Sample records for specific auditory memory

  1. A Brain System for Auditory Working Memory.

    PubMed

    Kumar, Sukhbinder; Joseph, Sabine; Gander, Phillip E; Barascud, Nicolas; Halpern, Andrea R; Griffiths, Timothy D

    2016-04-20

    The brain basis for auditory working memory, the process of actively maintaining sounds in memory over short periods of time, is controversial. Using functional magnetic resonance imaging in human participants, we demonstrate that the maintenance of single tones in memory is associated with activation in auditory cortex. In addition, sustained activation was observed in hippocampus and inferior frontal gyrus. Multivoxel pattern analysis showed that patterns of activity in auditory cortex and left inferior frontal gyrus distinguished the tone that was maintained in memory. Functional connectivity during maintenance was demonstrated between auditory cortex and both the hippocampus and inferior frontal cortex. The data support a system for auditory working memory based on the maintenance of sound-specific representations in auditory cortex by projections from higher-order areas, including the hippocampus and frontal cortex. In this work, we demonstrate a system for maintaining sound in working memory based on activity in auditory cortex, hippocampus, and frontal cortex, and functional connectivity among them. Specifically, our work makes three advances from the previous work. First, we robustly demonstrate hippocampal involvement in all phases of auditory working memory (encoding, maintenance, and retrieval): the role of hippocampus in working memory is controversial. Second, using a pattern classification technique, we show that activity in the auditory cortex and inferior frontal gyrus is specific to the maintained tones in working memory. Third, we show long-range connectivity of auditory cortex to hippocampus and frontal cortex, which may be responsible for keeping such representations active during working memory maintenance. Copyright © 2016 Kumar et al.

  2. Experience and information loss in auditory and visual memory.

    PubMed

    Gloede, Michele E; Paulauskas, Emily E; Gregg, Melissa K

    2017-07-01

    Recent studies show that recognition memory for sounds is inferior to memory for pictures. Four experiments were conducted to examine the nature of auditory and visual memory. Experiments 1-3 were conducted to evaluate the role of experience in auditory and visual memory. Participants received a study phase with pictures/sounds, followed by a recognition memory test. Participants then completed auditory training with each of the sounds, followed by a second memory test. Despite auditory training in Experiments 1 and 2, visual memory was superior to auditory memory. In Experiment 3, we found that it is possible to improve auditory memory, but only after 3 days of specific auditory training and 3 days of visual memory decay. We examined the time course of information loss in auditory and visual memory in Experiment 4 and found a trade-off between visual and auditory recognition memory: Visual memory appears to have a larger capacity, while auditory memory is more enduring. Our results indicate that visual and auditory memory are inherently different memory systems and that differences in visual and auditory recognition memory performance may be due to the different amounts of experience with visual and auditory information, as well as structurally different neural circuitry specialized for information retention.

  3. P300 as a measure of processing capacity in auditory and visual domains in Specific Language Impairment

    PubMed Central

    Evans, Julia L.; Pollak, Seth D.

    2011-01-01

    This study examined the electrophysiological correlates of auditory and visual working memory in children with Specific Language Impairments (SLI). Children with SLI and age-matched controls (11;9 – 14;10) completed visual and auditory working memory tasks while event-related potentials (ERPs) were recorded. In the auditory condition, children with SLI performed similarly to controls when the memory load was kept low (1-back memory load). As expected, when demands for auditory working memory were higher, children with SLI showed decreases in accuracy and attenuated P3b responses. However, children with SLI also evinced difficulties in the visual working memory tasks. In both the low (1-back) and high (2-back) memory load conditions, P3b amplitude was significantly lower for the SLI as compared to CA groups. These data suggest a domain-general working memory deficit in SLI that is manifested across auditory and visual modalities. PMID:21316354

  4. Primary auditory cortex regulates threat memory specificity.

    PubMed

    Wigestrand, Mattis B; Schiff, Hillary C; Fyhn, Marianne; LeDoux, Joseph E; Sears, Robert M

    2017-01-01

    Distinguishing threatening from nonthreatening stimuli is essential for survival and stimulus generalization is a hallmark of anxiety disorders. While auditory threat learning produces long-lasting plasticity in primary auditory cortex (Au1), it is not clear whether such Au1 plasticity regulates memory specificity or generalization. We used muscimol infusions in rats to show that discriminatory threat learning requires Au1 activity specifically during memory acquisition and retrieval, but not during consolidation. Memory specificity was similarly disrupted by infusion of PKMζ inhibitor peptide (ZIP) during memory storage. Our findings show that Au1 is required at critical memory phases and suggest that Au1 plasticity enables stimulus discrimination. © 2016 Wigestrand et al.; Published by Cold Spring Harbor Laboratory Press.

  5. Brain Region-Specific Activity Patterns after Recent or Remote Memory Retrieval of Auditory Conditioned Fear

    ERIC Educational Resources Information Center

    Kwon, Jeong-Tae; Jhang, Jinho; Kim, Hyung-Su; Lee, Sujin; Han, Jin-Hee

    2012-01-01

    Memory is thought to be sparsely encoded throughout multiple brain regions forming unique memory trace. Although evidence has established that the amygdala is a key brain site for memory storage and retrieval of auditory conditioned fear memory, it remains elusive whether the auditory brain regions may be involved in fear memory storage or…

  6. Primary Auditory Cortex Regulates Threat Memory Specificity

    ERIC Educational Resources Information Center

    Wigestrand, Mattis B.; Schiff, Hillary C.; Fyhn, Marianne; LeDoux, Joseph E.; Sears, Robert M.

    2017-01-01

    Distinguishing threatening from nonthreatening stimuli is essential for survival and stimulus generalization is a hallmark of anxiety disorders. While auditory threat learning produces long-lasting plasticity in primary auditory cortex (Au1), it is not clear whether such Au1 plasticity regulates memory specificity or generalization. We used…

  7. AUDITORY ASSOCIATIVE MEMORY AND REPRESENTATIONAL PLASTICITY IN THE PRIMARY AUDITORY CORTEX

    PubMed Central

    Weinberger, Norman M.

    2009-01-01

    Historically, the primary auditory cortex has been largely ignored as a substrate of auditory memory, perhaps because studies of associative learning could not reveal the plasticity of receptive fields (RFs). The use of a unified experimental design, in which RFs are obtained before and after standard training (e.g., classical and instrumental conditioning) revealed associative representational plasticity, characterized by facilitation of responses to tonal conditioned stimuli (CSs) at the expense of other frequencies, producing CS-specific tuning shifts. Associative representational plasticity (ARP) possesses the major attributes of associative memory: it is highly specific, discriminative, rapidly acquired, consolidates over hours and days and can be retained indefinitely. The nucleus basalis cholinergic system is sufficient both for the induction of ARP and for the induction of specific auditory memory, including control of the amount of remembered acoustic details. Extant controversies regarding the form, function and neural substrates of ARP appear largely to reflect different assumptions, which are explicitly discussed. The view that the forms of plasticity are task-dependent is supported by ongoing studies in which auditory learning involves CS-specific decreases in threshold or bandwidth without affecting frequency tuning. Future research needs to focus on the factors that determine ARP and their functions in hearing and in auditory memory. PMID:17344002

  8. Neural circuits in auditory and audiovisual memory.

    PubMed

    Plakke, B; Romanski, L M

    2016-06-01

    Working memory is the ability to employ recently seen or heard stimuli and apply them to changing cognitive context. Although much is known about language processing and visual working memory, the neurobiological basis of auditory working memory is less clear. Historically, part of the problem has been the difficulty in obtaining a robust animal model to study auditory short-term memory. In recent years there has been neurophysiological and lesion studies indicating a cortical network involving both temporal and frontal cortices. Studies specifically targeting the role of the prefrontal cortex (PFC) in auditory working memory have suggested that dorsal and ventral prefrontal regions perform different roles during the processing of auditory mnemonic information, with the dorsolateral PFC performing similar functions for both auditory and visual working memory. In contrast, the ventrolateral PFC (VLPFC), which contains cells that respond robustly to auditory stimuli and that process both face and vocal stimuli may be an essential locus for both auditory and audiovisual working memory. These findings suggest a critical role for the VLPFC in the processing, integrating, and retaining of communication information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Assessment of short-term memory in Arabic speaking children with specific language impairment.

    PubMed

    Kaddah, F A; Shoeib, R M; Mahmoud, H E

    2010-12-15

    Children with Specific Language Impairment (SLI) may have some kind of memory disorder that could increase their linguistic impairment. This study assessed the short-term memory skills in Arabic speaking children with either Expressive Language Impairment (ELI) or Receptive/Expressive Language Impairment (R/ELI) in comparison to controls in order to estimate the nature and extent of any specific deficits in these children that could explain the different prognostic results of language intervention. Eighteen children were included in each group. Receptive, expressive and total language quotients were calculated using the Arabic language test. Assessment of auditory and visual short-term memory was done using the Arabic version of the Illinois Test of Psycholinguistic Abilities. Both groups of SLI performed significantly lower linguistic abilities and poorer auditory and visual short-term memory in comparison to normal children. The R/ELI group presented an inferior performance than the ELI group in all measured parameters. Strong association was found between most tasks of auditory and visual short-term memory and linguistic abilities. The results of this study highlighted a specific degree of deficit of auditory and visual short-term memories in both groups of SLI. These deficits were more prominent in R/ELI group. Moreover, the strong association between the different auditory and visual short-term memories and language abilities in children with SLI must be taken into account when planning an intervention program for these children.

  10. Neural circuits in Auditory and Audiovisual Memory

    PubMed Central

    Plakke, B.; Romanski, L.M.

    2016-01-01

    Working memory is the ability to employ recently seen or heard stimuli and apply them to changing cognitive context. Although much is known about language processing and visual working memory, the neurobiological basis of auditory working memory is less clear. Historically, part of the problem has been the difficulty in obtaining a robust animal model to study auditory short-term memory. In recent years there has been neurophysiological and lesion studies indicating a cortical network involving both temporal and frontal cortices. Studies specifically targeting the role of the prefrontal cortex (PFC) in auditory working memory have suggested that dorsal and ventral prefrontal regions perform different roles during the processing of auditory mnemonic information, with the dorsolateral PFC performing similar functions for both auditory and visual working memory. In contrast, the ventrolateral PFC (VLPFC), which contains cells that respond robustly to auditory stimuli and that process both face and vocal stimuli may be an essential locus for both auditory and audiovisual working memory. These findings suggest a critical role for the VLPFC in the processing, integrating, and retaining of communication information. PMID:26656069

  11. Stimulus-specific suppression preserves information in auditory short-term memory.

    PubMed

    Linke, Annika C; Vicente-Grabovetsky, Alejandro; Cusack, Rhodri

    2011-08-02

    Philosophers and scientists have puzzled for millennia over how perceptual information is stored in short-term memory. Some have suggested that early sensory representations are involved, but their precise role has remained unclear. The current study asks whether auditory cortex shows sustained frequency-specific activation while sounds are maintained in short-term memory using high-resolution functional MRI (fMRI). Investigating short-term memory representations within regions of human auditory cortex with fMRI has been difficult because of their small size and high anatomical variability between subjects. However, we overcame these constraints by using multivoxel pattern analysis. It clearly revealed frequency-specific activity during the encoding phase of a change detection task, and the degree of this frequency-specific activation was positively related to performance in the task. Although the sounds had to be maintained in memory, activity in auditory cortex was significantly suppressed. Strikingly, patterns of activity in this maintenance period correlated negatively with the patterns evoked by the same frequencies during encoding. Furthermore, individuals who used a rehearsal strategy to remember the sounds showed reduced frequency-specific suppression during the maintenance period. Although negative activations are often disregarded in fMRI research, our findings imply that decreases in blood oxygenation level-dependent response carry important stimulus-specific information and can be related to cognitive processes. We hypothesize that, during auditory change detection, frequency-specific suppression protects short-term memory representations from being overwritten by inhibiting the encoding of interfering sounds.

  12. Encoding of Discriminative Fear Memory by Input-Specific LTP in the Amygdala.

    PubMed

    Kim, Woong Bin; Cho, Jun-Hyeong

    2017-08-30

    In auditory fear conditioning, experimental subjects learn to associate an auditory conditioned stimulus (CS) with an aversive unconditioned stimulus. With sufficient training, animals fear conditioned to an auditory CS show fear response to the CS, but not to irrelevant auditory stimuli. Although long-term potentiation (LTP) in the lateral amygdala (LA) plays an essential role in auditory fear conditioning, it is unknown whether LTP is induced selectively in the neural pathways conveying specific CS information to the LA in discriminative fear learning. Here, we show that postsynaptically expressed LTP is induced selectively in the CS-specific auditory pathways to the LA in a mouse model of auditory discriminative fear conditioning. Moreover, optogenetically induced depotentiation of the CS-specific auditory pathways to the LA suppressed conditioned fear responses to the CS. Our results suggest that input-specific LTP in the LA contributes to fear memory specificity, enabling adaptive fear responses only to the relevant sensory cue. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Representations of temporal information in short-term memory: Are they modality-specific?

    PubMed

    Bratzke, Daniel; Quinn, Katrina R; Ulrich, Rolf; Bausenhart, Karin M

    2016-10-01

    Rattat and Picard (2012) reported that the coding of temporal information in short-term memory is modality-specific, that is, temporal information received via the visual (auditory) modality is stored as a visual (auditory) code. This conclusion was supported by modality-specific interference effects on visual and auditory duration discrimination, which were induced by secondary tasks (visual tracking or articulatory suppression), presented during a retention interval. The present study assessed the stability of these modality-specific interference effects. Our study did not replicate the selective interference pattern but rather indicated that articulatory suppression not only impairs short-term memory for auditory but also for visual durations. This result pattern supports a crossmodal or an abstract view of temporal encoding. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Transmodal comparison of auditory, motor, and visual post-processing with and without intentional short-term memory maintenance.

    PubMed

    Bender, Stephan; Behringer, Stephanie; Freitag, Christine M; Resch, Franz; Weisbrod, Matthias

    2010-12-01

    To elucidate the contributions of modality-dependent post-processing in auditory, motor and visual cortical areas to short-term memory. We compared late negative waves (N700) during the post-processing of single lateralized stimuli which were separated by long intertrial intervals across the auditory, motor and visual modalities. Tasks either required or competed with attention to post-processing of preceding events, i.e. active short-term memory maintenance. N700 indicated that cortical post-processing exceeded short movements as well as short auditory or visual stimuli for over half a second without intentional short-term memory maintenance. Modality-specific topographies pointed towards sensory (respectively motor) generators with comparable time-courses across the different modalities. Lateralization and amplitude of auditory/motor/visual N700 were enhanced by active short-term memory maintenance compared to attention to current perceptions or passive stimulation. The memory-related N700 increase followed the characteristic time-course and modality-specific topography of the N700 without intentional memory-maintenance. Memory-maintenance-related lateralized negative potentials may be related to a less lateralised modality-dependent post-processing N700 component which occurs also without intentional memory maintenance (automatic memory trace or effortless attraction of attention). Encoding to short-term memory may involve controlled attention to modality-dependent post-processing. Similar short-term memory processes may exist in the auditory, motor and visual systems. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Development of auditory sensory memory from 2 to 6 years: an MMN study.

    PubMed

    Glass, Elisabeth; Sachse, Steffi; von Suchodoletz, Waldemar

    2008-08-01

    Short-term storage of auditory information is thought to be a precondition for cognitive development, and deficits in short-term memory are believed to underlie learning disabilities and specific language disorders. We examined the development of the duration of auditory sensory memory in normally developing children between the ages of 2 and 6 years. To probe the lifetime of auditory sensory memory we elicited the mismatch negativity (MMN), a component of the late auditory evoked potential, with tone stimuli of two different frequencies presented with various interstimulus intervals between 500 and 5,000 ms. Our findings suggest that memory traces for tone characteristics have a duration of 1-2 s in 2- and 3-year-old children, more than 2 s in 4-year-olds and 3-5 s in 6-year-olds. The results provide insights into the maturational processes involved in auditory sensory memory during the sensitive period of cognitive development.

  16. Inhibition of histone deacetylase 3 via RGFP966 facilitates cortical plasticity underlying unusually accurate auditory associative cue memory for excitatory and inhibitory cue-reward associations.

    PubMed

    Shang, Andrea; Bylipudi, Sooraz; Bieszczad, Kasia M

    2018-05-31

    Epigenetic mechanisms are key for regulating long-term memory (LTM) and are known to exert control on memory formation in multiple systems of the adult brain, including the sensory cortex. One epigenetic mechanism is chromatin modification by histone acetylation. Blocking the action of histone de-acetylases (HDACs) that normally negatively regulate LTM by repressing transcription has been shown to enable memory formation. Indeed, HDAC inhibition appears to facilitate memory by altering the dynamics of gene expression events important for memory consolidation. However, less understood are the ways in which molecular-level consolidation processes alter subsequent memory to enhance storage or facilitate retrieval. Here we used a sensory perspective to investigate whether the characteristics of memory formed with HDAC inhibitors are different from naturally-formed memory. One possibility is that HDAC inhibition enables memory to form with greater sensory detail than normal. Because the auditory system undergoes learning-induced remodeling that provides substrates for sound-specific LTM, we aimed to identify behavioral effects of HDAC inhibition on memory for specific sound features using a standard model of auditory associative cue-reward learning, memory, and cortical plasticity. We found that three systemic post-training treatments of an HDAC3-inhibitor (RGPF966, Abcam Inc.) in rats in the early phase of training facilitated auditory discriminative learning, changed auditory cortical tuning, and increased the specificity for acoustic frequency formed in memory of both excitatory (S+) and inhibitory (S-) associations for at least 2 weeks. The findings support that epigenetic mechanisms act on neural and behavioral sensory acuity to increase the precision of associative cue memory, which can be revealed by studying the sensory characteristics of long-term associative memory formation with HDAC inhibitors. Published by Elsevier B.V.

  17. Eye closure helps memory by reducing cognitive load and enhancing visualisation.

    PubMed

    Vredeveldt, Annelies; Hitch, Graham J; Baddeley, Alan D

    2011-10-01

    Closing the eyes helps memory. We investigated the mechanisms underlying the eyeclosure effect by exposing 80 eyewitnesses to different types of distraction during the witness interview: blank screen (control), eyes closed, visual distraction, and auditory distraction. We examined the cognitive load hypothesis by comparing any type of distraction (visual or auditory) with minimal distraction (blank screen or eyes closed). We found recall to be significantly better when distraction was minimal, providing evidence that eyeclosure reduces cognitive load. We examined the modality-specific interference hypothesis by comparing the effects of visual and auditory distraction on recall of visual and auditory information. Visual and auditory distraction selectively impaired memory for information presented in the same modality, supporting the role of visualisation in the eyeclosure effect. Analysis of recall in terms of grain size revealed that recall of basic information about the event was robust, whereas recall of specific details was prone to both general and modality-specific disruptions.

  18. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex.

    PubMed

    Kostopoulos, Penelope; Petrides, Michael

    2016-02-16

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top-down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience.

  19. Temporal Organization of Sound Information in Auditory Memory.

    PubMed

    Song, Kun; Luo, Huan

    2017-01-01

    Memory is a constructive and organizational process. Instead of being stored with all the fine details, external information is reorganized and structured at certain spatiotemporal scales. It is well acknowledged that time plays a central role in audition by segmenting sound inputs into temporal chunks of appropriate length. However, it remains largely unknown whether critical temporal structures exist to mediate sound representation in auditory memory. To address the issue, here we designed an auditory memory transferring study, by combining a previously developed unsupervised white noise memory paradigm with a reversed sound manipulation method. Specifically, we systematically measured the memory transferring from a random white noise sound to its locally temporal reversed version on various temporal scales in seven experiments. We demonstrate a U-shape memory-transferring pattern with the minimum value around temporal scale of 200 ms. Furthermore, neither auditory perceptual similarity nor physical similarity as a function of the manipulating temporal scale can account for the memory-transferring results. Our results suggest that sounds are not stored with all the fine spectrotemporal details but are organized and structured at discrete temporal chunks in long-term auditory memory representation.

  20. Exposure to suggestion and creation of false auditory memories.

    PubMed

    Vernon, B; Nelson, E

    2000-02-01

    The experiment investigated the possibility of creating false auditory memory through exposure to suggestion. Research by Loftus and others has indicated that, through suggestion, false memories can be created. Participants viewed a short film and were given a 9-item questionnaire. Eight questions were used as filler while one question asked respondents to recall a phrase one character had said. Although the character actually said nothing, 23 of 30 respondents recalled having heard him speak and specifically recalled his words. This statistically significant result shows that auditory memories can also be created.

  1. Impact of Spatial and Verbal Short-Term Memory Load on Auditory Spatial Attention Gradients.

    PubMed

    Golob, Edward J; Winston, Jenna; Mock, Jeffrey R

    2017-01-01

    Short-term memory load can impair attentional control, but prior work shows that the extent of the effect ranges from being very general to very specific. One factor for the mixed results may be reliance on point estimates of memory load effects on attention. Here we used auditory attention gradients as an analog measure to map-out the impact of short-term memory load over space. Verbal or spatial information was maintained during an auditory spatial attention task and compared to no-load. Stimuli were presented from five virtual locations in the frontal azimuth plane, and subjects focused on the midline. Reaction times progressively increased for lateral stimuli, indicating an attention gradient. Spatial load further slowed responses at lateral locations, particularly in the left hemispace, but had little effect at midline. Verbal memory load had no (Experiment 1), or a minimal (Experiment 2) influence on reaction times. Spatial and verbal load increased switch costs between memory encoding and attention tasks relative to the no load condition. The findings show that short-term memory influences the distribution of auditory attention over space; and that the specific pattern depends on the type of information in short-term memory.

  2. Impact of Spatial and Verbal Short-Term Memory Load on Auditory Spatial Attention Gradients

    PubMed Central

    Golob, Edward J.; Winston, Jenna; Mock, Jeffrey R.

    2017-01-01

    Short-term memory load can impair attentional control, but prior work shows that the extent of the effect ranges from being very general to very specific. One factor for the mixed results may be reliance on point estimates of memory load effects on attention. Here we used auditory attention gradients as an analog measure to map-out the impact of short-term memory load over space. Verbal or spatial information was maintained during an auditory spatial attention task and compared to no-load. Stimuli were presented from five virtual locations in the frontal azimuth plane, and subjects focused on the midline. Reaction times progressively increased for lateral stimuli, indicating an attention gradient. Spatial load further slowed responses at lateral locations, particularly in the left hemispace, but had little effect at midline. Verbal memory load had no (Experiment 1), or a minimal (Experiment 2) influence on reaction times. Spatial and verbal load increased switch costs between memory encoding and attention tasks relative to the no load condition. The findings show that short-term memory influences the distribution of auditory attention over space; and that the specific pattern depends on the type of information in short-term memory. PMID:29218024

  3. Neural dynamics underlying attentional orienting to auditory representations in short-term memory.

    PubMed

    Backer, Kristina C; Binns, Malcolm A; Alain, Claude

    2015-01-21

    Sounds are ephemeral. Thus, coherent auditory perception depends on "hearing" back in time: retrospectively attending that which was lost externally but preserved in short-term memory (STM). Current theories of auditory attention assume that sound features are integrated into a perceptual object, that multiple objects can coexist in STM, and that attention can be deployed to an object in STM. Recording electroencephalography from humans, we tested these assumptions, elucidating feature-general and feature-specific neural correlates of auditory attention to STM. Alpha/beta oscillations and frontal and posterior event-related potentials indexed feature-general top-down attentional control to one of several coexisting auditory representations in STM. Particularly, task performance during attentional orienting was correlated with alpha/low-beta desynchronization (i.e., power suppression). However, attention to one feature could occur without simultaneous processing of the second feature of the representation. Therefore, auditory attention to memory relies on both feature-specific and feature-general neural dynamics. Copyright © 2015 the authors 0270-6474/15/351307-12$15.00/0.

  4. Working memory, short-term memory and reading proficiency in school-age children with cochlear implants.

    PubMed

    Bharadwaj, Sneha V; Maricle, Denise; Green, Laura; Allman, Tamby

    2015-10-01

    The objective of the study was to examine short-term memory and working memory through both visual and auditory tasks in school-age children with cochlear implants. The relationship between the performance on these cognitive skills and reading as well as language outcomes were examined in these children. Ten children between the ages of 7 and 11 years with early-onset bilateral severe-profound hearing loss participated in the study. Auditory and visual short-term memory, auditory and visual working memory subtests and verbal knowledge measures were assessed using the Woodcock Johnson III Tests of Cognitive Abilities, the Wechsler Intelligence Scale for Children-IV Integrated and the Kaufman Assessment Battery for Children II. Reading outcomes were assessed using the Woodcock Reading Mastery Test III. Performance on visual short-term memory and visual working memory measures in children with cochlear implants was within the average range when compared to the normative mean. However, auditory short-term memory and auditory working memory measures were below average when compared to the normative mean. Performance was also below average on all verbal knowledge measures. Regarding reading outcomes, children with cochlear implants scored below average for listening and passage comprehension tasks and these measures were positively correlated to visual short-term memory, visual working memory and auditory short-term memory. Performance on auditory working memory subtests was not related to reading or language outcomes. The children with cochlear implants in this study demonstrated better performance in visual (spatial) working memory and short-term memory skills than in auditory working memory and auditory short-term memory skills. Significant positive relationships were found between visual working memory and reading outcomes. The results of the study provide support for the idea that WM capacity is modality specific in children with hearing loss. Based on these findings, reading instruction that capitalizes on the strengths in visual short-term memory and working memory is suggested for young children with early-onset hearing loss. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. A Perceptuo-Cognitive-Motor Approach to the Special Child.

    ERIC Educational Resources Information Center

    Kornblum, Rena Beth

    A movement therapist reviews ways in which a perceptuo-cognitive approach can help handicapped children in learning and in social adjustment. She identifies specific auditory problems (hearing loss, sound-ground confusion, auditory discrimination, auditory localization, auditory memory, auditory sequencing), visual problems (visual acuity,…

  6. Domain-specific impairment of source memory following a right posterior medial temporal lobe lesion.

    PubMed

    Peters, Jan; Koch, Benno; Schwarz, Michael; Daum, Irene

    2007-01-01

    This single case analysis of memory performance in a patient with an ischemic lesion affecting posterior but not anterior right medial temporal lobe (MTL) indicates that source memory can be disrupted in a domain-specific manner. The patient showed normal recognition memory for gray-scale photos of objects (visual condition) and spoken words (auditory condition). While memory for visual source (texture/color of the background against which pictures appeared) was within the normal range, auditory source memory (male/female speaker voice) was at chance level, a performance pattern significantly different from the control group. This dissociation is consistent with recent fMRI evidence of anterior/posterior MTL dissociations depending upon the nature of source information (visual texture/color vs. auditory speaker voice). The findings are in good agreement with the view of dissociable memory processing by the perirhinal cortex (anterior MTL) and parahippocampal cortex (posterior MTL), depending upon the neocortical input that these regions receive. (c) 2007 Wiley-Liss, Inc.

  7. Outline for Remediation of Problem Areas for Children with Learning Disabilities. Revised. = Bosquejo para la Correccion de Areas Problematicas para Ninos con Impedimientos del Aprendizaje.

    ERIC Educational Resources Information Center

    Bornstein, Joan L.

    The booklet outlines ways to help children with learning disabilities in specific subject areas. Characteristic behavior and remedial exercises are listed for seven areas of auditory problems: auditory reception, auditory association, auditory discrimination, auditory figure ground, auditory closure and sound blending, auditory memory, and grammar…

  8. Selective Attention to Auditory Memory Neurally Enhances Perceptual Precision.

    PubMed

    Lim, Sung-Joo; Wöstmann, Malte; Obleser, Jonas

    2015-12-09

    Selective attention to a task-relevant stimulus facilitates encoding of that stimulus into a working memory representation. It is less clear whether selective attention also improves the precision of a stimulus already represented in memory. Here, we investigate the behavioral and neural dynamics of selective attention to representations in auditory working memory (i.e., auditory objects) using psychophysical modeling and model-based analysis of electroencephalographic signals. Human listeners performed a syllable pitch discrimination task where two syllables served as to-be-encoded auditory objects. Valid (vs neutral) retroactive cues were presented during retention to allow listeners to selectively attend to the to-be-probed auditory object in memory. Behaviorally, listeners represented auditory objects in memory more precisely (expressed by steeper slopes of a psychometric curve) and made faster perceptual decisions when valid compared to neutral retrocues were presented. Neurally, valid compared to neutral retrocues elicited a larger frontocentral sustained negativity in the evoked potential as well as enhanced parietal alpha/low-beta oscillatory power (9-18 Hz) during memory retention. Critically, individual magnitudes of alpha oscillatory power (7-11 Hz) modulation predicted the degree to which valid retrocues benefitted individuals' behavior. Our results indicate that selective attention to a specific object in auditory memory does benefit human performance not by simply reducing memory load, but by actively engaging complementary neural resources to sharpen the precision of the task-relevant object in memory. Can selective attention improve the representational precision with which objects are held in memory? And if so, what are the neural mechanisms that support such improvement? These issues have been rarely examined within the auditory modality, in which acoustic signals change and vanish on a milliseconds time scale. Introducing a new auditory memory paradigm and using model-based electroencephalography analyses in humans, we thus bridge this gap and reveal behavioral and neural signatures of increased, attention-mediated working memory precision. We further show that the extent of alpha power modulation predicts the degree to which individuals' memory performance benefits from selective attention. Copyright © 2015 the authors 0270-6474/15/3516094-11$15.00/0.

  9. Saturation of auditory short-term memory causes a plateau in the sustained anterior negativity event-related potential.

    PubMed

    Alunni-Menichini, Kristelle; Guimond, Synthia; Bermudez, Patrick; Nolden, Sophie; Lefebvre, Christine; Jolicoeur, Pierre

    2014-12-10

    The maintenance of information in auditory short-term memory (ASTM) is accompanied by a sustained anterior negativity (SAN) in the event-related potential measured during the retention interval of simple auditory memory tasks. Previous work on ASTM showed that the amplitude of the SAN increased in negativity as the number of maintained items increases. The aim of the current study was to measure the SAN and observe its behavior beyond the point of saturation of auditory short-term memory. We used atonal pure tones in sequences of 2, 4, 6, or 8t. Our results showed that the amplitude of SAN increased in negativity from 2 to 4 items and then levelled off from 4 to 8 items. Behavioral results suggested that the average span in the task was slightly below 3, which was consistent with the observed plateau in the electrophysiological results. Furthermore, the amplitude of the SAN predicted individual differences in auditory memory capacity. The results support the hypothesis that the SAN is an electrophysiological index of brain activity specifically related to the maintenance of auditory information in ASTM. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Brain region-specific activity patterns after recent or remote memory retrieval of auditory conditioned fear.

    PubMed

    Kwon, Jeong-Tae; Jhang, Jinho; Kim, Hyung-Su; Lee, Sujin; Han, Jin-Hee

    2012-09-19

    Memory is thought to be sparsely encoded throughout multiple brain regions forming unique memory trace. Although evidence has established that the amygdala is a key brain site for memory storage and retrieval of auditory conditioned fear memory, it remains elusive whether the auditory brain regions may be involved in fear memory storage or retrieval. To investigate this possibility, we systematically imaged the brain activity patterns in the lateral amygdala, MGm/PIN, and AuV/TeA using activity-dependent induction of immediate early gene zif268 after recent and remote memory retrieval of auditory conditioned fear. Consistent with the critical role of the amygdala in fear memory, the zif268 activity in the lateral amygdala was significantly increased after both recent and remote memory retrieval. Interesting, however, the density of zif268 (+) neurons in both MGm/PIN and AuV/TeA, particularly in layers IV and VI, was increased only after remote but not recent fear memory retrieval compared to control groups. Further analysis of zif268 signals in AuV/TeA revealed that conditioned tone induced stronger zif268 induction compared to familiar tone in each individual zif268 (+) neuron after recent memory retrieval. Taken together, our results support that the lateral amygdala is a key brain site for permanent fear memory storage and suggest that MGm/PIN and AuV/TeA might play a role for remote memory storage or retrieval of auditory conditioned fear, or, alternatively, that these auditory brain regions might have a different way of processing for familiar or conditioned tone information at recent and remote time phases.

  11. Auditory and Visual Sustained Attention in Children with Speech Sound Disorder

    PubMed Central

    Murphy, Cristina F. B.; Pagan-Neves, Luciana O.; Wertzner, Haydée F.; Schochat, Eliane

    2014-01-01

    Although research has demonstrated that children with specific language impairment (SLI) and reading disorder (RD) exhibit sustained attention deficits, no study has investigated sustained attention in children with speech sound disorder (SSD). Given the overlap of symptoms, such as phonological memory deficits, between these different language disorders (i.e., SLI, SSD and RD) and the relationships between working memory, attention and language processing, it is worthwhile to investigate whether deficits in sustained attention also occur in children with SSD. A total of 55 children (18 diagnosed with SSD (8.11±1.231) and 37 typically developing children (8.76±1.461)) were invited to participate in this study. Auditory and visual sustained-attention tasks were applied. Children with SSD performed worse on these tasks; they committed a greater number of auditory false alarms and exhibited a significant decline in performance over the course of the auditory detection task. The extent to which performance is related to auditory perceptual difficulties and probable working memory deficits is discussed. Further studies are needed to better understand the specific nature of these deficits and their clinical implications. PMID:24675815

  12. Sex-specific cognitive abnormalities in early-onset psychosis.

    PubMed

    Ruiz-Veguilla, Miguel; Moreno-Granados, Josefa; Salcedo-Marin, Maria D; Barrigon, Maria L; Blanco-Morales, Maria J; Igunza, Evelio; Cañabate, Anselmo; Garcia, Maria D; Guijarro, Teresa; Diaz-Atienza, Francisco; Ferrin, Maite

    2017-01-01

    Brain maturation differs depending on the area of the brain and sex. Girls show an earlier peak in maturation of the prefrontal cortex. Although differences between adult females and males with schizophrenia have been widely studied, there has been less research in girls and boys with psychosis. The purpose of this study was to examine differences in verbal and visual memory, verbal working memory, auditory attention, processing speed, and cognitive flexibility between boys and girls. We compared a group of 80 boys and girls with first-episode psychosis to a group of controls. We found interactions between group and sex in verbal working memory (p = 0.04) and auditory attention (p = 0.01). The female controls showed better working memory (p = 0.01) and auditory attention (p = 0.001) than males. However, we did not find any sex differences in working memory (p = 0.91) or auditory attention (p = 0.93) in the psychosis group. These results are consistent with the presence of sex-modulated cognitive profiles at first presentation of early-onset psychosis.

  13. Working memory capacity and visual-verbal cognitive load modulate auditory-sensory gating in the brainstem: toward a unified view of attention.

    PubMed

    Sörqvist, Patrik; Stenfelt, Stefan; Rönnberg, Jerker

    2012-11-01

    Two fundamental research questions have driven attention research in the past: One concerns whether selection of relevant information among competing, irrelevant, information takes place at an early or at a late processing stage; the other concerns whether the capacity of attention is limited by a central, domain-general pool of resources or by independent, modality-specific pools. In this article, we contribute to these debates by showing that the auditory-evoked brainstem response (an early stage of auditory processing) to task-irrelevant sound decreases as a function of central working memory load (manipulated with a visual-verbal version of the n-back task). Furthermore, individual differences in central/domain-general working memory capacity modulated the magnitude of the auditory-evoked brainstem response, but only in the high working memory load condition. The results support a unified view of attention whereby the capacity of a late/central mechanism (working memory) modulates early precortical sensory processing.

  14. Tracking the fear memory engram: discrete populations of neurons within amygdala, hypothalamus, and lateral septum are specifically activated by auditory fear conditioning

    PubMed Central

    Wilson, Yvette M.; Gunnersen, Jenny M.; Murphy, Mark

    2015-01-01

    Memory formation is thought to occur via enhanced synaptic connectivity between populations of neurons in the brain. However, it has been difficult to localize and identify the neurons that are directly involved in the formation of any specific memory. We have previously used fos-tau-lacZ (FTL) transgenic mice to identify discrete populations of neurons in amygdala and hypothalamus, which were specifically activated by fear conditioning to a context. Here we have examined neuronal activation due to fear conditioning to a more specific auditory cue. Discrete populations of learning-specific neurons were identified in only a small number of locations in the brain, including those previously found to be activated in amygdala and hypothalamus by context fear conditioning. These populations, each containing only a relatively small number of neurons, may be directly involved in fear learning and memory. PMID:26179231

  15. Mutation of Dcdc2 in mice leads to impairments in auditory processing and memory ability.

    PubMed

    Truong, D T; Che, A; Rendall, A R; Szalkowski, C E; LoTurco, J J; Galaburda, A M; Holly Fitch, R

    2014-11-01

    Dyslexia is a complex neurodevelopmental disorder characterized by impaired reading ability despite normal intellect, and is associated with specific difficulties in phonological and rapid auditory processing (RAP), visual attention and working memory. Genetic variants in Doublecortin domain-containing protein 2 (DCDC2) have been associated with dyslexia, impairments in phonological processing and in short-term/working memory. The purpose of this study was to determine whether sensory and behavioral impairments can result directly from mutation of the Dcdc2 gene in mice. Several behavioral tasks, including a modified pre-pulse inhibition paradigm (to examine auditory processing), a 4/8 radial arm maze (to assess/dissociate working vs. reference memory) and rotarod (to examine sensorimotor ability and motor learning), were used to assess the effects of Dcdc2 mutation. Behavioral results revealed deficits in RAP, working memory and reference memory in Dcdc2(del2/del2) mice when compared with matched wild types. Current findings parallel clinical research linking genetic variants of DCDC2 with specific impairments of phonological processing and memory ability. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  16. Relation between language, audio-vocal psycholinguistic abilities and P300 in children having specific language impairment.

    PubMed

    Shaheen, Elham Ahmed; Shohdy, Sahar Saad; Abd Al Raouf, Mahmoud; Mohamed El Abd, Shereen; Abd Elhamid, Asmss

    2011-09-01

    Specific language impairment is a relatively common developmental condition in which a child fails to develop language at the typical rate despite normal general intellectual abilities, adequate exposure to language, and in the absence of hearing impairments, or neurological or psychiatric disorders. There is much controversy about the extent to which the auditory processing deficits are important in the genesis specific language impairment. The objective of this paper is to assess the higher cortical functions in children with specific language impairment, through assessing neurophysiological changes in order to correlate the results with the clinical picture of the patients to choose the proper rehabilitation training program. This study was carried out on 40 children diagnosed to have specific language impairment and 20 normal children as a control group. All children were subjected to the assessment protocol applied in Kasr El-Aini hospital. They were also subjected to a language test (receptive, expressive and total language items), the audio-vocal items of Illinois test of psycholinguistic (auditory reception, auditory association, verbal expression, grammatical closure, auditory sequential memory and sound blending) as well as audiological assessment that included peripheral audiological and P300 amplitude and latency assessment. The results revealed a highly significant difference in P300 amplitude and latency between specific language impairment group and control group. There is also strong correlations between P300 latency and the grammatical closure, auditory sequential memory and sound blending, while significant correlation between the P300 amplitude and auditory association and verbal expression. Children with specific language impairment, in spite of the normal peripheral hearing, have evidence of cognitive and central auditory processing defects as evidenced by P300 auditory event related potential in the form of prolonged latency which indicate a slow rate of processing and defective memory as evidenced by small amplitude. These findings affect cognitive and language development in specific language impairment children and should be considered during planning the intervention program. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Auditory, visual and auditory-visual memory and sequencing performance in typically developing children.

    PubMed

    Pillai, Roshni; Yathiraj, Asha

    2017-09-01

    The study evaluated whether there exists a difference/relation in the way four different memory skills (memory score, sequencing score, memory span, & sequencing span) are processed through the auditory modality, visual modality and combined modalities. Four memory skills were evaluated on 30 typically developing children aged 7 years and 8 years across three modality conditions (auditory, visual, & auditory-visual). Analogous auditory and visual stimuli were presented to evaluate the three modality conditions across the two age groups. The children obtained significantly higher memory scores through the auditory modality compared to the visual modality. Likewise, their memory scores were significantly higher through the auditory-visual modality condition than through the visual modality. However, no effect of modality was observed on the sequencing scores as well as for the memory and the sequencing span. A good agreement was seen between the different modality conditions that were studied (auditory, visual, & auditory-visual) for the different memory skills measures (memory scores, sequencing scores, memory span, & sequencing span). A relatively lower agreement was noted only between the auditory and visual modalities as well as between the visual and auditory-visual modality conditions for the memory scores, measured using Bland-Altman plots. The study highlights the efficacy of using analogous stimuli to assess the auditory, visual as well as combined modalities. The study supports the view that the performance of children on different memory skills was better through the auditory modality compared to the visual modality. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The Effect of Auditory Integration Training on the Working Memory of Adults with Different Learning Preferences

    ERIC Educational Resources Information Center

    Ryan, Tamara E.

    2014-01-01

    The purpose of this study was to determine the effects of auditory integration training (AIT) on a component of the executive function of working memory; specifically, to determine if learning preferences might have an interaction with AIT to increase the outcome for some learners. The question asked by this quantitative pretest posttest design is…

  19. Low-level neural auditory discrimination dysfunctions in specific language impairment-A review on mismatch negativity findings.

    PubMed

    Kujala, Teija; Leminen, Miika

    2017-12-01

    In specific language impairment (SLI), there is a delay in the child's oral language skills when compared with nonverbal cognitive abilities. The problems typically relate to phonological and morphological processing and word learning. This article reviews studies which have used mismatch negativity (MMN) in investigating low-level neural auditory dysfunctions in this disorder. With MMN, it is possible to tap the accuracy of neural sound discrimination and sensory memory functions. These studies have found smaller response amplitudes and longer latencies for speech and non-speech sound changes in children with SLI than in typically developing children, suggesting impaired and slow auditory discrimination in SLI. Furthermore, they suggest shortened sensory memory duration and vulnerability of the sensory memory to masking effects. Importantly, some studies reported associations between MMN parameters and language test measures. In addition, it was found that language intervention can influence the abnormal MMN in children with SLI, enhancing its amplitude. These results suggest that the MMN can shed light on the neural basis of various auditory and memory impairments in SLI, which are likely to influence speech perception. Copyright © 2017. Published by Elsevier Ltd.

  20. Subthalamic nucleus deep brain stimulation affects distractor interference in auditory working memory.

    PubMed

    Camalier, Corrie R; Wang, Alice Y; McIntosh, Lindsey G; Park, Sohee; Neimat, Joseph S

    2017-03-01

    Computational and theoretical accounts hypothesize the basal ganglia play a supramodal "gating" role in the maintenance of working memory representations, especially in preservation from distractor interference. There are currently two major limitations to this account. The first is that supporting experiments have focused exclusively on the visuospatial domain, leaving questions as to whether such "gating" is domain-specific. The second is that current evidence relies on correlational measures, as it is extremely difficult to causally and reversibly manipulate subcortical structures in humans. To address these shortcomings, we examined non-spatial, auditory working memory performance during reversible modulation of the basal ganglia, an approach afforded by deep brain stimulation of the subthalamic nucleus. We found that subthalamic nucleus stimulation impaired auditory working memory performance, specifically in the group tested in the presence of distractors, even though the distractors were predictable and completely irrelevant to the encoding of the task stimuli. This study provides key causal evidence that the basal ganglia act as a supramodal filter in working memory processes, further adding to our growing understanding of their role in cognition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Musical Experience, Auditory Perception and Reading-Related Skills in Children

    PubMed Central

    Banai, Karen; Ahissar, Merav

    2013-01-01

    Background The relationships between auditory processing and reading-related skills remain poorly understood despite intensive research. Here we focus on the potential role of musical experience as a confounding factor. Specifically we ask whether the pattern of correlations between auditory and reading related skills differ between children with different amounts of musical experience. Methodology/Principal Findings Third grade children with various degrees of musical experience were tested on a battery of auditory processing and reading related tasks. Very poor auditory thresholds and poor memory skills were abundant only among children with no musical education. In this population, indices of auditory processing (frequency and interval discrimination thresholds) were significantly correlated with and accounted for up to 13% of the variance in reading related skills. Among children with more than one year of musical training, auditory processing indices were better, yet reading related skills were not correlated with them. A potential interpretation for the reduction in the correlations might be that auditory and reading-related skills improve at different rates as a function of musical training. Conclusions/Significance Participants’ previous musical training, which is typically ignored in studies assessing the relations between auditory and reading related skills, should be considered. Very poor auditory and memory skills are rare among children with even a short period of musical training, suggesting musical training could have an impact on both. The lack of correlation in the musically trained population suggests that a short period of musical training does not enhance reading related skills of individuals with within-normal auditory processing skills. Further studies are required to determine whether the associations between musical training, auditory processing and memory are indeed causal or whether children with poor auditory and memory skills are less likely to study music and if so, why this is the case. PMID:24086654

  2. Lateralized effects of orthographical irregularity and auditory memory load on the kinematics of transcription typewriting.

    PubMed

    Bloemsaat, Gijs; Van Galen, Gerard P; Meulenbroek, Ruud G J

    2003-05-01

    This study investigated the combined effects of orthographical irregularity and auditory memory load on the kinematics of finger movements in a transcription-typewriting task. Eight right-handed touch-typists were asked to type 80 strings of ten seven-letter words. In half the trials an irregularly spelt target word elicited a specific key press sequence of either the left or right index finger. In the other trials regularly spelt target words elicited the same key press sequence. An auditory memory load was added in half the trials by asking participants to remember the pitch of a tone during task performance. Orthographical irregularity was expected to slow down performance. Auditory memory load, viewed as a low level stressor, was expected to affect performance only when orthographically irregular words needed to be typed. The hypotheses were confirmed. Additional analysis showed differential effects on the left and right hand, possibly related to verbal-manual interference and hand dominance. The results are discussed in relation to relevant findings of recent neuroimaging studies.

  3. New perspectives on the auditory cortex: learning and memory.

    PubMed

    Weinberger, Norman M

    2015-01-01

    Primary ("early") sensory cortices have been viewed as stimulus analyzers devoid of function in learning, memory, and cognition. However, studies combining sensory neurophysiology and learning protocols have revealed that associative learning systematically modifies the encoding of stimulus dimensions in the primary auditory cortex (A1) to accentuate behaviorally important sounds. This "representational plasticity" (RP) is manifest at different levels. The sensitivity and selectivity of signal tones increase near threshold, tuning above threshold shifts toward the frequency of acoustic signals, and their area of representation can increase within the tonotopic map of A1. The magnitude of area gain encodes the level of behavioral stimulus importance and serves as a substrate of memory strength. RP has the same characteristics as behavioral memory: it is associative, specific, develops rapidly, consolidates, and can last indefinitely. Pairing tone with stimulation of the cholinergic nucleus basalis induces RP and implants specific behavioral memory, while directly increasing the representational area of a tone in A1 produces matching behavioral memory. Thus, RP satisfies key criteria for serving as a substrate of auditory memory. The findings suggest a basis for posttraumatic stress disorder in abnormally augmented cortical representations and emphasize the need for a new model of the cerebral cortex. © 2015 Elsevier B.V. All rights reserved.

  4. Tracking the fear memory engram: discrete populations of neurons within amygdala, hypothalamus, and lateral septum are specifically activated by auditory fear conditioning.

    PubMed

    Butler, Christopher W; Wilson, Yvette M; Gunnersen, Jenny M; Murphy, Mark

    2015-08-01

    Memory formation is thought to occur via enhanced synaptic connectivity between populations of neurons in the brain. However, it has been difficult to localize and identify the neurons that are directly involved in the formation of any specific memory. We have previously used fos-tau-lacZ (FTL) transgenic mice to identify discrete populations of neurons in amygdala and hypothalamus, which were specifically activated by fear conditioning to a context. Here we have examined neuronal activation due to fear conditioning to a more specific auditory cue. Discrete populations of learning-specific neurons were identified in only a small number of locations in the brain, including those previously found to be activated in amygdala and hypothalamus by context fear conditioning. These populations, each containing only a relatively small number of neurons, may be directly involved in fear learning and memory. © 2015 Butler et al.; Published by Cold Spring Harbor Laboratory Press.

  5. Histone Deacetylase Inhibition via RGFP966 Releases the Brakes on Sensory Cortical Plasticity and the Specificity of Memory Formation.

    PubMed

    Bieszczad, Kasia M; Bechay, Kiro; Rusche, James R; Jacques, Vincent; Kudugunti, Shashi; Miao, Wenyan; Weinberger, Norman M; McGaugh, James L; Wood, Marcelo A

    2015-09-23

    Research over the past decade indicates a novel role for epigenetic mechanisms in memory formation. Of particular interest is chromatin modification by histone deacetylases (HDACs), which, in general, negatively regulate transcription. HDAC deletion or inhibition facilitates transcription during memory consolidation and enhances long-lasting forms of synaptic plasticity and long-term memory. A key open question remains: How does blocking HDAC activity lead to memory enhancements? To address this question, we tested whether a normal function of HDACs is to gate information processing during memory formation. We used a class I HDAC inhibitor, RGFP966 (C21H19FN4O), to test the role of HDAC inhibition for information processing in an auditory memory model of learning-induced cortical plasticity. HDAC inhibition may act beyond memory enhancement per se to instead regulate information in ways that lead to encoding more vivid sensory details into memory. Indeed, we found that RGFP966 controls memory induction for acoustic details of sound-to-reward learning. Rats treated with RGFP966 while learning to associate sound with reward had stronger memory and additional information encoded into memory for highly specific features of sounds associated with reward. Moreover, behavioral effects occurred with unusually specific plasticity in primary auditory cortex (A1). Class I HDAC inhibition appears to engage A1 plasticity that enables additional acoustic features to become encoded in memory. Thus, epigenetic mechanisms act to regulate sensory cortical plasticity, which offers an information processing mechanism for gating what and how much is encoded to produce exceptionally persistent and vivid memories. Significance statement: Here we provide evidence of an epigenetic mechanism for information processing. The study reveals that a class I HDAC inhibitor (Malvaez et al., 2013; Rumbaugh et al., 2015; RGFP966, chemical formula C21H19FN4O) alters the formation of auditory memory by enabling more acoustic information to become encoded into memory. Moreover, RGFP966 appears to affect cortical plasticity: the primary auditory cortex reorganized in a manner that was unusually "tuned-in" to the specific sound cues and acoustic features that were related to reward and subsequently remembered. We propose that HDACs control "informational capture" at a systems level for what and how much information is encoded by gating sensory cortical plasticity that underlies the sensory richness of newly formed memories. Copyright © 2015 the authors 0270-6474/15/3513125-09$15.00/0.

  6. Histone Deacetylase Inhibition via RGFP966 Releases the Brakes on Sensory Cortical Plasticity and the Specificity of Memory Formation

    PubMed Central

    Bechay, Kiro; Rusche, James R.; Jacques, Vincent; Kudugunti, Shashi; Miao, Wenyan; Weinberger, Norman M.; McGaugh, James L.

    2015-01-01

    Research over the past decade indicates a novel role for epigenetic mechanisms in memory formation. Of particular interest is chromatin modification by histone deacetylases (HDACs), which, in general, negatively regulate transcription. HDAC deletion or inhibition facilitates transcription during memory consolidation and enhances long-lasting forms of synaptic plasticity and long-term memory. A key open question remains: How does blocking HDAC activity lead to memory enhancements? To address this question, we tested whether a normal function of HDACs is to gate information processing during memory formation. We used a class I HDAC inhibitor, RGFP966 (C21H19FN4O), to test the role of HDAC inhibition for information processing in an auditory memory model of learning-induced cortical plasticity. HDAC inhibition may act beyond memory enhancement per se to instead regulate information in ways that lead to encoding more vivid sensory details into memory. Indeed, we found that RGFP966 controls memory induction for acoustic details of sound-to-reward learning. Rats treated with RGFP966 while learning to associate sound with reward had stronger memory and additional information encoded into memory for highly specific features of sounds associated with reward. Moreover, behavioral effects occurred with unusually specific plasticity in primary auditory cortex (A1). Class I HDAC inhibition appears to engage A1 plasticity that enables additional acoustic features to become encoded in memory. Thus, epigenetic mechanisms act to regulate sensory cortical plasticity, which offers an information processing mechanism for gating what and how much is encoded to produce exceptionally persistent and vivid memories. SIGNIFICANCE STATEMENT Here we provide evidence of an epigenetic mechanism for information processing. The study reveals that a class I HDAC inhibitor (Malvaez et al., 2013; Rumbaugh et al., 2015; RGFP966, chemical formula C21H19FN4O) alters the formation of auditory memory by enabling more acoustic information to become encoded into memory. Moreover, RGFP966 appears to affect cortical plasticity: the primary auditory cortex reorganized in a manner that was unusually “tuned-in” to the specific sound cues and acoustic features that were related to reward and subsequently remembered. We propose that HDACs control “informational capture” at a systems level for what and how much information is encoded by gating sensory cortical plasticity that underlies the sensory richness of newly formed memories. PMID:26400942

  7. Narrative abilities, memory and attention in children with a specific language impairment.

    PubMed

    Duinmeijer, Iris; de Jong, Jan; Scheper, Annette

    2012-01-01

    While narrative tasks have proven to be valid measures for detecting language disorders, measuring communicative skills and predicting future academic performance, research into the comparability of different narrative tasks has shown that outcomes are dependent on the type of task used. Although many of the studies detecting task differences touch upon the fact that tasks place differential demands on cognitive abilities like auditory attention and memory, few studies have related specific narrative tasks to these cognitive abilities. Examining this relation is especially warranted for children with specific language impairment (SLI), who are characterized by language problems, but often have problems in other cognitive domains as well. In the current research, a comparison was made between a story retelling task (The Bus Story) and a story generation task (The Frog Story) in a group of children with SLI (n= 34) and a typically developing group (n= 38) from the same age range. In addition to the two narrative tasks, sustained auditory attention (TEA-Ch) and verbal working memory (WISC digit span and the Dutch version of the CVLT-C word list recall) were measured. Correlations were computed between the narrative, the memory and the attention scores. A group comparison showed that the children with SLI scored significantly worse than the typically developing children on several narrative measures as well as on sustained auditory attention and verbal working memory. A within-subjects comparison of the scores on the two narrative tasks showed a contrast between the tasks on several narrative measures. Furthermore, correlational analyses showed that, on the level of plot structure, the story generation task correlated with sustained auditory attention, while the story retelling task correlated with word list recall. Mean length of utterance (MLU) on the other hand correlated with digit span but not with sustained auditory attention. While children with SLI have problems with narratives in general, their performance is also dependent on the specific elicitation task used for research or diagnostics. Various narrative tasks generate different scores and are differentially correlated to cognitive skills like attention and memory, making the selection of a given task crucial in the clinical setting. © 2012 Royal College of Speech and Language Therapists.

  8. Modalities of memory: is reading lips like hearing voices?

    PubMed

    Maidment, David W; Macken, Bill; Jones, Dylan M

    2013-12-01

    Functional similarities in verbal memory performance across presentation modalities (written, heard, lipread) are often taken to point to a common underlying representational form upon which the modalities converge. We show here instead that the pattern of performance depends critically on presentation modality and different mechanisms give rise to superficially similar effects across modalities. Lipread recency is underpinned by different mechanisms to auditory recency, and while the effect of an auditory suffix on an auditory list is due to the perceptual grouping of the suffix with the list, the corresponding effect with lipread speech is due to misidentification of the lexical content of the lipread suffix. Further, while a lipread suffix does not disrupt auditory recency, an auditory suffix does disrupt recency for lipread lists. However, this effect is due to attentional capture ensuing from the presentation of an unexpected auditory event, and is evident both with verbal and nonverbal auditory suffixes. These findings add to a growing body of evidence that short-term verbal memory performance is determined by modality-specific perceptual and motor processes, rather than by the storage and manipulation of phonological representations. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Attending to auditory memory.

    PubMed

    Zimmermann, Jacqueline F; Moscovitch, Morris; Alain, Claude

    2016-06-01

    Attention to memory describes the process of attending to memory traces when the object is no longer present. It has been studied primarily for representations of visual stimuli with only few studies examining attention to sound object representations in short-term memory. Here, we review the interplay of attention and auditory memory with an emphasis on 1) attending to auditory memory in the absence of related external stimuli (i.e., reflective attention) and 2) effects of existing memory on guiding attention. Attention to auditory memory is discussed in the context of change deafness, and we argue that failures to detect changes in our auditory environments are most likely the result of a faulty comparison system of incoming and stored information. Also, objects are the primary building blocks of auditory attention, but attention can also be directed to individual features (e.g., pitch). We review short-term and long-term memory guided modulation of attention based on characteristic features, location, and/or semantic properties of auditory objects, and propose that auditory attention to memory pathways emerge after sensory memory. A neural model for auditory attention to memory is developed, which comprises two separate pathways in the parietal cortex, one involved in attention to higher-order features and the other involved in attention to sensory information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Dynamic reconfiguration of human brain functional networks through neurofeedback.

    PubMed

    Haller, Sven; Kopel, Rotem; Jhooti, Permi; Haas, Tanja; Scharnowski, Frank; Lovblad, Karl-Olof; Scheffler, Klaus; Van De Ville, Dimitri

    2013-11-01

    Recent fMRI studies demonstrated that functional connectivity is altered following cognitive tasks (e.g., learning) or due to various neurological disorders. We tested whether real-time fMRI-based neurofeedback can be a tool to voluntarily reconfigure brain network interactions. To disentangle learning-related from regulation-related effects, we first trained participants to voluntarily regulate activity in the auditory cortex (training phase) and subsequently asked participants to exert learned voluntary self-regulation in the absence of feedback (transfer phase without learning). Using independent component analysis (ICA), we found network reconfigurations (increases in functional network connectivity) during the neurofeedback training phase between the auditory target region and (1) the auditory pathway; (2) visual regions related to visual feedback processing; (3) insula related to introspection and self-regulation and (4) working memory and high-level visual attention areas related to cognitive effort. Interestingly, the auditory target region was identified as the hub of the reconfigured functional networks without a-priori assumptions. During the transfer phase, we again found specific functional connectivity reconfiguration between auditory and attention network confirming the specific effect of self-regulation on functional connectivity. Functional connectivity to working memory related networks was no longer altered consistent with the absent demand on working memory. We demonstrate that neurofeedback learning is mediated by widespread changes in functional connectivity. In contrast, applying learned self-regulation involves more limited and specific network changes in an auditory setup intended as a model for tinnitus. Hence, neurofeedback training might be used to promote recovery from neurological disorders that are linked to abnormal patterns of brain connectivity. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Latency of modality-specific reactivation of auditory and visual information during episodic memory retrieval.

    PubMed

    Ueno, Daisuke; Masumoto, Kouhei; Sutani, Kouichi; Iwaki, Sunao

    2015-04-15

    This study used magnetoencephalography (MEG) to examine the latency of modality-specific reactivation in the visual and auditory cortices during a recognition task to determine the effects of reactivation on episodic memory retrieval. Nine right-handed healthy young adults participated in the experiment. The experiment consisted of a word-encoding phase and two recognition phases. Three encoding conditions were included: encoding words alone (word-only) and encoding words presented with either related pictures (visual) or related sounds (auditory). The recognition task was conducted in the MEG scanner 15 min after the completion of the encoding phase. After the recognition test, a source-recognition task was given, in which participants were required to choose whether each recognition word was not presented or was presented with which information during the encoding phase. Word recognition in the auditory condition was higher than that in the word-only condition. Confidence-of-recognition scores (d') and the source-recognition test showed superior performance in both the visual and the auditory conditions compared with the word-only condition. An equivalent current dipoles analysis of MEG data indicated that higher equivalent current dipole amplitudes in the right fusiform gyrus occurred during the visual condition and in the superior temporal auditory cortices during the auditory condition, both 450-550 ms after onset of the recognition stimuli. Results suggest that reactivation of visual and auditory brain regions during recognition binds language with modality-specific information and that reactivation enhances confidence in one's recognition performance.

  12. Two distinct auditory-motor circuits for monitoring speech production as revealed by content-specific suppression of auditory cortex.

    PubMed

    Ylinen, Sari; Nora, Anni; Leminen, Alina; Hakala, Tero; Huotilainen, Minna; Shtyrov, Yury; Mäkelä, Jyrki P; Service, Elisabet

    2015-06-01

    Speech production, both overt and covert, down-regulates the activation of auditory cortex. This is thought to be due to forward prediction of the sensory consequences of speech, contributing to a feedback control mechanism for speech production. Critically, however, these regulatory effects should be specific to speech content to enable accurate speech monitoring. To determine the extent to which such forward prediction is content-specific, we recorded the brain's neuromagnetic responses to heard multisyllabic pseudowords during covert rehearsal in working memory, contrasted with a control task. The cortical auditory processing of target syllables was significantly suppressed during rehearsal compared with control, but only when they matched the rehearsed items. This critical specificity to speech content enables accurate speech monitoring by forward prediction, as proposed by current models of speech production. The one-to-one phonological motor-to-auditory mappings also appear to serve the maintenance of information in phonological working memory. Further findings of right-hemispheric suppression in the case of whole-item matches and left-hemispheric enhancement for last-syllable mismatches suggest that speech production is monitored by 2 auditory-motor circuits operating on different timescales: Finer grain in the left versus coarser grain in the right hemisphere. Taken together, our findings provide hemisphere-specific evidence of the interface between inner and heard speech. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Selective verbal recognition memory impairments are associated with atrophy of the language network in non-semantic variants of primary progressive aphasia.

    PubMed

    Nilakantan, Aneesha S; Voss, Joel L; Weintraub, Sandra; Mesulam, M-Marsel; Rogalski, Emily J

    2017-06-01

    Primary progressive aphasia (PPA) is clinically defined by an initial loss of language function and preservation of other cognitive abilities, including episodic memory. While PPA primarily affects the left-lateralized perisylvian language network, some clinical neuropsychological tests suggest concurrent initial memory loss. The goal of this study was to test recognition memory of objects and words in the visual and auditory modality to separate language-processing impairments from retentive memory in PPA. Individuals with non-semantic PPA had longer reaction times and higher false alarms for auditory word stimuli compared to visual object stimuli. Moreover, false alarms for auditory word recognition memory were related to cortical thickness within the left inferior frontal gyrus and left temporal pole, while false alarms for visual object recognition memory was related to cortical thickness within the right-temporal pole. This pattern of results suggests that specific vulnerability in processing verbal stimuli can hinder episodic memory in PPA, and provides evidence for differential contributions of the left and right temporal poles in word and object recognition memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Visual Working Memory Capacity for Objects from Different Categories: A Face-Specific Maintenance Effect

    ERIC Educational Resources Information Center

    Wong, Jason H.; Peterson, Matthew S.; Thompson, James C.

    2008-01-01

    The capacity of visual working memory was examined when complex objects from different categories were remembered. Previous studies have not examined how visual similarity affects object memory, though it has long been known that similar-sounding phonological information interferes with rehearsal in auditory working memory. Here, experiments…

  15. Attention is required for maintenance of feature binding in visual working memory.

    PubMed

    Zokaei, Nahid; Heider, Maike; Husain, Masud

    2014-01-01

    Working memory and attention are intimately connected. However, understanding the relationship between the two is challenging. Currently, there is an important controversy about whether objects in working memory are maintained automatically or require resources that are also deployed for visual or auditory attention. Here we investigated the effects of loading attention resources on precision of visual working memory, specifically on correct maintenance of feature-bound objects, using a dual-task paradigm. Participants were presented with a memory array and were asked to remember either direction of motion of random dot kinematograms of different colour, or orientation of coloured bars. During the maintenance period, they performed a secondary visual or auditory task, with varying levels of load. Following a retention period, they adjusted a coloured probe to match either the motion direction or orientation of stimuli with the same colour in the memory array. This allowed us to examine the effects of an attention-demanding task performed during maintenance on precision of recall on the concurrent working memory task. Systematic increase in attention load during maintenance resulted in a significant decrease in overall working memory performance. Changes in overall performance were specifically accompanied by an increase in feature misbinding errors: erroneous reporting of nontarget motion or orientation. Thus in trials where attention resources were taxed, participants were more likely to respond with nontarget values rather than simply making random responses. Our findings suggest that resources used during attention-demanding visual or auditory tasks also contribute to maintaining feature-bound representations in visual working memory-but not necessarily other aspects of working memory.

  16. Language-Specific Attention Treatment for Aphasia: Description and Preliminary Findings.

    PubMed

    Peach, Richard K; Nathan, Meghana R; Beck, Katherine M

    2017-02-01

    The need for a specific, language-based treatment approach to aphasic impairments associated with attentional deficits is well documented. We describe language-specific attention treatment, a specific skill-based approach for aphasia that exploits increasingly complex linguistic tasks that focus attention. The program consists of eight tasks, some with multiple phases, to assess and treat lexical and sentence processing. Validation results demonstrate that these tasks load on six attentional domains: (1) executive attention; (2) attentional switching; (3) visual selective attention/processing speed; (4) sustained attention; (5) auditory-verbal working memory; and (6) auditory processing speed. The program demonstrates excellent inter- and intrarater reliability and adequate test-retest reliability. Two of four people with aphasia exposed to this program demonstrated good language recovery whereas three of the four participants showed improvements in auditory-verbal working memory. The results provide support for this treatment program in patients with aphasia having no greater than a moderate degree of attentional impairment. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  17. Interference effects of transcranial direct current stimulation over the right frontal cortex and adrenergic system on conditioned fear.

    PubMed

    Nasehi, Mohammad; Soltanpour, Reyhaneh; Ebrahimi-Ghiri, Mohaddeseh; Zarrabian, Shahram; Zarrindast, Mohammad-Reza

    2017-11-01

    The effects of pharmacological interventions on fear memory have widely been studied, but there are very few studies about the effects of brain electrical stimulation on fear memory function. Therefore, our aim was to determine whether anodal/cathodal transcranial direct current stimulation (tDCS) over the right frontal cortex would modify propranolol-induced contextual and auditory fear memory deficits, before or after training. The adult NMRI male mice were randomly assigned into three groups: the sham group, the anodal tDCS group, and the cathodal tDCS group. Fear memories were evaluated using a classical fear conditioning apparatus. While the anodal stimulation did not affect fear retrieval, post-training cathodal stimulation improved fear memory retrieval. Regardless of when propranolol (0.1 mg/kg) was administered, it impaired fear memory retrieval. However, when anodal stimulation and propranolol were applied prior to the training, contextual fear memory retrieval was increased and auditory fear memory was reversed. An enhanced contextual retrieval was also observed when propranolol was administered prior to the training and stimulation occurred after the training. Only when the stimulation occurred prior to the training and propranolol was administered after the training was there a selective improvement in contextual fear memory retrieval, leaving the auditory fear memory retrieval impaired. Interestingly, cathodal stimulation improved the effects of propranolol on auditory fear memory only when it occurred prior to the training. The results highlight possible improving effects for anodal/cathodal tDCS on propranolol-induced deficits on fear memories. The timing of the interventions related to the specific phases of memory formation is important in modulating fear behaviors.

  18. Impaired encoding of rapid pitch information underlies perception and memory deficits in congenital amusia.

    PubMed

    Albouy, Philippe; Cousineau, Marion; Caclin, Anne; Tillmann, Barbara; Peretz, Isabelle

    2016-01-06

    Recent theories suggest that the basis of neurodevelopmental auditory disorders such as dyslexia or specific language impairment might be a low-level sensory dysfunction. In the present study we test this hypothesis in congenital amusia, a neurodevelopmental disorder characterized by severe deficits in the processing of pitch-based material. We manipulated the temporal characteristics of auditory stimuli and investigated the influence of the time given to encode pitch information on participants' performance in discrimination and short-term memory. Our results show that amusics' performance in such tasks scales with the duration available to encode acoustic information. This suggests that in auditory neuro-developmental disorders, abnormalities in early steps of the auditory processing can underlie the high-level deficits (here musical disabilities). Observing that the slowing down of temporal dynamics improves amusics' pitch abilities allows considering this approach as a potential tool for remediation in developmental auditory disorders.

  19. Tracking the Fear Memory Engram: Discrete Populations of Neurons within Amygdala, Hypothalamus, and Lateral Septum Are Specifically Activated by Auditory Fear Conditioning

    ERIC Educational Resources Information Center

    Butler, Christopher W.; Wilson, Yvette M.; Gunnersen, Jenny M.; Murphy, Mark

    2015-01-01

    Memory formation is thought to occur via enhanced synaptic connectivity between populations of neurons in the brain. However, it has been difficult to localize and identify the neurons that are directly involved in the formation of any specific memory. We have previously used "fos-tau-lacZ" ("FTL") transgenic mice to identify…

  20. Retrosplenial cortex is required for the retrieval of remote memory for auditory cues.

    PubMed

    Todd, Travis P; Mehlman, Max L; Keene, Christopher S; DeAngeli, Nicole E; Bucci, David J

    2016-06-01

    The restrosplenial cortex (RSC) has a well-established role in contextual and spatial learning and memory, consistent with its known connectivity with visuo-spatial association areas. In contrast, RSC appears to have little involvement with delay fear conditioning to an auditory cue. However, all previous studies have examined the contribution of the RSC to recently acquired auditory fear memories. Since neocortical regions have been implicated in the permanent storage of remote memories, we examined the contribution of the RSC to remotely acquired auditory fear memories. In Experiment 1, retrieval of a remotely acquired auditory fear memory was impaired when permanent lesions (either electrolytic or neurotoxic) were made several weeks after initial conditioning. In Experiment 2, using a chemogenetic approach, we observed impairments in the retrieval of remote memory for an auditory cue when the RSC was temporarily inactivated during testing. In Experiment 3, after injection of a retrograde tracer into the RSC, we observed labeled cells in primary and secondary auditory cortices, as well as the claustrum, indicating that the RSC receives direct projections from auditory regions. Overall our results indicate the RSC has a critical role in the retrieval of remotely acquired auditory fear memories, and we suggest this is related to the quality of the memory, with less precise memories being RSC dependent. © 2016 Todd et al.; Published by Cold Spring Harbor Laboratory Press.

  1. An Experimental Analysis of Memory Processing

    PubMed Central

    Wright, Anthony A

    2007-01-01

    Rhesus monkeys were trained and tested in visual and auditory list-memory tasks with sequences of four travel pictures or four natural/environmental sounds followed by single test items. Acquisitions of the visual list-memory task are presented. Visual recency (last item) memory diminished with retention delay, and primacy (first item) memory strengthened. Capuchin monkeys, pigeons, and humans showed similar visual-memory changes. Rhesus learned an auditory memory task and showed octave generalization for some lists of notes—tonal, but not atonal, musical passages. In contrast with visual list memory, auditory primacy memory diminished with delay and auditory recency memory strengthened. Manipulations of interitem intervals, list length, and item presentation frequency revealed proactive and retroactive inhibition among items of individual auditory lists. Repeating visual items from prior lists produced interference (on nonmatching tests) revealing how far back memory extended. The possibility of using the interference function to separate familiarity vs. recollective memory processing is discussed. PMID:18047230

  2. Auditory short-term memory in the primate auditory cortex.

    PubMed

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  3. Attention is required for maintenance of feature binding in visual working memory

    PubMed Central

    Heider, Maike; Husain, Masud

    2013-01-01

    Working memory and attention are intimately connected. However, understanding the relationship between the two is challenging. Currently, there is an important controversy about whether objects in working memory are maintained automatically or require resources that are also deployed for visual or auditory attention. Here we investigated the effects of loading attention resources on precision of visual working memory, specifically on correct maintenance of feature-bound objects, using a dual-task paradigm. Participants were presented with a memory array and were asked to remember either direction of motion of random dot kinematograms of different colour, or orientation of coloured bars. During the maintenance period, they performed a secondary visual or auditory task, with varying levels of load. Following a retention period, they adjusted a coloured probe to match either the motion direction or orientation of stimuli with the same colour in the memory array. This allowed us to examine the effects of an attention-demanding task performed during maintenance on precision of recall on the concurrent working memory task. Systematic increase in attention load during maintenance resulted in a significant decrease in overall working memory performance. Changes in overall performance were specifically accompanied by an increase in feature misbinding errors: erroneous reporting of nontarget motion or orientation. Thus in trials where attention resources were taxed, participants were more likely to respond with nontarget values rather than simply making random responses. Our findings suggest that resources used during attention-demanding visual or auditory tasks also contribute to maintaining feature-bound representations in visual working memory—but not necessarily other aspects of working memory. PMID:24266343

  4. You can't stop the music: reduced auditory alpha power and coupling between auditory and memory regions facilitate the illusory perception of music during noise.

    PubMed

    Müller, Nadia; Keil, Julian; Obleser, Jonas; Schulz, Hannah; Grunwald, Thomas; Bernays, René-Ludwig; Huppertz, Hans-Jürgen; Weisz, Nathan

    2013-10-01

    Our brain has the capacity of providing an experience of hearing even in the absence of auditory stimulation. This can be seen as illusory conscious perception. While increasing evidence postulates that conscious perception requires specific brain states that systematically relate to specific patterns of oscillatory activity, the relationship between auditory illusions and oscillatory activity remains mostly unexplained. To investigate this we recorded brain activity with magnetoencephalography and collected intracranial data from epilepsy patients while participants listened to familiar as well as unknown music that was partly replaced by sections of pink noise. We hypothesized that participants have a stronger experience of hearing music throughout noise when the noise sections are embedded in familiar compared to unfamiliar music. This was supported by the behavioral results showing that participants rated the perception of music during noise as stronger when noise was presented in a familiar context. Time-frequency data show that the illusory perception of music is associated with a decrease in auditory alpha power pointing to increased auditory cortex excitability. Furthermore, the right auditory cortex is concurrently synchronized with the medial temporal lobe, putatively mediating memory aspects associated with the music illusion. We thus assume that neuronal activity in the highly excitable auditory cortex is shaped through extensive communication between the auditory cortex and the medial temporal lobe, thereby generating the illusion of hearing music during noise. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. On Auditing Auditory Information: The Influence of Mood on Memory for Music

    ERIC Educational Resources Information Center

    Houston, David; Haddock, Geoffrey

    2007-01-01

    Previous research suggests that memory for music possesses a number of similarities to the more frequently studied modalities of verbal and visual memory. The present study addresses a yet uninvestigated factor involved in the memory for music: mood. Specifically, the study explored whether a mood-congruency effect is attained using major and…

  6. Memory as embodiment: The case of modality and serial short-term memory.

    PubMed

    Macken, Bill; Taylor, John C; Kozlov, Michail D; Hughes, Robert W; Jones, Dylan M

    2016-10-01

    Classical explanations for the modality effect-superior short-term serial recall of auditory compared to visual sequences-typically recur to privileged processing of information derived from auditory sources. Here we critically appraise such accounts, and re-evaluate the nature of the canonical empirical phenomena that have motivated them. Three experiments show that the standard account of modality in memory is untenable, since auditory superiority in recency is often accompanied by visual superiority in mid-list serial positions. We explain this simultaneous auditory and visual superiority by reference to the way in which perceptual objects are formed in the two modalities and how those objects are mapped to speech motor forms to support sequence maintenance and reproduction. Specifically, stronger obligatory object formation operating in the standard auditory form of sequence presentation compared to that for visual sequences leads both to enhanced addressability of information at the object boundaries and reduced addressability for that in the interior. Because standard visual presentation does not lead to such object formation, such sequences do not show the boundary advantage observed for auditory presentation, but neither do they suffer loss of addressability associated with object information, thereby affording more ready mapping of that information into a rehearsal cohort to support recall. We show that a range of factors that impede this perceptual-motor mapping eliminate visual superiority while leaving auditory superiority unaffected. We make a general case for viewing short-term memory as an embodied, perceptual-motor process. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Neural Processing of Spoken Words in Specific Language Impairment and Dyslexia

    ERIC Educational Resources Information Center

    Helenius, Paivi; Parviainen, Tiina; Paetau, Ritva; Salmelin, Riitta

    2009-01-01

    Young adults with a history of specific language impairment (SLI) differ from reading-impaired (dyslexic) individuals in terms of limited vocabulary and poor verbal short-term memory. Phonological short-term memory has been shown to play a significant role in learning new words. We investigated the neural signatures of auditory word recognition…

  8. Parietal Activation During Retrieval of Abstract and Concrete Auditory Information

    PubMed Central

    Klostermann, Ellen C.; Kane, Ari J.M.; Shimamura, Arthur P.

    2008-01-01

    Successful memory retrieval has been associated with a neural circuit that involves prefrontal, precuneus, and posterior parietal regions. Specifically, these regions are active during recognition memory tests when items correctly identified as “old” are compared with items correctly identified as “new.” Yet, as nearly all previous fMRI studies have used visual stimuli, it is unclear whether activations in posterior regions are specifically associated with memory retrieval or if they reflect visuospatial processing. We focus on the status of parietal activations during recognition performance by testing memory for abstract and concrete nouns presented in the auditory modality with eyes closed. Successful retrieval of both concrete and abstract words was associated with increased activation in left inferior parietal regions (BA 40), similar to those observed with visual stimuli. These results demonstrate that activations in the posterior parietal cortex during retrieval cannot be attributed to bottom-up visuospatial processes but instead have a more direct relationship to memory retrieval processes. PMID:18243736

  9. Auditory memory function in expert chess players.

    PubMed

    Fattahi, Fariba; Geshani, Ahmad; Jafari, Zahra; Jalaie, Shohreh; Salman Mahini, Mona

    2015-01-01

    Chess is a game that involves many aspects of high level cognition such as memory, attention, focus and problem solving. Long term practice of chess can improve cognition performances and behavioral skills. Auditory memory, as a kind of memory, can be influenced by strengthening processes following long term chess playing like other behavioral skills because of common processing pathways in the brain. The purpose of this study was to evaluate the auditory memory function of expert chess players using the Persian version of dichotic auditory-verbal memory test. The Persian version of dichotic auditory-verbal memory test was performed for 30 expert chess players aged 20-35 years and 30 non chess players who were matched by different conditions; the participants in both groups were randomly selected. The performance of the two groups was compared by independent samples t-test using SPSS version 21. The mean score of dichotic auditory-verbal memory test between the two groups, expert chess players and non-chess players, revealed a significant difference (p≤ 0.001). The difference between the ears scores for expert chess players (p= 0.023) and non-chess players (p= 0.013) was significant. Gender had no effect on the test results. Auditory memory function in expert chess players was significantly better compared to non-chess players. It seems that increased auditory memory function is related to strengthening cognitive performances due to playing chess for a long time.

  10. Sleep for cognitive enhancement.

    PubMed

    Diekelmann, Susanne

    2014-01-01

    Sleep is essential for effective cognitive functioning. Loosing even a few hours of sleep can have detrimental effects on a wide variety of cognitive processes such as attention, language, reasoning, decision making, learning and memory. While sleep is necessary to ensure normal healthy cognitive functioning, it can also enhance performance beyond the boundaries of the normal condition. This article discusses the enhancing potential of sleep, mainly focusing on the domain of learning and memory. Sleep is known to facilitate the consolidation of memories learned before sleep as well as the acquisition of new memories to be learned after sleep. According to a widely held model this beneficial effect of sleep relies on the neuronal reactivation of memories during sleep that is associated with sleep-specific brain oscillations (slow oscillations, spindles, ripples) as well as a characteristic neurotransmitter milieu. Recent research indicates that memory processing during sleep can be boosted by (i) cueing memory reactivation during sleep; (ii) stimulating sleep-specific brain oscillations; and (iii) targeting specific neurotransmitter systems pharmacologically. Olfactory and auditory cues can be used, for example, to increase reactivation of associated memories during post-learning sleep. Intensifying neocortical slow oscillations (the hallmark of slow wave sleep (SWS)) by electrical or auditory stimulation and modulating specific neurotransmitters such as noradrenaline and glutamate likewise facilitates memory processing during sleep. With this evidence in mind, this article concludes by discussing different methodological caveats and ethical issues that should be considered when thinking about using sleep for cognitive enhancement in everyday applications.

  11. Sleep for cognitive enhancement

    PubMed Central

    Diekelmann, Susanne

    2014-01-01

    Sleep is essential for effective cognitive functioning. Loosing even a few hours of sleep can have detrimental effects on a wide variety of cognitive processes such as attention, language, reasoning, decision making, learning and memory. While sleep is necessary to ensure normal healthy cognitive functioning, it can also enhance performance beyond the boundaries of the normal condition. This article discusses the enhancing potential of sleep, mainly focusing on the domain of learning and memory. Sleep is known to facilitate the consolidation of memories learned before sleep as well as the acquisition of new memories to be learned after sleep. According to a widely held model this beneficial effect of sleep relies on the neuronal reactivation of memories during sleep that is associated with sleep-specific brain oscillations (slow oscillations, spindles, ripples) as well as a characteristic neurotransmitter milieu. Recent research indicates that memory processing during sleep can be boosted by (i) cueing memory reactivation during sleep; (ii) stimulating sleep-specific brain oscillations; and (iii) targeting specific neurotransmitter systems pharmacologically. Olfactory and auditory cues can be used, for example, to increase reactivation of associated memories during post-learning sleep. Intensifying neocortical slow oscillations (the hallmark of slow wave sleep (SWS)) by electrical or auditory stimulation and modulating specific neurotransmitters such as noradrenaline and glutamate likewise facilitates memory processing during sleep. With this evidence in mind, this article concludes by discussing different methodological caveats and ethical issues that should be considered when thinking about using sleep for cognitive enhancement in everyday applications. PMID:24765066

  12. He hears, she hears: are there sex differences in auditory processing?

    PubMed

    Yoder, Kathleen M; Phan, Mimi L; Lu, Kai; Vicario, David S

    2015-03-01

    Songbirds learn individually unique songs through vocal imitation and use them in courtship and territorial displays. Previous work has identified a forebrain auditory area, the caudomedial nidopallium (NCM), that appears specialized for discriminating and remembering conspecific vocalizations. In zebra finches (ZFs), only males produce learned vocalizations, but both sexes process these and other signals. This study assessed sex differences in auditory processing by recording extracellular multiunit activity at multiple sites within NCM. Juvenile female ZFs (n = 46) were reared in individual isolation and artificially tutored with song. In adulthood, songs were played back to assess auditory responses, stimulus-specific adaptation, neural bias for conspecific song, and memory for the tutor's song, as well as recently heard songs. In a subset of females (n = 36), estradiol (E2) levels were manipulated to test the contribution of E2, known to be synthesized in the brain, to auditory responses. Untreated females (n = 10) showed significant differences in response magnitude and stimulus-specific adaptation compared to males reared in the same paradigm (n = 9). In hormone-manipulated females, E2 augmentation facilitated the memory for recently heard songs in adulthood, but neither E2 augmentation (n = 15) nor E2 synthesis blockade (n = 9) affected tutor song memory or the neural bias for conspecific song. The results demonstrate subtle sex differences in processing communication signals, and show that E2 levels in female songbirds can affect the memory for songs of potential suitors, thus contributing to the process of mate selection. The results also have potential relevance to clinical interventions that manipulate E2 in human patients. © 2014 Wiley Periodicals, Inc.

  13. Auditory short-term memory in the primate auditory cortex

    PubMed Central

    Scott, Brian H.; Mishkin, Mortimer

    2015-01-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ‘working memory’ bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ‘match’ stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. PMID:26541581

  14. Selective synaptic remodeling of amygdalocortical connections associated with fear memory.

    PubMed

    Yang, Yang; Liu, Dan-Qian; Huang, Wei; Deng, Juan; Sun, Yangang; Zuo, Yi; Poo, Mu-Ming

    2016-10-01

    Neural circuits underlying auditory fear conditioning have been extensively studied. Here we identified a previously unexplored pathway from the lateral amygdala (LA) to the auditory cortex (ACx) and found that selective silencing of this pathway using chemo- and optogenetic approaches impaired fear memory retrieval. Dual-color in vivo two-photon imaging of mouse ACx showed pathway-specific increases in the formation of LA axon boutons, dendritic spines of ACx layer 5 pyramidal cells, and putative LA-ACx synaptic pairs after auditory fear conditioning. Furthermore, joint imaging of pre- and postsynaptic structures showed that essentially all new synaptic contacts were made by adding new partners to existing synaptic elements. Together, these findings identify an amygdalocortical projection that is important to fear memory expression and is selectively modified by associative fear learning, and unravel a distinct architectural rule for synapse formation in the adult brain.

  15. The effects of divided attention on auditory priming.

    PubMed

    Mulligan, Neil W; Duke, Marquinn; Cooper, Angela W

    2007-09-01

    Traditional theorizing stresses the importance of attentional state during encoding for later memory, based primarily on research with explicit memory. Recent research has begun to investigate the role of attention in implicit memory but has focused almost exclusively on priming in the visual modality. The present experiments examined the effect of divided attention on auditory implicit memory, using auditory perceptual identification, word-stem completion and word-fragment completion. Participants heard study words under full attention conditions or while simultaneously carrying out a distractor task (the divided attention condition). In Experiment 1, a distractor task with low response frequency failed to disrupt later auditory priming (but diminished explicit memory as assessed with auditory recognition). In Experiment 2, a distractor task with greater response frequency disrupted priming on all three of the auditory priming tasks as well as the explicit test. These results imply that although auditory priming is less reliant on attention than explicit memory, it is still greatly affected by at least some divided-attention manipulations. These results are consistent with research using visual priming tasks and have relevance for hypotheses regarding attention and auditory priming.

  16. The Effect of Noise on the Relationship Between Auditory Working Memory and Comprehension in School-Age Children.

    PubMed

    Sullivan, Jessica R; Osman, Homira; Schafer, Erin C

    2015-06-01

    The objectives of the current study were to examine the effect of noise (-5 dB SNR) on auditory comprehension and to examine its relationship with working memory. It was hypothesized that noise has a negative impact on information processing, auditory working memory, and comprehension. Children with normal hearing between the ages of 8 and 10 years were administered working memory and comprehension tasks in quiet and noise. The comprehension measure comprised 5 domains: main idea, details, reasoning, vocabulary, and understanding messages. Performance on auditory working memory and comprehension tasks were significantly poorer in noise than in quiet. The reasoning, details, understanding, and vocabulary subtests were particularly affected in noise (p < .05). The relationship between auditory working memory and comprehension was stronger in noise than in quiet, suggesting an increased contribution of working memory. These data suggest that school-age children's auditory working memory and comprehension are negatively affected by noise. Performance on comprehension tasks in noise is strongly related to demands placed on working memory, supporting the theory that degrading listening conditions draws resources away from the primary task.

  17. Auditory memory function in expert chess players

    PubMed Central

    Fattahi, Fariba; Geshani, Ahmad; Jafari, Zahra; Jalaie, Shohreh; Salman Mahini, Mona

    2015-01-01

    Background: Chess is a game that involves many aspects of high level cognition such as memory, attention, focus and problem solving. Long term practice of chess can improve cognition performances and behavioral skills. Auditory memory, as a kind of memory, can be influenced by strengthening processes following long term chess playing like other behavioral skills because of common processing pathways in the brain. The purpose of this study was to evaluate the auditory memory function of expert chess players using the Persian version of dichotic auditory-verbal memory test. Methods: The Persian version of dichotic auditory-verbal memory test was performed for 30 expert chess players aged 20-35 years and 30 non chess players who were matched by different conditions; the participants in both groups were randomly selected. The performance of the two groups was compared by independent samples t-test using SPSS version 21. Results: The mean score of dichotic auditory-verbal memory test between the two groups, expert chess players and non-chess players, revealed a significant difference (p≤ 0.001). The difference between the ears scores for expert chess players (p= 0.023) and non-chess players (p= 0.013) was significant. Gender had no effect on the test results. Conclusion: Auditory memory function in expert chess players was significantly better compared to non-chess players. It seems that increased auditory memory function is related to strengthening cognitive performances due to playing chess for a long time. PMID:26793666

  18. Biasing the content of hippocampal replay during sleep

    PubMed Central

    Bendor, Daniel; Wilson, Matthew A.

    2013-01-01

    The hippocampus plays an essential role in encoding self-experienced events into memory. During sleep, neural activity in the hippocampus related to a recent experience has been observed to spontaneously reoccur, and this “replay” has been postulated to be important for memory consolidation. Task-related cues can enhance memory consolidation when presented during a post-training sleep session, and if memories are consolidated by hippocampal replay, a specific enhancement for this replay should also be observed. To test this, we have trained rats on an auditory-spatial association task, while recording from neuronal ensembles in the hippocampus. Here we report that during sleep, a task-related auditory cue biases reactivation events towards replaying the spatial memory associated with that cue. These results indicate that sleep replay can be manipulated by external stimulation, and provide further evidence for the role of hippocampal replay in memory consolidation. PMID:22941111

  19. Toward a research-based assessment of dyslexia: using cognitive measures to identify reading disabilities.

    PubMed

    Bell, Sherry Mee; McCallum, R Steve; Cox, Elizabeth A

    2003-01-01

    One hundred five participants from a random sample of elementary and middle school children completed measures of reading achievement and cognitive abilities presumed, based on a synthesis of current dyslexia research, to underlie reading. Factor analyses of these cognitive variables (including auditory processing, phonological awareness, short-term auditory memory, visual memory, rapid automatized naming, and visual processing speed) produced three empirically and theoretically derived factors (auditory processing, visual processing/speed, and memory), each of which contributed to the prediction of reading and spelling skills. Factor scores from the three factors combined predicted 85% of the variance associated with letter/sight word naming, 70% of the variance associated with reading comprehension, 73% for spelling, and 61% for phonetic decoding. The auditory processing factor was the strongest predictor, accounting for 27% to 43% of the variance across the different achievement areas. The results provide practitioner and researcher with theoretical and empirical support for the inclusion of measures of the three factors, in addition to specific measures of reading achievement, in a standardized assessment of dyslexia. Guidelines for a thorough, research-based assessment are provided.

  20. Role of auditory non-verbal working memory in sentence repetition for bilingual children with primary language impairment.

    PubMed

    Ebert, Kerry Danahy

    2014-01-01

    Sentence repetition performance is attracting increasing interest as a valuable clinical marker for primary (or specific) language impairment (LI) in both monolingual and bilingual populations. Multiple aspects of memory appear to contribute to sentence repetition performance, but non-verbal memory has not yet been considered. To explore the relationship between a measure of non-verbal auditory working memory (NVWM) and sentence repetition performance in a sample of bilingual children with LI. Forty-seven school-aged Spanish-English bilingual children with LI completed sentence repetition and non-word repetition tasks in both Spanish and English as well as an NVWM task. Hierarchical multiple linear regression was used to predict sentence repetition in each language using age, non-word repetition and NVWM. NVWM predicted unique variance in sentence repetition performance in both languages after accounting for chronological age and language-specific phonological memory, as measured by non-word repetition. Domain-general memory resources play a unique role in sentence repetition performance in children with LI. Non-verbal working memory weaknesses may contribute to the poor performance of children with LI on sentence repetition tasks. © 2014 Royal College of Speech and Language Therapists.

  1. The Role of Auditory Nonverbal Working Memory in Sentence Repetition for Bilingual Children with Primary Language Impairment

    PubMed Central

    Ebert, Kerry Danahy

    2015-01-01

    Background Sentence repetition performance is attracting increasing interest as a valuable clinical marker for Primary (or Specific) Language Impairment (LI) in both monolingual and bilingual populations. Multiple aspects of memory appear to contribute to sentence repetition performance, but nonverbal memory has not yet been considered. Aims The purpose of this study was to explore the relationship between a measure of nonverbal auditory working memory (NVWM) and sentence repetition performance in a sample of bilingual children with LI. Methods & Procedures Forty-seven school-aged Spanish-English bilingual children with LI completed sentence repetition and nonword repetition tasks in both Spanish and English as well as an NVWM task. Hierarchical multiple linear regression was used to predict sentence repetition in each language using age, nonword repetition, and NVWM. Outcomes & Results NVWM predicted unique variance in sentence repetition performance in both languages after accounting for chronological age and language-specific phonological memory, as measured by nonword repetition. Conclusions & Implications Domain-general memory resources play a unique role in sentence repetition performance in children with LI. Nonverbal working memory weaknesses may contribute to the poor performance of children with LI on sentence repetition tasks. PMID:24894308

  2. Auditory connections and functions of prefrontal cortex

    PubMed Central

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  3. Areas of Left Perisylvian Cortex Mediate Auditory-Verbal Short-Term Memory

    ERIC Educational Resources Information Center

    Koenigs, Michael; Acheson, Daniel J.; Barbey, Aron K.; Solomon, Jeffrey; Postle, Bradley R.; Grafman, Jordan

    2011-01-01

    A contentious issue in memory research is whether verbal short-term memory (STM) depends on a neural system specifically dedicated to the temporary maintenance of information, or instead relies on the same brain areas subserving the comprehension and production of language. In this study, we examined a large sample of adults with acquired brain…

  4. Role of Auditory Non-Verbal Working Memory in Sentence Repetition for Bilingual Children with Primary Language Impairment

    ERIC Educational Resources Information Center

    Ebert, Kerry Danahy

    2014-01-01

    Background: Sentence repetition performance is attracting increasing interest as a valuable clinical marker for primary (or specific) language impairment (LI) in both monolingual and bilingual populations. Multiple aspects of memory appear to contribute to sentence repetition performance, but non-verbal memory has not yet been considered. Aims: To…

  5. Memory for sound, with an ear toward hearing in complex auditory scenes.

    PubMed

    Snyder, Joel S; Gregg, Melissa K

    2011-10-01

    An area of research that has experienced recent growth is the study of memory during perception of simple and complex auditory scenes. These studies have provided important information about how well auditory objects are encoded in memory and how well listeners can notice changes in auditory scenes. These are significant developments because they present an opportunity to better understand how we hear in realistic situations, how higher-level aspects of hearing such as semantics and prior exposure affect perception, and the similarities and differences between auditory perception and perception in other modalities, such as vision and touch. The research also poses exciting challenges for behavioral and neural models of how auditory perception and memory work.

  6. Relation between Working Memory Capacity and Auditory Stream Segregation in Children with Auditory Processing Disorder.

    PubMed

    Lotfi, Yones; Mehrkian, Saiedeh; Moossavi, Abdollah; Zadeh, Soghrat Faghih; Sadjedi, Hamed

    2016-03-01

    This study assessed the relationship between working memory capacity and auditory stream segregation by using the concurrent minimum audible angle in children with a diagnosed auditory processing disorder (APD). The participants in this cross-sectional, comparative study were 20 typically developing children and 15 children with a diagnosed APD (age, 9-11 years) according to the subtests of multiple-processing auditory assessment. Auditory stream segregation was investigated using the concurrent minimum audible angle. Working memory capacity was evaluated using the non-word repetition and forward and backward digit span tasks. Nonparametric statistics were utilized to compare the between-group differences. The Pearson correlation was employed to measure the degree of association between working memory capacity and the localization tests between the 2 groups. The group with APD had significantly lower scores than did the typically developing subjects in auditory stream segregation and working memory capacity. There were significant negative correlations between working memory capacity and the concurrent minimum audible angle in the most frontal reference location (0° azimuth) and lower negative correlations in the most lateral reference location (60° azimuth) in the children with APD. The study revealed a relationship between working memory capacity and auditory stream segregation in children with APD. The research suggests that lower working memory capacity in children with APD may be the possible cause of the inability to segregate and group incoming information.

  7. Speaker's voice as a memory cue.

    PubMed

    Campeanu, Sandra; Craik, Fergus I M; Alain, Claude

    2015-02-01

    Speaker's voice occupies a central role as the cornerstone of auditory social interaction. Here, we review the evidence suggesting that speaker's voice constitutes an integral context cue in auditory memory. Investigation into the nature of voice representation as a memory cue is essential to understanding auditory memory and the neural correlates which underlie it. Evidence from behavioral and electrophysiological studies suggest that while specific voice reinstatement (i.e., same speaker) often appears to facilitate word memory even without attention to voice at study, the presence of a partial benefit of similar voices between study and test is less clear. In terms of explicit memory experiments utilizing unfamiliar voices, encoding methods appear to play a pivotal role. Voice congruency effects have been found when voice is specifically attended at study (i.e., when relatively shallow, perceptual encoding takes place). These behavioral findings coincide with neural indices of memory performance such as the parietal old/new recollection effect and the late right frontal effect. The former distinguishes between correctly identified old words and correctly identified new words, and reflects voice congruency only when voice is attended at study. Characterization of the latter likely depends upon voice memory, rather than word memory. There is also evidence to suggest that voice effects can be found in implicit memory paradigms. However, the presence of voice effects appears to depend greatly on the task employed. Using a word identification task, perceptual similarity between study and test conditions is, like for explicit memory tests, crucial. In addition, the type of noise employed appears to have a differential effect. While voice effects have been observed when white noise is used at both study and test, using multi-talker babble does not confer the same results. In terms of neuroimaging research modulations, characterization of an implicit memory effect reflective of voice congruency is currently lacking. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Misremembering what you see or hear: Dissociable effects of modality on short- and long-term false recognition.

    PubMed

    Olszewska, Justyna M; Reuter-Lorenz, Patricia A; Munier, Emily; Bendler, Sara A

    2015-09-01

    False working memories readily emerge using a visual item-recognition variant of the converging associates task. Two experiments, manipulating study and test modality, extended prior working memory results by demonstrating a reliable false recognition effect (more false alarms to associatively related lures than to unrelated lures) within seconds of encoding in either the visual or auditory modality. However, false memories were nearly twice as frequent when study lists were seen than when they were heard, regardless of test modality, although study-test modality mismatch was generally disadvantageous (consistent with encoding specificity). A final experiment that varied study-test modality using a hybrid short- and long-term memory test (Flegal, Atkins & Reuter-Lorenz, 2010) replicated the auditory advantage in the short term but revealed a reversal in the long term: The false memory effect was greater in the auditory study-test condition than in the visual study-test condition. Thus, the same encoding conditions gave rise to an opposite modality advantage depending on whether recognition was tested under short-term or long-term memory conditions. Although demonstrating continuity in associative processing across delay, the results indicate that delay condition affects the availability of modality-dependent features of the memory trace and, thus, distinctiveness, leading to dissociable patterns of short- and long-term memory performance. (c) 2015 APA, all rights reserved).

  9. Duration of Auditory Sensory Memory in Parents of Children with SLI: A Mismatch Negativity Study

    ERIC Educational Resources Information Center

    Barry, Johanna G.; Hardiman, Mervyn J.; Line, Elizabeth; White, Katherine B.; Yasin, Ifat; Bishop, Dorothy V. M.

    2008-01-01

    In a previous behavioral study, we showed that parents of children with SLI had a subclinical deficit in phonological short-term memory. Here, we tested the hypothesis that they also have a deficit in nonverbal auditory sensory memory. We measured auditory sensory memory using a paradigm involving an electrophysiological component called the…

  10. Central auditory processing disorder (CAPD) in children with specific language impairment (SLI). Central auditory tests.

    PubMed

    Dlouha, Olga; Novak, Alexej; Vokral, Jan

    2007-06-01

    The aim of this project is to use central auditory tests for diagnosis of central auditory processing disorder (CAPD) in children with specific language impairment (SLI), in order to confirm relationship between speech-language impairment and central auditory processing. We attempted to establish special dichotic binaural tests in Czech language modified for younger children. Tests are based on behavioral audiometry using dichotic listening (different auditory stimuli that presented to each ear simultaneously). The experimental tasks consisted of three auditory measures (test 1-3)-dichotic listening of two-syllable words presented like binaural interaction tests. Children with SLI are unable to create simple sentences from two words that are heard separately but simultaneously. Results in our group of 90 pre-school children (6-7 years old) confirmed integration deficit and problems with quality of short-term memory. Average rate of success of children with specific language impairment was 56% in test 1, 64% in test 2 and 63% in test 3. Results of control group: 92% in test 1, 93% in test 2 and 92% in test 3 (p<0.001). Our results indicate the relationship between disorders of speech-language perception and central auditory processing disorders.

  11. Fear Conditioning is Disrupted by Damage to the Postsubiculum

    PubMed Central

    Robinson, Siobhan; Bucci, David J.

    2011-01-01

    The hippocampus plays a central role in spatial and contextual learning and memory, however relatively little is known about the specific contributions of parahippocampal structures that interface with the hippocampus. The postsubiculum (PoSub) is reciprocally connected with a number of hippocampal, parahippocampal and subcortical structures that are involved in spatial learning and memory. In addition, behavioral data suggest that PoSub is needed for optimal performance during tests of spatial memory. Together, these data suggest that PoSub plays a prominent role in spatial navigation. Currently it is unknown whether the PoSub is needed for other forms of learning and memory that also require the formation of associations among multiple environmental stimuli. To address this gap in the literature we investigated the role of PoSub in Pavlovian fear conditioning. In Experiment 1 male rats received either lesions of PoSub or Sham surgery prior to training in a classical fear conditioning procedure. On the training day a tone was paired with foot shock three times. Conditioned fear to the training context was evaluated 24 hr later by placing rats back into the conditioning chamber without presenting any tones or shocks. Auditory fear was assessed on the third day by presenting the auditory stimulus in a novel environment (no shock). PoSub-lesioned rats exhibited impaired acquisition of the conditioned fear response as well as impaired expression of contextual and auditory fear conditioning. In Experiment 2, PoSub lesions were made 1 day after training to specifically assess the role of PoSub in fear memory. No deficits in the expression of contextual fear were observed, but freezing to the tone was significantly reduced in PoSub-lesioned rats compared to shams. Together, these results indicate that PoSub is necessary for normal acquisition of conditioned fear, and that PoSub contributes to the expression of auditory but not contextual fear memory. PMID:22076971

  12. Relation between Working Memory Capacity and Auditory Stream Segregation in Children with Auditory Processing Disorder

    PubMed Central

    Lotfi, Yones; Mehrkian, Saiedeh; Moossavi, Abdollah; Zadeh, Soghrat Faghih; Sadjedi, Hamed

    2016-01-01

    Background: This study assessed the relationship between working memory capacity and auditory stream segregation by using the concurrent minimum audible angle in children with a diagnosed auditory processing disorder (APD). Methods: The participants in this cross-sectional, comparative study were 20 typically developing children and 15 children with a diagnosed APD (age, 9–11 years) according to the subtests of multiple-processing auditory assessment. Auditory stream segregation was investigated using the concurrent minimum audible angle. Working memory capacity was evaluated using the non-word repetition and forward and backward digit span tasks. Nonparametric statistics were utilized to compare the between-group differences. The Pearson correlation was employed to measure the degree of association between working memory capacity and the localization tests between the 2 groups. Results: The group with APD had significantly lower scores than did the typically developing subjects in auditory stream segregation and working memory capacity. There were significant negative correlations between working memory capacity and the concurrent minimum audible angle in the most frontal reference location (0° azimuth) and lower negative correlations in the most lateral reference location (60° azimuth) in the children with APD. Conclusion: The study revealed a relationship between working memory capacity and auditory stream segregation in children with APD. The research suggests that lower working memory capacity in children with APD may be the possible cause of the inability to segregate and group incoming information. PMID:26989281

  13. Music training and working memory: an ERP study.

    PubMed

    George, Elyse M; Coch, Donna

    2011-04-01

    While previous research has suggested that music training is associated with improvements in various cognitive and linguistic skills, the mechanisms mediating or underlying these associations are mostly unknown. Here, we addressed the hypothesis that previous music training is related to improved working memory. Using event-related potentials (ERPs) and a standardized test of working memory, we investigated both neural and behavioral aspects of working memory in college-aged, non-professional musicians and non-musicians. Behaviorally, musicians outperformed non-musicians on standardized subtests of visual, phonological, and executive memory. ERPs were recorded in standard auditory and visual oddball paradigms (participants responded to infrequent deviant stimuli embedded in lists of standard stimuli). Electrophysiologically, musicians demonstrated faster updating of working memory (shorter latency P300s) in both the auditory and visual domains and musicians allocated more neural resources to auditory stimuli (larger amplitude P300), showing increased sensitivity to the auditory standard/deviant difference and less effortful updating of auditory working memory. These findings demonstrate that long-term music training is related to improvements in working memory, in both the auditory and visual domains and in terms of both behavioral and ERP measures. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Using Neuroplasticity-Based Auditory Training to Improve Verbal Memory in Schizophrenia

    PubMed Central

    Fisher, Melissa; Holland, Christine; Merzenich, Michael M.; Vinogradov, Sophia

    2009-01-01

    Objective Impaired verbal memory in schizophrenia is a key rate-limiting factor for functional outcome, does not respond to currently available medications, and shows only modest improvement after conventional behavioral remediation. The authors investigated an innovative approach to the remediation of verbal memory in schizophrenia, based on principles derived from the basic neuroscience of learning-induced neuroplasticity. The authors report interim findings in this ongoing study. Method Fifty-five clinically stable schizophrenia subjects were randomly assigned to either 50 hours of computerized auditory training or a control condition using computer games. Those receiving auditory training engaged in daily computerized exercises that placed implicit, increasing demands on auditory perception through progressively more difficult auditory-verbal working memory and verbal learning tasks. Results Relative to the control group, subjects who received active training showed significant gains in global cognition, verbal working memory, and verbal learning and memory. They also showed reliable and significant improvement in auditory psychophysical performance; this improvement was significantly correlated with gains in verbal working memory and global cognition. Conclusions Intensive training in early auditory processes and auditory-verbal learning results in substantial gains in verbal cognitive processes relevant to psychosocial functioning in schizophrenia. These gains may be due to a training method that addresses the early perceptual impairments in the illness, that exploits intact mechanisms of repetitive practice in schizophrenia, and that uses an intensive, adaptive training approach. PMID:19448187

  15. LAMP: 100+ Systematic Exercise Lessons for Developing Linguistic Auditory Memory Patterns in Beginning Readers.

    ERIC Educational Resources Information Center

    Valett, Robert E.

    Research findings on auditory sequencing and auditory blending and fusion, auditory-visual integration, and language patterns are presented in support of the Linguistic Auditory Memory Patterns (LAMP) program. LAMP consists of 100 developmental lessons for young students with learning disabilities or language problems. The lessons are included in…

  16. Analysis of the influence of memory content of auditory stimuli on the memory content of EEG signal

    PubMed Central

    Namazi, Hamidreza; Kulish, Vladimir V.

    2016-01-01

    One of the major challenges in brain research is to relate the structural features of the auditory stimulus to structural features of Electroencephalogram (EEG) signal. Memory content is an important feature of EEG signal and accordingly the brain. On the other hand, the memory content can also be considered in case of stimulus. Beside all works done on analysis of the effect of stimuli on human EEG and brain memory, no work discussed about the stimulus memory and also the relationship that may exist between the memory content of stimulus and the memory content of EEG signal. For this purpose we consider the Hurst exponent as the measure of memory. This study reveals the plasticity of human EEG signals in relation to the auditory stimuli. For the first time we demonstrated that the memory content of an EEG signal shifts towards the memory content of the auditory stimulus used. The results of this analysis showed that an auditory stimulus with higher memory content causes a larger increment in the memory content of an EEG signal. For the verification of this result, we benefit from approximate entropy as indicator of time series randomness. The capability, observed in this research, can be further investigated in relation to human memory. PMID:27528219

  17. Analysis of the influence of memory content of auditory stimuli on the memory content of EEG signal.

    PubMed

    Namazi, Hamidreza; Khosrowabadi, Reza; Hussaini, Jamal; Habibi, Shaghayegh; Farid, Ali Akhavan; Kulish, Vladimir V

    2016-08-30

    One of the major challenges in brain research is to relate the structural features of the auditory stimulus to structural features of Electroencephalogram (EEG) signal. Memory content is an important feature of EEG signal and accordingly the brain. On the other hand, the memory content can also be considered in case of stimulus. Beside all works done on analysis of the effect of stimuli on human EEG and brain memory, no work discussed about the stimulus memory and also the relationship that may exist between the memory content of stimulus and the memory content of EEG signal. For this purpose we consider the Hurst exponent as the measure of memory. This study reveals the plasticity of human EEG signals in relation to the auditory stimuli. For the first time we demonstrated that the memory content of an EEG signal shifts towards the memory content of the auditory stimulus used. The results of this analysis showed that an auditory stimulus with higher memory content causes a larger increment in the memory content of an EEG signal. For the verification of this result, we benefit from approximate entropy as indicator of time series randomness. The capability, observed in this research, can be further investigated in relation to human memory.

  18. Hippocampal Region-Specific Contributions to Memory Performance in Normal Elderly

    ERIC Educational Resources Information Center

    Chen, Karren H. M.; Chuah, Lisa Y. M.; Sim, Sam K. Y.; Chee, Michael W. L.

    2010-01-01

    To investigate the relationship between regional hippocampal volume and memory in healthy elderly, 147 community-based volunteers, aged 55-83 years, were evaluated using magnetic resonance imaging, the Groton Maze Learning Test, Visual Reproduction and the Rey Auditory Verbal Learning Test. Hippocampal volumes were determined by interactive…

  19. Contribution of auditory working memory to speech understanding in mandarin-speaking cochlear implant users.

    PubMed

    Tao, Duoduo; Deng, Rui; Jiang, Ye; Galvin, John J; Fu, Qian-Jie; Chen, Bing

    2014-01-01

    To investigate how auditory working memory relates to speech perception performance by Mandarin-speaking cochlear implant (CI) users. Auditory working memory and speech perception was measured in Mandarin-speaking CI and normal-hearing (NH) participants. Working memory capacity was measured using forward digit span and backward digit span; working memory efficiency was measured using articulation rate. Speech perception was assessed with: (a) word-in-sentence recognition in quiet, (b) word-in-sentence recognition in speech-shaped steady noise at +5 dB signal-to-noise ratio, (c) Chinese disyllable recognition in quiet, (d) Chinese lexical tone recognition in quiet. Self-reported school rank was also collected regarding performance in schoolwork. There was large inter-subject variability in auditory working memory and speech performance for CI participants. Working memory and speech performance were significantly poorer for CI than for NH participants. All three working memory measures were strongly correlated with each other for both CI and NH participants. Partial correlation analyses were performed on the CI data while controlling for demographic variables. Working memory efficiency was significantly correlated only with sentence recognition in quiet when working memory capacity was partialled out. Working memory capacity was correlated with disyllable recognition and school rank when efficiency was partialled out. There was no correlation between working memory and lexical tone recognition in the present CI participants. Mandarin-speaking CI users experience significant deficits in auditory working memory and speech performance compared with NH listeners. The present data suggest that auditory working memory may contribute to CI users' difficulties in speech understanding. The present pattern of results with Mandarin-speaking CI users is consistent with previous auditory working memory studies with English-speaking CI users, suggesting that the lexical importance of voice pitch cues (albeit poorly coded by the CI) did not influence the relationship between working memory and speech perception.

  20. Neurocognitive screening of lead-exposed andean adolescents and young adults.

    PubMed

    Counter, S Allen; Buchanan, Leo H; Ortega, Fernando

    2009-01-01

    This study was designed to assess the utility of two psychometric tests with putative minimal cultural bias for use in field screening of lead (Pb)-exposed Ecuadorian Andean workers. Specifically, the study evaluated the effectiveness in Pb-exposed adolescents and young adults of a nonverbal reasoning test standardized for younger children, and compared the findings with performance on a test of auditory memory. The Raven Coloured Progressive Matrices (RCPM) was used as a test of nonverbal intelligence, and the Digit Span subtest of the Wechsler IV intelligence scale was used to assess auditory memory/attention. The participants were 35 chronically Pb-exposed Pb-glazing workers, aged 12-21 yr. Blood lead (PbB) levels for the study group ranged from 3 to 86 microg/dl, with 65.7% of the group at and above 10 microg/dl. Zinc protoporphyrin heme ratios (ZPP/heme) ranged from 38 to 380 micromol/mol, with 57.1% of the participants showing abnormal ZPP/heme (>69 micromol/mol). ZPP/heme was significantly correlated with PbB levels, suggesting chronic Pb exposure. Performance on the RCPM was less than average on the U.S., British, and Puerto Rican norms, but average on the Peruvian norms. Significant inverse associations between PbB/ZPP concentrations and RCPM standard scores using the U.S., Puerto Rican, and Peruvian norms were observed, indicating decreasing RCPM test performance with increasing PbB and ZPP levels. RCPM scores were significantly correlated with performance on the Digit Span test for auditory memory. Mean Digit Span scale score was less than average, suggesting auditory memory/attention deficits. In conclusion, both the RCPM and Digit Span tests were found to be effective instruments for field screening of visual-spatial reasoning and auditory memory abilities, respectively, in Pb-exposed Andean adolescents and young adults.

  1. The relation between working memory capacity and auditory lateralization in children with auditory processing disorders.

    PubMed

    Moossavi, Abdollah; Mehrkian, Saiedeh; Lotfi, Yones; Faghihzadeh, Soghrat; sajedi, Hamed

    2014-11-01

    Auditory processing disorder (APD) describes a complex and heterogeneous disorder characterized by poor speech perception, especially in noisy environments. APD may be responsible for a range of sensory processing deficits associated with learning difficulties. There is no general consensus about the nature of APD and how the disorder should be assessed or managed. This study assessed the effect of cognition abilities (working memory capacity) on sound lateralization in children with auditory processing disorders, in order to determine how "auditory cognition" interacts with APD. The participants in this cross-sectional comparative study were 20 typically developing and 17 children with a diagnosed auditory processing disorder (9-11 years old). Sound lateralization abilities investigated using inter-aural time (ITD) differences and inter-aural intensity (IID) differences with two stimuli (high pass and low pass noise) in nine perceived positions. Working memory capacity was evaluated using the non-word repetition, and forward and backward digits span tasks. Linear regression was employed to measure the degree of association between working memory capacity and localization tests between the two groups. Children in the APD group had consistently lower scores than typically developing subjects in lateralization and working memory capacity measures. The results showed working memory capacity had significantly negative correlation with ITD errors especially with high pass noise stimulus but not with IID errors in APD children. The study highlights the impact of working memory capacity on auditory lateralization. The finding of this research indicates that the extent to which working memory influences auditory processing depend on the type of auditory processing and the nature of stimulus/listening situation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Self-grounding visual, auditory and olfactory autobiographical memories.

    PubMed

    Knez, Igor; Ljunglöf, Louise; Arshamian, Artin; Willander, Johan

    2017-07-01

    Given that autobiographical memory provides a cognitive foundation for the self, we investigated the relative importance of visual, auditory and olfactory autobiographical memories for the self. Thirty subjects, with a mean age of 35.4years, participated in a study involving a three×three within-subject design containing nine different types of autobiographical memory cues: pictures, sounds and odors presented with neutral, positive and negative valences. It was shown that visual compared to auditory and olfactory autobiographical memories involved higher cognitive and emotional constituents for the self. Furthermore, there was a trend showing positive autobiographical memories to increase their proportion to both cognitive and emotional components of the self, from olfactory to auditory to visually cued autobiographical memories; but, yielding a reverse trend for negative autobiographical memories. Finally, and independently of modality, positive affective states were shown to be more involved in autobiographical memory than negative ones. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Semantic congruency but not temporal synchrony enhances long-term memory performance for audio-visual scenes.

    PubMed

    Meyerhoff, Hauke S; Huff, Markus

    2016-04-01

    Human long-term memory for visual objects and scenes is tremendous. Here, we test how auditory information contributes to long-term memory performance for realistic scenes. In a total of six experiments, we manipulated the presentation modality (auditory, visual, audio-visual) as well as semantic congruency and temporal synchrony between auditory and visual information of brief filmic clips. Our results show that audio-visual clips generally elicit more accurate memory performance than unimodal clips. This advantage even increases with congruent visual and auditory information. However, violations of audio-visual synchrony hardly have any influence on memory performance. Memory performance remained intact even with a sequential presentation of auditory and visual information, but finally declined when the matching tracks of one scene were presented separately with intervening tracks during learning. With respect to memory performance, our results therefore show that audio-visual integration is sensitive to semantic congruency but remarkably robust against asymmetries between different modalities.

  4. Sound arithmetic: auditory cues in the rehabilitation of impaired fact retrieval.

    PubMed

    Domahs, Frank; Zamarian, Laura; Delazer, Margarete

    2008-04-01

    The present single case study describes the rehabilitation of an acquired impairment of multiplication fact retrieval. In addition to a conventional drill approach, one set of problems was preceded by auditory cues while the other half was not. After extensive repetition, non-specific improvements could be observed for all trained problems (e.g., 3 * 7) as well as for their non-trained complementary problems (e.g., 7 * 3). Beyond this general improvement, specific therapy effects were found for problems trained with auditory cues. These specific effects were attributed to an involvement of implicit memory systems and/or attentional processes during training. Thus, the present results demonstrate that cues in the training of arithmetic facts do not have to be visual to be effective.

  5. Achilles' ear? Inferior human short-term and recognition memory in the auditory modality.

    PubMed

    Bigelow, James; Poremba, Amy

    2014-01-01

    Studies of the memory capabilities of nonhuman primates have consistently revealed a relative weakness for auditory compared to visual or tactile stimuli: extensive training is required to learn auditory memory tasks, and subjects are only capable of retaining acoustic information for a brief period of time. Whether a parallel deficit exists in human auditory memory remains an outstanding question. In the current study, a short-term memory paradigm was used to test human subjects' retention of simple auditory, visual, and tactile stimuli that were carefully equated in terms of discriminability, stimulus exposure time, and temporal dynamics. Mean accuracy did not differ significantly among sensory modalities at very short retention intervals (1-4 s). However, at longer retention intervals (8-32 s), accuracy for auditory stimuli fell substantially below that observed for visual and tactile stimuli. In the interest of extending the ecological validity of these findings, a second experiment tested recognition memory for complex, naturalistic stimuli that would likely be encountered in everyday life. Subjects were able to identify all stimuli when retention was not required, however, recognition accuracy following a delay period was again inferior for auditory compared to visual and tactile stimuli. Thus, the outcomes of both experiments provide a human parallel to the pattern of results observed in nonhuman primates. The results are interpreted in light of neuropsychological data from nonhuman primates, which suggest a difference in the degree to which auditory, visual, and tactile memory are mediated by the perirhinal and entorhinal cortices.

  6. Why Do Pictures, but Not Visual Words, Reduce Older Adults’ False Memories?

    PubMed Central

    Smith, Rebekah E.; Hunt, R. Reed; Dunlap, Kathryn R.

    2015-01-01

    Prior work shows that false memories resulting from the study of associatively related lists are reduced for both young and older adults when the auditory presentation of study list words is accompanied by related pictures relative to when auditory word presentation is combined with visual presentation of the word. In contrast, young adults, but not older adults, show a reduction in false memories when presented with the visual word along with the auditory word relative to hearing the word only. In both the case of pictures relative to visual words and visual words relative to auditory words alone, the benefit of picture and visual words in reducing false memories has been explained in terms of monitoring for perceptual information. In our first experiment we provide the first simultaneous comparison of all three study presentation modalities (auditory only, auditory plus visual word, and auditory plus picture). Young and older adults show a reduction in false memories in the auditory plus picture condition, but only young adults show a reduction in the visual word condition relative to the auditory only condition. A second experiment investigates whether older adults fail to show a reduction in false memory in the visual word condition because they do not encode perceptual information in the visual word condition. In addition, the second experiment provides evidence that the failure of older adults to show the benefits of visual word presentation is related to reduced cognitive resources. PMID:26213799

  7. Why do pictures, but not visual words, reduce older adults' false memories?

    PubMed

    Smith, Rebekah E; Hunt, R Reed; Dunlap, Kathryn R

    2015-09-01

    Prior work shows that false memories resulting from the study of associatively related lists are reduced for both young and older adults when the auditory presentation of study list words is accompanied by related pictures relative to when auditory word presentation is combined with visual presentation of the word. In contrast, young adults, but not older adults, show a reduction in false memories when presented with the visual word along with the auditory word relative to hearing the word only. In both cases of pictures relative to visual words and visual words relative to auditory words alone, the benefit of picture and visual words in reducing false memories has been explained in terms of monitoring for perceptual information. In our first experiment, we provide the first simultaneous comparison of all 3 study presentation modalities (auditory only, auditory plus visual word, and auditory plus picture). Young and older adults show a reduction in false memories in the auditory plus picture condition, but only young adults show a reduction in the visual word condition relative to the auditory only condition. A second experiment investigates whether older adults fail to show a reduction in false memory in the visual word condition because they do not encode perceptual information in the visual word condition. In addition, the second experiment provides evidence that the failure of older adults to show the benefits of visual word presentation is related to reduced cognitive resources. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  8. Auditory verbal memory and psychosocial symptoms are related in children with idiopathic epilepsy.

    PubMed

    Schaffer, Yael; Ben Zeev, Bruria; Cohen, Roni; Shuper, Avinoam; Geva, Ronny

    2015-07-01

    Idiopathic epilepsies are considered to have relatively good prognoses and normal or near normal developmental outcomes. Nevertheless, accumulating studies demonstrate memory and psychosocial deficits in this population, and the prevalence, severity and relationships between these domains are still not well defined. We aimed to assess memory, psychosocial function, and the relationships between these two domains among children with idiopathic epilepsy syndromes using an extended neuropsychological battery and psychosocial questionnaires. Cognitive abilities, neuropsychological performance, and socioemotional behavior of 33 early adolescent children, diagnosed with idiopathic epilepsy, ages 9-14years, were assessed and compared with 27 age- and education-matched healthy controls. Compared to controls, patients with stabilized idiopathic epilepsy exhibited higher risks for short-term memory deficits (auditory verbal and visual) (p<0.0001), working memory deficits (p<0.003), auditory verbal long-term memory deficits (p<0.0021), and more frequent psychosocial symptoms (p<0.0001). The severity of auditory verbal memory deficits was related to severity of psychosocial symptoms among the children with epilepsy but not in the healthy controls. Results suggest that deficient auditory verbal memory may be compromising psychosocial functioning in children with idiopathic epilepsy, possibly underscoring that cognitive variables, such as auditory verbal memory, should be assessed and treated in this population to prevent secondary symptoms. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Updating and feature overwriting in short-term memory for timbre.

    PubMed

    Mercer, Tom; McKeown, Denis

    2010-11-01

    Previous research has demonstrated a potent, stimulus-specific form of interference in short-term auditory memory. This effect has been interpreted in terms of interitem confusion and grouping, but the present experiments suggested that interference might be a feature-specific phenomenon. Participants compared standard and comparison tones over a 10-sec interval and were required to determine whether they differed in timbre. A single interfering distractor tone was presented either 50 msec or 8 sec after the offset of the standard (Experiment 1) or 2 sec prior to its onset (Experiment 2). The distractor varied in the number of features it shared with the standard and comparison, and this proved critical, since performance on the task was greatly impaired when the distractor either consisted of novel, unshared features (Experiment 1) or contained the distinguishing feature of the comparison tone (Experiments 1 and 2). These findings were incompatible with earlier accounts of forgetting but were fully explicable by the recent timbre memory model, which associates interference in short-term auditory memory with an "updating" process and feature overwriting. These results suggest similarities with the mechanisms that underlie forgetting in verbal short-term memory.

  10. Minimal effects of visual memory training on the auditory performance of adult cochlear implant users

    PubMed Central

    Oba, Sandra I.; Galvin, John J.; Fu, Qian-Jie

    2014-01-01

    Auditory training has been shown to significantly improve cochlear implant (CI) users’ speech and music perception. However, it is unclear whether post-training gains in performance were due to improved auditory perception or to generally improved attention, memory and/or cognitive processing. In this study, speech and music perception, as well as auditory and visual memory were assessed in ten CI users before, during, and after training with a non-auditory task. A visual digit span (VDS) task was used for training, in which subjects recalled sequences of digits presented visually. After the VDS training, VDS performance significantly improved. However, there were no significant improvements for most auditory outcome measures (auditory digit span, phoneme recognition, sentence recognition in noise, digit recognition in noise), except for small (but significant) improvements in vocal emotion recognition and melodic contour identification. Post-training gains were much smaller with the non-auditory VDS training than observed in previous auditory training studies with CI users. The results suggest that post-training gains observed in previous studies were not solely attributable to improved attention or memory, and were more likely due to improved auditory perception. The results also suggest that CI users may require targeted auditory training to improve speech and music perception. PMID:23516087

  11. Effects of Training Auditory Sequential Memory and Attention on Reading.

    ERIC Educational Resources Information Center

    Klein, Pnina S.; Schwartz, Allen A.

    To determine if auditory sequential memory (ASM) in young children can be improved through training and to discover the effects of such training on the reading scores of children with reading problems, a study was conducted involving 92 second and third graders. For purposes of this study, auditory sequential memory was defined as the ability to…

  12. Auditory Memory Decay as Reflected by a New Mismatch Negativity Score Is Associated with Episodic Memory in Older Adults at Risk of Dementia

    PubMed Central

    Laptinskaya, Daria; Thurm, Franka; Küster, Olivia C.; Fissler, Patrick; Schlee, Winfried; Kolassa, Stephan; von Arnim, Christine A. F.; Kolassa, Iris-Tatjana

    2018-01-01

    The auditory mismatch negativity (MMN) is an event-related potential (ERP) peaking about 100–250 ms after the onset of a deviant tone in a sequence of identical (standard) tones. Depending on the interstimulus interval (ISI) between standard and deviant tones, the MMN is suitable to investigate the pre-attentive auditory discrimination ability (short ISIs, ≤ 2 s) as well as the pre-attentive auditory memory trace (long ISIs, >2 s). However, current results regarding the MMN as an index for mild cognitive impairment (MCI) and dementia are mixed, especially after short ISIs: while the majority of studies report positive associations between the MMN and cognition, others fail to find such relationships. To elucidate these so far inconsistent results, we investigated the validity of the MMN as an index for cognitive impairment exploring the associations between different MMN indices and cognitive performance, more specifically with episodic memory performance which is among the most affected cognitive domains in the course of Alzheimer’s dementia (AD), at baseline and at a 5-year-follow-up. We assessed the amplitude of the MMN for short ISI (stimulus onset asynchrony, SOA = 0.05 s) and for long ISI (3 s) in a neuropsychologically well-characterized cohort of older adults at risk of dementia (subjective memory impairment, amnestic and non-amnestic MCI; n = 57). Furthermore, we created a novel difference score (ΔMMN), defined as the difference between MMNs to short and to long ISI, as a measure to assess the decay of the auditory memory trace, higher values indicating less decay. ΔMMN and MMN amplitude after long ISI, but not the MMN amplitude after short ISI, was associated with episodic memory at baseline (β = 0.38, p = 0.003; β = −0.27, p = 0.047, respectively). ΔMMN, but not the MMN for long ISIs, was positively associated with episodic memory performance at the 5-year-follow-up (β = 0.57, p = 0.013). The results suggest that the MMN after long ISI might be suitable as an indicator for the decline in episodic memory and indicate ΔMMN as a potential biomarker for memory impairment in older adults at risk of dementia. PMID:29456500

  13. Auditory Memory Decay as Reflected by a New Mismatch Negativity Score Is Associated with Episodic Memory in Older Adults at Risk of Dementia.

    PubMed

    Laptinskaya, Daria; Thurm, Franka; Küster, Olivia C; Fissler, Patrick; Schlee, Winfried; Kolassa, Stephan; von Arnim, Christine A F; Kolassa, Iris-Tatjana

    2018-01-01

    The auditory mismatch negativity (MMN) is an event-related potential (ERP) peaking about 100-250 ms after the onset of a deviant tone in a sequence of identical (standard) tones. Depending on the interstimulus interval (ISI) between standard and deviant tones, the MMN is suitable to investigate the pre-attentive auditory discrimination ability (short ISIs, ≤ 2 s) as well as the pre-attentive auditory memory trace (long ISIs, >2 s). However, current results regarding the MMN as an index for mild cognitive impairment (MCI) and dementia are mixed, especially after short ISIs: while the majority of studies report positive associations between the MMN and cognition, others fail to find such relationships. To elucidate these so far inconsistent results, we investigated the validity of the MMN as an index for cognitive impairment exploring the associations between different MMN indices and cognitive performance, more specifically with episodic memory performance which is among the most affected cognitive domains in the course of Alzheimer's dementia (AD), at baseline and at a 5-year-follow-up. We assessed the amplitude of the MMN for short ISI (stimulus onset asynchrony, SOA = 0.05 s) and for long ISI (3 s) in a neuropsychologically well-characterized cohort of older adults at risk of dementia (subjective memory impairment, amnestic and non-amnestic MCI; n = 57). Furthermore, we created a novel difference score (ΔMMN), defined as the difference between MMNs to short and to long ISI, as a measure to assess the decay of the auditory memory trace, higher values indicating less decay. ΔMMN and MMN amplitude after long ISI, but not the MMN amplitude after short ISI, was associated with episodic memory at baseline ( β = 0.38, p = 0.003; β = -0.27, p = 0.047, respectively). ΔMMN, but not the MMN for long ISIs, was positively associated with episodic memory performance at the 5-year-follow-up ( β = 0.57, p = 0.013). The results suggest that the MMN after long ISI might be suitable as an indicator for the decline in episodic memory and indicate ΔMMN as a potential biomarker for memory impairment in older adults at risk of dementia.

  14. Persistent neural activity in auditory cortex is related to auditory working memory in humans and nonhuman primates

    PubMed Central

    Huang, Ying; Matysiak, Artur; Heil, Peter; König, Reinhard; Brosch, Michael

    2016-01-01

    Working memory is the cognitive capacity of short-term storage of information for goal-directed behaviors. Where and how this capacity is implemented in the brain are unresolved questions. We show that auditory cortex stores information by persistent changes of neural activity. We separated activity related to working memory from activity related to other mental processes by having humans and monkeys perform different tasks with varying working memory demands on the same sound sequences. Working memory was reflected in the spiking activity of individual neurons in auditory cortex and in the activity of neuronal populations, that is, in local field potentials and magnetic fields. Our results provide direct support for the idea that temporary storage of information recruits the same brain areas that also process the information. Because similar activity was observed in the two species, the cellular bases of some auditory working memory processes in humans can be studied in monkeys. DOI: http://dx.doi.org/10.7554/eLife.15441.001 PMID:27438411

  15. Auditory memory can be object based.

    PubMed

    Dyson, Benjamin J; Ishfaq, Feraz

    2008-04-01

    Identifying how memories are organized remains a fundamental issue in psychology. Previous work has shown that visual short-term memory is organized according to the object of origin, with participants being better at retrieving multiple pieces of information from the same object than from different objects. However, it is not yet clear whether similar memory structures are employed for other modalities, such as audition. Under analogous conditions in the auditory domain, we found that short-term memories for sound can also be organized according to object, with a same-object advantage being demonstrated for the retrieval of information in an auditory scene defined by two complex sounds overlapping in both space and time. Our results provide support for the notion of an auditory object, in addition to the continued identification of similar processing constraints across visual and auditory domains. The identification of modality-independent organizational principles of memory, such as object-based coding, suggests possible mechanisms by which the human processing system remembers multimodal experiences.

  16. The storage and recall of auditory memory.

    PubMed

    Nebenzahl, I; Albeck, Y

    1990-01-01

    The architecture of the auditory memory is investigated. The auditory information is assumed to be represented by f-t patterns. With the help of a psycho-physical experiment it is demonstrated that the storage of these patterns is highly folded in the sense that a long signal is broken into many short stretches before being stored in the memory. Recognition takes place by correlating newly heard input in the short term memory to information previously stored in the long term memory. We show that this correlation is performed after the input is accumulated and held statically in the short term memory.

  17. Auditory memory for timbre.

    PubMed

    McKeown, Denis; Wellsted, David

    2009-06-01

    Psychophysical studies are reported examining how the context of recent auditory stimulation may modulate the processing of new sounds. The question posed is how recent tone stimulation may affect ongoing performance in a discrimination task. In the task, two complex sounds occurred in successive intervals. A single target component of one complex was decreased (Experiments 1 and 2) or increased (Experiments 3, 4, and 5) in intensity on half of trials: The task was simply to identify those trials. Prior to each trial, a pure tone inducer was introduced either at the same frequency as the target component or at the frequency of a different component of the complex. Consistent with a frequency-specific form of disruption, discrimination performance was impaired when the inducing tone matched the frequency of the following decrement or increment. A timbre memory model (TMM) is proposed incorporating channel-specific interference allied to inhibition of attending in the coding of sounds in the context of memory traces of recent sounds. (c) 2009 APA, all rights reserved.

  18. The Effect of Noise on the Relationship between Auditory Working Memory and Comprehension in School-Age Children

    ERIC Educational Resources Information Center

    Sullivan, Jessica R.; Osman, Homira; Schafer, Erin C.

    2015-01-01

    Purpose: The objectives of the current study were to examine the effect of noise (-5 dB SNR) on auditory comprehension and to examine its relationship with working memory. It was hypothesized that noise has a negative impact on information processing, auditory working memory, and comprehension. Method: Children with normal hearing between the ages…

  19. The Differential Contributions of Auditory-Verbal and Visuospatial Working Memory on Decoding Skills in Children Who Are Poor Decoders

    ERIC Educational Resources Information Center

    Squires, Katie Ellen

    2013-01-01

    This study investigated the differential contribution of auditory-verbal and visuospatial working memory (WM) on decoding skills in second- and fifth-grade children identified with poor decoding. Thirty-two second-grade students and 22 fifth-grade students completed measures that assessed simple and complex auditory-verbal and visuospatial memory,…

  20. A Computational Model of Semantic Memory Impairment: Modality- Specificity and Emergent Category-Specificity

    DTIC Science & Technology

    1991-09-01

    just one modality (e.g. visual or auditory agnosia ) or impaired manipulation of objects with specific uses, despite intact recognition of them (apraxia...Neurosurgery and itbiatzy, 51, 1201-1207. Farah, M. J. (1991) Patterns of co-occurence among the associative agnosias : Implications for visual object

  1. Spatial working memory for locations specified by vision and audition: testing the amodality hypothesis.

    PubMed

    Loomis, Jack M; Klatzky, Roberta L; McHugh, Brendan; Giudice, Nicholas A

    2012-08-01

    Spatial working memory can maintain representations from vision, hearing, and touch, representations referred to here as spatial images. The present experiment addressed whether spatial images from vision and hearing that are simultaneously present within working memory retain modality-specific tags or are amodal. Observers were presented with short sequences of targets varying in angular direction, with the targets in a given sequence being all auditory, all visual, or a sequential mixture of the two. On two thirds of the trials, one of the locations was repeated, and observers had to respond as quickly as possible when detecting this repetition. Ancillary detection and localization tasks confirmed that the visual and auditory targets were perceptually comparable. Response latencies in the working memory task showed small but reliable costs in performance on trials involving a sequential mixture of auditory and visual targets, as compared with trials of pure vision or pure audition. These deficits were statistically reliable only for trials on which the modalities of the matching location switched from the penultimate to the final target in the sequence, indicating a switching cost. The switching cost for the pair in immediate succession means that the spatial images representing the target locations retain features of the visual or auditory representations from which they were derived. However, there was no reliable evidence of a performance cost for mixed modalities in the matching pair when the second of the two did not immediately follow the first, suggesting that more enduring spatial images in working memory may be amodal.

  2. Human engineer's guide to auditory displays. Volume 1. Elements of perception and memory affecting auditory displays

    NASA Astrophysics Data System (ADS)

    Mulligan, B. E.; Goodman, L. S.; McBride, D. K.; Mitchell, T. M.; Crosby, T. N.

    1984-08-01

    This work reviews the areas of auditory attention, recognition, memory and auditory perception of patterns, pitch, and loudness. The review was written from the perspective of human engineering and focuses primarily on auditory processing of information contained in acoustic signals. The impetus for this effort was to establish a data base to be utilized in the design and evaluation of acoustic displays.

  3. The neural basis of visual dominance in the context of audio-visual object processing.

    PubMed

    Schmid, Carmen; Büchel, Christian; Rose, Michael

    2011-03-01

    Visual dominance refers to the observation that in bimodal environments vision often has an advantage over other senses in human. Therefore, a better memory performance for visual compared to, e.g., auditory material is assumed. However, the reason for this preferential processing and the relation to the memory formation is largely unknown. In this fMRI experiment, we manipulated cross-modal competition and attention, two factors that both modulate bimodal stimulus processing and can affect memory formation. Pictures and sounds of objects were presented simultaneously in two levels of recognisability, thus manipulating the amount of cross-modal competition. Attention was manipulated via task instruction and directed either to the visual or the auditory modality. The factorial design allowed a direct comparison of the effects between both modalities. The resulting memory performance showed that visual dominance was limited to a distinct task setting. Visual was superior to auditory object memory only when allocating attention towards the competing modality. During encoding, cross-modal competition and attention towards the opponent domain reduced fMRI signals in both neural systems, but cross-modal competition was more pronounced in the auditory system and only in auditory cortex this competition was further modulated by attention. Furthermore, neural activity reduction in auditory cortex during encoding was closely related to the behavioural auditory memory impairment. These results indicate that visual dominance emerges from a less pronounced vulnerability of the visual system against competition from the auditory domain. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Interaction of language, auditory and memory brain networks in auditory verbal hallucinations.

    PubMed

    Ćurčić-Blake, Branislava; Ford, Judith M; Hubl, Daniela; Orlov, Natasza D; Sommer, Iris E; Waters, Flavie; Allen, Paul; Jardri, Renaud; Woodruff, Peter W; David, Olivier; Mulert, Christoph; Woodward, Todd S; Aleman, André

    2017-01-01

    Auditory verbal hallucinations (AVH) occur in psychotic disorders, but also as a symptom of other conditions and even in healthy people. Several current theories on the origin of AVH converge, with neuroimaging studies suggesting that the language, auditory and memory/limbic networks are of particular relevance. However, reconciliation of these theories with experimental evidence is missing. We review 50 studies investigating functional (EEG and fMRI) and anatomic (diffusion tensor imaging) connectivity in these networks, and explore the evidence supporting abnormal connectivity in these networks associated with AVH. We distinguish between functional connectivity during an actual hallucination experience (symptom capture) and functional connectivity during either the resting state or a task comparing individuals who hallucinate with those who do not (symptom association studies). Symptom capture studies clearly reveal a pattern of increased coupling among the auditory, language and striatal regions. Anatomical and symptom association functional studies suggest that the interhemispheric connectivity between posterior auditory regions may depend on the phase of illness, with increases in non-psychotic individuals and first episode patients and decreases in chronic patients. Leading hypotheses involving concepts as unstable memories, source monitoring, top-down attention, and hybrid models of hallucinations are supported in part by the published connectivity data, although several caveats and inconsistencies remain. Specifically, possible changes in fronto-temporal connectivity are still under debate. Precise hypotheses concerning the directionality of connections deduced from current theoretical approaches should be tested using experimental approaches that allow for discrimination of competing hypotheses. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Distinctive Roles for Amygdalar CREB in Reconsolidation and Extinction of Fear Memory

    ERIC Educational Resources Information Center

    Tronson, Natalie C.; Wiseman, Shari L.; Neve, Rachael L.; Nestler, Eric J.; Olausson, Peter; Taylor, Jane R.

    2012-01-01

    Cyclic AMP response element binding protein (CREB) plays a critical role in fear memory formation. Here we determined the role of CREB selectively within the amygdala in reconsolidation and extinction of auditory fear. Viral overexpression of the inducible cAMP early repressor (ICER) or the dominant-negative mCREB, specifically within the lateral…

  6. Theta Phase Synchronization Is the Glue that Binds Human Associative Memory.

    PubMed

    Clouter, Andrew; Shapiro, Kimron L; Hanslmayr, Simon

    2017-10-23

    Episodic memories are information-rich, often multisensory events that rely on binding different elements [1]. The elements that will constitute a memory episode are processed in specialized but distinct brain modules. The binding of these elements is most likely mediated by fast-acting long-term potentiation (LTP), which relies on the precise timing of neural activity [2]. Theta oscillations in the hippocampus orchestrate such timing as demonstrated by animal studies in vitro [3, 4] and in vivo [5, 6], suggesting a causal role of theta activity for the formation of complex memory episodes, but direct evidence from humans is missing. Here, we show that human episodic memory formation depends on phase synchrony between different sensory cortices at the theta frequency. By modulating the luminance of visual stimuli and the amplitude of auditory stimuli, we directly manipulated the degree of phase synchrony between visual and auditory cortices. Memory for sound-movie associations was significantly better when the stimuli were presented in phase compared to out of phase. This effect was specific to theta (4 Hz) and did not occur in slower (1.7 Hz) or faster (10.5 Hz) frequencies. These findings provide the first direct evidence that episodic memory formation in humans relies on a theta-specific synchronization mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Single-trial Phase Entrainment of Theta Oscillations in Sensory Regions Predicts Human Associative Memory Performance.

    PubMed

    Wang, Danying; Clouter, Andrew; Chen, Qiaoyu; Shapiro, Kimron L; Hanslmayr, Simon

    2018-06-13

    Episodic memories are rich in sensory information and often contain integrated information from different sensory modalities. For instance, we can store memories of a recent concert with visual and auditory impressions being integrated in one episode. Theta oscillations have recently been implicated in playing a causal role synchronizing and effectively binding the different modalities together in memory. However, an open question is whether momentary fluctuations in theta synchronization predict the likelihood of associative memory formation for multisensory events. To address this question we entrained the visual and auditory cortex at theta frequency (4 Hz) and in a synchronous or asynchronous manner by modulating the luminance and volume of movies and sounds at 4 Hz, with a phase offset at 0° or 180°. EEG activity from human subjects (both sexes) was recorded while they memorized the association between a movie and a sound. Associative memory performance was significantly enhanced in the 0° compared to the 180° condition. Source-level analysis demonstrated that the physical stimuli effectively entrained their respective cortical areas with a corresponding phase offset. The findings suggested a successful replication of a previous study (Clouter et al., 2017). Importantly, the strength of entrainment during encoding correlated with the efficacy of associative memory such that small phase differences between visual and auditory cortex predicted a high likelihood of correct retrieval in a later recall test. These findings suggest that theta oscillations serve a specific function in the episodic memory system: Binding the contents of different modalities into coherent memory episodes. SIGNIFICANCE STATEMENT How multi-sensory experiences are bound to form a coherent episodic memory representation is one of the fundamental questions in human episodic memory research. Evidence from animal literature suggests that the relative timing between an input and theta oscillations in the hippocampus is crucial for memory formation. We precisely controlled the timing between visual and auditory stimuli and the neural oscillations at 4 Hz using a multisensory entrainment paradigm. Human associative memory formation depends on coincident timing between sensory streams processed by the corresponding brain regions. We provide evidence for a significant role of relative timing of neural theta activity in human episodic memory on a single trial level, which reveals a crucial mechanism underlying human episodic memory. Copyright © 2018 the authors.

  8. Evaluation of Domain-Specific Collaboration Interfaces for Team Command and Control Tasks

    DTIC Science & Technology

    2012-05-01

    Technologies 1.1.1. Virtual Whiteboard Cognitive theories relating the utilization, storage, and retrieval of verbal and spatial information, such as...AE Spatial emergent SE Auditory linguistic AL Spatial positional SP Facial figural FF Spatial quantitative SQ Facial motive FM Tactile figural...driven by the auditory linguistic (AL), short-term memory (STM), spatial attentive (SA), visual temporal (VT), and vocal process (V) subscales. 0

  9. Chronic fluoxetine dissociates contextual from auditory fear memory.

    PubMed

    Sanders, Jeff; Mayford, Mark

    2016-10-06

    Fluoxetine is a medication used to treat Major Depressive Disorder and other psychiatric conditions. These experiments studied the effects of chronic fluoxetine treatment on the contextual versus auditory fear memory of mice. We found that chronic fluoxetine treatment of adult mice impaired their contextual fear memory, but spared auditory fear memory. Hippocampal perineuronal nets, which are involved in contextual fear memory plasticity, were unaltered by fluoxetine treatment. These data point to a selective inability to form contextual fear memory as a result of fluoxetine treatment, and they suggest that a blunting of hippocampal-mediated aversive memory may be a therapeutic action for this medication. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Sentence Comprehension in Adolescents with down Syndrome and Typically Developing Children: Role of Sentence Voice, Visual Context, and Auditory-Verbal Short-Term Memory.

    ERIC Educational Resources Information Center

    Miolo, Giuliana; Chapman, Robins S.; Sindberg, Heidi A.

    2005-01-01

    The authors evaluated the roles of auditory-verbal short-term memory, visual short-term memory, and group membership in predicting language comprehension, as measured by an experimental sentence comprehension task (SCT) and the Test for Auditory Comprehension of Language--Third Edition (TACL-3; E. Carrow-Woolfolk, 1999) in 38 participants: 19 with…

  11. Auditory and Visual Working Memory Functioning in College Students with Attention-Deficit/Hyperactivity Disorder and/or Learning Disabilities.

    PubMed

    Liebel, Spencer W; Nelson, Jason M

    2017-12-01

    We investigated the auditory and visual working memory functioning in college students with attention-deficit/hyperactivity disorder, learning disabilities, and clinical controls. We examined the role attention-deficit/hyperactivity disorder subtype status played in working memory functioning. The unique influence that both domains of working memory have on reading and math abilities was investigated. A sample of 268 individuals seeking postsecondary education comprise four groups of the present study: 110 had an attention-deficit/hyperactivity disorder diagnosis only, 72 had a learning disability diagnosis only, 35 had comorbid attention-deficit/hyperactivity disorder and learning disability diagnoses, and 60 individuals without either of these disorders comprise a clinical control group. Participants underwent a comprehensive neuropsychological evaluation, and licensed psychologists employed a multi-informant, multi-method approach in obtaining diagnoses. In the attention-deficit/hyperactivity disorder only group, there was no difference between auditory and visual working memory functioning, t(100) = -1.57, p = .12. In the learning disability group, however, auditory working memory functioning was significantly weaker compared with visual working memory, t(71) = -6.19, p < .001, d = -0.85. Within the attention-deficit/hyperactivity disorder only group, there were no auditory or visual working memory functioning differences between participants with either a predominantly inattentive type or a combined type diagnosis. Visual working memory did not incrementally contribute to the prediction of academic achievement skills. Individuals with attention-deficit/hyperactivity disorder did not demonstrate significant working memory differences compared with clinical controls. Individuals with a learning disability demonstrated weaker auditory working memory than individuals in either the attention-deficit/hyperactivity or clinical control groups. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. HPA Axis Function Alters Development of Working Memory in Boys with FXS

    PubMed Central

    Scherr, Jessica F.; Hahn, Laura J.; Hooper, Stephen R.; Hatton, Deborah; Roberts, Jane E.

    2016-01-01

    The present study examines verbal working memory over time in boys with fragile X syndrome (FXS) compared to nonverbal mental-age (NVMA) matched, typically developing (TD) boys. Concomitantly, the relationship between cortisol—a physiological marker for stress—and verbal working memory performance over time is examined to understand the role of physiological mechanisms in cognitive development in FXS. Participants were assessed between one and three times over a 2-year time frame using two verbal working memory tests that differ in complexity: memory for words and auditory working memory with salivary cortisol collected at the beginning and end of each assessment. Multilevel modeling results indicate specific deficits over time on the memory for words task in boys with FXS compared to TD controls that is exacerbated by elevated baseline cortisol. Similar increasing rates of growth over time were observed for boys with FXS and TD controls on the more complex auditory working memory task, but only boys with FXS displayed an association of increased baseline cortisol and lower performance. This study highlights the benefit of investigations of how dynamic biological and cognitive factors interact and influence cognitive development over time. PMID:26760450

  13. Differences in visual vs. verbal memory impairments as a result of focal temporal lobe damage in patients with traumatic brain injury.

    PubMed

    Ariza, Mar; Pueyo, Roser; Junqué, Carme; Mataró, María; Poca, María Antonia; Mena, Maria Pau; Sahuquillo, Juan

    2006-09-01

    The aim of the present study was to determine whether the type of lesion in a sample of moderate and severe traumatic brain injury (TBI) was related to material-specific memory impairment. Fifty-nine patients with TBI were classified into three groups according to whether the site of the lesion was right temporal, left temporal or diffuse. Six-months post-injury, visual (Warrington's Facial Recognition Memory Test and Rey's Complex Figure Test) and verbal (Rey's Auditory Verbal Learning Test) memories were assessed. Visual memory deficits assessed by facial memory were associated with right temporal lobe lesion, whereas verbal memory performance assessed with a list of words was related to left temporal lobe lesion. The group with diffuse injury showed both verbal and visual memory impairment. These results suggest a material-specific memory impairment in moderate and severe TBI after focal temporal lesions and a non-specific memory impairment after diffuse damage.

  14. In search of an auditory engram.

    PubMed

    Fritz, Jonathan; Mishkin, Mortimer; Saunders, Richard C

    2005-06-28

    Monkeys trained preoperatively on a task designed to assess auditory recognition memory were impaired after removal of either the rostral superior temporal gyrus or the medial temporal lobe but were unaffected by lesions of the rhinal cortex. Behavioral analysis indicated that this result occurred because the monkeys did not or could not use long-term auditory recognition, and so depended instead on short-term working memory, which is unaffected by rhinal lesions. The findings suggest that monkeys may be unable to place representations of auditory stimuli into a long-term store and thus question whether the monkey's cerebral memory mechanisms in audition are intrinsically different from those in other sensory modalities. Furthermore, it raises the possibility that language is unique to humans not only because it depends on speech but also because it requires long-term auditory memory.

  15. Auditory Memory Distortion for Spoken Prose

    PubMed Central

    Hutchison, Joanna L.; Hubbard, Timothy L.; Ferrandino, Blaise; Brigante, Ryan; Wright, Jamie M.; Rypma, Bart

    2013-01-01

    Observers often remember a scene as containing information that was not presented but that would have likely been located just beyond the observed boundaries of the scene. This effect is called boundary extension (BE; e.g., Intraub & Richardson, 1989). Previous studies have observed BE in memory for visual and haptic stimuli, and the present experiments examined whether BE occurred in memory for auditory stimuli (prose, music). Experiments 1 and 2 varied the amount of auditory content to be remembered. BE was not observed, but when auditory targets contained more content, boundary restriction (BR) occurred. Experiment 3 presented auditory stimuli with less content and BR also occurred. In Experiment 4, white noise was added to stimuli with less content to equalize the durations of auditory stimuli, and BR still occurred. Experiments 5 and 6 presented trained stories and popular music, and BR still occurred. This latter finding ruled out the hypothesis that the lack of BE in Experiments 1–4 reflected a lack of familiarity with the stimuli. Overall, memory for auditory content exhibited BR rather than BE, and this pattern was stronger if auditory stimuli contained more content. Implications for the understanding of general perceptual processing and directions for future research are discussed. PMID:22612172

  16. The role of working memory in auditory selective attention.

    PubMed

    Dalton, Polly; Santangelo, Valerio; Spence, Charles

    2009-11-01

    A growing body of research now demonstrates that working memory plays an important role in controlling the extent to which irrelevant visual distractors are processed during visual selective attention tasks (e.g., Lavie, Hirst, De Fockert, & Viding, 2004). Recently, it has been shown that the successful selection of tactile information also depends on the availability of working memory (Dalton, Lavie, & Spence, 2009). Here, we investigate whether working memory plays a role in auditory selective attention. Participants focused their attention on short continuous bursts of white noise (targets) while attempting to ignore pulsed bursts of noise (distractors). Distractor interference in this auditory task, as measured in terms of the difference in performance between congruent and incongruent distractor trials, increased significantly under high (vs. low) load in a concurrent working-memory task. These results provide the first evidence demonstrating a causal role for working memory in reducing interference by irrelevant auditory distractors.

  17. Auditory sensory memory and language abilities in former late talkers: a mismatch negativity study.

    PubMed

    Grossheinrich, Nicola; Kademann, Stefanie; Bruder, Jennifer; Bartling, Juergen; Von Suchodoletz, Waldemar

    2010-09-01

    The present study investigated whether (a) a reduced duration of auditory sensory memory is found in late talking children and (b) whether deficits of sensory memory are linked to persistent difficulties in language acquisition. Former late talkers and children without delayed language development were examined at the age of 4 years and 7 months using mismatch negativity (MMN) with interstimulus intervals (ISIs) of 500 ms and 2000 ms. Additionally, short-term memory, language skills, and nonverbal intelligence were assessed. MMN mean amplitude was reduced for the ISI of 2000 ms in former late talking children both with and without persistent language deficits. In summary, our findings suggest that late talkers are characterized by a reduced duration of auditory sensory memory. However, deficits in auditory sensory memory are not sufficient for persistent language difficulties and may be compensated for by some children.

  18. Entrainment to an auditory signal: Is attention involved?

    PubMed

    Kunert, Richard; Jongman, Suzanne R

    2017-01-01

    Many natural auditory signals, including music and language, change periodically. The effect of such auditory rhythms on the brain is unclear however. One widely held view, dynamic attending theory, proposes that the attentional system entrains to the rhythm and increases attention at moments of rhythmic salience. In support, 2 experiments reported here show reduced response times to visual letter strings shown at auditory rhythm peaks, compared with rhythm troughs. However, we argue that an account invoking the entrainment of general attention should further predict rhythm entrainment to also influence memory for visual stimuli. In 2 pseudoword memory experiments we find evidence against this prediction. Whether a pseudoword is shown during an auditory rhythm peak or not is irrelevant for its later recognition memory in silence. Other attention manipulations, dividing attention and focusing attention, did result in a memory effect. This raises doubts about the suggested attentional nature of rhythm entrainment. We interpret our findings as support for auditory rhythm perception being based on auditory-motor entrainment, not general attention entrainment. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Monkey׳s short-term auditory memory nearly abolished by combined removal of the rostral superior temporal gyrus and rhinal cortices.

    PubMed

    Fritz, Jonathan B; Malloy, Megan; Mishkin, Mortimer; Saunders, Richard C

    2016-06-01

    While monkeys easily acquire the rules for performing visual and tactile delayed matching-to-sample, a method for testing recognition memory, they have extraordinary difficulty acquiring a similar rule in audition. Another striking difference between the modalities is that whereas bilateral ablation of the rhinal cortex (RhC) leads to profound impairment in visual and tactile recognition, the same lesion has no detectable effect on auditory recognition memory (Fritz et al., 2005). In our previous study, a mild impairment in auditory memory was obtained following bilateral ablation of the entire medial temporal lobe (MTL), including the RhC, and an equally mild effect was observed after bilateral ablation of the auditory cortical areas in the rostral superior temporal gyrus (rSTG). In order to test the hypothesis that each of these mild impairments was due to partial disconnection of acoustic input to a common target (e.g., the ventromedial prefrontal cortex), in the current study we examined the effects of a more complete auditory disconnection of this common target by combining the removals of both the rSTG and the MTL. We found that the combined lesion led to forgetting thresholds (performance at 75% accuracy) that fell precipitously from the normal retention duration of ~30 to 40s to a duration of ~1 to 2s, thus nearly abolishing auditory recognition memory, and leaving behind only a residual echoic memory. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  20. Impaired short-term memory for pitch in congenital amusia.

    PubMed

    Tillmann, Barbara; Lévêque, Yohana; Fornoni, Lesly; Albouy, Philippe; Caclin, Anne

    2016-06-01

    Congenital amusia is a neuro-developmental disorder of music perception and production. The hypothesis is that the musical deficits arise from altered pitch processing, with impairments in pitch discrimination (i.e., pitch change detection, pitch direction discrimination and identification) and short-term memory. The present review article focuses on the deficit of short-term memory for pitch. Overall, the data discussed here suggest impairments at each level of processing in short-term memory tasks; starting with the encoding of the pitch information and the creation of the adequate memory trace, the retention of the pitch traces over time as well as the recollection and comparison of the stored information with newly incoming information. These impairments have been related to altered brain responses in a distributed fronto-temporal network, associated with decreased connectivity between these structures, as well as in abnormalities in the connectivity between the two auditory cortices. In contrast, amusic participants׳ short-term memory abilities for verbal material are preserved. These findings show that short-term memory deficits in congenital amusia are specific to pitch, suggesting a pitch-memory system that is, at least partly, separated from verbal memory. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Gamma-band activation predicts both associative memory and cortical plasticity

    PubMed Central

    Headley, Drew B.; Weinberger, Norman M.

    2011-01-01

    Gamma-band oscillations are a ubiquitous phenomenon in the nervous system and have been implicated in multiple aspects of cognition. In particular, the strength of gamma oscillations at the time a stimulus is encoded predicts its subsequent retrieval, suggesting that gamma may reflect enhanced mnemonic processing. Likewise, activity in the gamma-band can modulate plasticity in vitro. However, it is unclear whether experience-dependent plasticity in vivo is also related to gamma-band activation. The aim of the present study is to determine whether gamma activation in primary auditory cortex modulates both the associative memory for an auditory stimulus during classical conditioning and its accompanying specific receptive field plasticity. Rats received multiple daily sessions of single tone/shock trace and two-tone discrimination conditioning, during which local field potentials and multiunit discharges were recorded from chronically implanted electrodes. We found that the strength of tone-induced gamma predicted the acquisition of associative memory 24 h later, and ceased to predict subsequent performance once asymptote was reached. Gamma activation also predicted receptive field plasticity that specifically enhanced representation of the signal tone. This concordance provides a long-sought link between gamma oscillations, cortical plasticity and the formation of new memories. PMID:21900554

  2. Infant information processing and family history of specific language impairment: converging evidence for RAP deficits from two paradigms

    PubMed Central

    Choudhury, Naseem; Leppanen, Paavo H.T.; Leevers, Hilary J.; Benasich, April A.

    2007-01-01

    An infant’s ability to process auditory signals presented in rapid succession (i.e. rapid auditory processing abilities [RAP]) has been shown to predict differences in language outcomes in toddlers and preschool children. Early deficits in RAP abilities may serve as a behavioral marker for language-based learning disabilities. The purpose of this study is to determine if performance on infant information processing measures designed to tap RAP and global processing skills differ as a function of family history of specific language impairment (SLI) and/or the particular demand characteristics of the paradigm used. Seventeen 6- to 9-month-old infants from families with a history of specific language impairment (FH+) and 29 control infants (FH−) participated in this study. Infants’ performance on two different RAP paradigms (head-turn procedure [HT] and auditory-visual habituation/recognition memory [AVH/RM]) and on a global processing task (visual habituation/recognition memory [VH/RM]) was assessed at 6 and 9 months. Toddler language and cognitive skills were evaluated at 12 and 16 months. A number of significant group differences were seen: FH+ infants showed significantly poorer discrimination of fast rate stimuli on both RAP tasks, took longer to habituate on both habituation/recognition memory measures, and had lower novelty preference scores on the visual habituation/recognition memory task. Infants’ performance on the two RAP measures provided independent but converging contributions to outcome. Thus, different mechanisms appear to underlie performance on operantly conditioned tasks as compared to habituation/recognition memory paradigms. Further, infant RAP processing abilities predicted to 12- and 16-month language scores above and beyond family history of SLI. The results of this study provide additional support for the validity of infant RAP abilities as a behavioral marker for later language outcome. Finally, this is the first study to use a battery of infant tasks to demonstrate multi-modal processing deficits in infants at risk for SLI. PMID:17286846

  3. The phonological short-term store-rehearsal system: patterns of impairment and neural correlates.

    PubMed

    Vallar, G; Di Betta, A M; Silveri, M C

    1997-06-01

    Two left brain-damaged patients (L.A. and T.O.) with a selective impairment of auditory-verbal span are reported. Patient L.A. was unable to hold auditory-verbal material in the phonological store component of short-term memory. His performance was however normal on tasks requiring phonological judgements, which specifically involve the phonological output buffer component of the rehearsal process. He also showed some evidence that rehearsal contributed to the immediate retention of auditory-verbal material. Patient T.O. never made use of the rehearsal process in tasks assessing both immediate retention and the ability to make phonological judgements, but the memory capacity of the phonological short-term store was comparatively preserved. These contrasting patterns of impairment suggest that the phonological store component of verbal short-term memory was severely impaired in patient L.A., and spared, at least in part, in patient T.O. The rehearsal process was preserved in L.A., and primarily defective in T.O. The localisation of the lesions in the left hemisphere (L.A.: inferior parietal lobule, superior and middle temporal gyri; T.O.: sub-cortical premotor and rolandic regions, anterior insula) suggests that these two sub-components of phonological short-term memory have discrete anatomical correlates.

  4. Working memory training in congenitally blind individuals results in an integration of occipital cortex in functional networks.

    PubMed

    Gudi-Mindermann, Helene; Rimmele, Johanna M; Nolte, Guido; Bruns, Patrick; Engel, Andreas K; Röder, Brigitte

    2018-04-12

    The functional relevance of crossmodal activation (e.g. auditory activation of occipital brain regions) in congenitally blind individuals is still not fully understood. The present study tested whether the occipital cortex of blind individuals is integrated into a challenged functional network. A working memory (WM) training over four sessions was implemented. Congenitally blind and matched sighted participants were adaptively trained with an n-back task employing either voices (auditory training) or tactile stimuli (tactile training). In addition, a minimally demanding 1-back task served as an active control condition. Power and functional connectivity of EEG activity evolving during the maintenance period of an auditory 2-back task were analyzed, run prior to and after the WM training. Modality-specific (following auditory training) and modality-independent WM training effects (following both auditory and tactile training) were assessed. Improvements in auditory WM were observed in all groups, and blind and sighted individuals did not differ in training gains. Auditory and tactile training of sighted participants led, relative to the active control group, to an increase in fronto-parietal theta-band power, suggesting a training-induced strengthening of the existing modality-independent WM network. No power effects were observed in the blind. Rather, after auditory training the blind showed a decrease in theta-band connectivity between central, parietal, and occipital electrodes compared to the blind tactile training and active control groups. Furthermore, in the blind auditory training increased beta-band connectivity between fronto-parietal, central and occipital electrodes. In the congenitally blind, these findings suggest a stronger integration of occipital areas into the auditory WM network. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Auditory cortical function during verbal episodic memory encoding in Alzheimer's disease.

    PubMed

    Dhanjal, Novraj S; Warren, Jane E; Patel, Maneesh C; Wise, Richard J S

    2013-02-01

    Episodic memory encoding of a verbal message depends upon initial registration, which requires sustained auditory attention followed by deep semantic processing of the message. Motivated by previous data demonstrating modulation of auditory cortical activity during sustained attention to auditory stimuli, we investigated the response of the human auditory cortex during encoding of sentences to episodic memory. Subsequently, we investigated this response in patients with mild cognitive impairment (MCI) and probable Alzheimer's disease (pAD). Using functional magnetic resonance imaging, 31 healthy participants were studied. The response in 18 MCI and 18 pAD patients was then determined, and compared to 18 matched healthy controls. Subjects heard factual sentences, and subsequent retrieval performance indicated successful registration and episodic encoding. The healthy subjects demonstrated that suppression of auditory cortical responses was related to greater success in encoding heard sentences; and that this was also associated with greater activity in the semantic system. In contrast, there was reduced auditory cortical suppression in patients with MCI, and absence of suppression in pAD. Administration of a central cholinesterase inhibitor (ChI) partially restored the suppression in patients with pAD, and this was associated with an improvement in verbal memory. Verbal episodic memory impairment in AD is associated with altered auditory cortical function, reversible with a ChI. Although these results may indicate the direct influence of pathology in auditory cortex, they are also likely to indicate a partially reversible impairment of feedback from neocortical systems responsible for sustained attention and semantic processing. Copyright © 2012 American Neurological Association.

  6. A model of memory impairment in schizophrenia: cognitive and clinical factors associated with memory efficiency and memory errors.

    PubMed

    Brébion, Gildas; Bressan, Rodrigo A; Ohlsen, Ruth I; David, Anthony S

    2013-12-01

    Memory impairments in patients with schizophrenia have been associated with various cognitive and clinical factors. Hallucinations have been more specifically associated with errors stemming from source monitoring failure. We conducted a broad investigation of verbal memory and visual memory as well as source memory functioning in a sample of patients with schizophrenia. Various memory measures were tallied, and we studied their associations with processing speed, working memory span, and positive, negative, and depressive symptoms. Superficial and deep memory processes were differentially associated with processing speed, working memory span, avolition, depression, and attention disorders. Auditory/verbal and visual hallucinations were differentially associated with specific types of source memory error. We integrated all the results into a revised version of a previously published model of memory functioning in schizophrenia. The model describes the factors that affect memory efficiency, as well as the cognitive underpinnings of hallucinations within the source monitoring framework. © 2013.

  7. Human-like brain hemispheric dominance in birdsong learning.

    PubMed

    Moorman, Sanne; Gobes, Sharon M H; Kuijpers, Maaike; Kerkhofs, Amber; Zandbergen, Matthijs A; Bolhuis, Johan J

    2012-07-31

    Unlike nonhuman primates, songbirds learn to vocalize very much like human infants acquire spoken language. In humans, Broca's area in the frontal lobe and Wernicke's area in the temporal lobe are crucially involved in speech production and perception, respectively. Songbirds have analogous brain regions that show a similar neural dissociation between vocal production and auditory perception and memory. In both humans and songbirds, there is evidence for lateralization of neural responsiveness in these brain regions. Human infants already show left-sided dominance in their brain activation when exposed to speech. Moreover, a memory-specific left-sided dominance in Wernicke's area for speech perception has been demonstrated in 2.5-mo-old babies. It is possible that auditory-vocal learning is associated with hemispheric dominance and that this association arose in songbirds and humans through convergent evolution. Therefore, we investigated whether there is similar song memory-related lateralization in the songbird brain. We exposed male zebra finches to tutor or unfamiliar song. We found left-sided dominance of neuronal activation in a Broca-like brain region (HVC, a letter-based name) of juvenile and adult zebra finch males, independent of the song stimulus presented. In addition, juvenile males showed left-sided dominance for tutor song but not for unfamiliar song in a Wernicke-like brain region (the caudomedial nidopallium). Thus, left-sided dominance in the caudomedial nidopallium was specific for the song-learning phase and was memory-related. These findings demonstrate a remarkable neural parallel between birdsong and human spoken language, and they have important consequences for our understanding of the evolution of auditory-vocal learning and its neural mechanisms.

  8. Age-Related Interference between the Selection of Input-Output Modality Mappings and Postural Control—a Pilot Study

    PubMed Central

    Stelzel, Christine; Schauenburg, Gesche; Rapp, Michael A.; Heinzel, Stephan; Granacher, Urs

    2017-01-01

    Age-related decline in executive functions and postural control due to degenerative processes in the central nervous system have been related to increased fall-risk in old age. Many studies have shown cognitive-postural dual-task interference in old adults, but research on the role of specific executive functions in this context has just begun. In this study, we addressed the question whether postural control is impaired depending on the coordination of concurrent response-selection processes related to the compatibility of input and output modality mappings as compared to impairments related to working-memory load in the comparison of cognitive dual and single tasks. Specifically, we measured total center of pressure (CoP) displacements in healthy female participants aged 19–30 and 66–84 years while they performed different versions of a spatial one-back working memory task during semi-tandem stance on an unstable surface (i.e., balance pad) while standing on a force plate. The specific working-memory tasks comprised: (i) modality compatible single tasks (i.e., visual-manual or auditory-vocal tasks), (ii) modality compatible dual tasks (i.e., visual-manual and auditory-vocal tasks), (iii) modality incompatible single tasks (i.e., visual-vocal or auditory-manual tasks), and (iv) modality incompatible dual tasks (i.e., visual-vocal and auditory-manual tasks). In addition, participants performed the same tasks while sitting. As expected from previous research, old adults showed generally impaired performance under high working-memory load (i.e., dual vs. single one-back task). In addition, modality compatibility affected one-back performance in dual-task but not in single-task conditions with strikingly pronounced impairments in old adults. Notably, the modality incompatible dual task also resulted in a selective increase in total CoP displacements compared to the modality compatible dual task in the old but not in the young participants. These results suggest that in addition to effects of working-memory load, processes related to simultaneously overcoming special linkages between input- and output modalities interfere with postural control in old but not in young female adults. Our preliminary data provide further evidence for the involvement of cognitive control processes in postural tasks. PMID:28484411

  9. The effect of auditory memory load on intensity resolution in individuals with Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Richardson, Kelly C.

    Purpose: The purpose of the current study was to investigate the effect of auditory memory load on intensity resolution in individuals with Parkinson's disease (PD) as compared to two groups of listeners without PD. Methods: Nineteen individuals with Parkinson's disease, ten healthy age- and hearing-matched adults, and ten healthy young adults were studied. All listeners participated in two intensity discrimination tasks differing in auditory memory load; a lower memory load, 4IAX task and a higher memory load, ABX task. Intensity discrimination performance was assessed using a bias-free measurement of signal detectability known as d' (d-prime). Listeners further participated in a continuous loudness scaling task where they were instructed to rate the loudness level of each signal intensity using a computerized 150mm visual analogue scale. Results: Group discrimination functions indicated significantly lower intensity discrimination sensitivity (d') across tasks for the individuals with PD, as compared to the older and younger controls. No significant effect of aging on intensity discrimination was observed for either task. All three listeners groups demonstrated significantly lower intensity discrimination sensitivity for the higher auditory memory load, ABX task, compared to the lower auditory memory load, 4IAX task. Furthermore, a significant effect of aging was identified for the loudness scaling condition. The younger controls were found to rate most stimuli along the continuum as significantly louder than the older controls and the individuals with PD. Conclusions: The persons with PD showed evidence of impaired auditory perception for intensity information, as compared to the older and younger controls. The significant effect of aging on loudness perception may indicate peripheral and/or central auditory involvement.

  10. Verbal short-term memory span in children: long-term modality dependent effects of intrauterine growth restriction.

    PubMed

    Geva, R; Eshel, R; Leitner, Y; Fattal-Valevski, A; Harel, S

    2008-12-01

    Recent reports showed that children born with intrauterine growth restriction (IUGR) are at greater risk of experiencing verbal short-term memory span (STM) deficits that may impede their learning capacities at school. It is still unknown whether these deficits are modality dependent. This long-term, prospective design study examined modality-dependent verbal STM functions in children who were diagnosed at birth with IUGR (n = 138) and a control group (n = 64). Their STM skills were evaluated individually at 9 years of age with four conditions of the Visual-Aural Digit Span Test (VADS; Koppitz, 1981): auditory-oral, auditory-written, visuospatial-oral and visuospatial-written. Cognitive competence was evaluated with the short form of the Wechsler Intelligence Scales for Children--revised (WISC-R95; Wechsler, 1998). We found IUGR-related specific auditory-oral STM deficits (p < .036) in conjunction with two double dissociations: an auditory-visuospatial (p < .014) and an input-output processing distinction (p < .014). Cognitive competence had a significant effect on all four conditions; however, the effect of IUGR on the auditory-oral condition was not overridden by the effect of intelligence quotient (IQ). Intrauterine growth restriction affects global competence and inter-modality processing, as well as distinct auditory input processing related to verbal STM functions. The findings support a long-term relationship between prenatal aberrant head growth and auditory verbal STM deficits by the end of the first decade of life. Empirical, clinical and educational implications are presented.

  11. Electrophysiological correlates of the retention of tones differing in timbre in auditory short-term memory.

    PubMed

    Nolden, Sophie; Bermudez, Patrick; Alunni-Menichini, Kristelle; Lefebvre, Christine; Grimault, Stephan; Jolicoeur, Pierre

    2013-11-01

    We examined the electrophysiological correlates of retention in auditory short-term memory (ASTM) for sequences of one, two, or three tones differing in timbre but having the same pitch. We focused on event-related potentials (ERPs) during the retention interval and revealed a sustained fronto-central ERP component (most likely a sustained anterior negativity; SAN) that became more negative as memory load increased. Our results are consistent with recent ERP studies on the retention of pitch and suggest that the SAN reflects brain activity mediating the low-level retention of basic acoustic features in ASTM. The present work shows that the retention of timbre shares common features with the retention of pitch, hence supporting the notion that the retention of basic sensory features is an active process that recruits modality-specific brain areas. © 2013 Elsevier Ltd. All rights reserved.

  12. REMODELING SENSORY CORTICAL MAPS IMPLANTS SPECIFIC BEHAVIORAL MEMORY

    PubMed Central

    Bieszczad, Kasia M.; Miasnikov, Alexandre A.; Weinberger, Norman M.

    2013-01-01

    Neural mechanisms underlying the capacity of memory to be rich with sensory detail are largely unknown. A candidate mechanism is learning-induced plasticity that remodels adult sensory cortex. Here, expansion in the primary auditory cortical (A1) tonotopic map of rats was induced by pairing a 3.66 kHz tone with activation of the nucleus basalis, mimicking the effects of natural associative learning. Remodeling of A1 produced de novo specific behavioral memory, but neither memory nor plasticity were consistently at the frequency of the paired tone, which typically decreased in A1 representation. Rather, there was a specific match between individual subjects’ area of expansion and the tone that was strongest in each animal’s memory, as determined by post-training frequency generalization gradients. These findings provide the first demonstration of a match between the artificial induction of specific neural representational plasticity and artificial induction of behavioral memory. As such, together with prior and present findings for detection, correlation and mimicry of plasticity with the acquisition of memory, they satisfy a key criterion for neural substrates of memory. This demonstrates that directly remodeling sensory cortical maps is sufficient for the specificity of memory formation. PMID:23639876

  13. Associative representational plasticity in the auditory cortex: A synthesis of two disciplines

    PubMed Central

    Weinberger, Norman M.

    2013-01-01

    Historically, sensory systems have been largely ignored as potential loci of information storage in the neurobiology of learning and memory. They continued to be relegated to the role of “sensory analyzers” despite consistent findings of associatively induced enhancement of responses in primary sensory cortices to behaviorally important signal stimuli, such as conditioned stimuli (CS), during classical conditioning. This disregard may have been promoted by the fact that the brain was interrogated using only one or two stimuli, e.g., a CS+ sometimes with a CS−, providing little insight into the specificity of neural plasticity. This review describes a novel approach that synthesizes the basic experimental designs of the experimental psychology of learning with that of sensory neurophysiology. By probing the brain with a large stimulus set before and after learning, this unified method has revealed that associative processes produce highly specific changes in the receptive fields of cells in the primary auditory cortex (A1). This associative representational plasticity (ARP) selectively facilitates responses to tonal CSs at the expense of other frequencies, producing tuning shifts toward and to the CS and expanded representation of CS frequencies in the tonotopic map of A1. ARPs have the major characteristics of associative memory: They are highly specific, discriminative, rapidly acquired, exhibit consolidation over hours and days, and can be retained indefinitely. Evidence to date suggests that ARPs encode the level of acquired behavioral importance of stimuli. The nucleus basalis cholinergic system is sufficient both for the induction of ARPs and the induction of specific auditory memory. Investigation of ARPs has attracted workers with diverse backgrounds, often resulting in behavioral approaches that yield data that are difficult to interpret. The advantages of studying associative representational plasticity are emphasized, as is the need for greater behavioral sophistication. PMID:17202426

  14. Auditory-motor learning influences auditory memory for music.

    PubMed

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  15. Types of Learning Problems

    MedlinePlus

    ... Dyscalculia is defined as difficulty performing mathematical calculations. Math is problematic for many students, but dyscalculia may prevent a teenager from grasping even basic math concepts. Auditory Memory and Processing Disabilities Auditory memory ...

  16. Auditory and verbal memory predictors of spoken language skills in children with cochlear implants.

    PubMed

    de Hoog, Brigitte E; Langereis, Margreet C; van Weerdenburg, Marjolijn; Keuning, Jos; Knoors, Harry; Verhoeven, Ludo

    2016-10-01

    Large variability in individual spoken language outcomes remains a persistent finding in the group of children with cochlear implants (CIs), particularly in their grammatical development. In the present study, we examined the extent of delay in lexical and morphosyntactic spoken language levels of children with CIs as compared to those of a normative sample of age-matched children with normal hearing. Furthermore, the predictive value of auditory and verbal memory factors in the spoken language performance of implanted children was analyzed. Thirty-nine profoundly deaf children with CIs were assessed using a test battery including measures of lexical, grammatical, auditory and verbal memory tests. Furthermore, child-related demographic characteristics were taken into account. The majority of the children with CIs did not reach age-equivalent lexical and morphosyntactic language skills. Multiple linear regression analyses revealed that lexical spoken language performance in children with CIs was best predicted by age at testing, phoneme perception, and auditory word closure. The morphosyntactic language outcomes of the CI group were best predicted by lexicon, auditory word closure, and auditory memory for words. Qualitatively good speech perception skills appear to be crucial for lexical and grammatical development in children with CIs. Furthermore, strongly developed vocabulary skills and verbal memory abilities predict morphosyntactic language skills. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Results from a National Central Auditory Processing Disorder Service: A Real-World Assessment of Diagnostic Practices and Remediation for Central Auditory Processing Disorder

    PubMed Central

    Cameron, Sharon; Glyde, Helen; Dillon, Harvey; King, Alison; Gillies, Karin

    2015-01-01

    This article describes the development and evaluation of a national service to diagnose and remediate central auditory processing disorder (CAPD). Data were gathered from 38 participating Australian Hearing centers over an 18-month period from 666 individuals age 6, 0 (years, months) to 24, 8 (median 9, 0). A total of 408 clients were diagnosed with either a spatial processing disorder (n = 130), a verbal memory deficit (n = 174), or a binaural integration deficit (n = 104). A hierarchical test protocol was used so not all children were assessed on all tests in the battery. One hundred fifty clients decided to proceed with deficit-specific training (LiSN & Learn or Memory Booster) and/or be fitted with a frequency modulation system. Families were provided with communication strategies targeted to a child's specific listening difficulties and goals. Outcomes were measured using repeat assessment of the relevant diagnostic test, as well as the Client Oriented Scale of Improvement measure and Listening Inventories for Education teacher questionnaire. Group analyses revealed significant improvements postremediation for all training/management options. Individual posttraining performance and results of outcome measures also are discussed. PMID:27587910

  18. Modality Specific Cerebro-Cerebellar Activations in Verbal Working Memory: An fMRI Study

    PubMed Central

    Kirschen, Matthew P.; Chen, S. H. Annabel; Desmond, John E.

    2010-01-01

    Verbal working memory (VWM) engages frontal and temporal/parietal circuits subserving the phonological loop, as well as, superior and inferior cerebellar regions which have projections from these neocortical areas. Different cerebro-cerebellar circuits may be engaged for integrating aurally- and visually-presented information for VWM. The present fMRI study investigated load (2, 4, or 6 letters) and modality (auditory and visual) dependent cerebro-cerebellar VWM activation using a Sternberg task. FMRI revealed modality-independent activations in left frontal (BA 6/9/44), insular, cingulate (BA 32), and bilateral inferior parietal/supramarginal (BA 40) regions, as well as in bilateral superior (HVI) and right inferior (HVIII) cerebellar regions. Visual presentation evoked prominent activations in right superior (HVI/CrusI) cerebellum, bilateral occipital (BA19) and left parietal (BA7/40) cortex while auditory presentation showed robust activations predominately in bilateral temporal regions (BA21/22). In the cerebellum, we noted a visual to auditory emphasis of function progressing from superior to inferior and from lateral to medial regions. These results extend our previous findings of fMRI activation in cerebro-cerebellar networks during VWM, and demonstrate both modality dependent commonalities and differences in activations with increasing memory load. PMID:20714061

  19. Modality specific cerebro-cerebellar activations in verbal working memory: an fMRI study.

    PubMed

    Kirschen, Matthew P; Chen, S H Annabel; Desmond, John E

    2010-01-01

    Verbal working memory (VWM) engages frontal and temporal/parietal circuits subserving the phonological loop, as well as, superior and inferior cerebellar regions which have projections from these neocortical areas. Different cerebro-cerebellar circuits may be engaged for integrating aurally- and visually-presented information for VWM. The present fMRI study investigated load (2, 4, or 6 letters) and modality (auditory and visual) dependent cerebro-cerebellar VWM activation using a Sternberg task. FMRI revealed modality-independent activations in left frontal (BA 6/9/44), insular, cingulate (BA 32), and bilateral inferior parietal/supramarginal (BA 40) regions, as well as in bilateral superior (HVI) and right inferior (HVIII) cerebellar regions. Visual presentation evoked prominent activations in right superior (HVI/CrusI) cerebellum, bilateral occipital (BA19) and left parietal (BA7/40) cortex while auditory presentation showed robust activations predominantly in bilateral temporal regions (BA21/22). In the cerebellum, we noted a visual to auditory emphasis of function progressing from superior to inferior and from lateral to medial regions. These results extend our previous findings of fMRI activation in cerebro-cerebellar networks during VWM, and demonstrate both modality dependent commonalities and differences in activations with increasing memory load.

  20. Auditory feedback blocks memory benefits of cueing during sleep

    PubMed Central

    Schreiner, Thomas; Lehmann, Mick; Rasch, Björn

    2015-01-01

    It is now widely accepted that re-exposure to memory cues during sleep reactivates memories and can improve later recall. However, the underlying mechanisms are still unknown. As reactivation during wakefulness renders memories sensitive to updating, it remains an intriguing question whether reactivated memories during sleep also become susceptible to incorporating further information after the cue. Here we show that the memory benefits of cueing Dutch vocabulary during sleep are in fact completely blocked when memory cues are directly followed by either correct or conflicting auditory feedback, or a pure tone. In addition, immediate (but not delayed) auditory stimulation abolishes the characteristic increases in oscillatory theta and spindle activity typically associated with successful reactivation during sleep as revealed by high-density electroencephalography. We conclude that plastic processes associated with theta and spindle oscillations occurring during a sensitive period immediately after the cue are necessary for stabilizing reactivated memory traces during sleep. PMID:26507814

  1. Visual and Auditory Memory: Relationships to Reading Achievement.

    ERIC Educational Resources Information Center

    Bruning, Roger H.; And Others

    1978-01-01

    Good and poor readers' visual and auditory memory were tested. No group differences existed for single mode presentation in recognition frequency or latency. With multimodal presentation, good readers had faster latencies. Dual coding and self-terminating memory search hypotheses were supported. Implications for the reading process and reading…

  2. [Auditory training in workshops: group therapy option].

    PubMed

    Santos, Juliana Nunes; do Couto, Isabel Cristina Plais; Amorim, Raquel Martins da Costa

    2006-01-01

    auditory training in groups. to verify in a group of individuals with mental retardation the efficacy of auditory training in a workshop environment. METHOD a longitudinal prospective study with 13 mentally retarded individuals from the Associação de Pais e Amigos do Excepcional (APAE) of Congonhas divided in two groups: case (n=5) and control (n=8) and who were submitted to ten auditory training sessions after verifying the integrity of the peripheral auditory system through evoked otoacoustic emissions. Participants were evaluated using a specific protocol concerning the auditory abilities (sound localization, auditory identification, memory, sequencing, auditory discrimination and auditory comprehension) at the beginning and at the end of the project. Data (entering, processing and analyses) were analyzed by the Epi Info 6.04 software. the groups did not differ regarding aspects of age (mean = 23.6 years) and gender (40% male). In the first evaluation both groups presented similar performances. In the final evaluation an improvement in the auditory abilities was observed for the individuals in the case group. When comparing the mean number of correct answers obtained by both groups in the first and final evaluations, a statistically significant result was obtained for sound localization (p=0.02), auditory sequencing (p=0.006) and auditory discrimination (p=0.03). group auditory training demonstrated to be effective in individuals with mental retardation, observing an improvement in the auditory abilities. More studies, with a larger number of participants, are necessary in order to confirm the findings of the present research. These results will help public health professionals to reanalyze the theory models used for therapy, so that they can use specific methods according to individual needs, such as auditory training workshops.

  3. Impact of Auditory Selective Attention on Verbal Short-Term Memory and Vocabulary Development

    ERIC Educational Resources Information Center

    Majerus, Steve; Heiligenstein, Lucie; Gautherot, Nathalie; Poncelet, Martine; Van der Linden, Martial

    2009-01-01

    This study investigated the role of auditory selective attention capacities as a possible mediator of the well-established association between verbal short-term memory (STM) and vocabulary development. A total of 47 6- and 7-year-olds were administered verbal immediate serial recall and auditory attention tasks. Both task types probed processing…

  4. Auditory Learning. Dimensions in Early Learning Series.

    ERIC Educational Resources Information Center

    Zigmond, Naomi K.; Cicci, Regina

    The monograph discusses the psycho-physiological operations for processing of auditory information, the structure and function of the ear, the development of auditory processes from fetal responses through discrimination, language comprehension, auditory memory, and auditory processes related to written language. Disorders of auditory learning…

  5. Cross-Modal Multivariate Pattern Analysis

    PubMed Central

    Meyer, Kaspar; Kaplan, Jonas T.

    2011-01-01

    Multivariate pattern analysis (MVPA) is an increasingly popular method of analyzing functional magnetic resonance imaging (fMRI) data1-4. Typically, the method is used to identify a subject's perceptual experience from neural activity in certain regions of the brain. For instance, it has been employed to predict the orientation of visual gratings a subject perceives from activity in early visual cortices5 or, analogously, the content of speech from activity in early auditory cortices6. Here, we present an extension of the classical MVPA paradigm, according to which perceptual stimuli are not predicted within, but across sensory systems. Specifically, the method we describe addresses the question of whether stimuli that evoke memory associations in modalities other than the one through which they are presented induce content-specific activity patterns in the sensory cortices of those other modalities. For instance, seeing a muted video clip of a glass vase shattering on the ground automatically triggers in most observers an auditory image of the associated sound; is the experience of this image in the "mind's ear" correlated with a specific neural activity pattern in early auditory cortices? Furthermore, is this activity pattern distinct from the pattern that could be observed if the subject were, instead, watching a video clip of a howling dog? In two previous studies7,8, we were able to predict sound- and touch-implying video clips based on neural activity in early auditory and somatosensory cortices, respectively. Our results are in line with a neuroarchitectural framework proposed by Damasio9,10, according to which the experience of mental images that are based on memories - such as hearing the shattering sound of a vase in the "mind's ear" upon seeing the corresponding video clip - is supported by the re-construction of content-specific neural activity patterns in early sensory cortices. PMID:22105246

  6. Effects of methylphenidate on working memory components: influence of measurement.

    PubMed

    Bedard, Anne-Claude; Jain, Umesh; Johnson, Sheilah Hogg; Tannock, Rosemary

    2007-09-01

    To investigate the effects of methylphenidate (MPH) on components of working memory (WM) in attention-deficit hyperactivity disorder (ADHD) and determine the responsiveness of WM measures to MPH. Participants were a clinical sample of 50 children and adolescents with ADHD, aged 6 to 16 years old, who participated in an acute randomized, double-blind, placebo-controlled, crossover trial with single challenges of three MPH doses. Four components of WM were investigated, which varied in processing demands (storage versus manipulation of information) and modality (auditory-verbal; visual-spatial), each of which was indexed by a minimum of two separate measures. MPH improved the ability to store visual-spatial information irrespective of instrument used, but had no effects on the storage of auditory-verbal information. By contrast, MPH enhanced the ability to manipulate both auditory-verbal and visual-spatial information, although effects were instrument specific in both cases. MPH effects on WM are selective: they vary as a function of WM component and measurement.

  7. Cognitive psychopathology in Schizophrenia: Comparing memory performances with Obsessive-compulsive disorder patients and normal subjects on the Wechsler Memory Scale-IV.

    PubMed

    Cammisuli, Davide Maria; Sportiello, Marco Timpano

    2016-06-01

    Memory system turns out to be one of the cognitive domains most severely impaired in schizophrenia. Within the theoretical framework of cognitive psychopathology, we compared the performance of schizophrenia patients on the Wechsler Memory Scale-IV with that in matched patients with Obsessive-compulsive disorder and that in healthy control subjects to establish the specific nature of memory deficits in schizophrenia. 30 schizophrenia patients, 30 obsessive-compulsive disorder patients and 40 healthy controls completed the Wechsler Memory Scale-IV. Schizophrenia symptom severity was assessed by the Positive and Negative Syndrome Scale (PANSS). Performances on memory battery including Indexes and subtests scores were compared by a One-Way ANOVA (Scheffé post-hoc test). Spearman Rank correlations were performed between scores on PANSS subscales and symptoms and WMS-IV Indexes and subtests, respectively. Schizophrenia patients showed a memory profile characterized by mild difficulties in auditory memory and visual working memory and poor functioning of visual, immediate and delayed memory. As expected, schizophrenia patients scored lower than healthy controls on all WMS-IV measures. With regard to the WMS-IV Indexes, schizophrenia patients performed worse on Auditory Memory, Visual Memory, Immediate and Delayed Memory than Obsessive-compulsive disorder patients but not on Visual Working Memory. Such a pattern was made even clearer for specific tasks such as immediate and delayed recall and spatial recall and memory for visual details, as revealed by the lowest scores on Logical Memory (immediate and delayed conditions) and Designs (immediate condition) subtests, respectively. Significant negative correlations between Logical Memory I and II were found with PANSS Excitement symptom as well as between DE I and PANSS Tension symptom. Significant positive correlations between LM II and PANSS Blunted affect and Poor rapport symptoms as well as DE I and PANSS Blunted affect and Mannerism and Posturing symptoms, were found too. Memory damage observed in schizophrenia patients was more severe and wider than that of patients with obsessive-compulsive disorder, except for visual working memory. Memory dysfunction, mainly related to episodic memory damage and reduced efficiency of central executive, is intimately connected to the specific psychopathological processes characterizing schizophrenia. Implications for therapeutics and cognitive remediation techniques are discussed.

  8. Monkey’s short-term auditory memory nearly abolished by combined removal of the rostral superior temporal gyrus and rhinal cortices

    PubMed Central

    Fritz, Jonathan B.; Malloy, Megan; Mishkin, Mortimer; Saunders, Richard C.

    2016-01-01

    While monkeys easily acquire the rules for performing visual and tactile delayed matching-to-sample, a method for testing recognition memory, they have extraordinary difficulty acquiring a similar rule in audition. Another striking difference between the modalities is that whereas bilateral ablation of the rhinal cortex (RhC) leads to profound impairment in visual and tactile recognition, the same lesion has no detectable effect on auditory recognition memory (Fritz et al., 2005). In our previous study, a mild impairment in auditory memory was obtained following bilateral ablation of the entire medial temporal lobe (MTL), including the RhC, and an equally mild effect was observed after bilateral ablation of the auditory cortical areas in the rostral superior temporal gyrus (rSTG). In order to test the hypothesis that each of these mild impairments was due to partial disconnection of acoustic input to a common target (e.g., the ventromedial prefrontal cortex), in the current study we examined the effects of a more complete auditory disconnection of this common target by combining the removals of both the rSTG and the MTL. We found that the combined lesion led to forgetting thresholds (performance at 75% accuracy) that fell precipitously from the normal retention duration of ~30–40 seconds to a duration of ~1–2 seconds, thus nearly abolishing auditory recognition memory, and leaving behind only a residual echoic memory. PMID:26707975

  9. Is selective mutism associated with deficits in memory span and visual memory?: An exploratory case-control study.

    PubMed

    Kristensen, Hanne; Oerbeck, Beate

    2006-01-01

    Our main aim in this study was to explore the association between selective mutism (SM) and aspects of nonverbal cognition such as visual memory span and visual memory. Auditory-verbal memory span was also examined. The etiology of SM is unclear, and it probably represents a heterogeneous condition. SM is associated with language impairment, but nonspecific neurodevelopmental factors, including motor problems, are also reported in SM without language impairment. Furthermore, SM is described in Asperger's syndrome. Studies on nonverbal cognition in SM thus merit further investigation. Neuropsychological tests were administered to a clinical sample of 32 children and adolescents with SM (ages 6-17 years, 14 boys and 18 girls) and 62 nonreferred controls matched for age, gender, and socioeconomic status. We used independent t-tests to compare groups with regard to auditory-verbal memory span, visual memory span, and visual memory (Benton Visual Retention Test), and employed linear regression analysis to study the impact of SM on visual memory, controlling for IQ and measures of language and motor function. The SM group differed from controls on auditory-verbal memory span but not on visual memory span. Controlled for IQ, language, and motor function, the SM group did not differ from controls on visual memory. Motor function was the strongest predictor of visual memory performance. SM does not appear to be associated with deficits in visual memory span or visual memory. The reduced auditory-verbal memory span supports the association between SM and language impairment. More comprehensive neuropsychological studies are needed.

  10. Sleep quality and communication aspects in children.

    PubMed

    de Castro Corrêa, Camila; José, Maria Renata; Andrade, Eduardo Carvalho; Feniman, Mariza Ribeiro; Fukushiro, Ana Paula; Berretin-Felix, Giédre; Maximino, Luciana Paula

    2017-09-01

    To correlate quality of life of children in terms of sleep, with their oral language skills, auditory processing and orofacial myofunctional aspects. Nineteen children (12 males and seven females, in the mean age 9.26) undergoing otorhinolaryngological and speech evaluations participated in this study. The OSA-18 questionnaire was applied, followed by verbal and nonverbal sequential memory tests, dichotic digit test, nonverbal dichotic test and Sustained Auditory Attention Ability Test, related to auditory processing. The Phonological Awareness Profile test, Rapid Automatized Naming and Phonological Working Memory were used for assessment of the phonological processing. Language was assessed by the ABFW Child Language Test, analyzing the phonological and lexical levels. Orofacial myofunctional aspects were evaluated through the MBGR Protocol. Statistical tests used: the Mann-Whitney Test, Fisher's exact test and Spearman Correlation. Relating the performance of children in all evaluations to the results obtained in the OSA-18, there was a statistically significant correlation in the phonological working memory for backward digits (p = 0.04); as well as in the breathing item (p = 0.03), posture of the mandible (p = 0.03) and mobility of lips (p = 0.04). A correlation was seen between the sleep quality of life and the skills related to the phonological processing, specifically in the phonological working memory in backward digits, and related to orofacial myofunctional aspects. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Auditory Distraction in Semantic Memory: A Process-Based Approach

    ERIC Educational Resources Information Center

    Marsh, John E.; Hughes, Robert W.; Jones, Dylan M.

    2008-01-01

    Five experiments demonstrate auditory-semantic distraction in tests of memory for semantic category-exemplars. The effects of irrelevant sound on category-exemplar recall are shown to be functionally distinct from those found in the context of serial short-term memory by showing sensitivity to: The lexical-semantic, rather than acoustic,…

  12. Disruption of Short-Term Memory by Changing and Deviant Sounds: Support for a Duplex-Mechanism Account of Auditory Distraction

    ERIC Educational Resources Information Center

    Hughes, Robert W.; Vachon, Francois; Jones, Dylan M.

    2007-01-01

    The disruption of short-term memory by to-be-ignored auditory sequences (the changing-state effect) has often been characterized as attentional capture by deviant events (deviation effect). However, the present study demonstrates that changing-state and deviation effects are functionally distinct forms of auditory distraction: The disruption of…

  13. Human-like brain hemispheric dominance in birdsong learning

    PubMed Central

    Moorman, Sanne; Gobes, Sharon M. H.; Kuijpers, Maaike; Kerkhofs, Amber; Zandbergen, Matthijs A.; Bolhuis, Johan J.

    2012-01-01

    Unlike nonhuman primates, songbirds learn to vocalize very much like human infants acquire spoken language. In humans, Broca’s area in the frontal lobe and Wernicke’s area in the temporal lobe are crucially involved in speech production and perception, respectively. Songbirds have analogous brain regions that show a similar neural dissociation between vocal production and auditory perception and memory. In both humans and songbirds, there is evidence for lateralization of neural responsiveness in these brain regions. Human infants already show left-sided dominance in their brain activation when exposed to speech. Moreover, a memory-specific left-sided dominance in Wernicke’s area for speech perception has been demonstrated in 2.5-mo-old babies. It is possible that auditory-vocal learning is associated with hemispheric dominance and that this association arose in songbirds and humans through convergent evolution. Therefore, we investigated whether there is similar song memory-related lateralization in the songbird brain. We exposed male zebra finches to tutor or unfamiliar song. We found left-sided dominance of neuronal activation in a Broca-like brain region (HVC, a letter-based name) of juvenile and adult zebra finch males, independent of the song stimulus presented. In addition, juvenile males showed left-sided dominance for tutor song but not for unfamiliar song in a Wernicke-like brain region (the caudomedial nidopallium). Thus, left-sided dominance in the caudomedial nidopallium was specific for the song-learning phase and was memory-related. These findings demonstrate a remarkable neural parallel between birdsong and human spoken language, and they have important consequences for our understanding of the evolution of auditory-vocal learning and its neural mechanisms. PMID:22802637

  14. A word by any other intonation: fMRI evidence for implicit memory traces for pitch contours of spoken words in adult brains.

    PubMed

    Inspector, Michael; Manor, David; Amir, Noam; Kushnir, Tamar; Karni, Avi

    2013-01-01

    Intonation may serve as a cue for facilitated recognition and processing of spoken words and it has been suggested that the pitch contour of spoken words is implicitly remembered. Thus, using the repetition suppression (RS) effect of BOLD-fMRI signals, we tested whether the same spoken words are differentially processed in language and auditory brain areas depending on whether or not they retain an arbitrary intonation pattern. Words were presented repeatedly in three blocks for passive and active listening tasks. There were three prosodic conditions in each of which a different set of words was used and specific task-irrelevant intonation changes were applied: (i) All words presented in a set flat monotonous pitch contour (ii) Each word had an arbitrary pitch contour that was set throughout the three repetitions. (iii) Each word had a different arbitrary pitch contour in each of its repetition. The repeated presentations of words with a set pitch contour, resulted in robust behavioral priming effects as well as in significant RS of the BOLD signals in primary auditory cortex (BA 41), temporal areas (BA 21 22) bilaterally and in Broca's area. However, changing the intonation of the same words on each successive repetition resulted in reduced behavioral priming and the abolition of RS effects. Intonation patterns are retained in memory even when the intonation is task-irrelevant. Implicit memory traces for the pitch contour of spoken words were reflected in facilitated neuronal processing in auditory and language associated areas. Thus, the results lend support for the notion that prosody and specifically pitch contour is strongly associated with the memory representation of spoken words.

  15. A Word by Any Other Intonation: FMRI Evidence for Implicit Memory Traces for Pitch Contours of Spoken Words in Adult Brains

    PubMed Central

    Inspector, Michael; Manor, David; Amir, Noam; Kushnir, Tamar; Karni, Avi

    2013-01-01

    Objectives Intonation may serve as a cue for facilitated recognition and processing of spoken words and it has been suggested that the pitch contour of spoken words is implicitly remembered. Thus, using the repetition suppression (RS) effect of BOLD-fMRI signals, we tested whether the same spoken words are differentially processed in language and auditory brain areas depending on whether or not they retain an arbitrary intonation pattern. Experimental design Words were presented repeatedly in three blocks for passive and active listening tasks. There were three prosodic conditions in each of which a different set of words was used and specific task-irrelevant intonation changes were applied: (i) All words presented in a set flat monotonous pitch contour (ii) Each word had an arbitrary pitch contour that was set throughout the three repetitions. (iii) Each word had a different arbitrary pitch contour in each of its repetition. Principal findings The repeated presentations of words with a set pitch contour, resulted in robust behavioral priming effects as well as in significant RS of the BOLD signals in primary auditory cortex (BA 41), temporal areas (BA 21 22) bilaterally and in Broca's area. However, changing the intonation of the same words on each successive repetition resulted in reduced behavioral priming and the abolition of RS effects. Conclusions Intonation patterns are retained in memory even when the intonation is task-irrelevant. Implicit memory traces for the pitch contour of spoken words were reflected in facilitated neuronal processing in auditory and language associated areas. Thus, the results lend support for the notion that prosody and specifically pitch contour is strongly associated with the memory representation of spoken words. PMID:24391713

  16. Neural effects of cognitive control load on auditory selective attention

    PubMed Central

    Sabri, Merav; Humphries, Colin; Verber, Matthew; Liebenthal, Einat; Binder, Jeffrey R.; Mangalathu, Jain; Desai, Anjali

    2014-01-01

    Whether and how working memory disrupts or alters auditory selective attention is unclear. We compared simultaneous event-related potentials (ERP) and functional magnetic resonance imaging (fMRI) responses associated with task-irrelevant sounds across high and low working memory load in a dichotic-listening paradigm. Participants performed n-back tasks (1-back, 2-back) in one ear (Attend ear) while ignoring task-irrelevant speech sounds in the other ear (Ignore ear). The effects of working memory load on selective attention were observed at 130-210 msec, with higher load resulting in greater irrelevant syllable-related activation in localizer-defined regions in auditory cortex. The interaction between memory load and presence of irrelevant information revealed stronger activations primarily in frontal and parietal areas due to presence of irrelevant information in the higher memory load. Joint independent component analysis of ERP and fMRI data revealed that the ERP component in the N1 time-range is associated with activity in superior temporal gyrus and medial prefrontal cortex. These results demonstrate a dynamic relationship between working memory load and auditory selective attention, in agreement with the load model of attention and the idea of common neural resources for memory and attention. PMID:24946314

  17. A stroke patient with impairment of auditory sensory (echoic) memory.

    PubMed

    Kojima, T; Karino, S; Yumoto, M; Funayama, M

    2014-04-01

    A 42-year-old man suffered damage to the left supra-sylvian areas due to a stroke and presented with verbal short-term memory (STM) deficits. He occasionally could not recall even a single syllable that he had heard one second before. A study of mismatch negativity using magnetoencephalography suggested that the duration of auditory sensory (echoic) memory traces was reduced on the affected side of the brain. His maximum digit span was four with auditory presentation (equivalent to the 1st percentile for normal subjects), whereas it was up to six with visual presentation (almost within the normal range). He simply showed partial recall in the digit span task, and there was no self correction or incorrect reproduction. From these findings, reduced echoic memory was thought to have affected his verbal short-term retention. Thus, the impairment of verbal short-term memory observed in this patient was "pure auditory" unlike previously reported patients with deficits of the phonological short-term store (STS), which is the next higher-order memory system. We report this case to present physiological and behavioral data suggesting impaired short-term storage of verbal information, and to demonstrate the influence of deterioration of echoic memory on verbal STM.

  18. Contrast Enhancement without Transient Map Expansion for Species-Specific Vocalizations in Core Auditory Cortex during Learning.

    PubMed

    Shepard, Kathryn N; Chong, Kelly K; Liu, Robert C

    2016-01-01

    Tonotopic map plasticity in the adult auditory cortex (AC) is a well established and oft-cited measure of auditory associative learning in classical conditioning paradigms. However, its necessity as an enduring memory trace has been debated, especially given a recent finding that the areal expansion of core AC tuned to a newly relevant frequency range may arise only transiently to support auditory learning. This has been reinforced by an ethological paradigm showing that map expansion is not observed for ultrasonic vocalizations (USVs) or for ultrasound frequencies in postweaning dams for whom USVs emitted by pups acquire behavioral relevance. However, whether transient expansion occurs during maternal experience is not known, and could help to reveal the generality of cortical map expansion as a correlate for auditory learning. We thus mapped the auditory cortices of maternal mice at postnatal time points surrounding the peak in pup USV emission, but found no evidence of frequency map expansion for the behaviorally relevant high ultrasound range in AC. Instead, regions tuned to low frequencies outside of the ultrasound range show progressively greater suppression of activity in response to the playback of ultrasounds or pup USVs for maternally experienced animals assessed at their pups' postnatal day 9 (P9) to P10, or postweaning. This provides new evidence for a lateral-band suppression mechanism elicited by behaviorally meaningful USVs, likely enhancing their population-level signal-to-noise ratio. These results demonstrate that tonotopic map enlargement has limits as a construct for conceptualizing how experience leaves neural memory traces within sensory cortex in the context of ethological auditory learning.

  19. Auditory-motor interaction revealed by fMRI: speech, music, and working memory in area Spt.

    PubMed

    Hickok, Gregory; Buchsbaum, Bradley; Humphries, Colin; Muftuler, Tugan

    2003-07-01

    The concept of auditory-motor interaction pervades speech science research, yet the cortical systems supporting this interface have not been elucidated. Drawing on experimental designs used in recent work in sensory-motor integration in the cortical visual system, we used fMRI in an effort to identify human auditory regions with both sensory and motor response properties, analogous to single-unit responses in known visuomotor integration areas. The sensory phase of the task involved listening to speech (nonsense sentences) or music (novel piano melodies); the "motor" phase of the task involved covert rehearsal/humming of the auditory stimuli. A small set of areas in the superior temporal and temporal-parietal cortex responded both during the listening phase and the rehearsal/humming phase. A left lateralized region in the posterior Sylvian fissure at the parietal-temporal boundary, area Spt, showed particularly robust responses to both phases of the task. Frontal areas also showed combined auditory + rehearsal responsivity consistent with the claim that the posterior activations are part of a larger auditory-motor integration circuit. We hypothesize that this circuit plays an important role in speech development as part of the network that enables acoustic-phonetic input to guide the acquisition of language-specific articulatory-phonetic gestures; this circuit may play a role in analogous musical abilities. In the adult, this system continues to support aspects of speech production, and, we suggest, supports verbal working memory.

  20. A Quality Improvement Study on Avoidable Stressors and Countermeasures Affecting Surgical Motor Performance and Learning

    PubMed Central

    Conrad, Claudius; Konuk, Yusuf; Werner, Paul D.; Cao, Caroline G.; Warshaw, Andrew L.; Rattner, David W.; Stangenberg, Lars; Ott, Harald C.; Jones, Daniel B.; Miller, Diane L; Gee, Denise W.

    2012-01-01

    OBJECTIVE To explore how the two most important components of surgical performance - speed and accuracy - are influenced by different forms of stress and what the impact of music on these factors is. SUMMARY BACKGROUND DATA Based on a recently published pilot study on surgical experts, we designed an experiment examining the effects of auditory stress, mental stress, and music on surgical performance and learning, and then correlated the data psychometric measures to the role of music in a novice surgeon’s life. METHODS 31 surgeons were recruited for a crossover study. Surgeons were randomized to four simple standardized tasks to be performed on the Surgical SIM VR laparoscopic simulator, allowing exact tracking of speed and accuracy. Tasks were performed under a variety of conditions, including silence, dichotic music (auditory stress), defined classical music (auditory relaxation), and mental loading (mental arithmetic tasks). Tasks were performed twice to test for memory consolidation and to accommodate for baseline variability. Performance was correlated to the Brief Musical Experience Questionnaire (MEQ). RESULTS Mental loading influences performance with respect to accuracy, speed, and recall more negatively than does auditory stress. Defined classical music might lead to minimally worse performance initially, but leads to significantly improved memory consolidation. Furthermore, psychologic testing of the volunteers suggests that surgeons with greater musical commitment, measured by the MEQ, perform worse under the mental loading condition. CONCLUSION Mental distraction and auditory stress negatively affect specific components of surgical learning and performance. If used appropriately, classical music may positively affect surgical memory consolidation. It also may be possible to predict surgeons’ performance and learning under stress through psychological tests on the role of music in a surgeon’s life. Further investigation is necessary to determine the cognitive processes behind these correlations. PMID:22584632

  1. A sub-process view of working memory capacity: evidence from effects of speech on prose memory.

    PubMed

    Sörqvist, Patrik; Ljungberg, Jessica K; Ljung, Robert

    2010-04-01

    In this article we outline a "sub-process view" of working memory capacity (WMC). This view suggests that any relationship between WMC and another construct (e.g., reading comprehension) is actually a relationship with a specific part of the WMC construct. The parts, called sub-processes, are functionally distinct and can be measured by intrusion errors in WMC tasks. Since the sub-processes are functionally distinct, some sub-process may be related to a certain phenomenon, whereas another sub-process is related to other phenomena. In two experiments we show that a sub-process (measured by immediate/current-list intrusions) is related to the effects of speech on prose memory (semantic auditory distraction), whereas another sub-process (measured by delayed/prior-list intrusions), known for its contribution to reading comprehension, is not. In Experiment 2 we developed a new WMC task called "size-comparison span" and found that the relationship between WMC and semantic auditory distraction is actually a relationship with a sub-process measured by current-list intrusions in our new task.

  2. Broken Expectations: Violation of Expectancies, Not Novelty, Captures Auditory Attention

    ERIC Educational Resources Information Center

    Vachon, Francois; Hughes, Robert W.; Jones, Dylan M.

    2012-01-01

    The role of memory in behavioral distraction by auditory attentional capture was investigated: We examined whether capture is a product of the novelty of the capturing event (i.e., the absence of a recent memory for the event) or its violation of learned expectancies on the basis of a memory for an event structure. Attentional capture--indicated…

  3. Keeping Timbre in Mind: Working Memory for Complex Sounds that Can't Be Verbalized

    ERIC Educational Resources Information Center

    Golubock, Jason L.; Janata, Petr

    2013-01-01

    Properties of auditory working memory for sounds that lack strong semantic associations and are not readily verbalized or sung are poorly understood. We investigated auditory working memory capacity for lists containing 2-6 easily discriminable abstract sounds synthesized within a constrained timbral space, at delays of 1-6 s (Experiment 1), and…

  4. Non-Linguistic Auditory Processing and Working Memory Update in Pre-School Children Who Stutter: An Electrophysiological Study

    PubMed Central

    Kaganovich, Natalya; Wray, Amanda Hampton; Weber-Fox, Christine

    2010-01-01

    Non-linguistic auditory processing and working memory update were examined with event-related potentials (ERPs) in 18 children who stutter (CWS) and 18 children who do not stutter (CWNS). Children heard frequent 1kHz tones interspersed with rare 2kHz tones. The two groups did not differ on any measure of the P1 and N1 components, strongly suggesting that early auditory processing of pure tones is unimpaired in CWS. However, as a group, only CWNS exhibited a P3 component to rare tones suggesting that developmental stuttering may be associated with a less efficient attentional allocation and working memory update in response to auditory change. PMID:21038162

  5. A Positive Generation Effect on Memory for Auditory Context

    PubMed Central

    Overman, Amy A.; Richard, Alison G.; Stephens, Joseph D. W.

    2016-01-01

    Self-generation of information during memory encoding has large positive effects on subsequent memory for items, but mixed effects on memory for contextual information associated with items. A processing account of generation effects on context memory (Mulligan, 2004; Mulligan, Lozito, & Rosner, 2006) proposes that these effects depend on whether the generation task causes any shift in processing of the type of context features for which memory is being tested. Mulligan and colleagues have used this account to predict various negative effects of generation on context memory, but the account also predicts positive generation effects under certain circumstances. The present experiment provided a critical test of the processing account by examining how generation affected memory for auditory rather than visual context. Based on the processing account, we predicted that generation of rhyme words should enhance processing of auditory information associated with the words (i.e., voice gender) whereas generation of antonym words should have no effect. These predictions were confirmed, providing support to the processing account. PMID:27696145

  6. Effects of the swimming exercise on the consolidation and persistence of auditory and contextual fear memory.

    PubMed

    Faria, Rodolfo Souza; Gutierres, Luís Felipe Soares; Sobrinho, Fernando César Faria; Miranda, Iris do Vale; Reis, Júlia Dos; Dias, Elayne Vieira; Sartori, Cesar Renato; Moreira, Dalmo Antonio Ribeiro

    2016-08-15

    Exposure to negative environmental events triggers defensive behavior and leads to the formation of aversive associative memory. Cellular and molecular changes in the central nervous system underlie this memory formation, as well as the associated behavioral changes. In general, memory process is established in distinct phases such as acquisition, consolidation, evocation, persistence, and extinction of the acquired information. After exposure to a particular event, early changes in involved neural circuits support the memory consolidation, which corresponds to the short-term memory. Re-exposure to previously memorized events evokes the original memory, a process that is considered essential for the reactivation and consequent persistence of memory, ensuring that long-term memory is established. Different environmental stimuli may modulate the memory formation process, as well as their distinct phases. Among the different environmental stimuli able of modulating memory formation is the physical exercise which is a potent modulator of neuronal activity. There are many studies showing that physical exercise modulates learning and memory processes, mainly in the consolidation phase of the explicit memory. However, there are few reports in the literature regarding the role of physical exercise in implicit aversive associative memory, especially at the persistence phase. Thus, the present study aimed to investigate the relationship between swimming exercise and the consolidation and persistence of contextual and auditory-cued fear memory. Male Wistar rats were submitted to sessions of swimming exercise five times a week, over six weeks. After that, the rats were submitted to classical aversive conditioning training by a pairing tone/foot shock paradigm. Finally, rats were evaluated for consolidation and persistence of fear memory to both auditory and contextual cues. Our results demonstrate that classical aversive conditioning with tone/foot shock pairing induced consolidation as well as persistence of conditioned fear memory. In addition, rats submitted to swimming exercise over six weeks showed an improved performance in the test of auditory-cued fear memory persistence, but not in the test of contextual fear memory persistence. Moreover, no significant effect from swimming exercise was observed on consolidation of both contextual and auditory fear memory. So, our study, revealing the effect of the swimming exercise on different stages of implicit memory of tone/foot shock conditioning, contributes to and complements the current knowledge about the environmental modulation of memory process. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Auditory post-processing in a passive listening task is deficient in Alzheimer's disease.

    PubMed

    Bender, Stephan; Bluschke, Annet; Dippel, Gabriel; Rupp, André; Weisbrod, Matthias; Thomas, Christine

    2014-01-01

    To investigate whether automatic auditory post-processing is deficient in patients with Alzheimer's disease and is related to sensory gating. Event-related potentials were recorded during a passive listening task to examine the automatic transient storage of auditory information (short click pairs). Patients with Alzheimer's disease were compared to a healthy age-matched control group. A young healthy control group was included to assess effects of physiological aging. A bilateral frontal negativity in combination with deep temporal positivity occurring 500 ms after stimulus offset was reduced in patients with Alzheimer's disease, but was unaffected by physiological aging. Its amplitude correlated with short-term memory capacity, but was independent of sensory gating in healthy elderly controls. Source analysis revealed a dipole pair in the anterior temporal lobes. Results suggest that auditory post-processing is deficient in Alzheimer's disease, but is not typically related to sensory gating. The deficit could neither be explained by physiological aging nor by problems in earlier stages of auditory perception. Correlations with short-term memory capacity and executive control tasks suggested an association with memory encoding and/or overall cognitive control deficits. An auditory late negative wave could represent a marker of auditory working memory encoding deficits in Alzheimer's disease. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Working memory resources are shared across sensory modalities.

    PubMed

    Salmela, V R; Moisala, M; Alho, K

    2014-10-01

    A common assumption in the working memory literature is that the visual and auditory modalities have separate and independent memory stores. Recent evidence on visual working memory has suggested that resources are shared between representations, and that the precision of representations sets the limit for memory performance. We tested whether memory resources are also shared across sensory modalities. Memory precision for two visual (spatial frequency and orientation) and two auditory (pitch and tone duration) features was measured separately for each feature and for all possible feature combinations. Thus, only the memory load was varied, from one to four features, while keeping the stimuli similar. In Experiment 1, two gratings and two tones-both containing two varying features-were presented simultaneously. In Experiment 2, two gratings and two tones-each containing only one varying feature-were presented sequentially. The memory precision (delayed discrimination threshold) for a single feature was close to the perceptual threshold. However, as the number of features to be remembered was increased, the discrimination thresholds increased more than twofold. Importantly, the decrease in memory precision did not depend on the modality of the other feature(s), or on whether the features were in the same or in separate objects. Hence, simultaneously storing one visual and one auditory feature had an effect on memory precision equal to those of simultaneously storing two visual or two auditory features. The results show that working memory is limited by the precision of the stored representations, and that working memory can be described as a resource pool that is shared across modalities.

  9. DNA Methyltransferase Activity is Required for Memory- Related Neural Plasticity in the Lateral Amygdala

    PubMed Central

    Maddox, Stephanie A.; Watts, Casey S.; Schafe, Glenn E.

    2014-01-01

    We have previously shown that auditory Pavlovian fear conditioning is associated with an increase in DNA methyltransferase (DNMT) expression in the lateral amygdala (LA) and that intra-LA infusion or bath application of an inhibitor of DNMT activity impairs the consolidation of an auditory fear memory and long-term potentiation (LTP) at thalamic and cortical inputs to the LA, in vitro. In the present study, we use awake behaving neurophysiological techniques to examine the role of DNMT activity in memory-related neurophysiological changes accompanying fear memory consolidation and reconsolidation in the LA, in vivo. We show that auditory fear conditioning results in a training-related enhancement in the amplitude of short-latency auditory-evoked field potentials (AEFPs) in the LA. Intra-LA infusion of a DNMT inhibitor impairs both fear memory consolidation and, in parallel, the consolidation of training-related neural plasticity in the LA; that is, short-term memory (STM) and short-term training-related increases in AEFP amplitude in the LA are intact, while long-term memory (LTM) and long-term retention of training-related increases in AEFP amplitudes are impaired. In separate experiments, we show that intra-LA infusion of a DNMT inhibitor following retrieval of an auditory fear memory has no effect on post-retrieval STM or short-term retention of training-related changes in AEFP amplitude in the LA, but significantly impairs both post-retrieval LTM and long-term retention of AEFP amplitude changes in the LA. These findings are the first to demonstrate the necessity of DNMT activity in the consolidation and reconsolidation of memory-associated neural plasticity, in vivo. PMID:24291571

  10. Effects of Training Auditory Sequential Memory and Attention on Reading.

    ERIC Educational Resources Information Center

    Klein, Pnina S.; Schwartz, Allen A.

    1979-01-01

    The study, involving 92 second and third graders with deficits in reading and auditory sequential memory (ASM), examined the possibility of improving ASM through training and the relationship between this training and reading ability. (Author/CL)

  11. Short-term memory stores organized by information domain.

    PubMed

    Noyce, Abigail L; Cestero, Nishmar; Shinn-Cunningham, Barbara G; Somers, David C

    2016-04-01

    Vision and audition have complementary affinities, with vision excelling in spatial resolution and audition excelling in temporal resolution. Here, we investigated the relationships among the visual and auditory modalities and spatial and temporal short-term memory (STM) using change detection tasks. We created short sequences of visual or auditory items, such that each item within a sequence arose at a unique spatial location at a unique time. On each trial, two successive sequences were presented; subjects attended to either space (the sequence of locations) or time (the sequence of inter item intervals) and reported whether the patterns of locations or intervals were identical. Each subject completed blocks of unimodal trials (both sequences presented in the same modality) and crossmodal trials (Sequence 1 visual, Sequence 2 auditory, or vice versa) for both spatial and temporal tasks. We found a strong interaction between modality and task: Spatial performance was best on unimodal visual trials, whereas temporal performance was best on unimodal auditory trials. The order of modalities on crossmodal trials also mattered, suggesting that perceptual fidelity at encoding is critical to STM. Critically, no cost was attributable to crossmodal comparison: In both tasks, performance on crossmodal trials was as good as or better than on the weaker unimodal trials. STM representations of space and time can guide change detection in either the visual or the auditory modality, suggesting that the temporal or spatial organization of STM may supersede sensory-specific organization.

  12. Explaining lexical-semantic deficits in specific language impairment: the role of phonological similarity, phonological working memory, and lexical competition.

    PubMed

    Mainela-Arnold, Elina; Evans, Julia L; Coady, Jeffry A

    2010-12-01

    In this study, the authors investigated potential explanations for sparse lexical-semantic representations in children with specific language impairment (SLI) and typically developing peers. The role of auditory perception, phonological working memory, and lexical competition were investigated. Participants included 32 children (ages 8;5-12;3 [years;months]): Sixteen children with SLI and 16 typically developing age- and nonverbal IQ-matched peers (CA). Children's word definitions were investigated. The words to be defined were manipulated for phonological neighborhood density. Nonword repetition and two lexical competition measures were tested as predictors of word definition abilities. Children with SLI gave word definitions with fewer content details than children in the CA group. Compared with the CA group, the definitions of children in the SLI group were not disproportionately impacted by phonological neighborhood density. Lexical competition was a significant unique predictor of children's word definitions, but nonword repetition was not. Individual differences in richness of lexical semantic representations as well as differences between children with SLI and typically developing peers may-at least, in part-be explained by processes of competition. However, difficulty with auditory perception or phonological working memory does not fully explain difficulties in lexical semantics.

  13. White Matter Integrity Dissociates Verbal Memory and Auditory Attention Span in Emerging Adults with Congenital Heart Disease.

    PubMed

    Brewster, Ryan C; King, Tricia Z; Burns, Thomas G; Drossner, David M; Mahle, William T

    2015-01-01

    White matter disruptions have been identified in individuals with congenital heart disease (CHD). However, no specific theory-driven relationships between microstructural white matter disruptions and cognition have been established in CHD. We conducted a two-part study. First, we identified significant differences in fractional anisotropy (FA) of emerging adults with CHD using Tract-Based Spatial Statistics (TBSS). TBSS analyses between 22 participants with CHD and 18 demographically similar controls identified five regions of normal appearing white matter with significantly lower FA in CHD, and two higher. Next, two regions of lower FA in CHD were selected to examine theory-driven differential relationships with cognition: voxels along the left uncinate fasciculus (UF; a tract theorized to contribute to verbal memory) and voxels along the right middle cerebellar peduncle (MCP; a tract previously linked to attention). In CHD, a significant positive correlation between UF FA and memory was found, r(20)=.42, p=.049 (uncorrected). There was no correlation between UF and auditory attention span. A positive correlation between MCP FA and auditory attention span was found, r(20)=.47, p=.027 (uncorrected). There was no correlation between MCP and memory. In controls, no significant relationships were identified. These results are consistent with previous literature demonstrating lower FA in younger CHD samples, and provide novel evidence for disrupted white matter integrity in emerging adults with CHD. Furthermore, a correlational double dissociation established distinct white matter circuitry (UF and MCP) and differential cognitive correlates (memory and attention span, respectively) in young adults with CHD.

  14. Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns.

    PubMed

    Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J

    2016-01-01

    Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10- and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may strongly depend on individual attention and auditory discrimination abilities.

  15. Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns

    PubMed Central

    Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J.

    2016-01-01

    Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10− and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may strongly depend on individual attention and auditory discrimination abilities. PMID:27932941

  16. Cross-modal versus within-modal recall: differences in behavioral and brain responses.

    PubMed

    Butler, Andrew J; James, Karin H

    2011-10-31

    Although human experience is multisensory in nature, previous research has focused predominantly on memory for unisensory as opposed to multisensory information. In this work, we sought to investigate behavioral and neural differences between the cued recall of cross-modal audiovisual associations versus within-modal visual or auditory associations. Participants were presented with cue-target associations comprised of pairs of nonsense objects, pairs of nonsense sounds, objects paired with sounds, and sounds paired with objects. Subsequently, they were required to recall the modality of the target given the cue while behavioral accuracy, reaction time, and blood oxygenation level dependent (BOLD) activation were measured. Successful within-modal recall was associated with modality-specific reactivation in primary perceptual regions, and was more accurate than cross-modal retrieval. When auditory targets were correctly or incorrectly recalled using a cross-modal visual cue, there was re-activation in auditory association cortex, and recall of information from cross-modal associations activated the hippocampus to a greater degree than within-modal associations. Findings support theories that propose an overlap between regions active during perception and memory, and show that behavioral and neural differences exist between within- and cross-modal associations. Overall the current study highlights the importance of the role of multisensory information in memory. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Temporal precision and the capacity of auditory-verbal short-term memory.

    PubMed

    Gilbert, Rebecca A; Hitch, Graham J; Hartley, Tom

    2017-12-01

    The capacity of serially ordered auditory-verbal short-term memory (AVSTM) is sensitive to the timing of the material to be stored, and both temporal processing and AVSTM capacity are implicated in the development of language. We developed a novel "rehearsal-probe" task to investigate the relationship between temporal precision and the capacity to remember serial order. Participants listened to a sub-span sequence of spoken digits and silently rehearsed the items and their timing during an unfilled retention interval. After an unpredictable delay, a tone prompted report of the item being rehearsed at that moment. An initial experiment showed cyclic distributions of item responses over time, with peaks preserving serial order and broad, overlapping tails. The spread of the response distributions increased with additional memory load and correlated negatively with participants' auditory digit spans. A second study replicated the negative correlation and demonstrated its specificity to AVSTM by controlling for differences in visuo-spatial STM and nonverbal IQ. The results are consistent with the idea that a common resource underpins both the temporal precision and capacity of AVSTM. The rehearsal-probe task may provide a valuable tool for investigating links between temporal processing and AVSTM capacity in the context of speech and language abilities.

  18. Preconditioning of Spatial and Auditory Cues: Roles of the Hippocampus, Frontal Cortex, and Cue-Directed Attention

    PubMed Central

    Talk, Andrew C.; Grasby, Katrina L.; Rawson, Tim; Ebejer, Jane L.

    2016-01-01

    Loss of function of the hippocampus or frontal cortex is associated with reduced performance on memory tasks, in which subjects are incidentally exposed to cues at specific places in the environment and are subsequently asked to recollect the location at which the cue was experienced. Here, we examined the roles of the rodent hippocampus and frontal cortex in cue-directed attention during encoding of memory for the location of a single incidentally experienced cue. During a spatial sensory preconditioning task, rats explored an elevated platform while an auditory cue was incidentally presented at one corner. The opposite corner acted as an unpaired control location. The rats demonstrated recollection of location by avoiding the paired corner after the auditory cue was in turn paired with shock. Damage to either the dorsal hippocampus or the frontal cortex impaired this memory ability. However, we also found that hippocampal lesions enhanced attention directed towards the cue during the encoding phase, while frontal cortical lesions reduced cue-directed attention. These results suggest that the deficit in spatial sensory preconditioning caused by frontal cortical damage may be mediated by inattention to the location of cues during the latent encoding phase, while deficits following hippocampal damage must be related to other mechanisms such as generation of neural plasticity. PMID:27999366

  19. Feature conjunctions and auditory sensory memory.

    PubMed

    Sussman, E; Gomes, H; Nousak, J M; Ritter, W; Vaughan, H G

    1998-05-18

    This study sought to obtain additional evidence that transient auditory memory stores information about conjunctions of features on an automatic basis. The mismatch negativity of event-related potentials was employed because its operations are based on information that is stored in transient auditory memory. The mismatch negativity was found to be elicited by a tone that differed from standard tones in a combination of its perceived location and frequency. The result lends further support to the hypothesis that the system upon which the mismatch negativity relies processes stimuli in an holistic manner. Copyright 1998 Elsevier Science B.V.

  20. MOLECULAR MECHANISMS OF FEAR LEARNING AND MEMORY

    PubMed Central

    Johansen, Joshua P.; Cain, Christopher K.; Ostroff, Linnaea E.; LeDoux, Joseph E.

    2011-01-01

    Pavlovian fear conditioning is a useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Together, this research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals, and potentially for understanding fear related disorders, such as PTSD and phobias. PMID:22036561

  1. Auditory Verbal Working Memory as a Predictor of Speech Perception in Modulated Maskers in Listeners with Normal Hearing

    ERIC Educational Resources Information Center

    Millman, Rebecca E.; Mattys, Sven L.

    2017-01-01

    Purpose: Background noise can interfere with our ability to understand speech. Working memory capacity (WMC) has been shown to contribute to the perception of speech in modulated noise maskers. WMC has been assessed with a variety of auditory and visual tests, often pertaining to different components of working memory. This study assessed the…

  2. How Does the Linguistic Distance between Spoken and Standard Language in Arabic Affect Recall and Recognition Performances during Verbal Memory Examination

    ERIC Educational Resources Information Center

    Taha, Haitham

    2017-01-01

    The current research examined how Arabic diglossia affects verbal learning memory. Thirty native Arab college students were tested using auditory verbal memory test that was adapted according to the Rey Auditory Verbal Learning Test and developed in three versions: Pure spoken language version (SL), pure standard language version (SA), and…

  3. The influence of an auditory-memory attention-demanding task on postural control in blind persons.

    PubMed

    Melzer, Itshak; Damry, Elad; Landau, Anat; Yagev, Ronit

    2011-05-01

    In order to evaluate the effect of an auditory-memory attention-demanding task on balance control, nine blind adults were compared to nine age-gender-matched sighted controls. This issue is particularly relevant for the blind population in which functional assessment of postural control has to be revealed through "real life" motor and cognitive function. The study aimed to explore whether an auditory-memory attention-demanding cognitive task would influence postural control in blind persons and compare this with blindfolded sighted persons. Subjects were instructed to minimize body sway during narrow base upright standing on a single force platform under two conditions: 1) standing still (single task); 2) as in 1) while performing an auditory-memory attention-demanding cognitive task (dual task). Subjects in both groups were required to stand blindfolded with their eyes closed. Center of Pressure displacement data were collected and analyzed using summary statistics and stabilogram-diffusion analysis. Blind and sighted subjects had similar postural sway in eyes closed condition. However, for dual compared to single task, sighted subjects show significant decrease in postural sway while blind subjects did not. The auditory-memory attention-demanding cognitive task had no interference effect on balance control on blind subjects. It seems that sighted individuals used auditory cues to compensate for momentary loss of vision, whereas blind subjects did not. This may suggest that blind and sighted people use different sensorimotor strategies to achieve stability. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Cell-assembly coding in several memory processes.

    PubMed

    Sakurai, Y

    1998-01-01

    The present paper discusses why the cell assembly, i.e., an ensemble population of neurons with flexible functional connections, is a tenable view of the basic code for information processes in the brain. The main properties indicating the reality of cell-assembly coding are neurons overlaps among different assemblies and connection dynamics within and among the assemblies. The former can be detected as multiple functions of individual neurons in processing different kinds of information. Individual neurons appear to be involved in multiple information processes. The latter can be detected as changes of functional synaptic connections in processing different kinds of information. Correlations of activity among some of the recorded neurons appear to change in multiple information processes. Recent experiments have compared several different memory processes (tasks) and detected these two main properties, indicating cell-assembly coding of memory in the working brain. The first experiment compared different types of processing of identical stimuli, i.e., working memory and reference memory of auditory stimuli. The second experiment compared identical processes of different types of stimuli, i.e., discriminations of simple auditory, simple visual, and configural auditory-visual stimuli. The third experiment compared identical processes of different types of stimuli with or without temporal processing of stimuli, i.e., discriminations of elemental auditory, configural auditory-visual, and sequential auditory-visual stimuli. Some possible features of the cell-assembly coding, especially "dual coding" by individual neurons and cell assemblies, are discussed for future experimental approaches. Copyright 1998 Academic Press.

  5. Neural effects of cognitive control load on auditory selective attention.

    PubMed

    Sabri, Merav; Humphries, Colin; Verber, Matthew; Liebenthal, Einat; Binder, Jeffrey R; Mangalathu, Jain; Desai, Anjali

    2014-08-01

    Whether and how working memory disrupts or alters auditory selective attention is unclear. We compared simultaneous event-related potentials (ERP) and functional magnetic resonance imaging (fMRI) responses associated with task-irrelevant sounds across high and low working memory load in a dichotic-listening paradigm. Participants performed n-back tasks (1-back, 2-back) in one ear (Attend ear) while ignoring task-irrelevant speech sounds in the other ear (Ignore ear). The effects of working memory load on selective attention were observed at 130-210ms, with higher load resulting in greater irrelevant syllable-related activation in localizer-defined regions in auditory cortex. The interaction between memory load and presence of irrelevant information revealed stronger activations primarily in frontal and parietal areas due to presence of irrelevant information in the higher memory load. Joint independent component analysis of ERP and fMRI data revealed that the ERP component in the N1 time-range is associated with activity in superior temporal gyrus and medial prefrontal cortex. These results demonstrate a dynamic relationship between working memory load and auditory selective attention, in agreement with the load model of attention and the idea of common neural resources for memory and attention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Training of Working Memory Impacts Neural Processing of Vocal Pitch Regulation

    PubMed Central

    Li, Weifeng; Guo, Zhiqiang; Jones, Jeffery A.; Huang, Xiyan; Chen, Xi; Liu, Peng; Chen, Shaozhen; Liu, Hanjun

    2015-01-01

    Working memory training can improve the performance of tasks that were not trained. Whether auditory-motor integration for voice control can benefit from working memory training, however, remains unclear. The present event-related potential (ERP) study examined the impact of working memory training on the auditory-motor processing of vocal pitch. Trained participants underwent adaptive working memory training using a digit span backwards paradigm, while control participants did not receive any training. Before and after training, both trained and control participants were exposed to frequency-altered auditory feedback while producing vocalizations. After training, trained participants exhibited significantly decreased N1 amplitudes and increased P2 amplitudes in response to pitch errors in voice auditory feedback. In addition, there was a significant positive correlation between the degree of improvement in working memory capacity and the post-pre difference in P2 amplitudes. Training-related changes in the vocal compensation, however, were not observed. There was no systematic change in either vocal or cortical responses for control participants. These findings provide evidence that working memory training impacts the cortical processing of feedback errors in vocal pitch regulation. This enhanced cortical processing may be the result of increased neural efficiency in the detection of pitch errors between the intended and actual feedback. PMID:26553373

  7. Cholecystokinin from the entorhinal cortex enables neural plasticity in the auditory cortex

    PubMed Central

    Li, Xiao; Yu, Kai; Zhang, Zicong; Sun, Wenjian; Yang, Zhou; Feng, Jingyu; Chen, Xi; Liu, Chun-Hua; Wang, Haitao; Guo, Yi Ping; He, Jufang

    2014-01-01

    Patients with damage to the medial temporal lobe show deficits in forming new declarative memories but can still recall older memories, suggesting that the medial temporal lobe is necessary for encoding memories in the neocortex. Here, we found that cortical projection neurons in the perirhinal and entorhinal cortices were mostly immunopositive for cholecystokinin (CCK). Local infusion of CCK in the auditory cortex of anesthetized rats induced plastic changes that enabled cortical neurons to potentiate their responses or to start responding to an auditory stimulus that was paired with a tone that robustly triggered action potentials. CCK infusion also enabled auditory neurons to start responding to a light stimulus that was paired with a noise burst. In vivo intracellular recordings in the auditory cortex showed that synaptic strength was potentiated after two pairings of presynaptic and postsynaptic activity in the presence of CCK. Infusion of a CCKB antagonist in the auditory cortex prevented the formation of a visuo-auditory association in awake rats. Finally, activation of the entorhinal cortex potentiated neuronal responses in the auditory cortex, which was suppressed by infusion of a CCKB antagonist. Together, these findings suggest that the medial temporal lobe influences neocortical plasticity via CCK-positive cortical projection neurons in the entorhinal cortex. PMID:24343575

  8. Neural correlates of auditory recognition memory in the primate dorsal temporal pole

    PubMed Central

    Ng, Chi-Wing; Plakke, Bethany

    2013-01-01

    Temporal pole (TP) cortex is associated with higher-order sensory perception and/or recognition memory, as human patients with damage in this region show impaired performance during some tasks requiring recognition memory (Olson et al. 2007). The underlying mechanisms of TP processing are largely based on examination of the visual nervous system in humans and monkeys, while little is known about neuronal activity patterns in the auditory portion of this region, dorsal TP (dTP; Poremba et al. 2003). The present study examines single-unit activity of dTP in rhesus monkeys performing a delayed matching-to-sample task utilizing auditory stimuli, wherein two sounds are determined to be the same or different. Neurons of dTP encode several task-relevant events during the delayed matching-to-sample task, and encoding of auditory cues in this region is associated with accurate recognition performance. Population activity in dTP shows a match suppression mechanism to identical, repeated sound stimuli similar to that observed in the visual object identification pathway located ventral to dTP (Desimone 1996; Nakamura and Kubota 1996). However, in contrast to sustained visual delay-related activity in nearby analogous regions, auditory delay-related activity in dTP is transient and limited. Neurons in dTP respond selectively to different sound stimuli and often change their sound response preferences between experimental contexts. Current findings suggest a significant role for dTP in auditory recognition memory similar in many respects to the visual nervous system, while delay memory firing patterns are not prominent, which may relate to monkeys' shorter forgetting thresholds for auditory vs. visual objects. PMID:24198324

  9. Changes in auditory memory performance following the use of frequency-modulated system in children with suspected auditory processing disorders.

    PubMed

    Umat, Cila; Mukari, Siti Z; Ezan, Nurul F; Din, Normah C

    2011-08-01

    To examine the changes in the short-term auditory memory following the use of frequency-modulated (FM) system in children with suspected auditory processing disorders (APDs), and also to compare the advantages of bilateral over unilateral FM fitting. This longitudinal study involved 53 children from Sekolah Kebangsaan Jalan Kuantan 2, Kuala Lumpur, Malaysia who fulfilled the inclusion criteria. The study was conducted from September 2007 to October 2008 in the Department of Audiology and Speech Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia. The children's age was between 7-10 years old, and they were assigned into 3 groups: 15 in the control group (not fitted with FM); 19 in the unilateral; and 19 in the bilateral FM-fitting group. Subjects wore the FM system during school time for 12 weeks. Their working memory (WM), best learning (BL), and retention of information (ROI) were measured using the Rey Auditory Verbal Learning Test at pre-fitting, post (after 12 weeks of FM usage), and at long term (one year after the usage of FM system ended). There were significant differences in the mean WM (p=0.001), BL (p=0.019), and ROI (p=0.005) scores at the different measurement times, in which the mean scores at long-term were consistently higher than at pre-fitting, despite similar performances at the baseline (p>0.05). There was no significant difference in performance between unilateral- and bilateral-fitting groups. The use of FM might give a long-term effect on improving selected short-term auditory memories of some children with suspected APDs. One may not need to use 2 FM receivers to receive advantages on auditory memory performance.

  10. Contrast Enhancement without Transient Map Expansion for Species-Specific Vocalizations in Core Auditory Cortex during Learning

    PubMed Central

    Shepard, Kathryn N.; Chong, Kelly K.

    2016-01-01

    Tonotopic map plasticity in the adult auditory cortex (AC) is a well established and oft-cited measure of auditory associative learning in classical conditioning paradigms. However, its necessity as an enduring memory trace has been debated, especially given a recent finding that the areal expansion of core AC tuned to a newly relevant frequency range may arise only transiently to support auditory learning. This has been reinforced by an ethological paradigm showing that map expansion is not observed for ultrasonic vocalizations (USVs) or for ultrasound frequencies in postweaning dams for whom USVs emitted by pups acquire behavioral relevance. However, whether transient expansion occurs during maternal experience is not known, and could help to reveal the generality of cortical map expansion as a correlate for auditory learning. We thus mapped the auditory cortices of maternal mice at postnatal time points surrounding the peak in pup USV emission, but found no evidence of frequency map expansion for the behaviorally relevant high ultrasound range in AC. Instead, regions tuned to low frequencies outside of the ultrasound range show progressively greater suppression of activity in response to the playback of ultrasounds or pup USVs for maternally experienced animals assessed at their pups’ postnatal day 9 (P9) to P10, or postweaning. This provides new evidence for a lateral-band suppression mechanism elicited by behaviorally meaningful USVs, likely enhancing their population-level signal-to-noise ratio. These results demonstrate that tonotopic map enlargement has limits as a construct for conceptualizing how experience leaves neural memory traces within sensory cortex in the context of ethological auditory learning. PMID:27957529

  11. The contribution of short-term memory capacity to reading ability in adolescents with cochlear implants.

    PubMed

    Edwards, Lindsey; Aitkenhead, Lynne; Langdon, Dawn

    2016-11-01

    This study aimed to establish the relationship between short-term memory capacity and reading skills in adolescents with cochlear implants. A between-groups design compared a group of young people with cochlear implants with a group of hearing peers on measures of reading, and auditory and visual short-term memory capacity. The groups were matched for non-verbal IQ and age. The adolescents with cochlear implants were recruited from the Cochlear Implant Programme at a specialist children's hospital. The hearing participants were recruited from the same schools as those attended by the implanted adolescents. Participants were 18 cochlear implant users and 14 hearing controls, aged between 12 and 18 years. All used English as their main language and had no significant learning disability or neuro-developmental disorder. Short-term memory capacity was assessed in the auditory modality using Forward and Reverse Digit Span from the WISC IV UK, and visually using Forward and Reverse Memory from the Leiter-R. Individual word reading, reading comprehension and pseudoword decoding were assessed using the WIAT II UK. A series of ANOVAs revealed that the adolescents with cochlear implants had significantly poorer auditory short-term memory capacity and reading skills (on all measures) compared with their hearing peers. However, when Forward Digit Span was entered into the analyses as a covariate, none of the differences remained statistically significant. Deficits in immediate auditory memory persist into adolescence in deaf children with cochlear implants. Short-term auditory memory capacity is an important neurocognitive process in the development of reading skills after cochlear implantation in childhood that remains evident in later adolescence. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. From Perception to Metacognition: Auditory and Olfactory Functions in Early Blind, Late Blind, and Sighted Individuals

    PubMed Central

    Cornell Kärnekull, Stina; Arshamian, Artin; Nilsson, Mats E.; Larsson, Maria

    2016-01-01

    Although evidence is mixed, studies have shown that blind individuals perform better than sighted at specific auditory, tactile, and chemosensory tasks. However, few studies have assessed blind and sighted individuals across different sensory modalities in the same study. We tested early blind (n = 15), late blind (n = 15), and sighted (n = 30) participants with analogous olfactory and auditory tests in absolute threshold, discrimination, identification, episodic recognition, and metacognitive ability. Although the multivariate analysis of variance (MANOVA) showed no overall effect of blindness and no interaction with modality, follow-up between-group contrasts indicated a blind-over-sighted advantage in auditory episodic recognition, that was most pronounced in early blind individuals. In contrast to the auditory modality, there was no empirical support for compensatory effects in any of the olfactory tasks. There was no conclusive evidence for group differences in metacognitive ability to predict episodic recognition performance. Taken together, the results showed no evidence of an overall superior performance in blind relative sighted individuals across olfactory and auditory functions, although early blind individuals exceled in episodic auditory recognition memory. This observation may be related to an experience-induced increase in auditory attentional capacity. PMID:27729884

  13. The Auditory-Visual Speech Benefit on Working Memory in Older Adults with Hearing Impairment

    PubMed Central

    Frtusova, Jana B.; Phillips, Natalie A.

    2016-01-01

    This study examined the effect of auditory-visual (AV) speech stimuli on working memory in older adults with poorer-hearing (PH) in comparison to age- and education-matched older adults with better hearing (BH). Participants completed a working memory n-back task (0- to 2-back) in which sequences of digits were presented in visual-only (i.e., speech-reading), auditory-only (A-only), and AV conditions. Auditory event-related potentials (ERP) were collected to assess the relationship between perceptual and working memory processing. The behavioral results showed that both groups were faster in the AV condition in comparison to the unisensory conditions. The ERP data showed perceptual facilitation in the AV condition, in the form of reduced amplitudes and latencies of the auditory N1 and/or P1 components, in the PH group. Furthermore, a working memory ERP component, the P3, peaked earlier for both groups in the AV condition compared to the A-only condition. In general, the PH group showed a more robust AV benefit; however, the BH group showed a dose-response relationship between perceptual facilitation and working memory improvement, especially for facilitation of processing speed. Two measures, reaction time and P3 amplitude, suggested that the presence of visual speech cues may have helped the PH group to counteract the demanding auditory processing, to the level that no group differences were evident during the AV modality despite lower performance during the A-only condition. Overall, this study provides support for the theory of an integrated perceptual-cognitive system. The practical significance of these findings is also discussed. PMID:27148106

  14. Behavioral Indications of Auditory Processing Disorders.

    ERIC Educational Resources Information Center

    Hartman, Kerry McGoldrick

    1988-01-01

    Identifies disruptive behaviors of children that may indicate central auditory processing disorders (CAPDs), perceptual handicaps of auditory discrimination or auditory memory not related to hearing ability. Outlines steps to modify the communication environment for CAPD children at home and in the classroom. (SV)

  15. Reducing involuntary memory by interfering consolidation of stressful auditory information: A pilot study.

    PubMed

    Tabrizi, Fara; Jansson, Billy

    2016-03-01

    Intrusive emotional memories were induced by aversive auditory stimuli and modulated with cognitive tasks performed post-encoding (i.e., during consolidation). A between-subjects design was used with four conditions; three consolidation-interference tasks (a visuospatial and two verbal interference tasks) and a no-task control condition. Forty-one participants listened to a soundtrack depicting traumatic scenes (e.g., police brutality, torture and rape). Immediately after listening to the soundtrack, the subjects completed a randomly assigned task for 10 min. Intrusions from the soundtrack were reported in a diary during the following seven-day period. In line with a modality-specific approach to intrusion modulation, auditory intrusions were reduced by verbal tasks compared to both a no-task and a visuospatial interference task.. The study did not control for individual differences in imagery ability which may be a feature in intrusion development. The results provide an increased understanding of how intrusive mental images can be modulated which may have implications for preventive treatment.. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Combining computerized social cognitive training with neuroplasticity-based auditory training in schizophrenia.

    PubMed

    Sacks, Stephanie; Fisher, Melissa; Garrett, Coleman; Alexander, Phillip; Holland, Christine; Rose, Demian; Hooker, Christine; Vinogradov, Sophia

    2013-01-01

    Social cognitive deficits are an important treatment target in schizophrenia, but it is unclear to what degree they require specialized interventions and which specific components of behavioral interventions are effective. In this pilot study, we explored the effects of a novel computerized neuroplasticity-based auditory training delivered in conjunction with computerized social cognition training (SCT) in patients with schizophrenia. Nineteen clinically stable schizophrenia subjects performed 50 hours of computerized exercises that place implicit, increasing demands on auditory perception, plus 12 hours of computerized training in emotion identification, social perception, and theory of mind tasks. All subjects were assessed with MATRICS-recommended measures of neurocognition and social cognition, plus a measure of self-referential source memory before and after the computerized training. Subjects showed significant improvements on multiple measures of neurocognition. Additionally, subjects showed significant gains on measures of social cognition, including the MSCEIT Perceiving Emotions, MSCEIT Managing Emotions, and self-referential source memory, plus a significant decrease in positive symptoms. Computerized training of auditory processing/verbal learning in schizophrenia results in significant basic neurocognitive gains. Further, addition of computerized social cognition training results in significant gains in several social cognitive outcome measures. Computerized cognitive training that directly targets social cognitive processes can drive improvements in these crucial functions.

  17. Pre-attentive, context-specific representation of fear memory in the auditory cortex of rat.

    PubMed

    Funamizu, Akihiro; Kanzaki, Ryohei; Takahashi, Hirokazu

    2013-01-01

    Neural representation in the auditory cortex is rapidly modulated by both top-down attention and bottom-up stimulus properties, in order to improve perception in a given context. Learning-induced, pre-attentive, map plasticity has been also studied in the anesthetized cortex; however, little attention has been paid to rapid, context-dependent modulation. We hypothesize that context-specific learning leads to pre-attentively modulated, multiplex representation in the auditory cortex. Here, we investigate map plasticity in the auditory cortices of anesthetized rats conditioned in a context-dependent manner, such that a conditioned stimulus (CS) of a 20-kHz tone and an unconditioned stimulus (US) of a mild electrical shock were associated only under a noisy auditory context, but not in silence. After the conditioning, although no distinct plasticity was found in the tonotopic map, tone-evoked responses were more noise-resistive than pre-conditioning. Yet, the conditioned group showed a reduced spread of activation to each tone with noise, but not with silence, associated with a sharpening of frequency tuning. The encoding accuracy index of neurons showed that conditioning deteriorated the accuracy of tone-frequency representations in noisy condition at off-CS regions, but not at CS regions, suggesting that arbitrary tones around the frequency of the CS were more likely perceived as the CS in a specific context, where CS was associated with US. These results together demonstrate that learning-induced plasticity in the auditory cortex occurs in a context-dependent manner.

  18. Brain-wide maps of Fos expression during fear learning and recall.

    PubMed

    Cho, Jin-Hyung; Rendall, Sam D; Gray, Jesse M

    2017-04-01

    Fos induction during learning labels neuronal ensembles in the hippocampus that encode a specific physical environment, revealing a memory trace. In the cortex and other regions, the extent to which Fos induction during learning reveals specific sensory representations is unknown. Here we generate high-quality brain-wide maps of Fos mRNA expression during auditory fear conditioning and recall in the setting of the home cage. These maps reveal a brain-wide pattern of Fos induction that is remarkably similar among fear conditioning, shock-only, tone-only, and fear recall conditions, casting doubt on the idea that Fos reveals auditory-specific sensory representations. Indeed, novel auditory tones lead to as much gene induction in visual as in auditory cortex, while familiar (nonconditioned) tones do not appreciably induce Fos anywhere in the brain. Fos expression levels do not correlate with physical activity, suggesting that they are not determined by behavioral activity-driven alterations in sensory experience. In the thalamus, Fos is induced more prominently in limbic than in sensory relay nuclei, suggesting that Fos may be most sensitive to emotional state. Thus, our data suggest that Fos expression during simple associative learning labels ensembles activated generally by arousal rather than specifically by a particular sensory cue. © 2017 Cho et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Brain-wide maps of Fos expression during fear learning and recall

    PubMed Central

    Cho, Jin-Hyung; Rendall, Sam D.; Gray, Jesse M.

    2017-01-01

    Fos induction during learning labels neuronal ensembles in the hippocampus that encode a specific physical environment, revealing a memory trace. In the cortex and other regions, the extent to which Fos induction during learning reveals specific sensory representations is unknown. Here we generate high-quality brain-wide maps of Fos mRNA expression during auditory fear conditioning and recall in the setting of the home cage. These maps reveal a brain-wide pattern of Fos induction that is remarkably similar among fear conditioning, shock-only, tone-only, and fear recall conditions, casting doubt on the idea that Fos reveals auditory-specific sensory representations. Indeed, novel auditory tones lead to as much gene induction in visual as in auditory cortex, while familiar (nonconditioned) tones do not appreciably induce Fos anywhere in the brain. Fos expression levels do not correlate with physical activity, suggesting that they are not determined by behavioral activity-driven alterations in sensory experience. In the thalamus, Fos is induced more prominently in limbic than in sensory relay nuclei, suggesting that Fos may be most sensitive to emotional state. Thus, our data suggest that Fos expression during simple associative learning labels ensembles activated generally by arousal rather than specifically by a particular sensory cue. PMID:28331016

  20. The Central Auditory Processing Kit[TM]. Book 1: Auditory Memory [and] Book 2: Auditory Discrimination, Auditory Closure, and Auditory Synthesis [and] Book 3: Auditory Figure-Ground, Auditory Cohesion, Auditory Binaural Integration, and Compensatory Strategies.

    ERIC Educational Resources Information Center

    Mokhemar, Mary Ann

    This kit for assessing central auditory processing disorders (CAPD), in children in grades 1 through 8 includes 3 books, 14 full-color cards with picture scenes, and a card depicting a phone key pad, all contained in a sturdy carrying case. The units in each of the three books correspond with auditory skill areas most commonly addressed in…

  1. A Positive Generation Effect on Memory for Auditory Context.

    PubMed

    Overman, Amy A; Richard, Alison G; Stephens, Joseph D W

    2017-06-01

    Self-generation of information during memory encoding has large positive effects on subsequent memory for items, but mixed effects on memory for contextual information associated with items. A processing account of generation effects on context memory (Mulligan in Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(4), 838-855, 2004; Mulligan, Lozito, & Rosner in Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(4), 836-846, 2006) proposes that these effects depend on whether the generation task causes any shift in processing of the type of context features for which memory is being tested. Mulligan and colleagues have used this account to predict various negative effects of generation on context memory, but the account also predicts positive generation effects under certain circumstances. The present experiment provided a critical test of the processing account by examining how generation affected memory for auditory rather than visual context. Based on the processing account, we predicted that generation of rhyme words should enhance processing of auditory information associated with the words (i.e., voice gender), whereas generation of antonym words should have no effect. These predictions were confirmed, providing support to the processing account.

  2. Process Deficits in Learning Disabled Children and Implications for Reading.

    ERIC Educational Resources Information Center

    Johnson, Doris J.

    An exploration of specific deficits of learning disabled children, especially in the auditory system, is presented in this paper. Disorders of attention, perception, phonemic and visual discrimination, memory, and symbolization and conceptualization are considered. The paper develops several questions for teachers of learning disabled children to…

  3. Cross-modal activation of auditory regions during visuo-spatial working memory in early deafness.

    PubMed

    Ding, Hao; Qin, Wen; Liang, Meng; Ming, Dong; Wan, Baikun; Li, Qiang; Yu, Chunshui

    2015-09-01

    Early deafness can reshape deprived auditory regions to enable the processing of signals from the remaining intact sensory modalities. Cross-modal activation has been observed in auditory regions during non-auditory tasks in early deaf subjects. In hearing subjects, visual working memory can evoke activation of the visual cortex, which further contributes to behavioural performance. In early deaf subjects, however, whether and how auditory regions participate in visual working memory remains unclear. We hypothesized that auditory regions may be involved in visual working memory processing and activation of auditory regions may contribute to the superior behavioural performance of early deaf subjects. In this study, 41 early deaf subjects (22 females and 19 males, age range: 20-26 years, age of onset of deafness < 2 years) and 40 age- and gender-matched hearing controls underwent functional magnetic resonance imaging during a visuo-spatial delayed recognition task that consisted of encoding, maintenance and recognition stages. The early deaf subjects exhibited faster reaction times on the spatial working memory task than did the hearing controls. Compared with hearing controls, deaf subjects exhibited increased activation in the superior temporal gyrus bilaterally during the recognition stage. This increased activation amplitude predicted faster and more accurate working memory performance in deaf subjects. Deaf subjects also had increased activation in the superior temporal gyrus bilaterally during the maintenance stage and in the right superior temporal gyrus during the encoding stage. These increased activation amplitude also predicted faster reaction times on the spatial working memory task in deaf subjects. These findings suggest that cross-modal plasticity occurs in auditory association areas in early deaf subjects. These areas are involved in visuo-spatial working memory. Furthermore, amplitudes of cross-modal activation during the maintenance stage were positively correlated with the age of onset of hearing aid use and were negatively correlated with the percentage of lifetime hearing aid use in deaf subjects. These findings suggest that earlier and longer hearing aid use may inhibit cross-modal reorganization in early deaf subjects. Granger causality analysis revealed that, compared to the hearing controls, the deaf subjects had an enhanced net causal flow from the frontal eye field to the superior temporal gyrus. These findings indicate that a top-down mechanism may better account for the cross-modal activation of auditory regions in early deaf subjects.See MacSweeney and Cardin (doi:10/1093/awv197) for a scientific commentary on this article. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Differential Effects of Music and Video Gaming During Breaks on Auditory and Visual Learning.

    PubMed

    Liu, Shuyan; Kuschpel, Maxim S; Schad, Daniel J; Heinz, Andreas; Rapp, Michael A

    2015-11-01

    The interruption of learning processes by breaks filled with diverse activities is common in everyday life. This study investigated the effects of active computer gaming and passive relaxation (rest and music) breaks on auditory versus visual memory performance. Young adults were exposed to breaks involving (a) open eyes resting, (b) listening to music, and (c) playing a video game, immediately after memorizing auditory versus visual stimuli. To assess learning performance, words were recalled directly after the break (an 8:30 minute delay) and were recalled and recognized again after 7 days. Based on linear mixed-effects modeling, it was found that playing the Angry Birds video game during a short learning break impaired long-term retrieval in auditory learning but enhanced long-term retrieval in visual learning compared with the music and rest conditions. These differential effects of video games on visual versus auditory learning suggest specific interference of common break activities on learning.

  5. Comparison of Performance of Eight-Year-Old Children on Three Auditory Sequential Memory Tests.

    ERIC Educational Resources Information Center

    Chermak, Gail D.; O'Connell, Vickie I.

    1981-01-01

    Twenty normal children were administered three tests of auditory sequential memory. A Pearson product-moment correlation of .50 and coefficients of determination showed all but one relationship to be nonsignificant and predictability between pairs of scores to be poor. (Author)

  6. Note-Taking and Memory in Different Media Environments

    ERIC Educational Resources Information Center

    Lin, Lin; Bigenho, Chris

    2011-01-01

    Through this study the authors investigated undergraduate students' memory recall in three media environments with three note-taking options, following an A x B design with nine experiments. The three environments included no-distraction, auditory-distraction, and auditory-visual-distraction; while the three note-taking options included…

  7. Age-related decline in verbal learning is moderated by demographic factors, working memory capacity, and presence of amnestic mild cognitive impairment.

    PubMed

    Constantinidou, Fofi; Zaganas, Ioannis; Papastefanakis, Emmanouil; Kasselimis, Dimitrios; Nidos, Andreas; Simos, Panagiotis G

    2014-09-01

    Age-related memory changes are highly varied and heterogeneous. The study examined the rate of decline in verbal episodic memory as a function of education level, auditory attention span and verbal working memory capacity, and diagnosis of amnestic mild cognitive impairment (a-MCI). Data were available on a community sample of 653 adults aged 17-86 years and 70 patients with a-MCI recruited from eight broad geographic areas in Greece and Cyprus. Measures of auditory attention span and working memory capacity (digits forward and backward) and verbal episodic memory (Auditory Verbal Learning Test [AVLT]) were used. Moderated mediation regressions on data from the community sample did not reveal significant effects of education level on the rate of age-related decline in AVLT indices. The presence of a-MCI was a significant moderator of the direct effect of Age on both immediate and delayed episodic memory indices. The rate of age-related decline in verbal episodic memory is normally mediated by working memory capacity. Moreover, in persons who display poor episodic memory capacity (a-MCI group), age-related memory decline is expected to advance more rapidly for those who also display relatively poor verbal working memory capacity.

  8. Pre-Attentive Auditory Processing of Lexicality

    ERIC Educational Resources Information Center

    Jacobsen, Thomas; Horvath, Janos; Schroger, Erich; Lattner, Sonja; Widmann, Andreas; Winkler, Istvan

    2004-01-01

    The effects of lexicality on auditory change detection based on auditory sensory memory representations were investigated by presenting oddball sequences of repeatedly presented stimuli, while participants ignored the auditory stimuli. In a cross-linguistic study of Hungarian and German participants, stimulus sequences were composed of words that…

  9. The Effect of Cognitive Control on Different Types of Auditory Distraction.

    PubMed

    Bell, Raoul; Röer, Jan P; Marsh, John E; Storch, Dunja; Buchner, Axel

    2017-09-01

    Deviant as well as changing auditory distractors interfere with short-term memory. According to the duplex model of auditory distraction, the deviation effect is caused by a shift of attention while the changing-state effect is due to obligatory order processing. This theory predicts that foreknowledge should reduce the deviation effect, but should have no effect on the changing-state effect. We compared the effect of foreknowledge on the two phenomena directly within the same experiment. In a pilot study, specific foreknowledge was impotent in reducing either the changing-state effect or the deviation effect, but it reduced disruption by sentential speech, suggesting that the effects of foreknowledge on auditory distraction may increase with the complexity of the stimulus material. Given the unexpected nature of this finding, we tested whether the same finding would be obtained in (a) a direct preregistered replication in Germany and (b) an additional replication with translated stimulus materials in Sweden.

  10. Working memory deficits in boys with attention deficit/hyperactivity disorder (ADHD): An examination of orthographic coding and episodic buffer processes.

    PubMed

    Alderson, R Matt; Kasper, Lisa J; Patros, Connor H G; Hudec, Kristen L; Tarle, Stephanie J; Lea, Sarah E

    2015-01-01

    The episodic buffer component of working memory was examined in children with attention deficit/hyperactivity disorder (ADHD) and typically developing peers (TD). Thirty-two children (ADHD = 16, TD = 16) completed three versions of a phonological working memory task that varied with regard to stimulus presentation modality (auditory, visual, or dual auditory and visual), as well as a visuospatial task. Children with ADHD experienced the largest magnitude working memory deficits when phonological stimuli were presented via a unimodal, auditory format. Their performance improved during visual and dual modality conditions but remained significantly below the performance of children in the TD group. In contrast, the TD group did not exhibit performance differences between the auditory- and visual-phonological conditions but recalled significantly more stimuli during the dual-phonological condition. Furthermore, relative to TD children, children with ADHD recalled disproportionately fewer phonological stimuli as set sizes increased, regardless of presentation modality. Finally, an examination of working memory components indicated that the largest magnitude between-group difference was associated with the central executive. Collectively, these findings suggest that ADHD-related working memory deficits reflect a combination of impaired central executive and phonological storage/rehearsal processes, as well as an impaired ability to benefit from bound multimodal information processed by the episodic buffer.

  11. Exploring the role of task performance and learning style on prefrontal hemodynamics during a working memory task.

    PubMed

    Anderson, Afrouz A; Parsa, Kian; Geiger, Sydney; Zaragoza, Rachel; Kermanian, Riley; Miguel, Helga; Dashtestani, Hadis; Chowdhry, Fatima A; Smith, Elizabeth; Aram, Siamak; Gandjbakhche, Amir H

    2018-01-01

    Existing literature outlines the quality and location of activation in the prefrontal cortex (PFC) during working memory (WM) tasks. However, the effects of individual differences on the underlying neural process of WM tasks are still unclear. In this functional near infrared spectroscopy study, we administered a visual and auditory n-back task to examine activation in the PFC while considering the influences of task performance, and preferred learning strategy (VARK score). While controlling for age, results indicated that high performance (HP) subjects (accuracy > 90%) showed task dependent lower activation compared to normal performance subjects in PFC region Specifically HP groups showed lower activation in left dorsolateral PFC (DLPFC) region during performance of auditory task whereas during visual task they showed lower activation in the right DLPFC. After accounting for learning style, we found a correlation between visual and aural VARK score and level of activation in the PFC. Subjects with higher visual VARK scores displayed lower activation during auditory task in left DLPFC, while those with higher visual scores exhibited higher activation during visual task in bilateral DLPFC. During performance of auditory task, HP subjects had higher visual VARK scores compared to NP subjects indicating an effect of learning style on the task performance and activation. The results of this study show that learning style and task performance can influence PFC activation, with applications toward neurological implications of learning style and populations with deficits in auditory or visual processing.

  12. Coding of auditory temporal and pitch information by hippocampal individual cells and cell assemblies in the rat.

    PubMed

    Sakurai, Y

    2002-01-01

    This study reports how hippocampal individual cells and cell assemblies cooperate for neural coding of pitch and temporal information in memory processes for auditory stimuli. Each rat performed two tasks, one requiring discrimination of auditory pitch (high or low) and the other requiring discrimination of their duration (long or short). Some CA1 and CA3 complex-spike neurons showed task-related differential activity between the high and low tones in only the pitch-discrimination task. However, without exception, neurons which showed task-related differential activity between the long and short tones in the duration-discrimination task were always task-related neurons in the pitch-discrimination task. These results suggest that temporal information (long or short), in contrast to pitch information (high or low), cannot be coded independently by specific neurons. The results also indicate that the two different behavioral tasks cannot be fully differentiated by the task-related single neurons alone and suggest a model of cell-assembly coding of the tasks. Cross-correlation analysis among activities of simultaneously recorded multiple neurons supported the suggested cell-assembly model.Considering those results, this study concludes that dual coding by hippocampal single neurons and cell assemblies is working in memory processing of pitch and temporal information of auditory stimuli. The single neurons encode both auditory pitches and their temporal lengths and the cell assemblies encode types of tasks (contexts or situations) in which the pitch and the temporal information are processed.

  13. Exploring the role of task performance and learning style on prefrontal hemodynamics during a working memory task

    PubMed Central

    Anderson, Afrouz A.; Parsa, Kian; Geiger, Sydney; Zaragoza, Rachel; Kermanian, Riley; Miguel, Helga; Chowdhry, Fatima A.; Smith, Elizabeth; Aram, Siamak; Gandjbakhche, Amir H.

    2018-01-01

    Existing literature outlines the quality and location of activation in the prefrontal cortex (PFC) during working memory (WM) tasks. However, the effects of individual differences on the underlying neural process of WM tasks are still unclear. In this functional near infrared spectroscopy study, we administered a visual and auditory n-back task to examine activation in the PFC while considering the influences of task performance, and preferred learning strategy (VARK score). While controlling for age, results indicated that high performance (HP) subjects (accuracy > 90%) showed task dependent lower activation compared to normal performance subjects in PFC region Specifically HP groups showed lower activation in left dorsolateral PFC (DLPFC) region during performance of auditory task whereas during visual task they showed lower activation in the right DLPFC. After accounting for learning style, we found a correlation between visual and aural VARK score and level of activation in the PFC. Subjects with higher visual VARK scores displayed lower activation during auditory task in left DLPFC, while those with higher visual scores exhibited higher activation during visual task in bilateral DLPFC. During performance of auditory task, HP subjects had higher visual VARK scores compared to NP subjects indicating an effect of learning style on the task performance and activation. The results of this study show that learning style and task performance can influence PFC activation, with applications toward neurological implications of learning style and populations with deficits in auditory or visual processing. PMID:29870536

  14. Top-Down Modulation of Auditory-Motor Integration during Speech Production: The Role of Working Memory.

    PubMed

    Guo, Zhiqiang; Wu, Xiuqin; Li, Weifeng; Jones, Jeffery A; Yan, Nan; Sheft, Stanley; Liu, Peng; Liu, Hanjun

    2017-10-25

    Although working memory (WM) is considered as an emergent property of the speech perception and production systems, the role of WM in sensorimotor integration during speech processing is largely unknown. We conducted two event-related potential experiments with female and male young adults to investigate the contribution of WM to the neurobehavioural processing of altered auditory feedback during vocal production. A delayed match-to-sample task that required participants to indicate whether the pitch feedback perturbations they heard during vocalizations in test and sample sequences matched, elicited significantly larger vocal compensations, larger N1 responses in the left middle and superior temporal gyrus, and smaller P2 responses in the left middle and superior temporal gyrus, inferior parietal lobule, somatosensory cortex, right inferior frontal gyrus, and insula compared with a control task that did not require memory retention of the sequence of pitch perturbations. On the other hand, participants who underwent extensive auditory WM training produced suppressed vocal compensations that were correlated with improved auditory WM capacity, and enhanced P2 responses in the left middle frontal gyrus, inferior parietal lobule, right inferior frontal gyrus, and insula that were predicted by pretraining auditory WM capacity. These findings indicate that WM can enhance the perception of voice auditory feedback errors while inhibiting compensatory vocal behavior to prevent voice control from being excessively influenced by auditory feedback. This study provides the first evidence that auditory-motor integration for voice control can be modulated by top-down influences arising from WM, rather than modulated exclusively by bottom-up and automatic processes. SIGNIFICANCE STATEMENT One outstanding question that remains unsolved in speech motor control is how the mismatch between predicted and actual voice auditory feedback is detected and corrected. The present study provides two lines of converging evidence, for the first time, that working memory cannot only enhance the perception of vocal feedback errors but also exert inhibitory control over vocal motor behavior. These findings represent a major advance in our understanding of the top-down modulatory mechanisms that support the detection and correction of prediction-feedback mismatches during sensorimotor control of speech production driven by working memory. Rather than being an exclusively bottom-up and automatic process, auditory-motor integration for voice control can be modulated by top-down influences arising from working memory. Copyright © 2017 the authors 0270-6474/17/3710324-11$15.00/0.

  15. Auditory Cortical Plasticity Drives Training-Induced Cognitive Changes in Schizophrenia

    PubMed Central

    Dale, Corby L.; Brown, Ethan G.; Fisher, Melissa; Herman, Alexander B.; Dowling, Anne F.; Hinkley, Leighton B.; Subramaniam, Karuna; Nagarajan, Srikantan S.; Vinogradov, Sophia

    2016-01-01

    Schizophrenia is characterized by dysfunction in basic auditory processing, as well as higher-order operations of verbal learning and executive functions. We investigated whether targeted cognitive training of auditory processing improves neural responses to speech stimuli, and how these changes relate to higher-order cognitive functions. Patients with schizophrenia performed an auditory syllable identification task during magnetoencephalography before and after 50 hours of either targeted cognitive training or a computer games control. Healthy comparison subjects were assessed at baseline and after a 10 week no-contact interval. Prior to training, patients (N = 34) showed reduced M100 response in primary auditory cortex relative to healthy participants (N = 13). At reassessment, only the targeted cognitive training patient group (N = 18) exhibited increased M100 responses. Additionally, this group showed increased induced high gamma band activity within left dorsolateral prefrontal cortex immediately after stimulus presentation, and later in bilateral temporal cortices. Training-related changes in neural activity correlated with changes in executive function scores but not verbal learning and memory. These data suggest that computerized cognitive training that targets auditory and verbal learning operations enhances both sensory responses in auditory cortex as well as engagement of prefrontal regions, as indexed during an auditory processing task with low demands on working memory. This neural circuit enhancement is in turn associated with better executive function but not verbal memory. PMID:26152668

  16. Trial-to-Trial Carryover in Auditory Short-Term Memory

    ERIC Educational Resources Information Center

    Visscher, Kristina M.; Kahana, Michael J.; Sekuler, Robert

    2009-01-01

    Using a short-term recognition memory task, the authors evaluated the carryover across trials of 2 types of auditory information: the characteristics of individual study sounds (item information) and the relationships between the study sounds (study set homogeneity). On each trial, subjects heard 2 successive broadband study sounds and then…

  17. Mechanisms of Memory Retrieval in Slow-Wave Sleep

    PubMed Central

    Cairney, Scott A; Sobczak, Justyna M; Lindsay, Shane

    2017-01-01

    Abstract Study Objectives Memories are strengthened during sleep. The benefits of sleep for memory can be enhanced by re-exposing the sleeping brain to auditory cues; a technique known as targeted memory reactivation (TMR). Prior studies have not assessed the nature of the retrieval mechanisms underpinning TMR: the matching process between auditory stimuli encountered during sleep and previously encoded memories. We carried out two experiments to address this issue. Methods In Experiment 1, participants associated words with verbal and nonverbal auditory stimuli before an overnight interval in which subsets of these stimuli were replayed in slow-wave sleep. We repeated this paradigm in Experiment 2 with the single difference that the gender of the verbal auditory stimuli was switched between learning and sleep. Results In Experiment 1, forgetting of cued (vs. noncued) associations was reduced by TMR with verbal and nonverbal cues to similar extents. In Experiment 2, TMR with identical nonverbal cues reduced forgetting of cued (vs. noncued) associations, replicating Experiment 1. However, TMR with nonidentical verbal cues reduced forgetting of both cued and noncued associations. Conclusions These experiments suggest that the memory effects of TMR are influenced by the acoustic overlap between stimuli delivered at training and sleep. Our findings hint at the existence of two processing routes for memory retrieval during sleep. Whereas TMR with acoustically identical cues may reactivate individual associations via simple episodic matching, TMR with nonidentical verbal cues may utilize linguistic decoding mechanisms, resulting in widespread reactivation across a broad category of memories. PMID:28934526

  18. The Staggered Spondaic Word Test. A ten-minute look at the central nervous system through the ears.

    PubMed

    Katz, J; Smith, P S

    1991-01-01

    We have described three major groupings that encompass most auditory processing difficulties. While the problems may be superimposed upon one another in any individual client, each diagnostic sign is closely associated with particular communication and learning disorders. In addition, these behaviors may be related back to the functional anatomy of the regions that are implicated by the SSW test. The auditory-decoding group is deficient in rapid analysis of speech. The vagueness of speech sound knowledge is thought to lead to auditory misunderstanding and confusion. In early life, this may be reflected in the child's articulation. Poor phonic skills that result from this deficit are thought to contribute to their limited reading and spelling abilities. The auditory tolerance-fading memory group is often thought to have severe auditory-processing problems because those in it are highly distracted by background sounds and have poor auditory memories. However, school performance is not far from grade level, and the resulting reading disabilities stem more from limited comprehension than from an inability to sound out the words. Distractibility and poor auditory memory could contribute to the apparent weakness in reading comprehension. Many of the characteristics of the auditory tolerance-fading memory group are similar to those of attention deficit disorder cases. Both groups are associated anatomically with the AC region. The auditory integration cases can be divided into two subgroups. In the first, the subjects exhibit the most severe reading and spelling problems of the three major categories. These individuals closely resemble the classical dyslexics. We presume that this disorder represents a major disruption in auditory-visual integration. The second subgroup has much less severe learning difficulties, which closely follow the pattern of dysfunction of the auditory tolerance-fading memory group. The excellent physiological procedures to which we have been exposed during this Windows on the Brain conference provide a glimpse of the exciting possibilities for studying brain function. However, in working with individuals who have cognitive impairments, the new technology should be validated by standard behavioral tests. In turn, the new techniques will provide those who use behavioral measures with new parameters and concepts to broaden our understanding. For the past quarter of a century, the SSW test has been compared with other behavioral, physiological, and anatomical procedures. Based on the information that has been assembled, we have been able to classify auditory processing disorders into three major categories.(ABSTRACT TRUNCATED AT 400 WORDS)

  19. ERP evaluation of auditory sensory memory systems in adults with intellectual disability.

    PubMed

    Ikeda, Kazunari; Hashimoto, Souichi; Hayashi, Akiko; Kanno, Atsushi

    2009-01-01

    Auditory sensory memory stage can be functionally divided into two subsystems; transient-detector system and permanent feature-detector system (Naatanen, 1992). We assessed these systems in persons with intellectual disability by measuring event-related potentials (ERPs) N1 and mismatch negativity (MMN), which reflect the two auditory subsystems, respectively. Added to these, P3a (an ERP reflecting stage after sensory memory) was evaluated. Either synthesized vowels or simple tones were delivered during a passive oddball paradigm to adults with and without intellectual disability. ERPs were recorded from midline scalp sites (Fz, Cz, and Pz). Relative to control group, participants with the disability exhibited greater N1 latency and less MMN amplitude. The results for N1 amplitude and MMN latency were basically comparable between both groups. IQ scores in participants with the disability revealed no significant relation with N1 and MMN measures, whereas the IQ scores tended to increase significantly as P3a latency reduced. These outcomes suggest that persons with intellectual disability might own discrete malfunctions for the two detector systems in auditory sensory-memory stage. Moreover, the processes following sensory memory might be partly related to a determinant of mental development.

  20. Auditory temporal preparation induced by rhythmic cues during concurrent auditory working memory tasks.

    PubMed

    Cutanda, Diana; Correa, Ángel; Sanabria, Daniel

    2015-06-01

    The present study investigated whether participants can develop temporal preparation driven by auditory isochronous rhythms when concurrently performing an auditory working memory (WM) task. In Experiment 1, participants had to respond to an auditory target presented after a regular or an irregular sequence of auditory stimuli while concurrently performing a Sternberg-type WM task. Results showed that participants responded faster after regular compared with irregular rhythms and that this effect was not affected by WM load; however, the lack of a significant main effect of WM load made it difficult to draw any conclusion regarding the influence of the dual-task manipulation in Experiment 1. In order to enhance dual-task interference, Experiment 2 combined the auditory rhythm procedure with an auditory N-Back task, which required WM updating (monitoring and coding of the information) and was presumably more demanding than the mere rehearsal of the WM task used in Experiment 1. Results now clearly showed dual-task interference effects (slower reaction times [RTs] in the high- vs. the low-load condition). However, such interference did not affect temporal preparation induced by rhythms, with faster RTs after regular than after irregular sequences in the high-load and low-load conditions. These results revealed that secondary tasks demanding memory updating, relative to tasks just demanding rehearsal, produced larger interference effects on overall RTs in the auditory rhythm task. Nevertheless, rhythm regularity exerted a strong temporal preparation effect that survived the interference of the WM task even when both tasks competed for processing resources within the auditory modality. (c) 2015 APA, all rights reserved).

  1. Interactions of cognitive and auditory abilities in congenitally blind individuals.

    PubMed

    Rokem, Ariel; Ahissar, Merav

    2009-02-01

    Congenitally blind individuals have been found to show superior performance in perceptual and memory tasks. In the present study, we asked whether superior stimulus encoding could account for performance in memory tasks. We characterized the performance of a group of congenitally blind individuals on a series of auditory, memory and executive cognitive tasks and compared their performance to that of sighted controls matched for age, education and musical training. As expected, we found superior verbal spans among congenitally blind individuals. Moreover, we found superior speech perception, measured by resilience to noise, and superior auditory frequency discrimination. However, when memory span was measured under conditions of equivalent speech perception, by adjusting the signal to noise ratio for each individual to the same level of perceptual difficulty (80% correct), the advantage in memory span was completely eliminated. Moreover, blind individuals did not possess any advantage in cognitive executive functions, such as manipulation of items in memory and math abilities. We propose that the short-term memory advantage of blind individuals results from better stimulus encoding, rather than from superiority at subsequent processing stages.

  2. Clinical utility of the Wechsler Memory Scale - Fourth Edition (WMS-IV) in patients with intractable temporal lobe epilepsy.

    PubMed

    Bouman, Zita; Elhorst, Didi; Hendriks, Marc P H; Kessels, Roy P C; Aldenkamp, Albert P

    2016-02-01

    The Wechsler Memory Scale (WMS) is one of the most widely used test batteries to assess memory functions in patients with brain dysfunctions of different etiologies. This study examined the clinical validation of the Dutch Wechsler Memory Scale - Fourth Edition (WMS-IV-NL) in patients with temporal lobe epilepsy (TLE). The sample consisted of 75 patients with intractable TLE, who were eligible for epilepsy surgery, and 77 demographically matched healthy controls. All participants were examined with the WMS-IV-NL. Patients with TLE performed significantly worse than healthy controls on all WMS-IV-NL indices and subtests (p<.01), with the exception of the Visual Working Memory Index including its contributing subtests, as well as the subtests Logical Memory I, Verbal Paired Associates I, and Designs II. In addition, patients with mesiotemporal abnormalities performed significantly worse than patients with lateral temporal abnormalities on the subtests Logical Memory I and Designs II and all the indices (p<.05), with the exception of the Auditory Memory Index and Visual Working Memory Index. Patients with either a left or a right temporal focus performed equally on all WMS-IV-NL indices and subtests (F(15, 50)=.70, p=.78), as well as the Auditory-Visual discrepancy score (t(64)=-1.40, p=.17). The WMS-IV-NL is capable of detecting memory problems in patients with TLE, indicating that it is a sufficiently valid memory battery. Furthermore, the findings support previous research showing that the WMS-IV has limited value in identifying material-specific memory deficits in presurgical patients with TLE. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Short-term memory for event duration: modality specificity and goal dependency.

    PubMed

    Takahashi, Kohske; Watanabe, Katsumi

    2012-11-01

    Time perception is involved in various cognitive functions. This study investigated the characteristics of short-term memory for event duration by examining how the length of the retention period affects inter- and intramodal duration judgment. On each trial, a sample stimulus was followed by a comparison stimulus, after a variable delay period (0.5-5 s). The sample and comparison stimuli were presented in the visual or auditory modality. The participants determined whether the comparison stimulus was longer or shorter than the sample stimulus. The distortion pattern of subjective duration during the delay period depended on the sensory modality of the comparison stimulus but was not affected by that of the sample stimulus. When the comparison stimulus was visually presented, the retained duration of the sample stimulus was shortened as the delay period increased. Contrarily, when the comparison stimulus was presented in the auditory modality, the delay period had little to no effect on the retained duration. Furthermore, whenever the participants did not know the sensory modality of the comparison stimulus beforehand, the effect of the delay period disappeared. These results suggest that the memory process for event duration is specific to sensory modality and that its performance is determined depending on the sensory modality in which the retained duration will be used subsequently.

  4. On the Etiology of Listening Difficulties in Noise Despite Clinically Normal Audiograms

    PubMed Central

    2017-01-01

    Many people with difficulties following conversations in noisy settings have “clinically normal” audiograms, that is, tone thresholds better than 20 dB HL from 0.1 to 8 kHz. This review summarizes the possible causes of such difficulties, and examines established as well as promising new psychoacoustic and electrophysiologic approaches to differentiate between them. Deficits at the level of the auditory periphery are possible even if thresholds remain around 0 dB HL, and become probable when they reach 10 to 20 dB HL. Extending the audiogram beyond 8 kHz can identify early signs of noise-induced trauma to the vulnerable basal turn of the cochlea, and might point to “hidden” losses at lower frequencies that could compromise speech reception in noise. Listening difficulties can also be a consequence of impaired central auditory processing, resulting from lesions affecting the auditory brainstem or cortex, or from abnormal patterns of sound input during developmental sensitive periods and even in adulthood. Such auditory processing disorders should be distinguished from (cognitive) linguistic deficits, and from problems with attention or working memory that may not be specific to the auditory modality. Improved diagnosis of the causes of listening difficulties in noise should lead to better treatment outcomes, by optimizing auditory training procedures to the specific deficits of individual patients, for example. PMID:28002080

  5. Auditory attention enhances processing of positive and negative words in inferior and superior prefrontal cortex.

    PubMed

    Wegrzyn, Martin; Herbert, Cornelia; Ethofer, Thomas; Flaisch, Tobias; Kissler, Johanna

    2017-11-01

    Visually presented emotional words are processed preferentially and effects of emotional content are similar to those of explicit attention deployment in that both amplify visual processing. However, auditory processing of emotional words is less well characterized and interactions between emotional content and task-induced attention have not been fully understood. Here, we investigate auditory processing of emotional words, focussing on how auditory attention to positive and negative words impacts their cerebral processing. A Functional magnetic resonance imaging (fMRI) study manipulating word valence and attention allocation was performed. Participants heard negative, positive and neutral words to which they either listened passively or attended by counting negative or positive words, respectively. Regardless of valence, active processing compared to passive listening increased activity in primary auditory cortex, left intraparietal sulcus, and right superior frontal gyrus (SFG). The attended valence elicited stronger activity in left inferior frontal gyrus (IFG) and left SFG, in line with these regions' role in semantic retrieval and evaluative processing. No evidence for valence-specific attentional modulation in auditory regions or distinct valence-specific regional activations (i.e., negative > positive or positive > negative) was obtained. Thus, allocation of auditory attention to positive and negative words can substantially increase their processing in higher-order language and evaluative brain areas without modulating early stages of auditory processing. Inferior and superior frontal brain structures mediate interactions between emotional content, attention, and working memory when prosodically neutral speech is processed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Comorbidity of Auditory Processing, Language, and Reading Disorders

    ERIC Educational Resources Information Center

    Sharma, Mridula; Purdy, Suzanne C.; Kelly, Andrea S.

    2009-01-01

    Purpose: The authors assessed comorbidity of auditory processing disorder (APD), language impairment (LI), and reading disorder (RD) in school-age children. Method: Children (N = 68) with suspected APD and nonverbal IQ standard scores of 80 or more were assessed using auditory, language, reading, attention, and memory measures. Auditory processing…

  7. Enhanced Memory Consolidation Via Automatic Sound Stimulation During Non-REM Sleep.

    PubMed

    Leminen, Miika M; Virkkala, Jussi; Saure, Emma; Paajanen, Teemu; Zee, Phyllis C; Santostasi, Giovanni; Hublin, Christer; Müller, Kiti; Porkka-Heiskanen, Tarja; Huotilainen, Minna; Paunio, Tiina

    2017-03-01

    Slow-wave sleep (SWS) slow waves and sleep spindle activity have been shown to be crucial for memory consolidation. Recently, memory consolidation has been causally facilitated in human participants via auditory stimuli phase-locked to SWS slow waves. Here, we aimed to develop a new acoustic stimulus protocol to facilitate learning and to validate it using different memory tasks. Most importantly, the stimulation setup was automated to be applicable for ambulatory home use. Fifteen healthy participants slept 3 nights in the laboratory. Learning was tested with 4 memory tasks (word pairs, serial finger tapping, picture recognition, and face-name association). Additional questionnaires addressed subjective sleep quality and overnight changes in mood. During the stimulus night, auditory stimuli were adjusted and targeted by an unsupervised algorithm to be phase-locked to the negative peak of slow waves in SWS. During the control night no sounds were presented. Results showed that the sound stimulation increased both slow wave (p = .002) and sleep spindle activity (p < .001). When overnight improvement of memory performance was compared between stimulus and control nights, we found a significant effect in word pair task but not in other memory tasks. The stimulation did not affect sleep structure or subjective sleep quality. We showed that the memory effect of the SWS-targeted individually triggered single-sound stimulation is specific to verbal associative memory. Moreover, the ambulatory and automated sound stimulus setup was promising and allows for a broad range of potential follow-up studies in the future. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society].

  8. Mediating Effects of Working Memory in the Relation Between Rapid Automatized Naming and Chinese Reading Comprehension.

    PubMed

    Weng, Xiaoqian; Li, Guangze; Li, Rongbao

    2016-08-01

    This study examined the mediating role of working memory (WM) in the relation between rapid automatized naming (RAN) and Chinese reading comprehension. Three tasks assessing differentially visual and verbal components of WM were programmed by E-prime 2.0. Data collected from 55 Chinese college students were analyzed using correlations and hierarchical regression methods to determine the connection among RAN, reading comprehension, and WM components. Results showed that WM played a significant mediating role in the RAN-reading relation and that auditory WM made stronger contributions than visual WM. Taking into account of the multi-component nature of WM and the specificity of Chinese reading processing, this study discussed the mediating powers of the WM components, particularly auditory WM, further clarifying the possible components involved in the RAN-reading relation and thus providing some insight into the complicated Chinese reading process.

  9. Measures of Working Memory, Sequence Learning, and Speech Recognition in the Elderly.

    ERIC Educational Resources Information Center

    Humes, Larry E.; Floyd, Shari S.

    2005-01-01

    This study describes the measurement of 2 cognitive functions, working-memory capacity and sequence learning, in 2 groups of listeners: young adults with normal hearing and elderly adults with impaired hearing. The measurement of these 2 cognitive abilities with a unique, nonverbal technique capable of auditory, visual, and auditory-visual…

  10. Effects of Presentation Mode on Veridical and False Memory in Individuals with Intellectual Disability

    ERIC Educational Resources Information Center

    Carlin, Michael; Toglia, Michael P.; Belmonte, Colleen; DiMeglio, Chiara

    2012-01-01

    In the present study the effects of visual, auditory, and audio-visual presentation formats on memory for thematically constructed lists were assessed in individuals with intellectual disability and mental age-matched children. The auditory recognition test included target items, unrelated foils, and two types of semantic lures: critical related…

  11. Auditory Pattern Memory: Mechanisms of Tonal Sequence Discrimination by Human Observers

    DTIC Science & Technology

    1988-10-30

    and Creelman (1977) in a study of categorical perception. Tanner’s model included a short-term decaying memory for the acoustic input to the system plus...auditory pattern components, J. &Coust. Soc. 91 Am., 76, 1037- 1044. Macmillan, N. A., Kaplan H. L., & Creelman , C. D. (1977). The psychophysics of

  12. Perceptual and academic patterns of learning-disabled/gifted students.

    PubMed

    Waldron, K A; Saphire, D G

    1992-04-01

    This research explored ways gifted children with learning disabilities perceive and recall auditory and visual input and apply this information to reading, mathematics, and spelling. 24 learning-disabled/gifted children and a matched control group of normally achieving gifted students were tested for oral reading, word recognition and analysis, listening comprehension, and spelling. In mathematics, they were tested for numeration, mental and written computation, word problems, and numerical reasoning. To explore perception and memory skills, students were administered formal tests of visual and auditory memory as well as auditory discrimination of sounds. Their responses to reading and to mathematical computations were further considered for evidence of problems in visual discrimination, visual sequencing, and visual spatial areas. Analyses indicated that these learning-disabled/gifted students were significantly weaker than controls in their decoding skills, in spelling, and in most areas of mathematics. They were also significantly weaker in auditory discrimination and memory, and in visual discrimination, sequencing, and spatial abilities. Conclusions are that these underlying perceptual and memory deficits may be related to students' academic problems.

  13. Memory functions of children born with asymmetric intrauterine growth restriction.

    PubMed

    Geva, Ronny; Eshel, Rina; Leitner, Yael; Fattal-Valevski, Aviva; Harel, Shaul

    2006-10-30

    Learning difficulties are frequently diagnosed in children born with intrauterine growth restriction (IUGR). Models of various animal species with IUGR were studied and demonstrated specific susceptibility and alterations of the hippocampal formation and its related neural structures. The main purpose was to study memory functions of children born with asymmetric IUGR in a large-scale cohort using a long-term prospective paradigm. One hundred and ten infants diagnosed with IUGR were followed-up from birth to 9 years of age. Their performance was compared with a group of 63 children with comparable gestational age and multiple socioeconomic factors. Memory functions (short-term, super- and long-term spans) for different stimuli types (verbal and visual) were evaluated using Visual Auditory Digit Span tasks (VADS), Rey Auditory Verbal Learning Test (Rey-AVLT), and Rey Osterrieth Complex Figure Test (ROCF). Children with IUGR had short-term memory difficulties that hindered both serial verbal processing system and simultaneous processing of high-load visuo-spatial stimuli. The difficulties were not related to prematurity, neonatal complications or growth catch-up, but were augmented by lower maternal education. Recognition skills and benefits from reiteration, typically affected by hippocampal dysfunction, were preserved in both groups. Memory profile of children born with IUGR is characterized primarily by a short-term memory deficit that does not necessarily comply with a typical hippocampal deficit, but rather may reflect an executive short-term memory deficit characteristic of anterior hippocampal-prefrontal network. Implications for cognitive intervention are discussed.

  14. A Melodic Contour Repeatedly Experienced by Human Near-Term Fetuses Elicits a Profound Cardiac Reaction One Month after Birth

    PubMed Central

    Granier-Deferre, Carolyn; Bassereau, Sophie; Ribeiro, Aurélie; Jacquet, Anne-Yvonne; DeCasper, Anthony J.

    2011-01-01

    Background Human hearing develops progressively during the last trimester of gestation. Near-term fetuses can discriminate acoustic features, such as frequencies and spectra, and process complex auditory streams. Fetal and neonatal studies show that they can remember frequently recurring sounds. However, existing data can only show retention intervals up to several days after birth. Methodology/Principal Findings Here we show that auditory memories can last at least six weeks. Experimental fetuses were given precisely controlled exposure to a descending piano melody twice daily during the 35th, 36th, and 37th weeks of gestation. Six weeks later we assessed the cardiac responses of 25 exposed infants and 25 naive control infants, while in quiet sleep, to the descending melody and to an ascending control piano melody. The melodies had precisely inverse contours, but similar spectra, identical duration, tempo and rhythm, thus, almost identical amplitude envelopes. All infants displayed a significant heart rate change. In exposed infants, the descending melody evoked a cardiac deceleration that was twice larger than the decelerations elicited by the ascending melody and by both melodies in control infants. Conclusions/Significance Thus, 3-weeks of prenatal exposure to a specific melodic contour affects infants ‘auditory processing’ or perception, i.e., impacts the autonomic nervous system at least six weeks later, when infants are 1-month old. Our results extend the retention interval over which a prenatally acquired memory of a specific sound stream can be observed from 3–4 days to six weeks. The long-term memory for the descending melody is interpreted in terms of enduring neurophysiological tuning and its significance for the developmental psychobiology of attention and perception, including early speech perception, is discussed. PMID:21383836

  15. Beyond Words: Phonological Short-Term Memory and Syntactic Impairment in Specific Language Impairment

    ERIC Educational Resources Information Center

    Bishop, Dorothy V. M.

    2006-01-01

    The assessment of nonword repetition in children goes back at least to 1974, when the Goldman-Fristoe-Woodcock Auditory Skills Battery was published, including a subtest (Sound Mimicry) assessing nonword repetition (Goldman, Fristoe, & Woodcock, 1974). Nevertheless, it was not until 20 years later, when Gathercole and Baddeley (1990) reported a…

  16. Auditory Task Irrelevance: A Basis for Inattentional Deafness

    PubMed Central

    Scheer, Menja; Bülthoff, Heinrich H.; Chuang, Lewis L.

    2018-01-01

    Objective This study investigates the neural basis of inattentional deafness, which could result from task irrelevance in the auditory modality. Background Humans can fail to respond to auditory alarms under high workload situations. This failure, termed inattentional deafness, is often attributed to high workload in the visual modality, which reduces one’s capacity for information processing. Besides this, our capacity for processing auditory information could also be selectively diminished if there is no obvious task relevance in the auditory channel. This could be another contributing factor given the rarity of auditory warnings. Method Forty-eight participants performed a visuomotor tracking task while auditory stimuli were presented: a frequent pure tone, an infrequent pure tone, and infrequent environmental sounds. Participants were required either to respond to the presentation of the infrequent pure tone (auditory task-relevant) or not (auditory task-irrelevant). We recorded and compared the event-related potentials (ERPs) that were generated by environmental sounds, which were always task-irrelevant for both groups. These ERPs served as an index for our participants’ awareness of the task-irrelevant auditory scene. Results Manipulation of auditory task relevance influenced the brain’s response to task-irrelevant environmental sounds. Specifically, the late novelty-P3 to irrelevant environmental sounds, which underlies working memory updating, was found to be selectively enhanced by auditory task relevance independent of visuomotor workload. Conclusion Task irrelevance in the auditory modality selectively reduces our brain’s responses to unexpected and irrelevant sounds regardless of visuomotor workload. Application Presenting relevant auditory information more often could mitigate the risk of inattentional deafness. PMID:29578754

  17. Molecular mechanisms of fear learning and memory.

    PubMed

    Johansen, Joshua P; Cain, Christopher K; Ostroff, Linnaea E; LeDoux, Joseph E

    2011-10-28

    Pavlovian fear conditioning is a particularly useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here, we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Collectively, this body of research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals and potentially for understanding fear-related disorders, such as PTSD and phobias. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Phrase-Final Words in Greek Storytelling Speech: A Study on the Effect of a Culturally-Specific Prosodic Feature on Short-Term Memory.

    PubMed

    Loutrari, Ariadne; Tselekidou, Freideriki; Proios, Hariklia

    2018-02-27

    Prosodic patterns of speech appear to make a critical contribution to memory-related processing. We considered the case of a previously unexplored prosodic feature of Greek storytelling and its effect on free recall in thirty typically developing children between the ages of 10 and 12 years, using short ecologically valid auditory stimuli. The combination of a falling pitch contour and, more notably, extensive final-syllable vowel lengthening, which gives rise to the prosodic feature in question, led to statistically significantly higher performance in comparison to neutral phrase-final prosody. Number of syllables in target words did not reveal substantial difference in performance. The current study presents a previously undocumented culturally-specific prosodic pattern and its effect on short-term memory.

  19. The role of temporal structure in the investigation of sensory memory, auditory scene analysis, and speech perception: a healthy-aging perspective.

    PubMed

    Rimmele, Johanna Maria; Sussman, Elyse; Poeppel, David

    2015-02-01

    Listening situations with multiple talkers or background noise are common in everyday communication and are particularly demanding for older adults. Here we review current research on auditory perception in aging individuals in order to gain insights into the challenges of listening under noisy conditions. Informationally rich temporal structure in auditory signals--over a range of time scales from milliseconds to seconds--renders temporal processing central to perception in the auditory domain. We discuss the role of temporal structure in auditory processing, in particular from a perspective relevant for hearing in background noise, and focusing on sensory memory, auditory scene analysis, and speech perception. Interestingly, these auditory processes, usually studied in an independent manner, show considerable overlap of processing time scales, even though each has its own 'privileged' temporal regimes. By integrating perspectives on temporal structure processing in these three areas of investigation, we aim to highlight similarities typically not recognized. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The role of temporal structure in the investigation of sensory memory, auditory scene analysis, and speech perception: A healthy-aging perspective

    PubMed Central

    Rimmele, Johanna Maria; Sussman, Elyse; Poeppel, David

    2014-01-01

    Listening situations with multiple talkers or background noise are common in everyday communication and are particularly demanding for older adults. Here we review current research on auditory perception in aging individuals in order to gain insights into the challenges of listening under noisy conditions. Informationally rich temporal structure in auditory signals - over a range of time scales from milliseconds to seconds - renders temporal processing central to perception in the auditory domain. We discuss the role of temporal structure in auditory processing, in particular from a perspective relevant for hearing in background noise, and focusing on sensory memory, auditory scene analysis, and speech perception. Interestingly, these auditory processes, usually studied in an independent manner, show considerable overlap of processing time scales, even though each has its own ‚privileged‘ temporal regimes. By integrating perspectives on temporal structure processing in these three areas of investigation, we aim to highlight similarities typically not recognized. PMID:24956028

  1. Sound tuning of amygdala plasticity in auditory fear conditioning

    PubMed Central

    Park, Sungmo; Lee, Junuk; Park, Kyungjoon; Kim, Jeongyeon; Song, Beomjong; Hong, Ingie; Kim, Jieun; Lee, Sukwon; Choi, Sukwoo

    2016-01-01

    Various auditory tones have been used as conditioned stimuli (CS) for fear conditioning, but researchers have largely neglected the effect that different types of auditory tones may have on fear memory processing. Here, we report that at lateral amygdala (LA) synapses (a storage site for fear memory), conditioning with different types of auditory CSs (2.8 kHz tone, white noise, FM tone) recruits distinct forms of long-term potentiation (LTP) and inserts calcium permeable AMPA receptor (CP-AMPAR) for variable periods. White noise or FM tone conditioning produced brief insertion (<6 hr after conditioning) of CP-AMPARs, whereas 2.8 kHz tone conditioning induced more persistent insertion (≥6 hr). Consistently, conditioned fear to 2.8 kHz tone but not to white noise or FM tones was erased by reconsolidation-update (which depends on the insertion of CP-AMPARs at LA synapses) when it was performed 6 hr after conditioning. Our data suggest that conditioning with different auditory CSs recruits distinct forms of LA synaptic plasticity, resulting in more malleable fear memory to some tones than to others. PMID:27488731

  2. Auditory short-term memory activation during score reading.

    PubMed

    Simoens, Veerle L; Tervaniemi, Mari

    2013-01-01

    Performing music on the basis of reading a score requires reading ahead of what is being played in order to anticipate the necessary actions to produce the notes. Score reading thus not only involves the decoding of a visual score and the comparison to the auditory feedback, but also short-term storage of the musical information due to the delay of the auditory feedback during reading ahead. This study investigates the mechanisms of encoding of musical information in short-term memory during such a complicated procedure. There were three parts in this study. First, professional musicians participated in an electroencephalographic (EEG) experiment to study the slow wave potentials during a time interval of short-term memory storage in a situation that requires cross-modal translation and short-term storage of visual material to be compared with delayed auditory material, as it is the case in music score reading. This delayed visual-to-auditory matching task was compared with delayed visual-visual and auditory-auditory matching tasks in terms of EEG topography and voltage amplitudes. Second, an additional behavioural experiment was performed to determine which type of distractor would be the most interfering with the score reading-like task. Third, the self-reported strategies of the participants were also analyzed. All three parts of this study point towards the same conclusion according to which during music score reading, the musician most likely first translates the visual score into an auditory cue, probably starting around 700 or 1300 ms, ready for storage and delayed comparison with the auditory feedback.

  3. Auditory Short-Term Memory Activation during Score Reading

    PubMed Central

    Simoens, Veerle L.; Tervaniemi, Mari

    2013-01-01

    Performing music on the basis of reading a score requires reading ahead of what is being played in order to anticipate the necessary actions to produce the notes. Score reading thus not only involves the decoding of a visual score and the comparison to the auditory feedback, but also short-term storage of the musical information due to the delay of the auditory feedback during reading ahead. This study investigates the mechanisms of encoding of musical information in short-term memory during such a complicated procedure. There were three parts in this study. First, professional musicians participated in an electroencephalographic (EEG) experiment to study the slow wave potentials during a time interval of short-term memory storage in a situation that requires cross-modal translation and short-term storage of visual material to be compared with delayed auditory material, as it is the case in music score reading. This delayed visual-to-auditory matching task was compared with delayed visual-visual and auditory-auditory matching tasks in terms of EEG topography and voltage amplitudes. Second, an additional behavioural experiment was performed to determine which type of distractor would be the most interfering with the score reading-like task. Third, the self-reported strategies of the participants were also analyzed. All three parts of this study point towards the same conclusion according to which during music score reading, the musician most likely first translates the visual score into an auditory cue, probably starting around 700 or 1300 ms, ready for storage and delayed comparison with the auditory feedback. PMID:23326487

  4. Speech Auditory Alerts Promote Memory for Alerted Events in a Video-Simulated Self-Driving Car Ride.

    PubMed

    Nees, Michael A; Helbein, Benji; Porter, Anna

    2016-05-01

    Auditory displays could be essential to helping drivers maintain situation awareness in autonomous vehicles, but to date, few or no studies have examined the effectiveness of different types of auditory displays for this application scenario. Recent advances in the development of autonomous vehicles (i.e., self-driving cars) have suggested that widespread automation of driving may be tenable in the near future. Drivers may be required to monitor the status of automation programs and vehicle conditions as they engage in secondary leisure or work tasks (entertainment, communication, etc.) in autonomous vehicles. An experiment compared memory for alerted events-a component of Level 1 situation awareness-using speech alerts, auditory icons, and a visual control condition during a video-simulated self-driving car ride with a visual secondary task. The alerts gave information about the vehicle's operating status and the driving scenario. Speech alerts resulted in better memory for alerted events. Both auditory display types resulted in less perceived effort devoted toward the study tasks but also greater perceived annoyance with the alerts. Speech auditory displays promoted Level 1 situation awareness during a simulation of a ride in a self-driving vehicle under routine conditions, but annoyance remains a concern with auditory displays. Speech auditory displays showed promise as a means of increasing Level 1 situation awareness of routine scenarios during an autonomous vehicle ride with an unrelated secondary task. © 2016, Human Factors and Ergonomics Society.

  5. Mechanisms of Memory Retrieval in Slow-Wave Sleep.

    PubMed

    Cairney, Scott A; Sobczak, Justyna M; Lindsay, Shane; Gaskell, M Gareth

    2017-09-01

    Memories are strengthened during sleep. The benefits of sleep for memory can be enhanced by re-exposing the sleeping brain to auditory cues; a technique known as targeted memory reactivation (TMR). Prior studies have not assessed the nature of the retrieval mechanisms underpinning TMR: the matching process between auditory stimuli encountered during sleep and previously encoded memories. We carried out two experiments to address this issue. In Experiment 1, participants associated words with verbal and nonverbal auditory stimuli before an overnight interval in which subsets of these stimuli were replayed in slow-wave sleep. We repeated this paradigm in Experiment 2 with the single difference that the gender of the verbal auditory stimuli was switched between learning and sleep. In Experiment 1, forgetting of cued (vs. noncued) associations was reduced by TMR with verbal and nonverbal cues to similar extents. In Experiment 2, TMR with identical nonverbal cues reduced forgetting of cued (vs. noncued) associations, replicating Experiment 1. However, TMR with nonidentical verbal cues reduced forgetting of both cued and noncued associations. These experiments suggest that the memory effects of TMR are influenced by the acoustic overlap between stimuli delivered at training and sleep. Our findings hint at the existence of two processing routes for memory retrieval during sleep. Whereas TMR with acoustically identical cues may reactivate individual associations via simple episodic matching, TMR with nonidentical verbal cues may utilize linguistic decoding mechanisms, resulting in widespread reactivation across a broad category of memories. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society].

  6. Strategy in short-term memory for pictures in childhood: a near-infrared spectroscopy study.

    PubMed

    Sanefuji, Masafumi; Takada, Yui; Kimura, Naoko; Torisu, Hiroyuki; Kira, Ryutaro; Ishizaki, Yoshito; Hara, Toshiro

    2011-02-01

    In Baddeley's working memory model, verbalizable visual material such as pictures are recoded into a phonological form and then rehearsed, while auditory material is rehearsed directly. The recoding and rehearsal processes are mediated by articulatory control process in the left ventrolateral prefrontal cortex (VLPFC). Developmentally, the phonological strategy for serially-presented visual material emerges around 7 years of age, while that for auditory material is consistently present by 4 years of age. However, the strategy change may actually be correlated with memory ability as this usually increases with age. To investigate the relationship between the strategy for pictures and memory ability, we monitored the left VLPFC activation in 5 to 11 year-old children during free recall of visually- or auditorily-presented familiar objects using event-related near-infrared spectroscopy. We hypothesized that the phonological strategy of rehearsal and recoding for visual material would provoke greater activation than only rehearsal for auditory material in the left VLPFC. Therefore, we presumed that the activation difference for visual material compared with auditory material in the left VLPFC may represent the tendency to use a phonological strategy. We found that the activation difference in the left VLPFC showed a significant positive correlation with memory ability but not with age, suggesting that children with high memory ability make more use of phonological strategy for pictures. The present study provides functional evidence that the strategy in short-term memory for pictures shifts gradually from non-phonological to phonological as memory ability increases in childhood. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Audiovisual integration facilitates monkeys' short-term memory.

    PubMed

    Bigelow, James; Poremba, Amy

    2016-07-01

    Many human behaviors are known to benefit from audiovisual integration, including language and communication, recognizing individuals, social decision making, and memory. Exceptionally little is known about the contributions of audiovisual integration to behavior in other primates. The current experiment investigated whether short-term memory in nonhuman primates is facilitated by the audiovisual presentation format. Three macaque monkeys that had previously learned an auditory delayed matching-to-sample (DMS) task were trained to perform a similar visual task, after which they were tested with a concurrent audiovisual DMS task with equal proportions of auditory, visual, and audiovisual trials. Parallel to outcomes in human studies, accuracy was higher and response times were faster on audiovisual trials than either unisensory trial type. Unexpectedly, two subjects exhibited superior unimodal performance on auditory trials, a finding that contrasts with previous studies, but likely reflects their training history. Our results provide the first demonstration of a bimodal memory advantage in nonhuman primates, lending further validation to their use as a model for understanding audiovisual integration and memory processing in humans.

  8. Implications of differences of echoic and iconic memory for the design of multimodal displays

    NASA Astrophysics Data System (ADS)

    Glaser, Daniel Shields

    It has been well documented that dual-task performance is more accurate when each task is based on a different sensory modality. It is also well documented that the memory for each sense has unequal durations, particularly visual (iconic) and auditory (echoic) sensory memory. In this dissertation I address whether differences in sensory memory (e.g. iconic vs. echoic) duration have implications for the design of a multimodal display. Since echoic memory persists for seconds in contrast to iconic memory which persists only for milliseconds, one of my hypotheses was that in a visual-auditory dual task condition, performance will be better if the visual task is completed before the auditory task than vice versa. In Experiment 1 I investigated whether the ability to recall multi-modal stimuli is affected by recall order, with each mode being responded to separately. In Experiment 2, I investigated the effects of stimulus order and recall order on the ability to recall information from a multi-modal presentation. In Experiment 3 I investigated the effect of presentation order using a more realistic task. In Experiment 4 I investigated whether manipulating the presentation order of stimuli of different modalities improves humans' ability to combine the information from the two modalities in order to make decision based on pre-learned rules. As hypothesized, accuracy was greater when visual stimuli were responded to first and auditory stimuli second. Also as hypothesized, performance was improved by not presenting both sequences at the same time, limiting the perceptual load. Contrary to my expectations, overall performance was better when a visual sequence was presented before the audio sequence. Though presenting a visual sequence prior to an auditory sequence lengthens the visual retention interval, it also provides time for visual information to be recoded to a more robust form without disruption. Experiment 4 demonstrated that decision making requiring the integration of visual and auditory information is enhanced by reducing workload and promoting a strategic use of echoic memory. A framework for predicting Experiment 1-4 results is proposed and evaluated.

  9. Brain activity is related to individual differences in the number of items stored in auditory short-term memory for pitch: evidence from magnetoencephalography.

    PubMed

    Grimault, Stephan; Nolden, Sophie; Lefebvre, Christine; Vachon, François; Hyde, Krista; Peretz, Isabelle; Zatorre, Robert; Robitaille, Nicolas; Jolicoeur, Pierre

    2014-07-01

    We used magnetoencephalography (MEG) to examine brain activity related to the maintenance of non-verbal pitch information in auditory short-term memory (ASTM). We focused on brain activity that increased with the number of items effectively held in memory by the participants during the retention interval of an auditory memory task. We used very simple acoustic materials (i.e., pure tones that varied in pitch) that minimized activation from non-ASTM related systems. MEG revealed neural activity in frontal, temporal, and parietal cortices that increased with a greater number of items effectively held in memory by the participants during the maintenance of pitch representations in ASTM. The present results reinforce the functional role of frontal and temporal cortices in the retention of pitch information in ASTM. This is the first MEG study to provide both fine spatial localization and temporal resolution on the neural mechanisms of non-verbal ASTM for pitch in relation to individual differences in the capacity of ASTM. This research contributes to a comprehensive understanding of the mechanisms mediating the representation and maintenance of basic non-verbal auditory features in the human brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The Influence of Auditory Short-Term Memory on Behavior Problem Development

    ERIC Educational Resources Information Center

    Low, Justin; Keith, Timothy

    2015-01-01

    The purpose of this research was to determine the influence of two subcomponents of auditory short-term memory on the developmental trajectories of behavior problems. The sample included 7,058 children from the NLSY79--Children and Young Adult survey between the ages 5 and 14 years. Results suggested that anxious/depressed behavior increases…

  11. Children's Auditory Working Memory Performance in Degraded Listening Conditions

    ERIC Educational Resources Information Center

    Osman, Homira; Sullivan, Jessica R.

    2014-01-01

    Purpose: The objectives of this study were to determine (a) whether school-age children with typical hearing demonstrate poorer auditory working memory performance in multitalker babble at degraded signal-to-noise ratios than in quiet; and (b) whether the amount of cognitive demand of the task contributed to differences in performance in noise. It…

  12. The Development of Auditory Sequential Memory in Young Black and White Children.

    ERIC Educational Resources Information Center

    Hurley, Oliver L.; And Others

    The question of whether Black children "peak" earlier than White children in auditory sequential memory (ASM) was investigated in 122 Black children and 120 White children in grades k-3 in two racially mixed schools in a large southern community. Each S was given the ASM subtest of the Illinois Test of Psycholinguistic Abilities. Results…

  13. Writing Tasks and Immediate Auditory Memory in Peruvian Schoolchildren

    ERIC Educational Resources Information Center

    Ventura-León, José Luís; Caycho, Tomás

    2017-01-01

    The purpose of the study is to determine the relationship between a group of writing tasks and the immediate auditory memory, as well as to establish differences according to sex and level of study. Two hundred and three schoolchildren of fifth and sixth grade of elementary education from Lima (Peru) participated; they were selected by a…

  14. Retrosplenial Cortex Is Required for the Retrieval of Remote Memory for Auditory Cues

    ERIC Educational Resources Information Center

    Todd, Travis P.; Mehlman, Max L.; Keene, Christopher S.; DeAngeli, Nicole E.; Bucci, David J.

    2016-01-01

    The retrosplenial cortex (RSC) has a well-established role in contextual and spatial learning and memory, consistent with its known connectivity with visuo-spatial association areas. In contrast, RSC appears to have little involvement with delay fear conditioning to an auditory cue. However, all previous studies have examined the contribution of…

  15. Dopamine-Modulated Recurrent Corticoefferent Feedback in Primary Sensory Cortex Promotes Detection of Behaviorally Relevant Stimuli

    PubMed Central

    Handschuh, Juliane

    2014-01-01

    Dopaminergic neurotransmission in primary auditory cortex (AI) has been shown to be involved in learning and memory functions. Moreover, dopaminergic projections and D1/D5 receptor distributions display a layer-dependent organization, suggesting specific functions in the cortical circuitry. However, the circuit effects of dopaminergic neurotransmission in sensory cortex and their possible roles in perception, learning, and memory are largely unknown. Here, we investigated layer-specific circuit effects of dopaminergic neuromodulation using current source density (CSD) analysis in AI of Mongolian gerbils. Pharmacological stimulation of D1/D5 receptors increased auditory-evoked synaptic currents in infragranular layers, prolonging local thalamocortical input via positive feedback between infragranular output and granular input. Subsequently, dopamine promoted sustained cortical activation by prolonged recruitment of long-range corticocortical networks. A detailed circuit analysis combining layer-specific intracortical microstimulation (ICMS), CSD analysis, and pharmacological cortical silencing revealed that cross-laminar feedback enhanced by dopamine relied on a positive, fast-acting recurrent corticoefferent loop, most likely relayed via local thalamic circuits. Behavioral signal detection analysis further showed that activation of corticoefferent output by infragranular ICMS, which mimicked auditory activation under dopaminergic influence, was most effective in eliciting a behaviorally detectable signal. Our results show that D1/D5-mediated dopaminergic modulation in sensory cortex regulates positive recurrent corticoefferent feedback, which enhances states of high, persistent activity in sensory cortex evoked by behaviorally relevant stimuli. In boosting horizontal network interactions, this potentially promotes the readout of task-related information from cortical synapses and improves behavioral stimulus detection. PMID:24453315

  16. Neuroanatomic organization of sound memory in humans.

    PubMed

    Kraut, Michael A; Pitcock, Jeffery A; Calhoun, Vince; Li, Juan; Freeman, Thomas; Hart, John

    2006-11-01

    The neural interface between sensory perception and memory is a central issue in neuroscience, particularly initial memory organization following perceptual analyses. We used functional magnetic resonance imaging to identify anatomic regions extracting initial auditory semantic memory information related to environmental sounds. Two distinct anatomic foci were detected in the right superior temporal gyrus when subjects identified sounds representing either animals or threatening items. Threatening animal stimuli elicited signal changes in both foci, suggesting a distributed neural representation. Our results demonstrate both category- and feature-specific responses to nonverbal sounds in early stages of extracting semantic memory information from these sounds. This organization allows for these category-feature detection nodes to extract early, semantic memory information for efficient processing of transient sound stimuli. Neural regions selective for threatening sounds are similar to those of nonhuman primates, demonstrating semantic memory organization for basic biological/survival primitives are present across species.

  17. The perception of prosody and associated auditory cues in early-implanted children: the role of auditory working memory and musical activities.

    PubMed

    Torppa, Ritva; Faulkner, Andrew; Huotilainen, Minna; Järvikivi, Juhani; Lipsanen, Jari; Laasonen, Marja; Vainio, Martti

    2014-03-01

    To study prosodic perception in early-implanted children in relation to auditory discrimination, auditory working memory, and exposure to music. Word and sentence stress perception, discrimination of fundamental frequency (F0), intensity and duration, and forward digit span were measured twice over approximately 16 months. Musical activities were assessed by questionnaire. Twenty-one early-implanted and age-matched normal-hearing (NH) children (4-13 years). Children with cochlear implants (CIs) exposed to music performed better than others in stress perception and F0 discrimination. Only this subgroup of implanted children improved with age in word stress perception, intensity discrimination, and improved over time in digit span. Prosodic perception, F0 discrimination and forward digit span in implanted children exposed to music was equivalent to the NH group, but other implanted children performed more poorly. For children with CIs, word stress perception was linked to digit span and intensity discrimination: sentence stress perception was additionally linked to F0 discrimination. Prosodic perception in children with CIs is linked to auditory working memory and aspects of auditory discrimination. Engagement in music was linked to better performance across a range of measures, suggesting that music is a valuable tool in the rehabilitation of implanted children.

  18. Behavioral semantics of learning and crossmodal processing in auditory cortex: the semantic processor concept.

    PubMed

    Scheich, Henning; Brechmann, André; Brosch, Michael; Budinger, Eike; Ohl, Frank W; Selezneva, Elena; Stark, Holger; Tischmeyer, Wolfgang; Wetzel, Wolfram

    2011-01-01

    Two phenomena of auditory cortex activity have recently attracted attention, namely that the primary field can show different types of learning-related changes of sound representation and that during learning even this early auditory cortex is under strong multimodal influence. Based on neuronal recordings in animal auditory cortex during instrumental tasks, in this review we put forward the hypothesis that these two phenomena serve to derive the task-specific meaning of sounds by associative learning. To understand the implications of this tenet, it is helpful to realize how a behavioral meaning is usually derived for novel environmental sounds. For this purpose, associations with other sensory, e.g. visual, information are mandatory to develop a connection between a sound and its behaviorally relevant cause and/or the context of sound occurrence. This makes it plausible that in instrumental tasks various non-auditory sensory and procedural contingencies of sound generation become co-represented by neuronal firing in auditory cortex. Information related to reward or to avoidance of discomfort during task learning, that is essentially non-auditory, is also co-represented. The reinforcement influence points to the dopaminergic internal reward system, the local role of which for memory consolidation in auditory cortex is well-established. Thus, during a trial of task performance, the neuronal responses to the sounds are embedded in a sequence of representations of such non-auditory information. The embedded auditory responses show task-related modulations of auditory responses falling into types that correspond to three basic logical classifications that may be performed with a perceptual item, i.e. from simple detection to discrimination, and categorization. This hierarchy of classifications determine the semantic "same-different" relationships among sounds. Different cognitive classifications appear to be a consequence of learning task and lead to a recruitment of different excitatory and inhibitory mechanisms and to distinct spatiotemporal metrics of map activation to represent a sound. The described non-auditory firing and modulations of auditory responses suggest that auditory cortex, by collecting all necessary information, functions as a "semantic processor" deducing the task-specific meaning of sounds by learning. © 2010. Published by Elsevier B.V.

  19. The Duration of Auditory Sensory Memory for Vowel Processing: Neurophysiological and Behavioral Measures.

    PubMed

    Yu, Yan H; Shafer, Valerie L; Sussman, Elyse S

    2018-01-01

    Speech perception behavioral research suggests that rates of sensory memory decay are dependent on stimulus properties at more than one level (e.g., acoustic level, phonemic level). The neurophysiology of sensory memory decay rate has rarely been examined in the context of speech processing. In a lexical tone study, we showed that long-term memory representation of lexical tone slows the decay rate of sensory memory for these tones. Here, we tested the hypothesis that long-term memory representation of vowels slows the rate of auditory sensory memory decay in a similar way to that of lexical tone. Event-related potential (ERP) responses were recorded to Mandarin non-words contrasting the vowels /i/ vs. /u/ and /y/ vs. /u/ from first-language (L1) Mandarin and L1 American English participants under short and long interstimulus interval (ISI) conditions (short ISI: an average of 575 ms, long ISI: an average of 2675 ms). Results revealed poorer discrimination of the vowel contrasts for English listeners than Mandarin listeners, but with different patterns for behavioral perception and neural discrimination. As predicted, English listeners showed the poorest discrimination and identification for the vowel contrast /y/ vs. /u/, and poorer performance in the long ISI condition. In contrast to Yu et al. (2017), however, we found no effect of ISI reflected in the neural responses, specifically the mismatch negativity (MMN), P3a and late negativity ERP amplitudes. We did see a language group effect, with Mandarin listeners generally showing larger MMN and English listeners showing larger P3a. The behavioral results revealed that native language experience plays a role in echoic sensory memory trace maintenance, but the failure to find an effect of ISI on the ERP results suggests that vowel and lexical tone memory traces decay at different rates. Highlights : We examined the interaction between auditory sensory memory decay and language experience. We compared MMN, P3a, LN and behavioral responses in short vs. long interstimulus intervals. We found that different from lexical tone contrast, MMN, P3a, and LN changes to vowel contrasts are not influenced by lengthening the ISI to 2.6 s. We also found that the English listeners discriminated the non-native vowel contrast with lower accuracy under the long ISI condition.

  20. Comparison of Wechsler Memory Scale-Fourth Edition (WMS-IV) and Third Edition (WMS-III) dimensional structures: improved ability to evaluate auditory and visual constructs.

    PubMed

    Hoelzle, James B; Nelson, Nathaniel W; Smith, Clifford A

    2011-03-01

    Dimensional structures underlying the Wechsler Memory Scale-Fourth Edition (WMS-IV) and Wechsler Memory Scale-Third Edition (WMS-III) were compared to determine whether the revised measure has a more coherent and clinically relevant factor structure. Principal component analyses were conducted in normative samples reported in the respective technical manuals. Empirically supported procedures guided retention of dimensions. An invariant two-dimensional WMS-IV structure reflecting constructs of auditory learning/memory and visual attention/memory (C1 = .97; C2 = .96) is more theoretically coherent than the replicable, heterogeneous WMS-III dimension (C1 = .97). This research suggests that the WMS-IV may have greater utility in identifying lateralized memory dysfunction.

  1. Medial Auditory Thalamus Is Necessary for Acquisition and Retention of Eyeblink Conditioning to Cochlear Nucleus Stimulation

    ERIC Educational Resources Information Center

    Halverson, Hunter E.; Poremba, Amy; Freeman, John H.

    2015-01-01

    Associative learning tasks commonly involve an auditory stimulus, which must be projected through the auditory system to the sites of memory induction for learning to occur. The cochlear nucleus (CN) projection to the pontine nuclei has been posited as the necessary auditory pathway for cerebellar learning, including eyeblink conditioning.…

  2. Binaural auditory beats affect long-term memory.

    PubMed

    Garcia-Argibay, Miguel; Santed, Miguel A; Reales, José M

    2017-12-08

    The presentation of two pure tones to each ear separately with a slight difference in their frequency results in the perception of a single tone that fluctuates in amplitude at a frequency that equals the difference of interaural frequencies. This perceptual phenomenon is known as binaural auditory beats, and it is thought to entrain electrocortical activity and enhance cognition functions such as attention and memory. The aim of this study was to determine the effect of binaural auditory beats on long-term memory. Participants (n = 32) were kept blind to the goal of the study and performed both the free recall and recognition tasks after being exposed to binaural auditory beats, either in the beta (20 Hz) or theta (5 Hz) frequency bands and white noise as a control condition. Exposure to beta-frequency binaural beats yielded a greater proportion of correctly recalled words and a higher sensitivity index d' in recognition tasks, while theta-frequency binaural-beat presentation lessened the number of correctly remembered words and the sensitivity index. On the other hand, we could not find differences in the conditional probability for recall given recognition between beta and theta frequencies and white noise, suggesting that the observed changes in recognition were due to the recollection component. These findings indicate that the presentation of binaural auditory beats can affect long-term memory both positively and negatively, depending on the frequency used.

  3. Long-term pitch memory for music recordings is related to auditory working memory precision.

    PubMed

    Van Hedger, Stephen C; Heald, Shannon Lm; Nusbaum, Howard C

    2018-04-01

    Most individuals have reliable long-term memories for the pitch of familiar music recordings. This pitch memory (1) appears to be normally distributed in the population, (2) does not depend on explicit musical training and (3) only seems to be weakly related to differences in listening frequency estimates. The present experiment was designed to assess whether individual differences in auditory working memory could explain variance in long-term pitch memory for music recordings. In Experiment 1, participants first completed a musical note adjustment task that has been previously used to assess working memory of musical pitch. Afterward, participants were asked to judge the pitch of well-known music recordings, which either had or had not been shifted in pitch. We found that performance on the pitch working memory task was significantly related to performance in the pitch memory task using well-known recordings, even when controlling for overall musical experience and familiarity with each recording. In Experiment 2, we replicated these findings in a separate group of participants while additionally controlling for fluid intelligence and non-pitch-based components of auditory working memory. In Experiment 3, we demonstrated that participants could not accurately judge the pitch of unfamiliar recordings, suggesting that our method of pitch shifting did not result in unwanted acoustic cues that could have aided participants in Experiments 1 and 2. These results, taken together, suggest that the ability to maintain pitch information in working memory might lead to more accurate long-term pitch memory.

  4. Biomarkers for PTSD

    DTIC Science & Technology

    2014-07-01

    Molecular evidence of stress- induced acute heart injury in a mouse model simulating posttraumatic stress disorder. Proc Natl Acad Sci U S A. 2014 Feb...obtaining measures aligned with the core neurocognitive domains: IQ, working memory ( auditory /visual), processing speed, verbal memory (immediate...in the test sample and combined sample with a similar pattern for the validation sample. Similarly, performance on tests of auditory and visual

  5. Different mechanisms are responsible for dishabituation of electrophysiological auditory responses to a change in acoustic identity than to a change in stimulus location.

    PubMed

    Smulders, Tom V; Jarvis, Erich D

    2013-11-01

    Repeated exposure to an auditory stimulus leads to habituation of the electrophysiological and immediate-early-gene (IEG) expression response in the auditory system. A novel auditory stimulus reinstates this response in a form of dishabituation. This has been interpreted as the start of new memory formation for this novel stimulus. Changes in the location of an otherwise identical auditory stimulus can also dishabituate the IEG expression response. This has been interpreted as an integration of stimulus identity and stimulus location into a single auditory object, encoded in the firing patterns of the auditory system. In this study, we further tested this hypothesis. Using chronic multi-electrode arrays to record multi-unit activity from the auditory system of awake and behaving zebra finches, we found that habituation occurs to repeated exposure to the same song and dishabituation with a novel song, similar to that described in head-fixed, restrained animals. A large proportion of recording sites also showed dishabituation when the same auditory stimulus was moved to a novel location. However, when the song was randomly moved among 8 interleaved locations, habituation occurred independently of the continuous changes in location. In contrast, when 8 different auditory stimuli were interleaved all from the same location, a separate habituation occurred to each stimulus. This result suggests that neuronal memories of the acoustic identity and spatial location are different, and that allocentric location of a stimulus is not encoded as part of the memory for an auditory object, while its acoustic properties are. We speculate that, instead, the dishabituation that occurs with a change from a stable location of a sound is due to the unexpectedness of the location change, and might be due to different underlying mechanisms than the dishabituation and separate habituations to different acoustic stimuli. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Treating attention in mild aphasia: evaluation of attention process training-II.

    PubMed

    Murray, Laura L; Keeton, R Jessica; Karcher, Laura

    2006-01-01

    This study examined whether attention processing training-II [Sohlberg, M. M., Johnson, L., Paule, L., Raskin, S. A., & Mateer, C. A. (2001). Attention Process Training-II: A program to address attentional deficits for persons with mild cognitive dysfunction (2nd ed.). Wake Forest, NC: Lash & Associates.; APT-II], when applied in the context of a multiple baseline ABA design, would improve the attention abilities of RW, a patient with mild conduction aphasia and concomitant attention and working memory deficits. We also explored whether APT-II training would enhance RW's auditory comprehension, other cognitive abilities such as memory, and his and his spouse's perceptions of his daily attention and communication difficulties. With treatment, RW improved on trained attention tasks and made modest gains on standardized tests and probes that evaluated cognitive skills related to treatment activities. Nominal change in auditory comprehension and untrained attention and memory functions was observed, and neither RW nor his spouse reported noticeable improvements in his daily attention or communication abilities. These and previous findings indicate that structured attention retraining may enhance specific attention skills, but that positive changes in broader attention and untrained functions are less likely. As a result of reading this article, the participant will be able to: (1) summarize the previous literature regarding attention impairments and treatment approaches for patients with aphasia. (2) describe how Attention Processing Training-II affected the attention, auditory comprehension, and other cognitive abilities of the patient in this study.

  7. Auditory and motor imagery modulate learning in music performance

    PubMed Central

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of auditory interference. Motor imagery aided pitch accuracy overall when interference conditions were manipulated at encoding (Experiment 1) but not at retrieval (Experiment 2). Thus, skilled performers' imagery abilities had distinct influences on encoding and retrieval of musical sequences. PMID:23847495

  8. Auditory dysfunction in schizophrenia: integrating clinical and basic features

    PubMed Central

    Javitt, Daniel C.; Sweet, Robert A.

    2015-01-01

    Schizophrenia is a complex neuropsychiatric disorder that is associated with persistent psychosocial disability in affected individuals. Although studies of schizophrenia have traditionally focused on deficits in higher-order processes such as working memory and executive function, there is an increasing realization that, in this disorder, deficits can be found throughout the cortex and are manifest even at the level of early sensory processing. These deficits are highly amenable to translational investigation and represent potential novel targets for clinical intervention. Deficits, moreover, have been linked to specific structural abnormalities in post-mortem auditory cortex tissue from individuals with schizophrenia, providing unique insights into underlying pathophysiological mechanisms. PMID:26289573

  9. Visual recognition memory and auditory brainstem response in infant rhesus monkeys exposed perinatally to environmental tobacco smoke.

    PubMed

    Golub, Mari S; Slotkin, Theodore A; Tarantal, Alice F; Pinkerton, Kent E

    2007-06-02

    The impact of perinatal exposure to environmental tobacco smoke (ETS) on cognitive development is controversial. We exposed rhesus monkeys to ETS or filtered air (5 animals per group) beginning in utero on day 50 of pregnancy and continuing throughout postnatal testing. In infancy, we evaluated both groups for visual recognition memory and auditory function (auditory brainstem response). The ETS group showed significantly less novelty preference in the visual recognition task whereas no effects on auditory function were detected. These preliminary results support the view that perinatal ETS exposure has adverse effects on cognitive function and indicate further that rhesus monkeys may provide a valuable nonhuman primate model for investigating this link.

  10. Basic Auditory Processing and Developmental Dyslexia in Chinese

    ERIC Educational Resources Information Center

    Wang, Hsiao-Lan Sharon; Huss, Martina; Hamalainen, Jarmo A.; Goswami, Usha

    2012-01-01

    The present study explores the relationship between basic auditory processing of sound rise time, frequency, duration and intensity, phonological skills (onset-rime and tone awareness, sound blending, RAN, and phonological memory) and reading disability in Chinese. A series of psychometric, literacy, phonological, auditory, and character…

  11. Neuroimaging and Neuromodulation: Complementary Approaches for Identifying the Neuronal Correlates of Tinnitus

    PubMed Central

    Langguth, Berthold; Schecklmann, Martin; Lehner, Astrid; Landgrebe, Michael; Poeppl, Timm Benjamin; Kreuzer, Peter Michal; Schlee, Winfried; Weisz, Nathan; Vanneste, Sven; De Ridder, Dirk

    2012-01-01

    An inherent limitation of functional imaging studies is their correlational approach. More information about critical contributions of specific brain regions can be gained by focal transient perturbation of neural activity in specific regions with non-invasive focal brain stimulation methods. Functional imaging studies have revealed that tinnitus is related to alterations in neuronal activity of central auditory pathways. Modulation of neuronal activity in auditory cortical areas by repetitive transcranial magnetic stimulation (rTMS) can reduce tinnitus loudness and, if applied repeatedly, exerts therapeutic effects, confirming the relevance of auditory cortex activation for tinnitus generation and persistence. Measurements of oscillatory brain activity before and after rTMS demonstrate that the same stimulation protocol has different effects on brain activity in different patients, presumably related to interindividual differences in baseline activity in the clinically heterogeneous study cohort. In addition to alterations in auditory pathways, imaging techniques also indicate the involvement of non-auditory brain areas, such as the fronto-parietal “awareness” network and the non-tinnitus-specific distress network consisting of the anterior cingulate cortex, anterior insula, and amygdale. Involvement of the hippocampus and the parahippocampal region putatively reflects the relevance of memory mechanisms in the persistence of the phantom percept and the associated distress. Preliminary studies targeting the dorsolateral prefrontal cortex, the dorsal anterior cingulate cortex, and the parietal cortex with rTMS and with transcranial direct current stimulation confirm the relevance of the mentioned non-auditory networks. Available data indicate the important value added by brain stimulation as a complementary approach to neuroimaging for identifying the neuronal correlates of the various clinical aspects of tinnitus. PMID:22509155

  12. Evaluating the Precision of Auditory Sensory Memory as an Index of Intrusion in Tinnitus.

    PubMed

    Barrett, Doug J K; Pilling, Michael

    The purpose of this study was to investigate the potential of measures of auditory short-term memory (ASTM) to provide a clinical measure of intrusion in tinnitus. Response functions for six normal listeners on a delayed pitch discrimination task were contrasted in three conditions designed to manipulate attention in the presence and absence of simulated tinnitus: (1) no-tinnitus, (2) ignore-tinnitus, and (3) attend-tinnitus. Delayed pitch discrimination functions were more variable in the presence of simulated tinnitus when listeners were asked to divide attention between the primary task and the amplitude of the tinnitus tone. Changes in the variability of auditory short-term memory may provide a novel means of quantifying the level of intrusion associated with the tinnitus percept during listening.

  13. Infant auditory short-term memory for non-linguistic sounds.

    PubMed

    Ross-Sheehy, Shannon; Newman, Rochelle S

    2015-04-01

    This research explores auditory short-term memory (STM) capacity for non-linguistic sounds in 10-month-old infants. Infants were presented with auditory streams composed of repeating sequences of either 2 or 4 unique instruments (e.g., flute, piano, cello; 350 or 700 ms in duration) followed by a 500-ms retention interval. These instrument sequences either stayed the same for every repetition (Constant) or changed by 1 instrument per sequence (Varying). Using the head-turn preference procedure, infant listening durations were recorded for each stream type (2- or 4-instrument sequences composed of 350- or 700-ms notes). Preference for the Varying stream was taken as evidence of auditory STM because detection of the novel instrument required memory for all of the instruments in a given sequence. Results demonstrate that infants listened longer to Varying streams for 2-instrument sequences, but not 4-instrument sequences, composed of 350-ms notes (Experiment 1), although this effect did not hold when note durations were increased to 700 ms (Experiment 2). Experiment 3 replicates and extends results from Experiments 1 and 2 and provides support for a duration account of capacity limits in infant auditory STM. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. The importance of individual frequencies of endogenous brain oscillations for auditory cognition - A short review.

    PubMed

    Baltus, Alina; Herrmann, Christoph Siegfried

    2016-06-01

    Oscillatory EEG activity in the human brain with frequencies in the gamma range (approx. 30-80Hz) is known to be relevant for a large number of cognitive processes. Interestingly, each subject reveals an individual frequency of the auditory gamma-band response (GBR) that coincides with the peak in the auditory steady state response (ASSR). A common resonance frequency of auditory cortex seems to underlie both the individual frequency of the GBR and the peak of the ASSR. This review sheds light on the functional role of oscillatory gamma activity for auditory processing. For successful processing, the auditory system has to track changes in auditory input over time and store information about past events in memory which allows the construction of auditory objects. Recent findings support the idea of gamma oscillations being involved in the partitioning of auditory input into discrete samples to facilitate higher order processing. We review experiments that seem to suggest that inter-individual differences in the resonance frequency are behaviorally relevant for gap detection and speech processing. A possible application of these resonance frequencies for brain computer interfaces is illustrated with regard to optimized individual presentation rates for auditory input to correspond with endogenous oscillatory activity. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A Review of Auditory Prediction and Its Potential Role in Tinnitus Perception.

    PubMed

    Durai, Mithila; O'Keeffe, Mary G; Searchfield, Grant D

    2018-06-01

    The precise mechanisms underlying tinnitus perception and distress are still not fully understood. A recent proposition is that auditory prediction errors and related memory representations may play a role in driving tinnitus perception. It is of interest to further explore this. To obtain a comprehensive narrative synthesis of current research in relation to auditory prediction and its potential role in tinnitus perception and severity. A narrative review methodological framework was followed. The key words Prediction Auditory, Memory Prediction Auditory, Tinnitus AND Memory, Tinnitus AND Prediction in Article Title, Abstract, and Keywords were extensively searched on four databases: PubMed, Scopus, SpringerLink, and PsychINFO. All study types were selected from 2000-2016 (end of 2016) and had the following exclusion criteria applied: minimum age of participants <18, nonhuman participants, and article not available in English. Reference lists of articles were reviewed to identify any further relevant studies. Articles were short listed based on title relevance. After reading the abstracts and with consensus made between coauthors, a total of 114 studies were selected for charting data. The hierarchical predictive coding model based on the Bayesian brain hypothesis, attentional modulation and top-down feedback serves as the fundamental framework in current literature for how auditory prediction may occur. Predictions are integral to speech and music processing, as well as in sequential processing and identification of auditory objects during auditory streaming. Although deviant responses are observable from middle latency time ranges, the mismatch negativity (MMN) waveform is the most commonly studied electrophysiological index of auditory irregularity detection. However, limitations may apply when interpreting findings because of the debatable origin of the MMN and its restricted ability to model real-life, more complex auditory phenomenon. Cortical oscillatory band activity may act as neurophysiological substrates for auditory prediction. Tinnitus has been modeled as an auditory object which may demonstrate incomplete processing during auditory scene analysis resulting in tinnitus salience and therefore difficulty in habituation. Within the electrophysiological domain, there is currently mixed evidence regarding oscillatory band changes in tinnitus. There are theoretical proposals for a relationship between prediction error and tinnitus but few published empirical studies. American Academy of Audiology.

  16. Arc expression identifies the lateral amygdala fear memory trace

    PubMed Central

    Gouty-Colomer, L A; Hosseini, B; Marcelo, I M; Schreiber, J; Slump, D E; Yamaguchi, S; Houweling, A R; Jaarsma, D; Elgersma, Y; Kushner, S A

    2016-01-01

    Memories are encoded within sparsely distributed neuronal ensembles. However, the defining cellular properties of neurons within a memory trace remain incompletely understood. Using a fluorescence-based Arc reporter, we were able to visually identify the distinct subset of lateral amygdala (LA) neurons activated during auditory fear conditioning. We found that Arc-expressing neurons have enhanced intrinsic excitability and are preferentially recruited into newly encoded memory traces. Furthermore, synaptic potentiation of thalamic inputs to the LA during fear conditioning is learning-specific, postsynaptically mediated and highly localized to Arc-expressing neurons. Taken together, our findings validate the immediate-early gene Arc as a molecular marker for the LA neuronal ensemble recruited during fear learning. Moreover, these results establish a model of fear memory formation in which intrinsic excitability determines neuronal selection, whereas learning-related encoding is governed by synaptic plasticity. PMID:25802982

  17. Noise on, voicing off: Speech perception deficits in children with specific language impairment.

    PubMed

    Ziegler, Johannes C; Pech-Georgel, Catherine; George, Florence; Lorenzi, Christian

    2011-11-01

    Speech perception of four phonetic categories (voicing, place, manner, and nasality) was investigated in children with specific language impairment (SLI) (n=20) and age-matched controls (n=19) in quiet and various noise conditions using an AXB two-alternative forced-choice paradigm. Children with SLI exhibited robust speech perception deficits in silence, stationary noise, and amplitude-modulated noise. Comparable deficits were obtained for fast, intermediate, and slow modulation rates, and this speaks against the various temporal processing accounts of SLI. Children with SLI exhibited normal "masking release" effects (i.e., better performance in fluctuating noise than in stationary noise), again suggesting relatively spared spectral and temporal auditory resolution. In terms of phonetic categories, voicing was more affected than place, manner, or nasality. The specific nature of this voicing deficit is hard to explain with general processing impairments in attention or memory. Finally, speech perception in noise correlated with an oral language component but not with either a memory or IQ component, and it accounted for unique variance beyond IQ and low-level auditory perception. In sum, poor speech perception seems to be one of the primary deficits in children with SLI that might explain poor phonological development, impaired word production, and poor word comprehension. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Auditory closed-loop stimulation of the sleep slow oscillation enhances memory.

    PubMed

    Ngo, Hong-Viet V; Martinetz, Thomas; Born, Jan; Mölle, Matthias

    2013-05-08

    Brain rhythms regulate information processing in different states to enable learning and memory formation. The <1 Hz sleep slow oscillation hallmarks slow-wave sleep and is critical to memory consolidation. Here we show in sleeping humans that auditory stimulation in phase with the ongoing rhythmic occurrence of slow oscillation up states profoundly enhances the slow oscillation rhythm, phase-coupled spindle activity, and, consequently, the consolidation of declarative memory. Stimulation out of phase with the ongoing slow oscillation rhythm remained ineffective. Closed-loop in-phase stimulation provides a straight-forward tool to enhance sleep rhythms and their functional efficacy. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. A direct comparison of short-term audiomotor and visuomotor memory.

    PubMed

    Ward, Amanda M; Loucks, Torrey M; Ofori, Edward; Sosnoff, Jacob J

    2014-04-01

    Audiomotor and visuomotor short-term memory are required for an important variety of skilled movements but have not been compared in a direct manner previously. Audiomotor memory capacity might be greater to accommodate auditory goals that are less directly related to movement outcome than for visually guided tasks. Subjects produced continuous isometric force with the right index finger under auditory and visual feedback. During the first 10 s of each trial, subjects received continuous auditory or visual feedback. For the following 15 s, feedback was removed but the force had to be maintained accurately. An internal effort condition was included to test memory capacity in the same manner but without external feedback. Similar decay times of ~5-6 s were found for vision and audition but the decay time for internal effort was ~4 s. External feedback thus provides an advantage in maintaining a force level after feedback removal, but may not exclude some contribution from a sense of effort. Short-term memory capacity appears longer than certain previous reports but there may not be strong distinctions in capacity across different sensory modalities, at least for isometric force.

  20. Generalization of Auditory Sensory and Cognitive Learning in Typically Developing Children.

    PubMed

    Murphy, Cristina F B; Moore, David R; Schochat, Eliane

    2015-01-01

    Despite the well-established involvement of both sensory ("bottom-up") and cognitive ("top-down") processes in literacy, the extent to which auditory or cognitive (memory or attention) learning transfers to phonological and reading skills remains unclear. Most research has demonstrated learning of the trained task or even learning transfer to a closely related task. However, few studies have reported "far-transfer" to a different domain, such as the improvement of phonological and reading skills following auditory or cognitive training. This study assessed the effectiveness of auditory, memory or attention training on far-transfer measures involving phonological and reading skills in typically developing children. Mid-transfer was also assessed through untrained auditory, attention and memory tasks. Sixty 5- to 8-year-old children with normal hearing were quasi-randomly assigned to one of five training groups: attention group (AG), memory group (MG), auditory sensory group (SG), placebo group (PG; drawing, painting), and a control, untrained group (CG). Compliance, mid-transfer and far-transfer measures were evaluated before and after training. All trained groups received 12 x 45-min training sessions over 12 weeks. The CG did not receive any intervention. All trained groups, especially older children, exhibited significant learning of the trained task. On pre- to post-training measures (test-retest), most groups exhibited improvements on most tasks. There was significant mid-transfer for a visual digit span task, with highest span in the MG, relative to other groups. These results show that both sensory and cognitive (memory or attention) training can lead to learning in the trained task and to mid-transfer learning on a task (visual digit span) within the same domain as the trained tasks. However, learning did not transfer to measures of language (reading and phonological awareness), as the PG and CG improved as much as the other trained groups. Further research is required to investigate the effects of various stimuli and lengths of training on the generalization of sensory and cognitive learning to literacy skills.

  1. A Characterization of Visual, Semantic and Auditory Memory in Children with Combination-Type Attention Deficit, Primarily Inattentive, and a Control Group

    ERIC Educational Resources Information Center

    Ramirez, Luz Angela; Arenas, Angela Maria; Henao, Gloria Cecilia

    2005-01-01

    Introduction: This investigation describes and compares characteristics of visual, semantic and auditory memory in a group of children diagnosed with combined-type attention deficit with hyperactivity, attention deficit predominating, and a control group. Method: 107 boys and girls were selected, from 7 to 11 years of age, all residents in the…

  2. Storage of feature conjunctions in transient auditory memory.

    PubMed

    Gomes, H; Bernstein, R; Ritter, W; Vaughan, H G; Miller, J

    1997-11-01

    The purpose of this study was to determine whether feature conjunctions are stored in transient auditory memory. The mismatch negativity (MMN), an event-related potential that is elicited by stimuli that differ from a series of preceding stimuli, was used in this endeavour. A tone that differed from the preceding series of stimuli in the conjunction of two of its features, both present in preceding stimuli but in different combinations, was found to elicit the MMN. The data are interpreted to indicate that information about the conjunction of features is stored in the memory.

  3. The effect of background music on episodic memory and autonomic responses: listening to emotionally touching music enhances facial memory capacity.

    PubMed

    Proverbio, Alice Mado; Mado Proverbio, C A Alice; Lozano Nasi, Valentina; Alessandra Arcari, Laura; De Benedetto, Francesco; Guardamagna, Matteo; Gazzola, Martina; Zani, Alberto

    2015-10-15

    The aim of this study was to investigate how background auditory processing can affect other perceptual and cognitive processes as a function of stimulus content, style and emotional nature. Previous studies have offered contrasting evidence, and it has been recently shown that listening to music negatively affected concurrent mental processing in the elderly but not in young adults. To further investigate this matter, the effect of listening to music vs. listening to the sound of rain or silence was examined by administering an old/new face memory task (involving 448 unknown faces) to a group of 54 non-musician university students. Heart rate and diastolic and systolic blood pressure were measured during an explicit face study session that was followed by a memory test. The results indicated that more efficient and faster recall of faces occurred under conditions of silence or when participants were listening to emotionally touching music. Whereas auditory background (e.g., rain or joyful music) interfered with memory encoding, listening to emotionally touching music improved memory and significantly increased heart rate. It is hypothesized that touching music is able to modify the visual perception of faces by binding facial properties with auditory and emotionally charged information (music), which may therefore result in deeper memory encoding.

  4. The effect of background music on episodic memory and autonomic responses: listening to emotionally touching music enhances facial memory capacity

    PubMed Central

    Mado Proverbio, C.A. Alice; Lozano Nasi, Valentina; Alessandra Arcari, Laura; De Benedetto, Francesco; Guardamagna, Matteo; Gazzola, Martina; Zani, Alberto

    2015-01-01

    The aim of this study was to investigate how background auditory processing can affect other perceptual and cognitive processes as a function of stimulus content, style and emotional nature. Previous studies have offered contrasting evidence, and it has been recently shown that listening to music negatively affected concurrent mental processing in the elderly but not in young adults. To further investigate this matter, the effect of listening to music vs. listening to the sound of rain or silence was examined by administering an old/new face memory task (involving 448 unknown faces) to a group of 54 non-musician university students. Heart rate and diastolic and systolic blood pressure were measured during an explicit face study session that was followed by a memory test. The results indicated that more efficient and faster recall of faces occurred under conditions of silence or when participants were listening to emotionally touching music. Whereas auditory background (e.g., rain or joyful music) interfered with memory encoding, listening to emotionally touching music improved memory and significantly increased heart rate. It is hypothesized that touching music is able to modify the visual perception of faces by binding facial properties with auditory and emotionally charged information (music), which may therefore result in deeper memory encoding. PMID:26469712

  5. The functional neuroanatomy of multitasking: combining dual tasking with a short term memory task.

    PubMed

    Deprez, Sabine; Vandenbulcke, Mathieu; Peeters, Ron; Emsell, Louise; Amant, Frederic; Sunaert, Stefan

    2013-09-01

    Insight into the neural architecture of multitasking is crucial when investigating the pathophysiology of multitasking deficits in clinical populations. Presently, little is known about how the brain combines dual-tasking with a concurrent short-term memory task, despite the relevance of this mental operation in daily life and the frequency of complaints related to this process, in disease. In this study we aimed to examine how the brain responds when a memory task is added to dual-tasking. Thirty-three right-handed healthy volunteers (20 females, mean age 39.9 ± 5.8) were examined with functional brain imaging (fMRI). The paradigm consisted of two cross-modal single tasks (a visual and auditory temporal same-different task with short delay), a dual-task combining both single tasks simultaneously and a multi-task condition, combining the dual-task with an additional short-term memory task (temporal same-different visual task with long delay). Dual-tasking compared to both individual visual and auditory single tasks activated a predominantly right-sided fronto-parietal network and the cerebellum. When adding the additional short-term memory task, a larger and more bilateral frontoparietal network was recruited. We found enhanced activity during multitasking in components of the network that were already involved in dual-tasking, suggesting increased working memory demands, as well as recruitment of multitask-specific components including areas that are likely to be involved in online holding of visual stimuli in short-term memory such as occipito-temporal cortex. These results confirm concurrent neural processing of a visual short-term memory task during dual-tasking and provide evidence for an effective fMRI multitasking paradigm. © 2013 Elsevier Ltd. All rights reserved.

  6. Disruption of medial septum and diagonal bands of Broca cholinergic projections to the ventral hippocampus disrupt auditory fear memory.

    PubMed

    Staib, Jennifer M; Della Valle, Rebecca; Knox, Dayan K

    2018-07-01

    In classical fear conditioning, a neutral conditioned stimulus (CS) is paired with an aversive unconditioned stimulus (US), which leads to a fear memory. If the CS is repeatedly presented without the US after fear conditioning, the formation of an extinction memory occurs, which inhibits fear memory expression. A previous study has demonstrated that selective cholinergic lesions in the medial septum and vertical limb of the diagonal bands of Broca (MS/vDBB) prior to fear and extinction learning disrupt contextual fear memory discrimination and acquisition of extinction memory. MS/vDBB cholinergic neurons project to a number of substrates that are critical for fear and extinction memory. However, it is currently unknown which of these efferent projections are critical for contextual fear memory discrimination and extinction memory. To address this, we induced cholinergic lesions in efferent targets of MS/vDBB cholinergic neurons. These included the dorsal hippocampus (dHipp), ventral hippocampus (vHipp), medial prefrontal cortex (mPFC), and in the mPFC and dHipp combined. None of these lesion groups exhibited deficits in contextual fear memory discrimination or extinction memory. However, vHipp cholinergic lesions disrupted auditory fear memory. Because MS/vDBB cholinergic neurons are the sole source of acetylcholine in the vHipp, these results suggest that MS/vDBB cholinergic input to the vHipp is critical for auditory fear memory. Taken together with previous findings, the results of this study suggest that MS/vDBB cholinergic neurons are critical for fear and extinction memory, though further research is needed to elucidate the role of MS/vDBB cholinergic neurons in these types of emotional memory. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Domain-specific and domain-general constraints on word and sequence learning.

    PubMed

    Archibald, Lisa M D; Joanisse, Marc F

    2013-02-01

    The relative influences of language-related and memory-related constraints on the learning of novel words and sequences were examined by comparing individual differences in performance of children with and without specific deficits in either language or working memory. Children recalled lists of words in a Hebbian learning protocol in which occasional lists repeated, yielding improved recall over the course of the task on the repeated lists. The task involved presentation of pictures of common nouns followed immediately by equivalent presentations of the spoken names. The same participants also completed a paired-associate learning task involving word-picture and nonword-picture pairs. Hebbian learning was observed for all groups. Domain-general working memory constrained immediate recall, whereas language abilities impacted recall in the auditory modality only. In addition, working memory constrained paired-associate learning generally, whereas language abilities disproportionately impacted novel word learning. Overall, all of the learning tasks were highly correlated with domain-general working memory. The learning of nonwords was additionally related to general intelligence, phonological short-term memory, language abilities, and implicit learning. The results suggest that distinct associations between language- and memory-related mechanisms support learning of familiar and unfamiliar phonological forms and sequences.

  8. The Effect of Neurocognitive Function on Math Computation in Pediatric ADHD: Moderating Influences of Anxious Perfectionism and Gender.

    PubMed

    Sturm, Alexandra; Rozenman, Michelle; Piacentini, John C; McGough, James J; Loo, Sandra K; McCracken, James T

    2018-03-20

    Predictors of math achievement in attention-deficit/hyperactivity disorder (ADHD) are not well-known. To address this gap in the literature, we examined individual differences in neurocognitive functioning domains on math computation in a cross-sectional sample of youth with ADHD. Gender and anxiety symptoms were explored as potential moderators. The sample consisted of 281 youth (aged 8-15 years) diagnosed with ADHD. Neurocognitive tasks assessed auditory-verbal working memory, visuospatial working memory, and processing speed. Auditory-verbal working memory speed significantly predicted math computation. A three-way interaction revealed that at low levels of anxious perfectionism, slower processing speed predicted poorer math computation for boys compared to girls. These findings indicate the uniquely predictive values of auditory-verbal working memory and processing speed on math computation, and their differential moderation. These findings provide preliminary support that gender and anxious perfectionism may influence the relationship between neurocognitive functioning and academic achievement.

  9. Subcortical processing of speech regularities underlies reading and music aptitude in children.

    PubMed

    Strait, Dana L; Hornickel, Jane; Kraus, Nina

    2011-10-17

    Neural sensitivity to acoustic regularities supports fundamental human behaviors such as hearing in noise and reading. Although the failure to encode acoustic regularities in ongoing speech has been associated with language and literacy deficits, how auditory expertise, such as the expertise that is associated with musical skill, relates to the brainstem processing of speech regularities is unknown. An association between musical skill and neural sensitivity to acoustic regularities would not be surprising given the importance of repetition and regularity in music. Here, we aimed to define relationships between the subcortical processing of speech regularities, music aptitude, and reading abilities in children with and without reading impairment. We hypothesized that, in combination with auditory cognitive abilities, neural sensitivity to regularities in ongoing speech provides a common biological mechanism underlying the development of music and reading abilities. We assessed auditory working memory and attention, music aptitude, reading ability, and neural sensitivity to acoustic regularities in 42 school-aged children with a wide range of reading ability. Neural sensitivity to acoustic regularities was assessed by recording brainstem responses to the same speech sound presented in predictable and variable speech streams. Through correlation analyses and structural equation modeling, we reveal that music aptitude and literacy both relate to the extent of subcortical adaptation to regularities in ongoing speech as well as with auditory working memory and attention. Relationships between music and speech processing are specifically driven by performance on a musical rhythm task, underscoring the importance of rhythmic regularity for both language and music. These data indicate common brain mechanisms underlying reading and music abilities that relate to how the nervous system responds to regularities in auditory input. Definition of common biological underpinnings for music and reading supports the usefulness of music for promoting child literacy, with the potential to improve reading remediation.

  10. Retrieval and phenomenology of autobiographical memories in blind individuals.

    PubMed

    Tekcan, Ali Í; Yılmaz, Engin; Kızılöz, Burcu Kaya; Karadöller, Dilay Z; Mutafoğlu, Merve; Erciyes, Aslı Aktan

    2015-01-01

    Although visual imagery is argued to be an essential component of autobiographical memory, there have been surprisingly few studies on autobiographical memory processes in blind individuals, who have had no or limited visual input. The purpose of the present study was to investigate how blindness affects retrieval and phenomenology of autobiographical memories. We asked 48 congenital/early blind and 48 sighted participants to recall autobiographical memories in response to six cue words, and to fill out the Autobiographical Memory Questionnaire measuring a number of variables including imagery, belief and recollective experience associated with each memory. Blind participants retrieved fewer memories and reported higher auditory imagery at retrieval than sighted participants. Moreover, within the blind group, participants with total blindness reported higher auditory imagery than those with some light perception. Blind participants also assigned higher importance, belief and recollection ratings to their memories than sighted participants. Importantly, these group differences remained the same for recent as well as childhood memories.

  11. Source memory errors in schizophrenia, hallucinations and negative symptoms: a synthesis of research findings.

    PubMed

    Brébion, G; Ohlsen, R I; Bressan, R A; David, A S

    2012-12-01

    Previous research has shown associations between source memory errors and hallucinations in patients with schizophrenia. We bring together here findings from a broad memory investigation to specify better the type of source memory failure that is associated with auditory and visual hallucinations. Forty-one patients with schizophrenia and 43 healthy participants underwent a memory task involving recall and recognition of lists of words, recognition of pictures, memory for temporal and spatial context of presentation of the stimuli, and remembering whether target items were presented as words or pictures. False recognition of words and pictures was associated with hallucination scores. The extra-list intrusions in free recall were associated with verbal hallucinations whereas the intra-list intrusions were associated with a global hallucination score. Errors in discriminating the temporal context of word presentation and the spatial context of picture presentation were associated with auditory hallucinations. The tendency to remember verbal labels of items as pictures of these items was associated with visual hallucinations. Several memory errors were also inversely associated with affective flattening and anhedonia. Verbal and visual hallucinations are associated with confusion between internal verbal thoughts or internal visual images and perception. In addition, auditory hallucinations are associated with failure to process or remember the context of presentation of the events. Certain negative symptoms have an opposite effect on memory errors.

  12. Phenomenological reliving and visual imagery during autobiographical recall in Alzheimer’s disease

    PubMed Central

    El Haj, Mohamad; Kapogiannis, Dimitrios; Antoine, Pascal

    2016-01-01

    Multiple studies have shown compromise of autobiographical memory and phenomenological reliving in Alzheimer’s disease (AD). We investigated various phenomenological features of autobiographical memory to determine their relative vulnerability in AD. To this aim, participants with early AD and cognitively normal older adult controls were asked to retrieve an autobiographical event and rate on a 5-point scale metacognitive judgments (i.e., reliving, back in time, remembering, and realness), component processes (i.e., visual imagery, auditory imagery, language, and emotion), narrative properties (i.e., rehearsal and importance), and spatiotemporal specificity (i.e., spatial details and temporal details). AD participants showed lower general autobiographical recall than controls, and poorer reliving, travel in time, remembering, realness, visual imagery, auditory imagery, language, rehearsal, and spatial detail – a decrease that was especially pronounced for visual imagery. Yet, AD participants showed high rating for emotion and importance. Early AD seems to compromise many phenomenological features, especially visual imagery, but also seems to preserve some other features. PMID:27003216

  13. Phenomenological Reliving and Visual Imagery During Autobiographical Recall in Alzheimer's Disease.

    PubMed

    El Haj, Mohamad; Kapogiannis, Dimitrios; Antoine, Pascal

    2016-03-16

    Multiple studies have shown compromise of autobiographical memory and phenomenological reliving in Alzheimer's disease (AD). We investigated various phenomenological features of autobiographical memory to determine their relative vulnerability in AD. To this aim, participants with early AD and cognitively normal older adult controls were asked to retrieve an autobiographical event and rate on a five-point scale metacognitive judgments (i.e., reliving, back in time, remembering, and realness), component processes (i.e., visual imagery, auditory imagery, language, and emotion), narrative properties (i.e., rehearsal and importance), and spatiotemporal specificity (i.e., spatial details and temporal details). AD participants showed lower general autobiographical recall than controls, and poorer reliving, travel in time, remembering, realness, visual imagery, auditory imagery, language, rehearsal, and spatial detail-a decrease that was especially pronounced for visual imagery. Yet, AD participants showed high rating for emotion and importance. Early AD seems to compromise many phenomenological features, especially visual imagery, but also seems to preserve some other features.

  14. Modulation of cannabinoid signaling by amygdala α2-adrenergic system in fear conditioning.

    PubMed

    Nasehi, Mohammad; Zamanparvar, Majid; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2016-03-01

    The noradrenergic system plays a critical role in the modulation of emotional state, primarily related to anxiety, arousal, and stress. Growing evidence suggests that the endocannabinoid system mediates stress responses and emotional homeostasis, in part, by targeting noradrenergic circuits. In addition, there is an interaction between the cannabinoid and noradrenergic system that has significant functional and behavioral implications. Considering the importance of these systems in forming memories for fearful events, we have investigated the involvement of basolateral amygdala (BLA) α2-adrenoceptors on ACPA (as selective cannabinoid CB1 agonist)-induced inhibition of the acquisition of contextual and auditory conditioned fear. A contextual and auditory fear conditioning apparatus for assess fear memory in adult male NMRI mice was used. Pre-training, intraperitoneal administration of ACPA decreased the percentage freezing time in contextual (at doses of 0.05 and 0.1mg/kg) and auditory (at dose of 0.1 mg/kg) in the fear conditioning task, indicating memory acquisition deficit. The same result was observed with intra-BLA microinjection of clonidine (0.001-0.5 μg/mouse, for both memories), as α2-adrenoceptor agonist and yohimbine (at doses of 0.005 and 0.05 for contextual and at dose of 0.05 μg/mouse for auditory fear memory), as α2-adrenoceptor antagonist. In addition, intra-BLA microinjection of clonidine (0.0005 μg/mouse) did not alter ACPA response in both conditions, while the same dose of yohimbine potentiated ACPA response at the lower dose on contextual fear memory. It is concluded that BLA α2-adrenergic receptors may be involved in context- but not tone-dependent fear memory impairment induced by activation of CB1 receptors. Copyright © 2015. Published by Elsevier B.V.

  15. Hippocampal volume and auditory attention on a verbal memory task with adult survivors of pediatric brain tumor.

    PubMed

    Jayakar, Reema; King, Tricia Z; Morris, Robin; Na, Sabrina

    2015-03-01

    We examined the nature of verbal memory deficits and the possible hippocampal underpinnings in long-term adult survivors of childhood brain tumor. 35 survivors (M = 24.10 ± 4.93 years at testing; 54% female), on average 15 years post-diagnosis, and 59 typically developing adults (M = 22.40 ± 4.35 years, 54% female) participated. Automated FMRIB Software Library (FSL) tools were used to measure hippocampal, putamen, and whole brain volumes. The California Verbal Learning Test-Second Edition (CVLT-II) was used to assess verbal memory. Hippocampal, F(1, 91) = 4.06, ηp² = .04; putamen, F(1, 91) = 11.18, ηp² = .11; and whole brain, F(1, 92) = 18.51, ηp² = .17, volumes were significantly lower for survivors than controls (p < .05). Hippocampus and putamen volumes were significantly correlated (r = .62, p < .001) with each other, but not with total brain volume (r = .09; r = .08), for survivors and controls. Verbal memory indices of auditory attention list span (Trial 1: F(1, 92) = 12.70, η² = .12) and final list learning (Trial 5: F(1, 92) = 6.01, η² = .06) were significantly lower for survivors (p < .05). Total hippocampal volume in survivors was significantly correlated (r = .43, p = .01) with auditory attention, but none of the other CVLT-II indices. Secondary analyses for the effect of treatment factors are presented. Volumetric differences between survivors and controls exist for the whole brain and for subcortical structures on average 15 years post-diagnosis. Treatment factors seem to have a unique effect on subcortical structures. Memory differences between survivors and controls are largely contingent upon auditory attention list span. Only hippocampal volume is associated with the auditory attention list span component of verbal memory. These findings are particularly robust for survivors treated with radiation. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  16. The representation of order information in auditory-verbal short-term memory.

    PubMed

    Kalm, Kristjan; Norris, Dennis

    2014-05-14

    Here we investigate how order information is represented in auditory-verbal short-term memory (STM). We used fMRI and a serial recall task to dissociate neural activity patterns representing the phonological properties of the items stored in STM from the patterns representing their order. For this purpose, we analyzed fMRI activity patterns elicited by different item sets and different orderings of those items. These fMRI activity patterns were compared with the predictions made by positional and chaining models of serial order. The positional models encode associations between items and their positions in a sequence, whereas the chaining models encode associations between successive items and retain no position information. We show that a set of brain areas in the postero-dorsal stream of auditory processing store associations between items and order as predicted by a positional model. The chaining model of order representation generates a different pattern similarity prediction, which was shown to be inconsistent with the fMRI data. Our results thus favor a neural model of order representation that stores item codes, position codes, and the mapping between them. This study provides the first fMRI evidence for a specific model of order representation in the human brain. Copyright © 2014 the authors 0270-6474/14/346879-08$15.00/0.

  17. Different neural activities support auditory working memory in musicians and bilinguals.

    PubMed

    Alain, Claude; Khatamian, Yasha; He, Yu; Lee, Yunjo; Moreno, Sylvain; Leung, Ada W S; Bialystok, Ellen

    2018-05-17

    Musical training and bilingualism benefit executive functioning and working memory (WM)-however, the brain networks supporting this advantage are not well specified. Here, we used functional magnetic resonance imaging and the n-back task to assess WM for spatial (sound location) and nonspatial (sound category) auditory information in musician monolingual (musicians), nonmusician bilinguals (bilinguals), and nonmusician monolinguals (controls). Musicians outperformed bilinguals and controls on the nonspatial WM task. Overall, spatial and nonspatial WM were associated with greater activity in dorsal and ventral brain regions, respectively. Increasing WM load yielded similar recruitment of the anterior-posterior attention network in all three groups. In both tasks and both levels of difficulty, musicians showed lower brain activity than controls in superior prefrontal frontal gyrus and dorsolateral prefrontal cortex (DLPFC) bilaterally, a finding that may reflect improved and more efficient use of neural resources. Bilinguals showed enhanced activity in language-related areas (i.e., left DLPFC and left supramarginal gyrus) relative to musicians and controls, which could be associated with the need to suppress interference associated with competing semantic activations from multiple languages. These findings indicate that the auditory WM advantage in musicians and bilinguals is mediated by different neural networks specific to each life experience. © 2018 New York Academy of Sciences.

  18. Specific Verbal Memory Measures May Distinguish Alzheimer's Disease from Dementia with Lewy Bodies.

    PubMed

    Bussè, Cinzia; Anselmi, Pasquale; Pompanin, Sara; Zorzi, Giovanni; Fragiacomo, Federica; Camporese, Giulia; Di Bernardo, Gian Antonio; Semenza, Carlo; Caffarra, Paolo; Cagnin, Annachiara

    2017-01-01

    Standard measures of commonly used memory tests may not be appropriate to distinguish different neurodegenerative diseases affecting memory. To study whether specific measures of verbal memory obtained with the Rey Auditory Verbal Learning test (RAVLT) could help distinguish dementia with Lewy bodies (DLB) from Alzheimer's disease (AD). Twenty-nine DLB and 32 AD patients participated in the study and were followed longitudinally for 3 years until the diagnosis was confirmed according to standard clinical criteria. Twenty-eight healthy elderly subjects served as controls. The following verbal memory measures were evaluated: verbal learning (VL), verbal forgetting (VF), percentage of verbal forgetting (VF%), and serial position effects of the immediate recall performance. DLB and AD groups have comparable performances at the RAVLT immediate and delayed recall tasks. However, VL was higher in DLB than AD while VF% was greater in AD. With a VF% cut-off ≥75%, AD and DLB patients were differently distributed, with 58% of AD versus 21% of DLB above this cut-off. The recency effect was significant higher in AD than DLB. DLB patients had a better performance in VL than AD, but worse VF and recency effect. These specific measures of verbal memory could be used as cognitive markers in the differential diagnosis between these two conditions.

  19. Social interaction with a tutor modulates responsiveness of specific auditory neurons in juvenile zebra finches.

    PubMed

    Yanagihara, Shin; Yazaki-Sugiyama, Yoko

    2018-04-12

    Behavioral states of animals, such as observing the behavior of a conspecific, modify signal perception and/or sensations that influence state-dependent higher cognitive behavior, such as learning. Recent studies have shown that neuronal responsiveness to sensory signals is modified when animals are engaged in social interactions with others or in locomotor activities. However, how these changes produce state-dependent differences in higher cognitive function is still largely unknown. Zebra finches, which have served as the premier songbird model, learn to sing from early auditory experiences with tutors. They also learn from playback of recorded songs however, learning can be greatly improved when song models are provided through social communication with tutors (Eales, 1989; Chen et al., 2016). Recently we found a subset of neurons in the higher-level auditory cortex of juvenile zebra finches that exhibit highly selective auditory responses to the tutor song after song learning, suggesting an auditory memory trace of the tutor song (Yanagihara and Yazaki-Sugiyama, 2016). Here we show that auditory responses of these selective neurons became greater when juveniles were paired with their tutors, while responses of non-selective neurons did not change. These results suggest that social interaction modulates cortical activity and might function in state-dependent song learning. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Auditory Scene Analysis: An Attention Perspective

    PubMed Central

    2017-01-01

    Purpose This review article provides a new perspective on the role of attention in auditory scene analysis. Method A framework for understanding how attention interacts with stimulus-driven processes to facilitate task goals is presented. Previously reported data obtained through behavioral and electrophysiological measures in adults with normal hearing are summarized to demonstrate attention effects on auditory perception—from passive processes that organize unattended input to attention effects that act at different levels of the system. Data will show that attention can sharpen stream organization toward behavioral goals, identify auditory events obscured by noise, and limit passive processing capacity. Conclusions A model of attention is provided that illustrates how the auditory system performs multilevel analyses that involve interactions between stimulus-driven input and top-down processes. Overall, these studies show that (a) stream segregation occurs automatically and sets the basis for auditory event formation; (b) attention interacts with automatic processing to facilitate task goals; and (c) information about unattended sounds is not lost when selecting one organization over another. Our results support a neural model that allows multiple sound organizations to be held in memory and accessed simultaneously through a balance of automatic and task-specific processes, allowing flexibility for navigating noisy environments with competing sound sources. Presentation Video http://cred.pubs.asha.org/article.aspx?articleid=2601618 PMID:29049599

  1. Dividing time: concurrent timing of auditory and visual events by young and elderly adults.

    PubMed

    McAuley, J Devin; Miller, Jonathan P; Wang, Mo; Pang, Kevin C H

    2010-07-01

    This article examines age differences in individual's ability to produce the durations of learned auditory and visual target events either in isolation (focused attention) or concurrently (divided attention). Young adults produced learned target durations equally well in focused and divided attention conditions. Older adults, in contrast, showed an age-related increase in timing variability in divided attention conditions that tended to be more pronounced for visual targets than for auditory targets. Age-related impairments were associated with a decrease in working memory span; moreover, the relationship between working memory and timing performance was largest for visual targets in divided attention conditions.

  2. Evaluation protocol for amusia: Portuguese sample.

    PubMed

    Peixoto, Maria Conceição; Martins, Jorge; Teixeira, Pedro; Alves, Marisa; Bastos, José; Ribeiro, Carlos

    2012-12-01

    Amusia is a disorder that affects the processing of music. Part of this processing happens in the primary auditory cortex. The study of this condition allows us to evaluate the central auditory pathways. To explore the diagnostic evaluation tests of amusia. The authors propose an evaluation protocol for patients with suspected amusia (after brain injury or complaints of poor musical perception), in parallel with the assessment of central auditory processing, already implemented in the department. The Montreal Evaluation of Battery of amusia was the basis for the selection of the tests. From this comprehensive battery of tests we selected some of the musical examples to evaluate different musical aspects, including memory and perception of music, ability concerning musical recognition and discrimination. In terms of memory there is a test for assessing delayed memory, adapted to the Portuguese culture. Prospective study. Although still experimental, with the possibility of adjustments in the assessment, we believe that this assessment, combined with the study of central auditory processing, will allow us to understand some central lesions, congenital or acquired hearing perception limitations.

  3. Comparable mechanisms of working memory interference by auditory and visual motion in youth and aging

    PubMed Central

    Mishra, Jyoti; Zanto, Theodore; Nilakantan, Aneesha; Gazzaley, Adam

    2013-01-01

    Intrasensory interference during visual working memory (WM) maintenance by object stimuli (such as faces and scenes), has been shown to negatively impact WM performance, with greater detrimental impacts of interference observed in aging. Here we assessed age-related impacts by intrasensory WM interference from lower-level stimulus features such as visual and auditory motion stimuli. We consistently found that interference in the form of ignored distractions and secondary task i nterruptions presented during a WM maintenance period, degraded memory accuracy in both the visual and auditory domain. However, in contrast to prior studies assessing WM for visual object stimuli, feature-based interference effects were not observed to be significantly greater in older adults. Analyses of neural oscillations in the alpha frequency band further revealed preserved mechanisms of interference processing in terms of post-stimulus alpha suppression, which was observed maximally for secondary task interruptions in visual and auditory modalities in both younger and older adults. These results suggest that age-related sensitivity of WM to interference may be limited to complex object stimuli, at least at low WM loads. PMID:23791629

  4. Intermediate Cognitive Phenotypes in Bipolar Disorder

    PubMed Central

    Langenecker, Scott A.; Saunders, Erika F.H.; Kade, Allison M.; Ransom, Michael T.; McInnis, Melvin G.

    2013-01-01

    Background Intermediate cognitive phenotypes (ICPs) are measurable and quantifiable states that may be objectively assessed in a standardized method, and can be integrated into association studies, including genetic, biochemical, clinical, and imaging based correlates. The present study used neuropsychological measures as ICPs, with factor scores in executive functioning, attention, memory, fine motor function, and emotion processing, similar to prior work in schizophrenia. Methods Healthy control subjects (HC, n=34) and euthymic (E, n=66), depressed (D, n=43), or hypomanic/mixed (HM, n=13) patients with bipolar disorder (BD) were assessed with neuropsychological tests. These were from eight domains consistent with previous literature; auditory memory, visual memory, processing speed with interference resolution, verbal fluency and processing speed, conceptual reasoning and set-shifting, inhibitory control, emotion processing, and fine motor dexterity. Results Of the eight factor scores, the HC group outperformed the E group in three (Processing Speed with Interference Resolution, Visual Memory, Fine Motor Dexterity), the D group in seven (all except Inhibitory Control), and the HM group in four (Inhibitory Control, Processing Speed with Interference Resolution, Fine Motor Dexterity, and Auditory Memory). Limitations The HM group was relatively small, thus effects of this phase of illness may have been underestimated. Effects of medication could not be fully controlled without a randomized, double-blind, placebo-controlled study. Conclusions Use of the factor scores can assist in determining ICPs for BD and related disorders, and may provide more specific targets for development of new treatments. We highlight strong ICPs (Processing Speed with Interference Resolution, Visual Memory, Fine Motor Dexterity) for further study, consistent with the existing literature. PMID:19800130

  5. Effect of Auditory Interference on Memory of Haptic Perceptions.

    ERIC Educational Resources Information Center

    Anater, Paul F.

    1980-01-01

    The effect of auditory interference on the processing of haptic information by 61 visually impaired students (8 to 20 years old) was the focus of the research described in this article. It was assumed that as the auditory interference approximated the verbalized activity of the haptic task, accuracy of recall would decline. (Author)

  6. The Temporal Signature of Memories: Identification of a General Mechanism for Dynamic Memory Replay in Humans

    PubMed Central

    Michelmann, Sebastian; Bowman, Howard; Hanslmayr, Simon

    2016-01-01

    Reinstatement of dynamic memories requires the replay of neural patterns that unfold over time in a similar manner as during perception. However, little is known about the mechanisms that guide such a temporally structured replay in humans, because previous studies used either unsuitable methods or paradigms to address this question. Here, we overcome these limitations by developing a new analysis method to detect the replay of temporal patterns in a paradigm that requires participants to mentally replay short sound or video clips. We show that memory reinstatement is accompanied by a decrease of low-frequency (8 Hz) power, which carries a temporal phase signature of the replayed stimulus. These replay effects were evident in the visual as well as in the auditory domain and were localized to sensory-specific regions. These results suggest low-frequency phase to be a domain-general mechanism that orchestrates dynamic memory replay in humans. PMID:27494601

  7. Improving Memory Span in Children with Down Syndrome

    ERIC Educational Resources Information Center

    Conners, F. A.; Rosenquist, C. J.; Arnett, L.; Moore, M. S.; Hume, L. E.

    2008-01-01

    Background: Down syndrome (DS) is characterized by impaired memory span, particularly auditory verbal memory span. Memory span is linked developmentally to several language capabilities, and may be a basic capacity that enables language learning. If children with DS had better memory span, they might benefit more from language intervention. The…

  8. Predictors of change in life skills in schizophrenia after cognitive remediation.

    PubMed

    Kurtz, Matthew M; Seltzer, James C; Fujimoto, Marco; Shagan, Dana S; Wexler, Bruce E

    2009-02-01

    Few studies have investigated predictors of response to cognitive remediation interventions in patients with schizophrenia. Predictor studies to date have selected treatment outcome measures that were either part of the remediation intervention itself or closely linked to the intervention with few studies investigating factors that predict generalization to measures of everyday life-skills as an index of treatment-related improvement. In the current study we investigated the relationship between four measures of neurocognitive function, crystallized verbal ability, auditory sustained attention and working memory, verbal learning and memory, and problem-solving, two measures of symptoms, total positive and negative symptoms, and the process variables of treatment intensity and duration, to change on a performance-based measure of everyday life-skills after a year of computer-assisted cognitive remediation offered as part of intensive outpatient rehabilitation treatment. Thirty-six patients with schizophrenia or schizoaffective disorder were studied. Results of a linear regression model revealed that auditory attention and working memory predicted a significant amount of the variance in change in performance-based measures of everyday life skills after cognitive remediation, even when variance for all other neurocognitive variables in the model was controlled. Stepwise regression revealed that auditory attention and working memory predicted change in everyday life-skills across the trial even when baseline life-skill scores, symptoms and treatment process variables were controlled. These findings emphasize the importance of sustained auditory attention and working memory for benefiting from extended programs of cognitive remediation.

  9. Executive function deficits in team sport athletes with a history of concussion revealed by a visual-auditory dual task paradigm.

    PubMed

    Tapper, Anthony; Gonzalez, Dave; Roy, Eric; Niechwiej-Szwedo, Ewa

    2017-02-01

    The purpose of this study was to examine executive functions in team sport athletes with and without a history of concussion. Executive functions comprise many cognitive processes including, working memory, attention and multi-tasking. Past research has shown that concussions cause difficulties in vestibular-visual and vestibular-auditory dual-tasking, however, visual-auditory tasks have been examined rarely. Twenty-nine intercollegiate varsity ice hockey athletes (age = 19.13, SD = 1.56; 15 females) performed an experimental dual-task paradigm that required simultaneously processing visual and auditory information. A brief interview, event description and self-report questionnaires were used to assign participants to each group (concussion, no-concussion). Eighteen athletes had a history of concussion and 11 had no concussion history. The two tests involved visuospatial working memory (i.e., Corsi block test) and auditory tone discrimination. Participants completed both tasks individually, then simultaneously. Two outcome variables were measured, Corsi block memory span and auditory tone discrimination accuracy. No differences were shown when each task was performed alone; however, athletes with a history of concussion had a significantly worse performance on the tone discrimination task in the dual-task condition. In conclusion, long-term deficits in executive functions were associated with a prior history of concussion when cognitive resources were stressed. Evaluations of executive functions and divided attention appear to be helpful in discriminating participants with and without a history concussion.

  10. Memory factors in Rey AVLT: Implications for early staging of cognitive decline.

    PubMed

    Fernaeus, Sven-Erik; Ostberg, Per; Wahlund, Lars-Olof; Hellström, Ake

    2014-12-01

    Supraspan verbal list learning is widely used to assess dementia and related cognitive disorders where declarative memory deficits are a major clinical sign. While the overall learning rate is important for diagnosis, serial position patterns may give insight into more specific memory processes in patients with cognitive impairment. This study explored these patterns in a memory clinic clientele. One hundred eighty three participants took the Rey Auditory-Verbal Learning Test (RAVLT). The major groups were patients with Alzheimer's disease (AD), Vascular Dementia (VD), Mild Cognitive Impairment (MCI), and Subjective Cognitive Impairment (SCI) as well as healthy controls (HC). Raw scores for the five trials and five serial partitions were factor analysed. Three memory factors were found and interpreted as Primacy, Recency, and Resistance to Interference. AD and MCI patients had impaired scores in all factors. SCI patients were significantly impaired in the Resistance to Interference factor, and in the Recency factor at the first trial. The main conclusion is that serial position data from word list testing reflect specific memory capacities which vary with levels of cognitive impairment. © 2014 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  11. The written voice: implicit memory effects of voice characteristics following silent reading and auditory presentation.

    PubMed

    Abramson, Marianne

    2007-12-01

    After being familiarized with two voices, either implicit (auditory lexical decision) or explicit memory (auditory recognition) for words from silently read sentences was assessed among 32 men and 32 women volunteers. In the silently read sentences, the sex of speaker was implied in the initial words, e.g., "He said, ..." or "She said...". Tone in question versus statement was also manipulated by appropriate punctuation. Auditory lexical decision priming was found for sex- and tone-consistent items following silent reading, but only up to 5 min. after silent reading. In a second study, similar lexical decision priming was found following listening to the sentences, although these effects remained reliable after a 2-day delay. The effect sizes for lexical decision priming showed that tone-consistency and sex-consistency were strong following both silent reading and listening 5 min. after studying. These results suggest that readers create episodic traces of text from auditory images of silently read sentences as they do during listening.

  12. Short-term plasticity in auditory cognition.

    PubMed

    Jääskeläinen, Iiro P; Ahveninen, Jyrki; Belliveau, John W; Raij, Tommi; Sams, Mikko

    2007-12-01

    Converging lines of evidence suggest that auditory system short-term plasticity can enable several perceptual and cognitive functions that have been previously considered as relatively distinct phenomena. Here we review recent findings suggesting that auditory stimulation, auditory selective attention and cross-modal effects of visual stimulation each cause transient excitatory and (surround) inhibitory modulations in the auditory cortex. These modulations might adaptively tune hierarchically organized sound feature maps of the auditory cortex (e.g. tonotopy), thus filtering relevant sounds during rapidly changing environmental and task demands. This could support auditory sensory memory, pre-attentive detection of sound novelty, enhanced perception during selective attention, influence of visual processing on auditory perception and longer-term plastic changes associated with perceptual learning.

  13. Opposite effects of fear conditioning and extinction on dendritic spine remodelling.

    PubMed

    Lai, Cora Sau Wan; Franke, Thomas F; Gan, Wen-Biao

    2012-02-19

    It is generally believed that fear extinction is a form of new learning that inhibits rather than erases previously acquired fear memories. Although this view has gained much support from behavioural and electrophysiological studies, the hypothesis that extinction causes the partial erasure of fear memories remains viable. Using transcranial two-photon microscopy, we investigated how neural circuits are modified by fear learning and extinction by examining the formation and elimination of postsynaptic dendritic spines of layer-V pyramidal neurons in the mouse frontal association cortex. Here we show that fear conditioning by pairing an auditory cue with a footshock increases the rate of spine elimination. By contrast, fear extinction by repeated presentation of the same auditory cue without a footshock increases the rate of spine formation. The degrees of spine remodelling induced by fear conditioning and extinction strongly correlate with the expression and extinction of conditioned fear responses, respectively. Notably, spine elimination and formation induced by fear conditioning and extinction occur on the same dendritic branches in a cue- and location-specific manner: cue-specific extinction causes formation of dendritic spines within a distance of two micrometres from spines that were eliminated after fear conditioning. Furthermore, reconditioning preferentially induces elimination of dendritic spines that were formed after extinction. Thus, within vastly complex neuronal networks, fear conditioning, extinction and reconditioning lead to opposing changes at the level of individual synapses. These findings also suggest that fear memory traces are partially erased after extinction.

  14. Stimulus-specific adaptation and deviance detection in the inferior colliculus

    PubMed Central

    Ayala, Yaneri A.; Malmierca, Manuel S.

    2013-01-01

    Deviancy detection in the continuous flow of sensory information into the central nervous system is of vital importance for animals. The task requires neuronal mechanisms that allow for an efficient representation of the environment by removing statistically redundant signals. Recently, the neuronal principles of auditory deviance detection have been approached by studying the phenomenon of stimulus-specific adaptation (SSA). SSA is a reduction in the responsiveness of a neuron to a common or repetitive sound while the neuron remains highly sensitive to rare sounds (Ulanovsky et al., 2003). This phenomenon could enhance the saliency of unexpected, deviant stimuli against a background of repetitive signals. SSA shares many similarities with the evoked potential known as the “mismatch negativity,” (MMN) and it has been linked to cognitive process such as auditory memory and scene analysis (Winkler et al., 2009) as well as to behavioral habituation (Netser et al., 2011). Neurons exhibiting SSA can be found at several levels of the auditory pathway, from the inferior colliculus (IC) up to the auditory cortex (AC). In this review, we offer an account of the state-of-the art of SSA studies in the IC with the aim of contributing to the growing interest in the single-neuron electrophysiology of auditory deviance detection. The dependence of neuronal SSA on various stimulus features, e.g., probability of the deviant stimulus and repetition rate, and the roles of the AC and inhibition in shaping SSA at the level of the IC are addressed. PMID:23335883

  15. Simultaneous acquisition of multiple auditory-motor transformations in speech

    PubMed Central

    Rochet-Capellan, Amelie; Ostry, David J.

    2011-01-01

    The brain easily generates the movement that is needed in a given situation. Yet surprisingly, the results of experimental studies suggest that it is difficult to acquire more than one skill at a time. To do so, it has generally been necessary to link the required movement to arbitrary cues. In the present study, we show that speech motor learning provides an informative model for the acquisition of multiple sensorimotor skills. During training, subjects are required to repeat aloud individual words in random order while auditory feedback is altered in real-time in different ways for the different words. We find that subjects can quite readily and simultaneously modify their speech movements to correct for these different auditory transformations. This multiple learning occurs effortlessly without explicit cues and without any apparent awareness of the perturbation. The ability to simultaneously learn several different auditory-motor transformations is consistent with the idea that in speech motor learning, the brain acquires instance specific memories. The results support the hypothesis that speech motor learning is fundamentally local. PMID:21325534

  16. Controlling memory impairment in elderly adults using virtual reality memory training: a randomized controlled pilot study.

    PubMed

    Optale, Gabriele; Urgesi, Cosimo; Busato, Valentina; Marin, Silvia; Piron, Lamberto; Priftis, Konstantinos; Gamberini, Luciano; Capodieci, Salvatore; Bordin, Adalberto

    2010-05-01

    Memory decline is a prevalent aspect of aging but may also be the first sign of cognitive pathology. Virtual reality (VR) using immersion and interaction may provide new approaches to the treatment of memory deficits in elderly individuals. The authors implemented a VR training intervention to try to lessen cognitive decline and improve memory functions. The authors randomly assigned 36 elderly residents of a rest care facility (median age 80 years) who were impaired on the Verbal Story Recall Test either to the experimental group (EG) or the control group (CG). The EG underwent 6 months of VR memory training (VRMT) that involved auditory stimulation and VR experiences in path finding. The initial training phase lasted 3 months (3 auditory and 3 VR sessions every 2 weeks), and there was a booster training phase during the following 3 months (1 auditory and 1 VR session per week). The CG underwent equivalent face-to-face training sessions using music therapy. Both groups participated in social and creative and assisted-mobility activities. Neuropsychological and functional evaluations were performed at baseline, after the initial training phase, and after the booster training phase. The EG showed significant improvements in memory tests, especially in long-term recall with an effect size of 0.7 and in several other aspects of cognition. In contrast, the CG showed progressive decline. The authors suggest that VRMT may improve memory function in elderly adults by enhancing focused attention.

  17. How Does the Linguistic Distance Between Spoken and Standard Language in Arabic Affect Recall and Recognition Performances During Verbal Memory Examination.

    PubMed

    Taha, Haitham

    2017-06-01

    The current research examined how Arabic diglossia affects verbal learning memory. Thirty native Arab college students were tested using auditory verbal memory test that was adapted according to the Rey Auditory Verbal Learning Test and developed in three versions: Pure spoken language version (SL), pure standard language version (SA), and phonologically similar version (PS). The result showed that for immediate free-recall, the performances were better for the SL and the PS conditions compared to the SA one. However, for the parts of delayed recall and recognition, the results did not reveal any significant consistent effect of diglossia. Accordingly, it was suggested that diglossia has a significant effect on the storage and short term memory functions but not on long term memory functions. The results were discussed in light of different approaches in the field of bilingual memory.

  18. Effects of a cochlear implant simulation on immediate memory in normal-hearing adults

    PubMed Central

    Burkholder, Rose A.; Pisoni, David B.; Svirsky, Mario A.

    2012-01-01

    This study assessed the effects of stimulus misidentification and memory processing errors on immediate memory span in 25 normal-hearing adults exposed to degraded auditory input simulating signals provided by a cochlear implant. The identification accuracy of degraded digits in isolation was measured before digit span testing. Forward and backward digit spans were shorter when digits were degraded than when they were normal. Participants’ normal digit spans and their accuracy in identifying isolated digits were used to predict digit spans in the degraded speech condition. The observed digit spans in degraded conditions did not differ significantly from predicted digit spans. This suggests that the decrease in memory span is related primarily to misidentification of digits rather than memory processing errors related to cognitive load. These findings provide complementary information to earlier research on auditory memory span of listeners exposed to degraded speech either experimentally or as a consequence of a hearing-impairment. PMID:16317807

  19. PRESCHOOL SPEECH ARTICULATION AND NONWORD REPETITION ABILITIES MAY HELP PREDICT EVENTUAL RECOVERY OR PERSISTENCE OF STUTTERING

    PubMed Central

    Spencer, Caroline; Weber-Fox, Christine

    2014-01-01

    Purpose In preschool children, we investigated whether expressive and receptive language, phonological, articulatory, and/or verbal working memory proficiencies aid in predicting eventual recovery or persistence of stuttering. Methods Participants included 65 children, including 25 children who do not stutter (CWNS) and 40 who stutter (CWS) recruited at age 3;9–5;8. At initial testing, participants were administered the Test of Auditory Comprehension of Language, 3rd edition (TACL-3), Structured Photographic Expressive Language Test, 3rd edition (SPELT-3), Bankson-Bernthal Test of Phonology-Consonant Inventory subtest (BBTOP-CI), Nonword Repetition Test (NRT; Dollaghan & Campbell, 1998), and Test of Auditory Perceptual Skills-Revised (TAPS-R) auditory number memory and auditory word memory subtests. Stuttering behaviors of CWS were assessed in subsequent years, forming groups whose stuttering eventually persisted (CWS-Per; n=19) or recovered (CWS-Rec; n=21). Proficiency scores in morphosyntactic skills, consonant production, verbal working memory for known words, and phonological working memory and speech production for novel nonwords obtained at the initial testing were analyzed for each group. Results CWS-Per were less proficient than CWNS and CWS-Rec in measures of consonant production (BBTOP-CI) and repetition of novel phonological sequences (NRT). In contrast, receptive language, expressive language, and verbal working memory abilities did not distinguish CWS-Rec from CWS-Per. Binary logistic regression analysis indicated that preschool BBTOP-CI scores and overall NRT proficiency significantly predicted future recovery status. Conclusion Results suggest that phonological and speech articulation abilities in the preschool years should be considered with other predictive factors as part of a comprehensive risk assessment for the development of chronic stuttering. PMID:25173455

  20. Good Holders, Bad Shufflers: An Examination of Working Memory Processes and Modalities in Children with and without Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Simone, Ashley N; Bédard, Anne-Claude V; Marks, David J; Halperin, Jeffrey M

    2016-01-01

    The aim of this study was to examine working memory (WM) modalities (visual-spatial and auditory-verbal) and processes (maintenance and manipulation) in children with and without attention-deficit/hyperactivity disorder (ADHD). The sample consisted of 63 8-year-old children with ADHD and an age- and sex-matched non-ADHD comparison group (N=51). Auditory-verbal and visual-spatial WM were assessed using the Digit Span and Spatial Span subtests from the Wechsler Intelligence Scale for Children Integrated - Fourth Edition. WM maintenance and manipulation were assessed via forward and backward span indices, respectively. Data were analyzed using a 3-way Group (ADHD vs. non-ADHD)×Modality (Auditory-Verbal vs. Visual-Spatial)×Condition (Forward vs. Backward) Analysis of Variance (ANOVA). Secondary analyses examined differences between Combined and Predominantly Inattentive ADHD presentations. Significant Group×Condition (p=.02) and Group×Modality (p=.03) interactions indicated differentially poorer performance by those with ADHD on backward relative to forward and visual-spatial relative to auditory-verbal tasks, respectively. The 3-way interaction was not significant. Analyses targeting ADHD presentations yielded a significant Group×Condition interaction (p=.009) such that children with ADHD-Predominantly Inattentive Presentation performed differentially poorer on backward relative to forward tasks compared to the children with ADHD-Combined Presentation. Findings indicate a specific pattern of WM weaknesses (i.e., WM manipulation and visual-spatial tasks) for children with ADHD. Furthermore, differential patterns of WM performance were found for children with ADHD-Predominantly Inattentive versus Combined Presentations. (JINS, 2016, 22, 1-11).

  1. Right anterior superior temporal activation predicts auditory sentence comprehension following aphasic stroke.

    PubMed

    Crinion, Jenny; Price, Cathy J

    2005-12-01

    Previous studies have suggested that recovery of speech comprehension after left hemisphere infarction may depend on a mechanism in the right hemisphere. However, the role that distinct right hemisphere regions play in speech comprehension following left hemisphere stroke has not been established. Here, we used functional magnetic resonance imaging (fMRI) to investigate narrative speech activation in 18 neurologically normal subjects and 17 patients with left hemisphere stroke and a history of aphasia. Activation for listening to meaningful stories relative to meaningless reversed speech was identified in the normal subjects and in each patient. Second level analyses were then used to investigate how story activation changed with the patients' auditory sentence comprehension skills and surprise story recognition memory tests post-scanning. Irrespective of lesion site, performance on tests of auditory sentence comprehension was positively correlated with activation in the right lateral superior temporal region, anterior to primary auditory cortex. In addition, when the stroke spared the left temporal cortex, good performance on tests of auditory sentence comprehension was also correlated with the left posterior superior temporal cortex (Wernicke's area). In distinct contrast to this, good story recognition memory predicted left inferior frontal and right cerebellar activation. The implication of this double dissociation in the effects of auditory sentence comprehension and story recognition memory is that left frontal and left temporal activations are dissociable. Our findings strongly support the role of the right temporal lobe in processing narrative speech and, in particular, auditory sentence comprehension following left hemisphere aphasic stroke. In addition, they highlight the importance of the right anterior superior temporal cortex where the response was dissociated from that in the left posterior temporal lobe.

  2. Gamma band plasticity in sensory cortex is a signature of the strongest memory rather than memory of the training stimulus.

    PubMed

    Weinberger, Norman M; Miasnikov, Alexandre A; Bieszczad, Kasia M; Chen, Jemmy C

    2013-09-01

    Gamma oscillations (∼30-120Hz) are considered to be a reflection of coordinated neuronal activity, linked to processes underlying synaptic integration and plasticity. Increases in gamma power within the cerebral cortex have been found during many cognitive processes such as attention, learning, memory and problem solving in both humans and animals. However, the specificity of gamma to the detailed contents of memory remains largely unknown. We investigated the relationship between learning-induced increased gamma power in the primary auditory cortex (A1) and the strength of memory for acoustic frequency. Adult male rats (n=16) received three days (200 trials each) of pairing a tone (3.66 kHz) with stimulation of the nucleus basalis, which implanted a memory for acoustic frequency as assessed by associatively-induced disruption of ongoing behavior, viz., respiration. Post-training frequency generalization gradients (FGGs) revealed peaks at non-CS frequencies in 11/16 cases, likely reflecting normal variation in pre-training acoustic experiences. A stronger relationship was found between increased gamma power and the frequency with the strongest memory (peak of the difference between individual post- and pre-training FGGs) vs. behavioral responses to the CS training frequency. No such relationship was found for the theta/alpha band (4-15 Hz). These findings indicate that the strength of specific increased neuronal synchronization within primary sensory cortical fields can determine the specific contents of memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. GAMMA BAND PLASTICITY IN SENSORY CORTEX IS A SIGNATURE OF THE STRONGEST MEMORY RATHER THAN MEMORY OF THE TRAINING STIMULUS

    PubMed Central

    Weinberger, Norman M.; Miasnikov, Alexandre A.; Bieszczad, Kasia M.; Chen, Jemmy C.

    2013-01-01

    Gamma oscillations (~30–120 Hz) are considered to be a reflection of coordinated neuronal activity, linked to processes underlying synaptic integration and plasticity. Increases in gamma power within the cerebral cortex have been found during many cognitive processes such as attention, learning, memory and problem solving in both humans and animals. However, the specificity of gamma to the detailed contents of memory remains largely unknown. We investigated the relationship between learning-induced increased gamma power in the primary auditory cortex (A1) and the strength of memory for acoustic frequency. Adult male rats (n = 16) received three days (200 trials each) of pairing a tone (3.66 kHz) with stimulation of the nucleus basalis, which implanted a memory for acoustic frequency as assessed by associatively-induced disruption of ongoing behavior, viz., respiration. Post-training frequency generalization gradients (FGGs) revealed peaks at non-CS frequencies in 11/16 cases, likely reflecting normal variation in pre-training acoustic experiences. A stronger relationship was found between increased gamma power and the frequency with the strongest memory (peak of the difference between individual post- and pre-training FGGs) vs. behavioral responses to the CS training frequency. No such relationship was found for the theta/alpha band (4–15 Hz). These findings indicate that the strength of specific increased neuronal synchronization within primary sensory cortical fields can determine the specific contents of memory. PMID:23669065

  4. Setting appropriate pass or fail cut-off criteria for tests to reflect real life listening difficulties in children with suspected auditory processing disorder.

    PubMed

    Ahmmed, Ansar U; Ahmmed, Afsara A

    2016-05-01

    This paper explores the pass or fail cut-off criteria, the number of test fails, and the nature of tests that are most appropriate in predicting listening difficulties (LiD) in children with suspected APD (SusAPD). One hundred and nine English-speaking children (67 males, 42 females) aged between 6 and 11 years with SusAPD were assessed. The Children's Auditory Performance Scale (CHAPS) scores 2 SD below the mean were taken as markers of LiD in different listening conditions. Binary logistic regression analyses were carried out to evaluate the cut-off criterion (2 SD or 1.5 SD or 1 SD below the mean) of failing at least two tests, from the SCAN-C and IMAP test batteries, which significantly predicted LiD. Analyses were also carried out to assess if the group of auditory processing (AP) or cognitive or combination of AP plus cognitive tests were significant in predicting LiD. Receiver Operative Characteristic (ROC) curves were also explored to evaluate how the sensitivity and specificity in confirming LiD varied with the number of test fails. Filtered Words, Competing Words, Competing Sentences, VCV in ICRA noise, Digit Span, Sight Word Reading and the Cued Auditory Attention tests correlated with one or more of the CHAPS domains. Failing at least two of these tests 1.5 SD below the mean significantly predicted (p<.05) CHAPS Ideal scores 2 SD below the mean, and failing at least two of the tests 1 SD below the mean significantly predicted (p<.05) CHAPS Memory and CHAPS Attention scores 2 SD below the mean. The combination of AP plus cognitive tests had significantly higher ability to predict CHAPS Ideal, Memory and Attention scores, compared to the group of AP or cognitive tests separately. ROC curves showed that failing at least two of the tests was associated with the best sensitivity and specificity in predicting LiD. Of the different CHAPS domains only the CHAPS Ideal, Memory and Attention correlated with the APD tests. Failing at least two APD tests from a combination of AP and cognitive tests 1 SD and 1.5 SD below the mean, but not 2 SD, is more appropriate in confirming LiD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Neural correlates of auditory short-term memory in rostral superior temporal cortex

    PubMed Central

    Scott, Brian H.; Mishkin, Mortimer; Yin, Pingbo

    2014-01-01

    Summary Background Auditory short-term memory (STM) in the monkey is less robust than visual STM and may depend on a retained sensory trace, which is likely to reside in the higher-order cortical areas of the auditory ventral stream. Results We recorded from the rostral superior temporal cortex as monkeys performed serial auditory delayed-match-to-sample (DMS). A subset of neurons exhibited modulations of their firing rate during the delay between sounds, during the sensory response, or both. This distributed subpopulation carried a predominantly sensory signal modulated by the mnemonic context of the stimulus. Excitatory and suppressive effects on match responses were dissociable in their timing, and in their resistance to sounds intervening between the sample and match. Conclusions Like the monkeys’ behavioral performance, these neuronal effects differ from those reported in the same species during visual DMS, suggesting different neural mechanisms for retaining dynamic sounds and static images in STM. PMID:25456448

  6. Action video games improve reading abilities and visual-to-auditory attentional shifting in English-speaking children with dyslexia.

    PubMed

    Franceschini, Sandro; Trevisan, Piergiorgio; Ronconi, Luca; Bertoni, Sara; Colmar, Susan; Double, Kit; Facoetti, Andrea; Gori, Simone

    2017-07-19

    Dyslexia is characterized by difficulties in learning to read and there is some evidence that action video games (AVG), without any direct phonological or orthographic stimulation, improve reading efficiency in Italian children with dyslexia. However, the cognitive mechanism underlying this improvement and the extent to which the benefits of AVG training would generalize to deep English orthography, remain two critical questions. During reading acquisition, children have to integrate written letters with speech sounds, rapidly shifting their attention from visual to auditory modality. In our study, we tested reading skills and phonological working memory, visuo-spatial attention, auditory, visual and audio-visual stimuli localization, and cross-sensory attentional shifting in two matched groups of English-speaking children with dyslexia before and after they played AVG or non-action video games. The speed of words recognition and phonological decoding increased after playing AVG, but not non-action video games. Furthermore, focused visuo-spatial attention and visual-to-auditory attentional shifting also improved only after AVG training. This unconventional reading remediation program also increased phonological short-term memory and phoneme blending skills. Our report shows that an enhancement of visuo-spatial attention and phonological working memory, and an acceleration of visual-to-auditory attentional shifting can directly translate into better reading in English-speaking children with dyslexia.

  7. An Experimental Analysis of Memory Processing

    ERIC Educational Resources Information Center

    Wright, Anthony A.

    2007-01-01

    Rhesus monkeys were trained and tested in visual and auditory list-memory tasks with sequences of four travel pictures or four natural/environmental sounds followed by single test items. Acquisitions of the visual list-memory task are presented. Visual recency (last item) memory diminished with retention delay, and primacy (first item) memory…

  8. Prefrontal Neuronal Responses during Audiovisual Mnemonic Processing

    PubMed Central

    Hwang, Jaewon

    2015-01-01

    During communication we combine auditory and visual information. Neurophysiological research in nonhuman primates has shown that single neurons in ventrolateral prefrontal cortex (VLPFC) exhibit multisensory responses to faces and vocalizations presented simultaneously. However, whether VLPFC is also involved in maintaining those communication stimuli in working memory or combining stored information across different modalities is unknown, although its human homolog, the inferior frontal gyrus, is known to be important in integrating verbal information from auditory and visual working memory. To address this question, we recorded from VLPFC while rhesus macaques (Macaca mulatta) performed an audiovisual working memory task. Unlike traditional match-to-sample/nonmatch-to-sample paradigms, which use unimodal memoranda, our nonmatch-to-sample task used dynamic movies consisting of both facial gestures and the accompanying vocalizations. For the nonmatch conditions, a change in the auditory component (vocalization), the visual component (face), or both components was detected. Our results show that VLPFC neurons are activated by stimulus and task factors: while some neurons simply responded to a particular face or a vocalization regardless of the task period, others exhibited activity patterns typically related to working memory such as sustained delay activity and match enhancement/suppression. In addition, we found neurons that detected the component change during the nonmatch period. Interestingly, some of these neurons were sensitive to the change of both components and therefore combined information from auditory and visual working memory. These results suggest that VLPFC is not only involved in the perceptual processing of faces and vocalizations but also in their mnemonic processing. PMID:25609614

  9. Impact of Educational Level on Performance on Auditory Processing Tests.

    PubMed

    Murphy, Cristina F B; Rabelo, Camila M; Silagi, Marcela L; Mansur, Letícia L; Schochat, Eliane

    2016-01-01

    Research has demonstrated that a higher level of education is associated with better performance on cognitive tests among middle-aged and elderly people. However, the effects of education on auditory processing skills have not yet been evaluated. Previous demonstrations of sensory-cognitive interactions in the aging process indicate the potential importance of this topic. Therefore, the primary purpose of this study was to investigate the performance of middle-aged and elderly people with different levels of formal education on auditory processing tests. A total of 177 adults with no evidence of cognitive, psychological or neurological conditions took part in the research. The participants completed a series of auditory assessments, including dichotic digit, frequency pattern and speech-in-noise tests. A working memory test was also performed to investigate the extent to which auditory processing and cognitive performance were associated. The results demonstrated positive but weak correlations between years of schooling and performance on all of the tests applied. The factor "years of schooling" was also one of the best predictors of frequency pattern and speech-in-noise test performance. Additionally, performance on the working memory, frequency pattern and dichotic digit tests was also correlated, suggesting that the influence of educational level on auditory processing performance might be associated with the cognitive demand of the auditory processing tests rather than auditory sensory aspects itself. Longitudinal research is required to investigate the causal relationship between educational level and auditory processing skills.

  10. Auditory-visual object recognition time suggests specific processing for animal sounds.

    PubMed

    Suied, Clara; Viaud-Delmon, Isabelle

    2009-01-01

    Recognizing an object requires binding together several cues, which may be distributed across different sensory modalities, and ignoring competing information originating from other objects. In addition, knowledge of the semantic category of an object is fundamental to determine how we should react to it. Here we investigate the role of semantic categories in the processing of auditory-visual objects. We used an auditory-visual object-recognition task (go/no-go paradigm). We compared recognition times for two categories: a biologically relevant one (animals) and a non-biologically relevant one (means of transport). Participants were asked to react as fast as possible to target objects, presented in the visual and/or the auditory modality, and to withhold their response for distractor objects. A first main finding was that, when participants were presented with unimodal or bimodal congruent stimuli (an image and a sound from the same object), similar reaction times were observed for all object categories. Thus, there was no advantage in the speed of recognition for biologically relevant compared to non-biologically relevant objects. A second finding was that, in the presence of a biologically relevant auditory distractor, the processing of a target object was slowed down, whether or not it was itself biologically relevant. It seems impossible to effectively ignore an animal sound, even when it is irrelevant to the task. These results suggest a specific and mandatory processing of animal sounds, possibly due to phylogenetic memory and consistent with the idea that hearing is particularly efficient as an alerting sense. They also highlight the importance of taking into account the auditory modality when investigating the way object concepts of biologically relevant categories are stored and retrieved.

  11. Children's Performance on Pseudoword Repetition Depends on Auditory Trace Quality: Evidence from Event-Related Potentials.

    ERIC Educational Resources Information Center

    Ceponiene, Rita; Service, Elisabet; Kurjenluoma, Sanna; Cheour, Marie; Naatanen, Risto

    1999-01-01

    Compared the mismatch-negativity (MMN) component of auditory event-related brain potentials to explore the relationship between phonological short-term memory and auditory-sensory processing in 7- to 9-year olds scoring the highest and lowest on a pseudoword repetition test. Found that high and low repeaters differed in MMN amplitude to speech…

  12. Prenatal complex rhythmic music sound stimulation facilitates postnatal spatial learning but transiently impairs memory in the domestic chick.

    PubMed

    Kauser, H; Roy, S; Pal, A; Sreenivas, V; Mathur, R; Wadhwa, S; Jain, S

    2011-01-01

    Early experience has a profound influence on brain development, and the modulation of prenatal perceptual learning by external environmental stimuli has been shown in birds, rodents and mammals. In the present study, the effect of prenatal complex rhythmic music sound stimulation on postnatal spatial learning, memory and isolation stress was observed. Auditory stimulation with either music or species-specific sounds or no stimulation (control) was provided to separate sets of fertilized eggs from day 10 of incubation. Following hatching, the chicks at age 24, 72 and 120 h were tested on a T-maze for spatial learning and the memory of the learnt task was assessed 24 h after training. In the posthatch chicks at all ages, the plasma corticosterone levels were estimated following 10 min of isolation. The chicks of all ages in the three groups took less (p < 0.001) time to navigate the maze over the three trials thereby showing an improvement with training. In both sound-stimulated groups, the total time taken to reach the target decreased significantly (p < 0.01) in comparison to the unstimulated control group, indicating the facilitation of spatial learning. However, this decline was more at 24 h than at later posthatch ages. When tested for memory after 24 h of training, only the music-stimulated chicks at posthatch age 24 h took a significantly longer (p < 0.001) time to traverse the maze, suggesting a temporary impairment in their retention of the learnt task. In both sound-stimulated groups at 24 h, the plasma corticosterone levels were significantly decreased (p < 0.001) and increased thereafter at 72 h (p < 0.001) and 120 h which may contribute to the differential response in spatial learning. Thus, prenatal auditory stimulation with either species-specific or complex rhythmic music sounds facilitates spatial learning, though the music stimulation transiently impairs postnatal memory. 2011 S. Karger AG, Basel.

  13. Characterizing the roles of alpha and theta oscillations in multisensory attention.

    PubMed

    Keller, Arielle S; Payne, Lisa; Sekuler, Robert

    2017-05-01

    Cortical alpha oscillations (8-13Hz) appear to play a role in suppressing distractions when just one sensory modality is being attended, but do they also contribute when attention is distributed over multiple sensory modalities? For an answer, we examined cortical oscillations in human subjects who were dividing attention between auditory and visual sequences. In Experiment 1, subjects performed an oddball task with auditory, visual, or simultaneous audiovisual sequences in separate blocks, while the electroencephalogram was recorded using high-density scalp electrodes. Alpha oscillations were present continuously over posterior regions while subjects were attending to auditory sequences. This supports the idea that the brain suppresses processing of visual input in order to advantage auditory processing. During a divided-attention audiovisual condition, an oddball (a rare, unusual stimulus) occurred in either the auditory or the visual domain, requiring that attention be divided between the two modalities. Fronto-central theta band (4-7Hz) activity was strongest in this audiovisual condition, when subjects monitored auditory and visual sequences simultaneously. Theta oscillations have been associated with both attention and with short-term memory. Experiment 2 sought to distinguish these possible roles of fronto-central theta activity during multisensory divided attention. Using a modified version of the oddball task from Experiment 1, Experiment 2 showed that differences in theta power among conditions were independent of short-term memory load. Ruling out theta's association with short-term memory, we conclude that fronto-central theta activity is likely a marker of multisensory divided attention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Characterizing the roles of alpha and theta oscillations in multisensory attention

    PubMed Central

    Keller, Arielle S.; Payne, Lisa; Sekuler, Robert

    2017-01-01

    Cortical alpha oscillations (8–13 Hz) appear to play a role in suppressing distractions when just one sensory modality is being attended, but do they also contribute when attention is distributed over multiple sensory modalities? For an answer, we examined cortical oscillations in human subjects who were dividing attention between auditory and visual sequences. In Experiment 1, subjects performed an oddball task with auditory, visual, or simultaneous audiovisual sequences in separate blocks, while the electroencephalogram was recorded using high-density scalp electrodes. Alpha oscillations were present continuously over posterior regions while subjects were attending to auditory sequences. This supports the idea that the brain suppresses processing of visual input in order to advantage auditory processing. During a divided-attention audiovisual condition, an oddball (a rare, unusual stimulus) occurred in either the auditory or the visual domain, requiring that attention be divided between the two modalities. Fronto-central theta band (4–7 Hz) activity was strongest in this audiovisual condition, when subjects monitored auditory and visual sequences simultaneously. Theta oscillations have been associated with both attention and with short-term memory. Experiment 2 sought to distinguish these possible roles of fronto-central theta activity during multisensory divided attention. Using a modified version of the oddball task from Experiment 1, Experiment 2 showed that differences in theta power among conditions were independent of short-term memory load. Ruling out theta’s association with short-term memory, we conclude that fronto-central theta activity is likely a marker of multisensory divided attention. PMID:28259771

  15. Visual selective attention in amnestic mild cognitive impairment.

    PubMed

    McLaughlin, Paula M; Anderson, Nicole D; Rich, Jill B; Chertkow, Howard; Murtha, Susan J E

    2014-11-01

    Subtle deficits in visual selective attention have been found in amnestic mild cognitive impairment (aMCI). However, few studies have explored performance on visual search paradigms or the Simon task, which are known to be sensitive to disease severity in Alzheimer's patients. Furthermore, there is limited research investigating how deficiencies can be ameliorated with exogenous support (auditory cues). Sixteen individuals with aMCI and 14 control participants completed 3 experimental tasks that varied in demand and cue availability: visual search-alerting, visual search-orienting, and Simon task. Visual selective attention was influenced by aMCI, auditory cues, and task characteristics. Visual search abilities were relatively consistent across groups. The aMCI participants were impaired on the Simon task when working memory was required, but conflict resolution was similar to controls. Spatially informative orienting cues improved response times, whereas spatially neutral alerting cues did not influence performance. Finally, spatially informative auditory cues benefited the aMCI group more than controls in the visual search task, specifically at the largest array size where orienting demands were greatest. These findings suggest that individuals with aMCI have working memory deficits and subtle deficiencies in orienting attention and rely on exogenous information to guide attention. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. The role of auditory and cognitive factors in understanding speech in noise by normal-hearing older listeners

    PubMed Central

    Schoof, Tim; Rosen, Stuart

    2014-01-01

    Normal-hearing older adults often experience increased difficulties understanding speech in noise. In addition, they benefit less from amplitude fluctuations in the masker. These difficulties may be attributed to an age-related auditory temporal processing deficit. However, a decline in cognitive processing likely also plays an important role. This study examined the relative contribution of declines in both auditory and cognitive processing to the speech in noise performance in older adults. Participants included older (60–72 years) and younger (19–29 years) adults with normal hearing. Speech reception thresholds (SRTs) were measured for sentences in steady-state speech-shaped noise (SS), 10-Hz sinusoidally amplitude-modulated speech-shaped noise (AM), and two-talker babble. In addition, auditory temporal processing abilities were assessed by measuring thresholds for gap, amplitude-modulation, and frequency-modulation detection. Measures of processing speed, attention, working memory, Text Reception Threshold (a visual analog of the SRT), and reading ability were also obtained. Of primary interest was the extent to which the various measures correlate with listeners' abilities to perceive speech in noise. SRTs were significantly worse for older adults in the presence of two-talker babble but not SS and AM noise. In addition, older adults showed some cognitive processing declines (working memory and processing speed) although no declines in auditory temporal processing. However, working memory and processing speed did not correlate significantly with SRTs in babble. Despite declines in cognitive processing, normal-hearing older adults do not necessarily have problems understanding speech in noise as SRTs in SS and AM noise did not differ significantly between the two groups. Moreover, while older adults had higher SRTs in two-talker babble, this could not be explained by age-related cognitive declines in working memory or processing speed. PMID:25429266

  17. Auditory Alterations in Children Infected by Human Immunodeficiency Virus Verified Through Auditory Processing Test

    PubMed Central

    Romero, Ana Carla Leite; Alfaya, Lívia Marangoni; Gonçales, Alina Sanches; Frizzo, Ana Claudia Figueiredo; Isaac, Myriam de Lima

    2016-01-01

    Introduction The auditory system of HIV-positive children may have deficits at various levels, such as the high incidence of problems in the middle ear that can cause hearing loss. Objective The objective of this study is to characterize the development of children infected by the Human Immunodeficiency Virus (HIV) in the Simplified Auditory Processing Test (SAPT) and the Staggered Spondaic Word Test. Methods We performed behavioral tests composed of the Simplified Auditory Processing Test and the Portuguese version of the Staggered Spondaic Word Test (SSW). The participants were 15 children infected by HIV, all using antiretroviral medication. Results The children had abnormal auditory processing verified by Simplified Auditory Processing Test and the Portuguese version of SSW. In the Simplified Auditory Processing Test, 60% of the children presented hearing impairment. In the SAPT, the memory test for verbal sounds showed more errors (53.33%); whereas in SSW, 86.67% of the children showed deficiencies indicating deficit in figure-ground, attention, and memory auditory skills. Furthermore, there are more errors in conditions of background noise in both age groups, where most errors were in the left ear in the Group of 8-year-olds, with similar results for the group aged 9 years. Conclusion The high incidence of hearing loss in children with HIV and comorbidity with several biological and environmental factors indicate the need for: 1) familiar and professional awareness of the impact on auditory alteration on the developing and learning of the children with HIV, and 2) access to educational plans and follow-up with multidisciplinary teams as early as possible to minimize the damage caused by auditory deficits. PMID:28050213

  18. Some Neurocognitive Correlates of Noise-Vocoded Speech Perception in Children with Normal Hearing: A Replication and Extension of Eisenberg et al., 2002

    PubMed Central

    Roman, Adrienne S.; Pisoni, David B.; Kronenberger, William G.; Faulkner, Kathleen F.

    2016-01-01

    Objectives Noise-vocoded speech is a valuable research tool for testing experimental hypotheses about the effects of spectral-degradation on speech recognition in adults with normal hearing (NH). However, very little research has utilized noise-vocoded speech with children with NH. Earlier studies with children with NH focused primarily on the amount of spectral information needed for speech recognition without assessing the contribution of neurocognitive processes to speech perception and spoken word recognition. In this study, we first replicated the seminal findings reported by Eisenberg et al. (2002) who investigated effects of lexical density and word frequency on noise-vocoded speech perception in a small group of children with NH. We then extended the research to investigate relations between noise-vocoded speech recognition abilities and five neurocognitive measures: auditory attention and response set, talker discrimination and verbal and nonverbal short-term working memory. Design Thirty-one children with NH between 5 and 13 years of age were assessed on their ability to perceive lexically controlled words in isolation and in sentences that were noise-vocoded to four spectral channels. Children were also administered vocabulary assessments (PPVT-4 and EVT-2) and measures of auditory attention (NEPSY Auditory Attention (AA) and Response Set (RS) and a talker discrimination task (TD)) and short-term memory (visual digit and symbol spans). Results Consistent with the findings reported in the original Eisenberg et al. (2002) study, we found that children perceived noise-vocoded lexically easy words better than lexically hard words. Words in sentences were also recognized better than the same words presented in isolation. No significant correlations were observed between noise-vocoded speech recognition scores and the PPVT-4 using language quotients to control for age effects. However, children who scored higher on the EVT-2 recognized lexically easy words better than lexically hard words in sentences. Older children perceived noise-vocoded speech better than younger children. Finally, we found that measures of auditory attention and short-term memory capacity were significantly correlated with a child’s ability to perceive noise-vocoded isolated words and sentences. Conclusions First, we successfully replicated the major findings from the Eisenberg et al. (2002) study. Because familiarity, phonological distinctiveness and lexical competition affect word recognition, these findings provide additional support for the proposal that several foundational elementary neurocognitive processes underlie the perception of spectrally-degraded speech. Second, we found strong and significant correlations between performance on neurocognitive measures and children’s ability to recognize words and sentences noise-vocoded to four spectral channels. These findings extend earlier research suggesting that perception of spectrally-degraded speech reflects early peripheral auditory processes as well as additional contributions of executive function, specifically, selective attention and short-term memory processes in spoken word recognition. The present findings suggest that auditory attention and short-term memory support robust spoken word recognition in children with NH even under compromised and challenging listening conditions. These results are relevant to research carried out with listeners who have hearing loss, since they are routinely required to encode, process and understand spectrally-degraded acoustic signals. PMID:28045787

  19. Effects of capacity limits, memory loss, and sound type in change deafness.

    PubMed

    Gregg, Melissa K; Irsik, Vanessa C; Snyder, Joel S

    2017-11-01

    Change deafness, the inability to notice changes to auditory scenes, has the potential to provide insights about sound perception in busy situations typical of everyday life. We determined the extent to which change deafness to sounds is due to the capacity of processing multiple sounds and the loss of memory for sounds over time. We also determined whether these processing limitations work differently for varying types of sounds within a scene. Auditory scenes composed of naturalistic sounds, spectrally dynamic unrecognizable sounds, tones, and noise rhythms were presented in a change-detection task. On each trial, two scenes were presented that were same or different. We manipulated the number of sounds within each scene to measure memory capacity and the silent interval between scenes to measure memory loss. For all sounds, change detection was worse as scene size increased, demonstrating the importance of capacity limits. Change detection to the natural sounds did not deteriorate much as the interval between scenes increased up to 2,000 ms, but it did deteriorate substantially with longer intervals. For artificial sounds, in contrast, change-detection performance suffered even for very short intervals. The results suggest that change detection is generally limited by capacity, regardless of sound type, but that auditory memory is more enduring for sounds with naturalistic acoustic structures.

  20. Amygdala upregulation of NCAM polysialylation induced by auditory fear conditioning is not required for memory formation, but plays a role in fear extinction.

    PubMed

    Markram, Kamila; Lopez Fernandez, Miguel Angel; Abrous, Djoher Nora; Sandi, Carmen

    2007-05-01

    There is much interest to understand the mechanisms leading to the establishment, maintenance, and extinction of fear memories. The amygdala has been critically involved in the processing of fear memories and a number of molecular changes have been implicated in this brain region in relation to fear learning. Although neural cell adhesion molecules (NCAMs) have been hypothesized to play a role, information available about their contribution to fear memories is scarce. We investigate here whether polysialylated NCAM (PSA-NCAM) contributes to auditory fear conditioning in the amygdala. First, PSA-NCAM expression was evaluated in different amygdala nuclei after auditory fear conditioning at two different shock intensities. Results showed that PSA-NCAM expression was increased 24 h post-training only in animals subjected to the highest shock intensity (1mA). Second, PSA-NCAM was cleaved in the basolateral amygdaloid complex through micro-infusions of the enzyme endoneuraminidase N, and the consequences of such treatment were investigated on the acquisition, consolidation, remote memory expression, and extinction of conditioned fear memories. Intra-amygdaloid cleavage of PSA-NCAM did not affect acquisition, consolidation or expression of remote fear memories. However, intra-amygdaloid PSA-NCAM cleavage enhanced fear extinction processes. These results suggest that upregulation of PSA-NCAM is a correlate of fear conditioning that is not necessary for the establishment of fear memory in the amygdala, but participates in mechanisms precluding fear extinction. These findings point out PSA-NCAM as a potential target for the treatment of psychopathologies that involve impairment in fear extinction.

  1. Perceptual Bias and Loudness Change: An Investigation of Memory, Masking, and Psychophysiology

    NASA Astrophysics Data System (ADS)

    Olsen, Kirk N.

    Loudness is a fundamental aspect of human auditory perception that is closely associated with a sound's physical acoustic intensity. The dynamic quality of intensity change is an inherent acoustic feature in real-world listening domains such as speech and music. However, perception of loudness change in response to continuous intensity increases (up-ramps) and decreases (down-ramps) has received relatively little empirical investigation. Overestimation of loudness change in response to up-ramps is said to be linked to an adaptive survival response associated with looming (or approaching) motion in the environment. The hypothesised 'perceptual bias' to looming auditory motion suggests why perceptual overestimation of up-ramps may occur; however it does not offer a causal explanation. It is concluded that post-stimulus judgements of perceived loudness change are significantly affected by a cognitive recency response bias that, until now, has been an artefact of experimental procedure. Perceptual end-level differences caused by duration specific sensory adaptation at peripheral and/or central stages of auditory processing may explain differences in post-stimulus judgements of loudness change. Experiments that investigate human responses to acoustic intensity dynamics, encompassing topics from basic auditory psychophysics (e.g., sensory adaptation) to cognitive-emotional appraisal of increasingly complex stimulus events such as music and auditory warnings, are proposed for future research.

  2. Auditory mismatch negativity deficits in long-term heavy cannabis users.

    PubMed

    Roser, Patrik; Della, Beate; Norra, Christine; Uhl, Idun; Brüne, Martin; Juckel, Georg

    2010-09-01

    Mismatch negativity (MMN) is an auditory event-related potential indicating auditory sensory memory and information processing. The present study tested the hypothesis that chronic cannabis use is associated with deficient MMN generation. MMN was investigated in age- and gender-matched chronic cannabis users (n = 30) and nonuser controls (n = 30). The cannabis users were divided into two groups according to duration and quantity of cannabis consumption. The MMNs resulting from a pseudorandomized sequence of 2 × 900 auditory stimuli were recorded by 32-channel EEG. The standard stimuli were 1,000 Hz, 80 dB SPL and 90 ms duration. The deviant stimuli differed in duration (50 ms) or frequency (1,200 Hz). There were no significant differences in MMN values between cannabis users and nonuser controls in both deviance conditions. With regard to subgroups, reduced amplitudes of frequency MMN at frontal electrodes were found in long-term (≥8 years of use) and heavy (≥15 joints/week) users compared to short-term and light users. The results indicate that chronic cannabis use may cause a specific impairment of auditory information processing. In particular, duration and quantity of cannabis use could be identified as important factors of deficient MMN generation.

  3. Lexical-Access Ability and Cognitive Predictors of Speech Recognition in Noise in Adult Cochlear Implant Users

    PubMed Central

    Smits, Cas; Merkus, Paul; Festen, Joost M.; Goverts, S. Theo

    2017-01-01

    Not all of the variance in speech-recognition performance of cochlear implant (CI) users can be explained by biographic and auditory factors. In normal-hearing listeners, linguistic and cognitive factors determine most of speech-in-noise performance. The current study explored specifically the influence of visually measured lexical-access ability compared with other cognitive factors on speech recognition of 24 postlingually deafened CI users. Speech-recognition performance was measured with monosyllables in quiet (consonant-vowel-consonant [CVC]), sentences-in-noise (SIN), and digit-triplets in noise (DIN). In addition to a composite variable of lexical-access ability (LA), measured with a lexical-decision test (LDT) and word-naming task, vocabulary size, working-memory capacity (Reading Span test [RSpan]), and a visual analogue of the SIN test (text reception threshold test) were measured. The DIN test was used to correct for auditory factors in SIN thresholds by taking the difference between SIN and DIN: SRTdiff. Correlation analyses revealed that duration of hearing loss (dHL) was related to SIN thresholds. Better working-memory capacity was related to SIN and SRTdiff scores. LDT reaction time was positively correlated with SRTdiff scores. No significant relationships were found for CVC or DIN scores with the predictor variables. Regression analyses showed that together with dHL, RSpan explained 55% of the variance in SIN thresholds. When controlling for auditory performance, LA, LDT, and RSpan separately explained, together with dHL, respectively 37%, 36%, and 46% of the variance in SRTdiff outcome. The results suggest that poor verbal working-memory capacity and to a lesser extent poor lexical-access ability limit speech-recognition ability in listeners with a CI. PMID:29205095

  4. Effects of Cogmed working memory training on cognitive performance.

    PubMed

    Etherton, Joseph L; Oberle, Crystal D; Rhoton, Jayson; Ney, Ashley

    2018-04-16

    Research on the cognitive benefits of working memory training programs has produced inconsistent results. Such research has frequently used laboratory-specific training tasks, or dual-task n-back training. The current study used the commercial Cogmed Working Memory (WM) Training program, involving several different training tasks involving visual and auditory input. Healthy college undergraduates were assigned to either the full Cogmed training program of 25, 40-min training sessions; an abbreviated Cogmed program of 25, 20-min training sessions; or a no-contact control group. Pretest and posttest measures included multiple measures of attention, working memory, fluid intelligence, and executive functions. Although improvement was observed for the full training group for a digit span task, no training-related improvement was observed for any of the other measures. Results of the study suggest that WM training does not improve performance on unrelated tasks or enhance other cognitive abilities.

  5. Sleep-Based Memory Processing Facilitates Grammatical Generalization: Evidence from Targeted Memory Reactivation

    PubMed Central

    Batterink, Laura J.; Paller, Ken A.

    2015-01-01

    Generalization — the ability to abstract regularities from specific examples and apply them to novel instances — is an essential component of language acquisition. Generalization not only depends on exposure to input during wake, but may also improve offline during sleep. Here we examined whether targeted memory reactivation during sleep can influence grammatical generalization. Participants gradually acquired the grammatical rules of an artificial language through an interactive learning procedure. Then, phrases from the language (experimental group) or stimuli from an unrelated task (control group) were covertly presented during an afternoon nap. Compared to control participants, participants re-exposed to the language during sleep showed larger gains in grammatical generalization. Sleep cues produced a bias, not necessarily a pure gain, suggesting that the capacity for memory replay during sleep is limited. We conclude that grammatical generalization was biased by auditory cueing during sleep, and by extension, that sleep likely influences grammatical generalization in general. PMID:26443322

  6. Selective deficits in verbal working memory associated with a known genetic etiology: The neuropsychological profile of Duchenne muscular dystrophy

    PubMed Central

    HINTON, VERONICA J.; DE VIVO, DARRYL C.; NEREO, NANCY E.; GOLDSTEIN, EDWARD; STERN, YAAKOV

    2007-01-01

    Forty-one boys diagnosed with Duchenne muscular dystrophy (DMD) were each compared to an unaffected sibling on a battery of neuropsychological tests. Verbal, visuospatial, attention/memory, abstract thinking, and academic achievement skills were tested. Results indicated the boys with DMD performed similarly to their siblings on the majority of measures, indicating intact verbal, visuospatial, long-term memory, and abstract skills. However, the DMD group did significantly more poorly than their siblings on specific measures of story recall, digit span, and auditory comprehension, as well as in all areas of academic achievement (reading, writing, and math). This profile indicates that verbal working memory skills are selectively impaired in DMD, and that that likely contributes to limited academic achievement. The association between the known impact of the genetic mutation on the development of the central nervous system and boys’ cognitive profile is discussed. PMID:11253841

  7. Translational control of auditory imprinting and structural plasticity by eIF2α.

    PubMed

    Batista, Gervasio; Johnson, Jennifer Leigh; Dominguez, Elena; Costa-Mattioli, Mauro; Pena, Jose L

    2016-12-23

    The formation of imprinted memories during a critical period is crucial for vital behaviors, including filial attachment. Yet, little is known about the underlying molecular mechanisms. Using a combination of behavior, pharmacology, in vivo surface sensing of translation (SUnSET) and DiOlistic labeling we found that, translational control by the eukaryotic translation initiation factor 2 alpha (eIF2α) bidirectionally regulates auditory but not visual imprinting and related changes in structural plasticity in chickens. Increasing phosphorylation of eIF2α (p-eIF2α) reduces translation rates and spine plasticity, and selectively impairs auditory imprinting. By contrast, inhibition of an eIF2α kinase or blocking the translational program controlled by p-eIF2α enhances auditory imprinting. Importantly, these manipulations are able to reopen the critical period. Thus, we have identified a translational control mechanism that selectively underlies auditory imprinting. Restoring translational control of eIF2α holds the promise to rejuvenate adult brain plasticity and restore learning and memory in a variety of cognitive disorders.

  8. Psycho acoustical Measures in Individuals with Congenital Visual Impairment.

    PubMed

    Kumar, Kaushlendra; Thomas, Teenu; Bhat, Jayashree S; Ranjan, Rajesh

    2017-12-01

    In congenital visual impaired individuals one modality is impaired (visual modality) this impairment is compensated by other sensory modalities. There is evidence that visual impaired performed better in different auditory task like localization, auditory memory, verbal memory, auditory attention, and other behavioural tasks when compare to normal sighted individuals. The current study was aimed to compare the temporal resolution, frequency resolution and speech perception in noise ability in individuals with congenital visual impaired and normal sighted. Temporal resolution, frequency resolution, and speech perception in noise were measured using MDT, GDT, DDT, SRDT, and SNR50 respectively. Twelve congenital visual impaired participants with age range of 18 to 40 years were taken and equal in number with normal sighted participants. All the participants had normal hearing sensitivity with normal middle ear functioning. Individual with visual impairment showed superior threshold in MDT, SRDT and SNR50 as compared to normal sighted individuals. This may be due to complexity of the tasks; MDT, SRDT and SNR50 are complex tasks than GDT and DDT. Visual impairment showed superior performance in auditory processing and speech perception with complex auditory perceptual tasks.

  9. School-aged children can benefit from audiovisual semantic congruency during memory encoding.

    PubMed

    Heikkilä, Jenni; Tiippana, Kaisa

    2016-05-01

    Although we live in a multisensory world, children's memory has been usually studied concentrating on only one sensory modality at a time. In this study, we investigated how audiovisual encoding affects recognition memory. Children (n = 114) from three age groups (8, 10 and 12 years) memorized auditory or visual stimuli presented with a semantically congruent, incongruent or non-semantic stimulus in the other modality during encoding. Subsequent recognition memory performance was better for auditory or visual stimuli initially presented together with a semantically congruent stimulus in the other modality than for stimuli accompanied by a non-semantic stimulus in the other modality. This congruency effect was observed for pictures presented with sounds, for sounds presented with pictures, for spoken words presented with pictures and for written words presented with spoken words. The present results show that semantically congruent multisensory experiences during encoding can improve memory performance in school-aged children.

  10. Domain-Specific Control of Selective Attention

    PubMed Central

    Lin, Szu-Hung; Yeh, Yei-Yu

    2014-01-01

    Previous research has shown that loading information on working memory affects selective attention. However, whether the load effect on selective attention is domain-general or domain-specific remains unresolved. The domain-general effect refers to the findings that load in one content (e.g. phonological) domain in working memory influences processing in another content (e.g., visuospatial) domain. Attentional control supervises selection regardless of information domain. The domain-specific effect refers to the constraint of influence only when maintenance and processing operate in the same domain. Selective attention operates in a specific content domain. This study is designed to resolve this controversy. Across three experiments, we manipulated the type of representation maintained in working memory and the type of representation upon which the participants must exert control to resolve conflict and select a target into the focus of attention. In Experiments 1a and 1b, participants maintained digits and nonverbalized objects, respectively, in working memory while selecting a target in a letter array. In Experiment 2, we presented auditory digits with a letter flanker task to exclude the involvement of resource competition within the same input modality. In Experiments 3a and 3b, we replaced the letter flanker task with an object flanker task while manipulating the memory load on object and digit representation, respectively. The results consistently showed that memory load modulated distractibility only when the stimuli of the two tasks were represented in the same domain. The magnitude of distractor interference was larger under high load than under low load, reflecting a lower efficacy of information prioritization. When the stimuli of the two tasks were represented in different domains, memory load did not modulate distractibility. Control of processing priority in selective attention demands domain-specific resources. PMID:24866977

  11. Hearing loss is negatively related to episodic and semantic long-term memory but not to short-term memory.

    PubMed

    Rönnberg, Jerker; Danielsson, Henrik; Rudner, Mary; Arlinger, Stig; Sternäng, Ola; Wahlin, Ake; Nilsson, Lars-Göran

    2011-04-01

    To test the relationship between degree of hearing loss and different memory systems in hearing aid users. Structural equation modeling (SEM) was used to study the relationship between auditory and visual acuity and different cognitive and memory functions in an age-hetereogenous subsample of 160 hearing aid users without dementia, drawn from the Swedish prospective cohort aging study known as Betula (L.-G. Nilsson et al., 1997). Hearing loss was selectively and negatively related to episodic and semantic long-term memory (LTM) but not short-term memory (STM) performance. This held true for both ears, even when age was accounted for. Visual acuity alone, or in combination with auditory acuity, did not contribute to any acceptable SEM solution. The overall relationships between hearing loss and memory systems were predicted by the ease of language understanding model (J. Rönnberg, 2003), but the exact mechanisms of episodic memory decline in hearing aid users (i.e., mismatch/disuse, attentional resources, or information degradation) remain open for further experiments. The hearing aid industry should strive to design signal processing algorithms that are cognition friendly.

  12. A single night of sleep loss impairs objective but not subjective working memory performance in a sex-dependent manner.

    PubMed

    Rångtell, Frida H; Karamchedu, Swathy; Andersson, Peter; Liethof, Lisanne; Olaya Búcaro, Marcela; Lampola, Lauri; Schiöth, Helgi B; Cedernaes, Jonathan; Benedict, Christian

    2018-01-31

    Acute sleep deprivation can lead to judgement errors and thereby increases the risk of accidents, possibly due to an impaired working memory. However, whether the adverse effects of acute sleep loss on working memory are modulated by auditory distraction in women and men are not known. Additionally, it is unknown whether sleep loss alters the way in which men and women perceive their working memory performance. Thus, 24 young adults (12 women using oral contraceptives at the time of investigation) participated in two experimental conditions: nocturnal sleep (scheduled between 22:30 and 06:30 hours) versus one night of total sleep loss. Participants were administered a digital working memory test in which eight-digit sequences were learned and retrieved in the morning after each condition. Learning of digital sequences was accompanied by either silence or auditory distraction (equal distribution among trials). After sequence retrieval, each trial ended with a question regarding how certain participants were of the correctness of their response, as a self-estimate of working memory performance. We found that sleep loss impaired objective but not self-estimated working memory performance in women. In contrast, both measures remained unaffected by sleep loss in men. Auditory distraction impaired working memory performance, without modulation by sleep loss or sex. Being unaware of cognitive limitations when sleep-deprived, as seen in our study, could lead to undesirable consequences in, for example, an occupational context. Our findings suggest that sleep-deprived young women are at particular risk for overestimating their working memory performance. © 2018 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.

  13. A Comparison of Visual and Auditory Processing Tests on the Woodcock-Johnson Tests of Cognitive Ability, Revised and the Learning Efficiency Test-II.

    ERIC Educational Resources Information Center

    Bolen, L. M.; Kimball, D. J.; Hall, C. W.; Webster, R. E.

    1997-01-01

    Compares the visual and auditory processing factors of the Woodcock Johnson Tests of Cognitive Ability, Revised (WJR COG) and the visual and auditory memory factors of the Learning Efficiency Test, II (LET-II) among 120 college students. Results indicate two significant performance differences between the WJR COG and LET-II. (RJM)

  14. Auditory Short-Term Memory Capacity Correlates with Gray Matter Density in the Left Posterior STS in Cognitively Normal and Dyslexic Adults

    ERIC Educational Resources Information Center

    Richardson, Fiona M.; Ramsden, Sue; Ellis, Caroline; Burnett, Stephanie; Megnin, Odette; Catmur, Caroline; Schofield, Tom M.; Leff, Alex P.; Price, Cathy J.

    2011-01-01

    A central feature of auditory STM is its item-limited processing capacity. We investigated whether auditory STM capacity correlated with regional gray and white matter in the structural MRI images from 74 healthy adults, 40 of whom had a prior diagnosis of developmental dyslexia whereas 34 had no history of any cognitive impairment. Using…

  15. Operator Performance Measures for Assessing Voice Communication Effectiveness

    DTIC Science & Technology

    1989-07-01

    performance and work- load assessment techniques have been based.I Broadbent (1958) described a limited capacity filter model of human information...INFORMATION PROCESSING 20 3.1.1. Auditory Attention 20 3.1.2. Auditory Memory 24 3.2. MODELS OF INFORMATION PROCESSING 24 3.2.1. Capacity Theories 25...Learning 0 Attention * Language Specialization • Decision Making• Problem Solving Auditory Information Processing Models of Processing Ooemtor

  16. The effects of aging on the working memory processes of multimodal information.

    PubMed

    Solesio-Jofre, Elena; López-Frutos, José María; Cashdollar, Nathan; Aurtenetxe, Sara; de Ramón, Ignacio; Maestú, Fernando

    2017-05-01

    Normal aging is associated with deficits in working memory processes. However, the majority of research has focused on storage or inhibitory processes using unimodal paradigms, without addressing their relationships using different sensory modalities. Hence, we pursued two objectives. First, was to examine the effects of aging on storage and inhibitory processes. Second, was to evaluate aging effects on multisensory integration of visual and auditory stimuli. To this end, young and older participants performed a multimodal task for visual and auditory pairs of stimuli with increasing memory load at encoding and interference during retention. Our results showed an age-related increased vulnerability to interrupting and distracting interference reflecting inhibitory deficits related to the off-line reactivation and on-line suppression of relevant and irrelevant information, respectively. Storage capacity was impaired with increasing task demands in both age groups. Additionally, older adults showed a deficit in multisensory integration, with poorer performance for new visual compared to new auditory information.

  17. Working memory capacity affects the interference control of distractors at auditory gating.

    PubMed

    Tsuchida, Yukio; Katayama, Jun'ichi; Murohashi, Harumitsu

    2012-05-10

    It is important to understand the role of individual differences in working memory capacity (WMC). We investigated the relation between differences in WMC and N1 in event-related brain potentials as a measure of early selective attention for an auditory distractor in three-stimulus oddball tasks that required minimum memory. A high-WMC group (n=13) showed a smaller N1 in response to a distractor and target than did a low-WMC group (n=13) in the novel condition with high distraction. However, in the simple condition with low distraction, there was no difference in N1 between the groups. For all participants (n=52), the correlation between the scores for WMC and N1 peak amplitude was strong for distractors in the novel condition, whereas there was no relation in the simple condition. These results suggest that WMC can predict the interference control for a salient distractor at auditory gating even during a selective attention task. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Serotonin 1A receptors, depression, and memory in temporal lobe epilepsy.

    PubMed

    Theodore, William H; Wiggs, Edythe A; Martinez, Ashley R; Dustin, Irene H; Khan, Omar I; Appel, Shmuel; Reeves-Tyer, Pat; Sato, Susumu

    2012-01-01

    Memory deficits and depression are common in patients with temporal lobe epilepsy (TLE). Previous positron emission tomography (PET) studies have shown reduced mesial temporal 5HT1A-receptor binding in these patients. We examined the relationships among verbal memory performance, depression, and 5HT1A-receptor binding measured with 18F-trans-4-fluoro-N-2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl-N-(2-pyridyl) cyclohexane carboxamide (18FCWAY) PET in a cross-sectional study. We studied 40 patients (24 male; mean age 34.5 ± 10.7 years) with TLE. Seizure diagnosis and focus localization were based on ictal video-electroencephalography (EEG) recording. Patients had neuropsychological testing with Wechsler Adult Intelligence Score III (WAIS III) and Wechsler Memory Score III (WMS III) on stable antiepileptic drug (AED) regimens at least 24 h since the last seizure. Beck Depression Inventory (BDI) scores were obtained. We performed interictal PET with 18FCWAY, a fluorinated derivative of WAY 100635, a highly specific 5HT1A ligand, and structural magnetic resonance imaging (MRI) scans to estimate partial volume and plasma free fraction corrected 18FCWAY volume of distribution (V/f1). Hippocampal V/f1 was significantly lower in area ipsilateral than contralateral to the epileptic focus (73.7 ± 27.3 vs. 95.4 ± 28.4; p < 0.001). We found a significant relation between both left hippocampal 18FCWAY V/f1 (r = 0.41; p < 0.02) and left hippocampal volume (r = 0.36; p < 0.03) and delayed auditory memory score. On multiple regression, there was a significant effect of the interaction of left hippocampal 18FCWAY V/f1 and left hippocampal volume on delayed auditory memory, but not of either alone. High collinearity was present. In an analysis of variance including the side of the seizure focus, the effect of left hippocampal 18FCWAY V/f1 but not focus laterality retained significance. Mean BDI was 8.3 ± 7.0. There was a significant inverse relation between BDI and 18FCWAY V/f1 ipsilateral to the patient's epileptic focus (r = 0.38 p < 0.02). There was no difference between patients with a right or left temporal focus. There was no relation between BDI and immediate or delayed auditory memory. Our study suggests that reduced left hippocampal 5HT1A-receptor binding may play a role in memory impairment in patients with TLE. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.

  19. Memory assessment and depression: testing for factor structure and measurement invariance of the Wechsler Memory Scale-Fourth Edition across a clinical and matched control sample.

    PubMed

    Pauls, Franz; Petermann, Franz; Lepach, Anja Christina

    2013-01-01

    Between-group comparisons are permissible and meaningfully interpretable only if diagnostic instruments are proved to measure the same latent dimensions across different groups. Addressing this issue, the present study was carried out to provide a rigorous test of measurement invariance. Confirmatory factor analyses were used to determine which model solution could best explain memory performance as measured by the Wechsler Memory Scale-Fourth Edition (WMS-IV) in a clinical depression sample and in healthy controls. Multigroup confirmatory factor analysis was conducted to evaluate the evidence for measurement invariance. A three-factor model solution including the dimensions of auditory memory, visual memory, and visual working memory was identified to best fit the data in both samples, and measurement invariance was partially satisfied. The results supported clinical utility of the WMS-IV--that is, auditory and visual memory performances of patients with depressive disorders are interpretable on the basis of the WMS-IV standardization data. However, possible differences in visual working memory functions between healthy and depressed individuals could restrict comparisons of the WMS-IV working memory index.

  20. Gender differences in episodic memory and visual working memory including the effects of age.

    PubMed

    Pauls, Franz; Petermann, Franz; Lepach, Anja Christina

    2013-01-01

    Analysing the relationship between gender and memory, and examining the effects of age on the overall memory-related functioning, are the ongoing goals of psychological research. The present study examined gender and age group differences in episodic memory with respect to the type of task. In addition, these subgroup differences were also analysed in visual working memory. A sample of 366 women and 330 men, aged between 16 and 69 years of age, participated in the current study. Results indicate that women outperformed men on auditory memory tasks, whereas male adolescents and older male adults showed higher level performances on visual episodic and visual working memory measures. However, the size of gender-linked effects varied somewhat across age groups. Furthermore, results partly support a declining performance on episodic memory and visual working memory measures with increasing age. Although age-related losses in episodic memory could not be explained by a decreasing verbal and visuospatial ability with age, women's advantage in auditory episodic memory could be explained by their advantage in verbal ability. Men's higher level visual episodic memory performance was found to result from their advantage in visuospatial ability. Finally, possible methodological, biological, and cognitive explanations for the current findings are discussed.

  1. Subcortical processing of speech regularities underlies reading and music aptitude in children

    PubMed Central

    2011-01-01

    Background Neural sensitivity to acoustic regularities supports fundamental human behaviors such as hearing in noise and reading. Although the failure to encode acoustic regularities in ongoing speech has been associated with language and literacy deficits, how auditory expertise, such as the expertise that is associated with musical skill, relates to the brainstem processing of speech regularities is unknown. An association between musical skill and neural sensitivity to acoustic regularities would not be surprising given the importance of repetition and regularity in music. Here, we aimed to define relationships between the subcortical processing of speech regularities, music aptitude, and reading abilities in children with and without reading impairment. We hypothesized that, in combination with auditory cognitive abilities, neural sensitivity to regularities in ongoing speech provides a common biological mechanism underlying the development of music and reading abilities. Methods We assessed auditory working memory and attention, music aptitude, reading ability, and neural sensitivity to acoustic regularities in 42 school-aged children with a wide range of reading ability. Neural sensitivity to acoustic regularities was assessed by recording brainstem responses to the same speech sound presented in predictable and variable speech streams. Results Through correlation analyses and structural equation modeling, we reveal that music aptitude and literacy both relate to the extent of subcortical adaptation to regularities in ongoing speech as well as with auditory working memory and attention. Relationships between music and speech processing are specifically driven by performance on a musical rhythm task, underscoring the importance of rhythmic regularity for both language and music. Conclusions These data indicate common brain mechanisms underlying reading and music abilities that relate to how the nervous system responds to regularities in auditory input. Definition of common biological underpinnings for music and reading supports the usefulness of music for promoting child literacy, with the potential to improve reading remediation. PMID:22005291

  2. Empirical evidence for musical syntax processing? Computer simulations reveal the contribution of auditory short-term memory

    PubMed Central

    Bigand, Emmanuel; Delbé, Charles; Poulin-Charronnat, Bénédicte; Leman, Marc; Tillmann, Barbara

    2014-01-01

    During the last decade, it has been argued that (1) music processing involves syntactic representations similar to those observed in language, and (2) that music and language share similar syntactic-like processes and neural resources. This claim is important for understanding the origin of music and language abilities and, furthermore, it has clinical implications. The Western musical system, however, is rooted in psychoacoustic properties of sound, and this is not the case for linguistic syntax. Accordingly, musical syntax processing could be parsimoniously understood as an emergent property of auditory memory rather than a property of abstract processing similar to linguistic processing. To support this view, we simulated numerous empirical studies that investigated the processing of harmonic structures, using a model based on the accumulation of sensory information in auditory memory. The simulations revealed that most of the musical syntax manipulations used with behavioral and neurophysiological methods as well as with developmental and cross-cultural approaches can be accounted for by the auditory memory model. This led us to question whether current research on musical syntax can really be compared with linguistic processing. Our simulation also raises methodological and theoretical challenges to study musical syntax while disentangling the confounded low-level sensory influences. In order to investigate syntactic abilities in music comparable to language, research should preferentially use musical material with structures that circumvent the tonal effect exerted by psychoacoustic properties of sounds. PMID:24936174

  3. [Receptive and expressive speech development in children with cochlear implant].

    PubMed

    Streicher, B; Kral, K; Hahn, M; Lang-Roth, R

    2015-04-01

    This study's aim is the assessment of language development of children with Cochlea Implant (CI). It focusses on receptive and expressive language development as well as auditory memory skills. Grimm's language development test (SETK 3-5) evaluates receptive, expressive language development and auditory memory. Data of 49 children who received their implant within their first 3 years of life were compared to the norms of hearing children at the age of 3.0-3.5 years. According to the age at implantation the cohort was subdivided in 3 groups: cochlear implantation within the first 12 months of life (group 1), during the 13th and 24th months of life (group 2) and after 25 or more months of life (group 3). It was possible to collect complete data of all SETK 3-5 subtests in 63% of the participants. A homogeneous profile of all subtests indicates a balanced receptive and expressive language development. Thus reduces the gap between hearing/language age and chronological age. Receptive and expressive language and auditory memory milestones in children implanted within their first year of life are achieved earlier in comparison to later implanted children. The Language Test for Children (SETK 3-5) is an appropriate test procedure to be used for language assessment of children who received a CI. It can be used from age 3 on to administer data on receptive and expressive language development and auditory memory. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Similarity as an organising principle in short-term memory.

    PubMed

    LeCompte, D C; Watkins, M J

    1993-03-01

    The role of stimulus similarity as an organising principle in short-term memory was explored in a series of seven experiments. Each experiment involved the presentation of a short sequence of items that were drawn from two distinct physical classes and arranged such that item class changed after every second item. Following presentation, one item was re-presented as a probe for the 'target' item that had directly followed it in the sequence. Memory for the sequence was considered organised by class if probability of recall was higher when the probe and target were from the same class than when they were from different classes. Such organisation was found when one class was auditory and the other was visual (spoken vs. written words, and sounds vs. pictures). It was also found when both classes were auditory (words spoken in a male voice vs. words spoken in a female voice) and when both classes were visual (digits shown in one location vs. digits shown in another). It is concluded that short-term memory can be organised on the basis of sensory modality and on the basis of certain features within both the auditory and visual modalities.

  5. The effects of aging on lifetime of auditory sensory memory in humans.

    PubMed

    Cheng, Chia-Hsiung; Lin, Yung-Yang

    2012-02-01

    The amplitude change of cortical responses to repeated stimulation with respect to different interstimulus intervals (ISIs) is considered as an index of sensory memory. To determine the effect of aging on lifetime of auditory sensory memory, N100m responses were recorded in young, middle-aged, and elderly healthy volunteers (n=15 for each group). Trains of 5 successive tones were presented with an inter-train interval of 10 s. In separate sessions, the within-train ISIs were 0.5, 1, 2, 4, and 8 s. The amplitude ratio between N100m responses to the first and fifth stimuli (S5/S1 N100m ratio) within each ISI condition was obtained to reflect the recovery cycle profile. The recovery function time constant (τ) was smaller in the elderly (1.06±0.26 s, p<0.001) and middle-aged (1.70±0.25 s, p=0.009) groups compared with the young group (2.77±0.25 s). In conclusion, the present study suggests an aging-related decrease in lifetime of auditory sensory memory. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. 3D hierarchical spatial representation and memory of multimodal sensory data

    NASA Astrophysics Data System (ADS)

    Khosla, Deepak; Dow, Paul A.; Huber, David J.

    2009-04-01

    This paper describes an efficient method and system for representing, processing and understanding multi-modal sensory data. More specifically, it describes a computational method and system for how to process and remember multiple locations in multimodal sensory space (e.g., visual, auditory, somatosensory, etc.). The multimodal representation and memory is based on a biologically-inspired hierarchy of spatial representations implemented with novel analogues of real representations used in the human brain. The novelty of the work is in the computationally efficient and robust spatial representation of 3D locations in multimodal sensory space as well as an associated working memory for storage and recall of these representations at the desired level for goal-oriented action. We describe (1) A simple and efficient method for human-like hierarchical spatial representations of sensory data and how to associate, integrate and convert between these representations (head-centered coordinate system, body-centered coordinate, etc.); (2) a robust method for training and learning a mapping of points in multimodal sensory space (e.g., camera-visible object positions, location of auditory sources, etc.) to the above hierarchical spatial representations; and (3) a specification and implementation of a hierarchical spatial working memory based on the above for storage and recall at the desired level for goal-oriented action(s). This work is most useful for any machine or human-machine application that requires processing of multimodal sensory inputs, making sense of it from a spatial perspective (e.g., where is the sensory information coming from with respect to the machine and its parts) and then taking some goal-oriented action based on this spatial understanding. A multi-level spatial representation hierarchy means that heterogeneous sensory inputs (e.g., visual, auditory, somatosensory, etc.) can map onto the hierarchy at different levels. When controlling various machine/robot degrees of freedom, the desired movements and action can be computed from these different levels in the hierarchy. The most basic embodiment of this machine could be a pan-tilt camera system, an array of microphones, a machine with arm/hand like structure or/and a robot with some or all of the above capabilities. We describe the approach, system and present preliminary results on a real-robotic platform.

  7. Neurofeedback-Based Enhancement of Single-Trial Auditory Evoked Potentials: Treatment of Auditory Verbal Hallucinations in Schizophrenia.

    PubMed

    Rieger, Kathryn; Rarra, Marie-Helene; Diaz Hernandez, Laura; Hubl, Daniela; Koenig, Thomas

    2018-03-01

    Auditory verbal hallucinations depend on a broad neurobiological network ranging from the auditory system to language as well as memory-related processes. As part of this, the auditory N100 event-related potential (ERP) component is attenuated in patients with schizophrenia, with stronger attenuation occurring during auditory verbal hallucinations. Changes in the N100 component assumingly reflect disturbed responsiveness of the auditory system toward external stimuli in schizophrenia. With this premise, we investigated the therapeutic utility of neurofeedback training to modulate the auditory-evoked N100 component in patients with schizophrenia and associated auditory verbal hallucinations. Ten patients completed electroencephalography neurofeedback training for modulation of N100 (treatment condition) or another unrelated component, P200 (control condition). On a behavioral level, only the control group showed a tendency for symptom improvement in the Positive and Negative Syndrome Scale total score in a pre-/postcomparison ( t (4) = 2.71, P = .054); however, no significant differences were found in specific hallucination related symptoms ( t (7) = -0.53, P = .62). There was no significant overall effect of neurofeedback training on ERP components in our paradigm; however, we were able to identify different learning patterns, and found a correlation between learning and improvement in auditory verbal hallucination symptoms across training sessions ( r = 0.664, n = 9, P = .05). This effect results, with cautious interpretation due to the small sample size, primarily from the treatment group ( r = 0.97, n = 4, P = .03). In particular, a within-session learning parameter showed utility for predicting symptom improvement with neurofeedback training. In conclusion, patients with schizophrenia and associated auditory verbal hallucinations who exhibit a learning pattern more characterized by within-session aptitude may benefit from electroencephalography neurofeedback. Furthermore, independent of the training group, a significant spatial pre-post difference was found in the event-related component P200 ( P = .04).

  8. Short-Term Memory; An Annotated Bibliography. Supplement 1.

    ERIC Educational Resources Information Center

    Fisher, Dennis F.

    A compilation of 165 references dealing with short term memory, this bibliography supplements "Short-Term Memory: An Annotated Bibliography" (August 1968). The time period covered is predominantly June 1968 to June 1969. Such aspects and topics as psychometrics, motivation, human engineering, vision, auditory perception, verbal and nonverbal…

  9. GABA-B Agonist Baclofen Normalizes Auditory-Evoked Neural Oscillations and Behavioral Deficits in the Fmr1 Knockout Mouse Model of Fragile X Syndrome

    PubMed Central

    Featherstone, R.; Naschek, M.; Nam, J.; Du, A.; Wright, S.; Weger, R.; Akuzawa, S.

    2017-01-01

    Abstract Fragile X syndrome is a genetic condition resulting from FMR1 gene mutation that leads to intellectual disability, autism-like symptoms, and sensory hypersensitivity. Arbaclofen, a GABA-B agonist, has shown efficacy in some individuals with FXS but has become unavailable after unsuccessful clinical trials, prompting interest in publicly available, racemic baclofen. The present study investigated whether racemic baclofen can remediate abnormalities of neural circuit function, sensory processing, and behavior in Fmr1 knockout mice, a rodent model of fragile X syndrome. Fmr1 knockout mice showed increased baseline and auditory-evoked high-frequency gamma (30–80 Hz) power relative to C57BL/6 controls, as measured by electroencephalography. These deficits were accompanied by decreased T maze spontaneous alternation, decreased social interactions, and increased open field center time, suggestive of diminished working memory, sociability, and anxiety-like behavior, respectively. Abnormal auditory-evoked gamma oscillations, working memory, and anxiety-related behavior were normalized by treatment with baclofen, but impaired sociability was not. Improvements in working memory were evident predominantly in mice whose auditory-evoked gamma oscillations were dampened by baclofen. These findings suggest that racemic baclofen may be useful for targeting sensory and cognitive disturbances in fragile X syndrome. PMID:28451631

  10. Perception of Long-Period Complex Sounds

    DTIC Science & Technology

    1989-11-27

    Richard M. Warren AFOSR Grant No. 88-0320 M CES Guttman, N. & Julesz, B. (1963). Lower limits of auditory periodicity analysis. Journal of the Aostical...order within auditory sequences. Peretion & PsvchobhVsics, 12, 86-90. Watson, C.S., (1987). Uncertainty, informational masking, and the capacity of...immediate memory. In W.A. Yost and C.S. Watson (eds.), Auditory Processing of Camlex Sounds. New Jersey: lawrence Erlbaum Associates, pp. 267-277

  11. Auditory and Visual Differences in Time Perception? An Investigation from a Developmental Perspective with Neuropsychological Tests

    ERIC Educational Resources Information Center

    Zelanti, Pierre S.; Droit-Volet, Sylvie

    2012-01-01

    Adults and children (5- and 8-year-olds) performed a temporal bisection task with either auditory or visual signals and either a short (0.5-1.0s) or long (4.0-8.0s) duration range. Their working memory and attentional capacities were assessed by a series of neuropsychological tests administered in both the auditory and visual modalities. Results…

  12. Mismatch negativity evoked by the McGurk-MacDonald effect: a phonetic representation within short-term memory.

    PubMed

    Colin, C; Radeau, M; Soquet, A; Demolin, D; Colin, F; Deltenre, P

    2002-04-01

    The McGurk-MacDonald illusory percept is obtained by dubbing an incongruent articulatory movement on an auditory phoneme. This type of audiovisual speech perception contributes to the assessment of theories of speech perception. The mismatch negativity (MMN) reflects the detection of a deviant stimulus within the auditory short-term memory and besides an acoustic component, possesses, under certain conditions, a phonetic one. The present study assessed the existence of an MMN evoked by McGurk-MacDonald percepts elicited by audiovisual stimuli with constant auditory components. Cortical evoked potentials were recorded using the oddball paradigm on 8 adults in 3 experimental conditions: auditory alone, visual alone and audiovisual stimulation. Obtaining illusory percepts was confirmed in an additional psychophysical condition. The auditory deviant syllables and the audiovisual incongruent syllables elicited a significant MMN at Fz. In the visual condition, no negativity was observed either at Fz, or at O(z). An MMN can be evoked by visual articulatory deviants, provided they are presented in a suitable auditory context leading to a phonetically significant interaction. The recording of an MMN elicited by illusory McGurk percepts suggests that audiovisual integration mechanisms in speech take place rather early during the perceptual processes.

  13. Bilingual language processing after a lesion in the left thalamic and temporal regions. A case report with early childhood onset

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Lieshout, P.; Renier, W.; Eling, P.

    1990-02-01

    This case study concerns an 18-year-old bilingual girl who suffered a radiation lesion in the left (dominant) thalamic and temporal region when she was 4 years old. Language and memory assessment revealed deficits in auditory short-term memory, auditory word comprehension, nonword repetition, syntactic processing, word fluency, and confrontation naming tasks. Both languages (English and Dutch) were found to be affected in a similar manner, despite the fact that one language (English) was acquired before and the other (Dutch) after the period of lesion onset. Most of the deficits appear to be related to verbal (short-term) memory dysfunction. Several hypotheses ofmore » subcortical involvement in memory processes are discussed with reference to existing theories in this area.« less

  14. Multimodal retrieval of autobiographical memories: sensory information contributes differently to the recollection of events.

    PubMed

    Willander, Johan; Sikström, Sverker; Karlsson, Kristina

    2015-01-01

    Previous studies on autobiographical memory have focused on unimodal retrieval cues (i.e., cues pertaining to one modality). However, from an ecological perspective multimodal cues (i.e., cues pertaining to several modalities) are highly important to investigate. In the present study we investigated age distributions and experiential ratings of autobiographical memories retrieved with unimodal and multimodal cues. Sixty-two participants were randomized to one of four cue-conditions: visual, olfactory, auditory, or multimodal. The results showed that the peak of the distributions depends on the modality of the retrieval cue. The results indicated that multimodal retrieval seemed to be driven by visual and auditory information to a larger extent and to a lesser extent by olfactory information. Finally, no differences were observed in the number of retrieved memories or experiential ratings across the four cue-conditions.

  15. Prefrontal N-acetylaspartate is strongly associated with memory performance in (abstinent) ecstasy users: preliminary report.

    PubMed

    Reneman, L; Majoie, C B; Schmand, B; van den Brink, W; den Heeten, G J

    2001-10-01

    3,4-methylenedioxymethamphetamine (MDMA or "Ecstasy") is known to damage brain serotonin neurons in animals and possibly humans. Because serotonergic damage may adversely affect memory, we compared verbal memory function between MDMA users and MDMA-naïve control subjects and evaluated the relationship between verbal memory function and neuronal dysfunction in the MDMA users. An auditory verbal memory task (Rey Auditory Verbal Learning Test) was used to study eight abstinent MDMA users and seven control subjects. In addition 1H-MRS was used in different brain regions of all MDMA users to measure N-acetylaspartate/creatine (NAA/Cr) ratios, a marker for neuronal viability. The MDMA users recalled significantly fewer words than control subjects on delayed (p =.03) but not immediate recall (p =.08). In MDMA users, delayed memory function was strongly associated with NAA/Cr only in the prefrontal cortex (R(2) =.76, p =.01). Greater decrements in memory function predicted lower NAA/Cr levels-and by inference greater neuronal dysfunction-in the prefrontal cortex of MDMA users.

  16. Sequencing Stories in Spanish and English.

    ERIC Educational Resources Information Center

    Steckbeck, Pamela Meza

    The guide was designed for speech pathologists, bilingual teachers, and specialists in English as a second language who work with Spanish-speaking children. The guide contains twenty illustrated stories that facilitate the learning of auditory sequencing, auditory and visual memory, receptive and expressive vocabulary, and expressive language…

  17. The central role of recognition in auditory perception: a neurobiological model.

    PubMed

    McLachlan, Neil; Wilson, Sarah

    2010-01-01

    The model presents neurobiologically plausible accounts of sound recognition (including absolute pitch), neural plasticity involved in pitch, loudness and location information integration, and streaming and auditory recall. It is proposed that a cortical mechanism for sound identification modulates the spectrotemporal response fields of inferior colliculus neurons and regulates the encoding of the echoic trace in the thalamus. Identification involves correlation of sequential spectral slices of the stimulus-driven neural activity with stored representations in association with multimodal memories, verbal lexicons, and contextual information. Identities are then consolidated in auditory short-term memory and bound with attribute information (usually pitch, loudness, and direction) that has been integrated according to the identities' spectral properties. Attention to, or recall of, a particular identity will excite a particular sequence in the identification hierarchies and so lead to modulation of thalamus and inferior colliculus neural spectrotemporal response fields. This operates as an adaptive filter for identities, or their attributes, and explains many puzzling human auditory behaviors, such as the cocktail party effect, selective attention, and continuity illusions.

  18. Auditory processing and phonological awareness skills of five-year-old children with and without musical experience.

    PubMed

    Escalda, Júlia; Lemos, Stela Maris Aguiar; França, Cecília Cavalieri

    2011-09-01

    To investigate the relations between musical experience, auditory processing and phonological awareness of groups of 5-year-old children with and without musical experience. Participants were 56 5-year-old subjects of both genders, 26 in the Study Group, consisting of children with musical experience, and 30 in the Control Group, consisting of children without musical experience. All participants were assessed with the Simplified Auditory Processing Assessment and Phonological Awareness Test and the data was statistically analyzed. There was a statistically significant difference between the results of the sequential memory test for verbal and non-verbal sounds with four stimuli, phonological awareness tasks of rhyme recognition, phonemic synthesis and phonemic deletion. Analysis of multiple binary logistic regression showed that, with exception of the sequential verbal memory with four syllables, the observed difference in subjects' performance was associated with their musical experience. Musical experience improves auditory and metalinguistic abilities of 5-year-old children.

  19. Neural correlates of auditory short-term memory in rostral superior temporal cortex.

    PubMed

    Scott, Brian H; Mishkin, Mortimer; Yin, Pingbo

    2014-12-01

    Auditory short-term memory (STM) in the monkey is less robust than visual STM and may depend on a retained sensory trace, which is likely to reside in the higher-order cortical areas of the auditory ventral stream. We recorded from the rostral superior temporal cortex as monkeys performed serial auditory delayed match-to-sample (DMS). A subset of neurons exhibited modulations of their firing rate during the delay between sounds, during the sensory response, or during both. This distributed subpopulation carried a predominantly sensory signal modulated by the mnemonic context of the stimulus. Excitatory and suppressive effects on match responses were dissociable in their timing and in their resistance to sounds intervening between the sample and match. Like the monkeys' behavioral performance, these neuronal effects differ from those reported in the same species during visual DMS, suggesting different neural mechanisms for retaining dynamic sounds and static images in STM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Extinction reveals that primary sensory cortex predicts reinforcement outcome

    PubMed Central

    Bieszczad, Kasia M.; Weinberger, Norman M.

    2011-01-01

    Primary sensory cortices are traditionally regarded as stimulus analyzers. However, studies of associative learning-induced plasticity in the primary auditory cortex (A1) indicate involvement in learning, memory and other cognitive processes. For example, the area of representation of a tone becomes larger for stronger auditory memories and the magnitude of area gain is proportional to the degree that a tone becomes behaviorally important. Here, we used extinction to investigate whether “behavioral importance” specifically reflects a sound’s ability to predict reinforcement (reward or punishment) vs. to predict any significant change in the meaning of a sound. If the former, then extinction should reverse area gains as the signal no longer predicts reinforcement. Rats (n = 11) were trained to bar-press to a signal tone (5.0 kHz) for water-rewards, to induce signal-specific area gains in A1. After subsequent withdrawal of reward, A1 was mapped to determine representational areas. Signal-specific area gains — estimated from a previously established brain–behavior quantitative function — were reversed, supporting the “reinforcement prediction” hypothesis. Area loss was specific to the signal tone vs. test tones, further indicating that withdrawal of reinforcement, rather than unreinforced tone presentation per se, was responsible for area loss. Importantly, the amount of area loss was correlated with the amount of extinction (r = 0.82, p < 0.01). These findings show that primary sensory cortical representation can encode behavioral importance as a signal’s value to predict reinforcement, and that the number of cells tuned to a stimulus can dictate its ability to command behavior. PMID:22304434

  1. Auditory processing during deep propofol sedation and recovery from unconsciousness.

    PubMed

    Koelsch, Stefan; Heinke, Wolfgang; Sammler, Daniela; Olthoff, Derk

    2006-08-01

    Using evoked potentials, this study investigated effects of deep propofol sedation, and effects of recovery from unconsciousness, on the processing of auditory information with stimuli suited to elicit a physical MMN, and a (music-syntactic) ERAN. Levels of sedation were assessed using the Bispectral Index (BIS) and the Modified Observer's Assessment of Alertness and Sedation Scale (MOAAS). EEG-measurements were performed during wakefulness, deep propofol sedation (MOAAS 2-3, mean BIS=68), and a recovery period. Between deep sedation and recovery period, the infusion rate of propofol was increased to achieve unconsciousness (MOAAS 0-1, mean BIS=35); EEG measurements of recovery period were performed after subjects regained consciousness. During deep sedation, the physical MMN was markedly reduced, but still significant. No ERAN was observed in this level. A clear P3a was elicited during deep sedation by those deviants, which were task-relevant during the awake state. As soon as subjects regained consciousness during the recovery period, a normal MMN was elicited. By contrast, the P3a was absent in the recovery period, and the P3b was markedly reduced. Results indicate that the auditory sensory memory (as indexed by the physical MMN) is still active, although strongly reduced, during deep sedation (MOAAS 2-3). The presence of the P3a indicates that attention-related processes are still operating during this level. Processes of syntactic analysis appear to be abolished during deep sedation. After propofol-induced anesthesia, the auditory sensory memory appears to operate normal as soon as subjects regain consciousness, whereas the attention-related processes indexed by P3a and P3b are markedly impaired. Results inform about effects of sedative drugs on auditory and attention-related mechanisms. The findings are important because these mechanisms are prerequisites for auditory awareness, auditory learning and memory, as well as language perception during anesthesia.

  2. Encoding Modality Can Affect Memory Accuracy via Retrieval Orientation

    ERIC Educational Resources Information Center

    Pierce, Benton H.; Gallo, David A.

    2011-01-01

    Research indicates that false memory is lower following visual than auditory study, potentially because visual information is more distinctive. In the present study we tested the extent to which retrieval orientation can cause a modality effect on memory accuracy. Participants studied unrelated words in different modalities, followed by criterial…

  3. Neural Correlates of Sublexical Processing in Phonological Working Memory

    ERIC Educational Resources Information Center

    McGettigan, Carolyn; Warren, Jane E.; Eisner, Frank; Marshall, Chloe R.; Shanmugalingam, Pradheep; Scott, Sophie K.

    2011-01-01

    This study investigated links between working memory and speech processing systems. We used delayed pseudoword repetition in fMRI to investigate the neural correlates of sublexical structure in phonological working memory (pWM). We orthogonally varied the number of syllables and consonant clusters in auditory pseudowords and measured the neural…

  4. Temporal Dynamics of Recovery from Extinction Shortly after Extinction Acquisition

    ERIC Educational Resources Information Center

    Archbold, Georgina E.; Dobbek, Nick; Nader, Karim

    2013-01-01

    Evidence suggests that extinction is new learning. Memory acquisition involves both short-term memory (STM) and long-term memory (LTM) components; however, few studies have examined early phases of extinction retention. Retention of auditory fear extinction was examined at various time points. Shortly (1-4 h) after extinction acquisition…

  5. Processing of Communication Sounds: Contributions of Learning, Memory, and Experience

    PubMed Central

    Bigelow, James; Rossi, Breein

    2013-01-01

    Abundant evidence from both field and lab studies has established that conspecific vocalizations (CVs) are of critical ecological significance for a wide variety of species, including humans, nonhuman primates, rodents, and other mammals and birds. Correspondingly, a number of experiments have demonstrated behavioral processing advantages for CVs, such as in discrimination and memory tasks. Further, a wide range of experiments have described brain regions in many species that appear to be specialized for processing CVs. For example, several neural regions have been described in both mammals and birds wherein greater neural responses are elicited by CVs than by comparison stimuli such as heterospecific vocalizations, nonvocal complex sounds, and artificial stimuli. These observations raise the question of whether these regions reflect domain-specific neural mechanisms dedicated to processing CVs, or alternatively, if these regions reflect domain-general neural mechanisms for representing complex sounds of learned significance. Inasmuch as CVs can be viewed as complex combinations of basic spectrotemporal features, the plausibility of the latter position is supported by a large body of literature describing modulated cortical and subcortical representation of a variety of acoustic features that have been experimentally associated with stimuli of natural behavioral significance (such as food rewards). Herein, we review a relatively small body of existing literature describing the roles of experience, learning, and memory in the emergence of species-typical neural representations of CVs and auditory system plasticity. In both songbirds and mammals, manipulations of auditory experience as well as specific learning paradigms are shown to modulate neural responses evoked by CVs, either in terms of overall firing rate or temporal firing patterns. In some cases, CV-sensitive neural regions gradually acquire representation of non-CV stimuli with which subjects have training and experience. These results parallel literature in humans describing modulation of responses in face-sensitive neural regions through learning and experience. Thus, although many questions remain, the available evidence is consistent with the notion that CVs may acquire distinct neural representation through domain-general mechanisms for representing complex auditory objects that are of learned importance to the animal. PMID:23792078

  6. Negative Priming in Free Recall Reconsidered

    ERIC Educational Resources Information Center

    Hanczakowski, Maciej; Beaman, C. Philip; Jones, Dylan M.

    2016-01-01

    Negative priming in free recall is the finding of impaired memory performance when previously ignored auditory distracters become targets of encoding and retrieval. This negative priming has been attributed to an aftereffect of deploying inhibitory mechanisms that serve to suppress auditory distraction and minimize interference with learning and…

  7. Translational control of auditory imprinting and structural plasticity by eIF2α

    PubMed Central

    Batista, Gervasio; Johnson, Jennifer Leigh; Dominguez, Elena; Costa-Mattioli, Mauro; Pena, Jose L

    2016-01-01

    The formation of imprinted memories during a critical period is crucial for vital behaviors, including filial attachment. Yet, little is known about the underlying molecular mechanisms. Using a combination of behavior, pharmacology, in vivo surface sensing of translation (SUnSET) and DiOlistic labeling we found that, translational control by the eukaryotic translation initiation factor 2 alpha (eIF2α) bidirectionally regulates auditory but not visual imprinting and related changes in structural plasticity in chickens. Increasing phosphorylation of eIF2α (p-eIF2α) reduces translation rates and spine plasticity, and selectively impairs auditory imprinting. By contrast, inhibition of an eIF2α kinase or blocking the translational program controlled by p-eIF2α enhances auditory imprinting. Importantly, these manipulations are able to reopen the critical period. Thus, we have identified a translational control mechanism that selectively underlies auditory imprinting. Restoring translational control of eIF2α holds the promise to rejuvenate adult brain plasticity and restore learning and memory in a variety of cognitive disorders. DOI: http://dx.doi.org/10.7554/eLife.17197.001 PMID:28009255

  8. Effects of visual working memory on brain information processing of irrelevant auditory stimuli.

    PubMed

    Qu, Jiagui; Rizak, Joshua D; Zhao, Lun; Li, Minghong; Ma, Yuanye

    2014-01-01

    Selective attention has traditionally been viewed as a sensory processing modulator that promotes cognitive processing efficiency by favoring relevant stimuli while inhibiting irrelevant stimuli. However, the cross-modal processing of irrelevant information during working memory (WM) has been rarely investigated. In this study, the modulation of irrelevant auditory information by the brain during a visual WM task was investigated. The N100 auditory evoked potential (N100-AEP) following an auditory click was used to evaluate the selective attention to auditory stimulus during WM processing and at rest. N100-AEP amplitudes were found to be significantly affected in the left-prefrontal, mid-prefrontal, right-prefrontal, left-frontal, and mid-frontal regions while performing a high WM load task. In contrast, no significant differences were found between N100-AEP amplitudes in WM states and rest states under a low WM load task in all recorded brain regions. Furthermore, no differences were found between the time latencies of N100-AEP troughs in WM states and rest states while performing either the high or low WM load task. These findings suggested that the prefrontal cortex (PFC) may integrate information from different sensory channels to protect perceptual integrity during cognitive processing.

  9. The neural substrates of recognition memory for verbal information: spanning the divide between short- and long-term memory.

    PubMed

    Buchsbaum, Bradley R; Padmanabhan, Aarthi; Berman, Karen Faith

    2011-04-01

    One of the classic categorical divisions in the history of memory research is that between short-term and long-term memory. Indeed, because memory for the immediate past (a few seconds) and memory for the relatively more remote past (several seconds and beyond) are assumed to rely on distinct neural systems, more often than not, memory research has focused either on short- (or "working memory") or on long-term memory. Using an auditory-verbal continuous recognition paradigm designed for fMRI, we examined how the neural signatures of recognition memory change across an interval of time (from 2.5 to 30 sec) that spans this hypothetical division between short- and long-term memory. The results revealed that activity during successful auditory-verbal item recognition in inferior parietal cortex and the posterior superior temporal lobe was maximal for early lags, whereas, conversely, activity in the left inferior frontal gyrus increased as a function of lag. Taken together, the results reveal that as the interval between item repetitions increases, there is a shift in the distribution of memory-related activity that moves from posterior temporo-parietal cortex (lags 1-4) to inferior frontal regions (lags 5-10), indicating that as time advances, the burden of recognition memory is increasingly placed on top-down retrieval mechanisms that are mediated by structures in inferior frontal cortex.

  10. Auditory training improves auditory performance in cochlear implanted children.

    PubMed

    Roman, Stephane; Rochette, Françoise; Triglia, Jean-Michel; Schön, Daniele; Bigand, Emmanuel

    2016-07-01

    While the positive benefits of pediatric cochlear implantation on language perception skills are now proven, the heterogeneity of outcomes remains high. The understanding of this heterogeneity and possible strategies to minimize it is of utmost importance. Our scope here is to test the effects of an auditory training strategy, "sound in Hands", using playful tasks grounded on the theoretical and empirical findings of cognitive sciences. Indeed, several basic auditory operations, such as auditory scene analysis (ASA) are not trained in the usual therapeutic interventions in deaf children. However, as they constitute a fundamental basis in auditory cognition, their development should imply general benefit in auditory processing and in turn enhance speech perception. The purpose of the present study was to determine whether cochlear implanted children could improve auditory performances in trained tasks and whether they could develop a transfer of learning to a phonetic discrimination test. Nineteen prelingually unilateral cochlear implanted children without additional handicap (4-10 year-olds) were recruited. The four main auditory cognitive processing (identification, discrimination, ASA and auditory memory) were stimulated and trained in the Experimental Group (EG) using Sound in Hands. The EG followed 20 training weekly sessions of 30 min and the untrained group was the control group (CG). Two measures were taken for both groups: before training (T1) and after training (T2). EG showed a significant improvement in the identification, discrimination and auditory memory tasks. The improvement in the ASA task did not reach significance. CG did not show any significant improvement in any of the tasks assessed. Most importantly, improvement was visible in the phonetic discrimination test for EG only. Moreover, younger children benefited more from the auditory training program to develop their phonetic abilities compared to older children, supporting the idea that rehabilitative care is most efficient when it takes place early on during childhood. These results are important to pinpoint the auditory deficits in CI children, to gather a better understanding of the links between basic auditory skills and speech perception which will in turn allow more efficient rehabilitative programs. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Hearing Loss Is Negatively Related to Episodic and Semantic Long-Term Memory but Not to Short-Term Memory

    ERIC Educational Resources Information Center

    Ronnberg, Jerker; Danielsson, Henrik; Rudner, Mary; Arlinger, Stig; Sternang, Ola; Wahlin, Ake; Nilsson, Lars-Goran

    2011-01-01

    Purpose: To test the relationship between degree of hearing loss and different memory systems in hearing aid users. Method: Structural equation modeling (SEM) was used to study the relationship between auditory and visual acuity and different cognitive and memory functions in an age-hetereogenous subsample of 160 hearing aid users without…

  12. Musical rhythm and pitch: A differential effect on auditory dynamics as revealed by the N1/MMN/P3a complex.

    PubMed

    Lelo-de-Larrea-Mancera, E Sebastian; Rodríguez-Agudelo, Yaneth; Solís-Vivanco, Rodolfo

    2017-06-01

    Music represents a complex form of human cognition. To what extent our auditory system is attuned to music is yet to be clearly understood. Our principal aim was to determine whether the neurophysiological operations underlying pre-attentive auditory change detection (N1 enhancement (N1e)/Mismatch Negativity (MMN)) and the subsequent involuntary attentional reallocation (P3a) towards infrequent sound omissions, are influenced by differences in musical content. Specifically, we intended to explore any interaction effects that rhythmic and pitch dimensions of musical organization may have over these processes. Results showed that both the N1e and MMN amplitudes were differentially influenced by rhythm and pitch dimensions. MMN latencies were shorter for musical structures containing both features. This suggests some neurocognitive independence between pitch and rhythm domains, but also calls for further address on possible interactions between both of them at the level of early, automatic auditory detection. Furthermore, results demonstrate that the N1e reflects basic sensory memory processes. Lastly, we show that the involuntary switch of attention associated with the P3a reflects a general-purpose mechanism not modulated by musical features. Altogether, the N1e/MMN/P3a complex elicited by infrequent sound omissions revealed evidence of musical influence over early stages of auditory perception. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Memory for product sounds: the effect of sound and label type.

    PubMed

    Ozcan, Elif; van Egmond, René

    2007-11-01

    The (mnemonic) interactions between auditory, visual, and the semantic systems have been investigated using structurally complex auditory stimuli (i.e., product sounds). Six types of product sounds (air, alarm, cyclic, impact, liquid, mechanical) that vary in spectral-temporal structure were presented in four label type conditions: self-generated text, text, image, and pictogram. A memory paradigm that incorporated free recall, recognition, and matching tasks was employed. The results for the sound type suggest that the amount of spectral-temporal structure in a sound can be indicative for memory performance. Findings related to label type suggest that 'self' creates a strong bias for the retrieval and the recognition of sounds that were self-labeled; the density and the complexity of the visual information (i.e., pictograms) hinders the memory performance ('visual' overshadowing effect); and image labeling has an additive effect on the recall and matching tasks (dual coding). Thus, the findings suggest that the memory performances for product sounds are task-dependent.

  14. Molecular and Cellular Mechanisms for Trapping and Activating Emotional Memories

    PubMed Central

    Cai, Denise J.; Sano, Yoshitake; Lee, Yong-Seok; Zhou, Yu; Bekal, Pallavi; Deisseroth, Karl; Silva, Alcino J.

    2016-01-01

    Recent findings suggest that memory allocation to specific neurons (i.e., neuronal allocation) in the amygdala is not random, but rather the transcription factor cAMP-response element binding protein (CREB) modulates this process, perhaps by regulating the transcription of channels that control neuronal excitability. Here, optogenetic studies in the mouse lateral amygdala (LA) were used to demonstrate that CREB and neuronal excitability regulate which neurons encode an emotional memory. To test the role of CREB in memory allocation, we overexpressed CREB in the lateral amygdala to recruit the encoding of an auditory-fear conditioning (AFC) memory to a subset of neurons. Then, post-training activation of these neurons with Channelrhodopsin-2 was sufficient to trigger recall of the memory for AFC, suggesting that CREB regulates memory allocation. To test the role of neuronal excitability in memory allocation, we used a step function opsin (SFO) to transiently increase neuronal excitability in a subset of LA neurons during AFC. Post-training activation of these neurons with Volvox Channelrhodopsin-1 was able to trigger recall of that memory. Importantly, our studies show that activation of the SFO did not affect AFC by either increasing anxiety or by strengthening the unconditioned stimulus. Our findings strongly support the hypothesis that CREB regulates memory allocation by modulating neuronal excitability. PMID:27579481

  15. The Measurement of Auditory Abilities of Blind, Partially Sighted, and Sighted Children.

    ERIC Educational Resources Information Center

    Stankov, Lazar; Spilsbury, Georgina

    1979-01-01

    Auditory tests were administered to 30 blind, partially sighted, and sighted children. Overall, the blind and sighted were equal on most of the measured abilities. Blind children performed well on tonal memory tests. Partially sighted children performed more poorly than the other two groups. (MH)

  16. Auditory Memory for Timbre

    ERIC Educational Resources Information Center

    McKeown, Denis; Wellsted, David

    2009-01-01

    Psychophysical studies are reported examining how the context of recent auditory stimulation may modulate the processing of new sounds. The question posed is how recent tone stimulation may affect ongoing performance in a discrimination task. In the task, two complex sounds occurred in successive intervals. A single target component of one complex…

  17. Auditory Word Serial Recall Benefits from Orthographic Dissimilarity

    ERIC Educational Resources Information Center

    Pattamadilok, Chotiga; Lafontaine, Helene; Morais, Jose; Kolinsky, Regine

    2010-01-01

    The influence of orthographic knowledge has been consistently observed in speech recognition and metaphonological tasks. The present study provides data suggesting that such influence also pervades other cognitive domains related to language abilities, such as verbal working memory. Using serial recall of auditory seven-word lists, we observed…

  18. Convergent-Discriminant Validity of the Jewish Employment Vocational System (JEVS).

    ERIC Educational Resources Information Center

    Tryjankowski, Elaine M.

    This study investigated the construct validity of five perceptual traits (auditory discrimination, visual discrimination, visual memory, visual-motor coordination, and auditory to visual-motor coordination) with five simulated work samples (union assembly, resistor reading, budgette assembly, lock assembly, and nail and screw sort) from the Jewish…

  19. Perceptual Learning Style and Learning Proficiency: A Test of the Hypothesis

    ERIC Educational Resources Information Center

    Kratzig, Gregory P.; Arbuthnott, Katherine D.

    2006-01-01

    Given the potential importance of using modality preference with instruction, the authors tested whether learning style preference correlated with memory performance in each of 3 sensory modalities: visual, auditory, and kinesthetic. In Study 1, participants completed objective measures of pictorial, auditory, and tactile learning and learning…

  20. Individual differences in working memory capacity and workload capacity.

    PubMed

    Yu, Ju-Chi; Chang, Ting-Yun; Yang, Cheng-Ta

    2014-01-01

    We investigated the relationship between working memory capacity (WMC) and workload capacity (WLC). Each participant performed an operation span (OSPAN) task to measure his/her WMC and three redundant-target detection tasks to measure his/her WLC. WLC was computed non-parametrically (Experiments 1 and 2) and parametrically (Experiment 2). Both levels of analyses showed that participants high in WMC had larger WLC than those low in WMC only when redundant information came from visual and auditory modalities, suggesting that high-WMC participants had superior processing capacity in dealing with redundant visual and auditory information. This difference was eliminated when multiple processes required processing for only a single working memory subsystem in a color-shape detection task and a double-dot detection task. These results highlighted the role of executive control in integrating and binding information from the two working memory subsystems for perceptual decision making.

  1. Distinctiveness revisited: unpredictable temporal isolation does not benefit short-term serial recall of heard or seen events.

    PubMed

    Nimmo, Lisa M; Lewandowsky, Stephan

    2006-09-01

    The notion of a link between time and memory is intuitively appealing and forms the core assumption of temporal distinctiveness models. Distinctiveness models predict that items that are temporally isolated from their neighbors at presentation should be recalled better than items that are temporally crowded. By contrast, event-based theories consider time to be incidental to the processes that govern memory, and such theories would not imply a temporal isolation advantage unless participants engaged in a consolidation process (e.g., rehearsal or selective encoding) that exploited the temporal structure of the list. In this report, we examine two studies that assessed the effect of temporal distinctiveness on memory, using auditory (Experiment 1) and auditory and visual (Experiment 2) presentation with unpredictably varying interitem intervals. The results show that with unpredictable intervals temporal isolation does not benefit memory, regardless of presentation modality.

  2. Attentional capture by taboo words: A functional view of auditory distraction.

    PubMed

    Röer, Jan P; Körner, Ulrike; Buchner, Axel; Bell, Raoul

    2017-06-01

    It is well established that task-irrelevant, to-be-ignored speech adversely affects serial short-term memory (STM) for visually presented items compared with a quiet control condition. However, there is an ongoing debate about whether the semantic content of the speech has the capacity to capture attention and to disrupt memory performance. In the present article, we tested whether taboo words are more difficult to ignore than neutral words. Taboo words or neutral words were presented as (a) steady state sequences in which the same distractor word was repeated, (b) changing state sequences in which different distractor words were presented, and (c) auditory deviant sequences in which a single distractor word deviated from a sequence of repeated words. Experiments 1 and 2 showed that taboo words disrupted performance more than neutral words. This taboo effect did not habituate and it did not differ between individuals with high and low working memory capacity. In Experiments 3 and 4, in which only a single deviant taboo word was presented, no taboo effect was obtained. These results do not support the idea that the processing of the auditory distractors' semantic content is the result of occasional attention switches to the auditory modality. Instead, the overall pattern of results is more in line with a functional view of auditory distraction, according to which the to-be-ignored modality is routinely monitored for potentially important stimuli (e.g., self-relevant or threatening information), the detection of which draws processing resources away from the primary task. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Rhythm synchronization performance and auditory working memory in early- and late-trained musicians.

    PubMed

    Bailey, Jennifer A; Penhune, Virginia B

    2010-07-01

    Behavioural and neuroimaging studies provide evidence for a possible "sensitive" period in childhood development during which musical training results in long-lasting changes in brain structure and auditory and motor performance. Previous work from our laboratory has shown that adult musicians who begin training before the age of 7 (early-trained; ET) perform better on a visuomotor task than those who begin after the age of 7 (late-trained; LT), even when matched on total years of musical training and experience. Two questions were raised regarding the findings from this experiment. First, would this group performance difference be observed using a more familiar, musically relevant task such as auditory rhythms? Second, would cognitive abilities mediate this difference in task performance? To address these questions, ET and LT musicians, matched on years of musical training, hours of current practice and experience, were tested on an auditory rhythm synchronization task. The task consisted of six woodblock rhythms of varying levels of metrical complexity. In addition, participants were tested on cognitive subtests measuring vocabulary, working memory and pattern recognition. The two groups of musicians differed in their performance of the rhythm task, such that the ET musicians were better at reproducing the temporal structure of the rhythms. There were no group differences on the cognitive measures. Interestingly, across both groups, individual task performance correlated with auditory working memory abilities and years of formal training. These results support the idea of a sensitive period during the early years of childhood for developing sensorimotor synchronization abilities via musical training.

  4. Stress-related biomarkers of dream recall and implicit memory under anaesthesia.

    PubMed

    Aceto, P; Lai, C; Perilli, V; Dello Russo, C; Federico, B; Navarra, P; Proietti, R; Sollazzi, L

    2013-11-01

    The aim of this study was to investigate whether auditory presentation of a story during general anaesthesia might influence stress hormone changes and thus affecting dream recall and/or implicit memory. One hundred and ten patients were randomly assigned either to hear a recording of a story through headphones or to have routine care with no auditory recording while undergoing laparoscopic cholecystectomy. Anaesthesia was standardised. Blood samples for cortisol and prolactin assays were collected 20 min before anaesthesia and 5 min after pneumoperitoneum. Dream recall and explicit/implicit memory were investigated upon awakening from anaesthesia and approximately 24 h after the end of the operation. Auditory presentation was associated with lower intra-operative serum prolactin concentration compared with control (p = 0.0006). Twenty-seven patients with recall of dreaming showed higher intra-operative prolactin (p = 0.004) and lower cortisol (p = 0.03) concentrations compared with those without dream recall. The knowledge of this interaction might be useful in the quest to ensure postoperative amnesia. © 2013 The Association of Anaesthetists of Great Britain and Ireland.

  5. Stimulus modality and working memory performance in Greek children with reading disabilities: additional evidence for the pictorial superiority hypothesis.

    PubMed

    Constantinidou, Fofi; Evripidou, Christiana

    2012-01-01

    This study investigated the effects of stimulus presentation modality on working memory performance in children with reading disabilities (RD) and in typically developing children (TDC), all native speakers of Greek. It was hypothesized that the visual presentation of common objects would result in improved learning and recall performance as compared to the auditory presentation of stimuli. Twenty children, ages 10-12, diagnosed with RD were matched to 20 TDC age peers. The experimental tasks implemented a multitrial verbal learning paradigm incorporating three modalities: auditory, visual, and auditory plus visual. Significant group differences were noted on language, verbal and nonverbal memory, and measures of executive abilities. A mixed-model MANOVA indicated that children with RD had a slower learning curve and recalled fewer words than TDC across experimental modalities. Both groups of participants benefited from the visual presentation of objects; however, children with RD showed the greatest gains during this condition. In conclusion, working memory for common verbal items is impaired in children with RD; however, performance can be facilitated, and learning efficiency maximized, when information is presented visually. The results provide further evidence for the pictorial superiority hypothesis and the theory that pictorial presentation of verbal stimuli is adequate for dual coding.

  6. Effects of Age and Working Memory Capacity on Speech Recognition Performance in Noise Among Listeners With Normal Hearing.

    PubMed

    Gordon-Salant, Sandra; Cole, Stacey Samuels

    2016-01-01

    This study aimed to determine if younger and older listeners with normal hearing who differ on working memory span perform differently on speech recognition tests in noise. Older adults typically exhibit poorer speech recognition scores in noise than younger adults, which is attributed primarily to poorer hearing sensitivity and more limited working memory capacity in older than younger adults. Previous studies typically tested older listeners with poorer hearing sensitivity and shorter working memory spans than younger listeners, making it difficult to discern the importance of working memory capacity on speech recognition. This investigation controlled for hearing sensitivity and compared speech recognition performance in noise by younger and older listeners who were subdivided into high and low working memory groups. Performance patterns were compared for different speech materials to assess whether or not the effect of working memory capacity varies with the demands of the specific speech test. The authors hypothesized that (1) normal-hearing listeners with low working memory span would exhibit poorer speech recognition performance in noise than those with high working memory span; (2) older listeners with normal hearing would show poorer speech recognition scores than younger listeners with normal hearing, when the two age groups were matched for working memory span; and (3) an interaction between age and working memory would be observed for speech materials that provide contextual cues. Twenty-eight older (61 to 75 years) and 25 younger (18 to 25 years) normal-hearing listeners were assigned to groups based on age and working memory status. Northwestern University Auditory Test No. 6 words and Institute of Electrical and Electronics Engineers sentences were presented in noise using an adaptive procedure to measure the signal-to-noise ratio corresponding to 50% correct performance. Cognitive ability was evaluated with two tests of working memory (Listening Span Test and Reading Span Test) and two tests of processing speed (Paced Auditory Serial Addition Test and The Letter Digit Substitution Test). Significant effects of age and working memory capacity were observed on the speech recognition measures in noise, but these effects were mediated somewhat by the speech signal. Specifically, main effects of age and working memory were revealed for both words and sentences, but the interaction between the two was significant for sentences only. For these materials, effects of age were observed for listeners in the low working memory groups only. Although all cognitive measures were significantly correlated with speech recognition in noise, working memory span was the most important variable accounting for speech recognition performance. The results indicate that older adults with high working memory capacity are able to capitalize on contextual cues and perform as well as young listeners with high working memory capacity for sentence recognition. The data also suggest that listeners with normal hearing and low working memory capacity are less able to adapt to distortion of speech signals caused by background noise, which requires the allocation of more processing resources to earlier processing stages. These results indicate that both younger and older adults with low working memory capacity and normal hearing are at a disadvantage for recognizing speech in noise.

  7. Long-Term Memory Biases Auditory Spatial Attention

    ERIC Educational Resources Information Center

    Zimmermann, Jacqueline F.; Moscovitch, Morris; Alain, Claude

    2017-01-01

    Long-term memory (LTM) has been shown to bias attention to a previously learned visual target location. Here, we examined whether memory-predicted spatial location can facilitate the detection of a faint pure tone target embedded in real world audio clips (e.g., soundtrack of a restaurant). During an initial familiarization task, participants…

  8. Does Taking Photographs Help?

    ERIC Educational Resources Information Center

    Hand, Sarah

    2010-01-01

    Since many people tend to use photographs as memory anchors, this author decided she wanted to know whether the process of capturing and manipulating an image taken during a learning activity would act as a memory anchor for children's visual, auditory and kinaesthetic memories linked to their cognitive learning at the time. In plain English,…

  9. Tone Series and the Nature of Working Memory Capacity Development

    ERIC Educational Resources Information Center

    Clark, Katherine M.; Hardman, Kyle O.; Schachtman, Todd R.; Saults, J. Scott; Glass, Bret A.; Cowan, Nelson

    2018-01-01

    Recent advances in understanding visual working memory, the limited information held in mind for use in ongoing processing, are extended here to examine auditory working memory development. Research with arrays of visual objects has shown how to distinguish the capacity, in terms of the "number" of objects retained, from the…

  10. Memory Modality Differences in Children with Attention Deficit Hyperactive Disorder with and without Learning Disabilities.

    ERIC Educational Resources Information Center

    Webster, Raymond E.; And Others

    1996-01-01

    Assesses information processing and memory functioning in 50 children diagnosed with Attention Deficit Hyperactive Disorder (ADHD) with and without learning disabilities (LD). Both groups struggled with auditory ordered recall. The ADHD/LD group demonstrated more problems transferring information into short-term and long-term memory stores than…

  11. Arc/Arg3.1 mRNA expression reveals a subcellular trace of prior sound exposure in adult primary auditory cortex.

    PubMed

    Ivanova, T N; Matthews, A; Gross, C; Mappus, R C; Gollnick, C; Swanson, A; Bassell, G J; Liu, R C

    2011-05-05

    Acquiring the behavioral significance of sound has repeatedly been shown to correlate with long term changes in response properties of neurons in the adult primary auditory cortex. However, the molecular and cellular basis for such changes is still poorly understood. To address this, we have begun examining the auditory cortical expression of an activity-dependent effector immediate early gene (IEG) with documented roles in synaptic plasticity and memory consolidation in the hippocampus: Arc/Arg3.1. For initial characterization, we applied a repeated 10 min (24 h separation) sound exposure paradigm to determine the strength and consistency of sound-evoked Arc/Arg3.1 mRNA expression in the absence of explicit behavioral contingencies for the sound. We used 3D surface reconstruction methods in conjunction with fluorescent in situ hybridization (FISH) to assess the layer-specific subcellular compartmental expression of Arc/Arg3.1 mRNA. We unexpectedly found that both the intranuclear and cytoplasmic patterns of expression depended on the prior history of sound stimulation. Specifically, the percentage of neurons with expression only in the cytoplasm increased for repeated versus singular sound exposure, while intranuclear expression decreased. In contrast, the total cellular expression did not differ, consistent with prior IEG studies of primary auditory cortex. Our results were specific for cortical layers 3-6, as there was virtually no sound driven Arc/Arg3.1 mRNA in layers 1-2 immediately after stimulation. Our results are consistent with the kinetics and/or detectability of cortical subcellular Arc/Arg3.1 mRNA expression being altered by the initial exposure to the sound, suggesting exposure-induced modifications in the cytoplasmic Arc/Arg3.1 mRNA pool. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Arc/Arg3.1 mRNA expression reveals a sub-cellular trace of prior sound exposure in adult primary auditory cortex

    PubMed Central

    Ivanova, Tamara; Matthews, Andrew; Gross, Christina; Mappus, Rudolph C.; Gollnick, Clare; Swanson, Andrew; Bassell, Gary J.; Liu, Robert C.

    2011-01-01

    Acquiring the behavioral significance of a sound has repeatedly been shown to correlate with long term changes in response properties of neurons in the adult primary auditory cortex. However, the molecular and cellular basis for such changes is still poorly understood. To address this, we have begun examining the auditory cortical expression of an activity-dependent effector immediate early gene (IEG) with documented roles in synaptic plasticity and memory consolidation in the hippocampus: Arc/Arg3.1. For initial characterization, we applied a repeated 10 minute (24 hour separation) sound exposure paradigm to determine the strength and consistency of sound-evoked Arc/Arg3.1 mRNA expression in the absence of explicit behavioral contingencies for the sound. We used 3D surface reconstruction methods in conjunction with fluorescent in-situ hybridization (FISH) to assess the layer-specific sub-cellular compartmental expression of Arc/Arg3.1 mRNA. We unexpectedly found that both the intranuclear and cytoplasmic patterns of expression depended on the prior history of sound stimulation. Specifically, the percentage of neurons with expression only in the cytoplasm increased for repeated versus singular sound exposure, while intranuclear expression decreased. In contrast, the total cellular expression did not differ, consistent with prior IEG studies of primary auditory cortex. Our results were specific for cortical layers 3–6, as there was virtually no sound driven Arc/Arg3.1 mRNA in layers 1–2 immediately after stimulation. Our results are consistent with the kinetics and/or detectability of cortical sub-cellular Arc/Arg3.1 mRNA expression being altered by the initial exposure to the sound, suggesting exposure-induced modifications in the cytoplasmic Arc/Arg3.1 mRNA pool. PMID:21334422

  13. Time-resolved neuroimaging of visual short term memory consolidation by post-perceptual attention shifts.

    PubMed

    Hecht, Marcus; Thiemann, Ulf; Freitag, Christine M; Bender, Stephan

    2016-01-15

    Post-perceptual cues can enhance visual short term memory encoding even after the offset of the visual stimulus. However, both the mechanisms by which the sensory stimulus characteristics are buffered as well as the mechanisms by which post-perceptual selective attention enhances short term memory encoding remain unclear. We analyzed late post-perceptual event-related potentials (ERPs) in visual change detection tasks (100ms stimulus duration) by high-resolution ERP analysis to elucidate these mechanisms. The effects of early and late auditory post-cues (300ms or 850ms after visual stimulus onset) as well as the effects of a visual interference stimulus were examined in 27 healthy right-handed adults. Focusing attention with post-perceptual cues at both latencies significantly improved memory performance, i.e. sensory stimulus characteristics were available for up to 850ms after stimulus presentation. Passive watching of the visual stimuli without auditory cue presentation evoked a slow negative wave (N700) over occipito-temporal visual areas. N700 was strongly reduced by a visual interference stimulus which impeded memory maintenance. In contrast, contralateral delay activity (CDA) still developed in this condition after the application of auditory post-cues and was thereby dissociated from N700. CDA and N700 seem to represent two different processes involved in short term memory encoding. While N700 could reflect visual post processing by automatic attention attraction, CDA may reflect the top-down process of searching selectively for the required information through post-perceptual attention. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Memory reactivation in healthy aging: evidence of stimulus-specific dedifferentiation.

    PubMed

    St-Laurent, Marie; Abdi, Hervé; Bondad, Ashley; Buchsbaum, Bradley R

    2014-03-19

    We investigated how aging affects the neural specificity of mental replay, the act of conjuring up past experiences in one's mind. We used functional magnetic resonance imaging (fMRI) and multivariate pattern analysis to quantify the similarity between brain activity elicited by the perception and memory of complex multimodal stimuli. Young and older human adults viewed and mentally replayed short videos from long-term memory while undergoing fMRI. We identified a wide array of cortical regions involved in visual, auditory, and spatial processing that supported stimulus-specific representation at perception as well as during mental replay. Evidence of age-related dedifferentiation was subtle at perception but more salient during mental replay, and age differences at perception could not account for older adults' reduced neural reactivation specificity. Performance on a post-scan recognition task for video details correlated with neural reactivation in young but not in older adults, indicating that in-scan reactivation benefited post-scan recognition in young adults, but that some older adults may have benefited from alternative rehearsal strategies. Although young adults recalled more details about the video stimuli than older adults on a post-scan recall task, patterns of neural reactivation correlated with post-scan recall in both age groups. These results demonstrate that the mechanisms supporting recall and recollection are linked to accurate neural reactivation in both young and older adults, but that age affects how efficiently these mechanisms can support memory's representational specificity in a way that cannot simply be accounted for by degraded sensory processes.

  15. Learning-induced neural plasticity of speech processing before birth

    PubMed Central

    Partanen, Eino; Kujala, Teija; Näätänen, Risto; Liitola, Auli; Sambeth, Anke; Huotilainen, Minna

    2013-01-01

    Learning, the foundation of adaptive and intelligent behavior, is based on plastic changes in neural assemblies, reflected by the modulation of electric brain responses. In infancy, auditory learning implicates the formation and strengthening of neural long-term memory traces, improving discrimination skills, in particular those forming the prerequisites for speech perception and understanding. Although previous behavioral observations show that newborns react differentially to unfamiliar sounds vs. familiar sound material that they were exposed to as fetuses, the neural basis of fetal learning has not thus far been investigated. Here we demonstrate direct neural correlates of human fetal learning of speech-like auditory stimuli. We presented variants of words to fetuses; unlike infants with no exposure to these stimuli, the exposed fetuses showed enhanced brain activity (mismatch responses) in response to pitch changes for the trained variants after birth. Furthermore, a significant correlation existed between the amount of prenatal exposure and brain activity, with greater activity being associated with a higher amount of prenatal speech exposure. Moreover, the learning effect was generalized to other types of similar speech sounds not included in the training material. Consequently, our results indicate neural commitment specifically tuned to the speech features heard before birth and their memory representations. PMID:23980148

  16. Memory reactivation during rapid eye movement sleep promotes its generalization and integration in cortical stores.

    PubMed

    Sterpenich, Virginie; Schmidt, Christina; Albouy, Geneviève; Matarazzo, Luca; Vanhaudenhuyse, Audrey; Boveroux, Pierre; Degueldre, Christian; Leclercq, Yves; Balteau, Evelyne; Collette, Fabienne; Luxen, André; Phillips, Christophe; Maquet, Pierre

    2014-06-01

    Memory reactivation appears to be a fundamental process in memory consolidation. In this study we tested the influence of memory reactivation during rapid eye movement (REM) sleep on memory performance and brain responses at retrieval in healthy human participants. Fifty-six healthy subjects (28 women and 28 men, age [mean ± standard deviation]: 21.6 ± 2.2 y) participated in this functional magnetic resonance imaging (fMRI) study. Auditory cues were associated with pictures of faces during their encoding. These memory cues delivered during REM sleep enhanced subsequent accurate recollections but also false recognitions. These results suggest that reactivated memories interacted with semantically related representations, and induced new creative associations, which subsequently reduced the distinction between new and previously encoded exemplars. Cues had no effect if presented during stage 2 sleep, or if they were not associated with faces during encoding. Functional magnetic resonance imaging revealed that following exposure to conditioned cues during REM sleep, responses to faces during retrieval were enhanced both in a visual area and in a cortical region of multisensory (auditory-visual) convergence. These results show that reactivating memories during REM sleep enhances cortical responses during retrieval, suggesting the integration of recent memories within cortical circuits, favoring the generalization and schematization of the information.

  17. Text as a Supplement to Speech in Young and Older Adults a)

    PubMed Central

    Krull, Vidya; Humes, Larry E.

    2015-01-01

    Objective The purpose of this experiment was to quantify the contribution of visual text to auditory speech recognition in background noise. Specifically, we tested the hypothesis that partially accurate visual text from an automatic speech recognizer could be used successfully to supplement speech understanding in difficult listening conditions in older adults, with normal or impaired hearing. Our working hypotheses were based on what is known regarding audiovisual speech perception in the elderly from speechreading literature. We hypothesized that: 1) combining auditory and visual text information will result in improved recognition accuracy compared to auditory or visual text information alone; 2) benefit from supplementing speech with visual text (auditory and visual enhancement) in young adults will be greater than that in older adults; and 3) individual differences in performance on perceptual measures would be associated with cognitive abilities. Design Fifteen young adults with normal hearing, fifteen older adults with normal hearing, and fifteen older adults with hearing loss participated in this study. All participants completed sentence recognition tasks in auditory-only, text-only, and combined auditory-text conditions. The auditory sentence stimuli were spectrally shaped to restore audibility for the older participants with impaired hearing. All participants also completed various cognitive measures, including measures of working memory, processing speed, verbal comprehension, perceptual and cognitive speed, processing efficiency, inhibition, and the ability to form wholes from parts. Group effects were examined for each of the perceptual and cognitive measures. Audiovisual benefit was calculated relative to performance on auditory-only and visual-text only conditions. Finally, the relationship between perceptual measures and other independent measures were examined using principal-component factor analyses, followed by regression analyses. Results Both young and older adults performed similarly on nine out of ten perceptual measures (auditory, visual, and combined measures). Combining degraded speech with partially correct text from an automatic speech recognizer improved the understanding of speech in both young and older adults, relative to both auditory- and text-only performance. In all subjects, cognition emerged as a key predictor for a general speech-text integration ability. Conclusions These results suggest that neither age nor hearing loss affected the ability of subjects to benefit from text when used to support speech, after ensuring audibility through spectral shaping. These results also suggest that the benefit obtained by supplementing auditory input with partially accurate text is modulated by cognitive ability, specifically lexical and verbal skills. PMID:26458131

  18. Associations between speech understanding and auditory and visual tests of verbal working memory: effects of linguistic complexity, task, age, and hearing loss

    PubMed Central

    Smith, Sherri L.; Pichora-Fuller, M. Kathleen

    2015-01-01

    Listeners with hearing loss commonly report having difficulty understanding speech, particularly in noisy environments. Their difficulties could be due to auditory and cognitive processing problems. Performance on speech-in-noise tests has been correlated with reading working memory span (RWMS), a measure often chosen to avoid the effects of hearing loss. If the goal is to assess the cognitive consequences of listeners’ auditory processing abilities, however, then listening working memory span (LWMS) could be a more informative measure. Some studies have examined the effects of different degrees and types of masking on working memory, but less is known about the demands placed on working memory depending on the linguistic complexity of the target speech or the task used to measure speech understanding in listeners with hearing loss. Compared to RWMS, LWMS measures using different speech targets and maskers may provide a more ecologically valid approach. To examine the contributions of RWMS and LWMS to speech understanding, we administered two working memory measures (a traditional RWMS measure and a new LWMS measure), and a battery of tests varying in the linguistic complexity of the speech materials, the presence of babble masking, and the task. Participants were a group of younger listeners with normal hearing and two groups of older listeners with hearing loss (n = 24 per group). There was a significant group difference and a wider range in performance on LWMS than on RWMS. There was a significant correlation between both working memory measures only for the oldest listeners with hearing loss. Notably, there were only few significant correlations among the working memory and speech understanding measures. These findings suggest that working memory measures reflect individual differences that are distinct from those tapped by these measures of speech understanding. PMID:26441769

  19. The AMPA receptor-associated protein Shisa7 regulates hippocampal synaptic function and contextual memory

    PubMed Central

    Zamri, Azra Elia; Stroeder, Jasper; Rao-Ruiz, Priyanka; Lodder, Johannes C; van der Loo, Rolinka J

    2017-01-01

    Glutamatergic synapses rely on AMPA receptors (AMPARs) for fast synaptic transmission and plasticity. AMPAR auxiliary proteins regulate receptor trafficking, and modulate receptor mobility and its biophysical properties. The AMPAR auxiliary protein Shisa7 (CKAMP59) has been shown to interact with AMPARs in artificial expression systems, but it is unknown whether Shisa7 has a functional role in glutamatergic synapses. We show that Shisa7 physically interacts with synaptic AMPARs in mouse hippocampus. Shisa7 gene deletion resulted in faster AMPAR currents in CA1 synapses, without affecting its synaptic expression. Shisa7 KO mice showed reduced initiation and maintenance of long-term potentiation of glutamatergic synapses. In line with this, Shisa7 KO mice showed a specific deficit in contextual fear memory, both short-term and long-term after conditioning, whereas auditory fear memory and anxiety-related behavior were normal. Thus, Shisa7 is a bona-fide AMPAR modulatory protein affecting channel kinetics of AMPARs, necessary for synaptic hippocampal plasticity, and memory recall. PMID:29199957

  20. Building phonetic categories: an argument for the role of sleep

    PubMed Central

    Earle, F. Sayako; Myers, Emily B.

    2014-01-01

    The current review provides specific predictions for the role of sleep-mediated memory consolidation in the formation of new speech sound representations. Specifically, this discussion will highlight selected literature on the different ideas concerning category representation in speech, followed by a broad overview of memory consolidation and how it relates to human behavior, as relevant to speech/perceptual learning. In combining behavioral and physiological accounts from animal models with insights from the human consolidation literature on auditory skill/word learning, we are in the early stages of understanding how the transfer of experiential information between brain structures during sleep manifests in changes to online perception. Arriving at the conclusion that this process is crucial in perceptual learning and the formation of novel categories, further speculation yields the adjacent claim that the habitual disruption in this process leads to impoverished quality in the representation of speech sounds. PMID:25477828

  1. Does the Sound of a Barking Dog Activate its Corresponding Visual Form? An fMRI Investigation of Modality-Specific Semantic Access

    PubMed Central

    Reilly, Jamie; Garcia, Amanda; Binney, Richard J.

    2016-01-01

    Much remains to be learned about the neural architecture underlying word meaning. Fully distributed models of semantic memory predict that the sound of a barking dog will conjointly engage a network of distributed sensorimotor spokes. An alternative framework holds that modality-specific features additionally converge within transmodal hubs. Participants underwent functional MRI while covertly naming familiar objects versus newly learned novel objects from only one of their constituent semantic features (visual form, characteristic sound, or point-light motion representation). Relative to the novel object baseline, familiar concepts elicited greater activation within association regions specific to that presentation modality. Furthermore, visual form elicited activation within high-level auditory association cortex. Conversely, environmental sounds elicited activation in regions proximal to visual association cortex. Both conditions commonly engaged a putative hub region within lateral anterior temporal cortex. These results support hybrid semantic models in which local hubs and distributed spokes are dually engaged in service of semantic memory. PMID:27289210

  2. Accuracy of prospective memory tests in mild Alzheimer's disease.

    PubMed

    Martins, Sergilaine Pereira; Damasceno, Benito Pereira

    2012-01-01

    To verify the accuracy of prospective memory (ProM) tests in Alzheimer's disease (AD). Twenty mild AD patients (CDR 1), and 20 controls underwent Digit Span (DS), Trail Making (TM) A and B, visual perception, Rey Auditory-Verbal Learning tests, and Cornell Scale for Depression. AD diagnosis was based on DSM-IV and NINCDS-ADRDA criteria. ProM was assessed with the appointment and belonging subtests of Rivermead Behavioral Memory Test (RBMT); and with two new tests (the clock and animal tests). AD patients had a worse performance than controls on the majority of tests, except DS forward and TM-A. There was no correlation between RBMT and the new ProM tests. As for accuracy, the only significant difference concerned the higher sensitivity of our animal test versus the RBMT belonging test. The clock and the animal tests showed similar specificity, but higher sensitivity than the RBMT subtests.

  3. The Auditory Verbal Learning Test (Rey AVLT): An Arabic Version

    ERIC Educational Resources Information Center

    Sharoni, Varda; Natur, Nazeh

    2014-01-01

    The goals of this study were to adapt the Rey Auditory Verbal Learning Test (AVLT) into Arabic, to compare recall functioning among age groups (6:0 to 17:11), and to compare gender differences on various memory dimensions (immediate and delayed recall, learning rate, recognition, proactive interferences, and retroactive interferences). This…

  4. Short-Term Memory and Auditory Processing Disorders: Concurrent Validity and Clinical Diagnostic Markers

    ERIC Educational Resources Information Center

    Maerlender, Arthur

    2010-01-01

    Auditory processing disorders (APDs) are of interest to educators and clinicians, as they impact school functioning. Little work has been completed to demonstrate how children with APDs perform on clinical tests. In a series of studies, standard clinical (psychometric) tests from the Wechsler Intelligence Scale for Children, Fourth Edition…

  5. Auditory Temporal Processing and Working Memory: Two Independent Deficits for Dyslexia

    ERIC Educational Resources Information Center

    Fostick, Leah; Bar-El, Sharona; Ram-Tsur, Ronit

    2012-01-01

    Dyslexia is a neuro-cognitive disorder with a strong genetic basis, characterized by a difficulty in acquiring reading skills. Several hypotheses have been suggested in an attempt to explain the origin of dyslexia, among which some have suggested that dyslexic readers might have a deficit in auditory temporal processing, while others hypothesized…

  6. Eye Closure Reduces the Cross-Modal Memory Impairment Caused by Auditory Distraction

    ERIC Educational Resources Information Center

    Perfect, Timothy J.; Andrade, Jackie; Eagan, Irene

    2011-01-01

    Eyewitnesses instructed to close their eyes during retrieval recall more correct and fewer incorrect visual and auditory details. This study tested whether eye closure causes these effects through a reduction in environmental distraction. Sixty participants watched a staged event before verbally answering questions about it in the presence of…

  7. Perceptual Fluency, Auditory Generation, and Metamemory: Analyzing the Perceptual Fluency Hypothesis in the Auditory Modality

    ERIC Educational Resources Information Center

    Besken, Miri; Mulligan, Neil W.

    2014-01-01

    Judgments of learning (JOLs) are sometimes influenced by factors that do not impact actual memory performance. One recent proposal is that perceptual fluency during encoding affects metamemory and is a basis of metacognitive illusions. In the present experiments, participants identified aurally presented words that contained inter-spliced silences…

  8. Working Memory for Patterned Sequences of Auditory Objects in a Songbird

    ERIC Educational Resources Information Center

    Comins, Jordan A.; Gentner, Timothy Q.

    2010-01-01

    The capacity to remember sequences is critical to many behaviors, such as navigation and communication. Adult humans readily recall the serial order of auditory items, and this ability is commonly understood to support, in part, the speech processing for language comprehension. Theories of short-term serial recall posit either use of absolute…

  9. Short-Term Memory for Space and Time Flexibly Recruit Complementary Sensory-Biased Frontal Lobe Attention Networks.

    PubMed

    Michalka, Samantha W; Kong, Lingqiang; Rosen, Maya L; Shinn-Cunningham, Barbara G; Somers, David C

    2015-08-19

    The frontal lobes control wide-ranging cognitive functions; however, functional subdivisions of human frontal cortex are only coarsely mapped. Here, functional magnetic resonance imaging reveals two distinct visual-biased attention regions in lateral frontal cortex, superior precentral sulcus (sPCS) and inferior precentral sulcus (iPCS), anatomically interdigitated with two auditory-biased attention regions, transverse gyrus intersecting precentral sulcus (tgPCS) and caudal inferior frontal sulcus (cIFS). Intrinsic functional connectivity analysis demonstrates that sPCS and iPCS fall within a broad visual-attention network, while tgPCS and cIFS fall within a broad auditory-attention network. Interestingly, we observe that spatial and temporal short-term memory (STM), respectively, recruit visual and auditory attention networks in the frontal lobe, independent of sensory modality. These findings not only demonstrate that both sensory modality and information domain influence frontal lobe functional organization, they also demonstrate that spatial processing co-localizes with visual processing and that temporal processing co-localizes with auditory processing in lateral frontal cortex. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Human auditory evoked potentials in the assessment of brain function during major cardiovascular surgery.

    PubMed

    Rodriguez, Rosendo A

    2004-06-01

    Focal neurologic and intellectual deficits or memory problems are relatively frequent after cardiac surgery. These complications have been associated with cerebral hypoperfusion, embolization, and inflammation that occur during or after surgery. Auditory evoked potentials, a neurophysiologic technique that evaluates the function of neural structures from the auditory nerve to the cortex, provide useful information about the functional status of the brain during major cardiovascular procedures. Skepticism regarding the presence of artifacts or difficulty in their interpretation has outweighed considerations of its potential utility and noninvasiveness. This paper reviews the evidence of their potential applications in several aspects of the management of cardiac surgery patients. The sensitivity of auditory evoked potentials to the effects of changes in brain temperature makes them useful for monitoring cerebral hypothermia and rewarming during cardiopulmonary bypass. The close relationship between evoked potential waveforms and specific anatomic structures facilitates the assessment of the functional integrity of the central nervous system in cardiac surgery patients. This feature may also be relevant in the management of critical patients under sedation and coma or in the evaluation of their prognosis during critical care. Their objectivity, reproducibility, and relative insensitivity to learning effects make auditory evoked potentials attractive for the cognitive assessment of cardiac surgery patients. From a clinical perspective, auditory evoked potentials represent an additional window for the study of underlying cerebral processes in healthy and diseased patients. From a research standpoint, this technology offers opportunities for a better understanding of the particular cerebral deficits associated with patients who are undergoing major cardiovascular procedures.

  11. Driver memory for in-vehicle visual and auditory messages

    DOT National Transportation Integrated Search

    1999-12-01

    Three experiments were conducted in a driving simulator to evaluate effects of in-vehicle message modality and message format on comprehension and memory for younger and older drivers. Visual icons and text messages were effective in terms of high co...

  12. Item-nonspecific proactive interference in monkeys' auditory short-term memory.

    PubMed

    Bigelow, James; Poremba, Amy

    2015-09-01

    Recent studies using the delayed matching-to-sample (DMS) paradigm indicate that monkeys' auditory short-term memory (STM) is susceptible to proactive interference (PI). During the task, subjects must indicate whether sample and test sounds separated by a retention interval are identical (match) or not (nonmatch). If a nonmatching test stimulus also occurred on a previous trial, monkeys are more likely to incorrectly make a "match" response (item-specific PI). However, it is not known whether PI may be caused by sounds presented on prior trials that are similar, but nonidentical to the current test stimulus (item-nonspecific PI). This possibility was investigated in two experiments. In Experiment 1, memoranda for each trial comprised tones with a wide range of frequencies, thus minimizing item-specific PI and producing a range of frequency differences among nonidentical tones. In Experiment 2, memoranda were drawn from a set of eight artificial sounds that differed from each other by one, two, or three acoustic dimensions (frequency, spectral bandwidth, and temporal dynamics). Results from both experiments indicate that subjects committed more errors when previously-presented sounds were acoustically similar (though not identical) to the test stimulus of the current trial. Significant effects were produced only by stimuli from the immediately previous trial, suggesting that item-nonspecific PI is less perseverant than item-specific PI, which can extend across noncontiguous trials. Our results contribute to existing human and animal STM literature reporting item-nonspecific PI caused by perceptual similarity among memoranda. Together, these observations underscore the significance of both temporal and discriminability factors in monkeys' STM. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Presentation Modality and Proactive Interference in Children's Short-Term Memory.

    ERIC Educational Resources Information Center

    Douglas, Joan Delahanty

    This study examined the role of visual and auditory presentation in memory encoding processes of 80 second-grade children, using the release-from-proactive-interference short-term memory (STM) paradigm. Words were presented over three trials within one of the presentation modes and one taxonomic category, followed by a fourth trial in which the…

  14. Bilateral Saccadic Eye Movements and Tactile Stimulation, but Not Auditory Stimulation, Enhance Memory Retrieval

    ERIC Educational Resources Information Center

    Nieuwenhuis, Sander; Elzinga, Bernet M.; Ras, Priscilla H.; Berends, Floris; Duijs, Peter; Samara, Zoe; Slagter, Heleen A.

    2013-01-01

    Recent research has shown superior memory retrieval when participants make a series of horizontal saccadic eye movements between the memory encoding phase and the retrieval phase compared to participants who do not move their eyes or move their eyes vertically. It has been hypothesized that the rapidly alternating activation of the two hemispheres…

  15. Impact of Noise and Working Memory on Speech Processing in Adults with and without ADHD

    ERIC Educational Resources Information Center

    Michalek, Anne M. P.

    2012-01-01

    Auditory processing of speech is influenced by internal (i.e., attention, working memory) and external factors (i.e., background noise, visual information). This study examined the interplay among these factors in individuals with and without ADHD. All participants completed a listening in noise task, two working memory capacity tasks, and two…

  16. Executive Function, Visual Attention and the Cocktail Party Problem in Musicians and Non-Musicians.

    PubMed

    Clayton, Kameron K; Swaminathan, Jayaganesh; Yazdanbakhsh, Arash; Zuk, Jennifer; Patel, Aniruddh D; Kidd, Gerald

    2016-01-01

    The goal of this study was to investigate how cognitive factors influence performance in a multi-talker, "cocktail-party" like environment in musicians and non-musicians. This was achieved by relating performance in a spatial hearing task to cognitive processing abilities assessed using measures of executive function (EF) and visual attention in musicians and non-musicians. For the spatial hearing task, a speech target was presented simultaneously with two intelligible speech maskers that were either colocated with the target (0° azimuth) or were symmetrically separated from the target in azimuth (at ±15°). EF assessment included measures of cognitive flexibility, inhibition control and auditory working memory. Selective attention was assessed in the visual domain using a multiple object tracking task (MOT). For the MOT task, the observers were required to track target dots (n = 1,2,3,4,5) in the presence of interfering distractor dots. Musicians performed significantly better than non-musicians in the spatial hearing task. For the EF measures, musicians showed better performance on measures of auditory working memory compared to non-musicians. Furthermore, across all individuals, a significant correlation was observed between performance on the spatial hearing task and measures of auditory working memory. This result suggests that individual differences in performance in a cocktail party-like environment may depend in part on cognitive factors such as auditory working memory. Performance in the MOT task did not differ between groups. However, across all individuals, a significant correlation was found between performance in the MOT and spatial hearing tasks. A stepwise multiple regression analysis revealed that musicianship and performance on the MOT task significantly predicted performance on the spatial hearing task. Overall, these findings confirm the relationship between musicianship and cognitive factors including domain-general selective attention and working memory in solving the "cocktail party problem".

  17. Executive Function, Visual Attention and the Cocktail Party Problem in Musicians and Non-Musicians

    PubMed Central

    Clayton, Kameron K.; Swaminathan, Jayaganesh; Yazdanbakhsh, Arash; Zuk, Jennifer; Patel, Aniruddh D.; Kidd, Gerald

    2016-01-01

    The goal of this study was to investigate how cognitive factors influence performance in a multi-talker, “cocktail-party” like environment in musicians and non-musicians. This was achieved by relating performance in a spatial hearing task to cognitive processing abilities assessed using measures of executive function (EF) and visual attention in musicians and non-musicians. For the spatial hearing task, a speech target was presented simultaneously with two intelligible speech maskers that were either colocated with the target (0° azimuth) or were symmetrically separated from the target in azimuth (at ±15°). EF assessment included measures of cognitive flexibility, inhibition control and auditory working memory. Selective attention was assessed in the visual domain using a multiple object tracking task (MOT). For the MOT task, the observers were required to track target dots (n = 1,2,3,4,5) in the presence of interfering distractor dots. Musicians performed significantly better than non-musicians in the spatial hearing task. For the EF measures, musicians showed better performance on measures of auditory working memory compared to non-musicians. Furthermore, across all individuals, a significant correlation was observed between performance on the spatial hearing task and measures of auditory working memory. This result suggests that individual differences in performance in a cocktail party-like environment may depend in part on cognitive factors such as auditory working memory. Performance in the MOT task did not differ between groups. However, across all individuals, a significant correlation was found between performance in the MOT and spatial hearing tasks. A stepwise multiple regression analysis revealed that musicianship and performance on the MOT task significantly predicted performance on the spatial hearing task. Overall, these findings confirm the relationship between musicianship and cognitive factors including domain-general selective attention and working memory in solving the “cocktail party problem”. PMID:27384330

  18. Impaired pitch perception and memory in congenital amusia: the deficit starts in the auditory cortex.

    PubMed

    Albouy, Philippe; Mattout, Jérémie; Bouet, Romain; Maby, Emmanuel; Sanchez, Gaëtan; Aguera, Pierre-Emmanuel; Daligault, Sébastien; Delpuech, Claude; Bertrand, Olivier; Caclin, Anne; Tillmann, Barbara

    2013-05-01

    Congenital amusia is a lifelong disorder of music perception and production. The present study investigated the cerebral bases of impaired pitch perception and memory in congenital amusia using behavioural measures, magnetoencephalography and voxel-based morphometry. Congenital amusics and matched control subjects performed two melodic tasks (a melodic contour task and an easier transposition task); they had to indicate whether sequences of six tones (presented in pairs) were the same or different. Behavioural data indicated that in comparison with control participants, amusics' short-term memory was impaired for the melodic contour task, but not for the transposition task. The major finding was that pitch processing and short-term memory deficits can be traced down to amusics' early brain responses during encoding of the melodic information. Temporal and frontal generators of the N100m evoked by each note of the melody were abnormally recruited in the amusic brain. Dynamic causal modelling of the N100m further revealed decreased intrinsic connectivity in both auditory cortices, increased lateral connectivity between auditory cortices as well as a decreased right fronto-temporal backward connectivity in amusics relative to control subjects. Abnormal functioning of this fronto-temporal network was also shown during the retention interval and the retrieval of melodic information. In particular, induced gamma oscillations in right frontal areas were decreased in amusics during the retention interval. Using voxel-based morphometry, we confirmed morphological brain anomalies in terms of white and grey matter concentration in the right inferior frontal gyrus and the right superior temporal gyrus in the amusic brain. The convergence between functional and structural brain differences strengthens the hypothesis of abnormalities in the fronto-temporal pathway of the amusic brain. Our data provide first evidence of altered functioning of the auditory cortices during pitch perception and memory in congenital amusia. They further support the hypothesis that in neurodevelopmental disorders impacting high-level functions (here musical abilities), abnormalities in cerebral processing can be observed in early brain responses.

  19. Learning to Encode Timing: Mechanisms of Plasticity in the Auditory Brainstem

    PubMed Central

    Tzounopoulos, Thanos; Kraus, Nina

    2009-01-01

    Mechanisms of plasticity have traditionally been ascribed to higher-order sensory processing areas such as the cortex, whereas early sensory processing centers have been considered largely hard-wired. In agreement with this view, the auditory brainstem has been viewed as a nonplastic site, important for preserving temporal information and minimizing transmission delays. However, recent groundbreaking results from animal models and human studies have revealed remarkable evidence for cellular and behavioral mechanisms for learning and memory in the auditory brainstem. PMID:19477149

  20. Using EEG to Discriminate Cognitive Workload and Performance Based on Neural Activation and Connectivity

    DTIC Science & Technology

    2016-05-31

    auditory working memory task to vary cognitive workload by altering the number of digits held in memory during the simultaneous retention of a sentence...in memory . Cognitive efficacy is assessed based on accuracy in recalling digits from memory . A Gaussian classifier is used to discriminate cognitive...effectiveness of cognition under the existing load. One major factor that impacts cognitive load is the amount of working memory required in a task

  1. Association of auditory-verbal and visual hallucinations with impaired and improved recognition of colored pictures.

    PubMed

    Brébion, Gildas; Stephan-Otto, Christian; Usall, Judith; Huerta-Ramos, Elena; Perez del Olmo, Mireia; Cuevas-Esteban, Jorge; Haro, Josep Maria; Ochoa, Susana

    2015-09-01

    A number of cognitive underpinnings of auditory hallucinations have been established in schizophrenia patients, but few have, as yet, been uncovered for visual hallucinations. In previous research, we unexpectedly observed that auditory hallucinations were associated with poor recognition of color, but not black-and-white (b/w), pictures. In this study, we attempted to replicate and explain this finding. Potential associations with visual hallucinations were explored. B/w and color pictures were presented to 50 schizophrenia patients and 45 healthy individuals under 2 conditions of visual context presentation corresponding to 2 levels of visual encoding complexity. Then, participants had to recognize the target pictures among distractors. Auditory-verbal hallucinations were inversely associated with the recognition of the color pictures presented under the most effortful encoding condition. This association was fully mediated by working-memory span. Visual hallucinations were associated with improved recognition of the color pictures presented under the less effortful condition. Patients suffering from visual hallucinations were not impaired, relative to the healthy participants, in the recognition of these pictures. Decreased working-memory span in patients with auditory-verbal hallucinations might impede the effortful encoding of stimuli. Visual hallucinations might be associated with facilitation in the visual encoding of natural scenes, or with enhanced color perception abilities. (c) 2015 APA, all rights reserved).

  2. Cognitive mechanisms associated with auditory sensory gating

    PubMed Central

    Jones, L.A.; Hills, P.J.; Dick, K.M.; Jones, S.P.; Bright, P.

    2016-01-01

    Sensory gating is a neurophysiological measure of inhibition that is characterised by a reduction in the P50 event-related potential to a repeated identical stimulus. The objective of this work was to determine the cognitive mechanisms that relate to the neurological phenomenon of auditory sensory gating. Sixty participants underwent a battery of 10 cognitive tasks, including qualitatively different measures of attentional inhibition, working memory, and fluid intelligence. Participants additionally completed a paired-stimulus paradigm as a measure of auditory sensory gating. A correlational analysis revealed that several tasks correlated significantly with sensory gating. However once fluid intelligence and working memory were accounted for, only a measure of latent inhibition and accuracy scores on the continuous performance task showed significant sensitivity to sensory gating. We conclude that sensory gating reflects the identification of goal-irrelevant information at the encoding (input) stage and the subsequent ability to selectively attend to goal-relevant information based on that previous identification. PMID:26716891

  3. Remembering a criminal conversation: beyond eyewitness testimony.

    PubMed

    Campos, Laura; Alonso-Quecuty, María L

    2006-01-01

    Unlike the important body of work on eyewitness memory, little research has been done on the accuracy and completeness of "earwitness" memory for conversations. The present research examined the effects of mode of presentation (audiovisual/ auditory-only) on witnesses' free recall for utterances in a criminal conversation at different retention intervals (immediate/delayed) within a single experiment. Different forms of correct recall (verbatim/gist) of the verbal information as well as different types of errors (distortions/fabrications) were also examined. It was predicted that participants in the audiovisual modality would provide more correct information, and fewer errors than participants in the auditory-only modality. Participants' recall was predicted to be impaired over time, dropping to a greater extent after a delay in the auditory-only modality. Results confirmed these hypotheses. Interpretations of the overall findings are offered within the context of dual-coding theory, and within the theoretical frameworks of source monitoring and fuzzy-trace theory.

  4. BAF53b, a Neuron-Specific Nucleosome Remodeling Factor, Is Induced after Learning and Facilitates Long-Term Memory Consolidation.

    PubMed

    Yoo, Miran; Choi, Kwang-Yeon; Kim, Jieun; Kim, Mujun; Shim, Jaehoon; Choi, Jun-Hyeok; Cho, Hye-Yeon; Oh, Jung-Pyo; Kim, Hyung-Su; Kaang, Bong-Kiun; Han, Jin-Hee

    2017-03-29

    Although epigenetic mechanisms of gene expression regulation have recently been implicated in memory consolidation and persistence, the role of nucleosome-remodeling is largely unexplored. Recent studies show that the functional loss of BAF53b, a postmitotic neuron-specific subunit of the BAF nucleosome-remodeling complex, results in the deficit of consolidation of hippocampus-dependent memory and cocaine-associated memory in the rodent brain. However, it is unclear whether BAF53b expression is regulated during memory formation and how BAF53b regulates fear memory in the amygdala, a key brain site for fear memory encoding and storage. To address these questions, we used viral vector approaches to either decrease or increase BAF53b function specifically in the lateral amygdala of adult mice in auditory fear conditioning paradigm. Knockdown of Baf53b before training disrupted long-term memory formation with no effect on short-term memory, basal synaptic transmission, and spine structures. We observed in our qPCR analysis that BAF53b was induced in the lateral amygdala neurons at the late consolidation phase after fear conditioning. Moreover, transient BAF53b overexpression led to persistently enhanced memory formation, which was accompanied by increase in thin-type spine density. Together, our results provide the evidence that BAF53b is induced after learning, and show that such increase of BAF53b level facilitates memory consolidation likely by regulating learning-related spine structural plasticity. SIGNIFICANCE STATEMENT Recent works in the rodent brain begin to link nucleosome remodeling-dependent epigenetic mechanism to memory consolidation. Here we show that BAF53b, an epigenetic factor involved in nucleosome remodeling, is induced in the lateral amygdala neurons at the late phase of consolidation after fear conditioning. Using specific gene knockdown or overexpression approaches, we identify the critical role of BAF53b in the lateral amygdala neurons for memory consolidation during long-term memory formation. Our results thus provide an idea about how nucleosome remodeling can be regulated during long-term memory formation and contributes to the permanent storage of associative fear memory in the lateral amygdala, which is relevant to fear and anxiety-related mental disorders. Copyright © 2017 the authors 0270-6474/17/373686-12$15.00/0.

  5. The modulation of auditory novelty processing by working memory load in school age children and adults: a combined behavioral and event-related potential study

    PubMed Central

    2010-01-01

    Background We investigated the processing of task-irrelevant and unexpected novel sounds and its modulation by working-memory load in children aged 9-10 and in adults. Environmental sounds (novels) were embedded amongst frequently presented standard sounds in an auditory-visual distraction paradigm. Each sound was followed by a visual target. In two conditions, participants evaluated the position of a visual stimulus (0-back, low load) or compared the position of the current stimulus with the one two trials before (2-back, high load). Processing of novel sounds were measured with reaction times, hit rates and the auditory event-related brain potentials (ERPs) Mismatch Negativity (MMN), P3a, Reorienting Negativity (RON) and visual P3b. Results In both memory load conditions novels impaired task performance in adults whereas they improved performance in children. Auditory ERPs reflect age-related differences in the time-window of the MMN as children showed a positive ERP deflection to novels whereas adults lack an MMN. The attention switch towards the task irrelevant novel (reflected by P3a) was comparable between the age groups. Adults showed more efficient reallocation of attention (reflected by RON) under load condition than children. Finally, the P3b elicited by the visual target stimuli was reduced in both age groups when the preceding sound was a novel. Conclusion Our results give new insights in the development of novelty processing as they (1) reveal that task-irrelevant novel sounds can result in contrary effects on the performance in a visual primary task in children and adults, (2) show a positive ERP deflection to novels rather than an MMN in children, and (3) reveal effects of auditory novels on visual target processing. PMID:20929535

  6. Processing Complex Sounds Passing through the Rostral Brainstem: The New Early Filter Model

    PubMed Central

    Marsh, John E.; Campbell, Tom A.

    2016-01-01

    The rostral brainstem receives both “bottom-up” input from the ascending auditory system and “top-down” descending corticofugal connections. Speech information passing through the inferior colliculus of elderly listeners reflects the periodicity envelope of a speech syllable. This information arguably also reflects a composite of temporal-fine-structure (TFS) information from the higher frequency vowel harmonics of that repeated syllable. The amplitude of those higher frequency harmonics, bearing even higher frequency TFS information, correlates positively with the word recognition ability of elderly listeners under reverberatory conditions. Also relevant is that working memory capacity (WMC), which is subject to age-related decline, constrains the processing of sounds at the level of the brainstem. Turning to the effects of a visually presented sensory or memory load on auditory processes, there is a load-dependent reduction of that processing, as manifest in the auditory brainstem responses (ABR) evoked by to-be-ignored clicks. Wave V decreases in amplitude with increases in the visually presented memory load. A visually presented sensory load also produces a load-dependent reduction of a slightly different sort: The sensory load of visually presented information limits the disruptive effects of background sound upon working memory performance. A new early filter model is thus advanced whereby systems within the frontal lobe (affected by sensory or memory load) cholinergically influence top-down corticofugal connections. Those corticofugal connections constrain the processing of complex sounds such as speech at the level of the brainstem. Selective attention thereby limits the distracting effects of background sound entering the higher auditory system via the inferior colliculus. Processing TFS in the brainstem relates to perception of speech under adverse conditions. Attentional selectivity is crucial when the signal heard is degraded or masked: e.g., speech in noise, speech in reverberatory environments. The assumptions of a new early filter model are consistent with these findings: A subcortical early filter, with a predictive selectivity based on acoustical (linguistic) context and foreknowledge, is under cholinergic top-down control. A prefrontal capacity limitation constrains this top-down control as is guided by the cholinergic processing of contextual information in working memory. PMID:27242396

  7. Preschool speech articulation and nonword repetition abilities may help predict eventual recovery or persistence of stuttering.

    PubMed

    Spencer, Caroline; Weber-Fox, Christine

    2014-09-01

    In preschool children, we investigated whether expressive and receptive language, phonological, articulatory, and/or verbal working memory proficiencies aid in predicting eventual recovery or persistence of stuttering. Participants included 65 children, including 25 children who do not stutter (CWNS) and 40 who stutter (CWS) recruited at age 3;9-5;8. At initial testing, participants were administered the Test of Auditory Comprehension of Language, 3rd edition (TACL-3), Structured Photographic Expressive Language Test, 3rd edition (SPELT-3), Bankson-Bernthal Test of Phonology-Consonant Inventory subtest (BBTOP-CI), Nonword Repetition Test (NRT; Dollaghan & Campbell, 1998), and Test of Auditory Perceptual Skills-Revised (TAPS-R) auditory number memory and auditory word memory subtests. Stuttering behaviors of CWS were assessed in subsequent years, forming groups whose stuttering eventually persisted (CWS-Per; n=19) or recovered (CWS-Rec; n=21). Proficiency scores in morphosyntactic skills, consonant production, verbal working memory for known words, and phonological working memory and speech production for novel nonwords obtained at the initial testing were analyzed for each group. CWS-Per were less proficient than CWNS and CWS-Rec in measures of consonant production (BBTOP-CI) and repetition of novel phonological sequences (NRT). In contrast, receptive language, expressive language, and verbal working memory abilities did not distinguish CWS-Rec from CWS-Per. Binary logistic regression analysis indicated that preschool BBTOP-CI scores and overall NRT proficiency significantly predicted future recovery status. Results suggest that phonological and speech articulation abilities in the preschool years should be considered with other predictive factors as part of a comprehensive risk assessment for the development of chronic stuttering. At the end of this activity the reader will be able to: (1) describe the current status of nonlinguistic and linguistic predictors for recovery and persistence of stuttering; (2) summarize current evidence regarding the potential value of consonant cluster articulation and nonword repetition abilities in helping to predict stuttering outcome in preschool children; (3) discuss the current findings in relation to potential implications for theories of developmental stuttering; (4) discuss the current findings in relation to potential considerations for the evaluation and treatment of developmental stuttering. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Processing Complex Sounds Passing through the Rostral Brainstem: The New Early Filter Model.

    PubMed

    Marsh, John E; Campbell, Tom A

    2016-01-01

    The rostral brainstem receives both "bottom-up" input from the ascending auditory system and "top-down" descending corticofugal connections. Speech information passing through the inferior colliculus of elderly listeners reflects the periodicity envelope of a speech syllable. This information arguably also reflects a composite of temporal-fine-structure (TFS) information from the higher frequency vowel harmonics of that repeated syllable. The amplitude of those higher frequency harmonics, bearing even higher frequency TFS information, correlates positively with the word recognition ability of elderly listeners under reverberatory conditions. Also relevant is that working memory capacity (WMC), which is subject to age-related decline, constrains the processing of sounds at the level of the brainstem. Turning to the effects of a visually presented sensory or memory load on auditory processes, there is a load-dependent reduction of that processing, as manifest in the auditory brainstem responses (ABR) evoked by to-be-ignored clicks. Wave V decreases in amplitude with increases in the visually presented memory load. A visually presented sensory load also produces a load-dependent reduction of a slightly different sort: The sensory load of visually presented information limits the disruptive effects of background sound upon working memory performance. A new early filter model is thus advanced whereby systems within the frontal lobe (affected by sensory or memory load) cholinergically influence top-down corticofugal connections. Those corticofugal connections constrain the processing of complex sounds such as speech at the level of the brainstem. Selective attention thereby limits the distracting effects of background sound entering the higher auditory system via the inferior colliculus. Processing TFS in the brainstem relates to perception of speech under adverse conditions. Attentional selectivity is crucial when the signal heard is degraded or masked: e.g., speech in noise, speech in reverberatory environments. The assumptions of a new early filter model are consistent with these findings: A subcortical early filter, with a predictive selectivity based on acoustical (linguistic) context and foreknowledge, is under cholinergic top-down control. A prefrontal capacity limitation constrains this top-down control as is guided by the cholinergic processing of contextual information in working memory.

  9. Inactivation of Primate Prefrontal Cortex Impairs Auditory and Audiovisual Working Memory.

    PubMed

    Plakke, Bethany; Hwang, Jaewon; Romanski, Lizabeth M

    2015-07-01

    The prefrontal cortex is associated with cognitive functions that include planning, reasoning, decision-making, working memory, and communication. Neurophysiology and neuropsychology studies have established that dorsolateral prefrontal cortex is essential in spatial working memory while the ventral frontal lobe processes language and communication signals. Single-unit recordings in nonhuman primates has shown that ventral prefrontal (VLPFC) neurons integrate face and vocal information and are active during audiovisual working memory. However, whether VLPFC is essential in remembering face and voice information is unknown. We therefore trained nonhuman primates in an audiovisual working memory paradigm using naturalistic face-vocalization movies as memoranda. We inactivated VLPFC, with reversible cortical cooling, and examined performance when faces, vocalizations or both faces and vocalization had to be remembered. We found that VLPFC inactivation impaired subjects' performance in audiovisual and auditory-alone versions of the task. In contrast, VLPFC inactivation did not disrupt visual working memory. Our studies demonstrate the importance of VLPFC in auditory and audiovisual working memory for social stimuli but suggest a different role for VLPFC in unimodal visual processing. The ventral frontal lobe, or inferior frontal gyrus, plays an important role in audiovisual communication in the human brain. Studies with nonhuman primates have found that neurons within ventral prefrontal cortex (VLPFC) encode both faces and vocalizations and that VLPFC is active when animals need to remember these social stimuli. In the present study, we temporarily inactivated VLPFC by cooling the cortex while nonhuman primates performed a working memory task. This impaired the ability of subjects to remember a face and vocalization pair or just the vocalization alone. Our work highlights the importance of the primate VLPFC in the processing of faces and vocalizations in a manner that is similar to the inferior frontal gyrus in the human brain. Copyright © 2015 the authors 0270-6474/15/359666-10$15.00/0.

  10. Auditory Vigilance and Working Memory in Youth at Familial Risk for Schizophrenia or Affective Psychosis in the Harvard Adolescent Family High Risk Study.

    PubMed

    Seidman, Larry J; Pousada-Casal, Andrea; Scala, Silvia; Meyer, Eric C; Stone, William S; Thermenos, Heidi W; Molokotos, Elena; Agnew-Blais, Jessica; Tsuang, Ming T; Faraone, Stephen V

    2016-11-01

    The degree of overlap between schizophrenia (SCZ) and affective psychosis (AFF) has been a recurring question since Kraepelin's subdivision of the major psychoses. Studying nonpsychotic relatives allows a comparison of disorder-associated phenotypes, without potential confounds that can obscure distinctive features of the disorder. Because attention and working memory have been proposed as potential endophenotypes for SCZ and AFF, we compared these cognitive features in individuals at familial high-risk (FHR) for the disorders. Young, unmedicated, first-degree relatives (ages, 13-25 years) at FHR-SCZ (n=41) and FHR-AFF (n=24) and community controls (CCs, n=54) were tested using attention and working memory versions of the Auditory Continuous Performance Test. To determine if schizotypal traits or current psychopathology accounted for cognitive deficits, we evaluated psychosis proneness using three Chapman Scales, Revised Physical Anhedonia, Perceptual Aberration, and Magical Ideation, and assessed psychopathology using the Hopkins Symptom Checklist -90 Revised. Compared to controls, the FHR-AFF sample was significantly impaired in auditory vigilance, while the FHR-SCZ sample was significantly worse in working memory. Both FHR groups showed significantly higher levels of physical anhedonia and some psychopathological dimensions than controls. Adjusting for physical anhedonia, phobic anxiety, depression, psychoticism, and obsessive-compulsive symptoms eliminated the FHR-AFF vigilance effects but not the working memory deficits in FHR-SCZ. The working memory deficit in FHR-SZ was the more robust of the cognitive impairments after accounting for psychopathological confounds and is supported as an endophenotype. Examination of larger samples of people at familial risk for different psychoses remains necessary to confirm these findings and to clarify the role of vigilance in FHR-AFF. (JINS, 2016, 22, 1026-1037).

  11. Development of neural responsivity to vocal sounds in higher level auditory cortex of songbirds

    PubMed Central

    Miller-Sims, Vanessa C.

    2014-01-01

    Like humans, songbirds learn vocal sounds from “tutors” during a sensitive period of development. Vocal learning in songbirds therefore provides a powerful model system for investigating neural mechanisms by which memories of learned vocal sounds are stored. This study examined whether NCM (caudo-medial nidopallium), a region of higher level auditory cortex in songbirds, serves as a locus where a neural memory of tutor sounds is acquired during early stages of vocal learning. NCM neurons respond well to complex auditory stimuli, and evoked activity in many NCM neurons habituates such that the response to a stimulus that is heard repeatedly decreases to approximately one-half its original level (stimulus-specific adaptation). The rate of neural habituation serves as an index of familiarity, being low for familiar sounds, but high for novel sounds. We found that response strength across different song stimuli was higher in NCM neurons of adult zebra finches than in juveniles, and that only adult NCM responded selectively to tutor song. The rate of habituation across both tutor song and novel conspecific songs was lower in adult than in juvenile NCM, indicating higher familiarity and a more persistent response to song stimuli in adults. In juvenile birds that have memorized tutor vocal sounds, neural habituation was higher for tutor song than for a familiar conspecific song. This unexpected result suggests that the response to tutor song in NCM at this age may be subject to top-down influences that maintain the tutor song as a salient stimulus, despite its high level of familiarity. PMID:24694936

  12. Auditory memory in monkeys: costs and benefits of proactive interference.

    PubMed

    Bigelow, James; Poremba, Amy

    2013-05-01

    Proactive interference (PI) has traditionally been understood as an adverse consequence of stimulus repetition during memory tasks. Herein, we present data that emphasize costs as well as benefits of PI for monkeys performing an auditory delayed matching-to-sample (DMTS) task. The animals made same/different judgments for a variety of simple and complex sounds separated by a 5-s memory delay. Each session used a stimulus set that included eight sounds; thus, each sound was repeated multiple times per session for match trials and for nonmatch trials as the sample (Cue 1) or test (Cue 2) stimulus. For nonmatch trials, performance was substantially diminished when the test stimulus had been previously presented on a recent trial. However, when the sample stimulus had been recently presented, performance was significantly improved. We also observed a marginal performance benefit when stimuli for match trials had been recently presented. The costs of PI for nonmatch test stimuli were greater than the combined benefits of PI for nonmatch sample stimuli and match trials, indicating that the net influence of PI is detrimental. For all three manifestations of PI, the effects are shown to extend beyond the immediately subsequent trial. Our data suggest that PI in auditory DMTS is best understood as an enduring influence that can be both detrimental and beneficial to memory-task performance. © 2012 Wiley Periodicals, Inc.

  13. Sensory memory during physiological aging indexed by mismatch negativity (MMN).

    PubMed

    Ruzzoli, Manuela; Pirulli, Cornelia; Brignani, Debora; Maioli, Claudio; Miniussi, Carlo

    2012-03-01

    Physiological aging affects early sensory-perceptual processes. The aim of this experiment was to evaluate changes in auditory sensory memory in physiological aging using the Mismatch Negativity (MMN) paradigm as index. The MMN is a marker recorded through the electroencephalogram and is used to evaluate the integrity of the memory system. We adopted a new, faster paradigm to look for differences between 3 groups of subjects of different ages (young, middle age and older adults) as a function of short or long intervals between stimuli. We found that older adults did not show MMN at long interval condition and that the duration of MMN varied according to the participants' age. The current study provides electrophysiological evidence supporting the theory that the encoding of stimuli is preserved during normal aging, whereas the maintenance of sensory memory is impaired. Considering the advantage offered by the MMN paradigm used here, these data might be a useful reference point for the assessment of auditory sensory memory in pathological aging (e.g., in neurodegenerative diseases). Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Depth of Processing and Age Differences.

    PubMed

    Kheirzadeh, Shiela; Pakzadian, Sarah Sadat

    2016-10-01

    The present article is aimed to investigate whether there are any differences between youngsters and adults in their working and long-term memory functioning. The theory of Depth of Processing (Craik and Lockhart in J Verbal Learning Verbal Behav 11:671-684, 1972) discusses the varying degrees of strengths of memory traces as the result of differential levels of processing on the retrieved input. Additionally, they claim that there are three levels of visual, auditory and semantic processes applied on the stimuli in the short-term memory leading to discrepancy in the durability of the memory traces and the later ease of recall and retrieval. In the present article, it is tried to demonstrate if there are evidences of more durable memory traces formed after semantic, visual and auditory processions of the incoming language data in two groups of (a) children in their language learning critical age and (b) youngsters who have passed the critical age period. The comparisons of the results made using two-way ANOVAs revealed the superiority of semantic processing for both age groups in recall, retention and consequently recognition of the new English vocabularies by EFL learners.

  15. Influence of Syllable Structure on L2 Auditory Word Learning

    ERIC Educational Resources Information Center

    Hamada, Megumi; Goya, Hideki

    2015-01-01

    This study investigated the role of syllable structure in L2 auditory word learning. Based on research on cross-linguistic variation of speech perception and lexical memory, it was hypothesized that Japanese L1 learners of English would learn English words with an open-syllable structure without consonant clusters better than words with a…

  16. Temporal Information Processing as a Basis for Auditory Comprehension: Clinical Evidence from Aphasic Patients

    ERIC Educational Resources Information Center

    Oron, Anna; Szymaszek, Aneta; Szelag, Elzbieta

    2015-01-01

    Background: Temporal information processing (TIP) underlies many aspects of cognitive functions like language, motor control, learning, memory, attention, etc. Millisecond timing may be assessed by sequencing abilities, e.g. the perception of event order. It may be measured with auditory temporal-order-threshold (TOT), i.e. a minimum time gap…

  17. Emotional Intelligence among Auditory, Reading, and Kinesthetic Learning Styles of Elementary School Students in Ambon-Indonesia

    ERIC Educational Resources Information Center

    Leasa, Marleny; Corebima, Aloysius D.; Ibrohim; Suwono, Hadi

    2017-01-01

    Students have unique ways in managing the information in their learning process. VARK learning styles associated with memory are considered to have an effect on emotional intelligence. This quasi-experimental research was conducted to compare the emotional intelligence among the students having auditory, reading, and kinesthetic learning styles in…

  18. Suppression and Working Memory in Auditory Comprehension of L2 Narratives: Evidence from Cross-Modal Priming

    ERIC Educational Resources Information Center

    Wu, Shiyu; Ma, Zheng

    2016-01-01

    Using a cross-modal priming task, the present study explores whether Chinese-English bilinguals process goal related information during auditory comprehension of English narratives like native speakers. Results indicate that English native speakers adopted both mechanisms of suppression and enhancement to modulate the activation of goals and keep…

  19. The Effect of Modality Shifts on Practive Interference in Long-Term Memory.

    ERIC Educational Resources Information Center

    Dean, Raymond S.; And Others

    1983-01-01

    In experiment one, subjects learned a word list in blocked or random forms of auditory/visual change. In experiment two, high- and low-conceptual rigid subjects read passages in shift conditions or nonshift, exclusively in auditory or visual modes. A shift in modality provided a powerful release from proactive interference. (Author/CM)

  20. A New Measure for Assessing the Contributions of Higher Level Processes to Language Comprehension Performance in Preschoolers

    ERIC Educational Resources Information Center

    Hannon, Brenda; Frias, Sarah

    2012-01-01

    The present study reports the development of a theoretically motivated measure that provides estimates of a preschooler's ability to recall auditory text, to make text-based inferences, to access knowledge from long-term memory, and to integrate this accessed knowledge with new information from auditory text. This new preschooler component…

  1. Verbal Recall of Auditory and Visual Signals by Normal and Deficient Reading Children.

    ERIC Educational Resources Information Center

    Levine, Maureen Julianne

    Verbal recall of bisensory memory tasks was compared among 48 9- to 12-year old boys in three groups: normal readers, primary deficit readers, and secondary deficit readers. Auditory and visual stimulus pairs composed of digits, which incorporated variations of intersensory and intrasensory conditions were administered to Ss through a Bell and…

  2. Music playing and memory trace: evidence from event-related potentials.

    PubMed

    Kamiyama, Keiko; Katahira, Kentaro; Abla, Dilshat; Hori, Koji; Okanoya, Kazuo

    2010-08-01

    We examined the relationship between motor practice and auditory memory for sound sequences to evaluate the hypothesis that practice involving physical performance might enhance auditory memory. Participants learned two unfamiliar sound sequences using different training methods. Under the key-press condition, they learned a melody while pressing a key during auditory input. Under the no-key-press condition, they listened to another melody without any key pressing. The two melodies were presented alternately, and all participants were trained in both methods. Participants were instructed to pay attention under both conditions. After training, they listened to the two melodies again without pressing keys, and ERPs were recorded. During the ERP recordings, 10% of the tones in these melodies deviated from the originals. The grand-average ERPs showed that the amplitude of mismatch negativity (MMN) elicited by deviant stimuli was larger under the key-press condition than under the no-key-press condition. This effect appeared only in the high absolute pitch group, which included those with a pronounced ability to identify a note without external reference. This result suggests that the effect of training with key pressing was mediated by individual musical skills. Copyright 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  3. Evaluating the developmental trajectory of the episodic buffer component of working memory and its relation to word recognition in children.

    PubMed

    Wang, Shinmin; Allen, Richard J; Lee, Jun Ren; Hsieh, Chia-En

    2015-05-01

    The creation of temporary bound representation of information from different sources is one of the key abilities attributed to the episodic buffer component of working memory. Whereas the role of working memory in word learning has received substantial attention, very little is known about the link between the development of word recognition skills and the ability to bind information in the episodic buffer of working memory and how it may develop with age. This study examined the performance of Grade 2 children (8 years old), Grade 3 children (9 years old), and young adults on a task designed to measure their ability to bind visual and auditory-verbal information in working memory. Children's performance on this task significantly correlated with their word recognition skills even when chronological age, memory for individual elements, and other possible reading-related factors were taken into account. In addition, clear developmental trajectories were observed, with improvements in the ability to hold temporary bound information in working memory between Grades 2 and 3, and between the child and adult groups, that were independent from memory for the individual elements. These findings suggest that the capacity to temporarily bind novel auditory-verbal information to visual form in working memory is linked to the development of word recognition in children and improves with age. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Non Temporal Determinants of Bilingual Memory Capacity: The Role of Long-Term Representations and Fluency.

    ERIC Educational Resources Information Center

    Chincotta, Dino; Underwood, Geoffrey

    1998-01-01

    Examined the view that the variation in bilingual short-term memory capacity is determined by differential rates of subvocal rehearsal between the languages. Auditory memory span and articulation time were measured for three bilingual groups who spoke Finnish at home and Swedish at school, and either Finnish of Swedish in both the home and the…

  5. Memory Effects of Speech and Gesture Binding: Cortical and Hippocampal Activation in Relation to Subsequent Memory Performance

    ERIC Educational Resources Information Center

    Straube, Benjamin; Green, Antonia; Weis, Susanne; Chatterjee, Anjan; Tilo, Kircher

    2009-01-01

    In human face-to-face communication, the content of speech is often illustrated by coverbal gestures. Behavioral evidence suggests that gestures provide advantages in the comprehension and memory of speech. Yet, how the human brain integrates abstract auditory and visual information into a common representation is not known. Our study investigates…

  6. Development of the auditory system

    PubMed Central

    Litovsky, Ruth

    2015-01-01

    Auditory development involves changes in the peripheral and central nervous system along the auditory pathways, and these occur naturally, and in response to stimulation. Human development occurs along a trajectory that can last decades, and is studied using behavioral psychophysics, as well as physiologic measurements with neural imaging. The auditory system constructs a perceptual space that takes information from objects and groups, segregates sounds, and provides meaning and access to communication tools such as language. Auditory signals are processed in a series of analysis stages, from peripheral to central. Coding of information has been studied for features of sound, including frequency, intensity, loudness, and location, in quiet and in the presence of maskers. In the latter case, the ability of the auditory system to perform an analysis of the scene becomes highly relevant. While some basic abilities are well developed at birth, there is a clear prolonged maturation of auditory development well into the teenage years. Maturation involves auditory pathways. However, non-auditory changes (attention, memory, cognition) play an important role in auditory development. The ability of the auditory system to adapt in response to novel stimuli is a key feature of development throughout the nervous system, known as neural plasticity. PMID:25726262

  7. Music and speech listening enhance the recovery of early sensory processing after stroke.

    PubMed

    Särkämö, Teppo; Pihko, Elina; Laitinen, Sari; Forsblom, Anita; Soinila, Seppo; Mikkonen, Mikko; Autti, Taina; Silvennoinen, Heli M; Erkkilä, Jaakko; Laine, Matti; Peretz, Isabelle; Hietanen, Marja; Tervaniemi, Mari

    2010-12-01

    Our surrounding auditory environment has a dramatic influence on the development of basic auditory and cognitive skills, but little is known about how it influences the recovery of these skills after neural damage. Here, we studied the long-term effects of daily music and speech listening on auditory sensory memory after middle cerebral artery (MCA) stroke. In the acute recovery phase, 60 patients who had middle cerebral artery stroke were randomly assigned to a music listening group, an audio book listening group, or a control group. Auditory sensory memory, as indexed by the magnetic MMN (MMNm) response to changes in sound frequency and duration, was measured 1 week (baseline), 3 months, and 6 months after the stroke with whole-head magnetoencephalography recordings. Fifty-four patients completed the study. Results showed that the amplitude of the frequency MMNm increased significantly more in both music and audio book groups than in the control group during the 6-month poststroke period. In contrast, the duration MMNm amplitude increased more in the audio book group than in the other groups. Moreover, changes in the frequency MMNm amplitude correlated significantly with the behavioral improvement of verbal memory and focused attention induced by music listening. These findings demonstrate that merely listening to music and speech after neural damage can induce long-term plastic changes in early sensory processing, which, in turn, may facilitate the recovery of higher cognitive functions. The neural mechanisms potentially underlying this effect are discussed.

  8. What factors underlie children's susceptibility to semantic and phonological false memories? investigating the roles of language skills and auditory short-term memory.

    PubMed

    McGeown, Sarah P; Gray, Eleanor A; Robinson, Jamey L; Dewhurst, Stephen A

    2014-06-01

    Two experiments investigated the cognitive skills that underlie children's susceptibility to semantic and phonological false memories in the Deese/Roediger-McDermott procedure (Deese, 1959; Roediger & McDermott, 1995). In Experiment 1, performance on the Verbal Similarities subtest of the British Ability Scales (BAS) II (Elliott, Smith, & McCulloch, 1997) predicted correct and false recall of semantic lures. In Experiment 2, performance on the Yopp-Singer Test of Phonemic Segmentation (Yopp, 1988) did not predict correct recall, but inversely predicted the false recall of phonological lures. Auditory short-term memory was a negative predictor of false recall in Experiment 1, but not in Experiment 2. The findings are discussed in terms of the formation of gist and verbatim traces as proposed by fuzzy trace theory (Reyna & Brainerd, 1998) and the increasing automaticity of associations as proposed by associative activation theory (Howe, Wimmer, Gagnon, & Plumpton, 2009). Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Relational Associative Learning Induces Cross-Modal Plasticity in Early Visual Cortex

    PubMed Central

    Headley, Drew B.; Weinberger, Norman M.

    2015-01-01

    Neurobiological theories of memory posit that the neocortex is a storage site of declarative memories, a hallmark of which is the association of two arbitrary neutral stimuli. Early sensory cortices, once assumed uninvolved in memory storage, recently have been implicated in associations between neutral stimuli and reward or punishment. We asked whether links between neutral stimuli also could be formed in early visual or auditory cortices. Rats were presented with a tone paired with a light using a sensory preconditioning paradigm that enabled later evaluation of successful association. Subjects that acquired this association developed enhanced sound evoked potentials in their primary and secondary visual cortices. Laminar recordings localized this potential to cortical Layers 5 and 6. A similar pattern of activation was elicited by microstimulation of primary auditory cortex in the same subjects, consistent with a cortico-cortical substrate of association. Thus, early sensory cortex has the capability to form neutral stimulus associations. This plasticity may constitute a declarative memory trace between sensory cortices. PMID:24275832

  10. Selective Entrainment of Theta Oscillations in the Dorsal Stream Causally Enhances Auditory Working Memory Performance.

    PubMed

    Albouy, Philippe; Weiss, Aurélien; Baillet, Sylvain; Zatorre, Robert J

    2017-04-05

    The implication of the dorsal stream in manipulating auditory information in working memory has been recently established. However, the oscillatory dynamics within this network and its causal relationship with behavior remain undefined. Using simultaneous MEG/EEG, we show that theta oscillations in the dorsal stream predict participants' manipulation abilities during memory retention in a task requiring the comparison of two patterns differing in temporal order. We investigated the causal relationship between brain oscillations and behavior by applying theta-rhythmic TMS combined with EEG over the MEG-identified target (left intraparietal sulcus) during the silent interval between the two stimuli. Rhythmic TMS entrained theta oscillation and boosted participants' accuracy. TMS-induced oscillatory entrainment scaled with behavioral enhancement, and both gains varied with participants' baseline abilities. These effects were not seen for a melody-comparison control task and were not observed for arrhythmic TMS. These data establish theta activity in the dorsal stream as causally related to memory manipulation. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Suppression and Working Memory in Auditory Comprehension of L2 Narratives: Evidence from Cross-Modal Priming.

    PubMed

    Wu, Shiyu; Ma, Zheng

    2016-10-01

    Using a cross-modal priming task, the present study explores whether Chinese-English bilinguals process goal related information during auditory comprehension of English narratives like native speakers. Results indicate that English native speakers adopted both mechanisms of suppression and enhancement to modulate the activation of goals and keep track of the "causal path" in narrative events and that L1 speakers with higher working memory (WM) capacity are more skilled at attenuating interference. L2 speakers, however, experienced the phenomenon of "facilitation-without-inhibition." Their difficulty in suppressing irrelevant information was related to their performance in the test of working memory capacity. For the L2 group with greater working memory capacity, the effects of both enhancement and suppression were found. These findings are discussed in light of a landscape model of L2 text comprehension which highlights the need for WM to be incorporated into comprehensive models of L2 processing as well as theories of SLA.

  12. Infant discrimination of rapid auditory cues predicts later language impairment.

    PubMed

    Benasich, April A; Tallal, Paula

    2002-10-17

    The etiology and mechanisms of specific language impairment (SLI) in children are unknown. Differences in basic auditory processing abilities have been suggested to underlie their language deficits. Studies suggest that the neuropathology, such as atypical patterns of cerebral lateralization and cortical cellular anomalies, implicated in such impairments likely occur early in life. Such anomalies may play a part in the rapid processing deficits seen in this disorder. However, prospective, longitudinal studies in infant populations that are critical to examining these hypotheses have not been done. In the study described, performance on brief, rapidly-presented, successive auditory processing and perceptual-cognitive tasks were assessed in two groups of infants: normal control infants with no family history of language disorders and infants from families with a positive family history for language impairment. Initial assessments were obtained when infants were 6-9 months of age (M=7.5 months) and the sample was then followed through age 36 months. At the first visit, infants' processing of rapid auditory cues as well as global processing speed and memory were assessed. Significant differences in mean thresholds were seen in infants born into families with a history of SLI as compared with controls. Examination of relations between infant processing abilities and emerging language through 24 months-of-age revealed that threshold for rapid auditory processing at 7.5 months was the single best predictor of language outcome. At age 3, rapid auditory processing threshold and being male, together predicted 39-41% of the variance in language outcome. Thus, early deficits in rapid auditory processing abilities both precede and predict subsequent language delays. These findings support an essential role for basic nonlinguistic, central auditory processes, particularly rapid spectrotemporal processing, in early language development. Further, these findings provide a temporal diagnostic window during which future language impairments may be addressed.

  13. Auditory working memory predicts individual differences in absolute pitch learning.

    PubMed

    Van Hedger, Stephen C; Heald, Shannon L M; Koch, Rachelle; Nusbaum, Howard C

    2015-07-01

    Absolute pitch (AP) is typically defined as the ability to label an isolated tone as a musical note in the absence of a reference tone. At first glance the acquisition of AP note categories seems like a perceptual learning task, since individuals must assign a category label to a stimulus based on a single perceptual dimension (pitch) while ignoring other perceptual dimensions (e.g., loudness, octave, instrument). AP, however, is rarely discussed in terms of domain-general perceptual learning mechanisms. This is because AP is typically assumed to depend on a critical period of development, in which early exposure to pitches and musical labels is thought to be necessary for the development of AP precluding the possibility of adult acquisition of AP. Despite this view of AP, several previous studies have found evidence that absolute pitch category learning is, to an extent, trainable in a post-critical period adult population, even if the performance typically achieved by this population is below the performance of a "true" AP possessor. The current studies attempt to understand the individual differences in learning to categorize notes using absolute pitch cues by testing a specific prediction regarding cognitive capacity related to categorization - to what extent does an individual's general auditory working memory capacity (WMC) predict the success of absolute pitch category acquisition. Since WMC has been shown to predict performance on a wide variety of other perceptual and category learning tasks, we predict that individuals with higher WMC should be better at learning absolute pitch note categories than individuals with lower WMC. Across two studies, we demonstrate that auditory WMC predicts the efficacy of learning absolute pitch note categories. These results suggest that a higher general auditory WMC might underlie the formation of absolute pitch categories for post-critical period adults. Implications for understanding the mechanisms that underlie the phenomenon of AP are also discussed. Copyright © 2015. Published by Elsevier B.V.

  14. Activation of the Basolateral Amygdala Induces Long-Term Enhancement of Specific Memory Representations in the Cerebral Cortex

    PubMed Central

    Chavez, Candice M.; McGaugh, James L.; Weinberger, Norman M.

    2013-01-01

    The basolateral amygdala (BLA) modulates memory, particularly for arousing or emotional events, during post-training periods of consolidation. It strengthens memories whose substrates in part or whole are stored remotely, in structures such as the hippocampus, striatum and cerebral cortex. However, the mechanisms by which the BLA influences distant memory traces are unknown, largely because of the need for identifiable target mnemonic representations. Associative tuning plasticity in the primary auditory cortex (A1) constitutes a well-characterized candidate specific memory substrate that is ubiquitous across species, tasks and motivational states. When tone predicts reinforcement, the tuning of cells in A1 shifts toward or to the signal frequency within its tonotopic map, producing an over-representation of behaviorally important sounds. Tuning shifts have the cardinal attributes of forms of memory, including associativity, specificity, rapid induction, consolidation and long-term retention and are therefore likely memory representations. We hypothesized that the BLA strengthens memories by increasing their cortical representations. We recorded multiple unit activity from A1 of rats that received a single discrimination training session in which two tones (2.0 s) separated by 1.25 octaves were either paired with brief electrical stimulation (400 ms) of the BLA (CS+) or not (CS−). Frequency response areas generated by presenting a matrix of test tones (0.5–53.82 kHz, 0–70 dB) were obtained before training and daily for three weeks post-training. Tuning both at threshold and above threshold shifted predominantly toward the CS+ beginning on Day 1. Tuning shifts were maintained for the entire three weeks. Absolute threshold and bandwidth decreased, producing less enduring increases in sensitivity and selectivity. BLA-induced tuning shifts were associative, highly specific and long-lasting. We propose that the BLA strengthens memory for important experiences by increasing the number of neurons that come to best represent that event. Traumatic, intrusive memories might reflect abnormally extensive representational networks due to hyper-activity of the BLA consequent to the release of excessive amounts of stress hormones. PMID:23266792

  15. Event-related alpha synchronization/desynchronization in a memory-search task in adolescent survivors of childhood cancer.

    PubMed

    Lähteenmäki, P M; Krause, C M; Sillanmäki, L; Salmi, T T; Lang, A H

    1999-12-01

    Event-related desynchronization (ERD) and synchronization (ERS) of the 8-10 and 10-12 Hz frequency bands of the background EEG were studied in 19 adolescent survivors of childhood cancer (11 leukemias, 8 solid tumors) and in 10 healthy control subjects performing an auditory memory task. The stimuli were auditory Finnish words presented as a Sternberg-type memory-scanning paradigm. Each trial started with the presentation of a 4 word set for memorization whereafter a probe word was presented to be identified by the subject as belonging or not belonging to the memorized set. Encoding of the memory set elicited ERS and retrieval ERD at both frequency bands. However, in the survivors of leukemia, ERS was turned to ERD during encoding at the lower alpha frequency band. ERD was lasting longer at the lower frequency band than at the higher frequency band, in each study group. At both frequency bands, the maximum of ERD was achieved later in the cancer survivors than in the control group. The previously reported type of ERD/ERS during an auditory memory task was reproducible also in the survivors of childhood cancer, at different alpha frequency bands. However, the temporal deviance in ERD/ERS magnitudes, in the cancer survivors, was interpreted to indicate that both survivor groups had prolonged information processing time and/or they used ineffective cognitive strategies. This finding was more pronounced in the group of leukemia survivors, at the lower alpha frequency band, suggesting that the main problem of this patient group might be in the field of attention.

  16. The effect of phosphatidylserine administration on memory and symptoms of attention-deficit hyperactivity disorder: a randomised, double-blind, placebo-controlled clinical trial.

    PubMed

    Hirayama, S; Terasawa, K; Rabeler, R; Hirayama, T; Inoue, T; Tatsumi, Y; Purpura, M; Jäger, R

    2014-04-01

    Attention-deficit hyperactivity disorder (ADHD) is the most commonly diagnosed behavioural disorder of childhood, affecting 3-5% of school-age children. The present study investigated whether the supplementation of soy-derived phosphatidylserine (PS), a naturally occurring phospholipid, improves ADHD symptoms in children. Thirty six children, aged 4-14 years, who had not previously received any drug treatment related to ADHD, received placebo (n = 17) or 200 mg day(-1) PS (n = 19) for 2 months in a randomised, double-blind manner. Main outcome measures included: (i) ADHD symptoms based on DSM-IV-TR; (ii) short-term auditory memory and working memory using the Digit Span Test of the Wechsler Intelligence Scale for Children; and (iii) mental performance to visual stimuli (GO/NO GO task). PS supplementation resulted in significant improvements in: (i) ADHD (P < 0.01), AD (P < 0.01) and HD (P < 0.01); (ii) short-term auditory memory (P < 0.05); and (iii) inattention (differentiation and reverse differentiation, P < 0.05) and inattention and impulsivity (P < 0.05). No significant differences were observed in other measurements and in the placebo group. PS was well-tolerated and showed no adverse effects. PS significantly improved ADHD symptoms and short-term auditory memory in children. PS supplementation might be a safe and natural nutritional strategy for improving mental performance in young children suffering from ADHD. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.

  17. Prefrontal Hemodynamics of Physical Activity and Environmental Complexity During Cognitive Work.

    PubMed

    McKendrick, Ryan; Mehta, Ranjana; Ayaz, Hasan; Scheldrup, Melissa; Parasuraman, Raja

    2017-02-01

    The aim of this study was to assess performance and cognitive states during cognitive work in the presence of physical work and in natural settings. Authors of previous studies have examined the interaction between cognitive and physical work, finding performance decrements in working memory. Neuroimaging has revealed increases and decreases in prefrontal oxygenated hemoglobin during the interaction of cognitive and physical work. The effect of environment on cognitive-physical dual tasking has not been previously considered. Thirteen participants were monitored with wireless functional near-infrared spectroscopy (fNIRS) as they performed an auditory 1-back task while sitting, walking indoors, and walking outdoors. Relative to sitting and walking indoors, auditory working memory performance declined when participants were walking outdoors. Sitting during the auditory 1-back task increased oxygenated hemoglobin and decreased deoxygenated hemoglobin in bilateral prefrontal cortex. Walking reduced the total hemoglobin available to bilateral prefrontal cortex. An increase in environmental complexity reduced oxygenated hemoglobin and increased deoxygenated hemoglobin in bilateral prefrontal cortex. Wireless fNIRS is capable of monitoring cognitive states in naturalistic environments. Selective attention and physical work compete with executive processing. During executive processing loading of selective attention and physical work results in deactivation of bilateral prefrontal cortex and degraded working memory performance, indicating that physical work and concomitant selective attention may supersede executive processing in the distribution of mental resources. This research informs decision-making procedures in work where working memory, physical activity, and attention interact. Where working memory is paramount, precautions should be taken to eliminate competition from physical work and selective attention.

  18. A Diet Enriched with Curcumin Impairs Newly Acquired and Reactivated Fear Memories

    PubMed Central

    Monsey, Melissa S; Gerhard, Danielle M; Boyle, Lara M; Briones, Miguel A; Seligsohn, Ma'ayan; Schafe, Glenn E

    2015-01-01

    Curcumin, a yellow-pigment compound found in the popular Indian spice turmeric (Curcuma longa), has been extensively investigated for its anti-inflammatory, chemopreventative, and antidepressant properties. Here, we examined the efficacy of dietary curcumin at impairing the consolidation and reconsolidation of a Pavlovian fear memory, a widely studied animal model of traumatic memory formation in posttraumatic stress disorder (PTSD). We show that a diet enriched with 1.5% curcumin prevents the training-related elevation in the expression of the immediate early genes (IEGs) Arc/Arg3.1 and Egr-1 in the lateral amygdala (LA) and impairs the ‘consolidation' of an auditory Pavlovian fear memory; short-term memory (STM) is intact, whereas long-term memory (LTM) is significantly impaired. Next, we show that dietary curcumin impairs the ‘reconsolidation' of a recently formed auditory Pavlovian fear memory; fear memory retrieval (reactivation) and postreactivation (PR)-STM are intact, whereas PR-LTM is significantly impaired. Additional experiments revealed that dietary curcumin is also effective at impairing the reconsolidation of an older, well-consolidated fear memory. Furthermore, we observed that fear memories that fail to reconsolidate under the influence of dietary curcumin are impaired in an enduring manner; unlike extinguished fear memories, they are not subject to reinstatement or renewal. Collectively, our findings indicate that a diet enriched with curcumin is capable of impairing fear memory consolidation and reconsolidation processes, findings that may have important clinical implications for the treatment of disorders such as PTSD that are characterized by unusually strong and persistently reactivated fear memories. PMID:25430781

  19. Human engineer's guide to auditory displays. Volume 2: Elements of signal reception and resolution affecting auditory displays

    NASA Astrophysics Data System (ADS)

    Mulligan, B. E.; Goodman, L. S.; McBride, D. K.; Mitchell, T. M.; Crosby, T. N.

    1984-08-01

    This work reviews the areas of monaural and binaural signal detection, auditory discrimination and localization, and reaction times to acoustic signals. The review was written from the perspective of human engineering and focuses primarily on auditory processing of information contained in acoustic signals. The impetus for this effort was to establish a data base to be utilized in the design and evaluation of acoustic displays. Appendix 1 also contains citations of the scientific literature on which was based the answers to each question. There are nineteen questions and answers, and more than two hundred citations contained in the list of references given in Appendix 2. This is one of two related works, the other of which reviewed the literature in the areas of auditory attention, recognition memory, and auditory perception of patterns, pitch, and loudness.

  20. Effects of an acute bout of exercise on memory in 6th grade children.

    PubMed

    Etnier, Jennifer; Labban, Jeffrey D; Piepmeier, Aaron; Davis, Matthew E; Henning, David A

    2014-08-01

    Research supports the positive effects of exercise on cognitive performance by children. However, a limited number of studies have explored the effects specifically on memory. The purpose of this study was to compare the effects of an acute bout of exercise on learning, short-term memory, and long-term memory in a sample of children. Children were randomly assigned to an exercise condition or to a no-treatment control condition and then performed repeated trials on an auditory verbal learning task. In the exercise condition, participants performed the PACER task, an aerobic fitness assessment, in their physical education class before performing the memory task. In the control condition, participants performed the memory task at the beginning of their physical education class. Results showed that participants in the exercise condition demonstrated significantly better learning of the word lists and significantly better recall of the words after a brief delay. There were not significant differences in recognition of the words after an approximately 24-hr delay. These results provide evidence in a school setting that an acute bout of exercise provides benefits for verbal learning and long-term memory. Future research should be designed to identify the extent to which these findings translate to academic measures.

Top