependent on tumor burden, p53 mutation, rapidly decreases with effective therapy, but is relatively independent of breast cancer subtype. Although antibodies to hundreds of other tumor antigens have been identified in the sera of breast cancer patients, very little is known about the specificity and clinical impact of the antibody immune repertoire to breast cancer. Recent advances in proteomic technologies have the potential for rapid identification of immune response signatures for breast cancer diagnosis and monitoring. We have adapted programmable protein microarrays for the specific detection of autoantibodies in breast cancer. Here, we present the first demonstration of the application of programmable protein microarray ELISAs for the rapid identification of breast cancer autoantibodies. PMID:18311903

  6. Effectiveness of the combined evaluation of KLK3 genetics and free-to-total prostate specific antigen ratio for prostate cancer diagnosis.

    PubMed

    Zambon, Carlo-Federico; Prayer-Galetti, Tommaso; Basso, Daniela; Padoan, Andrea; Rossi, Elisa; Secco, Silvia; Pelloso, Michela; Fogar, Paola; Navaglia, Filippo; Moz, Stefania; Zattoni, Filiberto; Plebani, Mario

    2012-10-01

    Of serum prostate specific antigen variability 40% depends on inherited factors. We ascertained whether the knowledge of KLK3 genetics would enhance prostate specific antigen diagnostic performance in patients with clinical suspicion of prostate cancer. We studied 1,058 men who consecutively underwent prostate biopsy for clinical suspicion of prostate cancer. At histology prostate cancer was present in 401 cases and absent in 657. Serum total prostate specific antigen and the free-to-total prostate specific antigen ratio were determined. Four polymorphisms of the KLK3 gene (rs2569733, rs2739448, rs925013 and rs2735839) and 1 polymorphism of the SRD5A2 gene (rs523349) were studied. The influence of genetics on prostate specific antigen variability was evaluated by multivariate linear regression analysis. The performance of total prostate specific antigen and the free-to-total prostate specific antigen ratio alone or combined with a genetically based patient classification were defined by ROC curve analyses. For prostate cancer diagnosis the free-to-total prostate specific antigen ratio index alone (cutoff 11%) was superior to total prostate specific antigen (cutoff 4 ng/ml) and to free-to-total prostate specific antigen ratio reflex testing (positive predictive value 61%, 43% and 54%, respectively). Prostate specific antigen correlated with KLK3 genetics (rs2735839 polymorphism p = 0.001, and rs2569733, rs2739448 and rs925013 haplotype combination p = 0.003). In patients with different KLK3 genetics 2 optimal free-to-total prostate specific antigen ratio cutoffs (11% and 14.5%) were found. For free-to-total prostate specific antigen ratio values between 11% and 14.5% the prostate cancer probability ranged from 30.0% to 47.4% according to patient genetics. The free-to-total prostate specific antigen ratio is superior to total prostate specific antigen for prostate cancer diagnosis, independent of total prostate specific antigen results. Free-to-total prostate specific antigen ratio findings below 11% are positively associated with prostate cancer and those above 14.5% are negatively associated with prostate cancer, while the interpretation of those between 11% and 14.5% is improved by patient KLK3 genetic analysis. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  7. Suppression of Murine Colitis and its Associated Cancer by Carcinoembryonic Antigen-Specific Regulatory T Cells

    PubMed Central

    Blat, Dan; Zigmond, Ehud; Alteber, Zoya; Waks, Tova; Eshhar, Zelig

    2014-01-01

    The adoptive transfer of regulatory T cells (Tregs) offers a promising strategy to combat pathologies that are characterized by aberrant immune activation, including graft rejection and autoinflammatory diseases. Expression of a chimeric antigen receptor (CAR) gene in Tregs redirects them to the site of autoimmune activity, thereby increasing their suppressive efficiency while avoiding systemic immunosuppression. Since carcinoembryonic antigen (CEA) has been shown to be overexpressed in both human colitis and colorectal cancer, we treated CEA-transgenic mice that were induced to develop colitis with CEA-specific CAR Tregs. Two disease models were employed: T-cell-transfer colitis as well as the azoxymethane–dextran sodium sulfate model for colitis-associated colorectal cancer. Systemically administered CEA-specific (but not control) CAR Tregs accumulated in the colons of diseased mice. In both model systems, CEA-specific CAR Tregs suppressed the severity of colitis compared to control Tregs. Moreover, in the azoxymethane–dextran sodium sulfate model, CEA-specific CAR Tregs significantly decreased the subsequent colorectal tumor burden. Our data demonstrate that CEA-specific CAR Tregs exhibit a promising potential in ameliorating ulcerative colitis and in hindering colorectal cancer development. Collectively, this study provides a proof of concept for the therapeutic potential of CAR Tregs in colitis patients as well as in other autoimmune inflammatory disorders. PMID:24686242

  8. Adeno-associated virus capsid antigen presentation is dependent on endosomal escape

    PubMed Central

    Li, Chengwen; He, Yi; Nicolson, Sarah; Hirsch, Matt; Weinberg, Marc S.; Zhang, Ping; Kafri, Tal; Samulski, R. Jude

    2013-01-01

    Adeno-associated virus (AAV) vectors are attractive for gene delivery-based therapeutics, but data from recent clinical trials have indicated that AAV capsids induce a cytotoxic T lymphocyte (CTL) response that eliminates transduced cells. In this study, we used traditional pharmacological agents and AAV mutants to elucidate the pathway of capsid cross-presentation in AAV-permissive cells. Endosomal acidification inhibitors blocked AAV2 antigen presentation by over 90%, while proteasome inhibitors completely abrogated antigen presentation. Using mutant viruses that are defective for nuclear entry, we observed a 90% decrease in capsid antigen presentation. Different antigen presentation efficiencies were achieved by selectively mutating virion nuclear localization signals. Low antigen presentation was demonstrated with basic region 1 (BR1) mutants, despite relatively high transduction efficiency, whereas there was no difference in antigen presentation between BR2 and BR3 mutants defective for transduction, as compared with wild-type AAV2. These results suggest that effective AAV2 capsid antigen presentation is dependent on AAV virion escape from the endosome/lysosome for antigen degradation by proteasomes, but is independent of nuclear uncoating. These results should facilitate the design of effective strategies to evade capsid-specific CTL-mediated elimination of AAV-transduced target cells in future clinical trials. PMID:23454772

  9. Specificity in cancer immunotherapy.

    PubMed

    Schietinger, Andrea; Philip, Mary; Schreiber, Hans

    2008-10-01

    From the earliest days in the field of tumor immunology three questions have been asked: do cancer cells express tumor-specific antigens, does the immune system recognize these antigens and if so, what is their biochemical nature? We now know that truly tumor-specific antigens exist, that they are caused by somatic mutations, and that these antigens can induce both humoral and cell-mediated immune responses. Because tumor-specific antigens are exclusively expressed by the cancer cell and are often crucial for tumorigenicity, they are ideal targets for anti-cancer immunotherapy. Nevertheless, the antigens that are targeted today by anti-tumor immunotherapy are not tumor-specific antigens, but antigens that are normal molecules also expressed by normal tissues (so-called "tumor-associated" antigens). If tumor-specific antigens exist and are ideal targets for immunotherapy, why are they not being targeted? In this review, we summarize current knowledge of tumor-specific antigens: their identification, immunological relevance and clinical use. We discuss novel tumor-specific epitopes and propose new approaches that could improve the success of cancer immunotherapy, especially for the treatment of solid tumors.

  10. Serological purification of polysaccharide antigens from Streptococcus mutans serotypes a and d: characterization of multiple antigenic determinants.

    PubMed

    Linzer, R; Mukasa, H; Slade, H D

    1975-10-01

    The polysaccharide antigen preparations from serotype a and serotype d strains of Streptococcus mutans contained both a serotype-specific antigenic determinant and a common a-d antigenic determinant, as demonstrated by agar gel diffusion studies and a quantitative cross-precipitin assay. The chromatographically purified antigens were isolated by a method which depended on their serological specificity to determine if these two antigenic determinants were located on the same molecule. The a and d polysaccharides were recovered from specific antigen-antibody complexes and characterized with respect to their immunological specificity and chemical composition. Agar gel diffusion tests demonstrated that, in both the a and d preparations, the serotype-specific antigenic determinant and the common a-d antigenic determinant were present in one molecule.

  11. Fluorescently labeled dengue viruses as probes to identify antigen-specific memory B cells by multiparametric flow cytometry.

    PubMed

    Woda, Marcia; Mathew, Anuja

    2015-01-01

    Low frequencies of memory B cells in the peripheral blood make it challenging to measure the functional and phenotypic characteristics of this antigen experienced subset of B cells without in vitro culture. To date, reagents are lacking to measure ex vivo frequencies of dengue virus (DENV)-specific memory B cells. We wanted to explore the possibility of using fluorescently labeled DENV as probes to detect antigen-specific memory B cells in the peripheral blood of DENV immune individuals. Alexa Fluor dye-labeled DENV yielded viable virus that could be stored at -80°C for long periods of time. Using a careful gating strategy and methods to decrease non-specific binding, we were able to identify a small frequency of B cells from dengue immune individuals that bound labeled DENV. Sorted DENV(+) B cells from immune, but not naïve donors secreted antibodies that bound DENV after in vitro stimulation. Overall, Alexa Fluor dye-labeled DENVs are useful reagents to enable the detection and characterization of memory B cells in DENV immune individuals. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Saponins from soy bean and mung bean inhibit the antigen specific activation of helper T cells by blocking cell cycle progression.

    PubMed

    Lee, Suk Jun; Bae, Joonbeom; Kim, Sunhee; Jeong, Seonah; Choi, Chang-Yong; Choi, Sang-Pil; Kim, Hyun-Sook; Jung, Woon-Won; Imm, Jee-Young; Kim, Sae Hun; Chun, Taehoon

    2013-02-01

    Treatment of helper T (Th) cells with saponins from soy bean and mung bean prevented their activation by inhibiting cell proliferation and cytokine secretion. However, the saponins did not affect the expression of major histocompatibility complex class II (A(b)) and co-stimulatory molecule (CD86) on professional antigen-presenting cells. Instead, the saponins directly inhibited Th cell proliferation by blocking the G(1) to S phase cell cycle transition. Moreover, blocking of the cell cycle by the saponins was achieved by decreased expression of cyclin D1 and cyclin E, and constitutive expression of p27(KIP1). Saponins also increased stability of p27(KIP1) in Th cells after antigenic stimulation.

  13. Downstaging chemotherapy and alteration in the classic computed tomography/magnetic resonance imaging signs of vascular involvement in patients with pancreaticobiliary malignant tumors: influence on patient selection for surgery.

    PubMed

    Donahue, Timothy R; Isacoff, William H; Hines, O Joe; Tomlinson, James S; Farrell, James J; Bhat, Yasser M; Garon, Edward; Clerkin, Barbara; Reber, Howard A

    2011-07-01

    To determine whether computed tomography (CT)/magnetic resonance imaging (MRI) signs of vascular involvement are accurate after downstaging chemotherapy (DCTx) and to highlight factors associated with survival in patients who have undergone resection. Retrospective cohort study; prospective database. University pancreatic disease center. Patients with unresectable pancreaticobiliary cancer who underwent curative intent surgery after completing DCTx. Use of CT/MRI scan, pancreatic resection, and palliative bypass. Resectability after DCTx and disease-specific survival. We operated on 41 patients (1992-2009) with locally advanced periampullary malignant tumors after a median of 8.5 months of DCTx. Before DCTx, most patients (38 [93%]) were unresectable because of evidence of vascular contact on CT/MRI scan or operative exploration. Criteria for exploration after DCTx were CT/MRI evidence of tumor shrinkage and/or change in signs of vascular involvement, cancer antigen 19-9 decrease, and good functional status. None had progressive disease. At operation, we resected tumors in 34 of 41 patients (83%), and 6 had persistent vascular involvement. Surprisingly, CT/MRI scan was only 71% sensitive and 58% specific to detect vascular involvement after DCTx. "Involvement" on imaging was often from tumor fibrosis rather than viable cancer. Radiographic decrease in tumor size also did not predict resectability (P = .10). Patients with tumors that were resected had a median 87% decrease in cancer antigen 19-9 (P = .04) during DCTx. The median follow-up (all survivors) was 31 months, and disease-specific survival was 52 months for patients with resected tumors. In patients with initially unresectable periampullary malignant tumors, original CT/MRI signs of vascular involvement may persist after successful DCTx. Patients should be chosen for surgery on the basis of lack of disease progression, good functional status, and decrease in cancer antigen 19-9.

  14. Prostate-Specific Antigen (PSA) Test: MedlinePlus Lab Test Information

    MedlinePlus

    ... gov/labtests/prostatespecificantigenpsatest.html Prostate-Specific Antigen (PSA) Test To use the sharing features on this page, ... JavaScript. What is a prostate-specific antigen (PSA) test? A prostate-specific antigen (PSA) test measures the ...

  15. A simple mechanistic explanation for original antigenic sin and its alleviation by adjuvants.

    PubMed

    Ndifon, Wilfred

    2015-11-06

    A large number of published studies have shown that adaptive immunity to a particular antigen, including pathogen-derived, can be boosted by another, cross-reacting antigen while inducing suboptimal immunity to the latter. Although this phenomenon, called original antigenic sin (OAS), was first reported approximately 70 years ago (Francis et al. 1947 Am. J. Public Health 37, 1013-1016 (doi:10.2105/AJPH.37.8.1013)), its underlying biological mechanisms are still inadequately understood (Kim et al. Proc. Natl Acad. Sci. USA 109, 13 751-13 756 (doi:10.1073/pnas.0912458109)). Here, focusing on the humoral aspects of adaptive immunity, I propose a simple and testable mechanism: that OAS occurs when T regulatory cells induced by the first antigen decrease the dose of the second antigen that is loaded by dendritic cells and available to activate naive lymphocytes. I use both a parsimonious mathematical model and experimental data to confirm the deductive validity of this proposal. This model also explains the puzzling experimental observation that administering certain dendritic cell-activating adjuvants during antigen exposure alleviates OAS. Specifically, the model predicts that such adjuvants will attenuate T regulatory suppression of naive lymphocyte activation. Together, these results suggest additional strategies for redeeming adaptive immunity from the destructive consequences of antigenic 'sin'. © 2015 The Author(s).

  16. Construction of a Der p2-transgenic plant for the alleviation of airway inflammation

    PubMed Central

    Lee, CC; Ho, H; Lee, KT; Jeng, ST; Chiang, BL

    2011-01-01

    In clinical therapy, the amount of antigen administered to achieve oral tolerance for allergic diseases is large, and the cost is a major consideration. In this study, we used tobacco plants to develop a large-scale protein production system for allergen-specific immunotherapy, and we investigated the mechanisms of oral tolerance induced by a transgenic plant-derived antigen. We used plants (tobacco leaves) transgenic for the Dermatophagoides pteronyssinus 2 (Der p2) antigen to produce Der p2. Mice received total protein extract from Der p2 orally once per day over 6 days (days 0–2 and days 6–8). Mice were also sensitized and challenged with yeast-derived recombinant Der p2 (rDer p2), after which the mice were examined for airway hyper-responsiveness and airway inflammation. After sensitization and challenge with rDer p2, mice that were fed with total protein extracted from transgenic plants showed decreases in serum Der p2-specific IgE and IgG1 titers, decreased IL-5 and eotaxin levels in bronchial alveolar lavage fluid, and eosinophil infiltration in the airway. In addition, hyper-responsiveness was also decreased in mice that were fed with total protein extracted from transgenic plants, and CD4+CD25+Foxp3+ regulatory T cells were significantly increased in mediastinal and mesenteric lymph nodes. Furthermore, splenocytes isolated from transgenic plant protein-fed mice exhibited decreased proliferation and increased IL-10 secretion after stimulation with rDer p2. The data here suggest that allergen-expressing transgenic plants could be used for therapeutic purposes for allergic diseases. PMID:21602845

  17. Nonencapsulated Trichinella pseudospiralis Infection Impairs Follicular Helper T Cell Differentiation with Subclass-Selective Decreases in Antibody Responses

    PubMed Central

    Asano, Kazunobu; Wu, Zhiliang; Srinontong, Piyarat; Ikeda, Takahide; Nagano, Isao; Morita, Hirokuyi

    2016-01-01

    Infectious microorganisms often modify host immunity to escape from immune elimination. Trichinella is a unique nematode of the helminth family, whose members parasitize the muscle cells inside the host without robust eliminative reactions. There are several species of Trichinella; some develop in muscle cells that become encapsulated (e.g., Trichinella spiralis) and others in cells that do not encapsulate (e.g., Trichinella pseudospiralis). It has already been established that Trichinella infection affects host immune responses in several experimental immune diseases in animal models; however, most of those studies were done using T. spiralis infection. As host immune responses to T. spiralis and T. pseudospiralis infections have been reported to be different, it is necessary to clarify how T. pseudospiralis infection influences the host immune responses. In this study, we investigated the influence on host humoral immunity in T. pseudospiralis-infected mice. We demonstrated that T. pseudospiralis infection decreased antigen-specific IgG2a and IgG2b antibody (Ab) production in mice immunized with a model antigen. This selective decrease in gamma interferon (IFN-γ)-dependent Ab production was not due to a decrease in IFN-γ production, and we instead found impaired follicular helper T (Tfh) cell differentiation. The affinity maturation of antigen-specific Ab tended to be delayed but was not significant in T. pseudospiralis-infected mice. We also observed that CD11b+ spleen cells in T. pseudospiralis-infected mice expressed CD206 and PD-L2, the phenotype of which was M2 macrophages with weak production of interleukin-6 (IL-6), possibly resulting in impaired Tfh differentiation. Taken together, our results indicate that nonencapsulated Trichinella infection induces selective dampening in humoral immunity with the suppression of Tfh differentiation. PMID:27736779

  18. Evidence of prostate cancer "reverse stage migration" toward more advanced disease at diagnosis: Data from the Pennsylvania Cancer Registry.

    PubMed

    Reese, Adam C; Wessel, Sean R; Fisher, Susan G; Mydlo, Jack H

    2016-08-01

    The widespread adoption of prostate-specific antigen-based prostate cancer screening caused a stage migration toward earlier stage disease at diagnosis. We investigated whether this stage migration has persisted in a contemporary analysis of a population-based statewide cancer registry. We analyzed the Pennsylvania Cancer Registry, a statewide registry of all newly diagnosed cancers. Data were collected on prostate cancers diagnosed between 1992 and 2012. We determined age-adjusted prostate cancer incidence and mortality rates, as well as the distribution of tumor stage (localized, regional, or metastatic) at diagnosis, and assessed for changes in these variables over time using joinpoint analysis. Between 1992 and 2012, 210,831 new cases of prostate cancer were diagnosed in Pennsylvania, and 33,948 men died of disease. Age-adjusted prostate cancer incidence rates, and specifically the incidence of localized disease, have decreased dramatically since 2007 to 2008. Due to the decreased diagnosis of localized disease, regional and metastatic tumors have made up a greater percentage of all prostate cancer diagnoses in recent years, despite a relatively stable incidence of these advanced stage tumors. Over the past 2 decades, age-adjusted prostate cancer incidence rates in Pennsylvania have decreased, primarily because of the decreased detection of early-stage disease. There has been a corresponding shift toward more advanced disease at diagnosis. These findings may be explained by the decreased use of prostate-specific antigen-based screening, among other factors. The 2012 United States Preventative Services Task Force recommendations against prostate cancer screening may exacerbate this concerning trend, potentially resulting in an increase in prostate cancer-specific mortality. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. THE EMERGENCE OF ANTIBODIES WITH EITHER IDENTICAL OR UNRELATED INDIVIDUAL ANTIGENIC SPECIFICITY DURING REPEATED IMMUNIZATIONS WITH STREPTOCOCCAL VACCINES

    PubMed Central

    Eichmann, Klaus; Braun, Dietmar G.; Feizi, Ten; Krause, Richard M.

    1970-01-01

    Electrophoretically monodisperse antibody components in rabbit antisera to the carbohydrates of the Groups A and C streptococci have been examined for their individual antigenic specificity. In these antibody components which were isolated by preparative electrophoresis, individual antigenic specificity was confined to the specific antibody and was absent in the nonantibody γ-globulin. Radioprecipitation experiments and the use of immune absorbent columns constructed from goat anti-antisera, which had been absorbed with fraction II, revealed that all the specific antibody in an electrophoretically monodisperse component was reactive with the homologous anti-antibody. Antibodies with either identical or distinct individual antigenic specificities may occur in the same rabbit with repeated immunizations. Antibodies with identical antigenic specificity had identical electrophoretic mobility, whereas antibodies with unrelated antigenic specificities had distinct electrophoretic mobilities. In the interval between immunizations, if antibody to the carbohydrate antigen was absent, there was no detectable antibody with individual antigenic specificity. PMID:4192569

  20. [Platelet allo-antibodies identification strategies for preventing and managing platelet refractoriness].

    PubMed

    Basire, A; Picard, C

    2014-11-01

    Platelet refractoriness is a serious complication for patients receiving recurrent platelet transfusions, which can be explained by non-immune and immune causes. Human Leukocyte Antigens (HLA) allo-immunization, especially against HLA class I, is the major cause for immune platelet refractoriness. To a lesser extent, allo-antibodies against specific Human Platelet Antigen (HPA) are also involved. Pregnancy, transplantation and previous transfusions can lead to allo-immune reaction against platelet antigens. After transfusion, platelet count is decreased by accelerated platelet destruction related to antibodies fixation on incompatible platelet antigens. New laboratory tests for allo-antibodies identification were developed to improve sensibility and specificity, especially with the LUMINEX(®) technology. The good use and interpretation of these antibodies assays can improve strategies for platelet refractoriness prevention and management with a patient adapted response. Compatible platelets units can be selected according to their identity with recipient typing or immune compatibility regarding HLA or HPA antibodies or HLA epitope compatibility. Prospective studies are needed to further confirm the clinical benefit of new allo-antibodies identification methods and consensus strategies for immune platelet refractoriness management. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Specific Fluorine Labeling of the HyHEL10 Antibody Affects Antigen Binding and Dynamics

    PubMed Central

    Acchione, Mauro; Lee, Yi-Chien; DeSantis, Morgan E.; Lipschultz, Claudia A.; Wlodawer, Alexander; Li, Mi; Shanmuganathan, Aranganathan; Walter, Richard L.; Smith-Gill, Sandra; Barchi, Joseph J.

    2012-01-01

    To more fully understand the molecular mechanisms responsible for variations in binding affinity with antibody maturation, we explored the use of site specific fluorine labeling and 19F nuclear magnetic resonance (NMR). Several single-chain (scFv) antibodies, derived from an affinity-matured series of anti-hen egg white lysozyme (HEL) mouse IgG1, were constructed with either complete or individual replacement of tryptophan residues with 5-fluorotryptophan (5FW). An array of biophysical techniques was used to gain insight into the impact of fluorine substitution on the overall protein structure and antigen binding. SPR measurements indicated that 5FW incorporation lowered binding affinity for the HEL antigen. The degree of analogue impact was residue-dependent, and the greatest decrease in affinity was observed when 5FW was substituted for residues near the binding interface. In contrast, corresponding crystal structures in complex with HEL were essentially indistinguishable from the unsubstituted antibody. 19F NMR analysis showed severe overlap of signals in the free fluorinated protein that was resolved upon binding to antigen, suggesting very distinct chemical environments for each 5FW in the complex. Preliminary relaxation analysis suggested the presence of chemical exchange in the antibody–antigen complex that could not be observed by X-ray crystallography. These data demonstrate that fluorine NMR can be an extremely useful tool for discerning structural changes in scFv antibody–antigen complexes with altered function that may not be discernible by other biophysical techniques. PMID:22769726

  2. A genetic marker of the ACKR1 gene is present in patients with Type II congenital smell loss who have type I hyposmia and hypogeusia

    PubMed Central

    Stateman, William A.; Knöppel, Alexandra B.; Flegel, Willy A.; Henkin, Robert I.

    2015-01-01

    PURPOSE Our previous study of Type II congenital smell loss patients revealed a statistically significant lower prevalence of an FY (ACKR1, formerly DARC) haplotype compared to controls. The present study correlates this genetic feature with subgroups of patients defined by specific smell and taste functions. METHODS Smell and taste function measurements were performed by use of olfactometry and gustometry to define degree of abnormality of smell and taste function. Smell loss was classified as anosmia or hyposmia (types I, II or III). Taste loss was similarly classified as ageusia or hypogeusia (types I, II or III). Based upon these results patient erythrocyte antigen expression frequencies were categorized by smell and taste loss with results compared between patients within the Type II group and published controls. RESULTS Comparison of antigen expression frequencies revealed a statistically significant decrease in incidence of an Fyb haplotype only among patients with type I hyposmia and any form of taste loss (hypogeusia). In all other patient groups erythrocyte antigens were expressed at normal frequencies. CONCLUSIONS Data suggest that Type II congenital smell loss patients who exhibit both type I hyposmia and hypogeusia are genetically distinct from all other patients with Type II congenital smell loss. This distinction is based on decreased Fyb expression which correlated with abnormalities in two sensory modalities (hyposmia type I and hypogeusia). Only patients with these two specific sensory abnormalities expressed the Fyb antigen (encoded by the ACKR1 gene on the long arm of chromosome 1) at frequencies different from controls. PMID:27968956

  3. Blood Interferon Signatures Putatively Link Lack of Protection Conferred by the RTS,S Recombinant Malaria Vaccine to an Antigen-specific IgE Response

    PubMed Central

    Rinchai, Darawan; Presnell, Scott; Vidal, Marta; Dutta, Sheetij; Chauhan, Virander; Cavanagh, David; Moncunill, Gemma; Dobaño, Carlota; Chaussabel, Damien

    2017-01-01

    Malaria remains a major cause of mortality and morbidity worldwide. Progress has been made in recent years with the development of vaccines that could pave the way towards protection of hundreds of millions of exposed individuals. Here we used a modular repertoire approach to re-analyze a publically available microarray blood transcriptome dataset monitoring the response to malaria vaccination. We report the seminal identification of interferon signatures in the blood of subjects on days 1, 3 and 14 following administration of the third dose of the RTS,S recombinant malaria vaccine. These signatures at day 1 correlate with protection, and at days 3 and 14 to susceptibility to subsequent challenge of study subjects with live parasites. In addition we putatively link the decreased abundance of interferon-inducible transcripts observed at days 3 and 14 post-vaccination with the elicitation of an antigen-specific IgE response in a subset of vaccine recipients that failed to be protected by the RTS,S vaccine. Furthermore, profiling of antigen-specific levels of IgE in a Mozambican cohort of malaria-exposed children vaccinated with RTS,S identified an association between elevated baseline IgE levels and subsequent development of naturally acquired malaria infection during follow up. Taken together these findings warrant further investigation of the role of antigen-specific IgE in conferring susceptibility to malaria infection. PMID:28883910

  4. Myeloid-derived suppressor cells as a potential therapy for experimental autoimmune myasthenia gravis

    PubMed Central

    Li, Yan; Tu, Zhidan; Qian, Shiguang; Fung, John J.; Markowitz, Sanford D.; Kusner, Linda L.; Kaminski, Henry J.; Lu, Lina; Lin, Feng

    2016-01-01

    We recently demonstrated that hepatic stellate cells induce the differentiation of myeloid-derived suppressor cells (MDSCs) from myeloid progenitors. In this study, we found that adoptive transfer of these MDSCs effectively reversed disease progression in experimental autoimmune myasthenia gravis (EAMG), a T-cell-dependent and B-cell-mediated model for myasthenia gravis. In addition to ameliorated disease severity, MDSC-treated EAMG mice showed suppressed acetylcholine receptors (AChR)-specific T-cell responses, decreased levels of serum anti-AChR IgGs, and reduced complement activation at the neuromuscular junctions. Incubating MDSCs with B cells activated by anti-IgM or anti-CD40 antibodies inhibited the proliferation of these in vitro activated B cells. Administering MDSCs into mice immunized with a T-cell-independent antigen inhibited the antigen-specific antibody production in vivo. MDSCs directly inhibit B cells through multiple mechanisms including prostaglandin E2, inducible nitric oxide synthase and arginase. Interestingly, MDSC treatment in EMAG mice does not appear to significantly inhibit their immune response to a non-relevant antigen, ovalbumin. These results demonstrated that hepatic stellate cell-induced MDSCs concurrently suppress both T- and B- cell autoimmunity, leading to effective treatment of established EAMG; and that the MDSCs inhibit AChR-specific immune responses at least partially in an antigen-specific manner. These data suggest that MDSCs could be further developed as a novel approach to treating myasthenia gravis and, even more broadly, other diseases in which T and B cells are involved in pathogenesis. PMID:25057008

  5. Using Antigen-Specific B Cells to Combine Antibody and T Cell-Based Cancer Immunotherapy.

    PubMed

    Wennhold, Kerstin; Thelen, Martin; Schlößer, Hans Anton; Haustein, Natalie; Reuter, Sabrina; Garcia-Marquez, Maria; Lechner, Axel; Kobold, Sebastian; Rataj, Felicitas; Utermöhlen, Olaf; Chakupurakal, Geothy; Theurich, Sebastian; Hallek, Michael; Abken, Hinrich; Shimabukuro-Vornhagen, Alexander; von Bergwelt-Baildon, Michael

    2017-09-01

    Cancer immunotherapy by therapeutic activation of T cells has demonstrated clinical potential. Approaches include checkpoint inhibitors and chimeric antigen receptor T cells. Here, we report the development of an alternative strategy for cellular immunotherapy that combines induction of a tumor-directed T-cell response and antibody secretion without the need for genetic engineering. CD40 ligand stimulation of murine tumor antigen-specific B cells, isolated by antigen-biotin tetramers, resulted in the development of an antigen-presenting phenotype and the induction of a tumor antigen-specific T-cell response. Differentiation of antigen-specific B cells into antibody-secreting plasma cells was achieved by stimulation with IL21, IL4, anti-CD40, and the specific antigen. Combined treatment of tumor-bearing mice with antigen-specific CD40-activated B cells and antigen-specific plasma cells induced a therapeutic antitumor immune response resulting in remission of established tumors. Human CEA or NY-ESO-1-specific B cells were detected in tumor-draining lymph nodes and were able to induce antigen-specific T-cell responses in vitro, indicating that this approach could be translated into clinical applications. Our results describe a technique for the exploitation of B-cell effector functions and provide the rationale for their use in combinatorial cancer immunotherapy. Cancer Immunol Res; 5(9); 730-43. ©2017 AACR . ©2017 American Association for Cancer Research.

  6. Elevated stress hormone levels relate to Epstein-Barr virus reactivation in astronauts

    NASA Technical Reports Server (NTRS)

    Stowe, R. P.; Pierson, D. L.; Barrett, A. D.

    2001-01-01

    OBJECTIVE: The objective of this study was to determine the effects of stress and spaceflight on levels of neuroendocrine hormones and Epstein-Barr virus (EBV)-specific antibodies in astronauts. METHODS: Antiviral antibody titers and stress hormones were measured in plasma samples collected from 28 astronauts at their annual medical exam (baseline), 10 days before launch (L-10), landing day (R+0), and 3 days after landing (R+3). Urinary stress hormones were also measured at L-10 and R+0. RESULTS: Significant increases (p <.01) in EBV virus capsid antigen antibodies were found at all three time points (L-10, R+0, and R+3) as compared with baseline samples. Anti-EBV nuclear antigen antibodies were significantly decreased at L-10 (p <.05) and continued to decrease after spaceflight (R+0 and R+3, p <.01). No changes were found in antibodies to the nonlatent measles virus. The 11 astronauts who showed evidence of EBV reactivation had significant increases in urinary epinephrine and norepinephrine as compared with astronauts without EBV reactivation. CONCLUSION: These findings indicate that physical and psychological stresses associated with spaceflight resulted in decreased virus-specific T-cell immunity and reactivation of EBV.

  7. Flow-induced detachment of red blood cells adhering to surfaces by specific antigen-antibody bonds.

    PubMed

    Xia, Z; Goldsmith, H L; van de Ven, T G

    1994-04-01

    Fixed spherical swollen human red blood cells of blood type B adhering on a glass surface through antigen-antibody bonds to monoclonal mouse antihuman IgM, adsorbed or covalently linked on the surface, were detached by known hydrodynamic forces created in an impinging jet. The dynamic process of detachment of the specifically bound cells was recorded and analyzed. The fraction of adherent cells remaining on the surface decreased with increasing hydrodynamic force. For an IgM coverage of 0.26%, a tangential force on the order of 100 pN was able to detach almost all of the cells from the surface within 20 min. After a given time of exposure to hydrodynamic force, the fraction of adherent cells remaining increased with time, reflecting an increase in adhesion strength. The characteristic time for effective aging was approximately 4 h. Results from experiments in which the adsorbed antibody molecules were immobilized through covalent coupling and from evanescent wave light scattering of adherent cells, imply that deformation of red cells at the contact area was the principal cause for aging, rather than local clustering of the antibody through surface diffusion. Experiments with latex beads specifically bound to red blood cells suggest that, instead of breaking the antigen-antibody bonds, antigen molecules were extracted from the cell membrane during detachment.

  8. Mechanisms of allergen immunotherapy for inhaled allergens and predictive biomarkers.

    PubMed

    Shamji, Mohamed H; Durham, Stephen R

    2017-12-01

    Allergen immunotherapy is effective in patients with IgE-dependent allergic rhinitis and asthma. When immunotherapy is given continuously for 3 years, there is persistent clinical benefit for several years after its discontinuation. This disease-modifying effect is both antigen-specific and antigen-driven. Clinical improvement is accompanied by decreases in numbers of effector cells in target organs, including mast cells, basophils, eosinophils, and type 2 innate lymphoid cells. Immunotherapy results in the production of blocking IgG/IgG 4 antibodies that can inhibit IgE-dependent activation mediated through both high-affinity IgE receptors (FcεRI) on mast cells and basophils and low-affinity IgE receptors (FcεRII) on B cells. Suppression of T H 2 immunity can occur as a consequence of either deletion or anergy of antigen-specific T cells; induction of antigen-specific regulatory T cells; or immune deviation in favor of T H 1 responses. It is not clear whether the altered long-term memory resides within the T-cell or the B-cell compartment. Recent data highlight the role of IL-10-producing regulatory B cells and "protective" antibodies that likely contribute to long-term tolerance. Understanding mechanisms underlying induction and persistence of tolerance should identify predictive biomarkers of clinical response and discover novel and more effective strategies for immunotherapy. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Antibody Fab display and selection through fusion to the pIX coat protein of filamentous phage.

    PubMed

    Tornetta, Mark; Baker, Scott; Whitaker, Brian; Lu, Jin; Chen, Qiang; Pisors, Eileen; Shi, Lei; Luo, Jinquan; Sweet, Raymond; Tsui, Ping

    2010-08-31

    Fab antibody display on filamentous phage is widely applied to de novo antibody discovery and engineering. Here we describe a phagemid system for the efficient display and affinity selection of Fabs through linkage to the minor coat protein pIX. Display was successful by fusion of either Fd or Lc through a short linker to the amino terminus of pIX and co-expression of the counter Lc or Fd as a secreted, soluble fragment. Assembly of functional Fab was confirmed by demonstration of antigen-specific binding using antibodies of known specificity. Phage displaying a Fab specific for RSV-F protein with Fd linked to pIX showed efficient, antigen-specific enrichment when mixed with phage displaying a different specificity. The functionality of this system for antibody engineering was evaluated in an optimization study. A RSV-F protein specific antibody with an affinity of about 2nM was randomized at 4 positions in light chain CDR1. Three rounds of selection with decreasing antigen concentration yielded Fabs with an affinity improvement up to 70-fold and showed a general correlation between enrichment frequency and affinity. We conclude that the pIX coat protein complements other display systems in filamentous phage as an efficient vehicle for low copy display and selection of Fab proteins. 2010 Elsevier B.V. All rights reserved.

  10. [Detection of antigen structures in blood cells in various prepared plasma transfusions].

    PubMed

    Barz, D

    1994-01-01

    We investigated the content of antigen-bearing cells and cell fragments in Fresh Frozen Plasma (FFP) from blood centers, in Octaplas (virus-inactivated fresh plasma produced with the solvent/detergent technique by the Octapharma Company) and in MB-plasma (virus-inactivated fresh plasma after photodynamic treatment with methylen blue coming from the German Red Cross in Springe, Lower Saxony). With the aid of an immunoassay (MAIPA-test) these plasmas were tested regarding Rhesus-D-antigen, HLA-class-I- and HLA-class-II-antigens, platelet specific antigens HPA-1a/HPA-1b and granulocyte specific antigens NA1/NA2. In Octaplas (n = 10) we did not find cells or cell fragments and no antigen-bearing blood cell structures. In FFP (n = 28) there were platelet specific antigens in 27 cases (96.4%) and HLA-class-I-antigens in 4 cases (14.3%). In MB-plasma (n = 14) we found platelet specific antigens in all cases, HLA-class-I-antigens in 4 cases (18.6%), HLA-class-II-antigens and granulocyte specific antigens in 1 case (7.1%) and Rhesus-D-antigen in 3 cases (21.4%). Plasma derived from whole blood showed lower levels of cells and antigens than plasma which was produced with the aid of the cell separator.

  11. African-American Men with Gleason Score 3+3=6 Prostate Cancer Produce Less Prostate Specific Antigen than Caucasian Men: A Potential Impact on Active Surveillance.

    PubMed

    Kryvenko, Oleksandr N; Balise, Raymond; Soodana Prakash, Nachiketh; Epstein, Jonathan I

    2016-02-01

    We assess the difference in prostate specific antigen production between African-American and Caucasian men with Gleason score 3+3=6 prostate cancer. We measured tumor volume in 414 consecutive radical prostatectomies from men with National Comprehensive Cancer Network(®) low risk prostate cancer (348 Caucasian, 66 African-American) who had Gleason score 3+3=6 disease at radical prostatectomy. We then compared clinical presentation, pathological findings, prostate specific antigen, prostate specific antigen density and prostate specific antigen mass (an absolute amount of prostate specific antigen in patient's circulation) between African-American and Caucasian men. The t-test and Wilcoxon rank sum were used for comparison of means. African-American and Caucasian men had similar clinical findings based on age, body mass index and prostate specific antigen. There were no statistically significant differences between the dominant tumor nodule volume and total tumor volume (mean 0.712 vs 0.665 cm(3), p=0.695) between African-American and Caucasian men. Prostates were heavier in African-American men (mean 55.4 vs 46.3 gm, p <0.03). Despite the significantly greater weight of benign prostate tissue contributing to prostate specific antigen in African-American men, prostate specific antigen mass was not different from that of Caucasian men (mean 0.55 vs 0.558 μg, p=0.95). Prostate specific antigen density was significantly less in African-American men due to larger prostates (mean 0.09 vs 0.105, p <0.02). African-American men with Gleason score 3+3=6 prostate cancer produce less prostate specific antigen than Caucasian men. African-American and Caucasian men had equal serum prostate specific antigen and prostate specific antigen mass despite significantly larger prostates in African-American men with all other parameters, particularly total tumor volume, being the same. This finding has practical implications in T1c cases diagnosed with prostate cancer due to prostate specific antigen screening. Lowering the prostate specific antigen density threshold in African-American men may account for this disparity, particularly in selecting patients for active surveillance programs. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  12. Correlation between CD16a binding and immuno effector functionality of an antigen specific immunoglobulin Fc fragment (Fcab).

    PubMed

    Kainer, Manuela; Antes, Bernhard; Wiederkum, Susanne; Wozniak-Knopp, Gordana; Bauer, Anton; Rüker, Florian; Woisetschläger, Max

    2012-10-15

    Antigen binding immunoglobulin Fc fragments (Fcab) are generated by engineering loop regions in the CH3 domain of human IgG1 Fc. Variants of an Fcab specific for Her-2 were designed to display either enhanced (S239D:A330L:I332E) or diminished (L234A:L235A) binding affinities to the Fc receptor CD16a based on mutations described previously. The two mutant Fcab proteins demonstrated the expected modulation of CD16a binding. Interaction with recombinant or cell surface expressed Her-2 was unaffected in both mutants compared to the parental Fcab. Binding affinities for CD16a correlated with the ADCC-potencies of the Fcab variants. Additional studies indicated that the L234A:L235A variant Fcab had equivalent structural features as the unmodified Fcab since their DSC profiles were similar and antigen binding after re-folding upon partial heat denaturation had not changed. Introduction of the S239D:A330L:I332E mutations resulted in a significant reduction of the CH2 domain melting temperature, a moderate decrease of the thermal transition of the CH3 domain and lower antigen binding after thermal stress compared to the parental Fcab. We conclude that the known correlation between CD16a binding affinity and ADCC potency is also valid in Fcab proteins and that antigen specific Fcab molecules can be further engineered for fine tuning of immuno effector functions. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Tuning the specificity of a Two-in-One Fab against three angiogenic antigens by fully utilizing the information of deep mutational scanning.

    PubMed

    Koenig, Patrick; Sanowar, Sarah; Lee, Chingwei V; Fuh, Germaine

    Monoclonal antibodies developed for therapeutic or diagnostic purposes need to demonstrate highly defined binding specificity profiles. Engineering of an antibody to enhance or reduce binding to related antigens is often needed to achieve the desired biologic activity without safety concern. Here, we describe a deep sequencing-aided engineering strategy to fine-tune the specificity of an angiopoietin-2 (Ang2)/vascular endothelial growth factor (VEGF) dual action Fab, 5A12.1 for the treatment of age-related macular degeneration. This antibody utilizes overlapping complementarity-determining region (CDR) sites for dual Ang2/VEGF interaction with K D in the sub-nanomolar range. However, it also exhibits significant (K D of 4 nM) binding to angiopoietin-1, which has high sequence identity with Ang2. We generated a large phage-displayed library of 5A12.1 Fab variants with all possible single mutations in the 6 CDRs. By tracking the change of prevalence of each mutation during various selection conditions, we identified 35 mutations predicted to decrease the affinity for Ang1 while maintaining the affinity for Ang2 and VEGF. We confirmed the specificity profiles for 25 of these single mutations as Fab protein. Structural analysis showed that some of the Fab mutations cluster near a potential Ang1/2 epitope residue that differs in the 2 proteins, while others are up to 15 Å away from the antigen-binding site and likely influence the binding interaction remotely. The approach presented here provides a robust and efficient method for specificity engineering that does not require prior knowledge of the antigen antibody interaction and can be broadly applied to antibody specificity engineering projects.

  14. Tumour cell lysate-loaded dendritic cell vaccine induces biochemical and memory immune response in castration-resistant prostate cancer patients

    PubMed Central

    Reyes, D; Salazar, L; Espinoza, E; Pereda, C; Castellón, E; Valdevenito, R; Huidobro, C; Inés Becker, M; Lladser, A; López, M N; Salazar-Onfray, F

    2013-01-01

    Background: Recently, we produced a tumour antigen-presenting cells (TAPCells) vaccine using a melanoma cell lysate, called TRIMEL, as an antigen source and an activation factor. Tumour antigen-presenting cells induced immunological responses and increased melanoma patient survival. Herein, we investigated the effect of TAPCells loaded with prostate cancer cell lysates (PCCL) as an antigen source, and TRIMEL as a dendritic cell (DC) activation factor; which were co-injected with the Concholepas concholepas haemocyanin (CCH) as an adjuvant on castration-resistant prostate cancer (CRPC) patients. Methods: The lysate mix capacity, for inducing T-cell activation, was analysed by flow cytometry and Elispot. Delayed-type hypersensitivity (DTH) reaction against PCCL, frequency of CD8+ memory T cells (Tm) in blood and prostate-specific antigen (PSA) levels in serum were measured in treated patients. Results: The lysate mix induced functional mature DCs that were capable of activating PCCL-specific T cells. No relevant adverse reactions were observed. Six out of 14 patients showed a significant decrease in levels of PSA. DTH+ patients showed a prolonged PSA doubling-time after treatment. Expansion of functional central and effector CD8+ Tm were detected. Conclusion: Treatment of CRPC patients with lysate-loaded TAPCells and CCH as an adjuvant is safe: generating biochemical and memory immune responses. However, the limited number of cases requires confirmation in a phase II clinical trial. PMID:23989944

  15. Tumour cell lysate-loaded dendritic cell vaccine induces biochemical and memory immune response in castration-resistant prostate cancer patients.

    PubMed

    Reyes, D; Salazar, L; Espinoza, E; Pereda, C; Castellón, E; Valdevenito, R; Huidobro, C; Inés Becker, M; Lladser, A; López, M N; Salazar-Onfray, F

    2013-09-17

    Recently, we produced a tumour antigen-presenting cells (TAPCells) vaccine using a melanoma cell lysate, called TRIMEL, as an antigen source and an activation factor. Tumour antigen-presenting cells induced immunological responses and increased melanoma patient survival. Herein, we investigated the effect of TAPCells loaded with prostate cancer cell lysates (PCCL) as an antigen source, and TRIMEL as a dendritic cell (DC) activation factor; which were co-injected with the Concholepas concholepas haemocyanin (CCH) as an adjuvant on castration-resistant prostate cancer (CRPC) patients. The lysate mix capacity, for inducing T-cell activation, was analysed by flow cytometry and Elispot. Delayed-type hypersensitivity (DTH) reaction against PCCL, frequency of CD8(+) memory T cells (Tm) in blood and prostate-specific antigen (PSA) levels in serum were measured in treated patients. The lysate mix induced functional mature DCs that were capable of activating PCCL-specific T cells. No relevant adverse reactions were observed. Six out of 14 patients showed a significant decrease in levels of PSA. DTH(+) patients showed a prolonged PSA doubling-time after treatment. Expansion of functional central and effector CD8(+) Tm were detected. Treatment of CRPC patients with lysate-loaded TAPCells and CCH as an adjuvant is safe: generating biochemical and memory immune responses. However, the limited number of cases requires confirmation in a phase II clinical trial.

  16. Prostate specific antigen velocity does not aid prostate cancer detection in men with prior negative biopsy.

    PubMed

    Vickers, Andrew J; Wolters, Tineke; Savage, Caroline J; Cronin, Angel M; O'Brien, M Frank; Roobol, Monique J; Aus, Gunnar; Scardino, Peter T; Hugosson, Jonas; Schröder, Fritz H; Lilja, Hans

    2010-09-01

    Prostate specific antigen velocity has been proposed as a marker to aid in prostate cancer detection. We determined whether prostate specific antigen velocity could predict repeat biopsy results in men with persistently increased prostate specific antigen after initial negative biopsy. We identified 1,837 men who participated in the Göteborg or Rotterdam section of the European Randomized Screening study of Prostate Cancer and who underwent 1 or more subsequent prostate biopsies after an initial negative finding. We evaluated whether prostate specific antigen velocity improved predictive accuracy beyond that of prostate specific antigen alone. Of the 2,579 repeat biopsies 363 (14%) were positive for prostate cancer, of which 44 (1.7%) were high grade (Gleason score 7 or greater). Prostate specific antigen velocity was statistically associated with cancer risk but had low predictive accuracy (AUC 0.55, p <0.001). There was some evidence that prostate specific antigen velocity improved AUC compared to prostate specific antigen for high grade cancer. However, the small increase in risk associated with high prostate specific antigen velocity (from 1.7% to 2.8% as velocity increased from 0 to 1 ng/ml per year) had questionable clinical relevance. Men with prior negative biopsy are at lower risk for prostate cancer at subsequent biopsies with high grade disease particularly rare. We found little evidence to support prostate specific antigen velocity to aid in decisions about repeat biopsy for prostate cancer. 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  17. Rapid desensitization induces internalization of antigen-specific IgE on mouse mast cells.

    PubMed

    Oka, Tatsuya; Rios, Eon J; Tsai, Mindy; Kalesnikoff, Janet; Galli, Stephen J

    2013-10-01

    Rapid desensitization transiently prevents severe allergic reactions, allowing administration of life-saving therapies in previously sensitized patients. However, the mechanisms underlying successful rapid desensitization are not fully understood. We sought to investigate whether the mast cell (MC) is an important target of rapid desensitization in mice sensitized to exhibit IgE-dependent passive systemic anaphylaxis in vivo and to investigate the antigen specificity and underlying mechanisms of rapid desensitization in our mouse model. C57BL/6 mice (in vivo) or primary isolated C57BL/6 mouse peritoneal mast cells (PMCs; in vitro) were passively sensitized with antigen-specific anti-2,4-dinitrophenyl IgE, anti-ovalbumin IgE, or both. MCs were exposed over a short period of time to increasing amounts of antigen (2,4-dinitrophenyl-human serum albumin or ovalbumin) in the presence of extracellular calcium in vitro or by means of intravenous administration to sensitized mice in vivo before challenging the mice with or exposing the PMCs to optimal amounts of specific or irrelevant antigen. Rapidly exposing mice or PMCs to progressively increasing amounts of specific antigen inhibited the development of antigen-induced hypothermia in sensitized mice in vivo and inhibited antigen-induced PMC degranulation and prostaglandin D2 synthesis in vitro. Such MC hyporesponsiveness was induced antigen-specifically and was associated with a significant reduction in antigen-specific IgE levels on MC surfaces. Rapidly exposing MCs to progressively increasing amounts of antigen can both enhance the internalization of antigen-specific IgE on the MC surface and also desensitize these cells in an antigen-specific manner in vivo and in vitro. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  18. Rapid desensitization induces internalization of antigen-specific IgE on mouse mast cells

    PubMed Central

    Oka, Tatsuya; Rios, Eon J.; Tsai, Mindy; Kalesnikoff, Janet; Galli, Stephen J.

    2013-01-01

    Background Rapid desensitization transiently prevents severe allergic reactions, allowing administration of life-saving therapies in previously sensitized patients. However, the mechanisms underlying successful rapid desensitization are not fully understood. Objectives We sought to investigate whether the mast cell (MC) is an important target of rapid desensitization in mice sensitized to exhibit IgE-dependent passive systemic anaphylaxis in vivo and to investigate the antigen specificity and underlying mechanisms of rapid desensitization in our mouse model. Methods C57BL/6 mice (in vivo) or primary isolated C57BL/6 mouse peritoneal mast cells (PMCs; in vitro) were passively sensitized with antigen-specific anti–2,4-dinitrophenyl IgE, anti-ovalbumin IgE, or both. MCs were exposed over a short period of time to increasing amounts of antigen (2,4-dinitrophenyl–human serum albumin or ovalbumin) in the presence of extracellular calcium in vitro or by means of intravenous administration to sensitized mice in vivo before challenging the mice with or exposing the PMCs to optimal amounts of specific or irrelevant antigen. Results Rapidly exposing mice or PMCs to progressively increasing amounts of specific antigen inhibited the development of antigen-induced hypothermia in sensitized mice in vivo and inhibited antigen-induced PMC degranulation and prostaglandin D2 synthesis in vitro. Such MC hyporesponsiveness was induced antigen-specifically and was associated with a significant reduction in antigen-specific IgE levels on MC surfaces. Conclusions Rapidly exposing MCs to progressively increasing amounts of antigen can both enhance the internalization of antigen-specific IgE on the MC surface and also desensitize these cells in an antigen-specific manner in vivo and in vitro. PMID:23810240

  19. Pre-immunotherapy serum CA27.29 (MUC-1) mucin level and CD69+ lymphocytes correlate with effects of Theratope sialyl-Tn-KLH cancer vaccine in active specific immunotherapy.

    PubMed

    Reddish, M A; MacLean, G D; Poppema, S; Berg, A; Longenecker, B M

    1996-06-01

    Patients with metastatic breast, colorectal or ovarian cancers received active specific immunotherapy (ASI) with Theratope sialyl-Tn-KLH (keyhole limpet hemocyanin) cancer vaccine emulsified in Detox adjuvant. The median log2 anti-STn IgG titer generated by ASI, estimated by enzyme-linked immunosorbent assay with solid-phase ovine submaxillary mucin, was 5.322 (range = 0 - 9.322). Following ASI, 51 patients who generated titers higher than the median value for anti-STn+ mucin IgG survived longer than 46 patients who generated lower titers below the median. 38 of the patients were phenotyped for CD69 prior to ASI. The patients with lower numbers of CD69+ peripheral blood lymphocytes prior to immunotherapy (pre-ASI) also had low serum CA27.29 cancer antigen (MUC-1) levels, and had longer times to disease progression and improved survival following ASI. Elevated pre-ASI serum CA27.29 tumor antigen levels were associated with higher numbers of CD69+ PBL, with decreased anti-STn antibody production and decreased survival following ASI. The data are compatible with the hypothesis that elevated serum MUC-1 mucin is specifically immunosuppressive.

  20. Original antigenic sin responses to influenza viruses.

    PubMed

    Kim, Jin Hyang; Skountzou, Ioanna; Compans, Richard; Jacob, Joshy

    2009-09-01

    Most immune responses follow Burnet's rule in that Ag recruits specific lymphocytes from a large repertoire and induces them to proliferate and differentiate into effector cells. However, the phenomenon of "original antigenic sin" stands out as a paradox to Burnet's rule of B cell engagement. Humans, upon infection with a novel influenza strain, produce Abs against older viral strains at the expense of responses to novel, protective antigenic determinants. This exacerbates the severity of the current infection. This blind spot of the immune system and the redirection of responses to the "original Ag" rather than to novel epitopes were described fifty years ago. Recent reports have questioned the existence of this phenomenon. Hence, we revisited this issue to determine the extent to which original antigenic sin is induced by variant influenza viruses. Using two related strains of influenza A virus, we show that original antigenic sin leads to a significant decrease in development of protective immunity and recall responses to the second virus. In addition, we show that sequential infection of mice with two live influenza virus strains leads to almost exclusive Ab responses to the first viral strain, suggesting that original antigenic sin could be a potential strategy by which variant influenza viruses subvert the immune system.

  1. Inhibitory Effect of Gabaculine on 5-Aminolevulinate Dehydratase Activity in Radish Seedlings 1

    PubMed Central

    Tchuinmogne, Simo J.; Huault, Claude; Aoues, Abdelkader; Balangé, Alain P.

    1989-01-01

    We have compared the activity of 5-aminolevulinate dehydratase (5-ALAD) with the amount of protein detected by specific antibodies in rocket immunoelectrophoresis. Parallel kinetic evolutions of enzymic activity and amount of antigen were observed in radish (Raphanus sativus L.) cotyledons, both in complete darkness or under standard far red light involving phytochrome. However, the treatment of seedlings with gabaculine leads to an important decrease in enzymic activity, while the specific protein content is maintained. This inhibition is not overcome by the addition of glutamic acid, but by 5-aminolevulinic acid which points to a specific control of 5-ALAD activity by its substrate. As there is no discrepancy between the enzymic activity and the amount of antigen during the time course development of seedlings, this could confirm a coordinate cellular control between 5-aminolevulinic acid formation and 5-ALAD protein synthesis, both being amplified by the action of phytochrome. PMID:16666925

  2. Quantitative Detection of Prostatic-Specific Antigens by Using Scanning Electron Microscopy for the Analysis of Protein Chips.

    PubMed

    Lee, Jisu; Jung, Moon Youn; Park, Hyung Ju

    2017-04-01

    We reported that quantitative detection of prostatic-specific antigen (PSA), which is the biomarker of prostate cancer, could be carried out by calculating the number density and the area ratio of gold nanoparticle probes on the surface of silicon oxide chips. When chips selectively activated with PSA were immersed in the gold nanoparticles conjugated with prostatic specific antigens-poly clonal antibodies (PSA-pAb), it was possible to observe changes in the number density and the area ratio of gold nanoparticles on the surface of the chips according to the concentration of PSA with scanning electron microscopy (SEM) images. As PSA concentration increased, the number density and the area ratio of gold nanoparticle probes on the surfaces of the chips increased accordingly. Conversely, with lower concentration, the number density and the area ratio of gold nanoparticle probes on the surfaces decreased at a certain ratio. We observed the correlations between PSA concentration and number density, area ratio of gold nanoparticle probes through the analysis of SEM images. In addition, it was confirmed that the sizes of the gold nanoparticles affected the detection limit of the number density and the area ratio of gold nanoparticle probes on the surface.

  3. Antigen-specific immature dendritic cell vaccine ameliorates anti-dsDNA antibody-induced renal damage in a mouse model.

    PubMed

    Xia, Yumin; Jiang, Shan; Weng, Shenhong; Lv, Xiaochun; Cheng, Hong; Fang, Chunhong

    2011-12-01

    Dendritic cells (DCs) can inhibit immune response by clonal anergy when immature. Recent studies have shown that immature DCs (iDCs) may serve as a live cell vaccine after specific antigen pulse based on its potential of blocking antibody production. In this study, we aimed to investigate the effects of nuclear antigen-pulsed iDCs in the treatment of lupus-like renal damages induced by anti-dsDNA antibodies. iDCs were generated from haemopoietic stem cells in bone marrow and then pulsed in vitro with nuclear antigen. The iDC vaccine and corresponding controls were injected into mice with lupus-like renal damages. The evaluation of disease was monitored by biochemical parameters and histological scores. Anti-dsDNA antibody isotypes and T-lymphocyte-produced cytokines were analysed for elucidating therapeutic mechanisms. RESULTS; The mice treated with antigen-pulsed iDCs had a sustained remission of renal damage compared with those injected with non-pulsed iDCs or other controls, including decreased anti-dsDNA antibody level, less proteinuria, lower blood urea nitrogen and serum creatinine values, and improved histological evaluation. Analysis on isotypes of anti-dsDNA antibody showed that iDC vaccine preferentially inhibited the production of IgG3, IgG2b and IgG2a. Furthermore, administration of antigen-treated iDCs to mice resulted in significantly reduced IL-2, IL-4 and IL-12 and IFN-γ produced by T-memory cells. Conversely, the vaccination of antigen-pulsed mature DCs led to increased anti-dsDNA antibody production and an aggravation of lupus-like disease in the model. CONCLUSIONS; These results suggested the high potency of iDC vaccine in preventing lupus-like renal injuries induced by pathogenic autoantibodies.

  4. Antigen clasping by two antigen-binding sites of an exceptionally specific antibody for histone methylation

    DOE PAGES

    Hattori, Takamitsu; Lai, Darson; Dementieva, Irina S.; ...

    2016-02-09

    Antibodies have a well-established modular architecture wherein the antigen-binding site residing in the antigen-binding fragment (Fab or Fv) is an autonomous and complete unit for antigen recognition. Here, we describe antibodies departing from this paradigm. We developed recombinant antibodies to trimethylated lysine residues on histone H3, important epigenetic marks and challenging targets for molecular recognition. Quantitative characterization demonstrated their exquisite specificity and high affinity, and they performed well in common epigenetics applications. Surprisingly, crystal structures and biophysical analyses revealed that two antigen-binding sites of these antibodies form a head-to-head dimer and cooperatively recognize the antigen in the dimer interface. Thismore » “antigen clasping” produced an expansive interface where trimethylated Lys bound to an unusually extensive aromatic cage in one Fab and the histone N terminus to a pocket in the other, thereby rationalizing the high specificity. A long-neck antibody format with a long linker between the antigen-binding module and the Fc region facilitated antigen clasping and achieved both high specificity and high potency. Antigen clasping substantially expands the paradigm of antibody–antigen recognition and suggests a strategy for developing extremely specific antibodies.« less

  5. Antigen clasping by two antigen-binding sites of an exceptionally specific antibody for histone methylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattori, Takamitsu; Lai, Darson; Dementieva, Irina S.

    Antibodies have a well-established modular architecture wherein the antigen-binding site residing in the antigen-binding fragment (Fab or Fv) is an autonomous and complete unit for antigen recognition. Here, we describe antibodies departing from this paradigm. We developed recombinant antibodies to trimethylated lysine residues on histone H3, important epigenetic marks and challenging targets for molecular recognition. Quantitative characterization demonstrated their exquisite specificity and high affinity, and they performed well in common epigenetics applications. Surprisingly, crystal structures and biophysical analyses revealed that two antigen-binding sites of these antibodies form a head-to-head dimer and cooperatively recognize the antigen in the dimer interface. Thismore » “antigen clasping” produced an expansive interface where trimethylated Lys bound to an unusually extensive aromatic cage in one Fab and the histone N terminus to a pocket in the other, thereby rationalizing the high specificity. A long-neck antibody format with a long linker between the antigen-binding module and the Fc region facilitated antigen clasping and achieved both high specificity and high potency. Antigen clasping substantially expands the paradigm of antibody–antigen recognition and suggests a strategy for developing extremely specific antibodies.« less

  6. Species dependent impact of helminth-derived antigens on human macrophages infected with Mycobacterium tuberculosis: Direct effect on the innate anti-mycobacterial response

    PubMed Central

    Singh, Susmita K.; McKay, Derek M.

    2017-01-01

    Background In countries with a high prevalence of tuberculosis there is high coincident of helminth infections that might worsen disease outcome. While Mycobacterium tuberculosis (Mtb) gives rise to a pro-inflammatory Th1 response, a Th2 response is typical of helminth infections. A strong Th2 response has been associated with decreased protection against tuberculosis. Principal findings We investigated the direct effect of helminth-derived antigens on human macrophages, hypothesizing that helminths would render macrophages less capable of controlling Mtb. Measuring cytokine output, macrophage surface markers with flow cytometry, and assessing bacterial replication and phagosomal maturation revealed that antigens from different species of helminth directly affect macrophage responses to Mtb. Antigens from the tapeworm Hymenolepis diminuta and the nematode Trichuris muris caused an anti-inflammatory response with M2-type polarization, reduced macrophage phagosome maturation and ability to activate T cells, along with increased Mtb burden, especially in T. muris exposed cells which also induced the highest IL-10 production upon co-infection. However, antigens from the trematode Schistosoma mansoni had the opposite effect causing a decrease in IL-10 production, M1-type polarization and increased control of Mtb. Conclusion We conclude that, independent of any adaptive immune response, infection with helminth parasites, in a species-specific manner can influence the outcome of tuberculosis by either enhancing or diminishing the bactericidal function of macrophages. PMID:28192437

  7. Impact of obesity on the predictive accuracy of prostate-specific antigen density and prostate-specific antigen in native Korean men undergoing prostate biopsy.

    PubMed

    Kim, Jae Heon; Doo, Seung Whan; Yang, Won Jae; Lee, Kwang Woo; Lee, Chang Ho; Song, Yun Seob; Jeon, Yoon Su; Kim, Min Eui; Kwon, Soon-Sun

    2014-10-01

    To evaluate the impact of obesity on the biopsy detection of prostate cancer. We retrospectively reviewed data of 1182 consecutive Korean patients (≥50 years) with serum prostate-specific antigen levels of 3-10 ng/mL who underwent initial extended 12-cores biopsy from September 2009 to March 2013. Patients who took medications that were likely to influence the prostate-specific antigen level were excluded. Receiver operating characteristic curves were plotted for prostate-specific antigen and prostate-specific antigen density predicting cancer status among non-obese and obese men. A total of 1062 patients (mean age 67.1 years) were enrolled in the analysis. A total of 230 men (21.7%) had a positive biopsy. In the overall study sample, the area under the receiver operator characteristic curve of serum prostate-specific antigen for predicting prostate cancer on biopsy were 0.584 and 0.633 for non-obese and obese men, respectively (P = 0.234). However, the area under the curve for prostate-specific antigen density in predicting cancer status showed a significant difference (non-obese 0.696, obese 0.784; P = 0.017). There seems to be a significant difference in the ability of prostate-specific antigen density to predict biopsy results between non-obese and obese men. Obesity positively influenced the overall ability of prostate-specific antigen density to predict prostate cancer. © 2014 The Japanese Urological Association.

  8. A role for mitochondria in antigen processing and presentation

    PubMed Central

    Bonifaz, Laura C; Cervantes-Silva, Mariana P; Ontiveros-Dotor, Elizabeth; López-Villegas, Edgar O; Sánchez-García, F Javier

    2015-01-01

    Immune synapse formation is critical for T-lymphocyte activation, and mitochondria have a role in this process, by localizing close to the immune synapse, regulating intracellular calcium concentration, and providing locally required ATP. The interaction between antigen-presenting cells (APCs) and T lymphocytes is a two-way signalling process. However, the role of mitochondria in APCs during this process remains unknown. For APCs to be able to activate T lymphocytes, they must first engage in an antigen-uptake, -processing and -presentation process. Here we show that hen egg white lysozyme (HEL) -loaded B lymphocytes, as a type of APC, undergo a small but significant mitochondrial depolarization by 1–2 hr following antigen exposure, suggesting an increase in their metabolic demands. Inhibition of ATP synthase (oligomycin) or mitochondrial Ca2+ uniporter (MCU) (Ruthenium red) had no effect on antigen uptake. Therefore, antigen processing and antigen presentation were further analysed. Oligomycin treatment reduced the amount of specific MHC–peptide complexes but not total MHC II on the cell membrane of B lymphocytes, which correlated with a decrease in antigen presentation. However, oligomycin also reduced antigen presentation by B lymphocytes, which endogenously express HEL and by B lymphocytes loaded with the HEL48–62 peptide, although to a lesser extent. ATP synthase inhibition and MCU inhibition had a clear inhibitory effect on antigen processing (DQ-OVA). Taken together these results suggest that ATP synthase and MCU are relevant for antigen processing and presentation. Finally, APC mitochondria were found to re-organize towards the APC–T immune synapse. PMID:25251370

  9. Do Ultrasensitive Prostate Specific Antigen Measurements Have a Role in Predicting Long-Term Biochemical Recurrence-Free Survival in Men after Radical Prostatectomy?

    PubMed

    Sokoll, Lori J; Zhang, Zhen; Chan, Daniel W; Reese, Adam C; Bivalacqua, Trinity J; Partin, Alan W; Walsh, Patrick C

    2016-02-01

    In this study we evaluate an ultrasensitive prostate specific antigen assay in patients with prostate cancer after radical prostatectomy to predict long-term biochemical recurrence-free survival. A total of 754 men who underwent radical prostatectomy and had an undetectable prostate specific antigen after surgery (less than 0.1 ng/ml) were studied. Prostate specific antigen was measured in banked serum specimens with an ultrasensitive assay (Hybritech® PSA, Beckman Coulter Access® 2) using a cutoff of 0.01 ng/ml. Prostate specific antigen was also measured in 44 men after cystoprostatectomy who had no pathological evidence of prostate cancer with the Hybritech assay and with the Quanterix AccuPSA™ assay. Of the 754 men 17% (131) experienced biochemical recurrence (median 4.0 years). Those men without biochemical recurrence (83%, 623) had a minimum of 5 years of followup (median 11). Prostate specific antigen was less than 0.01 ng/ml in 93.4% of men with no biochemical recurrence, whereas 30.5% of men with biochemical recurrence had a prostate specific antigen of 0.01 ng/ml or greater. On multivariate analysis postoperative prostate specific antigen at a 0.01 ng/ml cutoff, pathological stage and Gleason score, and surgical margins were significant independent predictors of biochemical recurrence risk. Kaplan-Meier estimates for mean biochemical recurrence-free survival were 15.2 years (95% CI 14.9-15.6) for prostate specific antigen less than 0.01 ng/ml and 10.0 years (95% CI 8.4-11.5) for prostate specific antigen 0.01 ng/ml or greater (p <0.0001). Biochemical recurrence-free rates 11 years after surgery were 86.1% (95% CI 83.2-89.0) for prostate specific antigen less than 0.01 ng/ml and 48.9% (95% CI 37.5-60.3) for prostate specific antigen 0.01 ng/ml or greater (p <0.0001). Prostate specific antigen concentrations in 44 men after cystoprostatectomy were all less than 0.03 ng/ml, with 95.4% less than 0.01 ng/ml. In men with a serum prostate specific antigen less than 0.1 ng/ml after radical prostatectomy a tenfold lower cutoff (0.01 ng/ml) stratified biochemical recurrence-free survival and was a significant independent predictor of biochemical recurrence, as were pathological features. Prostate specific antigen concentrations in men without pathological evidence of prostate cancer suggest that a higher prostate specific antigen concentration (0.03 ng/ml) in the ultrasensitive range may be needed to define the detection threshold. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. IMMUNOGLOBULIN ISOANTIGENS (ALLOTYPES) IN THE MOUSE

    PubMed Central

    Herzenberg, Leonard A.; Warner, Noel L.; Herzenberg, Leonore A.

    1965-01-01

    Eight antigens of 7S γ2-immunoglobulins controlled by alleles at a single locus Ig-1, have been identified in mice. This locus has previously been shown to determine antigenic specificities on the F fragments of 7S γ2a-globulins. The reactions of these antigens with various isoantisera have shown that the antigens all cross react with one another. New methods for the analysis of antigenic specificities of soluble proteins are presented in detail. A sensitive method for detecting in the order of 0.01 µg of these isoantigens has been developed, based on the quantitative inhibition of precipitation of I125-labeled antigen. Cross-reactions of the antigens were analysed in inhibition assays and the data is compatible with the existence of a minimum of eight antigenic specificities. Each of the antigens is composed of different combinations of these specificities, with only one antigen having a specificity not present in any other. Sixty-eight mouse strains have been tested with specific isoantisera, and on the basis of the results, have been placed into the eight allele groups. Evidence for close genetic linkage of the Ig-1 locus and 11 chromosome markers has been sought and not found. PMID:14270242

  11. Antigenic Evolution of Vaccine-Derived Polioviruses: Changes in Individual Epitopes and Relative Stability of the Overall Immunological Properties

    PubMed Central

    Yakovenko, Maria L.; Cherkasova, Elena A.; Rezapkin, Gennady V.; Ivanova, Olga E.; Ivanov, Alexander P.; Eremeeva, Tatyana P.; Baykova, Olga Y.; Chumakov, Konstantin M.; Agol, Vadim I.

    2006-01-01

    The Sabin oral poliovirus vaccine (OPV) readily undergoes changes in antigenic sites upon replication in humans. Here, a set of antigenically altered descendants of the three OPV serotypes (76 isolates) was characterized to determine the driving forces behind these changes and their biological implications. The amino acid residues of OPV derivatives that lie within or close to the known antigenic sites exhibited a marked tendency to be replaced by residues characteristic of homotypic wild polioviruses, and these changes may occur very early in OPV evolution. The specific amino acid alterations nicely correlated with serotype-specific changes in the reactivity of certain individual antigenic sites, as revealed by the recently devised monoclonal antibody-based enzyme-linked immunosorbent assay. In comparison to the original vaccine, small changes, if any, in the neutralizing capacity of human or rabbit sera were observed in highly diverged vaccine polioviruses of three serotypes, in spite of strong alterations of certain epitopes. We propose that the common antigenic alterations in evolving OPV strains largely reflect attempts to eliminate fitness-decreasing mutations acquired either during the original selection of the vaccine or already present in the parental strains. Variability of individual epitopes does not appear to be primarily caused by, or lead to, a significant immune evasion, enhancing only slightly, if at all, the capacity of OPV derivatives to overcome immunity in human populations. This study reveals some important patterns of poliovirus evolution and has obvious implications for the rational design of live viral vaccines. PMID:16501074

  12. Specific Fluorine Labeling of the HyHEL10 Antibody Affects Antigen Binding and Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acchione, Mauro; Lee, Yi-Chien; DeSantis, Morgan E.

    To more fully understand the molecular mechanisms responsible for variations in binding affinity with antibody maturation, we explored the use of site specific fluorine labeling and {sup 19}F nuclear magnetic resonance (NMR). Several single-chain (scFv) antibodies, derived from an affinity-matured series of anti-hen egg white lysozyme (HEL) mouse IgG1, were constructed with either complete or individual replacement of tryptophan residues with 5-fluorotryptophan ({sup 5F}W). An array of biophysical techniques was used to gain insight into the impact of fluorine substitution on the overall protein structure and antigen binding. SPR measurements indicated that {sup 5F}W incorporation lowered binding affinity for themore » HEL antigen. The degree of analogue impact was residue-dependent, and the greatest decrease in affinity was observed when {sup 5F}W was substituted for residues near the binding interface. In contrast, corresponding crystal structures in complex with HEL were essentially indistinguishable from the unsubstituted antibody. {sup 19}F NMR analysis showed severe overlap of signals in the free fluorinated protein that was resolved upon binding to antigen, suggesting very distinct chemical environments for each {sup 5F}W in the complex. Preliminary relaxation analysis suggested the presence of chemical exchange in the antibody-antigen complex that could not be observed by X-ray crystallography. These data demonstrate that fluorine NMR can be an extremely useful tool for discerning structural changes in scFv antibody-antigen complexes with altered function that may not be discernible by other biophysical techniques.« less

  13. Deletion and anergy of polyclonal B cells specific for ubiquitous membrane-bound self-antigen

    PubMed Central

    Taylor, Justin J.; Martinez, Ryan J.; Titcombe, Philip J.; Barsness, Laura O.; Thomas, Stephanie R.; Zhang, Na; Katzman, Shoshana D.; Jenkins, Marc K.

    2012-01-01

    B cell tolerance to self-antigen is critical to preventing antibody-mediated autoimmunity. Previous work using B cell antigen receptor transgenic animals suggested that self-antigen–specific B cells are either deleted from the repertoire, enter a state of diminished function termed anergy, or are ignorant to the presence of self-antigen. These mechanisms have not been assessed in a normal polyclonal repertoire because of an inability to detect rare antigen-specific B cells. Using a novel detection and enrichment strategy to assess polyclonal self-antigen–specific B cells, we find no evidence of deletion or anergy of cells specific for antigen not bound to membrane, and tolerance to these types of antigens appears to be largely maintained by the absence of T cell help. In contrast, a combination of deleting cells expressing receptors with high affinity for antigen with anergy of the undeleted lower affinity cells maintains tolerance to ubiquitous membrane-bound self-antigens. PMID:23071255

  14. Detection and localization of specific antigens in the reproductive tracts of cycling, pregnant, and ovariectomized hamsters.

    PubMed

    Fox, L L; Shivers, C A

    1975-06-01

    A systematic search was made for components specific to the female reproductive tract in golden hamsters. Antisera produced in rabbits against saline homogenates of hamster uteri (collected on the night of estrus) cross-reacted extensively with extracts of 12 other tissues in agar gel double-diffusion assays. Absorption of the antisera with small intestine, lung, and liver rendered the immune sera specific for uterine and oviductal antigens (within the limits of the sensitivity of the precipitin assays). Immunoelectrophoretic analysis resolved 12 uterine antigens, many of which were similar to components in several other tissues. Absorbed antisera specific for reproductive tract antigens formed one postalbumin arc with uterine and oviductal extracts in immunoelectrophoretic studies. No reactions were detected between specific antisera and five other organ extracts or plasma. An indirect immunofluorescent antibody technique was used to detect changes in the distribution of specific antigens in reproductive tracts of cycling, pregnant, and ovariectomized hamsters. The gamma-globulin fraction of anti-uterus sera (absorbed with small intestine, lung, and liver), shown to be specific for reproductive tract tissues in precipitin tests, was used to localize antigens. Appropriate controls indicated that the fluorescence observed was due to antigen-antibody interactions. During the cycle, specific antigens were usually confined to the ampullary lamina propria, except during estrus, when they were prominent in the lamina propria and luminal epithelium of the ampula. Specific antigens were never abundant in the isthmus of nonpregnant hamsters. On day 1 postcoitum, the components were found throughout the ampullary and isthmic regions. By day 2 postcoitum, ampullary antigens were usually confined to the lamina propria. The specific components were not prominent in the oviduct on day 3 postcoitum, but were conspicuous in both ampulla and isthmus on day 4. Specific antigens in the uterus were confined to endometrial glands in nonpregnant animals during proestrus, estrus, and (occasionally) metestrus. Diestrous uteri contained no specific antigens. During the first 2 days of pregnancy, antigens were not abundant and were usually confined to the glands and stroma. On days 3 and 4 of pregnancy the specific antigens were prominent in the endometrial glands and stroma and along the apical borders of some luminal epithelial cells. By day 5, these components were less conspicuous in all areas of the endometrium. Uteri of spayed animals receiving no hormones or estradiol alone lacked the specific antigens. However, progesterone (after estrogen priming) promoted the appearance of these components, and the distribution resembled that seen in uteri of 3- and 4-day pregnant animals.

  15. Analysis of B Cell Repertoire Dynamics Following Hepatitis B Vaccination in Humans, and Enrichment of Vaccine-specific Antibody Sequences.

    PubMed

    Galson, Jacob D; Trück, Johannes; Fowler, Anna; Clutterbuck, Elizabeth A; Münz, Márton; Cerundolo, Vincenzo; Reinhard, Claudia; van der Most, Robbert; Pollard, Andrew J; Lunter, Gerton; Kelly, Dominic F

    2015-12-01

    Generating a diverse B cell immunoglobulin repertoire is essential for protection against infection. The repertoire in humans can now be comprehensively measured by high-throughput sequencing. Using hepatitis B vaccination as a model, we determined how the total immunoglobulin sequence repertoire changes following antigen exposure in humans, and compared this to sequences from vaccine-specific sorted cells. Clonal sequence expansions were seen 7 days after vaccination, which correlated with vaccine-specific plasma cell numbers. These expansions caused an increase in mutation, and a decrease in diversity and complementarity-determining region 3 sequence length in the repertoire. We also saw an increase in sequence convergence between participants 14 and 21 days after vaccination, coinciding with an increase of vaccine-specific memory cells. These features allowed development of a model for in silico enrichment of vaccine-specific sequences from the total repertoire. Identifying antigen-specific sequences from total repertoire data could aid our understanding B cell driven immunity, and be used for disease diagnostics and vaccine evaluation.

  16. Vaccinia virus decreases major histocompatibility complex (MHC) class II antigen presentation, T-cell priming, and peptide association with MHC class II

    PubMed Central

    Rehm, Kristina E; Connor, Ramsey F; Jones, Gwendolyn J B; Yimbu, Kenneth; Mannie, Mark D; Roper, Rachel L

    2009-01-01

    Vaccinia virus (VACV) is the current live virus vaccine used to protect humans against smallpox and monkeypox, but its use is contraindicated in several populations because of its virulence. It is therefore important to elucidate the immune evasion mechanisms of VACV. We found that VACV infection of antigen-presenting cells (APCs) significantly decreased major histocompatibility complex (MHC) II antigen presentation and decreased synthesis of 13 chemokines and cytokines, suggesting a potent viral mechanism for immune evasion. In these model systems, responding T cells were not directly affected by virus, indicating that VACV directly affects the APC. VACV significantly decreased nitric oxide production by peritoneal exudate cells and the RAW macrophage cell line in response to lipopolysaccharide (LPS) and interferon (IFN)-γ, decreased class II MHC expression on APCs, and induced apoptosis in macrophages and dendritic cells. However, VACV decreased antigen presentation by 1153 B cells without apparent apoptosis induction, indicating that VACV differentially affects B lymphocytes and other APCs. We show that the key mechanism of VACV inhibition of antigen presentation may be its reduction of antigenic peptide loaded into the cleft of MHC class II molecules. These data indicate that VACV evades the host immune response by impairing critical functions of the APC. PMID:20067538

  17. Androgen Regulation of p27 in the Normal and Neoplastic Prostate

    DTIC Science & Technology

    1999-09-01

    IL-6 (50) or the flavanoid antioxidant silibinin (5 1) results in increased p27KIP’ expression associated with G1 arrest and neuroendocrine...Commun 257:609-614. 51. Zi X, Agarwal R 1999 Silibinin decreases prostate-specific antigen with cell growth inhibition via GI arrest, leading to

  18. Bovine adenovirus-3 as a vaccine delivery vehicle.

    PubMed

    Ayalew, Lisanework E; Kumar, Pankaj; Gaba, Amit; Makadiya, Niraj; Tikoo, Suresh K

    2015-01-15

    The use of vaccines is an effective and relatively inexpensive means of controlling infectious diseases, which cause heavy economic losses to the livestock industry through animal loss, decreased productivity, treatment expenses and decreased carcass quality. However, some vaccines produced by conventional means are imperfect in many respects including virulence, safety and efficacy. Moreover, there are no vaccines for some animal diseases. Although genetic engineering has provided new ways of producing effective vaccines, the cost of production for veterinary use is a critical criterion for selecting the method of production and delivery of vaccines. The cost effective production and intrinsic ability to enter cells has made adenovirus vectors a highly efficient tool for delivery of vaccine antigens. Moreover, adenoviruses induce both humoral and cellular immune responses to expressed vaccine antigens. Since nonhuman adenoviruses are species specific, the development of animal specific adenoviruses as vaccine delivery vectors is being evaluated. This review summarizes the work related to the development of bovine adenovirus-3 as a vaccine delivery vehicle in animals, particularly cattle. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. High Antigen Dose Is Detrimental to Post-Exposure Vaccine Protection against Tuberculosis

    PubMed Central

    Billeskov, Rolf; Lindenstrøm, Thomas; Woodworth, Joshua; Vilaplana, Cristina; Cardona, Pere-Joan; Cassidy, Joseph P.; Mortensen, Rasmus; Agger, Else Marie; Andersen, Peter

    2018-01-01

    Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis (TB), causes 1.8M deaths annually. The current vaccine, BCG, has failed to eradicate TB leaving 25% of the world’s population with latent Mtb infection (LTBI), and 5–10% of these people will reactivate and develop active TB. An efficient therapeutic vaccine targeting LTBI could have an enormous impact on global TB incidence, and could be an important aid in fighting multidrug resistance, which is increasing globally. Here we show in a mouse model using the H56 (Ag85B-ESAT-6-Rv2660) TB vaccine candidate that post-exposure, but not preventive, vaccine protection requires low vaccine antigen doses for optimal protection. Loss of protection from high dose post-exposure vaccination was not associated with a loss of overall vaccine response magnitude, but rather with greater differentiation and lower functional avidity of vaccine-specific CD4 T cells. High vaccine antigen dose also led to a decreased ability of vaccine-specific CD4 T cells to home into the Mtb-infected lung parenchyma, a recently discovered important feature of T cell protection in mice. These results underscore the importance of T cell quality rather than magnitude in TB-vaccine protection, and the significant role that antigen dosing plays in vaccine-mediated protection. PMID:29379507

  20. High Antigen Dose Is Detrimental to Post-Exposure Vaccine Protection against Tuberculosis.

    PubMed

    Billeskov, Rolf; Lindenstrøm, Thomas; Woodworth, Joshua; Vilaplana, Cristina; Cardona, Pere-Joan; Cassidy, Joseph P; Mortensen, Rasmus; Agger, Else Marie; Andersen, Peter

    2017-01-01

    Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis (TB), causes 1.8M deaths annually. The current vaccine, BCG, has failed to eradicate TB leaving 25% of the world's population with latent Mtb infection (LTBI), and 5-10% of these people will reactivate and develop active TB. An efficient therapeutic vaccine targeting LTBI could have an enormous impact on global TB incidence, and could be an important aid in fighting multidrug resistance, which is increasing globally. Here we show in a mouse model using the H56 (Ag85B-ESAT-6-Rv2660) TB vaccine candidate that post-exposure, but not preventive, vaccine protection requires low vaccine antigen doses for optimal protection. Loss of protection from high dose post-exposure vaccination was not associated with a loss of overall vaccine response magnitude, but rather with greater differentiation and lower functional avidity of vaccine-specific CD4 T cells. High vaccine antigen dose also led to a decreased ability of vaccine-specific CD4 T cells to home into the Mtb-infected lung parenchyma, a recently discovered important feature of T cell protection in mice. These results underscore the importance of T cell quality rather than magnitude in TB-vaccine protection, and the significant role that antigen dosing plays in vaccine-mediated protection.

  1. Specific recognition of hydatid cyst antigens by serum IgG, IgE, and IgA using western blot.

    PubMed

    Sbihi, Y; Janssen, D; Osuna, A

    1997-01-01

    Diagnosis of hydatid disease in humans relies on the detection of specific antibodies against antigens of the metacestode from Echinococcus granulosus. The specificity and sensitivity of current immunological techniques based on specific serum IgG rely on the way antigens are purified. We used Western immunoblotting to detect specific IgG, IgE, and IgA antibodies in serum from patients with hydatid disease using either crude antigen preparations (total hydatid fluid), purified fractions enriched in Antigens 5 and B, and glycoproteins from hydatid fluid. Depending on whether crude HF or purified antigen fractions were used, IgG and IgE recognized specifically low-to-medium MW bands between 12 and 42 kDa. IgA recognized specifically 110 kDa band in crude hydatid fluid and in the glycoprotein fraction of hydatid fluid, and a 42 kDa band in all antigen samples used. Besides the advantage of detecting specific IgA in crude hydatid fluid, these results offer the possibility of simplifying future immunological tests if specific secretory IgA can be similarly detected.

  2. Efficacy Against Human Prostate Cancer by Prostate-specific Membrane Antigen-specific, Transforming Growth Factor-β Insensitive Genetically Targeted CD8+ T-cells Derived from Patients with Metastatic Castrate-resistant Disease.

    PubMed

    Zhang, Qiang; Helfand, Brian T; Carneiro, Benedito A; Qin, Weijun; Yang, Ximing J; Lee, Chung; Zhang, Weipeng; Giles, Francis J; Cristofanilli, Massimo; Kuzel, Timothy M

    2018-05-01

    Current immunotherapy has limited efficacy on metastatic castrate-resistant prostate cancer (mCRPC). We therefore sought to improve the antitumor ability of mCRPC patient-derived CD8 + T-cells by the endowment of specificity to prostate-specific membrane antigen (PSMA) and insensitivity to immunosuppressant molecule transforming growth factor-β (TGF-ß) under the control of herpes simplex virus-1 thymidine kinase. CD8 + T-cells were collected by leukapheresis and cultured in a Food and Drug Administration-approved Cell Processing Work Station. We developed a chimeric antigen receptor retroviral construct using an anti-PSMA chimeric immunoglobulin-T-cell receptor(ζ) gene (PZ1) and dominant negative TGF-ß type II receptor (TßRIIDN), that could induce CD8 + T-cells to be PSMA reactive and insensitive to TGF-ß. Cr 51 release assay was performed on PC-3 and PC-3-PSMA. The further antitumor functions of PSMA-specific, TGF-ß insensitive CD8 + T-cells was evaluated using an immunodeficient RAG-1 -/- mouse model. We found PSMA-specific, TGF-ß insensitive CD8 + T-cells from mCRPC were expanded with strong expression of PZ1 and thymidine kinase genes, and their growth was not suppressed by TGF-ß. The survival of these cells decreased sharply after treatment with ganciclovir. Treatment of PSMA-specific TGF-ß, insensitive CD8 + T-cells was associated with 61.58% specific lysis on PC-3-PSMA, and significantly suppressed PC3-PSMA tumor compared with the PC3 tumor. A large amount of tumor apoptosis and CD8 + T-cell infiltration were found only in the PC3-PSMA tumor. This study verified that PSMA-specific, TGF-ß insensitive CD8 + T-cells derived from mCRPC patients could be successfully expanded and used to overcome the immunosuppressive effects of the tumor microenvironment to control PSMA-expressing PC in vitro and in vivo. This may provide a promising approach for men with mCRPC who fail androgen deprivation therapy. We investigated the role of a novel chimeric antigen receptor T-immunotherapy based on autologous metastatic castrate-resistant prostate cancer patient-derived prostate-specific membrane antigen (PSMA)-specific, transforming growth factor-ß insensitive CD8 + T-cells on PSMA-positive prostate cancer. We found that this chimeric antigen receptor T-cells could kill PSMA-positive prostate cancer specifically. The results suggest that this novel immunotherapy treatment is a potential new approach for men with metastatic castrate-resistant prostate cancer. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  3. Post-translational intracellular trafficking determines the type of immune response elicited by DNA vaccines expressing Gag antigen of Human Immunodeficiency Virus Type 1 (HIV-1).

    PubMed

    Wallace, Aaron; West, Kim; Rothman, Alan L; Ennis, Francis A; Lu, Shan; Wang, Shixia

    2013-10-01

    In the current study, immune responses induced by Gag DNA vaccines with different designs were evaluated in Balb/C mice. The results demonstrated that the DNA vaccine with the full length wild type gag gene (Wt-Gag) mainly produced Gag antigens intracellularly and induced a higher level of cell-mediated immune (CMI) responses, as measured by IFN-gamma ELISPOT, intracellular cytokine staining (ICS), and cytotoxic T lymphocytes (CTL) assays against a dominant CD8(+) T cell epitope (AMQMLKETI). In contrast, the addition of a tissue plasminogen activator (tPA) leader sequence significantly improved overall Gag protein expression/secretion and Gag-specific antibody responses; however, Gag-specific CMI responses were decreased. The mutation of zinc-finger motif changed Gag protein expression patterns and reduced the ability to generate both CMI and antibody responses against Gag. These findings indicate that the structure and post-translational processing of antigens expressed by DNA vaccines play a critical role in eliciting optimal antibody or CMI responses.

  4. Protective Capacity of Memory CD8+ T Cells is Dictated by Antigen Exposure History and Nature of the Infection

    PubMed Central

    Nolz, Jeffrey C.; Harty, John T.

    2011-01-01

    SUMMARY Infection or vaccination confers heightened resistance to pathogen re-challenge due to quantitative and qualitative differences between naïve and primary memory T cells. Herein, we show that secondary (boosted) memory CD8+ T cells were better than primary memory CD8+ T cells in controlling some, but not all acute infections with diverse pathogens. However, secondary memory CD8+ T cells were less efficient than an equal number of primary memory cells at preventing chronic LCMV infection and are more susceptible to functional exhaustion. Importantly, localization of memory CD8+ T cells within lymph nodes, which is reduced by antigen re-stimulation, was critical for both viral control in lymph nodes and for the sustained CD8+ T cell response required to prevent chronic LCMV infection. Thus, repeated antigen-stimulation shapes memory CD8+ T cell populations to either enhance or decrease per cell protective immunity in a pathogen-specific manner, a concept of importance in vaccine design against specific diseases. PMID:21549619

  5. [Differentiation of nonspecific serological reactions in brucellosis].

    PubMed

    Khristoforov, L

    1979-01-01

    Differentiation of non-specific agglutination was performed by the complement binding reaction, Coombs' reaction, Hajdu reaction, the surface fixation and agglutination reaction and the reaction of complement binding with heterologic antigens. For that purpose the following were used: 1) Serums--antiglobulin against cattle globulin, 5720 serum of various animals which had manifested non-specific agglutination with brucella antigen and brucella serums of experimentally infected sheep, of naturally infected swine and of cattle--received from abroad. 2) Antigens--of Br. abortus 99, of bacteria heterologic to brucellae: Proteus vulgaris, Listeria monocytogenes, Staphylococcus albus, Escherichia coli, Streptococcus pyogenes, S. abortus ovis, for O and OH agglutination, water extraction antigens--for complement binding and concentrated suspensions of all bacteria used in brucellose and non-brucellose serum absorption. Highest number of non-specific reactions were observed in cattle serums and lowest--in goat serums. Titers with heterologic antigens were higher than these with brucella antigens. Often the serum having non-specific agglutiantion reacted not only with one, but with more heterologic antigens. Non-specific complement binding reactions were not produced in complete antibodies with the brucella antigen. Heterologic brucella antigens were exhausted more fully than heterologic complement binding antibodies. In their effectiveness (differentiation of non-specific agglutination with brucella antigen in cattle serum) the serological reactions studied rank as follows: complement binding reaction, slow agglutination with serums absorbed by heterologic antigens, surface fixation reaction, Coombs' reaction, and Hadju agglutination.

  6. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity

    PubMed Central

    Sancho, David; Joffre, Olivier P.; Keller, Anna M.; Rogers, Neil C.; Martinez, Dolores; Hernanz-Falcón, Patricia; Rosewell, Ian; Reis e Sousa, Caetano

    2009-01-01

    Injury or impaired clearance of apoptotic cells leads to the pathological accumulation of necrotic corpses, which induce an inflammatory response that initiates tissue repair1. In addition, antigens present within necrotic cells can sometimes provoke a specific immune response2-4 and it has been argued that necrosis could explain adaptive immunity in seemingly infection-free situations, such as after allograft transplantation or in spontaneous and therapy-induced tumour rejection5, 6. In the mouse, the CD8α+ subset of dendritic cells (DC) phagocytoses dead cell remnants and crossprimes CD8+ T cells against cell-associated antigens7. Here, we show that CD8α+ DC utilise CLEC9A (DNGR-1), a recently-characterised C-type lectin8-10, to recognise a preformed signal that is exposed on necrotic cells. Loss or blockade of CLEC9A does not impair uptake of necrotic cell material by CD8α+ DC but specifically reduces crosspresentation of dead cell-associated antigens in vitro and decreases the immunogenicity of necrotic cells in vivo. The function of CLEC9A requires a key tyrosine residue within its intracellular tail that allows recruitment and activation of the tyrosine kinase Syk, which is also essential for crosspresentation of dead cell-associated antigens. Thus, CLEC9A functions as a Syk-coupled C-type lectin receptor to mediate sensing of necrosis by the principal DC subset involved in regulating crosspriming to cell-associated antigens. PMID:19219027

  7. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity.

    PubMed

    Sancho, David; Joffre, Olivier P; Keller, Anna M; Rogers, Neil C; Martínez, Dolores; Hernanz-Falcón, Patricia; Rosewell, Ian; Reis e Sousa, Caetano

    2009-04-16

    Injury or impaired clearance of apoptotic cells leads to the pathological accumulation of necrotic corpses, which induce an inflammatory response that initiates tissue repair. In addition, antigens present in necrotic cells can sometimes provoke a specific immune response and it has been argued that necrosis could explain adaptive immunity in seemingly infection-free situations, such as after allograft transplantation or in spontaneous and therapy-induced tumour rejection. In the mouse, the CD8alpha+ subset of dendritic cells phagocytoses dead cell remnants and cross-primes CD8+ T cells against cell-associated antigens. Here we show that CD8alpha+ dendritic cells use CLEC9A (also known as DNGR-1), a recently-characterized C-type lectin, to recognize a preformed signal that is exposed on necrotic cells. Loss or blockade of CLEC9A does not impair the uptake of necrotic cell material by CD8+ dendritic cells, but specifically reduces cross-presentation of dead-cell-associated antigens in vitro and decreases the immunogenicity of necrotic cells in vivo. The function of CLEC9A requires a key tyrosine residue in its intracellular tail that allows the recruitment and activation of the tyrosine kinase SYK, which is also essential for cross-presentation of dead-cell-associated antigens. Thus, CLEC9A functions as a SYK-coupled C-type lectin receptor to mediate sensing of necrosis by the principal dendritic-cell subset involved in regulating cross-priming to cell-associated antigens.

  8. A two-stage model in a Bayesian framework to estimate a survival endpoint in the presence of confounding by indication.

    PubMed

    Bellera, Carine; Proust-Lima, Cécile; Joseph, Lawrence; Richaud, Pierre; Taylor, Jeremy; Sandler, Howard; Hanley, James; Mathoulin-Pélissier, Simone

    2018-04-01

    Background Biomarker series can indicate disease progression and predict clinical endpoints. When a treatment is prescribed depending on the biomarker, confounding by indication might be introduced if the treatment modifies the marker profile and risk of failure. Objective Our aim was to highlight the flexibility of a two-stage model fitted within a Bayesian Markov Chain Monte Carlo framework. For this purpose, we monitored the prostate-specific antigens in prostate cancer patients treated with external beam radiation therapy. In the presence of rising prostate-specific antigens after external beam radiation therapy, salvage hormone therapy can be prescribed to reduce both the prostate-specific antigens concentration and the risk of clinical failure, an illustration of confounding by indication. We focused on the assessment of the prognostic value of hormone therapy and prostate-specific antigens trajectory on the risk of failure. Methods We used a two-stage model within a Bayesian framework to assess the role of the prostate-specific antigens profile on clinical failure while accounting for a secondary treatment prescribed by indication. We modeled prostate-specific antigens using a hierarchical piecewise linear trajectory with a random changepoint. Residual prostate-specific antigens variability was expressed as a function of prostate-specific antigens concentration. Covariates in the survival model included hormone therapy, baseline characteristics, and individual predictions of the prostate-specific antigens nadir and timing and prostate-specific antigens slopes before and after the nadir as provided by the longitudinal process. Results We showed positive associations between an increased prostate-specific antigens nadir, an earlier changepoint and a steeper post-nadir slope with an increased risk of failure. Importantly, we highlighted a significant benefit of hormone therapy, an effect that was not observed when the prostate-specific antigens trajectory was not accounted for in the survival model. Conclusion Our modeling strategy was particularly flexible and accounted for multiple complex features of longitudinal and survival data, including the presence of a random changepoint and a time-dependent covariate.

  9. A novel dendritic cell-based direct ex vivo assay for detection and enumeration of circulating antigen-specific human T cells.

    PubMed

    Carrio, Roberto; Zhang, Ge; Drake, Donald R; Schanen, Brian C

    2018-05-07

    Although a variety of assays have been used to examine T cell responses in vitro, standardized ex vivo detection of antigen-specific CD4 + T cells from human circulatory PBMCs remains constrained by low-dimensional characterization outputs and the need for polyclonal, mitogen-induced expansion methods to generate detectable response signals. To overcome these limitations, we developed a novel methodology utilizing antigen-pulsed autologous human dendritic target cells in a rapid and sensitive assay to accurately enumerate antigen-specific CD4 + T cell precursor frequency by multiparametric flow cytometry. With this approach, we demonstrate the ability to reproducibly quantitate poly-functional T cell responses following both primary and recall antigenic stimulation. Furthermore, this approach enables more comprehensive phenotypic profiling of circulating antigen-specific CD4 + T cells, providing valuable insights into the pre-existing polarization of antigen-specific T cells in humans. Combined, this approach permits sensitive and detailed ex vivo detection of antigen-specific CD4 + T cells delivering an important tool for advancing vaccine, immune-oncology and other therapeutic studies.

  10. Effects of dendritic cells from hepatitis B virus transgenic mice-stimulated autologous lymphocytes on hepatitis B virus replication: a study on the impact of specific sensitized effector cells on in vitro virus replication.

    PubMed

    Shen, Zhong-Yang; Zheng, Wei-Ping; Liu, Tao; Yang, Yang; Song, Hong-Li

    2015-03-01

    The objective of this study was to explore the effects of dendritic cells (DCs) from hepatitis B virus (HBV) transgenic mice-stimulated autologous lymphocytes on in vitro HBV replication. DCs from HBV transgenic mice were induced to maturity by lipopolysaccharide, followed by incubation with hepatitis B surface antigen (HBsAg) and hepatitis B core antigen (HBcAg) in vitro. Mature DCs and autologous lymphocytes were co-stimulated to form specific sensitized immune effector cells (IEC), which were then co-cultured with the human hepatoma cell line HepG2.2.15. Changes in morphology and activity of hepatocytes were then observed, as well as analysis of changes in liver enzyme, and HBV DNA and inflammatory cytokine levels in the culture supernatant. Intracellular HBV DNA and covalently closed circular DNA (cccDNA) concentration were measured by real-time polymerase chain reaction. Co-stimulation by mature DCs and IEC showed no impact on the morphology and liver enzyme expression level of HepG2.2.15 cells, but the supernatant HBV DNA and intracellular HBV DNA and cccDNA levels decreased significantly compared with those cells co-cultured with immature DCs. Secretion of inflammatory cytokines in the supernatant showed that when HBV DNA was highly expressed, the concentration of IFN-γ and IL-2 decreased, while IL-10 increased. Contrastingly, when HBV DNA had low expression, the concentration of IFN-γ and IL-2 increased and IL-10 decreased. Co-stimulation of HBV-related antigen-induced mature DCs and autologous lymphocytes showed inhibitory effects on ex vivo HBV replication, and cytokines were suggested to mediate this effect.

  11. Loiasis in a Japanese Traveler Returning from Central Africa

    PubMed Central

    Kobayashi, Tetsuro; Hayakawa, Kayoko; Mawatari, Momoko; Itoh, Makoto; Akao, Nobuaki; Yotsu, Rie R.; Sugihara, Jun; Takeshita, Nozomi; Kutsuna, Satoshi; Fujiya, Yoshihiro; Kanagawa, Shuzo; Ohmagari, Norio; Kato, Yasuyuki

    2015-01-01

    We encountered a probable case of loiasis in a returned traveler from Central Africa. A 52-year-old Japanese woman presented to our hospital complaining of discomfort in her eyes and skin. She reported having frequently visited Central Africa over many years and having been extensively exposed to the rainforest climate and ecosystem. Although no microfilariae were found in her blood, there was an elevated level of IgG antibodies against the crude antigens of Brugia pahangi, which have cross-reactivity with Loa loa. She was treated with albendazole for 21 days, after which the antigen-specific IgG level decreased and no relapse occurred. PMID:26161033

  12. Epicutaneous immunization with ovalbumin and CpG induces TH1/TH17 cytokines, which regulate IgE and IgG2a production

    PubMed Central

    Majewska-Szczepanik, Monika; Askenase, Philip W.; Lobo, Francis M.; Marcińska, Katarzyna; Wen, Li; Szczepanik, Marian

    2017-01-01

    Background Subcutaneous allergen-specific immunotherapy is a standard route for the immunotherapy of allergic diseases. It modulates the course of allergy and can generate long-term remission. However, subcutaneous allergen-specific immunotherapy can also induce anaphylaxis in some patients, and therefore additional routes of administration should be investigated to improve the safety and tolerability of immunotherapy. Objective We sought to determine whether epicutaneous treatment with antigen in the presence of a Toll-like receptor 9 agonist can suppress TH2-mediated responses in an antigen-specific manner. Methods Epicutaneous immunization was performed by applying a skin patch soaked with ovalbumin (OVA) plus CpG, and its suppressor activity was determined by using the mouse model of atopic dermatitis. Finally, adoptive cell transfers were implemented to characterize the regulatory cells that are induced by epicutaneous immunization. Results Epicutaneous immunization with OVA and CpG reduces the production of OVA-specific IgE and increases the synthesis of OVA-specific IgG2a antibodies in an antigen-specific manner. Moreover, eosinophil peroxidase activity in the skin and production of IL-4, IL-5, IL-10, and IL-13 are suppressed. The observed reduction of IgE synthesis is transferable with T-cell receptor (TCR) αβ+CD4+CD25− cells, whereas IgG2a production is dependent on both TCRαβ+ and TCRγδ+ T cells. Further experiments show that the described phenomenon is myeloid differentiation primary response 88, IFN-γ, and IL-17A dependent. Finally, the results suggest that epicutaneous immunization with OVA and CpG decreases the synthesis of OVA-specific IgE and skin eosinophil peroxidase activity in mice with ongoing skin allergy. Conclusion Epicutaneous application of protein antigen in the presence of adjuvant could be an attractive needle-free and self-administered immunotherapy for allergic diseases. PMID:26810716

  13. Prostate-specific antigen velocity is not better than total prostate-specific antigen in predicting prostate biopsy diagnosis.

    PubMed

    Gorday, William; Sadrzadeh, Hossein; de Koning, Lawrence; Naugler, Christopher T

    2015-12-01

    1.) Identify whether prostate-specific antigen velocity improves the ability to predict prostate biopsy diagnosis. 2.) Test whether there is an increase in the predictive capability of models when Gleason 7 prostate cancers are separated into a 3+4 and a 4+3 group. Calgary Laboratory Services' Clinical Laboratory Information System was searched for prostate biopsies reported between January 1, 2009 and December 31, 2013. Total prostate-specific antigen tests were recorded for each patient from January 1, 2007 to the most recent test before their recorded prostate biopsy. The data set was divided into the following three groups for comparison; benign, all prostate cancer and Gleason 7-10. The Gleason grade 7-10 group was further divided into 4+3 and 3+4 Gleason 7 prostate cancers. Prostate-specific antigen velocity was calculated using four different methods found in the literature. Receiver operator curves were used to assess operational characteristics of the tests. 4622 men between the ages of 40-89 with a prostate biopsy were included for analysis. Combining prostate-specific antigen velocity with total prostate-specific antigen (AUC=0.570-0.712) resulted in small non-statistically significant changes to the area under the curve compared to the area under the curve of total prostate-specific antigen alone (AUC=0.572-0.699). There were marked increases in the area under curves when 3+4 and 4+3 Gleason 7 cancers were separated. Prostate-specific antigen velocity does not add predictive value for prostate biopsy diagnosis. The clinical significance of the prostate specific antigen test can be improved by separating Gleason 7 prostate cancers into a 3+4 and 4+3 group. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  14. Prostate-specific antigen screening impacts on biochemical recurrence in patients with clinically localized prostate cancer.

    PubMed

    Hashimoto, Takeshi; Ohori, Makoto; Shimodaira, Kenji; Kaburaki, Naoto; Hirasawa, Yosuke; Satake, Naoya; Gondo, Tatsuo; Nakagami, Yoshihiro; Namiki, Kazunori; Ohno, Yoshio

    2018-06-01

    To clarify the impact of prostate-specific antigen screening on surgical outcomes of prostate cancer. Patients who underwent radical prostatectomy were divided into two groups according to prostate-specific antigen testing opportunity (group 1, prostate-specific antigen screening; group 2, non-prostate-specific antigen screening). Perioperative clinical characteristics were compared using the Wilcoxon rank-sum and χ 2 -tests. Cox proportional hazards models were used to identify independent predictors of postoperative biochemical recurrence-free survival. In total, 798 patients (63.2%) and 464 patients (36.8%) were categorized into groups 1 and 2, respectively. Group 2 patients were more likely to have a higher prostate-specific antigen level and age at diagnosis and larger prostate volume. Clinical T stage, percentage of positive cores and pathological Gleason score did not differ between the groups. The 5-year biochemical recurrence-free survival rate was 83.9% for group 1 and 71.0% for group 2 (P < 0.001). On multivariate analysis, prostate-specific antigen testing opportunity (hazard ratio 2.530; P < 0.001) was an independent predictive factor for biochemical recurrence after surgery, as well as pathological T stage, pathological Gleason score, positive surgical margin and lymphovascular invasion. Additional analyses showed that prostate-specific antigen screening had a greater impact on biochemical recurrence in a younger patients, patients with a high prostate-specific antigen level, large prostate volume and D'Amico high risk, and patients meeting the exclusion criteria of the Prostate Cancer Research International Active Surveillance study. Detection by screening results in favorable outcomes after surgery. Prostate-specific antigen screening might contribute to reducing biochemical recurrence in patients with localized prostate cancer. © 2018 The Japanese Urological Association.

  15. Human immunodeficiency virus coinfection with hepatitis B virus leads to a decrease in extracellular and intracellular hepatitis B antigen.

    PubMed

    Pan, Wei; Wu, Zuoqiao; Wu, Shuwen; Guo, Deyin; Gong, Xiaoyan; Po, Tien

    2015-04-01

    Chronic hepatitis B virus (HBV) infection could cause severe liver disease including cirrhosis, hepatocellular carcinoma, and end-stage liver failure in HIV-positive individuals. The available data from clinical studies suggest that HIV infection modulates the HBV-specific T cell response. However, the virological and molecular aspects of HIV-HBV coinfection are currently poorly understood due to the lack of appropriate model systems. In this study, the effect of HIV infection on the life cycle of HBV was explored using an in vitro model system. The present data show that the extracellular and intracellular hepatitis B surface antigen (HBsAg) and e antigen (HBeAg) decrease significantly in HepG2 cells cotransfected with HIV NL4-3 and pHBV1.3 as compared to those cells transfected only with pHBV1.3. Moreover, a significant decrease in HBV DNA and mRNA expression was also observed in the cotransfected cells. HIV Rev protein, an RNA-bound regulatory protein, could significantly decrease the expression levels of extracellular and intracellular HBsAg and HBeAg by mediating the expression of HBV mRNA in cells cotransfected with plasmids containing HIV-1 Rev and pHBV1.3. Further experiments demonstrate that HIV Rev manipulated neither the promoters of HBV nor the nuclear export of HBV mRNA. These results from the in vitro model system might provide clues to further understand the rapid progression of liver disease in HIV-HBV-coinfected patients.

  16. Characterization of O-antigen delivered by Generalized Modules for Membrane Antigens (GMMA) vaccine candidates against nontyphoidal Salmonella.

    PubMed

    De Benedetto, G; Alfini, R; Cescutti, P; Caboni, M; Lanzilao, L; Necchi, F; Saul, A; MacLennan, C A; Rondini, S; Micoli, F

    2017-01-11

    Invasive nontyphoidal Salmonella disease (iNTS) is a leading cause of death and morbidity in Africa. The most common pathogens are Salmonella enterica serovars Typhimurium and Enteritidis. The O-antigen portion of their lipopolysaccharide is a target of protective immunity and vaccines targeting O-antigen are currently in development. Here we investigate the use of Generalized Modules for Membrane Antigens (GMMA) as delivery system for S. Typhimurium and S. Enteritidis O-antigen. Gram-negative bacteria naturally shed outer membrane in a blebbing process. By deletion of the tolR gene, the level of shedding was greatly enhanced. Further genetic modifications were introduced into the GMMA-producing strains in order to reduce reactogenicity, by detoxifying the lipid A moiety of lipopolysaccharide. We found that genetic mutations can impact on expression of O-antigen chains. All S. Enteritidis GMMA characterized had an O-antigen to protein w/w ratio higher than 0.6, while the ratio was 0.7 for S. Typhimurium ΔtolR GMMA, but decreased to less than 0.1 when further mutations for lipid A detoxification were introduced. Changes were also observed in O-antigen chain length and level and/or position of O-acetylation. When tested in mice, the GMMA induced high levels of anti-O-antigen-specific IgG functional antibodies, despite variation in density and O-antigen structural modifications. In conclusion, simplicity of manufacturing process and low costs of production, coupled with encouraging immunogenicity data, make GMMA an attractive strategy to further investigate for the development of a vaccine against iNTS. Copyright © 2016. Published by Elsevier Ltd.

  17. Complement opsonization of HIV-1 results in a different intracellular processing pattern and enhanced MHC class I presentation by dendritic cells

    PubMed Central

    Tjomsland, Veronica; Ellegård, Rada; Burgener, Adam; Mogk, Kenzie; Che, Karlhans F; Westmacott, Garrett; Hinkula, Jorma; Lifson, Jeffrey D; Larsson, Marie

    2013-01-01

    Induction of optimal HIV-1-specific T-cell responses, which can contribute to controlling viral infection in vivo, depends on antigen processing and presentation processes occurring in DCs. Opsonization can influence the routing of antigen processing and pathways used for presentation. We studied antigen proteolysis and the role of endocytic receptors in MHC class I (MHCI) and II (MHCII) presentation of antigens derived from HIV-1 in human monocyte-derived immature DCs (IDCs) and mature DCs, comparing free and complement opsonized HIV-1 particles. Opsonization of virions promoted MHCI presentation by DCs, indicating that complement opsonization routes more virions toward the MHCI presentation pathway. Blockade of macrophage mannose receptor (MMR) and β7-integrin enhanced MHCI and MHCII presentation by IDCs and mature DCs, whereas the block of complement receptor 3 decreased MHCI and MHCII presentation. In addition, we found that IDC and MDC proteolytic activities were modulated by HIV-1 exposure; complement-opsonized HIV-1 induced an increased proteasome activity in IDCs. Taken together, these findings indicate that endocytic receptors such as MMR, complement receptor 3, and β7-integrin can promote or disfavor antigen presentation probably by routing HIV-1 into different endosomal compartments with distinct efficiencies for degradation of viral antigens and MHCI and MHCII presentation, and that HIV-1 affects the antigen-processing machinery. PMID:23526630

  18. Valency and density matter: Deciphering impacts of immunogen structures on immune responses against a tumor associated carbohydrate antigen using synthetic glycopolymers.

    PubMed

    Qin, Qian; Yin, Zhaojun; Wu, Xuanjun; Haas, Karen M; Huang, Xuefei

    2016-09-01

    For successful carbohydrate based anti-cancer vaccines, it is critical that B cells are activated to secret antibodies targeting the tumor associated carbohydrate antigens (TACAs). Despite the availability of many TACA based constructs, systematic understanding of the effects of structural features on anti-glycan antibody responses is lacking. In this study, a series of defined synthetic glyco-polymers bearing a representative TACA, i.e., the Thomsen-nouveau (Tn) antigen, have been prepared to probe the induction of early B cell activation and antibody production via a T cell independent mechanism. Valency and density of the antigen in the polymers turned out to be critical. An average of greater than 6 Tn per chain was needed to induce antibody production. Glycopolymers with 40 antigens per chain and backbone molecular weight of 450 kDa gave the strongest stimulation to B cells in vitro, which correlated well with its in vivo activity. Deviations from the desired valency and density led to decreased antibody production or even antigen specific B cell non-responsiveness. These findings provide important insights on how to modulate anti-TACA immune responses facilitating the development of TACA based anti-cancer vaccines using glycopolymers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The stage-specific in vitro efficacy of a malaria antigen cocktail provides valuable insights into the development of effective multi-stage vaccines.

    PubMed

    Spiegel, Holger; Boes, Alexander; Kastilan, Robin; Kapelski, Stephanie; Edgue, Güven; Beiss, Veronique; Chubodova, Ivana; Scheuermayer, Matthias; Pradel, Gabriele; Schillberg, Stefan; Reimann, Andreas; Fischer, Rainer

    2015-10-01

    Multicomponent vaccines targeting different stages of Plasmodium falciparum represent a promising, holistic concept towards better malaria vaccines. Additionally, an effective vaccine candidate should demonstrate cross-strain specificity because many antigens are polymorphic, which can reduce vaccine efficacy. A cocktail of recombinant fusion proteins (VAMAX-Mix) featuring three diversity-covering variants of the blood-stage antigen PfAMA1, each combined with the conserved sexual-stage antigen Pfs25 and one of the pre-erythrocytic-stage antigens PfCSP_TSR or PfCelTOS, or the additional blood-stage antigen PfMSP1_19, was produced in Pichia pastoris and used to immunize rabbits. The immune sera and purified IgG were used to perform various assays determining antigen specific titers and in vitro efficacy against different parasite stages and strains. In functional in vitro assays we observed robust inhibition of blood-stage (up to 90%), and sexual-stage parasites (up to 100%) and biased inhibition of pre-erythrocytic parasites (0-40%). Cross-strain blood-stage efficacy was observed in erythrocyte invasion assays using four different P. falciparum strains. The quantification of antigen-specific IgGs allowed the determination of specific IC50 values. The significant difference in antigen-specific IC50 requirements, the direct correlation between antigen-specific IgG and the relative quantitative representation of antigens within the cocktail, provide valuable implementations for future multi-stage, multi-component vaccine designs. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Discovery of Prostate Cancer Tumor Suppressors and Mediators of MDV3100 Resistance through in Vivo RNA Interference Screen

    DTIC Science & Technology

    2014-05-01

    NE phenotype. Figure 5: Rational of the FACS-based screen. Left, the concept of increase of NSE and decrease of PSMA with NED. Right, the...of AR dependency is associated with increase in Prostate specific membrane antigen ( PSMA ) expression. Thus, we also decided to sort for cells that...have decreased PSMA expression with prolonged Enzalutamide treatment. Using the above markers and FACS we attempted to sort out 4 populations of

  1. Precision cancer immunotherapy: optimizing dendritic cell-based strategies to induce tumor antigen-specific T-cell responses against individual patient tumors.

    PubMed

    Osada, Takuya; Nagaoka, Koji; Takahara, Masashi; Yang, Xiao Yi; Liu, Cong-Xiao; Guo, Hongtao; Roy Choudhury, Kingshuk; Hobeika, Amy; Hartman, Zachary; Morse, Michael A; Lyerly, H Kim

    2015-05-01

    Most dendritic cell (DC)-based vaccines have loaded the DC with defined antigens, but loading with autologos tumor-derived antigens would generate DCs that activate personalized tumor-specific T-cell responses. We hypothesized that DC matured with an optimized combination of reagents and loaded with tumor-derived antigens using a clinically feasible electroporation strategy would induce potent antitumor immunity. We first studied the effects on DC maturation and antigen presentation of the addition of picibanil (OK432) to a combination of zoledronic acid, tumor necrosis factor-α, and prostaglandin E2. Using DC matured with the optimized combination, we tested 2 clinically feasible sources of autologous antigen for electroloading, total tumor mRNA or total tumor lysate, to determine which stimulated more potent antigen-specific T cells in vitro and activated more potent antitumor immunity in vivo. The combination of tumor necrosis factor-α/prostaglandin E2/zoledronic acid/OK432 generated DC with high expression of maturation markers and antigen-specific T-cell stimulatory function in vitro. Mature DC electroloaded with tumor-derived mRNA [mRNA electroporated dendritic cell (EPDC)] induced greater expansion of antigen-specific T cells in vitro than DC electroloaded with tumor lysate (lysate EPDC). In a therapeutic model of MC38-carcinoembryonic antigen colon cancer-bearing mice, vaccination with mRNA EPDC induced the most efficient anti-carcinoembryonic antigen cellular immune response, which significantly suppressed tumor growth. In conclusion, mature DC electroloaded with tumor-derived mRNA are a potent cancer vaccine, especially useful when specific tumor antigens for vaccination have not been identified, allowing autologous tumor, and if unavailable, allogeneic cell lines to be used as an unbiased source of antigen. Our data support clinical testing of this strategy.

  2. Production of a novel camel single-domain antibody specific for the type III mutant EGFR.

    PubMed

    Omidfar, K; Rasaee, M J; Modjtahedi, H; Forouzandeh, M; Taghikhani, M; Golmakani, N

    2004-01-01

    Camelids have a unique immune system capable of producing single-domain heavy-chain antibodies. The antigen-specific domain of these heavy-chain IgGs (VHH) are the smallest binding units produced by the immune system. In this study, we report the isolation and characterization of several binders against the epidermal growth factor receptor (EGFR) vIII retrieved from immune library of camels (Camelus bactrianus and Camelus dromedarius). The EGFRvIII is a ligand-independent, constitutively active, mutated form of the wild-type EGFR. The expression of EGFRvIII has been demonstrated in a wide range of human malignancies, including gliomas, and breast, prostate, ovarian and lung cancer. Camels were immunized with a synthetic peptide corresponding to a mutated sequence and tissue homogenates. Single-domain antibodies (VHH) were directly selected by panning a phage display library on successively decreasing amounts of synthetic peptide immobilized on magnetic beads. The anti-EGFRvIII camel single-domain antibodies selectively bound to the EGFRvIII peptide and reacted specifically with the immunoaffinity-purified antigen from a non-small cell lung cancer patient. These antibodies with affinities in the nanomolar range recognized the EGFRvIII peptide and affinity-purified mutated receptor. We concluded that using the phage display technique, antigen-specific VHH antibody fragments are readily accessible from the camelids. These antibodies may be good candidates for tumor-diagnostic and therapeutic applications. Copyright 2004 S. Karger AG, Basel.

  3. Skin Dendritic Cell Targeting via Microneedle Arrays Laden with Antigen-Encapsulated Poly-d,l-lactide-co-Glycolide Nanoparticles Induces Efficient Antitumor and Antiviral Immune Responses

    PubMed Central

    2013-01-01

    The efficacious delivery of antigens to antigen-presenting cells (APCs), in particular, to dendritic cells (DCs), and their subsequent activation remains a significant challenge in the development of effective vaccines. This study highlights the potential of dissolving microneedle (MN) arrays laden with nanoencapsulated antigen to increase vaccine immunogenicity by targeting antigen specifically to contiguous DC networks within the skin. Following in situ uptake, skin-resident DCs were able to deliver antigen-encapsulated poly-d,l-lactide-co-glycolide (PGLA) nanoparticles to cutaneous draining lymph nodes where they subsequently induced significant expansion of antigen-specific T cells. Moreover, we show that antigen-encapsulated nanoparticle vaccination via microneedles generated robust antigen-specific cellular immune responses in mice. This approach provided complete protection in vivo against both the development of antigen-expressing B16 melanoma tumors and a murine model of para-influenza, through the activation of antigen-specific cytotoxic CD8+ T cells that resulted in efficient clearance of tumors and virus, respectively. In addition, we show promising findings that nanoencapsulation facilitates antigen retention into skin layers and provides antigen stability in microneedles. Therefore, the use of biodegradable polymeric nanoparticles for selective targeting of antigen to skin DC subsets through dissolvable MNs provides a promising technology for improved vaccination efficacy, compliance, and coverage. PMID:23373658

  4. Development and Evaluation of an Immunodiffusion Test for Diagnosis of Systemic Zygomycosis (Mucormycosis): Preliminary Report

    PubMed Central

    Jones, Kenneth W.; Kaufman, Leo

    1978-01-01

    An antigen analysis with filtrate and homogenate precipitinogens of single isolates of the zygomycetes Absidia corymbifera, Mucor pusillus, Rhizopus arrhizus, and Rhizopus oryzae demonstrated the presence of common antigens among the three genera as well as antigens which permit their differentiation. Selected homogenate antigens were valuable in developing a diagnostic immunodiffusion (ID) test for systemic zygomycosis. When sera from 43 patients with various proven mycoses other than zygomycosis were tested against each of the antigens, none formed precipitin bands identical to those formed by A. cormybifera, M. pusillus, and the Rhizopus spp. rabbit reference antisera. Sera from 23 normal persons and 25 diabetics did not react with any of the antigens. Homogenate antigens detected antibody in 8 of the 11 sera (73%) from suspected or proven cases of zygomycosis, whereas ID tests with filtrate antigens detected antibody in only 2 of the 11 sera (18%). Of the eight sera that reacted with the homogenate antigens, five only reacted with a specific Rhizopus sp. antigen, two only reacted with a specific M. pusillus antigen, and one only reacted with a specific A. corymbifera antigen. Study results show the ID test with homogenate antigens to be more specific and sensitive than the ID test with filtrate antigens and indicate that the former is a promising technique for diagnosing human zygomycosis. Images PMID:75212

  5. Antigen-specific helper factors present in the supernatant of concanavalin A-induced spleen cell cultures.

    PubMed

    Kilburn, D G; Anaka, R

    1981-08-01

    The supernatants from cultures of concanavalin A-induced spleen cells contained both antigen-specific and nonspecific (Interleukin 2) helper factors (Hf). The antigen-specific factor could be isolated from the supernatant by adsorption onto and elution from antigen-Sepharose immunoadsorbents. Specific Hf was produced in cultures of either immune or nonimmune spleen cells although in the latter case the quantity of Hf was significantly less. The specific Hf did not manifest the thymocyte stimulatory property of 112.

  6. Nonencapsulated Trichinella pseudospiralis Infection Impairs Follicular Helper T Cell Differentiation with Subclass-Selective Decreases in Antibody Responses.

    PubMed

    Asano, Kazunobu; Wu, Zhiliang; Srinontong, Piyarat; Ikeda, Takahide; Nagano, Isao; Morita, Hirokuyi; Maekawa, Yoichi

    2016-12-01

    Infectious microorganisms often modify host immunity to escape from immune elimination. Trichinella is a unique nematode of the helminth family, whose members parasitize the muscle cells inside the host without robust eliminative reactions. There are several species of Trichinella; some develop in muscle cells that become encapsulated (e.g., Trichinella spiralis) and others in cells that do not encapsulate (e.g., Trichinella pseudospiralis). It has already been established that Trichinella infection affects host immune responses in several experimental immune diseases in animal models; however, most of those studies were done using T. spiralis infection. As host immune responses to T. spiralis and T. pseudospiralis infections have been reported to be different, it is necessary to clarify how T. pseudospiralis infection influences the host immune responses. In this study, we investigated the influence on host humoral immunity in T. pseudospiralis-infected mice. We demonstrated that T. pseudospiralis infection decreased antigen-specific IgG2a and IgG2b antibody (Ab) production in mice immunized with a model antigen. This selective decrease in gamma interferon (IFN-γ)-dependent Ab production was not due to a decrease in IFN-γ production, and we instead found impaired follicular helper T (Tfh) cell differentiation. The affinity maturation of antigen-specific Ab tended to be delayed but was not significant in T. pseudospiralis-infected mice. We also observed that CD11b + spleen cells in T. pseudospiralis-infected mice expressed CD206 and PD-L2, the phenotype of which was M2 macrophages with weak production of interleukin-6 (IL-6), possibly resulting in impaired Tfh differentiation. Taken together, our results indicate that nonencapsulated Trichinella infection induces selective dampening in humoral immunity with the suppression of Tfh differentiation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Antigen-Specific Induction of Osteopontin Contributes to the Chronification of Allergic Contact Dermatitis

    PubMed Central

    Seier, Anne M.; Renkl, Andreas C.; Schulz, Guido; Uebele, Tanja; Sindrilaru, Anca; Iben, Sebastian; Liaw, Lucy; Kon, Shigeyuki; Uede, Toshimitsu; Weiss, Johannes M.

    2010-01-01

    Allergic contact dermatitis is a T cell-mediated immune response, which in its relapsing chronic form is of high socioeconomic impact. The phosphoglycoprotein osteopontin (OPN) has chemotactic and Th1 cytokine functions and in various models is essential for robust T cell-mediated immunity. Here we demonstrate that OPN is abundantly expressed by both effector T cells and keratinocytes in allergic contact dermatitis lesions. T cells from nickel-allergic donors secrete high levels of OPN following antigen-specific stimulation. OPN may substitute for missing IFN-γ secretion in T effector cells because low IFN-γ-producing T cell clones secrete high levels of OPN, and OPN down-modulates their interleukin-4 expression. Furthermore, interferon-γ from T effector cells augments OPN in allergic contact dermatitis by inducing OPN in keratinocytes, which in turn polarizes dendritic cells and attracts inflammatory cells. In the murine contact hypersensitivity (CHS) model for allergic contact dermatitis, OPN is strongly induced in antigen-specific proliferating T cells, and OPN null mice display a reduced chronic CHS inflammatory response due to a decreased influx of effector T cells. Importantly, because of its function for chronic allergic contact dermatitis, OPN may well be a therapeutic target, because anti-OPN antibody treatment in part suppresses established chronic CHS. PMID:20008129

  8. Trypanosoma cruzi Subverts Host Cell Sialylation and May Compromise Antigen-specific CD8+ T Cell Responses*

    PubMed Central

    Freire-de-Lima, Leonardo; Alisson-Silva, Frederico; Carvalho, Sebastião T.; Takiya, Christina M.; Rodrigues, Maurício M.; DosReis, George A.; Mendonça-Previato, Lucia; Previato, José O.; Todeschini, Adriane R.

    2010-01-01

    Upon activation, cytotoxic CD8+ T lymphocytes are desialylated exposing β-galactose residues in a physiological change that enhances their effector activity and that can be monitored on the basis of increased binding of the lectin peanut agglutinin. Herein, we investigated the impact of sialylation mediated by trans-sialidase, a specific and unique Trypanosoma transglycosylase for sialic acid, on CD8+ T cell response of mice infected with T. cruzi. Our data demonstrate that T. cruzi uses its trans-sialidase enzyme to resialylate the CD8+ T cell surface, thereby dampening antigen-specific CD8+ T cell response that might favor its own persistence in the mammalian host. Binding of the monoclonal antibody S7, which recognizes sialic acid-containing epitopes on the 115-kDa isoform of CD43, was augmented on CD8+ T cells from ST3Gal-I-deficient infected mice, indicating that CD43 is one sialic acid acceptor for trans-sialidase activity on the CD8+ T cell surface. The cytotoxic activity of antigen-experienced CD8+ T cells against the immunodominant trans-sialidase synthetic peptide IYNVGQVSI was decreased following active trans-sialidase- mediated resialylation in vitro and in vivo. Inhibition of the parasite's native trans-sialidase activity during infection strongly decreased CD8+ T cell sialylation, reverting it to the glycosylation status expected in the absence of parasite manipulation increasing mouse survival. Taken together, these results demonstrate, for the first time, that T. cruzi subverts sialylation to attenuate CD8+ T cell interactions with peptide-major histocompatibility complex class I complexes. CD8+ T cell resialylation may represent a sophisticated strategy to ensure lifetime host parasitism. PMID:20106975

  9. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma.

    PubMed

    Linnemann, Carsten; van Buuren, Marit M; Bies, Laura; Verdegaal, Els M E; Schotte, Remko; Calis, Jorg J A; Behjati, Sam; Velds, Arno; Hilkmann, Henk; Atmioui, Dris El; Visser, Marten; Stratton, Michael R; Haanen, John B A G; Spits, Hergen; van der Burg, Sjoerd H; Schumacher, Ton N M

    2015-01-01

    Tumor-specific neo-antigens that arise as a consequence of mutations are thought to be important for the therapeutic efficacy of cancer immunotherapies. Accumulating evidence suggests that neo-antigens may be commonly recognized by intratumoral CD8+ T cells, but it is unclear whether neo-antigen-specific CD4+ T cells also frequently reside within human tumors. In view of the accepted role of tumor-specific CD4+ T-cell responses in tumor control, we addressed whether neo-antigen-specific CD4+ T-cell reactivity is a common property in human melanoma.

  10. Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines

    NASA Astrophysics Data System (ADS)

    Lee Szeto, Gregory; van Egeren, Debra; Worku, Hermoon; Sharei, Armon; Alejandro, Brian; Park, Clara; Frew, Kirubel; Brefo, Mavis; Mao, Shirley; Heimann, Megan; Langer, Robert; Jensen, Klavs; Irvine, Darrell J.

    2015-05-01

    B-cells are promising candidate autologous antigen-presenting cells (APCs) to prime antigen-specific T-cells both in vitro and in vivo. However to date, a significant barrier to utilizing B-cells as APCs is their low capacity for non-specific antigen uptake compared to “professional” APCs such as dendritic cells. Here we utilize a microfluidic device that employs many parallel channels to pass single cells through narrow constrictions in high throughput. This microscale “cell squeezing” process creates transient pores in the plasma membrane, enabling intracellular delivery of whole proteins from the surrounding medium into B-cells via mechano-poration. We demonstrate that both resting and activated B-cells process and present antigens delivered via mechano-poration exclusively to antigen-specific CD8+T-cells, and not CD4+T-cells. Squeezed B-cells primed and expanded large numbers of effector CD8+T-cells in vitro that produced effector cytokines critical to cytolytic function, including granzyme B and interferon-γ. Finally, antigen-loaded B-cells were also able to prime antigen-specific CD8+T-cells in vivo when adoptively transferred into mice. Altogether, these data demonstrate crucial proof-of-concept for mechano-poration as an enabling technology for B-cell antigen loading, priming of antigen-specific CD8+T-cells, and decoupling of antigen uptake from B-cell activation.

  11. The generation of CD8+ T-cell population specific for vaccinia virus epitope involved in the antiviral protection against ectromelia virus challenge.

    PubMed

    Gierynska, Malgorzata; Szulc-Dabrowska, Lidia; Dzieciatkowski, Tomasz; Golke, Anna; Schollenberger, Ada

    2015-12-01

    Eradication of smallpox has led to cessation of vaccination programs. This has rendered the human population increasingly susceptible not only to variola virus infection but also to infections with other representatives of Poxviridae family that cause zoonotic variola-like diseases. Thus, new approaches for designing improved vaccine against smallpox are required. Discovering that orthopoxviruses, e.g. variola virus, vaccinia virus, ectromelia virus, share common immunodominant antigen, may result in the development of such a vaccine. In our study, the generation of antigen-specific CD8(+) T cells in mice during the acute and memory phase of the immune response was induced using the vaccinia virus immunodominant TSYKFESV epitope and CpG oligodeoxynucleotides as adjuvants. The role of the generated TSYKFESV-specific CD8(+) T cells was evaluated in mice during ectromelia virus infection using systemic and mucosal model. Moreover, the involvement of dendritic cells subsets in the adaptive immune response stimulation was assessed. Our results indicate that the TSYKFESV epitope/TLR9 agonist approach, delivered systemically or mucosally, generated strong CD8(+) T-cell response when measured 10 days after immunization. Furthermore, the TSYKFESV-specific cell population remained functionally active 2 months post-immunization, and gave cross-protection in virally challenged mice, even though the numbers of detectable antigen-specific T cells decreased. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Presentation of antigen to T lymphocytes by non-immune B-cell hybridoma clones: evidence for specific and non-specific presentation

    NASA Technical Reports Server (NTRS)

    Cohly, H. H.; Morrison, D. R.; Zouhair Atassi, M. Z.

    1989-01-01

    Non-immune SJL (H-2s) spleen cells were fused with non-secreting, non-antigen presenting (H-2d) Balb/c 653-myeloma cells and the hybridomas were cloned by two limiting dilutions. The resulting hybrid B-cell clones were tested for their antigen presentation capability to SJL T-cell lines that were specific for either lysozyme or myoglobin. In proliferative assays, 53% of the antigen presenting B-cell clones presented both myoglobin and lysozyme (general presenters) while the other 47% presented specifically either myoglobin or lysozyme (specific presenters). The ability to selectively present either myoglobin or lysozyme indicates that antigen presentation at the clonal level can be specific or non-specific depending on the particular B-cell clone.

  13. Enhanced activation of human T cell clones specific for virus-like particles expressing the HIV V3 loop in the presence of HIV V3 loop-specific polyclonal antibodies

    PubMed Central

    Peifang, S.; Pira, G. L.; Fenoglio, D.; Harris, S.; Costa, M. G.; Venturino, V.; Dessì, V.; Layton, G.; Laman, J.; Huisman, J. G.; Manca, F.

    1994-01-01

    Recombinant virus-like particles (VLP), formed by the yeast Ty p1 protein, carrying the HIV gp120 V3 loop on their surface (V3-VLP) have been tested in vitro for immunogenicity and antigenicity by using VLP p1-specific human CD4+ T cell lines and clones. VLP-specific human T cell lines and clones were generated from normal individuals, indicating that VLP-specific precursor cells present in the peripheral lymphocyte pool can be induced to expand clonally upon antigen challenge in vitro, in the absence of previous immunization. It was also shown that V3-specific polyclonal antibodies enhance V3-VLP-induced activation of VLP-specific T cell clones. Antibody-dependent potentiation has been shown previously in other antigen systems, and it depends on enhanced uptake of complexed antigen by Fc receptor-positive antigen-presenting cells. Since in this case antigen is internalized by presenting cells as a complex, it can be inferred that a similar event of antibody-mediated antigen uptake can take place with V3-specific B cells, resulting in presentation by the B cells of T helper epitopes derived from processing of the VLP p1 moiety. This suggests that T helper cells specific for the carrier VLP p1 protein can be activated to provide help to V3-specific B cells in the presence of the appropriate antigen construct. PMID:7915974

  14. Induction of human antigen-specific suppressor factors in vitro.

    PubMed Central

    Kontiainen, S; Woody, J N; Rees, A; Feldmann, M

    1981-01-01

    Based on methods used for the in vitro induction of antigen-specific suppressor cells in the mouse, we have cultured Ficoll-Isopaque-separated human blood cells with high dose of antigen (100 microgram/ml) in Marbrook culture vessels for 4 days. The resulting cells, when further recultured for 24 hr with a low dose of antigen (1 microgram/ml), released into the supernatant material, termed 'suppressor factor', which inhibited, in an antigen-specific manner, the antibody response of mouse spleen cells in culture. The suppressor factor was analysed using immunoabsorbents, and was bound to and eluted from specific antigen, concanavalin A and lentil lectin, anti-human Ia antibodies, and anti-mouse suppressor factor antibodies, but was not bound to antibodies against human IgG. PMID:6169475

  15. Metal-organic gel enhanced fluorescence anisotropy for sensitive detection of prostate specific antigen

    NASA Astrophysics Data System (ADS)

    Zhao, Ting Ting; Peng, Zhe Wei; Yuan, Dan; Zhen, Shu Jun; Huang, Cheng Zhi; Li, Yuan Fang

    2018-03-01

    In this contribution, we demonstrated that Cu-based metal-organic gel (Cu-MOG) was able to serve as a novel amplification platform for fluorescence anisotropy (FA) assay for the first time, which was confirmed by the sensitive detection of a common cancer biomarker, prostate specific antigen (PSA). The dye-labeled probe aptamer (PA) product was adsorbed onto the benzimidazole derivative-containing Cu-MOG via electrostatic incorporation and strong π-π stacking interactions, which significantly increased the FA value due to the enlargement of the molecular volume of the PA/Cu-MOG complex. With the introduction of target PSA, the FA value was obviously decreased on account of the specific recognition between PSA and PA which resulted in the detachment of PA from the surface of MOG. The linear range was from 0.5-8 ng/mL, with a detection limit of 0.33 ng/mL. Our work has thus helped to demonstrate promising application of MOG material in the fields of biomolecules analysis and disease diagnosis.

  16. Ubiquitinated Proteins Isolated From Tumor Cells Are Efficient Substrates for Antigen Cross-Presentation.

    PubMed

    Yu, Guangjie; Moudgil, Tarsem; Cui, Zhihua; Mou, Yongbin; Wang, Lixin; Fox, Bernard A; Hu, Hong-Ming

    2017-06-01

    We have previously shown that inhibition of the proteasome causes defective ribosomal products to be shunted into autophagosomes and subsequently released from tumor cells as defective ribosomal products in Blebs (DRibbles). These DRibbles serve as an excellent source of antigens for cross-priming of tumor-specific T cells. Here, we examine the role of ubiquitinated proteins (Ub-proteins) in this pathway. Using purified Ub-proteins from tumor cells that express endogenous tumor-associated antigen or exogenous viral antigen, we tested the ability of these proteins to stimulate antigen-specific T-cell responses, by activation of monocyte-derived dendritic cells generated from human peripheral blood mononuclear cells. Compared with total cell lysates, we found that purified Ub-proteins from both a gp100-specific melanoma cell line and from a lung cancer cell line expressing cytomegalovirus pp65 antigen produced a significantly higher level of IFN-γ in gp100- or pp65-specific T cells, respectively. In addition, Ub-proteins from an allogeneic tumor cell line could be used to stimulate tumor-infiltrating lymphocytes isolated and expanded from non-small cell lung cancer patients. These results establish that Ub-proteins provide a relevant source of antigens for cross-priming of antitumor immune responses in a variety of settings, including endogenous melanoma and exogenous viral antigen presentation, as well as antigen-specific tumor-infiltrating lymphocytes. Thus, ubiquitin can be used as an affinity tag to enrich for unknown tumor-specific antigens from tumor cell lysates to stimulate tumor-specific T cells ex vivo or to be used as vaccines to target short-lived proteins.

  17. Antigenic analyses of tissues and excretory and secretory products from Strongylus vulgaris.

    PubMed

    Wynne, E; Slocombe, J O; Wilkie, B N

    1981-07-01

    Rabbit antisera were prepared against veronal buffered saline extracts of L4 and L5 Strongylus vulgaris, adult S. vulgaris and adult Strongylus equinus retrieved from naturally infected horses. In agar gel diffusion with these antisera, adult S vulgaris and S. equinus each appeared to have at least one unique antigen; larval S. vulgaris appeared to have two species-specific and two stage-specific antigens. There were several common antigens. Excretory and secretory products were collected also from L4 and L5 an maintained over several days in tissue culture fluid. In agar gel diffusion against the above rabbit antisera, a stage-specific antigen was found also in excretory and secretory products. In addition, excretory and secretory products had three antigens in common with adult and larval S. vulgaris, but only one of these was common to adult S. equinus. The excretory and secretory products appear, therefore, to have two species-specific and one stage-specific antigens.

  18. CELL SEPARATION ON ANTIGEN-COATED COLUMNS

    PubMed Central

    Wigzell, Hans; Andersson, Birger

    1969-01-01

    Glass and plastic bead columns coated with antigenic protein molecules were used as an immunological filter for cell populations containing immune cells of relevant specificity. A selective elimination of these immune cells from the passing cell suspension was regularly noted and it approached, in some experiments, complete abolition of the specific immune reactivity of the filtered cell population. This specific retention of immune cells by antigenic columns could be selectively blocked by the presence of free antigen molecules in the medium during filtration. The results obtained support the concept of a cell-associated antigen-specific receptor being present on the outer surface of immune cells, displaying the same antigen-binding specificity as the potential product of the cell, the humoral antibody. Using the present bead column system, results were obtained indicating that this receptor was an active product of the immune cells and not any passively adsorbed, cytophilic antibody. Antigenic bead columns may very well constitute a tool for the production in vitro of cell populations being specifically deprived of immune reactivity and allow detailed analysis of the characteristics of the cell-associated antibody of immune cells. PMID:5782770

  19. Dynamic Imaging of CD8(+) T cells and dendritic cells during infection with Toxoplasma gondii.

    PubMed

    John, Beena; Harris, Tajie H; Tait, Elia D; Wilson, Emma H; Gregg, Beth; Ng, Lai Guan; Mrass, Paulus; Roos, David S; Dzierszinski, Florence; Weninger, Wolfgang; Hunter, Christopher A

    2009-07-01

    To better understand the initiation of CD8(+) T cell responses during infection, the primary response to the intracellular parasite Toxoplasma gondii was characterized using 2-photon microscopy combined with an experimental system that allowed visualization of dendritic cells (DCs) and parasite specific CD8(+) T cells. Infection with T. gondii induced localization of both these populations to the sub-capsular/interfollicular region of the draining lymph node and DCs were required for the expansion of the T cells. Consistent with current models, in the presence of cognate antigen, the average velocity of CD8(+) T cells decreased. Unexpectedly, infection also resulted in modulation of the behavior of non-parasite specific T cells. This TCR-independent process correlated with the re-modeling of the lymph node micro-architecture and changes in expression of CCL21 and CCL3. Infection also resulted in sustained interactions between the DCs and CD8(+) T cells that were visualized only in the presence of cognate antigen and were limited to an early phase in the response. Infected DCs were rare within the lymph node during this time frame; however, DCs presenting the cognate antigen were detected. Together, these data provide novel insights into the earliest interaction between DCs and CD8(+) T cells and suggest that cross presentation by bystander DCs rather than infected DCs is an important route of antigen presentation during toxoplasmosis.

  20. Dynamic Imaging of CD8+ T Cells and Dendritic Cells during Infection with Toxoplasma gondii

    PubMed Central

    John, Beena; Harris, Tajie H.; Tait, Elia D.; Wilson, Emma H.; Gregg, Beth; Ng, Lai Guan; Mrass, Paulus; Roos, David S.; Dzierszinski, Florence; Weninger, Wolfgang; Hunter, Christopher A.

    2009-01-01

    To better understand the initiation of CD8+ T cell responses during infection, the primary response to the intracellular parasite Toxoplasma gondii was characterized using 2-photon microscopy combined with an experimental system that allowed visualization of dendritic cells (DCs) and parasite specific CD8+ T cells. Infection with T. gondii induced localization of both these populations to the sub-capsular/interfollicular region of the draining lymph node and DCs were required for the expansion of the T cells. Consistent with current models, in the presence of cognate antigen, the average velocity of CD8+ T cells decreased. Unexpectedly, infection also resulted in modulation of the behavior of non-parasite specific T cells. This TCR-independent process correlated with the re-modeling of the lymph node micro-architecture and changes in expression of CCL21 and CCL3. Infection also resulted in sustained interactions between the DCs and CD8+ T cells that were visualized only in the presence of cognate antigen and were limited to an early phase in the response. Infected DCs were rare within the lymph node during this time frame; however, DCs presenting the cognate antigen were detected. Together, these data provide novel insights into the earliest interaction between DCs and CD8+ T cells and suggest that cross presentation by bystander DCs rather than infected DCs is an important route of antigen presentation during toxoplasmosis. PMID:19578440

  1. Relative value of race, family history and prostate specific antigen as indications for early initiation of prostate cancer screening.

    PubMed

    Vertosick, Emily A; Poon, Bing Ying; Vickers, Andrew J

    2014-09-01

    Many guidelines suggest earlier screening for prostate cancer in men at high risk, with risk defined in terms of race and family history. Recent evidence suggests that baseline prostate specific antigen is strongly predictive of the long-term risk of aggressive prostate cancer. We compared the usefulness of risk stratifying early screening by race, family history and prostate specific antigen at age 45 years. Using estimates from the literature we calculated the proportion of men targeted for early screening using family history, black race or prostate specific antigen as the criterion for high risk. We calculated the proportion of prostate cancer deaths that would occur in those men by age 75 years. Screening based on family history involved 10% of men, accounting for 14% of prostate cancer deaths. Using black race as a risk criterion involved 13% of men, accounting for 28% of deaths. In contrast, 44% of prostate cancer deaths occurred in the 10% of men with the highest prostate specific antigen at age 45 years. In no sensitivity analysis for race and family history did the ratio of risk group size to number of prostate cancer deaths in that risk group approach that of prostate specific antigen. Basing decisions for early screening on prostate specific antigen at age 45 years provided the best ratio between men screened and potential cancer deaths avoided. Given the lack of evidence that race or family history affects the relationship between prostate specific antigen and risk, prostate specific antigen based risk stratification would likely include any black men or men with a family history who are destined to experience aggressive disease. Differential screening based on risk should be informed by baseline prostate specific antigen. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  2. Pathological Outcome following Radical Prostatectomy in Men with Prostate Specific Antigen Greater than 10 ng/ml and Histologically Favorable Risk Prostate Cancer.

    PubMed

    Yu, Jiwoong; Kwon, Young Suk; Kim, Sinae; Han, Christopher Sejong; Farber, Nicholas; Kim, Jongmyung; Byun, Seok Soo; Kim, Wun-Jae; Jeon, Seong Soo; Kim, Isaac Yi

    2016-05-01

    Active surveillance is now the treatment of choice in men with low risk prostate cancer. Although there is no consensus on which patients are eligible for active surveillance, prostate specific antigen above 10 ng/ml is generally excluded. In an attempt to determine the validity of using a prostate specific antigen cutoff of 10 ng/ml to counsel men considering active surveillance we analyzed a multi-institution database to determine the pathological outcome in men with prostate specific antigen greater than 10 ng/ml but histologically favorable risk prostate cancer. We queried a prospectively maintained database of men with histologically favorable risk prostate cancer who underwent radical prostatectomy between 2003 and 2015. The cohort was categorized into 3 groups based on prostate specific antigen level, including low-less than 10 ng/ml, intermediate-10 or greater to less than 20 and high-20 or greater. Associations of prostate specific antigen group with adverse pathological and oncologic outcomes were analyzed. Of 2,125 patients 1,327 were categorized with histologically favorable risk disease. However on multivariate analyses the rates of up staging and upgrading were similar between the intermediate and low prostate specific antigen groups. In contrast compared to the intermediate prostate specific antigen group the high group had higher incidences of up staging (p = 0.02) and upgrading to 4 + 3 or greater disease (p = 0.046). Biochemical recurrence-free survival rates revealed no pairwise intergroup differences except between the low and high groups. Patients with preoperatively elevated prostate specific antigen between 10 and less than 20 ng/ml who otherwise had histologically favorable risk prostate cancer were not at higher risk for adverse pathological outcomes than men with prostate specific antigen less than 10 ng/ml. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  3. Placental restriction of fetal growth reduces cutaneous responses to antigen after sensitization in sheep.

    PubMed

    Wooldridge, Amy L; Bischof, Robert J; Meeusen, Els N; Liu, Hong; Heinemann, Gary K; Hunter, Damien S; Giles, Lynne C; Kind, Karen L; Owens, Julie A; Clifton, Vicki L; Gatford, Kathryn L

    2014-04-01

    Prenatal and early childhood exposures are implicated as causes of allergy, but the effects of intrauterine growth restriction on immune function and allergy are poorly defined. We therefore evaluated effects of experimental restriction of fetal growth on immune function and allergic sensitization in adolescent sheep. Immune function (circulating total red and white blood cells, neutrophils, lymphocytes, monocytes, eosinophils, and basophils, and the antibody response to Clostridial vaccination) and responses to house dust mite (HDM) allergen and ovalbumin (OVA) antigen sensitization (specific total Ig, IgG1, and IgE antibodies, and cutaneous hypersensitivity) were investigated in adolescent sheep from placentally restricted (PR, n = 23) and control (n = 40) pregnancies. Increases in circulating HDM-specific IgE (P = 0.007) and OVA-specific IgE (P = 0.038) were greater in PR than control progeny. PR did not alter total Ig, IgG1, or IgM responses to either antigen. PR increased OVA-specific but not HDM-specific IgA responses in females only (P = 0.023). Multiple birth increased Ig responses to OVA in a sex-specific manner. PR decreased the proportion of positive cutaneous hypersensitivity responders to OVA at 24 h (P = 0.030) but had no effect on cutaneous responses to HDM. Acute wheal responses to intradermal histamine correlated positively with birth weight in singletons (P = 0.023). Intrauterine growth restriction may suppress inflammatory responses in skin downstream of IgE induction, without impairment in antibody responses to a nonpolysaccharide vaccine. Discord between cutaneous and IgE responses following sensitization suggests new mechanisms for prenatal allergy programming.

  4. A Glu-urea-Lys Ligand-conjugated Lipid Nanoparticle/siRNA System Inhibits Androgen Receptor Expression In Vivo

    PubMed Central

    Lee, Justin B; Zhang, Kaixin; Tam, Yuen Yi C; Quick, Joslyn; Tam, Ying K; Lin, Paulo JC; Chen, Sam; Liu, Yan; Nair, Jayaprakash K; Zlatev, Ivan; Rajeev, Kallanthottathil G; Manoharan, Muthiah; Rennie, Paul S; Cullis, Pieter R

    2016-01-01

    The androgen receptor plays a critical role in the progression of prostate cancer. Here, we describe targeting the prostate-specific membrane antigen using a lipid nanoparticle formulation containing small interfering RNA designed to silence expression of the messenger RNA encoding the androgen receptor. Specifically, a Glu-urea-Lys PSMA-targeting ligand was incorporated into the lipid nanoparticle system formulated with a long alkyl chain polyethylene glycol-lipid to enhance accumulation at tumor sites and facilitate intracellular uptake into tumor cells following systemic administration. Through these features, and by using a structurally refined cationic lipid and an optimized small interfering RNA payload, a lipid nanoparticle system with improved potency and significant therapeutic potential against prostate cancer and potentially other solid tumors was developed. Decreases in serum prostate-specific antigen, tumor cellular proliferation, and androgen receptor levels were observed in a mouse xenograft model following intravenous injection. These results support the potential clinical utility of a prostate-specific membrane antigen–targeted lipid nanoparticle system to silence the androgen receptor in advanced prostate cancer. PMID:28131285

  5. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors

    PubMed Central

    Heiser, Axel; Coleman, Doris; Dannull, Jens; Yancey, Donna; Maurice, Margaret A.; Lallas, Costas D.; Dahm, Philipp; Niedzwiecki, Donna; Gilboa, Eli; Vieweg, Johannes

    2002-01-01

    Autologous dendritic cells (DCs) transfected with mRNA encoding prostate-specific antigen (PSA) are able to stimulate potent, T cell–mediated antitumor immune responses in vitro. A phase I trial was performed to evaluate this strategy for safety, feasibility, and efficacy to induce T cell responses against the self-protein PSA in patients with metastatic prostate cancer. In 13 study subjects, escalating doses of PSA mRNA–transfected DCs were administered with no evidence of dose-limiting toxicity or adverse effects, including autoimmunity. Induction of PSA-specific T cell responses was consistently detected in all patients, suggesting in vivo bioactivity of the vaccine. Vaccination was further associated with a significant decrease in the log slope PSA in six of seven subjects; three patients that could be analyzed exhibited a transient molecular clearance of circulating tumor cells. The demonstration of vaccine safety, successful in vivo induction of PSA-specific immunity, and impact on surrogate clinical endpoints provides a scientific rationale for further clinical investigation of RNA-transfected DCs in the treatment of human cancer. PMID:11828001

  6. Immune suppression with supraoptimal doses of antigen in contact sensitivity. I. Demonstration of suppressor cells and their sensitivity to cyclophosphamide.

    PubMed

    Sy, M S; Miller, S D; Claman, H N

    1977-07-01

    Immunologic suppression was induced in a mouse model of contact sensitization to DNFB by using supraoptimal doses of antigen. In these studies, in vivo measurement of ear swelling as an indication of immunologic responsiveness correlated well with measurement of in vitro antigen-induced cell proliferation. This unresponsiveness was specific, since supraoptimal doses of DNFB did not interfere with the development of contact sensitivity to another contactant, oxazolone. The decrease in responsiveness is a form of active suppression, as lymphoid cells from supraoptimally sensitized donors transferred suppression to normal recipients. Furthermore, pretreatment with cyclophosphamide (Cy) reversed the suppression seen in supraoptimally sensitized animals but had no effect on the optimal sensitization regimen. These results indicate that supraoptimal doses of contactants can activate suppressor cells and that precursors of these cells are sensitive to Cy. Such suppressors regenerate within 7 to 14 days after Cy treatment. The ability of Cy pretreatment to affect supraoptimal sensitization without affecting optimal sensitization confirms other reports indicating that the observed results of Cy treatment depend critically upon the dose of antigen used.

  7. Pseudorabies virus-induced suppression of major histocompatibility complex class I antigen expression.

    PubMed Central

    Mellencamp, M W; O'Brien, P C; Stevenson, J R

    1991-01-01

    The ability of pseudorabies virus (PrV) to down-modulate expression of major histocompatibility complex class I antigens in murine and porcine cells was investigated. When quantified by flow cytometry, surface expression of class I Kk and Dk antigens on PrV-infected cells decreased by 60% or more. Down-modulation was associated with a decrease in total cellular class I antigens, indicating regulation at the transcriptional or posttranscriptional level. PrV did not suppress expression of transferrin receptor, suggesting a selective regulatory mechanism. Images PMID:1851884

  8. Cholesterol Corrects Altered Conformation of MHC-II Protein in Leishmania donovani Infected Macrophages: Implication in Therapy

    PubMed Central

    Chakrabarti, Saikat; Roy, Syamal

    2016-01-01

    Background Previously we reported that Kala-azar patients show progressive decrease in serum cholesterol as a function of splenic parasite burden. Splenic macrophages (MΦ) of Leishmania donovani (LD) infected mice show decrease in membrane cholesterol, while LD infected macrophages (I-MΦ) show defective T cell stimulating ability that could be corrected by liposomal delivery of cholesterol. T helper cells recognize peptide antigen in the context of class II MHC molecule. It is known that the conformation of a large number of membrane proteins is dependent on membrane cholesterol. In this investigation we tried to understand the influence of decreased membrane cholesterol in I-MΦ on the conformation of MHC-II protein and peptide-MHC-II stability, and its bearing on the antigen specific T-cell activation. Methodology/Principal Findings MΦ of CBA/j mice were infected with Leishmania donovani (I-MΦ). Two different anti-Aκ mAbs were used to monitor the status of MHC-II protein under parasitized condition. One of them (11.5–2) was conformation specific, whereas the other one (10.2.16) was not. Under parasitized condition, the binding of 11.5–2 decreased significantly with respect to the normal counterpart, whereas that of 10.2.16 remained unaltered. The binding of 11.5–2 was restored to normal upon liposomal delivery of cholesterol in I-MΦ. By molecular dynamics (MD) simulation studies we found that there was considerable conformational fluctuation in the transmembrane domain of the MHC-II protein in the presence of membrane cholesterol than in its absence, which possibly influenced the distal peptide binding groove. This was evident from the faster dissociation of the cognate peptide from peptide-MHC complex under parasitized condition, which could be corrected by liposomal delivery of cholesterol in I-MΦ. Conclusion The decrease in membrane cholesterol in I-MΦ may lead to altered conformation of MHC II, and this may contribute to a faster dissociation of the peptide. Furthermore, liposomal delivery of cholesterol in I-MΦ restored its normal antigen presenting function. This observation brings strength to our previous observation on host directed therapeutic application of liposomal cholesterol in experimental visceral leishmaniasis. PMID:27214205

  9. Validating the disruption of proliferating cell nuclear antigen interactions in the development of targeted cancer therapeutics.

    PubMed

    Smith, Shanna J; Hickey, Robert J; Malkas, Linda H

    2016-01-01

    Human DNA replication and repair is a highly coordinated process involving the specifically timed actions of numerous proteins and enzymes. Many of these proteins require interaction with proliferating cell nuclear antigen (PCNA) for activation within the process. The interdomain connector loop (IDCL) of PCNA provides a docking site for many of those proteins, suggesting that this region is critically important in the regulation of cellular function. Previous work in this laboratory has demonstrated that a peptide mimicking a specific region of the IDCL (caPeptide) has the ability to disrupt key protein-protein interactions between PCNA and its binding partners, thereby inhibiting DNA replication within the cells. In this study, we confirm the ability of the caPeptide to disrupt DNA replication function using both intact cell and in vitro DNA replication assays. Further, we were able to demonstrate that treatment with caPeptide results in a decrease of polymerase δ activity that correlates with the observed decrease in DNA replication. We have also successfully developed a surface plasmon resonance (SPR) assay to validate the disruption of the PCNA-pol δ interaction with caPeptide.

  10. Prostate-Specific Membrane Antigen Targeted Polymersomes for Delivering Mocetinostat and Docetaxel to Prostate Cancer Cell Spheroids.

    PubMed

    Karandish, Fataneh; Haldar, Manas K; You, Seungyong; Brooks, Amanda E; Brooks, Benjamin D; Guo, Bin; Choi, Yongki; Mallik, Sanku

    2016-11-30

    Prostate cancer cells overexpress the prostate-specific membrane antigen (PSMA) receptors on the surface. Targeting the PSMA receptor creates a unique opportunity for drug delivery. Docetaxel is a Food and Drug Administration-approved drug for treating metastatic and androgen-independent prostate cancer, and mocetinostat is a potent inhibitor of class I histone deacetylases. In this study, we prepared reduction-sensitive polymersomes presenting folic acid on the surface and encapsulating either docetaxel or mocetinostat. The presence of folic acid allowed efficient targeting of the PSMA receptor and subsequent internalization of the polymeric vesicles in cultured LNCaP prostate cancer cell spheroids. The intracellular reducing agents efficiently released docetaxel and mocetinostat from the polymersomes. The combination of the two drug-encapsulated polymersome formulations significantly ( p < 0.05) decreased the viability of the LNCaP cells (compared to free drugs or control) in three-dimensional spheroid cultures. The calculated combination index value indicated a synergistic effect for the combination of mocetinostat and docetaxel. Thus, our PSMA-targeted drug-encapsulated polymersomes has the potential to lead to a new direction in prostate cancer therapy that decreases the toxicity and increases the efficacy of the drug delivery systems.

  11. Prostate-Specific Membrane Antigen Targeted Polymersomes for Delivering Mocetinostat and Docetaxel to Prostate Cancer Cell Spheroids

    PubMed Central

    2016-01-01

    Prostate cancer cells overexpress the prostate-specific membrane antigen (PSMA) receptors on the surface. Targeting the PSMA receptor creates a unique opportunity for drug delivery. Docetaxel is a Food and Drug Administration-approved drug for treating metastatic and androgen-independent prostate cancer, and mocetinostat is a potent inhibitor of class I histone deacetylases. In this study, we prepared reduction-sensitive polymersomes presenting folic acid on the surface and encapsulating either docetaxel or mocetinostat. The presence of folic acid allowed efficient targeting of the PSMA receptor and subsequent internalization of the polymeric vesicles in cultured LNCaP prostate cancer cell spheroids. The intracellular reducing agents efficiently released docetaxel and mocetinostat from the polymersomes. The combination of the two drug-encapsulated polymersome formulations significantly (p < 0.05) decreased the viability of the LNCaP cells (compared to free drugs or control) in three-dimensional spheroid cultures. The calculated combination index value indicated a synergistic effect for the combination of mocetinostat and docetaxel. Thus, our PSMA-targeted drug-encapsulated polymersomes has the potential to lead to a new direction in prostate cancer therapy that decreases the toxicity and increases the efficacy of the drug delivery systems. PMID:27917408

  12. Pro-inflammatory cytokines and C-reactive protein are associated with undernutrition in the context of Schistosoma japonicum infection.

    PubMed

    Coutinho, Hannah M; Leenstra, Tjalling; Acosta, Luz P; Su, Li; Jarilla, Blanca; Jiz, Mario A; Langdon, Gretchen C; Olveda, Remigio M; McGarvey, Stephen T; Kurtis, Jonathan D; Friedman, Jennifer F

    2006-10-01

    Schistosomiasis is associated with undernutrition, but the mechanisms involved remain unknown. We analyzed baseline and follow-up data from a longitudinal treatment-reinfection study in N = 477 Schistosoma japonicum-infected subjects 7-20 years of age from Leyte, the Philippines. After baseline treatment with praziquantel, follow-up visits were scheduled every 3 months for 18 months; stool, venous blood, and anthropometric measurements were collected at each visit. Cytokine production by peripheral blood mononuclear cells (PBMCs) stimulated with specific S. japonicum antigens was measured once 4 weeks after treatment. After adjustment for confounders, S. japonicum intensity was associated with decreased serum albumin and Z-scores (all P < 0.05) and with increased serum C-reactive protein (CRP) and interleukin (IL)-6. CRP was associated with decreased albumin and Z-scores (all P < 0.01). Production of IL-1b and tumor necrosis factor (TNF)-alpha in response to worm antigen was associated with decreased albumin (both P < 0.005) and height-for-age Z-score (TNF-alpha only, P = 0.05). S. japonicum-associated undernutrition may, in part, result directly from inflammation.

  13. Erythrocyte membrane antigen frequencies in patients with Type II congenital smell loss.

    PubMed

    Stateman, William A; Henkin, Robert I; Knöppel, Alexandra B; Flegel, Willy A

    2015-01-01

    The objective of this study was to determine whether there are genetic factors associated with Type II congenital smell loss. The expression frequencies of 16 erythrocyte antigens among patients with Type II congenital smell loss were determined and compared to those of a large control group. Blood samples were obtained from 99 patients with Type II congenital smell loss. Presence of the erythrocyte surface antigens A, B, M, N, S, s, Fy(a), Fy(b), D, C, c, E, e, K, Jk(a), and Jk(b) was analyzed by blood group serology. Comparisons of expression frequencies of these antigens were made between the patients and a large control group. Patients tested for the Duffy b antigen (Fy(b) haplotype) exhibited a statistically significant 11% decrease in expression frequency compared to the controls. There were no significant differences between patients and controls in the expression frequencies for all other erythrocyte antigens (A, B, M, N, S, s, Fy(a), D, C, c, E, e, K, Jk(a), or Jk(b)). These findings describe the presence of a previously unrevealed genetic tendency among patients with Type II congenital smell loss related to erythrocyte surface antigen expression. The deviation in expression rate of Duffy b suggests a target gene and chromosome region in which future research into this form of congenital smell loss may reveal a more specific genetic basis for Type II congenital smell loss. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Changes of serum IgG antibody reactivity to protein antigens of Treponema pallidum in syphilis patients after treatment.

    PubMed

    Kim, D K; Lee, M G; Lee, J B

    1989-06-01

    The changes of serum IgG antibody reactivity to protein antigens of Treponema pallidum after treatment of syphilis were observed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot. Until 9 to 12 months after treatment, it was seen that there was a loss of several antibodies and some diminution in their reactivity in primary, secondary and early latent syphilis, but no changes occurred in late latent and reinfected syphilis. In primary syphilis, there was a significant loss of two IgG antibodies to the treponemal antigens of molecular weights 68,500 and 47,000 at 11 months after treatment. According to our previous study, the treponemal antigen of molecular weight 68,500 was T. pallidum specific and appeared only in primary syphilis, and that of molecular weight 47,000 was one of the major antigens of T. pallidum. The reaction between serum IgG antibodies of 14 patients who had been treated for secondary, early latent and late latent syphilis 2 to 14 years ago and major antigens of T. pallidum was observed and any loss or decrease in reactivity was not discovered. From the results obtained, it was concluded that the observation of serum IgG antibody reactivity to protein antigens of T. pallidum is not helpful in evaluating the efficacy of treatment in secondary, early latent, late latent and reinfected syphilis. However, serum IgG antibodies to treponemal antigens of molecular weights 68,500 and 47,000 could possibly be useful in the assessment of the efficacy of treatment in primary syphilis.

  15. Changes of serum IgG antibody reactivity to protein antigens of Treponema pallidum in syphilis patients after treatment.

    PubMed Central

    Kim, D. K.; Lee, M. G.; Lee, J. B.

    1989-01-01

    The changes of serum IgG antibody reactivity to protein antigens of Treponema pallidum after treatment of syphilis were observed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot. Until 9 to 12 months after treatment, it was seen that there was a loss of several antibodies and some diminution in their reactivity in primary, secondary and early latent syphilis, but no changes occurred in late latent and reinfected syphilis. In primary syphilis, there was a significant loss of two IgG antibodies to the treponemal antigens of molecular weights 68,500 and 47,000 at 11 months after treatment. According to our previous study, the treponemal antigen of molecular weight 68,500 was T. pallidum specific and appeared only in primary syphilis, and that of molecular weight 47,000 was one of the major antigens of T. pallidum. The reaction between serum IgG antibodies of 14 patients who had been treated for secondary, early latent and late latent syphilis 2 to 14 years ago and major antigens of T. pallidum was observed and any loss or decrease in reactivity was not discovered. From the results obtained, it was concluded that the observation of serum IgG antibody reactivity to protein antigens of T. pallidum is not helpful in evaluating the efficacy of treatment in secondary, early latent, late latent and reinfected syphilis. However, serum IgG antibodies to treponemal antigens of molecular weights 68,500 and 47,000 could possibly be useful in the assessment of the efficacy of treatment in primary syphilis. PMID:2688687

  16. Highly sensitive determination of diclofenac based on resin beads and a novel polyclonal antibody by using flow injection chemiluminescence competitive immunoassay

    NASA Astrophysics Data System (ADS)

    Shi, Jing; Xu, Mingxia; Tang, Qinghui; Zhao, Kang; Deng, Anping; Li, Jianguo

    2018-02-01

    A novel flow injection chemiluminescence immunoassay for simple, sensitive and low-cost detection of diclofenac was established based on specific binding of antigen and antibody. Carboxylic resin beads used as solid phase carrier materials provided good biocompatibility and large surface-to-volume ratio for modifying more coating antigen. There was a competitive process between the diclofenac in solution and the immobilized coating antigen to react with the limited binding sites of the polyclonal antibody to form the immunocomplex. The second antibody labelled with horseradish peroxidase was introduced into the immunosensor and trapped by captured polyclonal antibody against diclofenac, which could effectively amplify chemiluminescence signals of luminol-PIP-H2O2. Under optimal conditions, the diclofenac could be detected quantitatively. The chemiluminescence intensity decreased linearly with the logarithm of the diclofenac concentration in the range of 0.1-100 ng mL- 1 with a detection limit of 0.05 ng mL- 1 at a signal-to-noise ratio of 3. The immunosensor exhibited high sensitivity, specificity and acceptable stability. This easy-operated and cost-effective analytical method could be valuable for the diclofenac determination in real water samples.

  17. Studies on cocktails of 31-kDa, 36-kDa and 51-kDa antigens of Leishmania donovani along with saponin against murine visceral leishmaniasis.

    PubMed

    Kaur, H; Thakur, A; Kaur, S

    2015-04-01

    A substantial number of antigens of Leishmania donovani have been described in the past. However, identifying candidate antigens is not enough. Appropriate antigen delivery to induce the right type of immune response against leishmaniasis (i.e. induction of a strong antigen-specific Th1 type of immune response) is another crucial component of an effective vaccine. Therefore, 'cocktail' vaccines are proposed based on the assumption that such cocktails will show enhanced efficacy. Studies have been carried out on LD31 and LD51 polypeptides from L. donovani promastigotes, which have proven to be potential vaccine candidates. This study was designed to check the protective efficacy of various cocktails of low molecular weight antigens alone and along with saponin as adjuvant. Mice were sacrificed on different post-challenge days for evaluation of parasite load and other immunological parameters. Protective efficacy of different vaccine formulations was revealed by significant decline in parasite burden and increased DTH Delayed Type Hypersenstivity responses. The antibody response was of IgG type with elevated IgG2a and decreased production of IgG1, whereas cytokine levels pointed towards the generation of protective Th1 type of immune response. Among all vaccine formulations, cocktail of 31+51+saponin was found to be highly immunogenic and imparted maximum protection. © 2015 John Wiley & Sons Ltd.

  18. Salmonella enterica Serovar Typhi Lipopolysaccharide O-Antigen Modification Impact on Serum Resistance and Antibody Recognition

    DOE PAGES

    Kintz, Erica; Heiss, Christian; Black, Ian; ...

    2017-02-06

    Salmonella enterica serovar Typhi is a human-restricted Gram-negative bacterial pathogen responsible for causing an estimated 27 million cases of typhoid fever annually, leading to 217,000 deaths, and current vaccines do not offer full protection. The O-antigen side chain of the lipopolysaccharide is an immunodominant antigen, can define host-pathogen interactions, and is under consideration as a vaccine target for some Gram-negative species. The composition of the O-antigen can be modified by the activity of glycosyltransferase (gtr) operons acquired by horizontal gene transfer. Here we investigate the role of two gtr operons that we identified in the S. Typhi genome. Strains weremore » engineered to express specific gtr operons. Full chemical analysis of the O-antigens of these strains identified gtr-dependent glucosylation and acetylation. The glucosylated form of the O-antigen mediated enhanced survival in human serum and decreased complement binding. A single nucleotide deviation from an epigenetic phase variation signature sequence rendered the expression of this glucosylating gtr operon uniform in the population. In contrast, the expression of the acetylating gtrC gene is controlled by epigenetic phase variation. Acetylation did not affect serum survival, but phase variation can be an immune evasion mechanism, and thus, this modification may contribute to persistence in a host. In murine immunization studies, both O-antigen modifications were generally immunodominant. Our results emphasize that natural O-antigen modifications should be taken into consideration when assessing responses to vaccines, especially O-antigen-based vaccines, and that the Salmonella gtr repertoire may confound the protective efficacy of broad-ranging Salmonella lipopolysaccharide conjugate vaccines.« less

  19. Salmonella enterica Serovar Typhi Lipopolysaccharide O-Antigen Modification Impact on Serum Resistance and Antibody Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kintz, Erica; Heiss, Christian; Black, Ian

    Salmonella enterica serovar Typhi is a human-restricted Gram-negative bacterial pathogen responsible for causing an estimated 27 million cases of typhoid fever annually, leading to 217,000 deaths, and current vaccines do not offer full protection. The O-antigen side chain of the lipopolysaccharide is an immunodominant antigen, can define host-pathogen interactions, and is under consideration as a vaccine target for some Gram-negative species. The composition of the O-antigen can be modified by the activity of glycosyltransferase (gtr) operons acquired by horizontal gene transfer. Here we investigate the role of two gtr operons that we identified in the S. Typhi genome. Strains weremore » engineered to express specific gtr operons. Full chemical analysis of the O-antigens of these strains identified gtr-dependent glucosylation and acetylation. The glucosylated form of the O-antigen mediated enhanced survival in human serum and decreased complement binding. A single nucleotide deviation from an epigenetic phase variation signature sequence rendered the expression of this glucosylating gtr operon uniform in the population. In contrast, the expression of the acetylating gtrC gene is controlled by epigenetic phase variation. Acetylation did not affect serum survival, but phase variation can be an immune evasion mechanism, and thus, this modification may contribute to persistence in a host. In murine immunization studies, both O-antigen modifications were generally immunodominant. Our results emphasize that natural O-antigen modifications should be taken into consideration when assessing responses to vaccines, especially O-antigen-based vaccines, and that the Salmonella gtr repertoire may confound the protective efficacy of broad-ranging Salmonella lipopolysaccharide conjugate vaccines.« less

  20. Co-delivery of PSA and PSMA DNA vaccines with electroporation induces potent immune responses.

    PubMed

    Ferraro, Bernadette; Cisper, Neil J; Talbott, Kendra T; Philipson-Weiner, Lindsey; Lucke, Colleen E; Khan, Amir S; Sardesai, Niranjan Y; Weiner, David B

    2011-01-01

    Prostate cancer (PCa) remains a significant public health problem. Current treatment modalities for PCa can be useful, but may be accompanied by deleterious side effects and often do not confer long-term control. Accordingly, additional modalities, such as immunotherapy, may represent an important approach for PCa treatment. The identification of tissue-specific antigens engenders PCa an attractive target for immunotherapeutic approaches. Delivery of DNA vaccines with electroporation has shown promising results for prophylactic and therapeutic targets in a variety of species including humans. Application of this technology for PCa immunotherapy strategies has been limited to single antigen and epitope targets. We sought to test the hypothesis that a broader collection of antigens would improve the breadth and effectiveness of a PCa immune therapy approach. We therefore developed highly optimized DNA vaccines encoding prostate-specific antigen (PSA) and prostate-specific membrane antigen (PSMA) as a dual antigen approach to immune therapy of PCa. PSA-and PSMA-specific cellular immunogenicity was evaluated in a mouse model for co-delivery and single antigen vaccination. Mice received 2 immunizations spaced 2 weeks apart and immunogenicity was evaluated 1 week after the second vaccination. Both the PSA and PSMA vaccines induced robust antigen-specific IFNγ responses by ELISpot. Further characterization of cellular immunogenicity by flow cytometry indicated strong antigen-specific TNFα production by CD4+ T cells and IFNγ and IL-2 secretion by both CD4+ and CD8+ T cells. There was also a strong humoral response as determined by PSA-specific seroconversion. These data support further study of this novel approach to immune therapy of PCa.

  1. Antigen-specific T cell therapies for cancer

    PubMed Central

    Manzo, Teresa; Heslop, Helen E.; Rooney, Cliona M.

    2015-01-01

    Adoptively transferred antigen-specific T cells that recognize tumor antigens through their native receptors have many potential benefits as treatment for virus-associated diseases and malignancies, due to their ability to selectively recognize tumor antigens, expand and persist to provide long-term protection. Infusions of T cells targeting Epstein–Barr virus (EBV) antigens have shown encouraging response rates in patients with post-transplant lymphoproliferative disease as well as EBV-positive lymphomas and nasopharyngeal cancer, although a recent study also showed that human papilloma virus-reactive T cells can induce complete regression of metastatic cervical cancer. This strategy is also being evaluated to target non-viral tumor-associated antigens. Targeting these less immunogenic antigens is more challenging, as tumor antigens are generally weak, and high avidity T cells specific for self-antigens are deleted in the thymus, but tumor responses have been reported. Current research focusses on defining factors that promote in vivo persistence of transferred cells and ameliorate the immunosuppressive microenvironment. To this end, investigators are evaluating the effects of combining adoptive transfer of antigen-specific T cells with other immunotherapy moieties such as checkpoint inhibitors. Genetic modification of infused T cells may also be used to overcome tumor evasion mechanisms, and vaccines may be used to promote in vivo proliferation. PMID:26160910

  2. 177Lu-Labeled Prostate-Specific Membrane Antigen Radioligand Therapy of Metastatic Castration-Resistant Prostate Cancer: Safety and Efficacy.

    PubMed

    Baum, Richard P; Kulkarni, Harshad R; Schuchardt, Christiane; Singh, Aviral; Wirtz, Martina; Wiessalla, Stefan; Schottelius, Margret; Mueller, Dirk; Klette, Ingo; Wester, Hans-Jürgen

    2016-07-01

    The objective of this study was to analyze the safety and efficacy of the (177)Lu-labeled DOTAGA-based prostate-specific membrane antigen (PSMA) ligand (177)Lu-DOTAGA-(I-y)fk(Sub-KuE) ((177)Lu-PSMA) in patients with metastatic castration-resistant prostate cancer (mCRPC). Fifty-six mCRPC patients underwent PSMA radioligand therapy (RLT) with (177)Lu-PSMA. (68)Ga-PSMA-(N,N'-bis-[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N'-diacetic acid) ((68)Ga-PSMA) PET/CT was used for patient selection and follow-up after PSMA RLT. Hematologic status, renal function, and serum prostate-specific antigen levels were documented before and after therapy. Dosimetry was performed in 30 patients. (177)Lu-PSMA demonstrated high absorbed tumor doses (median, 3.3 mGy/MBq) compared with the levels in normal organs. Parotid glands received higher doses (1.3 mGy/MBq) than kidneys (0.8 mGy/MBq). All patients tolerated the therapy without any acute adverse effects. Except for mild reversible xerostomia in 2 patients, no long-term side effects were observed. There was a small but statistically significant reduction in erythrocyte and leukocyte counts; only the reduction in erythrocyte counts decreased slightly below the reference range. No thrombocytopenia occurred. The severity of pain was significantly reduced in 2 of 6 patients (33.3%). A decrease in prostate-specific antigen levels was noted in 45 of 56 patients (80.4%). Of 25 patients monitored for at least 6 mo after 2 or more PSMA RLT cycles, a molecular response evaluation ((68)Ga-PSMA PET/CT) revealed partial remission in 14, stable disease in 2, and progressive disease in 9 patients. Contrast-enhanced CT revealed partial remission in 5, stable disease in 13, and progressive disease in 7 patients. The median progression-free survival was 13.7 mo, and the median overall survival was not reached during follow-up for 28 mo. PSMA RLT with (177)Lu-PSMA is feasible, safe, and effective in end-stage progressive mCRPC with appropriate selection and follow-up of patients by (68)Ga-PSMA PET/CT through application of the concept of theranostics. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  3. T LYMPHOCYTES TARGETING NATIVE RECEPTORS

    PubMed Central

    Rooney, Cliona M; Leen, Ann M; Vera, Juan F; Heslop, Helen E

    2013-01-01

    Summary The adoptive transfer of T cells specific for native tumor antigens (TAs) is an increasingly popular cancer treatment option because of the ability of these cells to discriminate between normal and tumor tissues and corresponding lack of short or long-term toxicities. Infusions of antigen-specific CD4+ and CD8+ T cells targeting viral antigens derived from Epstein Barr virus (EBV) induce sustained complete tumor remissions in patients with highly immunogenic tumor’s such as post-transplant lymphoproliferative disease, although resistance occurred when the infused T-cell population had restricted antigen specificity. T cells specific for EBV antigens have also produced complete remissions of EBV-positive nasopharyngeal carcinomas and lymphomas developing in immunocompetent individuals, even though in these patients tumor survival is dependent on their ability to evade T-cell immunity. Adapting this strategy to non-viral tumors is more challenging, as the target antigens expressed are less immunogenic and the tumors lack the potent danger signals that are characteristic of viruses. The goals of current studies are to define conditions that promote expansion of antigen-specific T cells ex vivo and to ensure their in vivo persistence and survival by combining with maneuvers such as lymphodepletion, checkpoint inhibition, cytokine infusions, or genetic manipulations. More pragmatic goals are to streamline manufacturing to facilitate the transition of these therapies to late phase trials and to evaluate closely histocompatibility antigen (HLA)-matched banked antigen-specific T-cells so that T-cell therapies can be made more broadly available. PMID:24329788

  4. Management of children undergoing cardiac transplantation with high Panel Reactive Antibodies.

    PubMed

    Asante-Korang, Alfred; Jacobs, Jeffrey P; Ringewald, Jeremy; Carapellucci, Jennifer; Rosenberg, Kristin; McKenna, Daniel; McCormack, Jorge; Wilmot, Ivan; Gjeldum, Abigail; Lopez-Cepero, Mayra; Sleasman, John

    2011-12-01

    Highly sensitised children in need of cardiac transplantation have overall poor outcomes because of increased risk for dysfunction of the cardiac allograft, acute cellular and antibody-mediated rejection, and vasculopathy of the cardiac allograft. Cardiopulmonary bypass and the frequent use of blood products in the operating room and cardiac intensive care unit, as well as the frequent use of homografts, have predisposed potential recipients of transplants to allosensitisation. The expansion in the use of ventricular assist devices and extracorporeal membrane oxygenation has also contributed to increasing rates of allosensitisation in candidates for cardiac transplantation. Antibodies to Human Leukocyte Antigen can be detected before transplantation using several different techniques, the most common being the "complement-dependent lymphocytotoxicity assays". "Solid-phase assays", particularly the "Luminex® single antigen bead method", offer improved specificity and more detailed information regarding specificities of antibodies, leading to improved matching of donors with recipients. Allosensitisation prolongs the time on the waiting list for potential recipients of transplantation and increases the risk of complications and death after transplantation. Aggressive reduction of antibodies to Human Leukocyte Antigen in these high-risk patients is therefore of vital importance for long-term survival of the patient and cardiac allograft. Strategies to decrease Panel Reactive Antibody or percent reactive antibody before transplantation include plasmapheresis, intravenous administration of immunoglobulin, and specific treatment to reduce B-cells, particularly Rituximab. These strategies have resulted in varying degrees of success. Antibody-mediated rejection and cardiac allograft vasculopathy are two of the most important complications of transplantation in patients with high Panel Reactive Antibody. The treatment of antibody-mediated rejection in recipients of cardiac transplants is largely empirical and includes the use of high-dose corticosteroids, plasmapheresis, intravenous administration of immunoglobulins, anti-thymocyte globulin, and Rituximab. Cardiac allograft vasculopathy is believed to be secondary to chronic complement-mediated endothelial injury and chronic vascular rejection. The use of proliferation signal inhibitors, such as sirolimus and everolimus, has been shown to delay the progression of cardiac allograft vasculopathy. In some non-sensitised recipients of cardiac transplants, the de novo formation of antibodies to Human Leukocyte Antigen after transplantation may increase the likelihood of adverse clinical outcomes. The use of serial testing for donor-specific antibodies after cardiac transplantation may be advisable in patients with frequent episodes of rejection and patients with history of sensitisation. Allosensitisation before transplantation can negatively influence outcomes after transplantation. A high incidence of antibody-mediated rejection and graft vasculopathy can result in graft failure and decreased survival. Current strategies to decrease allosensitisation have helped to expand the pool of donors, improve times on the waiting list, and decrease mortality. Centres of transplantation offering desensitisation are currently using plasmapheresis to remove circulating antibodies; intravenous immunoglobulin to inactivate antibodies; cyclophosphamide to suppress B-cell proliferation; and Rituximab to deplete B-lymphocytes. Similar approaches are also used to treat antibody-mediated rejection after transplantation with promising results.

  5. Prostate Specific Membrane Antigen (PSMA) Targeted Bio-orthogonal Therapy for Metastatic Prostate Cancer

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0595 TITLE: Prostate-Specific Membrane Antigen (PSMA) Targeted Bio -orthogonal Therapy for Metastatic Prostate Cancer...Sep 2016 - 14 Sep 2017 4. TITLE AND SUBTITLE Prostate-Specific Membrane Antigen (PSMA) Targeted Bio -orthogonal Therapy for Metastatic Prostate

  6. Detection of specific IgE antibodies to major and minor antigenic determinants in sera of penicillin allergic patients.

    PubMed

    Zhao, Yongxing; Qiao, Hailing

    2003-12-01

    To investigate the mechanism(s) of penicillins allergic reaction. The radioallergosorbent test (RAST) was used to detect 9 specific IgE antibodies, including major antigenic determinants: benzylpenicilloyl (BPO), ampicilloyl (APO), amoxicilloyl (AXO), phenoxomethylpenicilloyl (PVO) and flucloxacilloyl (FLUO), and minor antigenic determinants: benzylpenicillanyl (BPA), amoxicillanyl (AXA), 6-aminopenicillanic (APA) and phenoxomethylpenicillany (PVA), in the sera of 32 penicillin allergic patients. The relationship between specific IgE antibodies and penicillins chemical structures was studied by radioallergosorbent inhibition test. Nineteen of 32 patients (59.4%) were RAST positive, among whom, five cases were positive only to one or two antigenic minor determinants, and three cases were positive only to one or three major antigenic determinants. The remaining 11 patients were positive not only to major antigenic determinants but also minor antigenic determinants. In 9 specific IgE antibodies, the positive rate of PVA-IgE was the highest (34.38%), followed by BPO-IgE (31.25%). The positive rate of FLUO-IgE was the lowest (15.63%). Of the total patient group, 53.13% were positive to one or more minor antigenic determinants, while 37.5% (12/32) were positive to one or more major antigenic determinants. The percentage of patients with urticarial reactions who were positive to minor antigenic determinants (63.16%) was significantly higher than observed in the anaphylactic shock group (38.5%, P < 0.05). The minor antigenic determinant was important in allergic reaction. The combining sites of the specific IgE antibodies were likely to be the side-chain of drug or the overwhelming drug molecule.

  7. Tracking the Response of Natural Killer T Cells to a Glycolipid Antigen Using Cd1d Tetramers

    PubMed Central

    Matsuda, Jennifer L.; Naidenko, Olga V.; Gapin, Laurent; Nakayama, Toshinori; Taniguchi, Masaru; Wang, Chyung-Ru; Koezuka, Yasuhiko; Kronenberg, Mitchell

    2000-01-01

    A major group of natural killer (NK) T cells express an invariant Vα14+ T cell receptor (TCR) specific for the lipoglycan α-galactosylceramide (α-GalCer), which is presented by CD1d. These cells may have an important immune regulatory function, but an understanding of their biology has been hampered by the lack of suitable reagents for tracking them in vivo. Here we show that tetramers of mouse CD1d loaded with α-GalCer are a sensitive and highly specific reagent for identifying Vα14+ NK T cells. Using these tetramers, we find that α-GalCer–specific T lymphocytes are more widely distributed than was previously appreciated, with populations of largely NK1.1− but tetramer-binding T cells present in the lymph nodes and the intestine. Injection of α-GalCer leads to the production of both interferon γ and interleukin 4 by nearly all NK T cells in the liver and the majority of the spleen within 2 h. These cells mostly disappear by 5 h, and they do not reappear after 1 wk. Curiously, tetramer-positive thymocytes do not rapidly synthesize cytokines, nor do they undergo decreases in cell number after lipid antigen stimulation, although they express equivalent TCR levels. In summary, the data presented here demonstrate that α-GalCer–specific NK T cells undergo a unique and highly compartmentalized response to antigenic stimulation. PMID:10974039

  8. Evaluation of Gastrothylax crumenifer antigenic preparation in serodiagnosis of paramphistomiasis in sheep.

    PubMed

    Ahmad, Tariq; Reshi, Mohammad Latif; Cheshti, M Z; Tanveer, Syed; Shah, Zaffar Amin; Fomada, Bashir Ahmad; Raina, O K

    2014-04-01

    An evaluation of Gastrothylax crumenifer crude antigen preparation viz., Somatic Antigen (SAg), Excretory Secretory Antigen (ESAg) and Egg Antigen (EAg) in serodiagnosis of disease was undertaken. Test sera samples were obtained from 30 Paramphistomiasis Positive and 30 Gastrothylax free sheep slaughtered at Hazratbal Kashmir. The referral antigenic preparation were evaluated against Paramphistomiasis positive sera, via., control negative sera, using double immunodiffusion test (DID), (IEP) Immunoelectrophoretic assay and ELISA. The performance of referral antigens, as assessed from percent sensitivity and specificity, revealed an increasing trend from DID (Double immunodiffusion-An immunological technique used in the detection, identification and quantification of antibodies and antigens) to IEP (immunoelectrophoresis-A general name for a number of biochemical methods for separation and characterization of proteins based on electrophoresis and reaction with antibodies), followed by ELISA, detecting higher number of sheep positive for paramphistomiasis. In ELISA the ESAg and SAg were evaluated as most reactive antigens with no significant difference and EAg was the least antigenic. In IEP, EAg had the higher sensitivity (60%) and analogous specificity of SAg and ESAg. The formation of the preceptin lines in the proximity to EAg containing wells (cathode end) in IEP was suggestive of higher molecular weight of G. crumenifer specific protein molecules with slower rate of migration. Purification and characterization of G. crumenifer and identification of specific antigenic molecules, particularly in EAg has been suggested for qualitative improvement of diagnostic value of the antigens in the tests used here in.

  9. Lawrence Transfer Factor: Transference of Specific Immune Memory by Dialyzable Leukocyte Extract from a CD8+ T Cell Line.

    PubMed

    Wang, Jason F; Park, Andrew J; Rendini, Tina; Levis, William R

    2017-12-01

    Lawrence transfer factor (TF) is defined as dialyzable leukocyte extract (DLE) that can transfer antigen-specific cell-mediated immunity from a person testing positive for the antigen in a delayed type hypersensitivity skin test manner to a person negative for the same antigen. A recent article by Myles et al1 has identified a DLE isolated from an established CD8+ T cell line capable of transferring antigen-specific immunity. The DLE contains a portion of the beta chain of the T cell receptor and additional nucleotide and protein factors that are being subjected to further modern biochemical analysis. After months of study that included interviews of TF physician-scientists, we conclude that an antigen-specific TF exists for most, if not all, antigens. By working from a CD8+ T cell line with modern biochemical technology, it should be possible to identify and patent products capable of treating infectious diseases, antigen-responsive cancers, and autoimmune disorders.

  10. Effects of 2 size classes of intratracheally administered airborne dust particles on primary and secondary specific antibody responses and body weight gain of broilers: a pilot study on the effects of naturally occurring dust.

    PubMed

    Lai, H T L; Nieuwland, M G B; Aarnink, A J A; Kemp, B; Parmentier, H K

    2012-03-01

    We studied the effects of a concurrent challenge on slow-growing broilers with 1) airborne particles of 2 sizes: fine dust (smaller than 2.5 microns) and coarse dust (between 2.5 and 10 microns) that were directly collected from a broiler house and 2) lipopolysaccharide on intratracheal immunizations with the specific antigen human serum albumin (HuSA) and measured primary and secondary systemic (total) antibody responses and (isotype-specific) IgM, IgG, and IgA responses at 3 and 7 wk of age. All treatments affected immune responses at several ages, heart morphology, and BW gain, albeit the latter only temporarily. Dust particles significantly decreased primary antibody (IgT and IgG) responses to HuSA at 3 wk of age but enhanced IgM responses to HuSA at 7 wk of age. Dust particles decreased secondary antibody responses to HuSA, albeit not significantly. All of the birds that were challenged with dust particles showed decreased BW gain after the primary but not after the secondary challenge. Relative heart weight was significantly decreased in birds challenged with coarse dust, fine dust, lipopolysaccharide, and HuSA at 3 wk of age, but not in birds challenged at 7 wk of age. Morphology (weight, width, and length) of hearts were also affected by the dust challenge at 3 wk of age. The present results indicate that airborne dust particles obtained from a broiler house when intratracheally administered at an early age affect specific humoral immune responsiveness and BW gain of broilers to simultaneously administered antigens differently than when administered at a later age. The hygienic status of broiler houses at a young age may be of importance for growth and immune responsiveness, and consequently, for vaccine efficacy and disease resistance in broilers. The consequences of our findings are discussed.

  11. Kinetic-dependent enzyme-linked immunosorbent assay for detection of antibodies to Legionella pneumophila.

    PubMed Central

    Sampson, J S; Wilkinson, H W; Tsang, V C; Brake, B J

    1983-01-01

    A semiautomated, kinetic-dependent, enzyme-linked immunosorbent assay (K-ELISA) was adapted to detect serum antibodies to Legionella pneumophila. In a comparative study, 158 human serum samples (79 pairs) were tested by K-ELISA and the standard indirect immunofluorescence assay for determination of antibody levels to L. pneumophila serogroup 1. K-ELISA determinations were made by using a serogroup-specific antigen or a preparation (unfractionated antigen) which contained both common antigen and serogroup-specific reactivity. There was good correlation between the immunofluorescence assay and the K-ELISA by using either antigen, although greater correlation was achieved with the unfractionated antigen (coefficients of correlation, 0.894 with unfractionated antigen and 0.841 with serogroup-specific antigen). These results indicate that the K-ELISA is a reliable alternative to the immunofluorescence assay for serologically diagnosing legionellosis. PMID:6361052

  12. Kinetic-dependent enzyme-linked immunosorbent assay for detection of antibodies to Legionella pneumophila.

    PubMed

    Sampson, J S; Wilkinson, H W; Tsang, V C; Brake, B J

    1983-12-01

    A semiautomated, kinetic-dependent, enzyme-linked immunosorbent assay (K-ELISA) was adapted to detect serum antibodies to Legionella pneumophila. In a comparative study, 158 human serum samples (79 pairs) were tested by K-ELISA and the standard indirect immunofluorescence assay for determination of antibody levels to L. pneumophila serogroup 1. K-ELISA determinations were made by using a serogroup-specific antigen or a preparation (unfractionated antigen) which contained both common antigen and serogroup-specific reactivity. There was good correlation between the immunofluorescence assay and the K-ELISA by using either antigen, although greater correlation was achieved with the unfractionated antigen (coefficients of correlation, 0.894 with unfractionated antigen and 0.841 with serogroup-specific antigen). These results indicate that the K-ELISA is a reliable alternative to the immunofluorescence assay for serologically diagnosing legionellosis.

  13. STUDIES ON THE ANTIGENIC STRUCTURE OF SOME MAMMALIAN SPERMATOZOA

    PubMed Central

    Henle, Werner; Henle, Gertrude; Chambers, Leslie A.

    1938-01-01

    1. A method has been described for separation of heads and tails of mammalian spermatozoa. 2. By means of absorption technique applied to homologous spermatozoal sera, head-specific and tail-specific antigens could be demonstrated. Both are heat-labile. 3. A heat-stable antigen was found to be common to both heads and tails. This substance is species-specific. 4. Antibodies against the head- and tail-specific antigens led to two different types of agglutination as shown by the slide method. 5. Using heterologous antisera against spermatozoa three different cross-reacting antigens could be observed, two in the heads, one in the tails. 6. One of the head-antigens is not active in the native cell; it comes to action only after breaking the cell. Antibodies against this substance were not found in antisera against native bull spermatozoa but were formed when vibrated spermatozoa or heads were injected into rabbits. 7. The cross-reactions can be removed from an antiserum leaving the head- as well as the tail-specific reaction intact. PMID:19870792

  14. Effect of flash-heat treatment on immunoglobulins in breast milk.

    PubMed

    Chantry, Caroline J; Israel-Ballard, Kiersten; Moldoveanu, Zina; Peerson, Jan; Coutsoudis, Anna; Sibeko, Lindiwe; Abrams, Barbara

    2009-07-01

    Heat-treated expressed breast milk is recommended by the World Health Organization as an option to reduce vertical HIV transmission in resource-poor regions. Flash-heat (FH) is a low technology pasteurization method developed for home use, but its effect on quantity and quality of breast milk immunoglobulins is unknown. To evaluate FH's effect on breast milk immunoglobulin levels and antigen-binding capacity. Fifty HIV+ mothers in South Africa provided breast milk. Part of each sample served as an unheated control; the remainder was flash-heated. Total and antigen-specific immunoglobulin A (IgA) and immunoglobulin G (IgG) were measured by enzyme-linked immunosorbent assay. Paired t test was performed on log-transformed data. FH significantly decreased total IgA and IgG concentrations [geometric mean (geometric SD) 318.0 (1.9) vs. 398.2 (1.9) microg/mL and 89.1 (2.7) vs. 133.3 (2.5) microg/mL, P < 0.001 each]. Similar decreases in anti-HIV-1 gp120 IgG, anti-pneumococcal polysaccharide, and anti-poliovirus IgA occurred (P < 0.001 each). Although the latter was most affected, FH retained 66% of the antigen-binding ability. In contrast, binding capacity of IgA and IgG to influenza increased after FH (P = 0.029 and 0.025, respectively). Most breast milk immunoglobulin activity survives FH, suggesting flash-heated breast milk is immunologically superior to breast milk substitutes. Clinical significance of this decreased immunoglobulin activity needs evaluation in prospective trials.

  15. Effect of Flash-heat Treatment on Immunoglobulins in Breastmilk

    PubMed Central

    Chantry, Caroline J.; Israel-Ballard, Kiersten; Moldoveanu, Zina; Peerson, Jan; Coutsoudis, Anna; Sibeko, Lindiwe; Abrams, Barbara

    2009-01-01

    Background Heat-treated expressed breastmilk is recommended by WHO as an option to reduce vertical HIV transmission in resource poor regions. Flash-heat (FH) is a low technology pasteurization method developed for home use, but its effect on quantity and quality of breastmilk immunoglobulins is unknown. Objective To evaluate FH's effect on breastmilk immunoglobulin levels and antigen binding capacity. Design/Methods Fifty HIV+ mothers in South Africa provided breastmilk. Part of each sample served as an unheated (UH) control; the remainder was Flash-heated. Total and antigen-specific IgA and IgG were measured by ELISA. Paired t-test was performed on log transformed data. Results FH significantly decreased total IgA and IgG concentrations [geometric mean (geometric sd) 318.0 (1.9) vs. 398.2 (1.9) mcg/mL and 89.1 (2.7) vs. 133.3 (2.5) mcg/mL, p<0.001 each]. Similar decreases in anti-HIV-1 gp120 IgG, anti-pneumococcal polysaccharide and anti-poliovirus IgA occurred (p<0.001 each). Although the latter was most affected, FH retained 66% of the antigen binding ability. In contrast, binding capacity of IgA and IgG to influenza increased after FH (p=0.029 and 0.025 respectively). Conclusions Most breastmilk immunoglobulin activity survives FH, suggesting Flash-heated breastmilk is immunologically superior to breastmilk substitutes. Clinical significance of this decreased immunoglobulin activity needs evaluation in prospective trials. PMID:19421069

  16. Identification of cancer-specific motifs in mimotope profiles of serum antibody repertoire.

    PubMed

    Gerasimov, Ekaterina; Zelikovsky, Alex; Măndoiu, Ion; Ionov, Yurij

    2017-06-07

    For fighting cancer, earlier detection is crucial. Circulating auto-antibodies produced by the patient's own immune system after exposure to cancer proteins are promising bio-markers for the early detection of cancer. Since an antibody recognizes not the whole antigen but 4-7 critical amino acids within the antigenic determinant (epitope), the whole proteome can be represented by a random peptide phage display library. This opens the possibility to develop an early cancer detection test based on a set of peptide sequences identified by comparing cancer patients' and healthy donors' global peptide profiles of antibody specificities. Due to the enormously large number of peptide sequences contained in global peptide profiles generated by next generation sequencing, the large number of cancer and control sera is required to identify cancer-specific peptides with high degree of statistical significance. To decrease the number of peptides in profiles generated by nextgen sequencing without losing cancer-specific sequences we used for generation of profiles the phage library enriched by panning on the pool of cancer sera. To further decrease the complexity of profiles we used computational methods for transforming a list of peptides constituting the mimotope profiles to the list motifs formed by similar peptide sequences. We have shown that the amino-acid order is meaningful in mimotope motifs since they contain significantly more peptides than motifs among peptides where amino-acids are randomly permuted. Also the single sample motifs significantly differ from motifs in peptides drawn from multiple samples. Finally, multiple cancer-specific motifs have been identified.

  17. African Americans' Perceptions of Prostate-Specific Antigen Prostate Cancer Screening

    ERIC Educational Resources Information Center

    Hunter, Jaimie C.; Vines, Anissa I.; Carlisle, Veronica

    2015-01-01

    Background: In 2012, the U.S. Preventive Services Task Force released a hotly debated recommendation against prostate-specific antigen testing for all men. The present research examines African Americans' beliefs about their susceptibility to prostate cancer (PCa) and the effectiveness of prostate-specific antigen testing in the context of the…

  18. A critical examination of the numerology of antigen-binding cells: evidence for multiple receptor specificities on single cells.

    PubMed

    Miller, A

    1977-01-01

    The data available from other laboratories as well as our own on the frequency of cells recognizing major histocompatibility antigens or conventional protein and hapten antigens is critically evaluated. The frequency of specific binding for a large number of antigens is sufficiently high to support the idea that at least part of the antigen-binding cell population must have multiple specificities. Our results suggest that these multiple specific cells result from single cells synthesizing and displaying as many as 50-100 species of receptor, each at a frequency of 10(4) per cell. A model involving gene expansion of constant-region genes is suggested and some auxilliary evidence consistent with such C-gene expansion is presented.

  19. The simultaneous ex vivo detection of low-frequency antigen-specific CD4+ and CD8+ T-cell responses using overlapping peptide pools.

    PubMed

    Singh, Satwinder Kaur; Meyering, Maaike; Ramwadhdoebe, Tamara H; Stynenbosch, Linda F M; Redeker, Anke; Kuppen, Peter J K; Melief, Cornelis J M; Welters, Marij J P; van der Burg, Sjoerd H

    2012-11-01

    The ability to measure antigen-specific T cells at the single-cell level by intracellular cytokine staining (ICS) is a promising immunomonitoring tool and is extensively applied in the evaluation of immunotherapy of cancer. The protocols used to detect antigen-specific CD8+ T-cell responses generally work for the detection of antigen-specific T cells in samples that have undergone at least one round of in vitro pre-stimulation. Application of a common protocol but now using long peptides as antigens was not suitable to simultaneously detect antigen-specific CD8+ and CD4+ T cells directly ex vivo in cryopreserved samples. CD8 T-cell reactivity to monocytes pulsed with long peptides as antigens ranged between 5 and 25 % of that observed against monocytes pulsed with a direct HLA class I fitting minimal CTL peptide epitope. Therefore, we adapted our ICS protocol and show that the use of tenfold higher concentration of long peptides to load APC, the use of IFN-α and poly(I:C) to promote antigen processing and improve T-cell stimulation, does allow for the ex vivo detection of low-frequency antigen-specific CD8+ and CD4+ T cells in an HLA-independent setting. While most of the improvements were related to increasing the ability to measure CD8+ T-cell reactivity following stimulation with long peptides to at least 50 % of the response detected when using a minimal peptide epitope, the final analysis of blood samples from vaccinated patients successfully showed that the adapted ICS protocol also increases the ability to ex vivo detect low-frequency p53-specific CD4+ T-cell responses in cryopreserved PBMC samples.

  20. Identification of antigen-specific human monoclonal antibodies using high-throughput sequencing of the antibody repertoire.

    PubMed

    Liu, Ju; Li, Ruihua; Liu, Kun; Li, Liangliang; Zai, Xiaodong; Chi, Xiangyang; Fu, Ling; Xu, Junjie; Chen, Wei

    2016-04-22

    High-throughput sequencing of the antibody repertoire provides a large number of antibody variable region sequences that can be used to generate human monoclonal antibodies. However, current screening methods for identifying antigen-specific antibodies are inefficient. In the present study, we developed an antibody clone screening strategy based on clone dynamics and relative frequency, and used it to identify antigen-specific human monoclonal antibodies. Enzyme-linked immunosorbent assay showed that at least 52% of putative positive immunoglobulin heavy chains composed antigen-specific antibodies. Combining information on dynamics and relative frequency improved identification of positive clones and elimination of negative clones. and increase the credibility of putative positive clones. Therefore the screening strategy could simplify the subsequent experimental screening and may facilitate the generation of antigen-specific antibodies. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Evaluation of a newly designed sandwich enzyme linked immunosorbent assay for the detection of hydatid antigen in serum, urine and cyst fluid for diagnosis of cystic echinococcosis.

    PubMed

    Chaya, Dr; Parija, Subhash Chandra

    2013-07-01

    Cystic echinococcosis (CE) is a zoonotic disease of humans with variable clinical manifestations. Imaging and immunological methods are currently the mainstay of diagnosis of this disease. Although the immunological tests for detection of anti-echinococcal antibodies have several disadvantages, they are widely being used. Antigen is far more superior than antibody detection test as they can provide a specific parasitic diagnosis. A sandwich enzyme linked immunosorbent assay (ELISA) was designed using antibodies to 24 kDa urinary hydatid antigen for the detection of hydatid antigens in urine, serum and cyst fluid specimens. The performance of this novel test was compared with that of other hydatid antibody detection ELISA and enzyme immune transfer blot (EITB) using radiological and surgical confirmation as the gold standard. The antigen detection ELISA showed 100% sensitivity and specificity when tested with cyst fluid. On testing urine and serum, the antigen detection ELISA was found to be more specific than antibody detection ELISA. EITB was found to be the most sensitive and specific test. ELISA using polyclonal antibodies against 24 kDa urinary hydatid protein was moderately sensitive to detect hydatid antigen in serum and urine. Hence polyclonal antibodies to 24 kDa urinary hydatid antigen can be used as an alternative source of antibody to detect hydatid antigen in serum, urine and cyst fluid. In the present study, EITB was found to be highly specific test for detection of hydatid antibodiesin serum. 24 kDa protein was found to be specific and of diagnostic value in CE.

  2. A simplified immunoprecipitation method for quantitatively measuring antibody responses in clinical sera samples by using mammalian-produced Renilla luciferase-antigen fusion proteins.

    PubMed

    Burbelo, Peter D; Goldman, Radoslav; Mattson, Thomas L

    2005-08-18

    Assays detecting human antigen-specific antibodies are medically useful. However, the usefulness of existing simple immunoassay formats is limited by technical considerations such as sera antibodies to contaminants in insufficiently pure antigen, a problem likely exacerbated when antigen panels are screened to obtain clinically useful data. We developed a novel and simple immunoprecipitation technology for identifying clinical sera containing antigen-specific antibodies and for generating quantitative antibody response profiles. This method is based on fusing protein antigens to an enzyme reporter, Renilla luciferase (Ruc), and expressing these fusions in mammalian cells, where mammalian-specific post-translational modifications can be added. After mixing crude extracts, sera and protein A/G beads together and incubating, during which the Ruc-antigen fusion become immobilized on the A/G beads, antigen-specific antibody is quantitated by washing the beads and adding coelenterazine substrate and measuring light production. We have characterized this technology with sera from patients having three different types of cancers. We show that 20-85% of these sera contain significant titers of antibodies against at least one of five frequently mutated and/or overexpressed tumor-associated proteins. Five of six colon cancer sera tested gave responses that were statistically significantly greater than the average plus three standard deviations of 10 control sera. The results of competition experiments, preincubating positive sera with unmodified E. coli-produced antigens, varied dramatically. This technology has several advantages over current quantitative immunoassays including its relative simplicity, its avoidance of problems associated with E. coli-produced antigens and its use of antigens that can carry mammalian or disease-specific post-translational modifications. This assay should be generally useful for analyzing sera for antibodies recognizing any protein or its post-translational modifications.

  3. A simplified immunoprecipitation method for quantitatively measuring antibody responses in clinical sera samples by using mammalian-produced Renilla luciferase-antigen fusion proteins

    PubMed Central

    Burbelo, Peter D; Goldman, Radoslav; Mattson, Thomas L

    2005-01-01

    Background Assays detecting human antigen-specific antibodies are medically useful. However, the usefulness of existing simple immunoassay formats is limited by technical considerations such as sera antibodies to contaminants in insufficiently pure antigen, a problem likely exacerbated when antigen panels are screened to obtain clinically useful data. Results We developed a novel and simple immunoprecipitation technology for identifying clinical sera containing antigen-specific antibodies and for generating quantitative antibody response profiles. This method is based on fusing protein antigens to an enzyme reporter, Renilla luciferase (Ruc), and expressing these fusions in mammalian cells, where mammalian-specific post-translational modifications can be added. After mixing crude extracts, sera and protein A/G beads together and incubating, during which the Ruc-antigen fusion become immobilized on the A/G beads, antigen-specific antibody is quantitated by washing the beads and adding coelenterazine substrate and measuring light production. We have characterized this technology with sera from patients having three different types of cancers. We show that 20–85% of these sera contain significant titers of antibodies against at least one of five frequently mutated and/or overexpressed tumor-associated proteins. Five of six colon cancer sera tested gave responses that were statistically significantly greater than the average plus three standard deviations of 10 control sera. The results of competition experiments, preincubating positive sera with unmodified E. coli-produced antigens, varied dramatically. Conclusion This technology has several advantages over current quantitative immunoassays including its relative simplicity, its avoidance of problems associated with E. coli-produced antigens and its use of antigens that can carry mammalian or disease-specific post-translational modifications. This assay should be generally useful for analyzing sera for antibodies recognizing any protein or its post-translational modifications. PMID:16109166

  4. Normalized Synergy Predicts That CD8 Co-Receptor Contribution to T Cell Receptor (TCR) and pMHC Binding Decreases As TCR Affinity Increases in Human Viral-Specific T Cells

    PubMed Central

    Williams, Chad M.; Schonnesen, Alexandra A.; Zhang, Shu-Qi; Ma, Ke-Yue; He, Chenfeng; Yamamoto, Tori; Eckhardt, S. Gail; Klebanoff, Christopher A.; Jiang, Ning

    2017-01-01

    The discovery of naturally occurring T cell receptors (TCRs) that confer specific, high-affinity recognition of pathogen and cancer-associated antigens remains a major goal in cellular immunotherapies. The contribution of the CD8 co-receptor to the interaction between the TCR and peptide-bound major histocompatibility complex (pMHC) has previously been correlated with the activation and responsiveness of CD8+ T cells. However, these studies have been limited to model systems of genetically engineered hybridoma TCRs or transgenic mouse TCRs against either a single epitope or an array of altered peptide ligands. CD8 contribution in a native human antigen-specific T cell response remains elusive. Here, using Hepatitis C Virus-specific precursor CTLs spanning a large range of TCR affinities, we discovered that the functional responsiveness of any given TCR correlated with the contribution of CD8 to TCR/pMHC binding. Furthermore, we found that CD8 contribution to TCR/pMHC binding in the two-dimensional (2D) system was more accurately reflected by normalized synergy (CD8 cooperation normalized by total TCR/pMHC bonds) rather than synergy (total CD8 cooperation) alone. While synergy showed an increasing trend with TCR affinity, normalized synergy was demonstrated to decrease with the increase of TCR affinity. Critically, normalized synergy was shown to correlate with CTL functionality and peptide sensitivity, corroborating three-dimensional (3D) analysis of CD8 contribution with respect to TCR affinity. In addition, we identified TCRs that were independent of CD8 for TCR/pMHC binding. Our results resolve the current discrepancy between 2D and 3D analysis on CD8 contribution to TCR/pMHC binding, and demonstrate that naturally occurring high-affinity TCRs are more capable of CD8-independent interactions that yield greater functional responsiveness even with CD8 blocking. Taken together, our data suggest that addition of the normalized synergy parameter to our previously established TCR discovery platform using 2D TCR affinity and sequence test would allow for selection of TCRs specific to any given antigen with the desirable attributes of high TCR affinity, CD8 co-receptor independence and functional superiority. Utilizing TCRs with less CD8 contribution could be beneficial for adoptive cell transfer immunotherapies using naturally occurring or genetically engineered T cells against viral or cancer-associated antigens. PMID:28804489

  5. Regulation of obesity-related insulin resistance with gut anti-inflammatory agents.

    PubMed

    Luck, Helen; Tsai, Sue; Chung, Jason; Clemente-Casares, Xavier; Ghazarian, Magar; Revelo, Xavier S; Lei, Helena; Luk, Cynthia T; Shi, Sally Yu; Surendra, Anuradha; Copeland, Julia K; Ahn, Jennifer; Prescott, David; Rasmussen, Brittany A; Chng, Melissa Hui Yen; Engleman, Edgar G; Girardin, Stephen E; Lam, Tony K T; Croitoru, Kenneth; Dunn, Shannon; Philpott, Dana J; Guttman, David S; Woo, Minna; Winer, Shawn; Winer, Daniel A

    2015-04-07

    Obesity has reached epidemic proportions, but little is known about its influence on the intestinal immune system. Here we show that the gut immune system is altered during high-fat diet (HFD) feeding and is a functional regulator of obesity-related insulin resistance (IR) that can be exploited therapeutically. Obesity induces a chronic phenotypic pro-inflammatory shift in bowel lamina propria immune cell populations. Reduction of the gut immune system, using beta7 integrin-deficient mice (Beta7(null)), decreases HFD-induced IR. Treatment of wild-type HFD C57BL/6 mice with the local gut anti-inflammatory, 5-aminosalicyclic acid (5-ASA), reverses bowel inflammation and improves metabolic parameters. These beneficial effects are dependent on adaptive and gut immunity and are associated with reduced gut permeability and endotoxemia, decreased visceral adipose tissue inflammation, and improved antigen-specific tolerance to luminal antigens. Thus, the mucosal immune system affects multiple pathways associated with systemic IR and represents a novel therapeutic target in this disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Precursor–product relationship between intrahepatic albumin and plasma albumin

    PubMed Central

    LeBouton, A. V.

    1968-01-01

    Rats were injected with [3H]leucine, and at various times thereafter labelled albumin was isolated by electrophoresis from their livers and blood plasma. The specific radioactivity of each protein was determined by spectrophotometry and liquid-scintillation spectrometry. Intrahepatic albumin was shown to be identical with plasma albumin by its electrophoretic mobility and antigenicity. It was found that intrahepatic albumin was the direct precursor of plasma albumin. Comparison of their specific radioactivities showed that intrahepatic albumin attained a higher specific radioactivity before plasma albumin. When plasma albumin reached its maximum specific radioactivity, that of intrahepatic albumin had decreased to a similar value. Thereafter, the specific radioactivity of intrahepatic albumin remained lower than that of plasma albumin. PMID:4966084

  7. Plasma membrane vesicles decorated with glycolipid-anchored antigens and adjuvants via protein transfer as an antigen delivery platform for inhibition of tumor growth.

    PubMed

    Patel, Jaina M; Vartabedian, Vincent F; Bozeman, Erica N; Caoyonan, Brianne E; Srivatsan, Sanjay; Pack, Christopher D; Dey, Paulami; D'Souza, Martin J; Yang, Lily; Selvaraj, Periasamy

    2016-01-01

    Antigen delivered within particulate materials leads to enhanced antigen-specific immunity compared to soluble administration of antigen. However, current delivery approaches for antigen encapsulated in synthetic particulate materials are limited by the complexity of particle production that affects stability and immunogenicity of the antigen. Herein, we describe a protein delivery system that utilizes plasma membrane vesicles (PMVs) derived from biological materials such as cultured cells or isolated tissues and a simple protein transfer technology. We show that these particulate PMVs can be easily modified within 4 h by a protein transfer process to stably incorporate a glycosylphosphatidylinositol (GPI)-anchored form of the breast cancer antigen HER-2 onto the PMV surface. Immunization of mice with GPI-HER-2-modified-PMVs induced strong HER-2-specific antibody responses and protection from tumor challenge in two different breast cancer models. Further incorporation of the immunostimulatory molecules IL-12 and B7-1 onto the PMVs by protein transfer enhanced tumor protection and induced beneficial Th1 and Th2-type HER-2-specific immune responses. Since protein antigens can be easily converted to GPI-anchored forms, these results demonstrate that isolated plasma membrane vesicles can be modified with desired antigens along with immunostimulatory molecules by protein transfer and used as a vaccine delivery vehicle to elicit potent antigen-specific immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Antigenic analyses of tissues and excretory and secretory products from Strongylus vulgaris.

    PubMed Central

    Wynne, E; Slocombe, J O; Wilkie, B N

    1981-01-01

    Rabbit antisera were prepared against veronal buffered saline extracts of L4 and L5 Strongylus vulgaris, adult S. vulgaris and adult Strongylus equinus retrieved from naturally infected horses. In agar gel diffusion with these antisera, adult S vulgaris and S. equinus each appeared to have at least one unique antigen; larval S. vulgaris appeared to have two species-specific and two stage-specific antigens. There were several common antigens. Excretory and secretory products were collected also from L4 and L5 an maintained over several days in tissue culture fluid. In agar gel diffusion against the above rabbit antisera, a stage-specific antigen was found also in excretory and secretory products. In addition, excretory and secretory products had three antigens in common with adult and larval S. vulgaris, but only one of these was common to adult S. equinus. The excretory and secretory products appear, therefore, to have two species-specific and one stage-specific antigens. Images Fig. 1 a and b. Fig. 2 a and b. Fig. 3 a and b. Fig. 4 a and b. Fig. 5 a and b. Fig. 6 a and b. Fig. 7 a and b. Fig. 8 a and b. PMID:6804070

  9. Engineering antigens for in situ erythrocyte binding induces T-cell deletion.

    PubMed

    Kontos, Stephan; Kourtis, Iraklis C; Dane, Karen Y; Hubbell, Jeffrey A

    2013-01-02

    Antigens derived from apoptotic cell debris can drive clonal T-cell deletion or anergy, and antigens chemically coupled ex vivo to apoptotic cell surfaces have been shown correspondingly to induce tolerance on infusion. Reasoning that a large number of erythrocytes become apoptotic (eryptotic) and are cleared each day, we engineered two different antigen constructs to target the antigen to erythrocyte cell surfaces after i.v. injection, one using a conjugate with an erythrocyte-binding peptide and another using a fusion with an antibody fragment, both targeting the erythrocyte-specific cell surface marker glycophorin A. Here, we show that erythrocyte-binding antigen is collected much more efficiently than free antigen by splenic and hepatic immune cell populations and hepatocytes, and that it induces antigen-specific deletional responses in CD4(+) and CD8(+) T cells. We further validated T-cell deletion driven by erythrocyte-binding antigens using a transgenic islet β cell-reactive CD4(+) T-cell adoptive transfer model of autoimmune type 1 diabetes: Treatment with the peptide antigen fused to an erythrocyte-binding antibody fragment completely prevented diabetes onset induced by the activated, autoreactive CD4(+) T cells. Thus, we report a translatable modular biomolecular approach with which to engineer antigens for targeted binding to erythrocyte cell surfaces to induce antigen-specific CD4(+) and CD8(+) T-cell deletion toward exogenous antigens and autoantigens.

  10. Purification and analyses of the specificity of two putative diagnostic antigens for larval cyathostomin infection in horses.

    PubMed

    Dowdall, S M J; Proudman, C J; Love, S; Klei, T R; Matthews, J B

    2003-12-01

    Cyathostomins are important equine gastrointestinal parasites. Mass emergence of mucosal stage larvae causes a potentially fatal colitis. Mucosal stages are undetectable non-invasively. An assay that would estimate mucosal larval stage infection would greatly assist in treatment, control and prognosis. Previously, we identified two putative diagnostic antigens (20 and 25 kDa) in somatic larval preparations. Here, we describe their purification and antigen-specific IgG(T) responses to them. Western blots confirmed the purity of the antigens and showed that epitopes in the 20 kDa complex were specific to larval cyathostomins. No cross-reactive antigens appeared to be present in Parascaris equorum or Strongyloides westeri species. Low levels of cross-reactivity were observed in Strongylus edentatus and Strongylus vulgaris species. Use of purified antigens greatly reduced background binding in equine sera. These results indicate that both antigen complexes may be of use in a diagnostic assay.

  11. Personalized Therapy: Tumor Antigen Discovery for Adoptive Cellular Therapy.

    PubMed

    Yee, Cassian; Lizee, Gregory A

    Adoptive cell therapy using endogenous T cells involves the ex vivo isolation and expansion of antigen-specific T cells from the peripheral blood and is uniquely suited for validating and translating antigen discovery. Endogenous T-cell therapy does not require accessible tumor as a source of infiltrating T cells and is free of regulatory and logistical constraints associated with engineering T cells. Candidate epitope peptides identified through antigen discovery may be rapidly implemented as targets in clinical trials of endogenous T-cell therapy and even incorporated as an "ad hoc" approach to personalized treatment when autologous tumor is available. Several first-in-human studies using a uniform population of antigen-specific T cells defined by phenotype and specificity have provided a means to confirm candidate antigens as potential tumor rejection antigens and to evaluate the reasons for success or failure using as a "transferrable cellular biomarker" the adoptively transferred T cells.

  12. Extinguishing visible photoluminescence of porous silicon stimulated by antigen-antibody immunocomplex formation

    NASA Astrophysics Data System (ADS)

    Starodub, Nickolaj F.; Fedorenko, Leonid L.; Starodub, Valentyna M.; Dikiy, S. P.; Svechnikov, Sergey V.

    1997-02-01

    The photoluminescence of the porous silicon obtained by special procedure with the usage of the chemical and laser beam treatment of silicon crystal was investigated in water, buffer and solution containing sodium chloride. It was demonstrated that the intensity of the photoluminescence did not practically change at the above mentioned conditions as well as after antigen or antibody immobilization on the porous silicon surface. But this parameter of the photoluminescence dramatically decreased in case of specific immune complex formation on the silicon surface. The level of the photoluminescence extinguishing depended on duration and intensity of immune reaction. It is proposed to use discovered effect for creation of the immunosensors based on the direct registration of immunocomplex formation.

  13. Tumor-specific antigens and immunologic adjuvants in cancer immunotherapy.

    PubMed

    Seremet, Teofila; Brasseur, Francis; Coulie, Pierre G

    2011-01-01

    T cell-based cancer immunotherapy relies on advancements made over the last 20 years on the molecular mechanisms underlying the antigenicity of tumors. This review focuses on human tumor antigens recognized by T lymphocytes, particularly the reasons why some are tumor-specific but others are not, and on the immunologic adjuvants used in clinical trials on therapeutic vaccination with defined tumor antigens.

  14. Potentiation of pH-sensitive polymer-modified liposomes with cationic lipid inclusion as antigen delivery carriers for cancer immunotherapy.

    PubMed

    Yoshizaki, Yuta; Yuba, Eiji; Sakaguchi, Naoki; Koiwai, Kazunori; Harada, Atsushi; Kono, Kenji

    2014-09-01

    Cationic lipid-incorporated liposomes modified with pH-sensitive polymers were prepared by introducing 3, 5-didodecyloxybenzamidine as a cationic lipid to egg yolk phosphatidylcholine liposomes modified with 3-methylglutarylated hyperbranched poly(glycidol) (MGlu-HPG) as a pH-sensitive polymer. These liposomes were stable at neutral pH, but were destabilized below pH 6.0 because MGlu-HPG changed its characteristics from hydrophilic to hydrophobic in response to the pH decrease. Cationic lipid inclusion improved their pH sensitivity at weakly acidic pH and association of liposomes with murine dendritic cell (DC) lines. Cationic lipid-incorporated liposomes delivered entrapped ovalbumin (OVA) molecules not only to cytosol but also to endosome/lysosome. Treatment with cationic lipid-incorporated liposomes induced up-regulation of antigen presentation-involved molecules on DCs, the promotion of cytokine production, and antigen presentation via both major histocompatibility complex (MHC) class I and II molecules. Especially, antigen presentation via MHC class II was promoted by cationic lipid inclusion, which might correspond to efficient endosome/lysosome delivery of OVA. Subcutaneous administration of OVA-loaded cationic lipid-incorporated liposomes induced antigen-specific antibody production in serum and Th1-dominant immune responses in the spleen. Furthermore, administration of the cationic lipid-incorporated liposomes to mice bearing E.G7-OVA tumor more significantly reduced the tumor volume than liposomes without cationic lipids. Therefore, cationic lipid inclusion into pH-sensitive polymer-modified liposomes, which can achieve both efficient antigen intracellular delivery and activation of antigen presenting cell, is an effective approach to develop antigen carriers for efficient cancer immunotherapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Lentiviral Protein Transfer Vectors Are an Efficient Vaccine Platform and Induce a Strong Antigen-Specific Cytotoxic T Cell Response

    PubMed Central

    Uhlig, Katharina M.; Schülke, Stefan; Scheuplein, Vivian A. M.; Malczyk, Anna H.; Reusch, Johannes; Kugelmann, Stefanie; Muth, Anke; Koch, Vivian; Hutzler, Stefan; Bodmer, Bianca S.; Schambach, Axel; Buchholz, Christian J.; Waibler, Zoe; Scheurer, Stephan

    2015-01-01

    ABSTRACT To induce and trigger innate and adaptive immune responses, antigen-presenting cells (APCs) take up and process antigens. Retroviral particles are capable of transferring not only genetic information but also foreign cargo proteins when they are genetically fused to viral structural proteins. Here, we demonstrate the capacity of lentiviral protein transfer vectors (PTVs) for targeted antigen transfer directly into APCs and thereby induction of cytotoxic T cell responses. Targeting of lentiviral PTVs to APCs can be achieved analogously to gene transfer vectors by pseudotyping the particles with truncated wild-type measles virus (MV) glycoproteins (GPs), which use human SLAM (signaling lymphocyte activation molecule) as a main entry receptor. SLAM is expressed on stimulated lymphocytes and APCs, including dendritic cells. SLAM-targeted PTVs transferred the reporter protein green fluorescent protein (GFP) or Cre recombinase with strict receptor specificity into SLAM-expressing CHO and B cell lines, in contrast to broadly transducing vesicular stomatitis virus G protein (VSV-G) pseudotyped PTVs. Primary myeloid dendritic cells (mDCs) incubated with targeted or nontargeted ovalbumin (Ova)-transferring PTVs stimulated Ova-specific T lymphocytes, especially CD8+ T cells. Administration of Ova-PTVs into SLAM-transgenic and control mice confirmed the observed predominant induction of antigen-specific CD8+ T cells and demonstrated the capacity of protein transfer vectors as suitable vaccines for the induction of antigen-specific immune responses. IMPORTANCE This study demonstrates the specificity and efficacy of antigen transfer by SLAM-targeted and nontargeted lentiviral protein transfer vectors into antigen-presenting cells to trigger antigen-specific immune responses in vitro and in vivo. The observed predominant activation of antigen-specific CD8+ T cells indicates the suitability of SLAM-targeted and also nontargeted PTVs as a vaccine for the induction of cytotoxic immune responses. Since cytotoxic CD8+ T lymphocytes are a mainstay of antitumoral immune responses, PTVs could be engineered for the transfer of specific tumor antigens provoking tailored antitumoral immunity. Therefore, PTVs can be used as safe and efficient alternatives to gene transfer vectors or live attenuated replicating vector platforms, avoiding genotoxicity or general toxicity in highly immunocompromised patients, respectively. Thereby, the potential for easy envelope exchange allows the circumventing of neutralizing antibodies, e.g., during repeated boost immunizations. PMID:26085166

  16. Immune Repertoire after Immunization As Seen by Next-Generation Sequencing and Proteomics

    PubMed Central

    VanDuijn, Martijn M.; Dekker, Lennard J.; van IJcken, Wilfred F. J.; Sillevis Smitt, Peter A. E.; Luider, Theo M.

    2017-01-01

    The immune system produces a diverse repertoire of immunoglobulins in response to foreign antigens. During B-cell development, VDJ recombination and somatic mutations generate diversity, whereas selection processes remove it. Using both proteomic and NGS approaches, we characterized the immune repertoires in groups of rats after immunization with purified antigens. Proteomics and NGS data on the repertoire are in qualitative agreement, but did show quantitative differences that may relate to differences between the biological niches that were sampled for these approaches. Both methods contributed complementary information in the characterization of the immune repertoire. It was found that the immune repertoires resulting from each antigen had many similarities that allowed samples to cluster together, and that mutated immunoglobulin peptides were shared among animals with a response to the same antigen significantly more than for different antigens. However, the number of shared sequences decreased in a log-linear fashion relative to the number of animals that share them, which may affect future applications. A phylogenetic analysis on the NGS reads showed that reads from different individuals immunized with the same antigen populated distinct branches of the phylogram, an indication that the repertoire had converged. Also, similar mutation patterns were found in branches of the phylogenetic tree that were associated with antigen-specific immunoglobulins through proteomics data. Thus, data from different analysis methods and different experimental platforms show that the immunoglobulin repertoires of immunized animals have overlapping and converging features. With additional research, this may enable interesting applications in biotechnology and clinical diagnostics. PMID:29085363

  17. Presentation of antigen to T lymphocytes by non-immune B-cell hybridoma clones: evidence for specific and non-specific presentation

    NASA Technical Reports Server (NTRS)

    Cohly, H. H.; Morrison, D. R.; Atassi, M. Z.

    1988-01-01

    Non-immune SJL (H-2s) spleen cells were fused with (H-2d) Balb/c 653-myeloma cells and the hybridomas were cloned by two limiting dilutions. The resulting hybrid B- cell clones were tested for their antigen presentation capability to SJL T-cell lines that were specific for either lysozyme or myoglobin. In proliferative assays, 53% of the antigen presenting B-cell clones were able to present both myoglobin and lysozyme (general presenters) while the other 47% presented specifically either myoglobin or lysozyme (specific presenters). The ability to selectively present either myoglobin or lysozyme indicates that antigen presentation at the clonal level can be specific or non-specific depending on the particular B-cell clone.

  18. Eliciting Epitope-Specific CD8+ T Cell Response by Immunization with Microbial Protein Antigens Formulated with α-Galactosylceramide: Theory, Practice, and Protocols.

    PubMed

    Gilchuk, Pavlo; Knight, Frances C; Wilson, John T; Joyce, Sebastian

    2017-01-01

    CD8+ cytotoxic T lymphocytes confer protection against infectious diseases caused by viruses, bacteria, and parasites. Hence, significant efforts have been invested into devising ways to generate CD8+ T cell-targeted vaccines. Generation of microbe-free protein subunit vaccines requires a thorough knowledge of protective target antigens. Such antigens are proteolytically processed peptides presented by MHC class I molecules. To induce a robust antigen-specific CD8+ T cell response through vaccination, it is essential to formulate the antigen with an effective adjuvant. Here, we describe a versatile method for generating high-frequency antigen-specific CD8+ T cells through immunization of mice using the invariant natural killer T cell agonist α-galactosylceramide as the adjuvant.

  19. Role of different lymphocyte subpopulations in the formation of non-specific immunoglobulins induced by antigen injection.

    PubMed

    Chernyshova, I N; Borisova, T K; Emelyanzeva, J A; Sidorova, E V

    1999-04-01

    The formation of antibody and non-specific immunoglobulin under the influence of T-dependent (TD) and type 2 T-independent (TI-2) antigens in mice of two congenic strains CBA (Lyb5-, Lyb5+) and CBA/N (Lyb5-) was studied. TD antigens induced in mice of both strains not only the appearance of antibody-forming cells (AFC), but also a great increase in the number of cells producing non-specific immunoglobulins (nIFC). TI-2 antigens induced the AFC and antigen-dependent nIFC formation in CBA mice only. It is concluded that during immune response to TI-2 antigens not only the AFC appearance but the increase in nIFC formation (polyclonal activation) is due mainly to the mature Lyb5+ B cells.

  20. Comparison of carbohydrate and peptide biotinylation on the immunological activity of IgG1 murine monoclonal antibodies.

    PubMed

    Miralles, F; Takeda, Y; Escribano, M J

    1991-07-05

    When the classical amino acid esterification procedure was used for the biotinylation of the IgG1 monoclonal antibody J28 it resulted in a loss of immunological activity. This antibody recognizes the fetoacinar pancreatic (FAP) antigen and the decrease in reactivity was directly proportional to the molar biotin/antibody ratio indicating substitutions at or near the antibody combining site. This effect was specific to J28 since the IgG1 Mab F22 which recognises the same antigen was not damaged by this procedure. Active Mab J28 conjugates were obtained using biotinylation via oligosaccharide moieties. The biotinylation efficiency using this method was dependent on the previous degree of antibody periodate oxidation and the maximal substitution was 3 mol biotin per mol of antibody. Using these conditions the sensitivity of the biotinylated J28 for the FAP antigen was similar to that obtained when using non-substituted antibody in the two antibodies technique.

  1. Effects of Experimental Sarcocystis neurona-Induced Infection on Immunity in an Equine Model

    PubMed Central

    Lewis, S. Rochelle; Ellison, Siobhan P.; Dascanio, John J.; Lindsay, David S.; Gogal, Robert M.; Werre, Stephen R.; Surendran, Naveen; Breen, Meghan E.; Heid, Bettina M.; Andrews, Frank M.; Buechner-Maxwell, Virginia A.; Witonsky, Sharon G.

    2014-01-01

    Sarcocystis neurona is the most common cause of Equine Protozoal Myeloencephalitis (EPM), affecting 0.5–1% horses in the United States during their lifetimes. The objective of this study was to evaluate the equine immune responses in an experimentally induced Sarcocystis neurona infection model. Neurologic parameters were recorded prior to and throughout the 70-day study by blinded investigators. Recombinant SnSAG1 ELISA for serum and CSF were used to confirm and track disease progression. All experimentally infected horses displayed neurologic signs after infection. Neutrophils, monocytes, and lymphocytes from infected horses displayed significantly delayed apoptosis at some time points. Cell proliferation was significantly increased in S. neurona-infected horses when stimulated nonspecifically with PMA/I but significantly decreased when stimulated with S. neurona compared to controls. Collectively, our results suggest that horses experimentally infected with S. neurona manifest impaired antigen specific response to S. neurona, which could be a function of altered antigen presentation, lack of antigen recognition, or both. PMID:26464923

  2. Effects of Experimental Sarcocystis neurona-Induced Infection on Immunity in an Equine Model.

    PubMed

    Lewis, S Rochelle; Ellison, Siobhan P; Dascanio, John J; Lindsay, David S; Gogal, Robert M; Werre, Stephen R; Surendran, Naveen; Breen, Meghan E; Heid, Bettina M; Andrews, Frank M; Buechner-Maxwell, Virginia A; Witonsky, Sharon G

    2014-01-01

    Sarcocystis neurona is the most common cause of Equine Protozoal Myeloencephalitis (EPM), affecting 0.5-1% horses in the United States during their lifetimes. The objective of this study was to evaluate the equine immune responses in an experimentally induced Sarcocystis neurona infection model. Neurologic parameters were recorded prior to and throughout the 70-day study by blinded investigators. Recombinant SnSAG1 ELISA for serum and CSF were used to confirm and track disease progression. All experimentally infected horses displayed neurologic signs after infection. Neutrophils, monocytes, and lymphocytes from infected horses displayed significantly delayed apoptosis at some time points. Cell proliferation was significantly increased in S. neurona-infected horses when stimulated nonspecifically with PMA/I but significantly decreased when stimulated with S. neurona compared to controls. Collectively, our results suggest that horses experimentally infected with S. neurona manifest impaired antigen specific response to S. neurona, which could be a function of altered antigen presentation, lack of antigen recognition, or both.

  3. The generation and analyses of a novel combination of recombinant adenovirus vaccines targeting three tumor antigens as an immunotherapeutic

    PubMed Central

    Gabitzsch, Elizabeth S.; Tsang, Kwong Yok; Palena, Claudia; David, Justin M.; Fantini, Massimo; Kwilas, Anna; Rice, Adrian E.; Latchman, Yvette; Hodge, James W.; Gulley, James L.; Madan, Ravi A.; Heery, Christopher R.; Balint, Joseph P.

    2015-01-01

    Phenotypic heterogeneity of human carcinoma lesions, including heterogeneity in expression of tumor-associated antigens (TAAs), is a well-established phenomenon. Carcinoembryonic antigen (CEA), MUC1, and brachyury are diverse TAAs, each of which is expressed on a wide range of human tumors. We have previously reported on a novel adenovirus serotype 5 (Ad5) vector gene delivery platform (Ad5 [E1-, E2b-]) in which regions of the early 1 (E1), early 2 (E2b), and early 3 (E3) genes have been deleted. The unique deletions in this platform result in a dramatic decrease in late gene expression, leading to a marked reduction in host immune response to the vector. Ad5 [E1-, E2b-]-CEA vaccine (ETBX-011) has been employed in clinical studies as an active vaccine to induce immune responses to CEA in metastatic colorectal cancer patients. We report here the development of novel recombinant Ad5 [E1-, E2b-]-brachyury and-MUC1 vaccine constructs, each capable of activating antigen-specific human T cells in vitro and inducing antigen-specific CD4+ and CD8+ T cells in vaccinated mice. We also describe the use of a combination of the three vaccines (designated Tri-Ad5) of Ad5 [E1-, E2b-]-CEA, Ad5 [E1-, E2b-]-brachyury and Ad5 [E1-, E2b-]-MUC1, and demonstrate that there is minimal to no “antigenic competition” in in vitro studies of human dendritic cells, or in murine vaccination studies. The studies reported herein support the rationale for the application of Tri-Ad5 as a therapeutic modality to induce immune responses to a diverse range of human TAAs for potential clinical studies. PMID:26374823

  4. The Fas/CD95 Receptor Regulates the Death of Autoreactive B Cells and the Selection of Antigen-Specific B Cells

    PubMed Central

    Koncz, Gabor; Hueber, Anne-Odile

    2012-01-01

    Cell death receptors have crucial roles in the regulation of immune responses. Here we review recent in vivo data confirming that the Fas death receptor (TNFSR6) on B cells is important for the regulation of autoimmunity since the impairment of only Fas function on B cells results in uncontrolled autoantibody production and autoimmunity. Fas plays a role in the elimination of the non-specific and autoreactive B cells in germinal center, while during the selection of antigen-specific B cells different escape signals ensure the resistance to Fas-mediated apoptosis. Antigen-specific survival such as BCR or MHCII signal or coreceptors (CD19) cooperating with BCR inhibits the formation of death inducing signaling complex. Antigen-specific survival can be reinforced by antigen-independent signals of IL-4 or CD40 overproducing the anti-apoptotic members of the Bcl-2 family proteins. PMID:22848207

  5. Tuberculous Lymphadenitis Is Associated with Enhanced Baseline and Antigen-Specific Induction of Type 1 and Type 17 Cytokines and Reduced Interleukin-1β (IL-1β) and IL-18 at the Site of Infection.

    PubMed

    Kathamuthu, Gokul Raj; Moideen, Kadar; Baskaran, Dhanaraj; Banurekha, Vaithilingam V; Nair, Dina; Sekar, Gomathi; Sridhar, Rathinam; Vidyajayanthi, Bharathi; Gajendraraj, Ganeshan; Parandhaman, Dinesh Kumar; Srinivasan, Alena; Babu, Subash

    2017-05-01

    Tuberculous lymphadenitis (TBL) is characterized by an expansion of Th1 and Th17 cells with altered serum levels of proinflammatory cytokines. However, the cytokine profile at the site of infection, i.e., the affected lymph nodes, has not been examined in detail. To estimate the baseline and mycobacterial antigen-stimulated concentrations of type 1, type 17, and other proinflammatory cytokines in patients with TBL ( n = 14), we examined both the baseline and the antigen-specific concentrations of these cytokines before and after chemotherapy and compared them with those in individuals with pulmonary tuberculosis (PTB) ( n = 14). In addition, we also compared the cytokine responses in whole blood and those in the lymph nodes of TBL individuals. We observed significantly enhanced baseline and antigen-specific levels of type 1 cytokines (gamma interferon [IFN-γ] and tumor necrosis factor alpha [TNF-α]) and a type 17 cytokine (interleukin-17 [IL-17]) and significantly diminished baseline and antigen-specific levels of proinflammatory cytokines (IL-1β and IL-18) in the whole blood of TBL individuals compared to those in the whole blood of PTB individuals. Moreover, we also observed a pattern of baseline and antigen-specific cytokine production at the site of infection (lymph node) similar to that in the whole blood of TBL individuals. Following standard antituberculosis (anti-TB) treatment, we observed alterations in the baseline and/or antigen-specific levels of IFN-γ, TNF-α, IL-1β, and IL-18. TBL is therefore characterized by enhanced baseline and antigen-specific production of type 1 and type 17 cytokines and reduced baseline and antigen-specific production of IL-1β and IL-18 at the site of infection. Copyright © 2017 American Society for Microbiology.

  6. Cytotoxicity of Tumor Antigen Specific Human T Cells Is Unimpaired by Arginine Depletion

    PubMed Central

    Knies, Diana; Medenhoff, Sergej; Wabnitz, Guido; Luckner-Minden, Claudia; Feldmeyer, Nadja; Voss, Ralf-Holger; Kropf, Pascale; Müller, Ingrid; Conradi, Roland; Samstag, Yvonne; Theobald, Matthias; Ho, Anthony D.; Goldschmidt, Hartmut; Hundemer, Michael

    2013-01-01

    Tumor-growth is often associated with the expansion of myeloid derived suppressor cells that lead to local or systemic arginine depletion via the enzyme arginase. It is generally assumed that this arginine deficiency induces a global shut-down of T cell activation with ensuing tumor immune escape. While the impact of arginine depletion on polyclonal T cell proliferation and cytokine secretion is well documented, its influence on chemotaxis, cytotoxicity and antigen specific activation of human T cells has not been demonstrated so far. We show here that chemotaxis and early calcium signaling of human T cells are unimpaired in the absence of arginine. We then analyzed CD8+ T cell activation in a tumor peptide as well as a viral peptide antigen specific system: (i) CD8+ T cells with specificity against the MART-1aa26–35*A27L tumor antigen expanded with in vitro generated dendritic cells, and (ii) clonal CMV pp65aa495–503 specific T cells and T cells retrovirally transduced with a CMV pp65aa495–503 specific T cell receptor were analyzed. Our data demonstrate that human CD8+ T cell antigen specific cytotoxicity and perforin secretion are completely preserved in the absence of arginine, while antigen specific proliferation as well as IFN-γ and granzyme B secretion are severely compromised. These novel results highlight the complexity of antigen specific T cell activation and demonstrate that human T cells can preserve important activation-induced effector functions in the context of arginine deficiency. PMID:23717444

  7. A Theory of Self- Nonself Discrimination

    ERIC Educational Resources Information Center

    Bretscher, Peter; Cohn, Melvin

    1970-01-01

    Theoretical model suggests antigen-sensitive cells produce antibodies only when two antigenic determinants are recognized, and explains self-nonself discrimination by antibody system. Specific antigen-sensitive cells accumulate in absence of foreign antigens and co-operate to induce antibodies if antigen enter the body; but antigen-sensitive cells…

  8. Immaturity associated antigens are lost during induction for T cell lymphoblastic leukemia: implications for minimal residual disease detection

    PubMed Central

    Roshal, Mikhail; Fromm, Jonathan R; Winter, Stuart; Dunsmore, Kimberly; Wood, Brent

    2011-01-01

    Background Induction chemotherapy for acute leukemia often leads to antigenic shifts in residual abnormal blast populations. Studies in precursor B cell ALL (B-ALL) and AML have demonstrated that chemotherapy commonly results in the loss of antigens associated with immaturity, limiting their utility for minimal residual disease (MRD) detection. Little information is available about the stability of these antigens in precursor T cell ALL (T-ALL) though it is presumed that CD99 and TdT are highly informative based on limited studies. Methods In a longitudinal investigation, we explored patterns of lineage specific and immaturity associated antigens in T-ALL in a large cohort of patients treated under the multicenter Children's Oncology Group (COG) protocol. All samples were analyzed using multicolor flow cytometry in a standardized fashion at a single institution. Results We report that markers of immaturity particularly, TdT and CD99 dramatically decline on leukemic blasts during therapy. CD34 and CD10 expression is confined to a minority of pre-treatment samples and is also not stable. In contrast, lineage associated markers including CD2, CD3, CD4, CD5, CD7 and CD8 failed to show significant trends. Conclusions Our study strongly argues for expansion of immunophenotyping panels for T-ALL MRD to decrease reliance on immature antigens. This study represents the first demonstration of consistent immunophenotypic shifts in T-ALL. PMID:20155852

  9. Antitumor Effects of Chimeric Receptor Engineered Human T Cells Directed to Tumor Stroma

    PubMed Central

    Kakarla, Sunitha; Chow, Kevin KH; Mata, Melinda; Shaffer, Donald R; Song, Xiao-Tong; Wu, Meng-Fen; Liu, Hao; Wang, Lisa L; Rowley, David R; Pfizenmaier, Klaus; Gottschalk, Stephen

    2013-01-01

    Cancer-associated fibroblasts (CAFs), the principle component of the tumor-associated stroma, form a highly protumorigenic and immunosuppressive microenvironment that mediates therapeutic resistance. Co-targeting CAFs in addition to cancer cells may therefore augment the antitumor response. Fibroblast activation protein-α (FAP), a type 2 dipeptidyl peptidase, is expressed on CAFs in a majority of solid tumors making it an attractive immunotherapeutic target. To target FAP-positive CAFs in the tumor-associated stroma, we genetically modified T cells to express a FAP-specific chimeric antigen receptor (CAR). The resulting FAP-specific T cells recognized and killed FAP-positive target cells as determined by proinflammatory cytokine release and target cell lysis. In an established A549 lung cancer model, adoptive transfer of FAP-specific T cells significantly reduced FAP-positive stromal cells, with a concomitant decrease in tumor growth. Combining these FAP-specific T cells with T cells that targeted the EphA2 antigen on the A549 cancer cells themselves significantly enhanced overall antitumor activity and conferred a survival advantage compared to either alone. Our study underscores the value of co-targeting both CAFs and cancer cells to increase the benefits of T-cell immunotherapy for solid tumors. PMID:23732988

  10. Antigen Availability Shapes T Cell Differentiation and Function during Tuberculosis.

    PubMed

    Moguche, Albanus O; Musvosvi, Munyaradzi; Penn-Nicholson, Adam; Plumlee, Courtney R; Mearns, Helen; Geldenhuys, Hennie; Smit, Erica; Abrahams, Deborah; Rozot, Virginie; Dintwe, One; Hoff, Søren T; Kromann, Ingrid; Ruhwald, Morten; Bang, Peter; Larson, Ryan P; Shafiani, Shahin; Ma, Shuyi; Sherman, David R; Sette, Alessandro; Lindestam Arlehamn, Cecilia S; McKinney, Denise M; Maecker, Holden; Hanekom, Willem A; Hatherill, Mark; Andersen, Peter; Scriba, Thomas J; Urdahl, Kevin B

    2017-06-14

    CD4 T cells are critical for protective immunity against Mycobacterium tuberculosis (Mtb), the cause of tuberculosis (TB). Yet to date, TB vaccine candidates that boost antigen-specific CD4 T cells have conferred little or no protection. Here we examined CD4 T cell responses to two leading TB vaccine antigens, ESAT-6 and Ag85B, in Mtb-infected mice and in vaccinated humans with and without underlying Mtb infection. In both species, Mtb infection drove ESAT-6-specific T cells to be more differentiated than Ag85B-specific T cells. The ability of each T cell population to control Mtb in the lungs of mice was restricted for opposite reasons: Ag85B-specific T cells were limited by reduced antigen expression during persistent infection, whereas ESAT-6-specific T cells became functionally exhausted due to chronic antigenic stimulation. Our findings suggest that different vaccination strategies will be required to optimize protection mediated by T cells recognizing antigens expressed at distinct stages of Mtb infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Use of Digital Rectal Examination as an Adjunct to Prostate Specific Antigen in the Detection of Clinically Significant Prostate Cancer.

    PubMed

    Halpern, Joshua A; Oromendia, Clara; Shoag, Jonathan E; Mittal, Sameer; Cosiano, Michael F; Ballman, Karla V; Vickers, Andrew J; Hu, Jim C

    2018-04-01

    Guidelines from the NCCN ® (National Comprehensive Cancer Network®) advocate digital rectal examination screening only in men with elevated prostate specific antigen. We investigated the effect of prostate specific antigen on the association of digital rectal examination and clinically significant prostate cancer in a large American cohort. We evaluated the records of the 35,350 men who underwent digital rectal examination in the screening arm of the Prostate, Lung, Colorectal and Ovarian Cancer Screening trial for the development of clinically significant prostate cancer (Gleason 7 or greater). Followup was 343,273 person-years. The primary outcome was the rate of clinically significant prostate cancer among men with vs without suspicious digital rectal examination. We performed competing risks regression to evaluate the interaction between time varying suspicious digital rectal examination and prostate specific antigen. A total of 1,713 clinically significant prostate cancers were detected with a 10-year cumulative incidence of 5.9% (95% CI 5.6-6.2). Higher risk was seen for suspicious vs nonsuspicious digital rectal examination. Increases in absolute risk were small and clinically irrelevant for normal (less than 2 ng/ml) prostate specific antigen (1.5% vs 0.7% risk of clinically significant prostate cancer at 10 years), clinically relevant for elevated (3 ng/ml or greater) prostate specific antigen (23.0% vs 13.7%) and modestly clinically relevant for equivocal (2 to 3 ng/ml) prostate specific antigen (6.5% vs 3.5%). Digital rectal examination demonstrated prognostic usefulness when prostate specific antigen was greater than 3 ng/ml, limited usefulness for less than 2 ng/ml and marginal usefulness for 2 to 3 ng/ml. These findings support the restriction of digital rectal examination to men with higher prostate specific antigen as a reflex test to improve specificity. It should not be used as a primary screening modality to improve sensitivity. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  12. Characterization of Specific Immune Responses to Different Aspergillus Antigens during the Course of Invasive Aspergillosis in Hematologic Patients

    PubMed Central

    Beauvais, Anne; Beau, Remi; Candoni, Anna; Maertens, Johan; Rossi, Giulio; Morselli, Monica; Zanetti, Eleonora; Quadrelli, Chiara; Codeluppi, Mauro; Guaraldi, Giovanni; Pagano, Livio; Caira, Morena; Giovane, Cinzia Del; Maccaferri, Monica; Stefani, Alessandro; Morandi, Uliano; Tazzioli, Giovanni; Girardis, Massimo; Delia, Mario; Specchia, Giorgina; Longo, Giuseppe; Marasca, Roberto; Narni, Franco; Merli, Francesco; Imovilli, Annalisa; Apolone, Giovanni; Carvalho, Agostinho; Comoli, Patrizia; Romani, Luigina; Latgè, Jean Paul; Luppi, Mario

    2013-01-01

    Several studies in mouse model of invasive aspergillosis (IA) and in healthy donors have shown that different Aspergillus antigens may stimulate different adaptive immune responses. However, the occurrence of Aspergillus-specific T cells have not yet been reported in patients with the disease. In patients with IA, we have investigated during the infection: a) whether and how specific T-cell responses to different Aspergillus antigens occur and develop; b) which antigens elicit the highest frequencies of protective immune responses and, c) whether such protective T cells could be expanded ex-vivo. Forty hematologic patients have been studied, including 22 patients with IA and 18 controls. Specific T cells producing IL-10, IFN-γ, IL-4 and IL-17A have been characterized through enzyme linked immunospot and cytokine secretion assays on 88 peripheral blood (PB) samples, by using the following recombinant antigens: GEL1p, CRF1p, PEP1p, SOD1p, α1–3glucan, β1–3glucan, galactomannan. Specific T cells were expanded through short term culture. Aspergillus-specific T cells producing non-protective interleukin-10 (IL-10) and protective interferon-gamma (IFN-γ) have been detected to all the antigens only in IA patients. Lower numbers of specific T cells producing IL-4 and IL-17A have also been shown. Protective T cells targeted predominantly Aspergillus cell wall antigens, tended to increase during the IA course and to be associated with a better clinical outcome. Aspergillus-specific T cells could be successfully generated from the PB of 8 out of 8 patients with IA and included cytotoxic subsets able to lyse Aspergillus hyphae. Aspergillus specific T-cell responses contribute to the clearance of the pathogen in immunosuppressed patients with IA and Aspergillus cell wall antigens are those mainly targeted by protective immune responses. Cytotoxic specific T cells can be expanded from immunosuppressed patients even during the infection by using the above mentioned antigens. These findings may be exploited for immunotherapeutic purposes in patients with IA. PMID:24023936

  13. Evaluation of a newly designed sandwich enzyme linked immunosorbent assay for the detection of hydatid antigen in serum, urine and cyst fluid for diagnosis of cystic echinococcosis

    PubMed Central

    Chaya, DR; Parija, Subhash Chandra

    2013-01-01

    Introduction: Cystic echinococcosis (CE) is a zoonotic disease of humans with variable clinical manifestations. Imaging and immunological methods are currently the mainstay of diagnosis of this disease. Although the immunological tests for detection of anti-echinococcal antibodies have several disadvantages, they are widely being used. Antigen is far more superior than antibody detection test as they can provide a specific parasitic diagnosis. Materials and Methods: A sandwich enzyme linked immunosorbent assay (ELISA) was designed using antibodies to 24 kDa urinary hydatid antigen for the detection of hydatid antigens in urine, serum and cyst fluid specimens. The performance of this novel test was compared with that of other hydatid antibody detection ELISA and enzyme immune transfer blot (EITB) using radiological and surgical confirmation as the gold standard. Results: The antigen detection ELISA showed 100% sensitivity and specificity when tested with cyst fluid. On testing urine and serum, the antigen detection ELISA was found to be more specific than antibody detection ELISA. EITB was found to be the most sensitive and specific test. Conclusions: ELISA using polyclonal antibodies against 24 kDa urinary hydatid protein was moderately sensitive to detect hydatid antigen in serum and urine. Hence polyclonal antibodies to 24 kDa urinary hydatid antigen can be used as an alternative source of antibody to detect hydatid antigen in serum, urine and cyst fluid. In the present study, EITB was found to be highly specific test for detection of hydatid antibodiesin serum. 24 kDa protein was found to be specific and of diagnostic value in CE. PMID:24470996

  14. Antigen delivery by α2-macroglobulin enhances the cytotoxic T lymphocyte response

    PubMed Central

    Bowers, Edith V.; Horvath, Jeffrey J.; Bond, Jennifer E.; Cianciolo, George J.; Pizzo, Salvatore V.

    2009-01-01

    α2M* targets antigens to APCs for rapid internalization, processing, and presentation. When used as an antigen-delivery vehicle, α2M* amplifies MHC class II presentation, as demonstrated by increased antibody titers. Recent evidence, however, suggests that α2M* encapsulation may also enhance antigen-specific CTL immunity. In this study, we demonstrate that α2M*-delivered antigen (OVA) enhances the production of specific in vitro and in vivo CTL responses. Murine splenocytes expressing a transgenic TCR specific for CTL peptide OVA257–264 (SIINFEKL) demonstrated up to 25-fold greater IFN-γ and IL-2 secretion when treated in vitro with α2M*-OVA compared with soluble OVA. The frequency of IFN-γ-producing cells was increased ∼15-fold, as measured by ELISPOT. Expansion of the OVA-specific CD8+ T cell population, as assayed by tetramer binding and [3H]thymidine incorporation, and OVA-specific cell-mediated cytotoxicity, as determined by a flow cytometric assay, were also enhanced significantly by α2M*-OVA. Furthermore, significant CTL responses were observed at antigen doses tenfold lower than those required with OVA alone. Finally, we also observed enhanced humoral and CTL responses by naïve mice following intradermal immunization with α2M*-OVA. These α2M*-OVA-immunized mice demonstrated increased protection against a s.c.-implanted, OVA-expressing tumor, as demonstrated by delayed tumor growth and prolonged animal survival. The observation that α2M*-mediated antigen delivery elicits specific CTL responses suggests the cross-presentation of antigen onto MHC class I. These results support α2M* as an effective antigen-delivery system that may be particularly useful for vaccines based on weakly immunogenic subunits or requiring dose sparing. PMID:19652028

  15. Induction of tumor necrosis factor alpha by the group- and type-specific polysaccharides from type III group B streptococci.

    PubMed Central

    Mancuso, G; Tomasello, F; von Hunolstein, C; Orefici, G; Teti, G

    1994-01-01

    Previous studies suggested that circulating tumor necrosis factor alpha (TNF-alpha) may have a pathophysiologic role in experimental neonatal sepsis induced by group B streptococci (GBS). This study was undertaken to investigate the ability of the type III and group-specific polysaccharides of GBS to induce TNF-alpha production and TNF-alpha-dependent lethality in neonatal rats. The cytokine was detected in plasma samples by the L929 cytotoxicity assay. Intracardiac injections of either polysaccharide induced dose-dependent, transient elevations in plasma TNF-alpha levels that returned to baseline values after 5 h. The group-specific antigen induced significantly higher mean peak TNF-alpha levels than the type III antigen (125 +/- 47 versus 44 +/- 15 U/ml with 70 mg/kg of body weight). Glycogen (70 mg/kg), used as a negative control, did not induce TNF-alpha. The lipopolysaccharide-neutralizing agent polymyxin B did not decrease TNF-alpha levels induced by either polysaccharide, ruling out contamination with endotoxin as a possible cause of TNF-alpha induction. Fifty percent lethal doses of the type III and group-specific antigens given as intracardiac injections were 105 and 16 mg/kg, respectively. Salmonella endotoxin, used as a positive control, had a 50% lethal dose of 0.1 mg/kg. The lethal activities of GBS polysaccharides, as well as endotoxin, were completely prevented by pretreatment of neonatal rats with the respective specific antibodies or anti-murine TNF-alpha serum. To assess the relative importance of the type-specific substance in TNF-alpha induction by whole bacteria, two unrelated GBS transposon mutants devoid of only the type-specific capsular polysaccharide (COH1-13 and COH31-15) were employed. Each of the heat-killed unencapsulated mutants was able to produce plasma TNF-alpha level elevations or TNF-alpha-dependent lethality but was significantly less efficient in these activities than the corresponding encapsulated wild-type strain. These data suggest that the presence of type-specific material on GBS is not necessary for the stimulation of TNF-alpha production. Type III capsular polysaccharide, however, can significantly increase the ability of GBS to induce TNF-alpha. Further studies will be needed to assess the importance of TNF-alpha induction by the group- and type-specific antigens in the pathophysiology of GBS disease. PMID:8005664

  16. Incidental Detection of Type B2 Thymoma on 68Ga-Labeled Prostate-Specific Membrane Antigen PET/CT Imaging.

    PubMed

    Krishnaraju, Venkata Subramanian; Basher, Rajender Kumar; Singh, Harmandeep; Singh, Shrawan Kumar; Bal, Amanjit; Mittal, Bhagwant Rai

    2018-05-01

    Ga-labeled prostate-specific membrane antigen is a novel radiotracer for imaging of prostate cancer. We report a hormonally treated patient with prostate carcinoma, presenting with lower urinary tract symptoms and rising prostate-specific antigen levels, who underwent Ga-labeled prostate-specific membrane antigen PET/CT for suspected recurrence. No tracer avid lesion was noted in the prostate gland and locoregional area. However, intense tracer avid heterogeneously enhancing soft tissue lesion with cystic areas and coarse calcifications was seen in the anterior mediastinum. PET/CT-guided biopsy from the mediastenal lesion revealed type B2 thymoma.

  17. Affinity immunoblotting - High resolution isoelectric focusing analysis of antibody clonotype distribution

    NASA Technical Reports Server (NTRS)

    Knisley, Keith A.; Rodkey, L. Scott

    1986-01-01

    A sensitive and specific method is proposed for the analysis of specific antibody clonotype changes occurring during an immune response and for comparing multiple sera for antibody clonotype similarities. Polyclonal serum antibodies separated by isoelectric focusing (IEF) were analyzed by an affinity immunoblotting method using antigen-coated nitrocellulose membranes. Antibodies present on the surface of the acrylamide gels following IEF bind the antigen on the nitrocellulose when the coated nitrocellulose is laid over the gels. The technique has been used to analyze Ig clonotypes specific for five protein antigens and two carbohydrate antigens. Optimal antigen concentrations for coating the nitrocellulose membranes were found to range from 10-100 microgram/ml.

  18. [Results of a study of the diagnostic qualities of brucellosis and tularemic antigenic erythrocytic diagnostica].

    PubMed

    Tsybin, B P; Taran, I F; Tinker, A I

    1975-09-01

    The authors elaborated methods of preparation of brucella and tularemia antigenic erythrocytic diagnostic agents which were characterized as highly specific, specific and stable preparations in mass examination of humans and animals at various stages of the vaccinal and infectous processes. The simplicity of obtaining specific antigens intended for the sensitization of formalinized erythrocytes and stability of the results of results of reproduction of the methods of preparation of the antigenic erythrocytic diagnostic agents offered a possibility of recommending the mentioned methods of industrial preparation of the diagnostic agents.

  19. Development of Augmented Leukemia/Lymphoma-Specific T-Cell Immunotherapy for Deployment with Haploidentical Hematopoietic Progenitor-Cell Transplant

    DTIC Science & Technology

    2009-05-01

    adoptive therapy using CD19-specific chimeric antigen receptor re-directed T cells for recurrent/refrctory follicular lymphoma...Beauty (SB) transposon/transposase system to express a CD19-specific chimeric antigen receptor (CAR). T cells that have undergone transposition...accomplished using genetic engineering to express a chimeric antigen receptor (CAR) to redirect the specificity of T cells for CD19 on malignant B cells

  20. Immune Centroids Over-Sampling Method for Multi-Class Classification

    DTIC Science & Technology

    2015-05-22

    recognize to specific antigens . The response of a receptor to an antigen can activate its hosting B-cell. Activated B-cell then proliferates and...modifying N.K. Jerne’s theory. The theory states that in a pre-existing group of lympho- cytes ( specifically B cells), a specific antigen only...the clusters of each small class, which have high data density, called global immune centroids over-sampling (denoted as Global-IC). Specifically

  1. House Dust Mite Der p 1 Effects on Sinonasal Epithelial Tight Junctions

    PubMed Central

    Henriquez, Oswaldo A.; Beste, Kyle Den; Hoddeson, Elizabeth K.; Parkos, Charles A.; Nusrat, Asma; Wise, Sarah K.

    2013-01-01

    Background Epithelial permeability is highly dependent upon the integrity of tight junctions, cell-cell adhesion complexes located at the apical aspect of the lateral membrane of polarized epithelial cells. We hypothesize that sinonasal epithelial exposure to Der p 1 house dust mite antigen decreases expression of tight junction proteins (TJPs), representing a potential mechanism for increased permeability and presentation of antigens across the sinonasal epithelial layer. Methods Confluent cultured primary human sinonasal epithelial cells were exposed to recombinant Der p 1 antigen versus control, and transepithelial resistance measurements were performed over 24 hours. Antibody staining for a panel of tight junction proteins was examined with immunofluorescence/confocal microscopy and Western blotting. Tissue for these experiments was obtained from 4 patients total. Results Der p 1 exposed sinonasal cells showed a marked decrease in transepithelial resistance when compared to control cells. In addition, results of Western immunoblot and immunofluorescent labeling demonstrated decreased expression of TJPs claudin-1 and junction adhesion molecule-A (JAM-A) in Der p 1 exposed cultured sinonasal cells versus controls. Conclusion Der p 1 antigen exposure decreases sinonasal epithelium TJP expression, most notably seen in JAM-A and claudin-1 in these preliminary experiments. This decreased TJP expression likely contributes to increased epithelial permeability and represents a potential mechanism for transepithelial antigen exposure in allergic rhinitis. PMID:23592402

  2. House dust mite allergen Der p 1 effects on sinonasal epithelial tight junctions.

    PubMed

    Henriquez, Oswaldo A; Den Beste, Kyle; Hoddeson, Elizabeth K; Parkos, Charles A; Nusrat, Asma; Wise, Sarah K

    2013-08-01

    Epithelial permeability is highly dependent upon the integrity of tight junctions, which are cell-cell adhesion complexes located at the apical aspect of the lateral membrane of polarized epithelial cells. We hypothesize that sinonasal epithelial exposure to Der p 1 house dust mite antigen decreases expression of tight junction proteins (TJPs), representing a potential mechanism for increased permeability and presentation of antigens across the sinonasal epithelial layer. Confluent cultured primary human sinonasal epithelial cells were exposed to recombinant Der p 1 antigen vs control, and transepithelial resistance measurements were performed over 24 hours. Antibody staining for a panel of TJPs was examined with immunofluorescence/confocal microscopy and Western blotting. Tissue for these experiments was obtained from 4 patients total. Der p 1 exposed sinonasal cells showed a marked decrease in transepithelial resistance when compared to control cells. In addition, results of Western immunoblot and immunofluorescent labeling demonstrated decreased expression of TJPs claudin-1 and junction adhesion molecule-A (JAM-A) in Der p 1-exposed cultured sinonasal cells vs controls. Der p 1 antigen exposure decreases sinonasal epithelium TJP expression, most notably seen in JAM-A and claudin-1 in these preliminary experiments. This decreased TJP expression likely contributes to increased epithelial permeability and represents a potential mechanism for transepithelial antigen exposure in allergic rhinitis. © 2013 ARS-AAOA, LLC.

  3. Antigen-specific T cell responses to BK polyomavirus antigens identify functional anti-viral immunity and may help to guide immunosuppression following renal transplantation

    PubMed Central

    Chakera, A; Bennett, S; Lawrence, S; Morteau, O; Mason, P D; O'Callaghan, C A; Cornall, R J

    2011-01-01

    Infection with the polyoma virus BK (BKV) is a major cause of morbidity following renal transplantation. Limited understanding of the anti-viral immune response has prevented the design of a strategy that balances treatment with the preservation of graft function. The proven utility of interferon-gamma enzyme-linked immunospot (ELISPOT) assays to measure T cell responses in immunocompetent hosts was the basis for trying to develop a rational approach to the management of BKV following renal transplantation. In a sample of transplant recipients and healthy controls, comparisons were made between T cell responses to the complete panel of BKV antigens, the Epstein–Barr virus (EBV) antigens, BZLF1 and EBNA1, and the mitogen phytohaemagglutinin (PHA). Correlations between responses to individual antigens and immunosuppressive regimens were also analysed. Antigen-specific T cell responses were a specific indicator of recent or ongoing recovery from BKV infection (P < 0·05), with responses to different BKV antigens being highly heterogeneous. Significant BKV immunity was undetectable in transplant patients with persistent viral replication or no history of BKV reactivation. Responses to EBV antigens and mitogen were reduced in patients with BKV reactivation, but these differences were not statistically significant. The T cell response to BKV antigens is a useful and specific guide to recovery from BKV reactivation in renal transplant recipients, provided that the full range of antigenic responses is measured. PMID:21671906

  4. Drug-induced amplification of nanoparticle targeting to tumors

    PubMed Central

    Lin, Kevin Y.; Kwon, Ester J.; Lo, Justin H.; Bhatia, Sangeeta N.

    2018-01-01

    Summary Nanomedicines have the potential to significantly impact cancer therapy by improving drug efficacy and decreasing off-target effects, yet our ability to efficiently home nanoparticles to disease sites remains limited. One frequently overlooked constraint of current active targeting schemes is the relative dearth of targetable antigens within tumors, which restricts the amount of cargo that can be delivered in a tumor-specific manner. To address this limitation, we exploit tumor-specific responses to drugs to construct a cooperative targeting system where a small molecule therapeutic modulates the disease microenvironment to amplify nanoparticle recruitment in vivo. We first administer a vascular disrupting agent, ombrabulin, which selectively affects tumors and leads to locally elevated presentation of the stress-related protein, p32. This increase in p32 levels provides more binding sites for circulating p32-targeted nanoparticles, enhancing their delivery of diagnostic or therapeutic cargos to tumors. We show that this cooperative targeting system recruits over five times higher doses of nanoparticles to tumors and decreases tumor burden when compared with non-cooperative controls. These results suggest that using nanomedicine in conjunction with drugs that enhance the presentation of target antigens in the tumor environment may be an effective strategy for improving the diagnosis and treatment of cancer. PMID:29731806

  5. Specific binding of antigen-antibody in physiological environments: Measurement, force characteristics and analysis

    NASA Astrophysics Data System (ADS)

    Gu, Xin; Zhou, Jun; Zhou, Lu; Xie, Shusen; Petti, Lucia; Wang, Shaomin; Wang, Fuyan

    2018-05-01

    The specific recognition of the antigen by the antibody is the crucial step in immunoassays. Measurement and analysis of the specific recognition, including the ways in which it is influenced by external factors are of paramount significance for the quality of the immunoassays. Using prostate-specific antigen (PSA)/anti-PSA antibody and α-fetoprotein (AFP) /anti-AFP antibody as examples, we have proposed a novel solution for measuring the binding forces between the antigens and their corresponding antibodies in different physiological environments by combining laminar flow control technology and optical tweezers technology. On the basis of the experimental results, the different binding forces of PSA/anti-PSA antibody and AFP/anti-AFP antibody in the same phosphate-buffered saline (PBS) environments are analysed by comparing the affinity constant of the two antibodies and the number of antigenic determinants of the two antigens. In different electrolyte environments, the changes of the binding force of antigens-antibodies are explained by the polyelectrolyte effect and hydrophobic interaction. Furthermore, in different pH environments, the changes of binding forces of antigens-antibodies are attributed to the role of the denaturation of protein. The study aims to recognise the antigen-antibody immune mechanism, thus ensuring further understanding of the biological functions of tumour markers, and it promises to be very useful for the clinical diagnosis of early-stage cancer.

  6. Immunoglobulin M antibodies are not specific for serodiagnosis of human toxocariasis.

    PubMed

    Roldán, W H; Elefant, G R; Ferreira, A W

    2017-08-01

    Serodiagnosis of human toxocariasis is established by detecting serum anti-Toxocara IgG antibodies, but there is little knowledge regarding the reactivity of human IgM antibodies against the Toxocara antigens. In this study, we have evaluated the reactivity of IgM antibodies in sera from patients with toxocariasis, patients with other helminth infections, and healthy individuals, against Toxocara larval excretory-secretory (TES) antigens by enzyme-linked immunosorbent assay (ELISA) and Western blot (WB). Anti-Toxocara IgM were detected in 91.4% of sera from patients with toxocariasis, 76% of sera from patients with other helminth infections, and 45.3% of sera from healthy individuals when ELISA was used. Likewise, IgM antibodies were detected in 94.8% of sera from patients with toxocariasis, 65.3% of sera from patients with other helminth infections, and 41% of sera from healthy individuals when WB was used. This reactivity exhibited only a slight decrease when the TES antigens were deglycosylated, showing that not only glycosidic epitopes, but also peptide epitopes are involved in the recognition and binding of IgM antibodies during the immune response against the parasite. The results shown that IgM antibodies are not specific for serodiagnosis of human toxocariasis. © 2017 John Wiley & Sons Ltd.

  7. Two-dimensional Layered MoS2 Biosensors Enable Highly Sensitive Detection of Biomolecules

    NASA Astrophysics Data System (ADS)

    Lee, Joonhyung; Dak, Piyush; Lee, Yeonsung; Park, Heekyeong; Choi, Woong; Alam, Muhammad A.; Kim, Sunkook

    2014-12-01

    We present a MoS2 biosensor to electrically detect prostate specific antigen (PSA) in a highly sensitive and label-free manner. Unlike previous MoS2-FET-based biosensors, the device configuration of our biosensors does not require a dielectric layer such as HfO2 due to the hydrophobicity of MoS2. Such an oxide-free operation improves sensitivity and simplifies sensor design. For a quantitative and selective detection of PSA antigen, anti-PSA antibody was immobilized on the sensor surface. Then, introduction of PSA antigen, into the anti-PSA immobilized sensor surface resulted in a lable-free immunoassary format. Measured off-state current of the device showed a significant decrease as the applied PSA concentration was increased. The minimum detectable concentration of PSA is 1 pg/mL, which is several orders of magnitude below the clinical cut-off level of ~4 ng/mL. In addition, we also provide a systematic theoretical analysis of the sensor platform - including the charge state of protein at the specific pH level, and self-consistent channel transport. Taken together, the experimental demonstration and the theoretical framework provide a comprehensive description of the performance potential of dielectric-free MoS2-based biosensor technology.

  8. Cell-Mediated Immune Function and Cytokine Regulation During Space Flight

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.; Pierson, Duane L.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    The changes in immune function which occur during space flight potentially expose the crews to an increased risk for development of illness. Decreased cellular immune function has been repeatedly documented after space flight and confirmed during flight by in vivo delayed-type hypersensitivity testing. However, correlation of immune changes with a clinically significant risk factor has not yet been performed. Our hypothesis is that space flight induces a decrease in cell-mediated immune function accompanied by a shift from a type 1 cytokine pattern (favoring cell-mediated immunity) to a type 2 cytokine pattern (favoring humoral immunity). We further hypothesize that reactivation of latent viruses will occur during space flight in association with the decreased cellular immunity. To test these hypotheses, we will determine the effects of space flight on cell-mediated immunity and viral reactivation. We will utilize delayed-type hypersensitivity testing as an in vivo measure of integrated cell-mediated immune function. The production of cytokines and immunoregulatory factors by lymphocytes and monocytes will be measured to determine whether changes in cytokine patterns are associated with the space flight-induced immune dysregulation. Correlation of antigen-specific immune changes with reactivation of latent herpes viruses will be determined by measuring peripheral levels of viral (CMV, VZV, EBV) antigen-specific T cells and comparing to the levels of EBV-infected B-cells by fluorescence in situ hybridization and flow cytometry. A comparison of cell-mediated immune function, cytokine regulation and viral reactivation will provide new insights into crew member health risks during flight.

  9. 21 CFR 660.44 - Specificity.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.44 Specificity. Each filling of the product shall be specific for Hepatitis B Surface Antigen as determined by...

  10. 21 CFR 660.44 - Specificity.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.44 Specificity. Each filling of the product shall be specific for Hepatitis B Surface Antigen as determined by...

  11. 21 CFR 660.44 - Specificity.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.44 Specificity. Each filling of the product shall be specific for Hepatitis B Surface Antigen as determined by...

  12. 21 CFR 660.44 - Specificity.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.44 Specificity. Each filling of the product shall be specific for Hepatitis B Surface Antigen as determined by...

  13. Targeting innate immunity to downmodulate adaptive immunity and reverse type 1 diabetes

    PubMed Central

    Itoh, Arata; Ridgway, William M

    2017-01-01

    Type 1 diabetes (T1D) is characterized by specific destruction of pancreatic insulin-producing beta cells accompanied by evidence of beta-cell-directed autoimmunity such as autoreactive T cells and islet autoantibodies (IAAs). Currently, T1D cannot be prevented or reversed in humans. T1D is easy to prevent in the nonobese diabetic (NOD) spontaneous mouse model but reversing new-onset T1D in mice is more difficult. Since the discovery of the T-cell receptor in the 1980s and the subsequent identification of autoreactive T cells directed toward beta-cell antigens (eg, insulin, glutamic acid decarboxylase), the dream of antigen-specific immunotherapy has dominated the field with its promise of specificity and limited side effects. While such approaches have worked in the NOD mouse, however, dozens of human trials have failed. Broader immunosuppressive approaches (originally cyclosporine, subsequently anti-CD3 antibody) have shown partial successes (e.g., prolonged C peptide preservation) but no major therapeutic efficacy or disease reversal. Human prevention trials have failed, despite the ease of such approaches in the NOD mouse. In the past 50 years, the incidence of T1D has increased dramatically, and one explanation is the “hygiene hypothesis”, which suggests that decreased exposure of the innate immune system to environmental immune stimulants (e.g., bacterial products such as Toll-like receptor (TLR) 4-stimulating lipopolysaccharide [LPS]) dramatically affects the adaptive immune system and increases subsequent autoimmunity. We have tested the role of innate immunity in autoimmune T1D by treating acute-onset T1D in NOD mice with anti-TLR4/MD-2 agonistic antibodies and have shown a high rate of disease reversal. The TLR4 antibodies do not directly stimulate T cells but induce tolerogenic antigen-presenting cells (APCs) that mediate decreased adaptive T-cell responses. Here, we review our current knowledge and suggest future prospects for targeting innate immunity in T1D immunotherapy. PMID:28580341

  14. Measurements of free and total PSA, tissue polypeptide-specific antigen (TPS), and CYFRA 21-1 in prostate cancer patients under intermittent androgen suppression therapy.

    PubMed

    Theyer, G; Dürer, A; Theyer, U; Haberl, I; Ulsperger, E; Baumgartner, G; Hamilton, G

    1999-10-01

    The present study evaluated monthly measurements of free and total prostate-specific antigen (PSA), and the tumor proliferation markers tissue polypeptide-specific antigen (TPS) and cytokeratin fragment 21-1 (CYFRA 21-1) in patients with advanced prostate cancer receiving intermittent androgen suppression therapy (IAS). Thirty-four men received alternating cycles of 8 month androgen suppression and treatment cessation (mean duration, 10.3 months) until PSA increased to >20 microg/l. Measurements of testosterone, percentage of free PSA, TPS, and CYFRA 21-1 were performed using ELISA and RIA assays. Periods of androgen suppression resulted in reversible reductions of testosterone (from 6 +/- 0.8 to <0.58 ng/ml), PSA (from 31.2 +/- 4.5 to <1.7 microg/l), and prostatic volume (mean reduction, 22.2 +/- 4.6%), indicating apoptotic regression of the tumors. Upon treatment cessation, testosterone increased to 6.1 +/- 0.56 ng/ml within 2 months, followed by an increase of PSA to 5.8 +/- 0.8 microg/l. The mean percentage of free PSA (15.1 +/- 2.6%) exhibited no significant change during the whole IAS cycle. TPS showed a decrease of 50% after 3 months, and CYFRA 21-1 a 25% decrease after 7 months of androgen suppression treatment. During treatment cessation, TPS exceeded the normal cutoff value of 90 U/l late in tumor regrowth (9-11 months), whereas CYFRA 21-1 remained below the normal cutoff value of 3.3 ng/ml. PSA is the best and most sensitive marker of prostate cancer regression and regrowth during IAS cycles of the markers tested in this study. Free PSA constitutes approximately 15% of total PSA (range, 5-32%), and its percentage showed no significant change during IAS cycles. The TPS and CYFRA 21-1 proliferation marker changes in IAS seem to be related mainly to effects on normal androgen-dependent tissues. Copyright 1999 Wiley-Liss, Inc.

  15. Evaluation of Leishmania species reactivity in human serologic diagnosis of leishmaniasis.

    PubMed

    Silvestre, Ricardo; Santarém, Nuno; Teixeira, Lúcia; Cunha, Joana; Schallig, Henk; Cordeiro-da-Silva, Anabela

    2009-08-01

    The sensitivities and specificities of IgG-ELISA and IgG flow cytometry based techniques using different Leishmania species were determined using sera collected from 40 cutaneous or visceral leishmaniasis patients. The flow cytometry technique, using promastigote parasite forms, performed better than total soluble extract IgG-ELISA. At the species level, the use of Leishmania amazonensis and Leishmania major as antigens in enzyme linked immunosorbent assay (ELISA) decreased the overall sensitivity. To assess the specificity of these tests, sera from malaria, toxoplasmosis, amoebiasis, schistosomiasis, and leprosy patients were used. We also included sera from Leishmania non-infected endemic individuals. The cutaneous species displayed a decreased specificity in both assays. Although more sensitive, flow cytometry using promastigote parasite forms generally presented lower levels of specificity when compared with total extract of IgG-ELISA. Overall, the results of the study show the potential of IgG flow cytometry for the diagnosis of leishmaniasis. Although highly sensitive, a refinement of the flow cytometry method should be performed to improve the overall specificity.

  16. Purification and immunochemical characterization of type e polysaccharide antigen of Streptococcus mutans.

    PubMed

    Hamada, S; Slade, H D

    1976-07-01

    The type-specific antigen of Streptococcus mutans strain MT703, serotype e, has been chromatographically purified and characterized. Two chromatographic fractions were obtained from saline extracts which reacted with both anti-MT703 whole-cell serum and Lancefield group E serum. The major fraction (eI) was identified as a polysaccharide composed of 37% glucose, 56% rhamnose, 5% protein, and 0.3% phosphorus, whereas the minor fraction (eII) contained 66% protein in addition to 10% glucose and 17% rhamnose. The immunological specificity of these antigens was found to be the same by immunodiffusion in agar gel. Another fraction with a negative charge (eIII) reacted with polyglycerophosphate antisera from Streptococcus mutans and Streptococcus pyogenes. For comparison, the MT703 antigen in a hot trichloroacetic acid extract (eA) and the group E antigen from a saline extract of cells of strain K129 (EI) were similarly purified by anionic ion-exchange chromatography. Although the ratio of glucose and rhamnose in eA was 1:0.9 and in eI and eII approximately 1:1.5, reactions of identity were obtained in gel diffusion against specific anti-e serum. This difference in ratio is probably a result of the extraction procedures. Both the type e and group E antisera were reactive with both eI and EI antigens. The adsorption of group E antiserum with MT703 cells removed all E antibody, whereas type e-specific antibody remained after adsorption with K129 cells. These results suggest that eI antigen possesses both e and E specificities, whereas EI possesses E only. These findings were supported by the quantitative precipitin test and immunodiffusion and/or immunoelectrophoretic patterns in agar gel. Methyl-beta-D-glucopyranoside markedly inhibited the precipitin reaction in both type e and group E sera. However, a significantly stronger inhibition by cellobiose of type e serum than of group E serum indicates that a beta-linked glucose-glucose dimer is the predominant antigenic determinant of the e specificity. The presence of both e and E specificities on a single polysaccharide molecule was demonstrated by the use of purified e antigen released from a specific e-anti-e complex. This antigen reacted with a group E-specific serum as well as a type e-specific serum. An examination of five S. mutans type e strains showed the presence of group E specificity also, whereas the I, II, and IV serotypes of group E streptococci only possessed the group E specificity.

  17. Chimeric Antigen Receptor-Modified T Cells Redirected to EphA2 for the Immunotherapy of Non-Small Cell Lung Cancer.

    PubMed

    Li, Ning; Liu, Shaohui; Sun, Mingjiao; Chen, Wei; Xu, Xiaogang; Zeng, Zhu; Tang, Yemin; Dong, Yongquan; Chang, Alex H; Zhao, Qiong

    2018-02-01

    Erythropoietin-producing hepatocellular carcinoma A2 (EphA2) is overexpressed in more than 90% of non-small cell lung cancer (NSCLC) but not significantly in normal lung tissue. It is therefore an important tumor antigen target for chimeric antigen receptors (CAR)-T-based therapy in NSCLC. Here, we developed a specific CAR targeted to EphA2, and the anti-tumor effects of this CAR were investigated. A second generation CAR with co-stimulatory receptor 4-1BB targeted to EphA2 was developed. The functionality of EphA2-specific T cells in vitro was tested with flow cytometry and real-time cell electronic sensing system assays. The effect in vivo was evaluated in xenograft SCID Beige mouse model of EphA2 positive NSCLC. These EphA2-specifc T cells can cause tumor cell lysis by producing the cytokines IFN-γ when cocultured with EphA2-positive targets, and the cytotoxicity effects was specific in vitro. In vivo, the tumor signals of mice treated with EphA2-specifc T cells presented the tendency of decrease, and was much lower than the mice treated with non-transduced T cells. The anti-tumor effects of this CAR-T technology in vivo and vitro had been confirmed. Thus, EphA2-specific T-cell immunotherapy may be a promising approach for the treatment of EphA2-positive NSCLC. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. [Experimental study on TCRbeta idiotypic antigenic determinants DNA vaccine to induce anti-lymphoma antibodies].

    PubMed

    Zhang, Yeping; Zhu, Ping; Shi, Yongjin; Liu, Jihua; Pu, Dingfang; Cao, Xianghong; Zhu, Qiang; Wang, Yijia; Ma, Mingxin; Yu, Jiren

    2002-02-01

    To investigate the anti-human CEM lymphoma cell activities induced by TCR idiotypic DNA vaccine containing different antigen determinants in BALB/c mice. The specific rearranged gene fragment encoding TCRVbeta region of CEM cell line was obtained by RT-PCR technique. The PCR product was cloned into eukaryocytic expression vector pcDNA3, which was used as DNA vaccine and template for PCR amplifying different antigen determinant. Gene fragments encoding different antigen determinant were amplified and cloned into pcDNA3, separately. The experimental mice were immunized by intramuscular injection of the DNA vaccines. The specific anti-idiotype antibodies were detected by indirect immunofluorescence assay. TCRbetaV of CEM cell line contains five antigen determinants. Specific anti-idiotype antibody was detected in all of the six mice immunized with DNA vaccine containing all the five determinants (the highest titer was 1:480). Although the antibody could also be detected in four of the six mice immunized with DNA vaccine containing four of the five antigen determinants, the antibody titer was lower (the highest titer was 1:80). DNA vaccine containing two of the five determinants could not induce the specific antibody. The idiotypic DNA vaccine containing the whole TCRbetaV five antigen determinants could induce the specific anti-lymphoma idiotypic antibody in BALB/c mice.

  19. Immune complexome analysis reveals the specific and frequent presence of immune complex antigens in lung cancer patients: A pilot study.

    PubMed

    Ohyama, Kaname; Yoshimi, Haruka; Aibara, Nozomi; Nakamura, Yoichi; Miyata, Yasuyoshi; Sakai, Hideki; Fujita, Fumihiko; Imaizumi, Yoshitaka; Chauhan, Anil K; Kishikawa, Naoya; Kuroda, Naotaka

    2017-01-15

    Cancer immunotherapies such as antibodies targeting T cell checkpoints, or adaptive tumor-infiltrating lymphocyte (TIL) transfer, have been developed to boost the endogenous immune response against human malignancies. However, activation of T cells by such antibodies can lead to the risk of autoimmune diseases. Also, the selection of tumor-reactive T cells for TIL relies on information regarding mutated antigens in tumors and does not reflect other factors involved in protein antigenicity. It is therefore essential to engineer therapeutic interventions by which T cell reactivity against tumor cells is selectively enhanced (i.e., "focused cancer immunotherapy") based on tumor antigens that are specifically expressed in the tumor of a certain cancer and in many patients with this cancer. Immune complexes (ICs) are the direct and stable products of immunological recognition by humoral immunity. Here, we searched for tumor-specific IC antigens in each of five cancers (lung (n = 28), colon (n = 20), bladder (n = 20), renal cell (n = 15) and malignant lymphoma (n = 9)), by using immune complexome analysis that comprehensively identifies and profiles the constituent antigens in ICs. This analysis indicated that gelsolin and inter-alpha-trypsin inhibitor heavy chains were specifically and frequently detected (at a frequency higher than 80%), and that phosphoproteins (VENTX, VCIP135) were also specifically present in the ICs of lung cancer patients. Immune complexome analysis successfully identified several tumor-specific IC antigens with high detection frequency in lung cancer patients. These specific antigens are required to validate the clinical benefit by further analysis using a large number of patients. © 2016 UICC.

  20. Poly-functional and long-lasting anticancer immune response elicited by a safe attenuated Pseudomonas aeruginosa vector for antigens delivery

    PubMed Central

    Chauchet, Xavier; Hannani, Dalil; Djebali, Sophia; Laurin, David; Polack, Benoit; Marvel, Jacqueline; Buffat, Laurent; Toussaint, Bertrand; Le Gouëllec, Audrey

    2016-01-01

    Live-attenuated bacterial vectors for antigens delivery have aroused growing interest in the field of cancer immunotherapy. Their potency to stimulate innate immunity and to promote intracellular antigen delivery into antigen-presenting cells could be exploited to elicit a strong and specific cellular immune response against tumor cells. We previously described genetically-modified and attenuated Pseudomonas aeruginosa vectors able to deliver in vivo protein antigens into antigen-presenting cells, through Type 3 secretion system of the bacteria. Using this approach, we managed to protect immunized mice against aggressive B16 melanoma development in both a prophylactic and therapeutic setting. In this study, we further investigated the antigen-specific CD8+ T cell response, in terms of phenotypic and functional aspects, obtained after immunizations with a killed but metabolically active P. aeruginosa attenuated vector. We demonstrated that P. aeruginosa vaccine induces a highly functional pool of antigen-specific CD8+ T cell able to infiltrate the tumor. Furthermore, multiple immunizations allowed the development of a long-lasting immune response, represented by a pool of predominantly effector memory cells which protected mice against late tumor challenge. Overall, killed but metabolically active P. aeruginosa vector is a safe and promising approach for active and specific antitumor immunotherapy. PMID:28035332

  1. New Perspective on Dextran Sodium Sulfate Colitis: Antigen-Specific T Cell Development during Intestinal Inflammation

    PubMed Central

    Morgan, Mary E.; Zheng, Bin; Koelink, Pim J.; van de Kant, Hendrick J. G.; Haazen, Lizette C. J. M.; van Roest, Manon; Garssen, Johan; Folkerts, Gert; Kraneveld, Aletta D.

    2013-01-01

    CD4+ T cell responses against oral antigens can develop in inflammatory bowel disease (IBD) patients, which may modulate disease. Dextran sodium sulfate (DSS) colitis is commonly used to study IBD, however, it is not considered the best model in which to study T cell involvement in intestinal disease. Our aim was to determine if antigen-specific T cells could be induced during DSS colitis and if they could be detected after disease resolution. To induce antigen-specific T cells, the tracking antigen, ovalbumin (OVA), was administered orally during colitis initiation. Disease severity was monitored, and the antigen-reactivity of CD4+ T cells examined using CD69 expression. While OVA-directed, CD4+ Foxp3+ regulatory T cells could be detected in the spleens of both OVA-treated control and DSS mice, OVA-reactive, CD4+ Foxp3-T cells were only found in the OVA and DSS-treated mice. These results indicate that during DSS colitis T cells develop that are specific against oral antigens, and they are found systemically after colitis resolution. This gives added depth and utility to the DSS model as well as a way to track T cells that are primed against luminal antigens. PMID:23936123

  2. Soluble antigens from group B streptococci induce cytokine production in human blood cultures.

    PubMed Central

    von Hunolstein, C; Totolian, A; Alfarone, G; Mancuso, G; Cusumano, V; Teti, G; Orefici, G

    1997-01-01

    Group B streptococcal antigens stimulated tumor necrosis factor alpha (TNF-alpha), interleukin-1 (IL-1), and IL-6 production in human blood cultures in a concentration- and time-dependent fashion. The minimal concentrations of type-specific polysaccharides, lipoteichoic acid, and group-specific polysaccharide required to produce these effects were, respectively, 0.01, 1, and 10 microg/ml. Cell separation experiments indicated that monocytes were the cell type mainly responsible for cytokine production. Time course studies indicated that TNF-alpha was released before the other cytokines. TNF-alpha, however, did not appear to directly induce IL-1beta, as shown by blockade experiments with anti-TNF-alpha antibodies. IL-6 levels were moderately but significantly decreased by anti-TNF-alpha. These data indicate that several products from group B streptococci are able to directly stimulate human monocytes to release TNF-alpha, IL-1beta, and IL-6. These findings may be clinically relevant, since proinflammatory cytokines can mediate pathophysiologic changes during sepsis. PMID:9317001

  3. Paroxysmal atrial fibrillation during acute myocardial infarction associated with subclinical hyperthyroidism, severe three vessels coronary artery disease and elevation of prostate-specific antigen after TURP.

    PubMed

    Patanè, Salvatore; Marte, Filippo

    2010-01-21

    Subclinical hyperthyroidism is an increasingly recognized entity that is defined as a normal serum free thyroxine and free triiodothyronine levels with a thyroid-stimulating hormone level suppressed below the normal range and usually undetectable. Paroxysmal atrial fibrillation is a frequent complication of acute myocardial infarction. It has been reported that subclinical hyperthyroidism is not associated with CHD or mortality from cardiovascular causes but it is sufficient to induce an increase in atrial fibrillation rate and increased factor X activity in patients with subclinical hyperthyroidism represents a potential hypercoagulable state. It has also been reported that serum prostate-specific antigen (PSA) decreases drastically in patients who undergo transurethral resection of the prostate(TURP). We present a case of paroxysmal atrial fibrillation during acute myocardial infarction associated with subclinical hyperthyroidism, severe three vessels coronary artery disease and elevation of PSA after TURP in a 78-year-old Italian man. Copyright (c) 2008 Elsevier Ireland Ltd. All rights reserved.

  4. Germinal center hypoxia potentiates immunoglobulin class switch recombination

    PubMed Central

    Abbott, Robert K.; Thayer, Molly; Labuda, Jasmine; Silva, Murillo; Philbrook, Phaethon; Cain, Derek W.; Kojima, Hidefumi; Hatfield, Stephen; Sethumadhavan, Shalini; Ohta, Akio; Reinherz, Ellis L.; Kelsoe, Garnett; Sitkovsky, Michail

    2016-01-01

    Germinal centers (GCs) are anatomic sites where B cells undergo secondary diversification to produce high affinity, class switched antibodies. We hypothesized that proliferating B cells in GCs create a hypoxic microenvironment that governs their further differentiation. Using molecular markers, we found GCs to be predominantly hypoxic. Compared to normoxia (21% O2), hypoxic culture conditions (1% O2) in vitro accelerated class switching and plasma cell formation and enhanced expression of GL-7 on B and CD4+ T cells. Reversal of GC hypoxia in vivo by breathing 60% O2 during immunization resulted in reduced frequencies of GC B cells, T follicular helper (TFH) cells and plasmacytes, as well as lower expression of ICOS on TFH. Importantly, this reversal of GC hypoxia decreased antigen-specific serum IgG1 and reduced the frequency of IgG1+ B cells within the antigen specific GC. Taken together, these observations reveal a critical role for hypoxia in GC B cell differentiation. PMID:27798169

  5. Lack of allergy to timothy grass pollen is not a passive phenomenon but associated with the allergen-specific modulation of immune reactivity.

    PubMed

    Hinz, D; Seumois, G; Gholami, A M; Greenbaum, J A; Lane, J; White, B; Broide, D H; Schulten, V; Sidney, J; Bakhru, P; Oseroff, C; Wambre, E; James, E A; Kwok, W W; Peters, B; Vijayanand, P; Sette, A

    2016-05-01

    Timothy grass (TG) pollen is a common seasonal airborne allergen associated with symptoms ranging from mild rhinitis to severe asthma. The aim of this study was to characterize changes in TG-specific T cell responses as a function of seasonality. Peripheral blood mononuclear cells (PBMCs) obtained from allergic individuals and non-allergic controls, either during the pollen season or out of season, were stimulated with either TG extract or a pool of previously identified immunodominant antigenic regions. PBMCs from allergic subjects exhibit higher IL-5 and IL-10 responses in season than when collected out of season. In the case of non-allergic subjects, as expected we observed lower IL-5 responses and robust production of IFN-γ compared to allergic individuals. Strikingly, non-allergic donors exhibited an opposing pattern, with decreased immune reactivity in season. The broad down-regulation in non-allergic donors indicates that healthy individuals are not oblivious to allergen exposure, but rather react with an active modulation of responses following the antigenic stimulus provided during the pollen season. Transcriptomic analysis of allergen-specific T cells defined genes modulated in concomitance with the allergen exposure and inhibition of responses in non-allergic donors. Magnitude and functionality of T helper cell responses differ substantially in season vs. out of season in allergic and non-allergic subjects. The results indicate the specific and opposing modulation of immune responses following the antigenic stimulation during the pollen season. This seasonal modulation reflects the enactment of specific molecular programmes associated with health and allergic disease. © 2015 John Wiley & Sons Ltd.

  6. The trifunctional antibody catumaxomab amplifies and shapes tumor-specific immunity when applied to gastric cancer patients in the adjuvant setting

    PubMed Central

    Atanackovic, Djordje; Reinhard, Henrike; Meyer, Sabrina; Spöck, Stefanie; Grob, Tobias; Luetkens, Tim; Yousef, Sara; Cao, Yanran; Hildebrandt, York; Templin, Julia; Bartels, Katrin; Lajmi, Nesrine; Stoiber, Heribert; Kröger, Nicolaus; Atz, Judith; Seimetz, Diane; Izbicki, Jakob R; Bokemeyer, Carsten

    2013-01-01

    Background: Patients with gastric cancer benefit from perioperative chemotherapy, however, treatment is toxic and many patients will relapse. The trifunctional antibody catumaxomab targets EpCAM on tumor cells, CD3 on T cells, and the Fcγ-receptor of antigen-presenting cells. While in Europe catumaxomab is approved for treating malignant ascites, it has not been investigated in the perioperative setting and its exact immunological mode of action is unclear. Methods: In our study, gastric cancer patients received neoadjuvant platinum-based chemotherapy, one intraoperative application of catumaxomab, and 4 postoperative doses of intraperitoneal catumaxomab. Immunomonitoring was performed in 6 patients before surgery, after completion of catumaxomab treatment, and one month later. Results: Intraperitoneal application of catumaxomab caused an increased expression of activation markers on the patients’ T cells. This was accompanied by a transient decrease in numbers of CXCR3+ effector T cells with a T-helper (Th)-1 phenotype in the peripheral blood. All patients evidenced pre-existing EpCAM-specific CD4+ and/or CD8+ T cells. While these cells transiently disappeared from the blood stream after intraperitoneal application of catumaxomab, we detected increased numbers of peripheral EpCAM-specific cells and a modified EpCAM-specific T-cell repertoire 4 weeks after completion of treatment. Finally, catumaxomab also amplified humoral immunity to tumor antigens other than EpCAM. Conclusions: Our findings suggest that catumaxomab exerts its clinical effects by (1) activating peripheral T cells, (2) redistributing effector T cells from the blood into peripheral tissues, (3) expanding and shaping of the pre-existing EpCAM-specific T-cell repertoire, and (4) spreading of anti-tumor immunity to different tumor antigens. PMID:23955093

  7. The IDO1 selective inhibitor epacadostat enhances dendritic cell immunogenicity and lytic ability of tumor antigen-specific T cells.

    PubMed

    Jochems, Caroline; Fantini, Massimo; Fernando, Romaine I; Kwilas, Anna R; Donahue, Renee N; Lepone, Lauren M; Grenga, Italia; Kim, Young-Seung; Brechbiel, Martin W; Gulley, James L; Madan, Ravi A; Heery, Christopher R; Hodge, James W; Newton, Robert; Schlom, Jeffrey; Tsang, Kwong Y

    2016-06-21

    Epacadostat is a novel inhibitor of indoleamine-2,3-dioxygenase-1 (IDO1) that suppresses systemic tryptophan catabolism and is currently being evaluated in ongoing clinical trials. We investigated the effects of epacadostat on (a) human dendritic cells (DCs) with respect to maturation and ability to activate human tumor antigen-specific cytotoxic T-cell (CTL) lines, and subsequent T-cell lysis of tumor cells, (b) human regulatory T cells (Tregs), and (c) human peripheral blood mononuclear cells (PBMCs) in vitro. Simultaneous treatment with epacadostat and IFN-γ plus lipopolysaccharide (LPS) did not change the phenotype of matured human DCs, and as expected decreased the tryptophan breakdown and kynurenine production. Peptide-specific T-cell lines stimulated with DCs pulsed with peptide produced significantly more IFN-γ, TNFα, GM-CSF and IL-8 if the DCs were treated with epacadostat. These T cells also displayed higher levels of tumor cell lysis on a per cell basis. Epacadostat also significantly decreased Treg proliferation induced by IDO production from IFN-γ plus LPS matured human DCs, although the Treg phenotype did not change. Multicolor flow cytometry was performed on human PBMCs treated with epacadostat; analysis of 123 discrete immune cell subsets revealed no changes in major immune cell types, an increase in activated CD83+ conventional DCs, and a decrease in immature activated Tim3+ NK cells. These studies show for the first time several effects of epacadostat on human DCs, and subsequent effects on CTL and Tregs, and provide a rationale as to how epacadostat could potentially increase the efficacy of immunotherapeutics, including cancer vaccines.

  8. Comparison of (1->3)-β-D-glucan, mannan/anti-mannan antibodies, and Cand-Tec Candida antigen as serum biomarkers for candidemia.

    PubMed

    Held, Jürgen; Kohlberger, Isabelle; Rappold, Elfriede; Busse Grawitz, Andrea; Häcker, Georg

    2013-04-01

    We conducted a case-control study using the Fungitell assay, the novel Platelia Candida Antigen (Ag) Plus and Candida Antibody (Ab) Plus assays, and the Cand-Tec latex agglutination test to evaluate the usefulness of (1→3)-β-D-glucan (BDG), mannan antigen with/without anti-mannan antibody, and Cand-Tec Candida antigen measurement for the diagnosis of candidemia. A total of 56 patients fulfilled the inclusion criteria and were enrolled. One hundred patients with bacteremia and 100 patients with sterile blood cultures served as negative controls. In the candidemia group, median (1→3)-β-D-glucan, mannan antigen, and anti-mannan antibody levels were 427 pg/ml, 190 pg/ml, and 18.6 antibody units (AU)/ml, respectively. All three parameters were significantly elevated in patients with candidemia. The sensitivity and specificity were, respectively, 87.5% and 85.5% for (1→3)-β-D-glucan, 58.9% and 97.5% for mannan antigen, 62.5% and 65.0% for anti-mannan antibody, 89.3% and 63.0% for mannan antigen plus anti-mannan antibody, 89.3% and 85.0% for BDG plus mannan antigen, and 13.0% and 93.9% for Cand-Tec Candida antigen. The low mannan antigen sensitivity was in part caused by Candida parapsilosis and Candida guilliermondii fungemias, which were not detected by the Platelia Candida Ag Plus assay. When the cutoff was lowered from 125 pg/ml to 50 pg/ml, mannan antigen sensitivity increased to 69.6% without severely affecting the specificity (93.5%). Contrary to recently published data, superficial candidiasis was not associated with elevated mannan antigen levels, not even after the cutoff was lowered. Combining procalcitonin (PCT) with (1→3)-β-D-glucan to increase specificity provided a limited advantage because the benefit of the combination did not outweigh the loss of sensitivity. Our results demonstrate that the Cand-Tec Candida antigen and the mannan antigen plus anti-mannan antibody measurements have unacceptably low sensitivity or specificity. Of the four tests compared, (1→3)-β-D-glucan and mannan antigen are the superior biomarkers, depending on whether a sensitivity-driven or specificity-driven approach is used.

  9. Comparison of (1→3)-β-d-Glucan, Mannan/Anti-Mannan Antibodies, and Cand-Tec Candida Antigen as Serum Biomarkers for Candidemia

    PubMed Central

    Kohlberger, Isabelle; Rappold, Elfriede; Busse Grawitz, Andrea; Häcker, Georg

    2013-01-01

    We conducted a case-control study using the Fungitell assay, the novel Platelia Candida Antigen (Ag) Plus and Candida Antibody (Ab) Plus assays, and the Cand-Tec latex agglutination test to evaluate the usefulness of (1→3)-β-d-glucan (BDG), mannan antigen with/without anti-mannan antibody, and Cand-Tec Candida antigen measurement for the diagnosis of candidemia. A total of 56 patients fulfilled the inclusion criteria and were enrolled. One hundred patients with bacteremia and 100 patients with sterile blood cultures served as negative controls. In the candidemia group, median (1→3)-β-d-glucan, mannan antigen, and anti-mannan antibody levels were 427 pg/ml, 190 pg/ml, and 18.6 antibody units (AU)/ml, respectively. All three parameters were significantly elevated in patients with candidemia. The sensitivity and specificity were, respectively, 87.5% and 85.5% for (1→3)-β-d-glucan, 58.9% and 97.5% for mannan antigen, 62.5% and 65.0% for anti-mannan antibody, 89.3% and 63.0% for mannan antigen plus anti-mannan antibody, 89.3% and 85.0% for BDG plus mannan antigen, and 13.0% and 93.9% for Cand-Tec Candida antigen. The low mannan antigen sensitivity was in part caused by Candida parapsilosis and Candida guilliermondii fungemias, which were not detected by the Platelia Candida Ag Plus assay. When the cutoff was lowered from 125 pg/ml to 50 pg/ml, mannan antigen sensitivity increased to 69.6% without severely affecting the specificity (93.5%). Contrary to recently published data, superficial candidiasis was not associated with elevated mannan antigen levels, not even after the cutoff was lowered. Combining procalcitonin (PCT) with (1→3)-β-d-glucan to increase specificity provided a limited advantage because the benefit of the combination did not outweigh the loss of sensitivity. Our results demonstrate that the Cand-Tec Candida antigen and the mannan antigen plus anti-mannan antibody measurements have unacceptably low sensitivity or specificity. Of the four tests compared, (1→3)-β-d-glucan and mannan antigen are the superior biomarkers, depending on whether a sensitivity-driven or specificity-driven approach is used. PMID:23363830

  10. γδ T cells recognize a microbial encoded B cell antigen to initiate a rapid antigen specific Interleukin 17 response

    PubMed Central

    Zeng, Xun; Wei, Yu-ling; Huang, Jun; Newell, Evan W.; Yu, Hongxiang; Kidd, Brian A.; Kuhns, Michael S.; Waters, Ray W.; Davis, Mark M.; Weaver, Casey T.; Chien, Yueh-hsiu

    2012-01-01

    Summary γδ T cells contribute uniquely to host immune defense. However, how they function remains an enigma. Although it is unclear what most γδ T cells recognize, common dogma asserts that they recognize self-antigens. While they are the major initial Interleukin-17 (IL-17) producers in infections, it is unclear what is required to trigger these cells to act. Here, we report that a noted B cell antigen, the algae protein-phycoerythrin (PE) is an antigen for murine and human γδ T cells. PE also stained specific bovine γδ T cells. Employing this specificity, we demonstrated that antigen recognition, but not extensive clonal expansion, was required to activate naïve γδ T cells to make IL-17. In this activated state, γδ T cells gained the ability to respond to cytokine signals that perpetuated the IL-17 production. These results underscore the adaptability of lymphocyte antigen receptors and suggest a previously unrecognized antigen-driven rapid response in protective immunity prior to the maturation of classical adaptive immunity. PMID:22960222

  11. Vaccines against advanced melanoma.

    PubMed

    Blanchard, Tatiana; Srivastava, Pramod K; Duan, Fei

    2013-01-01

    Research shows that cancers are recognized by the immune system but that the immune recognition of tumors does not uniformly result in tumor rejection or regression. Quantitating the success or failure of the immune system in tumor elimination is difficult because we do not really know the total numbers of encounters of the immune system with the tumors. Regardless of that important issue, recognition of the tumor by the immune system implicitly contains the idea of the tumor antigen, which is what is actually recognized. We review the molecular identity of all forms of tumor antigens (antigens with specific mutations, cancer-testis antigens, differentiation antigens, over-expressed antigens) and discuss the use of these multiple forms of antigens in experimental immunotherapy of mouse and human melanoma. These efforts have been uniformly unsuccessful; however, the approaches that have not worked or have somewhat worked have been the source of many new insights into melanoma immunology. From a critical review of the various approaches to vaccine therapy we conclude that individual cancer-specific mutations are truly the only sources of cancer-specific antigens, and therefore, the most attractive targets for immunotherapy. Published by Elsevier Inc.

  12. High hydrostatic pressure (HHP) effects on antigenicity and structural properties of soybean β-conglycinin.

    PubMed

    Xi, Jun; He, Mengxue

    2018-02-01

    In this study, the effect of high hydrostatic pressure (HHP) on antigenicity, free sulfhydryl group (SH) content, hydrophobicity (Ho), fluorescence intensity and circular dichroism data of soybean β-conglycinin was studied. The antigenicity of soybean β-conglycinin was decreased significantly at pressures 200-400 MPa. The antigenicity inhibition rate of β-conglycinin declined from 92.72 to 55.15%, after being treated at 400 MPa for 15 min. Results indicated that free sulphydryl (SH) groups and surface Ho of β-conglycinin were significantly increased at pressures 200-400 MPa and 5-15 min, whereas these properties decreased at the treatments above 400 MPa and 15 min. The maximum fluorescence intensity was noticed at 400 MPa and 15 min. The circular dichroism data analysis revealed that the amount of β-turns and unordered structure significantly increased, while the content of α-helix1 and β-strand1 noticeably decreased. These results provide evidence that HHP-induced the structural modification of β-conglycinin and could alter the antigenicity of β-conglycinin.

  13. Heterobivalent Imaging Agents for Simultaneous Targeting Prostate-Specific Membrane Antigen (PSMA) and Hepsin

    DTIC Science & Technology

    2014-11-01

    Prostate-Specific Membrane Antigen ( PSMA ) and Hepsin PRINCIPAL INVESTIGATOR: Youngjoo Byun, Ph. D. CONTRACTING ORGANIZATION: Korea...Simultaneous Targeting Prostate-Specific Membrane Antigen ( PSMA ) and Hepsin 5b. GRANT NUMBER W81XWH-10-1-0189 5c. PROGRAM ELEMENT NUMBER 6...heterobivalent conjugates of PSMA /hepsin-binding ligands labeled with optical dyes or radionuclides. The sensitivity and accuracy of prostate cancer

  14. Finasteride Treatment Alters Tissue Specific Androgen Receptor Expression in Prostate Tissues

    PubMed Central

    Bauman, Tyler M.; Sehgal, Priyanka D.; Johnson, Karen A.; Pier, Thomas; Bruskewitz, Reginald C.; Ricke, William A.; Huang, Wei

    2014-01-01

    BACKGROUND Normal and pathologic growth of the prostate is dependent on the synthesis of dihydrotestosterone (DHT) from testosterone by 5α-reductase. Finasteride is a selective inhibitor of 5α-reductase 2, one isozyme of 5α-reductase found in abundance in the human prostate. The objective of this study was to investigate the effects of finasteride on androgen receptor expression and tissue morphology in human benign prostatic hyperplasia specimens. METHODS Patients undergoing transurethral resection of the prostate and either treated or not treated with finasteride between 2004 and 2010 at the University of Wisconsin-Hospital were retrospectively identified using an institutional database. Prostate specimens from each patient were triple-stained for androgen receptor, prostate-specific antigen, and basal marker cytokeratin 5. Morphometric analysis was performed using the multispectral imaging, and results were compared between groups of finasteride treated and non-treated patients. RESULTS Epithelial androgen receptor but not stromal androgen receptor expression was significantly lower in patients treated with finasteride than in non-treated patients. Androgen receptor-regulated prostate-specific antigen was not significantly decreased in finasteride-treated patients. Significant luminal epithelial atrophy and basal cell hyperplasia were prevalent in finasteride treated patients. Epithelial androgen receptor expression was highly correlated to the level of luminal epithelial atrophy. CONCLUSIONS In this study, finasteride decreased the expression of epithelial androgen receptor in a tissue specific manner. The correlation between epithelial androgen receptor and the extent of luminal epithelial atrophy suggests that epithelial androgen receptor may be directly regulating the atrophic effects observed with finasteride treatment. PMID:24789081

  15. 21 CFR 660.5 - Specificity.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.5 Specificity. Each filling of the product shall be specific for antibody to hepatitis B surface antigen, as...

  16. 21 CFR 660.5 - Specificity.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.5 Specificity. Each filling of the product shall be specific for antibody to hepatitis B surface antigen, as...

  17. 21 CFR 660.5 - Specificity.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.5 Specificity. Each filling of the product shall be specific for antibody to hepatitis B surface antigen, as...

  18. 21 CFR 660.5 - Specificity.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.5 Specificity. Each filling of the product shall be specific for antibody to hepatitis B surface antigen, as...

  19. B-Cell Responses to Pregnancy-Restricted and -Unrestricted Plasmodium falciparum Erythrocyte Membrane Protein 1 Antigens in Ghanaian Women Naturally Exposed to Malaria Parasites

    PubMed Central

    Ampomah, Paulina; Stevenson, Liz; Ofori, Michael F.; Barfod, Lea

    2014-01-01

    Protective immunity to Plasmodium falciparum malaria acquired after natural exposure is largely antibody mediated. IgG-specific P. falciparum EMP1 (PfEMP1) proteins on the infected erythrocyte surface are particularly important. The transient antibody responses and the slowly acquired protective immunity probably reflect the clonal antigenic variation and allelic polymorphism of PfEMP1. However, it is likely that other immune-evasive mechanisms are also involved, such as interference with formation and maintenance of immunological memory. We measured PfEMP1-specific antibody levels by enzyme-linked immunosorbent assay (ELISA) and memory B-cell frequencies by enzyme-linked immunosorbent spot (ELISPOT) assay in a cohort of P. falciparum-exposed nonpregnant Ghanaian women. The antigens used were a VAR2CSA-type PfEMP1 (IT4VAR04) with expression restricted to parasites infecting the placenta, as well as two commonly recognized PfEMP1 proteins (HB3VAR06 and IT4VAR60) implicated in rosetting and not pregnancy restricted. This enabled, for the first time, a direct comparison in the same individuals of immune responses specific for a clinically important parasite antigen expressed only during well-defined periods (pregnancy) to responses specific for comparable antigens expressed independent of pregnancy. Our data indicate that PfEMP1-specific B-cell memory is adequately acquired even when antigen exposure is infrequent (e.g., VAR2CSA-type PfEMP1). Furthermore, immunological memory specific for VAR2CSA-type PfEMP1 can be maintained for many years without antigen reexposure and after circulating antigen-specific IgG has disappeared. The study provides evidence that natural exposure to P. falciparum leads to formation of durable B-cell immunity to clinically important PfEMP1 antigens. This has encouraging implications for current efforts to develop PfEMP1-based vaccines. PMID:24566620

  20. Recognition of Antigen-Specific B Cell Receptors From Chronic Lymphocytic Leukemia Patients By Synthetic Antigen Surrogates

    PubMed Central

    Sarkar, Mohosin; Liu, Yun; Morimoto, Jumpei; Peng, Haiyong; Aquino, Claudio; Rader, Christoph; Chiorazzi, Nicholas

    2014-01-01

    In patients with chronic lymphocytic leukemia (CLL), a single neoplastic antigen-specific B cell accumulates and overgrows other B cells, leading to immune deficiency. CLL is often treated with drugs that ablate all B cells, leading to further weakening of humoral immunity, and a more focused therapeutic strategy capable of targeting only the pathogenic B cells would represent a significant advance. One approach to this would be to develop synthetic surrogates of the CLL antigens allowing differentiation of the CLL cells and healthy B cells in a patient. Here, we describe discovery of non-peptidic molecules capable of targeting antigen-specific B cell receptors with good affinity and selectivity using a combinatorial library screen. We demonstrate that our hit compounds act as synthetic antigen surrogates and recognize CLL cells and not healthy B cells. Additionally, we argue that the technology we developed can be used for discovery of other classes of antigen surrogates. PMID:25467125

  1. Recognition of antigen-specific B-cell receptors from chronic lymphocytic leukemia patients by synthetic antigen surrogates.

    PubMed

    Sarkar, Mohosin; Liu, Yun; Morimoto, Jumpei; Peng, Haiyong; Aquino, Claudio; Rader, Christoph; Chiorazzi, Nicholas; Kodadek, Thomas

    2014-12-18

    In patients with chronic lymphocytic leukemia (CLL), a single neoplastic antigen-specific B cell accumulates and overgrows other B cells, leading to immune deficiency. CLL is often treated with drugs that ablate all B cells, leading to further weakening of humoral immunity, and a more focused therapeutic strategy capable of targeting only the pathogenic B cells would represent a significant advance. One approach to this would be to develop synthetic surrogates of the CLL antigens allowing differentiation of the CLL cells and healthy B cells in a patient. Here, we describe nonpeptidic molecules capable of targeting antigen-specific B cell receptors with good affinity and selectivity using a combinatorial library screen. We demonstrate that our hit compounds act as synthetic antigen surrogates and recognize CLL cells and not healthy B cells. Additionally, we argue that the technology we developed can be used to identify other classes of antigen surrogates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Sildenafil decreases rat tracheal hyperresponsiveness to carbachol and changes canonical transient receptor potential gene expression after antigen challenge.

    PubMed

    Sousa, C T; Brito, T S; Lima, F J B; Siqueira, R J B; Magalhães, P J C; Lima, A A M; Santos, A A; Havt, A

    2011-06-01

    Inhibition of type-5 phosphodiesterase by sildenafil decreases capacitative Ca2+ entry mediated by transient receptor potential proteins (TRPs) in the pulmonary artery. These families of channels, especially the canonical TRP (TRPC) subfamily, may be involved in the development of bronchial hyperresponsiveness, a hallmark of asthma. In the present study, we evaluated i) the effects of sildenafil on tracheal rings of rats subjected to antigen challenge, ii) whether the extent of TRPC gene expression may be modified by antigen challenge, and iii) whether inhibition of type-5 phosphodiesterase (PDE5) may alter TRPC gene expression after antigen challenge. Sildenafil (0.1 µM to 0.6 mM) fully relaxed carbachol-induced contractions in isolated tracheal rings prepared from naive male Wistar rats (250-300 g) by activating the NO-cGMP-K+ channel pathway. Rats sensitized to antigen by intraperitoneal injections of ovalbumin were subjected to antigen challenge by ovalbumin inhalation, and their tracheal rings were used to study the effects of sildenafil, which more effectively inhibited contractions induced by either carbachol (10 µM) or extracellular Ca2+ restoration after thapsigargin (1 µM) treatment. Antigen challenge increased the expression of the TRPC1 and TRPC4 genes but not the expression of the TRPC5 and TRPC6 genes. Applied before the antigen challenge, sildenafil increased the gene expression, which was evaluated by RT-PCR, of TRPC1 and TRPC6, decreased TRPC5 expression, and was inert against TRPC4. Thus, we conclude that PDE5 inhibition is involved in the development of an airway hyperresponsive phenotype in rats after antigen challenge by altering TRPC gene expression.

  3. Quantifying serum antibody in bird fanciers' hypersensitivity pneumonitis.

    PubMed

    McSharry, Charles; Dye, George M; Ismail, Tengku; Anderson, Kenneth; Spiers, Elizabeth M; Boyd, Gavin

    2006-06-26

    Detecting serum antibody against inhaled antigens is an important diagnostic adjunct for hypersensitivity pneumonitis (HP). We sought to validate a quantitative fluorimetric assay testing serum from bird fanciers. Antibody activity was assessed in bird fanciers and control subjects using various avian antigens and serological methods, and the titer was compared with symptoms of HP. IgG antibody against pigeon serum antigens, quantified by fluorimetry, provided a good discriminator of disease. Levels below 10 mg/L were insignificant, and increasing titers were associated with disease. The assay was unaffected by total IgG, autoantibodies and antibody to dietary hen's egg antigens. Antigens from pigeon serum seem sufficient to recognize immune sensitivity to most common pet avian species. Decreasing antibody titers confirmed antigen avoidance. Increasing antibody titer reflected the likelihood of HP, and decreasing titers confirmed antigen avoidance. Quantifying antibody was rapid and the increased sensitivity will improve the rate of false-negative reporting and obviate the need for invasive diagnostic procedures. Automated fluorimetry provides a method for the international standardization of HP serology thereby improving quality control and improving its suitability as a diagnostic adjunct.

  4. Suppression of ongoing experimental myasthenia by oral treatment with an acetylcholine receptor recombinant fragment

    PubMed Central

    Im, Sin-Hyeog; Barchan, Dora; Fuchs, Sara; Souroujon, Miriam C.

    1999-01-01

    Myasthenia gravis (MG) is an autoimmune disorder in which the nicotinic acetylcholine receptor (AChR) is the major autoantigen. In an attempt to develop an antigen-specific therapy for MG, we administered a nonmyasthenogenic recombinant fragment of AChR orally to rats. This fragment, corresponding to the extracellular domain of the human AChR α-subunit (Hα1-205), protected rats from subsequently induced experimental autoimmune myasthenia gravis (EAMG) and suppressed ongoing EAMG when treatment was initiated during either the acute or chronic phases of disease. Prevention and suppression of EAMG were accompanied by a significant decrease in AChR-specific humoral and cellular responses. The underlying mechanism for the Hα1-205–induced oral tolerance seems to be active suppression, mediated by a shift from a T-helper 1 (Th1) to a Th2/Th3 response. This shift was assessed by changes in the cytokine profile, a deviation of anti-AChR IgG isotypes from IgG2 to IgG1, and a suppressed AChR-specific delayed-type hypersensitivity response. Our results in experimental myasthenia suggest that oral administration of AChR-specific recombinant fragments may be considered for antigen-specific immunotherapy of myasthenia gravis. J. Clin. Invest. 104:1723–1730 (1999). PMID:10606626

  5. Concentrated Protein Body Product Derived from Rice Endosperm as an Oral Tolerogen for Allergen-Specific Immunotherapy—A New Mucosal Vaccine Formulation against Japanese Cedar Pollen Allergy

    PubMed Central

    Wakasa, Yuhya; Takagi, Hidenori; Watanabe, Nobumasa; Kitamura, Noriko; Fujiwara, Yoshihiro; Ogo, Yuko; Hayashi, Shimpei; Yang, Lijun; Ohta, Masaru; Thet Tin, Wai Wai; Sekikawa, Kenji; Takano, Makoto; Ozawa, Kenjirou; Hiroi, Takachika; Takaiwa, Fumio

    2015-01-01

    The endoplasmic reticulum-derived type-I protein body (PB-I) from rice endosperm cells is an ideal candidate formulation for the oral delivery of bioencapsulated peptides as tolerogens for allergen-specific immunotherapy. In the present study, PBs containing the deconstructed Japanese cedar pollen allergens Cryptomeria japonica 1 (Cry j 1) and Cry j 2 were concentrated by treatment with thermostable α-amylase at 90°C to remove the starch from milled rice powder, which resulted in a 12.5-fold reduction of dry weight compared to the starting material. The modified Cry j 1 and Cry j 2 antigens in this concentrated PB product were more resistant to enzymatic digestion than those in the milled seed powder despite the absence of intact cell wall and starch, and remained stable for at least 10 months at room temperature without detectable loss or degradation. The high resistance of these allergens could be attributed to changes in protein physicochemical properties induced by the high temperature concentration process, as suggested by the decreased solubility of the antigens and seed proteins in PBs in step-wise-extraction experiments. Confocal microscopy showed that the morphology of antigen-containing PB-Is was preserved in the concentrated PB product. The concentrated PB product induced specific immune tolerance against Cry j 1 and Cry j 2 in mice when orally administered, supporting its potential use as a novel oral tolerogen formulation. PMID:25774686

  6. Reduced IFN-γ and IL-10 responses to paternal antigens during and after pregnancy in allergic women.

    PubMed

    Persson, Marie; Ekerfelt, Christina; Ernerudh, Jan; Matthiesen, Leif; Abelius, Martina Sandberg; Jonsson, Yvonne; Berg, Göran; Jenmalm, Maria C

    2012-09-01

    Normal pregnancy and allergy are both characterized by a T helper (Th) 2 deviation. In the current study, we hypothesized that paternal antigen-induced cytokine responses during pregnancy would be deviated toward Th2 and an anti-inflammatory profile, and that the Th2 deviation would be more pronounced in allergic pregnant women. Blood samples were collected longitudinally on three occasions during pregnancy and two occasions post partum (pp). Of the 86 women initially included, 54 women had a normal pregnancy and completed the sampling procedures. Twelve women fulfilled the criteria for allergy (allergic symptoms and circulating immunoglobulin [Ig] E antibodies to inhalant allergens) and 20 were non-allergic (nonsensitized without symptoms). The levels of Th1- and Th2-associated cytokines and chemokines, the Th17 cytokine IL-17 and the anti-inflammatory cytokine IL-10 of the groups were compared. Paternal antigen-induced IL-4 and IL-10 responses increased between the first and the third trimester. Allergy was associated with decreased paternal antigen-induced IFN-γ and CXCL10 secretion in the nonpregnant state (one year pp) and also decreased IFN-γ/IL-4 and IFN-γ/IL-13 ratios during pregnancy. We also observed a decreased paternal antigen-induced IL-10 response in allergic compared with non-allergic women during pregnancy, along with a decreased IL-10/IL-13 ratio. In conclusion, our findings support the hypothesis of lower Th1 responses toward paternal antigens in allergic than in non-allergic women, but also indicate that allergy is associated with a lower capacity to induce anti-inflammatory IL-10 responses after paternal antigen stimulation during pregnancy. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. An evaluation of purified Salmonella Typhi protein antigens for the serological diagnosis of acute typhoid fever.

    PubMed

    Tran Vu Thieu, Nga; Trinh Van, Tan; Tran Tuan, Anh; Klemm, Elizabeth J; Nguyen Ngoc Minh, Chau; Voong Vinh, Phat; Pham Thanh, Duy; Ho Ngoc Dan, Thanh; Pham Duc, Trung; Langat, Pinky; Martin, Laura B; Galan, Jorge; Liang, Li; Felgner, Philip L; Davies, D Huw; de Jong, Hanna K; Maude, Rapeephan R; Fukushima, Masako; Wijedoru, Lalith; Ghose, Aniruddha; Samad, Rasheda; Dondorp, Arjen M; Faiz, Abul; Darton, Thomas C; Pollard, Andrew J; Thwaites, Guy E; Dougan, Gordon; Parry, Christopher M; Baker, Stephen

    2017-08-01

    The diagnosis of typhoid fever is a challenge. Aiming to develop a typhoid diagnostic we measured antibody responses against Salmonella Typhi (S. Typhi) protein antigens and the Vi polysaccharide in a cohort of Bangladeshi febrile patients. IgM against 12 purified antigens and the Vi polysaccharide was measured by ELISA in plasma from patients with confirmed typhoid fever (n = 32), other confirmed infections (n = 17), and healthy controls (n = 40). ELISAs with the most specific antigens were performed on plasma from 243 patients with undiagnosed febrile disease. IgM against the S. Typhi protein antigens correlated with each other (rho > 0.8), but not against Vi (rho < 0.6). Typhoid patients exhibited higher IgM against 11/12 protein antigens and Vi than healthy controls and those with other infections. Vi, PilL, and CdtB exhibited the greatest sensitivity and specificity. Specificity and sensitivity was improved when Vi was combined with a protein antigen, generating sensitivities and specificities of 0.80 and >0.85, respectively. Applying a dynamic cut-off to patients with undiagnosed febrile disease suggested that 34-58% had an IgM response indicative of typhoid. We evaluated the diagnostic potential of several S. Typhi antigens; our assays give good sensitivity and specificity, but require further assessment in differing patient populations. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. A monoclonal cytolytic T-lymphocyte response observed in a melanoma patient vaccinated with a tumor-specific antigenic peptide encoded by gene MAGE-3

    PubMed Central

    Coulie, Pierre G.; Karanikas, Vaios; Colau, Didier; Lurquin, Christophe; Landry, Claire; Marchand, Marie; Dorval, Thierry; Brichard, Vincent; Boon, Thierry

    2001-01-01

    Vaccination of melanoma patients with tumor-specific antigens recognized by cytolytic T lymphocytes (CTL) produces significant tumor regressions in a minority of patients. These regressions appear to occur in the absence of massive CTL responses. To detect low-level responses, we resorted to antigenic stimulation of blood lymphocyte cultures in limiting dilution conditions, followed by tetramer analysis, cloning of the tetramer-positive cells, and T-cell receptor (TCR) sequence analysis of the CTL clones that showed strict specificity for the tumor antigen. A monoclonal CTL response against a MAGE-3 antigen was observed in a melanoma patient, who showed partial rejection of a large metastasis after treatment with a vaccine containing only the tumor-specific antigenic peptide. Tetramer analysis after in vitro restimulation indicated that about 1/40,000 postimmunization CD8+ blood lymphocytes were directed against the antigen. The same TCR was present in all of the positive microcultures. TCR evaluation carried out directly on blood lymphocytes by PCR amplification led to a similar frequency estimate after immunization, whereas the TCR was not found among 2.5 × 106 CD8+ lymphocytes collected before immunization. Our results prove unambiguously that vaccines containing only a tumor-specific antigenic peptide can elicit a CTL response. Even though they provide no information about the effector mechanisms responsible for the observed reduction in tumor mass in this patient, they would suggest that low-level CTL responses can initiate tumor rejection. PMID:11517302

  9. Human heat shock protein 70 enhances tumor antigen presentation through complex formation and intracellular antigen delivery without innate immune signaling.

    PubMed

    Bendz, Henriette; Ruhland, Sibylle C; Pandya, Maya J; Hainzl, Otmar; Riegelsberger, Stefan; Braüchle, Christoph; Mayer, Matthias P; Buchner, Johannes; Issels, Rolf D; Noessner, Elfriede

    2007-10-26

    Heat shock proteins (HSPs) have shown promise for the optimization of protein-based vaccines because they can transfer exogenous antigens to dendritic cells and at the same time induce their maturation. Great care must be exercised in interpretating HSP-driven studies, as by-products linked to the recombinant generation of these proteins have been shown to mediate immunological effects. We generated highly purified human recombinant Hsp70 and demonstrated that it strongly enhances the cross-presentation of exogenous antigens resulting in better antigen-specific T cell stimulation. Augmentation of T cell stimulation was a direct function of the degree of complex formation between Hsp70 and peptides and correlated with improved antigen delivery to endosomal compartments. The Hsp70 activity was independent of TAP proteins and was not inhibited by exotoxin A or endosomal acidification. Consequently, Hsp70 enhanced cross-presentation of various antigenic sequences, even when they required different post-uptake processing and trafficking, as exemplified by the tumor antigens tyrosinase and Melan-A/MART-1. Furthermore, Hsp70 enhanced cross-presentation by different antigen-presenting cells (APCs), including dendritic cells and B cells. Importantly, enhanced cross-presentation and antigen-specific T cell activation were observed in the absence of innate signals transmitted by Hsp70. As Hsp70 supports the cross-presentation of different antigens and APCs and is inert to APC function, it may show efficacy in various settings of immune modulation, including induction of antigen-specific immunity or tolerance.

  10. Enzymatic signal amplification for sensitive detection of intracellular antigens by flow cytometry.

    PubMed

    Karkmann, U; Radbruch, A; Hölzel, V; Scheffold, A

    1999-11-19

    Flow cytometry is the method of choice for the analysis of single cells with respect to the expression of specific antigens. Antigens can be detected with specific antibodies either on the cell surface or within the cells, after fixation and permeabilization of the cell membrane. Using conventional fluorochrome-labeled antibodies several thousand antigens are required for clear-cut separation of positive and negative cells. More sensitive reagents, e.g., magnetofluorescent liposomes conjugated to specific antibodies permit the detection of less than 200 molecules per cell but cannot be used for the detection of intracellular antigens. Here, we describe an enzymatic amplification technique (intracellular tyramine-based signal amplification, ITSA) for the sensitive cytometric analysis of intracellular cytokines by immunofluorescence. This approach results in a 10 to 15-fold improvement of the signal-to-noise ratio compared to conventional fluorochrome labeled antibodies and permits the detection of as few as 300-400 intracellular antigens per cell.

  11. On-chip activation and subsequent detection of individual antigen-specific T cells

    PubMed Central

    Song, Qing; Han, Qing; Bradshaw, Elizabeth M.; Kent, Sally C.; Raddassi, Khadir; Nilsson, Björn; Nepom, Gerald T.; Hafler, David A.; Love, J. Christopher

    2010-01-01

    The frequencies of antigen-specific CD4+ T cells in samples of human tissue has been difficult to determine accurately ex vivo, particularly for autoimmune diseases such as multiple sclerosis or Type 1 diabetes. Conventional approaches involve the expansion of primary T cells in vitro to increase the numbers of cells, and a subsequent assessment of the frequencies of antigen-specific T cells in the expanded population by limiting dilution or by using fluorescently labeled tetramers of peptide-loaded major histocompatibility complex (MHC) receptors. Here we describe an alternative approach that uses arrays of subnanoliter wells coated with recombinant peptide-loaded MHC Class II monomers to isolate and stimulate individual CD4+ T cells in an antigen-specific manner. In these experiments, activation was monitored using microengraving to capture two cytokines (IFNγ and IL-17) released from single cells. This new method should enable direct enumeration of antigen-specific CD4+ T cells ex vivo from clinical samples. PMID:20000848

  12. In situ induction of dendritic cell–based T cell tolerance in humanized mice and nonhuman primates

    PubMed Central

    Jung, Kyeong Cheon; Jeon, Yoon Kyung; Ban, Young Larn; Min, Hye Sook; Kim, Eun Ji; Kim, Ju Hyun; Kang, Byung Hyun; Bae, Youngmee; Yoon, Il-Hee; Kim, Yong-Hee; Lee, Jae-Il; Kim, Jung-Sik; Shin, Jun-Seop; Yang, Jaeseok; Kim, Sung Joo; Rostlund, Emily; Muller, William A.

    2011-01-01

    Induction of antigen-specific T cell tolerance would aid treatment of diverse immunological disorders and help prevent allograft rejection and graft versus host disease. In this study, we establish a method of inducing antigen-specific T cell tolerance in situ in diabetic humanized mice and Rhesus monkeys receiving porcine islet xenografts. Antigen-specific T cell tolerance is induced by administration of an antibody ligating a particular epitope on ICAM-1 (intercellular adhesion molecule 1). Antibody-mediated ligation of ICAM-1 on dendritic cells (DCs) led to the arrest of DCs in a semimature stage in vitro and in vivo. Ablation of DCs from mice completely abrogated anti–ICAM-1–induced antigen-specific T cell tolerance. T cell responses to unrelated antigens remained unaffected. In situ induction of DC-mediated T cell tolerance using this method may represent a potent therapeutic tool for preventing graft rejection. PMID:22025302

  13. Prostate-specific antigen and acute myocardial infarction: a possible new intriguing scenario.

    PubMed

    Patanè, Salvatore; Marte, Filippo

    2009-05-29

    Prostate-specific antigen (PSA) has been identified as a member of the human kallikrein family of serine proteases and it is an established marker for detection of prostate cancer. Apparently spurious result has been reported in a work about mean serum PSA concentration during acute myocardial infarction with mean serum PSA concentration significantly lower on day 2 than either day 1 or day 3 and it has been reported that these preliminary results could reflect several factors, such as antiinfarctual treatment, reduced physical activity or an acute-phase response. Elevation of prostate-specific antigen has also been reported during acute myocardial infarction in three patients and in another one also after transurethral resection of the prostate (TURP) and without histological diagnosis of prostate cancer. In our report we present three cases of diminution of serum PSA concentration during acute myocardial infarction. Our report extends the evaluation of PSA during acute myocardial infarction. It seems that when elevation of prostate-specific antigen occurs during acute myocardial infarction, coronary lesions are frequent and often more severe than when diminution of prostate-specific antigen occurs during acute myocardial infarction. It opens a possible new intriguing scenario of the role of the prostate-specific antigen in acute myocardial infarction.

  14. Cytokine response to selected MTB antigens in Ghanaian TB patients, before and at 2 weeks of anti-TB therapy is characterized by high expression of IFN-γ and Granzyme B and inter- individual variation.

    PubMed

    Mensah, Gloria Ivy; Addo, Kennedy Kwasi; Tetteh, John Amissah; Sowah, Sandra; Loescher, Thomas; Geldmacher, Christof; Jackson-Sillah, Dolly

    2014-09-10

    There has been a long held belief that patients with drug-susceptible TB are non-infectious after two weeks of therapy. Recent microbiological and epidemiological evidence has challenged this dogma, however, the nature of the Mtb-specific cellular immune response during this period has not been adequately investigated. This knowledge could be exploited in the development of immunological biomarkers of early treatment response. Cellular response to four Mtb infection phase-dependent antigens, ESAT-6/CFP-10 fusion protein and three DosR encoded proteins (Rv1733c, Rv2029c, Rv2628) were evaluated in a Ghanaian TB cohort (n=20) before and after 2 weeks of anti TB therapy. After 6-days in vitro stimulation, Peripheral blood mononuclear cell (PBMC) culture supernatant was harvested and the concentration of IFN-γ, Granzyme B, IL-10, IL-17, sIL2Rα and TNF-α were determined in a 6-plex Luminex assay. Frequencies of IFN-γ + CD4 and CD8 T cells were also determined in an intracellular cytokine assay. All antigens induced higher levels of IFN-γ, followed by Granzyme B, TNF-α and IL-17 and low levels of IL-10 and sIL-2R-α in PBMC before treatment and after 2 weeks of treatment. Median cytokine levels of IFN-γ, Granzyme B, IL-17 and sIL-2R-α increased during week two, but it was significant for only Rv1733-specific production of Granzyme B (P = 0. 013). The median frequency of antigen specific IFN-γ + CD4 T cells increased at week two; however, only the increase in the ESAT-6/CFP-10-specific response was significant (P = 0. 0008). In contrast, the median frequency of ESAT-6/CFP-10- specific IFN-γ + CD8 T cell responses declined during week two (P = 0. 0024). Additionally, wide inter-individual variation with three distinct patterns were observed; increase in all cytokine levels, decrease in all cytokine levels and fluctuating cytokine levels after 2 weeks of treatment. The second week of effective chemotherapy was characterized by a general increase in cytokine response to Mtb-specific antigens suggestive of an improvement in cellular response with therapy. However, the wide inter-individual variation observed would limit the utility of cytokine biomarkers during this period.

  15. Fluorescence correlation spectroscopy as a method for assessment of interactions between phage displaying antibodies and soluble antigen

    PubMed Central

    Lagerkvist, Ann Catrin; Földes-Papp, Zeno; Persson, Mats A.A.; Rigler, Rudolf

    2001-01-01

    Phage display is widely used for expression of combinatorial libraries, not least for protein engineering purposes. Precise selection at the single molecule level will provide an improved tool for generating proteins with complex and distinct properties from large molecular libraries. To establish such an improved selection system, we here report the detection of specific interactions between phage with displayed antibody fragments and fluorescently labeled soluble antigen based on Fluorescence Correlation Spectroscopy (FCS). Our novel strategy comprises the use of two separate fluorochromes for detection of the phage–antigen complex, either with labeled antiphage antibody or using a labeled antigen. As a model system, we studied a human monoclonal antibody to the hepatitis-C virus (HCV) envelope protein E2 and its cognate antigen (rE2 or rE1/E2). We could thus assess the specific interactions and determine the fraction of specific versus background phage (26% specific phage). Aggregation of these particular antigens made it difficult to reliably utilize the full potential of cross-correlation studies using the two labels simultaneously. However, with true monomeric proteins, this will certainly be possible, offering a great advantage in a safer and highly specific detection system. PMID:11468349

  16. Sensitivity and Specificity of Histoplasma Antigen Detection by Enzyme Immunoassay.

    PubMed

    Cunningham, Lauren; Cook, Audrey; Hanzlicek, Andrew; Harkin, Kenneth; Wheat, Joseph; Goad, Carla; Kirsch, Emily

    2015-01-01

    The objective of this study was to evaluate the sensitivity and specificity of an antigen enzyme immunoassay (EIA) on urine samples for the diagnosis of histoplasmosis in dogs. This retrospective medical records review included canine cases with urine samples submitted for Histoplasma EIA antigen assay between 2007 and 2011 from three veterinary institutions. Cases for which urine samples were submitted for Histoplasma antigen testing were reviewed and compared to the gold standard of finding Histoplasma organisms or an alternative diagnosis on cytology or histopathology. Sensitivity, specificity, negative predictive value, positive predictive value, and the kappa coefficient and associated confidence interval were calculated for the EIA-based Histoplasma antigen assay. Sixty cases met the inclusion criteria. Seventeen cases were considered true positives based on identification of the organism, and 41 cases were considered true negatives with an alternative definitive diagnosis. Two cases were considered false negatives, and there were no false positives. Sensitivity was 89.47% and the negative predictive value was 95.35%. Specificity and the positive predictive value were both 100%. The kappa coefficient was 0.9207 (95% confidence interval, 0.8131-1). The Histoplasma antigen EIA test demonstrated high specificity and sensitivity for the diagnosis of histoplasmosis in dogs.

  17. Assessment of the antigenic and neuroprotective activity of the subunit anti-Toxoplasma vaccine in T. gondii experimentally infected mice.

    PubMed

    Gatkowska, Justyna; Wieczorek, Marek; Dziadek, Bożena; Dzitko, Katarzyna; Dziadek, Jarosław; Długońska, Henryka

    2018-04-30

    The aim of this study was to evaluate the immunogenic and immunoprotective activities and to determine the neuroprotective capacity of the tetravalent vaccine containing selected recombinant T. gondii antigens (ROP2 + ROP4 + SAG1 + MAG1) administered with safe adjuvants (MPL and alum) using male and female inbred mice. The tested antigenic combination provided partial protection against brain cyst formation, especially in males (reduction in cyst burden by 72%). The decrease in cyst burden was observed for the whole brain as well as for specified brain regions associated with natural defensive behaviors, emotion processing and integration of motor and sensory stimuli. The vaccine triggered a strong, specific immune response, regardless of sex, which was characterized by the antigen-specific in vitro synthesis of cytokines (IL-2, IFN-γ and IL-10) and in vivo production of systemic IgG1 and IgG2a immunoglobulins. Immunization prior to the parasite challenge seemed to influence T. gondii - associated behavioral and neurochemical changes, although the impact of vaccination strongly depended on sex and time post-infection. Interestingly, in the vaccinated and T. gondii infected mice there was a significant delay in the parasite-induced loss of aversion toward cat smell (cats are the definitive hosts of the parasite). The regained attraction toward feline scent in vaccinated males, observed during chronic parasite invasion, correlated with the increase in the dopamine metabolism. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Diagnostic Performance of Tuberculosis-Specific IgG Antibody Profiles in Patients with Presumptive Tuberculosis from Two Continents.

    PubMed

    Broger, Tobias; Basu Roy, Robindra; Filomena, Angela; Greef, Charles H; Rimmele, Stefanie; Havumaki, Joshua; Danks, David; Schneiderhan-Marra, Nicole; Gray, Christen M; Singh, Mahavir; Rosenkrands, Ida; Andersen, Peter; Husar, Gregory M; Joos, Thomas O; Gennaro, Maria L; Lochhead, Michael J; Denkinger, Claudia M; Perkins, Mark D

    2017-04-01

    Development of rapid diagnostic tests for tuberculosis is a global priority. A whole proteome screen identified Mycobacterium tuberculosis antigens associated with serological responses in tuberculosis patients. We used World Health Organization (WHO) target product profile (TPP) criteria for a detection test and triage test to evaluate these antigens. Consecutive patients presenting to microscopy centers and district hospitals in Peru and to outpatient clinics at a tuberculosis reference center in Vietnam were recruited. We tested blood samples from 755 HIV-uninfected adults with presumptive pulmonary tuberculosis to measure IgG antibody responses to 57 M. tuberculosis antigens using a field-based multiplexed serological assay and a 132-antigen bead-based reference assay. We evaluated single antigen performance and models of all possible 3-antigen combinations and multiantigen combinations. Three-antigen and multiantigen models performed similarly and were superior to single antigens. With specificity set at 90% for a detection test, the best sensitivity of a 3-antigen model was 35% (95% confidence interval [CI], 31-40). With sensitivity set at 85% for a triage test, the specificity of the best 3-antigen model was 34% (95% CI, 29-40). The reference assay also did not meet study targets. Antigen performance differed significantly between the study sites for 7/22 of the best-performing antigens. Although M. tuberculosis antigens were recognized by the IgG response during tuberculosis, no single antigen or multiantigen set performance approached WHO TPP criteria for clinical utility among HIV-uninfected adults with presumed tuberculosis in high-volume, urban settings in tuberculosis-endemic countries. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  19. The effect of increasing doses of saw palmetto fruit extract on serum prostate specific antigen: analysis of the CAMUS randomized trial.

    PubMed

    Andriole, Gerald L; McCullum-Hill, Christie; Sandhu, Gurdarshan S; Crawford, E David; Barry, Michael J; Cantor, Alan

    2013-02-01

    Saw palmetto extracts are used to treat lower urinary tract symptoms in men despite level I evidence that saw palmetto is ineffective in reducing these lower urinary tract symptoms. We determined whether higher doses of saw palmetto as studied in the CAMUS (Complementary and Alternative Medicine for Urologic Symptoms) trial affect serum prostate specific antigen levels. The CAMUS trial was a randomized, placebo controlled, double-blind, multicenter, North American trial conducted between June 5, 2008 and October 10, 2012, in which 369 men older than 45 years with an AUA symptom score of 8 to 24 were randomly assigned to placebo or dose escalation of saw palmetto, which consisted of 320 mg for the first 24 weeks, 640 mg for the next 24 weeks and 960 mg for the last 24 weeks of this 72-week trial. Serum prostate specific antigen levels were obtained at baseline and at weeks 24, 48 and 72, and were compared between treatment groups using the pooled t test and Fisher's exact test. Serum prostate specific antigen was similar at baseline for the placebo (mean ± SD 1.93 ± 1.59 ng/ml) and saw palmetto groups (2.20 ± 1.95, p = 0.16). Changes in prostate specific antigen during the study were similar, with a mean change in the placebo group of 0.16 ± 1.08 ng/ml and 0.23 ± 0.83 ng/ml in the saw palmetto group (p = 0.50). In addition, no differential effect on serum prostate specific antigen was observed between treatment arms when the groups were stratified by baseline prostate specific antigen. Saw palmetto extract does not affect serum prostate specific antigen more than placebo, even at relatively high doses. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  20. Engaging the CD40-CD40L pathway augments T-helper cell responses and improves control of Mycobacterium tuberculosis infection

    PubMed Central

    Bizzell, Erica; Madan-Lala, Ranjna

    2017-01-01

    Mycobacterium tuberculosis (Mtb) impairs dendritic cell (DC) functions and induces suboptimal antigen-specific CD4 T cell immune responses that are poorly protective. Mucosal T-helper cells producing IFN-γ (Th1) and IL-17 (Th17) are important for protecting against tuberculosis (TB), but the mechanisms by which DCs generate antigen-specific T-helper responses during Mtb infection are not well defined. We previously reported that Mtb impairs CD40 expression on DCs and restricts Th1 and Th17 responses. We now demonstrate that CD40-dependent costimulation is required to generate IL-17 responses to Mtb. CD40-deficient DCs were unable to induce antigen-specific IL-17 responses after Mtb infection despite the production of Th17-polarizing innate cytokines. Disrupting the interaction between CD40 on DCs and its ligand CD40L on antigen-specific CD4 T cells, genetically or via antibody blockade, significantly reduced antigen-specific IL-17 responses. Importantly, engaging CD40 on DCs with a multimeric CD40 agonist (CD40LT) enhanced antigen-specific IL-17 generation in ex vivo DC-T cell co-culture assays. Further, intratracheal instillation of Mtb-infected DCs treated with CD40LT significantly augmented antigen-specific Th17 responses in vivo in the lungs and lung-draining lymph nodes of mice. Finally, we show that boosting CD40-CD40L interactions promoted balanced Th1/Th17 responses in a setting of mucosal DC transfer, and conferred enhanced control of lung bacterial burdens following aerosol challenge with Mtb. Our results demonstrate that CD40 costimulation by DCs plays an important role in generating antigen-specific Th17 cells and targeting the CD40-CD40L pathway represents a novel strategy to improve adaptive immunity to TB. PMID:28767735

  1. Novel fusion proteins for the antigen-specific staining and elimination of B cell receptor-positive cell populations demonstrated by a tetanus toxoid fragment C (TTC) model antigen.

    PubMed

    Klose, Diana; Saunders, Ute; Barth, Stefan; Fischer, Rainer; Jacobi, Annett Marita; Nachreiner, Thomas

    2016-02-17

    In an earlier study we developed a unique strategy allowing us to specifically eliminate antigen-specific murine B cells via their distinct B cell receptors using a new class of fusion proteins. In the present work we elaborated our idea to demonstrate the feasibility of specifically addressing and eliminating human memory B cells. The present study reveals efficient adaptation of the general approach to selectively target and eradicate human memory B cells. In order to demonstrate the feasibility we engineered a fusion protein following the principle of recombinant immunotoxins by combining a model antigen (tetanus toxoid fragment C, TTC) for B cell receptor targeting and a truncated version of Pseudomonas aeruginosa exotoxin A (ETA') to induce apoptosis after cellular uptake. The TTC-ETA' fusion protein not only selectively bound to a TTC-reactive murine B cell hybridoma cell line in vitro but also to freshly isolated human memory B cells from immunized donors ex vivo. Specific toxicity was confirmed on an antigen-specific population of human CD27(+) memory B cells. This protein engineering strategy can be used as a generalized platform approach for the construction of therapeutic fusion proteins with disease-relevant antigens as B cell receptor-binding domains, offering a promising approach for the specific depletion of autoreactive B-lymphocytes in B cell-driven autoimmune diseases.

  2. Prostate cancer prediction using the random forest algorithm that takes into account transrectal ultrasound findings, age, and serum levels of prostate-specific antigen.

    PubMed

    Xiao, Li-Hong; Chen, Pei-Ran; Gou, Zhong-Ping; Li, Yong-Zhong; Li, Mei; Xiang, Liang-Cheng; Feng, Ping

    2017-01-01

    The aim of this study is to evaluate the ability of the random forest algorithm that combines data on transrectal ultrasound findings, age, and serum levels of prostate-specific antigen to predict prostate carcinoma. Clinico-demographic data were analyzed for 941 patients with prostate diseases treated at our hospital, including age, serum prostate-specific antigen levels, transrectal ultrasound findings, and pathology diagnosis based on ultrasound-guided needle biopsy of the prostate. These data were compared between patients with and without prostate cancer using the Chi-square test, and then entered into the random forest model to predict diagnosis. Patients with and without prostate cancer differed significantly in age and serum prostate-specific antigen levels (P < 0.001), as well as in all transrectal ultrasound characteristics (P < 0.05) except uneven echo (P = 0.609). The random forest model based on age, prostate-specific antigen and ultrasound predicted prostate cancer with an accuracy of 83.10%, sensitivity of 65.64%, and specificity of 93.83%. Positive predictive value was 86.72%, and negative predictive value was 81.64%. By integrating age, prostate-specific antigen levels and transrectal ultrasound findings, the random forest algorithm shows better diagnostic performance for prostate cancer than either diagnostic indicator on its own. This algorithm may help improve diagnosis of the disease by identifying patients at high risk for biopsy.

  3. Prognostic Significance of Digital Rectal Examination and Prostate Specific Antigen in the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Arm.

    PubMed

    Halpern, Joshua A; Shoag, Jonathan E; Mittal, Sameer; Oromendia, Clara; Ballman, Karla V; Hershman, Dawn L; Wright, Jason D; Shih, Ya-Chen Tina; Nguyen, Paul L; Hu, Jim C

    2017-02-01

    The absence of definitive data or explicit guidelines regarding the use of digital rectal examination for prostate cancer screening may lead to confusion for physicians and patients alike. We evaluated the prognostic value of abnormal digital rectal examination and prostate specific antigen following the widespread dissemination of prostate specific antigen testing in the U.S. Collectively, men comprising the screening arm of the PLCO cancer screening trial who underwent digital rectal examination screening (35,350) were followed for 314,033 person-years. Adjusted analyses with competing risks regression were performed to assess the association of suspicious (nodularity, induration, asymmetry) digital rectal examination and abnormal prostate specific antigen (4 ng/ml or greater) with the detection of clinically significant prostate cancer, prostate cancer specific mortality and overall mortality. Among all screening encounters with a suspicious digital rectal examination only 15.4% had a concurrently abnormal prostate specific antigen (McNemar's test p <0.001). During followup there were 1,612 clinically significant prostate cancers detected, 64 prostate cancer specific deaths and 4,600 deaths. On multivariable analysis suspicious digital rectal examination and abnormal prostate specific antigen were associated with a greater risk of clinically significant prostate cancer (HR 2.21, 95% CI 1.99-2.44 vs HR 5.48, 95% CI 5.05-5.96, p <0.001 and p <0.001) and prostate cancer specific mortality (HR 2.54, 95% CI 1.41-4.58 vs HR 5.23, 95% CI 3.08-8.88, p=0.002 and p <0.001), respectively. In a secondary analysis of a contemporary U.S. cohort, suspicious digital rectal examination and abnormal prostate specific antigen on routine screening were independently associated with clinically significant prostate cancer and prostate cancer specific mortality. However, additional research is needed to optimize screening protocols. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  4. A shift in the collagen V antigenic epitope leads to T helper phenotype switch and immune response to self-antigen leading to chronic lung allograft rejection.

    PubMed

    Tiriveedhi, V; Angaswamy, N; Brand, D; Weber, J; Gelman, A G; Hachem, R; Trulock, E P; Meyers, B; Patterson, G; Mohanakumar, T

    2012-01-01

    Immune responses to human leucocyte antigen (HLA) and self-antigen collagen V (Col-V) have been proposed in the pathogenesis of chronic rejection (bronchiolitis obliterans syndrome, BOS) following human lung transplantation (LTx). In this study, we defined the role for the shift in immunodominant epitopes of Col-V in inducing T helper phenotype switch leading to immunity to Col-V and BOS. Sera and lavage from BOS(+) LTx recipients with antibodies to Col-V were analysed. Two years prior to BOS, patients developed antibodies to both Col-V,α1(V) and α2(V) chains. However, at clinical diagnosis of BOS, antibodies became restricted to α1(V). Further, lung biopsy from BOS(+) patients bound to antibodies to α1(V), indicating that these epitopes are exposed. Fourteen Col-V peptides [pep1-14, pep1-4 specific to α1(V), pep5-8 to α1,2(V) and pep9-14 to α2(V)] which bind to HLA-DR4 and -DR7, demonstrated that prior to BOS, pep 6, 7, 9, 11 and 14 were immunodominant and induced interleukin (IL)-10. However, at BOS, the response switched to pep1, 4 and 5 and induced interferon (IFN)-γ and IL-17 responses, but not IL-10. The T helper (Th) phenotype switch is accompanied by decreased frequency of regulatory T cells (T(regs) ) in the lavage. LTx recipients with antibodies to α1(V) also demonstrated increased matrix metalloproteinase (MMP) activation with decreased MMP inhibitor, tissue inhibitor of metalloproteinase (TIMP), suggesting that MMP activation may play a role in the exposure of new Col-V antigenic epitopes. We conclude that a shift in immunodominance of self-antigenic determinants of Col-V results in induction of IFN-γ and IL-17 with loss of tolerance leading to autoimmunity to Col-V, which leads to chronic lung allograft rejection. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.

  5. Serologically Defined Variations in Malaria Endemicity in Pará State, Brazil

    PubMed Central

    Cunha, Maristela G.; Silva, Eliane S.; Sepúlveda, Nuno; Costa, Sheyla P. T.; Saboia, Tiago C.; Guerreiro, João F.; Póvoa, Marinete M.; Corran, Patrick H.; Riley, Eleanor; Drakeley, Chris J.

    2014-01-01

    Background Measurement of malaria endemicity is typically based on vector or parasite measures. A complementary approach is the detection of parasite specific IgG antibodies. We determined the antibody levels and seroconversion rates to both P. vivax and P. falciparum merozoite antigens in individuals living in areas of varying P. vivax endemicity in Pará state, Brazilian Amazon region. Methodology/Principal Findings The prevalence of antibodies to recombinant antigens from P. vivax and P. falciparum was determined in 1,330 individuals. Cross sectional surveys were conducted in the north of Brazil in Anajás, Belém, Goianésia do Pará, Jacareacanga, Itaituba, Trairão, all in the Pará state, and Sucuriju, a free-malaria site in the neighboring state Amapá. Seroprevalence to any P. vivax antigens (MSP1 or AMA-1) was 52.5%, whereas 24.7% of the individuals were seropositive to any P. falciparum antigens (MSP1 or AMA-1). For P. vivax antigens, the seroconversion rates (SCR) ranged from 0.005 (Sucuriju) to 0.201 (Goianésia do Pará), and are strongly correlated to the corresponding Annual Parasite Index (API). We detected two sites with distinct characteristics: Goianésia do Pará where seroprevalence curve does not change with age, and Sucuriju where seroprevalence curve is better described by a model with two SCRs compatible with a decrease in force of infection occurred 14 years ago (from 0.069 to 0.005). For P. falciparum antigens, current SCR estimates varied from 0.002 (Belém) to 0.018 (Goianésia do Pará). We also detected a putative decrease in disease transmission occurred ∼29 years ago in Anajás, Goianésia do Pará, Itaituba, Jacareacanga, and Trairão. Conclusions We observed heterogeneity of serological indices across study sites with different endemicity levels and temporal changes in the force of infection in some of the sites. Our study provides further evidence that serology can be used to measure and monitor transmission of both major species of malaria parasite. PMID:25419900

  6. Analysis of antigen-specific B-cell memory directly ex vivo.

    PubMed

    McHeyzer-Williams, Louise J; McHeyzer-Williams, Michael G

    2004-01-01

    Helper T-cell-regulated B-cell memory develops in response to initial antigen priming as a cellular product of the germinal center (GC) reaction. On antigen recall, memory response precursors expand rapidly with exaggerated differentiation into plasma cells to produce the high-titer, high-affinity antibody(Ab) that typifies the memory B-cell response in vivo. We have devised a high-resolution flow cytometric strategy to quantify the emergence and maintenance of antigen-specific memory B cells directly ex vivo. Extended cell surface phenotype establishes a level of cellular diversity not previously appreciated for the memory B-cell compartment. Using an "exclusion transfer" strategy, we ascertain the capacity of two distinct memory B-cell populations to transfer antigen-specific memory into naive adoptive hosts. Finally, we sequence expressed messenger ribonucleic acid (mRNA) from single cells within the population to estimate the level of somatic hypermutation as the best molecular indicator of B-cell memory. In this chapter, we describe the methods used in each of these four sections that serve to provide high-resolution quantification of antigen-specific B-cell memory responses directly ex vivo.

  7. Presentation of lipid antigens to T cells.

    PubMed

    Mori, Lucia; De Libero, Gennaro

    2008-04-15

    T cells specific for lipid antigens participate in regulation of the immune response during infections, tumor immunosurveillance, allergy and autoimmune diseases. T cells recognize lipid antigens as complexes formed with CD1 antigen-presenting molecules, thus resembling recognition of MHC-peptide complexes. The biophysical properties of lipids impose unique mechanisms for their delivery, internalization into antigen-presenting cells, membrane trafficking, processing, and loading of CD1 molecules. Each of these steps is controlled at molecular and celular levels and determines lipid immunogenicity. Lipid antigens may derive from microbes and from the cellular metabolism, thus allowing the immune system to survey a large repertoire of immunogenic molecules. Recognition of lipid antigens facilitates the detection of infectious agents and the initiation of responses involved in immunoregulation and autoimmunity. This review focuses on the presentation mechanisms and specific recognition of self and bacterial lipid antigens and discusses the important open issues.

  8. In vivo xenogeneic scaffold fate is determined by residual antigenicity and extracellular matrix preservation.

    PubMed

    Wong, Maelene L; Wong, Janelle L; Vapniarsky, Natalia; Griffiths, Leigh G

    2016-06-01

    The immunological potential of animal-derived tissues and organs is the critical hurdle to increasing their clinical implementation. Glutaraldehyde-fixation cross-links proteins in xenogeneic tissues (e.g., bovine pericardium) to delay immune rejection, but also compromises the regenerative potential of the resultant biomaterial. Unfixed xenogeneic biomaterials in which xenoantigenicity has been ameliorated and native extracellular matrix (ECM) architecture has been maintained have the potential to overcome limitations of current clinically utilized glutaraldehyde-fixed biomaterials. The objective of this work was to determine how residual antigenicity and ECM architecture preservation modulate recipient immune and regenerative responses towards unfixed bovine pericardium (BP) ECM scaffolds. Disruption of ECM architecture during scaffold generation, with either SDS-decellularization or glutaraldehyde-fixation, stimulated recipient foreign body response and resultant fibrotic encapsulation following leporine subpannicular implantation. Conversely, BP scaffolds subjected to stepwise removal of hydrophilic and lipophilic antigens using amidosulfobetaine-14 (ASB-14) maintained native ECM architecture and thereby avoided fibrotic encapsulation. Removal of hydrophilic and lipophilic antigens significantly decreased local and systemic graft-specific, adaptive immune responses and subsequent calcification of BP scaffolds compared to scaffolds undergoing hydrophile removal only. Critically, removal of antigenic components and preservation of ECM architecture with ASB-14 promoted full-thickness recipient non-immune cellular repopulation of the BP scaffold. Further, unlike clinically utilized fixed BP, ASB-14-treated scaffolds fostered rapid intimal and medial vessel wall regeneration in a porcine carotid patch angioplasty model. This work highlights the importance of residual antigenicity and ECM architecture preservation in modulating recipient immune and regenerative responses towards xenogeneic biomaterial generation. Copyright © 2016. Published by Elsevier Ltd.

  9. Commensal Gut-Derived Anaerobes as Novel Therapy for Inflammatory Autoimmune Diseases

    DTIC Science & Technology

    2011-05-01

    treatment of arthritis. Treatment of mice with P. histicola as probiotics and therapy are ongoing. In vitro study showed that treatment of mice with P...histicola in CII-immunized mice led to suppression of antigen-specific immune response and reduction in production of inflammatory cytokines. Our data...effect of Prevotella on antigen specific immune response and production of pro-inflammatory cytokines by antigen specific T-cells. Mice were fed

  10. Indirect Competitive Enzyme-Linked Immunosorbent Assay (ELISA).

    PubMed

    Kohl, Thomas O; Ascoli, Carl A

    2017-07-05

    The indirect competitive ELISA (indirect cELISA) pits plate-immobilized antigen against antigens in solution for binding to antigen-specific antibody. The antigens in solution are in the test sample and are first incubated with antigen-specific antibody. These antibody-antigen complexes are then added to microtiter plates whose wells have been coated with purified antigen. The wells are washed to remove unbound antigen-antibody complexes and free antigen. A reporter-labeled secondary antibody is then added followed by the addition of substrate. Substrate hydrolysis yields a signal that is inversely proportional to antigen concentration within the sample. This is because when antigen concentration is high in the test sample, most of the antibody is bound before adding the solution to the plate. Most of the antibody remains in solution (as complexes) and is thus washed away before the addition of the reporter-labeled secondary antibody and substrate. Thus, the higher the antigen concentration in the test sample, the weaker the resultant signal in the detection step. The indirect cELISA is often used for competitive detection and quantification of antibodies against viral diseases in biological samples. © 2017 Cold Spring Harbor Laboratory Press.

  11. Photochemical Internalization of Peptide Antigens Provides a Novel Strategy to Realize Therapeutic Cancer Vaccination

    PubMed Central

    Haug, Markus; Brede, Gaute; Håkerud, Monika; Nedberg, Anne Grete; Gederaas, Odrun A.; Flo, Trude H.; Edwards, Victoria T.; Selbo, Pål K.; Høgset, Anders; Halaas, Øyvind

    2018-01-01

    Effective priming and activation of tumor-specific CD8+ cytotoxic T lymphocytes (CTLs) is crucial for realizing the potential of therapeutic cancer vaccination. This requires cytosolic antigens that feed into the MHC class I presentation pathway, which is not efficiently achieved with most current vaccination technologies. Photochemical internalization (PCI) provides an emerging technology to route endocytosed material to the cytosol of cells, based on light-induced disruption of endosomal membranes using a photosensitizing compound. Here, we investigated the potential of PCI as a novel, minimally invasive, and well-tolerated vaccination technology to induce priming of cancer-specific CTL responses to peptide antigens. We show that PCI effectively promotes delivery of peptide antigens to the cytosol of antigen-presenting cells (APCs) in vitro. This resulted in a 30-fold increase in MHC class I/peptide complex formation and surface presentation, and a subsequent 30- to 100-fold more efficient activation of antigen-specific CTLs compared to using the peptide alone. The effect was found to be highly dependent on the dose of the PCI treatment, where optimal doses promoted maturation of immature dendritic cells, thus also providing an adjuvant effect. The effect of PCI was confirmed in vivo by the successful induction of antigen-specific CTL responses to cancer antigens in C57BL/6 mice following intradermal peptide vaccination using PCI technology. We thus show new and strong evidence that PCI technology holds great potential as a novel strategy for improving the outcome of peptide vaccines aimed at triggering cancer-specific CD8+ CTL responses. PMID:29670624

  12. Carbohydrates as allergens.

    PubMed

    Commins, Scott P

    2015-01-01

    Complex carbohydrates are effective inducers of Th2 responses, and carbohydrate antigens can stimulate the production of glycan-specific antibodies. In instances where the antigen exposure occurs through the skin, the resulting antibody production can contain IgE class antibody. The glycan-stimulated IgE may be non-specific but may also be antigen specific. This review focuses on the production of cross-reactive carbohydrate determinants, the recently identified IgE antibody response to a mammalian oligosaccharide epitope, galactose-alpha-1,3-galactose (alpha-gal), as well as discusses practical implications of carbohydrates in allergy. In addition, the biological effects of carbohydrate antigens are reviewed in setting of receptors and host recognition.

  13. Association of T-cell reactivity with beta-cell function in recent onset type 1 diabetes patients.

    PubMed

    Pfleger, Christian; Meierhoff, Guido; Kolb, Hubert; Schloot, Nanette C

    2010-03-01

    The aim of the current study was to investigate whether autoantigen directed T-cell reactivity relates to beta-cell function during the first 78 weeks after diagnosis of type 1 diabetes. 50 adults and 49 children (mean age 27.3 and 10.9 years respectively) with recent onset type 1 diabetes who participated in a placebo-controlled trial of immune intervention with DiaPep277 were analyzed. Secretion of interferon (IFN)-gamma, interleukin (IL)-5, IL-13 and IL-10 by single peripheral mononuclear cells (PBMC) upon stimulation with islet antigens GAD65, heat shock protein 60 (Hsp60) protein-tyrosine-phosphatase-like-antigen (pIA2) or tetanus toxoid (TT) was determined applying ELISPOT; beta-cell function was evaluated by glucagon stimulated C-peptide. Multivariate regression analysis was applied. In general, number of islet antigen-reactive cells decreased over 78 weeks in both adults and children, whereas reactivity to TT was not reduced. In addition, there was an association between the quality of immune cell responses and beta-cell function. Overall, increased responses by IFN-gamma secreting cells were associated with lower beta-cell function whereas IL-5, IL-13 and IL-10 cytokine responses were positively associated with beta-cell function in adults and children. Essentially, the same results were obtained with three different models of regression analysis. The number of detectable islet-reactive immune cells decreases within 1-2 years after diagnosis of type 1 diabetes. Cytokine production by antigen-specific PBMC reactivity is related to beta-cell function as measured by stimulated C-peptide. Cellular immunity appears to regress soon after disease diagnosis and begin of insulin therapy. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Antigen-specific T-cell lines transfer protective immunity against Trichinella spiralis in vivo.

    PubMed Central

    Riedlinger, J; Grencis, R K; Wakelin, D

    1986-01-01

    T-cell lines specific for infective muscle larvae antigens of the intestinal nematode Trichinella spiralis have been generated in vitro. These antigen-specific T-cell lines express the L3T4+ Ly2- phenotype and secrete the lymphokines IL-2, IL-3 and gamma-IFN. They are stable in culture for up to 15 weeks and are protective when adoptively transferred into naive recipients. As few as 2 x 10(5) T. spiralis-specific tract. In addition, intestinal mastocytosis and peripheral blood eosinophilia were accelerated after adoptive transfer of T. spiralis-specific T-cell lines. PMID:2423438

  15. Mouse models expressing human carcinoembryonic antigen (CEA) as a transgene: Evaluation of CEA-based cancer vaccines

    PubMed Central

    Hance, Kenneth W.; Zeytin, Hasan E.; Greiner, John W.

    2010-01-01

    In recent years, investigators have carried out several studies designed to evaluate whether human tumor-associated antigens might be exploited as targets for active specific immunotherapy, specifically human cancer vaccines. Not too long ago such an approach would have been met with considerable skepticism because the immune system was believed to be a rigid discriminator between self and non-self which, in turn, protected the host from a variety of pathogens. That viewpoint has been challenged in recent years by a series of studies indicating that antigenic determinants of self have not induced absolute host immune tolerance. Moreover, under specific conditions that evoke danger signals, peptides from self-antigen can be processed by the antigen-presenting cellular machinery, loaded onto the major histocompatibility antigen groove to serve as targets for immune intervention. Those findings provide the rationale to investigate a wide range of tumor-associated antigens, including differentiation antigens, oncogenes, and tumor suppressor genes as possible immune-based targets. One of those tumor-associated antigens is the carcinoembryonic antigen (CEA). Described almost 40 years ago, CEA is a Mr 180–200,000 oncofetal antigen that is one of the more widely studied human tumor-associated antigens. This review will provide: (i) a brief overview of the CEA gene family, (ii) a summary of early preclinical findings on overcoming immune tolerance to CEA, and (iii) the rationale to develop mouse models which spontaneously develop gastrointestinal tumors and express the CEA transgene. Those models have been used extensively in the study of overcoming host immune tolerance to CEA, a self, tumor-associated antigen, and the experimental findings have served as the rationale for the design of early clinical trials to evaluate CEA-based cancer vaccines. PMID:15888344

  16. Immunodetection of Fasciola gigantica Circulating Antigen in Sera of Infected Individuals for Laboratory Diagnosis of Human Fascioliasis

    PubMed Central

    Attallah, Abdelfattah M.; Bughdadi, Faisal A.; El-Shazly, Atef M.

    2013-01-01

    Currently, the laboratory diagnosis of human fascioliasis is based on the parasitological examination of parasite eggs in stool specimens and serological detection of specific antibodies in serum samples, which are often unreliable diagnostic approaches. Ideally, a sensitive and specific diagnostic test for Fasciola infection should be based on the detection of circulating Fasciola antigen, which implies active infection. Here, a 27-kDa-molecular-mass antigen was identified in a Fasciola gigantica adult worm antigen preparation, excretory-secretory products, and sera from F. gigantica-infected individuals, and it was not detected in antigenic extracts of other parasites and sera from noninfected individuals. The target antigen was isolated and partially characterized as a protein. Immunoperoxidase staining located the target epitope within teguments and guts of F. gigantica adult worms. The performance characteristics of a newly developed enzyme-linked immunosorbent assay (ELISA) based on F. gigantica circulating antigen detection in serum (FgCA-27 ELISA) were investigated using sera of 120 parasitologically diagnosed F. gigantica-infected individuals and 80 noninfected individuals. The area under the receiving operating characteristic (ROC) curve (AUC) for ELISA was significantly high (AUC = 0.961, P < 0.0001) for discriminating Fasciola-infected and noninfected individuals. The developed assay showed high degrees of sensitivity, specificity, and efficiency (>93%), and a significant correlation (r = 0.715, P < 0.0001) between antigen level and parasite egg count was shown. In conclusion, a 27-kDa Fasciola antigen was identified in sera of F. gigantica-infected individuals. A highly sensitive and specific Fasciola antigen detection assay, FgCA-27 ELISA, was developed for laboratory diagnosis of human fascioliasis. PMID:23945158

  17. Immunodetection of Fasciola gigantica circulating antigen in sera of infected individuals for laboratory diagnosis of human fascioliasis.

    PubMed

    Attallah, Abdelfattah M; Bughdadi, Faisal A; El-Shazly, Atef M; Ismail, Hisham

    2013-10-01

    Currently, the laboratory diagnosis of human fascioliasis is based on the parasitological examination of parasite eggs in stool specimens and serological detection of specific antibodies in serum samples, which are often unreliable diagnostic approaches. Ideally, a sensitive and specific diagnostic test for Fasciola infection should be based on the detection of circulating Fasciola antigen, which implies active infection. Here, a 27-kDa-molecular-mass antigen was identified in a Fasciola gigantica adult worm antigen preparation, excretory-secretory products, and sera from F. gigantica-infected individuals, and it was not detected in antigenic extracts of other parasites and sera from noninfected individuals. The target antigen was isolated and partially characterized as a protein. Immunoperoxidase staining located the target epitope within teguments and guts of F. gigantica adult worms. The performance characteristics of a newly developed enzyme-linked immunosorbent assay (ELISA) based on F. gigantica circulating antigen detection in serum (FgCA-27 ELISA) were investigated using sera of 120 parasitologically diagnosed F. gigantica-infected individuals and 80 noninfected individuals. The area under the receiving operating characteristic (ROC) curve (AUC) for ELISA was significantly high (AUC = 0.961, P < 0.0001) for discriminating Fasciola-infected and noninfected individuals. The developed assay showed high degrees of sensitivity, specificity, and efficiency (>93%), and a significant correlation (r = 0.715, P < 0.0001) between antigen level and parasite egg count was shown. In conclusion, a 27-kDa Fasciola antigen was identified in sera of F. gigantica-infected individuals. A highly sensitive and specific Fasciola antigen detection assay, FgCA-27 ELISA, was developed for laboratory diagnosis of human fascioliasis.

  18. The Effects of Antigen-Specific IgG1 Antibody for the Pulmonary-Hypertension-Phenotype and B Cells for Inflammation in Mice Exposed to Antigen and Fine Particles from Air Pollution

    PubMed Central

    Park, Sung-Hyun; Chen, Wen-Chi; Durmus, Nedim; Bleck, Bertram; Reibman, Joan; Riemekasten, Gabriela; Grunig, Gabriele

    2015-01-01

    Air pollution is known to exacerbate chronic inflammatory conditions of the lungs including pulmonary hypertension, cardiovascular diseases and autoimmune diseases. Directly pathogenic antibodies bind pro-inflammatory cell receptors and cause or exacerbate inflammation. In contrast, anti-inflammatory antibody isotypes (e.g. mouse immunoglobulin G1, IgG1) bind inhibitory cell receptors and can inhibit inflammation. Our previous studies showed that co-exposure to antigen and urban ambient particulate matter (PM2.5) induced severe pulmonary arterial thickening and increased right ventricular systolic pressures in mice via T-cell produced cytokines, Interleukin (IL)-13 and IL-17A. The aim of the current study was to understand how B cell and antibody responses integrate into this T cell cytokine network for the pulmonary hypertension phenotype. Special focus was on antigen-specific IgG1 that is the predominant antibody in the experimental response to antigen and urban ambient PM2.5. Wild type and B cell-deficient mice were primed with antigen and then challenged with antigen and urban particulate matter and injected with antibodies as appropriate. Our data surprisingly showed that B cells were necessary for the development of increased right ventricular pressures and molecular changes in the right heart in response to sensitization and intranasal challenge with antigen and PM2.5. Further, our studies showed that both, the increase in right ventricular systolic pressure and right ventricular molecular changes were restored by reconstituting the B cell KO mice with antigen specific IgG1. In addition, our studies identified a critical, non-redundant role of B cells for the IL-17A-directed inflammation in response to exposure with antigen and PM2.5, which was not corrected with antigen-specific IgG1. In contrast, IL-13-directed inflammatory markers, as well as severe pulmonary arterial remodeling induced by challenge with antigen and PM2.5 were similar in B cell-deficient and wild type mice. Our studies have identified B cells and antigen specific IgG1 as potential therapeutic targets for pulmonary hypertension associated with immune dysfunction and environmental exposures. PMID:26079807

  19. [Histocompatibility tests in a transplantation program].

    PubMed

    de-Leo-Cervantes, Claudia

    2005-01-01

    The importance of the role of the histocompatibility laboratory in solid organ transplantation is to perform HLA typing and determine the degree of HLA matching between recipient/donor. It is a useful tool to increase graft survival and decrease chronic rejection. HLA matching has a positive effect on kidney transplants and it has variable impact on other organ transplants. The crossmatch procedure is the most important test in a solid organ transplantation to evaluate the presence of recipient antibodies to antigens expressed on donor white cells. This test decreases the risk of hyperacute humoral rejection or early graft loss. Positive crossmatch is a contraindication for transplantation because it represents the existence of IgG recipient antibodies that will reath againts donor antigens. Antibody evaluation is important in donor-recipient selection and the responsability of the histocompatibility laboratory is to identify clinically relevant anti-donor HLA antibodies. This detection is useful to determine the degree of humoral alloimmunization, expressed as a percent panel reactive antibody (%PRA). This test also provides information about the antibody specificity and can be used for evaluate a patient's immune status providing a significant correlation in selecting donors.

  20. The bovine immune response to Brucella abortus I. A water soluble antigen precipitated by sera of some naturally infected cattle.

    PubMed Central

    Stemshorn, B; Nielsen, K

    1977-01-01

    Selected sera from cattle naturally infected with Brucella abortus precipitate water soluble antigens extracted by sonication from B. abortus. One of these antigens resembles antigen E (Baughn and Freeman) as it is excluded from Sephadex G-200 gels, migrates anodally when electrophoresed at pH 8.6, resists heating at 100 degrees C for ten minutes and appears to be susceptible to papain digestion. Precipitins specific for this antigen remained in sera from which all detectable Brucella agglutinating antibody had been removed by adsorption with live or heat killed B. abortus. The antigen has been extracted from smooth and rough strains of B abortus. Precipitins specific for this antigen have been detected in antisera produced against Brucella canis. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:405088

  1. Expression and Purification of a Novel Computationally Designed Antigen for Simultaneously Detection of HTLV-1 and HBV Antibodies.

    PubMed

    Heydari Zarnagh, Hafez; Ravanshad, Mehrdad; Pourfatollah, Ali Akbar; Rasaee, Mohammad Javad

    2015-04-01

    Computational tools are reliable alternatives to laborious work in chimeric protein design. In this study, a chimeric antigen was designed using computational techniques for simultaneous detection of anti-HTLV-I and anti-HBV in infected sera. Databases were searched for amino acid sequences of HBV/HLV-I diagnostic antigens. The immunodominant fragments were selected based on propensity scales. The diagnostic antigen was designed using these fragments. Secondary and tertiary structures were predicted and the B-cell epitopes were mapped on the surface of built model. The synthetic DNA coding antigen was sub-cloned into pGS21a expression vector. SDS-PAGE analysis showed that glutathione fused antigen was highly expressed in E. coli BL21 (DE3) cells. The recombinant antigen was purified by nickel affinity chromatography. ELISA results showed that soluble antigen could specifically react with the HTLV-I and HBV infected sera. This specific antigen could be used as suitable agent for antibody-antigen based screening tests and can help clinicians in order to perform quick and precise screening of the HBV and HTLV-I infections.

  2. Novel Treponema pallidum Recombinant Antigens for Syphilis Diagnostics: Current Status and Future Prospects

    PubMed Central

    Kubanov, Aleksey; Runina, Anastassia

    2017-01-01

    The recombinant protein technology considerably promoted the development of rapid and accurate treponema-specific laboratory diagnostics of syphilis infection. For the last ten years, the immunodominant recombinant inner membrane lipoproteins are proved to be sensitive and specific antigens for syphilis screening. However, the development of an enlarged T. pallidum antigen panel for diagnostics of early and late syphilis and differentiation of syphilis stages or cured syphilis remains as actual goal of multidisciplinary expertise. Current review revealed novel recombinant antigens: surface-exposed proteins, adhesins, and periplasmic and flagellar proteins, which are promising candidates for the improved syphilis serological diagnostics. The opportunities and limitations of diagnostic usage of these antigens are discussed and the criteria for selection of optimal antigens panel summarized. PMID:28523273

  3. The WT hemochromatosis protein HFE inhibits CD8⁺ T-lymphocyte activation.

    PubMed

    Reuben, Alexandre; Phénix, Mikaël; Santos, Manuela M; Lapointe, Réjean

    2014-06-01

    MHC class I (MHC I) antigen presentation is a ubiquitous process by which cells present endogenous proteins to CD8(+) T lymphocytes during immune surveillance and response. Hereditary hemochromatosis protein, HFE, is involved in cellular iron uptake but, while structurally homologous to MHC I, is unable to bind peptides. However, increasing evidence suggests a role for HFE in the immune system. Here, we investigated the impact of HFE on CD8(+) T-lymphocyte activation. Using transient HFE transfection assays in a model of APCs, we show that WT HFE (HFEWT ), but not C282Y-mutated HFE, inhibits secretion of MIP-1β from antigen-specific CD8(+) T lymphocytes. HFEWT expression also resulted in major decreases in CD8(+) T-lymphocyte activation as measured by 4-1BB expression. We further demonstrate that inhibition of CD8(+) T-lymphocyte activation was independent of MHC I surface levels, β2-m competition, HFE interaction with transferrin receptor, antigen origin, or epitope affinity. Finally, we identified the α1-2 domains of HFEWT as being responsible for inhibiting CD8(+) T-lymphocyte activation. Our data imply a new role for HFEWT in altering CD8(+) T-lymphocyte reactivity, which could modulate antigen immunogenicity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Quantitative impact of thymic selection on Foxp3+ and Foxp3- subsets of self-peptide/MHC class II-specific CD4+ T cells.

    PubMed

    Moon, James J; Dash, Pradyot; Oguin, Thomas H; McClaren, Jennifer L; Chu, H Hamlet; Thomas, Paul G; Jenkins, Marc K

    2011-08-30

    It is currently thought that T cells with specificity for self-peptide/MHC (pMHC) ligands are deleted during thymic development, thereby preventing autoimmunity. In the case of CD4(+) T cells, what is unclear is the extent to which self-peptide/MHC class II (pMHCII)-specific T cells are deleted or become Foxp3(+) regulatory T cells. We addressed this issue by characterizing a natural polyclonal pMHCII-specific CD4(+) T-cell population in mice that either lacked or expressed the relevant antigen in a ubiquitous pattern. Mice expressing the antigen contained one-third the number of pMHCII-specific T cells as mice lacking the antigen, and the remaining cells exhibited low TCR avidity. In mice lacking the antigen, the pMHCII-specific T-cell population was dominated by phenotypically naive Foxp3(-) cells, but also contained a subset of Foxp3(+) regulatory cells. Both Foxp3(-) and Foxp3(+) pMHCII-specific T-cell numbers were reduced in mice expressing the antigen, but the Foxp3(+) subset was more resistant to changes in number and TCR repertoire. Therefore, thymic selection of self-pMHCII-specific CD4(+) T cells results in incomplete deletion within the normal polyclonal repertoire, especially among regulatory T cells.

  5. Routine detection of Epstein-Barr virus specific T-cells in the peripheral blood by flow cytometry

    NASA Technical Reports Server (NTRS)

    Crucian, B. E.; Stowe, R. P.; Pierson, D. L.; Sams, C. F.

    2001-01-01

    The ability to detect cytomegalovirus-specific T-cells (CD4(+)) in the peripheral blood by flow cytometry has been recently described by Picker et al. In this method, cells are incubated with viral antigen and responding (cytokine producing) T-cells are then identified by flow cytometry. To date, this technique has not been reliably used to detect Epstein-Barr virus (EBV)-specific T-cells primarily due to the superantigen/mitogenic properties of the virus which non-specifically activate T-cells. By modifying culture conditions under which the antigens are presented, we have overcome this limitation and developed an assay to detect and quantitate EBV-specific T-cells. The detection of cytokine producing T-cells by flow cytometry requires an extremely strong signal (such as culture in the presence of PMA and ionomycin). Our data indicate that in modified culture conditions (early removal of viral antigen) the non-specific activation of T-cells by EBV is reduced, but antigen presentation will continue uninhibited. Using this method, EBV-specific T-cells may be legitimately detected using flow cytometry. No reduction in the numbers of antigen-specific T-cells was observed by the early removal of target antigen when verified using cytomegalovirus antigen (a virus with no non-specific T-cell activation properties). In EBV-seropositive individuals, the phenotype of the EBV-specific cytokine producing T-cells was evaluated using four-color flow cytometry and found to be CD45(+), CD3(+), CD4(+), CD45RA(-), CD69(+), CD25(-). This phenotype indicates the stimulation of circulating previously unactivated memory T-cells. No cytokine production was observed in CD4(+) T-cells from EBV-seronegative individuals, confirming the specificity of this assay. In addition, the use of four color cytometry (CD45, CD3, CD69, IFNgamma/IL-2) allows the total quantitative assessment of EBV-specific T-cells while monitoring the interference of EBV non-specific mitogenic activity. This method may have significant utility for the monitoring of the immune response to latent virus infection/reactivation.

  6. Antigen-Specific CD8+ T Cells Fail To Respond to Shigella flexneri ▿

    PubMed Central

    Jehl, Stephanie P.; Doling, Amy M.; Giddings, Kara S.; Phalipon, Armelle; Sansonetti, Philippe J.; Goldberg, Marcia B.; Starnbach, Michael N.

    2011-01-01

    CD8+ T lymphocytes often play a primary role in adaptive immunity to cytosolic microbial pathogens. Surprisingly, CD8+ T cells are not required for protective immunity to the enteric pathogen Shigella flexneri, despite the ability of Shigella to actively secrete proteins into the host cytoplasm, a location from which antigenic peptides are processed for presentation to CD8+ T cells. To determine why CD8+ T cells fail to play a role in adaptive immunity to S. flexneri, we investigated whether antigen-specific CD8+ T cells are primed during infection but are unable to confer protection or, alternatively, whether T cells fail to be primed. To test whether Shigella is capable of stimulating an antigen-specific CD8+ T-cell response, we created an S. flexneri strain that constitutively secretes a viral CD8+ T-cell epitope via the Shigella type III secretion system and characterized the CD8+ T-cell response to this strain both in mice and in cultured cells. Surprisingly, no T cells specific for the viral epitope were stimulated in mice infected with this strain, and cells infected with the recombinant strain were not targeted by epitope-specific T cells. Additionally, we found that the usually robust T-cell response to antigens artificially introduced into the cytoplasm of cultured cells was significantly reduced when the antigen-presenting cell was infected with Shigella. Collectively, these results suggest that antigen-specific CD8+ T cells are not primed during S. flexneri infection and, as a result, afford little protection to the host during primary or subsequent infection. PMID:21357720

  7. Heterobivalent Imaging Agents for Simultaneous Targeting Prostate-Specific Membrane Antigen (PSMA) and Hepsin

    DTIC Science & Technology

    2011-04-01

    specific membrane antigen (PSMA), showed promise in the clinic for identifying candidates for salvage radiotherapy. (4, 5) Because of the important...removed benzyl group to afford the Lys- Urea-Glu 14 in 85% yield. Compound 14 was conjugated with the suberic acid bis-(N- hydroxysuccinimide ( DSS ) in...directed against human and mouse prostate-specific membrane antigen. Prostate 2004; 61: 1-11. 4. Chang SS, Heston WD. The clinical role of prostate

  8. Method for detection of antibodies for metallic elements

    DOEpatents

    Barrick, C.W.; Clarke, S.M.; Nordin, C.W.

    1993-11-30

    An apparatus and method for detecting antibodies specific to non-protein antigens. The apparatus is an immunological plate containing a plurality of plastic projections coated with a non-protein material. Assays utilizing the plate are capable of stabilizing the non-protein antigens with detection levels for antibodies specific to the antigens on a nanogram level. A screening assay with the apparatus allows for early detection of exposure to non-protein materials. Specifically metallic elements are detected. 10 figures.

  9. Development of Augmented Leukemia/Lymphoma-Specific T-Cell Immunotherapy for Deployment with Haploidentical, Hematompoietic Progenitor-Cell Transplant

    DTIC Science & Technology

    2008-05-01

    adoptive therapy using CD19- specific chimeric antigen receptor re-directed T cells for recurrent/refractory follicular lymphoma. Mol Ther...T- cell therapies for B- cell malignancies we have developed a chimeric antigen receptor (CAR) which when expressed on the cell surface redirects T...that both CD4+ and CD8+ T cells expressing CD19-specific chimeric antigen receptor (CAR) can be generated usmg a novel non-viral gene

  10. A Randomized Phase 2 Trial of 177Lu Radiolabeled Anti-PSMA Monoclonal Antibody J591in Patients with High-Risk Castrate, Biochemically Relapsed Prostate Cancer

    DTIC Science & Technology

    2012-09-01

    micrometastases that may be targeted with radioimmunotherapy. Prostate specific membrane antigen (PSMA) is the single, most well-established, highly restricted...Radiolabeled anti- prostate specific membrane antigen (PSMA) monoclonal antibody J591 (177Lu-J591) for nonmetastatic castration-resistant prostate cancer...rationale for systemic salvage targeted anti- prostate specific membrane antigen radioimmunotherapy. Adv Urol 2012, Article ID 921674, doi:10.1155

  11. Mycobacterium tuberculosis region of difference (RD) 2 antigen Rv1985c and RD11 antigen Rv3425 have the promising potential to distinguish patients with active tuberculosis from M. bovis BCG-vaccinated individuals.

    PubMed

    Wang, Sen; Chen, Jiazhen; Zhang, Ying; Diao, Ni; Zhang, Shu; Wu, Jing; Lu, Chanyi; Wang, Feifei; Gao, Yan; Shao, Lingyun; Jin, Jialin; Weng, Xinhua; Zhang, Wenhong

    2013-01-01

    Antigens encoded in the region of difference (RD) of Mycobacterium tuberculosis constitute a potential source of specific immunodiagnostic antigens for distinguishing tuberculosis (TB) infection from BCG vaccination. We evaluated the diagnostic potential of specific T-cell epitopes selected from two immunodominant antigens, Rv1985c and Rv3425, from RD2 and RD11, respectively, on the basis of epitope mapping, in TB patients and BCG-vaccinated healthy individuals. Using a whole-blood gamma interferon release assay, a wide array of epitopes was recognized on both Rv1985c and Rv3425 in TB patients. Those epitopes that could specifically discriminate TB infection from BCG vaccination were carefully selected, and the most promising peptide pools from Rv1985c showed a sensitivity of 53.9% and a specificity of 95.5%. When the novel specific peptides from Rv1985c joined the diagnostic antigens in the QuantiFERON-TB Gold In-Tube (QFT-IT) assay, the sensitivity was increased from 86.4% to 96.2%, with no drop in specificity. These results indicate that the peptide pools selected from Rv1985c and Rv3425 have the potential to diagnose TB infection by a method that may be routinely used in clinical laboratories.

  12. Frequency and reactivity of antigen-specific T cells were concurrently measured through the combination of artificial antigen-presenting cell, MACS and ELISPOT.

    PubMed

    Shen, Chuanlai; Xu, Tao; Wu, You; Li, Xiaoe; Xia, Lingzhi; Wang, Wei; Shahzad, Khawar Ali; Zhang, Lei; Wan, Xin; Qiu, Jie

    2017-11-27

    Conventional peptide-major histocompatibility complex (pMHC) multimer staining, intracellular cytokine staining, and enzyme-linked immunospot (ELISPOT) assay cannot concurrently determine the frequency and reactivity of antigen-specific T cells (AST) in a single assay. In this report, pMHC multimer, magnetic-activated cell sorting (MACS), and ELISPOT techniques have been integrated into a micro well by coupling pMHC multimers onto cell-sized magnetic beads to characterize AST cell populations in a 96-well microplate which pre-coated with cytokine-capture antibodies. This method, termed AAPC-microplate, allows the enumeration and local cytokine production of AST cells in a single assay without using flow cytometry or fluorescence intensity scanning, thus will be widely applicable. Here, ovalbumin 257-264 -specific CD8 + T cells from OT-1 T cell receptor (TCR) transgenic mice were measured. The methodological accuracy, specificity, reproducibility, and sensitivity in enumerating AST cells compared well with conventional pMHC multimer staining. Furthermore, the AAPC-microplate was applied to detect the frequency and reactivity of Hepatitis B virus (HBV) core antigen 18-27 - and surface antigen 183-191 -specific CD8 + T cells for the patients, and was compared with conventional method. This method without the need of high-end instruments may facilitate the routine analysis of patient-specific cellular immune response pattern to a given antigen in translational studies.

  13. Human leukocyte antigens and cellular immune responses to anthrax vaccine adsorbed.

    PubMed

    Ovsyannikova, Inna G; Pankratz, V Shane; Vierkant, Robert A; Pajewski, Nicholas M; Quinn, Conrad P; Kaslow, Richard A; Jacobson, Robert M; Poland, Gregory A

    2013-07-01

    Interindividual variations in vaccine-induced immune responses are in part due to host genetic polymorphisms in the human leukocyte antigen (HLA) and other gene families. This study examined associations between HLA genotypes, haplotypes, and homozygosity and protective antigen (PA)-specific cellular immune responses in healthy subjects following immunization with Anthrax Vaccine Adsorbed (AVA). While limited associations were observed between individual HLA alleles or haplotypes and variable lymphocyte proliferative (LP) responses to AVA, analyses of homozygosity supported the hypothesis of a "heterozygote advantage." Individuals who were homozygous for any HLA locus demonstrated significantly lower PA-specific LP than subjects who were heterozygous at all eight loci (median stimulation indices [SI], 1.84 versus 2.95, P = 0.009). Similarly, we found that class I (HLA-A) and class II (HLA-DQA1 and HLA-DQB1) homozygosity was significantly associated with an overall decrease in LP compared with heterozygosity at those three loci. Specifically, individuals who were homozygous at these loci had significantly lower PA-specific LP than subjects heterozygous for HLA-A (median SI, 1.48 versus 2.13, P = 0.005), HLA-DQA1 (median SI, 1.75 versus 2.11, P = 0.007), and HLA-DQB1 (median SI, 1.48 versus 2.13, P = 0.002) loci, respectively. Finally, homozygosity at an increasing number (≥ 4) of HLA loci was significantly correlated with a reduction in LP response (P < 0.001) in a dose-dependent manner. Additional studies are needed to reproduce these findings and determine whether HLA-heterozygous individuals generate stronger cellular immune response to other virulence factors (Bacillus anthracis LF and EF) than HLA-homozygous subjects.

  14. Induction of a specific strong polyantigenic cellular immune response after short-term chemotherapy controls bacillary reactivation in murine and guinea pig experimental models of tuberculosis.

    PubMed

    Guirado, Evelyn; Gil, Olga; Cáceres, Neus; Singh, Mahavir; Vilaplana, Cristina; Cardona, Pere-Joan

    2008-08-01

    RUTI is a therapeutic vaccine that is generated from detoxified and liposomed Mycobacterium tuberculosis cell fragments that has demonstrated its efficacy in the control of bacillus reactivation after short-term chemotherapy. The aim of this study was to characterize the cellular immune response generated after the therapeutic administration of RUTI and to corroborate the lack of toxicity of the vaccine. Mouse and guinea pig experimental models were infected with a low-dose M. tuberculosis aerosol. RUTI-treated animals showed the lowest bacillary load in both experimental models. RUTI also decreased the percentage of pulmonary granulomatous infiltration in the mouse and guinea pig models. This was not the case after Mycobacterium bovis BCG treatment. Cellular immunity was studied through the characterization of the intracellular gamma interferon (IFN-gamma)-producing cells after the splenocytes' stimulation with M. tuberculosis-specific structural and growth-related antigens. Our data show that the difference between the therapeutic administration of BCG and RUTI resides mainly in the stronger activation of IFN-gamma(+) CD4(+) cells and CD8(+) cells against tuberculin purified protein derivative, ESAT-6, and Ag85B that RUTI generates. Both vaccines also triggered a specific immune response against the M. tuberculosis structural antigens Ag16kDa and Ag38kDa and a marked mRNA expression of IFN-gamma, tumor necrosis factor, interleukin-12, inducible nitric oxide synthase, and RANTES in the lung. The results show that RUTI's therapeutic effect is linked not only to the induction of a Th1 response but also to the stimulation of a quicker and stronger specific immunity against structural and growth-related antigens that reduces both the bacillary load and the pulmonary pathology.

  15. Induction of a Specific Strong Polyantigenic Cellular Immune Response after Short-Term Chemotherapy Controls Bacillary Reactivation in Murine and Guinea Pig Experimental Models of Tuberculosis▿

    PubMed Central

    Guirado, Evelyn; Gil, Olga; Cáceres, Neus; Singh, Mahavir; Vilaplana, Cristina; Cardona, Pere-Joan

    2008-01-01

    RUTI is a therapeutic vaccine that is generated from detoxified and liposomed Mycobacterium tuberculosis cell fragments that has demonstrated its efficacy in the control of bacillus reactivation after short-term chemotherapy. The aim of this study was to characterize the cellular immune response generated after the therapeutic administration of RUTI and to corroborate the lack of toxicity of the vaccine. Mouse and guinea pig experimental models were infected with a low-dose M. tuberculosis aerosol. RUTI-treated animals showed the lowest bacillary load in both experimental models. RUTI also decreased the percentage of pulmonary granulomatous infiltration in the mouse and guinea pig models. This was not the case after Mycobacterium bovis BCG treatment. Cellular immunity was studied through the characterization of the intracellular gamma interferon (IFN-γ)-producing cells after the splenocytes' stimulation with M. tuberculosis-specific structural and growth-related antigens. Our data show that the difference between the therapeutic administration of BCG and RUTI resides mainly in the stronger activation of IFN-γ+ CD4+ cells and CD8+ cells against tuberculin purified protein derivative, ESAT-6, and Ag85B that RUTI generates. Both vaccines also triggered a specific immune response against the M. tuberculosis structural antigens Ag16kDa and Ag38kDa and a marked mRNA expression of IFN-γ, tumor necrosis factor, interleukin-12, inducible nitric oxide synthase, and RANTES in the lung. The results show that RUTI's therapeutic effect is linked not only to the induction of a Th1 response but also to the stimulation of a quicker and stronger specific immunity against structural and growth-related antigens that reduces both the bacillary load and the pulmonary pathology. PMID:18524883

  16. Epigenomic Promoter Alterations Amplify Gene Isoform and Immunogenic Diversity in Gastric Adenocarcinoma.

    PubMed

    Qamra, Aditi; Xing, Manjie; Padmanabhan, Nisha; Kwok, Jeffrey Jun Ting; Zhang, Shenli; Xu, Chang; Leong, Yan Shan; Lee Lim, Ai Ping; Tang, Qianqao; Ooi, Wen Fong; Suling Lin, Joyce; Nandi, Tannistha; Yao, Xiaosai; Ong, Xuewen; Lee, Minghui; Tay, Su Ting; Keng, Angie Tan Lay; Gondo Santoso, Erna; Ng, Cedric Chuan Young; Ng, Alvin; Jusakul, Apinya; Smoot, Duane; Ashktorab, Hassan; Rha, Sun Young; Yeoh, Khay Guan; Peng Yong, Wei; Chow, Pierce K H; Chan, Weng Hoong; Ong, Hock Soo; Soo, Khee Chee; Kim, Kyoung-Mee; Wong, Wai Keong; Rozen, Steven G; Teh, Bin Tean; Kappei, Dennis; Lee, Jeeyun; Connolly, John; Tan, Patrick

    2017-06-01

    Promoter elements play important roles in isoform and cell type-specific expression. We surveyed the epigenomic promoter landscape of gastric adenocarcinoma, analyzing 110 chromatin profiles (H3K4me3, H3K4me1, H3K27ac) of primary gastric cancers, gastric cancer lines, and nonmalignant gastric tissues. We identified nearly 2,000 promoter alterations (somatic promoters), many deregulated in various epithelial malignancies and mapping frequently to alternative promoters within the same gene, generating potential pro-oncogenic isoforms ( RASA3 ). Somatic promoter-associated N-terminal peptides displaying relative depletion in tumors exhibited high-affinity MHC binding predictions and elicited potent T-cell responses in vitro , suggesting a mechanism for reducing tumor antigenicity. In multiple patient cohorts, gastric cancers with high somatic promoter usage also displayed reduced T-cell cytolytic marker expression. Somatic promoters are enriched in PRC2 occupancy, display sensitivity to EZH2 therapeutic inhibition, and are associated with novel cancer-associated transcripts. By generating tumor-specific isoforms and decreasing tumor antigenicity, epigenomic promoter alterations may thus drive intrinsic tumorigenesis and also allow nascent cancers to evade host immunity. Significance: We apply epigenomic profiling to demarcate the promoter landscape of gastric cancer. Many tumor-specific promoters activate different promoters in the same gene, some generating pro-oncogenic isoforms. Tumor-specific promoters also reduce tumor antigenicity by causing relative depletion of immunogenic peptides, contributing to cancer immunoediting and allowing tumors to evade host immune attack. Cancer Discov; 7(6); 630-51. ©2017 AACR. This article is highlighted in the In This Issue feature, p. 539 . ©2017 American Association for Cancer Research.

  17. Strategy for eliciting antigen-specific CD8+ T cell-mediated immune response against a cryptic CTL epitope of merkel cell polyomavirus large T antigen

    PubMed Central

    2012-01-01

    Background Merkel cell carcinoma (MCC) is a relatively new addition to the expanding category of oncovirus-induced cancers. Although still comparably rare, the number of cases has risen dramatically in recent years. Further complicating this trend is that MCC is an extremely aggressive neoplasm with poor patient prognosis and limited treatment options for advanced disease. The causative agent of MCC has been identified as the merkel cell polyomavirus (MCPyV). The MCPyV-encoded large T (LT) antigen is an oncoprotein that is theorized to be essential for virus-mediated tumorigenesis and is therefore, an excellent MCC antigen for the generation of antitumor immune responses. As a foreign antigen, the LT oncoprotein avoids the obstacle of immune tolerance, which normally impedes the development of antitumor immunity. Ergo, it is an excellent target for anti-MCC immunotherapy. Since tumor-specific CD8+ T cells lead to better prognosis for MCC and numerous other cancers, we have generated a DNA vaccine that is capable of eliciting LT-specific CD8+ T cells. The DNA vaccine (pcDNA3-CRT/LT) encodes the LT antigen linked to a damage-associated molecular pattern, calreticulin (CRT), as it has been demonstrated that the linkage of CRT to antigens promotes the induction of antigen-specific CD8+ T cells. Results The present study shows that DNA vaccine-induced generation of LT-specific CD8+ T cells is augmented by linking CRT to the LT antigen. This is relevant since the therapeutic effects of the pcDNA3-CRT/LT DNA vaccine is mediated by LT-specific CD8+ T cells. Mice vaccinated with the DNA vaccine produced demonstrably more LT-specific CD8+ T cells. The DNA vaccine was also able to confer LT-specific CD8+ T cell-mediated protective and therapeutic effects to prolong the survival of mice with LT-expressing tumors. In the interest of determining the LT epitope which most MCC-specific CD8+ T cells recognize, we identified the amino acid sequence of the immunodominant LT epitope as aa19-27 (IAPNCYGNI) and found that it is H-2kb-restricted. Conclusion The results of this study can facilitate the development of other modes of MCC treatment such as peptide-based vaccines and adoptive transfer of LT-specific CD8+ T cells. Likewise, the MCC DNA vaccine has great potential for clinical translation as the immunologic specificity is high and the treatment strategy can be exported to address other virus-induced tumors. PMID:23095249

  18. Peptide vaccines prevent tumor growth by activating T cells that respond to native tumor antigens.

    PubMed

    Jordan, Kimberly R; McMahan, Rachel H; Kemmler, Charles B; Kappler, John W; Slansky, Jill E

    2010-03-09

    Peptide vaccines enhance the response of T cells toward tumor antigens and represent a strategy to augment antigen-independent immunotherapies of cancer. However, peptide vaccines that include native tumor antigens rarely prevent tumor growth. We have assembled a set of peptide variants for a mouse-colon tumor model to determine how to improve T-cell responses. These peptides have similar affinity for MHC molecules, but differ in the affinity of the peptide-MHC/T-cell receptor interaction with a tumor-specific T-cell clone. We systematically demonstrated that effective antitumor responses are generated after vaccination with variant peptides that stimulate the largest proportion of endogenous T cells specific for the native tumor antigen. Importantly, we found some variant peptides that strongly stimulated a specific T-cell clone in vitro, but elicited fewer tumor-specific T cells in vivo, and were not protective. The T cells expanded by the effective vaccines responded to the wild-type antigen by making cytokines and killing target cells, whereas most of the T cells expanded by the ineffective vaccines only responded to the peptide variants. We conclude that peptide-variant vaccines are most effective when the peptides react with a large responsive part of the tumor-specific T-cell repertoire.

  19. Polyvalent immunoglobulin binding is an obstacle to accurate measurement of specific antibodies with ELISA despite inclusion of blocking agents.

    PubMed

    Loeffler, David A; Klaver, Andrea C

    2017-11-01

    Specific antibody concentrations are frequently measured in serum (and plasma and intravenous immunoglobulin) samples by enzyme-linked immunosorbent assay (ELISA). The standard negative control involves incubation of buffer alone on antigen-coated wells. The immunoreactivity that develops in antigen-coated wells in which diluted serum has been incubated is assumed to represent specific antibody binding. This approach can result in marked overestimation of specific antibody levels, because serum contains specific polyvalent antibodies which bind, primarily with low affinity, to multiple antigens (including those on ELISA plates) despite the use of blocking agents. Non-denaturing purification of serum IgG, followed by assessment of the antigen binding or antigen-binding affinity of this purified IgG, can reduce but not eliminate the problem of polyvalent antibody binding in indirect ELISAs. Alternatively, polyvalent antibody binding can be estimated by incubating a diluted serum sample on wells coated with an irrelevant protein (such as bovine serum albumin or a scrambled peptide sequence) or buffer alone, then subtracting this reactivity from the sample's binding to wells coated with the antigen of interest. Polyvalent binding of immunoglobulins must be accounted for in order to obtain accurate ELISA measurements of serum, plasma, or intravenous immunoglobulin antibodies. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Selective Enhancement of Systemic Th1 Immunity in Immunologically Immature Rats with an Orally Administered Bacterial Extract

    PubMed Central

    Bowman, L. M.; Holt, P. G.

    2001-01-01

    Infant rats primed during the first week of life with soluble antigen displayed adult-equivalent levels of T-helper 2 (Th2)-dependent immunological memory development as revealed by production of secondary immunoglobulin G1 (IgG1) antibody responses to subsequent challenge, but in contrast to adults failed to prime for Th1-dependent IgG2b responses. We demonstrate that this Th2 bias in immune function can be redressed by oral administration to neonates of a bacterial extract (Broncho-Vaxom OM-85) comprising lyophilized fractions of several common respiratory tract bacterial pathogens. Animals given OM-85 displayed a selective upregulation in primary and secondary IgG2b responses, accompanied by increased gamma interferon and decreased interleukin-4 production (both antigen specific and polyclonal), and increased capacity for development of Th1-dependent delayed hypersensitivity to the challenge antigen. We hypothesize that the bacterial extract functions via enhancement of the process of postnatal maturation of Th1 function, which is normally driven by stimuli from the gastrointestinal commensal microflora. PMID:11349036

  1. Microenvironmental stresses induce HLA-E/Qa-1 surface expression and thereby reduce CD8(+) T-cell recognition of stressed cells.

    PubMed

    Sasaki, Takanori; Kanaseki, Takayuki; Shionoya, Yosuke; Tokita, Serina; Miyamoto, Sho; Saka, Eri; Kochin, Vitaly; Takasawa, Akira; Hirohashi, Yoshihiko; Tamura, Yasuaki; Miyazaki, Akihiro; Torigoe, Toshihiko; Hiratsuka, Hiroyoshi; Sato, Noriyuki

    2016-04-01

    Hypoxia and glucose deprivation are often observed in the microenvironment surrounding solid tumors in vivo. However, how they interfere with MHC class I antigen processing and CD8(+) T-cell responses remains unclear. In this study, we analyzed the production of antigenic peptides presented by classical MHC class I in mice, and showed that it is quantitatively decreased in the cells exposed to either hypoxia or glucose deprivation. In addition, we unexpectedly found increased surface expression of HLA-E in human and Qa-1 in mouse tumor cells exposed to combined oxygen and glucose deprivation. The induced Qa-1 on the stressed tumor model interacted with an inhibitory NKG2/CD94 receptor on activated CD8(+) T cells and attenuated their specific response to the antigen. Our results thus suggest that microenvironmental stresses modulate not only classical but also nonclassical MHC class I presentation, and confer the stressed cells the capability to escape from the CD8(+) T-cell recognition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Use of Engineered Exosomes Expressing HLA and Costimulatory Molecules to Generate Antigen-specific CD8+ T Cells for Adoptive Cell Therapy.

    PubMed

    Kim, Sueon; Sohn, Hyun-Jung; Lee, Hyun-Joo; Sohn, Dae-Hee; Hyun, Seung-Joo; Cho, Hyun-Il; Kim, Tai-Gyu

    2017-04-01

    Dendritic cell-derived exosomes (DEX) comprise an efficient stimulator of T cells. However, the production of sufficient DEX remains a barrier to their broad applicability in immunotherapeutic approaches. In previous studies, genetically engineered K562 have been used to generate artificial antigen presenting cells (AAPC). Here, we isolated exosomes from K562 cells (referred to as CoEX-A2s) engineered to express human leukocyte antigen (HLA)-A2 and costimulatory molecules such as CD80, CD83, and 41BBL. CoEX-A2s were capable of stimulating antigen-specific CD8 T cells both directly and indirectly via CoEX-A2 cross-dressed cells. Notably, CoEX-A2s also generated similar levels of HCMV pp65-specific and MART1-specific CD8 T cells as DEX in vitro. The results suggest that these novel exosomes may provide a crucial reagent for generating antigen-specific CD8 T cells for adoptive cell therapies against viral infection and tumors.

  3. Specific DNA binding activity of T antigen subclasses varies among different SV40-transformed cell lines.

    PubMed

    Burger, C; Fanning, E

    1983-04-15

    Large tumor antigen (T antigen) occurs in at least three different oligomeric subclasses in cells infected or transformed by simian virus 40 (SV40): 5-7 S, 14-16 S, and 23-25 S. The 23-25 S form is complexed with a host phosphoprotein (p53). The DNA binding properties of these three subclasses of T antigen from nine different cell lines and free p53 protein were compared using an immunoprecipitation assay. All three subclasses of T antigen bound specifically to SV40 DNA sequences near the origin of replication. However, the DNA binding activity varied between different cell lines over a 40- to 50-fold range. The 23-25 S and 14-16 S forms from most of the cell lines tested bound much less SV40 origin DNA than 5-7 S T antigen. The free p53 phosphoprotein did not bind specifically to any SV40 DNA sequences.

  4. Direct measurement of IgM-Antigen interaction energy on individual red blood cells.

    PubMed

    Yeow, Natasha; Tabor, Rico F; Garnier, Gil

    2017-07-01

    Most blood grouping tests rely on the principle of red blood cells (RBCs) agglutination. Agglutination is triggered by the binding of specific blood grouping antibodies to the corresponding RBC surface antigen on multiple cells. The interaction energies between blood grouping antibodies and antigens have been poorly defined in immunohaematology. Here for the first time, we functionalized atomic force microscope (AFM) cantilevers with the IgM form of blood grouping antibodies to probe populations of individual RBCs of different groups under physiological conditions. The force-mapping mode of AFM allowed us to measure specific antibody - antigen interactions, and simultaneously localize and quantify antigen sites on the scanned cell surface. This study provides a new insight of the interactions between IgM antibodies and its corresponding antigen. The technique and information can be translated to develop better blood typing diagnostics and optimize target-specific drug delivery for medical applications. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  5. Killer artificial antigen-presenting cells: the synthetic embodiment of a ‘guided missile’

    PubMed Central

    Schütz, Christian; Oelke, Mathias; Schneck, Jonathan P; Mackensen, Andreas; Fleck, Martin

    2010-01-01

    At present, the treatment of T-cell-dependent autoimmune diseases relies exclusively on strategies leading to nonspecific suppression of the immune systems causing a substantial reduced ability to control concomitant infections or malignancies. Furthermore, long-term treatment with most drugs is accompanied by several serious adverse effects and does not consequently result in cure of the primary immunological malfunction. By contrast, antigen-specific immunotherapy offers the potential to achieve the highest therapeutic efficiency in accordance with minimal adverse effects. Therefore, several studies have been performed utilizing antigen-presenting cells specifically engineered to deplete allo- or antigen-specific T cells (‘guided missiles’). Many of these strategies take advantage of the Fas/Fas ligand signaling pathway to efficiently induce antigen-presenting cell-mediated apoptosis in targeted T cells. In this article, we discuss the advantages and shortcomings of a novel non-cell-based ‘killer artificial antigen-presenting cell’ strategy, developed to overcome obstacles related to current cell-based approaches for the treatment of T-cell-mediated autoimmunity. PMID:20636007

  6. Screening for epitope specificity directly on culture supernatants in the early phase of monoclonal antibody production by an ELISA with biotin-labeled antigen.

    PubMed

    Andersen, Ditte C; Jensen, Charlotte H; Gregersen, Annemette; Brandt, Jette; Kliem, Anette; Skjødt, Karsten; Koch, Claus; Teisner, Børge

    2004-01-01

    This report describes an assay for comparison of epitope specificity in groups of monoclonal antibodies against a given antigen. The only prerequisite is the biotin-labeled antigen. One of the monoclonal antibodies is captured onto a plastic surface via a rabbit anti-mouse Ig, and the other preincubated with biotinylated antigen. When the two antibodies react with the same epitope subsequent binding of the biotin-labeled antigen is abolished (inhibition). In the cases where no inhibition was observed, the two antibodies were considered to react with distinct, independent epitopes. The obvious advantages using this assay, are that it can be performed directly on culture supernatants in the early phase of monoclonal antibody production, and also works for antigens with repetitive epitopes. Moreover, the bonus effect, i.e., a signal in excess of the reference signal when sets of monoclonal antibodies with different epitope specificity are compared, gives a relative measure of affinity.

  7. Individual antigenic specificity and cross-reactions among amyloid preparations from different individuals

    PubMed Central

    Husby, G.; Natvig, J. B.

    1972-01-01

    Amyloid fibrils were isolated from eleven amyloid-laden organs of six patients. By alkaline degradation, soluble units were obtained which gave antibody formation in rabbits. Gel precipitation and haemagglutination inhibition were used to characterize antigens of the amyloid. Evidence was obtained that amyloids from different organs of the same individual were identical in the antigenicity. In contrast, amyloids from different individuals each showed unique individual specificity. Besides this, antigenic cross-reactions were noted between the amyloid preparations. Finally, evidence for antigenic cross-reactivity between certain amyloid preparations and immunoglobulin light chains was obtained. ImagesFig. 2Fig. 3Fig. 4Fig. 5Fig. 6 PMID:4624554

  8. Glioma antigen.

    PubMed

    Toda, Masahiro

    2012-01-01

    Because several antigenic peptides of human tumors that are recognized by T-lymphocytes have been identified, immune responses against cancer can now be artificially manipulated. Furthermore, since T-lymphocytes have been found to play an important role in the rejection of tumors by the host and also to have antigen-specific proliferative potentials and memory mechanisms, T-lymphocytes are thought to play a central role in cancer vaccination. Although multidisciplinary therapies have been attempted for the treatment of gliomas, the results remain unsatisfactory. For the development of new therapies against gliomas, it is required to identify tumor antigens as targets for specific immunotherapy. In this chapter, recent progress in research on glioma antigens is described.

  9. Antigen-specific response of murine immune system toward a yeast beta-glucan preparation, zymosan.

    PubMed

    Miura, T; Ohno, N; Miura, N N; Adachi, Y; Shimada, S; Yadomae, T

    1999-06-01

    Zymosan, a particulate beta-glucan preparation from Saccharomyces cerevisiae, shows various biological activities, including anti-tumor activity. We have previously shown that soluble beta-glucan initiated anti-tumor activity was long-lived and was effective even by prophylactic treatment at 1 month prior to tumor challenge. However, the activity by zymosan was relatively short-lived. Antigen-specific responses of mice to zymosan might be a causative mechanism. In this paper, mice were immunized with zymosan and antibody production and antigen-specific responses of lymphocytes to zymosan were analyzed. Sera of zymosan immune mice contained zymosan-specific IgG assessed by enzyme-linked immunosorbent assay and FACS. Spleen and bone marrow cells of zymosan-immune mice showed higher cytokine production in response to zymosan. Specificity of zymosan-specific responses were also analyzed using various derivatives prepared from zymosan. These facts strongly suggested that mice recognize zymosan as antigen in addition to non-specific immune stimulant.

  10. Relationship between prostate-specific antigen and obesity in prostate cancer screening: analysis of a large cohort in Japan.

    PubMed

    Kubota, Yasuaki; Seike, Kensaku; Maeda, Shinichi; Shinohara, Yuka; Iwata, Masamitsu; Sugimoto, Norio

    2011-01-01

    Previous studies have shown that lower prostate-specific antigen (PSA) levels in obese men might decrease the sensitivity of prostate cancer screening, leading to delayed diagnosis and unfavorable prognosis. We examined whether the effect of obesity is important in prostate cancer screening of Japanese men, who have a low prevalence of obesity. We analyzed 19,294 male subjects from a large cohort of Toyota Motor Corporation (TMC) employees (aged > 50 years, serum PSA level ≤ 4.0 ng/mL) who underwent physical examinations from August 2006 to December 2009. The relationship between PSA level and obesity-related factors was analyzed by simple and multiple regression analysis. The relationships between six body mass index (BMI) categories, and PSA level and PSA mass (PSA concentration × plasma volume) were analyzed. PSA level decreased significantly with increasing BMI, but the coefficient of determination was very low. Mean PSA values decreased from 1.02 to 0.85 ng/mL as BMI increased from underweight (BMI <18.5) to morbidly obese (BMI >35). However, PSA mass peaked in the overweight category and was slightly reduced with increasing BMI. On multiple regression analysis, PSA level was influenced by age, diastolic blood pressure and high-density lipoprotein as well as BMI. We found an inverse but weak relationship between PSA level and BMI. Obesity seems to have very limited influence on prostate cancer screening in this population. Nonetheless, when considering indications for prostatic biopsy in obese men, we should be aware that the hemodilution effect might reduce PSA levels. © 2010 The Japanese Urological Association.

  11. Induction of the c-myc protooncogene following antigen binding to hapten-specific B cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snow, E.C.; Fetherston, J.; Zimmer, S.

    1986-03-01

    Considerable controversy has centered on the role that the surface immunoglobulin (sIg) receptor for antigen plays during the induction of B cell activation. Stimulation by anti-Ig reagents has been shown to activate G/sub 0/ B cells to enter the cell cycle. The binding of thymus-dependent antigens to hapten-specific B cell populations apparently does not result in the movement of the antigen-binding cells (ABC) into the G/sub 1/ stage of the cell cycle. However, the authors have recently demonstrated that antigen binding to such hapten-specific B cells does result in the initiation of the membrane phosphatidylinositol cycle. In the present experiments,more » hapten-specific B cells (80-90% ABC, 99% in G/sub 0/) were incubated with either the correct hapten-carrier conjugate, with the carrier protein, or only media for 2 hours at 37/sup 0/C. At that time, total cellular RNA was isolated and subsequently analyzed by either dot blots or Northern gel techniques. The blots were probed with a (/sup 32/P)-c-myc SstI-Xhol fragment. The results indicate that hapten carrier stimulation of the hapten-specific B cells induces enhanced transcription of the c-myc gene. These observations lend further support to the premise that antigen binding to the sIg receptor results in the transduction to the cell of important signals and implicates the active participation of sIg during the process of antigen-mediated B cell activation.« less

  12. Human Neoplasms Elicit Multiple Specific Immune Responses in the Autologous Host

    NASA Astrophysics Data System (ADS)

    Sahin, Ugur; Tureci, Ozlem; Schmitt, Holger; Cochlovius, Bjorn; Johannes, Thomas; Schmits, Rudolf; Stenner, Frank; Luo, Guorong; Schobert, Ingrid; Pfreundschuh, Michael

    1995-12-01

    Expression of cDNA libraries from human melanoma, renal cancer, astrocytoma, and Hodgkin disease in Escherichia coli and screening for clones reactive with high-titer IgG antibodies in autologous patient serum lead to the discovery of at least four antigens with a restricted expression pattern in each tumor. Besides antigens known to elicit T-cell responses, such as MAGE-1 and tyrosinase, numerous additional antigens that were overexpressed or specifically expressed in tumors of the same type were identified. Sequence analyses suggest that many of these molecules, besides being the target of a specific immune response, might be of relevance for tumor growth. Antibodies to a given antigen were usually confined to patients with the same tumor type. The unexpected frequency of human tumor antigens, which can be readily defined at the molecular level by the serological analysis of autologous tumor cDNA expression cloning, indicates that human neoplasms elicit multiple specific immune responses in the autologous host and provides diagnostic and therapeutic approaches to human cancer.

  13. Localization of antigen-specific lymphocytes following lymph node challenge.

    PubMed Central

    Liu, H; Splitter, G A

    1986-01-01

    The effect of subcutaneous injections of Brucella abortus strain 19 antigen on the specific localization of autologous lymphocytes in the regional nodes of calves was analysed by fluorescent labelling and flow cytometry. Both in vitro and in vivo FITC labelling of lymphocytes indicated the preferential migration of lymphocytes from a previously challenged lymph node to a recently challenged lymph node. However, lymphocytes from a lymph node challenged with B. abortus failed to localize preferentially in a lymph node challenged with a control antigen, Listeria monocytogenes. Lymph node cells, enriched for T lymphocytes and isolated from primary stimulated or secondary challenged B. abortus lymph nodes, could proliferate when cultured with autologous antigen-pulsed macrophages. The kinetics of [3H]thymidine incorporation in lymphocytes from secondarily challenged lymph nodes occurred earlier and to a greater extent when compared with lymphocytes from primary challenged lymph nodes. Our data show that the accumulation of B. abortus-specific lymphocytes in secondarily challenged lymph nodes is increased by the presence of the specific antigen. Images Figure 4 PMID:2426183

  14. Development and maintenance of intestinal regulatory T cells.

    PubMed

    Tanoue, Takeshi; Atarashi, Koji; Honda, Kenya

    2016-05-01

    Gut-resident forkhead box P3 (FOXP3)(+)CD4(+) regulatory T cells (Treg cells) are distinct from those in other organs and have gut-specific phenotypes and functions. Whereas Treg cells in other organs have T cell receptors (TCRs) specific for self antigens, intestinal Treg cells have a distinct set of TCRs that are specific for intestinal antigens, and these cells have pivotal roles in the suppression of immune responses against harmless dietary antigens and commensal microorganisms. The differentiation, migration and maintenance of intestinal Treg cells are controlled by specific signals from the local environment. In particular, certain members of the microbiota continuously provide antigens and immunoregulatory small molecules that modulate intestinal Treg cells. Understanding the development and the maintenance of intestinal Treg cells provides important insights into disease-relevant host-microorganism interactions.

  15. Peptide Vaccines for Leishmaniasis.

    PubMed

    De Brito, Rory C F; Cardoso, Jamille M De O; Reis, Levi E S; Vieira, Joao F; Mathias, Fernando A S; Roatt, Bruno M; Aguiar-Soares, Rodrigo Dian D O; Ruiz, Jeronimo C; Resende, Daniela de M; Reis, Alexandre B

    2018-01-01

    Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the disease have become a high priority. Classic vaccines against leishmaniases were based on live or attenuated parasites or their subunits. Nevertheless, the use of whole parasite or their subunits for vaccine production has numerous disadvantages. Therefore, the use of Leishmania peptides to design more specific vaccines against leishmaniases seems promising. Moreover, peptides have several benefits in comparison with other kinds of antigens, for instance, good stability, absence of potentially damaging materials, antigen low complexity, and low-cost to scale up. By contrast, peptides are poor immunogenic alone, and they need to be delivered correctly. In this context, several approaches described in this review are useful to solve these drawbacks. Approaches, such as, peptides in combination with potent adjuvants, cellular vaccinations, adenovirus, polyepitopes, or DNA vaccines have been used to develop peptide-based vaccines. Recent advancements in peptide vaccine design, chimeric, or polypeptide vaccines and nanovaccines based on particles attached or formulated with antigenic components or peptides have been increasingly employed to drive a specific immune response. In this review, we briefly summarize the old, current, and future stands on peptide-based vaccines, describing the disadvantages and benefits associated with them. We also propose possible approaches to overcome the related weaknesses of synthetic vaccines and suggest future guidelines for their development.

  16. A set of recombinant antigens from Echinococcus granulosus with potential for use in the immunodiagnosis of human cystic hydatid disease

    PubMed Central

    VIRGINIO, V G; HERNÁNDEZ, A; ROTT, M B; MONTEIRO, K M; ZANDONAI, A F; NIETO, A; ZAHA, A; FERREIRA, H B

    2003-01-01

    Several recombinant clones expressing antigens from Echinococcus granulosus were isolated previously from a parasite cDNA library using cystic hydatid disease (CHD) patients’ sera or rabbit hyperimmune antiserum against a lipoproteic fraction from bovine cyst fluid. Six of these antigens were expressed in Escherichia coli and the purified recombinant proteins were tested in enzyme-linked immunosorbent assay (ELISA) for specific IgG with a panel of sera from patients with surgically confirmed (n = 58) or immunologically diagnosed (n = 71) CHD. Sera from clinically normal individuals (n = 203) and sera from individuals with other helminthic infections (n = 65) were assayed for the assessment of specificity. A cut-off value was determined by receiver-operating-characteristic plots for each antigen. A recombinant antigen B subunit (AgB8/2) presented the highest sensitivity (93·1%), considering the group of sera from patients with CHD surgically confirmed, and specificity (99·5%) and is proposed as the basis for an immunodiagnostic test. The other recombinant antigens tested presented sensitivities between 58·6% and 89·7%, and three of them were considered of complementary value. In subclass-specific ELISA, different IgG isotypes showed dominance in the response for each of the recombinant antigens. There was a clear predominance of IgG4 response for all antigens tested, indicating that this would be the subclass of choice to be assessed for these recombinant proteins. PMID:12699422

  17. Immune responses to vaccines delivered by encapsulation into and/or adsorption onto cationic lipid-PLGA hybrid nanoparticles.

    PubMed

    Liu, Lanxia; Ma, Pingchuan; Wang, Hai; Zhang, Chao; Sun, Hongfan; Wang, Chun; Song, Cunxian; Leng, Xigang; Kong, Deling; Ma, Guilei

    2016-03-10

    In this study, we used cationic lipid-poly(lactide-co-glycolide) acid (PLGA) hybrid nanoparticles as antigen delivery carriers to investigate how antigen-loading methods affect antigen exposure to the immune system and evaluated the resulting antigen-specific immune responses. We formulated three classes of antigen adsorbed and/or encapsulated cationic lipid-PLGA hybrid nanoparticles; we designated antigen-adsorbed (out), antigen-encapsulated (in), and antigen-adsorbed/encapsulated (both) nanoparticles. Our results demonstrate significantly more efficient lysosomal escape and cross-presentation of antigen from dendritic cells (DCs) that were exposed to "both" and "in" nanoparticles. In vivo experiments further revealed that "both" nanoparticles significantly more effectively provided not only adequate initial antigen exposure but also long-term antigen persistence at the injection site. Data from flow cytometry and ELISA analyses demonstrated elevated in vivo immune responses from mice that were immunized with nanoparticles-delivered OVA when compared with free OVA. In addition, "in" and "both" nanoparticles elicited significantly higher antigen-specific immune response than "out" nanoparticles and free OVA. These results suggest that the location of antigen entrapment is an important factor in modulating the immune responses of antigens delivered by nanoparticles. Overall, we propose here a promising approach for the future design of vaccines using cationic lipid-PLGA nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. CD8+ T-cell responses rapidly select for antigen-negative tumor cells in the prostate.

    PubMed

    Bak, S Peter; Barnkob, Mike Stein; Wittrup, K Dane; Chen, Jianzhu

    2013-12-01

    Stimulation of patients' immune systems for the treatment of solid tumors is an emerging therapeutic paradigm. The use of enriched autologous T cells for adoptive cell therapy or vaccination with antigen-loaded dendritic cells have shown clinical efficacy in melanoma and prostate cancer, respectively. However, the long-term effects of immune responses on selection and outgrowth of antigen-negative tumor cells in specific tumor types must be determined to understand and achieve long-term therapeutic effects. In this study, we have investigated the expression of a tumor-specific antigen in situ after treatment with tumor-specific CD8(+) T cells in an autochthonous mouse model of prostate cancer. After T-cell treatment, aggregates of dead antigen-positive tumor cells were concentrated in the lumen of the prostate gland and were eventually eliminated from the prostate tissue. Despite the elimination of antigen-positive tumor cells, prostate tumor continued to grow in T-cell-treated mice. Interestingly, the remaining tumor cells were antigen negative and downregulated MHC class I expression. These results show that CD8(+) T cells are effective in eliminating antigen-bearing prostate tumor cells but they also can select for the outgrowth of antigen-negative tumor cells. These findings provide insights into the requirements for an effective cancer immunotherapy within the prostate that not only induces potent immune responses but also avoids selection and outgrowth of antigen-negative tumor cells. ©2013 AACR.

  19. Antigen-Specific Antibody Glycosylation Is Regulated via Vaccination.

    PubMed

    Mahan, Alison E; Jennewein, Madeleine F; Suscovich, Todd; Dionne, Kendall; Tedesco, Jacquelynne; Chung, Amy W; Streeck, Hendrik; Pau, Maria; Schuitemaker, Hanneke; Francis, Don; Fast, Patricia; Laufer, Dagna; Walker, Bruce D; Baden, Lindsey; Barouch, Dan H; Alter, Galit

    2016-03-01

    Antibody effector functions, such as antibody-dependent cellular cytotoxicity, complement deposition, and antibody-dependent phagocytosis, play a critical role in immunity against multiple pathogens, particularly in the absence of neutralizing activity. Two modifications to the IgG constant domain (Fc domain) regulate antibody functionality: changes in antibody subclass and changes in a single N-linked glycan located in the CH2 domain of the IgG Fc. Together, these modifications provide a specific set of instructions to the innate immune system to direct the elimination of antibody-bound antigens. While it is clear that subclass selection is actively regulated during the course of natural infection, it is unclear whether antibody glycosylation can be tuned, in a signal-specific or pathogen-specific manner. Here, we show that antibody glycosylation is determined in an antigen- and pathogen-specific manner during HIV infection. Moreover, while dramatic differences exist in bulk IgG glycosylation among individuals in distinct geographical locations, immunization is able to overcome these differences and elicit antigen-specific antibodies with similar antibody glycosylation patterns. Additionally, distinct vaccine regimens induced different antigen-specific IgG glycosylation profiles, suggesting that antibody glycosylation is not only programmable but can be manipulated via the delivery of distinct inflammatory signals during B cell priming. These data strongly suggest that the immune system naturally drives antibody glycosylation in an antigen-specific manner and highlights a promising means by which next-generation therapeutics and vaccines can harness the antiviral activity of the innate immune system via directed alterations in antibody glycosylation in vivo.  .

  20. P. falciparum Infection Durations and Infectiousness Are Shaped by Antigenic Variation and Innate and Adaptive Host Immunity in a Mathematical Model

    PubMed Central

    Eckhoff, Philip

    2012-01-01

    Many questions remain about P. falciparum within-host dynamics, immunity, and transmission–issues that may affect public health campaign planning. These gaps in knowledge concern the distribution of durations of malaria infections, determination of peak parasitemia during acute infection, the relationships among gametocytes and immune responses and infectiousness to mosquitoes, and the effect of antigenic structure on reinfection outcomes. The present model of intra-host dynamics of P. falciparum implements detailed representations of parasite and immune dynamics, with structures based on minimal extrapolations from first-principles biology in its foundations. The model is designed to quickly and readily accommodate gains in mechanistic understanding and to evaluate effects of alternative biological hypothesis through in silico experiments. Simulations follow the parasite from the liver-stage through the detailed asexual cycle to clearance while tracking gametocyte populations. The modeled immune system includes innate inflammatory and specific antibody responses to a repertoire of antigens. The mechanistic focus provides clear explanations for the structure of the distribution of infection durations through the interaction of antigenic variation and innate and adaptive immunity. Infectiousness to mosquitoes appears to be determined not only by the density of gametocytes but also by the level of inflammatory cytokines, which harmonizes an extensive series of study results. Finally, pre-existing immunity can either decrease or increase the duration of infections upon reinfection, depending on the degree of overlap in antigenic repertoires and the strength of the pre-existing immunity. PMID:23028698

  1. ENHANCED ANTITOXIN RESPONSES IN IRRADIATED MICE ELICITED BY COMPLEXES OF TETANUS TOXOID AND SPECIFIC ANTIBODY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoner, R.D.; Terres, G.

    1963-12-01

    Enhanced primary antitoxin responses were obtained in mice immunized by intravenous injection with complexes of tetanus toxoid and mouse antitoxin, presumably formed either in vivo, or prepared in vitro in antigen-antibody ratios of antibody excess, equivalence, and antigen excess. The demonstration of the enhancement phenomenon elicited by complexes of toxoid and isologous mouse antitoxin provide conclusive evidence that the antibody portion of the complex does not need to be of heterologous origin in order to elicit enhanced primary antibody responses in mice. Intravenous immunization with the above complexes elicited enhanced primary responses in irradiated animals, whereas minimal responses were obtainedmore » with antigen only. Littie difference was observed in primary responses in nonirradiated mice when antigen only or antigen complexed with specific antibody is given by subcutaneous injection. However, enhanced primary antitoxin responses were obtained in irradiated mice (400 rad) immunized with the various complexes over the responses observed in irradiated animals immunlzed with antigen only. The greatest degree of enhancement occurred when the complexes were prepared in the region of equivalence and antigen excess. Secondary antitoxin responses were repressed when the same complexes of antigen and antibody were injected to elicit secondary responses. A corresponding repression of secondary responses was observed in irradiated mice when radiation doses of 300 rad were delivered 24 hr before the second injection of antigen complexed with specific mouse antitoxin. (BBB)« less

  2. Species-Specific Elements in the Large T-Antigen J Domain Are Required for Cellular Transformation and DNA Replication by Simian Virus 40

    PubMed Central

    Sullivan, Christopher S.; Tremblay, James D.; Fewell, Sheara W.; Lewis, John A.; Brodsky, Jeffrey L.; Pipas, James M.

    2000-01-01

    The J domain of simian virus 40 (SV40) large T antigen is required for efficient DNA replication and transformation. Despite previous reports demonstrating the promiscuity of J domains in heterologous systems, results presented here show the requirement for specific J-domain sequences in SV40 large-T-antigen-mediated activities. In particular, chimeric-T-antigen constructs in which the SV40 T-antigen J domain was replaced with that from the yeast Ydj1p or Escherichia coli DnaJ proteins failed to replicate in BSC40 cells and did not transform REF52 cells. However, T antigen containing the JC virus J domain was functional in these assays, although it was less efficient than the wild type. The inability of some large-T-antigen chimeras to promote DNA replication and elicit cellular transformation was not due to a failure to interact with hsc70, since a nonfunctional chimera, containing the DnaJ J domain, bound hsc70. However, this nonfunctional chimeric T antigen was reduced in its ability to stimulate hsc70 ATPase activity and unable to liberate E2F from p130, indicating that transcriptional activation of factors required for cell growth and DNA replication may be compromised. Our data suggest that the T-antigen J domain harbors species-specific elements required for viral activities in vivo. PMID:10891510

  3. Synergistic protection of mice against plague with monoclonal antibodies specific for the F1 and V antigens of Yersinia pestis.

    PubMed

    Hill, Jim; Copse, Catherine; Leary, Sophie; Stagg, Anthony J; Williamson, E Diane; Titball, Richard W

    2003-04-01

    Monoclonal antibodies specific for Yersinia pestis V antigen and F1 antigen, administered singly or in combination, protected mice in models of bubonic and pneumonic plague. Antibodies showed synergy when administered prophylactically and as a therapy 48 h postinfection. Monoclonal antibodies therefore have potential as a treatment for plague.

  4. Development of Bacterial Display Peptides for use in Biosensing Applications

    DTIC Science & Technology

    2012-09-01

    performance. Specific results on peptides binders to Protective Antigen (PA) protein of Bacillus anthracis and Staphylococcal Enterotoxin B (SEB...reagent, affinity reagent, bacterial display, multi-scale modeling, docking, protective antigen , SEB, biosensing 16. SECURITY CLASSIFICATION OF: 17...performance. Specific results on peptides binders to Protective Antigen (PA) protein of Bacillus anthracis and Staphylococcal Enterotoxin B (SEB) will be

  5. A new kind of highly sensitive competitive lateral flow immunoassay displaying direct analyte-signal dependence. Application to the determination of the mycotoxin deoxynivalenol.

    PubMed

    Urusov, Alexandr E; Gubaidullina, Miliausha K; Petrakova, Alina V; Zherdev, Anatoly V; Dzantiev, Boris B

    2017-12-06

    A new kind of competitive immunochromatographic assay is presented. It is based on the use of a test strip loaded with (a) labeled specific antibodies, (b) a hapten-protein conjugate at the control zone, and (c) antibodies interacting with the specific antibodies in the analytical zone. In the case where a sample does not contain the target antigen (hapten), all labeled antibodies remain in the control zone because of the selected ratio of reactants. The analytical zone remains colorless because the labeled antibodies do not reach it. If an antigen is present in the sample, it interferes with the binding of the specific antibodies in the control zone and knocks them out. Some of these antibodies pass the control zone to form a colored line in the analytical zone. The intensity of the color is directly proportional to the amount of the target antigen in the sample. The assay has an attractive feature in that an appearance in coloration is more easily detected visually than a decoloration. Moreover, the onset of coloration is detectable at a lower concentration than a decoloration. The new detection scheme was applied to the determination of the mycotoxin deoxynivalenol. The visual limit of detection is 2 ng·mL -1 in corn extracts (35 ng per gram of sample). With the same reagents, this is lower by a factor of 60 than the established test strip. The assay takes only 15 min. This new kind of assay has wide potential applications for numerous low molecular weight analytes. Graphical abstract Competitive immunochromatography with direct analyte-signal dependence is proposed. It provides a 60-fold decrease of the detection limit for mycotoxin deoxynivalenol. The analyte-antibody-label complexes move along the immobilized antigen (control zone) and bind with anti-species antibodies (test zone).

  6. Prostate-Specific Membrane Antigen Expression in Adrenocortical Carcinoma on 68Ga-Prostate-Specific Membrane Antigen PET/CT.

    PubMed

    Arora, Saurabh; Damle, Nishikant Avinash; Aggarwal, Sameer; Passah, Averilicia; Behera, Abhishek; Arora, Geetanjali; Bal, Chandrasekhar; Tripathi, Madhavi

    2018-06-01

    We present here a case of metastatic adrenocortical carcinoma with bilateral lung nodules. The patient had been treated with mitotane therapy initially and then was later referred for chemotherapy. There was progression of disease noted on the F-FDG PET/CT. Ga prostate-specific membrane antigen (PSMA) PET/CT was planned to explore the possibility of future treatment with Lu-DKFZ-PSMA-617. It revealed peripheral increased uptake of Ga-HBED-CC-PSMA equal to liver uptake.

  7. Selective effect of irradiation on responses to thymus-independent antigen.

    PubMed

    Lee, S K; Woodland, R T

    1985-02-01

    Low doses of ionizing radiation have a selective immunosuppressive effect on in vivo B cell responses to thymus-independent (TI) antigens. The B cell response, assayed as direct anti-trinitrophenyl (TNP)-specific plaque-forming cells (PFC), induced by type 2, TI antigens (TNP-Ficoll or TNP-Dextran), was reduced, on the average, by 10-fold in animals exposed to 200 rad of ionizing radiation 24 hr before antigen challenge. In contrast, PFC responses to type 1, TI antigens (TNP-lipopolysaccharide or TNP-Brucella abortus) are unaffected in mice exposed to the same dose of radiation. Adoptive transfers showed that this selective immunosuppression is a result of the specific inactivation of the B cell subpopulation responding to type 2, TI antigens. These experiments suggest that physiologic differences exist in the B cell subpopulations of normal mice which respond to type 1, or type 2, TI antigens.

  8. Lactoferrin modulation of BCG-infected dendritic cell functions

    PubMed Central

    Hwang, Shen-An

    2009-01-01

    Lactoferrin, an 80-kDa iron-binding protein with immune modulating properties, is a unique adjuvant component able to enhance efficacy of the existing Mycobacterium bovis Bacillus Calmette Guerin (BCG) vaccine to protect against murine model of tuberculosis. Although identified as having effects on macrophage presentation events, lactoferrin's capability to modulate dendritic cells (DCs) function when loaded with BCG antigens has not been previously recognized. In this study, the potential of lactoferrin to modulate surface expression of MHC II, CD80, CD86 and CD40 from bone marrow-derived dendritic cells (BMDCs) was examined. Generally, lactoferrin decreased pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, IL-6 and IL-12p40] and chemokines [macrophage inflammatory protein (MIP)-1α and MIP-2] and increased regulatory cytokine, transforming growth factor-β1 and a T-cell chemotatic factor, monocyte chemotactic protein-1, from uninfected or BCG-infected BMDCs. Culturing BCG-infected BMDCs with lactoferrin also enhanced their ability to respond to IFN-γ activation through up-regulation of maturation markers: MHC I, MHC II and the ratio of CD86:CD80 surface expression. Furthermore, lactoferrin-exposed BCG-infected DCs increased stimulation of BCG-specific CD3+CD4+ splenocytes, as defined by increasing IFN-γ production. Finally, BCG-/lactoferrin-vaccinated mice possessed an increased pool of BCG antigen-specific IFN-γ producing CD3+CD4+CD62L− splenocytes. These studies suggest a mechanism in which lactoferrin may exert adjuvant activity by enhancing DC function to promote generation of antigen-specific T cells. PMID:19692539

  9. Active immunization against Plasmodium berghei malaria in mice, using different preparations of plasmodial antigen and different pathways of administration*

    PubMed Central

    Jerusalem, Christoph; Eling, Wynand

    1969-01-01

    With regard to the effectiveness of the antigens in inducing clinical immunity against malaria parasites, the minimum amount of living antigen developed in mice during controlled low parasitaemia with Plasmodium berghei has been estimated and compared with the amount of non-living antigen obtained by various methods of freeing parasites from their erythrocyte hosts. Whereas about 100 mg of living antigen per kg of body-weight are sufficient to induce a degree of hyperimmunity, 1240 mg/kg of a freshly prepared crude antigen are necessary to enable the mice to survive a challenge infection while 3500 mg—7000 mg/kg of a vaccine prepared from freshly isolated plasmodia are necessary to produce a degree of immunity comparable with hyperimmunity. It appears, therefore, that every manipulation of the parasitized erythrocyte or the isolated plasmodium outside the host organism, as well as a storage time in excess of 36 hours, causes a reduction in antigenicity, up to a factor of 10-2. However, this decrease in antigenicity is disproportionate compared with the reduced rate of infectivity of stored, parasitized erythrocytes and isolated parasites. After an incubation period of 18 hours, the ID100 increases from 2 × 10 to 5 × 107 parasites. Therefore, the differences between the essential amount of living plasmodia and non-living antigen may be due to other, hitherto unknown, factors and not exclusively to degradation of the most important antigen. The saponin method of freeing parasites from their erythrocyte hosts was found to yield the purest antigen. Preparations of parasites obtained by treating parasitized erythrocytes with anti-erythrocyte serum or with formalin were highly contaminated with remnants of the host cells and showed no better antigenic qualities than the parasites isolated by means of saponin. Since the decrease of antigenicity associated with harvesting and isolation procedures is constant, vaccination with a fractionated antigen pool should be possible. ImagesFIG. 4 PMID:5307595

  10. Peyer’s patches: Organizing B cell responses at the intestinal frontier

    PubMed Central

    Reboldi, Andrea; Cyster, Jason G

    2015-01-01

    Summary Secondary lymphoid tissues share the important function of bringing together antigens and rare antigen-specific lymphocytes to foster induction of adaptive immune responses. Peyer’s patches (PPs) are unique compared to other secondary lymphoid tissues in their continual exposure to an enormous diversity of microbiome- and food-derived antigens and in the types of pathogens they encounter. Antigens are delivered to PPs by specialized microfold (M) epithelial cells and they may be captured and presented by resident dendritic cells (DCs). In accord with their state of chronic microbial antigen exposure, PPs exhibit continual germinal center (GC) activity. These GCs contribute to the generation of B cells and plasma cells producing somatically mutated gut antigen-specific IgA antibodies, but have also been suggested to support antigen-nonspecific diversification of the B cell repertoire. Here we review current understanding of how PPs foster B cell encounters with antigen, how they favor isotype switching to the secretory IgA isotype, and how their GC responses may uniquely contribute to mucosal immunity. PMID:27088918

  11. Analysis of density and epitopes of D antigen on the surface of erythrocytes from DEL phenotypic individuals carrying the RHD1227A allele.

    PubMed

    Gu, Juan; Sun, An-Yuan; Wang, Xue-Dong; Shao, Chao-Peng; Li, Zheng; Huang, Li-Hua; Pan, Zhao-Lin; Wang, Qing-Ping; Sun, Guang-Ming

    2014-04-01

    The characteristics of the D antigen are important as they influence the immunogenicity of D variant cells. Several studies on antigenic sites have been reported in normal D positive, weak D and partial D cases, including a comprehensive analysis of DEL types in Caucasians. The aim of this study was to assess D antigen density and epitopes on the erythrocyte surface of Asian type DEL phenotypic individuals carrying the RHD1227A allele in the Chinese population. A total of 154 DEL phenotypic individuals carrying the RHD1227A allele were identified through adsorption and elution tests and polymerase chain reaction analysis with sequence-specific primers in the Chinese population. D antigen density on the erythrocyte surface of these individuals was detected using a flow cytometric method. An erythrocyte sample with known D antigen density was used as a standard. Blood samples from D-negative and D-positive individuals were used as controls. In addition, D antigen epitopes on the erythrocyte surface of DEL individuals carrying the RHD1227A allele were investigated with 18 monoclonal anti-D antibodies specific for different D antigen epitopes. The means of the median fluorescence intensity of D antigen on the erythrocyte membrane surface of D-negative, D-positive and DEL individuals were 2.14±0.25, 193.61±11.43 and 2.45±0.82, respectively. The DEL samples were estimated to have approximately 22 D antigens per cell. The samples from all 154 DEL individuals reacted positively with 18 monoclonal anti-D antibodies specific for different D antigen epitopes. In this study, D antigen density on the erythrocyte surface of DEL individuals carrying the RHD1227A allele was extremely low, there being only very few antigenic molecules per cell, but the D antigen epitopes were grossly complete.

  12. Characterisation of surface antigens of Strongylus vulgaris of potential immunodiagnostic importance.

    PubMed

    Nichol, C; Masterson, W J

    1987-08-01

    When antigens prepared by detergent washes of Strongylus vulgaris and Parascaris equorum were probed in an enzyme-linked immunosorbent assay test with horse sera from single species infections of S. vulgaris and P. equorum, a high degree of cross-reaction between the species was demonstrated. Western blot analysis of four common horse nematode species showed a large number of common antigens when probed with horse infection sera. Antisera raised in rabbits against the four species, including S. vulgaris, were also found to cross-react considerably. Rabbit anti-S. vulgaris sera were affinity adsorbed over a series of affinity chromatography columns, bound with cross-reactive surface antigens, to obtain S. vulgaris-specific antisera and thereby identify S. vulgaris-specific antigens by Western blotting. These studies revealed potentially specific antigens of apparent molecular weights of 100,000, 52,000, and 36,000. Of these bands, only the 52 kDa and 36 kDa appeared to be found on the surface as judged by 125I-labelling of intact worms by the Iodogen method, although neither protein was immunoprecipitated by horse infection sera. Finally, immunoprecipitation of in vitro translated proteins derived from larval S. vulgaris RNA suggests that two proteins may be parasite-derived. These findings are discussed both with respect to the surface of S. vulgaris and to the use of these species-specific antigens in immunodiagnosis.

  13. Masked Chimeric Antigen Receptor for Tumor-Specific Activation.

    PubMed

    Han, Xiaolu; Bryson, Paul D; Zhao, Yifan; Cinay, Gunce E; Li, Si; Guo, Yunfei; Siriwon, Natnaree; Wang, Pin

    2017-01-04

    Adoptive cellular therapy based on chimeric antigen receptor (CAR)-engineered T (CAR-T) cells is a powerful form of cancer immunotherapy. CAR-T cells can be redirected to specifically recognize tumor-associated antigens (TAAs) and induce high levels of antitumor activity. However, they may also display "on-target off-tumor" toxicities, resulting from low-level expression of TAAs in healthy tissues. These adverse effects have raised considerable safety concerns and limited the clinical application of this otherwise promising therapeutic modality. To minimize such side effects, we have designed an epidermal growth factor receptor (EGFR)-specific masked CAR (mCAR), which consists of a masking peptide that blocks the antigen-binding site and a protease-sensitive linker. Proteases commonly active in the tumor microenvironment can cleave the linker and disengage the masking peptide, thereby enabling CAR-T cells to recognize target antigens only at the tumor site. In vitro mCAR showed dramatically reduced antigen binding and antigen-specific activation in the absence of proteases, but normal levels of binding and activity upon treatment with certain proteases. Masked CAR-T cells also showed antitumor efficacy in vivo comparable to that of unmasked CAR. Our study demonstrates the feasibility of improving the safety profile of conventional CARs and may also inspire future design of CAR molecules targeting broadly expressed TAAs. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  14. Diagnostic Markers of Ovarian Cancer by High-Throughput Antigen Cloning and Detection on Arrays

    PubMed Central

    Chatterjee, Madhumita; Mohapatra, Saroj; Ionan, Alexei; Bawa, Gagandeep; Ali-Fehmi, Rouba; Wang, Xiaoju; Nowak, James; Ye, Bin; Nahhas, Fatimah A.; Lu, Karen; Witkin, Steven S.; Fishman, David; Munkarah, Adnan; Morris, Robert; Levin, Nancy K.; Shirley, Natalie N.; Tromp, Gerard; Abrams, Judith; Draghici, Sorin; Tainsky, Michael A.

    2008-01-01

    A noninvasive screening test would significantly facilitate early detection of epithelial ovarian cancer. This study used a combination of high-throughput selection and array-based serologic detection of many antigens indicative of the presence of cancer, thereby using the immune system as a biosensor. This high-throughput selection involved biopanning of an ovarian cancer phage display library using serum immunoglobulins from an ovarian cancer patient as bait. Protein macroarrays containing 480 of these selected antigen clones revealed 65 clones that interacted with immunoglobulins in sera from 32 ovarian cancer patients but not with sera from 25 healthy women or 14 patients having other benign or malignant gynecologic diseases. Sequence analysis data of these 65 clones revealed 62 different antigens. Among the markers, we identified some known antigens, including RCAS1, signal recognition protein-19, AHNAK-related sequence, nuclear autoantogenic sperm protein, Nijmegen breakage syndrome 1 (Nibrin), ribosomal protein L4, Homo sapiens KIAA0419 gene product, eukaryotic initiation factor 5A, and casein kinase II, as well as many previously uncharacterized antigenic gene products. Using these 65 antigens on protein microarrays, we trained neural networks on two-color fluorescent detection of serum IgG binding and found an average sensitivity and specificity of 55% and 98%, respectively. In addition, the top 6 of the most specific clones resulted in an average sensitivity and specificity of 32% and 94%, respectively. This global approach to antigenic profiling, epitomics, has applications to cancer and autoimmune diseases for diagnostic and therapeutic studies. Further work with larger panels of antigens should provide a comprehensive set of markers with sufficient sensitivity and specificity suitable for clinical testing in high-risk populations. PMID:16424057

  15. Manipulating the antigen-specific immune response by the hydrophobicity of amphiphilic poly(γ-glutamic acid) nanoparticles.

    PubMed

    Shima, Fumiaki; Akagi, Takami; Uto, Tomofumi; Akashi, Mitsuru

    2013-12-01

    The new generation vaccines are safe but poorly immunogenic, and thus they require the use of adjuvants. However, conventional vaccine adjuvants fail to induce potent cellular immunity, and their toxicity and side-effects hinder the clinical use. Therefore, a vaccine adjuvant which is safe and can induce an antigen-specific cellular immunity-biased immune response is urgently required. In the development of nanoparticle-based vaccine adjuvants, the hydrophobicity is one of the most important factors. It could control the interaction between the encapsulated antigens and/or nanoparticles with immune cells. In this study, nanoparticles (NPs) composed of amphiphilic poly(γ-glutamic acid)-graft-L-phenylalanine ethyl ester (γ-PGA-Phe) with various grafting degrees of hydrophobic side chains were prepared to evaluate the effect of hydrophobicity of vaccine carriers on the antigen encapsulation behavior, cellular uptake, activation of dendritic cells (DCs), and induction of antigen-specific cellular immunity-biased immune responses. These NPs could efficiently encapsulate antigens, and the uptake amount of the encapsulated antigen by DCs was dependent on the hydrophobicity of γ-PGA-Phe NPs. Moreover, the activation potential of the DCs and the induction of antigen-specific cellular immunity were correlated with the hydrophobicity of γ-PGA-Phe NPs. By controlling the hydrophobicity of antigen-encapsulated γ-PGA-Phe NPs, the activation potential of DCs was able to manipulate about 5 to 30-hold than the conventional vaccine, and the cellular immunity was about 10 to 40-hold. These results suggest that the hydrophobicity of NPs is a key factor for changing the interaction between NPs and immune cells, and thus the induction of cellular immunity-biased immune response could be achieved by controlling the hydrophobicity of them. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. [Saccharomyces boulardii modulates dendritic cell properties and intestinal microbiota disruption after antibiotic treatment].

    PubMed

    Collignon, A; Sandré, C; Barc, M-C

    2010-09-01

    Saccharomyces boulardii is a non-pathogenic yeast with biotherapeutic properties that has been used successfully to prevent and to treat various infectious and antibiotic-associated diarrheas. The intestinal microbiota is responsible for colonization resistance and immune response to pathogens but can be disrupted by antibiotics and lose its barrier effect. Dendritic cells (DCs) are professional antigen-presenting cells of the immune system with the ability to initiate a primary immune response or immune tolerance. In a human microbiota-associated mouse model, we evaluated the influence of S. boulardii on the composition of the microbiota and on the properties of dendritic cells in normal homeostatic conditions and after antibiotic-induced stress. The DCs were derived from splenic precursors. Membrane antigen expression and phagocytosis of FITC-latex beads by DCs were evaluated by flow cytometry. The molecular analysis of the microbiota was performed with fluorescence in situ hybridization (FISH) combined with flow cytometry or confocal microscopy using group specific 16S rRNA targeted probes. This evaluation was conducted during and after a 7-day oral treatment with amoxicillin-clavulanic acid alone and in combination with the administration of the yeast. The antibiotic treatment increased the phagocytic activity of DCs. Their antigen presenting function (MHC class II antigen and CD 86 costimulatory molecule membrane expression) was up-regulated. This reflects a functional activation of DCs. In the presence of S. boulardii, the modification of membrane antigen expression was down regulated. To correlate these modifications to the microbiota disruption, we analyzed in parallel the composition of the intestinal microbiota. As previously shown, the amoxicillin-clavulanic acid treatment, both alone and with S. boulardii, did not quantitatively alter the total microbiota. In contrast, after one day of the antibiotic treatment the Clostridium coccoides group decreased dramatically in the two groups of mice treated with the antibiotic. The level then increased regularly, and at days 17, 22 and 24 it increased faster (P < 0.05) in the AB+ Sb group than in the AB group, reaching the initial level at day 29. The Bacteroides group in the two groups of mice increased during the antibiotic treatment and decreased after the antibiotic was stopped, reaching the initial level. The rate of decrease was faster for the AB+ Sb group than for the AB group, with a significant difference (P < 0.05) at days 17 and 22. During antibiotic treatment, the Enterobacteriaceae group became detectable and its level increased in both groups of mice. After discontinuation of the antibiotic, its level decreased to become undetectable at day 29, without significant difference between the two groups. These results showed that S. boulardii treatment tends to restore the balance of the dominant anaerobic microbiota more rapidly in human microbiota associated-mice treated with amoxicillin-clavulanic acid; the results also suggest that the yeast has a role in modulating the specific immune response to microbial associated-molecular patterns. This may explain, at least in part, the beneficial effects of S. boulardii in preventing antibiotic-associated diarrhea. This also suggests that the yeast plays a role in maintaining intestinal homeostasis. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  17. A Novel Enzyme-Linked Immunosorbent Assay for Diagnosis of Mycobacterium avium subsp. paratuberculosis Infections (Johne's Disease) in Cattle

    PubMed Central

    Speer, C. A.; Scott, M. Cathy; Bannantine, John P.; Waters, W. Ray; Mori, Yasuyuki; Whitlock, Robert H.; Eda, Shigetoshi

    2006-01-01

    Enzyme-linked immunosorbent assays (ELISAs) for the diagnosis of Johne's disease (JD), caused by Mycobacterium avium subsp. paratuberculosis, were developed using whole bacilli treated with formaldehyde (called WELISA) or surface antigens obtained by treatment of M. avium subsp. paratuberculosis bacilli with formaldehyde and then brief sonication (called SELISA). ELISA plates were coated with either whole bacilli or sonicated antigens and tested for reactivity against serum obtained from JD-positive and JD-negative cattle or from calves experimentally inoculated with M. avium subsp. paratuberculosis, Mycobacterium avium subsp. avium, or Mycobacterium bovis. Because the initial results obtained from the WELISA and SELISA were similar, most of the subsequent experiments reported herein were performed using the SELISA method. To optimize the SELISA test, various concentrations (3.7 to 37%) of formaldehyde and intervals of sonication (2 to 300 s) were tested. With an increase in formaldehyde concentration and a decreased interval of sonication, there was a concomitant decrease in nonspecific binding by the SELISA. SELISAs prepared by treating M. avium subsp. paratuberculosis with 37% formaldehyde and then a 2-s burst of sonication produced the greatest difference (7×) between M. avium subsp. paratuberculosis-negative and M. avium subsp. paratuberculosis-positive serum samples. The diagnostic sensitivity and specificity for JD by the SELISA were greater than 95%. The SELISA showed subspecies-specific detection of M. avium subsp. paratuberculosis infections in calves experimentally inoculated with M. avium subsp. paratuberculosis or other mycobacteria. Based on diagnostic sensitivity and specificity, the SELISA appears superior to the commercial ELISAs routinely used for the diagnosis of JD. PMID:16682472

  18. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses.

    PubMed

    Paust, Silke; Gill, Harvinder S; Wang, Bao-Zhong; Flynn, Michael P; Moseman, E Ashley; Senman, Balimkiz; Szczepanik, Marian; Telenti, Amalio; Askenase, Philip W; Compans, Richard W; von Andrian, Ulrich H

    2010-12-01

    Hepatic natural killer (NK) cells mediate antigen-specific contact hypersensitivity (CHS) in mice deficient in T cells and B cells. We report here that hepatic NK cells, but not splenic or naive NK cells, also developed specific memory of vaccines containing antigens from influenza, vesicular stomatitis virus (VSV) or human immunodeficiency virus type 1 (HIV-1). Adoptive transfer of virus-sensitized NK cells into naive recipient mice enhanced the survival of the mice after lethal challenge with the sensitizing virus but not after lethal challenge with a different virus. NK cell memory of haptens and viruses depended on CXCR6, a chemokine receptor on hepatic NK cells that was required for the persistence of memory NK cells but not for antigen recognition. Thus, hepatic NK cells can develop adaptive immunity to structurally diverse antigens, an activity that requires NK cell-expressed CXCR6.

  19. Definition of Drosophila hemocyte subsets by cell-type specific antigens.

    PubMed

    Kurucz, Eva; Váczi, B; Márkus, R; Laurinyecz, Barbara; Vilmos, P; Zsámboki, J; Csorba, Kinga; Gateff, Elisabeth; Hultmark, D; Andó, I

    2007-01-01

    We analyzed the heterogeneity of Drosophila hemocytes on the basis of the expression of cell-type specific antigens. The antigens characterize distinct subsets which partially overlap with those defined by morphological criteria. On the basis of the expression or the lack of expression of blood cell antigens the following hemocyte populations have been defined: crystal cells, plasmatocytes, lamellocytes and precursor cells. The expression of the antigens and thus the different cell types are developmentally regulated. The hemocytes are arranged in four main compartments: the circulating blood cells, the sessile tissue, the lymph glands and the posterior hematopoietic tissue. Each hemocyte compartment has a specific and characteristic composition of the various cell types. The described markers represent the first successful attempt to define hemocyte lineages by immunological markers in Drosophila and help to define morphologically, functionally, spatially and developmentally distinct subsets of hemocytes.

  20. Serodiagnosis of parasitic diseases.

    PubMed Central

    Maddison, S E

    1991-01-01

    In this review on serodiagnosis of parasitic diseases, antibody detection, antigen detection, use of monoclonal antibodies in parasitic serodiagnosis, molecular biological technology, and skin tests are discussed. The focus at the Centers for Disease Control on developing improved antigens, a truly quantitative FAST-enzyme-linked immunosorbent assay, and the very specific immunoblot assays for antibody detection is highlighted. The last two assays are suitable for field studies. Identification of patient response in terms of immunoglobulin class or immunoglobulin G subclass isotypes or both is discussed. Immunoglobulin isotypes may asist in defining the stage of some diseases. In other instances, use of a particular anti-isotype conjugate may increase the specificity of the assay. Monoclonal antibodies have played important roles in antigen purification and identification, in competitive antibody assays with increased sensitivity and specificity, and in assays for antigen detection in serum, body fluids, or excreta. Molecular biological technology has allowed significant advances in the production of defined parasitic serodiagnostic antigens. PMID:1747862

  1. Protective antigens from El Tor vibrios

    PubMed Central

    Watanabe, Yoshikazu; Verwey, W. F.

    1965-01-01

    A biochemically and immunologically homogeneous antigenic fraction having the properties of a lipopolysaccharide has been isolated from the culture supernatant of an El Tor vibrio (Ogawa subtype). This antigen was very specifically protective for mice challenged with Ogawa strains of either El Tor vibrios or Vibrio cholerae. Rabbit antisera prepared against the antigen were passively protective for mice and highly vibriocidal but had little agglutinating activity. However, the antigen was able specifically to absorb agglutinins, as well as mouse-protective and vibriocidal antibody from serum prepared against whole bacterial cells. The specific protective activity of this lipopolysaccharide was much greater than that of vaccines made from whole bacterial cells, and its toxicity in animals was about equivalent to that of whole cells. The relationship of activity to toxicity therefore represented an improvement over the vaccines that were studied. ImagesFIG. 1FIG. 3FIG. 4FIG. 5 PMID:5294306

  2. Fluorescence polarization immunoassays for rapid, accurate and sensitive determination of mycotoxins

    USDA-ARS?s Scientific Manuscript database

    Fluorescence polarization immunoassay (FPIA) is a type of homogeneous assay. For low molecular weight antigens, such as mycotoxins, it is based on the competition between an unlabeled antigen and its fluorescent-labeled derivative (tracer) for an antigen-specific antibody. The antigen content is det...

  3. ESAT-6 Targeting to DEC205+ Antigen Presenting Cells Induces Specific-T Cell Responses against ESAT-6 and Reduces Pulmonary Infection with Virulent Mycobacterium tuberculosis.

    PubMed

    Silva-Sánchez, Aarón; Meza-Pérez, Selene; Flores-Langarica, Adriana; Donis-Maturano, Luis; Estrada-García, Iris; Calderón-Amador, Juana; Hernández-Pando, Rogelio; Idoyaga, Juliana; Steinman, Ralph M; Flores-Romo, Leopoldo

    2015-01-01

    Airways infection with Mycobacterium tuberculosis (Mtb) is contained mostly by T cell responses, however, Mtb has developed evasion mechanisms which affect antigen presenting cell (APC) maturation/recruitment delaying the onset of Ag-specific T cell responses. Hypothetically, bypassing the natural infection routes by delivering antigens directly to APCs may overcome the pathogen's naturally evolved evasion mechanisms, thus facilitating the induction of protective immune responses. We generated a murine monoclonal fusion antibody (α-DEC-ESAT) to deliver Early Secretory Antigen Target (ESAT)-6 directly to DEC205+ APCs and to assess its in vivo effects on protection associated responses (IFN-γ production, in vivo CTL killing, and pulmonary mycobacterial load). Treatment with α-DEC-ESAT alone induced ESAT-6-specific IFN-γ producing CD4+ T cells and prime-boost immunization prior to Mtb infection resulted in early influx (d14 post-infection) and increased IFN-γ+ production by specific T cells in the lungs, compared to scarce IFN-γ production in control mice. In vivo CTL killing was quantified in relevant tissues upon transferring target cells loaded with mycobacterial antigens. During infection, α-DEC-ESAT-treated mice showed increased target cell killing in the lungs, where histology revealed cellular infiltrate and considerably reduced bacterial burden. Targeting the mycobacterial antigen ESAT-6 to DEC205+ APCs before infection expands specific T cell clones responsible for early T cell responses (IFN-γ production and CTL activity) and substantially reduces lung bacterial burden. Delivering mycobacterial antigens directly to APCs provides a unique approach to study in vivo the role of APCs and specific T cell responses to assess their potential anti-mycobacterial functions.

  4. ESAT-6 Targeting to DEC205+ Antigen Presenting Cells Induces Specific-T Cell Responses against ESAT-6 and Reduces Pulmonary Infection with Virulent Mycobacterium tuberculosis

    PubMed Central

    Silva-Sánchez, Aarón; Meza-Pérez, Selene; Flores-Langarica, Adriana; Donis-Maturano, Luis; Estrada-García, Iris; Calderón-Amador, Juana; Hernández-Pando, Rogelio; Idoyaga, Juliana; Flores-Romo, Leopoldo

    2015-01-01

    Airways infection with Mycobacterium tuberculosis (Mtb) is contained mostly by T cell responses, however, Mtb has developed evasion mechanisms which affect antigen presenting cell (APC) maturation/recruitment delaying the onset of Ag-specific T cell responses. Hypothetically, bypassing the natural infection routes by delivering antigens directly to APCs may overcome the pathogen’s naturally evolved evasion mechanisms, thus facilitating the induction of protective immune responses. We generated a murine monoclonal fusion antibody (α-DEC-ESAT) to deliver Early Secretory Antigen Target (ESAT)-6 directly to DEC205+ APCs and to assess its in vivo effects on protection associated responses (IFN-γ production, in vivo CTL killing, and pulmonary mycobacterial load). Treatment with α-DEC-ESAT alone induced ESAT-6-specific IFN-γ producing CD4+ T cells and prime-boost immunization prior to Mtb infection resulted in early influx (d14 post-infection) and increased IFN-γ+ production by specific T cells in the lungs, compared to scarce IFN-γ production in control mice. In vivo CTL killing was quantified in relevant tissues upon transferring target cells loaded with mycobacterial antigens. During infection, α-DEC-ESAT-treated mice showed increased target cell killing in the lungs, where histology revealed cellular infiltrate and considerably reduced bacterial burden. Targeting the mycobacterial antigen ESAT-6 to DEC205+ APCs before infection expands specific T cell clones responsible for early T cell responses (IFN-γ production and CTL activity) and substantially reduces lung bacterial burden. Delivering mycobacterial antigens directly to APCs provides a unique approach to study in vivo the role of APCs and specific T cell responses to assess their potential anti-mycobacterial functions. PMID:25915045

  5. Antigen-specific, CD4+CD25+ regulatory T cell clones induced in Peyer's patches.

    PubMed

    Tsuji, Noriko M; Mizumachi, Koko; Kurisaki, Jun-Ichi

    2003-04-01

    Since intestine is exposed to numerous exogenous antigens such as food and commensal bacteria, the organ bears efficient mechanisms for establishment of tolerance and induction of regulatory T cells (T(reg)). Intestinal and inducible T(reg) include T(r)1-like and T(h)3 cells whose major effector molecules are IL-10 and transforming growth factor (TGF)-beta. These antigen-specific T(reg) are expected to become clinical targets to modify the inflammatory immune response associated with allergy, autoimmune diseases and transplantation. In the present study, we characterized the antigen-specific T(reg) induced in the intestine by orally administering high-dose beta-lactoglobulin (BLG) to BALB/c mice. Seven days after feeding, only Peyer's patch (PP) cells among different organs exerted significant suppressive effect on antibody production upon in vitro BLG stimulation. This suppressive effect was also prominent in six BLG-specific CD4(+) T cell clones (OPP1-6) established from PP from mice orally administered with high doses of BLG and was partially reversed by antibodies to TGF-beta. Intravenous transfer of OPP2 efficiently suppressed BLG-specific IgG1 production in serum following immunization, indicating the role of such T(reg) in the systemic tolerance after oral administration of antigen (oral tolerance). OPP clones secrete TGF-beta, IFN-gamma and low levels of IL-10, a cytokine pattern similar to that secreted by anergic T cells. OPP clones bear a CD4(+)CD25(+) phenotype and show significantly lower proliferative response compared to T(h)0 clones. This lower response is recovered by the addition of IL-2. Thus, antigen-specific CD4(+)CD25(+) T(reg), which have characteristics of anergic cells and actively suppress antibody production are induced in PP upon oral administration of protein antigen.

  6. Age Dependence of Immunity Induced by a Candidate Universal Influenza Vaccine in Mice

    PubMed Central

    García, Mayra; Misplon, Julia A.; Price, Graeme E.; Lo, Chia-Yun; Epstein, Suzanne L.

    2016-01-01

    Influenza has a major impact on the elderly due to increased susceptibility to infection with age and poor response to current vaccines. We have studied universal influenza vaccine candidates based on influenza A nucleoprotein and matrix 2 (A/NP+M2). Long-lasting protection against influenza virus strains of divergent subtypes is induced, especially with mucosal immunization. Here, we tested universal vaccination in BALB/c mice of different ages. Vaccination used intramuscular DNA priming to A/NP+M2 followed by intranasal (i.n.) boosting with recombinant adenoviruses (rAd) expressing the same antigens, or only A/NP+M2-rAd given i.n. Antigen-specific systemic antibody responses were induced in young, middle-aged, and elderly mice (2, 11–17, and 20 months old, respectively), but decreased with age. Antibody responses in bronchoalveolar lavage (BAL) were detected only in young mice. Antigen-specific T cell responses were seen in young and middle-aged but not elderly mice. A/NP+M2 vaccination by the two regimens above protected against stringent challenge in young and middle-aged mice, but not in elderly mice. However, mice vaccinated with A/NP-rAd or A/M2-rAd during their youth were partially protected against challenge 16 months later when they were elderly. In addition, a regimen of two doses of A/NP+M2-rAd given i.n. one month apart beginning in old age protected elderly mice against stringent challenge. This study highlights the potential benefit of cross-protective vaccines through middle age, and suggests that their performance might be enhanced in elderly individuals who had been exposed to influenza antigens early in life, as most humans have been, or by a two-dose rAd regimen given later in life. PMID:27055234

  7. Generation of dendritic cell-based vaccine using high hydrostatic pressure for non-small cell lung cancer immunotherapy

    PubMed Central

    Hradilova, Nada; Sadilkova, Lenka; Palata, Ondrej; Mysikova, Dagmar; Mrazkova, Hana; Lischke, Robert; Spisek, Radek; Adkins, Irena

    2017-01-01

    High hydrostatic pressure (HHP) induces immunogenic death of tumor cells which confer protective anti-tumor immunity in vivo. Moreover, DC pulsed with HHP-treated tumor cells induced therapeutic effect in mouse cancer model. In this study, we tested the immunogenicity, stability and T cell stimulatory activity of human monocyte-derived dendritic cell (DC)-based HHP lung cancer vaccine generated in GMP compliant serum free medium using HHP 250 MPa. DC pulsed with HHP-killed lung cancer cells and poly(I:C) enhanced DC maturation, chemotactic migration and production of pro-inflammatory cytokines after 24h. Moreover, DC-based HHP lung cancer vaccine showed functional plasticity after transfer into serum-containing media and stimulation with LPS or CD40L after additional 24h. LPS and CD40L stimulation further differentially enhanced the expression of costimulatory molecules and production of IL-12p70. DC-based HHP lung cancer vaccine decreased the number of CD4+CD25+Foxp3+ T regulatory cells and stimulated IFN-γ-producing tumor antigen-specific CD4+ and CD8+ T cells from non-small cell lung cancer (NSCLC) patients. Tumor antigen specific CD8+ and CD4+ T cell responses were detected in NSCLC patient’s against a selected tumor antigens expressed by lung cancer cell lines used for the vaccine generation. We also showed for the first time that protein antigen from HHP-killed lung cancer cells is processed and presented by DC to CD8+ T cells. Our results represent important preclinical data for ongoing NSCLC Phase I/II clinical trial using DC-based active cellular immunotherapy (DCVAC/LuCa) in combination with chemotherapy and immune enhancers. PMID:28187172

  8. Age Dependence of Immunity Induced by a Candidate Universal Influenza Vaccine in Mice.

    PubMed

    García, Mayra; Misplon, Julia A; Price, Graeme E; Lo, Chia-Yun; Epstein, Suzanne L

    2016-01-01

    Influenza has a major impact on the elderly due to increased susceptibility to infection with age and poor response to current vaccines. We have studied universal influenza vaccine candidates based on influenza A nucleoprotein and matrix 2 (A/NP+M2). Long-lasting protection against influenza virus strains of divergent subtypes is induced, especially with mucosal immunization. Here, we tested universal vaccination in BALB/c mice of different ages. Vaccination used intramuscular DNA priming to A/NP+M2 followed by intranasal (i.n.) boosting with recombinant adenoviruses (rAd) expressing the same antigens, or only A/NP+M2-rAd given i.n. Antigen-specific systemic antibody responses were induced in young, middle-aged, and elderly mice (2, 11-17, and 20 months old, respectively), but decreased with age. Antibody responses in bronchoalveolar lavage (BAL) were detected only in young mice. Antigen-specific T cell responses were seen in young and middle-aged but not elderly mice. A/NP+M2 vaccination by the two regimens above protected against stringent challenge in young and middle-aged mice, but not in elderly mice. However, mice vaccinated with A/NP-rAd or A/M2-rAd during their youth were partially protected against challenge 16 months later when they were elderly. In addition, a regimen of two doses of A/NP+M2-rAd given i.n. one month apart beginning in old age protected elderly mice against stringent challenge. This study highlights the potential benefit of cross-protective vaccines through middle age, and suggests that their performance might be enhanced in elderly individuals who had been exposed to influenza antigens early in life, as most humans have been, or by a two-dose rAd regimen given later in life.

  9. Systemic Tolerance Mediated by Melanoma Brain Tumors is Reversible by Radiotherapy and Vaccination

    PubMed Central

    Jackson, Christopher M.; Kochel, Christina M.; Nirschl, Christopher J.; Durham, Nicholas M.; Ruzevick, Jacob; Alme, Angela; Francica, Brian J.; Elias, Jimmy; Daniels, Andrew; Dubensky, Thomas W.; Lauer, Peter; Brockstedt, Dirk G.; Baxi, Emily G.; Calabresi, Peter A.; Taube, Janis M.; Pardo, Carlos A.; Brem, Henry; Pardoll, Drew M.; Lim, Michael; Drake, Charles G.

    2016-01-01

    Purpose Immune responses to antigens originating in the CNS are generally attenuated, since collateral damage can have devastating consequences. The significance of this finding for the efficacy of tumor-targeted immunotherapies is largely unknown. Experimental Design The B16 murine melanoma model was used to compare cytotoxic responses against established tumors in the CNS and in the periphery. Cytokine analysis of tissues from brain tumor-bearing mice detected elevated TGF-β secretion from microglia and in the serum and TGF-β signaling blockade reversed tolerance of tumor antigen-directed CD8 T cells. Additionally, a treatment regimen using focal radiation therapy and recombinant Listeria monocytogenes was evaluated for immunologic activity and efficacy in this model. Results CNS melanomas were more tolerogenic than equivalently progressed tumors outside the CNS as antigen-specific CD8 T cells were deleted and exhibited impaired cytotoxicity. Tumor-bearing mice had elevated serum levels of TGF-β; however, blocking TGF-β signaling with a small molecule inhibitor or a monoclonal antibody did not improve survival. Conversely, tumor antigen-specific vaccination in combination with focal radiation therapy reversed tolerance and improved survival. This treatment regimen was associated with increased polyfunctionality of CD8 T cells, elevated T effector to T regulatory cell ratios and decreased TGF-β secretion from microglia. Conclusions These data suggest that CNS tumors may impair systemic antitumor immunity and consequently accelerate cancer progression locally as well as outside the CNS while antitumor immunity may be restored by combining vaccination with radiation therapy. These findings are hypothesis-generating and warrant further study in more contemporary melanoma models as well as human trials. PMID:26490306

  10. Structural Basis for Antigenic Peptide Recognition and Processing by Endoplasmic Reticulum (ER) Aminopeptidase 2.

    PubMed

    Mpakali, Anastasia; Giastas, Petros; Mathioudakis, Nikolas; Mavridis, Irene M; Saridakis, Emmanuel; Stratikos, Efstratios

    2015-10-23

    Endoplasmic reticulum (ER) aminopeptidases process antigenic peptide precursors to generate epitopes for presentation by MHC class I molecules and help shape the antigenic peptide repertoire and cytotoxic T-cell responses. To perform this function, ER aminopeptidases have to recognize and process a vast variety of peptide sequences. To understand how these enzymes recognize substrates, we determined crystal structures of ER aminopeptidase 2 (ERAP2) in complex with a substrate analogue and a peptidic product to 2.5 and 2.7 Å, respectively, and compared them to the apo-form structure determined to 3.0 Å. The peptides were found within the internal cavity of the enzyme with no direct access to the outside solvent. The substrate analogue extends away from the catalytic center toward the distal end of the internal cavity, making interactions with several shallow pockets along the path. A similar configuration was evident for the peptidic product, although decreasing electron density toward its C terminus indicated progressive disorder. Enzymatic analysis confirmed that visualized interactions can either positively or negatively impact in vitro trimming rates. Opportunistic side-chain interactions and lack of deep specificity pockets support a limited-selectivity model for antigenic peptide processing by ERAP2. In contrast to proposed models for the homologous ERAP1, no specific recognition of the peptide C terminus by ERAP2 was evident, consistent with functional differences in length selection and self-activation between these two enzymes. Our results suggest that ERAP2 selects substrates by sequestering them in its internal cavity and allowing opportunistic interactions to determine trimming rates, thus combining substrate permissiveness with sequence bias. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. A DNA vaccine targeting p42.3 induces protective antitumor immunity via eliciting cytotoxic CD8+T lymphocytes in a murine melanoma model.

    PubMed

    Liu, Hu; Geng, Shuang; Feng, Congcong; Xie, Xiaoping; Wu, Bing; Chen, Xuan; Zou, Qiang; Wang, Shuang; Cui, Jiantao; Xing, Rui; Li, Wenmei; Lu, Youyong; Wang, Bin

    2013-10-01

    The p42.3 gene was recently identified and characterized as having tumor-specific and mitosis phase-dependent expression in many types of cancer. This suggested that p42.3 antigen could be used as a target for vaccines against cancers. In this study, we immunized C57BL/6 mice with a DNA vaccine encoding p42.3. We used intramuscular injection with electroporation, either before or after challenge with tumor B16F10 cells. Vaccination with pcDNA3-p42.3 induced some degree of antitumor effect both therapeutically and prophylactically, as evaluated by the inhibition of tumor growth and decrease in tumor weight. Immunized mice showed a high level of specific cytotoxic activity against the p42.3 protein in vivo and had activated CD8 T cells that secreted IFN-γ, perforin, and granzyme B in response to stimulation with the antigen in vitro. Thus, this study presents the DNA vaccination against novel tumor target p42.3 as a promising antitumor modality.

  12. Serological responses to papillomavirus group-specific antigens in women with neoplasia of the cervix uteri.

    PubMed Central

    Dillner, L; Moreno-Lopez, J; Dillner, J

    1990-01-01

    Certain types of human papillomaviruses have been linked to the development of carcinoma of the cervix uteri. We have analyzed 114 serum specimens from women with cervical intraepithelial neoplasia (CIN) or carcinoma of the cervix uteri for the presence of serum antibodies against purified, disrupted bovine papillomavirus (BPV). The titers of immunoglobulin A (IgA) antibodies against BPV were slightly elevated (P less than 0.025) in the sera from CIN or cervical carcinoma patients compared with the titers of 139 serum specimens from sex- and age-matched healthy controls. In contrast, both the IgG and IgM serum antibody titers against BPV were significantly decreased for CIN and cervical carcinoma patients compared with those of healthy controls (P less than 0.001 and P less than 0.005, respectively). These results suggest that the difference between IgA and IgG or IgM antibodies to papillomavirus group-specific antigens may represent interesting serological parameters that could possibly be used in the epidemiologic study of women at risk for CIN. PMID:2157738

  13. Cancer Today

    MedlinePlus

    ... your doctor if you are considering having a prostate-specific antigen (PSA) test or digital rectal examination (DRE). Skin ... regular colonoscopy for cancer of the colon, serum prostatic-specific antigen (PSA) for prostate cancer, mammography for breast cancer, ...

  14. Prostate cancer

    MedlinePlus

    ... of prostate cancer. But, it can increase your prostate-specific antigen (PSA) blood test result. Symptoms With early prostate ... 2009 Best Practice Statement. www.auanet.org/guidelines/prostate-specific-antigen-(2009-amended-2013) . Accessed October 9, 2017. Moyer ...

  15. Optimization and qualification of an Fc Array assay for assessments of antibodies against HIV-1/SIV.

    PubMed

    Brown, Eric P; Weiner, Joshua A; Lin, Shu; Natarajan, Harini; Normandin, Erica; Barouch, Dan H; Alter, Galit; Sarzotti-Kelsoe, Marcella; Ackerman, Margaret E

    2018-04-01

    The Fc Array is a multiplexed assay that assesses the Fc domain characteristics of antigen-specific antibodies with the potential to evaluate up to 500 antigen specificities simultaneously. Antigen-specific antibodies are captured on antigen-conjugated beads and their functional capacity is probed via an array of Fc-binding proteins including antibody subclassing reagents, Fcγ receptors, complement proteins, and lectins. Here we present the results of the optimization and formal qualification of the Fc Array, performed in compliance with Good Clinical Laboratory Practice (GCLP) guidelines. Assay conditions were optimized for performance and reproducibility, and the final version of the assay was then evaluated for specificity, accuracy, precision, limits of detection and quantitation, linearity, range and robustness. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Phase I/II combined chemoimmunotherapy with carcinoembryonic antigen-derived HLA-A2-restricted CAP-1 peptide and irinotecan, 5-fluorouracil, and leucovorin in patients with primary metastatic colorectal cancer.

    PubMed

    Weihrauch, Martin R; Ansén, Sascha; Jurkiewicz, Elke; Geisen, Caroline; Xia, Zhinan; Anderson, Karen S; Gracien, Edith; Schmidt, Manuel; Wittig, Burghardt; Diehl, Volker; Wolf, Juergen; Bohlen, Heribert; Nadler, Lee M

    2005-08-15

    We conducted a phase I/II randomized trial to evaluate the clinical and immunologic effect of chemotherapy combined with vaccination in primary metastatic colorectal cancer patients with a carcinoembryonic antigen-derived peptide in the setting of adjuvants granulocyte macrophage colony-stimulating factor, CpG-containing DNA molecules (dSLIM), and dendritic cells. HLA-A2-positive patients with confirmed newly diagnosed metastatic colorectal cancer and elevated serum carcinoembryonic antigen (CEA) were randomized to receive three cycles of standard chemotherapy (irinotecan/high-dose 5-fluorouracil/leucovorin) and vaccinations with CEA-derived CAP-1 peptide admixed with different adjuvants [CAP-1/granulocyte macrophage colony-stimulating factor/interleukin-2 (IL-2), CAP-1/dSLIM/IL-2, and CAP-1/IL-2]. After completion of chemotherapy, patients received weekly vaccinations until progression of disease. Immune assessment was done at baseline and after three cycles of combined chemoimmunotherapy. HLA-A2 tetramers complexed with the peptides CAP-1, human T-cell lymphotrophic virus type I TAX, cytomegalovirus (CMV) pp65, and EBV BMLF-1 were used for phenotypic immune assessment. IFN-gamma intracellular cytokine assays were done to evaluate CTL reactivity. Seventeen metastatic patients were recruited, of whom 12 completed three cycles. Therapy resulted in five complete response, one partial response, five stable disease, and six progressive disease. Six grade 1 local skin reactions and one mild systemic reaction to vaccination treatment were observed. Overall survival after a median observation time of 29 months was 17 months with a survival rate of 35% (6 of 17) at that time. Eight patients (47%) showed elevation of CAP-1-specific CTLs. Neither of the adjuvants provided superiority in eliciting CAP-1-specific immune responses. During three cycles of chemotherapy, EBV/CMV recall antigen-specific CD8+ cells decreased by an average 14%. The presented chemoimmunotherapy is a feasible and safe combination therapy with clinical and immunologic efficacy. Despite concurrent chemotherapy, increases in CAP-1-specific T cells were observed in 47% of patients after vaccination.

  17. High-dose-rate stereotactic body radiation therapy for postradiation therapy locally recurrent prostatic carcinoma: Preliminary prostate-specific antigen response, disease-free survival, and toxicity assessment.

    PubMed

    Fuller, Donald B; Wurzer, James; Shirazi, Reza; Bridge, Stephen S; Law, Jonathan; Mardirossian, George

    2015-01-01

    Patients with locally recurrent adenocarcinoma of the prostate following radiation therapy (RT) present a challenging problem. We prospectively evaluated the use of "high-dose-rate-like" prostate stereotactic body RT (SBRT) salvage for this circumstance, evaluating prostate-specific antigen response, disease-free survival, and toxicity. Between February 2009 and March 2014, 29 patients with biopsy-proven recurrent locally prostate cancer >2 years post-RT were treated. Median prior RT dose was 73.8 Gy and median interval to SBRT salvage was 88 months. Median recurrence Gleason score was 7 (79% was ≥7). Pre-existing RT toxicity >grade 1 was a reason for exclusion. Magnetic resonance imaging-defined prostate volume including any suspected extraprostatic extension, comprising the planning target volume. A total of 34 Gy/5 fractions was given, delivering a heterogeneous, high-dose-rate-like dose-escalation pattern. Toxicities were assessed using Common Terminology Criteria for Adverse Events, version 3.0, criteria. Twenty-nine treated patients had a median 24-month follow-up (range, 3-60 months). A median pre-SBRT salvage baseline prostate-specific antigen level of 3.1 ng/mL decreased to 0.65 ng/mL and 0.16 ng/mL at 1 and 2 years, respectively. Actuarial 2-year biochemical disease-free survival measured 82%, with no local failures. Toxicity >grade 1 was limited to the genitourinary domain, with 18% grade 2 or higher and 7% grade 3 or higher. No gastrointestinal toxicity >grade 1 occurred. Two-year disease-free survival is encouraging, and the prostate-specific antigen response kinetic appears comparable with that seen in de novo patients treated with SBRT, albeit still a preliminary finding. Grade ≥2 genitourinary toxicity was occasionally seen with no obvious predictive factor. Noting that our only brachytherapy case was 1 of the 2 cases with ≥grade 3 genitourinary toxicity, caution is recommended treating these patients. SBRT salvage of post-RT local recurrence appears clinically feasible, with longer term evaluation required to assess ultimate efficacy and late toxicity rates. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  18. BK virus-specific T cells for use in cellular therapy show specificity to multiple antigens and polyfunctional cytokine responses.

    PubMed

    Blyth, Emily; Clancy, Leighton; Simms, Renee; Gaundar, Shivashni; O'Connell, Philip; Micklethwaite, Kenneth; Gottlieb, David J

    2011-11-27

    BK virus (BKV) infection causes hemorrhagic cystitis posthemopoietic stem-cell transplant and graft loss in renal transplant recipients. Reactivation occurs in up to 60% of patients in both groups. Treatment-related cellular immunosuppression is a major contributor to the development of BKV-related disease, but the targets of the immune response are not well characterized. Immunotherapy by adoptive transfer of cellular effectors has been shown to be effective in controlling and preventing some virus-related diseases in transplant recipients, particularly Epstein-Barr virus and cytomegalovirus. Infusion of BKV-specific T cells may potentially reconstitute functional BKV immunity and reduce clinical complications of BKV infection. BKV-specific T cells for clinical use in adoptive immunotherapy were generated using monocyte-derived dendritic cells pulsed with overlapping peptide mixes spanning the five BKV proteins VP1, VP2, VP3, large T antigen, and small T antigen. Phenotypic and functional characteristics of the cells were investigated as well as their antigen specificity. Expanded CD4(+) and CD8(+) cells responded to restimulation with BKV peptides principally from VP1, large T, or small T antigens; produced multiple cytokines; and showed cytotoxic activity against antigen-coated targets. Possible clinical uses for BKV-specific T cells generated using this method include immune reconstitution posthemopoietic stem-cell transplantation or prophylaxis and treatment of immune deficiency in renal transplant recipients, fulfilling the need for effective therapy for BKV-related hemorrhagic cystitis and renal dysfunction.

  19. Probing the Effector and Suppressive Functions of Human T Cell Subsets Using Antigen-Specific Engineered T Cell Receptors

    PubMed Central

    Imberg, Keren; Mercer, Frances; Zhong, Shi; Krogsgaard, Michelle; Unutmaz, Derya

    2013-01-01

    Activation of T cells through the engagement of the T cell receptors (TCRs) with specific peptide-MHC complexes on antigen presenting cells (APCs) is the major determinant for their proliferation, differentiation and display of effector functions. To assess the role of quantity and quality of peptide-MHC presentation in eliciting T cell activation and suppression functions, we genetically engineered human T cells with two TCRs that recognize HLA-A*0201-restricted peptides derived from either HIV or melanoma antigens. The engineered-TCRs are highly functional in both CD8+ and CD4+ T cells as assessed by the upregulation of activation markers, induction of cytokine secretion and cytotoxicity. We further demonstrated that engineered-TCRs can also be expressed on naïve human T cells, which are stimulated through APCs presenting specific peptides to induce T cell proliferation and acquire effector functions. Furthermore, regulatory T cells (Tregs) ectopically expressing the engineered-TCRs are activated in an antigen-specific fashion and suppress T cell proliferation. In this system, the inhibitory activity of peptide-stimulated Tregs require the presence of dendritic cells (DCs) in the culture, either as presenters or as bystander cells, pointing to a critical role for DCs in suppression by Tregs. In conclusion, the engineered-TCR system reported here advances our ability to understand the differentiation pathways of naïve T cells into antigen-specific effector cells and the role of antigen-specific signaling in Treg-mediated immune suppression. PMID:23437112

  20. Evaluation of immunity to varicella zoster virus with a novel double antigen sandwich enzyme-linked immunosorbent assay.

    PubMed

    Liu, Jian; Chen, Chunye; Zhu, Rui; Ye, Xiangzhong; Jia, Jizong; Yang, Lianwei; Wang, Yongmei; Wang, Wei; Ye, Jianghui; Li, Yimin; Zhu, Hua; Zhao, Qinjian; Zhang, Jun; Cheng, Tong; Xia, Ningshao

    2016-11-01

    Varicella is a highly contagious disease caused by primary infection of Varicella zoster virus (VZV). Varicella can be severe or even lethal in susceptible adults, immunocompromised patients and neonates. Determination of the status of immunity to VZV is recommended for these high-risk populations. Furthermore, measurement of population immunity to VZV can help in developing proper varicella vaccination programmes. VZV glycoprotein E (gE) is an antigen that has been demonstrated to be a highly accurate indicator of VZV-specific immunity. In this study, recombinant gE (rgE) was used to establish a double antigen sandwich enzyme-linked immunosorbent assay (ELISA). The established sandwich ELISA showed high specificity and sensitivity in the detection of human sera, and it could detect VZV-specific antibodies at a concentration of 11.25 m IU/mL with a detection linearity interval of 11.25 to 360 m IU/mL (R 2  = 0.9985). The double gE antigen sandwich ELISA showed a sensitivity of 95.08 % and specificity of 100 % compared to the fluorescent-antibody-to-membrane-antigen (FAMA) test, and it showed a sensitivity of 100 % and a specificity of 94.74 % compared to a commercial neutralizing antibody detection kit. Thus, the established double antigen sandwich ELISA can be used as a sensitive and specific quantitative method to evaluate immunity to VZV.

  1. Dysfunctional BLK in common variable immunodeficiency perturbs B-cell proliferation and ability to elicit antigen-specific CD4+ T-cell help.

    PubMed

    Compeer, Ewoud B; Janssen, Willemijn; van Royen-Kerkhof, Annet; van Gijn, Marielle; van Montfrans, Joris M; Boes, Marianne

    2015-05-10

    Common Variable Immunodeficiency (CVID) is the most prevalent primary antibody deficiency, and characterized by defective generation of high-affinity antibodies. Patients have therefore increased risk to recurrent infections of the respiratory and intestinal tract. Development of high-affinity antigen-specific antibodies involves two key actions of B-cell receptors (BCR): transmembrane signaling through BCR-complexes to induce B-cell differentiation and proliferation, and BCR-mediated antigen internalization for class-II MHC-mediated presentation to acquire antigen-specific CD4(+) T-cell help.We identified a variant (L3P) in the B-lymphoid tyrosine kinase (BLK) gene of 2 related CVID-patients, which was absent in healthy relatives. BLK belongs to the Src-kinases family and involved in BCR-signaling. Here, we sought to clarify BLK function in healthy human B-cells and its association to CVID.BLK expression was comparable in patient and healthy B-cells. Functional analysis of L3P-BLK showed reduced BCR crosslinking-induced Syk phosphorylation and proliferation, in both primary B-cells and B-LCLs. B-cells expressing L3P-BLK showed accelerated destruction of BCR-internalized antigen and reduced ability to elicit CD40L-expression on antigen-specific CD4(+) T-cells.In conclusion, we found a novel BLK gene variant in CVID-patients that causes suppressed B-cell proliferation and reduced ability of B-cells to elicit antigen-specific CD4(+) T-cell responses. Both these mechanisms may contribute to hypogammaglobulinemia in CVID-patients.

  2. Detection of peste des petits ruminants virus antigen using immunofiltration and antigen-competition ELISA methods.

    PubMed

    Raj, G Dhinakar; Rajanathan, T M C; Kumar, C Senthil; Ramathilagam, G; Hiremath, Geetha; Shaila, M S

    2008-06-22

    Peste des petits ruminants (PPR) is one of the most economically important diseases affecting sheep and goats in India. An immunofiltration-based test has been developed using either mono-specific serum/monoclonal antibodies (mAb) prepared against a recombinant truncated nucleocapsid protein of rinderpest virus (RPV) cross-reactive with PPR virus. This method consists of coating ocular swab eluate from suspected animals onto a nitrocellulose membrane housed in a plastic module, which is allowed to react with suitable dilutions of a mAb or a mono-specific polyclonal antibody. The antigen-antibody complex formed on the membrane is then detected by protein A-colloidal gold conjugate, which forms a pink colour. In the immunofiltration test, concordant results were obtained using either PPRV mAb or mono-specific serum. Another test, an antigen-competition ELISA which relies on the competition between plate-coated recombinant truncated 'N' protein of RPV and the PPRV 'N' protein present in ocular swab eluates (sample) for binding to the mono-specific antibody against N protein of RPV (in liquid phase) was developed. The cut-off value for this test was established using reverse transcription polymerase chain reaction (RT-PCR) positive and negative oculo-nasal swab samples. Linear correlation between percent inhibition (PI) values in antigen-competition ELISA and virus infectivity titres was 0.992. Comparison of the immunofiltration test with the antigen-competition ELISA yielded a sensitivity of 80% and specificity of 100%. These two tests can serve as a screening (immunofiltration) and confirmatory (antigen-competition ELISA) test, respectively, in the diagnosis of PPR in sheep or goats.

  3. In vitro leukocyte response of three-spined sticklebacks (Gasterosteus aculeatus) to helminth parasite antigens.

    PubMed

    Franke, Frederik; Rahn, Anna K; Dittmar, Janine; Erin, Noémie; Rieger, Jennifer K; Haase, David; Samonte-Padilla, Irene E; Lange, Joseph; Jakobsen, Per J; Hermida, Miguel; Fernández, Carlos; Kurtz, Joachim; Bakker, Theo C M; Reusch, Thorsten B H; Kalbe, Martin; Scharsack, Jörn P

    2014-01-01

    Helminth parasites of teleost fish have evolved strategies to evade and manipulate the immune responses of their hosts. Responsiveness of fish host immunity to helminth antigens may therefore vary depending on the degree of host-parasite counter-adaptation. Generalist parasites, infective for a number of host species, might be unable to adapt optimally to the immune system of a certain host species, while specialist parasites might display high levels of adaptation to a particular host species. The degree of adaptations may further differ between sympatric and allopatric host-parasite combinations. Here, we test these hypotheses by in vitro exposure of head kidney leukocytes from three-spined sticklebacks (Gasterosteus aculeatus) to antigens from parasites with a broad fish host range (Diplostomum pseudospathaceum, Triaenophorus nodulosus), a specific fish parasite of cyprinids (Ligula intestinalis) and parasites highly specific only to a single fish species as second intermediate host (Schistocephalus pungitii, which does not infect G. aculeatus, and Schistocephalus solidus, infecting G. aculeatus). In vitro responses of stickleback leukocytes to S. solidus antigens from six European populations, with S. solidus prevalence from <1% to 66% were tested in a fully crossed experimental design. Leukocyte cultures were analysed by means of flow cytometry and a chemiluminescence assay to quantify respiratory burst activity. We detected decreasing magnitudes of in vitro responses to antigens from generalist to specialist parasites and among specialists, from parasites that do not infect G. aculeatus to a G. aculeatus-infecting species. Generalist parasites seem to maintain their ability to infect different host species at the costs of relatively higher immunogenicity compared to specialist parasites. In a comparison of sympatric and allopatric combinations of stickleback leukocytes and antigens from S. solidus, magnitudes of in vitro responses were dependent on the prevalence of the parasite in the population of origin, rather than on sympatry. Antigens from Norwegian (prevalence 30-50%) and Spanish (40-66%) S. solidus induced generally higher in vitro responses compared to S. solidus from two German (<1%) populations. Likewise, leukocytes from stickleback populations with a high S. solidus prevalence showed higher in vitro responses to S. solidus antigens compared to populations with low S. solidus prevalence. This suggests a rather low degree of local adaptation in S. solidus populations, which might be due to high gene flow among populations because of their extremely mobile final hosts, fish-eating birds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Simultaneous targeting of prostate stem cell antigen and prostate-specific membrane antigen improves the killing of prostate cancer cells using a novel modular T cell-retargeting system.

    PubMed

    Arndt, Claudia; Feldmann, Anja; Koristka, Stefanie; Cartellieri, Marc; Dimmel, Maria; Ehninger, Armin; Ehninger, Gerhard; Bachmann, Michael

    2014-09-01

    Recently, we described a novel modular platform technology in which T cell-recruitment and tumor-targeting domains of conventional bispecific antibodies are split to independent components, a universal effector module (EM) and replaceable monospecific/monovalent target modules (TMs) that form highly efficient T cell-retargeting complexes. Theoretically, our unique strategy should allow us to simultaneously retarget T cells to different tumor antigens by combining the EM with two or more different monovalent/monospecific TMs or even with bivalent/bispecific TMs, thereby overcoming limitations of a monospecific treatment such as the selection of target-negative tumor escape variants. In order to advance our recently introduced prostate stem cell antigen (PSCA)-specific modular system for a dual-targeting of prostate cancer cells, two additional TMs were constructed: a monovalent/monospecific TM directed against the prostate-specific membrane antigen (PSMA) and a bivalent/bispecific TM (bsTM) with specificity for PSMA and PSCA. The functionality of the novel dual-targeting strategies was analyzed by performing T cell activation and chromium release assays. Similar to the PSCA-specific modular system, the novel PSMA-specific modular system mediates an efficient target-dependent and -specific tumor cell lysis at low E:T ratios and picomolar Ab concentrations. Moreover, by combination of the EM with either the bispecific TM directed to PSMA and PSCA or both monospecifc TMs directed to either PSCA or PSMA, dual-specific targeting complexes were formed which allowed us to kill potential escape variants expressing only one or the other target antigen. Overall, the novel modular system represents a promising tool for multiple tumor targeting. © 2014 Wiley Periodicals, Inc.

  5. Long-term in vivo provision of antigen-specific T cell immunity by programming hematopoietic stem cells

    NASA Astrophysics Data System (ADS)

    Yang, Lili; Baltimore, David

    2005-03-01

    A method to genetically program mouse hematopoietic stem cells to develop into functional CD8 or CD4 T cells of defined specificity in vivo is described. For this purpose, a bicistronic retroviral vector was engineered that efficiently delivers genes for both and chains of T cell receptor (TCR) to hematopoietic stem cells. When modified cell populations were used to reconstruct the hematopoietic lineages of recipient mice, significant percentages of antigen-specific CD8 or CD4 T cells were observed. These cells expressed normal surface markers and responded to peptide antigen stimulation by proliferation and cytokine production. Moreover, they could mature into memory cells after peptide stimulation. Using TCRs specific for a model tumor antigen, we found that the recipient mice were able to partially resist a challenge with tumor cells carrying the antigen. By combining cells modified with CD8- and CD4-specific TCRs, and boosting with dendritic cells pulsed with cognate peptides, complete suppression of tumor could be achieved and even tumors that had become established would regress and be eliminated after dendritic cell/peptide immunization. This methodology of "instructive immunotherapy" could be developed for controlling the growth of human tumors and attacking established pathogens.

  6. GM-CSF-Induced Regulatory T cells Selectively Inhibit Anti-Acetylcholine Receptor-Specific Immune Responses in Experimental Myasthenia Gravis

    PubMed Central

    Sheng, Jian Rong; Muthusamy, Thiruppathi; Prabahakar, Bellur S.; Meriggioli, Matthew N.

    2011-01-01

    We and others have demonstrated the ability of granulocyte-macrophage colony-stimulating factor (GM-CSF) to suppress autoimmunity by increasing the number of CD4+CD25+ regulatory T cells (Tregs). In the current study, we have explored the critical role of induced antigen specific Tregs in the therapeutic effects of GM-CSF in murine experimental autoimmune myasthenia gravis (EAMG). Specifically, we show that Tregs from GM-CSF treated EAMG mice (GM-CSF/AChR-induced-Tregs) adoptively transferred into animals with EAMG suppressed clinical disease more potently than equal numbers of Tregs from either GM-CSF untreated EAMG mice or healthy mice treated with GM-CSF. In addition, GM-CSF/AChR-induced-Tregs selectively suppressed antigen specific T cell proliferation induced by AChR relative to that induced by an irrelevant self antigen, (thyroglobulin) and failed to significantly alter T cell proliferation in response to an exogenous antigen (ovalbumin). These results are consistent with the hypothesized mechanism of action of GM-CSF involving the mobilization of tolerogenic dendritic cell precursors which, upon antigen (AChR) capture, suppress the anti-AChR immune response through the induction/expansion of AChR-specific Tregs. PMID:22099723

  7. Trichinella spiralis: strong antibody response to a 49 kDa newborn larva antigen in infected rats.

    PubMed

    Salinas-Tobon, Maria Del Rosario; Navarrete-Leon, Anaid; Mendez-Loredo, Blanca Esther; Esquivel-Aguirre, Dalia; Martínez-Abrajan, Dulce Maria; Hernandez-Sanchez, Javier

    2007-02-01

    In this work, we analyzed the kinetics of anti-Trichinella spiralis newborn larva (NBL) antibodies (Ab) and the antigenic recognition pattern of NBL proteins and its dose effects. Wistar rats were infected with 0, 700, 2000, 4000 and 8000 muscle larvae (ML) and bled at different time intervals up to day 31 post infection (p.i.). Ab production was higher with 2000 ML dose and decreased with 8000, 4000 and 700 ML. Abs were not detected until day 10, peaked on day 14 for the 2000 ML dose and on day 19 for the other doses and thereafter declined slowly from 19 to 31 days p.i. In contrast, Abs to ML increased from day 10, peaked on day 19 and remained high until the end of the study. Abs bound strongly at least to three NBL components of 188, 205 and 49 kDa. NBL antigen of 188 and 205 kDa were recognized 10-26 days p.i. and that of 49 kDa from day 10 to day 31 p.i. A weak recognition towards antigens of 52, 54, 62 and 83 kDa was also observed during the infection. An early recognition of 31, 43, 45, 55, 68 and 85 kDa ML antigens was observed whereas the response to those of 43, 45, 48, 60, 64 and 97 kDa (described previously as TSL-1 antigens) occurred late in the infection. A follow-up of antigen recognition up to day 61 with the optimal immunization dose (2000 ML) evidenced a decline of Ab production to the 49 kDa NBL antigen 42 days p.i., which suggested antigenic differences with the previously reported 43 kDa ML antigen strongly recognized late in the infection. To analyze the stage-specificity of the 49 kDa NBL antigen, polyclonal antibodies (PoAb) were obtained in rats immunized with 49 kDa NBL antigen. PoAb reacted strongly with the 49 kDa NBL component in NBL total soluble extract but no reactivity was observed with soluble antigen of the other T. spiralis stages. Albeit with less intensity, the 49 kDa component was also recognized by PoAb together with other antigens of 53, 97 and 107 kDa, in NBL excretory-secretory products (NBL-ESP). Thus, our results reveal differences in the kinetics of anti-NBL and ML Ab responses. While anti-NBL Abs declined slowly from day 19 until the end of the experiment, Abs to ML antigen remained high in the same period. It is remarkable the optimal Ab response to NBL antigens with 2000 ML infective dose and the reduced number of NBL antigens identified throughout the experimental T. spiralis infection, standing out the immunodominant 49 kDa antigen. Interestingly, this antigen, which was prominently expressed in NBL somatic proteins, was also detected in NBL-ESP.

  8. Use of recombinant purified protein derivative (PPD) antigens as specific skin test for tuberculosis.

    PubMed

    Stavri, Henriette; Bucurenci, Nadia; Ulea, Irina; Costache, Adriana; Popa, Loredana; Popa, Mircea Ioan

    2012-11-01

    Purified protein derivative (PPD) is currently the only available skin test reagent used worldwide for the diagnosis of tuberculosis (TB). The aim of this study was to develop a Mycobacterium tuberculosis specific skin test reagent, without false positive results due to Bacillus Calmette-Guerin (BCG) vaccination using recombinant antigens. Proteins in PPD IC-65 were analyzed by tandem mass spectrometry and compared to proteins in M. tuberculosis culture filtrate; 54 proteins were found in common. Top candidates MPT64, ESAT 6, and CFP 10 were overexpressed in Escherichia coli expression strains and purified as recombinant proteins. To formulate optimal immunodiagnostic PPD cocktails, the antigens were evaluated by skin testing guinea pigs sensitized with M. tuberculosis H37Rv and BCG. For single antigens and a cocktail mixture of these antigens, best results were obtained using 3 μg/0.1 ml, equivalent to 105 TU (tuberculin units). Each animal was simultaneously tested with PPD IC-65, 2 TU/0.1 ml, as reference. Reactivity of the multi-antigen cocktail was greater than that of any single antigen. The skin test results were between 34.3 and 76.6 per cent the level of reactivity compared to that of the reference when single antigens were tested and 124 per cent the level of reactivity compared to the reference for the multi-antigen cocktail. Our results showed that this specific cocktail could represent a potential candidate for a new skin diagnostic test for TB.

  9. Comparison of Antibody Responses to a Potential Combination of Specific Glycolipids and Proteins for Test Sensitivity Improvement in Tuberculosis Serodiagnosis

    PubMed Central

    Julián, Esther; Matas, Lurdes; Alcaide, José; Luquin, Marina

    2004-01-01

    The humoral response to different proteinaceous antigens of Mycobacterium tuberculosis is heterogeneous among patients with active disease, and this has originated in the proposal to use a combination of several specific antigens to find an efficient serodiagnostic test for tuberculosis (TB). However, to date, comparisons of antibody responses to several antigens in the same population have been carried out without consideration of antigenic cell wall glycolipids. In the present study the presence of immunoglobulin G (IgG), IgM, and IgA antibodies to M. tuberculosis glycolipids (sulfolipid I, diacyltrehaloses, triacyltrehaloses, and cord factor) was compared with the response to four commercially available tests based on the 38-kDa protein mixed with the 16-kDa protein or lipoarabinomannan. Fifty-two serum samples from TB patients and 83 serum samples from control individuals (48 healthy individuals and 35 non-TB pneumonia patients) were studied. Three relevant results were obtained. (i) Smear-negative TB patients presented low humoral responses, but the sera which did react principally showed IgA antibodies to some glycolipidic antigens. (ii) TB patients exhibit heterogeneous humoral responses against glycolipidic antigens. (iii) Finally, test sensitivity is improved (from 23 to 62%) when IgG and IgA antibodies are detected together in tests based on different antigens (proteins and glycolipids). We conclude that it is possible to include glycolipidic antigens in a cocktail of specific antigens from M. tuberculosis to develop a serodiagnostic test. PMID:14715547

  10. Humoral immune responses in a human case of glanders.

    PubMed

    Waag, David M; England, Marilyn J; DeShazer, David

    2012-05-01

    Within 2 months of acquiring glanders, a patient developed 8-, 16-, and 4-fold increases, respectively, in specific IgA, IgG, and IgM serological titers against Burkholderia mallei. Within 14 months of infection, the titers decreased to the baseline. Serum from this patient was also highly reactive against Burkholderia pseudomallei whole cells. Burkholderia mallei whole cells did not react with sera from patients with other diseases. Therefore, an assay using a B. mallei cellular diagnostic antigen may be useful for the serodiagnosis of glanders.

  11. Exosomal cancer immunotherapy is independent of MHC molecules on exosomes.

    PubMed

    Hiltbrunner, Stefanie; Larssen, Pia; Eldh, Maria; Martinez-Bravo, Maria-Jose; Wagner, Arnika K; Karlsson, Mikael C I; Gabrielsson, Susanne

    2016-06-21

    Peptide-loaded exosomes are promising cancer treatment vehicles; however, moderate T cell responses in human clinical trials indicate a need to further understand exosome-induced immunity. We previously demonstrated that antigen-loaded exosomes carry whole protein antigens and require B cells for inducing antigen-specific T cells. Therefore, we investigated the relative importance of exosomal major histocompatibility complex (MHC) class I for the induction of antigen-specific T cell responses and tumour protection. We show that ovalbumin-loaded dendritic cell-derived exosomes from MHCI-/- mice induce antigen-specific T cells at the same magnitude as wild type exosomes. Furthermore, exosomes lacking MHC class I, as well as exosomes with both MHC class I and II mismatch, induced tumour infiltrating T cells and increased overall survival to the same extent as syngeneic exosomes in B16 melanoma. In conclusion, T cell responses are independent of exosomal MHC/peptide complexes if whole antigen is present. This establishes the prospective of using impersonalised exosomes, and will greatly increase the feasibility of designing exosome-based vaccines or therapeutic approaches in humans.

  12. Combining two serological assays optimises sensitivity and specificity for the identification of Streptococcus equi subsp. equi exposure.

    PubMed

    Robinson, Carl; Steward, Karen F; Potts, Nicola; Barker, Colin; Hammond, Toni-ann; Pierce, Karen; Gunnarsson, Eggert; Svansson, Vilhjálmur; Slater, Josh; Newton, J Richard; Waller, Andrew S

    2013-08-01

    The detection of anti-Streptococcus equi antibodies in the blood serum of horses can assist with the identification of apparently healthy persistently infected carriers and the prevention of strangles outbreaks. The aim of the current study was to use genome sequencing data to develop an indirect enzyme linked immunosorbent assay (iELISA) that targets two S. equi-specific protein fragments. The sensitivity and specificity of the antigen A and antigen C iELISAs were compared to an SeM-based iELISA marketed by IDvet - diagnostic Vétérinaire (IDvet). Individually, each assay compromised specificity in order to achieve sufficient sensitivity (SeM iELISA had a sensitivity of 89.9%, but a specificity of only 77.0%) or sensitivity to achieve high specificity. However, combining the results of the antigen A and antigen C iELISAs permitted optimisation of both sensitivity (93.3%) and specificity (99.3%), providing a robust assay for the identification of horses exposed to S. equi. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Monoclonal antibodies against simian virus 40 T antigens: evidence for distinct sublcasses of large T antigen and for similarities among nonviral T antigens.

    PubMed Central

    Gurney, E G; Harrison, R O; Fenno, J

    1980-01-01

    We have isolated three clones of hybrid cells which synthesize antibodies specific for determinants on simian virus 40 (SV40) T antigens. Mouse myeloma NS1 cells were fused with spleen cells from mice that had been immunized with SV40-transformed mouse cells. Hybrid cells were selected in HAT medium and cloned in soft agar. We used an enzyme-linked immunosorbent assay for detection and quantification of mouse antibodies against SV40 T antigens. Monoclonal antibodies from 3 of the 24 clones that scored as positive in the enzyme-linked immunosorbent assay were verified by immunoprecipitation to be specific for SV40 T antigens. Two clones (7 and 412) produced antibodies that recognized denaturation-sensitive antigenic determinants unique to large T antigen. Antibodies from clone 7 appeared to have a low affinity for large T antigen. Antibodies from clone 412 had a higher affinity for large T antigen but did not recognize a subclass of large T antigen that was recognized by tumor serum. Antibodies of the third clone, clone 122, recognized a denaturation-stable antigenic determinant of the 53,000-dalton mouse nonviral T antigen in SV40-transformed cells. Antibodies from clone 122 also recognized similar (51,000- to 56,000-dalton) nonviral T antigens in SV40-transormed or lytically infected cells from five mammalian species and in four uninfected mouse lines. From these observations, we have concluded that (i) the 94,000-dalton SV40 large T antigen may exist as immunologically distinguishable subclasses, and (ii) the nonviral T antigens of five mammalian species share at least one antigenic determinant. Images PMID:6155477

  14. Herniated Thoracic Spleen Mimicking Lung Metastasis on 68Ga-Labeled Prostate-Specific Membrane Antigen PET/CT in a Patient With Prostate Cancer.

    PubMed

    Malik, Dharmender; Basher, Rajender K; Sood, Apurva; Devana, Sudheer Kumar; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2017-06-01

    We report a case of clinically asymptomatic patient of prostate cancer who was previously subjected to radical prostatectomy presenting with a rising serum prostate-specific antigen level of 6.6 ng/mL. Whole-body PET/CT with Ga-labeled prostate-specific membrane antigen ligand was performed to assess for disease recurrence, which revealed an intense tracer uptake in a soft tissue mass in left hemithorax mimicking lung metastasis; which later turned out to be splenic tissue.

  15. [Toxoplasma gondii: the characterization of an anti-P30 monoclonal antibody].

    PubMed

    Fachado, A; Fernández, N; Hernández, E; Fonseca, L

    1996-01-01

    A specific monoclonal antibody was characterized to Toxoplasma gondii. The hybridoma produced IgG immunoglobulins. The western blot analysis showed that the monoclonal antibody was specific for the antigen of an apparent molecular mass of 30 kd, which was present on the antigen surface. The monoclonal antibody was purified starting from mouse's ascitic fluid and it was matched with sepharose 4B. This immunoabsorbent was used to purify the specific parasitic antigen. The monoclonal antibody studied may be useful for those techniques contributing to the toxoplasmosis diagnosis.

  16. Cellular Pathway(S) of Antigen Processing and Presentation in Fish APC: Endosomal Involvement and Cell-Free Antigen Presentation

    PubMed Central

    Vallejo, Abbe N.; Miller, Norman W.; Harvey, Nancy E.; Cuchens, Marvin A.; Warr, Gregory W.

    1992-01-01

    Studies were conducted to address further the role(s) of antigen processing and presentation in the induction of immune responses in a phylogenetically lower vertebrate, specifically a teleost, the channel catfish. In particular, studies were aimed at determining the subcellular compartments involved in antigen degradation by channel catfish antigen-presenting cells (APC) as well as ascertaining the reexpression of immunogenic peptides on the surfaces of APC. The results showed that exogenous protein antigens were actively endocytosed by APC as detected by flow cytometry. Use of radiolabeled antigen and subcellular fractionation protocols also showed that antigen localized in endosomes/lysosomes. Furthermore, there was an apparent redistribution of antigen between these organelles and the plasma membrane during the course of antigen pulsing. Functional assays for the induction of in vitro antigen-specific proliferation of immune catfish peripheral blood leukocytes (PBL) showed that membrane preparations from antigen-pulsed autologous APC were highly stimulatory. The magnitude of responses elicited with such membrane preparations was very similar to that of PBL cultures stimulated with native antigen-pulsed and fixed intact APC or prefixed intact APC incubated with a peptide fragment of the nominal antigen. Current data further corroborate our previous findings that steps akin to antigen processing and presentation are clearly important in the induction of immune responses in lower vertebrates like fish, in a manner similar to that seen in mammalian systems. Consequently, it would appear that many immune functions among the diverse taxa of vertebrates are remarkably conserved. PMID:1343103

  17. Cloning and expansion of antigen-specific T cells using iPS cell technology: development of "off-the-shelf" T cells for the use in allogeneic transfusion settings.

    PubMed

    Kawamoto, Hiroshi; Masuda, Kyoko; Nagano, Seiji; Maeda, Takuya

    2018-03-01

    Recent advances in adoptive immunotherapy using cytotoxic T lymphocytes (CTLs) have led to moderate therapeutic anti-cancer effects in clinical trials. However, a critical issue, namely that CTLs collected from patients are easily exhausted during expansion culture, has yet to be solved. To address this issue, we have been developing a strategy which utilizes induced pluripotent stem cell (iPSC) technology. This strategy is based on the idea that when iPSCs are produced from antigen-specific CTLs, CTLs regenerated from such iPSCs should show the same antigen specificity as the original CTLs. Pursuing this idea, we previously succeeded in regenerating melanoma antigen MART1-specific CTLs, and more recently in producing potent CTLs expressing CD8αβ heterodimer. We are now developing a novel method by which non-T derived iPSCs are transduced with exogenous T cell receptor genes. If this method is applied to Human Leukocyte Antigen (HLA) haplotype-homozygous iPSC stock, it will be possible to prepare "off-the-shelf" T cells. As a first-in-human trial, we are planning to apply our strategy to relapsed acute myeloid leukemia patients by targeting the WT1 antigen.

  18. Connective tissue growth factor linked to the E7 tumor antigen generates potent antitumor immune responses mediated by an antiapoptotic mechanism.

    PubMed

    Cheng, W-F; Chang, M-C; Sun, W-Z; Lee, C-N; Lin, H-W; Su, Y-N; Hsieh, C-Y; Chen, C-A

    2008-07-01

    A novel method for generating an antigen-specific cancer vaccine and immunotherapy has emerged using a DNA vaccine. However, antigen-presenting cells (APCs) have a limited life span, which hinders their long-term ability to prime antigen-specific T cells. Connective tissue growth factor (CTGF) has a role in cell survival. This study explored the intradermal administration of DNA encoding CTGF with a model tumor antigen, human papilloma virus type 16 E7. Mice vaccinated with CTGF/E7 DNA exhibited a dramatic increase in E7-specific CD4(+) and CD8(+) T-cell precursors. They also showed an impressive antitumor effect against E7-expressing tumors compared with mice vaccinated with the wild-type E7 DNA. The delivery of DNA encoding CTGF and E7 or CTGF alone could prolong the survival of transduced dendritic cells (DCs) in vivo. In addition, CTGF/E7-transduced DCs could enhance a higher number of E7-specific CD8(+) T cells than E7-transduced DCs. By prolonging the survival of APCs, DNA vaccine encoding CTGF linked to a tumor antigen represents an innovative approach to enhance DNA vaccine potency and holds promise for cancer prophylaxis and immunotherapy.

  19. Development and evaluation of flow through assay for detection of antibodies against porcine cysticercosis.

    PubMed

    Sreedevi, C; Hafeez, Md; Subramanyam, K V; Anand Kumar, P; Chengalva Rayulu, V

    2011-04-01

    A flow through assay (FTA) was developed on cellulose acetate membrane for the serodiagnosis of porcine cysticercosis using cyst fluid (CFA) and whole cyst antigens (WCA) of Taenia solium metacestode. The assay consisted of antigen of T. solium metacestode coated onto membrane, mounted on a flow-through test device to provide assay capture matrix. The optimum concentration of coating antigen was 250 ng. The protein A colloidal gold conjugate served as antigen-antibody detecting reagent. A total of 225 serum samples were tested using two antigens. Results were better with CFA (96.0% sensitivity; 96.0% specificity) compared to WCA (92.0% sensitivity; 96.0% specificity). The test was also compared with enzyme-linked immunosorbent assay. The ELISA showed 96 per cent sensitivity with both the antigens whereas; the specificity was 96 and 92 per cent with CFA and WCA respectively. The sensitivity and specificity of flow through assay agrees closely with those of the ELISA. The cross-reaction was observed in one out of eight hydatidosis positive pigs (12.5%) with CFA by both the assays. The highest diagnostic accuracy (96%) was obtained with CFA-FTA and CFA-ELISA. For its high sensitivity and sporadic cross-reactions, CFA-FTA appears to be suitable for practical use at field level without instrumentation.

  20. Direct Lymph Node Vaccination of Lentivector/Prostate-Specific Antigen is Safe and Generates Tissue-Specific Responses in Rhesus Macaques.

    PubMed

    Au, Bryan C; Lee, Chyan-Jang; Lopez-Perez, Orlay; Foltz, Warren; Felizardo, Tania C; Wang, James C M; Huang, Ju; Fan, Xin; Madden, Melissa; Goldstein, Alyssa; Jaffray, David A; Moloo, Badru; McCart, J Andrea; Medin, Jeffrey A

    2016-02-19

    Anti-cancer immunotherapy is emerging from a nadir and demonstrating tangible benefits to patients. A variety of approaches are now employed. We are invoking antigen (Ag)-specific responses through direct injections of recombinant lentivectors (LVs) that encode sequences for tumor-associated antigens into multiple lymph nodes to optimize immune presentation/stimulation. Here we first demonstrate the effectiveness and antigen-specificity of this approach in mice challenged with prostate-specific antigen (PSA)-expressing tumor cells. Next we tested the safety and efficacy of this approach in two cohorts of rhesus macaques as a prelude to a clinical trial application. Our vector encodes the cDNA for rhesus macaque PSA and a rhesus macaque cell surface marker to facilitate vector titering and tracking. We utilized two independent injection schemas demarcated by the timing of LV administration. In both cohorts we observed marked tissue-specific responses as measured by clinical evaluations and magnetic resonance imaging of the prostate gland. Tissue-specific responses were sustained for up to six months-the end-point of the study. Control animals immunized against an irrelevant Ag were unaffected. We did not observe vector spread in test or control animals or perturbations of systemic immune parameters. This approach thus offers an "off-the-shelf" anti-cancer vaccine that could be made at large scale and injected into patients-even on an out-patient basis.

  1. Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens

    PubMed Central

    Gubin, Matthew M.; Zhang, Xiuli; Schuster, Heiko; Caron, Etienne; Ward, Jeffrey P.; Noguchi, Takuro; Ivanova, Yulia; Hundal, Jasreet; Arthur, Cora D.; Krebber, Willem-Jan; Mulder, Gwenn E.; Toebes, Mireille; Vesely, Matthew D.; Lam, Samuel S.K.; Korman, Alan J.; Allison, James P.; Freeman, Gordon J.; Sharpe, Arlene H.; Pearce, Erika L.; Schumacher, Ton N.; Aebersold, Ruedi; Rammensee, Hans-Georg; Melief, Cornelis J. M.; Mardis, Elaine R.; Gillanders, William E.; Artyomov, Maxim N.; Schreiber, Robert D.

    2014-01-01

    The immune system plays key roles in determining the fate of developing cancers by not only functioning as a tumour promoter facilitating cellular transformation, promoting tumour growth and sculpting tumour cell immunogenicity1–6, but also as an extrinsic tumour suppressor that either destroys developing tumours or restrains their expansion1,2,7. Yet clinically apparent cancers still arise in immunocompetent individuals in part as a consequence of cancer induced immunosuppression. In many individuals, immunosuppression is mediated by Cytotoxic T-Lymphocyte Associated Antigen-4 (CTLA-4) and Programmed Death-1 (PD-1), two immunomodulatory receptors expressed on T cells8,9. Monoclonal antibody (mAb) based therapies targeting CTLA-4 and/or PD-1 (checkpoint blockade) have yielded significant clinical benefits—including durable responses—to patients with different malignancies10–13. However, little is known about the identity of the tumour antigens that function as the targets of T cells activated by checkpoint blockade immunotherapy and whether these antigens can be used to generate vaccines that are highly tumour-specific. Herein, we use genomics and bioinformatics approaches to identify tumour-specific mutant proteins as a major class of T cell rejection antigens following αPD-1 and/or αCTLA-4 therapy of mice bearing progressively growing sarcomas and show that therapeutic synthetic long peptide (SLP) vaccines incorporating these mutant epitopes induce tumour rejection comparably to checkpoint blockade immunotherapy. Whereas, mutant tumour antigen-specific T cells are present in progressively growing tumours, they are reactivated following treatment with αPD-1- and/or αCTLA-4 and display some overlapping but mostly treatment-specific transcriptional profiles rendering them capable of mediating tumour rejection. These results reveal that tumour-specific mutant antigens (TSMA) are not only important targets of checkpoint blockade therapy but also can be used to develop personalized cancer-specific vaccines and to probe the mechanistic underpinnings of different checkpoint blockade treatments. PMID:25428507

  2. Induction of antigen-specific immunity by pH-sensitive carbonate apatite as a potent vaccine carrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hebishima, Takehisa; Tada, Seiichi; Takeshima, Shin-nosuke

    Highlights: Black-Right-Pointing-Pointer To develop effective vaccine, we examined the effects of CO{sub 3}Ap as an antigen carrier. Black-Right-Pointing-Pointer OVA contained in CO{sub 3}Ap was taken up by BMDCs more effectively than free OVA. Black-Right-Pointing-Pointer OVA-immunized splenocytes was activated by OVA contained in CO{sub 3}Ap effectively. Black-Right-Pointing-Pointer OVA contained in CO{sub 3}Ap induced strong OVA-specific immune responses to C57BL/6 mice. Black-Right-Pointing-Pointer CO{sub 3}Ap is promising antigen carrier for the achievement of effective vaccine. -- Abstract: The ability of carbonate apatite (CO{sub 3}Ap) to enhance antigen-specific immunity was examined in vitro and in vivo to investigate its utility as a vaccine carrier.more » Murine bone marrow-derived dendritic cells took up ovalbumin (OVA) containing CO{sub 3}Ap more effectively than free OVA. Interestingly, mice immunized with OVA-containing CO{sub 3}Ap produced OVA-specific antibodies more effectively than mice immunized with free OVA. Furthermore, immunization of C57BL/6 mice with OVA-containing CO{sub 3}Ap induced the proliferation and antigen-specific production of IFN-{gamma} by splenocytes more strongly than immunization with free OVA. Moreover, no significant differences were detected in the induction of delayed-type hypersensitivity responses, an immune reaction involving an antigen-specific, cell-mediated immune response between OVA-containing CO{sub 3}Ap and OVA-containing alumina salt (Alum), suggesting that CO{sub 3}Ap induced cell-mediated immune response to the same degree as Alum, which is commonly used for clinical applications. This study is the first to demonstrate the induction of antigen-specific immune responses in vivo by CO{sub 3}Ap.« less

  3. Multiplex serology for impact evaluation of bed net distribution on burden of lymphatic filariasis and four species of human malaria in northern Mozambique

    PubMed Central

    Candrinho, Baltazar; Chambe, Geraldo; Muchanga, João; Muguande, Olinda; Matsinhe, Graça; Mathe, Guidion; Rogier, Eric; Doyle, Timothy; Zulliger, Rose; Colborn, James; Saifodine, Abu; Lammie, Patrick; Priest, Jeffrey W.

    2018-01-01

    Background Universal coverage with long-lasting insecticidal nets (LLINs) is a primary control strategy against Plasmodium falciparum malaria. However, its impact on the three other main species of human malaria and lymphatic filariasis (LF), which share the same vectors in many co-endemic areas, is not as well characterized. The recent development of multiplex antibody detection provides the opportunity for simultaneous evaluation of the impact of control measures on the burden of multiple diseases. Methodology/Principal findings Two cross-sectional household surveys at baseline and one year after a LLIN distribution campaign were implemented in Mecubúri and Nacala-a-Velha Districts in Nampula Province, Mozambique. Both districts were known to be endemic for LF; both received mass drug administration (MDA) with antifilarial drugs during the evaluation period. Access to and use of LLINs was recorded, and household members were tested with P. falciparum rapid diagnostic tests (RDTs). Dried blood spots were collected and analyzed for presence of antibodies to three P. falciparum antigens, P. vivax MSP-119, P. ovale MSP-119, P. malariae MSP-119, and three LF antigens. Seroconversion rates were calculated and the association between LLIN use and post-campaign seropositivity was estimated using multivariate regression. The campaign covered 68% (95% CI: 58–77) of the population in Nacala-a-Velha and 46% (37–56) in Mecubúri. There was no statistically significant change in P. falciparum RDT positivity between the two surveys. Population seropositivity at baseline ranged from 31–81% for the P. falciparum antigens, 3–4% for P. vivax MSP-119, 41–43% for P. ovale MSP-119, 46–56% for P. malariae MSP-119, and 37–76% for the LF antigens. The seroconversion rate to the LF Bm33 antigen decreased significantly in both districts. The seroconversion rate to P. malariae MSP-119 and the LF Wb123 and Bm14 antigens each decreased significantly in one of the two districts. Community LLIN use was associated with a decreased risk of P. falciparum RDT positivity, P. falciparum LSA-1 seropositivity, and P. malariae MSP-119 seropositivity, but not LF antigen seropositivity. Conclusions/Significance The study area noted significant declines in LF seropositivity, but these were not associated with LLIN use. The MDA could have masked any impact of the LLINs on population LF seropositivity. The LLIN campaign did not reach adequately high coverage to decrease P. falciparum RDT positivity, the most common measure of P. falciparum burden. However, the significant decreases in the seroconversion rate to the P. malariae antigen, coupled with an association between community LLIN use and individual-level decreases in seropositivity to P. falciparum and P. malariae antigens show evidence of impact of the LLIN campaign and highlight the utility of using multiantigenic serological approaches for measuring intervention impact. PMID:29444078

  4. Multiplex serology for impact evaluation of bed net distribution on burden of lymphatic filariasis and four species of human malaria in northern Mozambique.

    PubMed

    Plucinski, Mateusz M; Candrinho, Baltazar; Chambe, Geraldo; Muchanga, João; Muguande, Olinda; Matsinhe, Graça; Mathe, Guidion; Rogier, Eric; Doyle, Timothy; Zulliger, Rose; Colborn, James; Saifodine, Abu; Lammie, Patrick; Priest, Jeffrey W

    2018-02-01

    Universal coverage with long-lasting insecticidal nets (LLINs) is a primary control strategy against Plasmodium falciparum malaria. However, its impact on the three other main species of human malaria and lymphatic filariasis (LF), which share the same vectors in many co-endemic areas, is not as well characterized. The recent development of multiplex antibody detection provides the opportunity for simultaneous evaluation of the impact of control measures on the burden of multiple diseases. Two cross-sectional household surveys at baseline and one year after a LLIN distribution campaign were implemented in Mecubúri and Nacala-a-Velha Districts in Nampula Province, Mozambique. Both districts were known to be endemic for LF; both received mass drug administration (MDA) with antifilarial drugs during the evaluation period. Access to and use of LLINs was recorded, and household members were tested with P. falciparum rapid diagnostic tests (RDTs). Dried blood spots were collected and analyzed for presence of antibodies to three P. falciparum antigens, P. vivax MSP-119, P. ovale MSP-119, P. malariae MSP-119, and three LF antigens. Seroconversion rates were calculated and the association between LLIN use and post-campaign seropositivity was estimated using multivariate regression. The campaign covered 68% (95% CI: 58-77) of the population in Nacala-a-Velha and 46% (37-56) in Mecubúri. There was no statistically significant change in P. falciparum RDT positivity between the two surveys. Population seropositivity at baseline ranged from 31-81% for the P. falciparum antigens, 3-4% for P. vivax MSP-119, 41-43% for P. ovale MSP-119, 46-56% for P. malariae MSP-119, and 37-76% for the LF antigens. The seroconversion rate to the LF Bm33 antigen decreased significantly in both districts. The seroconversion rate to P. malariae MSP-119 and the LF Wb123 and Bm14 antigens each decreased significantly in one of the two districts. Community LLIN use was associated with a decreased risk of P. falciparum RDT positivity, P. falciparum LSA-1 seropositivity, and P. malariae MSP-119 seropositivity, but not LF antigen seropositivity. The study area noted significant declines in LF seropositivity, but these were not associated with LLIN use. The MDA could have masked any impact of the LLINs on population LF seropositivity. The LLIN campaign did not reach adequately high coverage to decrease P. falciparum RDT positivity, the most common measure of P. falciparum burden. However, the significant decreases in the seroconversion rate to the P. malariae antigen, coupled with an association between community LLIN use and individual-level decreases in seropositivity to P. falciparum and P. malariae antigens show evidence of impact of the LLIN campaign and highlight the utility of using multiantigenic serological approaches for measuring intervention impact.

  5. MECHANISM OF THYMUS-INDEPENDENT IMMUNOCYTE TRIGGERING

    PubMed Central

    Coutinho, Antonio; Gronowicz, Eva; Bullock, Wesley W.; Möller, Göran

    1974-01-01

    The present experiments were performed in order to analyze the mechanism by which thymus-independent antigens (nonspecific B-cell mitogens) can induce specific immune responses to antigenic determinants present on the same molecule. The hapten NNP was coupled to the B-cell mitogen, lipopolysaccharide (LPS). The conjugate retained full mitogenic activity and bound specifically to NNP-reactive cells. NNP-LPS activated polyclonal as well as specific anti-NNP antibody synthesis, but the optimal concentrations for induction of specific anti-NNP cells were several orders of magnitude lower than the concentrations required for polyclonal activation. These low concentrations failed to activate nonspecific cells, but they induced specific thymus-independent responses of high-avidity NNP-specific cells with the typical kinetics of antigenic responses in vitro. Furthermore, hapten-specific cells were paralyzed by NNP-LPS concentrations that were optimal for induction of polyclonal activation. Specific activation and paralysis could be abolished by free hapten indicating that selective binding of NNP-LPS to hapten-specific cells was responsible for the specificity of the response. However, the triggering signal lacked specificity, since high-avidity specific anti-NNP cells could still be activated by stimulating concentrations of NNP-LPS in the presence of free hapten, even though the Ig receptor combining sites were presumably occupied by NNP. The findings show that B cells with specific Ig receptors for the antigenic determinants on mitogen molecules preferentially bind these molecules and become activated at concentrations still unsufficient to trigger other B cells that lack specific receptors. It is suggested that activation for primary IgM responses in B cells is the result of "one nonspecific signal." This nonspecific signal is provided by the mitogenic properties of some antigens (highly thymus independent or, alternatively, by nonspecific T-cell factors (for highly T cell-dependent antigens), or both, and the surface structures responsible for triggering are not the Ig receptors. The specific Ig receptors only act as passive focusing devices for nonspecific stimuli, entitling the cell to be selectively activated, even though both the signal and the receptors for the triggering are nonspecific. PMID:4128449

  6. Biocarrier composition for and method of degrading pollutants

    DOEpatents

    Fliermans, C.B.

    1994-01-01

    The present invention relates to biocarrier compositions that attract and bond pollutant-degrading antigens that will degrade the pollutants. Biocarriers are known generally as a variety of inert or semi-inert compounds or structures having the ability to sequester (attract), hold and biomagnify (enhance) specific microorganisms within their structure. Glass or polystyrene beads are the most well known biocarriers. The biocarrier, which is preferably in the form of glass microspheres, is coated with an antibody or group of antibodies that attract and react specifically with certain pollutant-degrading antigens. The antibody, once bonded to the biocarrier, is used by the composition to attract and bond those pollutant-degrading antigens. Each antibody is specific for an antigen that is specific for a given pollutant. The resulting composition is subsequently exposed to an environment contaminated with pollutants for degradation. In the preferred use, the degrading composition is formed and then injected directly into or near a plume or source of contamination.

  7. Production and Evaluation of a Purified Adenovirus Group-Specific (Hexon) Antigen for Use in the Diagnostic Complement Fixation Test

    PubMed Central

    Dowdle, W. R.; Lambriex, M.; Hierholzer, J. C.

    1971-01-01

    A simple procedure for the production of large volumes of purified adenovirus group-specific complement-fixing (CF) (hexon) antigen by selective adsorption to and elution from CaHPO4 is described. Results of immunodiffusion tests, electrophoresis, electron microscopy, and tests for hemagglutination and infectivity indicate that the purified antigen consisted of a single virus component (hexon). The purified product contained little host materials. Unlike the crude virus harvest usually employed for serodiagnostic CF tests, the purified antigen demonstrated no anticomplementary activity and did not develop such activity during storage. The purified antigen was equal to or slightly more sensitive than crude virus harvests for serodiagnosis of adenovirus infections. Images PMID:4325021

  8. Challenges and prospects of chimeric antigen receptor T cell therapy in solid tumors.

    PubMed

    Jindal, Vishal; Arora, Ena; Gupta, Sorab

    2018-05-05

    Chimeric antigen receptor (CAR) T cell therapy is a novel and innovative immunotherapy. CAR-T cells are genetically engineered T cells, carrying MHC independent specific antigen receptor and co-stimulatory molecule which can activate an immune response to a cancer specific antigen. This therapy showed great results in hematological malignancies but were unable to prove their worth in solid tumors. Likely reasons for their failure are lack of antigens, poor trafficking, and hostile tumor microenvironment. Excessive amount of research is going on to improve the efficacy of CAR T cell therapy in solid tumors. In this article, we will discuss the challenges faced in improving the outcome of CAR T cell therapy in solid tumors and various strategies adopted to curb them.

  9. Specific recognition and inhibition of Ewing tumour growth by antigen-specific allo-restricted cytotoxic T cells

    PubMed Central

    Thiel, U; Pirson, S; Müller-Spahn, C; Conrad, H; Busch, D H; Bernhard, H; Burdach, S; Richter, G H S

    2011-01-01

    Background: The development of a successful immunotherapy is hampered by an ineffective T-cell repertoire against tumour antigens and the inability of the patient's immune system to overcome tolerance-inducing mechanisms. Here, we test the specific recognition and lytical potential of allo-restricted CD8+ T cells against Ewing tumour (ET) associated antigens Enhancer of Zeste, Drosophila Homolog 2 (EZH2), and Chondromodulin-I (CHM1) identified through previous microarray analysis. Methods: Following repetitive CHM1319 (VIMPCSWWV) and EZH2666 (YMCSFLFNL) peptide-driven stimulations with HLA-A*0201+ dendritic cells (DC), allo-restricted HLA-A*0201− CD8+ T cells were stained with HLA-A*0201/peptide multimers, sorted and expanded by limiting dilution. Results: Expanded T cells specifically recognised peptide-pulsed target cells or antigen-transfected cells in the context of HLA-A*0201 and killed HLA-A*0201+ ET lines expressing the antigen while HLA-A*0201– ET lines were not affected. Furthermore, adoptively transferred T cells caused significant ET growth delay in Rag2−/−γC−/− mice. Within this context, we identified the CHM1319 peptide as a new candidate target antigen for ET immunotherapy. Conclusion: These results clearly identify the ET-derived antigens, EZH2666 and CHM1319, as suitable targets for protective allo-restricted human CD8+ T-cell responses against non-immunogenic ET and may benefit new therapeutic strategies in ET patients treated with allogeneic stem cell transplantation. PMID:21407224

  10. Isolation and characterization of antigen-specific alpaca (Lama pacos) VHH antibodies by biopanning followed by high-throughput sequencing.

    PubMed

    Miyazaki, Nobuo; Kiyose, Norihiko; Akazawa, Yoko; Takashima, Mizuki; Hagihara, Yosihisa; Inoue, Naokazu; Matsuda, Tomonari; Ogawa, Ryu; Inoue, Seiya; Ito, Yuji

    2015-09-01

    The antigen-binding domain of camelid dimeric heavy chain antibodies, known as VHH or Nanobody, has much potential in pharmaceutical and industrial applications. To establish the isolation process of antigen-specific VHH, a VHH phage library was constructed with a diversity of 8.4 × 10(7) from cDNA of peripheral blood mononuclear cells of an alpaca (Lama pacos) immunized with a fragment of IZUMO1 (IZUMO1PFF) as a model antigen. By conventional biopanning, 13 antigen-specific VHHs were isolated. The amino acid sequences of these VHHs, designated as N-group VHHs, were very similar to each other (>93% identity). To find more diverse antibodies, we performed high-throughput sequencing (HTS) of VHH genes. By comparing the frequencies of each sequence between before and after biopanning, we found the sequences whose frequencies were increased by biopanning. The top 100 sequences of them were supplied for phylogenic tree analysis. In total 75% of them belonged to N-group VHHs, but the other were phylogenically apart from N-group VHHs (Non N-group). Two of three VHHs selected from non N-group VHHs showed sufficient antigen binding ability. These results suggested that biopanning followed by HTS provided a useful method for finding minor and diverse antigen-specific clones that could not be identified by conventional biopanning. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  11. Targeting Antigens to Dec-205 on Dendritic Cells Induces Immune Protection in Experimental Colitis in Mice

    PubMed Central

    Wadwa, Munisch; Klopfleisch, Robert; Buer, Jan; Westendorf, Astrid M.

    2016-01-01

    The endocytotic c-type lectin receptor DEC-205 is highly expressed on immature dendritic cells. In previous studies, it was shown that antigen-targeting to DEC-205 is a useful tool for the induction of antigen-specific Foxp3+ regulatory T cells and thereby can prevent inflammatory processes. However, whether this approach is sufficient to mediate tolerance in mucosal tissues like the gut is unknown. In this study, we established a new mouse model in which the adoptive transfer of naive hemagglutinin (HA)-specific CD4+Foxp3– T cells into VILLIN-HA transgenic mice leads to severe colitis. To analyze if antigen-targeting to DEC-205 could protect against inflammation of the gut, VILLIN-HA transgenic mice were injected with an antibody–antigen complex consisting of the immunogenic HA110–120 peptide coupled to an α-DEC-205 antibody (DEC-HA) before adoptive T cell transfer. DEC-HA-treated mice showed significantly less signs of intestinal inflammation as was demonstrated by reduced loss of body weight and histopathology in the gut. Strikingly, abrogated intestinal inflammation was mediated via the conversion of naive HA-specific CD4+Foxp3– T cells into HA-specific CD4+Foxp3+ regulatory T cells. In this study, we provide evidence that antigen-targeting to DEC-205 can be utilized for the induction of tolerance in mucosal organs that are confronted with large numbers of exogenous antigens. PMID:27141310

  12. In vitro stimulation of peripheral blood mononuclear cells (PBMC) from HIV- and HIV+ chancroid patients by Haemophilus ducreyi antigens.

    PubMed Central

    Van Laer, L; Vingerhoets, J; Vanham, G; Kestens, L; Bwayo, J; Otido, J; Piot, P; Roggen, E

    1995-01-01

    The cellular immune responses to fractionated Haemophilus ducreyi antigens, coated on latex beads, were assessed in patients with chancroid and in controls, using an in vitro lymphocyte proliferation assay. Several fractions of H. ducreyi antigen revealed stimulating activity. However, only the molecular size ranges 91-78 kD, 59-29 kD, and 25-21 kD induced proliferation that may be specifically related to H. ducreyi infection. Lymphocytes from four HIV- patients, successfully treated for chancroid, were not stimulated by H. ducreyi antigen. In general, lymphocytes from HIV+ chancroid patients were less responsive to H. ducreyi antigen compared with those from HIV- chancroid patients. However, two HIV-infected patients showed exceptionally strong responses to high molecular weight fractions. To our knowledge this is the first report demonstrating that H. ducreyi contains specific T cell-stimulating antigens. Based on this work, further identification and purification of the T cell antigens is feasible. PMID:7586673

  13. In vitro stimulation of peripheral blood mononuclear cells (PBMC) from HIV- and HIV+ chancroid patients by Haemophilus ducreyi antigens.

    PubMed

    Van Laer, L; Vingerhoets, J; Vanham, G; Kestens, L; Bwayo, J; Otido, J; Piot, P; Roggen, E

    1995-11-01

    The cellular immune responses to fractionated Haemophilus ducreyi antigens, coated on latex beads, were assessed in patients with chancroid and in controls, using an in vitro lymphocyte proliferation assay. Several fractions of H. ducreyi antigen revealed stimulating activity. However, only the molecular size ranges 91-78 kD, 59-29 kD, and 25-21 kD induced proliferation that may be specifically related to H. ducreyi infection. Lymphocytes from four HIV- patients, successfully treated for chancroid, were not stimulated by H. ducreyi antigen. In general, lymphocytes from HIV+ chancroid patients were less responsive to H. ducreyi antigen compared with those from HIV- chancroid patients. However, two HIV-infected patients showed exceptionally strong responses to high molecular weight fractions. To our knowledge this is the first report demonstrating that H. ducreyi contains specific T cell-stimulating antigens. Based on this work, further identification and purification of the T cell antigens is feasible.

  14. Podocytes Are Nonhematopoietic Professional Antigen-Presenting Cells

    PubMed Central

    Burkard, Miriam; Ölke, Martha; Daniel, Christoph; Amann, Kerstin; Hugo, Christian; Kurts, Christian; Steinkasserer, Alexander; Gessner, André

    2013-01-01

    Podocytes are essential to the structure and function of the glomerular filtration barrier; however, they also exhibit increased expression of MHC class II molecules under inflammatory conditions, and they remove Ig and immune complexes from the glomerular basement membrane (GBM). This finding suggests that podocytes may act as antigen-presenting cells, taking up and processing antigens to initiate specific T cell responses, similar to professional hematopoietic cells such as dendritic cells or macrophages. Here, MHC–antigen complexes expressed exclusively on podocytes of transgenic mice were sufficient to activate CD8+ T cells in vivo. In addition, deleting MHC class II exclusively on podocytes prevented the induction of experimental anti-GBM nephritis. Podocytes ingested soluble and particulate antigens, activated CD4+ T cells, and crosspresented exogenous antigen on MHC class I molecules to CD8+ T cells. In conclusion, podocytes participate in the antigen-specific activation of adaptive immune responses, providing a potential target for immunotherapies of inflammatory kidney diseases and transplant rejection. PMID:23539760

  15. Toxoplasma gondii Recombinant Antigens as Tools for Serodiagnosis of Human Toxoplasmosis: Current Status of Studies

    PubMed Central

    2013-01-01

    Toxoplasma gondii is a parasitic protozoan which is the cause of toxoplasmosis. Although human toxoplasmosis in healthy adults is usually asymptomatic, serious disease can occur in the case of congenital infections and immunocompromised individuals. Furthermore, despite the exact recognition of its etiology, it still presents a diagnostic problem. Diagnosis of toxoplasmosis is mainly based on the results of serological tests detecting anti-T. gondii-specific antibodies in the patient's serum sample. The specificities and sensitivities of serology tests depend mostly on the diagnostic antigen(s) used. Most of the commercial serological kits currently available are based on Toxoplasma lysate antigens (TLAs). In recent years, many studies showed that recombinant antigenic proteins of T. gondii may be an alternative source of antigens which are very useful for the serodiagnosis of toxoplasmosis. This article presents a review of current studies on the application and usefulness of different T. gondii recombinant antigens in serological tests for the diagnosis of human toxoplasmosis. PMID:23784855

  16. Lymphocyte function in experimental endemic syphilis of Syrian hamsters.

    PubMed Central

    Bagasra, O; Kushner, H; Hashemi, S

    1985-01-01

    We have studied the changes in the lymph nodes, spleen and thymus that occur in inbred LSH Syrian hamsters infected with Treponema pallidum Bosnia A, the causative agent of endemic syphilis, as well as the B-cell responses of these infected animals to helper T-cell independent and dependent antigens. The lymph nodes increased significantly in weight up to 6 weeks after infection, and contained viable treponemes. No significant changes in the spleen weight were observed, and no viable treponemes could be recovered from the spleen. However, the size of the thymus decreased steadily during the course of the disease. The relative number of Ig+ cells (B cells) increased in the spleen and regional lymph nodes, whereas the relative number of T cells decreased during the course of infection. In both the spleen and lymph nodes, the relative number of macrophages increased initially and decreased thereafter in the form of a bell-shaped curve showing a peak at 4-6 weeks of infection. The ability of splenic lymphocytes from infected hamsters to mount a primary PFC response to pneumococcal polysaccharide type III (SIII), a helper T-cell independent antigen, was elevated throughout the course of infection. However, the splenic PFC response to sheep erythrocytes (SRBC), a helper T-cell dependent antigen, was increased only during the first 4 weeks of infection and progressively decreased thereafter. The PFC responses of infected lymph node lymphocytes to both SIII and SRBC were increased during the first 4 weeks and decreased thereafter. These data suggested that atrophy of the thymus seen in syphilitic infection is accompanied by the complex losses of subsets of T cells and altered B-cell functions. An early loss of suppressor T cells in both the lymph nodes and spleen occurs concomitantly with a loss of T helper cells and heterologous (treponema-unrelated) B-cell functions in the lymph nodes. Helper T cells are lost from the spleen only in the later stages of infection, whereas splenic B-cell functions remain intact throughout the course of the disease. These findings were further tested by in vitro methods where splenic and lymph node lymphocytes from infected hamsters were examined for their ability to respond to Con A in terms of the induction of antigen non-specific suppressor T cells. The mixing of Con A stimulated splenic or lymph node lymphocytes from infected hamsters was unable to inhibit the primary antibody responses of SRBC as compared to the normal control.(ABSTRACT TRUNCATED AT 400 WORDS) Images Figure 1 PMID:2931353

  17. Antigen Loss Variants: Catching Hold of Escaping Foes.

    PubMed

    Vyas, Maulik; Müller, Rolf; Pogge von Strandmann, Elke

    2017-01-01

    Since mid-1990s, the field of cancer immunotherapy has seen steady growth and selected immunotherapies are now a routine and preferred therapeutic option of certain malignancies. Both active and passive cancer immunotherapies exploit the fact that tumor cells express specific antigens on the cell surface, thereby mounting an immune response specifically against malignant cells. It is well established that cancer cells typically lose surface antigens following natural or therapy-induced selective pressure and these antigen-loss variants are often the population that causes therapy-resistant relapse. CD19 and CD20 antigen loss in acute lymphocytic leukemia and chronic lymphocytic leukemia, respectively, and lineage switching in leukemia associated with mixed lineage leukemia (MLL) gene rearrangements are well-documented evidences in this regard. Although increasing number of novel immunotherapies are being developed, majority of these do not address the control of antigen loss variants. Here, we review the occurrence of antigen loss variants in leukemia and discuss the therapeutic strategies to tackle the same. We also present an approach of dual-targeting immunoligand effectively retargeting NK cells against antigen loss variants in MLL-associated leukemia. Novel immunotherapies simultaneously targeting more than one tumor antigen certainly hold promise to completely eradicate tumor and prevent therapy-resistant relapses.

  18. Prostate Specific Membrane Antigen Positron Emission Tomography May Improve the Diagnostic Accuracy of Multiparametric Magnetic Resonance Imaging in Localized Prostate Cancer.

    PubMed

    Rhee, H; Thomas, P; Shepherd, B; Gustafson, S; Vela, I; Russell, P J; Nelson, C; Chung, E; Wood, G; Malone, G; Wood, S; Heathcote, P

    2016-10-01

    Positron emission tomography using ligands targeting prostate specific membrane antigen has recently been introduced. Positron emission tomography imaging with (68)Ga-PSMA-HBED-CC has been shown to detect metastatic prostate cancer lesions at a high rate. In this study we compare multiparametric magnetic resonance imaging and prostate specific membrane antigen positron emission tomography of the prostate with whole mount ex vivo prostate histopathology to determine the true sensitivity and specificity of these imaging modalities for detecting and locating tumor foci within the prostate. In a prospective clinical trial setting 20 patients with localized prostate cancer and a planned radical prostatectomy were recruited. All patients underwent multiparametric magnetic resonance imaging and positron emission tomography before surgery, and whole mount histopathology slides were directly compared to the images. European Society of Urogenital Radiology guidelines for reporting magnetic resonance imaging were used as a template for regional units of analysis. The uropathologist and radiologists were blinded to individual components of the study, and the final correlation was performed by visual and deformable registration analysis. A total of 50 clinically significant lesions were identified from the whole mount histopathological analysis. Based on regional analysis the sensitivity, specificity, positive predictive value and negative predictive value for multiparametric magnetic resonance imaging were 44%, 94%, 81% and 76%, respectively. With prostate specific membrane antigen positron emission tomography the sensitivity, specificity, positive predictive value and negative predictive value were 49%, 95%, 85% and 88%, respectively. Prostate specific membrane antigen positron emission tomography yielded a higher specificity and positive predictive value. A significant proportion of cancers are potentially missed and underestimated by both imaging modalities. Prostate specific membrane antigen positron emission tomography may be used in addition to multiparametric magnetic resonance imaging to help improve local staging in those patients undergoing retropubic radical prostatectomy. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  19. Amplification of the antigen-antibody interaction from quartz crystal microbalance immunosensors via back-filling immobilization of nanogold on biorecognition surface.

    PubMed

    Tang, Dian-Quan; Zhang, Da-Jun; Tang, Dian-Yong; Ai, Hua

    2006-10-20

    A new quartz crystal microbalance immunoassay method based on a novel transparent immunoaffinity reactor was developed for clinical immunoassay. To construct such an affinity reactor, resonators with a frequency of 10 MHz were fabricated by affinity binding of functionalized gold nanoparticles (nanogold) to quartz crystal with immobilized specific ligand for the label-free analysis of the affinity reaction between a ligand and its receptor. [Recombinant human tumor markers, carcinoembryonic antigen (CEA) was chosen as a model ligand.] The binding of target molecules onto the immobilized antibodies decreased the sensor's resonant frequency, and the frequency shift was proportional to the CEA concentration in the range of 3.0-50 ng/ml with a detection limit of 1.5 ng/ml at a signal/noise ration of 3. A glycine-HCl solution (pH 2.3) was used to release antigen-antibody complexes from the biorecognition surface. Good reusability was exhibited. Moreover, spiking various levels of CEA into normal human sera was diagnosed using the proposed immunoassay. Analytical results show the precision of the developed immunoassay is acceptable, implying a promising alternative approach for detecting CEA in clinical immunoassay. Compared with the conventional enzyme-linked immunosorbent assay, the proposed immunoassay system was simple and rapid without multiple labeling and separation steps. Importantly, the proposed immunoassay system could be further developed for the immobilization of other antigens or biocompounds.

  20. Inhibition of antibody synthesis by histamine in concanavalin A-treated mice: the possible role of glucocorticosteroids.

    PubMed

    Badger, A M; Griswold, D E; DiMartino, M J; Poste, G

    1982-09-01

    Administration of histamine (50 mg/kg) to BALB/C mice injected with concanavalin A (Con A) (100 micrograms, i.v.) 24 hr previously, results in a marked decrease in antibody synthesis to sheep red blood cells (SRBC) injected 2 hr later. This phenomenon occurs with nonimmunosuppressive doses of Con A and is strain-specific. It does not take place in the response to the T-independent antigen polyvinylpyrrolidone (PVP) or if histamine is administered after the antigen. Adoptive transfer of normal syngeneic cells at the same time as antigen does not reverse this effect. Excess suppressor cell generation was excluded by co-cultivation of treated spleen cells with normal cells in vitro and by determining their antibody response to SRBC 5 days later. 2-Methylhistamine, a histamine type 1 (H1) receptor agonist, mimicks the effect of histamine whereas dimaprit, a histamine type 2 (H2) receptor agonist, does not. Because histamine interaction with H1 receptors causes the release of adrenocorticotropic hormone (ACTH), we examined the effects of ACTH and corticosterone in this system and found that both could mimick the effect of histamine. These results suggest that the interaction of histamine with H1 receptors causes the release of glucocorticosteroids that may interfere with either Con A-activated T helper cell function or macrophage processing of T-dependent antigen.

  1. Experimental prestorage filtration removes antibodies and decreases lipids in RBC supernatants mitigating TRALI in vivo

    PubMed Central

    Kelher, Marguerite R.; Khan, Samina Y.; LaSarre, Monica; West, F. Bernadette; Land, Kevin J.; Mish, Barbara; Ceriano, Linda; Sowemimo-Coker, Samuel

    2014-01-01

    Transfusion-related acute lung injury (TRALI) remains a significant cause of transfusion-related mortality with red cell transfusion. We hypothesize that prestorage filtration may reduce proinflammatory activity in the red blood cell (RBC) supernatant and prevent TRALI. Filters were manufactured for both small volumes and RBC units. Plasma containing antibodies to human lymphocyte antigen (HLA)-A2 or human neutrophil antigen (HNA)-3a was filtered, and immunoglobulins and specific HNA-3a and HLA-2a neutrophil (PMN) priming activity were measured. Antibodies to OX27 were added to plasma, and filtration was evaluated in a 2-event animal model of TRALI. RBC units from 31 donors known to have antibodies against HLA antigens and from 16 antibody-negative controls were filtered. Furthermore, 4 RBC units were drawn and underwent standard leukoreduction. Immunoglobulins, HLA antibodies, PMN priming activity, and the ability to induce TRALI in an animal model were measured. Small-volume filtration of plasma removed >96% of IgG, antibodies to HLA-A2 and HNA-3a, and their respective priming activity, as well as mitigating antibody-mediated in vivo TRALI. In RBC units, experimental filtration removed antibodies to HLA antigens and inhibited the accumulation of lipid priming activity and lipid-mediated TRALI. We conclude that filtration removes proinflammatory activity and the ability to induce TRALI from RBCs and may represent a TRALI mitigation step. PMID:24747436

  2. Clinical relevance of IgG antibodies against food antigens in Crohn's disease: a double-blind cross-over diet intervention study.

    PubMed

    Bentz, S; Hausmann, M; Piberger, H; Kellermeier, S; Paul, S; Held, L; Falk, W; Obermeier, F; Fried, M; Schölmerich, J; Rogler, G

    2010-01-01

    Environmental factors are thought to play an important role in the development of Crohn's disease (CD). Immune responses against auto-antigens or food antigens may be a reason for the perpetuation of inflammation. In a pilot study, 79 CD patients and 20 healthy controls were examined for food immunoglobulin G (IgG). Thereafter, the clinical relevance of these food IgG antibodies was assessed in a double-blind cross-over study with 40 patients. Based on the IgG antibodies, a nutritional intervention was planned. The interferon (IFN)gamma secretion of T cells was measured. Eosinophil-derived neurotoxin was quantified in stool. The pilot study resulted in a significant difference of IgG antibodies in serum between CD patients and healthy controls. In 84 and 83% of the patients, respectively, IgG antibodies against processed cheese and yeast were detected. The daily stool frequency significantly decreased by 11% during a specific diet compared with a sham diet. Abdominal pain reduced and general well-being improved. IFNgamma secretion of T cells increased. No difference for eosinophil-derived neurotoxin in stool was detected. A nutritional intervention based on circulating IgG antibodies against food antigens showed effects with respect to stool frequency. The mechanisms by which IgG antibodies might contribute to disease activity remain to be elucidated.

  3. Induction of pneumococcal polysaccharide-specific mucosal immune responses by oral immunization.

    PubMed

    VanCott, J L; Kobayashi, T; Yamamoto, M; Pillai, S; McGhee, J R; Kiyono, H

    1996-04-01

    Liposome and cholera toxin (CT) are considered to be effective antigen delivery vehicles and adjuvants for mucosal vaccines. The effect of these antigen delivery systems on adjuvant responses to mucosally administered pneumococcal polysaccharide (Pnup) was investigated in this study. Both mucosal (e.g. oral) and systemic (i.p.) immunization of mice with purified preparations of Pnup type 23F induced antigen-specific IgM responses in sera. Interestingly, oral immunization of as little as 10 micrograms of Pnup type 23F was sufficient to induce systemic IgM responses. Pnup-specific IgM antibodies peaked by day 7 and no booster responses were evident after a second dose on day 14. In order to examine whether IgG and IgA Pnup-specific immune responses are induced by mucosal immunization, the mucosal adjuvant CT was mixed with Pnup type 23 as an oral vaccine. Co-oral administration of CT and Pnup type 23F resulted in the induction of Pnup-specific faecal IgA antibodies. These results were confirmed by detecting antigen-specific IgA-spot-forming cells in mononuclear cell suspensions prepared from the intestine of immunized mice. These findings suggest that oral immunization with Pnup in the presence of mucosal adjuvants, such as CT, could induce Pnup-specific IgA responses whereas Pnup alone did not. In an attempt to further enhance antigen-specific antibody responses, Pnup type 23F was encapsulated in liposomes and used as mucosal vaccine. However, immunogenicity of Pnup was not improved.

  4. Phase Variable O Antigen Biosynthetic Genes Control Expression of the Major Protective Antigen and Bacteriophage Receptor in Vibrio cholerae O1

    PubMed Central

    Seed, Kimberley D.; Faruque, Shah M.; Mekalanos, John J.; Calderwood, Stephen B.; Qadri, Firdausi; Camilli, Andrew

    2012-01-01

    The Vibrio cholerae lipopolysaccharide O1 antigen is a major target of bacteriophages and the human immune system and is of critical importance for vaccine design. We used an O1-specific lytic bacteriophage as a tool to probe the capacity of V. cholerae to alter its O1 antigen and identified a novel mechanism by which this organism can modulate O antigen expression and exhibit intra-strain heterogeneity. We identified two phase variable genes required for O1 antigen biosynthesis, manA and wbeL. manA resides outside of the previously recognized O1 antigen biosynthetic locus, and encodes for a phosphomannose isomerase critical for the initial step in O1 antigen biosynthesis. We determined that manA and wbeL phase variants are attenuated for virulence, providing functional evidence to further support the critical role of the O1 antigen for infectivity. We provide the first report of phase variation modulating O1 antigen expression in V. cholerae, and show that the maintenance of these phase variable loci is an important means by which this facultative pathogen can generate the diverse subpopulations of cells needed for infecting the host intestinal tract and for escaping predation by an O1-specific phage. PMID:23028317

  5. Antigen-mediated regulation in monoclonal gammopathies and myeloma

    PubMed Central

    Nair, Shiny; Sng, Joel; Boddupalli, Chandra Sekhar; Seckinger, Anja; Fulciniti, Mariateresa; Zhang, Lin; Rauniyar, Navin; Lopez, Michael; Neparidze, Natalia; Parker, Terri; Munshi, Nikhil C.; Sexton, Rachael; Barlogie, Bart; Orlowski, Robert; Bergsagel, Leif; Hose, Dirk; Mistry, Pramod K.; Meffre, Eric; Dhodapkar, Madhav V.

    2018-01-01

    A role for antigen-driven stimulation has been proposed in the pathogenesis of monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM) based largely on the binding properties of monoclonal Ig. However, insights into antigen binding to clonal B cell receptors and in vivo responsiveness of the malignant clone to antigen-mediated stimulation are needed to understand the role of antigenic stimulation in tumor growth. Lysolipid-reactive clonal Ig were detected in Gaucher disease (GD) and some sporadic gammopathies. Here, we show that recombinant Ig (rIg) cloned from sort-purified single tumor cells from lipid-reactive sporadic and GD-associated gammopathy specifically bound lysolipids. Liposome sedimentation and binding assays confirmed specific interaction of lipid-reactive monoclonal Ig with lysolipids. The clonal nature of lysolipid-binding Ig was validated by protein sequencing. Gene expression profiling and cytogenetic analyses from 2 patient cohorts showed enrichment of nonhyperdiploid tumors in lipid-reactive patients. In vivo antigen-mediated stimulation led to an increase in clonal Ig and plasma cells (PCs) in GD gammopathy and also reactivated previously suppressed antigenically related nonclonal PCs. These data support a model wherein antigenic stimulation mediates an initial polyclonal phase, followed by evolution of monoclonal tumors enriched in nonhyperdiploid genomes, responsive to underlying antigen. Targeting underlying antigens may therefore prevent clinical MM. PMID:29669929

  6. Antigen-mediated regulation in monoclonal gammopathies and myeloma.

    PubMed

    Nair, Shiny; Sng, Joel; Boddupalli, Chandra Sekhar; Seckinger, Anja; Chesi, Marta; Fulciniti, Mariateresa; Zhang, Lin; Rauniyar, Navin; Lopez, Michael; Neparidze, Natalia; Parker, Terri; Munshi, Nikhil C; Sexton, Rachael; Barlogie, Bart; Orlowski, Robert; Bergsagel, Leif; Hose, Dirk; Flavell, Richard A; Mistry, Pramod K; Meffre, Eric; Dhodapkar, Madhav V

    2018-04-19

    A role for antigen-driven stimulation has been proposed in the pathogenesis of monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM) based largely on the binding properties of monoclonal Ig. However, insights into antigen binding to clonal B cell receptors and in vivo responsiveness of the malignant clone to antigen-mediated stimulation are needed to understand the role of antigenic stimulation in tumor growth. Lysolipid-reactive clonal Ig were detected in Gaucher disease (GD) and some sporadic gammopathies. Here, we show that recombinant Ig (rIg) cloned from sort-purified single tumor cells from lipid-reactive sporadic and GD-associated gammopathy specifically bound lysolipids. Liposome sedimentation and binding assays confirmed specific interaction of lipid-reactive monoclonal Ig with lysolipids. The clonal nature of lysolipid-binding Ig was validated by protein sequencing. Gene expression profiling and cytogenetic analyses from 2 patient cohorts showed enrichment of nonhyperdiploid tumors in lipid-reactive patients. In vivo antigen-mediated stimulation led to an increase in clonal Ig and plasma cells (PCs) in GD gammopathy and also reactivated previously suppressed antigenically related nonclonal PCs. These data support a model wherein antigenic stimulation mediates an initial polyclonal phase, followed by evolution of monoclonal tumors enriched in nonhyperdiploid genomes, responsive to underlying antigen. Targeting underlying antigens may therefore prevent clinical MM.

  7. Development and Comparative Evaluation of a Plate Enzyme-Linked Immunosorbent Assay Based on Recombinant Outer Membrane Antigens Omp28 and Omp31 for Diagnosis of Human Brucellosis

    PubMed Central

    Tiwari, Sapana; Kumar, Ashu; Mangalgi, Smita; Rathod, Vedika; Prakash, Archana; Barua, Anita; Arora, Sonia; Sathyaseelan, Kannusamy

    2013-01-01

    Brucellosis is an important zoonotic infectious disease of humans and livestock with worldwide distribution and is caused by bacteria of the genus Brucella. The diagnosis of brucellosis always requires laboratory confirmation by either isolation of pathogens or detection of specific antibodies. The conventional serological tests available for the diagnosis of brucellosis are less specific and show cross-reactivity with other closely related organisms. These tests also necessitate the handling of Brucella species for antigen preparation. Therefore, there is a need to develop reliable, rapid, and user-friendly systems for disease diagnosis and alternatives to vaccine approaches. Keeping in mind the importance of brucellosis as an emerging infection and the prevalence in India, we carried out the present study to compare the recombinant antigens with the native antigens (cell envelope and sonicated antigen) of Brucella for diagnosis of human brucellosis by an indirect plate enzyme-linked immunosorbent assay (ELISA). Recombinant outer membrane protein 28 (rOmp28) and rOmp31 antigens were cloned, expressed, and purified in the bacterial expression system, and the purified proteins were used as antigens. Indirect plate ELISAs were then performed and standardized for comparison of the reactivities of recombinant and native antigens against the 433 clinical samples submitted for brucellosis testing, 15 culture-positive samples, and 20 healthy donor samples. The samples were separated into four groups based on their positivity to rose bengal plate agglutination tests (RBPTs), standard tube agglutination tests (STATs), and 2-mercaptoethanol (2ME) tests. The sensitivities and specificities of all the antigens were calculated, and the rOmp28 antigen was found to be more suitable for the clinical diagnosis of brucellosis than the rOmp31 antigen and native antigens. The rOmp28-based ELISA showed a very high degree of agreement with the conventional agglutination tests and promising results for further use in clinical screening and serodiagnosis of human brucellosis. PMID:23761658

  8. Immunologic analyses of peripheral leukocytes from workers at an ethical narcotics manufacturing facility.

    PubMed

    Biagini, R E; Henningsen, G M; Klincewicz, S L

    1995-01-01

    Little information exists about possible adverse health effects associated with workplace exposure to opiate compounds. We have previously reported opiate-specific IgG antibodies, positive epicutaneous tests, and pulmonary function decrements in workers exposed occupationally to opiates. In the present work, we extended these findings to investigate the effect of occupational opiate exposure on lymphocyte subpopulations and mitogen-induced lymphoblastogenesis. Thirty-three opiate-exposed workers and 8 nonexposed control workers were evaluated for lymphocyte subpopulation absolute numbers and percentages, by evaluating cell surface antigen expression with flow cytometry. A complete blood count with differential, common clinical chemistry parameters, and serum immunoglobulin levels were also evaluated. Opiate-exposed workers showed significantly (p < .05) increased absolute numbers and percentages of HLA-DR+ cells (MHC class II histocompatibility antigen), significantly (p < .01) decreased percentages of T helper-inducer (CD4+) cells, and significantly (p < .05) decreased numbers of basophils, compared with nonexposed opiate workers from the same factory. A trend toward reduction in the T helper-inducer (CD4+)/T cytotoxic-suppressor (CD8+) lymphocyte ratio was also evident. There was also a significant decrease in lymphocyte activity stimulated by pokeweed mitogen (p < .05) in opiate-exposed workers. These data indicate that occupational opiate exposure may change the number and types of circulating peripheral blood leukocytes, or alternatively, alter the expression of receptors on the surface of these cells. In addition, occupational opiate exposure appears to decrease the sensitivity of B-cells to pokeweed mitogen stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Development of Epstein-Barr virus-specific memory T cell receptor clonotypes in acute infectious mononucleosis

    PubMed Central

    1996-01-01

    The importance of cytotoxic T lymphocytes (CTLs) in the immunosurveillance of Epstein-Barr virus (EBV)-infected B cells is firmly established, and the viral antigens of CTL recognition in latent infection are well defined. The epitopes targeted by CTLs during primary infection have not been identified, however, and there is only limited information about T cell receptor (TCR) selection. In the present report, we have monitored the development of memory TCR-beta clonotypes selected in response to natural EBV infection in a longitudinal study of an HLA-B8+ individual with acute infectious mononucleosis (IM). By stimulating peripheral blood lymphocytes with HLA-B8+ EBV-transformed B lymphoblastoid cells, the primary virus- specific CTL response was shown to include specificities for two HLA-B8- restricted antigenic determinants, FLRGRAYGL and QAKWRLQTL, which are encoded within the latent EBV nuclear antigen EBNA-3. TCR-beta sequence analysis of CTL clones specific for each epitope showed polyclonal TCR- beta repertoire selection, with structural restrictions on recognition that indicated antigen-driven selection. Furthermore, longitudinal repertoire analysis revealed long-term preservation of a multiclonal effector response throughout convalescence, with the reemergence of distinct memory T cell clonotypes sharing similar structural restrictions. Tracking the progression of specific TCR-beta clonotypes and antigen-specific TCR-V beta family gene expression in the peripheral repertoire ex vivo using semiquantitative PCR strongly suggested that selective TCR-beta expansions were present at the clonotype level, but not at the TCR-V beta family level. Overall, in this first analysis of antigen-specific TCR development in IM, a picture of polyclonal TCR stimulation is apparent. This diversity may be especially important in the establishment of an effective CTL control during acute EBV infection and in recovery from disease. PMID:8920869

  10. Immunological purification and partial characterization of variant-specific surface antigen messenger RNA of Trypanosoma brucei brucei.

    PubMed Central

    Lheureux, M; Lheureux, M; Vervoort, T; Van Meirvenne, N; Steinert, M

    1979-01-01

    Polyadenylated RNA isolated from total polyribosomes of two variable antigen types (VATs) of T. brucei brucei were shown to program the synthesis, in mRNA-dependant reticulocyte lysates, of a wide variety of polypeptides. After immunoprecipitation of these cell-free products with an homologous antiserum raised against purified variant-specific surface antigen (VSSA), a major electrophoretic band was apparent on fluorography. It was confirmed that this band corresponds to the variable antigen since only an excess of purified homologous antigen will provoke competition. The apparent molecular weight of the in vitro synthesized antigen is about 63,000 daltons. The VSSA mRNA has been found in membrane-bound polyribosomes and a 15 fold immunological purification of this mRNA has been obtained, using partially purified anti-VSSA IgG in conjunction with inactivated Staphylococcus aureus. Images PMID:116191

  11. Immunotherapy targeting HER2 with genetically modified T cells eliminates tumor-initiating cells in osteosarcoma.

    PubMed

    Rainusso, N; Brawley, V S; Ghazi, A; Hicks, M J; Gottschalk, S; Rosen, J M; Ahmed, N

    2012-03-01

    Despite radical surgery and multi-agent chemotherapy, less than one third of patients with recurrent or metastatic osteosarcoma (OS) survive. The limited efficacy of current therapeutic approaches to target tumor-initiating cells (TICs) may explain this dismal outcome. The purpose of this study was to assess the impact of modified T cells expressing a human epidermal growth factor receptor (HER2)-specific chimeric antigen receptor in the OS TIC compartment of human established cell lines. Using the sarcosphere formation assay, we found that OS TICs were resistant to increasing methotrexate concentrations. In contrast, HER2-specific T cells decreased markedly sarcosphere formation capacity and the ability to generate bone tumors in immunodeficient mice after orthotopic transplantation. In vivo, administration of HER2-specific T cells significantly reduced TICs in bulky tumors as judged by decreased sarcosphere forming efficiency in OS cells isolated from explanted tumors. We demonstrate that HER2-specific T cells target drug resistant TICs in established OS cell lines, suggesting that incorporating immunotherapy into current treatment strategies for OS has the potential to improve outcomes.

  12. Effect of Neutralizing Transforming Growth Factor β1 on the Immune Response against Mycobacterium tuberculosis in Guinea Pigs

    PubMed Central

    Allen, Shannon Sedberry; Cassone, Lynne; Lasco, Todd M.; McMurray, David N.

    2004-01-01

    Transforming growth factor β (TGF-β) is a cytokine which has been shown to suppress the antimycobacterial immune responses of humans and experimental animals. In this study, the contributions of TGF-β to cytokine production in vivo were investigated by using the established guinea pig model of tuberculous pleurisy. Mycobacterium bovis BCG-vaccinated guinea pigs were injected intrapleurally with heat-killed virulent Mycobacterium tuberculosis. Eight days following induction of an antigen-specific pleural effusion, guinea pigs were injected intrapleurally with anti-TGF-β1 or isotype control antibody. The following day, pleural exudates were removed, and the fluid volume and characteristics of the infiltrating cells were determined. Pleural fluid was analyzed for total interferon (IFN) and tumor necrosis factor (TNF) protein levels by using appropriate bioassays. RNA from pleural effusion cells was examined to determine TGF-β1, TNF-α, IFN-γ, and interleukin-8 mRNA levels by using real-time PCR. Proliferative responses of pleural effusion lymphocytes were examined in response to concanavalin A and purified protein derivative (PPD) in vitro. Treatment with anti-TGF-β1 resulted in decreased pleural fluid volume and decreased cell numbers in the pleural space along with an increased percentage of lymphocytes and a decreased percentage of neutrophils. The bioactive TNF protein levels in pleural fluid were increased in guinea pigs treated with anti-TGF-β1, while the bioactive IFN protein concentrations were not altered. Expression of TGF-β1 and TNF-α mRNA was significantly increased following TGF-β1 neutralization. Finally, PPD-induced proliferative responses of pleural cells from anti-TGF-β1-treated animals were significantly enhanced. Thus, TGF-β1 may be involved in the resolution of this local, mycobacterial antigen-specific inflammatory response. PMID:14977939

  13. Novel use of a radiolabelled antibody against stage specific embryonic antigen for the detection of occult abscesses in mammals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thakur, Madhukar L.

    1990-01-01

    The invention discloses improved reagents containing antibodies against stage specific embryonic antigen-1 antibodies and improved methods for detection of occult abscess and inflammation using the improved reagents.

  14. Health Screening: What Tests You Need and When

    MedlinePlus

    ... cancer screening if you are considering having a prostate-specific antigen (PSA) test or digital rectal examination (DRE). Sexually ... regular colonoscopy for cancer of the colon, serum prostatic-specific antigen (PSA) for prostate cancer, mammography for breast cancer, ...

  15. Purification and refolding of anti-T-antigen single chain antibodies (scFvs) expressed in Escherichia coli as inclusion bodies.

    PubMed

    Yuasa, Noriyuki; Koyama, Tsubasa; Fujita-Yamaguchi, Yoko

    2014-02-01

    T-antigen (Galβ1-3GalNAcα-1-Ser/Thr) is an oncofetal antigen that is commonly expressed as a carbohydrate determinant in many adenocarcinomas. Since it is associated with tumor progression and metastasis, production of recombinant antibodies specific for T-antigen could lead to the development of cancer diagnostics and therapeutics. Previously, we isolated and characterized 11 anti-T-antigen phage clones from a phage library displaying human single-chain antibodies (scFvs) and purified one scFv protein, 1G11. More recently, we purified and characterized 1E8 scFv protein using a Drosophila S2 expression system. In the current study, four anti-T-antigen scFv genes belonging to Groups 1-4 were purified from inclusion bodies expressed in Escherichia coli cells. Inclusion bodies isolated from E. coli cells were denatured in 3.5 M Gdn-HCl. Solubilized His-tagged scFv proteins were purified using Ni(2+)-Sepharose column chromatography in the presence of 3.5 M Gdn-HCl. Purified scFv proteins were refolded according to a previously published method of step-wise dialysis. Two anti-T-antigen scFv proteins, 1E6 and 1E8 that belong to Groups 1 and 2, respectively, were produced in sufficient amounts, thus allowing further characterization of their binding activity with T-antigen. Specificity and affinity constants determined using enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR), respectively, provided evidence that both 1E8 and 1E6 scFv proteins are T-antigen specific and suggested that 1E8 scFv protein has a higher affinity for T-antigen than 1E6 scFv protein.

  16. Site-specific incorporation of three toll-like receptor 2 targeting adjuvants into semisynthetic, molecularly defined nanoparticles: application to group a streptococcal vaccines.

    PubMed

    Moyle, Peter M; Dai, Wei; Zhang, Yingkai; Batzloff, Michael R; Good, Michael F; Toth, Istvan

    2014-05-21

    Subunit vaccines offer a means to produce safer, more defined vaccines compared to traditional whole microorganism approaches. Subunit antigens, however, exhibit weak immunity, which is normally overcome through coadministration with adjuvants. Enhanced vaccine properties (e.g., improved potency) can be obtained by linking antigen and adjuvant, as observed for synthetic peptide antigens and Toll-like receptor 2 (TLR2) ligands. As few protective peptide antigens have been reported, compared to protein antigens, we sought to extend the utility of this approach to recombinant proteins, while ensuring that conjugation reactions yielded a single, molecularly defined product. Herein we describe the development and optimization of techniques that enable the efficient, site-specific attachment of three synthetic TLR2 ligands (lipid core peptide (LCP), Pam2Cys, and Pam3Cys) onto engineered protein antigens, permitting the selection of optimal TLR2 agonists during the vaccine development process. Using this approach, broadly protective (J14) and population targeted (seven M protein N-terminal antigens) multiantigenic vaccines against group A streptococcus (GAS; Streptococcus pyogenes) were produced and observed to self-assemble in PBS to yield nanoparticules (69, 101, and 123 nm, respectively). All nanoparticle formulations exhibited self-adjuvanting properties, with rapid, persistent, antigen-specific IgG antibody responses elicited toward each antigen in subcutaneously immunized C57BL/6J mice. These antibodies were demonstrated to strongly bind to the cell surface of five GAS serotypes that are not represented by vaccine M protein N-terminal antigens, are among the top 20 circulating strains in developed countries, and are associated with clinical disease, suggesting that these vaccines may elicit broadly protective immune responses.

  17. Understanding MHC Class I Presentation of Viral Antigens by Human Dendritic Cells as a Basis for Rational Design of Therapeutic Vaccines

    PubMed Central

    van Montfoort, Nadine; van der Aa, Evelyn; Woltman, Andrea M.

    2014-01-01

    Effective viral clearance requires the induction of virus-specific CD8+ cytotoxic T lymphocytes (CTL). Since dendritic cells (DC) have a central role in initiating and shaping virus-specific CTL responses, it is important to understand how DC initiate virus-specific CTL responses. Some viruses can directly infect DC, which theoretically allow direct presentation of viral antigens to CTL, but many viruses target other cells than DC and thus the host depends on the cross-presentation of viral antigens by DC to activate virus-specific CTL. Research in mouse models has highly enhanced our understanding of the mechanisms underlying cross-presentation and the dendritic cells (DC) subsets involved, however, these results cannot be readily translated toward the role of human DC in MHC class I-antigen presentation of human viruses. Here, we summarize the insights gained in the past 20 years on MHC class I presentation of viral antigen by human DC and add to the current debate on the capacities of different human DC subsets herein. Furthermore, possible sources of viral antigens and essential DC characteristics for effective induction of virus-specific CTL are evaluated. We conclude that cross-presentation is not only an efficient mechanism exploited by DC to initiate immunity to viruses that do not infect DC but also to viruses that do infect DC, because cross-presentation has many conceptual advantages and bypasses direct immune modulatory effects of the virus on its infected target cells. Since knowledge on the mechanism of viral antigen presentation and the preferred DC subsets is crucial for rational vaccine design, the obtained insights are very instrumental for the development of effective anti-viral immunotherapy. PMID:24795724

  18. Effects of pre-existing anti-carrier immunity and antigenic element multiplicity on efficacy of a modular virus-like particle vaccine.

    PubMed

    Chuan, Yap P; Rivera-Hernandez, Tania; Wibowo, Nani; Connors, Natalie K; Wu, Yang; Hughes, Fiona K; Lua, Linda H L; Middelberg, Anton P J

    2013-09-01

    Modularization of a peptide antigen for presentation on a microbially synthesized murine polyomavirus (MuPyV) virus-like particle (VLP) offers a new alternative for rapid and low-cost vaccine delivery at a global scale. In this approach, heterologous modules containing peptide antigenic elements are fused to and displayed on the VLP carrier, allowing enhancement of peptide immunogenicity via ordered and densely repeated presentation of the modules. This study addresses two key engineering questions pertaining to this platform, exploring the effects of (i) pre-existing carrier-specific immunity on modular VLP vaccine effectiveness and (ii) increase in the antigenic element number per VLP on peptide-specific immune response. These effects were studied in a mouse model and with modular MuPyV VLPs presenting a group A streptococcus (GAS) peptide antigen, J8i. The data presented here demonstrate that immunization with a modular VLP could induce high levels of J8i-specific antibodies despite a strong pre-existing anti-carrier immune response. Doubling of the J8i antigenic element number per VLP did not enhance J8i immunogenicity at a constant peptide dose. However, the strategy, when used in conjunction with increased VLP dose, could effectively increase the peptide dose up to 10-fold, leading to a significantly higher J8i-specific antibody titer. This study further supports feasibility of the MuPyV modular VLP vaccine platform by showing that, in the absence of adjuvant, modularized GAS antigenic peptide at a dose as low as 150 ng was sufficient to raise a high level of peptide-specific IgGs indicative of bactericidal activity. Copyright © 2013 Wiley Periodicals, Inc.

  19. A high molecular weight-melanoma associated antigen-specific chimeric antigen receptor redirects lymphocytes to target human melanomas

    PubMed Central

    Burns, William R.; Zhao, Yangbing; Frankel, Timothy L.; Hinrichs, Christian S.; Zheng, Zhili; Xu, Hui; Feldman, Steven A.; Ferrone, Soldano; Rosenberg, Steven A.; Morgan, Richard A.

    2011-01-01

    Immunotherapy, particularly the adoptive cell transfer (ACT) of tumor infiltrating lymphocytes (TIL), is a very promising therapy for metastatic melanoma. Some patients unable to receive TIL have been successfully treated with autologous peripheral blood lymphocytes (PBL), genetically modified to express HLA class I antigen restricted, melanoma antigen-reactive T-cell receptors; however, substantial numbers of patients remain ineligible due to the lack of expression of the restricting HLA class I allele. We sought to overcome this limitation by designing a non-MHC-restricted, chimeric antigen receptor (CAR) targeting the high molecular weight-melanoma associated antigen (HMW-MAA), which is highly expressed on over 90% of human melanomas but has a restricted distribution in normal tissues. HMW-MAA-specific CARs containing an antigen recognition domain based on variations of the HMW-MAA-specific monoclonal antibody (mAb) 225.28S and a T-cell activation domain based on combinations of CD28, 4-1BB, and CD3ζ activation motifs were constructed within a retroviral vector to allow stable gene transfer into cells and their progeny. Following optimization of the HMW-MAA-specific CAR for expression and function in human PBL, these gene-modified T cells secreted cytokines, were cytolytic, and proliferated in response to HMW-MAA expressing cell lines. Furthermore, the receptor functioned in both CD4+ and CD8+ cells, was non-MHC-restricted, and reacted against explanted human melanomas. To evaluate this HMW-MAA-specific CAR in patients with metastatic melanoma, we developed a clinical-grade retroviral packaging line. This may represent a novel means to treat the majority of patients with advanced melanoma, most notably those unable to receive current ACT therapies. PMID:20395199

  20. A multi-antigenic MVA vaccine increases efficacy of combination chemotherapy against Mycobacterium tuberculosis

    PubMed Central

    Coupet, Charles-Antoine; Gouanvic, Marie; Schmitt, Doris; Ray, Aurélie; Hoffmann, Chantal; Schultz, Huguette; Tyagi, Sandeep; Soni, Heena; Converse, Paul J.; Arias, Lilibeth; Kleinpeter, Patricia; Sansas, Benoît; Mdluli, Khisimuzi; Vilaplana, Cristina; Cardona, Pere-Joan; Nuermberger, Eric; Marchand, Jean-Baptiste; Silvestre, Nathalie; Inchauspé, Geneviève

    2018-01-01

    Despite the existence of the prophylactic Bacille Calmette-Guérin (BCG) vaccine, infection by Mycobacterium tuberculosis (Mtb) remains a major public health issue causing up to 1.8 million annual deaths worldwide. Increasing prevalence of Mtb strains resistant to antibiotics represents an urgent threat for global health that has prompted a search for alternative treatment regimens not subject to development of resistance. Immunotherapy constitutes a promising approach to improving current antibiotic treatments through engagement of the host’s immune system. We designed a multi-antigenic and multiphasic vaccine, based on the Modified Vaccinia Ankara (MVA) virus, denoted MVATG18598, which expresses ten antigens classically described as representative of each of different phases of Mtb infection. In vitro analysis coupled with multiple-passage evaluation demonstrated that this vaccine is genetically stable, i.e. fit for manufacturing. Using different mouse strains, we show that MVATG18598 vaccination results in both Th1-associated T-cell responses and cytolytic activity, targeting all 10 vaccine-expressed Mtb antigens. In chronic post-exposure mouse models, MVATG18598 vaccination in combination with an antibiotic regimen decreases the bacterial burden in the lungs of infected mice, compared with chemotherapy alone, and is associated with long-lasting antigen-specific Th1-type T cell and antibody responses. In one model, co-treatment with MVATG18598 prevented relapse of the disease after treatment completion, an important clinical goal. Overall, results demonstrate the capacity of the therapeutic MVATG18598 vaccine to improve efficacy of chemotherapy against TB. These data support further development of this novel immunotherapeutic in the treatment of Mtb infections. PMID:29718990

  1. Use of antigen-primed dendritic cells for inducing antitumor immune responses in vitro in patients with non-small cell lung cancer

    PubMed Central

    Obleukhova, Irina; Kiryishina, Nataliya; Falaleeva, Svetlana; Lopatnikova, Julia; Kurilin, Vasiliy; Kozlov, Vadim; Vitsin, Aleksander; Cherkasov, Andrey; Kulikova, Ekaterina; Sennikov, Sergey

    2018-01-01

    Cancer is associated with a reduction in immature and mature circulating dendritic cells (DCs), and with an impaired migratory capacity, compared with healthy donors. Therefore, modern approaches to the in vitro generation of DCs loaded with tumor antigens and their use for inducing antitumor immune responses in vivo are being investigated. The purpose of the present study was to investigate the phenotypic and functional characteristics of peripheral blood DC subsets in patients with non-small cell lung cancer (NSCLC), and the development of an antitumor cytotoxic response by mononuclear cells (MNCs) from patients using in vitro generated antigen-primed DCs. Heparinized peripheral venous blood samples were obtained from 10 healthy donors and 20 patients with a histologically verified diagnosis of NSCLC. The ability of antigen-activated DCs to stimulate the activity of MNCs against autologous tumor cells was evaluated using a cytotoxic test. Peripheral blood DC subsets from patients with NSCLC were identified to be decreased and to exhibit an impaired ability to mature, compared with healthy donors. Furthermore, DCs generated from MNCs from patients with NSCLC were able to stimulate a specific cytotoxic response when loaded with autologous tumor lysates or RNA and matured, in vitro. A perforin and granzyme B-dependent mode of cytotoxicity was primarily induced. The ability of DCs loaded with tumor antigens to increase the cytotoxic activity of MNCs against NSCLC cells in vitro indicates the effective induction and co-stimulation of T lymphocytes by the generated DCs. PMID:29399182

  2. Immunotoxicity of gallium arsenide on antigen presentation: comparative study of intratracheal and intraperitoneal exposure routes.

    PubMed

    Hartmann, Constance B; Harrison, M Travis; McCoy, Kathleen L

    2005-01-01

    Gallium arsenide (GaAs) is a semiconductor utilized in electronics and computer industries. GaAs exposure of animals causes local inflammation and systemic immune suppression. Mice were administered 2 to 200 mg/kg GaAs. On day 5, intratracheal instillation increased lung weights in a dose-dependent manner and induced pulmonary inflammation exemplified by mononuclear cell infiltration and mild epithelial hyperplasia. No fibrosis, pneumocyte hyperplasia, proteinosis, or bronchial epithelial damage was observed in the lungs. Splenic cellularity and composition were unaffected. GaAs' effect on antigen presentation by macrophages was similar after intratracheal and intraperitoneal exposure, although the lowest observable adverse effect levels differed. Macrophages from the exposure site displayed an enhanced ability to activate an antigen-specific CD4(+) helper T-cell hybridoma compared with vehicle controls, whereas splenic macrophages were defective in this function. The chemical's impact on peritoneal macrophages depended on the exposure route. GaAs exposure augmented thiol cathepsins B and L activities in macrophages from the exposure site, but decreased proteolytic activities in splenic macrophages. Alveolar macrophages had increased expression of major histocompatibility complex (MHC) Class II molecules, whereas MHC Class II expression on splenic and peritoneal macrophages was unaffected. Modified thiol cathepsin activities statistically correlated with altered efficiency of antigen presentation, whereas MHC Class II expression did not. Our study is the first one to examine the functional capability of alveolar macrophages after intratracheal GaAs instillation. Therefore, thiol cathepsins may be potential target molecules by which GaAs exposure modulates antigen presentation.

  3. A multi-antigenic MVA vaccine increases efficacy of combination chemotherapy against Mycobacterium tuberculosis.

    PubMed

    Leung-Theung-Long, Stéphane; Coupet, Charles-Antoine; Gouanvic, Marie; Schmitt, Doris; Ray, Aurélie; Hoffmann, Chantal; Schultz, Huguette; Tyagi, Sandeep; Soni, Heena; Converse, Paul J; Arias, Lilibeth; Kleinpeter, Patricia; Sansas, Benoît; Mdluli, Khisimuzi; Vilaplana, Cristina; Cardona, Pere-Joan; Nuermberger, Eric; Marchand, Jean-Baptiste; Silvestre, Nathalie; Inchauspé, Geneviève

    2018-01-01

    Despite the existence of the prophylactic Bacille Calmette-Guérin (BCG) vaccine, infection by Mycobacterium tuberculosis (Mtb) remains a major public health issue causing up to 1.8 million annual deaths worldwide. Increasing prevalence of Mtb strains resistant to antibiotics represents an urgent threat for global health that has prompted a search for alternative treatment regimens not subject to development of resistance. Immunotherapy constitutes a promising approach to improving current antibiotic treatments through engagement of the host's immune system. We designed a multi-antigenic and multiphasic vaccine, based on the Modified Vaccinia Ankara (MVA) virus, denoted MVATG18598, which expresses ten antigens classically described as representative of each of different phases of Mtb infection. In vitro analysis coupled with multiple-passage evaluation demonstrated that this vaccine is genetically stable, i.e. fit for manufacturing. Using different mouse strains, we show that MVATG18598 vaccination results in both Th1-associated T-cell responses and cytolytic activity, targeting all 10 vaccine-expressed Mtb antigens. In chronic post-exposure mouse models, MVATG18598 vaccination in combination with an antibiotic regimen decreases the bacterial burden in the lungs of infected mice, compared with chemotherapy alone, and is associated with long-lasting antigen-specific Th1-type T cell and antibody responses. In one model, co-treatment with MVATG18598 prevented relapse of the disease after treatment completion, an important clinical goal. Overall, results demonstrate the capacity of the therapeutic MVATG18598 vaccine to improve efficacy of chemotherapy against TB. These data support further development of this novel immunotherapeutic in the treatment of Mtb infections.

  4. Epithelial Plasticity in Castration-Resistant Prostate Cancer: Biology of the Lethal Phenotype

    DTIC Science & Technology

    2012-07-01

    mCRPC, with metastatic progres- sion by prostate - specific antigen (PSA; 2 consecutive rises over nadir separated by more than 1 week) or radiologic...Abbreviations: CRPC, castration-resistant prostate cancer; PSA, prostate specific antigen . Armstrong et al. Mol Cancer Res; 9(8) August 2011 Molecular... antigen , which we found did correlate with PSA outcomes and high risk disease among men with localized prostate cancer who were undergoing radical

  5. Characterization of the Fine Specificity of Bovine CD8 T-Cell Responses to Defined Antigens from the Protozoan Parasite Theileria parva▿

    PubMed Central

    Graham, Simon P.; Pellé, Roger; Yamage, Mat; Mwangi, Duncan M.; Honda, Yoshikazu; Mwakubambanya, Ramadhan S.; de Villiers, Etienne P.; Abuya, Evelyne; Awino, Elias; Gachanja, James; Mbwika, Ferdinand; Muthiani, Anthony M.; Muriuki, Cecelia; Nyanjui, John K.; Onono, Fredrick O.; Osaso, Julius; Riitho, Victor; Saya, Rosemary M.; Ellis, Shirley A.; McKeever, Declan J.; MacHugh, Niall D.; Gilbert, Sarah C.; Audonnet, Jean-Christophe; Morrison, W. Ivan; van der Bruggen, Pierre; Taracha, Evans L. N.

    2008-01-01

    Immunity against the bovine intracellular protozoan parasite Theileria parva has been shown to be mediated by CD8 T cells. Six antigens targeted by CD8 T cells from T. parva-immune cattle of different major histocompatibility complex (MHC) genotypes have been identified, raising the prospect of developing a subunit vaccine. To facilitate further dissection of the specificity of protective CD8 T-cell responses and to assist in the assessment of responses to vaccination, we set out to identify the epitopes recognized in these T. parva antigens and their MHC restriction elements. Nine epitopes in six T. parva antigens, together with their respective MHC restriction elements, were successfully identified. Five of the cytotoxic-T-lymphocyte epitopes were found to be restricted by products of previously described alleles, and four were restricted by four novel restriction elements. Analyses of CD8 T-cell responses to five of the epitopes in groups of cattle carrying the defined restriction elements and immunized with live parasites demonstrated that, with one exception, the epitopes were consistently recognized by animals of the respective genotypes. The analysis of responses was extended to animals immunized with multiple antigens delivered in separate vaccine constructs. Specific CD8 T-cell responses were detected in 19 of 24 immunized cattle. All responder cattle mounted responses specific for antigens for which they carried an identified restriction element. By contrast, only 8 of 19 responder cattle displayed a response to antigens for which they did not carry an identified restriction element. These data demonstrate that the identified antigens are inherently dominant in animals with the corresponding MHC genotypes. PMID:18070892

  6. Development and Evaluation of a Sensitive and Specific Assay for Diagnosis of Human Toxocariasis by Use of Three Recombinant Antigens (TES-26, TES-30USM, and TES-120)▿

    PubMed Central

    Mohamad, Suharni; Azmi, Norhaida Che; Noordin, Rahmah

    2009-01-01

    Diagnosis of human toxocariasis currently relies on serologic tests that use Toxocara excretory-secretory (TES) antigen to detect immunoglobulin G (IgG) antibodies to the larvae. In general, however, these assays do not have adequate specificity for use in countries in which other soil-transmitted helminths are endemic. The use of recombinant antigens in these assays, however, is promising for improving the specificity of the diagnosis of toxocariasis. Toward this goal, we developed an IgG4 enzyme-linked immunosorbent assay (ELISA) involving three recombinant antigens: rTES-30USM (previously produced), rTES-26, and rTES-120. The latter two antigens were produced by reverse transcription-PCR cloning; subcloned into glutathione S-transferase (GST)-tagged and His-tagged prokaryotic expression vectors, respectively; and expressed in Escherichia coli. The recombinant proteins were subsequently purified by affinity chromatography using GST and His-Trap resins. The diagnostic potential of each purified recombinant antigen was tested with various immunoglobulin classes (IgG, IgM, and IgE) and IgG subclasses. The IgG4 ELISA was determined to have the highest specificity and was further evaluated using a panel of serum samples. The rTES-26 IgG4 ELISA showed 80.0% (24/30 samples positive) sensitivity, and both the rTES-30USM IgG4 ELISA and rTES-120 IgG4 ELISA had 93.0% (28/30) sensitivity. Combined use of rTES-120 and rTES-30 IgG4 ELISA for the diagnosis of toxocariasis provided 100% sensitivity. The specificities of rTES-26, rTES-30USM, and rTES-120 antigens were 96.2%, 93.9%, and 92.0%, respectively. These results indicate that the development of a diagnostic test using the three recombinant antigens will allow for more-accurate detection of toxocariasis. PMID:19369434

  7. Development and evaluation of a sensitive and specific assay for diagnosis of human toxocariasis by use of three recombinant antigens (TES-26, TES-30USM, and TES-120).

    PubMed

    Mohamad, Suharni; Azmi, Norhaida Che; Noordin, Rahmah

    2009-06-01

    Diagnosis of human toxocariasis currently relies on serologic tests that use Toxocara excretory-secretory (TES) antigen to detect immunoglobulin G (IgG) antibodies to the larvae. In general, however, these assays do not have adequate specificity for use in countries in which other soil-transmitted helminths are endemic. The use of recombinant antigens in these assays, however, is promising for improving the specificity of the diagnosis of toxocariasis. Toward this goal, we developed an IgG4 enzyme-linked immunosorbent assay (ELISA) involving three recombinant antigens: rTES-30USM (previously produced), rTES-26, and rTES-120. The latter two antigens were produced by reverse transcription-PCR cloning; subcloned into glutathione S-transferase (GST)-tagged and His-tagged prokaryotic expression vectors, respectively; and expressed in Escherichia coli. The recombinant proteins were subsequently purified by affinity chromatography using GST and His-Trap resins. The diagnostic potential of each purified recombinant antigen was tested with various immunoglobulin classes (IgG, IgM, and IgE) and IgG subclasses. The IgG4 ELISA was determined to have the highest specificity and was further evaluated using a panel of serum samples. The rTES-26 IgG4 ELISA showed 80.0% (24/30 samples positive) sensitivity, and both the rTES-30USM IgG4 ELISA and rTES-120 IgG4 ELISA had 93.0% (28/30) sensitivity. Combined use of rTES-120 and rTES-30 IgG4 ELISA for the diagnosis of toxocariasis provided 100% sensitivity. The specificities of rTES-26, rTES-30USM, and rTES-120 antigens were 96.2%, 93.9%, and 92.0%, respectively. These results indicate that the development of a diagnostic test using the three recombinant antigens will allow for more-accurate detection of toxocariasis.

  8. Characterization of Epitope-Specific Anti-Respiratory Syncytial Virus (Anti-RSV) Antibody Responses after Natural Infection and after Vaccination with Formalin-Inactivated RSV

    PubMed Central

    Luytjes, Willem; Leenhouts, Kees; Rottier, Peter J. M.; van Kuppeveld, Frank J. M.; Haijema, Bert Jan

    2016-01-01

    ABSTRACT Antibodies against the fusion (F) protein of respiratory syncytial virus (RSV) play an important role in the protective immune response to this important respiratory virus. Little is known, however, about antibody levels against multiple F-specific epitopes induced by infection or after vaccination against RSV, while this is important to guide the evaluation of (novel) vaccines. In this study, we analyzed antibody levels against RSV proteins and F-specific epitopes in human sera and in sera of vaccinated and experimentally infected cotton rats and the correlation thereof with virus neutralization. Analysis of human sera revealed substantial diversity in antibody levels against F-, G (attachment)-, and F-specific epitopes between individuals. The highest correlation with virus neutralization was observed for antibodies recognizing prefusion-specific antigenic site Ø. Nevertheless, our results indicate that high levels of antibodies targeting other parts of the F protein can also mediate a potent antiviral antibody response. In agreement, sera of experimentally infected cotton rats contained high neutralizing activity despite lacking antigenic site Ø-specific antibodies. Strikingly, vaccination with formalin-inactivated RSV (FI-RSV) exclusively resulted in the induction of poorly neutralizing antibodies against postfusion-specific antigenic site I, although antigenic sites I, II, and IV were efficiently displayed in FI-RSV. The apparent immunodominance of antigenic site I in FI-RSV likely explains the low levels of neutralizing antibodies upon vaccination and challenge and may play a role in the vaccination-induced enhancement of disease observed with such preparations. IMPORTANCE RSV is an importance cause of hospitalization of infants. The development of a vaccine against RSV has been hampered by the disastrous results obtained with FI-RSV vaccine preparations in the 1960s that resulted in vaccination-induced enhancement of disease. To get a better understanding of the antibody repertoire induced after infection or after vaccination against RSV, we investigated antibody levels against fusion (F) protein, attachment (G) protein, and F-specific epitopes in human and animal sera. The results indicate the importance of prefusion-specific antigenic site Ø antibodies as well as of antibodies targeting other epitopes in virus neutralization. However, vaccination of cotton rats with FI-RSV specifically resulted in the induction of weakly neutralizing, antigenic site I-specific antibodies, which may play a role in the enhancement of disease observed after vaccination with such preparations. PMID:27099320

  9. A novel Arg H52/Tyr H33 conservative motif in antibodies: A correlation between sequence of antibodies and antigen binding.

    PubMed

    Petrov, Artem; Arzhanik, Vladimir; Makarov, Gennady; Koliasnikov, Oleg

    2016-08-01

    Antibodies are the family of proteins, which are responsible for antigen recognition. The computational modeling of interaction between an antigen and an antibody is very important when crystallographic structure is unavailable. In this research, we have discovered the correlation between the amino acid sequence of antibody and its specific binding characteristics on the example of the novel conservative binding motif, which consists of four residues: Arg H52, Tyr H33, Thr H59, and Glu H61. These residues are specifically oriented in the binding site and interact with each other in a specific manner. The residues of the binding motif are involved in interaction strictly with negatively charged groups of antigens, and form a binding complex. Mechanism of interaction and characteristics of the complex were also discovered. The results of this research can be used to increase the accuracy of computational antibody-antigen interaction modeling and for post-modeling quality control of the modeled structures.

  10. Immunodiagnosis of fascioliasis using sandwich enzyme-linked immunosorbent assay for detection of Fasciola gigantica paramyosin antigen

    PubMed Central

    Abou-Elhakam, Hany Mohamed Adel; Bauomy, Ibraheem Rabia; El Deeb, Somaya Osman; El Amir, Azza Mohamed

    2013-01-01

    Background: Many immunological techniques have been developed over years using the different Fasciola antigens for diagnosis of parasitic infection and to replace the parasitological techniques, which are time consuming and usually lack sensitivity and reproducibility. Materials and Methods: In this study, Fasciola gigantica paramyosin (Pmy) antigen was early detected in cattle sera using sandwich enzyme-linked immunosorbent assay (ELISA), to evaluate the Pmy antigen performance in diagnosis. This work was conducted on 135 cattle blood samples, which were classified according to parasitological investigation into, healthy control (30), fascioliasis (75), and other parasites (30) groups. Results: The sensitivity of Sandwich ELISA was 97.33%, and the specificity was 95%, in comparison with parasitological examination, which recorded 66.66% sensitivity and 100% specificity, respectively. Conclusions: It was clear that the native F. gigantica Pmy is considered as a powerful antigen in early immunodiagnosis of fascioliasis, using a highly sensitive and specific sandwich ELISA technique. PMID:23961441

  11. Functional analysis of HPV-like particle-activated Langerhans cells in vitro.

    PubMed

    Yan, Lisa; Woodham, Andrew W; Da Silva, Diane M; Kast, W Martin

    2015-01-01

    Langerhans cells (LCs) are antigen-presenting cells responsible for initiating an immune response against human papillomaviruses (HPVs) entering the epithelial layer in vivo as they are the first immune cell that HPV comes into contact with. LCs become activated in response to foreign antigens, which causes internal signaling resulting in the increased expression of co-stimulatory molecules and the secretion of inflammatory cytokines. Functionally activated LCs are then capable of migrating to the lymph nodes where they interact with antigen-specific T cells and initiate an adaptive T-cell response in vivo. However, HPV has evolved in a manner that suppresses LC function, and thus the induction of antigen-specific T cells is hindered. While many methods exist to monitor the activity of LCs in vitro, the migration and induction of cytotoxic T cells is ultimately indicative of a functional immune response. Here, methods in analyzing functional migration and induction of antigen-specific T cells after stimulation of LCs with HPV virus-like particles in vitro are described.

  12. Tolerogenic Dendritic Cells Generated with Tofacitinib Ameliorate Experimental Autoimmune Encephalomyelitis through Modulation of Th17/Treg Balance

    PubMed Central

    Luo, Shasha; Zou, Qiang

    2016-01-01

    It is well known that dendritic cells (DCs) play a pivotal role in triggering self-specific responses. Conversely, tolerogenic DCs (tolDCs), a specialized subset, induce tolerance and negatively regulate autoreactive responses. Tofacitinib, a Janus kinase inhibitor developed by Pfizer for treatment of rheumatoid arthritis, is probable to be a promising candidate for inducing tolDCs. The aims of this study were to evaluate the effectiveness of tolDCs induced by tofacitinib in a myelin oligodendrocyte glycoprotein- (MOG-) specific experimental autoimmune encephalomyelitis (EAE) model and to investigate their effects on Th17/Treg balance in the animal model of multiple sclerosis (MS). Our results revealed that tofacitinib-treated DCs maintained a steady semimature phenotype with a low level of proinflammatory cytokines and costimulatory molecules. DCs treated by tofacitinib also induced antigen-specific T cells hyporesponsiveness in a concentration-dependent manner. Upon intravenous injection into EAE mice, MOG pulsed tolDCs significantly dampened disease activity, and adoptive cell therapy (ACT) disturbed Th17/Treg balance with a remarkable decrease of Th1/Th17 cells and an increase in regulatory T cells (Tregs). Overall, DCs modified by tofacitinib exhibited a typical tolerogenic phenotype, and the antigen-specific tolDCs may represent a new avenue of research for the development of future clinical treatments for MS. PMID:28070525

  13. Antibody-Antigen-Adjuvant Conjugates Enable Co-Delivery of Antigen and Adjuvant to Dendritic Cells in Cis but Only Have Partial Targeting Specificity

    PubMed Central

    Abuknesha, Ram; Uematsu, Satoshi; Akira, Shizuo; Nestle, Frank O.; Diebold, Sandra S.

    2012-01-01

    Antibody-antigen conjugates, which promote antigen-presentation by dendritic cells (DC) by means of targeted delivery of antigen to particular DC subsets, represent a powerful vaccination approach. To ensure immunity rather than tolerance induction the co-administration of a suitable adjuvant is paramount. However, co-administration of unlinked adjuvant cannot ensure that all cells targeted by the antibody conjugates are appropriately activated. Furthermore, antigen-presenting cells (APC) that do not present the desired antigen are equally strongly activated and could prime undesired responses against self-antigens. We, therefore, were interested in exploring targeted co-delivery of antigen and adjuvant in cis in form of antibody-antigen-adjuvant conjugates for the induction of anti-tumour immunity. In this study, we report on the assembly and characterization of conjugates consisting of DEC205-specific antibody, the model antigen ovalbumin (OVA) and CpG oligodeoxynucleotides (ODN). We show that such conjugates are more potent at inducing cytotoxic T lymphocyte (CTL) responses than control conjugates mixed with soluble CpG. However, our study also reveals that the nucleic acid moiety of such antibody-antigen-adjuvant conjugates alters their binding and uptake and allows delivery of the antigen and the adjuvant to cells partially independently of DEC205. Nevertheless, antibody-antigen-adjuvant conjugates are superior to antibody-free antigen-adjuvant conjugates in priming CTL responses and efficiently induce anti-tumour immunity in the murine B16 pseudo-metastasis model. A better understanding of the role of the antibody moiety is required to inform future conjugate vaccination strategies for efficient induction of anti-tumour responses. PMID:22808118

  14. Major Histocompatibility Complex in Human - HLA System: Biological Role and Impact for Practical Medicine.

    PubMed

    Alexeev, Leonid P.

    1999-10-01

    Interactions of HLA constitute the key basis for development of the whole number of pathologies, starting from oncological and infectious diseases, and ending with autoimmune disorders and allergies. The most demonstrable example is oncopathology. The fact is that HLA class I (namely, its non-polymorphic determinants) have recently been shown to be the main target for so called natural (or non-specific) killer cells (NK). Naturally, the profound decrease of class I histocompatibility antigens on the surface of pathologically changed cells, impairing cellular interaction between NK and target cells, "takes them out" from the control of NK. As a result, the body looses one of the most important protective functions. Quite another type of impairment of HLA role in cellular interaction may be the basis of autoimmune diseases. The most successful results were obtained in studies of insulin dependent diabetes. One of the main pathogenic factors was shown to be marked elevation (aberrant expression) of HLA on islet cells (insulin producers). This, in its turn, is the consequence of dysfunction and activation of genes, responsible for "assembly and transport" of HLA class II. The problem about role of HLA in cell interactions in allergy is rather novel, but poor studied trend, however some obtained results are encouraging. The point is that the unique feature in expression of class II histocompatibility antigens, specific for allergy, was revealed for recent years. Expression of class II histocompatibility antigens is appeared to be sharply increased on B lymphocytes of allergic patients.

  15. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route.

    PubMed

    Carey, John B; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V S; Draper, Simon J; Moore, Anne C

    2014-08-21

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP1₄₂, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP1₄₂ also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP1₄₂ using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies.

  16. Evaluation of immune responses and analysis of the effect of vaccination of the Leishmania major recombinant ribosomal proteins L3 or L5 in two different murine models of cutaneous leishmaniasis.

    PubMed

    Ramírez, Laura; Santos, Diego M; Souza, Ana P; Coelho, Eduardo A F; Barral, Aldina; Alonso, Carlos; Escutia, Marta R; Bonay, Pedro; de Oliveira, Camila I; Soto, Manuel

    2013-02-18

    Four new antigenic proteins located in Leishmania ribosomes have been characterized: S4, S6, L3 and L5. Recombinant versions of the four ribosomal proteins from Leishmania major were recognized by sera from human and canine patients suffering different clinical forms of leishmaniasis. The prophylactic properties of these proteins were first studied in the experimental model of cutaneous leishmaniasis caused by L. major inoculation into BALB/c mice. The administration of two of them, LmL3 or LmL5 combined with CpG-oligodeoxynucleotides (CpG-ODN) was able to protect BALB/c mice against L. major infection. Vaccinated mice showed smaller lesions and parasite burden compared to mice inoculated with vaccine diluent or vaccine adjuvant. Protection was correlated with an antigen-specific increased production of IFN-γ paralleled by a decrease of the antigen-specific IL-10 mediated response in protected mice relative to non-protected controls. Further, it was demonstrated that BALB/c mice vaccinated with recombinant LmL3 or LmL5 plus CpG-ODN were also protected against the development of cutaneous lesions following inoculation of L. braziliensis. Together, data presented here indicate that LmL3 or LmL5 ribosomal proteins combined with Th1 inducing adjuvants, may be relevant components of a vaccine against cutaneous leishmaniasis caused by distinct species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route

    PubMed Central

    Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.

    2014-01-01

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP142 also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP142 using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies. PMID:25142082

  18. Comparative analysis of prostate-specific antigen by two-dimensional gel electrophoresis and capillary electrophoresis.

    PubMed

    Barrabés, Sílvia; Farina-Gomez, Noemi; Llop, Esther; Puerta, Angel; Diez-Masa, Jose Carlos; Perry, Antoinette; de Llorens, Rafael; de Frutos, Mercedes; Peracaula, Rosa

    2017-02-01

    Serum levels of Prostate-Specific Antigen (PSA) are not fully specific for prostate cancer (PCa) diagnosis and several efforts are focused on searching to improve PCa markers through the study of PSA subforms that could be cancer associated. We have previously reported by 2DE a decrease in the sialic acid content of PSA from PCa compared to benign prostatic hyperplasia patients based on the different proportion of the PSA spots. However, faster and more quantitative techniques, easier to automate than 2DE, are desirable. In this study, we examined the potential of CE for resolving PSA subforms in different samples and compared the results with those obtained by 2DE. We first fractionated by OFFGEL the subforms of PSA from seminal plasma according to their pIs and analyzed each separated fraction by 2DE and CE. We also analyzed PSA and high pI PSA, both from seminal plasma, and PSA from urine of a PCa patient. These samples with different PSA spots proportions by 2DE, due to different posttranslational modifications, also presented different CE profiles. This study shows that CE is a useful and complementary technique to 2DE for analyzing samples with different PSA subforms, which is of high clinical interest. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synergistic suppression of autoimmune arthritis through concurrent treatment with tolerogenic DC and MSC

    PubMed Central

    Li, Rong; Zhang, Yujuan; Zheng, Xiufen; Peng, Shanshan; Yuan, Keng; Zhang, Xusheng; Min, Weiping

    2017-01-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by progressive immune-mediated joint deterioration. Current treatments are not antigen specific and are associated with various adverse. We have previously demonstrated that tolerogenic dendritic cells (Tol-DC) are potent antigen-specific immune regulators, which hold great promise in immunotherapy of autoimmune diseases. In this study, we aimed to develop new immunotherapy by combining Tol-DC and mesenchymal stem cells (MSC). We demonstrated that RelB gene silencing resulted in generation of Tol-DC that suppressed T cell responses and selectively promoted Treg generation. The combination of MSC synergized the tolerogenic capacity of Tol-DC in inhibition of T cell responses. In murine collagen-induced arthritis (CIA) model, we demonstrated that progression of arthritis was inhibited with administration of RelB gene-silenced Tol-DC or MSC. This therapeutic effect was remarkably enhanced with concurrent treatment of combination Tol-DC and MSC as demonstrated by improved clinical symptoms, decreased clinical scores and attenuated joint damage. These therapeutic effects were associated with suppression of CII-specific T cell responses, polarization of Th and inhibition of proinflammatory cytokines, and reduced cartilage degeneration. This study for the first time demonstrates a new approach to treat autoimmune inflammatory joint disease with concurrent treatment of RelB gene-silenced Tol-DC and MSC. PMID:28230210

  20. Serum IgE and IgG responses to food antigens in normal and atopic dogs, and dogs with gastrointestinal disease.

    PubMed

    Foster, A P; Knowles, T G; Moore, A Hotston; Cousins, P D G; Day, M J; Hall, E J

    2003-05-12

    In human food allergy, with or without concurrent atopy, there may be significant increases in serum allergen-specific IgE. Serological methods have been tried but are not currently recommended for diagnosis of suspected food allergy in dogs. The aim of this study was to investigate humoral immune responses to food antigens in dogs. Serum IgG and IgE antibodies specific for food antigens were measured by enzyme linked immunosorbent assay (ELISA) using polyclonal anti-dog IgG and IgE reagents. Antigens tested were beef, chicken, pork, lamb, chicken, turkey, white fish, whole egg, wheat, soybean, barley, rice, maize corn, potato, yeast and cow's milk. Three groups were examined: normal dogs, dogs with atopic dermatitis (AD); and dogs with one of four types of gastrointestinal (GI) disease: small intestinal bacterial overgrowth (SIBO), inflammatory bowel disease (IBD), food-responsive disease, and infectious diarrhoea. Statistically significant differences in food-specific antibodies were not detected between the GI subgroups. There were statistically significant differences in the IgE concentration between the normal dogs, and dogs with atopic or GI disease, for all of the antigens tested. There were statistically significant differences in the average IgG concentrations between the normal dogs, and dogs with atopic or GI disease, for all of the antigens tested, except egg and yeast. The relationship of antigen responses for pooled data was analysed using principle component analysis and cluster plots. Some clustering of variables was apparent for both IgE and IgG. For example, all dogs (normal and diseased) made a similar IgG antibody response to chicken and turkey. Compared with other groups, atopic dogs had more food allergen-specific IgE and this would be consistent with a Th(2) humoral response to food antigens. Dogs with GI disease had more food allergen-specific IgG compared with the other groups. This may reflect increased antigen exposure due to increased mucosal permeability which is a recognised feature of canine intestinal disease.

  1. Identification of QS-21 as an Inflammasome-activating Molecular Component of Saponin Adjuvants*

    PubMed Central

    Marty-Roix, Robyn; Vladimer, Gregory I.; Pouliot, Kimberly; Weng, Dan; Buglione-Corbett, Rachel; West, Kim; MacMicking, John D.; Chee, Jonathan D.; Wang, Shixia; Lu, Shan; Lien, Egil

    2016-01-01

    Many immunostimulants act as vaccine adjuvants via activation of the innate immune system, although in many cases it is unclear which specific molecules contribute to the stimulatory activity. QS-21 is a defined, highly purified, and soluble saponin adjuvant currently used in licensed and exploratory vaccines, including vaccines against malaria, cancer, and HIV-1. However, little is known about the mechanisms of cellular activation induced by QS-21. We observed QS-21 to elicit caspase-1-dependent IL-1β and IL-18 release in antigen-presenting cells such as macrophages and dendritic cells when co-stimulated with the TLR4-agonist adjuvant monophosphoryl lipid A. Furthermore, our data suggest that the ASC-NLRP3 inflammasome is responsible for QS-21-induced IL-1β/IL-18 release. At higher concentrations, QS-21 induced macrophage and dendritic cell death in a caspase-1-, ASC-, and NLRP3-independent manner, whereas the presence of cholesterol rescued cell viability. A nanoparticulate adjuvant that contains QS-21 as part of a heterogeneous mixture of saponins also induced IL-1β in an NLRP3-dependent manner. Interestingly, despite the role NLRP3 plays for cellular activation in vitro, NLRP3-deficient mice immunized with HIV-1 gp120 and QS-21 showed significantly higher levels of Th1 and Th2 antigen-specific T cell responses and increased IgG1 and IgG2c compared with wild type controls. Thus, we have identified QS-21 as a nonparticulate single molecular saponin that activates the NLRP3 inflammasome, but this signaling pathway may contribute to decreased antigen-specific responses in vivo. PMID:26555265

  2. Evidence of a cellular immune response against sialyl-Tn in breast and ovarian cancer patients after high-dose chemotherapy, stem cell rescue, and immunization with Theratope STn-KLH cancer vaccine.

    PubMed

    Sandmaier, B M; Oparin, D V; Holmberg, L A; Reddish, M A; MacLean, G D; Longenecker, B M

    1999-01-01

    Seven ovarian and 33 breast high-risk stage II/III and stage IV cancer patients received high-dose chemotherapy followed by stem cell rescue. Thirty to 151 days after stem cell transplantation, the patients received their first immunotherapy treatment with Theratope STn-KLH cancer vaccine. Most patients developed increasing IgG anti-STn titers to a sustained peak after the fourth or fifth immunizations. Only one patient had elevated CA27.29 (MUC1 mucin) serum levels at trial entry. Five of the seven patients with preimmunotherapy elevated serum CA125 levels demonstrated decreasing CA125 levels during immunotherapy, consistent with an antitumor response. Evidence of STn antigen-specific T-cell proliferation was obtained from 17 of the 27 evaluable patients who received at least three immunotherapy treatments. Eleven of the 26 patients tested had evidence of an anti-STn TH1 antigen-specific T-cell response as determined by interferon-gamma, but not interleukin (IL)-4, production. After immunization, lytic activity of peripheral blood lymphocytes (PBLs) tested against a lymphokine activated killer (LAK)-sensitive cell line, a natural killer (NK)-sensitive cell line, and an STn-expressing cancer cell line (OVCAR) increased significantly. In vitro IL-2 treatment of the PBLs after vaccination greatly enhanced killing of the STn+ cancer cell line. Evidence of the development of OVCAR specific killing activity, over and above that seen due to LAK or NK killing, is presented. These studies provide the strongest evidence in humans of the development of an antitumor T-cell response after immunization with a cancer-associated carbohydrate antigen.

  3. Overcoming food allergy through acquired tolerance conferred by transfer of Tregs in a murine model.

    PubMed

    Yamashita, H; Takahashi, K; Tanaka, H; Nagai, H; Inagaki, N

    2012-02-01

    The number of food allergy patients is increasing. Some children outgrow their food allergies through tolerance, whereas others remain susceptible throughout their lives. We aimed to contribute to food allergy therapeutics by understanding induction of oral tolerance in a murine food allergy model. We modified an existing murine food allergy model by using ovalbumin (OVA) to induce oral tolerance, either by pretreating mice with OVA or by transferring mesenteric lymph node (MLN) cells or T cells derived from mice treated with OVA. Pretreatment with OVA prevented food allergy, with complete suppression of OVA-specific immunoglobulin (Ig)E and IgA antibody production and interleukin (IL)-4, IL-10, and IL-9 mRNA expression. The proportion of regulatory T cells (Tregs) in MLN cells and expression of transforming growth factor-β mRNA increased. In the transfer model, anaphylaxis secondary to OVA intake was suppressed by transfer of whole MLN cells and Tregs from OVA-treated mice. However, OVA-specific IgE and IgA expressions were partially attenuated by transfer of antigen-specific and nonspecific Tregs, but not by whole MLN cells from OVA-treated mice. In the Treg transfer model, IL-4 and IL-10 mRNA expression decreased, but IL-9 mRNA expression increased. We concluded that oral tolerance for food antigens is induced in two ways: (i) by initial exposure to antigen, or inherent tolerance, and (ii) by transfer of Tregs, or acquired tolerance. Because food allergies occur when inherent tolerance is absent, understanding of acquired tolerance is important for the development of therapies for food allergy. © 2011 John Wiley & Sons A/S.

  4. Identification of QS-21 as an Inflammasome-activating Molecular Component of Saponin Adjuvants.

    PubMed

    Marty-Roix, Robyn; Vladimer, Gregory I; Pouliot, Kimberly; Weng, Dan; Buglione-Corbett, Rachel; West, Kim; MacMicking, John D; Chee, Jonathan D; Wang, Shixia; Lu, Shan; Lien, Egil

    2016-01-15

    Many immunostimulants act as vaccine adjuvants via activation of the innate immune system, although in many cases it is unclear which specific molecules contribute to the stimulatory activity. QS-21 is a defined, highly purified, and soluble saponin adjuvant currently used in licensed and exploratory vaccines, including vaccines against malaria, cancer, and HIV-1. However, little is known about the mechanisms of cellular activation induced by QS-21. We observed QS-21 to elicit caspase-1-dependent IL-1β and IL-18 release in antigen-presenting cells such as macrophages and dendritic cells when co-stimulated with the TLR4-agonist adjuvant monophosphoryl lipid A. Furthermore, our data suggest that the ASC-NLRP3 inflammasome is responsible for QS-21-induced IL-1β/IL-18 release. At higher concentrations, QS-21 induced macrophage and dendritic cell death in a caspase-1-, ASC-, and NLRP3-independent manner, whereas the presence of cholesterol rescued cell viability. A nanoparticulate adjuvant that contains QS-21 as part of a heterogeneous mixture of saponins also induced IL-1β in an NLRP3-dependent manner. Interestingly, despite the role NLRP3 plays for cellular activation in vitro, NLRP3-deficient mice immunized with HIV-1 gp120 and QS-21 showed significantly higher levels of Th1 and Th2 antigen-specific T cell responses and increased IgG1 and IgG2c compared with wild type controls. Thus, we have identified QS-21 as a nonparticulate single molecular saponin that activates the NLRP3 inflammasome, but this signaling pathway may contribute to decreased antigen-specific responses in vivo. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Flow cytometric analysis of lymphocyte proliferative responses to food allergens in dogs with food allergy.

    PubMed

    Fujimura, Masato; Masuda, Kenichi; Hayashiya, Makio; Okayama, Taro

    2011-10-01

    Two different allergy tests, antigen-specific immunoglobulin E quantification (IgE test) and flow cytometric analysis of antigen-specific proliferation of peripheral lymphocytes (lymphocyte proliferation test), were performed to examine differences in allergic reactions to food allergens in dogs with food allergy (FA). Thirteen dogs were diagnosed as FA based on clinical findings and elimination diet trials. Seven dogs clinically diagnosed with canine atopic dermatitis (CAD) were used as a disease control group, and 5 healthy dogs were used as a negative control group. In the FA group, 19 and 33 allergen reactions were identified using the serum IgE test and the lymphocyte proliferation test, respectively. Likewise, in the CAD group, 12 and 6 allergen reactions and in the healthy dogs 3 and 0 allergen reactions were identified by each test, respectively. A significant difference was found between FA and healthy dogs in terms of positive allergen detection by the lymphocyte proliferation test, suggesting that the test can be useful to differentiate FA from healthy dogs but not from CAD. Both tests were repeated in 6 of the dogs with FA after a 1.5- to 5-month elimination diet trial. The IgE concentrations in 9 of 11 of the positive reactions decreased by 20-80%, whereas all the positive reactions in the lymphocyte proliferation test decreased to nearly zero (P<0.05), suggesting that lymphocytes against food allergens may be involved in the pathogenesis of canine FA.

  6. Detection of Circulating Paracoccidioides brasiliensis Antigen in Urine of Paracoccidioidomycosis Patients before and during Treatment

    PubMed Central

    Salina, Margarete Aparecida; Shikanai-Yasuda, Maria Aparecida; Mendes, Rinaldo Poncio; Barraviera, Benedito; Mendes Giannini, Maria José Soares

    1998-01-01

    For the diagnosis and follow-up of paracoccidioidomycosis patients undergoing therapy, we evaluated two methods (immunoblotting and competition enzyme immunoassay) for the detection of circulating antigen in urine samples. A complex pattern of reactivity was observed in the immunoblot test. Bands of 70 and 43 kDa were detected more often in urine samples from patients before treatment. The immunoblot method detected gp43 and gp70 separately or concurrently in 11 (91.7%) of 12 patients, whereas the competition enzyme immunoassay detected antigenuria in 9 (75%) of 12 patients. Both tests appeared to be highly specific (100%), considering that neither fraction detectable by immunoblotting was present in urine samples from the control group. gp43 remained present in the urine samples collected during the treatment period, with a significant decrease in reactivity in samples collected during clinical recovery and increased reactivity in samples collected during relapses. Reactivity of some bands was also detected in urine specimens from patients with “apparent cure.” The detection of Paracoccidioides brasiliensis antigens in urine appears to be a promising method for diagnosing infection, for evaluating the efficacy of treatment, and for detecting relapse. PMID:9620407

  7. Novel use of a radiolabelled antibody against stage specific embryonic antigen for the detection of occult abscesses in mammals

    DOEpatents

    Thakur, M.L.

    1990-04-17

    The invention discloses improved reagents containing antibodies against stage specific embryonic antigen-1 antibodies and improved methods for detection of occult abscess and inflammation using the improved reagents. No Drawings

  8. Prostate Cancer Screening: Should You Get a PSA Test?

    MedlinePlus

    ... Mayo Clinic Staff Cancer screening tests — including the prostate-specific antigen (PSA) test to look for signs of prostate ... of harm to the person undergoing the testing. Prostate-specific antigen (PSA) is a protein produced by both cancerous ( ...

  9. Healthy Family 2009: Practicing Healthy Adult Living

    MedlinePlus

    ... doctor the pros and cons of having a prostate-specific antigen (PSA) test or digital rectal examination (DRE) to ... colonoscopies for cancer of the colon, serum prostatin-specific antigen (PSA) tests for prostate cancer, and mammograms for breast cancer. Work out ...

  10. Sequential Infection in Ferrets with Antigenically Distinct Seasonal H1N1 Influenza Viruses Boosts Hemagglutinin Stalk-Specific Antibodies

    PubMed Central

    Kirchenbaum, Greg A.; Carter, Donald M.

    2015-01-01

    ABSTRACT Broadly reactive antibodies targeting the conserved hemagglutinin (HA) stalk region are elicited following sequential infection or vaccination with influenza viruses belonging to divergent subtypes and/or expressing antigenically distinct HA globular head domains. Here, we demonstrate, through the use of novel chimeric HA proteins and competitive binding assays, that sequential infection of ferrets with antigenically distinct seasonal H1N1 (sH1N1) influenza virus isolates induced an HA stalk-specific antibody response. Additionally, stalk-specific antibody titers were boosted following sequential infection with antigenically distinct sH1N1 isolates in spite of preexisting, cross-reactive, HA-specific antibody titers. Despite a decline in stalk-specific serum antibody titers, sequential sH1N1 influenza virus-infected ferrets were protected from challenge with a novel H1N1 influenza virus (A/California/07/2009), and these ferrets poorly transmitted the virus to naive contacts. Collectively, these findings indicate that HA stalk-specific antibodies are commonly elicited in ferrets following sequential infection with antigenically distinct sH1N1 influenza virus isolates lacking HA receptor-binding site cross-reactivity and can protect ferrets against a pathogenic novel H1N1 virus. IMPORTANCE The influenza virus hemagglutinin (HA) is a major target of the humoral immune response following infection and/or seasonal vaccination. While antibodies targeting the receptor-binding pocket of HA possess strong neutralization capacities, these antibodies are largely strain specific and do not confer protection against antigenic drift variant or novel HA subtype-expressing viruses. In contrast, antibodies targeting the conserved stalk region of HA exhibit broader reactivity among viruses within and among influenza virus subtypes. Here, we show that sequential infection of ferrets with antigenically distinct seasonal H1N1 influenza viruses boosts the antibody responses directed at the HA stalk region. Moreover, ferrets possessing HA stalk-specific antibody were protected against novel H1N1 virus infection and did not transmit the virus to naive contacts. PMID:26559834

  11. Fetal- and uterine-specific antigens in human amniotic fluid.

    PubMed

    Sutcliffe, R G; Brock, D J; Nicholson, L V; Dunn, E

    1978-09-01

    Removal of the major maternal serum proteins from second trimester amniotic fluid by antibody affinity chromatography revealed various soluble tissue antigens, of which two were fetal-specific skin proteins and another, of alpha2-mobility, was specific to the uterus, and was therefore designated alpha-uterine protein (AUP). These proteins could not be detected in maternal serum by antibody-antigen crossed electrophoresis. The concentration of AUP in amniotic fluid reached a maximum between 10 and 20 weeks of gestation, suggesting that there is an influx of uterine protein into the amniotic fluid at this stage of pregnancy.

  12. Gastric Metastasis of Prostate Cancer as an Unusual Presentation Using 68Ga-Prostate-Specific Membrane Antigen PET/CT.

    PubMed

    Solis Lara, Hugo Enrique; Villarreal Del Bosque, Natalia; Sada Treviño, Miguel Antonio; Yamamoto Ramos, Masao; Argueta Ruiz, Rocío Del Carmen

    2018-05-01

    A 79-year-old man with prostate cancer underwent Ga prostate-specific membrane antigen (Ga-PSMA) dual-time-point PET/CT scan to evaluate tumor activity due to early satiety, unquantified weight loss, and elevation of prostate-specific antigen (PSA), demonstrating thickening of the gastric wall with intense tracer uptake. The immunohistochemistry of gastric biopsy showed CDX2 and CK20: negative; CK7, focal positive; PSA, positive, which confirmed metastatic disease. Metastatic disease was also found in bones, right lung, and retroperitoneal and pelvic lymphadenopathies.

  13. Serological analysis of the subgroup protein of rotavirus, using monoclonal antibodies.

    PubMed Central

    Greenberg, H; McAuliffe, V; Valdesuso, J; Wyatt, R; Flores, J; Kalica, A; Hoshino, Y; Singh, N

    1983-01-01

    Ten monoclones directed to the 42,000-dalton inner structural protein of rotavirus were analyzed. Eight monoclones reacted broadly with antigenic domains common to virtually all mammalian rotaviruses. Two monoclones had specificities similar or identical to previously characterized subgroup specificities. These subgroup monoclones were more efficient in detecting subgroup antigen than either hyperimmune or postinfection antisera. Using the subgroup monoclones, we determined that some animal as well as human rotavirus strains carry subgroup 2 specificity and that epizootic diarrhea of infant mice virus and turkey rotavirus are antigenically distinct from other mammalian rotavirus strains. Images PMID:6185436

  14. A meta-analysis of HLA peptidome composition in different hematological entities: entity-specific dividing lines and “pan-leukemia” antigens

    PubMed Central

    Walz, Simon; Schuster, Heiko; Berlin, Claudia; Neidert, Marian Christoph; Schemionek, Mirle; Brümmendorf, Tim H.; Vucinic, Vladan; Niederwieser, Dietger; Kanz, Lothar; Salih, Helmut Rainer; Kohlbacher, Oliver; Weisel, Katja; Rammensee, Hans-Georg; Stevanović, Stefan; Walz, Juliane Sarah

    2017-01-01

    Hematological malignancies (HM) are highly amenable targets for immunotherapeutic intervention and may be effectively treated by antigen-specific T-cell based treatment. Recent studies demonstrate that physiologically occurring anti-cancer T-cell responses in certain HM entities target broadly presented non-mutated epitopes. HLA ligands are thus implied as prime targets for broadly applicable and antigen-specific off-the-shelf compounds. With the aim of assessing the presence of common targets shared among different HM which may enable addressing a larger patient collective we conducted a meta-analysis of 83 mass spectrometry-based HLA peptidome datasets (comprising 40,361 unique peptide identifications) across four major HM (19 AML, 16 CML, 35 CLL, and 13 MM/MCL samples) and investigated similarities and differences within the HLA presented antigenic landscape. We found the cancer HLA peptidome datasets to cluster specifically along entity and lineage lines, suggesting that the immunopeptidome directly reflects the differences in the underlying (tumor-)biology. In line with these findings, we only detected a small set of entity-spanning antigens, which were predominantly characterized by low presentation frequencies within the different patient cohorts. These findings suggest that design of T-cell immunotherapies for the treatment of HM should ideally be conducted in an entity-specific fashion. PMID:28159928

  15. Universal Artificial Antigen Presenting Cells to Selectively Propagate T Cells Expressing Chimeric Antigen Receptor Independent of Specificity

    PubMed Central

    Rushworth, David; Jena, Bipulendu; Olivares, Simon; Maiti, Sourindra; Briggs, Neima; Somanchi, Srinivas; Dai, Jianliang; Lee, Dean; Cooper, Laurence J. N.

    2014-01-01

    T cells genetically modified to stably express immunoreceptors are being assessed for therapeutic potential in clinical trials. T cells expressing a chimeric antigen receptor (CAR) are endowed with a new specificity to target tumor-associated antigen (TAA) independent of major histocompatibility complex. Our approach to non-viral gene transfer in T cells uses ex vivo numeric expansion of CAR+ T cells on irradiated artificial antigen presenting cells (aAPC) bearing the targeted TAA. The requirement for aAPC to express a desired TAA limits the human application of CARs with multiple specificities when selective expansion through co-culture with feeder cells is sought. As an alternative to expressing individual TAAs on aAPC, we expressed one ligand that could activate CAR+ T cells for sustained proliferation independent of specificity. We expressed a CAR ligand (designated CARL) that binds the conserved IgG4 extracellular domain of CAR and demonstrated CARL+ aAPC propagate CAR+ T cells of multiple specificities. CARL avoids technical issues and costs associated with deploying clinical-grade aAPC for each TAA targeted by a given CAR. Employing CARL enables one aAPC to numerically expand all CAR+ T cells containing the IgG4 domain, and simplifies expansion, testing, and clinical translation of CAR+ T cells of any specificity. PMID:24714354

  16. Prostate-specific membrane antigen-directed nanoparticle targeting for extreme nearfield ablation of prostate cancer cells.

    PubMed

    Lee, Seung S; Roche, Philip Jr; Giannopoulos, Paresa N; Mitmaker, Elliot J; Tamilia, Michael; Paliouras, Miltiadis; Trifiro, Mark A

    2017-03-01

    Almost all biological therapeutic interventions cannot overcome neoplastic heterogeneity. Physical ablation therapy is immune to tumor heterogeneity, but nearby tissue damage is the limiting factor in delivering lethal doses. Multi-walled carbon nanotubes offer a number of unique properties: chemical stability, photonic properties including efficient light absorption, thermal conductivity, and extensive surface area availability for covalent chemical ligation. When combined together with a targeting moiety such as an antibody or small molecule, one can deliver highly localized temperature increases and cause extensive cellular damage. We have functionalized multi-walled carbon nanotubes by conjugating an antibody against prostate-specific membrane antigen. In our in vitro studies using prostate-specific membrane antigen-positive LNCaP prostate cancer cells, we have effectively demonstrated cell ablation of >80% with a single 30-s exposure to a 2.7-W, 532-nm laser for the first time without bulk heating. We also confirmed the specificity and selectivity of prostate-specific membrane antigen targeting by assessing prostate-specific membrane antigen-null PC3 cell lines under the same conditions (<10% cell ablation). This suggests that we can achieve an extreme nearfield cell ablation effect, thus restricting potential tissue damage when transferred to in vivo clinical applications. Developing this new platform will introduce novel approaches toward current therapeutic modalities and will usher in a new age of effective cancer treatment squarely addressing tumoral heterogeneity.

  17. Antibody recognition of a unique tumor-specific glycopeptide antigen

    PubMed Central

    Brooks, Cory L.; Schietinger, Andrea; Borisova, Svetlana N.; Kufer, Peter; Okon, Mark; Hirama, Tomoko; MacKenzie, C. Roger; Wang, Lai-Xi; Schreiber, Hans; Evans, Stephen V.

    2010-01-01

    Aberrant glycosylation and the overexpression of certain carbohydrate moieties is a consistent feature of cancers, and tumor-associated oligosaccharides are actively investigated as targets for immunotherapy. One of the most common aberrations in glycosylation patterns is the presentation of a single O-linked N-acetylgalactosamine on a threonine or serine residue known as the “Tn antigen.” Whereas the ubiquitous nature of Tn antigens on cancers has made them a natural focus of vaccine research, such carbohydrate moieties are not always tumor-specific and have been observed on embryonic and nonmalignant adult tissue. Here we report the structural basis of binding of a complex of a monoclonal antibody (237mAb) with a truly tumor-specific glycopeptide containing the Tn antigen. In contrast to glycopeptide-specific antibodies in complex with simple peptides, 237mAb does not recognize a conformational epitope induced in the peptide by sugar substitution. Instead, 237mAb uses a pocket coded by germ-line genes to completely envelope the carbohydrate moiety itself while interacting with the peptide moiety in a shallow groove. Thus, 237mAb achieves its striking tumor specificity, with no observed physiological cross-reactivity to the unglycosylated peptide or the free glycan, by a combination of multiple weak but specific interactions to both the peptide and to the glycan portions of the antigen. PMID:20479270

  18. ‘Multi-Epitope-Targeted’ Immune-Specific Therapy for a Multiple Sclerosis-Like Disease via Engineered Multi-Epitope Protein Is Superior to Peptides

    PubMed Central

    Zilkha-Falb, Rina; Yosef-Hemo, Reut; Cohen, Lydia; Ben-Nun, Avraham

    2011-01-01

    Antigen-induced peripheral tolerance is potentially one of the most efficient and specific therapeutic approaches for autoimmune diseases. Although highly effective in animal models, antigen-based strategies have not yet been translated into practicable human therapy, and several clinical trials using a single antigen or peptidic-epitope in multiple sclerosis (MS) yielded disappointing results. In these clinical trials, however, the apparent complexity and dynamics of the pathogenic autoimmunity associated with MS, which result from the multiplicity of potential target antigens and “epitope spread”, have not been sufficiently considered. Thus, targeting pathogenic T-cells reactive against a single antigen/epitope is unlikely to be sufficient; to be effective, immunospecific therapy to MS should logically neutralize concomitantly T-cells reactive against as many major target antigens/epitopes as possible. We investigated such “multi-epitope-targeting” approach in murine experimental autoimmune encephalomyelitis (EAE) associated with a single (“classical”) or multiple (“complex”) anti-myelin autoreactivities, using cocktail of different encephalitogenic peptides vis-a-vis artificial multi-epitope-protein (designated Y-MSPc) encompassing rationally selected MS-relevant epitopes of five major myelin antigens, as “multi-epitope-targeting” agents. Y-MSPc was superior to peptide(s) in concomitantly downregulating pathogenic T-cells reactive against multiple myelin antigens/epitopes, via inducing more effective, longer lasting peripheral regulatory mechanisms (cytokine shift, anergy, and Foxp3+ CTLA4+ regulatory T-cells). Y-MSPc was also consistently more effective than the disease-inducing single peptide or peptide cocktail, not only in suppressing the development of “classical” or “complex EAE” or ameliorating ongoing disease, but most importantly, in reversing chronic EAE. Overall, our data emphasize that a “multi-epitope-targeting” strategy is required for effective immune-specific therapy of organ-specific autoimmune diseases associated with complex and dynamic pathogenic autoimmunity, such as MS; our data further demonstrate that the “multi-epitope-targeting” approach to therapy is optimized through specifically designed multi-epitope-proteins, rather than myelin peptide cocktails, as “multi-epitope-targeting” agents. Such artificial multi-epitope proteins can be tailored to other organ-specific autoimmune diseases. PMID:22140475

  19. Peptide/protein vaccine delivery system based on PLGA particles.

    PubMed

    Allahyari, Mojgan; Mohit, Elham

    2016-03-03

    Due to the excellent safety profile of poly (D,L-lactide-co-glycolide) (PLGA) particles in human, and their biodegradability, many studies have focused on the application of PLGA particles as a controlled-release vaccine delivery system. Antigenic proteins/peptides can be encapsulated into or adsorbed to the surface of PLGA particles. The gradual release of loaded antigens from PLGA particles is necessary for the induction of efficient immunity. Various factors can influence protein release rates from PLGA particles, which can be defined intrinsic features of the polymer, particle characteristics as well as protein and environmental related factors. The use of PLGA particles encapsulating antigens of different diseases such as hepatitis B, tuberculosis, chlamydia, malaria, leishmania, toxoplasma and allergy antigens will be described herein. The co-delivery of antigens and immunostimulants (IS) with PLGA particles can prevent the systemic adverse effects of immunopotentiators and activate both dendritic cells (DCs) and natural killer (NKs) cells, consequently enhancing the therapeutic efficacy of antigen-loaded PLGA particles. We will review co-delivery of different TLR ligands with antigens in various models, highlighting the specific strengths and weaknesses of the system. Strategies to enhance the immunotherapeutic effect of DC-based vaccine using PLGA particles can be designed to target DCs by functionalized PLGA particle encapsulating siRNAs of suppressive gene, and disease specific antigens. Finally, specific examples of cellular targeting where decorating the surface of PLGA particles target orally administrated vaccine to M-cells will be highlighted.

  20. Peptide/protein vaccine delivery system based on PLGA particles

    PubMed Central

    Allahyari, Mojgan; Mohit, Elham

    2016-01-01

    abstract Due to the excellent safety profile of poly (D,L-lactide-co-glycolide) (PLGA) particles in human, and their biodegradability, many studies have focused on the application of PLGA particles as a controlled-release vaccine delivery system. Antigenic proteins/peptides can be encapsulated into or adsorbed to the surface of PLGA particles. The gradual release of loaded antigens from PLGA particles is necessary for the induction of efficient immunity. Various factors can influence protein release rates from PLGA particles, which can be defined intrinsic features of the polymer, particle characteristics as well as protein and environmental related factors. The use of PLGA particles encapsulating antigens of different diseases such as hepatitis B, tuberculosis, chlamydia, malaria, leishmania, toxoplasma and allergy antigens will be described herein. The co-delivery of antigens and immunostimulants (IS) with PLGA particles can prevent the systemic adverse effects of immunopotentiators and activate both dendritic cells (DCs) and natural killer (NKs) cells, consequently enhancing the therapeutic efficacy of antigen-loaded PLGA particles. We will review co-delivery of different TLR ligands with antigens in various models, highlighting the specific strengths and weaknesses of the system. Strategies to enhance the immunotherapeutic effect of DC-based vaccine using PLGA particles can be designed to target DCs by functionalized PLGA particle encapsulating siRNAs of suppressive gene, and disease specific antigens. Finally, specific examples of cellular targeting where decorating the surface of PLGA particles target orally administrated vaccine to M-cells will be highlighted. PMID:26513024

Top